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Abstract

Additive Manufacturing (AM), otherwise known as 3D printing, is the pro-
cess of building 3D objects based on some 3D model, typically provided by
some computer-aided design. AM comprises multiple methodologies which
can fabricate 3D objects with several different materials. While AM has
been a fast-developing field for several years, there are notable gaps in the
research for applications of statistically sound methods that are able to an-
swer a wide variety of important and complex questions. Due to savings on
cost and time, these methods can be highly beneficial.

This works provides a robust process for estimating relationships be-
tween multiple output variables and input variables simultaneously with a
‘forward’ model, which accounts for measurement error in the data and in-
corporates expert opinion into the modelling. This expert opinion, alongside
the available data, provides a more complete understanding of the relation-
ship to be estimated.

The ultimate aim of this work is the optimisation of the input variables in
order to produce desired values for multiple output variables. With the use
of Bayesian statistics, these methods provide an intuitive process for this
optimisation by inverting the fitted relationship identified in the forward
modelling.

Two modelling methods are demonstrated: errors-in-variables Bayesian
regression, and errors-in-variables Gaussian processes. The former is a ‘para-
metric’ method, which estimates model parameters based on a fixed, prede-
termined relationship. The latter is a ‘nonparametric’ method, which does
not assume such a relationship, instead assuming a multivariate normal dis-
tribution for the output variables, whose covariance is informed by spatial
correlation between the input variables.

The modelling process for these statistical methods is developed with
simulated data, followed by an application to a real-data example, looking at
optimisation of powder properties to provide ideal powder flow and powder
bed deposition for improving laser sintering.
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the posterior fitted values Ŷi against the posterior true values
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Chapter 1

Introduction

The fields of engineering and statistics are becoming more and more in-
tertwined; as more technologies in various engineering fields are developed,
more questions are available to be answered by a multitude of statistical
methods. More specifically, the field of Additive Manufacturing (AM) re-
mains relatively new and unresearched, leading to numerous possibilities for
statistical research to help develop the field. Some examples are:

• quality analysis; the mechanical properties of a 3D-printed object are
dependent upon many variables, such as the material properties and
the printer settings. Exactly how these variables are related could be
found using statistical methods, in order to improve these mechanical
properties

• reusing excess powder; after having utilised powder for printing a 3D
object, the excess powder is often considered to be unusable and is
wasted. Could the properties of a powder, relating to particle size and
density (among others), be optimised for the purpose of powder reuse
and waste reduction?

The work in this thesis provides a template for approaching questions
within AM in a statistically sound manner, to provide answers that account
for uncertainty in the estimates of model parameters. Moreover, this work is
an example of true interdisciplinary research, with state-of-the-art statistical
methods being applied to cutting-edge AM, while also developing the statis-
tical methodology through the exposure to challenging practical problems.
The case study to which these methods are applied in this work is a spe-
cific example from powdered-polymer AM, where further details are given

1
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in Section 2.2, although the statistical modelling discussed here is applicable
across a broad range of applications.

The approach in this work is to answer questions through statistical
modelling. The main aim of a statistical model is to relate some response
variable to some explanatory variable while describing the variation in the
response variable, with appropriate assumptions about how the variables are
distributed (in other words, what is the influence of the explanatory variable
on the response variable, and how confident is the model in this influence).
The two main questions of interest in this work are:

1. Which statistical model best describes the relationship between the
response (output) variable(s) and the explanatory (input) variable(s)
(i.e., describing the effect of the input variable on the output variable)?

2. Given this statistical model, what values of the explanatory variable(s)
are required in order to produce some desired value for the response
variable(s)?

Note firstly that, oftentimes there are multiple response variables and mul-
tiple explanatory variables considered simultaneously, which provides a high
level of complexity to the modelling. Secondly, that the first question implies
considering many statistical models, and comparing which of these performs
‘best’ (best can be defined statistically in many ways, and is discussed fur-
ther in Chapter 3). The answer to the first question is valuable in helping
to understand how these input variable(s) influence the output variable(s).

The second question above is the ultimate goal of this work, and is mo-
tivated by a simple example. Suppose there is data available for a response
variable Y and explanatory variable x, where the data point xi represents
the laser scanning speed for a Laser Sintering machine for observation i,
and Yi represents the corresponding tensile strength measurements of a 3D-
printed object from the Laser Sintering machine. The effect of the laser
scanning speed on the tensile strength of the final part can then be es-
timated with a statistical model, specifically, a classical linear regression
model. Suppose further that a simple linear model is used, which assumes
a straight line relationship between the data points of the two variables.
Mathematically, this can be written as

Yi = β0 + β1xi + εi, (1.1)

where:

• the observed data points for the response variable are denoted by Yi,
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• the observed data points for the explanatory variable are denoted by
xi,

• the term εi denotes some discrepancy between the observed data point
Yi and the value of the straight line at the observed data point xi, with
the discrepancy assumed to be random error,

• the subscript i denotes the ith observation of the response variable
and the explanatory variable, where there are n observed data points
Y1, . . . , Yn corresponding to x1, . . . , xn.

In this classical setting, the model coefficients β0 (the intercept of the
straight line) and β1 (the slope) can be estimated using the method of least
squares, or using any preferred method. Note here that the model error
term εi is a random variable, thus inducing uncertainty with respect to the
response data.

Now suppose a particular desired value of the response variable tensile
strength, say Y ∗, is of interest, and a corresponding value x∗ of the explana-
tory variable laser scanning speed (i.e., a value of the explanatory variable
that can produce the desired response value) is to be found. How should one
proceed? Consider the plot in Figure 1.1—this provides some example data
of a response variable Y against an explanatory variable x, with the ‘line of
best fit’ (i.e., the straight line using the estimates of β0 and β1 noted above)
from the simple linear model given as the solid black line. The solid red line
lies at some desired value of the response, say Y ∗ = y∗. An intuitive thought
would be to use the intersection of the desired response value with the line
of best fit, and read down to the corresponding value x∗ on the x-axis, to
provide the corresponding input value. This can be considered a legitimate
solution to this problem, but not without complications; how is uncertainty
factored into this ‘estimate’ of the corresponding value? Is this ideologi-
cally correct, to predict the behaviour of the explanatory variable given the
response variable, having estimated the relationship between the two vari-
ables with uncertainty on the response variable and not the input variable?
Moreover, an alternative solution can be provided by switching the response
variable and explanatory variable and fitting a simple linear model with X
as the response variable and y as the explanatory variable (capitalisations
reversed here—see Section 3.2). The prediction of the corresponding input
value x∗ (having treated the observed data X as the ‘response’ variable) is
then given by the fitted value (the value of the response variable given an
observed data point for the explanatory variable) at the desired response
value y∗ (having treated the observed data for y as the ‘explanatory’ vari-
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Figure 1.1: Line of best fit relating some response variable and explanatory
variable (simulated data), with some desired response Y ∗ = y∗ indicated
by the solid red line and a corresponding value of the explanatory variable
indicated by the dotted red line x = x∗.

able), which is calculated to be the dotted green line in Figure 1.2. Two
estimates of the corresponding input value now exist, given the dotted red
line and dotted green line—which is most justified? Which is the preferred
estimate?

The problem is complicated further by considering more response vari-
ables and explanatory variables simultaneously in the modelling, for which a
single solution to finding optimal vectors for the corresponding input vector
to some desired response vector is not possible in a classical setting. For
example, suppose that a linear model with two explanatory variables and
one response variable is of interest, e.g.,

Yi = β0 + β1x1,i + β2x2,i + εi, (1.2)

where x1,i and x2,i represent the ith observation of the first and second
explanatory variables respectively. If one estimates the model coefficients,
the ‘fitted’ model is represented by a plane in 3-dimensional space (analogous
to the ‘line of best fit’ from the simple linear model, so we have here a ‘plane
of best fit’). Suppose again a desired value of the response variable Y ∗ = y∗

is of interest; in this case, the line

X∗2 = y∗ − β̂0 − β̂1X
∗
1 ,

where X∗1 can take any real number, provides an infinite number of solutions
for the two explanatory variables. This work implements Bayesian statistical
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Figure 1.2: Line of best fit for a simple linear model, with the explanatory
variable data and response variable data from Figure 1.1 switched around
(in terms of both the linear model, and the axes in the plot). This provides
a different estimate of X = x∗ given the desired ‘response’ value y = y∗.

methods, which allow a single solution to this problem to be found. These
methods are discussed in Chapter 3, and implemented on simulated data
and real-world data in Chapter 5.

As mentioned above, this work implements a statistical modelling ap-
proach, which has many benefits. Firstly, the theory behind the statistical
methods is well researched, with many examples of practical applications.
Secondly, these methods are versatile, as they are not bound to any specific
modelling scenario, and can be appropriately utilised for many applications
(with some examples given earlier). The work in this PhD could be trans-
ferred over to several aspects of AM, with respect to any AM methodology,
or any component within a methodology. This is in contrast to physical
models, which can be effective, but are restricted to the application for
which they are built.

The main statistical modelling methods applied in this PhD are errors-in-
variables Bayesian regression (shortened to EIV BR) and errors-in-variables
Gaussian processes (shortened to EIV GP). Both statistical modelling meth-
ods account for measurement error (synonymous with errors-in-variables) in
the explanatory variables, that is, the observations of the explanatory vari-
able are known to be not exact (measurement error is also accounted for
on the response variables). In many engineering experiments, it is often the
case that the observed data is not measured exactly, for many reasons. For
example:
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• a set of scales for measuring the mass of a powder is not capable of
providing its exact mass,

• pouring powder through a funnel for measuring its angle of repose will
lead to randomness, whether it be human error or simply randomness
in particle movement.

This is a component of modelling that is very often neglected by those who
have not acquired significant training in applying statistical models. Con-
sider again the simple linear model in Equation 1.1. As mentioned in the
third bullet point, the model accounts for error in the response variable (i.e.,
vertical distance between the data points and the fitted model); conversely,
the observed data for the explanatory variable is assumed to be exact in
this framework. In this case, a violation of the modelling assumptions oc-
curs when the explanatory variable observations xi are prone to error. An
errors-in-variables approach is an extension of standard linear regression
modelling that accounts for randomness in the explanatory variable(s), and
is considered further in Chapter 3.

The modelling methods mentioned above are considered in a Bayesian
framework. Bayesian statistics is a branch of statistics that contrasts the
more well-known frequentist statistics, which is built on the fundamental
understanding that the probability of an event occurring is based on the
relative frequency of the event occurring given a large number of repeats
of an experimental scenario. Conversely, Bayesian statistics often relies on
subjectivity to form probability statements (see Section 3.1).

In terms of statistical modelling, a frequentist approach relies heavily on
the available data collected in an experiment, and as such the parameters of
the model are estimated using just data, whereas parameter estimation in
a Bayesian setting considers the available data as well as some prior beliefs
about the parameters to be estimated. There are multiple advantages of
Bayesian statistical modelling:

• the ‘prior beliefs’ can be informed by expert opinion to provide some
joint understanding of the parameters based on both experts in the
field and the data that is available,

• measurement error in the data can be treated naturally,

• a single solution can be produced for the process of optimising the
input variable(s) to produce some desired response.

Statistical modelling in a Bayesian framework provides the ability to treat
any model parameters, as well as the response and explanatory variables,
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as random. Thus, for the second point, the response variable(s) and in-
put variable(s) inherently can account for error by definition (i.e., Bayesian
modelling immediately admits measurement error).

To the third point, treating the input variables as random allows for a
more justified theoretical approach to estimating the input variable(s) given
some desired response value. Using conditional probability, the probabil-
ity distribution p(Y |X) (that is, the distribution that describes the random
behaviour of the response variable given the explanatory variable) can be
rearranged with relative ease to find the probability distribution p(X|Y )
(describing the random behaviour of the explanatory variable given the re-
sponse variable). This is achievable because both variables are considered to
be random here; in comparison, the classical approach assumes there is no
randomness in the explanatory variable, so the probability density function
p(X|Y ) does not exist, and the problems discussed with respect to Figures
1.1 and 1.2 arise. This is discussed further, with extensions to multivariate
regression, in Chapter 3.

The contrasts, both theoretically and practically, between the two meth-
ods of EIV BR and EIV GP, are discussed in this work. The main theoretical
distinction between the methods is how they approach relating the response
variable(s) and the explanatory variable(s); the EIV BR is a parametric ap-
proach, whereas the EIV GP is a nonparametric approach. ‘Parametric’ in
this sense relates to the belief that a ‘predetermined’ relationship exists be-
tween the variables. In the case of the simple linear model discussed briefly
above, the model is defined based on the equation of a straight line, which
makes the obvious assumption that some straight line determines the rela-
tionship between the response variable and the explanatory variable. Hence,
the model parameters are estimated with this predetermined assumption.
The assumption need not be a straight line; there could be a belief that a
quadratic curve relates the two variables, i.e.,

Yi = β0 + β1xi + β11x
2
i + εi,

or with the inclusion of multiple explanatory variables, an additive model
in the explanatory variables could be the predetermined relationship (such
as Equation 1.2). No such predetermined relationship exists when fitting
a nonparametric model. The nonparametric approach makes far fewer as-
sumptions about the relationship between the variables. Note that there are
still parameters to be estimated in a nonparametric model, and that ‘non-
parametric’ simply refers to the fact that there is no fixed, predetermined
relationship between the output(s) and input(s). The Gaussian process,
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for example, makes the assumption that the response variable data (and
any subset of this data) takes a multivariate normal (Gaussian) distribu-
tion. This distribution is then informed further by the assumption that, if
two data points of the explanatory variable are close together (in terms of
Euclidean distance), it is likely that the corresponding data points of the re-
sponse variable are close together. These approaches are defined in Chapter
3, and applied and compared in Chapters 4 and 5.

The two modelling approaches of linear regression and Gaussian process
regression are covered in both the forward modelling and the backward mod-
elling. These two terms are linked with the two questions asked at the start
of the introduction—the forward modelling corresponds to the estimation of
the relationship between the response variable(s) and the explanatory vari-
able(s), and the backward modelling corresponds to the optimisation of the
explanatory variables, given some desirable value of the response variables,
and given the best-fitting statistical model found in the forward modelling.
The terms forward modelling and backward modelling are defined as such
because of the interpretation of the variables; the forward model is inter-
ested in the outcome of the experiment, and how this is affected by the
explanatory variables; the backward model inverts this, and considers how
to arrive at a particular outcome, or more exactly, how the outcome af-
fects the explanatory variables. Both the forward modelling and backward
modelling are explored theoretically in Chapter 3. The forward modelling
of both the statistical methods that feature in this work is implemented in
Chapter 4 (with consideration of simulation examples, and real data, which
is discussed below), and the backward modelling is demonstrated in Chapter
5.

The subsequent chapters of this thesis are now described briefly below:

• The content of Chapter 2 provides an overall view of AM, with further
details describing the process of Laser Sintering, the variables tapped
density and angle of repose (with regards to how they were measured
for this work), the information that can be acquired from the FT4
powder rheometer, and an overview of the statistical research that
currently exists within the AM literature.

• The statistical methods applied in this work are covered in Chapter 3,
with an overview of the required foundations (such as the fundamentals
of Bayesian statistics and measurement error models), and a detailed
discussion of how these models are fitted, assessed and compared in
the thesis. This includes the details for both the forward modelling
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and the backward modelling, for both the EIV BR models and the
EIV GP models.

• Chapter 4 contains a thorough investigation of applying the forward
EIV BR and EIV GP models to various sets of simulated data, with
the main idea of developing these methods using simulated data to en-
sure that the model is performing as intended for a variety of scenarios
(different linear predictors—the function of the input variable(s) that
defines the relationship between the output(s) and input(s)—for ex-
ample). Subsequently, the methods are applied to the powder flow
data (discussed in Section 2.2) to demonstrate the approach and an-
swer the first of the two questions discussed above, that is, to find
those explanatory variables from the FT4 powder rheometer that are
required to provide the best understanding of the response variables
tapped density and angle of repose. The numerical results from ap-
plying the EIV BR and the EIV GP models to the real data are also
compared.

• The work of Chapter 5 is carried out analogously to that of Chap-
ter 4 (that is, considering sets of simulated data to develop the mod-
elling, followed by applying the models to the real data), with the focus
switched from the forward model to the backward model. This chap-
ter provides an answer to the second of the two questions discussed
above, that is, what are the optimal values for the vector of explana-
tory variables that are most likely to produce some desired response
vector. As in Chapter 4, the numerical results from applying the EIV
BR and the EIV GP models to the real data are again compared.

• The penultimate chapter, Chapter 6, describes aspects of the work that
have not been covered in this thesis, that would develop the process
and outcomes further.

• Finally, the work is concluded in Chapter 7, describing the results of
the work carried out in the thesis.
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Chapter 2

Additive Manufacturing

As defined in the annual ‘Wohlers Report’ (see Wohlers et al. (2019) for
the 2019 edition), additive manufacturing is the ‘process of joining together
materials to make objects from 3D model data, usually layer upon layer’
(3D model data referring to CAD files that represent printable 3D objects).
Generally speaking, manufacturing methods are often a means of removing
materials from starting blocks like metal and plastic and combining them to
create an object—this is known as subtractive manufacturing. This distinc-
tion is the key difference between additive manufacturing and subtractive
manufacturing; with additive manufacturing, the starting point is effectively
what the raw material is made of, meaning there is far less waste in additive
manufacturing than in subtractive manufacturing. The main advantage of
additive manufacturing is the relative ease of creating objects with a high
complexity of geometry (Goodridge et al. 2012).

There are several methodologies for additive manufacturing, and this
list will continue to grow. The methodologies can often be split into cate-
gories depending on its process—these processes are binder jetting (powder
materials joined together by liquid bonding agent), sheet lamination (ob-
ject is bonded by sheets of material), material extrusion (material dispensed
through a nozzle), powder bed fusion (the application in this work, where
thermal energy is used to fuse sections of a powder bed), material jetting
(droplets of material are jetted (spurted out in a rapid stream) onto a plat-
form), vat photopolymerisation (a photopolymer is cured or hardened using
light), and directed energy deposition (thermal energy is used to fuse mate-
rials by melting through deposition). A more extensive review of the various
methodologies can be found in Wong & Hernandez (2012).

A large variety of applications of AM processes exist, particularly in

11
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fields where highly complex object geometries are required. Some examples
of 3D-printed objects are teeth retainers, a prosthetic leg, car parts and
model replicas. The following subsection details the additive manufacturing
process ‘Laser Sintering’, and some of its key aspects which have been of
interest in this work.

2.1 Laser Sintering

AM processes falling under the category ‘powder bed fusion’ rely on ther-
mal energy to fuse powder together. A variety of materials, such as poly-
mers, metals and ceramics, are suitable for these processes; the work here
is specifically focused on polymers, with the statistical modelling also being
applicable for a broad range of materials and uses. An image demonstrating
the process of Laser Sintering is shown in Figure 2.1 (image produced in
Hopkinson et al. (2006)). The materials used for laser sintering are typi-
cally nylon-based (polyamide polymer); other materials, such as elastomers
(rubber-like material) are becoming more frequently used. The material
Polyamide 12, also known as Nylon 12, is by far the most popular powder of
choice (Goodridge et al. 2012). Examples of industries which benefit from
laser sintering include the aerospace industry and the orthotics industry,
where, in both cases, the complexity required for specific designs is well
suited to the capabilities of laser sintering.

The laser sintering process, following the depiction in Figure 2.1, is de-
tailed here:

1. Firstly, the 3D-printed object is designed in a Computer-aided design
(CAD) package.

2. The CAD file of the object to be printed is delivered to the machine
in thin slices.

3. A thin layer (approximately 100 microns) of polymer powder, from
which the final 3D-printed object will be constructed, is deposited
into the machine.

4. Once 0.1mm of powder has been deposited across the powder bed, the
powder bed is heated to a temperature just below the melting point
of the powder.

5. The laser is reflected off the scanning mirrors to sinter the powder (i.e.,
heat it above its melting point), with direction according to the CAD
file.
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6. Upon completion of the sintering of the layer of powder, the powder
bed is dropped, so that another layer of powder is spread onto the
powder bed.

7. The steps in (6) and (7) are repeated until every layer of the object
has been sintered.

8. The powder bed is dropped so that the 3D-printed object is accessible
and is then removed from the machine, ready for post-processing.

Figure 2.1: A visual representation of the additive manufacturing process
laser sintering

The term ‘post-processing’ refers to the actions carried out on the object
once it has been printed. For laser sintering, this involves brushing away
any loose powder from the object (any leftover powder from the machine
can be recycled, depending on its next use), and then typically the object is
‘bead-blasted’, that is, the object is put into a bead-blasting machine, where
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the user shoots fine glass beads at high pressure at the object, removing any
further excess powder from the object as well as improving the surface finish.

Laser sintering is typically an AM methodology of choice when the design
of the object is very sophisticated and precision is required. The 3D-printed
objects built with laser sintering tend to have relatively high-quality me-
chanical properties and good geometrical capabilities, but the surface finish
of the final part can be lacking, and the speed of the process can be slow if
the cross sections require large amounts of scanning.

2.1.1 Powder flow in Laser Sintering

As described above, the process of laser sintering involves a powder being
transported through chutes/hoppers in a machine, as well as the powder
having to settle on a powder bed for the laser sintering process to continue
(Goodridge et al. 2012). There are two key aspects of powder flow which are
important in the success of this AM methodology—firstly, the powder must
be able to flow at close to an optimal level to get through the chutes/hoppers
without either clumping (when the powder is too cohesive) or dissipating
(when the powder is too free flowing and ‘disappears’, or becomes dust).
Secondly, the powder must be able to settle evenly on the powder bed to
form a flat layer of powder. In this work, two variables are considered which
quantify these aspects. The first variable is tapped density, described further
in Section 2.1.2, and the second variable is angle of repose, described further
in Section 2.1.3.

2.1.2 Tapped density

As a measure of density, the tapped density of a powder measures the mass
of the powder that can occupy a given volume after it has been ‘tapped’ in a
systematic manner. The ‘tapping’ of a powder is a method for trying to pack
the powder particles as tightly as possible into some volume. Having the
powder be tightly packed is beneficial in Laser Sintering; when the powder
is deposited onto the powder bed, the tighter it is packed together, the
smoother the powder bed, and the less likely geometrical deformities occur
in the final part.

The process for measuring tapped density in this work is detailed below:

1. Take a separable metal cylinder where the volume of the base of the
cylinder is known (100ml in this case)—see Figure 2.2.

2. With the metal cylinder assembled (both parts are attached to one
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another), insert some subsample of the powder, ensuring there is suffi-
ciently more powder in the cylinder than the amount that would just
fill the base.

3. Fix the metal cylinder to the platform on the left of the device shown
in Figure 2.2.

4. Turn the cog clockwise until 100 full rotations are completed. As the
cog is turned, the platform is raised and suddenly dropped, simulating
the effect of packing the mass of the powder into a smaller volume.
With each full rotation, the platform is raised and dropped 5 times,
meaning there are 500 drops throughout the test.

5. After completing the 100 rotations, carefully remove the metal cylinder
from the platform, then separate the metal cylinder (taking the top
off of the base).

6. If necessary, use a ruler (or something similar) to remove excess powder
lying on top of the base.

7. Take some resealable bag and place it on some scales, then re-zero the
scales (taking into account the mass of the bag).

8. With the mass of powder that remains in the base of the metal cylinder,
carefully place the entirety into the resealable bag and weigh the mass
of the powder (in grams).

9. Divide the mass of the powder by the known volume of the base of the
cylinder to find the tapped density (in g/ml).

The measurement of tapped density is seen as a good proxy for capturing
powder bed deposition, that is, how evenly the powder can lie on a powder
bed.

2.1.3 Angle of repose

The ‘angle of repose’ is defined to be the steepest angle (between the hori-
zontal plane and the slope of some pile of particles) at which the particles
can be piled without slumping. The process for measuring angle of repose
in this work is detailed below:

1. Insert some subsample (less than 100g) of powder into a beaker.
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Figure 2.2: Image of the equipment used to measure tapped density

2. Place the tip of the funnel in the centre of some cylinder with known
diameter, then transfer the powder from the beaker into the funnel (if
the powder is very free flowing, some powder may pour out of the tip
and onto the cylinder).

3. Gently raise the funnel to initiate the powder flow through the funnel
and onto the cylinder. The funnel may require a slight tap if there is
no initial powder flow. As the height of the pile increases, raise the tip
of the funnel, ensuring that the tip of the funnel is as close as possible
to the summit of the powder pile at all times.

4. Continuously fill the funnel with powder from the beaker until the pile
diameter is equal to the diameter of the cylinder.

5. Take the digital callipers and expose the depth gauge to a length
greater than the height of the pile, then carefully place the depth
gauge in the centre of the pile.

6. Close the callipers until they are in contact with the top of the pile
and record the height of the pile.



2.2. CASE STUDY – POWDER BEHAVIOUR 17

7. The angle of repose θ is then calculated using

θ = tan−1

(
2× pile height

cylinder diameter

)
.

Figure 2.3: Image of the equipment used to measure angle of repose—in the
top left is a funnel, in the top right is a beaker filled with powder, in the
middle is a cylinder, and at the bottom is a pair of digital callipers.

2.1.4 Powder rheometer

Improving the understanding of the powders being used in Laser Sintering is
beneficial due to the influence of powder behaviour on the quality of the final
part. Furthermore, acquiring knowledge about the influence of powder prop-
erties on the particular aspect of powder flow can help with choice of powder
(those which flow ‘sufficiently’ well) or possibly with the manufacturing of a
new powder. A powder rheometer, like the FT4 powder rheometer pictured
in Figure 2.4, is a piece of machinery which can perform various tests on
a subsample of powder to measure some flow-related characteristics of the
powder. An overview of the tests and measurements acquired from the FT4
powder rheometer are presented in Table 2.1; further details relating to the
FT4 powder rheometer are found in Freeman Technology (2020).

2.2 Case study – powder behaviour

The specific example considered in this work to demonstrate how to imple-
ment the statistical modelling approaches discussed in Chapter 3 looks at
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Figure 2.4: Image of Freeman Technology’s FT4 Powder Rheometer
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Methodology Measurement Definition

Aeration
4mm/s test—
Total Energy at 2
mm/s (mJ)

Powder is aerated over six tests with the
speed of aeration increasing after each
test, to a maximum speed of 4mm/s. To-
tal energy consumed is measured during
each test

Compressibility

Compressibility
percentage at
15kPa Normal
Stress (%)

Percentage change in volume after com-
pression. Test completed in nine steps,
with increasing pressure from 0.5kPA up
to 15kPa

Permeability
Pressure drop at
15kPa Normal
Stress

Increasing amounts of normal stress ap-
plied to powder, during which air is passed
up through vessel. Air pressure drop mea-
sured at 15kPa

Shear Cell
Shear Stress (In-
cipient) (kPa)

Shear head induces vertical and rotational
stresses, which are normal and shear
stresses respectively. Maximum shear
stress occurs (and is measured) immedi-
ately before powder bed fails or shears

Stability & Vari-
able Flow Rate

Basic Flowability
Energy (BFE)
(mJ), Specific En-
ergy (SE) (mJ/g),
Conditioned Bulk
Density (CBD)
(g/ml)

Conditioning refers to gentle displacement
of the powder sample so as to loosen
the powder, consisting of an upward and
downward traverse of a rotating blade at
a 5 degree angle. Each conditioning is fol-
lowed by testing, that is, measuring energy
consumption. This provides the measure-
mens: BFE (the total energy consumed
in test 7, out of 7 tests), SE (the sum of
the Up Energy of Cycle 6 and of Cycle 7
(energy measured on upward traverse of
blade), divided by 2 times the Split Mass
(powder mass measured after first condi-
tioning)), CBD (the Split Mass divided by
the Split Volume (25ml))

Tapped Consoli-
dation

Consolidated En-
ergy (50 taps)

Total energy consumed after 50 taps (con-
trolled vibrations of the powder)

Wall Friction
Shear Stress
(Kinematic)
(kPa)

Wall friction head induces vertical and ro-
tational stresses. Maximum shear stress
occurs as the resistance is overcome

Table 2.1: List of tests that can be carried out with the powder rheometer,
with the variables that are measured and how they are defined.
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powder flow and powder bed deposition. The general focus is to make im-
provements in the quality of parts produced by the AM methodology Laser
Sintering ; as discussed above, these improvements are dependent on how
well a powder flows through chutes in the machine, and how well the pow-
der deposits onto the powder bed. It was also noted that two useful proxies
for these components are angle of repose for powder flow and tapped density
for powder bed deposition, which have been measured multiple times on
seven different powder materials (each time using a different ‘subsample’ of
the powder). The two proxies are treated as the response variables in this
work, and their relationship with variables measured from a powder rheome-
ter are estimated in the modelling. Identifying these relationships between
tapped density and angle of repose and those variables extracted from the
powder rheometer can provide an understanding of which aspects of the
powder rheometer are relevant for describing powder flow and powder bed
deposition, and what specific traits a powder should possess in order to flow
optimally through the Laser Sintering machine and deposit optimally on the
powder bed. This example, most importantly, demonstrates a statistically
sound approach for optimising input variables to produce a desired response
vector for real-world data that is transferable to several applications within
AM.

2.3 Statistical methods in AM

This section reviews some prior applications of statistical methods in the
additive manufacturing industry with the aim of improving AM technology.
The main focus of this section is to highlight pieces of literature using sta-
tistical methods being applied in AM that are related to those considered
in this work (i.e., linear regression and Gaussian processes).

The review paper Stavropoulos, Panagiotis & Foteinopoulos, Panagis
(2018) is a review of literature on the modelling of existing AM processes,
and provides a suitable starting point for identifying applications of statisti-
cal methods within AM research. The paper refers to all AM processes, and
notes which ‘approach’ each referenced work considers, with the approaches
being ‘analytical’, ‘numerical’, ‘empirical’, or some combination of the three.
The empirical approaches that consider linear regression are discussed in this
section. Given the application in this work is in laser sintering, those pa-
pers that consider this methodology are looked at firstly below, with other
methodologies considered after. The limitations of the existing research,
and how this work is able to overcome these, is discussed in Section 2.3.3.
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2.3.1 Laser Sintering

Linear regression

A common theme in the literature looking into linear regression applications
in laser sintering shows that linear regression is often applied in conjunction
with an experimental design. The discussion of this begins here with the
paper Raghunath & Pandey (2007). The paper aims to improve the ac-
curacy of the final part in laser sintering by modelling ‘shrinkage’ against
various processing parameters. The percentage difference in each of the
three dimensions of the CAD model and a fabricated prototype (3D ob-
ject) are used as response variables, and the processing parameters laser
power, scan speed, hatch spacing, part bed temperature and scan length
are taken to be the explanatory variables. A Taguchi method (a popular
tool in engineering applications for building optimal experimental design;
see Rosa et al. (2009) for more details) for designing an optimal experi-
ment is utilised that suggests 16 observations at four levels given the five
explanatory variables. Having carried out the experiments, the response
variables are treated individually, with the shrinkage % in each dimension
being modelled against the explanatory variables. For each of the 16 obser-
vations, the shrinkage % is measured and recorded three times. An average
of the shrinkage % is provided, implying that measurement error is observed
for each observation of the experiment. Signal-to-noise ratios are calculated
by −10 log

(
1
n

∑n
i=1 Y

2
i

)
, where n is the total number of experiments, yet

the ratio is calculated for each of the 16 observations (in each dimension).
Then the signal-to-noise ratios are used to choose the optimal settings for
each of the processing parameters, though the process for making the choice
is unclear. An application of Analysis of Variance (ANOVA) is then car-
ried out, in order to identify which processing parameters are influential on
the shrinkage % in each dimension. The full model (with all five explana-
tory variables) is compared with five nested models, having removed each
of the explanatory variables and fitted the model with the four remaining
explanatory variables. Those variables whose removal results in a small p-
value (the probability of repeating the experiment and the new data from
the experiment providing a more extreme result, i.e., a smaller F-statistic of
the F-test) are all removed from the model.

In a similar fashion, the paper Wegner & Witt (2012) also considers an
experimental design framework to help identify the most influential input
variables on the mechanical properties of final parts in laser sintering. In
comparison, a central composite design is implemented, as opposed to the
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Taguchi method in Raghunath & Pandey (2007), which accounts for higher-
order and interactions terms in the design. A second-order response surface
model is fitted (effectively a linear regression model with a quadratic and
interactions terms given an optimal experimental design), and again, as
above, utilises the ANOVA in order to identify which input variables are
most important for predicting mechanical properties of final parts.

Furthermore, the paper Lappo et al. (2003) investigates the use of mul-
tiple materials simultaneously in laser sintering. The method they imple-
mented was an experimental design in order to determine the possibility
of an ‘electrostatic powder removal’, as opposed to vacuum removal, of the
first powder. They investigate the influence of the three variables powder
removal height (in mm), charge voltage (V), and the powder material, on
the volume of powder removed through electrostatic removal. Each of the
three input variables had two levels, and interaction terms were considered,
leading to an experimental design with 8 possible combinations of the input
variables, and each combination (trial) was carried out twice. The ANOVA
was applied to the three-covariate model with interactions between each of
the input variables (but no polynomial terms for each variable), and indi-
cated that the interaction term between powder removal height and powder
material was insignificant. The p-values of the F-tests were not reported,
instead, the Probability of the F-test was given, with values ‘close’ to 1
indicating values of high confidence (indicating this gives 1 minus the cor-
responding p-value). The authors note that, with only three input variables
considered, with little inclusion of processing parameters, potentially valu-
able information is not captured in their model. This is an appropriate
conclusion, particularly given that the best-fitting model given 16 obser-
vations included 7 model coefficients (possible overfitting issues should be
noted).

The work carried out in Jain et al. (2008) is similar to that of Raghunath
& Pandey (2007), with the implementation of the Taguchi method for op-
timal experimental design to investigate the effects of the input parameters
layer thickness, part bed temperature, refresh rate and hatch pattern on the
tensile strength of the final part. Once more, the ANOVA is carried out to
indicate which variables have a statistically significant effect. Again, a four-
level design with 16 observations is carried out, and the resulting ANOVA
indicates that all input parameters have a statistically significant influence
on the final part tensile strength. They conclude that inclusions of laser
power, beam speed and hatch spacing may lead to further improvements in
the model.

The aim of the paper Majewski et al. (2008) is to improve the under-
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standing of final-part mechanical properties from laser sintering. They note
that laser sintering final parts, while typically having appropriate levels of
tensile strength, often suffer from low levels of ductility. A possible reason
for this was that the consistency of melting throughout the powder during
the printing was low. Differential scanning calorimetry (DSC) tests are able
to detect two separate melt peaks, corresponding to a fully-melted region
of material and a region which has not fully melted. The term degree of
particle melt then defines the variation in particle melt. The experiment
in their work looks at investigating the influence of degree of particle melt
(calculated using DSC tests) on the mechanical properties. Having carried
out appropriate experiments in order to investigate this, simple linear re-
gression models were applied to investigate the relationship between each
output variable (elongation at break, tensile strength and E-Modulus (elas-
tic modulus, or Young’s modulus)) against core peak height (relating to
degree of particle melt). In each case R2 was used to determine how well
the regression line represents the actual data, and it is then claimed that R2

values above 0.9 indicate the data follow a significant trend.
Another example of the combination of experimental design and using

the ANOVA for variable selection is provided in Wegner et al. (2015). The
paper investigates the effects of the processing parameters in laser sinter-
ing on the mechanical properties when the material Polyamide 11 is used.
This is notable since Polyamide 12 is definitively the predominant material
applied in LS. The authors implement the response surface model which is
also implemented in Wegner & Witt (2012), and a central composite exper-
imental design is once again used.

Ha et al. (2018) aimed to develop a ‘compensation’ algorithm (previ-
ously developed in the AM and also subtractive manufacturing literature),
for the purpose of better understanding the relationship between final-part
dimensional inaccuracy in laser sintering and CAD design. The compen-
sation algorithm is effectively a process for printing 3D objects given an
initial CAD design, adjusting the initial CAD design based on inverting
predictions of measured deformations from a quadratic regression model of
surface data, and measuring the improvement in dimensional inaccuracy
given the updated CAD design. The work is an extension of the previous
paper Ha et al. (2015). The choice of implementing a quadratic regression
model, while also based on the evidence provided in Ha et al. (2015), was on
the basis of comparing R2 values of the linear, quadratic, cubic (and even
higher polynomial terms) regression models. Crucially, it is also noted that
the estimated model coefficients from the quadratic regression model are
used further in the compensation algorithm, with no consideration of the
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uncertainty in those estimates.

A work that is closely related to this PhD is that of Vetterli (2019), a
PhD thesis with the interest of optimising powders for use in laser sintering.
One of the main interests of the work was to apply statistical regression
methods combined with experimental work to better understand the in-
fluence of ‘intrinsic’ and ‘extrinsic’ particle properties on the flowing and
packing behaviour of powders that could potentially be used in laser sin-
tering. Therefore, the application of statistical regression models and the
case study of powder flow and powder bed deposition (discussed further in
Section 2.2) align to a large extent with the work in Vetterli (2019). As de-
scribed in Section 2.2, this work considers (input) variables measured from a
powder rheometer to investigate their influence on tapped density (proxy for
powder bed deposition) and angle of repose (proxy for powder flow). Con-
versely, Vetterli (2019) considers different explanatory variables for different
output variables. Firstly, the response variable ‘avalanche angle’ is modelled
against elliptic smoothness (particle shape), Young’s modulus (stiffness of
material), compressibility, and inverse of specific density (including an inter-
action term between elliptic smoothness and Young’s modulus). Secondly,
the response variable ‘surface fractal’ (of an avalanching event) is modelled
against the span of the number-based size distribution, the square of the
median particle size value, Young’s modulus and the relative bulk density.
Finally, the response variable ‘relative bulk packing density’ is modelled
against the square of the aspect ratio, particle solidity, Young’s modulus,
tensile strength, and the median particle size value. Further discussion of
limitations of this work (in general terms) is given later.

A final example of an application of linear regression in laser sintering is
in Baturynska (2018), where the focus is on improving dimensional accuracy
by considering processing parameters. Interestingly, the data collection pro-
cess involved taking mean values of repeated measurements of length, width
and thickness, and using these mean values as data. This was carried out in
order to reduce the impact of measurement error, as opposed to fitting an
errors-in-variables model similarly to what is carried out in this work.

Gaussian processes

The more recent statistical methods applied to aspects of laser sintering,
and other AM methodologies, are machine learning techniques, which have
become prevalent in recent years, and are a fast-moving field like AM. In
this work, Gaussian process regression (GPR or GP regression) is of interest.
Applications of Gaussian processes within laser sintering are novel, with the
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first paper considered here being Song et al. (2018). They note that ex-
periments have shown possible improvements in thin film coating in laser
sintering with laser-improved nano particle deposition (as opposed to nano
particle deposition without laser), but further understanding is required for
this to be reliably used. The main desire of the work is to apply controlled
kinetic Monte Carlo simulation to simulate the laser-improved nano parti-
cle deposition, to improve the understanding of this process, with regards
to possible materials to be used. The use of Gaussian processes here is
limited to a validation process, to compare their simulation results from ki-
netic Monte Carlo with experimental results. The reason for using Gaussian
processes to carry this out was that this method provides more flexibility
compared with linear regression models, where new data can be incorporated
into the GP regression model without amending the previously built model
(this is not the case for linear regression). They fitted the difference between
the simulation prediction and the experimental measurement, where both
are functions of laser power, with a Gaussian process with constant mean
and the squared exponential kernel as the covariance function. It is unclear
what method was used to estimate the hyperparameters of the GP, and any
uncertainty in these estimates is not reported.

The work of Czelusniak & Amorim (2020) aligns with the work in this
thesis in multiple ways; their desire is to implement a Gaussian process
regression to investigate the relationship between final-part properties (me-
chanical properties, dimensional inaccuracy) and laser sintering processing
parameters, with the use of stochastic multi-objective optimisation to find
ideal processing parameters. The key reason for implementing a Gaussian
process was its modelling flexibility, where a predetermined relationship be-
tween the outputs and inputs need not be given. Notably, the work iden-
tifies several response variables relating to mechanical properties (such as
tensile strength at yield, elastic modulus, etc.) and chooses to fit multiple
single-output Gaussian process models with laser power, laser speed and
scan line spacing as input variables. An experimental design is also carried
out. They use leave-one-out cross-validation root mean squared error (or
RMSE, discussed in Section 3.5.4) to evaluate the predictive performance
of each GP regression, as well as the coefficient of determination R2. They
elect to consider only those GP models whose R2 > 0.9 for optimisation.
The optimisation process, using multi-objective stochastic optimisation, is
notably different to what is performed in this work. Their multi-objective
algorithm approach optimises the input variables for maximisation or min-
imisation of multiple objective functions simultaneously, and in this case a
multi-output GP is not necessarily required. In comparison, the methods
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in this thesis allow multiple response variables to be considered simultane-
ously in the modelling, and an inverse modelling approach is applied (in a
Bayesian setting) for finding optimal input values for desired response val-
ues. The optimal input parameters in Czelusniak & Amorim (2020) were
found using an evolutionary algorithm stochastic optimisation. The method
introduces a population of individuals, where, for each individual in the
population, a ‘mutant’ individual is created, and combined with the initial
individual to give a ‘trial’ individual, who is evaluated using some ‘fitness’
function. The best individual between the initial and trial is chosen based
on the fitness function, and it remains in the algorithm for future iterations.
This algorithm is carried out until the chosen number of iterations have
all been performed. The work carries out three two-objective optimisations:
optimising manufacturing time and dimensional accuracy in Z-direction, op-
timising all mechanical properties and dimensional accuracy in all directions,
and optimising all mechanical properties and manufacturing time. In each
case, the remaining response variables that are not optimised were assigned
‘hard lower (or upper) limits’, where any optimal solutions with values of
these variables smaller (larger) than these lower (upper) limits are discarded.
The input values that maximise (or minimise where appropriate) the out-
put variables are identified for each of the three optimisations. Given the
trade-offs for each response variable, multiple solutions sets are identified.

The boom in application of Bayesian optimisation (BO) in AM is ev-
idenced by multiple papers in recent years. The work of Batabyal et al.
(2022) provides an example of BO being applied within laser sintering, for
the purpose of finding optimal values for the parameters ‘surface diffusiv-
ity’ and ‘interparticle distance’ in order to produce desired values of ‘size of
neck region between two particles’ during sintering. The work makes use of a
phase-field model which replicates the evolution of microstructure and phys-
ical powder properties, providing the data for which the Gaussian process
(GP) modelling is trained. An experimental design (as part of the BO) is ap-
plied for data simulation, notably a four-level full factorial design, where the
phase-field model is run for 16 simulations at uniformly sampled values of
the two input variables, with different endpoints depending on whether the
particles were equal-sized or not. The GP hyperparameters are estimated
with maximum likelihood estimation, and the model predictions were tested
using RMSE cross-validation (training the GP on 75% of the data, then
testing the GP on the remaining 25% of the data). Having trained and
tested the GP, input parameter optimisation is carried out using BO, with
the aim of choosing values for the two input variables in order to maximise
the output variable. Two acquisition functions were considered for the pro-
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cess of finding optimal input values: Probability of Improvement (choosing

the input values x to maximise the probability that Y (x)−ymax

ymax
, where ymax

is the maximum observed value so far) and Expected Improvement (instead

choosing x to maximise the expectation of Y (x)−ymax

ymax
). The efficient global

optimisation approach was then implemented for each acquisition function
to maximise the output variable. Further details can be found in Batabyal
et al. (2022).

Limitations

The limitations of the papers discussed above are reviewed here, and demon-
strate some suboptimal aspects of current statistical research being applied
in Laser Sintering. The use of R2 as a model comparison tool is not advised.
While it is true that larger R2 values indicate that a larger amount of the
variance in the response variable is explained by the model, it is tricky to use
as a suitable measure of model performance. Values of R2 will increase with
the inclusion of polynomial (and interaction) terms, supposing the same ex-
planatory variables are considered, and so R2 can always be increased. In
particular, there often appears to be a desire for R2 > 0.9; while values this
large are not necessarily bad, they could indicate that the model is overfit-
ted. This is explained further in Section 3.4.1. Using R2 for model selection
is not recommended, for reasons noted above (adjusted versions of R2 exist
that do not necessarily increase as more explanatory variables are included
in the model, making these versions more suitable for model comparison;
further details are not provided here). Performing a F-test to investigate
whether, for example, the quadratic coefficient provides an improvement in
the understanding of the response variable, is preferable. Moreover, model
evaluation of GPs using R2 is not advised, since overfitting may occur.

It is also clear that errors-in-variables models are very rarely considered,
despite the frequency with which they would seem appropriate; instead,
averages of the data are calculated which are then used in the modelling as
the data points. This eliminates the possibility of understanding how the
variability in ‘replicate’ measurements can influence the statistical model.

A linear regression approach in a Bayesian framework is hardly explored
in the AM literature. The likely reason for this is the boom of ML tech-
niques in recent years, due to the ease of application and understanding.
Therefore, a lot of the statistical research in AM in recent years considers
ML techniques, with linear regression becoming less popular, hence Bayesian
regression is hardly considered.

In multiple cases above, variable selection using the ANOVA possibly
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eliminates variables too early, without checking the significance of the vari-
ables in the nested models. Moreover, the application of the ANOVA led to
simultaneous elimination of multiple explanatory variables, as opposed to re-
moving each explanatory variable in turn, refitting the model, and carrying
out the ANOVA again.

Referring in particular to Vetterli (2019), the optimisation of powder
properties considered a screening process for composite powders that sat-
isfy already known ‘optimal’ powder properties. In comparison, the benefit
of the methods in this work for optimising input variables is that a sta-
tistically sound inversion of the estimated multivariate regression model is
implemented, given desired response values, and so a screening process is
not essential.

Finally, there are several instances of multiple response variables being
identified, followed by fitting univariate regression models, as opposed to
multivariate regression models. Multivariate regression is beneficial since it
is able to capture the relationship between the response variables.

2.3.2 Other AM methodologies

While the application of this work is for laser sintering, given the versatil-
ity of the statistical modelling, the possibilities for applying these methods
within other AM methodologies are numerous. For this reason, some exam-
ples of statistical research from other methodologies are considered here.

Linear regression

The only paper which considers linear regression that is discussed in this
section is Vigneshwaran & Venkateshwaran (2019). In their work, linear
regression was used to predict mechanical properties in fused deposition
modelling such as tensile strength, tensile modulus, and energy absorption
rate with layer height, infill and three different patterns of samples prepared
with biodegradable wood-PLA (polylactic acid). A standard multiple linear
regression was fitted multiple times (each with different response variables,
the mechanical properties mentioned above), as opposed to a multivariate
linear regression to consider the potential relationships between the response
variables. The estimates of the model coefficients are given without mention
of confidence intervals of these estimates. The coefficient of determination
R2 was used to assess the fit of the model.
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Gaussian processes

While a surge in GP modelling has occurred very recently, some relatively
older examples are also discussed here. The paper Tapia et al. (2016) looks
at porosity in metal-based AM, and tries to predict the final part porosity
in selective laser melting by estimating its relationship with other selective
laser melting parameters. Their method is to use Bayesian inference in or-
der to estimate the hyperparameters in the Gaussian process to then make
predictions of the porosity (note this is also carried out in this thesis, but
generally it is uncommon in GP applications to see hyperparameter estima-
tion with Bayesian methods). A notable aspect of this research is the use
of a non-constant mean function, more specifically, a full quadratic linear
predictor in two input variables. As discussed further in Section 3.5.1, a
constant mean function is generally preferred, since the covariance kernel
can capture all of the variation in the response variable. The assumption of
a non-constant mean for a GP is somewhat restrictive, and takes away from
one of the benefits of the GP, where it does not require the assumption of a
parametric relationship between the output(s) and input(s).

The work of Li et al. (2018) considers thermal field prediction in fused
deposition modelling (a method of material extrusion) dependent on pro-
cessing parameters. They combine a physically-based model, which allows
data to be collected that are modelled on thermal field evolution, and fit
the data to a Gaussian process. With the output variable of layer-to-layer
thermal field (temperature measurements) and input variables of layer thick-
ness, printing speed, nozzle temperature (all relating to printer settings),
layer index, printing pattern direction and time, a Gaussian process (again
with non-constant mean, but seemingly unspecified) was fitted, estimating
the hyperparameters using maximum likelihood. The model was trained on
all but two data points, which were left out for model validation by com-
paring predictions of the model for the ‘test’ points with actual outcomes
using RMSE. Two parameters, heat convection coefficient and latent heat
of fusion, were fixed variables during the Gaussian process fitting, which are
then calibrated using Bayesian calibration. The Bayesian calibration was
carried out by considering the discrepancy between the model predictions
and the experimental outcomes, using the equation

y = f(x0, η, t) + δ(x0, t) + ε,

with f(x0, η, t) representing model predictions given input variables x0, the
calibration parameters η and time t, and the terms δ(x0, t) representing
model discrepancy and y representing the observed experimental model
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outcomes. An appropriate prior distribution is placed on η, which is up-
dated using the model predictions f and experimental outcomes y to pro-
vide a posterior distribution for the calibration parameters. Due to the time
dependency in the model, the assumption of independent and identically
distributed error terms is violated, and so an online updating process is
implemented using an autoregressive (AR) model to better understand the
behaviour of the model error terms.

This Bayesian calibration process is noteworthy, as it represents a ‘back-
ward’ modelling process, where the authors try to understand the behaviour
of calibration parameters given the output variable. The backward mod-
elling process in this thesis follows a similar ideological process, where the
behaviour of the input variable(s) is conditioned on some desired value of the
response variable(s). A more recent example of Bayesian-calibration based
work within AM is Ye et al. (2022), which aims to improve the understand-
ing of several aspects of metal-based powder bed fusion simultaneously with
a melt pool model and a phase field model. Each model is calibrated in
a similar way to that in Li et al. (2018), using a discrepancy term. Most
notably, the GP hyperparameters in this work are estimated in a Bayesian
setting using Hamiltonian Monte Carlo, which is discussed multiple times in
this work (although not implemented), with notable discussion in Chapter
6.

Sharpe et al. (2018) look at optimising the design of mechanical ‘meta-
materials’ (in a sense, custom-built materials than can exceed any naturally
occurring materials in particular properties, like bulk stiffness). This pro-
vides another example of BO being applied in AM. Specifically, with the
knowledge that the design of lattice structures at microscales of a material
can improve bulk stiffness, they look at optimising these structures for max-
imising the bulk stiffness. Because of the microscale on which the lattice
must be designed, it must be implicitly represented by an approximation, us-
ing finite element analysis. The work continues with the fitting of a Gaussian
process regression to estimate the functional relationship relating the bulk
stiffness and lattice structures (using a Matérn covariance kernel), followed
by a Bayesian optimisation using expected improvement as the acquisition
function. Moreover, the authors are working with a heavily constrained
problem, and so apply nonlinear inequality constraints on the input space.

The examples of BO applications in AM continue with the paper Liu
et al. (2022), who consider the AM methodology material extrusion (specif-
ically considering fused filament fabrication) for optimising properties of
polymer nanocomposites (graphene composition %) and printer processing
parameters (extruder temperature, print speed, layer thickness) to achieve
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the best surface roughness. For GP fitting, an exponential kernel function
(using absolute values of distance within the kernel, as opposed to squaring
the distance) is chosen. There is a suggestion that a non-constant mean
was used, but this is unclear. The method for estimating the hyperparam-
eters is also unclear. Interestingly, the authors compare the efforts of the
GP predictions with predictions from other possible statistical modelling
methods, such as linear regression, regression trees and support vector re-
gression. These comparisons were carried out using R2, RMSE and MAPE
(mean absolute percentage error). As previously noted, it is difficult to com-
pare statistical models using R2 (with linear regressions, R2 simply improves
with more complicated linear predictors).

Of interest in Lu et al. (2022) is the relationship between final-part qual-
ity (in particular, relative density) and processing parameters in laser pow-
der bed fusion. More specifically, they note that the understanding between
these variables is good when considering particular alloy materials, such as
Inconel 718, but not so good for Inconel 625. Their aim is to carry out
‘knowledge transfer’ by implementing Bayesian learning, to improve the un-
derstanding of this relationship when using Inconel 625 given the high level
of understanding of the relationship when using Inconel 718. To do this,
they consider two models,

Yi = f(x) + εi,

Yj = f(x) + δ(x) + εj ,

with the first model explaining the well-understood relationship while us-
ing Inconel 718, and the second model incorporating a discrepancy function
δ(x), representing the difference between the output variables when consid-
ering the different alloys. Note that the variable x represents the various
processing parameters, such as laser power, scanning speed, and so on. Nat-
urally, the relationship f must still be estimated, which is done so with a
GP, with constant mean and a squared exponential automatic relevance de-
termination kernel. The discrepancy function δ(x) also assumes a GP with
the same assumptions. The hyperparameters of both GPs are estimated
simultaneously by posterior distributions found using MCMC.

In order to improve the decision-making process for final part polishing
in metal AM, Jin et al. (2020) implement a Gaussian process regression
to improve the time taken to carry out the polishing process, where time
is often wasted with repeated inspections (checking how well polished the
part is) during the polishing process. The GP informs a decision rule for
when the polishing has been carried out sufficiently. The data collection
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and processing is extensive, and so is not discussed here. The GP models
surface height against the location of the measurement and the quantile of
surface height. It is also noted that these surface heights are measured at
numerous T time points, and for each time point, a GP is fitted. They use
maximum likelihood to estimate their hyperparameters, which include some
constant mean, and notably multiple distance-scaling parameters (one for
the locations, one for the quantiles). The decision rule is then influenced
by the distance-scale parameter for the locations (that for the quantiles is
deemed to be unimportant), which notably change in relation to time—as
the polishing process continues, the surface heights are being reduced, and
hence the distance-scales become smaller, as they are relative not absolute.
This is a notable takeaway from this work, as they note that the value
of the estimate of the distance-scaling parameter is relative to both the
input variables and the output variables. This is also discussed in this work
(Section 3.5.1 and Section 4.3).

The work of Maculotti et al. (2022) aims to deal with the issues in in-
accuracy of surface topography measurements that can occur in AM and
can possibly lead to suboptimal process parameter choice based on these
inaccurate measurements. They consider two case studies, with the second
related to electron beam melting, a metal powder bed fusion method, which
is able to build geometrically complex parts and in particular, they are con-
cerned with non-measured points. Most notably, the work investigates the
appropriateness of multiple covariance kernels and chooses the best one to
represent their modelling situation, using the analysis of a variogram, and
also factors in the minimisation of RMSE. This had not been considered in
this work. They opt for the squared-exponential covariance kernel (inter-
estingly having selected a Matérn kernel in their first case study, based on
the variogram analysis), then use a form of cross-validation, training their
model on a subset of the sampled data and testing on the remaining dataset
to validate the model. Once validated, the model is used to correct the
non-measured points, in other words, predictions of the surface topography
are carried out based on the GP (which they suggest outperforms a spline
regression in this case).

A complex ‘hybrid hierarchical modelling’ (HHM) approach, which im-
plements Gaussian process modelling, is developed in Yang et al. (2022), in
an attempt to identify the various possible sources in AM (their specific case
study considers vat photopolymerisation) that lead to geometric final part
accuracy (specifically wall thickness). These possible sources include the
machines that produce the parts, the individual parts themselves, and posi-
tion of the parts within the machines. It is firstly notable that they adopt a
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Bayesian approach to the hierarchical modelling, which is notable since, of
the work from the literature considered here, a fully Bayesian approach is
very uncommon. The hierarchical setup includes the part-level modelling,
and the feature-level modelling, with the former investigated with a two-
level hierarchical Bayesian linear model (HBLM, with level 1 concerning
part-related predictors of positioning of the object within the machine in
absolute (x- and y-directions) and relative terms (distance from the centre),
and level 2 concerning the machine index), and the latter being investigated
using GPs. Thus their HBLM assumes the hierarchical structure

yi,j = β0,i + βx,isx,i,j + βy,isy,i,j + βdist,i,j + εi,j ,

where there is assumed to be different model coefficients for each machine
(printer) i, and within each group i, and the subscript j represents the part
j printed by machine i. Some normal prior distribution is assumed, then
the parameters are estimated by their posterior distributions, updating the
priors using the data. The model is compared with other competing models
from the literature using RMSE in three ways: looking at the entire data
set, looking at just training data (in-sample predictions), then looking at
test data (out-of-sample predictions). The feature level is then modelled
using a GP with standard assumptions (constant mean), where the area of
each part j is partitioned into grids, represented by the subscript k. The
response variable of the GP is then the residuals of the grid averages of
wall thickness and part averages of wall thickness. The introduction of the
feature-level modelling using GPs into the HHM (so the hybrid model is
some combination of the HBLM and the GP) provides an improvement over
the HBLM on its own, evaluating model predictions using RMSE again.

Chen et al. (2022) have a specific focus in laser melting. The authors
combine a ‘multimodal’ Gaussian process, which incorporates a mixture of
various distributions (some potentially non-Gaussian), and a linear model
of corregionalisation (this is discussed further in Section 3.5.5), a type of
multi-output Gaussian process, which captures correlations between output
variables. In doing so, they aimed to estimate relationships between design
parameters in AM and final part characteristics specifically when building
thin walls with ‘laser powder bed fusion’. This appears to be the first in-
stance of a MOGP (multi-output Gaussian process) being applied within
AM.

The paper Tapia et al. (2018) considers the methodology Laser Powder-
Bed Fusion, a metal-based process, with the desire to predict melt pool depth
given parameters of the process–laser power, scan speed, and laser beam size
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combination. Notably, their method for estimating the hyperparameters
from the Gaussian process is carried out using Bayesian inference, which is
uncommon.

2.3.3 Conclusions from the literature

It is clear from the literature that there is a gap in which the work in this
thesis fits appropriately. In terms of applications of linear regression, it is
very common in the literature for variable/model selection to be carried out
suboptimally. In addition, it is noted that there is a clear lack of errors-
in-variables approaches to the linear modelling, in spite of the prevalence
of measurement error. The benefits of Bayesian regression, which are dis-
cussed further throughout this thesis, have been almost entirely unexplored
in the AM literature. Finally, consideration of modelling multiple response
variables simultaneously is also lacking in the literature. The work here
addresses all of these possibilities noted above.

As far as GPs in AM, it has become clear that, with the increasing
popularity of machine learning in general, that GPs are becoming more
commonly applied in AM research, which is a notable positive. The majority
of the examples noted above are very recent (within the past year). This
work will contribute further to those examples, with novel applications of
errors-in-variables GPs to account for measurement error on both output
and input variables.

The ultimate aim of this project, to invert fitted models for optimising
input variables given some desired output variables, is explored to some
extent in the literature, in particular with the use of BO. While the benefits
of BO are clear, this work provides an alternative approach to optimising
input variables, which, in relative terms, is applied more simply by not
having to deal choice of acquisition function and optimisation algorithm.

The following chapter deals with the statistical methods that are applied
in this work.



Chapter 3

Statistical methods

This chapter details the statistical methods being applied in this thesis.
The chapter is broken down into six main sections: Bayesian statistics,
errors-in-variables problems, Bayesian errors-in-variables regression, evalu-
ating and comparing model fits, nonparametric modelling, and inverse prob-
lems. Within each section, the existing methods in the literature are out-
lined, which is followed by the setting up of the preferred notation here.

Bayesian statistics is firstly discussed broadly as a contrasting inter-
pretation of statistics and probability, with further detail written about
Bayes’ Theorem, Bayesian inference, prior distributions, hierarchical mod-
elling, Markov Chain Monte Carlo simulation, and linear regression.

The ‘errors-in-variables problems’ section comments on directionality of
assumed error, attenuation bias, measurement error on the response vari-
able, and replicate measurements.

‘Bayesian errors-in-variables regression’ combines the first two sections
to discuss one of the two central methods applied to the data in this thesis.
The importance of this method is highlighted in further detail in Section
3.3, but in short, it is able to account for the complicated structure of the
data set (i.e., the measurement error in both the response variable(s) and
the explanatory variable(s)) with relative ease compared with the classical
errors-in-variables model. Moreover, the ultimate goal of being able to in-
vert the relationship between the response variable(s) and the explanatory
variable(s), to find optimal values of the explanatory variable(s) to produce
some desired values of the response variable(s), is simplified greatly when
considered in a Bayesian setting. This is discussed further in Section 3.6.

‘Evaluating and comparing model fits’ considers appropriate methods
for evaluating and comparing classical linear regressions and goes on to

35
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discuss why these methods are not appropriate for the errors-in-variables
Bayesian regression, and what methods of evaluating and comparing models
are appropriate for this particular regression.

Nonparametric modelling discusses an alternative modelling method where
the relationship between the response variable(s) and the explanatory vari-
able(s) is not predetermined, which allows for a more flexible model. Among
other advantages, one for this work is the reduction in the number of poten-
tial models which could be fitted, especially when considering multiple re-
sponse variables and several explanatory variables. In this work the method
of nonparametric modelling considered is Gaussian processes.

Finally, the inverse problems section relates to the ultimate goal of the
work; to optimise explanatory variables in order to produce a desired value
for the response variable(s). Generally speaking, the modelling process in
this work is divided into two sections. Firstly, the ‘forward’ model is dis-
cussed from Sections 3.1.5 to 3.5.5, where methods are discussed for estimat-
ing the relationship between response variables and explanatory variables.
Secondly, the ‘backward’ model is discussed, where the ‘best-fitting’ forward
model is refitted with a fixed, ‘desired’ value for the response variable(s),
with which optimal explanatory variable values can be found. The inverse
problems section firstly looks at inverse problems in a general sense before
concentrating on the model inversion for Bayesian errors-in-variables regres-
sion and errors-in-variables Gaussian processes.

3.1 Bayesian statistics

Bayesian statistics is known as being a contrasting way of interpreting prob-
ability compared with frequentist statistics, in that probability is not seen
as an event’s relative frequency after a large number of trials, that is, given
a repeatable experiment, the probability of an event A occurring is given by

P (A) = lim
nt→∞

ns
nt
,

where ns and nt are the number of ‘successes’ (i.e. the number of times the
events occurs) and the number of trials of the event A, respectively. Instead,
the probability of an event A occurring from a Bayesian perspective can be
understood as one’s subjective probability of the event occurring. In an
example of a simple case, such as rolling a die, frequentist interpretation of
probability may be suitable, but events which are not easily repeatable (if
at all) will often lead to people giving different degrees of belief of the event
occurring.
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To construct a subjective probability of an event occurring, fair bets
are often used. Moreover, a bet is fair if you have no preference on which
outcome you decide to bet. Suppose you win £1 (arbitrary) if an event A
occurs, and lose £x (some amount you choose to bet) if A does not occur.
Then, suppose you choose to bet £y so that your expected profit is zero
(meaning you gain no advantage depending on which side of the bet you
take, i.e. you do not mind whether A occurs or not), and let the variable Y
be the amount of money you have after the bet is settled. Then,

E(Y ) = P (A)× 1 + (1− P (A))× (−y) = 0,

which rearranges to

P (A) =
y

1 + y
.

Clearly, you believe the event is extremely likely to occur if you make your
bet of £y large.

Another distinction between classical and Bayesian statistics is how a
statistical model depends on its parameters; in a classical setting, the pa-
rameters are understood as unknown, but fixed quantities, whereas in the
Bayesian setting these parameters are random variables, described in terms
of a probability distribution.

3.1.1 Bayes’ Theorem

The mindset of Bayesian statistics is built fundamentally on the understand-
ing of Bayes’ Theorem; the conditional probability of an event A given an
event B is expressed as

P (A|B) =
P (A,B)

P (B)
=
P (B|A)P (A)

P (B)
. (3.1.1.1)

In terms of Bayesian inference, this can be rewritten using more suitable
notation for data and parameters. Consider the vector of data Y along with
the parameter θ. Defining p(θ) and p(Y ) as the probability distributions
of θ and Y respectively and applying Bayes’ Theorem appropriately from
Equation 3.1.1.1 gives

p(θ|Y ) =
p(θ,Y )

p(Y )
=
p(Y |θ)p(θ)
p(Y )

,

where p(θ,Y ) is the joint probability distribution of θ and Y , and p(θ|Y ) is
the conditional distribution of θ given Y . In Bayesian inference, the condi-
tional distribution p(θ|Y ) is defined as the posterior distribution (sometimes
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shortened to the posterior) of θ, and the marginal distribution p(θ) is defined
as the prior distribution (the prior) of θ. Since p(Y ) does not depend on θ
and can be considered as a constant, another form of the posterior distribu-
tion of θ known as the unnormalised posterior density is often considered:

p(θ|Y ) ∝ p(θ)p(Y |θ).

As described in Gelman et al. (2013), the process of Bayesian inference
comes in three steps. Firstly, a description of initial knowledge is specified
for θ, known as the prior, which could be based on underlying knowledge of
the problem, a professional’s opinion, or failing those, an alternative which
expresses weak prior knowledge. This initial knowledge is updated using the
distribution (or likelihood) of the data p(Y |θ), which gives the posterior
of θ, p(θ|Y ). With the combination of the data and the prior knowledge,
a good understanding of the parameter should be found in the posterior.
Finally, the fit of the model must be evaluated to determine the suitability
of the posterior distribution p(θ|Y ).

In very simple modelling scenarios, the method for finding the posterior
distribution p(θ|Y ) (using Bayes’ Theorem) is straightforward, where it is
assumed it is simple to calculate the likelihood, the prior distribution and
the marginal distribution of Y . In slightly more complicated modelling
scenarios, where there are multiple observations Y = (Y1, . . . , Yn) and θ
is a parameter vector, the method becomes more complicated and requires
algebraic manipulation and evaluating integrals. As the modelling continues
to get more complicated (and, often, more appropriately corresponds to the
scenario being modelled), a point is reached where some computing power
and well-developed algorithms are required.

The decision to consider a Bayesian modelling approach in this PhD was
based on a few reasons. The benefits of Bayesian methods over frequen-
tist methods are well known; namely the opportunity to incorporate expert
opinion into the modelling, and to naturally take into account error within
certain aspects of the model. Another reason it is beneficial is apparent
when considering the model inversion, which is discussed further in Section
3.6.

3.1.2 Prior distributions

As mentioned in Section 3.1.1, the combination of the prior distribution
p(θ) and the data p(Y |θ), leading to the posterior distribution, is utilised to
gather information on the parameter θ, where any initial knowledge that is
known is incorporated into the prior distribution. The distribution and the
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parameters of the distribution that are chosen are dependent on the amount
of initial knowledge, conjugacy, and personal choice. Given the posterior
distribution is effectively a weighting between the prior distribution and
the likelihood of the data, it is true that the posterior distribution is more
influenced by the likelihood of the data as the amount of data is increased.
This means that, with a sufficiently large amount of data, Bayesian analyses
using different prior distributions will agree with each other.

With respect to initial knowledge, prior distributions can be split into a
few categories:

• informed—a lot of initial knowledge has been incorporated into the
prior;

• weakly informative—small amount of initial knowledge has been in-
corporated into the prior;

• uninformative—no initial knowledge has been incorporated in the prior.

As an example, suppose data is available to investigate the relationship be-
tween the tensile strength of a final part printed by a laser sintering printer,
given by Yi, and the bulk density of the powder used, given by xi, where
(Yi, xi) is a paired observation. Also suppose that a simple linear regression
model is fitted to find this relationship, that is, the linear model

Yi = β0 + β1xi + εi, (3.1.2.1)

is fitted. Note that this model and any other linear regression model can
also be written in matrix form, given by

Y = Xβ + ε, (3.1.2.2)

where Y = (Y1, . . . , Yn), X is the design matrix with dimension n × p (for
n observations and p parameters), the parameter vector β has length p and
the model error is given by ε. In the case of the simple linear model, the
design matrix has p = 2 columns, with the first column being a column of
1’s, and the second column being (x1, . . . , xn)T , and the parameter vector
has length p = 2, with β = (β0, β1).

As a non-expert in this field without any initial knowledge on the re-
lationship, I would choose an uninformative prior for the intercept β0 and
gradient of the straight line β1 which defines the relationship between ten-
sile strength and bulk density, such that the prior distribution could take
negative and positive values. Then, suppose I contact an expert for more
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information, and they tell me that there is without a doubt a positive re-
lationship between these two variables, meaning that, as bulk density is
increased, so too is tensile strength. In this case, I would elect to change the
parameters on my initial choice of prior distribution, so that it could only
take positive values—in this case, an informed prior is being used, which
is derived based on the information elicited from the expert. This is an
example of elicitation.

An important aspect regarding the choice of the prior distribution is
conjugacy. Informally, a prior is a conjugate prior if the parametric form of
the prior remains unchanged in its posterior distribution. For example, if a
normal distribution is used as a prior for some parameter of interest, and a
normal distribution is then produced for the posterior of this parameter, then
the normal distribution is a conjugate prior distribution for the parameter.
Whether this happens depends on two things—the parameter in question
(specifically, the purpose of the parameter in the modelling scenario) and
the distribution assumed for the data, p(Y |θ).

In most situations, a conjugate prior distribution is preferred, as the
complexity of the process of updating the prior distribution is reduced; it
becomes a case of updating the parameters in the prior.

In the case that a model is complicated enough to require computa-
tional methods in order to calculate the posterior distribution, the need for
a conjugate prior to be used is reduced. The deciding factor for which prior
distribution to use comes down to personal choice, or at least carrying out
the Bayesian modelling multiple times with different prior distributions and
comparing the quality of the inference to make a decision.

3.1.3 Hierarchical modelling

Hierarchical modelling is a form of modelling required in many real-life sce-
narios, where the scenario being investigated is structured in a way that
means multiple parameters in the modelling are related and are therefore
dependent on one another through a hierarchical or multi-level structure. An
example of hierarchical modelling could be an investigation of the flowability
of some powder material, where the powder material has been manufactured
multiple times by multiple companies. The material composition manufac-
tured by company j has a ‘general flowability metric’ of θj , which is to be
estimated. It would be fair to assume that there is a relationship between
the flowability metrics and their estimates, and so each prior distribution on
θj will be dependent on some shared parameter φ. Consequently, a hierar-
chical modelling structure is introduced, where the parameter φ is unknown
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and requires its own prior distribution.

As a result, the terms hyperparameter and hyperprior distribution are
introduced. That is, to investigate the parameter θj using Bayesian analysis
requires some prior distribution p(θj), and if the prior distribution p(θj)
itself is defined by some parameter φ, then the parameter φ is known as a
hyperparameter. If the hyperparameter φ is unknown and requires a prior
distribution, the prior distribution is defined as a hyperprior distribution.

The notion of ‘exchangeability’ is also key in a lot of Bayesian hierarchical
modelling analyses. This notion effectively states that, with the same prior
distribution for each θj , the ordering (or, in a sense, the labelling) of each
θj is arbitrary. In other words, the joint distribution of (θ1, θ2) is equivalent
to that of (θ2, θ1).

Moreover, many hierarchical models will assume conditional indepen-
dence between observations and parameters that correspond to different
groups. It is often fair to assume that observations from group j are condi-
tionally independent from θj′ , for j 6= j′. In other words, learning about θj′

does not provide any information about the observations for group j.

3.1.4 Markov Chain Monte Carlo (MCMC)

Markov Chain Monte Carlo (MCMC) algorithms have been developed to
carry out parameter estimation in situations where the posterior distribu-
tion is tricky to derive analytically. With these algorithms, the posterior
distribution p(θ|Y ) is constructed through sampling. With the definition of
a Markov chain whose state space is equal to the parameter space of the
model, the chain is built in such a way that the realisations of the chain
are easy to sample and the stationary distribution of the chain is equal
to the joint posterior distribution of the parameters. Formally, a Markov
chain is defined as a sequence of random variables θ1, θ2, . . . , such that the
conditional distribution p(θt|θ1, . . . , θt−1) can be rewritten as

p(θt|θ1, . . . , θt−1) = p(θt|θt−1)

for any given t. Informally, the conditional distribution of θt given all pre-
vious values in the sequence depends only on the value directly previous,
θt−1.

For each iteration t, a ‘proposal’ or ‘candidate’ point θ∗ is sampled from a
proposal (or ‘jumping’) distribution (denoted as J(θ∗|θt−1) in Gelman et al.
(2013), for example), and θ∗ undergoes an acceptance/rejection rule step,
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given by

θt =

{
θ∗ with probability min(r, 1),

θt−1 otherwise.
(3.1.4.1)

That is, the draw of θ at iteration t is equal to either the proposal θ∗ or the
previous draw θt−1. The equation for calculating the quantity r is dependent
on the algorithm, but involves the ratio of the target distribution at θ∗ to
the target distribution at θt−1, where the target distribution at draw s, θs,
is given by

p(θs|Y ) =
p(Y |θs)p(θs)

p(Y )
(3.1.4.2)

using Bayes’ theorem. For the Metropolis-Hastings algorithm, the general
form of the acceptance probability P (θ∗|θt−1) is given by

P (θ∗|θt−1) = min {1,HR(θ∗|θt−1)} ,

where HR is the Hastings ratio, defined to be

HR(θ∗|θt−1) =
J(θt−1|θ∗)p(θ∗|Y )

J(θ∗|θt−1)p(θt−1|Y )
.

The Hastings ratio can be simplified using Equation 3.1.4.2 and because of
the symmetry of the proposal distribution.

A multivariate extension of the random walk Metropolis-Hastings algo-
rithm is the Gibbs sampler. This algorithm is relevant for this work due to
its ability to cope with high-dimensional hierarchical models. The sampler
follows the Metropolis-Hasting algorithm roughly sketched out above, but
considers a multidimensional parameter vector θ = (θ1, . . . , θm). At each
iteration of the sampler, each element θ is drawn from and updated in turn,
conditionally on the previous elements which have been drawn and updated
in that iteration. That is, at each iteration t and for each subvector of θ, an
ordering of the m subvectors is chosen, and the jth element of the parameter
vector at iteration t, θt,j , is sampled from the conditional distribution given
all the other components of θ. Defining the following vector (taken from
Gelman et al. (2013))

θt−1,−j = (θt,1, . . . , θt,j−1, θt−1,j+1, . . . , θt−1,m),

the conditional distribution of θt,j given all other components of θ is given
by

p(θt,j |θt−1,−j ,Y ).
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The MCMC simulation is run for long enough, so that the Markov chain
will reach its stationary distribution (i.e. the posterior distribution), and
the subsequent values of the sequence will be samples from the stationary
distribution. Then, if a large number of samples are drawn, these can be
used to evaluate the posterior distribution.

In order to check that the output from the MCMC simulation is from
the posterior distribution, the convergence to the posterior distribution can
be checked using the potential scale reduction factor. This approach was
proposed in Gelman & Rubin (1992) and developed further for the mul-
tivariate case (assessing convergence of the joint posterior distribution) in
Brooks & Gelman (1998). The approach requires at least two parallel chains
of MCMC output, as it requires a measure of between-chain variance. Taken
from Gelman et al. (2013), each scalar estimand ψ has its simulation samples
labelled as ψi,j , where i = 1, . . . , n and j = 1, . . . ,m, with n being the num-
ber of samples in each chain, and m being the number of chains. Each chain
is also split in half, so that non-stationarity in each chain can be checked
simultaneously (poor mixing between two halves of a chain may still lead to
appropriate levels of convergence). So, the value m is technically double the
number of parallel chains, meaning the value n is technically half of the num-
ber of stored posterior samples for each chain. With the simulation samples
ψi,j , the between- and within-sequence variances are calculated, given by

B =
n

m− 1

m∑
j=1

(ψ̄·j − ψ̄··)2, (3.1.4.3)

where ψ̄·j = 1
n

∑n
i=1 ψi,j , and ψ̄·· =

1
m

∑m
j=1 ψ̄·j , and

W =
1

m

m∑
j=1

s2
j , (3.1.4.4)

where s2
j = 1

n−1

∑n
i=1(ψi,j − ψ̄·j)2. An estimate of the marginal posterior

variance of the estimand ψ is calculated with a weighted average of W and
B, given by

v̂ar(ψ|Y ) =
n− 1

n
W +

1

n
B (3.1.4.5)

The potential scale reduction factor is then estimated by

R̂ =

√
v̂ar(ψ|Y )

W
, (3.1.4.6)
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which tends towards 1 as n → ∞. This is because the expectation of W
tends towards var(ψ|Y ) as n → ∞. The interpretation of the potential
scale reduction factor is that, in the limit n → ∞, the estimate represents
the possible scale reduction of the current distribution of ψ if the simulations
were continued. A large value of the potential scale reduction factor would
suggest that collecting more simulations from the MCMC may lead to a
better approximation of the posterior distribution.

Moreover, an issue which also needs to be checked with the posterior dis-
tribution is the severity of the autocorrelation between the posterior samples.
It is possible that the MCMC algorithm becomes stuck in a particular re-
gion of the posterior distribution, and large chunks of consecutive posterior
samples can be very similar values, suggesting the posterior distribution has
not been explored exhaustively and effectively. Some level of autocorrela-
tion naturally occurs since MCMC is predicated on Markov chains, where
there is dependence on the directly previous random variable. A measure
of the severity of the autocorrelation is obtained by comparing the number
of iterations with the effective sample size, which is defined in the following
paragraphs. In order to increase effective sample size, an increase in the
number of posterior samples drawn from the MCMC algorithm could be
considered. Additionally, in order to avoid storing too many samples from
the MCMC output, a thinning parameter, say kthin, is used, which indicates
that only every kth

thin sample is stored from the post-burn-in posterior sam-
ples. This can lead to overly long running times for the MCMC, in which
case, an adjustment to the proposal distribution, or even changing the actual
MCMC algorithm, could be considered.

The effective sample size as described in Gelman et al. (2013) is also
described here. In very simple terms, the effective sample size of a sequence
is an adjustment of the actual sample size of the sequence based on the
autocorrelation between the samples of the sequence. Considering how ef-
fective the simulation average for the estimand ψ, ψ̄··, is as an estimate of
the posterior mean, formally defined as E(ψ|Y ), is a possible way of defin-
ing effective sample size. What follows is the asymptotic formula for the
variance of this simulation average, given by

lim
n→∞

mnvar(ψ̄··) =

(
1 + 2

∞∑
t=1

ρt

)
var(ψ|Y ), (3.1.4.7)

where the term ρt is defined to be the autocorrelation of the sequence of
posterior samples for ψ at lag t (the distance between two terms of this
sequence is given by t). If zero autocorrelation in the sequence existed (each
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value in the sequence was independent), then

var(ψ̄··) = var

 1

mn

m∑
j=1

n∑
i=1

ψi,j

 =
1

(mn)2

m∑
j=1

n∑
i=1

var(ψi,j)

=
1

mn
var(ψ|Y ),

(3.1.4.8)

each autocorrelation ρt at lag t would be 0, and the sample size would simply
be mn. Given the existence of correlation, the effective sample size is defined
to be

neff =
mn

1 + 2
∑∞

t=1 ρt
, (3.1.4.9)

that is, the ratio (from Equation 3.1.4.7) between the scale of the variance
of the average of the simulations and the scale of the true variance of the
estimand ψ.

In order to estimate the effective sample size, the correlations ρt observed
between the simulations must be estimated. Firstly, the variogram Vt at each
lag t is calculated, defined by

Vt =
1

m(n− t)

m∑
j=1

n∑
i=t+1

(ψi,j − ψi−t,j)2, (3.1.4.10)

which determines the variance between the sequence of samples given some
distance t between the samples. With this, the correlations ρt can be esti-
mated by

ρ̂t = 1− Vt
2v̂ar(ψ|Y )

, (3.1.4.11)

with the estimate of the variance of the the estimand ψ taken from Equation
3.1.4.5.

Summing these estimates of the correlations in order to estimate neff

using Equation 3.1.4.9 cannot be done as for large values of t, the correlations
become effectively random, so instead, a partial sum is calculated, from t = 0
up to some value T , the first odd value for which the sum ρ̂T+1 + ρ̂T+2 is
negative. Therefore, the estimate of the effective sample size is given by

n̂eff =
mn

1 + 2
∑T

t=1 ρ̂t
. (3.1.4.12)

Both the effective sample size and the potential scale reduction factor
are used frequently in the assessments of the MCMC output to ensure that
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inference can subsequently be carried out on the output. If poor values
are observed for the potential scale reduction factor (values greater than
1.1 for the potential scale reduction factor are typically suggested (Gelman
et al. 2013) to be too large), then, as suggested above, more samples are
drawn from the MCMC algorithm, and a longer burn-in period could also be
recommended. For the estimate of effective sample size, the recommendation
for appropriate values is 5m (Gelman et al. 2013), where m is twice the
number of parallel chains. If this is not satisfied, it is again recommended
to run the algorithm for longer and store more posterior samples.

Some examples of computing environments that are commonly utilised to
construct posterior distributions are BUGS (Bayesian inference using Gibbs
sampling, Lunn et al. (2009)), JAGS (just another Gibbs sampler, Depaoli
et al. (2016)), Stan (Gelman et al. 2015), mcsim (Bois & Maszle 1997),
PyMC (Salvatier et al. 2016) and HBC (Daumé III 2008). The work carried
out in this thesis was performed using JAGS, which provides the tools for
fitting hierachical Bayesian models.

3.1.5 Bayesian linear regression

In order to understand a Bayesian linear regression, an understanding of
a classical linear regression is useful, and so an example is given here to
demonstrate.

As in Section 3.1.2, suppose there is data available to investigate the
relationship between the tensile strength of a final part printed by a laser
sintering printer, and the bulk density of the powder used. In this exper-
iment, for each sample of powder used, the bulk density of the powder is
measured, then the sample of powder is used in the laser sintering machine
to print some arbitrary 3D-printed object. Once the object is printed, its
tensile strength is measured. The data are therefore paired observations
(Yi, xi), where Yi denotes the tensile strength of the final part for powder i,
and xi denotes the bulk density of powder i, for i = 1, . . . , n (the vectors Y
and x correspond to (Y1, . . . , Yn) and (x1, . . . , xn) respectively). The simple
linear regression model from Equation 3.1.2.1 is to be fitted to the data,
that is, the model where εi is a random error term, or random noise, which
takes the distribution εi ∼ N(0, τε). For this example, it is assumed that
τε is known. Furthermore, the subscript ε is included to help distinguish
between precision parameters more easily, as several are introduced. Note
that, in this instance, the normal distribution is parameterised by the mean
and the precision, where the precision is defined to be inverse variance, that
is, for some variance σ2 of a random variable, the precision τ of the random
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variable is τ = 1
σ2 . For the majority of this thesis, the (univariate) normal

distribution is parameterised in this way, but it will be explicitly clear oth-
erwise. The method of fitting a simple linear model from Equation 3.1.2.1
using a classical (non-Bayesian) approach is to estimate values of β0 and β1

such that the vector of random errors, ε = (ε1, . . . , εn), is minimised. This
is usually carried out with either the method of least squares, or maximum
likelihood estimation (MLE) (details of these methods are omitted here),
which both lead to the estimates

β̂1 =
Sxy
Sxx

,

β̂0 = Ȳ − β̂1x̄,

where Sxy = 1
n

∑n
i=1(xi − x̄)(Yi − Ȳ ), Sxx = 1

n

∑n
i=1(xi − x̄)2, and Ȳ and x̄

represent the sample means of Y and x respectively. As noted in Section 3.1,
the classical approach to this model assumes that the parameters β0 and β1

are fixed, unknown constants that are estimated by β̂0 and β̂1 respectively.

Transferring from a classical approach to a Bayesian approach, the pa-
rameters β0 and β1 are considered to be random variables instead of fixed
constants, and instead of estimating the fixed constants using MLE or the
method of least squares, the estimation of the random variables is carried
out using prior distributions and, in the simplest sense, applying Bayes’
Theorem, to create the posterior distributions of β0 and β1.

For this simple linear model, there are two parameters of interest (as-
suming τε is known): β0 and β1. The prior distribution for these parameters
would need some consideration, but this is not of direct interest here. Typ-
ically, the conjugate priors would be used, so for example

β0 ∼ N(0, τβ0),

β1 ∼ N(0, τβ1),

could be used, that is, assuming normal distributions for both parameters,
with means 0 and some precisions τβ0 and τβ1 respectively. Defining β =
(β0, β1), its joint prior distribution is given by

β ∼ N2(0, Tβ),

withe Tβ being the diagonal (precision) matrix with τβ0 and τβ1 as the
diagonal elements. Again, for simplifying this example, it is assumed these
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precisions are known. So, in order to estimate the posterior distribution,
Bayes’ Theorem is applied:

p(β|Y ,x, τε, Tβ) =
p(Y |x,β, τε)p(β|Tβ)

p(Y |x)
. (3.1.5.1)

The posterior distribution can be found by considering

p(β|Y ,x, τε, Tβ) ∝ p(Y |x,β, τε)p(β|Tβ), (3.1.5.2)

where
p(Y |x,β, τε) ∝ exp

{
−τε

2
(Y −Xβ)T (Y −Xβ)

}
,

and

p(β|Tβ) ∝ exp

{
−1

2
βTTββ

}
.

The two above distributions are only given up to proportionality (as well
as the posterior distribution) since the interest is in factors which are not
constant—any constant elements from the distributions, that do not depend
on β, would be found in the normalising constant, the distribution p(Y |x).
Note that X is simply the design matrix of the linear regression, which, in
the case of the simple linear model, is given by

X =

1 x1
...

...
1 xn

 .

It follows that Equation 3.1.5.2 is proportional to

p(β|Y ,x, τε, Tβ) ∝ exp

{
−Q

2

}
,

where
Q = βTTββ + τε (Y −Xβ)T (Y −Xβ) .

Hence the parameters of the posterior distribution of β, its mean m and
precision matrix P (knowing its posterior is normally distributed since the
conjugate prior was used), can be found by rearranging Q into the form

Q = (β −m)T P (β −m) ,

since this provides the general form of a multivariate normal distribution
with mean m and precision matrix P . A useful equation for carrying this
out is

(Y −Xβ)T (Y −Xβ) =
(
β − β̂

)T (
XTX

) (
β − β̂

)
+ S,
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where
β̂ =

(
XTX

)−1
XTY

and

S =
(
Y −Xβ̂

)T (
Y −Xβ̂

)
.

Thus, Q can be written as

Q = βTTββ + τε

((
β − β̂

)T (
XTX

) (
β − β̂

)
+ S

)
= βTTββ + τε

((
βTXTX − β̂TXTX

)(
β − β̂

)
+ S

)
= βTTββ + τε

(
βTXTXβ − βTXTXβ̂ − β̂TXTXβ + β̂TXTXβ̂ + S

)
= βTTββ + τε

(
βTXTXβ − βTXTY − Y TXβ

)
+K

= βTTββ + τεβ
TXTXβ − τεβTXTY − τε

(
βTXTY

)T
+K,

where the matrix K is just constant. Recognising this as a matrix quadratic
form, this leads to completing the square in β, giving

Q = (β −m)T P (β −m) ,

with
P = Tβ + τεX

TX

and
m = P−1XTY ,

that is, β|Y ,x, τε, Tβ ∼ N2(m, P ).
If a particular value needs to be chosen as an estimate for these pa-

rameters, the mode of the posterior distribution (often called the posterior
mode) is suggested. In the case of using noninformative priors for β0 and
β1 in a simple linear model, the posterior mode for β0 and β1 is equal to the
estimates from the method of least squares and MLE.

3.2 Errors-in-variables problem

3.2.1 Simple linear model with errors-in-variables

Consider the simple linear model from Equation 3.1.2.1, where the model
error εi assumes a normal distribution with mean 0 and precision τε. The
only error assumed in the model is in the y-direction; that is, the explanatory
variable is assumed to be measured exactly, and εi measures the vertical
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distance (error) between the observed data point Yi and some straight line
β0 + β1x, for any real x. The assumption that the explanatory variable
xi is measured exactly greatly helps in simplifying the estimation of the
parameters.

In many scenarios with real data, the explanatory variable is not mea-
sured exactly. For example, say the bulk density of different powder ma-
terials is to be measured. The experiment carried out to obtain the bulk
density is conducted in the same way each time. The machine that mea-
sures the density (mass) of the powder does not measure it exactly (there
could be several reasons for this: incorrectly calibrated/faulty, rounding er-
ror, user error), and so the measurements of density that are recorded have
measurement error. The ‘true’ bulk density of the powder does exist, but
it cannot be measured exactly (with the machine); the true bulk density is
unobservable.

Taking the example above, let the observed data be Xi for powder ma-
terial i. The observed data Xi are of the form

Xi = X̃i + δi,

where the variable X̃i is thought to be the ‘true’, unobservable bulk density
for powder material i, and the random variable δi is measurement error,
usually assumed to be normally distributed with mean 0 and some precision
τδ. The change from the lower case, noise-free explanatory variable xi to the
upper case, noisy explanatory variable is because of the understanding of the
two variables; the observed xi are exact observations and are not a function
of anything, whereas the observed Xi is a random variable (since it is the
sum of the true explanatory variable and some measurement error random
variable δi), and random variables are commonly written with capital letters
to represent them.

If a simple linear model is applied to this example, using the observed
data Xi as the explanatory variable, i.e.

Yi = β0 + β1Xi + εi,

‘attenuation’ bias is observed in the estimate of the parameter β1. Exam-
ining the situation in a classical setting, the estimate of β1 using either the
method of least squares or MLE is given by

β̂1 =
Sxy
Sxx

,
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where typically Sxx = 1
n

∑n
i=1(xi − x̄)2. Replacing the noise-free data xi

with the noisy data Xi, the expression Sxx becomes

1

n

n∑
i=1

(xi − x̄)2 =
1

n

n∑
i=1

(Xi − X̄)2 = Sxx =
1

n

n∑
i=1

(X̃i + δi − X̄)2.

With some algebraic manipulation, it can be shown that the estimate of the
parameter β1 in the linear model is altered by a factor of

1
τδ

1
τδ

+ 1
τ

=
σ2
δ

σ2
δ + σ2

,

which has to lie between 0 and 1, since each term must be positive, which
makes the denominator larger than the numerator, and so the estimate of
β1 is biased towards 0. This is discussed further in Fuller (1987).

Due to this attenuation bias, it is clear that the typical estimate of β1

from the simple linear model is not adequate here, and so an alternative
model is required. This leads to the errors-in-variables model—taking the
example from Section 3.2.1, where the observed data are of the form

Xi = X̃i + δi,

the errors-in-variables model investigates the relationship between the re-
sponse variable Yi and the true, unobservable variable X̃i, leading to the
model

Yi = β0 + β1X̃i + εi.

3.2.2 Measurement error on the response variable

Measurement error can also occur on the response variable. Although error
is already accounted for in the y-direction with the model error term εi,
it is possible that the observations on the response variable are known to
have been measured with error. If some true, unobservable variable Ỹi is
introduced in a similar fashion to the true value X̃i for the explanatory
variable, this makes a clear distinction between the error in the model, εi,
and the measurement error in the response variable, say ηi, where

Yi = Ỹi + ηi,

and ηi ∼ N(0, τη). The variable Ỹi, like X̃i, is thought of as some true
value of the response variable for group i which cannot be observed. If
a simple linear model is then applied to investigate the linear relationship
between Ỹi and X̃i, then the true relationship between the variables is being
investigated.
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3.2.3 Replicate measurements

In many cases, the data on both the response variable and the explanatory
variable are collected with replicate measurements. Extending the example
given in Section 3.1.5, suppose that the measurements of the bulk density of
each powder material are carried out on several subsamples of the powder
material. It is noted that the measurements of the bulk density for each
subsample are not all the same, and therefore this case corresponds to some
measurement error in the explanatory variable. For this situation, the no-
tation is adjusted based on the belief that the powder material is designed
to be consistent throughout, leading to the conclusion that there is a true,
unobservable value of bulk density for the powder material, and the bulk
density measurement for each subsample of powder is some noisy observa-
tion of this true value (as opposed to each subsample of powder having its
own true, unobservable value). This leads to the notation for the observed
data for the explanatory variable

Xi,k = X̃i + δi,k,

where the subscript i refers to the powder material, and the subscript k
refers to the subsample of powder. For example, the observed data point
X3,4 is the bulk density measured on the fourth subsample of the third
powder material. The random error term is given by δi,k ∼ N(0, τδ), so it is
assumed that the measurement error comes from the same distribution for
each subsample of each powder material.

As in Section 3.2.2, the same scenario can be applied to the response
variable, leading to the notation for the observed data for the response
variable

Yi,j = Ỹi + ηi,j ,

where the subscript i again corresponds to the powder material, and the
subscript j is used here for the jth subsample of powder. It could be the case
that the same subsamples of powder that are used to measure bulk density
(the explanatory variable) and the subsamples of powder that are used to
create the 3D-printed object (on which the tensile strength is measured,
from the example in Section 3.1.5) is the same, in which case the subscript
k could be used for the observed data on both variables. The notation given
above covers any possible scenario where the subsamples for each variable
are two different sets of subsamples.

This leads to the simple linear model with measurement error on both
the response variable and the explanatory variable

Ỹi = β0 + β1X̃i + εi, (3.2.3.1)
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where εi ∼ N(0, τε), and the observed data are of the form

Yi,j = Ỹi + ηi,j , Xi,k = X̃i + δi,k, (3.2.3.2)

where ηi,j ∼ N(0, τη) and δi,k ∼ N(0, τδ).

3.3 Bayesian errors-in-variables regression

While the errors-in-variables model is completely justified for this situation,
it is difficult to apply with a classical approach, with additional strong as-
sumptions required to be able to estimate the model parameters—assuming
known precisions, or assuming the ratio between the precisions τε and τδ. In
order to apply the errors-in-variables model with more ease, the approach
can be transferred from a classical framework to a Bayesian framework.
There are many examples in the literature of this being carried out theo-
retically, including Fang et al. (2017), Dellaportas & Stephens (1995), Muff
et al. (2015), Rozliman et al. (2017) and de Castro et al. (2013). Some
practical examples are given in Kelly (2007) (astronomy) and Denham et al.
(2011) (ecology).

The model error term εi from Equation 3.2.3.1 is discussed briefly here. It
is assumed that the εi ∼ N(0, τε) are independent and identically distributed.
In this instance of estimating the relationship between the true values of the
response variable and the true values of the explanatory variable(s), it could
be argued that it is too strong an assumption that these model error terms,
or model discrepancy, are independent of one another.

One possible alteration to account for this would be to assume a Gaus-
sian process for the model error terms, which is a natural way of accounting
for possible dependencies between the model discrepancy (in particular, see
Kennedy & O’Hagan (2001) for a suitable approach to this). This formu-
lation fits very naturally into the more general Gaussian process modelling
that is used later in this thesis in Section 3.5.2, and so is not considered
further just now.

The application of errors-in-variables in a Bayesian setting is natural, as
error and noise are inherently accounted for in a Bayesian setting, with the
model parameters treated as random variables. The method for estimating
the parameters β0 and β1 is similar to what it would be for a Bayesian
simple linear model without errors-in-variables, like in Section 3.1.5, using
an appropriate MCMC algorithm. As in the example in Section 3.1.5, the
parameters β0 and β1 take normal prior distributions, and, without any prior
knowledge, they assume a normal distribution with mean 0 and precisions
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τβ0 and τβ1 . These precision parameters are hyperparameters which take
uninformative gamma hyperprior distributions.

It is noted here that there are some additional parameters that need
some attention—the true, unobservable value X̃i, and the measurement error
precisions τη and τδ. The primary decision to be made is whether these
parameters should be fixed at a value or given a prior distribution and
allowed to vary.

The first parameter to consider is X̃i. Typically, an errors-in-variables
model in a classical setting can take two forms—a structural model or a
functional model. In the Bayesian setting, those options are both possible;
the value X̃i could be fixed at a particular value (as in a functional model;
see Fuller (1987)). Without knowledge of what this particular value should
be, a structural model seems to make more sense, and given the Bayesian
setting and the ability to account for error naturally, treating the true value
as a random variable is justified. Of course, as a response variable in a
regression model, the true value Ỹi is already treated as a random variable.

The value X̃i is therefore assumed to be a random variable and must
take a prior distribution in this Bayesian approach. The prior used here is a
normal distribution, with some mean µX̃ and some precision τX̃ . The mean
µX̃ can then be thought of as the explanatory variable mean over all groups,
and the precision τX̃ is some measure of variability between groups. That
means, within each group i, there are the observed data Xi,k, of the form

Xi,k = X̃i + δi,k,

where the observed data are then also thought of as random variables. The
measurement error δi,k takes mean 0 and precision τδ, and, conditioned on
X̃i, the observed data Xi,k take a normal distribution with mean X̃i and
precision τδ. So, the precision τδ corresponds to measurement error.

What remains to be considered are the precision parameters τδ, τη and
τX̃ , which can again either take a fixed value or a prior distribution. If the
precision is known, then a fixed value should be used. Otherwise, there are
a multiple possibilities for the prior distribution. Typically, gamma distri-
butions are used as the prior distribution for precision parameters, as the
gamma distribution is bounded from below by 0, which ensures that any
sampled value from the distribution is a valid precision. Another reason is
that the gamma distribution is the conjugate prior for precision parameters,
when considering normally distributed likelihoods for the data. An alterna-
tive is to utilise a uniform prior distribution on a corresponding standard
deviation or variance, where each sampled value can be rearranged into the
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appropriate precision parameter. These hyperprior distributions may be un-
informative, or, with elicitation or some other appropriate prior knowledge,
may be informed.

Firstly define the parameter vector θ to be

θ = (β0, β1, X̃, Ỹ , τX̃ , τε, τδ, τη, τβ0 , τβ1), (3.3.0.1)

where the true, unobservable values for the response variable and explana-
tory variable are written as Ỹ = (Ỹ1, Ỹ2, . . . , Ỹng), and X̃ = (X̃1, X̃2, . . . , X̃ng)
respectively, where ng is the number of groups (powders/materials in the ex-
ample). Secondly, define the observed data Y as

Y =


Y1,1 Y1,2 · · · Y1,nr

Y2,1 Y2,2 · · · Y2,nr
...

...
. . .

...
Yng ,1 Yng ,2 · · · Yng ,nr

 , (3.3.0.2)

and the observed data X as

X =


X1,1 X1,2 · · · X1,nc

X2,1 X2,2 · · · X2,nc
...

...
. . .

...
Xng ,1 Xng ,2 · · · Xng ,nc

 , (3.3.0.3)

where nr and nc are the number of replicate observations on each group for
the response variable and for the explanatory variable respectively. Then,
the conditional distribution of interest is

p(θ|Y,X), (3.3.0.4)

the joint posterior distribution of θ. This contains all the information that
is known about the model parameters given the data used in the model,
with which the model can then be assessed and possibly compared with
other fitted models. Given the multidimensional parameter vector and the
hierarchical model structure, the Gibbs sampling algorithm is required in
order to find the posterior distribution p(θ|Y,X).

3.3.1 Extending the simple linear model for EIV Bayesian
regression

The simple linear model in Equation 3.2.3.1 is further developed by adding
other terms into the relationship between the response variable and the
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explanatory variable. An example of how this can be carried out is with
a polynomial function of the sole explanatory variable, e.g., the quadratic
model

Ỹi = β0 + β1X̃i + β11X̃
2
i + εi. (3.3.1.1)

Whereas the quadratic model in classical EIV regression requires some thought
as to how the quadratic in Xi,k affects the parameter estimates for β0, β1 and
β11, the quadratic model in EIV Bayesian regression is straightforward to
fit, with the only further prior distributions required for β11 and the hyper-
prior on its precision parameter. Since there is already a prior distribution
on X̃i, there is no prior needed for X̃2

i (any sample of X̃i during the MCMC
is simply squared for X̃2

i , so no further sampling is required).
It is also noted that more explanatory variables can be included in the

modelling. Extending the example from Section 3.2.3, suppose the relation-
ship between the tensile strength of a final part printed by a laser sintering
machine and two explanatory variables is of interest, with the first explana-
tory variable being bulk density of a powder, and the second being the
aeratability of a powder (how easy it is to pass air through a powder; details
of how this is measured are not included in this example). Suppose again
that the method for carrying out the experiments leads to the same data
structure as before, with replicate measurements on multiple groups. Some
attention is needed to describe the relationship between the measurement
error on multiple explanatory variables.

In general, for two explanatory variables, we can write that

X1,i,k1 = X̃1,i + δ1,i,k1 (3.3.1.2)

and
X2,i,k2 = X̃2,i + δ2,i,k2 , (3.3.1.3)

where:

• the value X1,i,k1 represents replicate measurement k1 on material i for
the first explanatory variable, where k1 = 1, . . . , nc1 ,

• the value X2,i,k2 represents replicate measurement k2 on material i for
the second explanatory variable, where k2 = 1, . . . , nc2 ,

• the values X̃1,i and X̃2,i represent the true, unobservable values for
material i for the first and second explanantory variables respectively,

• the variable δ1,i,k1 represents the measurement error for replicate mea-
surement k1 on material i for the first explanatory variable,
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• the variable δ2,i,k2 represents the measurement error for replicate mea-
surement k2 on material i for the second explanatory variable.

The term nc1 is written as such as the ‘c’ represents covariate, and so nc1
represents the number of replicate observations on the first covariate.

This problem is further defined depending on the understanding of the
replicate measurements. Suppose that two unique sets of subsamples were
utilised to carry out the replicate measurements on bulk density and on
aeratability (i.e., one set was used for bulk density, and the other set for
aeratability). Given that different subsamples are used to measure X1,i,k1

and X2,i,k2 , even for k1 = k2, there are no grounds to assume some relation-
ship between the measurement error variables δ1,i,k1 and δ2,i,k2 , and so these
variables take separate (marginal) distributions, leading to

δ1,i,k1 ∼ N(0, τδ1) (3.3.1.4)

and
δ2,i,k2 ∼ N(0, τδ2), (3.3.1.5)

where the parameters τδ1 and τδ2 are measurement error precision for the
first and second explanatory variables respectively.

If the exact same set of subsamples of powder is used to find the replicate
measurements for both explanatory variables, then it is fair to expect there
could be some relationship in the measurement error for both explanatory
variables. For example, knowing that a particular subsample of powder mea-
sures higher than expected for bulk density could inform the measurement
of aeratability for the particular subsample of powder, hence a relationship
is assumed between the measurement errors. If the set of subsamples of
powder is the same for both explanatory variables (and for each material i),
then the subscripts k1 and k2 can be replaced by the subscript k, the num-
ber of replicate observations for both explanatory variables can be written
as nc, and the observed data for the explanatory variables can be written as(

X1,i,k

X2,i,k

)
=

(
X̃1,i

X̃2,i

)
+

(
δ1,i,k

δ2,i,k

)
, (3.3.1.6)

Moreover, a joint normal distribution is assumed for δ1,i,k and δ2,i,k, that is,(
δ1,i,k

δ2,i,k

)
∼ N

((
0
0

)
, Tδ

)
, (3.3.1.7)

where the matrix Tδ is the precision matrix, which describes the information
about the variability within groups for each explanatory variable, and how
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the replicate measurements carried out on the same subsample vary with
respect to each other.

Some more unique scenarios may occur. One example could be that
the first nc1 replicate measurements on both explanatory variables (for each
material i) are carried out on the same subsample of powder, but there
are a further nc2 − nc1 (with nc2 > nc1) replicate measurements on both
explanatory variables for which different subsamples of powder were used.
In this case, for k1, k2 = 1, . . . , nc1 with k1 = k2, it would be assumed that(

δ1,i,k1

δ2,i,k2

)
∼ N

((
0
0

)
, Tδ

)
,

and for k1, k2 = nc1 + 1, . . . , nc2 , with k1 = k2, it would be assumed that

δ1,i,k1 ∼ N(0, τδ1)

and
δ2,i,k2 ∼ N(0, τδ2),

with τδ1 and τδ2 being the diagonal elements of the matrix Tδ. Other unique
scenarios could also be explained here, but the details all lead to the same
instruction; if the same subsample of powder is used to measure more than
one explanatory variable observation, then the measurement error on these
observations should be related by a joint distribution, and otherwise, the
measurement errors can take marginal distributions.

With the aim of fitting an EIV Bayesian regression model to seek the re-
lationship between the response variable and the two explanatory variables,
firstly considering just an additive linear predictor, the model of interest is
written as

Ỹi = β0 + β1X̃1,i + β2X̃2,i + εi. (3.3.1.8)

Again, it is noted here that there are additional parameters to consider—
the regression coefficient β2, the true, unobservable values X̃1,i and X̃2,i and
the precision matrix Tδ for the joint measurement error vector (δ1,i,k, δ2,i,k)

′

(in the case that the measurement errors δ1,i,k1 and δ2,i,k2 are not related,
consider the details in Section 3.3). It is clear that β2 is treated in the same
fashion as the other regression coefficients β0 and β1, with a normal prior
distribution and some hyperprior on its precision hyperparameter. In the
case of one explanatory variable, a normal prior distribution is placed on
the true, unobservable value X̃i, which suggests possibly placing a normal
prior distribution on both X̃1,i and X̃2,i, leading to the question of whether
to place a joint prior on these true values, or separate priors on each true
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value. Given that in any modelling case, there is expected to be some
relationship between two explanatory variables (if they could both relate to
the response, they could in some way then relate to each other), it makes
sense to place a joint prior distribution on the true values. It follows that(

X̃1,i

X̃2,i

)
∼ N(µX̃ , TX̃), (3.3.1.9)

where the vector µX̃ = (µX̃1
, µX̃2

) is the mean vector, comprising the mean

for the true values for the first explanatory variable X̃1 and the mean for
the true values for the second explanatory variable X̃2, and the matrix TX̃ is
the precision matrix, which describes the information about the variability
between groups for each explanatory variable, and how the two explanatory
variables vary with respect to each other.

The final two parameters that need to be considered are the precision
matrices Tδ and TX̃ , which represent some measure of the within-groups and
between-groups variability respectively. In a similar way to how the preci-
sions τη, τδ and τX̃ can be dealt with multiple possible prior distributions,
there are a multiple prior distribution options for these precision matrices.
Typically, the Wishart distribution is used as the prior distribution for a
precision matrix and can be thought of as the multidimensional equivalent
to the gamma distribution in this sense, as it naturally produces valid preci-
sion matrices, and is the conjugate prior distribution for precision matrices,
when considering normally distributed likelihoods for the data. The Wishart
distribution is defined by some scale matrix and some degrees of freedom,
that is, some random variable ∇ takes a Wishart distribution means

∇ ∼Wishart(∇0, ν).

The scale matrix ∇0 itself must be a valid precision matrix, and any sample
from this distribution has the same dimensionality as ∇0. If ∇0 is a p × p
matrix, then the degrees of freedom ν must simply be greater than or equal
to p.

Alternatively, a precision matrix could be created by inverting a covari-
ance matrix built through standard deviation parameters and some corre-
lation coefficient. This is discussed below, with further details in Browne
et al. (2006) and again in Gelman et al. (2006).

As an example, take the 2× 2 covariance matrix S for two variables X1

and X2, written as

S =

(
Var(X1) Cov(X1, X2)

Cov(X2, X1) Var(X2)

)
. (3.3.1.10)
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By definition, the covariance of two variables X1 and X2 is

Cov(X1, X2) = ρX1,X2σX1σX2 ,

where σX1 and σX2 are the respective standard deviations of the variables
X1 and X2, and ρX1,X2 is the correlation between the variables X1 and X2.
This gives an alternative way to write S,

S =

(
σ2
X1

ρX1,X2σX1σX2

ρX1,X2σX2σX1 σ2
X2

)
. (3.3.1.11)

With this formulation of S, the precision matrix S−1 can be created by
placing prior distributions on the parameters σX1 , σX2 and ρX1,X2 , then
forming the matrix S and inverting it. It is often the case that uniform prior
distributions are used for the standard deviations and correlation coefficient
(again, see Browne et al. (2006) and Gelman et al. (2006) for theory and
discussion on this).

Extending the EIV Bayesian regression with two explanatory variables
further, an ‘interaction’ term between the two explanatory variables can be
included in the relationship between the response variable and the explana-
tory variables. This would produce the model

Ỹi = β0 + β1X̃1,i + β2X̃2,i + β12X̃1,iX̃2,i + εi (3.3.1.12)

The only new term in this model is the coefficient β12, which captures a
level of ‘interaction’ between the two explanatory variables. Referring to
the example with bulk density and the aeratability of a powder as the ex-
planatory variables, this model takes into account the possibility that the
effect of bulk density on tensile strength changes depending on the value of
the aeratability (or vice versa; the effect of aeratability on tensile strength
changes depending on the value of bulk density). Similarly to fitting the
quadratic model from Equation 3.3.1.1, all that is required in order to fit
this model is to place a prior distribution on β12 and a hyperprior on its
precision parameter.

The model can then be extended to some finite number of explanatory
variables np and all their potential powers and interactions terms, where the
observed data are of the form

Xm,i,km = X̃m,i + δm,i,km ,

where Xm,i,km is the kth
m replicate measurement on the ith group for the

mth explanatory variable, and the true, unobservable value for each group
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within each explanatory variable is given by X̃m,i. The distribution(s) for
δm,i,km is dependent on how the data are collected (see discussion earlier
in this section). The subscript m for the explanatory variables varies from
m = 1, . . . , np, the subscript i for the number of groups varies from i =
1, . . . , ng, and the subscripts km for the number of replicate measurements
on explanatory variable m vary from km = 1, . . . , ncm .

3.3.2 Multivariate response for EIV Bayesian regression

Again, extending the example scenario in Section 3.1.5, suppose additionally
that there is interest in the relationship between the Young’s modulus of a
final part printed by a laser sintering printer and the bulk density of the
powder used in the printer. In this case, there are two potential response
variables: tensile strength and Young’s modulus. One possible method for
investigating these relationships is to fit two EIV Bayesian regression mod-
els, and, under the assumption of a linear relationship between the response
variables and the explanatory variable, the simple linear model from Equa-
tion 3.2.3.1 would be fitted. That is, the model

Ỹ1,i = β0,1 + β1,1X̃i + ε1,i, (3.3.2.1)

where Ỹ1,i is the true value of tensile strength for powder i, is fitted, as well
as the model

Ỹ2,i = β0,2 + β1,2X̃i + ε2,i, (3.3.2.2)

where Ỹ2,i is the true value of Young’s modulus for powder i. This would
be a legitimate method for investigating these relationships, and posterior
distributions for β0,1 and β1,1 should give a good understanding as to how
tensile strength relates to bulk density, and posterior distributions for β0,2

and β1,2 should give a good understanding as to how Young’s modulus relates
to bulk density.

On the other hand, what if there is some relationship between tensile
strength and Young’s modulus? What if, knowledge of potentially good
values for β0,1 and β1,1 informs potentially good values for β0,2 and β1,2? If
that knowledge is available, then a bivariate response model should definitely
be considered. That is, the model(

Ỹ1,i

Ỹ2,i

)
=

(
β01 + β11X̃i

β02 + β12X̃i

)
+

(
ε1,i
ε2,i

)
(3.3.2.3)

should be fitted. For the bivariate response model, it is assumed that there
is some relationship between the model errors ε1,i and ε2,i, whereas in the
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previous case with fitting two univariate response models, there was no
relationship assumed between ε1,i and ε2,i. In other words, the bivariate
response model error is distributed by a bivariate normal distribution, with
mean 0 and some precision matrix Tε, i.e.(

ε1,i
ε2,i

)
∼ N

((
0
0

)
, Tε

)
(3.3.2.4)

Moreover, the bivariate response model has many benefits over two uni-
variate response models when considering the backward model, which is
explained further in Section 3.6. In short, if the behaviour of the explana-
tory variable(s) given the response variables is considered, then knowing the
relationship between the response variables has an impact on the behaviour
of the explanatory variable(s) (in the same sense, if the relationship between
one response variable and two explanatory variables is of interest, then it
would make sense to fit a model including both explanatory variables at
once, instead of separate models).

In the Bayesian setting, the multivariate response model is handled with
relative ease. Prior distributions are placed on parameters of interest in
an identical fashion to the univariate response models. The key difference,
the relationship between the model error terms ε1,i and ε2,i, is dealt with
by assuming the bivariate normal distribution for the model error, where
the prior on the precision matrix Tε can be chosen from the possibilities
mentioned in Section 3.3.1.

The final thing to consider is the observed data on the two response
variables, which is the equivalent scenario to the observed data for the two
explanatory variables that is discussed in Section 3.3.1. For two response
variables, the replicate measurements are of the general form(

Y1,i,j1

Y2,i,j2

)
=

(
Ỹ1,i

Ỹ2,i

)
+

(
η1,i,j1

η2,i,j2

)
, (3.3.2.5)

where the subscripts j1 = 1, . . . , nr1 and j2 = 1, . . . , nr2 refer to the replicate
measurements on the first and second response variables respectively. The
terms η1,i,j1 and η2,i,j2 account for the measurement error and are therefore
random variables. There are several possibilities for the data collection pro-
cess which then influences the relationship between these measurement error
random variables. Again, as in Section 3.3.1, this boils down to whether or
not the measurements for the replicates Y1,i,j1 and Y2,i,j2 were found using
the same subsample of powder. If the same subsample of powder was used
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for both, then a joint distribution can be assumed such that(
η1,i,j1

η2,i,j2

)
∼ N(0, Tη). (3.3.2.6)

If a different subsample of powder was used to measure the replicates Y1,i,j1

and Y2,i,j2 , then marginal prior distributions are assumed such that

η1,i,j1 ∼ N(0, τη1) (3.3.2.7)

and
η1,i,j2 ∼ N(0, τη2). (3.3.2.8)

Appropriate prior distributions for both scenarios are dealt with in an anal-
ogous fashion to the replicate measurement cases for the two explanatory
variables in Section 3.3.1.

3.4 Evaluating and comparing model fits

It is clear from Sections 3.3.1 and 3.3.2 that there is a plethora of EIV
Bayesian regression models that can be fitted to a data set, with varying
numbers of explanatory variables, polynomial terms and interaction terms.
Given that one of the crucial aims of this work is to identify which combi-
nation of explanatory variables gives the best understanding of the response
variable(s), there needs to be some way of deciding on the best-fitting model,
which means each model has to be evaluated in some way, to then be able
to compare the models with one another. It needs to also be clear what is
meant by ‘best-fitting’ model—is this the model which fits the data set the
best, or is it the model which is best at predicting the response variable(s)
for some new value(s) of the explanatory variable(s)?

3.4.1 Classical setting

Typically, within a classical regression, there are numerous metrics used to
evaluate the fit of a linear regression model. The R2 coefficient of determi-
nation gives a percentage of the information in the data that is explained
by the model, calculated by

R2 =
SStotal − SSr

SStotal
, (3.4.1.1)

where SStotal calculates some measure of the entire variance in the response
data, and SSr calculates some measure of the distance between the ‘line
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of best fit’ and the response data points. The smaller the total squared
distance between the line of best fit and the data points, the smaller the
value of SSr, and therefore the larger the value of R2, suggesting that the
model explains more of the variability within the data. Ideally a large value
of R2 is desired, suggesting that the model fits the data set well. A value
of R2 = 1 suggests that the model explains the entire variability in the
data set, which guarantees that the model is overfitted (no statistical model
can completely encapsulate the variability of a real-life scenario). The R2

coefficient is a useful tool for evaluating the fit of a model to a data set, but
it is not an ideal model comparison tool—the value of R2 can only increase
with more explanatory variables, polynomial terms and interaction terms
included in the model, so using this metric to measure which models fits
best, when comparing models with different explanatory variables, is not
adequate and should not be carried out. It is noted that R2 can be replaced
with an adjusted R2 coefficient which takes into account the number of
explanatory variables within the model, which essentially punishes models
for having too many explanatory variables.

In terms of comparing the fit of multiple models in a classical setting,
there are again several options. An F-test can be used for comparing nested
models, where a model is nested within another if a constraint being imposed
on one of the model coefficients leads to the models being identical. For
example, the simple linear model, Yi = β0 + β1xi + εi, is nested within the
quadratic model, Yi = β0+β1xi+β11x

2
i +εi, as imposing β11 = 0 leads to the

models being identical. The F-test is a hypothesis test which answers the
question ‘is it worthwhile adding (or removing) this term to (or from) the
model?’, or more specifically, ‘is there enough of a decrease in the residual
sum of squares SSr to justify adding (or removing) this term?’. While this
has some use, it is limited to comparing nested models, and carrying out
F-tests using analysis of variance (ANOVA) can lead to different conclusions
depending on the ordering of the hypothesis tests.

Alternatively, the log-likelihood is often used for comparing statistical
models. In this sense, the data can be treated as information, and including
more data (information) provides more evidence for the estimated param-
eters. This leads to its use in information criteria. Akaike’s information
criterion (AIC) is a suitable method for comparing model fits, which does
not require the models to be nested, and is built on the idea of penalised
likelihood. This method takes (−2×) the log-likelihood of the data at hand
evaluated at the maximum-likelihood estimates of the parameters, and adds
a penalty for models which take into account more explanatory variables.
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That is,
AIC = −2 log(p(Y |θ̂mle)) + 2k, (3.4.1.2)

where θ is the vector of parameters to be estimated in the model (e.g., in the
simple linear model assuming known variance/precision, θ = (β0, β1)), θ̂mle

is the maximum-likelihood estimate of these parameters, and log(p(Y |θ̂mle))
then gives an indication of how likely the response data Y would come from
a model with the estimated parameters θ̂mle, where a larger value suggests
a better model fit.

The smaller the value of AIC, the better the fit of the model (this is true
of all ‘information criterion’ methods). This tool is effective for comparing
models, but it should not be the sole method for evaluating the fit of the
model (given that there is no limit to AIC, it is hard to say what value
equates to a fit being ‘good’). Another benefit of using AIC (and information
criterion generally) in classical linear regression is the ability to compare
models that are not ‘nested’. A model M1 is nested within a model M2 if
and only if setting one (or multiple) model coefficients equal to 0 in M2 leads
to a model which is equivalent to M1. This is discussed further in Section
3.4.2.

There are visual methods for evaluating model fits, such as index plots,
Q-Q plots, plots of residuals against fitted values, all of which check the
assumptions made by the model are suitable for the data set. While these
are informal checks, they can quickly give an indication as to whether the
model that has been fitted is appropriate. If it is clear that an assumption
is violated, the data may be transformed in some way to account for this.

3.4.2 Evaluating and comparing model fits in a Bayesian set-
ting

While the measures discussed in Section 3.4.1 are effective for classical linear
regression, they do not transfer directly to Bayesian regression. This can
be explained by the key difference between classical linear regression and
Bayesian linear regression—the parameters in the classical approach are un-
known constants, and in the Bayesian approach they are random variables.
The estimates for the parameters in the classical approach are point esti-
mates, and in the Bayesian approach, the estimates for the parameters are
the posterior distributions. While R2 and AIC cannot directly be used to
compare fits of Bayesian regression models, both can be adjusted to account
for uncertainty in the posterior distributions of the parameters. The reasons
for AIC not being directly applied to Bayesian models are discussed below,
and alternative information criteria methods are provided. In this work,
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Bayesian R2 is not considered. It is also noted that the visual methods for
checking model fits are still appropriate in the Bayesian setting.

There are multiple options for an alternative to AIC which is more ap-
propriate for comparing the fits of Bayesian models. An example of this
is deviance information criteria (DIC), which is very similar to AIC. The
MLE estimate of the parameters, θ̂mle, is replaced with the posterior mean
estimate of the parameters, θ̂Bayes, as written in Gelman et al. (2013), with
some adjustments to the penalty k from Equation 3.4.1.2. Although this
alternative can be applied with ease and is more appropriate than AIC, it
is noted that this method is not fully ‘Bayesian’, as DIC is evaluated using
only the posterior mean estimates of the parameters, so a method which
can evaluate the model fit while taking into account the uncertainty in the
posterior is preferred.

This leads to two further established metrics for comparing fits of Bayesian
regression models: Watanbe-Akaike (or widely applicable) information crite-
ria (WAIC) and leave-one-out cross-validation (LOO-CV, or, as often stated
in this work, LOO-CV-IC, leave-one-out cross-validation information crite-
rion). Both methods follow the same principles as AIC and DIC, in that they
depend on some form of log-likelihood, but WAIC and LOO-CV also take
into account the uncertainty in the posterior distribution for the parameters.

The method of choice in this work is to use LOO-CV-IC. A brief overview
of LOO-CV-IC is provided here, with a more complete description found in
Appendix A. As a general concept, the idea of cross-validation is to in-
vestigate the effectiveness of a statistical analysis of an entire data set by
repeating the analysis on a subset of the data set (commonly referred to
as the ‘training’ data), then seeing how well the remaining data points
in the data set (the ‘test’ data) can be predicted. In essence it evalu-
ates the out-of-sample predictive performance of the statistical model. A
commonly used cross-validation technique is leave-one-out cross-validation,
where ‘leave-one-out’ refers to training on n − 1 data points, leaving out
one data point to be tested on, which is an exhaustive method in that the
cross-validation is repeated n times, with each iteration using a unique data
point as the test data.

The choice of whether to use WAIC or LOO-CV as a method to compare
the fits of Bayesian models is somewhat unimportant, as, in the limit n→∞,
the methods are asymptotically equal. In reality n is of course finite, so,
with reference to Vehtari et al. (2017), LOO-CV using Pareto smoothed
importance sampling (PSIS-LOO) is preferred due to robustness in this case
with weak prior information or influential observations (where PSIS-LOO
cross validation is an approximation of exact LOO-CV). The method of
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PSIS-LOO is described in detail in Appendix A.2.

As noted in Appendix A.1, without knowing the distribution of the new
pair of true values (Ỹnew, X̃new) (considering just one response and one ex-
planatory variable), the best way to estimate out-of-sample predictive per-
formance of a fitted model is the exact LOO-CV-IC, with the adjustment
to account for measurement error on both the response and the explanatory
variable. This is given by

lppdLOO-CV-EIV =

ng∑
i=1

log(p(post,−i)(Ỹi))

=

ng∑
i=1

log

(
1

S

S∑
s=1

p(Ỹi,s|θ−i,s, X̃i,s)

)
,

(3.4.2.1)

where θ−i,s is joint sample s from the parameter vector posterior, having
‘trained’ the model without group i. Note that the subscript ‘post’ refers to
the posterior density, i.e., the density of Ỹi given the posterior distribution.

The additional issue of still having to estimate the pair of true values
(Ỹi, X̃i) with group i as the test point provides further reason for using
the approximate version of PSIS-LOO-CV-IC (Pareto-smoothed importance
sampling LOO-CV-IC). As derived in Appendix A.2, this is given by

êlpdPSIS-LOO-CV,EIV =

ng∑
i=1

log

(∑S
s=1wi,sp(Ỹi,s|φi,s)∑S

s=1wi,s

)
, (3.4.2.2)

where each wi represents a Pareto-smoothed weighted importance ratio
(again, see Appendix A.2 for further details). Note that φi,s = (β0,s, β1,s, X̃i,s, τε,s)
is introduced as a way of avoiding the condition Ỹi,s|Ỹi,s which occurs when
conditioning on the parameter vector θ.

Both statistics given in Equations 3.4.2.1 and 3.4.2.2 are multiplied by
−2 so that the values are placed on the deviance scale.

The application of PSIS-LOO-CV-IC method in R uses the package loo

(Vehtari et al. 2023), and specifically the function loo from the same pack-
age. The input for the function is a matrix of posterior samples of the
log-likelihoods from the model, i.e., log(p(Ỹi,s|φi,s)). In the case of the EIV
Bayesian regression model defined in Equation 3.2.3.1, this log-likelihood
is the log of the probability density function of the normal distribution
N(µ̃i,s, τε,s) evaluated at Ỹi,s.

What remains to be detailed is how to choose which models should be
compared using the LOO-CV-IC. In the case of having, say, seven explana-
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tory variables, there are 128 possible combinations of the explanatory vari-
ables that lead to a linear regression model with an additive linear predictor
(including the model with just an intercept term). Using well-established
statistical software this can generally be carried out with relative ease, that
is, to fit these models and compare them to choose which is the best-fitting
model. In the case of this work, where bespoke code is written in order to fit
these models, it is infeasible to be able to fit all 128 models and compare their
model fits. An alternative to speed up the process and still carry out a legit-
imate process is to consider a form of stepwise regression. This is primarily
used in classical linear regression with nested models (see Section 3.4.1), but
is implemented here for the purpose of not having to fit 100+ models using
bespoke coding. The stepwise regression considered here is backwards vari-
able selection—this requires fitting the full model including all explanatory
variables, then comparing this model fit with each of the model fits having
removed one of the explanatory variables. Whichever model fit provides the
best improvement in the model (according to LOO-CV-IC) is chosen to be
the new ‘full’ model, and the process is repeated until the nested models
provide no improvement on the full model. A backwards variable selection
is preferred over the forwards variable selection (which starts with the null
model, includes each explanatory variable in turn, chooses the model which
provides the greatest improvement in model fit, and continues until no ex-
planatory variables can be included in the model to improve the fit), so as
to capture any possible combinations of variables that might not occur in
forwards variable selection.

In the case of visual checks of errors-in-variables Bayesian regression
models, there are multiple ‘fitted’ values plots that could be considered.
Generally speaking, fitted plots give a visual understanding of how well the
model ‘fits’ to the data. In a classical sense, fitted values are defined to
be the values of the response variable that are produced by putting some
explanatory variable values into the fitted model (that is, the model with
the parameter estimates). In the case of a classical simple linear model, the
fitted values are defined to be

ŷi = β̂0 + β̂1xi,

where the values β̂0 and β̂1 are the estimates of β0 and β1. These fitted
values are plotted against the observed data for the response; if the model
is a perfect fit for the data, all the points in the plot lie on y = x (or fitted
= observed).

In the case of a Bayesian errors-in-variables regression model, there are
three ‘fitted’ plots to be considered. The first two plots are not typical ‘fit-
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ted’ values plots—the posterior distributions for Ỹi and X̃i can be checked
by considering how the posterior distribution of Ỹi compares with the ob-
served Yi,j , and how the posterior distribution of X̃i compares with the
observed Xi,k. To take into account the uncertainty in the posterior, 95%
credible intervals are provided for Ỹi and X̃i. The fitted values (as in the
typical understanding) for the Bayesian errors-in-variables regression model
are redefined to be

Ŷi,s = β0,s + β1,sX̃i,post,s,

where the subscript s denotes posterior sample s, with s = 1, . . . , S. Pro-
ducing a fitted value for each sample (or at least a large subsample) from
the posterior distributions provides the uncertainty that is captured in the
posterior distribution. Then, taking the posterior samples of Ỹi,s, a joint

95% credible ellipse over Ŷi,s and Ỹi,s can be plotted for each group, and

these credible ellipses can be compared with the line Ŷ = Ỹ , on which these
credible ellipses would roughly lie if the model is appropriate for the data.
A plot demonstrating this is provided in Figure 3.1, based on the simulation
example discussed in Section 4.2.3 (identical plot provided in Figure 4.12).
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Figure 3.1: An example plot illustrating 95% credible ellipses over posterior
samples Ŷi,s and Ỹi,s from a simulated data example.

It must be noted more specifically that there is a difference between the
fitted values Ŷi,s and the posterior samples Ỹi,s—the posterior of Ỹi can be
estimated well given enough observations on the response variable for group
i, and the same can be said of the posterior of X̃i, but if these distributions
have no relationship, the fitted values of the model are poor. The reason for
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also considering the plots of the posterior of Ỹi against the observed data
Yi,j and of the posterior of X̃i against the observed data Xi,k is that these
posteriors may be very poor, and at the same time the plot of the 95%
credible ellipses of Ŷi and Ỹi (the fitted values vs. the true response values)
may be very good. To get an idea whether the model fit is good, all three
plots must be considered and must be ‘good’, i.e., close to the line y = x.

Finally, the plot of the ‘fitted’ model is also of interest. In a standard
classical regression, with fitting a simple linear model, the fitted model is
given by plotting the straight line estimated by the model, i.e. y = β̂0 + β̂1x.
This is typically plotted over the observed data (Yi, xi). In the case of an
EIV model, specifically with observed data that do not have a one-to-one
correspondence (the data point xi does not ‘produce’ the data point Yi),
then the observed data are not plotted, and instead the true values for the
response variable and explanatory variable, for each group i, are given by
95% credible ellipses estimated from the posterior distribution. The fitted
model in a Bayesian regression is given by the posterior mean of the linear
predictor, given by

Eθ(β0 + β1x),

for some x ∈ R. The uncertainty in the model fit is provided by 95% predic-
tion intervals over the posterior distribution; that is, for some explanatory
variable value x ∈ R, the predictions of the response variable Ŷs are given
by

Ŷs = β0,s + β1,sx+ εs,

where the subscript s refers to the sth joint posterior sample, and εs ∼
N(0, τε,s). This provides a distribution of predictions at x, whose mean is
equal to the expectation Eθ(β0 + β1x) from above, and taking the 2.5%
and 97.5% quantiles of Ŷs produces a centred 95% prediction interval for
the response variable. This is carried out for a large range of explanatory
variable values, whose posterior mean and 95% prediction intervals provide
the fitted model.

The fitted model for the case of a model with one explanatory variable
and one response variable is straightforward to visualise, with difficulties
arising as models with more inputs and outputs are considered. With one
response variable and two explanatory variables, contour plots and heatmaps
can be utilised as 2D representations of the model—in these cases, displaying
uncertainty in the model fit is difficult. Alternatively, a 3D plot can also
be produced. When dealing with multiple response variable and multiple
explanatory variables, the preference with this work is to produce predictions
of the response variables jointly, then plot these distributions marginally
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(i.e., plotting each response variable in turn). For example, in the case of
two input variables, predictions of the response variables are produced for
a straight line that intersects the 2D input space, which can be represented
in a 2D plot with each response variable against one of the input variables.

3.5 Nonparametric modelling

The regression models found in Equations 3.1.2.1 and 3.2.3.1 are examples
of linear modelling. In this case, the relationship between the response
variable and explanatory variable is built through a linear combination of
model coefficients β0, β1, . . ., where the model is still said to be linear if
nonlinear terms of the explanatory variable are involved in the relationship,
that is,

yi = β0 + β1xi + β11x
2
i + εi (3.5.0.1)

is still a linear regression model. If the term β1 were replaced by β2
1 , this

would be a nonlinear regression model.

The simple linear model and the quadratic model are both examples of
parametric regression—the relationship between the response variable and
the explanatory variable in a linear regression is predetermined and clearly
defined. For the simple linear model, this relationship is a straight line, and
for the regression model in Equation 3.5.0.1, this relationship is a quadratic
curve. There is no possibility of finding a quadratic relationship between the
response variable and the explanatory variable when fitting a simple linear
model. This can be seen as both an advantage and a disadvantage; the lin-
ear regression model is being restricted to a subset of potential relationships,
and in many cases, this is appropriate, but if there is no initial understand-
ing of the relationship between the response variable and the explanatory
variable, a relationship between them may be forced when restricting to
some parametric modelling method.

As an alternative, nonparametric regression modelling can be utilised.
The advantage of nonparametric modelling is that there are almost no re-
strictions as to what relationship can be found between the response variable
and the explanatory variable, so in the case where there is no knowledge of
what to expect for the relationship, a nonparametric regression method is
appropriate.

There are several methods of nonparametric regression—the method that
has been focused on in this work is Gaussian processes.
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3.5.1 Gaussian processes

A Gaussian process is a collection of random variables Yi = Y (xi) with i =
1, 2, . . ., such that any finite subset of random variables Y = (Y1, . . . , Yn) =
(Y (x1), . . . , Y (xn)) (for xi ∈ Rd) has a multivariate normal distribution.
Gaussian processes are discussed extensively in Williams & Rasmussen (2006);
in this section, the case with one response variable and one explanatory vari-
able is considered first, with i = 1, . . . , n defining the observations for both
variables, and x = (x1, . . . , xn).

It is often assumed that observations are made subject to noise, i.e.
Yi = f(xi) + εi with εi ∼ N(0, σ2

ε ). In this case, the Gaussian process for
any finite set Y is given by

Y ∼ Nn(m(x), V (x,x)), (3.5.1.1)

for some mean vector

m(x) =


m(x1)
m(x2)

...
m(xn)


and covariance matrix V (x,x) = K(x,x) + σ2

ε In, where

K(x,x) =

kcov(x1, x1) · · · kcov(x1, xn)
...

. . .
...

kcov(xn, x1) · · · kcov(xn, xn)

 .

The function kcov(·, ·) is known as the covariance function, kernel function,
or covariance kernel. Any function can be chosen to be kcov as long as it
produces a matrix K which is symmetric and positive semi-definite. An
example which is often used is the squared exponential covariance function,
which can be written in many forms, often as

k1(xi, xi′) = exp(− 1

2l2
|xi − xi′ |2). (3.5.1.2)

An alternative form of the squared exponential covariance function is

k2(xi, xi′) = exp(−l|xi − xi′ |2). (3.5.1.3)

In both cases, l represents the ‘length-scale’ or ‘distance-scaling’ parameter,
and is very important in GP modelling. This is discussed further below,
under the heading ‘Distance-scaling parameter’.
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The covariance function is the main driving force in finding the relation-
ship between Y and x; its purpose is to suggest that values for the response
variable are similar if the corresponding values of the explanatory variables
are similar. Given that k1 and k2 have upper bounds at 1, the functions
k3 = σ2

kk1 and k4 = σ2
kk2 can be used in an attempt to capture larger

covariance (rather than just correlation).

Moreover, the matrix σ2
ε In represents some ‘noise’ variance at each data

point xi, where In is the n × n identity matrix. As in the linear regression
models, and any non-deterministic model, we assume that the model cannot
predict the response variable perfectly at each data point, and so σ2

ε induces
some error in the GP at each xi.

The mean function m is discussed less than the covariance kernel kcov

in the Gaussian process literature. This is generally because, if the mean
function is assumed to be a constant, the covariance kernel dictates the
behaviour of the Gaussian process completely, which makes managing the
process easier. The mean function is also typically assumed to be 0, as
the notation in the GP posterior is simplified (see Williams & Rasmussen
(2006)). Furthermore, the choice of a non-constant mean function should be
based on some assumption of the relationship between the response variable
and the explanatory variable, which should be well informed. It could be
argued that, in a Bayesian sense, the constant mean function corresponds to
a incorporating no prior information into the mean function except a single
overall mean value. Given that the GP can be well fitted without the need
to consider a non-constant mean function, it is often more convenient to
focus on the covariance kernel. In this work, the mean function is assumed
to be some value α for any x, i.e. m(x) = α. In the case of the mean vector
m, each element is set equal to α, and so m(x) = α = (α, . . . , α) ∈ Rn.

Like in a parametric regression, the method for estimating the unknown
parameters in the Gaussian process can be carried out in a classical setting,
using a method such as MLE. Given the desires in this work for working in a
Bayesian environment, this is the preference here. This means placing prior
distributions on the parameters of interest, namely σε (standard deviation
on the model error), α (constant value of mean function), l and, when k3 or
k4 is considered as the covariance kernel, σk.

Distance-scaling parameter

The variable l is the most important variable of the Gaussian process when
using the squared exponential kernel. It is the distance-scaling parameter
of the function, which, if ignored, can lead to inappropriate values of the
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covariance kernel, which leads to poor fits for the Gaussian process. For
example, take the following set of explanatory variable data points:

x1

x2

x3

x4

x5

 =


50
53
72
89
91

 .

The idea of the covariance kernel is to suggest that similar values for the
explanatory variable corresponds to similar values of the response. Larger
values of k1 (note it is bounded above by 1) suggest that the two data points
are very close, and that it is expected that the response values should be
similarly close. Choosing l = 1 for the covariance kernel k1 produces the
covariance matrix

K =


k1(x1, x1) k1(x1, x2) · · · k1(x1, x5)
k1(x2, x1) k1(x2, x2) · · · k1(x2, x5)

...
...

. . .
...

k1(x5, x1) k1(x5, x2) · · · k1(x5, x5)



=


1.00 0.01 0.00 0.00 0.00

1.00 0.00 0.00 0.00
1.00 0.00 0.00

1.00 0.14
1.00

 ,

to 2 decimal places. This matrix suggests that the data points x1 and x2

are hardly correlated, as with x3 and x5, despite them being relatively close
together, given the (small) data set. Furthermore, the data point x4 is
closer to the pair of data points x1 and x2 than either of x3 and x5, yet the
correlation between either x1 or x2 and x4 is the same as between either x1

or x2 and either x3 or x5, i.e., there is no correlation between x1 and x4.
Choosing l = 200 for the covariance kernel k1 produces the covariance

matrix

K =


1.0000 0.9999 0.9940 0.9812 0.9792

1.0000 0.9955 0.9839 0.9821
1.0000 0.9964 0.9955

1.0000 1.0000
1.0000

 ,

to 4 decimal places. While there could be an argument that this is an
improvement, with some distinction between the correlations, there is little
difference between these correlations, like with the first example.
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Finally, choosing l = 20 for the covariance kernel k1 produces the covari-
ance matrix

K =


1.000 0.989 0.546 0.149 0.122

1.000 0.637 0.198 0.165
1.000 0.697 0.637

1.000 0.995
1.000

 , (3.5.1.4)

to 3 decimal places. Before considering any other information other than the
five explanatory variable data points, this matrix seems like a good starting
point for variability between the corresponding response data points. The
value of k1(x1, x2) = 0.9888 suggests that the corresponding response vari-
able values for these two data points should be very similar; the value of
k1(x1, x3) = 0.1223 suggests the corresponding response variable values for
these two data points should not be similar; the value of k1(x1, x4) = 0.5461
suggests the corresponding response variable values for these two data points
could be similar.

It it clear that the parameter l has an important role in determining
how the response variable behaves. For the example above, it was clear that
l = 20 was a better value for producing an appropriate covariance matrix
K. Had the data been (500,530,910,720,890), then l = 200 would produce
the same covariance matrix found in Equation 3.5.1.4. This leads to a clear
relationship between the scale of the data and l, where the scale also helps
determine the distance between the maximum and minimum data points in
the data set. As far as the prior distribution is concerned for l, there are a
couple of options, but in each case, one must be aware of the scale of the data.
The uniform distribution is an option, where its lower bound must be greater
than 0. To avoid having to explicitly specify the range of the uniform prior,
a gamma distribution is an alternative, which always produces nonnegative
values and can be skewed towards certain values, which is preferable here.

Other GP parameters

The GP parameters σε, α and σk are considered here, specifically, their prior
distibutions. Referring back to Section 3.1.2, conjugate priors for normally
distributed data could be considered, while requiring placing a prior on some
transformation of σε; an inverse-gamma distribution is the conjugate prior
for the variance, and the gamma distribution is the conjugate prior for the
precision. The standard deviation parameter σε on the model error can be
dealt with in multiple ways, with, generally speaking, a uniform prior being



76 CHAPTER 3. STATISTICAL METHODS

a common prior distribution. In some work, such as Lalchand & Rasmussen
(2020), a lognormal distribution is utilised as the prior distribution for all
non-noise hyperparameters, each with mean 0 and variance 3, considered to
be vague hyperpriors. In this case (given the data set considered in Lalchand
& Rasmussen (2020)), the hyperparameters were weakly identified, and so
a gamma distribution was utilised for noise variance (i.e., σ2

ε ), although it
is not clear how the gamma distribution is parameterised. The work in
Flaxman et al. (2015) considers a lognormal prior also for the noise variance
σ2
ε , as well as for the signal variance parameter σ2

k, both with mean 0 and
variance 1.

The prior distribution on α is down to personal choice. As described
above, it is common to fix this at 0. In the papers Lalchand & Rasmussen
(2020) and Flaxman et al. (2015), there is no prior placed on the mean
function. In this work, in the case of a weakly informed prior, a normal dis-
tribution is used, with mean 0.5 and variance 100. The reason for nonzero
mean is due to the scaling of the data, and so the mean of the response vari-
able a priori is the midpoint of the range [0,1]. In the case of fitting the fully
Bayesian GP with informed priors, the mean of α is adjusted accordingly.

In this work, gamma prior distributions are considered for each of σε, l
and σk, with small shape values. This is due to familiarity with the distri-
bution, and the scaling of the data, which causes relatively small values for
each of these parameters.

GP posterior

Having chosen the prior distributions, the posterior distribution of the hy-
perparameters is estimated using MCMC. The priors are updated using the
data, where the multivariate normal distribution is assumed for the response
data points Y = (Y1, . . . , Yn).

Once the estimation of the unknown parameters has been performed,
predictions of the response variable at certain values of the input variable
can be carried out using the conditional Gaussian distribution, in other
words, the Gaussian process posterior distribution. Analogously to the start
Section 3.5.1, the GP posterior here is described for the case of a single input
variable and single response variable.

Firstly, note that, for any vectors Y1 and Y2 with joint Gaussian distri-
bution (

Y1

Y2

)
∼ N

((
µ1

µ2

)
,

(
Σ11 Σ12

Σ21 Σ22

))
,



3.5. NONPARAMETRIC MODELLING 77

the conditional distribution of Y2|Y1 is given by

Y2|Y1 ∼ N
(
µ2 + Σ21Σ−1

11 (Y1 − µ1) ,Σ22 − Σ21Σ−1
11 Σ12

)
. (3.5.1.5)

Taking xnew to be a new observation for the explanatory variable and Ynew

to be its corresponding value for the response variable to be predicted, the
joint distribution for the GP, given known values of the hyperparameters,
is given by(

Y
Ynew

)
|φ ∼ Nn+1

((
m(x)
m(xnew)

)
,

(
V (x,x) k(x, xnew)
k(xnew,x) v(xnew, xnew)

))
where

k(x, xnew) =

kcov(x1, xnew)
...

kcov(xn, xnew)

 = (k(xnew,x))T , (3.5.1.6)

v(xnew, xnew) = kcov(xnew, xnew) + σ2
ε , (3.5.1.7)

and
φ = (α, l, σε, σk).

It is noted that the notation v is used for a scalar variance here (i.e.,
marginal, or one-dimensional variance parameter), as opposed to the more
natural s. The reason for this choice is to avoid awkwardness when intro-
ducing posterior sample s of the marginal variance, thus v(xnew, xnew) is
preferred to s(xnew, xnew). Similarly, the reason for the notation V to define
the covariance matrices in the EIV GP (those which include model error
variance along the diagonal elements) is because the more natural S is used
to denote the number of posterior samples.

Then, the conditional distribution of Ynew|Y , given known values of the
hyperparameters and with the help of Equation 3.5.1.5, is given by

Ynew|Y ,φ ∼ N (m∗, v∗) , (3.5.1.8)

with

m∗ = m(xnew) + k(xnew,x)V (x,x)−1(Y −m(x)), (3.5.1.9)

and

v∗ = v(xnew, xnew)− k(xnew,x)V (x,x)−1k(x, xnew). (3.5.1.10)
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Note again, the use of the notation v∗, as opposed to the more natural s∗,
for the conditional variance term.

Since the model parameters are summarised by thousands of samples
from the joint posterior distribution, it is most appropriate to use a subset of
these posterior samples to produce estimates of the predictions of Ynew, since
this takes into account the uncertainty in the posterior distribution. This
is carried out as opposed to using just a point estimate from the posterior
distributions, such as the mode, to give a single prediction of Ynew. In
addition, predictions of the response can be carried out at multiple points
for the explanatory variable, which can be generalised by treating both xnew

and Ynew as vectors, with the conditional normal distribution working in the
same fashion as above. An example of this is given in Section 3.5.3, also
considering measurement error on the response variable and explanatory
variables.

The Gaussian process defined above assumes that there is no error ob-
served on the explanatory variable xi. Some adjustments need to be made so
that the Gaussian process can account for this. There are many examples in
the literature of fully Bayesian Gaussian processes being implemented that
discuss in further detail the choice of prior distribution for the parameters
and hyperparameters in the model, including Lalchand & Rasmussen (2020),
Flaxman et al. (2015), Frigola et al. (2013) and Oyebamiji et al. (2017).

3.5.2 Errors-in-variables Gaussian processes

Consider again the example given in Section 3.2.3, where the observed data
that has been collected for the response variable is of the form

Yi,j = Ỹi + ηi,j

and for the explanatory variables is of the form

Xi,k = X̃i + δi,k,

where ηi,j ∼ N(0, τη) and δi,k ∼ N(0, τδ). That is, it is known that the
data for both the response variable and the explanatory variable has been
observed with measurement error and collected on replicate measurements,
with potentially different subsamples used for the response variable and for
the explanatory variable (i.e., Y1,1 was measured on a different subsample
of powder to the subsample of powder used to measure X1,1). The variables
Ỹi and X̃i are true, ‘unobservable’ values of the response variable and the
explanatory variable respectively, and the relationship between these values
is to be investigated.
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Coping with this measurement-error setup in Bayesian linear regression
is relatively straightforward, with the natural treatment of the true values
as random variables, as well as their respective observed data. The papers
Cervone & Pillai (2015) and Zhou et al. (2019) provide methodology for
dealing with noisy input variables in a Gaussian process regression, with
some focus in Cervone & Pillai (2015) on a fully Bayesian methodology, and
the work in Zhou et al. (2019) providing further theoretical justification for
the fully Bayesian approach. The work in McHutchon & Rasmussen (2011)
also defines a noisy-input Gaussian process, abbreviated to NIGP, which
deals with the problem via an approximation and likelihood estimation.
The paper Cervone & Pillai (2015) also references the work on develop-
ing the non-fully-Bayesian ‘Kriging adjusting for location error’, or KALE,
shown in Cressie & Kornak (2003). Cervone & Pillai (2015) notes that the
Gaussian process with location error in the input variable is not available in
closed form, hence MCMC simulation is required. There appears to be no
examples in the literature of also including measurement error on the output
variable while fitting a Gaussian process regression. This work presents a
fully Bayesian errors-in-variables Gaussian process regression with measure-
ment error for both the output and input variable. This method is then
applied in Chapter 4.

As defined in Section 3.3, the true, ‘unobservable’ values of the response
variable and the explanatory variable are introduced as Ỹi and X̃i respec-
tively, for i = 1, . . . , ng, with the observed data for each variable correspond-
ing to noisy observations of the true values, that is,

Yi,j = Ỹi + ηi,j ,

and
Xi,k = X̃i + δi,k,

where ηi,j ∼ N(0, τε), δi,k ∼ N(0, τδ), and τε and τδ representing measure-
ment error precisions. It is assumed that the collection of random variables
Ỹi = f(X̃i) + εi with i = 1, 2, . . . is such that any finite subset of random
variables Ỹ = (Ỹ1, . . . , Ỹng) has a multivariate normal distribution. The
Gaussian process in this case is given by

Ỹ ∼ Nng(m(X̃), V (X̃, X̃)),

for some mean vector

m(X̃) =

m(X̃1)
...

m(X̃ng)
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and covariance matrix V (X̃, X̃) = K(X̃, X̃) + σ2
ε Ing , where

K(X̃, X̃) =

 kcov(X̃1, X̃1) · · · kcov(X̃1, X̃ng)
...

. . .
...

kcov(X̃ng , X̃1) · · · kcov(X̃ng , X̃ng)

 .

The model hyperparameters σε, l, σk and the true values Ỹi, X̃i for
i = 1, . . . , ng are estimated jointly, with the respective prior distrbutions for
each parameter updated by the data to give the joint posterior distribution of
the hyperparameters, whose posterior samples are used to predict the output
variable given the GP posterior, analogously to that defined in Section 3.5.1.
That is, the Gaussian process is trained on the true, unobservable values.
The following section on EIV GPs with multiple explanatory variables has
an example of prediction of the true value of the response at some vector of
true values for two input variables subject to error.

3.5.3 Errors-in-variables Gaussian processes with multiple
explanatory variables

The EIV GP developed in Section 3.5.2 can be extended to incorporate
multiple explanatory variables. Considering again the example from Sec-
tion 3.3.1, with two explanatory variables being the bulk density of a pow-
der and the aeratability of a powder, where replicate measurements are
recorded on multiple powders, leading to measurement error on the explana-
tory variables. This leads to the formulation of Equation 3.3.1.6. Suppose
the response variable, represented by the true values Ỹ , is related to the
two explanatory variables, represented by the true values X̃1 and X̃2, by a
Gaussian process, that is,

Ỹ ∼ Nng(m(X̃), V (X̃, X̃)), (3.5.3.1)

where the matrix X̃ is defined as the matrix of true values for the explanatory
variables, which, for this example with two explanatory variables, is given
by

X̃ =
(
X̃1 X̃2

)
=


X̃1,1 X̃2,1

X̃1,2 X̃2,2
...

...

X̃1,ng X̃2,ng

 . (3.5.3.2)
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Then, the mean vector m(X̃) and covariance matrix V (X̃, X̃) are defined
as

m(X̃) =

m(X̃,1)
...

m(X̃,ng)

 =

α...
α

 ∈ Rng (3.5.3.3)

and V (X̃, X̃) = K(X̃, X̃) + σ2
ε Ing , where

K(X̃, X̃) =

 kcov(X̃,1, X̃,1) · · · kcov(X̃,1, X̃,ng)
...

. . .
...

kcov(X̃,ng , X̃,1) · · · kcov(X̃,ng , X̃,ng)

 , (3.5.3.4)

where the notation X̃,i refers to the vector of true values for the two input
variables for material i. Note that the mean function remains as a constant,
so that the covariance matrix controls the entire variability in the GP.

The covariance functions for kcov described in Section 3.5.1 need slight
modification when considering multiple input variables, since the function
must evaluate a pair of vectors instead of a pair of scalar points. For example,
the squared exponential kernel k1, which evaluates the two points xi and xi′

can be vectorised to give

k1(xi,xi′) = exp

(
− 1

2l2
||xi − xi′ ||22

)
, (3.5.3.5)

for two vectors xi,xi′ ∈ R2, where ||x||2 is defined to be the Euclidean

norm, given by ||x||2 =
√
x2

1 + · · ·+ x2
p, for some x ∈ Rp, with p = 2 here.

Therefore the function k1 can be rewritten as

k1(xi,xi′) = exp

(
− 1

2l2

2∑
d=1

(xi,d − xi′,d)2

)
. (3.5.3.6)

In this form, k1 is an appropriate covariance kernel for a Gaussian process
with two input variables, in that it will produce a positive definite covariance
matrix. However, if the variables are not standardised appropriately, it is
unlikely the estimate for the distance-scaling parameter l is suitable for
both input variables. It would then be more appropriate to consider the
squared exponential automatic relevance determination (SE-ARD) kernel,
which vectorises the scalar parameter l, so that each input variable has
its own distance-scaling parameter. So, the SE-ARD covariance kernel is
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defined as

kARD(xi,xi′) = exp

(
−1

2

2∑
d=1

(xi,d − xi′,d)2

l2d

)
, (3.5.3.7)

for l = (l1, l2) ∈ R2. As for the covariance kernel for one input variable, the
covariance term σ2

k can be included as a scaling parameter in front of the
exponential term, giving for example k3 = σ2

kk1. For the example below,
the function kcov is the analogous covariance kernel function to some generic
covariance kernel kcov for multiple input variables.

Then, for some new true values of the explanatory variables given by
X̃new = (X̃new,1, X̃new,2), a prediction of its corresponding true value for
the response variable Ỹnew using the GP posterior requires formulating the
normal distribution(

Ỹ

Ỹnew

)
∼ Nng+1

((
m(X̃)

m(X̃new)

)
,

(
V (X̃, X̃) k(X̃, X̃new)

k(X̃new, X̃) v(X̃new, X̃new)

))
,

(3.5.3.8)
where

k(X̃, X̃new) =

 kcov(X̃,1, X̃new)
...

kcov(X̃,ng , X̃new)

 , (3.5.3.9)

k(X̃new, X̃) = (k(X̃, X̃new))T , and v(X̃new, X̃new) = kcov(X̃new, X̃new)+σ2
ε .

Then, the conditional distribution of Ỹnew|Ỹ , X̃,φ, X̃new, with the help of
Equation 3.5.1.5, is given by

Ỹnew|Ỹ , X̃,φ, X̃new ∼ N(m∗, v∗), (3.5.3.10)

where

m∗ = m(X̃new) + k(X̃new, X̃)V (X̃, X̃)−1(Ỹ −m(X̃)) (3.5.3.11)

and

v∗ = v(X̃new, X̃new)− k(X̃new, X̃)V (X̃, X̃)−1k(X̃, X̃new). (3.5.3.12)

Furthermore, the vector φ represents the joint posterior distribution of the
model hyperparameters (excluding the true values Ỹ and X̃), given by

φ = (α, σε, σk, l). (3.5.3.13)
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Note here the distinction between EIV GP posterior, which defines the con-
ditional distribution of Ỹnew given Ỹ , X̃, φ (i.e., the posterior predictive dis-
tribution), and the hyperparameter posterior distribution, which defines the
posterior of the hyperparameter vector φ.

In order to take into account the uncertainty in the model when pre-
dicting the true value of the response, the values m∗ and v∗ are calculated
for a large S subset of the posterior samples. This provides the distribu-
tions Ỹnew,s|Ỹs, X̃s,φs, X̃new, for s = 1, . . . , S, as estimates of the distri-
bution Ỹnew|Ỹ , X̃,φ, X̃new. Finally, combining a single sample from each
distribution Ỹnew,s|Ỹs, X̃s,φs, X̃new provides the complete distribution of
Ỹnew|Ỹ , X̃,φ, X̃new.

This example with two explanatory variables demonstrates the EIV GP
with multiple explanatory variables, and any case with more than two ex-
planatory variables (and one response variable) follows this example in a
similar fashion.

3.5.4 Evaluating and compare Gaussian process regression
fits

As discussed in Section 3.4, the aim of model assessment is clear; to choose
the best model, i.e., the model that best predicts the response of a future
data point.

In Gaussian process regression, deciding which model is the best is often
carried out by comparing some loss function, with the model that minimises
the loss function being the best model. In general, some mean squared error
function is used as the loss function, that is the function λ(x) given by

λ(x) = (x− x̂)2, (3.5.4.1)

for some fixed x̂ ∈ R. A common method for assessing Gaussian process
regression models is to look at the root mean squared error with some form
of cross-validation. There are numerous examples of this in the literature,
including Oyebamiji et al. (2017), Xie et al. (2021), Amin et al. (2021) and
Mukesh Kumar & Kavitha (2021).

Considering one of the desires of this work is to compare the parametric
and nonparametric methods of EIV Bayesian regression and EIV Gaussian
processes for the powder flow data, an approximate leave-one-out cross-
validation information criterion (LOO-CV-IC) like what was considered in
Section 3.4.2 is also considered here. Vehtari et al. (2016) discuss the im-
plementation of a few approximate methods for applying LOO-CV-IC to
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Gaussian latent variables models, with Gaussian process models as a spe-
cific example. Their approximations include importance sampling LOO,
quadrature LOO, truncated quadrature LOO, Laplace approximation LOO
and expectation propagation LOO. For this work, a mixed LOO-CV is ap-
plied; roughly speaking, the model hyperparameters of the EIV GP are
estimated given all ng groups, then the EIV GP posterior is fitted ng times,
each time training on ng − 1 groups and testing on the remaining group.
This is preferred here as it navigates any possible issues that can occur with
PSIS-LOO-CV-IC, such as large estimates for the smoothing parameter of
the generalised Pareto distribution.

As with the EIV BR, the full details of exact LOO-CV-IC and the ap-
proximate ‘mixed LOO-CV-IC’ for the EIV GP are found in Appendix A.
The statistic used to evaluate EIV GPs using mixed LOO-CV-IC here is
given by

lppdmixed-LOO-CV-EIV =

ng∑
i=1

log

(
1

S

S∑
s=1

p(Ỹi,s|φs, Ỹ−i,s, X̃s)

)
, (3.5.4.2)

with φs being the sth posterior sample of the EIV GP hyperparameters
having been estimated given all ng groups. The value in Equation 3.5.4.2 is
multiplied by −2 so that the deviance scale is used.

3.5.5 Gaussian process with multivariate response

As in Section 3.3.2, where the example problem had been extended to con-
sider two possible response variables and the multivariate EIV Bayesian
regression had been considered, a multi-output extension of the Gaussian
process is introduced here.

The extension of the Gaussian process to consider multiple response
variables is achieved by applying a multi-output Gaussian process (MOGP).
In the same vein as in Section 3.3.2, the two reasons for considering a multi-
output EIV GP, as opposed to fitting multiple single-output EIV GPs, are
that the EIV multi-output GP captures correlations between the response
variables, which could increase model performance (Liu et al. 2018), and that
considering the response variables in one model instead of multiple models is
beneficial for the inverse problem, where the corresponding covariates can be
optimised to produce the multivariate desired response (as opposed to being
optimised multiple times for each element of the desired response vector).

The references to works in the literature regarding multi-output GPs all
consider cases without measurement error on the response and explana-
tory variables. Similar cases of treating the input variables as random
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variables are examined in the literature, typically considering uncertainty-
quantification techniques in order to deal with any randonmness in the input
variables. These techniques, such as stochastic collocation (see Kaintura
et al. (2017)) and the spectral finite element method (see Bilionis & Zabaras
(2012)), are not considered here, as these methods preemptively cope with
uncertainty in input variables (as opposed to errors-in-variables methods,
which account for observed data measured with error). The EIV MOGP, re-
lating the true ‘unobservable’ values of multiple output variables to those of
multiple input variables given observed data, is not covered in the literature
(to the best of the author’s knowledge). The errors-in-variables method-
ology here carries over from the single-output case with relative ease, and
the description of relating the true values using a MOGP is covered below.
Consequently, the descriptions are in terms of the true values of the output
and input variables.

The multi-output Gaussian process can be split into two categories (which
can be further split into subcategories)—symmetric and asymmetric multi-
output Gaussian processes (see Liu et al. (2018)). The asymmetric multi-
output GP is not of interest in this work. The symmetric multi-output GP
corresponds to treating the first and second response variable equally. The
subcategories of symmetric multi-output GPs are separable models, process
convolution and simple transformation models, where the separable models
are of interest here.

Before separable models are discussed here, the observed data and true
values for the model are considered again, in the case of two response variable
and two explanatory variables. That is, consider the observed data Y1,i,j1 ,
Y2,i,j2 , X1,i,k1 and X2,i,k2 , where

Y1,i,j1 = Ỹ1,i + η1,i,j1 ,

Y2,i,j2 = Ỹ2,i + η2,i,j2 ,

X1,i,k1 = X̃1,i + δ1,i,k1 ,

X2,i,k2 = X̃2,i + δ2,i,k2 ,

(3.5.5.1)

where the observed data are considered to be noisy observations of the true
values Ỹ1,i, Ỹ2,i, X̃1,i and X̃2,i respectively, with η1,i,j1 , η2,i,j2 , δ1,i,k1 and
δ2,i,k2 as the corresponding measurement errors. Note again that the sub-
script i refers to the group/material, the subscript j1 refers to the subsam-
ple of group/material i for the first response, j2 refers to the subsample
of group/material i for the second response, k1 refers to the subsample of
group/material i for the first covariate, and k2 refers to the subsample of
group/material i for the second covariate.
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There are multiple methods for defining a separable model for the MOGP;
the first covered here is an intrinsic coregionalisation model (ICM), defined
in Liu et al. (2018), which assumes that (for two output variables), that the
first and second outputs are each a linear transformation of some Gaussian

process u1
(
X̃i

)
∼ N(0, k1(X̃i, X̃i′)), that is,

f1(X̃i) = a1
1u

1
(
X̃i

)
(3.5.5.2)

and
f2(X̃i) = a1

2u
1
(
X̃i

)
. (3.5.5.3)

By writing the two outputs as a vector-valued function

f(X̃i) = (f1(X̃i), f2(X̃i))

and writing the scalars as the vector a =
(
a1

1 a1
2

)T
, the covariance of f(X̃i)

and f(X̃i′) is given by

cov(f(X̃i),f(X̃i′)) = aaTk1(X̃i, X̃i′). (3.5.5.4)

This is derived using the definition of the covariance in terms of the dif-
ference between the expectation of the products and the products of the
expectations.

Assuming that, for i = 1, . . . , ng,

Ỹ1,i = f1(X̃i) + ε1,i

and
Ỹ2,i = f2(X̃i) + ε2,i,

where ε1,i ∼ N(0, σ2
ε1) and ε2,i ∼ N(0, σ2

ε2), then the true values (Ỹ1, Ỹ2)′ are
multivariate normally distributed, that is(
Ỹ1

Ỹ2

)
∼ N2ng

((
m(X̃)

m(X̃)

)
,

(
(a1

1)2K1(X̃, X̃) + σ2
ε1Ing a1

1a
1
2K1(X̃, X̃)

a1
2a

1
1K1(X̃, X̃) (a1

2)2K1(X̃, X̃) + σ2
ε2Ing

))
,

(3.5.5.5)
where X̃ = (X̃1, X̃2), and so m(X̃) = α ∈ Rng . In some cases, it is appro-
priate to use unique mean functions for the response variables, i.e., assuming
that Ỹ1 has mean m1(X̃) = α1 ∈ Rng and Ỹ2 has mean m2(X̃) = α2 ∈ Rng .
Moreover, the covariance matrix for the Gaussian process has been divided
into four block matrices denoted by (a1

1)2K1(X̃, X̃)+σ2
ε1Ing , a

1
1a

1
2K1(X̃, X̃),

a1
2a

1
1K1(X̃, X̃) and (a1

2)2K1(X̃, X̃) + σ2
ε2Ing , which are all ng × ng matrices.
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This follows from the covariance between the two vectors f(X̃i) and f(X̃i′)
in Equation 3.5.5.4. As before, the matrix K1(X̃, X̃) is the covariance kernel
matrix given by

K1(X̃, X̃) =

 k1(X̃,1, X̃,1) · · · k1(X̃,1, X̃,ng)
...

. . .
...

k1(X̃,ng , X̃,1) · · · k1(X̃,ng , X̃,ng)

 (3.5.5.6)

The multi-output EIV GP can be defined more succinctly using the Kro-
necker product. For two matrices A ∈ Ra1×a2 and B ∈ Rb1×b2 , where the
matrix A is given by

A =

 a1,1 · · · a1,a2
...

. . .
...

aa1,1 · · · aa1,a2

 , (3.5.5.7)

the Kronecker product A⊗B ∈ Ra1b1×a2b2 is defined as

A⊗B =

 a1,1B · · · a1,a2B
...

. . .
...

aa1,1B · · · aa1,a2B

 . (3.5.5.8)

This allows for the multi-output EIV GP to be defined as(
Ỹ1

Ỹ2

)
∼ N2ng

((
m(X̃)

m(X̃)

)
,aaT ⊗K1(X̃, X̃) +

(
σ2
ε1Ing 0ng×ng

0ng×ng σ2
ε2Ing

))
,

(3.5.5.9)
with the matrix 0ng×ng being a matrix of zeroes with ng rows and ng
columns. The ICM can be further extended to taking multiple samples from

the Gaussian process u1
(
X̃i

)
, and writing each functional relationship as

a unique linear combination of the samples. The matrix aaT is redefined
here to be

VK =

(
σ2
k,1 σk,1σk,2ρVK

σk,1σk,2ρVK σ2
k,2

)
, (3.5.5.10)

which effectively represents the covariance between the output variables.

The ICM provides the simplest case of the separable MOGP. The model
assumes that the same covariance function captures the functional relation-
ship between the first response variable and the explanatory variables, and
between the second response variable and the explanatory variables. This
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could be seen as advantageous in the sense of reducing the number of hy-
perparameters that need to be estimated, but is typically inappropriate if
the relationships between each response variable and the input variables are
sufficiently different. For example, in the case that the first input variable
has a large influence on the first output variable (that is, the first response
variable is very sensitive to small changes in the first input variable), then
the corresponding distance-scaling parameter l1 will be very small. How-
ever, if it is also the case that the first input variable has a small influence
on the second output variable (that is, the second response variable is not
very sensitive to small changes in the first input variable), then l1 will be
relatively much larger, making it infeasible to find values of l1 that are suit-
able for the relationship between both the first input and the first output,
and the first input and second output.

This can be dealt with by introducing more covariance kernels into the
MOGP model, which extends the ICM to a semiparametric latent factor
model (Teh et al. (2005), abbreviated to SPLF), which introduces a second

Gaussian process u2
(
X̃i

)
∼ N(0, k2(X̃i, X̃i′)), and defines the functions

f1(X̃i) and f2(X̃i) as a linear combination of the two Gaussian processes

u1
(
X̃i

)
and u2

(
X̃i

)
, that is,

f1(X̃i) = a1,1u
1
(
X̃i

)
+ a2,1u

2
(
X̃i

)
(3.5.5.11)

and
f2(X̃i) = a1,2u

1
(
X̃i

)
+ a2,2u

2
(
X̃i

)
. (3.5.5.12)

By writing the scalars as the vectors a1 =
(
a1,1 a1,2

)T
and a2 =

(
a1,1 a1,2

)T
,

the covariance of f(X̃i) and f(X̃i′) is given by

cov(f(X̃i),f(X̃i′)) = a1(a1)Tk1(X̃i, X̃i′)+a2(a2)Tk2(X̃i, X̃i′). (3.5.5.13)

Similarly to Equation 3.5.5.4, this is derived by defining to the covariance
as the expectation of the products minus the products of the expectations
(see Appendix). Then, the semiparametric latent factor model for the EIV
MOGP is defined analogously to Equation 3.5.5.9, replacing

aaT ⊗K1(X̃, X̃) +

(
σ2
ε1Ing 0ng×ng

0ng×ng σ2
ε2Ing

)
with

a1(a1)T ⊗K1(X̃, X̃) + a2(a2)T ⊗K2(X̃, X̃) +

(
σ2
ε1Ing 0ng×ng

0ng×ng σ2
ε2Ing

)
.
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The matrices K1(X̃, X̃),K2(X̃, X̃) are the covariance kernel matrices,
measuring spatial correlation between the input variables. Each element of
the matrix is an evaluation of the squared exponential automatic relevance
determination kernel for the true values of the inputs for each pair of groups
i, i′ = 1, . . . , ng, e.g., for K1(X̃, X̃), k1,ARD(X̃,1, X̃,1) · · · k1,ARD(X̃,1, X̃,ng)

...
. . .

...

k1,ARD(X̃,ng , X̃,1) · · · k1,ARD(X̃,ng , X̃,ng)

 ,

where

k1,ARD(X̃,i, X̃,i′) = exp

{
−1

2

2∑
d=1

(X̃d,i − X̃d,i′)
2

l21,d

}
.

The covariance kernel matrix K2(X̃, X̃) follows the same form, with l1,d
replaced with l2,d.

Similarly to the ICM, the matrices a1(a1)T and a2(a2)T are defined to
be the covariance matrices VK,1 and VK,2. The matrix VK,1 is defined to be

VK,1 =

(
σ2
k,1 σk,1σk,2ρVK

σk,1σk,2ρVK σ2
k,2

)
(3.5.5.14)

The matrix VK,2 is defined as

VK,2 =

(
λ2

1σ
2
k,1 λ1σk,1λ2σk,2ρVK

λ1σk,1λ2σk,2ρVK λ2
2σ

2
k,2

)
, (3.5.5.15)

that is, the marginal variances in VK,2 are scaled marginal variances from
VK,1, and the same correlation is assumed for both matrices.

Finally, the most notable case of a separable MOGP is the linear model
of corregionalisation (LMC), which is discussed in Conti & O’Hagan (2010),
Alvarez et al. (2011), Bilionis et al. (2013) and Liu et al. (2018), among
others. The LMC can be thought of as a combination of the ICM and
SPLF, where each functional relationship (the relationship between each
output variable and the input variables) is a linear combination of multiple
samples from multiple Gaussian processes. In Liu et al. (2018), the LMC is
defined in terms of the function f(x), where y = f(x)+ε, for some normally
distributed model error ε ∼ N(0, σ2

ε ). For the EIV GP, define f1(X̃,i) as the
function evaluated at X̃,i (i.e., the true values of the input variables for
material i) for the first response variable. Then, the LMC expresses f1(X̃,i)
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as a linear combination of Q latent functions, i.e.,

f1(X̃,i) =

Q∑
q=1

a1,quq(X̃,i), (3.5.5.16)

where the function uq(X̃,i) is a Gaussian process with mean 0 and covariance
cov(uq(X̃,i), uq(X̃,i′)) = kq(X̃,i, X̃,i′). Define now f(X̃,i) as the multivari-
ate (specifically bivariate in this case) function evaluated at X̃,i for the first
and second response variables. Then, in matrix form, the LMC expresses
f(X̃,i) as

f(X̃,i) = Bu(X̃,i), (3.5.5.17)

where u(X̃,i) = (u1(X̃,i), . . . , uQ(X̃,i)). The scalar value a1,q is the coeffi-
cient for the function uq(X̃,i). Furthermore, the assumption is made that
the latent functions uq(X̃,i) and uq′(X̃,i′) are orthogonal. So, for the second
response variable, where

f2(X̃,i) =

Q∑
q′=1

a2,q′uq′(X̃,i), (3.5.5.18)

the covariance between the two response variables is given by

kY1,Y2(X̃,i, X̃,i′) =

Q∑
q=1

Q∑
q′=1

a1,qa2,q′cov(uq(X̃,i), uq′(X̃,i′))

=

Q∑
q=1

a1,qa2,qkY1(X̃,i, X̃,i′)

(3.5.5.19)

Further details of the LMC can be found in Alvarez et al. (2011), Liu et al.
(2018). For this work, the SPLF model is preferred to the IMC and LMC—
the advantage of having a linear combination of multiple Gaussian processes
(as opposed to just one Gaussian process) to estimate multiple functional
relationships which may differ in behaviour means the SPLF model is pre-
ferred over the ICM. Because of the limited amount of data considered in
the work, the additional parameters required (which would need to be esti-
mated) to fit the LMC could cause issues for the modelling. Moreover, the
testing of these models on simulated data suggests that the ICM is insuf-
ficient in terms of providing accurate predictions of the response variables,
whereas the SPLF model performed well in comparison.
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Finally, for clarity, the EIV MOGP model to be investigated in this
work is provided succinctly here. Defining the matrix of true values for
the output variables as Ỹ ∈ Rng×2, the vectorisation of these output vari-
ables stacks the true values for the first output variable on top of the
true values for the second output variable, giving the vector vec(Ỹ ) =
(Ỹ1,1, . . . , Ỹ1,ng , Ỹ2,1, . . . , Ỹ2,ng)

′. This vector of true values is then assumed
to be multivariate normal, with mean (α1,α2)′, and covariance matrix

VMOGP,X̃ = VK,1 ⊗K1(X̃, X̃) + VK,2 ⊗K2(X̃, X̃) +

(
σ2
ε1Ing 0ng×ng

0ng×ng σ2
ε2Ing

)
,

that is,

vec(Ỹ ) ∼ N2ng

((
α1

α2

)
, VMOGP,X̃

)
. (3.5.5.20)

The EIV MOGP posterior distribution can be considered for the purpose
of jointly estimating the output variables for a given input vector of true
values X̃new. That is, the prediction of the response variables at the input
vector X̃new is given by the distribution p(Ỹnew|θ, X̃new, Ỹ , X̃), which is
bivariate normally distributed with mean m∗ and covariance matrix V ∗,
i.e.,

Ỹnew|θ, X̃new, Ỹ , X̃ ∼ N2(m∗, V ∗) (3.5.5.21)

where

m∗ = (α1, α2)′ +K(X̃new, X̃)VMOGP,X̃(vec(Ỹ )− (α1,α2)′), (3.5.5.22)

and

V ∗ = VMOGP,X̃new
−K(X̃new, X̃)VMOGP,X̃K(X̃, X̃new). (3.5.5.23)

The covariance matrix VMOGP,X̃new
is analogous to that of VMOGP,X̃ , replac-

ing the matrix of existing true values of the input variables with the new
true vector X̃new. The matrix K(X̃new, X̃) is defined to be

K(X̃new, X̃) = VK,1 ⊗K1(X̃new, X̃) + VK,2 ⊗K2(X̃new, X̃),

and finally, K(X̃, X̃new) = K(X̃new, X̃)T .
This concludes the discussion and definition of the statistical methods

used in this work to estimate functional relationships between the response
variable(s) and explanatory variable(s). The remainder of this chapter now
considers appropriate statistical methods for investigating the explanatory
variable(s) given the estimates of these functional relationships and given
desired values of the response variable(s).
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3.6 Inverse problems

The topic of inverse problems covers a wide range of applications. In this
work, we are only interested in solving inverse problems within a statistical
modelling framework. In this section, the ideas of ‘forward’ modelling and
‘backward’ modelling are more formally defined. Then, Bayesian solutions
to the inverse problem in parametric and nonparametric regression are in-
vestigated, followed by details of the process for solving inverse problems in
this work.

3.6.1 Defining the ‘forward’ and ‘backward’ models

Consider the paired observations of the response and explanatory variables
given by (Yi, xi), for i = 1, . . . , n, for which the relationship between the
variables is of interest. Given that there are multiple possible relationships
between these two variables (linear relationship, quadratic, etc.), a decision
needs to be made as to which relationship is best. As discussed in Section
3.4, there are multiple potential methods to decide which parameters to
include, where the preference here is to use some approximation of leave-
one-out cross-validation information criterion (LOO-CV-IC). As an example,
two models M1 and M2 can be fitted, with M1 representing the simple
linear model, and M2 representing the quadratic model. For both models,
the model parameters are estimated by the posterior distribution. Having
fitted the models, the LOO-CV-IC can be evaluated for both models, and,
along with other sensible considerations (fitted values plots, suitable model
checking), the decision is made as to which model fits the data best.

This process becomes more extensive as more explanatory variables (and
response variables) are available to be modelled, and this leads to more
possible models to consider. Define the list of possible models to consider as
M = {M1,M2, . . .}, leading to the same process described above, with the
aim of finding the best-fitting model. This process of deciding which model is
best in terms of describing the relationship between the response variable(s)
and the explanatory variables(s) is known as the ‘forward’ modelling (or the
forward modelling process), with each M1,M2, . . . , defined to be a ‘forward’
model.

The methods described in Sections 3.3 and 3.5.1 have been described
in terms of a forward model, with the aim of finding the relationship be-
tween the response variable(s) and explanatory variable(s), then deciding
which model is the best-fitting with the methods described in Sections 3.4.
The ultimate goal of this PhD is to find optimal values of the explana-
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tory variable to produce some desired response value, given the estimates
of the model parameters. The process of inverting the best-fitting model,
to optimise the input variable(s) in order to produce some desired response
value(s), is referred to as the ‘backward’ modelling. In other words, the for-
ward modelling considers the behaviour of the response variable(s) given the
explanatory variable(s), with the purpose of finding the best linear predictor
in the explanatory variable(s) to predict the behaviour of the response vari-
able(s). The ‘backward’ modelling assumes the fitted linear predictor and
considers the behaviour of the explanatory variable(s) given the response
variable(s), with the purpose of optimising the explanatory variable(s) in
order to produce desired values of the response variable(s).

A more formal backward modelling definition is provided here. As an
example, consider the case of a single output variable and a single input vari-
able. If the desired response variable is defined as Y ∗, and the corresponding
explanatory variable as X∗, suppose the best-fitting model is identified as
Mbest. Then, the backward modelling process considers the backward model

Y ∗ = f̂best(X
∗) + ε∗, (3.6.1.1)

where ε∗ ∼ N(0, τε), and the function f̂best represents the estimated relation-
ship between the response variable and the explanatory variable from the
best-fitting model. Then, the desired response variable Y ∗ is fixed at some
value Y ∗ = y∗, and the backward model process is defined to be the optimi-
sation the corresponding explanatory variable X∗, given f̂best and Y ∗ = y∗.
In the following sections, the ideal backward modelling process for this work
is identified, with some more general background on the backward modelling
process from the literature.

3.6.2 Linear regression inverse problems in a Bayesian set-
ting

Given the issues identified in Chapter 1 regarding solving inverse problems
in a classical setting, a Bayesian alternative is sought here.

The Bayesian approach to calibration was first developed by Hoadley
(1970), where he explains how the ‘classical estimator’

X̂∗C = x̄+
Sxx
Sxy

(
Y ∗ − Ȳ

)
, (3.6.2.1)

has some undesirable properties (namely the classical estimator has infi-
nite mean square error) which he attempted to alleviate by considering the



94 CHAPTER 3. STATISTICAL METHODS

problem from a Bayesian perspective. This Bayesian approach detailed by
Hoadley entails assuming a joint prior distribution p(β0, β1, σ

2
ε , X

∗) given by

p(β0, β1, σ
2
ε , X

∗) ∝ p(β0, β1, σ
2
ε )p(X

∗),

with the noninformative prior distribution p(β0, β1, σ
2
ε ) ∝ σ−2

ε (with inde-
pendence between X∗ and (β0, β1, σ

2
ε )). Hoadley assumed normally dis-

tributed errors, and derived the posterior density

p(X∗|Y ∗,Y ,X) ∝ p(X∗)L(X∗),

where the likelihood L(X∗) corresponds to the predictive density of Y ∗,
p(Y ∗|X∗). The vectors Y and X represent the observed data. To give a
proper posterior density of X∗, the prior density p(X∗) must also be proper.
In particular, he assumed a non-central Student density centred at x̄ as the
prior density p(X∗) and showed that the posterior distribution of X∗ had
mean

X̂∗I = X̄ +
Sxy
Syy

(Y ∗ − ȳ) , (3.6.2.2)

where Syy = 1
n

∑n
i=1(yi − ȳ)2 (this provides the ‘inverse estimator’ solution

from a classical setting, i.e., when regressing X on y). Further information
of the univariate calibration in a Bayesian setting can be read in Hoadley
(1970), Hunter & Lamboy (1981b) (which also considers cases of known σ2

ε ),
and Hunter & Lamboy (1981a) (a response to the paper Hunter & Lamboy
(1981b)).

The Bayesian methodology for calibration is preferable for this work for
multiple reasons. It maintains consistency with EIV BR and EIV GPs used
for the forward modelling, where the uncertainty in the forward modelling
can be utilised in the backward modelling, so that in both the forward
modelling and backward modelling, uncertainty of the estimates are taken
into account. The concept of model inversion also naturally follows gen-
eral Bayesian principles; having considered the behaviour of the response
variable(s) conditioned on the explanatory variable(s) in the forward mod-
elling, Bayes’ theorem provides straightforward logic for investigating the
behaviour of the explanatory variable(s) conditioned on the response vari-
able(s). If required, elicitation can be carried out to provide further in-
formation through expert opinion for the backward modelling, for example
for the prior distribution on X∗, which would provide more accurate esti-
mates. In the non-Bayesian case, where there are two possible estimators
to consider (the classical and the inverse), the Bayesian calibration (in this
case) only requires a decision to be made on the prior distribution for X∗.
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Once the posterior distribution of X∗ is estimated, the posterior mode is
the logical choice for the point-estimate solution to the inverse problem; the
mode maximises the posterior density of X∗, i.e. where it provides the point
where the probability density peaks. Other summary statistics such as the
mean and median may not be appropriate, as the posterior of X∗ may not
be normal and could be multimodal.

The calibration in the case of a Bayesian multivariate parametric re-
gression is a somewhat straightforward extension of the univariate case, as
described in Brown (1982). Defining p(X∗) as the prior distribution for some
multidimensional corresponding covariate X∗, details are given to show the
derivation of

p(X∗|Y ∗, Y,X,θ) ∝ p(X∗)L(X∗,θ),

where the likelihood L(X∗,θ) corresponds to the predictive density of Y ∗,
p(Y ∗|X∗,θ). The matrices Y and X represent the observed data for the
response variables and explanatory variables respectively. The demonstra-
tion then considers an invariant Jeffreys prior distribution for the model
parameters, and some proper prior for X∗.

The implementation of the backward modelling in this work is explicitly
given (for EIV BR) in Section 3.6.4. In the following section, the ideas of
the backward modelling here are carried over to nonparametric regression.

3.6.3 Inverse problems in nonparametric regression

Consider some jointly observed data (Yi, xi) where it is supposed that these
sets of data are related by some function f with some additive random error
εi in the Y -direction, that is,

Yi = f(xi) + εi, (3.6.3.1)

and suppose further that the function f is to be estimated using a non-
parametric model. That is, the relationship f is not estimated by a fixed,
predetermined relationship, rather the functional relationship between the
variables is estimated without a predetermined parametric assumption. As
in the previous subsections, suppose also there is some desired response
value Y ∗ for which some corresponding explanatory variable value X∗ is of
interest, with the equation

Y ∗ = f(X∗) + ε∗, (3.6.3.2)

where ε∗ is some random error. This defines the calibration problem in
nonparametric regression.
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The overall idea from the parametric regression case, that is, to iden-
tify how the forward model predicts the response variable(s) then invert
these predictions, carries over to the nonparametric regression case. The
key difference is that the process of predicting the response variable(s) in
the nonparametric regression case effectively requires the observed data with
which the function f is estimated (in other words, the observed data are re-
quired as ‘training’ data). For the parametric case of linear regression, for
example, once the model coefficients β0, β1, . . ., have been estimated, the
observed data are not required to predict the response variable(s) for some
value(s) of the explanatory variable(s). On the other hand, the Gaussian
process regression predicts the response variable(s) using the GP posterior,
which is based on the conditional distribution given the observed (‘training’)
data.

For the same reasons as previously, the backward modelling for nonpara-
metric regression is considered in a Bayesian setting. Therefore, it is still
the case that the posterior distribution of X∗ given Y ∗ (and the estimated
model) is considered, which is given by

p(X∗|θ, Y,X, Y ∗) ∝ p(Y ∗|θ, Y,X,X∗)p(X∗),

where θ represents the hyperparameters of the nonparametric model, and
p(X∗) is the prior distribution of X∗. Effectively, the key difference is that
Y and X is dropped from the conditioning in the predictive distribution
p(Y ∗|θ, Y,X,X∗) in the parametric regression case, while also noting that
the posterior distribution θ in the parametric case contains the model co-
efficients (whereas here, θ represents the vector of hyperparameters within
the distribution(s) in the nonparametric model).

Having discussed the concept of the backward modelling more generally,
for both parametric and nonparametric regression cases, the method for
carrying out the backward modelling in this work is discussed in Section
3.6.4 for the parametric regression and Section 3.6.7 for the nonparametric
regression (specifically for the EIV GP).

3.6.4 Backward model methodology for parametric regres-
sion

Suppose now the forward modelling process has been carried out, and the
best-fitting forward model Mbest (with respect to overall model form) has

been identified and fitted, with the fitted model given by M̂best. In this
section, it is assumed that Mbest is a parametric regression model.
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For the purpose of simplification, suppose the relationship between the
response variable and the explanatory variable inMbest is given by the simple
linear model with errors-in-variables on both the response variable and the
explanatory variable, so

Mbest : Ỹi = β0 + β1X̃i + εi,

where εi ∼ N(0, τε). Within the forward modelling process, the joint poste-
rior distribution

p(θ|Y,X)

has been estimated using MCMC, where θ = (β0, β1, τ , Ỹ , X̃), with τ =
(τε, τX̃ , τη, τδ). Also, the matrices Y and X represent the observed data (in
the form of replicate measurements on multiple groups). This joint posterior
distribution can be summarised using a large number S of posterior samples.

With the backward model for the simple linear model defined as in Equa-
tion 3.6.1.1, assume that some desired response value Y ∗ = y∗ is chosen, for
which a corresponding explanatory variable value is to be suggested as a
candidate for X∗ = x∗ to be able to produce the desired response value y∗.
The backward model of interest is therefore the model in Equation 3.6.1.1,
with Y ∗ fixed at y∗. Note that, the precision parameters τη and τδ are not
required in the backward model, as measurement error is not of interest.
The precision term τX̃ could be implemented depending on the choice of
prior distribution for X∗, which is discussed further in Section 3.6.5.

In order to find appropriate values for the explanatory variable, a prior
distribution is placed on X∗, which is then updated by the forward model
posterior distribution p(θ|Y,X) to give the posterior distribution p(X∗|Y ∗,θ).
This is carried out using MCMC. As noted above, the backward model is
fitted a large number of times, and for each fitting of the backward model, a
different sample from the joint posterior distribution of p(θ|Y,X) is used, to
take into account the uncertainty in the forward modelling process. Then,
for each fitting of the backward model, a posterior distribution is found for
X∗, from which a small set of samples is taken, and each set of samples from
each fitting is then combined to create a complete posterior distribution for
X∗.

The algorithm for the backward model process with the simple linear
model with desired response value Y ∗ = y∗ is then as follows:

1. Jointly sample S draws from the posterior distribution p(θ|Y,X), the
forward modelling posterior distribution.
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2. Assume some prior distribution for X∗b (discussion of possible priors is
given in Section 3.6.5). The subscript b is introduced to indicate that
for each joint posterior sample b = 1, . . . , S, a posterior distribution is
estimated for X∗b .

3. For each b = 1, . . . , S, the backward model for the simple linear model
is fitted, i.e.

y∗ = β0,b + β1,bX
∗
b + ε∗,

where ε∗ ∼ N(0, τε,b) and the values (β0,b, β1,b, τε,b) are the bth joint
random sample from the S random samples of the joint posterior dis-
tribution from the forward modelling process. The fitting is done using
MCMC, leading to the posterior p(X∗b |Y ∗ = y∗,θb).

4. Take a small random sample from each posterior p(X∗b |Y ∗ = y∗,θb),
and combine these samples to get the complete posterior distribution
p(X∗|Y ∗ = y∗,θ).

The posterior mode of p(X∗|Y ∗ = y∗,θ) is chosen as the candidate
value as it is sensible to want to maximise the posterior p(X∗|Y ∗ = y∗,θ).
Other summary metrics such as median and mean are not suitable; for
example, a multimodal posterior of p(X∗|Y ∗ = y∗,θ) (which can occur
for more complicated linear predictors) would likely lead to the mean and
median both being low density values in the posterior, therefore one would
be choosing a very unlikely value to be sampled from the posterior as the
‘best guess’ of X∗ given Y ∗.

The following section discusses possible prior distributions for X∗.

3.6.5 Prior distribution on X∗

In the case of the simple linear model, the variable X∗ is 1-dimensional. In
terms of which prior distribution could be placed on X∗, there are multi-
ple possibilities, depending on the interpretation of X∗. From the forward
model, posterior distributions were found for each X̃i, which represents the
true value for the explanatory variable for group i. The new corresponding
variable X∗ could be thought of as a new group, for which the true value of
the response is given by Y ∗ = y∗, in which case, the variable X∗ could be
treated the same as X̃i, that is, the same prior distribution could be used.
This is then the normal distribution with mean µX and precision τX̃,b, i.e.,

X∗ ∼ N(µX , τX̃,b),

where τX̃,b is a random sample from the posterior distribution of τX̃ .
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The issue with this prior is the inability to extrapolate values for X∗,
for example, in the case where Y ∗ = y∗ is an extreme value, i.e., when y∗ is
either larger than or smaller than all of the true response values Ỹi. Take the
case where the value y∗ is larger than all Ỹi, and the simple linear model is
the best-fitting forward model. Suppose all posterior values β1,b are positive,
corresponding to straight lines with a positive gradient defining the relation-
ship between the response variable and the explanatory variable. The larger
y∗ becomes, the larger the corresponding value X∗ = x∗ becomes, and us-
ing the normal distribution centred at the mean of the observed data with
a between-materials variability based on the true values from the forward
model X̃i, the further x∗ heads into the upper tail of the prior distribution
on X∗, where the density is small. Although changes could be made to the
parameters for the prior distribution in order to facilitate the extrapola-
tion case, it is hard to justify which values to choose for the mean and the
precision of the normal distribution.

A different distribution to use which can cope with this and still be
appropriate for interpolation is simply the uniform distribution. This gives
each value in its range the same density, and the limits of the uniform
distribution can be set wide enough to account for both finding values for
X∗ within the minimum and maximum values of the true values X̃i and for
finding values larger than the maximum X̃i and smaller than the minimum
X̃i. The application of the backward modelling in this work considers only
the uniform distribution (see Chapter 5).

3.6.6 Extending the backward model

The backward modelling process for the simple linear model described in
Section 3.6.4 can be adjusted to account for any relationship between some
response variable(s) and some finite number of explanatory variables. For
simplicity, the case with two explanatory variables is considered in this sec-
tion, which can be scaled up to higher numbers of explanatory variables, and
include any combination of interaction and polynomial terms. So, consider
the parametric model with one response variable, two explanatory variables,
and with measurement error on all variables as in Equation 3.3.1.8, i.e.

Ỹi = β0 + β1X̃1,i + β2X̃2,i + εi.

Suppose the forward model has been fitted for this relationship, with S
samples summarising the joint posterior distribution

p(θ|Y,X1, X2),
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with θ = (β0, β1, β2, τε, τη, TX̃ , Tδ, Ỹ , X̃1, X̃2). Furthermore, the matrices
X1 and X2 represent the observed data for the first and second explanatory
variables respectively.

The backward model to be considered now is

y∗ = β0,b + β1,bX
∗
1,b + β2X

∗
2,b + ε∗,

where ε∗ ∼ N(0, τε,b) and the values (β0,b, β1,b, β2,b, τε,b) are the bth joint
random sample from the S random samples of the joint posterior distribution
from the forward modelling process.

Another consideration needs to be made for the prior distribution on
the corresponding explanatory variables X∗b = (X∗1,b, X

∗
2,b). The preference

here again is to use a uniform distribution. The uniform distribution can
be defined over any measurable region in space, so there are many options
for placing a uniform prior over X∗b . A uniform ‘box’ is a straightforward
option (‘box’ meaning the volume or n-dimensional volume space bounded
by a cube or n-dimensional hypercube), which is defined simply by placing
a uniform distribution on each of the two explanatory variables, leading to
X∗1,b ∼ U(c1− ρX1 , c1 + ρX1) and X∗2,b ∼ U(c2− ρX2 , c2 + ρX2) (for example,
if c1 = c2 = 0 and ρX1 = ρX2 = 1, the box is the area bounded by a square
centred at the origin with side length 2).

Alternatively, a uniform ‘disk’ (or, for more than two explanatory vari-
ables, ‘ball’) could be used as the prior distribution for (X∗1,b, X

∗
2,b)
′, which

can be created in two ways, either using rejection sampling or with polar co-
ordinates. Suppose the uniform ‘disk’ from which the samples will be taken
has radius ρ and is centred at (c1, c2). For some horizontal axis x1 and verti-
cal axis x2, the equation of this circle is given by (x1−c1)2 +(x2−c2)2 = ρ2

X ,
and so to draw samples for (X∗1,b, X

∗
2,b) from within this circle, rejection sam-

pling can be used by specifying that the samples must satisfy the inequality
(X∗1,b − c1)2 + (X∗2,b − c2)2 ≤ ρ2

X .
To use polar coordinates to sample values from within the same circle,

define the probability P (R < r) to be the probability of choosing a point
within a circle of radius r for some r < ρX (in other words, imagine one circle
with radius ρX , and another circle with radius r where r < ρX , and this
defines the probability of picking a point from the circle of radius r which lies
within the circle of radius ρX). This probability is equal to πr2

πρ2X
= r2

ρ2X
. Using

a probability integral transform, the variable R′ is defined to be R′ = R2

ρ2X
,

which can be rearranged to give R = ρX
√
R′. Placing a uniform distribution

as the prior on R′ over the range [0,1], samples from this prior are then
transformed to produce values of R, and for the other polar coordinate θ,
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a uniform prior over the range (0, 2π] can be used, and these points are
transformed to produce the samples X∗1 = R cos(θ) + c1, X

∗
2 = R sin(θ) + c2.

The uniform ‘disk’ can be taken a step further, with unique radii for each
dimension of X∗ leading to the area of space bounded by an ellipse (or, for
more than two explanatory variables, by a hyperellipsoid). For an ellipse
centred at (c1, c2) with semi-major axis ρX1 and semi-minor axis ρX2 , and
some horizontal axis x1 and vertical axis x2, the equation of this ellipse is

given by (x1−c1)2

ρ2X1

+ (x2−c2)2

ρ2X2

= 1. To draw samples for (X∗1 , X
∗
2 ) from within

this ellipse, rejection sampling can be used by specifying that the samples

must satisfy the inequality
(X∗1−c1)2

ρ2X1

+
(X∗2−c2)2

ρ2X2

≤ 1. With polar coordinates,

the variable R from above becomes two-dimensional (so R = (R1, R2)),
such that X∗1 = R1 cos(θ) + c1, X

∗
2 = R2 sin(θ) + c2, with R1 = ρX1

√
R′,

R2 = ρX2

√
R′ and R′ ∼ U(0, 1). As the number of explanatory variables in

the linear predictor increases, it is clear that the preferred choice to sample
from a uniform ball (or ellipsoid) is to use rejection sampling.

The backward model can then be further extended by adding some ran-
dom variable Z to the desired response variable Y ∗. The idea behind the
variable Z is to enlarge/widen the target for the desired response, which
is appropriate for when the desired response need not be produced exactly,
rather it is important to find values of the explanatory variables to pro-
duce a response value within a certain range of the desired response. For
example, suppose the desired response value for tapped density that has
been suggested is 0.55g/ml, so y∗ = 0.55, and it is also stated that values
within 0.02g/ml of y∗ = 0.55 are equally as good. With this information,
define the random variable Z such that Y ′ = Y ∗+Z, and place the uniform
distribution U(-0.02,0.02) on Z. Then, values of X∗ are found which can
produce response values Y ′ within the range [0.53,0.57]. More generally,
the random variable takes the distribution U(−ρZ , ρZ) for the purpose of
finding values of X∗ to produce values of the response within the desired
range [y∗ − ρZ , y∗ + ρZ ].

The final extension considered here is that of a multivariate response
model, which accomplishes the ultimate goal of the PhD of optimising the
explanatory variable(s) in order to produce desired values for multiple re-
sponse variables simultaneously. The benefit to fitting the backward model
with a multivariate response, as opposed to fitting multiple univariate back-
ward models for each response variable, is that the relationship between the
response variables is captured in the multivariate response model.

The backward model for the multivariate response is demonstrated here
with two response variables and two explanatory variables. That is, for some
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fixed vector of desired response values Y ∗ = y∗ = (Y ∗1 = y∗1, Y
∗

2 = y∗2), the
backward modelling process with bivariate response and two explanatory
variables then follows this algorithm (assuming the joint posterior distribu-
tion of θ has been estimated in the forward modelling):

1. Jointly sample S draws from the posterior distribution p(θ|Y1, Y2, X1, X2)
from the forward modelling posterior distribution.

2. Assume a prior distribution for X∗b = (X∗1,b, X
∗
2,b)—a uniform ‘disk’ or

‘box’ over an appropriate range, as described above.

3. For each b = 1, . . . , S, the backward model

(
Y ∗1
Y ∗2

)
=

(
β0,1,b β1,1,b β2,1,b

β0,2,b β1,2,b β2,2,b

) 1
X∗1,b
X∗2,b

+

(
ε∗1
ε∗2

)

is fitted, where ε∗ = (ε∗1, ε
∗
2)′ ∼ N2(0, Tε,b), and the values βb =

(β0,1,b, . . . , β2,2,b) and the matrix Tε,b are the joint bth random sam-
ple from S random samples the joint posterior distribution leading to
the posterior p(X∗b |Y ∗ = y∗,θb).

4. Take a small random sample from each posterior distribution p(X∗b |Y ∗ =
y∗,θb), and combine these samples to get a complete posterior distri-
bution p(X∗|Y ∗ = y∗,θ).

As in the case of a univariate desired response, the variable Z can be in-
troduced as a widening/enlargement of the target for the desired response.
In the bivariate response case, the variable Z becomes a bivariate random
variable, defined as Z = (Z1, Z2). The prior on Z is again uniform, and the
discussion of the uniform ‘disk’ and ‘box’ for the corresponding explanatory
variables X∗ carries over to Z in the same sense. For example, the powder
manufacturer may suggest that the the ideal powder flow specifications are
to have a tapped density (the first response variable) in the range of 0.53
and 0.57 g/ml and an angle of repose (the second response variable) in the
range of 21 and 24 degrees, suggesting a uniform prior for Z over the volume
space within the ellipse centred at (y∗1 = 0.55, y∗2 = 22.5) with semi-major
axis ρZ1 = 0.02 and semi-minor axis ρZ2 = 1.5.

The backward modelling methodology for the Gaussian process regres-
sion model is now considered below.
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3.6.7 Backward model methodology for GP regression

The backward model methodology for the GP more or less coincides with
the parametric regression, but, for the Gaussian process, the methodology
requires posterior samples of the true values Ỹ and X̃ from the forward
modelling, due to the reliance of ‘training’ data in order to predict the
response variable (in the forward modelling sense) for some ‘test’ data. The
backward model for the EIV GP is detailed here, with one input variable
and one response variable.

Suppose a Gaussian process has been fitted in a Bayesian setting in order
to estimate the functional relationship between some response variable and
some input variable, where both variables are represented by some true
values for groups i = 1, . . . , ng. The observed data are noisy observations
of these true values. As a reminder, the multivariate normal distribution
relating the variables is therefore

Ỹ ∼ Nng(m(X̃), V (X̃, X̃)), (3.6.7.1)

where m(X̃) = (m(X̃1), . . . ,m(X̃ng))
′ = α ∈ Rng is the mean vector, and

V (X̃, X̃) = K(X̃, X̃) +σ2
ε Ing is the ng×ng covariance matrix. The matrix

K(X̃, X̃) represents the covariance kernel matrix, where each element is an
assessment of some covariance kernel k, taking pairs of true values X̃i and
X̃i′ as inputs, for i, i′ = 1, . . . , ng. The covariance kernel of choice is the
squared exponential, defined here as

k(X̃i, X̃i′) = σ2
k exp

(
−(X̃i − X̃i′)

2

2l2

)
, (3.6.7.2)

with σ2
k representing some signal variance. In contrast, the parameter σ2

ε

represents some noise variance.
Fitting the EIV GP model to the true values, as well as estimating the

true values, leads to a posterior distribution for the parameter vector

θ = (Ỹ , X̃, σε, σk, l, α, τX̃ , τη, τδ). (3.6.7.3)

For simplicity, the notation for the hyperparameter vector is reintroduced,
given by

φ = (σε, σk, l, α), (3.6.7.4)

since the precision parameters are not required in the conditional distribu-
tion, i.e., the EIV GP posterior. Suppose further that some desired response
value Y ∗ = y∗ is suggested by an expert, and the aim is to optimise the input
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variable by choosing a value that is most likely to produce Y ∗ = y∗ given
the posterior distribution of θ|Y,X. The backward model for the EIV GP
with one input and one response then follows the following algorithm:

1. Jointly sample S draws from the joint posterior distribution for θ
defined in Equation 3.6.7.3, estimated in the forward modelling.

2. Assume a prior distribution for X∗b (the input variable corresponding
to the desired response variable Y ∗).

3. For each b = 1, . . . , S, consider the joint normal distribution(
Ỹb
Y ∗

)
∼ Nng+1

((
mb(X̃b)
mb(X

∗
b )

)
,

(
Vb(X̃b, X̃b) kb(X̃b, X

∗
b )

kb(X
∗
b , X̃b) vb(X

∗
b , X

∗
b )

))
.

Note that the subscript b for the mean vectors and block matrices in
the covariance matrix indicates that the function used to produce the
vector/matrix is informed by the joint bth posterior sample for the
parameters required in the function (also, the vectors of true values
Ỹb and X̃b are the joint bth posterior sample of the true values).

4. Derive the conditional distribution (i.e., the EIV GP posterior) of
Y ∗|Ỹb, X̃b,φb, X

∗
b from the above joint distribution by estimating the

quantities m∗b and v∗b (the mean and variance of the conditional distri-
bution), given by

m∗b = mb(X
∗
b ) + kb(X

∗
b , X̃b)Vb(X̃b, X̃b)

−1(Ỹb −mb(X̃b))

and

v∗b = vb(X
∗
b , X

∗
b )− kb(X∗b , X̃b)Vb(X̃b, X̃b)

−1kb(X̃b, X
∗
b ).

5. With the prior distribution of choice on X∗b , the prior is updated given
this conditional distribution and the forward model posterior samples
θb (using MCMC) to give the posterior p(X∗b |Y ∗ = y∗, Ỹb, X̃b,φb).

6. Take a small random sample from each posterior distribution X∗b |Y ∗ =
y∗, Ỹb, X̃b,φb and combine these samples to get a complete posterior
distribution X∗|Y ∗ = y∗, Ỹ , X̃,φ

The algorithm follows the same process as in the previous sections; the
difference here is that predictions of the response variable (in the forward
modelling sense) are carried out using the EIV GP posterior, whereas the
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response variable in the EIV BR models can be predicted directly using the
parametric relationship between the response and the input variables. That
is, in the backward modelling, the aim is to invert the process of predicting
the response variable, in order to learn about the behaviour of the input
variable(s) given the output variable(s).

Having covered the statistical methods that are implemented in this
work, the following chapter now considers applying these methods, to both
simulated data and real-world data. In the simulated data cases, the mod-
elling process is fine-tuned by considering standardisation of the observed
data, and by finding appropriate prior distributions to be able to recover
the underlying relationships on which simulations are based. With the real-
world data, the forward modelling process is fitted to the powder flow and
powder bed deposition case study, described in Section 2.2, to find the appro-
priate relationship between tapped density and angle of repose (the response
variables) and the powder properties from the powder rheometer (the input
variables).
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Chapter 4

Investigating powder flow

In this chapter, the forward modelling process is investigated in multiple
ways; this involves rigorous testing on simulated data as well as fitting mul-
tiple forward models to the real data. This chapter is split into two sections;
in the first section, the two methods are in a sense ‘developed’ by consider-
ing some simulated data, and in the second section, these developed models
are tested on the real data with the aim of demonstrating a legitimate and
careful approach to answering modelling questions. The development of the
method using the simulated data is investigated in two ways—ensuring the
model is finding the correct relationship defined in the simulation (recover-
ing parameter values as high-density values in the posterior distribution),
and ensuring the MCMC is performing effectively and efficiently by consid-
ering the mixing and convergence of multiple parallel chains. In order to
satisfy these two aspects, adjustments can be made to certain parts of the
modelling (such as prior distributions, MCMC tuning parameters, rescaling
the data; the scaling of the data in this work is discussed later).

The example scenario of the simulation needs consideration. The data
structure in the model should align with that of the real data for which
you want to prepare the model—in this work, since the observations are
measured with error, the simulated data will be noisy observations of ‘true’,
unobservable values. The magnitude of measurement error in the simulation,
the number of replicate measurements, and the number of groups, are all
aspects of the modelling which can be altered in the simulation in order to
see the effect these have on the effectiveness of the modelling, and so are not
necessarily identical to those aspects in the real data. In the case of the real
data, there are seven groups (materials), and three replicate measurements
on each group (for each variable apart from the response variable angle of

107
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repose, which has five replicate measurements). It is easy to imagine that an
investigation into another aspect of additive manufacturing with the same
data structure as here (measurement error with replicate observations) could
lead to different magnitudes of measurement error, which could have an
impact on the modelling. It is clear that the more groups in the modelling,
the easier it would be to recover the relationship between the variables in
the model (supposing the chosen linear predictor was justified). In essence,
the data structure of the simulations aligns with the structure observed in
the real data, but other aspects of the modelling have some alterations, in
some cases to confirm the modelling is working as intended, and in other
cases to test the capabilities of the model.

It should be reiterated that the aim of using simulated data is to ensure
the model is performing as intended, as opposed to finding out, for example,
the ideal number of replicate observations or ideal number of groups in
order for the model to perform to a certain level. It is not the aim of
the simulations to duplicate the specific example of real data (that will be
considered here) precisely, as it is very unlikely that any future data sets
would align exactly (in terms of magnitude of measurement error, number
of replicate measurements, and so on) with the data set considered here.
Setting up the modelling so that it performs best for this data set would not
correspond to setting up the modelling to deal with a variety of possible data
sets. The aim of the simulations is also not to investigate ideal values for the
number of groups and number of replicate observations on the groups for
the purpose of designing an experiment, although in some cases, it becomes
clear that the number of materials may need to be increased in order to
capture more complicated linear predictors.

As previously discussed in Section 3.1, the modelling in this work is con-
sidered in a Bayesian setting, requiring prior and hyperprior distributions
to be placed on the model parameters of interest. These distributions can
be designed to incorporate any level of information that might be available
for that parameter prior to considering any data. In the case of uninforma-
tive prior distributions, a very small amount of information is put into the
prior distribution, so that the posterior distribution for the parameters is
largely dictated by the data at hand. On the other end of the spectrum, in-
formed prior distributions could be used, which contain a significant amount
of information about the parameter (often obtained from an expert) before
considering any data. In this chapter, models with uninformative priors and
models with informed priors are both fitted to simulated data, to demon-
strate the potential different outcomes of these two possible extents of prior
information. Once the real data is considered, the models are fitted using



4.1. SCALING THE OBSERVED DATA 109

informed priors, to demonstrate the process of obtaining expert information
and a possible way to build informed priors using that expert information.

Due to the complexity of the errors-in-variables problem and consider-
ation of Bayesian methods, model-fitting code is not readily available. For
this reason, bespoke code to fit these models has been written by the author.
Some examples of the models (written in JAGS) are provided in Appendix
F.

Before working through the simulated data examples, the scaling of the
observations is discussed briefly.

4.1 Scaling the observed data

A very common practice in statistical modelling is to scale the data before
fitting any model. The reasons for this are:

1. to make the model accessible to any data set,

2. to make collaboration easier,

3. to ensure numerical instability in parameter estimates is minimised
(particularly in a Bayesian setting while taking into account uncer-
tainty), which can occur if the data for different variables are suffi-
ciently different in magnitude.

Before carrying out the scaling of the data, there were some issues with
numerical instability in this work, which prompted the need to consider
data scaling. To illustrate the issues: tapped density measurements were
initially measured in kg/m3, with observed values measured roughly around
500kg/m3. On the other hand, conditioned bulk density measurements are
recorded in g/ml, with observed values measured roughly around 0.45g/ml.
The scale of these values are very different, but these variables both measure
a form of density, and with the same scaling produce very similar values. If
the tapped density values are then converted to g/ml, its observed values
measure roughly around 0.5g/ml, which compares much better in terms of
scale with conditioned bulk density. The observed measurements of the
variable tapped consolidation vary roughly from 250mJ to 1000mJ, so this
magnitude is much larger than for conditioned bulk density and now tapped
density.

Consequently, the data here has been standardised by scaling onto the
range [0,1] (in some cases of simulated data, some response variable values
are negative, in which case the data are scaled onto the range [-1,1]). This
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has been carried out by dividing the data by an appropriate power of 10. The
reason for this is to avoid using the data itself ‘for normalisation’. That is,
the common practice of subtracting the mean and dividing by the standard
deviation is not followed here, as this can lead to ambiguity as to how to
proceed with new data (should a rescaling take place to take into account
the new data, or shoud the original scaling be applied to the new data).

This scaling onto the range [0,1] allows for suitable adjustments to be
made to ‘conventional’ uninformative prior distributions, and in turn, pro-
vides the suitable modelling environment for multiple situations. These
adjustments are exemplified by the EIV Gaussian process regression mod-
elling, for which estimation of hyperparameters is tricky, and attention is
required for finding appropriate hyperprior distributions.

4.2 Errors-in-variables Bayesian regression on sim-
ulated data

Firstly, the errors-in-variables Bayesian regression (EIV BR) models are de-
veloped by considering some simulated data (SD). Fitting the model to sim-
ulated data where the relationship between the variables is known helps to
confirm that the model can correctly estimate the relationship between vari-
ables. Moreover, any structural adjustments to the model-fitting process,
whether it be reparameterising or changing the parameters of prior distribu-
tions, can be trialled in this simulation setting, where the underlying truth
is known.

Particularly for the Bayesian regression modelling, compared with the
Gaussian process modelling, the forward modelling process is more long-
winded, as candidate Bayesian regression models can be fitted to the same
data, each differing with their assumed predetermined relationship. For this
reason, multiple simulated-data cases are considered, each with differing
relationships to be estimated.

For all cases, the data structure in the simulation represents the general
data structure as in the real data, with replicate measurements on multiple
groups, assumed to be noisy observations of some ‘true’, unobservable value.

4.2.1 Simple linear model

In this first case, some data is simulated for the purpose of fitting a simple
linear model with measurement error. Taken from Sections 3.2.3 and 3.3, a
reminder of the simple linear EIV BR model follows. This model is defined
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by

Ỹi = β0 + β1X̃i + εi, (4.2.1.1)

where the value Ỹi represents the ‘true’, unobservable value of the response
variable for material i (where i = 1, . . . , ng), the value X̃i represents the
‘true’, unobservable value of the response variable for material i, and the
value εi represents some random error. That is, it is assumed that a straight
line represents the relationship between the response and explanatory vari-
ables, and this relationship is estimated using ‘true’, unobservable values,
because of the measurement error on the observed data. The observed data
are of the form

Yi,j = Ỹi + ηi,j (4.2.1.2)

and

Xi,k = X̃i + δi,k (4.2.1.3)

for the response variable and explanatory variable respectively, where the
subscript j denotes the jth replicate measurement of the response variable
for material i, and similarly the subscript k denotes the kth replicate mea-
surement of the response variable for material i. The terms ηi,j and δi,k
also represent random error terms, capturing the within-materials variabil-
ity (due to both measurement error and variation due to sampling). Using
the mean and precision to define the normal distribution, these random error
terms in the model take the distributions

εi ∼ N(0, τε),

ηi,j ∼ N(0, τη),

and

δi,k ∼ N(0, τδ).

The true values for the explanatory variable assume the normal distribution

X̃i ∼ N(µX , τX̃),

where the precision parameter τX̃ is defined to be the between-materials
precision. Note that, without prior information, it is assumed that µX is
fixed at 0.5, which is the midpoint of range onto which the data is scaled.
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The specification of the prior and hyperprior distributions is

β0 ∼ N(0, τβ0),

β1 ∼ N(0, τβ1),

X̃i ∼ N(µX , τX̃),

τε ∼ Gamma(aε, bε),

τη ∼ Gamma(aη, bη),

τδ ∼ Gamma(aδ, bδ),

τX̃ ∼ Gamma(aX̃ , bX̃),

τβ0 ∼ Gamma(aβ0 , bβ0),

τβ1 ∼ Gamma(aβ1 , bβ1).

(4.2.1.4)

The gamma distributions above are parameterised by shape and rate. In
the case of uninformative priors distributions, a gamma distribution on a
precision parameter (assuming the likelihood of the data is normally dis-
tributed) takes values of 0.001 for both the shape and the rate. Informed
gamma prior distributions are discussed further when considering the real
data.

The simulated data is discussed now. The number of groups chosen for
the simulation is 13, with the reason being this is appreciably more than
for the real data (seven materials), meaning the estimate of the model pa-
rameters are likely to be better with the simulated data. This provides the
model with more information, with the idea being to check the feasibility of
the modelling approach (structure, appropriate priors)—if successful, this
allows for a reduction in the number of materials to a level which repre-
sents the real-life problem. The true values for the explanatory variable,
X̃i, are chosen. The specific values are not of importance, but need to be
chosen and recorded so that the estimate of the true values in the model
can be checked. These are arbitrarily taken to be X̃i = i for i = 1, . . . , 13.
The replicate observations Xi,k for each true value X̃i are simulated from a
normal distribution centred at X̃i with a precision value of 100 (a standard
deviation of 0.1). The number of replicate observations is seven (for both
the explanatory variable and the response variable), again with the idea that
it would provides the model with a sufficiently large amount of information
in order to estimate measurement error and the respective true values. The
values of the intercept β0 and slope β1 in the linear model are also noted to
be 3 and 5 respectively. The true values for the response variable, Ỹi, are
then produced using the simple linear relationship

Ỹi = 3 + 5X̃i + εi,
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where the precision of the model error εi, τε, is set equal to 4. Following
this, the observed data for the response variable, Yi,j , are simulated from a
normal distribution with mean Ỹi and precision 100.

The observed data for the two variables are then scaled onto the range
[0,1], so the data for both variables is divided by 100. The simple linear
errors-in-variables model is then fitted, with the observed data above up-
dating the prior distributions defined in Equation 4.2.1.4, given also the
relationships defined in Equations 4.2.1.1, 4.2.1.2 and 4.2.1.3. If not oth-
erwise specified, the sampler is run with four parallel chains, each with an
adaptation phase of length 1000, a burn-in of length 25000, then 20000 sam-
ples are stored having taken every 10th sample from 200000. Any required
changes to the MCMC tuning parameters will be noted when appropriate.

Based on the stored samples from the MCMC output, the potential scale
reduction factor is calculated for each random variable for the purpose of as-
sessing the convergence of the MCMC output (from now on, ‘potential scale
reduction factor’ is abbreviated to ‘PSRF’). As discussed in Section 3.1.4,
any estimated value larger than 1.1 is considered to be too large, in which
case the MCMC output has not converged to the posterior distribution.
The value in each case (for each variable as well as the multivariate value)
is 1.00 (to 2 decimal places), suggesting the MCMC algorithm has achieved
convergence to the posterior distribution. Furthermore, the effective sample
size for each variable is calculated, which helps determine whether there is
a high level of autocorrelation between posterior samples. With reference
again back to Section 3.1.4, the accepted minimum estimate for effective
sample size is 5m (also assuming convergence), where m is twice the num-
ber of parallel chains. In this case with four parallel chains, the accepted
minimum effective sample size estimate is 40 (after summing the effective
sample sizes from each chain). From the four parallel chains, the smallest
calculated value of effective sample size is 13460, which is a clear indication
that there are no issues with autocorrelation with the posterior samples. For
simulations in subsequent sections, the MCMC summary statistics relating
to convergence and mixing are discussed more briefly in cases where both
convergence and sufficient mixing are found.

The posterior distributions can now be checked. Firstly, the true values
of the explanatory variable X̃i and of the response variable Ỹi are checked,
compared with their observed data, and show the true values are appropri-
ate. These plots can be found in Appendix D.1.

The following plot in Figure 4.1 shows the posterior densities for the

measurement error standard deviation terms σδ =
√

1
τδ

(left) and ση =
√

1
τη



114 CHAPTER 4. INVESTIGATING POWDER FLOW

(right), where each posterior sample of the precisions τδ and τη has been con-
verted into a standard deviation value (for ease of understanding). These
plots demonstrate that the model has captured slightly larger levels of mea-
surement error than was used in the simulation, with the standard deviation
for the measurement error after scaling being 0.001. Evidently from Figure
4.1, the estimated values of posterior standard deviation measurement error
are still small, which is appropriate.
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Figure 4.1: Posterior densities for σδ (left) and ση (right) having rearranged
each posterior sample of τδ and τη into standard deviation values. The
‘chosen’ values of each parameter are 0.001, which is just outside the plotted
range in both cases.

The posterior density of σX̃ =
√

1
τX̃

, the between-groups standard de-

viation, is plotted in Figure 4.2, again with the posterior samples of τX̃
converted into standard deviations. The plot indicates that the between-
materials standard deviation is considerably larger than the measurement
error standard deviation (comparing with the top plot of Figure 4.1), which
is to be expected, for two reasons. Firstly, the chosen value of the mea-
surement error standard deviation (after scaling) is much smaller than any
rough estimate of the between-materials precision. Secondly, given that µX
is fixed at 0.5, and the model has to recover the true value of X̃1 (which
takes the chosen value of 0.01 after scaling), the posterior density for σX̃
would logically have a rough lower bound of around 0.25, using the 2σ rule.
This looks to be the case.

The final posterior densities to be investigated visually are those of the
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Figure 4.2: Posterior density for σX̃ , having rearranged each posterior sam-
ple of τX̃ into a standard deviation value.

slope and intercept of the model, β0 and β1 respectively. Their posterior
densities are displayed in Figure 4.3, along with their ‘chosen’ values for
the simulation. It is clear that the model is estimating the relationship
effectively, with the ‘chosen’ values (after scaling) for β0 and β1 being high-
density values in their respective posterior densities.

Having inspected the posterior densities for the parameters of interest,
the fitted values of the model can also be inspected. As discussed in Sec-
tion 3.4.2, there are several fitted value plots to be considered, comparing
the posterior distribution of Ỹi with the observed data Yi,j , comparing the
posterior distribution of X̃i with the observed data Xi,k, and comparing the
distribution of the fitted values

Ŷi,s = β0,s + β1,sX̃i,s

with the posterior distribution of Ỹi. Also of interest is a plot of the fitted
line produced by the model, which is given in terms of a prediction interval
(along with confidence ellipses for the joint marginal posterior distribution
of Ỹi and X̃i). These plots are given in Figure 4.4.

Note that, on the axis labels, the notations of Ỹ and X̃ are represented
by Yt and Xt respectively. The model is confident in the estimation of
the true values given the credible intervals for each true value (top-left plot
of Figure 4.4). The intervals being effectively centred on the line Ỹ = Y
along with the narrow credible intervals implies the true values have been
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Figure 4.3: Posterior densities for β0 (left) and β1 (right), along with the
‘chosen’ values for each parameter from the simulation.

recovered well in the model.

In contrast to the true values on the response variable, whose credible
intervals are almost not visible in the plot, the credible intervals are slightly
more visible on the true values of the explanatory variable, again due to the
ranges on the axes, which are in this case relatively smaller. The top-right
plot in Figure 4.4 clearly indicates the true values for the explanatory vari-
able have been recovered well in the model, with the 95% credible intervals
centred on the line X̃ = X.

Finally, it is unsurprising that the model has estimated the straight line
relationship very well, as demonstrated in the bottom-left plot of Figure
4.4. Recall from Section 3.4.2 that the observed data is omitted from this
plot, since the observed measurement Yi,j does not have a one-to-one cor-
respondence with the observed measurement Xi,k. The fitted values of the
response variable given in the bottom-right plot of Figure 4.4 clearly show
that the model has effectively predicted the response variable at each true
value of the explanatory variable.

Following the checks of the MCMC output (with respect to convergence
and mixing), plots of the marginal posterior densities of parameters of inter-
est, plots of fitted values, and a plot of the fitted model, it is clear that the
modelling is working effectively. The true values from the simulation, and
the relationship between the response variable and the explanatory variable,
have been recovered from the underlying simulation.



4.2. EIV BR ON SD 117

0.1 0.2 0.3 0.4 0.5 0.6 0.7

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

Y

Y~

Group 1
Group 2
Group 3
Group 4
Group 5
Group 6
Group 7
Group 8
Group 9
Group 10
Group 11
Group 12
Group 13

0.00 0.02 0.04 0.06 0.08 0.10 0.12 0.14

0.
00

0.
02

0.
04

0.
06

0.
08

0.
10

0.
12

0.
14

X

X~

Group 1
Group 2
Group 3
Group 4
Group 5
Group 6
Group 7
Group 8
Group 9
Group 10
Group 11
Group 12
Group 13

0.00 0.02 0.04 0.06 0.08 0.10 0.12 0.14

0.
0

0.
2

0.
4

0.
6

X
~

Y~

Group 1
Group 2
Group 3
Group 4
Group 5
Group 6
Group 7
Group 8
Group 9
Group 10
Group 11
Group 12
Group 13

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

Y
~

Ŷ
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Figure 4.4: Four plots considering the various ‘fitted values’ plots to be con-
sidered in the EIV BR. The top-left plot compares the posterior distribution
of each Ỹi with the observed data Yi,j ; the top-right plot compares the pos-
terior distribution of each X̃i with the observed data Xi,k; the bottom-left
plot provides the fitted model; the bottom-right plot compares the posterior
distribution of the fitted values Ŷi with the true values Ỹi.
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4.2.2 Cubic model

Having considered the most simple one-covariate model, a brief investigation
of some data simulated from a cubic model is considered, to demonstrate
that the modelling can cope with this additional complexity. Moreover, the
cubic model provides further complexities in the backward modelling sce-
nario, which is considered in Section 5.1.2. Again, the aim of the simulation
is to show that, if some response variable and explanatory variable from real
data were to have a cubic relationship, then this modelling would be able
to recover the relationship effectively. For the errors-in-variables case, the
cubic model is therefore given by

Ỹi = β0 + β1X̃i + β11X̃
2
i + β111X̃

3
i + εi.

Once more, the same ‘chosen’ true values and observed data for the
explanatory variable are used for this simulation. The chosen values of
β0, β1, β11 and β111 are given by 30, 10, 20 and -1.5 respectively; these are
selected carefully to ensure that the simulated data for the response variable
are not negative, and after scaling cover a large range of [0,1]. The ‘chosen’
true values of the response variable are then simulated using the equation

Ỹi = 30 + 10X̃i + 20X̃2
i − 1.5X̃3

i + εi,

with the chosen true values inputted for X̃i, and εi taking a normal distri-
bution with mean 0 and precision 4. The observed data for the response
variable, Yi,j are simulated from a normal distribution with mean Ỹi and
precision 1.

The cubic model is then fitted using the simulated observed data for Yi,j
and Xi,k as described above. The convergence to the posterior distribution
and sufficient levels of mixing are both confirmed using PSRF and effective
sample size estimates respectively.

For brevity, the plots regarding estimates of any aspect of the cubic
model are restricted to the posterior densities of β0, β1, β11 and β111 (which
are found in Figure 4.5), and the fitted values comparisons given in Figure
4.6, where the top-left plot compares the posterior X̃i with the respective ob-
served data, the top-right plot compares the posterior Ỹi with the respective
observed data, the bottom-left plot provides the fitted cubic model and the
bottom-right plot shows the posterior fitted values Ŷi against the posterior
true values Ỹi.

Once more, the posterior densities for the model coefficients (see Figure
4.5) seem generally quite appropriate. It seems clear that the ‘chosen’ values
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Figure 4.5: Posterior densities for β0 (top left), β1 (top right), β11 (bottom
left) and β111 (bottom right) from the cubic model fitted to simulated data,
along with the ‘chosen’ values (after scaling) for each parameter from the
simulation.

for these parameters in the simulation (vertical red lines in the plot) are
high-density points in posterior densities for β0 and β111. The chosen value
for β11 looks to be about half the density of the posterior mode for the
parameter. Finally, the posterior density for β1 seems to be centred at 0,
and the corresponding chosen value for this parameter is a low-density value
in the posterior. As these models become more complex, i.e., there are more
parameters to be estimated, it is unsurprising that the chosen values used
to build the simulation are not the highest density values in the posterior.
Moreover, as more terms are included in the linear predictor, more possible
‘solutions’ can be found for estimating the relationship between the response
variable and the explanatory variable.

The comparison between the marginal posteriors of the true values on
the response variable and the corresponding observed data (see top-left plot
of Figure 4.6) clearly shows that the Ỹi have been estimated well in the
model, and the same can be said for the estimates of X̃i (top-right plot of
Figure 4.6). The plot of the fitted model with its corresponding uncertainty,
given in the bottom-left plot of Figure 4.6, clearly shows that the model has
estimated the relationship effectively, despite chosen true values not being
recovered as posterior modes for each model coefficient. The fitted values
of Ŷi are considered in the bottom-right plot of Figure 4.6, where their
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Figure 4.6: Four plots comparing the ‘fitted’ values of the model: the top-
left plot compares the posterior Ỹi with the respective observed data, the
top-right plot compares the posterior X̃i with the respective observed data,
the bottom-left plot provides the fitted cubic model and the bottom-right
plot shows the posterior fitted values Ŷi against the posterior true values Ỹi.
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joint distributions with their corresponding posterior distributions of Ỹi are
plotted. With these distributions centred on the line Ŷ = Ỹ , this shows the
model has been fitted well, since the true values of the response variable also
correspond well with their respective observed data. It is clear that there
is slightly more uncertainty in the fitted values compared to what has been
seen in previous simulations, which is justified by the increase of complexity
of the model.
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Figure 4.7: A plot of two ‘fitted’ models produced by errors-in-variables
Bayesian regression, with the black lines corresponding to the simple linear
model, and red lines corresponding to the cubic model. Also displayed are
joint 95% credible ellipses for the true values of each group (taken from the
simple linear model), as well as a 95% prediction intervals for the fitted lines
produced by the two models.

An opportunity is presented here to demonstrate the use of LOO-CV-IC,
explained in Section 3.4.2, for model comparison. Using the same simulated
data to which the cubic model has been fitted, a simple linear model is fitted.
The fits of these two models to the cubic simulation data can be found in
Figure 4.7. It is clear that the visual comparison between the model fits
shows the cubic model provides a much better model fit in terms of the
quality of the predictions of the response variable than the simple linear
model, which is to be expected. To confirm this with PSIS-LOO-CV-IC, we
find a mean estimate of -66.7 for the cubic model, with a standard error of
1.5, whereas the mean estimate for the simple linear model is given by -1.7,
with a standard error of 7.1. This is clear evidence that the cubic model
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is a more appropriate fit, since the mean estimate of PSIS-LOO-CV-IC is
smaller for the cubic model.

4.2.3 Two explanatory variables, correlated measurement er-
ror

This section concerns fitting models to simulated data for one response vari-
able and two explanatory variables. Specifically, the model fits in this sec-
tion assume correlation between the measurement error terms for the two
explanatory variables; more details on this are given below. Model fits to
simulated data where there are no assumptions of correlation between mea-
surement error terms on the explanatory variable are considered in Section
4.2.4. The case of correlated measurement error on the explanatory variable
is discussed first since it is prevalent in the real data considered later in the
chapter. The errors-in-variables Bayesian regression with two explanatory
variables is defined as

Ỹi = β0 + β1X̃1,i + β2X̃2,i + εi, (4.2.3.1)

where the value X̃1,i represents the ‘true’, unobservable value of the first
explanatory variable for material i, and X̃2,i represents the true, unobserv-
able value of the second explanatory variable for material i. Therefore,
this model assumes there is some additive relationship between the two ex-
planatory variables and the response variable, with neither polynomial nor
interaction terms included in the linear predictor. Extensions of this model
with interaction and polynomial terms are considered with simulated data
in Section 4.2.5.

The correlated measurement error is now discussed (see Section 3.3.1 for
further detail). The values X1,i,k1 and X2,i,k2 represent the observed data for
the first and second explanatory variables respectively. In this setting with
two explanatory variables, there are two possibilities—either the observed
data X1,i,k1 and X2,i,k2 have been measured under identical circumstances
(in the real data in this work, this corresponds to the replicates k1 and k2

being the same subsample of powder, for k1 = k2), or, the observed data
have not been measured under identical circumstances. For the real data
in this work, both of these outcomes are possible, and so both models are
‘tested’ using simulated data.

The true values for the two explanatory variables take the normal dis-
tribution (

X̃1,i

X̃2,i

)
∼ N2

((
µX1

µX2

)
, TX̃

)
,
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where the matrix TX̃ represents the precision matrix of the distribution.
Given that it will always be plausible that the explanatory variables could
have some dependence on each other, this is factor into the modelling by
assuming this joint distribution. Moreover, a Wishart prior distribution is
assumed for the precision matrix TX̃ , with degrees of freedom 2. The scale
matrix is discussed in conjunction with the scale matrix on the measurement
error precision Tδ following the adjustments to the prior specification. The
observed data are of the form(

X1,i,k1

X2,i,k2

)
=

(
X̃1,i

X̃2,i

)
+

(
δ1,i,k1

δ2,i,k2

)
,

with the assumption of correlated measurement error leading to the joint
distribution (

δ1,i,k1

δ2,i,k2

)
∼ N2

((
0
0

)
, Tδ

)
,

where Tδ represents the precision matrix for the measurement error vector.
The simulated data is now discussed. The first explanatory variable takes

the same ‘chosen’ true values as the sole explanatory variable considered in
Sections 4.2.1 to 4.2.2. The second explanatory variable takes the ‘chosen’
true values

X̃ = (X̃1, . . . , X̃13) = (1, 3, 4, 5, 7, 8, 7, 4, 3, 2, 5, 6, 9).

These true values guarantee a different scaling of the second explanatory
variable to the first (simply for demonstration purposes), and guarantee
that the explanatory variables are not a linear combination of one another.
The observed data for the explanatory variables are simulated with nonzero
correlation, in line with the model being investigated. Therefore, the obser-
vations X1,i,k1 and X2,i,k2 are simulated from a bivariate normal distribution
with mean (X̃1,i, X̃2,i)

′ and covariance matrix(
0.01 0.006
0.006 0.01

)
,

meaning the marginal standard deviations are 0.1 (taking the square root of
the variances on the diagonal), and the correlation between the observations
X1,i,k1 and X2,i,k2 given k1 = k2 is 0.6 (the off-diagonal element of the 2× 2
covariance matrix is the product of the marginal standard deviations and
the correlation parameter). The true values for the response variable are
simulated from the relationship

Ỹi = 3 + 8X̃1,i − 5X̃2,i + εi, (4.2.3.2)
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with the model error εi having mean 0 and precision 4 (a standard deviation
0.5). That is, the ‘chosen’ values for the model coefficients in the simulation
are β0 = 3, β1 = 8 and β2 = −5. The observed data for the response
variable Yi,j , are then simulated from the normal distribution with mean
Ỹi and precision 1. The observed data for the response variable and the
explanatory variables are then scaled onto the range [0,1], by dividing the
response variable observations by 100, the first explanatory variable by 100,
and the second explanatory variable by 10.

The specification of the prior and hyperprior distributions for this model
(two explanatory variables, with jointly-simulated observations of the two
explanatory variables) is an extension of that specified in Equation 4.2.1.4,
with the inclusions of β2 ∼ N(0, τβ2) and τβ2 ∼ Gamma(aβ2 , bβ2), and the re-
placements of X̃i ∼ N(µX , τX̃), τδ ∼ Gamma(aδ, bδ) and τX̃ ∼ Gamma(aX̃ , bX̃)

with X̃i ∼ N2(µX , TX̃), Tδ ∼ Wishart(Sδ, νδ) and TX̃ ∼ Wishart(SX̃ , νX̃)

respectively. Note that X̃i = (X̃1,i, X̃2,i)
′, µX = (µX1 , µX2)′, and the pa-

rameters of the Wishart distribution are the scale matrix, followed by the
degrees of freedom.

Suitable scale matrices Sδ and SX̃ are required. Given the Wishart
distribution is a multivariate equivalent to the gamma distribution, a pos-
sible attempt to satisfy this requirement is to try to replicate some stan-
dard properties of the gamma distributions used for the priors of τδ and
τX̃ in the model with one explanatory variable. The gamma distribution
with shape 0.001 and rate 0.001 has mean 1 and variance 1000. Suppose
∇ ∼Wishart(∇0, ν). The mean and variance of the diagonal elements ∇i,i
are given by E(∇i,i) = ν∇0i,i and Var(∇i,i) = ν

(
∇2

0i,i
+ 2∇0i,i

)
. Setting

the expectation equal to 1 then gives ∇0i,i = 1
ν , and substituting this into

the variance while setting that to 1000 gives

ν

(
1

ν2
+ 2

1

ν

)
= 1000 =⇒ 1

ν
+ 2 = 1000 =⇒ ν =

1

998
,

which is not possible, since ν ≥ 2. In the literature, Gelman et al. (2013)
states that a noninformative distribution is obtained as ν → 0, so the best
option is to set the degrees of freedom to be 2. In this case, clearly both
requirements cannot be satisfied; satisfying the requirement of the mean
being 1 suggests ∇0i,i = 1

2 , and satisfying the requirement of the variance
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being 1000 suggests

1000 = 2
(
∇2

0i,i + 2∇0i,i

)
= 2

(
(∇0i,i + 1)2 − 1

)
=⇒ 500 = (∇0i,i + 1)2 − 1

=⇒
√

501− 1 = ∇0i,i =⇒ ∇0i,i = 21.38 (to 2 d.p.).
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Figure 4.8: Posterior densities of the standard deviation and correlation
parameters corresponding to the precision matrix of the measurement error
of the two explanatory variables Tδ (the left plot is the standard deviation on
the measurement error for the first explanatory variable, the middle plot is
the standard deviation on the measurement error for the second explanatory
variable, and the right plot is the correlation between the measurement error
on both explanatory variables). This corresponds to the model with I2 as
the scale matrices for the Wishart priors on TX̃ and Tδ.

A preferred approach is to carry out a sensitivity analysis with different
scale matrices for Sδ and SX̃ and see how this affects the posterior distri-
bution estimated in the model. Following Gelman et al. (2013), the degrees
of freedom parameter for both Wishart distributions is set to 2. The first
attempt at fitting the model is under the assumption that Sδ = SX̃ = I2,
where the off-diagonal element for the prior is assumed to be 0, which is the
most logical value given no further evidence (a priori) for a nonzero value.

The model is fitted using the same MCMC tuning parameters discussed
in Section 4.2.1. Firstly, in order to achieve convergence to the posterior
distribution according to PSRF, 40000 posterior samples were stored from
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the MCMC (with the same burn-in and thinning parameters as previously
stated). In this case, the posterior samples mix sufficiently well, and so the
posterior distribution is now investigated.
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Figure 4.9: Posterior densities for β0 (left), β1 (middle) and β2 (right) from
the model with two explanatory variables fitted to simulated data, along
with the ‘chosen’ values (after scaling) for each parameter from the simula-
tion. This corresponds to the model with I2 as the scale matrices for the
Wishart priors on TX̃ and Tδ.

The posterior densities of the random error parameters are firstly consid-
ered. Some manipulation of the posterior samples for the precision matrix
Tδ for the measurement error of the two explanatory variables in this sim-
ulation is helpful, in order to provide a more simple comparison between
the ‘chosen’ values for these parameters in the simulation. As noted ear-
lier, the observed data for the explanatory variables were simulated with
marginal standard deviations of 0.1 and correlation 0.6. After scaling the
data, the marginal standard deviation for the first explanatory variables be-
comes 0.001 (since the data are divided by 100); for the second explanatory
variable this becomes 0.01 (since the data are divided by 10). The correlation
remains unchanged since it is invariant under any linear transformation. In
order to recover the standard deviations and correlation from the precision
matrix, each matrix posterior sample, say Tδ,s for s = 1, . . . , S (with S being
a large number of joint posterior samples) is inverted to give the respective
covariance matrix, with the diagonal elements giving the measurement error
variance for each explanatory variable, and the off-diagonal element giving
the product of the standard deviations for each explanatory variable and
the correlation. Note that the diagonal elements of the precision matrix are



4.2. EIV BR ON SD 127

0.0 0.2 0.4 0.6

0.
0

0.
2

0.
4

0.
6

Y

Y~

Group 1
Group 2
Group 3
Group 4
Group 5
Group 6
Group 7
Group 8
Group 9
Group 10
Group 11
Group 12
Group 13

−0.05 0.00 0.05 0.10 0.15 0.20

−
0.

05
0.

00
0.

05
0.

10
0.

15
0.

20

X1

X~
1 Group 1

Group 2
Group 3
Group 4
Group 5
Group 6
Group 7
Group 8
Group 9
Group 10
Group 11
Group 12
Group 13

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

X2

X~
2 Group 1

Group 2
Group 3
Group 4
Group 5
Group 6
Group 7
Group 8
Group 9
Group 10
Group 11
Group 12
Group 13

0.0 0.2 0.4 0.6 0.8

0.
0

0.
2

0.
4

0.
6

0.
8

Y
~
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Figure 4.10: Four plots of the fitted values of the two-covariate model with
correlated measurement error and SX̃ = Sδ = I2. The top-left plot compares

the posterior densities of Ỹi with the corresponding observed data Yi,j for
each material i; the top-right plot compares the posterior densities of X̃1,i

with its respective observations X1,i,k1 for each i; the bottom-left plot com-
pares the posterior densities of X̃2,i with its respective observations X2,i,k2

for each i; the bottom-right plots compares the posterior fitted values Ŷi
with the posterior true values Ỹi for each i.
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not the corresponding marginal precisions for each explanatory variable, so
taking the reciprocal of these values does not correspond to a variance term.

Following the manipulation of the posterior precision matrix samples to
be able to extract the marginal standard deviations and correlation, the
density of these samples of these terms are plotted in Figure 4.8. For each
plot, the ‘chosen’ value for the simulation for each of these parameters is
not able to be plotted as it does not lie within the range of the posterior
samples. The model believes there is most likely to be very little correlation
between the measurement errors (the density in the right plot is centred at
0) albeit with a fair amount of uncertainty, and the model has overestimated
the measurement error for both explanatory variables, by a factor of 100 for
the first explanatory variable and a factor of 10 for the second.

The posterior densities for the model coefficients β0, β1 and β2 are now
considered in Figure 4.9. This clearly shows there is an issue in the model,
with only the intercept term having its chosen value as a high-density value
in the posterior distribution.
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Figure 4.11: Posterior densities of the standard deviation and correlation
parameters corresponding to the precision matrix TX̃ (the left plot is the
standard deviation on the for the first explanatory variable, the middle
plot is the standard deviation on the second explanatory variable, and the
right plot is the correlation between the two explanatory variables). This
corresponds to the model with I2 as the scale matrices for the Wishart priors
on TX̃ and Tδ.

Further inspection of the fitted values plots is required, given in Figure
4.10. The top-left plot compares the posterior densities of Ỹi with the corre-
sponding observed data Yi,j for each material i; the top-right plot compares
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the posterior densities of X̃1,i with its respective observations X1,i,k1 for
each i; the bottom-left plot compares the posterior densities of X̃2,i with its
respective observations X2,i,k2 for each i; the bottom-right plots compares

the posterior fitted values Ŷi with the posterior true values Ỹi for each i.

Value Sδ = I2 Sδ = 10I2 Sδ = 100I2 Sδ = 1000I2

β0 0.03 [−0.133, 0.247] [−0.098, 0.150] [−0.029, 0.083] [−0.004, 0.060]

β1 8 [3.046, 6.523] [5.840, 8.795] [7.240, 8.589] [7.600, 8.336]

β2 −0.5 [−0.487, 0.174] [−0.656, −0.124] [−0.595, −0.376] [−0.557, −0.437]

σδ1 0.001 [0.095, 0.128] [0.030, 0.040] [0.010, 0.013] [0.003, 0.004]

σδ2 0.01 [0.098, 0.134] [0.032, 0.044] [0.013, 0.018] [0.009, 0.012]

σε 0.005 [0.023, 0.197] [0.019, 0.095] [0.015, 0.047] [0.012, 0.032]

Table 4.1: Centred 95% credible intervals for parameters of interest in the
two-explanatory-variable model, given four model fits with different scale
matrices Sδ on the measurement error precision matrix prior. The table
demonstrates the improvement in the estimates of these parameters as the
scale matrix Sδ is increased, with respect to the accuracy of the estimate
and how much variability there is in the estimate.

An issue with the model becomes evident when considering the compari-
son between the posterior true values for the explanatory variables and their
respective observed data, with the issue stemming from the first explanatory
variable (top-right plot of Figure 4.10). For all true values, it is clear that
the marginal posteriors of X̃1,i are not centred at the observed data, and the
uncertainty in these marginal posteriors is large—the range of the chosen
true values is from 0.01 to 0.13 (after scaling), and the 95% credible inter-
vals for each marginal posterior are roughly spread by 0.09, which makes
up 75% of the spread of the true values. Given how well the model is able
to estimate the true values for the second explanatory variable (bottom-left
plot of Figure 4.10, where the true values are centred at the observations,
with a more suitable 95% credible interval for the posteriors of X̃2,i than
in the case just described), it seems clear that the similar estimates for the
marginal standard deviations on the measurement error (see the left and
middle plots in Figure 4.8) are too similar. The comparison between the
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fitted values Ŷi and Ỹi in the bottom-right plot of Figure 4.10 adds further
clarity to the model issues; for each i, the variability in the fitted values is
quite appreciable, particularly relative to the spread of the of the posterior
for each true value. In some cases, such as i = 9 (Group 9 on the plot), the
vertical diameter of the credible ellipse appears to be around 0.4. Conse-
quently, an adjustment to the scale matrix Sδ for the Wishart prior on Tδ
seems appropriate.

The posterior density of the precision matrix TX̃ is also worth checking
to ensure its posterior is appropriate. In a similar fashion to the treatment
of the posterior of Tδ, the marginal standard deviations and correlation are
extracted from each posterior sample of TX̃ , giving the marginal posterior
distribution for each of these parameters, whose densities are then plotted
in Figure 4.11. The posterior densities all seem appropriate, given the true
values for each explanatory variable and the fixed prior mean of 0.5 for each
explanatory variable.

Given the relative difference between the posterior distribution of the
marginal standard deviations for the measurement error and the ‘chosen’
values for these parameters in the simulation, the most logical adjustment
to make in the model is to change the scale matrix Sδ, with larger diagonal
elements required. This is investigated here for the scaled identity matri-
ces 10I2, 100I2 and 1000I2, with the results summarised in Table 4.1 with
centred 95% credible intervals for relevant parameters and their respective
‘chosen’ values in the underlying simulation. It is evident that the changes
to the scale matrix Sδ are required and help to improve the estimates of
several model parameters, with larger scaled identity matrices improving
the model fit.

A final plot comparing the distribution of the fitted values Ŷi with the
marginal posteriors of Ỹi, in the case of Sδ = 1000I2, is given in Figure
4.12. Comparing the fitted values here with those found in Figure 4.10
(bottom-right plot, where the model is fitted with Sδ = I2) shows the clear
improvement in the predictions of the response variable when adjusting the
scale matrix for the measurement error precision prior.

It is noted that increasing the scale matrix further to give Sδ = 10000I2

provides a marginal improvement in the model fit compared with Sδ =
1000I2, with a 95% credible interval for the model error standard deviation
of [0.0111,0.02844]. With the model fitted with Sδ = 1000I2 performing
sufficiently well, this is preferred in order to reduce uncertainty in the mea-
surement error precision.

Therefore, this investigation of the scale matrix Sδ for the Wishart prior
on the measurement-error precision matrix Tδ demonstrates that, for the
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Figure 4.12: A plot comparing the distribution of the fitted values Ŷi with
the corresponding marginal posterior distributions of Ỹi in the case of the
simulation for the model with two explanatory variables, where a 95% credi-
ble ellipse is plotted for the fitted values distribution and marginal posterior
of each material i. This corresponds to the model with I2 and 1000I2 as the
scale matrices for the Wishart priors on TX̃ and Tδ respectively.

data scaling utilised here, the scaled identity matrix 1000I2 is appropri-
ate for being able to estimate suitable measurement error precision values
in this modelling structure. Going forward, Sδ = 1000I2 is utilised for
measurement-error precision matrices in future simulations. Moreover, the
above investigation demonstrates how to suitably adjust the modelling pro-
cess with the use of simulated data, where the prior distributions can be
tweaked so that the posterior estimates provide values that are expected
given the underlying simulation. The desire here is to ensure the modelling
process is working effectively before consideration of real data.

4.2.4 Two explanatory variables, correlated measurement er-
ror not assumed

This section considers the same simulated data as considered in Section 4.2.3,
while not making any assumptions on correlation between the measurement
error terms of the explanatory variables.

As mentioned in Section 4.2.3, in the case where the observed data
for the two explanatory variables are not measured under identical circum-
stances, then the elements of the measurement error vector are marginally
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distributed, i.e.

δ1,i,k1 ∼ N(0, τδ1)

and

δ2,i,k2 ∼ N(0, τδ2).

The prior specification from the previous section is adjusted to take this
into consideration, with τδ1 ∼ Gamma(aδ1 , bδ1) and τδ2 ∼ Gamma(aδ2 , bδ2)
replacing Tδ ∼ Wishart(Sδ, νδ). The shape parameters aδ1 , aδ2 and rate
parameters bδ1 , bδ2 take values of 0.001, to give an uninformative gamma
prior distribution for each measurement error precision.

‘Chosen’ value aδ1 , aδ2 , bδ1 , bδ2 = 0.001 Sδ = 1000I2, SX̃ = I2

β0 0.03 [−0.0088, 0.0639] [−0.0037, 0.0599]

β1 8 [7.5338, 8.3881] [7.6001, 8.3357]

β2 −0.5 [−0.5635, −0.4257] [−0.5573, −0.4372]

σδ1 0.001 [0.0044, 0.0059] [0.0031, 0.0042]

σδ2 0.01 [0.0096, 0.0131] [0.009, 0.0124]

σε 0.005 [0.0125, 0.0345] [0.0119, 0.0316]

Table 4.2: Centred 95% credible intervals for parameters of interest in the
two-explanatory-variable model, given two model fits: (1) with no assump-
tion of correlation between the measurement errors on the explanatory vari-
ables, uninformative gamma prior distributions on the measurement errors,
(2) assuming a correlation between the measurement errors on the explana-
tory variables, and with Sδ = 1000I2 in that case. The table demonstrates
that the assumption of the correlation, and an appropriate scale matrix for
the Wishart prior, gives slightly tighter credible intervals around the esti-
mates.

The model described above, with the above prior specification, is fitted
to the simulated data described in Section 4.2.3. Convergence to the poste-
rior distribution and sufficient levels of mixing are confirmed by PSRF and
effective sample size estimates. The posterior distributions of the parameters
of interest from this model (with no assumption of correlated measurement
error) are compared with those from the model that assumes correlated
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measurement error (with Sδ = 1000I2) in Table 4.2. On the whole, the dif-
ferences in the credible intervals for each parameter between the two model
fits are minimal. This indicates that the modelling process is performing
equally well in both cases. With the real data, it is possible that a model
can be fitted with multiple explanatory variables, some of which having cor-
related measurement error, and some not. An example of having correlated
measurement error and uncorrelated measurement error being considered
for three explanatory variables is found in Section 4.2.6.

4.2.5 Two explanatory variables with interaction and quadratic
terms

The final simulated-data example for the models with two explanatory vari-
ables, and the final example for Bayesian regression with a univariate re-
sponse, considers a linear predictor with a quadratic term for each explana-
tory variables and an interaction term between the explanatory variables.

In this first attempt of fitting this model to simulated data, the true val-
ues and observed data for the explanatory variables are taken from Section
4.2.3 and utilised here. The true values Ỹi are simulated from the linear
model

Ỹi = 36 + 28X̃1,i − 11X̃2,i − 4X̃2
1,i + 5X̃1,iX̃2,i + 6X̃2

2,i + εi, (4.2.5.1)

with values of εi simulated from a normal distribution with mean 0 and pre-
cision 4. The observed data Yi,j are subsequently simulated from a normal
distribution with mean Ỹi and precision 1. Furthermore, the observed data
for the response variable and both explanatory variables are scaled onto the
range [0,1], by dividing the observed data for the response variable by 1000,
the observed data for the first explanatory variable by 100, and the observed
data for the second explanatory variable by 10.

The prior specification for this model is an extension of that detailed
in Section 4.2.3 with the inclusion of the model coefficients β11, β22, and
β12, where each take normal distributions with mean 0 and precisions τβ11 ,
τβ22 , and τβ12 respectively. These precisions take gamma distributions with
shape and rate equal to 0.001. Note that with the assumption of correlated
measurement error between the explanatory variables, and following the
investigation of prior setting in Section 4.2.3, Sδ = 1000I2. The scaled
‘chosen’ values for the model coefficients are given by β0 = 0.036, β1 = 2.8,
β2 = −0.11, β11 = −40, β12 = 5 and β22 = 0.6, where the parameters β22

and β12 refer to the model coefficients for the squared true values of the
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second explanatory variable, and the interaction between the true values on
both explanatory variables, respectively.

Fitting the model with typical MCMC tuning parameters as previously
noted, it is observed that the adaptation phase is not sufficient in length in
order to provide optimal sampling behaviour for the MCMC algorithm. This
warning suggests that, at the end of the adaptation phase of length 1000,
the MCMC algorithm has not reached its optimal sampling behaviour. The
recommendation in Plummer et al. (2016) is to start over the algorithm,
and set up the adaptation phase to be longer. The issue is resolved with an
adaptation phase of 3000. Moreover, 30000 posterior samples were sufficient
for the MCMC output to have converged to the posterior distribution and
to have sufficiently mixed.
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Figure 4.13: Posterior densities for β0 (top left), β1 (top middle), β2 (top
right), β11 (bottom left), β12 (bottom middle) and β22 (bottom right) from
the model with two explanatory variables, quadratic and interaction terms
fitted to simulated data, along with the ‘chosen’ values (after scaling) for
each parameter from the simulation. The model assumes uninformed prior
distributions.

The posterior distribution is now examined. It is noted that there are no
issues with the posteriors that have been recovered for the true values Ỹi, X̃1,i

and X̃2,i (plots comparing these with respective observed data are omitted).
The posterior model coefficients are of interest to determine whether the
underlying values of the linear predictor are recovered. These are given in
Figure 4.13.

These plots clearly demonstrate that the majority of model coefficients
have not been recovered, with the only estimate looking to be appropriate
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being the intercept term, corresponding to the top left plot. While the
remaining densities are not appropriate, it is clear that each scaled ‘chosen’
value exists in each marginal posterior density, as each plot contains the red
vertical line corresponding to the scaled chosen value. For example, looking
more closely at the marginal posterior density of β11, where the scaled chosen
value is -40, there are 43 posterior samples which lie within 1% of this scaled
chosen value. Extracting the posterior samples for the remaining model
coefficients that correspond to these 43 posterior samples of β11, the means
for each parameter given these samples are 0.0229, 2.70, -0.0365, -40.0, 5.21
and 0.514, which are clearly more representative of the scaled chosen values.
In this sense, this is an effective check to show that the model has been coded
correctly, with the scaled chosen values at least attainable in this posterior
distribution. The issues with the current marginal posterior densities still
need resolving.

While the process would surely work better with more groups (i.e. pro-
viding the model with more true values, thus more information about the
relationship), this may not be a realistic possibility in a real-life scenario.
It is more preferable to investigate the possibility of using more informa-
tive prior distributions, which will, in a sense, restrict the parameter space
by removing implausible values for some parameters, and also expand the
parameter space by including plausible values for other parameters. The
following subsection delves into the process of building ‘weakly informed’
priors, defined here to be priors that are informed by the data scaling and
its implications.

Weakly informative priors for simulated data

The uninformative prior distributions for the model coefficients and precision
parameters previously assumed are insufficient for recovering the more com-
plicated two-covariate model with a full quadratic linear predictor. These
priors are therefore appropriately adjusted, given the scaling of the data.

Since the data is forced onto the range [0,1], there is a high probability
that a given true value exists in this range (after scaling). Therefore, the
probability statement

P (0 ≤ X̃1,i, X̃2,i ≤ 1) = 0.95,

is appropriate, that is, the probability that the true values for the explana-
tory variables lies between 0 and 1 is 95%. A between-materials precision
can be implied for the explanatory variables using the fact that, for any
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normally distributed random variable X ∼ N(µ, σ2), where σ2 represents
the variance parameter, it is true that

P (−1.96σ ≤ X ≤ 1.96σ) ≈ 0.95.

In other words, 95% of the density of the random variable X lies between
[−1.96σ, 1.96σ]. Combining this probability statement and the probabil-
ity relating to the simulation example above, an estimate of the between-
materials standard deviation can be derived by equating the ranges, thus
3.92σX̃ = 1 (adding the subscript X̃ to clarify this standard deviation relates

to X̃1,i and X̃2,i). Therefore, σX̃ = 1
3.92 , and so an estimate of the precision

parameter τX̃ is given by τX̃ = 3.922 = 15.3664. Since the true values of
the input variables are jointly distributed, a Wishart prior distribution is
assumed for the between-materials precision matrix TX̃ , whose scale matrix
SX̃ is the diagonal matrix

SX̃ =

(
15.3664 0

0 15.3664

)
,

and degrees of freedom νX̃ is assumed to be 2.
Considered now is the measurement-error precision matrix Tδ for the

input variables. Note that this is investigated here despite the sensitivity
analysis from Section 4.2.3 identifying Sδ = 1000I2 as suitable. The reason
for this is to be consistent with the process for TX̃ , and so that there is an
alignment between the measurement-error precision prior for one explana-
tory variable, τδ, and the measurement-error precision prior for multiple
explanatory variables (assuming correlated measurement error), Tδ.

Analogously to TX̃ , the degrees of freedom of the Wishart prior for Tδ
is assumed to be 2, so the scale matrix Sδ is of interest. Appropriate values
of the diagonal elements of Sδ required further assumptions, specifically
relating to the scale matrix SX̃ for the between-materials precision. In
order to carry this out, the single input variable case is considered, which is
analogous to the procedure carried out for the real powder data in Section
4.4.3. That is, appropriate gamma prior distributions for τδ and τX̃ are
required.

An estimate of the mean of τX̃ , 15.3664, has been found above, and so

aX̃
bX̃

= 15.3664,

where aX̃ and bX̃ represent the shape and rate of the gamma distribu-
tion respectively. The mean is used here as the point estimate as this is
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easy to interpret and gives a simple relationship between the shape and
rate parameters. Similarly, the shape and rate of the gamma prior for the
measurement-error precision τδ are given by aδ and bδ respectively. With
no mean assumption for τδ, an alternative assumption is sought. The first
assumption is that the shape parameters aX̃ and aδ are equal; that is to say
that the distributions for these parameters ‘behave’ in the same way, but on
different scales (that is, the behaviour of their densities are the same, with
the rate parameter determining how spread out the behaviour is). Further-
more, the shape parameters are assumed to be equal to 1 – this is chosen
because of the property that the gamma distribution with shape equal to 1
is an exponential distribution, which is a suitable simplification (moreover,
smaller values of shape correspond to significant density at values close to 0,
whereas larger shape values correspond to more density closer to the mean,
which is a stronger assumption that is avoided here to preserve the idea
of ‘weakly informed’). Having assumed that aX̃ = aδ = 1, it is therefore
implied that bX̃ = 1

15.3664 , since the mean is equal to 15.3664. One final
assumption is required, to help provide an estimate for bδ, that

P (τX̃ ≤ τδ) = 0.99,

i.e., that the between-materials precision is smaller than the measurement-
error precision with probability 0.99. Using simulation, a suitable value for
bδ that satisfies this equation is 6.57× 10−4. This provides a mean estimate
for τδ given by aδ

bδ
= 1

6.57×10−4 = 1522.07, which is used as the diagonal ele-
ments for the scale matrix Sδ (notably, this is similar to that value identified
in Section 4.2.3). The prior distribution for the measurement-error preci-
sion for the response variable is the equivalent gamma distribution from the
measurement-error precision gamma distribution for the explanatory vari-
able, i.e., τη ∼ Gamma(aη, bη), with aη = 1 and bη = 6.57× 10−4 (since we
scale the data onto the same range for both outputs and inputs).

The model error precision is now of interest. The main aim for finding a
suitable prior here is to allow for larger values of the model error precision
to be found, and to reduce the probability for smaller values of model error
precision (the justification is demonstrated after having chosen the weakly
informed prior). The between-materials precision for the explanatory vari-
able true values was estimated above by 15.3664, which can be thought of
here as a lower bound for model error precision, since the response variables
true values are also scaled onto the range [0,1]. This can be derived by
considering the simplest possible model, where

Ỹi = β0 + εi,
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where the prior mean estimate of β0 would be given by 0.5 (the midpoint
of the range [0,1]), and the model error precision must be large enough to
ensure that true values of the response at the end points [0,1] are plausibly
fitted with this model. In other words, the true values of the response could
exist at the endpoints of the range, so the precision must be at least 15.3664
in order to achieve that.

Any further assumptions about the model error precision are hard to
justify. It would be not implausible for the model error precision to be
similar to that of the measurement error precision, so suppose that the
model error precision were τε = 1522.07. Then, the model error standard

deviation would be σε =
√

1
1522.07 = 0.0256. With respect to previous

simulation examples, this model error standard deviation seems appropriate
(see the final column of Table 4.2, which compares model fits of the previous
simulation with just two inputs, with 0.0256 lying within the centred 95%
credible interval for model error standard deviation). Therefore, in effect, a
gamma distribution for the model error precision is desired such that

• P (τε < 15.3664) is small,

• P (15.3664 < τε < 100) is not too small,

• P (τε > 1522.07) is not too small.

The first bullet point roughly equates to values of 15.3664 for model error
precision are not possible with the current scaling, so should be minimised.
The second bullet point roughly equates to poor model fits should be possi-
ble with this prior. Finally, the third bullet point roughly equates to good
model fits should be possible with this prior. With the gamma distribution,
it is difficult to minimise the first probability while maintaining the roughly
desired probabilities for the other two bullet points. With some experimen-
tation, the gamma distribution with shape aε = 0.2 and rate bε = 2× 10−4

seems reasonable. The probability statements above are evaluated using
these parameter values to give

• P (τε < 15.3664) = 0.342,

• P (15.3664 < τε < 100) = 0.154,

• P (τε > 1522.07) = 0.182.

Comparing this with the uninformative prior distribution used in previous
sections, u ∼ Gamma(0.001, 0.001), which gives
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• P (u < 15.3664) = 0.996,

• P (15.3664 < u < 100) = 0.00179,

• P (u > 1522.07) = 9.69× 10−5,

the improvement in making these densities more appropriate is clear.
Adjustments to the priors for the model coefficients are now discussed.

The prior mean of 0 for the slope coefficients remains, but the prior mean
for the intercept term is changed from 0 to 0.5 (since 0.5 is the midpoint
of [0,1]). The precision parameters are now fixed instead of assuming a
hyperprior distribution, to reduce the number of parameters to be estimated
in the model. The intercept precision is fixed to be 0.0001, as it should be
straightforward to learn about the intercept term with multiple explanatory
variables also included in the linear predictor.

The precision parameters for the slope terms require more attention,
ensuring that the prior is appropriately restricted, but being vague enough
to not exclude plausible values. Suppose the response variable, after scaling,
sufficiently covers the range of [0,1], and suppose the input variable only
covers the values [0,0.1]; this is the most extreme case that can occur with
this scaling method (using the maximum observation of the input variable
to decide the power of 10 by which the data is divided). This extreme case
provides the largest possible value the slope term could take in this scaling,
which is derived by finding the line which connects the point with minimum
values for the response and the input, (0,0), with the maximum values,
(0.1,1). The slope of this line is just given by the difference in the response
values over the difference in the input values, leading to βmax = 1−0

0.1−0 = 10.
Logically, the minimum value of the slope term is βmin = −10. Making
the appropriate assumption that the slope term is normally distributed, the
probability statement

P (−10 ≤ βslope ≤ 10) = 0.9

can be derived, assuming that the probability that the slope term lies be-
tween -10 and 10 is 0.9. A smaller probability is assumed here, compared
with the 0.95 assumed for the above cases, since the precision parameter
here is fixed, and so less certainty seems appropriate. The width of the
interval is equated to 3.29σβslope , since

P (−1.645 ≤ X ≤ 1.645) ≈ 0.9,

and so an estimate of the standard deviation of the slope parameter is 20
3.29 =

6.08 (to 3 s.f.), and a precision estimate is given by 1
6.082

= 0.0271 (to 3 s.f.).
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Finally, attention is required for the slope term for quadratic and inter-
action terms. Note that, given the scaling onto the range [0,1], that squaring
or taking the product of two true values provides a smaller range. If the
smallest range of the input true values of [0,0.1] is taken, then range of the
corresponding squared values is given by [0,0.01], and as such the corre-
sponding slope terms have a range of [-100,100]. The standard deviation of
these slope terms (corresponding to quadratic and interaction terms) is then
given by 200

3.29 = 60.79, implying a precision of 1
60.792

= 2.71× 10−4.
In summary, the following weakly informed prior distributions are now

assumed in this simulation example:

τη ∼ Gamma(1, 6.57× 10−4),

τε ∼ Gamma(0.2, 2× 10−4),

β0 ∼ N(0.5, 0.0001),

β1, β2 ∼ N(0, 0.0271),

β11, β12, β22 ∼ N(0, 2.71× 10−4),

(4.2.5.2)

with SX̃ = 15.3664I2 and Sδ = 1522.07I2.

σδ1 (=0.001) σδ2 (=0.01) ση (=0.01) σε (=0.005)

Uninformed
priors

[0.0032,
0.0043]

[0.0090,
0.0123]

[0.0064,
0.0088]

[0.0154,
0.0480]

Weakly in-
formed priors

[0.0026,
0.0035]

[0.0088,
0.0121]

[0.0058,
0.0079]

[0.0058,
0.0180]

Table 4.3: Centred 95% credible intervals for standard deviation parameters
of interest in the full-quadratic, two-explanatory-variable model, comparing
models fitted with uninformed priors and weakly informed priors. It is
shown that, while the measurement-error standard deviations remain rela-
tively unchanged between these models, the model error standard deviation
is smaller in the weakly informed model, suggesting an improved model fit.

The model with two covariates and a full quadratic linear predictor is
fitted again to the simulated data given in Section 4.2.5. Running the model
with the same MCMC tuning parameters (notably an adaptation phase of
length 3000), there are no issues with convergence and mixing in the MCMC
output.
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Figure 4.14: Posterior densities for β0 (top left), β1 (top middle), β2 (top
right), β11 (bottom left), β12 (bottom middle) and β22 (bottom right) from
the model with two explanatory variables, quadratic and interaction terms
fitted to simulated data, along with the ‘chosen’ values (after scaling) for
each parameter from the simulation. The model assumes the weakly in-
formed prior distributions discussed above.

For comparison with the fitted model given uninformed priors, Table 4.3
provides 95% centred credible intervals for parameters of interest. Notably,
the measurement-error standard deviation posteriors compare well between
the two models. More importantly, the model error standard deviation for
the weakly informed model is smaller than in the previous case, providing
an indication that the model fit has improved.

The plot in Figure 4.14 provides the marginal posterior densities for each
model coefficient, demonstrating the model fit is greatly improved with the
adjustments to the prior specification.

To conclude this section, plots of the fitted values from the uninformed-
priors case (left plot) and the weakly-informed priors case (right plot) are
given in Figure 4.15 for comparison. An evident improvement in the fit
of the model is demonstrated in the case of considering more appropriate
(weakly informed) prior distributions. In the following section, multivari-
ate regression models are investigated with simulated data to continue to
develop the modelling process.
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Figure 4.15: Two plots, each comparing the posterior fitted values for each
group with their respective posterior true values, using 95% joint credible
ellipses. The left plot corresponds to the case of uninformed prior distri-
butions, where the model coefficients were not recovered effectively in the
posterior distribution, whereas the right plot provides the fitted values from
the weakly informed prior case, where the model coefficients are recovered
effectively, leading to an improvement in the fitted models.

4.2.6 Multivariate regression models

The modelling continues with consideration of multivariate regression mod-
elling. Specifically, only bivariate regression models are considered in this
work, but extensions to higher dimensions are possible with relative ease.
The key motivation for fitting multivariate regression models, as opposed
to fitting multiple univariate regression models, is to take into account any
correlation between the response variables. This is performed by building
a multivariate model error vector ε which takes a joint normal distribution,
with mean 0 and precision matrix Tε.

Firstly, the multivariate regression modelling is ‘tested’ here using sim-
ulated data. To demonstrate the capabilities of the modelling further, a bi-
variate regression model with three explanatory variables is considered here
(extending from two explanatory variables, which has been investigated in
Sections 4.2.3 and 4.2.4). That is, the model to be investigated is given by

(
Ỹ1,i

Ỹ2,i

)
=

(
β0,1 β1,1 β2,1 β3,1

β0,2 β1,2 β2,2 β3,2

)
1

X̃1,i

X̃2,i

X̃3,i

+

(
ε1,i
ε2,i

)
,
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where the true, ‘unobservable’ values of the first and second response vari-
ables are given by Ỹ1,i and Ỹ2,i respectively, and the model error vector is
given by εi = (ε1,i, ε2,i)

′.

The setup of the simulated data is now considered. The true values for
the first two explanatory variables are those used in Section 4.2.3, where
X̃1,i = i for i = 1, . . . , 13 and X̃2 = (1, 3, 4, 5, 7, 8, 7, 4, 3, 2, 5, 6, 9). The
observed data for these two explanatory variables, given by X1,i,k1 and
X2,i,k2 for i = 1, . . . , ng (with ng = 13), k1 = 1, . . . , nc1 (with nc1 = 7)
and k2 = 1, . . . , nc2 (with nc2 = 7), are taken to be the same as in Section
4.2.3, notably with the explanatory variable data assumed to have jointly
distributed measurement error.

The true values for the third explanatory variable, given by X̃3,i for
i = 1, . . . , ng, are

X̃3 = (10, 90, 20, 80, 30, 70, 40, 60, 50, 55, 45, 65, 35),

whose corresponding observed data, X3,i,k3 are simulated such that the mea-
surements are independent to those of the first and second explanatory vari-
ables, with k3 = 1, . . . , nc3 (with nc3 = 5, to demonstrate that the model
can cope with different numbers of replicate measurements). In summary,
the observed data for the explanatory variables are of the form(

X1,i,k1

X2,i,k2

)
=

(
X̃1,i

X̃2,i

)
+

(
δ1,i,k1

δ2,i,k2

)
and

X3,i,k3 = X̃3,i + δ3,i,k3 ,

with the assumptions that(
δ1,i,k1

δ2,i,k2

)
∼ N2

((
0
0

)
, Tδ

)
and

δ3,i,k3 ∼ N1(0, τδ3),

with δ3,i,k3 independent from (δ1,i,k1 , δ2,i,k2)′. The measurement error stan-
dard deviations are chosen to be 0.1 for the first two explanatory variables,
with correlation of 0.6 (that is, the simulated observations are drawn from
a bivariate normal distribution with the ‘chosen’ true values as the mean,
and covariance matrix built on marginal standard deviations of 0.1 and cor-
relation 0.6). For the third explanatory variable, the ‘chosen’ measurement
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error standard deviation is 1. Note that the true values for each explanatory
variable and for each i are jointly distributed, that isX̃1,i

X̃2,i

X̃3,i

 ∼ N3

µX1

µX2

µX3

 , TX̃

 .

The ‘chosen’ true values for the model coefficients are given by β0,1 = 20,
β1,1 = 11, β2,1 = −5 and β3,1 = 9 for the first response variable, and
β0,2 = 130, β1,2 = −55, β2,2 = −103 and β3,2 = 637 for the second response
variable. The ‘chosen’ true values for both response variables, denoted by
Ỹ1,i and Ỹ2,i respectively, are jointly simulated from a normal distribution
with mean equal to the linear predictor given by(

20 + 11X̃1,i − 5X̃2,i + 9X̃3,i

130− 55X̃1,i − 103X̃2,i + 63X̃3,i

)
and covariance matrix (

0.25 0.1
0.1 0.25

)
,

which is built from marginal standard deviations of 0.5 and 0.5, and a corre-
lation of 0.4. Finally, the observed data Y1,i,j1 and Y2,i,j2 , for j1 = 1, . . . , nr1
(with nr1 = 7) and j2 = 1, . . . , nr2 (with nr2 = 7), are simulated from the
‘chosen’ values for the response variables, where

Y1,i,j1 = Ỹ1,i + η1,i,j1

and

Y2,i,j2 = Ỹ2,i + η2,i,j2 ,

with η1,i,j1 ∼ N(0, τη1) and η2,i,j2 ∼ N(0, τη2) representing random measure-
ment error. The ‘chosen’ precisions for these measurement error terms are 1
and 10 respectively. Note that the measurement error terms on the response
variables are assumed to be independent here.

The specification of the prior and hyperprior distributions is now pro-
vided below. It is anticipated here, given that the linear predictor is less
complicated than in the full quadratic two-covariate univariate regression
model in Section 4.2.5, that the uninformative prior distributions are suffi-
cient for recovering the underlying relationship in the posterior distribution.
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If they prove to be insufficient, appropriate adjustments will be considered.

βdX ,dY ∼ N(0, τβdX,dY ), for dX = 0, . . . , 3, dY = 1, 2,

X̃i ∼ N3(µX , TX̃),

Tε ∼Wishart(Sε, νε),

τη1 ∼ Gamma(aη1 , bη1),

τη2 ∼ Gamma(aη2 , bη2),

Tδ ∼Wishart(Sδ, νδ),

τδ3 ∼ Gamma(aδ3 , bδ3),

TX̃ ∼Wishart(SX̃ , νX̃),

τβdX,dY ∼ Gamma(aτβdX,dY
, bτβdX,dY

), for dX = 0, . . . , 3, dY = 1, 2.

(4.2.6.1)

As in the previous subchapters, the following values are assumed within the
‘uninformed’ prior and hyperprior specification:

• the shape and rate parameters of the gamma distributions take the
value 0.001,

• the mean of the explanatory variable true values for material i, X̃i =
(X̃1,i, X̃2,i, X̃3,i)

′, is set equal to 0.5 for each explanatory variable, so
µX = (µX1 , µX2 , µX3) = (0.5, 0.5, 0.5),

• Given the discussion in Section 4.2.3, the scale matrix Sδ for the
Wishart prior distribution on the measurement error precision for the
explanatory variables Tδ is set equal to 1000I2, with the degrees of
freedom, νδ set equal to 2

• the scale matrix SX̃ and degrees of freedom νX̃ for the Wishart prior
distribution on the between-materials precision matrix TX̃ are set
equal to I3 and 3 respectively,

• the scale matrix Sε and the degrees of freedom νε for the Wishart prior
distribution on the model error precision matrix Tε are set equal to I2

and 2 respectively.

The model is fitted with the typical MCMC tuning parameters with
no issues relating to convergence and mixing in the MCMC output. The
MCMC output is thus considered to be the posterior distribution, which is
now examined.
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Parameter σδ1 σδ2 σδ3 ση1 ση2

‘Chosen’ value 0.001 0.01 0.01 0.001 0.001

95% credible
interval

[0.00317,
0.00433]

[0.00904,
0.0124]

[0.0101,
0.0149]

[0.00446,
0.00611]

[0.00445,
0.00613]

Table 4.4: Centred 95% credible intervals for measurement error standard
deviation parameters of interest in the bivariate response model with three
covariates. The table demonstrates the model capably allocates measure-
ment error.

0.00 0.02 0.04 0.06 0.08 0.10 0.12 0.14

0.
0

0.
2

0.
4

0.
6

0.
8

X
~

1

X~
2

0.00 0.02 0.04 0.06 0.08 0.10 0.12 0.14

0.
0

0.
2

0.
4

0.
6

0.
8

X
~

1

X~
3

0.2 0.4 0.6 0.8

0.
0

0.
2

0.
4

0.
6

0.
8

X
~

2

X~
3

0.2 0.4 0.6 0.8

−
0.

1
0.

1
0.

3
0.

5

Y
~

1

Y~
2

Group 1
Group 2
Group 3
Group 4
Group 5
Group 6
Group 7
Group 8
Group 9
Group 10
Group 11
Group 12
Group 13

Figure 4.16: Three plots of each pair of explanatory variables showing 95%
joint credible ellipses over the posterior samples for each material i, and
a fourth plot providing the same summary for the true values of the re-
sponse variables. The top-left plot shows the joint 95% credible ellipse for
(X̃1,i, X̃2,i)

′ for i = 1, . . . , ng, the top-right plot showing the equivalent for
(X̃1,i, X̃3,i)

′, the bottom-left plot showing the equivalent for (X̃2,i, X̃3,i)
′, and

the bottom-right plot showing the equivalent for (Ỹ1,i, Ỹ2,i).
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Converting the posterior samples of the measurement error precisions
into measurement error standard deviations (that is, inverting the mea-
surement error precisions τδ3 , τη1 and τη2 and taking the square root, and
extracting the marginal standard deviations from Tδ) provides information
as to whether the model has appropriately accounted for measurement er-
ror. The information in Table 4.4 corresponds to 95% credible intervals
for these measurement error standard deviation posterior samples. While
only the measurement error standard deviation for the second explanatory
variable lies within the respective credible interval, the magnitude of the
values within the other credible intervals is similar to the underlying mea-
surement error standard deviations. This suggests that the model allocates
the measurement error appropriately.
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Figure 4.17: Plot of the marginal posterior densities of the model coefficients
in the bivariate response model with three covariates, with red vertical lines
representing the ‘chosen’ values for each model coefficient. Working through
the plots by rows, the marginal densities appear in the following order: (1)
for β0,1, (2) for β1,1, (3) for β2,1, (4) for β3,1, (5) for β0,2, (6) for β1,2, (7) for
β2,2, (8) for β3,2.

One way to explore visually how well the true values have been estimated
is to consider the joint posterior true values for pairs of variables, for each
material (group) i – these can be displayed with joint 95% credible ellipses.
These plots are provided in Figure 4.16: the top-left plot showing the joint
95% credible ellipse for (X̃1,i, X̃2,i)

′, the top-right plot showing (X̃1,i, X̃3,i)
′,

the bottom-left plot showing (X̃2,i, X̃3,i)
′, and the bottom-right plot show-

ing (Ỹ1,i, Ỹ2,i). Within each plot, the respective joint true values from the
underlying simulation (for each group i) are also plotted, to demonstrate
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that the model correctly captures the true values for each variable and each
group.
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Figure 4.18: Posterior densities of the marginal standard deviations ex-
tracted from the model error precision matrix Tε (with the model error
standard deviation for the first response variable on the left, and for the
second on the right), providing evidence that the Wishart(I2, 2) prior dis-
tribution for Tε is not capable of finding suitable posterior densities for the
corresponding standard deviation parameters.

A check of the posterior densities of the model coefficients β0,1, β1,1, . . . , β3,2

is carried out visually in Figure 4.17, and demonstrates some problems with
the fitted model. It is hard to argue whether any model coefficient parameter
has been estimated well—there are some cases, such as β0,1 and β0,2 (first
column), where the ‘chosen’ true value appears to be well centred in the
posterior density. In other cases, such as β3,1 and β3,2 (last column), there
appears to be multimodality in the marginal posterior densities, which al-
ludes to the model not recovering the underlying relationship appropriately,
since it is expected that these posterior densities for the model coefficients
are unimodal (and appear to follow a normal distribution), and the linear
predictor is a relatively simple additive linear model. Finally, there are cases
which show that the model is not estimating the parameter well to any ex-
tent, with the ‘chosen’ true value appearing to be a low-density value in
the posterior density (see β1,1, β1,2, second column). A similar outcome is
found in the model with one response variable, and a full quadratic linear
predictor in two explanatory variables, from Section 4.2.5. The solution to
this problem was to adjust the prior distributions for some of the parameters
given the data is scaled onto [0,1].
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While this could be carried out here, it is noted from Table 4.3 that the
key difference between the uninformed-prior fit and the weakly informed
prior fit (for the case of a full quadratic model with two input variables) was
the improvement in the model error standard deviation, having adjusted
the gamma prior distribution for τε. The posterior density of the standard
deviations of the model error (extracted from the posterior precision matrix
samples Tε) are provided in Figure 4.18. Note that, in the simplest model
with just an intercept term, and scaling the data onto the range [0,1], there
is an upper bound on the model error standard deviation of roughly 0.25,
supposing the intercept is estimated to be 0.5, and true values of the response
variable exist close to the endpoint of the range [0,1] (so, using the 2σ rule,
a standard deviation of σε = 0.25 means 95% of the data lie within [0,1]).
It is clear from Figure 4.18 that the model error standard deviation being
estimated is far too large, comparing with the 0.25 upper bound suggested
above.
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Figure 4.19: Plot of the marginal posterior densities of the model coefficients
in the bivariate response model with three covariates, having fitted the model
with the scale matrix Sε = 1000I2 for the Wishart prior on the model error
precision matrix Tε. Red vertical lines represent the ‘chosen’ value of the
model coefficient for the simulation. Working through the plots by rows, the
marginal densities appear in the following order: (1) for β0,1, (2) for β1,1,
(3) for β2,1, (4) for β3,1, (5) for β0,2, (6) for β1,2, (7) for β2,2, (8) for β3,2.

Given the sole issue appears to be the prior distribution for the model
error precision matrix, an adjustment to this prior is considered. Having
adjusted the scale matrix Sδ for the Wishart prior distribution Tδ from I2

to 1000I2 in previous examples, this simple adjustment is trialled here for
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the scale matrix Sε, with the belief that the prior for measurement error
is not too dissimilar to the prior for model error (larger values of model
error precision must be accessible in the prior). If a more rigorous process
is required, this will be carried out (for example, see the weakly informed
prior distribution example from the previous section).

Having fitted the bivariate response model with three input variables
to the corresponding simulation, with the sole adjustment of Sε = 1000I2,
the plots of the marginal posterior densities of the model coefficients, anal-
ogous to those in Figure 4.17 where Sε = I2, are provided in the current
case in Figure 4.19. These indicate the clear improvement in capturing the
underlying relationship due to the adjustment to the model error precision
prior.
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Figure 4.20: Comparison of the two bivariate regression models fits (the left
plot corresponding to Sε = I2, right plot corresponding to Sε = 1000I2)
using the fitted values of the model. In each case, the credible ellipses of the
fitted values can be compared with the posterior true values of the response
variables. It is clear that the right plot, with a more appropriate scale
matrix for Sε, provides a better model fit, with the credible ellipses of the
fitted values being much smaller and lying closer to the credible ellipses for
the true values.

Finally, these two model fits are compared using the plots of fitted values
and true values for the response variables (see Figure 4.20). Each plot
contains the joint 95% credible ellipses for the fitted values of the response



4.3. EIV GP ON SD 151

variables, given by

(
Ŷ1,i,s

Ŷ2,i,s

)
=

(
β0,1,s β1,1,s β2,1,s β3,1,s

β0,2,s β1,2,s β2,2,s β3,2,s

)
1

X̃1,i,s

X̃2,i,s

X̃3,i,s

+

(
ε1,i,s
ε2,i,s

)
,

along with the joint 95% credible ellipses for the true values of the response
variables. The left plot is for the case of Sε = I2, and the right plot is for
the case of Sε = 1000I2, with a very clear improvement in the fitted values
going from Sε = I2 to Sε = 1000I2.

This concludes the section of fitting numerous EIV BR models to sim-
ulated data, with varying degrees of difficulty in the estimation of the lin-
ear predictor. It was clear that, in the simpler cases, the uninformative
prior specification (i.e., with consideration of the scaling of the data) was
sufficient for recovering the model coefficients and true values from the un-
derlying simulation. As more explanatory variables were included, as well
as more response variables, this uninformative prior specification was insuf-
ficient, however appropriate adjustments to the prior specification, which
accounted for the scaling of the data, improved the model fits greatly in
these more challenging cases. The overall modelling process has been suffi-
ciently trained with the simulated data, and consideration of the real-world
data relating to powder behaviour can be explored (see Section 4.4.3). The
following section moves onto fitting EIV GP models to simulated data, fol-
lowing a similar process to refining the modelling process here, with more
attention to detail on the prior specification, given the nonparametric nature
of the problem and the scaling of the data.

4.3 Errors-in-variables Gaussian process on simu-
lated data

Having considered fitting the parametric regression method of EIV BR to
various simulated examples, the nonparametric regression method of errors-
in-variables Gaussian processes (EIV GP) is now of interest. The obvious
key difference between these methods is that the parametric regression as-
sumes a predetermined relationship between the response variable(s) and
explanatory variable(s), whereas nonparametric regression does not. Recall
that ‘nonparametric’ in this sense does not mean that no parameters are
estimated in the method, rather that there is no fixed relationship between
the output(s) and input(s) to be estimated. When it comes to fitting the
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model in the parametric case, to a simulated relationship, values can be cho-
sen for the model coefficients given some linear predictor, then a parametric
regression given the same linear predictor can be fitted to see if these values
can be recovered in the model fit (i.e. in the posterior distribution). In
the case of nonparametric regression, there is no predetermined relationship
that can be ‘recovered’ in the posterior distribution. Instead, a good model
fit must be determined simply by predicting the response variable(s) given
the fitted model at different points (vectors) of the input space. With sim-
ulated data, the underlying values of the response(s) can be found at each
point (or vector), providing a comparison.

In the following subsection, the Gaussian process regression is investi-
gated with one response variable and one input variable, with three examples
of different functions relating the response variable and the explanatory vari-
able. Two extreme simulation examples are firstly considered, with the first
of these examples being the basis for adjusting the prior specification, which
will then be tested using another extreme example, where adjustments can
be made if necessary. Of course, the main aim is to adapt the prior specifi-
cation, and thus the EIV GP modelling process, to be able to cope with any
possible functional relationship. Subsequently, a less extreme example is
examined to demonstrate that the EIV GP modelling process deals with an
‘intermediate’ (and more realistic) case capably. The simulation examples
become more complex by including more input variables and more response
variables (see Section 4.3.4 for a simulation example with two inputs and one
output, and Section 4.3.5 for an example with two inputs and two outputs).

4.3.1 First simulation

The first simulation example is a linear combination of a sine curve and
exponential curve that represents the relationship between some response
variable and input variable. The simulated data is discussed firstly, fol-
lowed by a short overview of the EIV GP and the prior specification that is
assumed. The explanatory variable has ‘chosen’ true values of

X̃ = (1, 2, 3, . . . , 13),

as also fitted above in the Bayesian regression simulation examples. Ob-
served data Xi,k, for i = 1, . . . , 13 and k = 1, . . . , 7 are simulated from a
normal distribution with mean equal to X̃i and standard deviation 0.01.
The true values for the response variable, Ỹi, are simulated from a normal
distribution with mean

18 + 20 sin(X̃i) + exp(0.2X̃i) (4.3.1.1)



4.3. EIV GP ON SD 153

and standard deviation 0.1. A plot of this function is given in Figure 4.21.
Furthermore, observed data Yi,j (for j = 1, . . . , 13) are simulated from a
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Figure 4.21: A plot of the function 18+20 sin(X̃)+exp(0.2X̃) over the range
X̃ ∈ [0.5, 13.5] (before scaling).

normal distribution with mean Ỹi and standard deviation 0.1.
The model that is fitted to this simulated data is the EIV GP regression

model, where the multivariate normal distribution is assumed to relate the
true values of the response variable, with some (arbitrary) constant mean
function and covariance matrix built by a squared exponential covariance
kernel. That is, it is assumed that

Ỹ =

 Ỹ1
...

Ỹng

 ∼ Nng


α...
α

 ,

 k(X̃1, X̃1) · · · k(X̃1, X̃ng)
...

. . .
...

k(X̃ng , X̃1) · · · k(X̃ng , X̃ng)

+ σ2
ε Ing

 ,

(4.3.1.2)
where the function k represents the squared exponential covariance kernel,
which is the covariance kernel of preference in this work, defined as

k(X̃i, X̃i′) = σ2
k exp

{
−(X̃i − X̃i′)

2

2l2

}
,

where σ2
k represents some output variance, and l is the distance-scaling pa-

rameter. Note that the scaled identity matrix σ2
ε Ing in the Gaussian process

corresponds to the assumption that there is some model error between the
true values Ỹ and the functional relationship assumed by the model. Also
note that, for this multivariate normal distribution that defines the Gaussian
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process regression, its parameters are the mean vector and the covariance
matrix (as opposed to the precision matrix). The distribution in Equation
4.3.1.2 represents the EIV GP prior distribution, or EIV GP prior, where
no ‘data’ (in this case, data refers to the true, unobservable values Ỹi and
X̃i) has yet been ‘observed’. The hyperprior distributions on the hyperpa-
rameters of interest, being φ = (α, σk, l, σε), are updated based on the EIV
GP prior. The EIV GP posterior assumes that the data (i.e., the posterior
true values) are now observed, with a joint posterior distribution for the
hyperparameters and true values for each material i.

The EIV GP posterior can now be computed for each posterior sample
s, where it is assumed that Ỹs = (Ỹ1,s, . . . , Ỹng ,s) and X̃s = (X̃1,s, . . . , X̃ng ,s)
have been jointly observed, and so a distribution for the prediction of the
response variable Ỹnew,s (i.e., given joint posterior sample s of the hyperpa-
rameters and true values) at some new input value X̃new can be carried out
using the conditional distribution

Ỹnew,s|Ỹs, X̃s,φs, X̃new ∼ N(m∗s, v
∗
s), (4.3.1.3)

where

m∗s = αs + ks(X̃new, X̃s)Vs(X̃s, X̃s)
−1(Ỹs −αs) (4.3.1.4)

and

v∗s = vs(X̃new, X̃new)−ks(X̃new, X̃s)Vs(X̃s, X̃s)
−1ks(X̃new, X̃s)

T . (4.3.1.5)

Note that the covariance between the new input value X̃new and posterior
sample s of the true explanatory variable X̃s is given by

ks(X̃new, X̃s)
T =

 ks(X̃new, X̃1,s)
...

ks(X̃new, X̃ng ,s)

 ,

with the subscript s on the covariance kernel function k implying that pos-
terior sample s for the hyperparameters replaces their respective general
terms. Moreover, the matrix Vs(X̃s, X̃s) is equivalent to the matrix in the
GP prior, but corresponds to posterior sample s for the relevant parameters,
i.e.,

Vs(X̃s, X̃s) = Ks(X̃s, X̃s) + σ2
ε,sIng

where

Ks(X̃s, X̃s) =

 ks(X̃1,s, X̃1,s) · · · ks(X̃1,s, X̃ng ,s)
...

. . .
...

ks(X̃ng ,s, X̃1,s) · · · ks(X̃ng ,s, X̃ng ,s)

 .
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Finally, the variance at X̃new is given by vs(X̃new, X̃new) = σ2
k,s + σ2

ε,s, since

ks(x, x) = σ2
k,s for any x ∈ R. This conditional distribution is built from the

joint distribution


Ỹ1,s

...

Ỹng ,s
Ỹnew,s

 ∼ Nng+1



αs
...
αs
αs

 ,

(
Vs(X̃s, X̃s) ks(Xnew, X̃s)

T

ks(Xnew, X̃s) vs(Xnew, Xnew)

) .

Moreover, the observed data for both the response variable and the input
variable are noisy observations of their respective true values, where the
noise is attributed to measurement error, that is,

Yi,j = Ỹi + ηi,j

and

Xi,k = X̃i + δi,k,

where ηi,j ∼ N(0, τη) and δi,k ∼ N(0, τδ). Note that the parameters of these
measurement error normal distributions are the mean and the precision (as
opposed to the variance).
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Figure 4.22: Plot of the squared exponential covariance kernel k for different
values of the distance-scaling parameter l, with the signal variance σ2

k set
equal to 1.
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The specification of the prior and hyperprior distributions is

σε ∼ Gamma(aσε , bσε),

σk ∼ Gamma(aσk , bσk),

l ∼ Gamma(al, bl),

α ∼ N(0, 0.01),

X̃i ∼ N(µX , τX̃),

τη ∼ Gamma(aη, bη),

τδ ∼ Gamma(aδ, bδ),

τX̃ ∼ Gamma(aX̃ , bX̃).

(4.3.1.6)

The parameters σε and σk are standard deviations, which take gamma prior
distributions in this prior specification. While the inverse-gamma distri-
bution is the conjugate prior for standard deviation parameters (assuming
normally distributed data), the gamma distribution is chosen here due to
familiarity. As informed prior distributions are considered for the EIV GP
(see Section 4.4.4), the prior distribution is placed on the corresponding
precision term τε (where τε = 1

σ2
ε
), to be consistent with the informed prior

distribution used in the EIV Bayesian regression. The reason for placing the
prior distribution on the standard deviation σε here, as opposed to placing a
prior distribution on the precision τε, was due to the examples in the litera-
ture which focus on placing prior distributions on either the variance term of
the standard deviation term. Given the scaling of the data, the values that
are expected for the standard deviation are small (certainly much smaller
than 1), and so placing a prior on the standard deviation instead of the vari-
ance is chosen here (since the variance values are then even smaller in this
range). The measurement error precisions take gamma prior distributions
with shape and rate equal to 0.001.

Finding suitable parameters for the prior distributions of σk and l in
the covariance kernel requires careful consideration. As described in Section
3.5.1, particularly for the distance-scaling parameter l, these are both largely
dependent on the scale of the data, and so they need to be investigated
further for this case of data scaling, onto the range [0,1].

The aim of the covariance kernel is to inform the GP about the spa-
tial correlation within the input variable(s). If two input values are close
together, then this suggests to the GP (a priori) that the corresponding
output values are close together. Given the data is scaled onto the range
[0,1], and that the squared exponential kernel (ignoring the signal variance
σ2
k) covers the range [0,1] (with a value of 0 indicating that there is no cor-
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relation between the output values given the input values, and a value of 1
indicating that there is a large correlation between the output values given
the input values), values of l can be investigated that suggest suitable values
of the squared exponential covariance kernel, given distances between input
values. This is explored in Figure 4.22.
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Figure 4.23: Plot of four probability density functions for gamma distribu-
tions, each with mean set equal to 0.25.

While values between l = 0.2 and l = 0.5 (closer to 0.2, given that
l = 0.5 still does not cover the range of [0,1] for k) seems most appropriate
before looking at any data, the prior distribution should also not eliminate
the possibility that values such as l = 1 and l = 0.1 can occur. An ideal
prior distribution would therefore have the majority of its density between
l = 0.2 and l = 0.5, with some density at smaller and larger values of l too.
Given that it is unlikely for the data to span the entire range of [0,1], and
it is also plausible that the data span a much smaller range such as [0,0.2],
smaller values of l would be favourable. Some probability density functions
of gamma distributions with different shapes and rates are explored in Figure
4.23.

Each gamma density that is plotted in Figure 4.23 has its mean set equal
to 0.25, as this seems an appropriate estimate of l before considering any
data. The shape parameter is the parameter that changes in each of these
probability density functions, with smaller shape values shifting the density
closer to 0 (the mode of the distribution with shape 1 is 0), and larger shape
values shifting the density closer to the mean value. While the mean seems
a sensible estimate, it is sensible to keep the shape parameter fairly small,
so that the density is not heavily concentrated at the mean. There is little
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to distinguish the densities given the shape values of 1.5, 2 and 3.
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Figure 4.24: Four plots showing GP prior samples for different l, which
have been drawn from gamma distributions displayed in Figure 4.23.
The top-left plot is built with l ∼ Gamma(1, 1

0.25), the top-right with
l ∼ Gamma(1.5, 1.5

0.25), the bottom-left with l ∼ Gamma(2, 2
0.25), and the

bottom-right with l ∼ Gamma(3, 3
0.25). The input variable range is [0.01,1].

It is possible that more information could be gathered by considering
plots of samples from a GP prior, with these different shape parameters
for the distance-scaling parameter. A first attempt at this is provided in
Figure 4.24, where each plot displays 20 samples from the Gaussian process
prior, assuming a mean of 0.5 (the midpoint of the range of the data), and
covariance matrix informed by the squared exponential covariance kernel.
In each case, 20 samples have been simulated from the gamma distributions
displayed in Figure 4.23 to provide a value of l, then the squared exponential
covariance kernel is evaluated with this sample of l, σ2

k = 1, and 100 values
of an input variable ranging through [0.01,1]. Finally, one sample of the GP
prior is simulated for each sample of l.

Several observations can be drawn from the plot in Figure 4.24. Firstly,
note the samples provide a good variety of behaviours that could be sam-
pled from the GP prior, over this range. Some samples, like those samples
highlighted in red (which correspond to the largest sample of l from the
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respective gamma distribution) do not change significantly as the value of
the input variable changes. On the other hand, when one considers the GP
prior samples that correspond to the smallest values of l that are sampled
from each prior (highlighted in blue), these show how the GP prior can vary
quite appreciably even with relatively small changes in input values. There
does not appear to be much difference between the four gamma distributions
that have been considered.

A second attempt at sampling from the GP prior is considered below,
with the difference being the range of values for the input variable is adjusted
to [0.01,0.11]. The first attempt considered the maximum possible range
of values an input variable could take, given the scaling of the data. In
this second attempt, the input variable takes the minimum possible range of
values, to demonstrate how this relates to the values of l that are considered.
The analogous plot to Figure 4.24 is provided in Figure 4.25, where the range
of the input variable is [0.01,0.11].
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Figure 4.25: The analogous plot to Figure 4.24 now with the input variable
range of [0.01,0.11].

The same prior distributions for l, now over the minimum range of input
values, shows that the variety of behaviour in the GP prior samples does
not carry over from the previous case. Although this case is more extreme,
it would suggest that having more density at smaller values of l would be
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preferable if the range of input values were small. Since there seems to
be little to differentiate the priors with shape parameters 1.5, 2 and 3, the
option with shape 2 is chosen, and possible changes can be made (to either
the mean or the shape) if necessary.

The prior distribution for σk is now discussed. Note that the response
variable is scaled onto the range [0,1], and note the range of values that the
response variable can take a priori from either Figure 4.24 or Figure 4.25.
This indicates that the magnitude of the variance in the GP prior is too
large, and should be scaled to be smaller, so the gamma prior distribution
for σk needs to have almost all of its density below 1. The influence of σk
is demonstrated in Figure 4.26, with the GP prior simulated analogously to
that in Figure 4.25, but with the top-left plot fixing σk = 0.75, the top-right
plot at σk = 0.5, the bottom-left plot at σk = 0.25, and the bottom-right
plot at σk = 0.1. Within each subplot, horizontal dotted lines at Ỹ = 0 and
Ỹ = 1 are added, which are the limits of the data after scaling.
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Figure 4.26: The analogous plot to that of Figure 4.25, but with the signal
standard deviation term σk fixed at different values for each subplot—the
top-left plot fixing σk = 0.75, the top-right plot at σk = 0.5, the bottom-left
plot at σk = 0.25, and the bottom-right plot at σk = 0.1.

The plots in Figure 4.26 suggest that a value of σk = 0.5 (top-right plot)
is too large a value for σk—as this value decreases, the range of values the
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response variable can take decreases, and the range of values of the response
variable at σk = 0.5 exceeds the range for many of the GP prior samples.
A value of σk = 0.25 looks appropriate. Values of σk too close to 0 shrink
the range of the response variable in the GP prior quite excessively (see
the bottom-right plot of Figure 4.26), suggesting that a shape value of the
gamma prior distribution for σk should not be too small, and certainly larger
than 1. The mode of the gamma distribution with shape 3 and mean 0.4
(so rate of 7.5) is close to 0.25, so this seems like a good starting point.
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Figure 4.27: Four plots of the joint posterior samples of l against σε for
each of the parallel chains (top left is chain 1, top right is chain 2, bottom
left is chain 3, bottom right is chain 4), corresponding to the model fitted
with σε ∼ Gamma(1, 1

0.1), l ∼ Gamma(2, 2
0.25), σk ∼ Gamma(3, 3

0.4) and
uninformed gamma priors for measurement error precision and between-
materials precision for the input variable. These show a clear relationship
between these two parameters.

The final hyperparameters that need to be fixed are for the gamma prior
distribution on the model error standard deviation σε. Given the scaling
of the data onto the range [0,1], the maximum standard deviation value
is roughly 0.25, derived from assuming that 95% of the data lie within 2
standard deviations either side of some mean value, which can be assumed
to be 0.5 before considering data. So, the gamma prior distribution for σε
should have very little density at values greater than 0.25. Moreover, it is
expected that σε is small, and so a shape parameter of 1 (which gives a
mode of 0) is appropriate. Assuming a mean of 0.1 puts the probability of
the prior density being larger than 0.25 at 0.082 (to 3 decimal places), which
could be made smaller if deemed necessary from simulation examples (i.e.,
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thus shifting the mean closer to 0).
The EIV GP is now fitted to the simulated data introduced earlier in

Section 4.3.1, with the hyperprior distributions σε ∼ Gamma(1, 1
0.1), σk ∼

Gamma(3, 3
0.4) and l ∼ Gamma(2, 2

0.25). The MCMC output is checked for
convergence to the posterior distribution using PSRF, and shows that the
parameters l and σε have converged, but are close to 1.1, suggesting that
convergence is not secure (mean estimate of 1.06 and 1.05 and upper bound
on 95% confidence interval of the estimate of 1.08 and 1.09 respectively). A
check of the mixing of the parameters with effective sample size estimates
shows that the minimum estimate for any parameter from any chain is 47.9
(to 3 significant figures), corresponding to σε. This estimate is quite small,
relative to the posterior sample size from each chain of 20000. By definition,
the MCMC output has converged, so the samples from each parallel chain
can be combined, as they are all samples from the posterior distribution.
In the same way, the effective sample size estimates can be combined, and
provides an estimate of σε over the four parallel chains of 682. Given that
σε is close to not converging, it would suggest that there could be an issue
in the model, which is investigated further below. The minimum effective
sample size from any chain for the parameter l is 48.0, and the total effective
sample size over the four chains is 665—it is noted that the two parameters
which seem to be causing issues are σε and l.

The joint behaviour of σε and l is of interest. Four plots of the joint
posterior samples of σε and l, for each of the parallel chains, are given
in Figure 4.27. It is evident that there is some relationship here between
these two parameters—if σε is small, this forces l to be small also. This
relates back to what is observed in Figure 4.24, where smaller values of
l, like those corresponding to GP prior samples highlighted in blue in the
plots, correspond to the response variable being sensitive to small changes
in the input variable. In this simulation example, given the function that is
to be recovered (see Figure 4.21), relatively small values of l are required,
particularly with the small range on the input values (which is [0.01,0.13]
after scaling). This is also dependent on the model error standard deviation
σε—if the values of σε are larger, this allows for (but does not necessarily
restrict to) larger values of l, since more error between the fit and the true
values is allowed, which allows for more variability in the behaviour of the
GP posterior. It is noted that, for any values of σε greater than 0.075, values
of l start to vary significantly.

The differences in the variability in the behaviour of the GP posterior
is highlighted in Figure 4.28, where two plots of the GP posterior are dis-
played. This helps to determine whether alterations to the prior specification
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are required (it is plausible that the model fit is still appropriate despite the
general observation in regards to the posteriors of σε and l). The top plot
is based on 10 joint posterior samples of the hyperparameters and the true
values of both response and explanatory variables, with the restriction that
each sample of σε must be less than 0.075. The black solid line represents
the mean function of the GP posterior from these 10 samples (that is, the
mean of each element of m∗s over the 10 posterior samples, where m∗s is
vectorised and the response variable has been predicted at multiple input
values throughout the range [0.01,0.13]), with the black dotted lines repre-
senting 95% prediction intervals of the GP posterior from these 10 samples
(the prediction intervals calculated by taking the mean of each element of
m∗s and adding ±1.96 multiplied by the square root of the respective diag-
onal element from V ∗s ). The bottom plot demonstrates the same functions,
with the restriction that the 10 joint posterior samples must correspond to
samples of σε greater than 0.075. The bottom plot also includes the mean of
the GP posterior for each posterior sample considered; these are represented
by the blue lines and the orange lines.
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Figure 4.28: Two plots comparing the fit of the GP posterior in cases where
σε,s is smaller than 0.075 (top) and larger than 0.075 (bottom), correspond-
ing to the model fitted with σε ∼ Gamma(1, 1

0.1), l ∼ Gamma(2, 2
0.25),

σk ∼ Gamma(3, 3
0.4) and uninformed gamma priors for measurement error

precision and between-materials precision for the input variable.

The orange lines are noticeably different in behaviour, and provide a better
representation of the underlying simulation than the blue lines. For these
two posterior samples, the value of the distance-scaling parameter l is given
by 0.0266 and 0.0240 (to 3 s.f.). The range of values of l when considering
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the blue GP posterior means is [0.243,1.30], which demonstrates that the
smaller values of l, for this example, must be found. Clearly, the variability
in the GP posterior is much larger for the bottom plot, where σε samples are
greater than 0.075. In both cases, the red solid line represents the function
Ỹ = 18 + 20 sin(X̃) + exp(0.2X̃) (after scaling) on which the simulation
is based (in other words, the function that we want to recover in the GP
posterior). The difference in the behaviour of the GP posterior comparing
these two cases is clear, and, more importantly, the fit of the GP posterior is
far worse with larger values of σε and of l, to the extent that some samples
of the GP posterior are a straight line (i.e., not close to representing the
underlying simulation). Note that it is not a surprise that the model error
standard deviation being smaller corresponds to a better model fit.
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Figure 4.29: Four plots of the joint posterior samples of σk against σε for
each of the parallel chains, corresponding to the model fitted with σε ∼
Gamma(1, 1

0.1), l ∼ Gamma(2, 2
0.25), σk ∼ Gamma(3, 3

0.4) and uninformed
gamma priors for measurement error precision and between-materials pre-
cision for the input variable.

Before considering the joint behaviour of σk and σε, it is fair to assume
that a relationship could exist between these two parameters as they both
capture some variability in the output variable, whether it be due to signal or
due to noise. A plot of the joint posterior samples for these two parameters
from each of the four parallel chains is given in Figure 4.29.

Consider the joint posterior samples where σε is less than 0.075. This
indicates a relationship between these two variables hinted above, that as
σε increases up to this values of 0.075, the typical value of σk decreases
(interestingly, even for very small σε, close to 0, very small values of σk can
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also be recovered).
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Figure 4.30: A ‘fitted values’ plot for the EIV GP posterior given the
joint posterior distribution of the hyperparameters and true values (Ỹi, X̃i)

′,
corresponding to the model fitted with σε ∼ Gamma(2, 2

0.05), l = klσε,
σk = kσkσε, kl ∼ U(0, 60), kσk ∼ U(4, 200), and uninformed gamma pri-
ors for measurement error precision and between-materials precision for the
input variable. The black dotted line represents the mean GP posterior sam-
ple over the joint posterior samples of the hyperparameters, and the black
dotted lines represent the mean 95% prediction interval of the GP posterior
over the joint posterior samples of the hyperparameters. The uncertainty in
the true values of the response variable and input variable are demonstrated
by the 95% credible ellipses over the joint marginal posterior distribution of
each (Ỹi, X̃i)

′. The simulation is built from the function defined in Equation
4.3.1.1.

Possible alterations to either the hyperprior distributions or to the overall
parameterisation of the model (or both) could be carried out. Both possi-
bilities have been explored, carrying out various trials with adjustments to
the σε prior with the initial parameterisation then also with the reparame-
terisation, as well as adjustments to the uniform priors on the scalars kl and
kσk in the reparameterisation. These trials are detailed in Appendix B.1.

Through these trials, it is found that an appropriate prior specifica-
tion, which fits this particular example well, is with the reparameterisation
of l = klσε and σk = kσkσε, with the prior distributions kl ∼ U(0, 60),
kσk ∼ U(4, 200) and σε ∼ Gamma(2, 2

0.05). This prior specification provides
the fitted model (i.e., a plot summarising the GP posterior over the pos-
terior distribution of the hyperparameters) given in Figure 4.30. This plot
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indicates that the underlying simulation has been recovered excellently by
the EIV GP modelling.
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Figure 4.31: Posterior density of σε (left plot), l (middle plot) and σk (right
plot), corresponding to the model fitted with σε ∼ Gamma(2, 2

0.05), l =
klσε, kl ∼ U(0, 60), σk = kσkσε, kσk ∼ U(4, 200), and uninformed gamma
priors for measurement error precision and between-materials precision for
the input variable. The simulation is built from the function defined in
Equation 4.3.1.1.

For comparison with later simulation examples, the posterior densities of
σε, l and σk are provided in Figure 4.31, and the posterior densities of kl and
kσk are provided in Figure 4.32. It is noted that the choice of the upper limit
of 60 for the uniform prior on the scalar kl is, to an extent, a compromise
which will sacrifice the predictive performance of models where larger values
of l are required (i.e., where small changes in the input variable correspond
to small changes in the output variable). In these cases, the model will either
estimate the model error standard deviation to be larger than necessary, or
underestimate of the value of l, which will cause more variance at predictions
of the output variable between observations (i.e., true values) of the input
variable.

Further simulation examples are now explored, to investigate how ap-
propriate this prior specification, with the reparameterisation, is for other
examples, which represent different challenges for the EIV GP modelling.
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Figure 4.32: Posterior density of kl (left plot) and kσk (right plot), cor-
responding to the model fitted with σε ∼ Gamma(2, 2

0.05), l = klσε,
kl ∼ U(0, 60), σk = kσkσε, kσk ∼ U(4, 200), and uninformed gamma pri-
ors for measurement error precision and between-materials precision for the
input variable. The simulation is built from the function defined in Equation
4.3.1.1.

4.3.2 Second simulation

In this section, the EIV GP model is fitted to data simulated using a straight-
line relationship. The idea with fitting an EIV GP to a straight line relation-
ship is to test whether the prior specification that has been found appropri-
ate for the example in Section 4.3.1 is also appropriate for other examples
which are different in the behaviour of the functional relationships. An ex-
ample of a straight line relationship, combined with a large range of values
for the input variable and a small range of values for the output variable
(that is, a straight line with a shallow slope) provides an extreme case where
appropriate values of l are likely to be relatively much larger than in the
previous example (since small differences in the input variable correspond to
small changes in the values of the output variable, roughly speaking). The
simulation setup is detailed now to demonstrate this.

The explanatory variable has ‘chosen’ true values (rounded to 3 signifi-
cant figures) of

X̃ = (0.25, 1.04, 1.83, 2.625, 3.42, 4.21, 5, 5.79, 6.58, 7.38, 8.17, 8.96, 9.75),

which are chosen so that, after scaling, the values cover the majority of
the possible range of [0,1]. Observed data Xi,k for i = 1, . . . , 13 and k =
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1, . . . , 7 are simulated from a normal distribution with mean equal to X̃i and
standard deviation 0.01. The true values for the response variable, Ỹi, are
simulated from a normal distribution with mean

4 + 0.3X̃i (4.3.2.1)

and standard deviation 0.1. This function is chosen so that, after scaling, the
response variable covers a small range of the possible response variable values
(i.e., [0.4,0.6] covers a small subspace of [0,1]). This suggests that large
changes in the input variable account for relatively much smaller changes in
the response variable. Furthermore, observed data Yi,j are simulated from
a normal distribution with mean Ỹi and standard deviation 0.1.

The EIV GP model, with the following prior specification, is fitted to
the above set of simulated data:

σε ∼ Gamma(2,
2

0.05
),

σk = kσkσε,

l = klσε,

kσk ∼ U(4, 200),

kl ∼ U(0, 60),

α ∼ N(0, 0.01),

X̃i ∼ N(µX , τX̃),

τη ∼ Gamma(aη, bη),

τδ ∼ Gamma(aδ, bδ),

τX̃ ∼ Gamma(aX̃ , bX̃).

(4.3.2.2)

The measurement error precisions and between-materials precision take
uninformative gamma priors with shape 0.001 and rate 0.001. The EIV GP
model is fitted to this set of simulated data. The MCMC output is checked
for sufficient levels of mixing and convergence to the posterior distribution.
The effective sample size estimates show excellent levels of mixing, with the
smallest estimate for any parameter from any chain being 11610, and the
PSRF shows the MCMC output has converged to the posterior distribution,
with the largest upper bound for any parameter being 1.00 to 3 significant
figures.

Posterior densities of the key hyperparameters in the model are provided
in Figure 4.33. The main comparison here is related to the posterior density
of l (middle plot), where the model has found larger values of the parameter
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Figure 4.33: Posterior density of σε (left plot), l (middle plot) and σk (right
plot), corresponding to the model fitted with σε ∼ Gamma(2, 2

0.05), l =
klσε, kl ∼ U(0, 60), σk = kσkσε, kσk ∼ U(4, 200), and uninformed gamma
priors for measurement error precision and between-materials precision for
the input variable. The simulation is built from the function defined in
Equation 4.3.2.1.
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Figure 4.34: Posterior density of kl (left plot) and kσk (right plot), cor-
responding to the model fitted with σε ∼ Gamma(2, 2

0.05), l = klσε,
kl ∼ U(0, 60), σk = kσkσε, kσk ∼ U(4, 200), and uninformed gamma pri-
ors for measurement error precision and between-materials precision for the
input variable. The simulation is built from the function defined in Equation
4.3.2.1.
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(relative to the previous example, i.e. comparing the middle plot from Figure
4.31 to that of Figure 4.33), which were intended to be required when setting
up the example. The signal standard deviation σk has a relatively similar
posterior density to that of the previous example, with mild differences
between the maximum posterior value, and more density concentrated at
smaller values of σk in this second example (comparing the bottom plot
of Figure 4.31 to the bottom plot of Figure 4.33). Finally, the posterior
densities of the model error standard deviation σε are comparable between
Figures 4.31 and 4.33 (top plot).
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Figure 4.35: A ‘fitted values’ plot for the EIV GP posterior given the joint
posterior distribution of the hyperparameters and true values (Ỹi, X̃i)

′, cor-
responding to the model fitted with the prior specification from Equation
4.3.2.2. This plot is analogous to that of Figure 4.30 for the simulation built
from the function defined in Equation 4.3.2.1.

The posterior densities of the scalar values kl and kσk are provided in
Figure 4.34. The posterior density of kl is particularly noteworthy, and
not a surprise, given the suspected sacrifice that was discussed while fitting
the EIV GP model to the first simulation, where it seemed necessary for
the upper bound of the uniform prior for kl to be restricted to 60. In
this simulation case, it was suspected that values of l needed to be large
in order to be appropriate, and so it is unsurprising that the majority of
the posterior density for kl is towards the upper limit of 60 for the prior
distribution, and there is zero density at values smaller than roughly 10.
To this extent, if this simulation was considered in isolation, there would
appear to be justification to increase the upper bound of the uniform prior
on kl. With respect to what is observed in the cases of fitting the model to
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the first simulation with either kl ∼ U(0, 80) or kl ∼ U(0, 100) as the prior,
this is not advised. This nonparametric method is most likely to be applied
to cases where it is expected (or seems visually clear from preliminary data
plotting) that a nonlinear function may relate an output variable to an input
variable. In these cases, the nonlinearity is likely to demand smaller values
of l, and so the priors have been adjusted accordingly.

The GP posterior plot for this simulation is now provided in Figure
4.35. The GP posterior mean (black solid line) appears to be very suitable.
It could be argued that the uncertainty in the GP posterior is larger than
desired given the clear relationship between the response variable and input
variable, and this has been somewhat compromised by the prior specification
which caters for those model fits in which smaller values of l are required.

This prior specification is now explored on the intermediate example to
demonstrate that the modelling process has been suitably trained.

4.3.3 Third simulation

Following the two extreme simulation examples considered in the previous
two subsections, this simulation example here is developed to be an inter-
mediate example between the two extremes, with a simulation function that
should be easier to recover for the EIV GP model. This is due to the com-
bination of the location of the ‘chosen’ true values of the input variable,
and the behaviour of the underlying function. The underlying function is a
linear combination of sine and exponential curves, as in Section 4.3.1, but
with adjustments to the function, so as to satisfy the reasons stated above.

The ‘chosen’ data for this simulation are now discussed. The chosen true
values (before scaling) for the input variable that are to be recovered in the
posterior distribution are (to 3 significant figures)

X̃ = (2.50, 2.92, 3.33, 3.75, 4.17, 4.58, 5, 5.42, 5.83, 6.25, 6.67, 7.08, 7.50).

The observed data for each group i are simulated from a normal distribution
with mean X̃i and standard deviation 0.1. The ‘chosen’ true values Ỹi for
the output variable are simluated from the normal distribution with mean

0.55(80 sin(X̃i) + exp(0.4X̃i) + 80) (4.3.3.1)

and standard deviation 0.5. This function (without any noise, and before
scaling) is plotted in Figure 4.36.

Using the prior specification defined in Equation 4.3.2.2, the EIV GP
modelling is fitted to this example. Firstly, the MCMC output is checked
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Figure 4.36: A plot of the function 0.55(80 sin(X̃) + exp(0.4X̃) + 80) over
the range X̃ ∈ [2.5, 7.5] (before scaling).

for convergence using PSRF, which suggests the largest upper bound for any
parameter is 1.00 to 2 decimal places and confirms that the MCMC output
has converged to the posterior distribution. The smallest effective sample
size of any parameter from any parallel chain is 4652, suggesting that there
is sufficient mixing withing the parallel chains and the posterior samples are
sufficiently uncorrelated.

The model parameters are now considered. Plots of the posterior den-
sities for σε (top plot), l (middle plot) and σk (bottom plot) are provided
in Figure 4.37. There does not seem to be any issues with the posterior
densities here. Comparing the posterior densities here with those in Figure
4.31, it is noted that the values being found for l are significantly larger (by
a factor of 10) than those found in the first simulation example, as expected
given the function on which this simulation is based. The values of σk cap-
tured in this simulation fit appear to be slightly larger than those found in
the first simulation example.

The posterior densities of the scalars kl and kσk are considered in Figure
4.38. Notably, in comparison with the posterior densities found in the first
example (see Figure 4.32), the uniform prior of U(0,60) for kl is explored
to its full extent here, with a significant proportion of posterior density
measured between values of 30 and 50, and still some density at values close
to 60. In a similar vein, the posterior density of kσk in this example has much
more density at larger values of kσk , compared with the posterior density
found in Figure 4.32.

The consideration of the GP posterior plot corresponding to this model
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Figure 4.37: Posterior density of σε (top plot), l (middle plot) and σk (bot-
tom plot), corresponding to the model fitted with σε ∼ Gamma(2, 2

0.05),
l = klσε, kl ∼ U(0, 60), σk = kσkσε, kσk ∼ U(4, 200), and uninformed
gamma priors for measurement error precision and between-materials preci-
sion for the input variable. The simulation is built from the function defined
in Equation 4.3.3.1.
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Figure 4.38: Posterior density of kl (top plot) and kσk (bottom plot),
corresponding to the model fitted with σε ∼ Gamma(2, 2

0.05), l = klσε,
kl ∼ U(0, 60), σk = kσkσε, kσk ∼ U(4, 200), and uninformed gamma priors
for measurement error precision and between-materials precision for the in-
put variable. The simulation is built from the function defined in Equation
4.3.3.1.
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fit, given in Figure 4.39, provides a clear indication that the response variable
is well estimated by this EIV GP fit.
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Figure 4.39: A ‘fitted values’ plot for the EIV GP posterior given the joint
posterior distribution of the hyperparameters and true values (Ỹi, X̃i)

′, cor-
responding to the model fitted with the prior specification from Equation
4.3.2.2, corresponding to the simulation built from the function defined in
Equation 4.3.3.1.

Although only three examples are considered here, the EIV GP model
copes capably with the extremeness (at opposite ends) of two of the exam-
ples, which provides confidence that any intermediate examples, like the one
demonstrated in this section, should also be fitted well by the EIV GP with
this prior specification. At the very least, these examples provide a solid
starting point, and possible adjustments (which could be further explored)
are introduced and justified with these examples. While the quality of the
model fit for these examples is easily assessed by comparing with the under-
lying simulation, this is clearly not possible when working with real-world
data. In the case of working with real data, such as in Section 4.4.2, the
method of mixed LOO-CV-IC will be applied to assess the out-of-sample
predictive performance of the EIV GP.

In the following section, the EIV GP modelling is extended to consider
multiple input variables.

4.3.4 Multiple explanatory variables

The content of Section 3.5.3 is briefly summarised here, to remind the reader
of the multi-input EIV GP.
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Consider again the error-prone data Yi,j , X1,i,k and X2,i,k (that is, the
observed replicate measurements X1,i,k and X2,i,k for a given material i and
replicate measurement k are carried out in identical experimental conditions,
e.g. using the same subsample of powder i), which are of the form

Yi,j = Ỹi + ηi,j ,

with ηi,j ∼ N(0, τη), and(
X1,i,k

X2,i,k

)
=

(
X̃1,i

X̃2,i

)
+

(
δ1,i,k

δ2,i,k

)
,

with (
δ1,i,k

δ2,i,k

)
∼ N2

((
0
0

)
, Tδ

)
.

The multi-input EIV GP prior assumes that the true values for each group
of the response variable are multivariate normally distributed, with some
mean vector m(X̃) = α = (α, . . . , α) ∈ Rng and some covariance matrix
V (X̃, X̃) = K(X̃, X̃) + σ2

ε Ing , where

K(X̃, X̃) =

 k(X̃,1, X̃,1) · · · k(X̃,1, X̃,ng)
...

. . .
...

k(X̃,ng , X̃,1) · · · k(X̃,ng , X̃,ng)

 ,

for some covariance kernel function k. Note that the vector X̃,i = (X̃1,i, X̃2,i)
′,

i.e. the true values for group i for the two input variables. The preference
in this work is to implement a squared exponential automatic relevance de-
termination kernel, denoted here as SE-ARD, which provides each input
variable with its own distance-scaling parameter ld, for d = 1, 2, in this case.
The signal covariance parameter σ2

k is also included in the SE-ARD kernel
in this work, giving the function

kARD(X̃,i, X̃,i′) = σ2
k exp

{
−1

2

2∑
d=1

(X̃d,i − X̃d,i′)
2

l2d

}
,

which is used as the function k to compute the covariance kernel matrix
K(X̃, X̃). Predictions of the response variable Ỹnew for some new true values
X̃new = (X̃1,new, X̃2,new) can be found using the EIV GP posterior, given a
large random sample of the posterior distribution of the hyperparameters
φ = (α, σk, σε, l1, l2) and the existing true values Ỹ and X̃ =

(
X̃1 X̃2

)
. In
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this case, the EIV GP posterior given some posterior sample s provides a
sample for the distribution of predictions of Ỹnew, given by the conditional
distribution

Ỹnew,s|Ỹs, X̃1,s, X̃2,s,φs, X̃new ∼ N(m∗s, v
∗
s),

where

m∗s = ms(X̃new) +Ks(X̃new, X̃s)Vs(X̃s, X̃s)
−1(Ỹs −ms(X̃s))

and

v∗s = vs(X̃new)−Ks(X̃new, X̃s)Vs(X̃s, X̃s)
−1Ks(X̃s, X̃new).
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Figure 4.40: A contour plot representing the relationship between the re-
sponse variable and the two input variables corresponding to that defined in
Equation 4.3.4.1. The contours represent values of the response variable, the
horizontal axis represents values of the first input variable, and the vertical
axis represents values of the second input variable.

The subscript s refers to joint random sample s from the joint posterior dis-
tribution p(θ|Y,X1, X2), where the matrices Ks(X̃new, X̃s) and Vs(X̃s, X̃s)
are produced by the covariance kernel function kARD,s given the joint ran-
dom sample s for its parameters. Similarly, the covariance of the vector of
new true values, vs(X̃new) is given by σ2

ε,s + σ2
k,s. Moreover, the vector Ỹs

is joint random sample s of the true values for the response variable, and
the matrix X̃s ∈ Rng×2 is the joint random sample s of the true values for
the two input variables. So, for each posterior sample s, a distribution sum-
marises the prediction of the response, and one sample of the prediction is
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taken from each EIV GP posterior to provide the complete distribution of
predictions p(Ỹnew|Ỹ , X̃1, X̃2,φ, X̃new).

An example of fitting the multi-input EIV GP to simulated data is now
considered. This simulation is, in a sense, a combination of two of the
simulations considered in the single-input EIV GP case, from Sections 4.3.1
and 4.3.3. The chosen true values for the first input variable are X̃1,i = i for
i = 1, . . . , 13, and the second input variable has chosen true values of X̃2 =
(1, 3, 4, 5, 7, 8, 7, 4, 3, 2, 5, 6, 9) (both before scaling). Their observed data
(X1,i,k, X2,i,k)

′ is jointly simulated from a normal distribution with mean
(X̃1,i, X̃2,i)

′ and covariance matrix built from marginal standard deviations
of 0.01 and correlation 0.35. The true values of the response variable, Ỹi,
are then simulated from the equation

Ỹi = 0.3(80 + 80 sin(X̃1,i) + exp(0.55X̃2,i)) + εi, (4.3.4.1)

where the chosen true values are given for X̃1,i and X̃2,i, then the model error
term εi is simulated from a normal distribution with mean 0 and standard
deviation 0.1. This relationship (after scaling), defined in Equation 4.3.4.1,
is plotted as a contour plot in Figure 4.40.

Finally, the replicate observations Yi,j of the response variable are sim-
ulated from the normal distribution with mean Ỹi and standard deviation
0.1.

Issues are discovered in this example relating to the joint posterior den-
sities of l1 and σε, as were previously observed in the single-input-variable
case from Section 4.3.1. A suitable resolution, which was also investigated
in the EIV BR example with two input variables and a full quadratic linear
predictor (see Section 4.2.5), was to adjust the prior distributions for the
between-materials precision and the measurement-error precision based on
the data being scaled onto [0,1]. An adjustment to the prior distribution of
the GP mean, α, was also implemented given the same justification. Fur-
ther investigation of these adjustments to the prior specification is given in
Appendix B.2, with the model fit corresponding to the chosen prior specifi-
cation examined here.

The prior distributions for τη, Tδ and TX̃ are therefore adjusted to τη ∼
Gamma(1, 6.57 × 10−4), Tδ ∼ Wishart(Sδ, 2) and TX̃ ∼ Wishart(SX̃ , 2),
with Sδ = 1522.07I2 and SX̃ = 15.3664I2. These derivations are discussed
in Section 4.2.5. This leads to an appreciable reduction in the prevalence
of the σε and l1 issue, where this model in previous attempts (as well as in
the single-input EIV GP case) produced posterior density at larger values
of σε, which coincided with more variance in the posterior samples of l1.
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Figure 4.41: Four plots of the GP posterior for the two-input EIV GP
simulation, where each plot corresponds to predictions of the GP posterior
in different lines of the 2D input space. The top-left plot corresponds to the
line X2 = 20

3 X1 + 1
30 with X1 ∈ [0.01, 0.13]; the top-right plot corresponds

to the line X2 = −20
3 X1 + 29

30 with X1 ∈ [0.01, 0.13]; the bottom-left plot
corresponds to the line X1 = 0.07 with X2 ∈ [0.1, 0.9]; the bottom-right
plot corresponds to the line X2 = 0.5 with X1 ∈ [0.01, 0.13]. In each plot,
the solid black line represents the mean of the GP posterior, the dotted
black line represents a 95% prediction interval for the GP posterior, and the
red line represents the values of the response variable from the underlying
simulation.
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While this issue is not completely eliminated, it is noted that 0.164% of the
posterior samples of σε are greater than 0.075, which has been deemed here
to be negligible. With sufficient mixing and convergence to the posterior
both observed, the model fit is considered to be appropriate.

Four plots of the fitted model for this two-input EIV GP example are
provided in Figure 4.41, where the predictions of the output variable (verti-
cal axis) are demonstrated for different lines within the 2D plane of possible
input variables. The top-left plot corresponds to the line X2 = 20

3 X1 + 1
30

with X1 ∈ [0.01, 0.13] (and X1 represented on the horizontal axis); the top-
right plot corresponds to the line X2 = −20

3 X1 + 29
30 with X1 ∈ [0.01, 0.13]

(and X1 represented on the horizontal axis); the bottom-left plot corre-
sponds to the line X1 = 0.07 with X2 ∈ [0.1, 0.9] (and X2 represented on
the horizontal axis); the bottom-right plot corresponds to the line X2 = 0.5
with X1 ∈ [0.01, 0.13] (and X1 represented on the horizontal axis). In each
plot, the solid black line represents the mean of the GP posterior, the dotted
black line represents a 95% prediction interval for the GP posterior, and the
red line represents the values of the response variable from the underlying
simulation. A plot of these lines with the joint marginal posterior densities
(represented by 95% credible ellipses) for the true values of the input vari-
ables for each group i is provided in Figure 4.42, to give an indication as to
the changes in variability in the GP posterior.

The GP posterior predicts the response variable appropriately given the
information supplied to the model (i.e., the true values of the response vari-
able and input variables). For example, in the top-left plot of Figure 4.41,
the GP posterior shows confidence in its predictions of the response variable
for values close to X1 = 0.01 (and therefore X2 = 0.1) and X1 = 0.13 (and
therefore X2 = 0.9), which is logical given the corresponding line intersects
the true values of Groups 1 and 13 in the plot in Figure 4.41. Conversely,
there is significant uncertainty in the predictions of the response variable
in the top-right plot at smaller values of X1, such as X1 = 0.01, with the
corresponding value of X2 being 0.9 – evidently from Figure 4.41, there are
no groups in this vicinity, hence the GP posterior has not learned about the
behaviour of the function in this region.

The following section consider the extension of the single-output Gaus-
sian process to the multi-output Gaussian process.

4.3.5 Multi-output EIV GP

The multi-input EIV GP is extended to multiple output variables, providing
the multi-output EIV GP (often referred to here as EIV MOGP). The theory
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Figure 4.42: A plot showing the joint marginal posterior densities, for each
group, of the true values for the pair of input variables in the two-input EIV
GP example, for comparison with the four lines which are used for comparing
predictions of the response variable with the underlying simulation.

of this regression model is covered in Section 3.5.5, and a summary of the
content is covered here as a reminder, with two output variables and two
input variables.

Naturally, consider the true values of groups i = 1, . . . , ng for the two
output variables Ỹ1,i and Ỹ2,i, and for the two input variables X̃1,i and X̃2,i.
Relating the true values for the response variables to those of the input
variables, while accounting for any correlation between the true values Ỹ1,i

and Ỹ2,i, is carried out in this work using a linear model of coregionalisation
multi-output GP. Defining the matrix of true values for the output variables
as Ỹ ∈ Rng×2, the vectorisation of these output variables stacks the true
values for the first output variable on top of the true values for the second
output variable, giving the vector vec(Ỹ ) = (Ỹ1,1, . . . , Ỹ1,ng , Ỹ2,1, . . . , Ỹ2,ng)

′.
This vector of true values is then assumed to be multivariate normal, with
mean (α1,α2)′, and covariance matrix

VMOGP,X̃ = VK,1 ⊗K1(X̃, X̃) + VK,2 ⊗K2(X̃, X̃) +

(
σ2
ε1Ing 0ng×ng

0ng×ng σ2
ε2Ing

)
,

that is,

vec(Ỹ ) ∼ N2ng

((
α1

α2

)
, VMOGP,X̃

)
. (4.3.5.1)

A summary of the key features of the EIV MOGP is provided below:
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• The mean of the distribution is set up to assume that the mean of
the first output variable (for each true value) is not necessarily the
mean of the second output variable (for each true value), hence the
introduction of the vectors α1,α2 ∈ Rng

• The Kronecker product A⊗B between two matrices A and B is infor-
mally defined to be a matrix whose dimensions are the products of the
dimensions of A and B (number of rows of A⊗B given by the product
of the number of rows of A and the number of rows of B, for exam-
ple), and each ‘block’ matrix of A ⊗ B is the product between each
individual element of the first matrix and the entirety of the second
matrix, which produces a block matrix with the same dimensions of
B. The Kronecker product is defined more formally in Section 3.5.5.

• the matrices VK,1 and VK,2 are defined to be

VK,1 =

(
σ2
k1

σk1σk2ρVK
σk1σk2ρVK σ2

k2

)
(4.3.5.2)

and

VK,2 =

(
λ2

1σ
2
k1

λ1σk1λ2σk2ρVK
λ1σk1λ2σk2ρVK λ2

2σ
2
k2

)
, (4.3.5.3)

respectively. That is, these represent signal covariance matrices for
the two output variables. This firstly means that, the signal variance
term that has been included in the covariance kernel function for the
single-output EIV GPs, is moved into these matrices the EIV MOGP,
and secondly, that there are two covariance kernel matrices considered
in this model. Note also that it is assumed that there is a relationship
between the elements of VK,1 and VK,2.

• The covariance kernel matrix K1(X̃, X̃) is defined to be

K1(X̃, X̃) =

 k1,ARD(X̃,1, X̃,1) · · · k1,ARD(X̃,1, X̃,ng)
...

. . .
...

k1,ARD(X̃,ng , X̃,1) · · · k1,ARD(X̃,ng , X̃,ng)

 ,

where

k1,ARD(X̃,i, X̃,i′) = exp

{
−1

2

2∑
d=1

(X̃d,i − X̃d,i′)
2

l21,d

}
.
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The covariance kernel matrix K2(X̃, X̃) is similarly defined, with l2,d
replacing l1,d. Note again that the signal standard deviation term has
been dropped from the function k1ARD, and is moved across to the
matrix VK,1 (and similarly with k2,ARD and VK,2).

• Separate model error standard deviation terms are assumed for each
response variable, leading to σε1 and σε2 .

The above outlines the EIV MOGP prior distribution and its hyperpa-
rameters. After estimating the hyperparameters, the EIV MOGP posterior
distribution can be considered for the purpose of jointly estimating the out-
put variables for a given input vector of true values X̃new. Given joint
posterior sample s of the hyperparameters φ, the prediction of the response
variables at the input vector X̃new, p(Ỹnew,s|Ỹs, X̃s,φs, X̃new), is bivariate
normally distributed with mean m∗s and covariance matrix V ∗s , i.e.,

Ỹnew,s|Ỹs, X̃s,φs, X̃new ∼ N2(m∗s, V
∗
s ) (4.3.5.4)

where

m∗s = (α1,s, α2,s)
′ +Ks(X̃new, X̃s)V

−1
MOGP,X̃,s

(vec(Ỹs)− (α1,s,α2,s)
′),

(4.3.5.5)
and

V ∗s = SMOGP,X̃new,s
−Ks(X̃new, X̃s)V

−1
MOGP,X̃,s

Ks(X̃s, X̃new). (4.3.5.6)

As in previous cases, the subscript s refers to joint posterior sample s from
the hyperparameter posterior distribution of φ, and any function which de-
pends on the hyperparameters (or true values) is evaluated at the joint poste-
rior sample s of the relevant parameters. The covariance matrix VMOGP,X̃new,s
is analogous to that of VMOGP,X̃,s, replacing the joint posterior sample s of

the true values of the input variables with the new true vector X̃new. The
matrix Ks(X̃new, X̃s) is defined to be

Ks(X̃new, X̃s) = VK,1,s ⊗K1,s(X̃new, X̃s) + VK,2,s ⊗K2,s(X̃new, X̃s),

and finally, Ks(X̃s, X̃new) = Ks(X̃new, X̃s)
T . The distributions of the pre-

dictions of the response variable for each joint posterior sample s are sum-
marised to produce the overall distribution of the predictions of the response
variable p(Ỹnew|Ỹ , X̃,φ, X̃new) by sampling once from the EIV GP posterior
for each s = 1, . . . , S, and calculating the mean over those samples and 95%
prediction intervals over those samples.
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Figure 4.43: Joint predictions of the output variables given the lines
X2 = 2

3X1 + 1
30 (first row) and X2 = −2

3X1 + 29
30 (second row). The predic-

tions of the first output variable are given in column 1, and for the second
output variable in column 2. The solid black lines provides the mean of the
predictions, the dotted black lines provide 95% prediction intervals, and the
red lines provide the underlying values of the output variables provided by
the simulation function.
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The prior distributions for the hyperparameters are considered here.
Most notably, the reparameterisation that has been considered in previous
subsections is not considered here. This is due to the fact that two model er-
ror standard deviation parameters now exist, and so the relationship between
the distance-scaling parameters l1,1, l1,2, l2,1, l2,2 and the standard deviations
σε1 and σε2 is not as clear. Further investigation into possible relationships
could be performed by considering more examples. Instead, each distance-
scaling parameter takes the prior distribution Gamma(2, 2

0.25). The use of
the reparameterisation σk1 = kσk1σε1 (and similarly for the second output
variable) could be justified, but is not considered here; instead, σk1 and σk2
take the prior distribution Gamma(3, 3

0.4). Logically, the means α1 and α2

take the weakly informed prior distribution used for α in the single-output
case. For the precision parameters τη1 , τη2 , Tδ and TX̃ , the weakly informed
priors that were developed previously are also assumed here. Furthermore,
the correlation parameter ρVK in the signal covariance matrices VK,1 and
VK,2 takes a uniform prior over the range [-1,1] and the scalars λ1 and λ2 of
the signal standard deviations σk1 and σk2 respectively take uniform priors
over the range [0,5].

The simulated data that is used here to fit the EIV MOGP is built using
the multi-input EIV GP simulation example covered in Sections 4.3.4 for
the first output variable, and a second function to describe the relationship
between the second output variable and the two input variables is detailed
below. That is, the true values chosen for the matrix X̃ ∈ Rng×2 and the
respective observed data are carried over to this simulation from Section
4.3.4. Furthermore, the true values for the response variables, given by Ỹ1,i

and Ỹ2,i for i = 1, . . . , ng are simulated from the equations

Ỹ1,i = 0.3(80 + 80 sin(X̃1,i) + exp(0.55X̃2,i)) + ε1,i, (4.3.5.7)

and
Ỹ2,i = 3(60 + (X̃1,i − 10)2 − 0.9(X̃2,i − 5)3) + ε2,i, (4.3.5.8)

with the first function taken from Section 4.3.4. Similarly, the observed data
for both variables are simulated as in Section 4.3.4, with standard deviation
0.1.

As in Sections 4.3.1 and 4.3.4, there are issues with the posterior density
of the model error standard deviation, in this case with σε1 , for which an
appropriate solution is difficult to find. A discussion of the issue in more
detail is given in Appendix B.3. An improvement in the model fit was
observed with a rescaling of the observed data for first input variable; that is,
in previous sections, the observed data that are simulated from the ‘chosen’
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Figure 4.44: Joint predictions of the output variables given the lines X2 =
0.5 (first row) and X1 = 0.7 (second row). The predictions of the first
output variable are given in column 1, and for the second output variable
in column 2. The solid black lines provides the mean of the predictions, the
dotted black lines provide 95% prediction intervals, and the red lines provide
the underlying values of the output variables provided by the simulation
function.
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true values, given by

X̃1 = (1, 2, . . . , 13),

were divided by 100, so that all the observed data lied in the interval [0,1].
Adjustments had been made in previous sections to prior distributions in
the model, in order to accommodate for this awkward scaling. In this case,
the adjustment was made to divide the observed data points by 10 instead of
100. Ultimately, this means that the required values of the distance-scaling
parameter for the first input variable are now 10 times larger, which leads to
samples that are more accessible in the prior distribution Gamma(2, 2

0.25).
Despite being able to overcome the difficulties in previous cases, the issues
with this extreme case, where such small values of the distance-scaling pa-
rameter are required in the posterior distribution, persist in the EIV MOGP.
What this example demonstrates is that the data-scaling process applied in
this work is possibly suboptimal for the EIV GP, and a more preferable
method should be sought. While the manual override of the data-scaling
process was applied here, and provides a suitable estimate of the two func-
tional relationships from the underlying simulation, a data-scaling process
which scales the data onto the range [0,1] more appropriately would be ben-
eficial.

A demonstration of the fitted model for the EIV MOGP is provided in
Figures 4.43 and 4.44, and shows that the overall modelling process can
capably estimate two functional relationships simultaneously. As with the
single-output, multi-input EIV GP example from Section 4.3.4, the reason
for the variation in the predictions for certain input vectors relative to other
input vectors is due to the the relative distance between the ‘new’ input vec-
tor and the existing input vectors. Since this simulation and the simulation
from Section 4.3.4 consider the same underlying input vectors (which are
both estimated to an almost identical level), the variance in the predictions
of the response variables for given input vectors can be related to the plot
of the posterior true input values from Figure 4.42, where the dotted lines
represent the input vectors that are used to predict the response variables
here.

4.4 Powder flow data

This section now considers real-life data, relating to powder flow and powder
bed deposition. The data relates to the variables introduced in Chapter 2,
with specific references to Section 2.1.2 for tapped density (TD), Section
2.1.3 for angle of repose (AoR), and Section 2.1.4.
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A reminder of how the data were collected is provided here. For each
variable, data has been collected for seven powders. For each powder, three
replicate measurements were taken for all variables except for angle of re-
pose (five replicate measurements), with a different subsample of powder
used for each replicate measurement. In the case of three of the explana-
tory variables, being conditioned bulk density (CBD), specific energy (SE),
and basic flowability energy (BFE), which are all variables measured from
the FT4 powder rheometer, replicate measurement k for each variable has
been measured on the same subsample of powder. There are two response
variables and seven explanatory variables in total.

4.4.1 EIV Bayesian regression, uninformed priors

The work carried out in this section focuses on the application of EIV BR
models to the real data, with the use of uninformed prior distributions on
the parameters in the model. The reason for considering the uninformed
prior distributions here is to provide some comparison between the cases in
the following sections that consider the informed prior distributions, which
will highlight the benefits of considering a more complete version of Bayesian
modelling.

With uninformed prior distributions, the posterior distribution of the
model parameters is heavily influenced by the available data. In this sense,
the posterior distributions of the models in this section provide results in
the case where only data is considered as a source of information for the
model. It is true in any case that fitting a model to a small sample of data
should be approached with care, and conclusions that are drawn from the
model inference should highlight the issue of a small sample size.

In a typical statistical modelling process, a visual inspection of the data
is carried out initially as an exploration of the data set. This is not advised
here, as there is no one-to-one correspondence between the observations of
the response variable(s) and the observations of the explanatory variable(s).
As an alternative, the simple linear EIV BR model is fitted with each re-
sponse variable and each explanatory variable in turn, to provide some initial
insight into potential relationships between the variables, since the true val-
ues for each powder for both the response and explanatory variable can
be plotted in terms of 95% credible ellipses over the posterior distribution.
Simultaneously, the model coefficients are estimated, and so these models
can also be compared using approximate LOO-CV-IC. Figure 4.45 displays
seven plots of seven fitted simple linear models, with TD as the response
variable in each case, and the seven explanatory variables taken in turn as
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the sole explanatory variable in the model.
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Figure 4.45: EIV BR fitted models with TD as the response variable, and
(working row-wise) (1) pressure drop, (2) tapped consolidation, (3) com-
pressibility %, (4) aeration variable, (5) CBD, (6) SE and (7) BFE as the
explanatory variable. The ellipses represent 95% credible ellipses for (Ỹi, X̃i)
for each powder, the solid black line represents the posterior mean model fit,
and the black dotted lines represent 95% prediction intervals for the model
fit. The models here are fitted with uninformed prior distributions.

The seven ellipses in each plot correspond to 95% credible ellipses of
the true values Ỹi and X̃i for each powder i = 1, . . . , 7 (i.e., the marginal
joint distributions of each (Ỹi, X̃i) for each powder i), the solid black line
represents the posterior mean model fit (i.e., the fitted values of the response
variable within the range of possible true values for the input variable),
and the dotted black lines represent 95% prediction intervals for the model
fit. The most notable plot is that in the first column, second row, which
corresponds to the model with CBD as the explanatory variable. This clearly
indicates a strong positive relationship is quite likely between TD and CBD.
There is some possibility of a weak negative relationship between TD and SE
(second column, second row)—outside of these two plots, it is clear there is
not much influence from the explanatory variables on the response variable.
This is supported further by Table 4.5, which indicates that the model with
the best predictive performance with TD as the response variable is with
CBD as the explanatory variable.

The initial investigation of TD from above is also carried out here with
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Explanatory variable PSIS-LOO-CV-IC

Pressure drop -22.1

Tapped consolidation -23.1

Compressibility % -23.1

Aeration variable -22.0

CBD -32.9

SE -26.1

BFE -22.9

Table 4.5: PSIS-LOO-CV-IC (mean estimates) for the models with TD as
the response variable, and each explanatory variable considered in turn in
an EIV simple linear model. The best-fitting model, highlighted in green, is
given by the model with CBD as the input variable. The models here are
fitted with uninformed prior distributions.
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Figure 4.46: The analogous plot to Figure 4.45 with AoR as the response
variable.
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AoR as the response variable. The analogous plots to those in Figure 4.45
are given for AoR in Figure 4.46, and the analogous table to Table 4.5 is
given for AoR in Table 4.6. From the plots in Figure 4.46, there appears to
be two explanatory variables that could have some relationship with AoR,
being tapped consolidation (row 1, column 2), and SE (row 2, column 2)—
with tapped consolidation, there is much more uncertainty in the model fit,
relative to the uncertainty with SE as the input variable. While there is
significant uncertainty in the prediction intervals, there could possibly be
a strong negative relationship between CBD and AoR. There is sufficient
evidence from Table 4.6 that the model with SE as the explanatory variable
is the best-fitting model of those with a single input variable.

The investigation of the forward modelling with the uninformed prior
distributions is taken a step further, by comparing the two best-fitting mod-
els for each response variable in turn (i.e., the univariate regression models
considered above) with all possible two-covariate models in each case. That
is, the model with TD as the response variable is fitted against the possible
two-covariate models, where CBD will always be chosen as one of the two
covariates. For TD as the response variable, this shows that the inclusion
of any further explanatory variables does not improve the predictive per-
formance of the model compared with the model with just CBD, and so
a forwards variable selection with the uninformed priors suggests a model
with just CBD as the explanatory variable. Similarly, the inclusion of any
explanatory variable alongside SE for the model with AoR as the response
variable does not improve the predictive performance of the model over the
model with just SE as the input variable, and so a forwards variable selection
suggests a model with SE as the input variable.

Considering each response variable in turn with univariate regressions
provides some information although a more accurate representation of the
modelling situation is given by considering the bivariate regression models
with TD and AoR as the two response variables. Given the information
provided above from the univariate cases, there is a suggestion that the
best-fitting model for the bivariate regression would be with CBD and SE
as the two inputs variables. This is investigated briefly by considering a
backwards variable selection, which is also carried out in the case of fitting
with informed prior distributions in Section 4.4.3.

As described in Section 3.4, the backwards variable selection takes the
full model to be that with all seven possible explanatory variables included,
whose model fit is compared with the seven models that can be fitted where
each explanatory variable is removed in turn. The best-fitting model of these
eight models, based on the smallest value of approximate LOO-CV-IC, is
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Explanatory variable PSIS-LOO-CV-IC

Pressure drop -16.7

Tapped consolidation -19.7

Compressibility % -16.9

Aeration variable -16.5

CBD -18.8

SE -25.0

BFE -17.1

Table 4.6: PSIS-LOO-CV-IC (mean estimates) for the models with AoR as
the response variable, and each explanatory variable considered in turn in
an EIV simple linear model. The best-fitting model, highlighted in green,
is given by the model with SE as the input variable. The models here are
fitted with uninformed prior distributions.

then selected as the ‘full’ model—if the full model is the model with all seven
explanatory variables, then the backwards variable selection would be sug-
gesting that this is the best-fitting model and the variable selection process
is complete. If one of the seven models with six explanatory variables is the
best-fitting model, then this model is compared with the six models that
are fitted where each of the remaining six explanatory variables is removed
in turn. Note that this is not the definitive investigation of the forward
modelling analysis in this work—this is used as a template, with the results
being compared with those found with the informed prior distributions.

The outcome of the first round of the backwards variable selection is
provided in Table 4.7, which compares the first eight models and recom-
mends that removing the explanatory variable ‘compressibility %’ provides
the largest improvement in predictive performance, and so this model is
selected as the best-fitting model for the next round of comparisons.

The backwards variable selection continues until there is no improvement
observed by removing an explanatory variable. This occurs when considering
the three-covariate EIV BR model with tapped consolidation, CBD and
SE as the three explanatory variables. This provides some surprise, given
what was observed in Tables 4.5 and 4.6 in the univariate regression cases.
The approximate LOO-CV-IC value for this best-fitting model is -60.89,
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compared with the value of -59.53 with CBD and SE as the two input
variables. If this were the definitive case of forward modelling analysis of
this data, this would be investigated further to see whether the inclusion
of tapped consolidation really provides a worthwhile increase of predictive
performance by considering some fitted values plots. This is not carried out
here.

Explanatory variables PSIS-LOO-CV-IC

All seven -55.7

All but pressure drop -57.2

All but tapped consolidation -56.9

All but compressibility % -57.9

All but aeration variable -57.2

All but CBD -49.6

All but SE -55.0

All but BFE -56.9

Table 4.7: PSIS-LOO-CV-IC (mean estimates) for the full model with seven
explanatory variables and for the seven six-explanatory-variable models,
considering uninformed prior distributions. The best-fitting model, high-
lighted in green, is given by the model with all explanatory variables ex-
cluding compressibility %.

On a sidenote, given that the data is in the form of replicate measure-
ments for 7 groups, the relationships estimated here are effectively found
based on 7 groups—this requires care and attention when choosing a suit-
able forward model, due to possibilities of overfitting. This is discussed
further in Section 4.4.2.

4.4.2 EIV Gaussian processes, uninformed priors

Having considered the EIV BR model fitted to the real powder data using
uninformed prior distributions, the EIV GP models are now fitted to the
real powder data using uninformed prior distributions. The main reason
for considering some EIV GP model fits here is to be able to compare with
the model fits found in Section 4.4.4 to show how including informed prior
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information from experts can change the fit of a model.
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Figure 4.47: Seven fitted models with TD as the response variable, and each
input variable taken in turn as the sole input variable. The models are fitted
using EIV GPs. These plots are analogous to those in Figure 4.45, with the
fits here found using EIV GPs with uninformed prior distributions.

In the previous section, the estimated true values for the variables were
found using the EIV BR simple linear model to be able to compare the
response variable with each input variable in turn, simultaneously estimating
the model fit and carrying out a visual exploration of the data set. This is
also carried out here, and will also demonstrate some differences in model
fits between the EIV BR and the EIV GP (with uninformed priors in both
cases). The plot of single-input single-output EIV GP model fits for the
powder flow data with TD as the response variable is provided in Figure 4.47.
Similarly to the case with EIV BR, for uninformed prior distributions and
TD as the response variable (see plots in Figure 4.45), the model with the
input variable as CBD (row 2, column 1) appears to provide the best-fitting
relationship with TD, with the prediction intervals being most narrow in this
case compared with the other six model fits. The notable difference between
the model fits for the EIV GP and the EIV BR (comparing Figure 4.47 with
Figure 4.45) is the increased uncertainty in the predictions of the response
at the extreme points of each input variable (beyond their maximum and
minimum values), which is due to the nature of the nonparametric modelling.
The EIV GP model fit with pressure drop as the input variable (row 1,
column 1, Figure 4.47) appears to be the only case where the EIV GP fit
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Explanatory variable Mixed LOO-CV-IC

Pressure drop -25.1

Tapped consolidation -25.0

Compressibility % -24.2

Aeration variable -27.1

CBD -47.8

SE -32.1

BFE -24.2

Table 4.8: Mixed LOO-CV-IC (mean estimates) for the models with TD as
the response variable, and each explanatory variable considered in turn in
a single-input single-output EIV GP. The best-fitting model, highlighted in
green, is given by the model with CBD as the input variable. The models
here are fitted with uninformed prior distributions.
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Figure 4.48: Seven fitted models with AoR as the response variable, and
each input variable taken in turn as the sole input variable. These plots are
analogous to those in Figure 4.46, with the fits here found using EIV GPs
with uninformed prior distributions.
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looks more appropriate than the EIV BR model fit. This is unsurprising
given that a quadratic model fit could be justified between TD and pressure
drop, meaning the simple linear model may not be the most appropriate
parametric regression in this case.

As in Section 4.4.1, the single-input single-output EIV GP model fits
with TD as the response variable and each of the possible input variables
taken to be the sole input variable are compared using an approximate form
of LOO-CV-IC. For the EIV GP models, this approximate form is the mixed
LOO-CV-IC, which is detailed in Section 3.5.4. This entails fitting the EIV
GP to provide the posterior distribution for the hyperparameters and true
values of the model using the entire data set, then estimating the probability
density function p(Ỹi|φ, Ỹ−i, X̃i), whose log-likelihood provides information
about the out-of-sample predictive performance of the model. The mixed
LOO-CV-IC values for each of the seven single-input EIV GP models with
TD as the output variable are provided in Table 4.8. The result here that the
best-fitting single-input EIV GP model is with CBD as the input variable
matches the result found in the EIV BR when comparing EIV simple linear
models, and corresponds to what is observed in the model fits in Figure 4.47.

Explanatory variable Mixed LOO-CV-IC

Pressure drop -22.1

Tapped consolidation -24.5

Compressibility % -19.6

Aeration variable -24.7

CBD -24.5

SE -28.2

BFE -19.7

Table 4.9: Mixed LOO-CV-IC (mean estimates) for the models with AoR
as the response variable, and each explanatory variable considered in turn
in a single-input single-output EIV GP. The best-fitting model, highlighted
in green, is given by the model with SE as the input variable. The models
here are fitted with uninformed prior distributions.

The analogous plot of single-input EIV GP model fits, with AoR as the
response variable, is given in Figure 4.48. As with the EIV BR models
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with uninformed priors (see plots in Figure 4.46), the majority of the input
variables provides model fits with significant uncertainty in the predictions
of AoR, with the exception of SE (row 2, column 2).

Furthermore, the single-input EIV GP model fits with AoR as the out-
put variable, and each input variable considered in turn, are compared in
Table 4.9, which again supports SE as the input variable that provides the
model with the best predictive performance (when considering a single input
variable).

4.4.3 EIV Bayesian regression, informed priors

In this section, the powder data is fitted using EIV BR models with informed
prior distributions to discover which combination of explanatory variables
produces the best-fitting model, that is, the model which predicts the re-
sponse variables best, determined by approximate LOO-CV-IC.

Investigating the modelling using informed prior distributions provides
the most complete version of Bayesian modelling. With uninformed priors,
the sole source of information provided is the available data. This can be
sufficient given a large amount of available data, but this is not necessarily
the case, and evidently is not the case with the data considered here. An ad-
ditional source of information is provided in the form of expert information,
which is incorporated into the prior distributions. This expert information is
extracted using elicitation (see O’Hagan & Oakley (2004), O’Hagan (2005),
Garthwaite et al. (2005), O’Hagan (2019)). The details of which parame-
ters are of interest in the elicitation and what expert information has been
provided are described below.

Since they exist in both the EIV BR and the EIV GP, the main param-
eters of interest in the elicitation are the precision parameters that describe
the variability in the measurement error δi,k and ηi,j , and the variability
between materials for each of the variables, corresponding to the precision
parameter TX̃ (or τX̃ in the case of one explanatory variable). That is,
firstly, for a given powder, the replicate measurements of this powder do
not produce the true, unobservable value for that powder (and the given
variable), instead they produce values about the true value, with some level
of variance. This level of variance is of interest here. Secondly, for a given
variable, the true values of each powder exist within some range of values—
identifying this range allows for an estimate of the between-materials vari-
ability to be extracted. These pieces of information were ascertained by
asking for an interval in which 95% of the data lie; for the measurement
error, this corresponds to the subsamples varying about the true value, and
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for the between-materials variability, this corresponds directly to the range
of true values. That is:

1. For a given powder i, of interest is the lower bound l1 and upper bound
u1 such that 95% of the replicate measurements lie within the range
[l1, u1] (this is asked about each of the variables in the data). The
equivalent probability statement, for example for a given explanatory
variable, is P (l1 ≤ Xi,k ≤ u1) = 0.95.

2. For a given variable, of interest is also the lower bound l2 and upper
bound u2 such that 95% of the powder true values lie within the range
[l2, u2]. The equivalent probability statement, for a given explanatory
variable, is P (l2 ≤ X̃i ≤ u2) = 0.95.

These questions were posed to Dr Candice Majewski, a supervisor of this
PhD research, who provided information that she collated from the litera-
ture. This elicited information is provided for the variables tapped density,
angle of repose, CBD, SE and BFE in Table 4.10, having scaled the elicited
information appropriately (i.e., using the same scaling as for the observed
data in the model). Information about the remaining variables was not
provided. In one case, for the explanatory variable BFE, the elicited infor-
mation for the range of true values for the material was 700mJ to 1500mJ.
This was in large contrast to the observed data for this variable, whose range
(over all powders) is given by 141.5mJ to 322.4mJ, to 1 decimal place. The
conclusion was made to set the range of the true values in the modelling to
0.9×141.532 = 127.3788mJ as the lower bound and 1.1×1500mJ = 1650mJ
as the upper bound, to compensate for the stark contrast between the elic-
itation and the observed data. For the lower bound, 10% of the value is
subtracted from the minimum of the observed data to incorporate further
uncertainty, and similarly for the upper bound. Due to the upper bound of
the range of true values, the observed data is scaled by dividing by 10000,
so that the maximum true value is within the range [0,1]. In conclusion, the
initial probability statement of P (0.07 ≤ X̃i ≤ 0.15) = 0.95 is adjusted to
P (0.0127 ≤ X̃i ≤ 0.165) = 0.95, which is reflected in Table 4.10.

Having established the probability statements that correspond to the
provided expert information, these now must be converted into informed
prior distributions. An established process for carrying this out is provided
in Section 4.2.5 under the ‘Weakly informative priors for simulated data’
heading. The application of this process for the informed prior distributions
in the real data is described in detail in Appendix C.1. Those established
prior distributions are summarised here in Tables 4.11 and Table 4.12.
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Powder sub-
sample varia-
tion

Between-
materials
variation

Elicited probability statements

TD l1 = 0.99Ỹ1,i,
u1 = 1.01Ỹ1,i

l2 = 0.494,
u2 = 0.725

P (0.99Ỹ1,i ≤ Y1,i,j1 ≤ 1.01Ỹ1,i)=0.95,
P (0.494 ≤ Ỹ1,i ≤ 0.725) = 0.95

AoR l1 = 0.95Ỹ2,i,
u1 = 1.05Ỹ2,i

l2 = 0.25,
u2 = 0.528

P (0.95Ỹ2,i ≤ Y2,i,j2 ≤ 1.05Ỹ2,i)=0.95,
P (0.494 ≤ Ỹ2,i ≤ 0.725) = 0.95

CBD l1 = 0.99X̃i,
u1 = 1.01X̃i

l2 = 0.35,
u2 = 0.55

P (0.99X̃i ≤ Xi,k ≤ 1.01X̃i)=0.95,
P (0.35 ≤ X̃i ≤ 0.55) = 0.95

SE l1 = 0.95X̃i,
u1 = 1.05X̃i

l2 = 0.5,
u2 = 0.8

P (0.95X̃i ≤ Xi,k ≤ 1.05X̃i)=0.95,
P (0.5 ≤ X̃i ≤ 0.8) = 0.95

BFE l1 = 0.915X̃i,
u1 = 1.085X̃i

l2 = 0.0127,
u2 = 0.165

P (0.915X̃i ≤ Xi,k ≤ 1.085X̃i)=0.95,
P (0.0127 ≤ X̃i ≤ 0.165) = 0.95

Table 4.10: Elicited information (with the discussed adjustments to BFE)
and equivalent probability statements for some precision parameters in the
forward modelling.
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Measurement
error shape
and rate
parameters

Between-
materials or
model error
shape and rate
parameters

Diagonal elements
for Wishart scale
matrix

TD aη1 = 0.6,
bη1 = 0.6

103410.5

aε1 = 0.2,
bε1 = 2× 10−6

Sε1,1 = 105

AoR aη2 = 0.6,
bη2 = 0.6

10154.84

aε2 = 0.2,
bε2 = 3× 10−6

Sε2,2 = 2×105

3

CBD aδ = 0.696,
bδ = 0.696

189708.7

aX̃ = 0.696,
bX̃ = 0.696

384.16

SδCBD
= 189708.7,

SX̃CBD
= 384.16

SE aδ = 1.73075,
bδ = 1.73075

3637.019

aX̃ = 1.73075,
bX̃ = 1.73075

170.7378

SδSE = 3637.019,
SX̃SE

= 170.7378

BFE aδ = 0.993,
bδ = 0.993

67324.68

aX̃ = 0.993,
bX̃ = 0.993

662.8092

SδBFE
= 67324.68,

SX̃BFE
= 662.8092

Xgeneric aδ = 1, bδ =
0.000657

aX̃ = 1, bX̃ =
1

15.3664

Sδgeneric = 1
0.000657 ,

SX̃generic
= 15.3664

Table 4.11: Hyperparameters for informed gamma prior distributions on
precision parameters for each of the variables that underwent elicitation.
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Prior with TD as response Prior with AoR as response

β0 N(0.6095, 0.0001) N(0.389, 0.0001)

βCBD N(0, 2.028) N(0, 1.401)

βSE N(0, 4.564) N(0, 3.151)

βBFE N(0, 1.176) N(0, 0.812)

βgeneric N(0, 1.171) N(0, 0.809)

Table 4.12: Informed prior distributions for the model coefficients for CBD,
SE and BFE (depending on the response variable), with weakly informed
prior distributions for the model coefficients for the remaining explanatory
variables.

For the simulated-data cases, initialisation of the prior distributions was
not carried out. This refers to the choosing of overdispersed values, with
respect to the posterior distribution, as starting points for each parallel
chain, to check that the MCMC output converges to the same posterior
distribution from a range of starting points. This is carried out for the
model fits to real data, with the process discussed in Appendix C.2.

To demonstrate the effect of informed priors on the fit of EIV BR models,
the example of the simple linear model using TD as the response variable
and CBD as the input variable is fitted using informed prior distributions,
and the model fit is visually compared with the model fit using uninformed
priors identified in Section 4.4.1. The two model fits are presented in Figure
4.49, with the uninformed model fit on the left, and the informed model fit on
the right. The use of expert information in the prior distributions results in
increased certainty in the true values for each powder, with the 95% credible
ellipses much smaller in the right plot than in the left plot. Furthermore,
the uncertainty in the predictions of the response variable has been reduced
as a result of there being less uncertainty in the true values and providing
more information in the prior distributions of the model parameters β0, β1

and τε.

The forward modelling is now investigated using a backwards variable
selection, as outlined in Section 3.4. That is, the full model including all
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Figure 4.49: Two plots of EIV BR models fitted with TD as the response
variable and CBD as the input variable, with the plot on the left corre-
sponding to fitting with uninformed prior distributions, and on the right
with informed prior distributions.

explanatory variables is the starting model, given by

(
Ỹ1,i

Ỹ2,i

)
=

(
β0,1 β1,1 β2,1 β3,1 β4,1 β5,1 β6,1 β7,1

β0,2 β1,2 β2,2 β3,2 β4,2 β5,2 β6,2 β7,2

)


1

X̃1,i

X̃2,i

X̃3,i

X̃4,i

X̃5,i

X̃6,i

X̃7,i


+

(
ε1,i
ε2,i

)
,

with the true values of the response variables Ỹ1,i, Ỹ2,i corresponding to
the true values of TD and AoR respectively, and the true values of the
explanatory variables, given by X̃1,i, X̃2,i, X̃3,i, X̃4,i, X̃5,i, X̃6,i and X̃7,i,
corresponding to those of the variables pressure drop, tapped consolidation,
compressibility %, the log of total energy at 2mm/s on the 4mm/s aeration
test, CBD, SE and BFE respectively. Note again that the subscript i varies
from 1 to ng = 7. The observed data for the two response variables are of
the form

Y1,i,j1 = Ỹ1,i + η1,i,j1 ,

Y2,i,j2 = Ỹ2,i + η2,i,j2 ,
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with η1,i,j1 ∼ N(0, τη1) and η2,i,j2 ∼ N(0, τη2), for j1 = 1, 2, 3 and j2 =
1, . . . , 5. Furthermore, the observed data for the seven explanatory variables
are of the form

X1,i,k1 = X̃1,i + δ1,i,k1 ,

X2,i,k2 = X̃2,i + δ2,i,k2 ,

X3,i,k3 = X̃3,i + δ3,i,k3 ,

X4,i,k4 = X̃4,i + δ4,i,k4 ,X5,i,k

X6,i,k

X7,i,k

 =

X̃5,i

X̃6,i

X̃7,i

+

δ5,i,k

δ6,i,k

δ7,i,k

 ,

with δ1,i,k1 ∼ N(0, τδ1), δ2,i,k2 ∼ N(0, τδ2), δ3,i,k3 ∼ N(0, τδ3) and δ4,i,k4 ∼
N(0, τδ4), for k1, k2, k3, k4 = 1, 2, 3 andδ5,i,k

δ6,i,k

δ7,i,k

 ∼ N

0
0
0

 , Tδ

 ,

for k = 1, 2, 3.
The model is fitted with the informed prior distributions noted in Tables

4.11 and 4.12; for the clarity of the precision matrices Tε, TX̃ and Tδ, these
each take the Wishart distributions, with

Tε ∼Wishart(Sε, 2),

TX̃ ∼Wishart(SX̃ , 7),

Tδ ∼Wishart(Sδ, 3),

where the scale matrix for the model error precision matrix Wishart prior
is given by

Sε =

(
105 0
0 2

3 × 105

)
,

the scale matrix for the between-materials precision matrix Wishart prior is
given by

SX̃ =



15.3664 0 0 0 0 0 0
0 15.3664 0 0 0 0 0
0 0 15.3664 0 0 0 0
0 0 0 15.3664 0 0 0
0 0 0 0 384.16 0 0
0 0 0 0 0 170.7378 0
0 0 0 0 0 0 662.8092


,
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and the scale matrix for the (explanatory variable) measurement error pre-
cision matrix Wishart prior is given by

Sδ =

189708.7 0 0
0 3637.019 0
0 0 67324.68

 .

With the initialisation implemented as described in Appendix C.2, the re-
maining MCMC tuning parameters for the first attempt at fitting the model
are given by an adaptation phase of length 1000 samples, a burn-in phase
of length 25000 samples, 200000 posterior draws sampled from the MCMC
output and storing every 10th sample to give 20000 posterior samples. This
leads to poor levels of mixing and convergence in the MCMC output, so
the tuning parameters are adjusted until convergence is found and mixing
is sufficient. This occurs for an adaptation phase of length 5000 samples,
a burn-in phase of length 1.75 × 106, 6.25 × 106 posterior draws sampled
from the output, taking every 25th sample of these to give 250000 posterior
samples. Appropriate model output is checked to ensure that the model is
working as intended, for example checking the posteriors of true values for
some of the response and explanatory variables, as well as the fitted values
of the response variables against the marginal posteriors of the true values of
the responses. These plots are omitted here and can be found in Appendix
D.2.

The backwards variable selection continues with the fitting of seven mod-
els that are nested within the full model discussed above. Each nested model
corresponds to removing one of the seven explanatory variables from the full
model, whose model fit is then compared with the model fits of the seven
nested models. Whichever of the seven nested model fits provides the largest
improvement in predictive performance according to approximate LOO-CV-
IC will be selected as the ‘new’ full model, to be compared with its nested
models.

The seven nested models of the full model are fitted, and the approximate
LOO-CV-IC for each (as well as for the full model) is provided in Table 4.13.
The approximate LOO-CV-IC indicates that the best-fitting of the eight
models, including the full model, is the model with six explanatory variables,
i.e. all explanatory variables excluding compressibility %. This appears to
be a narrow improvement on the predictive performance of the model relative
to the full model with all seven explanatory variables. There are also two
other models, one with all explanatory variables excluding pressure drop and
one with all explanatory variables excluding tapped consolidation, which
provide a marginal increase in predictive performance over the full model,
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Explanatory variables PSIS-LOO-CV-IC

All seven -86.9

All but pressure drop -87.4

All but tapped consolidation -87.2

All but compressibility % -87.7

All but aeration variable -86.2

All but CBD -76.4

All but SE -86.7

All but BFE -85.1

Table 4.13: PSIS-LOO-CV-IC (mean estimates) for the full model with
seven explanatory variable and for the seven six-explanatory-variable mod-
els. The best-fitting model, highlighted in green, is given by the model with
all explanatory variables excluding compressibility %.

and are marginally worse in predictive performance than the best-fitting
model. Another notable outcome of this first round of model comparison
using backwards variable selection is the decrease in predictive performance
of the model with the variable CBD excluded. This suggests that there is a
relatively high probability of the best-fitting model including CBD.

Based on Table 4.13, the conclusion from the first round of backwards
variable selection is that the best-fitting model so far is with all explana-
tory variables excluding compressibility %. This model is now chosen to be
the ‘full’ model, which is to be compared with six nested models, each of
which have one of the six remaining explanatory variables removed. These
models are fitted (with MCMC tuning parameters that provide convergence
of the MCMC output to the posterior distribution and sufficient levels of
mixing within each chain), and the approximate LOO-CV-IC estimates are
compared in Table 4.14. The conclusion from the second round of back-
wards variable selection is that the best-fitting model is the full model, with
all explanatory variables excluding compressibility %. This concludes the
backwards variable selection, as no improvement in predictive performance is
found by removing any of the variables from the full model, and so the back-
wards variable selection recommends to model with all explanatory variables
except for compressibility %.
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Explanatory variables PSIS-LOO-CV-IC

All but compressibility -87.7

All but compressibility % and pressure drop -84.9

All but compressibility % and tapped consoli-
dation

-87.3

All but compressibility % and aeration variable -83.3

All but compressibility % and CBD -79.0

All but compressibility % and SE -84.3

All but compressibility % and BFE -86.8

Table 4.14: PSIS-LOO-CV-IC (mean estimates) for the full model with
all explanatory variables excluding compressibility % and for the six five-
explanatory-variable models. The best-fitting model, highlighted in green, is
given by the model with all explanatory variables excluding compressibility
%.

This is a surprising outcome. Given the modelling based on the unin-
formed priors, there was a strong indication that CBD and SE would be the
best-fitting model again. The reality here is that there is a major concern
with recommending that a six-explanatory-variable model is the best-fitting
model, given the model fit is based on seven true values for each variable.
It is quite likely that this is an issue of overfitting, which is described here.
It is known that, including more terms in a linear model, whether it be
from other explanatory variables or from including polynomial terms or in-
teraction terms from the existing explanatory variables, will improve the
predictive performance of the model. In principle, this sounds like a good
idea, to try to improve the model fit as much as possible; in practice, par-
ticularly with little data available, the model can become overfitted to the
available data. This means that the overfitted model could then become
inappropriate if new data were to become available. Consider again the
example from Chapter 1, which compared classical estimates in backward
modelling. The main focus here is on the observed data points and over-
fitting. Suppose a small subset of observed data points are taken from this
example, and two models are fitted: a simple linear model, and a compli-
cated polynomial model. The left plot in Figure 4.50 provides the fitted
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lines for both the simple linear model (solid black line) and the complicated
polynomial model (dotted black line)—it is clear from the plot that the
complicated polynomial model provides the model fit that minimises the
model error for the available data. This data is simulated from a straight
line equation (with some error), and simulating more data points from this
function provides the plot on the right, with the red points representing the
new data points. It is clear that the straight line model fit from the already
existing data points is much more suitable for the entire data set than the
model fit from the complicated polynomial model. This is a clear case of
overfitting, where there is not enough data to suggest that more complicated
model fits are appropriate—the model becomes too heavily adjusted to the
existing data.
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Figure 4.50: Two plots demonstrating the model fit from two models that
are fitted to the black data points (the existing data from an underlying
simulation). The left plot suggests that the black dotted line, the model
fit of a complicated polynomial model, better minimises the model error
than the simple linear model. The right plot demonstrates that having
more information from the underlying simulation definitively shows that
the complicated polynomial model is ‘overfitted’, and does not represent the
underlying simulation, whereas the simple linaer model looks appropriate.

Reverting to the real data and the above model fits, there is a high
probability that the ‘best-fitting’ six-explanatory-variable model is overfitted
to the seven available powders. Given the lack of available data, it would
be preferable to choose a simpler model, even if this is not suggested by
the approximate LOO-CV-IC. It is also possible that the adjustment for
effective number of parameters in approximate LOO-CV-IC is not strong
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enough. For this reason, an alternative model is desired, which provides a
better chance of being appropriate for a larger data set.

The above evidence suggests that the explanatory variable CBD is highly
likely to be included in a ‘best-fitting’ model; from both Table 4.13 and Table
4.14, there is a clear drop-off in predictive performance with CBD excluded
from the model. Based on this, it is assumed here that best-fitting model will
include CBD as one of its explanatory variables. In order to avoid overfitting,
the best-fitting model will be selected from six two-covariate models as well
as the one-input model with CBD as the explanatory variable. In effect,
a quasi-forwards variable selection is carried out, with the assumption that
CBD is the first explanatory variable, and with the restriction of considering
models with two explanatory variables. As above, these models are fitted
with MCMC tuning parameters that produce convergence and suitable levels
of mixing, and their predictive performances are compared with approximate
LOO-CV-IC in Table 4.15. The approximate LOO-CV-IC suggests that
CBD and SE as the two explanatory variables provides the model with the
best predictive performance, which is closely followed by the combination
of CBD and tapped consolidation. Comparing with the model with just
CBD, there is clearly an improvement in the model when including SE. The
model with CBD and BFE appears to be worse than the model with just
CBD, whereas the other combinations of CBD and an explanatory variable
appear to provide some improvement. Based on the discussion of overfitting
above, it is concluded here that, given the informed prior distributions, the
best-fitting model is that with CBD and SE as the two explanatory variables.

At this point, it is noted that, given the approximate method of LOO-
CV-IC ‘PSIS-LOO-CV-IC’ (Pareto-smoothed importance sampling leave-
one-out cross-validation information criterion) is applied here for measuring
predictive performance, diagnostics of the approximate method are consid-
ered. The Pareto smoothing is applied to the importance ratios for estimat-
ing the LOO log-likelihoods, for which the generalised Pareto distribution is
required, and its shape parameter k is estimated. The LOO likelihoods are
found for each i = 1, . . . , ng (as each group i is ‘left-out’ and used as a test
group), and so estimates of the shape parameter k are given for each group.
The minimum estimate is given by 0.861, and the maximum is given by
1.033. The paper Vehtari et al. (2015) notes that, for shape parameter esti-
mates larger than 0.7, the required size of the posterior samples for conver-
gence of the Pareto smoothing sampler grows ‘infeasibly large’, with values
of 0.8 roughly requiring 1010 posterior samples. Without convergence of the
sampler, the importance weights are unreliable, and so the PSIS-LOO-CV-
IC may not be a good representation of true predictive performance. While
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Explanatory variables PSIS-LOO-CV-IC

CBD -53.6

CBD + pressure drop -60.9

CBD + tapped consolidation -76.9

CBD + compressibility % -54.9

CBD + aeration variable -63.2

CBD + SE -77.8

CBD + BFE -51.4

Table 4.15: PSIS-LOO-CV-IC (mean estimates) for the model with just
CBD as the explanatory variable and for the six two-explanatory-variable
models for each combination of CBD and an explanatory variable. The
best-fitting model, highlighted in green, is given by the model with CBD
and SE.

the relative values of PSIS-LOO-CV-IC in this case may be unreliable, there
is reasonable evidence from the fitted models given in Figures 4.45 and 4.46
that CBD predicts TD well, and SE predicts AoR well (albeit with an unin-
formed prior specification). This work will continue using PSIS-LOO-CV-IC
as one of the measures of predictive performance of EIV BR models, and so
it is assumed that the two-covariate model with CBD and SE as the input
variables and an additive linear predictor is the best-fitting model. Sugges-
tions on how to navigate this issue with PSIS-LOO-CV-IC are provided in
Chapter 6.

A visual demonstration of the predictive performance of the model is
provided by the fitted values plot of each response variable given in Figure
4.51 for TD and in Figure 4.52 for AoR. Comparing these fitted plots with
those of the full model with all explanatory variables, given in Appendix
D (Figure D.4), it is noted that there is a drop-off in the level of predic-
tive performance, which is a sacrifice that had to be made given the high
probabilities of overfitting the model to the data with too many explanatory
variables. Interestingly, the uncertainty in the fitted values is much more
unique than the uncertainty in the model with all explanatory variables.
Consider firstly the fitted values plot for tapped density from the first plot
of Figure D.4, which provides a consistent level of variation in the fitted val-
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Figure 4.51: Joint 95% credible ellipses for the joint distribution of fitted
values and true values of the response variable TD. Output is based on the
fitted model with CBD and SE as the explanatory variables.

ues for each of the powders. Comparatively, the fitted values for TD from
Figure 4.51 contain different levels of variation in the fitted values for some
of the powders—there appears to be a clear split, with Powders 1 and 7
having larger variation in the fitted values than those of Powders 2 through
to 6. It also appears that the variation for the fitted values of tapped den-
sity for Powders 2 through to 6, in the case of the model with just CBD
and SE, is smaller than that for the fitted values of for Powders 2 through
to 6 in the model with all explanatory variables. This is explained by the
fact that the two-explanatory-variable model has more information about
the relationship between TD and CBD and SE around Powders 2 to 6 rela-
tive to Powders 1 and 7, whereas this relative difference is less pronounced
in the model with more explanatory variables. The level of uncertainty is
larger around these powders in the model with more explanatory variables
as there is simply more possible contributions to the uncertainty, given there
are more explanatory variables in the model.

The posterior densities of the model intercepts and the slope terms for
each response variable are provided in Figure 4.53 for the model with CBD
and SE as the explanatory variables. This provides some breakdown as
to how influential each explanatory variable is in the predictions of the
response variables. It is somewhat surprising to see a lack of smoothness
in the estimated posterior densities of some of the model coefficients. It is
clear that there is a positive relationship between TD and CBD (first row,
middle plot), with all the posterior density at values greater than 0. There
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Figure 4.52: Joint 95% credible ellipses for the joint distribution of fitted
values and true values of the response variable AoR. Output is based on the
fitted model with CBD and SE as the explanatory variables.
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Figure 4.53: Posterior densities of the model coefficients for the model fit-
ted with the two explanatory variables CBD and SE. The top row of plots
corresponds to the model coefficients for TD, and the bottom row for AoR.
The first column of plots represents the intercept terms, the second column
the slope terms for CBD, and the third column the slope terms for SE.
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is also a relatively small negative contribution from SE to the predictions
of TD. For AoR, it appears that there is more uncertainty in the posterior
densities—the mean of CBD looks to be close to 0, but with a large range
of values relative to the other posterior densities. In the case of AoR, the
contribution of SE looks to be more significant, with a positive relationship
similar to that between TD and CBD.

The EIV BR forward modelling with informed prior distributions has
determined that the best-fitting model, with manual input regarding the
threat of overfitting, is the model with the two explanatory variables CBD
and SE. These two explanatory variables are investigated further in the
following section by fitting the EIV MOGP with TD and AoR as the two
output variables and CBD and SE as the two input variables, whose model
fit will contribute to the comparison of the two methods at the end of this
chapter.

4.4.4 EIV Gaussian processes, informed priors

In this section, the EIV MOGP is fitted with the real data, with TD and
AoR as the output variables and CBD and SE as the input variables, for the
purposes of comparing the model fits of the two statistical models considered
in this work. The process of variable selection is not carried out here. The
model fit here is estimated assuming the informed prior distributions de-
scribed in the previous section. That is, for the between-materials precision
and measurement error precision TX̃ and Tδ respectively, their respective
informed prior distributions are given by

TX̃ ∼Wishart(SX̃ , 2)

and
Tδ ∼Wishart(Sδ, 2),

where

SX̃ =

(
384.16 0

0 170.7378

)
and

Sδ =

(
189708.7 0

0 3637.019

)
.

Moreover, the measurement error precision parameters for TD and AoR take
the prior distributions

τη1 ∼ Gamma

(
0.6,

0.6

103410.5

)
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and

τη2 ∼ Gamma

(
0.6,

0.6

10154.84

)
respectively. The model error standard deviations are treated marginally in
the EIV MOGP. The model error prior information has been formulated in
terms of a precision prior, which is also used here, and is then transformed
into a standard deviation parameter in the MCMC. That is, the model error
standard deviation terms σ2

ε1 , σ2
ε2 are given by

σ2
ε1 =

√
1

τε1

and

σ2
ε2 =

√
1

τε2
,

where
τε1 ∼ Gamma(0.2, 2× 10−6)

and
τε2 ∼ Gamma(0.2, 3× 10−6).

The EIV MOGP hyperparameters are considered further here. The prior
distributions of the correlation parameter ρVK , and the scalars λ1, λ2 remain
unchanged; that is, ρSK ∼ U(−1, 1), and λ1, λ2 ∼ U(0, 5). The hyperprior
distributions for the distance-scaling parameters l (or in the single-input,
single-output case, l), the signal standard deviations σk (or in the single-
output case, σk), and GP prior means α1 and α2 are adjusted given the
elicitation.

The distance-scaling parameters are adjusted in the cases of CBD, SE
and BFE, where the explanatory variable true value ranges are provided in
the elicitation. These ranges influence the distance-scaling parameter as the
value of the covariance kernel function is influenced by both the distance-
scaling parameter and the range of the input variable—see the discussion of
this in Section 3.5.1. The informed prior distribution for the distance-scaling
parameter corresponding to each of these input variables is chosen using the
following method:

1. Values of the squared exponential covariance kernel, given by

k(X̃, X̃ ′) = exp

{
−(X̃ − X̃ ′)2

2l2

}
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are produced for any true values X̃, X̃ ′ in the elicited range for the
input variable, and for different values of l.

2. The value of l is identified for which the relationship between k and
X̃ − X̃ ′ is as close to a straight line as possible, with k decreasing as
X̃ − X̃ ′ increases; this results in, a priori, assuming that each distance
between two values for the input variable produces a different value of
k. This is visualised in Figure 4.54.

3. Take the value of l identified above to be the median value of the
gamma prior distribution for l, assuming a shape of 2—this provides
an estimate of the rate parameter (in other words, the rate parameter
is adjusted until the value of l is the prior median).
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Figure 4.54: A plot of the values of the squared exponential function k
against distances between two input values, for input values within the range
of true CBD, i.e., 0.35 to 0.55 (so distances vary from 0 to 0.2). The lines
represent these functions for different values of the distance-scaling param-
eter l, demonstrating that the value of l = 0.065 corresponds to assuming
(roughly) different values of the squared exponential function for different
input-value distances.

Assuming a shape parameter of 2, the rate parameter which results in
l = 0.065 being the prior median is 25.8, to 3 decimal places. That is,
the prior for the distance-scaling parameter with CBD as the corresponding
input variable is lCBD ∼ Gamma(2, 25.8). The median is chosen so that it
is equally likely for values of l to be greater than 0.065, corresponding to
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larger values of the squared exponential function, and less than 0.065, cor-
responding to smaller values of the squared exponential function. The same
method is carried out for choosing the prior distribution for the distance-
scaling parameters of SE and BFE, leading to lSE ∼ Gamma(2, 16.67) and
lBFE ∼ Gamma(2, 33.33).

An informed prior distribution for the signal standard deviation σk is
also found, given the ranges elicited for TD and AoR. The justification for
the prior of σk in the simulation examples (i.e., assuming the range of the
response variable was [0,1], given the scaling) was developed with the help
of Figure 4.26. This plot indicated that a σk value of 0.25 appeared to
appropriately scale samples of the GP prior on the range [0,1]. Because of
this, a prior distribution whose density close to 0 was small and whose mode
was close to 0.25 was desired, and for this reasons the prior of Gamma(3, 3

0.4)
has been used. Given the width of the ranges of the response variables is
0.725−0.494 = 0.231 and 0.528−0.25 = 0.278 for TD and AoR respectively,
the ‘ideal’ value of σk = 0.25 from the simulation examples is divided by 4
(given the intervals have width roughly a quarter of the width of [0,1]), and
so a gamma prior with shape 3 and mean 0.1 (0.4 divided by 4) is chosen,
i.e., σk ∼ Gamma(3, 3

0.1).
Finally, the GP prior means of α1 and α2 take the informed prior distri-

butions α1 ∼ N(0.6095, 202.8466) (for TD) and α2 ∼ N(0.389, 198.8303) (for
AoR), with the means given by the midpoint of the ranges from the elicita-
tion, and the precisions estimated from equating the ranges of each response
variable to 3.29σα, i.e. assuming an estimate of the standard deviation using
a 90% confidence interval for the range of the data.

Moreover, the initialisation of the prior distributions is carried out anal-
ogously to that in the previous section, with a Latin hypercube sampling
produced to cover the space of possible values of the joint prior distribution
for the model parameters.

As in Section 4.4.2, an example of fitting the EIV GP model to the real
data is investigated for the purpose of comparing the fit with uninformed
prior distributions and with informed prior distributions. This has been car-
ried out with TD as the response variable and CBD as the explanatory vari-
able, and values of TD are predicted for CBD values in the range [0.35,0.55].
The two model fits are presented in Figure 4.55, with the uninformed model
fit on the left, and the informed model fit on the right. Similarly to with EIV
BR, the 95% credible ellipses of the true values for each powder are much
smaller in the right plot than in the left plot, showing more confidence in the
true values. In this case with the EIV GP, the widths of the 95% prediction
intervals of the response variable are very similar in both cases, unlike in the
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EIV BR case, where the prediction interval narrowed significantly with the
uninformed priors. This is confirmed by the the summary statistics of the
marginal posterior distribution of σε in both cases, with the informed-priors
case quoted first (and uninformed-priors case second) in the following list:
median values of 0.00978 and 0.0107, 2.5% quantiles of 0.00517 and 0.00199
and 97.5% quantiles of 0.0242 and 0.0345 (all to 3 significant figures). The
most likely explanation for this is the prior distribution for the model er-
ror for the EIV GP with uninformed priors is still somewhat ‘informed’,
unlike in the case of the EIV BR. For the EIV GP, the ‘uninformed’ prior
σε ∼ Gamma(2, 2

0.05) is preferred in this work, whose density is much more
concentrated compared with the uninformed τε ∼ Gamma(0.001, 0.001) for
the model error precision in the EIV BR. Finally, the effect of the informed
prior distribution for the distance-scaling parameter l is evident, with the
model fit in the informed-priors case having more curvature than that in
the uninformed-priors case (posterior mean in informed-priors case of 0.111,
compared with 0.335 in the uninformed-priors case). This is most notable
for the predictions as CBD approaches its upper bound of 0.55, with the
informed-priors case showing that predictions of TD are more quickly ap-
proaching the mean of the response than in the uninformed-priors case.
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Figure 4.55: Two plots of EIV GP models fitted with TD as the response
variable and CBD as the input variable, with the plot on the left corre-
sponding to fitting with uninformed prior distributions, and on the right
with informed prior distributions.

Of interest now is the best-fitting model identified in the EIV BR with
informed priors, that is, fitting an EIV MOGP with TD and AoR as the
output variables and CBD and SE as the input variables, assuming the in-
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formed priors noted earlier in this section. The model is fitted with four
parallel chains, with the first attempted fit using the MCMC tuning param-
eters of an adaptation length of 1000 samples, a burn-in length of 25000
samples, and 20000 posterior samples stored having taken every 10th sam-
ple of 200000 posterior draws. In this case, the adaptation must be run
for longer to achieve optimal sampling behaviour in the algorithm, then the
other MCMC tuning parameters are adjusted to ensure that the MCMC out-
put is sufficiently mixed and converges to the posterior distribution. This is
achieved for an adaptation of length 3000, a burn-in of length 500000 sam-
ples, and taking every 20th sample from 1.5× 106 posterior samples (giving
75000 posterior samples for each parallel chain).
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Figure 4.56: Posterior densities of the true values for each powder for the
response variable tapped density (top left), the response variable angle of
repose (top right), the explanatory variable CBD (bottom left), and the
explanatory variable SE (bottom right). These are represented by the 95%
credible intervals for the true value (vertical lines), which are plotted for
each of the observed data points for the corresponding powder.

The posterior densities of the true values of each variable are firstly
checked. These plots are given in Figure 4.56, with TD in the top left, AoR
in the top right, CBD in the bottom left, and SE in the bottom right. The
true values for TD, AoR and CBD have been estimated well by the model,
given the narrow credible intervals and the posterior means lying on the
line Ỹ = Y and X̃ = X. The true values for SE appear to have a lot of
uncertainty. This was also true of the previous section when fitting the data
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with the EIV BR models. The posterior means do not align with the line
X̃ = X in the cases of Powders 1 and 3—this is not essential, but it is
highly likely that the posterior mean for a powder lies within the range of
the observed data.

To get an idea of the predictions of the response variable, plots of fitted
values for given lines of the input plane are provided in Figures 4.57 and
Figure 4.58. That is, the GP posterior for given values of the input variables
is summarised in each plot. For example, the first row of Figure 4.57 is a
plot of the marginal density of predictions of TD (left plot) and AoR (right
plot) for values of CBD, X̃new,1, in the range (0.35,0.55) and values of SE,
X̃new,2, equal to

X̃new,2 = 1.5× X̃new,1 − 0.025.

This equation corresponds to the line which connects the minimum values
of CBD and SE to the maximum values of CBD and SE. The GP pos-
terior for predictions of the response variables at each of these values of
(X̃new,1, X̃new,2), for a given posterior sample of the hyperparameters and
true values s, is given by

Ỹnew,s|φs, X̃new, Ỹs, X̃s ∼ N2(m∗s, V
∗
s ) (4.4.4.1)

where

m∗s = (α1,s, α2,s)
′ +Ks(X̃new, X̃s)V

−1
MOGP,X̃,s

(vec(Ỹs)− (α1,s,α2,s)
′),

(4.4.4.2)
and

V ∗s = VMOGP,X̃new,s
−Ks(X̃new, X̃s)V

−1
MOGP,X̃,s

Ks(X̃s, X̃new). (4.4.4.3)

The solid black line in each plot corresponds to the (marginal) mean of
the GP posterior means over the posterior samples, and the dotted lines
correspond to 95% prediction intervals at each value of the response variable.
The plots in Figures 4.57 and 4.58 therefore provide information as to what
the model predicts the behaviour of the response variable to be for given
vectors of the inputs—for example, the top-left plot of Figure 4.57 shows
predictions of the first response variable given X̃new,1 ∈ [0.35, 0.55] and
X̃new,2 = 1.5X̃new,1 − 0.025, where it is clear that for (X̃new,1, X̃new,2) =
(0.36, 0.515) the predictions of TD are quite uncertain, with a large range of
possible values in the 95% prediction interval. In comparison, considering
the same plot, the prediction of TD at the input vector (X̃new,1, X̃new,2) =
(0.44, 0.635) has relatively much less uncertainty, and the GP posterior is
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confident that TD lies close to its mean prediction at this input vector. The
reason why the GP posterior is more confident in its prediction for some
input vectors is that the GP posterior has learnt more about the functional
relationship at values close to those input vectors, which ties in with how
the covariance kernel is built for the GP—if two input vectors of CBD and
SE are close in terms of Euclidean distance, then it is expected that the
corresponding vectors of TD and AoR are also relatively close. So, notably
from the bottom row of plots of Figure 4.57, corresponding to predictions
of TD and AoR for increasing CBD values and decreasing SE values, there
appears to be confidence in the predictions of the responses for these input
vectors.
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Figure 4.57: Plots of the GP posterior, i.e. predictions of the response
variable for some vectors of the inputs, conditioned on the posterior true
values of TD, AoR, CBD and SE. The first row corresponds to predictions
of the response variables for X̃new,1 ∈ [0.35, 0.55] and X̃new,2 = 1.5×X̃new,1−
0.025, the second row corresponds to predictions of the response variables
for X̃new,1 ∈ [0.35, 0.55] and X̃new,2 = −1.5×X̃new,1−1.325, the first column
are the predictions for TD, and the second column are the predictions for
the AoR.

It would appear from both Figures 4.57 and 4.58 that the model is per-
forming as intended—the model is providing confidence in the predictions of
the response variables where expected, i.e. where there are true values for
the input variables. Moreover, at input vectors that are far away from the
estimated true values, there is much more uncertainty in the predictions.
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Figure 4.58: Plots of the GP posterior, i.e. predictions of the response
variable for some vectors of the inputs, conditioned on the posterior true
values of TD, AoR, CBD and SE. The first row corresponds to predictions of
the response variables for X̃new,1 ∈ [0.35, 0.55] and X̃new,2 fixed at 0.65 (the
midpoint of the elicited SE range), the second row corresponds to predictions
of the response variables for X̃new,2 ∈ [0.5, 0.8] and X̃new,1 fixed at 0.45 (the
midpoint of the elicited CBD range), the first column are the predictions for
TD, and the second column are the predictions for AoR.
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4.5 Method comparison using real data

The inference from each of the models, having been fitted with tapped den-
sity (TD) and angle of repose (AoR) as the (multivariate) response variables
and conditioned bulk density (CBD) and specific energy (SE) as the input
variables, is now contrasted. This section firstly considers a comparison of
the posterior distribution for given parameters which exist in both models
(looking mainly at the measurement error and model error standard devia-
tions), followed by comparing the predictions of the response variables for
each model for given subspaces of the input space.

ση1 (for TD) ση2 (for AoR) σδ1 (for CBD) σδ2 (for SE)

EIV BR [0.00185,
0.00386]

[0.00599,
0.0102]

[0.00218,
0.00483]

[0.0576,
0.118]

EIV GP [0.00184,
0.00386]

[0.00599,
0.0101]

[0.00213,
0.00461]

[0.0491,
0.113]

Table 4.16: Comparison of the measurement error standard deviation pos-
teriors from the EIV BR and the EIV GP model fits to the real data, with
TD and AoR as the output variables and CBD and SE as the input vari-
ables. Each cell gives the centred 95% credible interval for the corresponding
measurement error standard deviation and model fit.

As suggested, the posterior standard deviation for the measurement error
of the given variables can be compared straightforwardly, as they are dealt
with in the same manner for both models. The posterior standard deviation
samples for the response variable measurement errors are found by taking
the square root of the reciprocal of each posterior precision sample for the
response variable measurement errors. That is, for each s = 1, . . . , S, (with S
being a large number of posterior samples) the measurement error standard
deviations samples ση1,s and ση2,s are given by

ση1,s =

√
1

τη1,s
and ση2,s =

√
1

τη2,s
.

Furthermore, the posterior standard deviation samples for the explanatory
variable measurement errors are found by inverting the precision matrix
samples of the joint measurement error for CBD and SE, then taking the
square root of each diagonal element (with the first diagonal element of each
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matrix corresponding to the posterior variance samples for the measurement
error of CBD, and the second element analogously for SE). That is, for each
s = 1, . . . , S, the measurement error covariance matrix samples Σδs are given
by

Σδs = T−1
δ,s ,

where the square roots are taken of its diagonal elements σ2
δ1,s

and σ2
δ2,s

to
give σδ1,s and σδ2,s respectively.

Each measurement error standard deviation is compared between the two
models using the centred 95% credible interval over the posterior samples,
with these values given in Table 4.16. For the first response variables TD
and AoR (whose measurement error standard deviations are ση1 and ση2
respectively), both models provide very similar posterior densities.

σε1 (for TD) σε2 (for AoR)

EIV BR [0.00386, 0.0202] [0.00249, 0.0420]

EIV GP [0.00108, 0.0271] [0.00142, 0.0525]

Table 4.17: Comparison of the model error standard deviation posteriors
from the EIV BR and the EIV GP model fits to the real data, with TD and
AoR as the output variables and CBD and SE as the input variables. Each
cell gives the centred 95% credible interval for the corresponding model error
standard deviation and model fit.

The posterior quantiles of the model error standard deviations σε1 (cor-
responding to TD) and σε2 (corresponding to AoR) are compared in Table
4.17, using the centred 95% credible interval for each parameter. Notably,
the EIV GP finds wider credible intervals for the model error standard de-
viations, with both a smaller lower bound and larger upper bound than the
EIV BR case. The nonparametric modelling method tends to provide a more
uncertain fit relative to an EIV BR model with an additive linear predictor
because of the obvious lack of a predetermined relationship, so this outcome
is unsurprising.

The predictive performances of both the EIV BR model fit and the EIV
GP model fit are assessed using approximations of exact LOO-CV-IC; for
EIV BR, this approximation is the PSIS-LOO-CV-IC, and for EIV GP, this
is the mixed LOO-CV-IC. While the approximate methods are different,
they clearly still attempt to estimate the same quantity in an attempt to
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Figure 4.59: Predictions of the response variable TD given lines of the 2D
input plane, for comparing the EIV BR and EIV GP model fits. The solid
lines represent the mean prediction of the response variable given the model,
and the dotted lines represent 95% prediction intervals. Moreover, the red
lines correspond to the EIV GP, and the black lines correspond to the EIV
BR. Finally, the top-left plot represents predictions of TD for X2 = 1.5X1−
0.025, with X1 ∈ [0.35, 0.55]; the top-right plot for X2 = −1.5X1+1.325 with
X1 ∈ [0.35, 0.55]; the bottom-left plot for X2 = 0.65 with X1 ∈ [0.35, 0.55];
the bottom-right plot for X1 = 0.45 with X2 ∈ [0.5, 0.8]. For the bottom-
right plot, the variable SE is represented on the horizontal axis; for the other
three plots, the variable CBD is represented on the horizontal axis.
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convey how likely it is that true value of the response variable for some
powder could be produced by the model. As provided in Table 4.15 in
Section 4.4.3, the mean estimate of the approximate LOO-CV-IC for the EIV
BR model fitted with TD and AoR as the response variables and CBD and
SE as the input variables is -77.8. Conversely, the mean estimate of mixed
LOO-CV-IC for the EIV GP with the same variables is -67.9, with a direct
comparison between the two values indicating that the EIV BR provides a
better model fit based on out-of-sample predictive performance. A possible
reason for this has been noted earlier in this section, that the nature of the
nonparametric modelling to small data sets can lead to overfitting, which
can be highlighted by this measure of out-of-sample predictive performance.
On the other hand, it is more likely due to the larger estimates of the model
error standard deviation in the EIV GP than in the EIV BR.
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Figure 4.60: The analogous plot to Figure 4.59 for the predictions of the
response variable AoR.

Two visual comparisons between the two model fits (specifically their
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forward models) are provided in Figures 4.59 and 4.60, with Figure 4.59
providing predictions of TD and Figure 4.60 providing predictions of AoR. In
each figure, the four plots correspond to predicting the response variable for
different lines within the 2D input plane of possible input vectors. The top-
left plot corresponds to predictions of the response for X2 = 1.5X1 − 0.025,
with X1 ∈ [0.35, 0.55]; the top-right plot for X2 = −1.5X1 + 1.325 with
X1 ∈ [0.35, 0.55]; the bottom-left plot for X2 = 0.65 with X1 ∈ [0.35, 0.55];
the bottom-right plot for X1 = 0.45 with X2 ∈ [0.5, 0.8]. For all plots and for
both models, the predictions of the response variables are carried out jointly,
with the plots presenting the summaries of the predictions for each variable
in turn. As expected with the EIV GP (whose mean prediction is given
by the solid red line, and 95% prediction interval is given by the dotted
red lines), there is more uncertainty in the predictions of both response
variables for more extreme values of the input variable(s) than with the EIV
BR (black lines). There is more certainty in the predictions at values closer
to the mean (or midpoint) of the explanatory variables, given the narrower
prediction intervals towards the centre of each plot. It still appears that the
EIV BR has more confidence in the predictions at these points, given the
narrower intervals compared with the EIV GP. For the predictions of TD in
Figure 4.59, it is noted that the mean predictions of the two methods for each
plot are much more similar than the analogous mean predictions for AoR
in Figure 4.60. The cause of this is likely due to CBD being such a strong
predictor of TD, particularly in comparison with the strength of SE as a
predictor of AoR (see the out-of-sample predictive performance assessments
from Table 4.5 compared with Table 4.6 and Table 4.8 compared with Table
4.9, albeit with uninformed prior distributions). This strength means that
both the EIV GP and EIV BR are more in alignment with predicting TD
compared with AoR.

The four straight lines along which the response variables are predicted
for the plots in Figures 4.59 and 4.60 are plotted in Figure 4.61, along with
95% credible ellipses for the true values of each group for the two explanatory
variables, from both fitted models. This plot gives some indication as to
why there is more certainty in the predictions in some areas than in others,
which has already been suggested above, but is more clear from the plot.
In particular, this is relevant for the EIV GP model fit, which is primarily
dependent on predicting the response variable, with higher confidence, at
input vectors close to the existing true input vectors provided in Figure
4.61. An example of this is in the top-right plots of Figures 4.59 and 4.60,
where the response variables are predicted given X2 = −1.5X1 + 1.325 and
X1 ∈ [0.35, 0.55], i.e., the straight black line with negative gradient in Figure
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4.61 – the true vector of Powder 7 lies on this line, with its true CBD
roughly between 0.36 and 0.37, and the prediction interval for both response
variables between CBD values of 0.36 and 0.37 is slightly narrower than
values immediately either side of this interval. It is also noted from Figure
4.61 that the major radii for 95% credible ellipses of multiple powders is
appreciably smaller for the EIV BR than for the EIV GP. More specifically,
for powders 2 to 6, the 95% credible intervals for the true values of SE
are narrower for the EIV BR than for the EIV GP. In comparison, the
estimated true values of CBD are almost identical for both models. It is
possible that the predetermined straight line relationship of the EIV BR
imposes more restriction on the true values of SE than the nonparametric
nature of the EIV GP, which only occurs for SE due to the higher levels of
prior uncertainty in its measurement error precision. The between-materials
correlation between SE and CBD is clear; it is also noted that within each
group, there is a negative correlation between the true value of SE and the
true value of CBD, with the non-vertical alignment of each ellipse.
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Figure 4.61: Plot presenting the four lines in which the response variables
are predicted in Figures 4.59 and 4.60, along with 95% credible ellipses for
the true values of each group for the two explanatory variables; these are
given for both model fits, with those for EIV GP represented by the solid
lines, and those for the EIV BR represented by the dotted lines.

The forward modelling process is concluded here. Having developed the
modelling process for EIV BR and EIV GP based on several simulations, the
case study on powder data was investigated using both methods. The choice
of the best-fitting model was determined using the EIV BR modelling, and
it was identified that CBD and SE, with an additive relationship in both
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variables, provides the best-fitting model with TD and AoR as the output
variables. The backward modelling process is now similarly investigated,
with consideration of simulations to develop the modelling process, then
the backward modelling is applied to the powder data to determine optimal
values of CBD and SE to produce desired values for the output variables
TD and AoR.



Chapter 5

Producing desired powder
flow

In this chapter, the ultimate aim of this PhD thesis is considered, which is
to optimise the values of the explanatory variables (identified from the for-
ward modelling) in order to produce some desired values of the response(s).
This backward modelling is investigated in two ways, similarly to Chapter
4, where the effectiveness of the modelling is demonstrated by consideration
of simulated data, then the backward modelling process is applied to the
real data. The two methods that have been discussed in previous chapters,
errors-in-variables Bayesian regression and errors-in-variables Gaussian pro-
cesses, are investigated here. In particular for the simulated data, many
possible linear predictors (for the Bayesian regression) and many possible
desired responses are fitted with the backward modelling process.

While Chapter 4 considers the forward modelling process, looking to es-
timate the relationship between the response variables and the explanatory
variables, the backward modelling described here utilises the posterior dis-
tribution estimated in the forward modelling to optimise the input variables
corresponding to a desired response. This process is discussed in detail in
Chapter 3.6, and is summarised briefly later in this chapter.

The first section of this chapter considers fitting the backward model
given a forward model fitted to simulated data, where many linear predictors
are considered, and given a ‘chosen’ desired response value. The purpose of
this is to ensure that the model performs as intended, and if required, for
making adjustments to the modelling process to deal with any issues that
occur. The simulations considered here are those from Chapter 4. In some
cases, the backward model may be fitted for multiple desired response(s),

227
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that is, the backward modelling process may be carried out multiple times
for the same posterior distribution from the forward modelling, and in each
case different values may be chosen for the desired response. Some desired
response(s) are chosen with the intention of being ‘easier’ for the backward
model to identify optimal input values (i.e., the model has already learned
about the relationship between the variables close to these values). In other
cases, the backward model is investigated in more challenging scenarios,
where more extreme desired responses are considered.

5.1 Errors-in-variables Bayesian regression on sim-
ulated data

Of interest here is applying the backward modelling process to each of the
Bayesian regression models that have been fitted to simulated data in Sec-
tion 4.2. That is, the desire here is to ‘invert’ the modelling process, with
the interest now in the behaviour of the input variable(s) given values of
the output variable(s). Each Bayesian regression model that is considered
(differing in linear predictor and number of response variables) has its own
subsection, and in each subsection, multiple values (or vectors in the case of
multivariate Bayesian regression) may be considered.

5.1.1 Simple linear model

In this subsection, the backward modelling process is described again in
some detail, to reiterate how the process is carried out in this work. This is
firstly demonstrated for the simplest parametric model that has been fitted,
assuming a straight line relates the response variable to the explanatory
variable.

In Section 4.2.1, a simple linear errors-in-variables Bayesian regression
model was fitted, where the true values for the response variable were sim-
ulated from the equation (before scaling)

Ỹi = 3 + 5X̃i + εi,

where i = 1, . . . , 13. After scaling, the chosen true values for the intercept
and slope were β0 = 0.03 and β1 = 5 respectively, which were effectively
recovered in the posterior distribution in the forward modelling.

The task in the backward modelling process is to then optimise the
corresponding input variable X∗|θ, Y ∗ = y∗ to be able to produce some
desired value for the response variable Y ∗ = y∗ (note that θ refers to the
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vector of parameters required to fit the backward model). That is, a value
x∗ is suggested for X∗ which is considered the best candidate value for
producing Y ∗ = y∗. For each backward modelling process, a large number
of posterior samples Sback are taken from θ, so that a candidate value can be
found for X∗ for each of those samples, which allows a posterior distribution
to be built for X∗ given the uncertainty in the forward modelling.

With the example of the simple linear model, the backward modelling
process is carried out by fitting the model

Y ∗ = β0,b + β1,bX
∗
b + ε∗b , (5.1.1.1)

where the variable Y ∗ is fixed at some desired response value y∗, and X∗b is
the corresponding input variable, which is assumed to be random. Moreover,
β0,b and β1,b are the model coefficients of the bth posterior sample from the
forward model, and the random error term ε∗b assumes a normal distribution
with mean 0 and precision τε,b, the model error precision from the bth poste-
rior sample of the forward model. That is, the joint behaviour of the model
coefficients and the model error precision is preserved by choosing the same
posterior sample from the forward model (in other words, they are sam-
pled jointly from the posterior). In this case, of interest is the distribution
X∗|θ, Y ∗ = y∗, where θ = (β0, β1, τε). This distribution is built based on
samples from the posterior distributions X∗b |θb, Y ∗ = y∗ for b = 1, . . . , Sback,
with Sback being some subset of the Sback random samples stored from the
forward model posterior distribution. That is, for each posterior sample
from the forward model b = 1, . . . , Sback, a posterior distribution is found
for the corresponding variable X∗, given by X∗b , and a random sample can be
drawn from each X∗b and collected together to build the complete posterior
distribution for X∗. The distribution X∗|θ, Y ∗ = y∗ is often shortened here
to the distribution X∗ (and similarly when the subscript b is considered).

A uniform prior distribution is placed on each X∗b . Given the data are
scaled onto the range [0,1], these are appropriate bounds for an initial fitting
of the backward model. One should consider the range of the data after
scaling, and adjust appropriately. In this case, the range of the input variable
is [0.01,0.13] (roughly speaking), and so a range of [0,1] is a relatively notable
extrapolation of the data. These endpoints could also be adjusted given prior
information.

To carry out the backward modelling process, Sback = 2000 posterior
samples are randomly selected from the forward model posterior. The first
‘chosen’ desired response value is Y ∗ = 0.38, which is calculated by rounding
the mean of the ‘chosen’ true values from the forward model (after scaling)
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to 2 decimal places. That is, the underlying true values of the response
variable for this simulation were simulated from the equation

Ỹi = 3 + 5X̃i + εi,

with εi simulated from a normal distribution with mean 0, precision 4. Note
further that X̃ = (1, 2, . . . , 13). This provides the 13 true values of the
response variable from the underlying simulation, where the true values are
scaled onto the range [0,1], and the mean of these values (rounded to 2 d.p.)
is chosen to be the desired response. This ‘chosen’ desired response provides
a straightforward test for the backward modelling process, since the model
should have the best understanding of the relationship between the output
and the input towards the mean of the output variable.

For each b = 1, . . . , 2000, the model

0.38 = β0,b + β1,bX
∗
b + ε∗b

is fitted with X∗b ∼ U(0, 1) and ε∗b ∼ N(0, τε,b), in order to find a posterior
distribution for X∗b . The model is run with an adaptation phase of length
500, a burn-in of length 15000, then 2000 posterior samples are stored from
20000 posterior samples, taking every 10th sample. Each backward model
is initialised with different values for the random variable X∗b (randomly
sampled from its prior distribution), to demonstrate convergence for each
backward model run with overdispersed starting values. In other words
each X∗b is assigned a starting point for the respective MCMC run, chosen
randomly from a sample of 2000 values of the distribution U(0,1). Each
backward model is also run with two parallel chains, so that the PSRF can
be calculated. For these simulated-data cases, the same initial values are
assigned to X∗b for each chain, which is an error and is rectified for the
backward modelling process on the real data. Before combining posterior
samples from X∗b for b = 1, . . . , 2000 to build the posterior distribution for
X∗, the metrics PSRF (potential scale reduction factor) and effective sample
size are estimated to test that the MCMC output is working effectively, for
each b = 1, . . . , 2000. An initial check is to find the maximum value of the
upper bounds on the 95% confidence interval for PSRF, which in this case
gives 1.020. This is below the value of 1.1, which is typically used as the
cutoff for appropriate values of PSRF (recall from Section 3.1.4). Given
this is the maximum over all backward models, it is fair to say that each
backward model has converged to its posterior distribution. The second
check is to find the minimum value of effective sample size of X∗b from each
parallel chain of each backward model. This is given by 1284 (rounded to 0
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decimal places), which suggests that each chain, and each backward model,
has mixed effectively (comfortably larger than the cutoff of 5m, with m being
twice the number of parallel chains). For the subsequent backward modelling
processes carried out in this chapter, the PSRF and effective sample sizes
are only discussed when the criteria for convergence and mixing are not met
(i.e., only where there are issues with the convergence and mixing in the
backward modelling).

The complete posterior distribution for X∗ can now be compiled, which
is performed by taking 10 random samples from each posterior distribution
X∗b for b = 1, . . . , 2000, giving 20000 posterior samples of X∗, whose density
is now examined. Given the linear predictor chosen for this simulation, it is
known that a value of 0.07 (after scaling) would produce the desired response
Y ∗ = 0.38, by solving

0.38 = 0.03 + 5x∗.

In essence, with the backward models carried out on simulated data, one of
the main aims is to try to recover this value of x∗ as a high-density value in
the posterior distribution of X∗|Y ∗ = 0.38. A plot of the posterior density
of X∗|Y ∗ = 0.38 is provided in Figure 5.1, along with two vertical lines: the
red value indicates the true corresponding value of x∗ = 0.07, and the green
line indicates the posterior mode of X∗|Y ∗ = 0.38, given by 0.0701.
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Figure 5.1: The posterior density of X∗ given the desired response value of
Y ∗ = 0.38, along with two vertical lines: the red indicating the real value of
x∗ = 0.07 and the green indicating the posterior mode of X∗ of 0.0701.

Clearly the backward model is working as intended, with the posterior mode
of X∗, given by the green vertical line, lying very close to the real value
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x∗ = 0.07. Some level of uncertainty is expected here given the setup of the
backward model, acknowledging the uncertainty in the model for the model
coefficients and model error term.

The candidate point that is suggested is the posterior mode, which
maximises the posterior density of X∗. The posterior mode is given by
X∗mode = 0.0701 to 3 significant figures. This point can be tested to see how
well it produces the desired response Y ∗ = 0.38 by providing a distribution
of predictions of the response variable at the posterior mode, with each value
given by

Ypred,s = β0,s + β1,sX
∗
mode + εs,

where εs ∼ N(0, τε,s). Note the use of the subscript s, where s = 1, . . . , S
with S = 20000, i.e., using the entire samples drawn from the forward
model posterior distribution to provide predictions of the response given
X∗mode. These values are summarised here with a plot of the density of
Ypred|θ, X∗mode, provided in Figure 5.2, along with two vertical lines repre-
senting the desired response Y ∗ = 0.38 (red) and the mode of Ypred|θ, X∗mode

(green), given by 0.379 (to 3 significant figures). In this case, the posterior
mode is an effective point for being able to produce the desired response.
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Figure 5.2: Probability density of Ypred|θ, X∗mode, where X∗mode = 0.0701 is
the posterior mode of X∗ given the desired response value of Y ∗ = 0.38. The
red line represents this desired response value, and the green line represents
the value 0.379, the mode of the distribution Y ∗|θ, X∗mode.

A second backward modelling attempt is now performed with the desired
response value Y ∗ = 0.85, which is found by taking the maximum of the ex-
isting true values of the response variable (the underlying values, as opposed
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to the estimated posterior values), multiplied by 1.25 (to ensure this is an
extreme point that has not yet been observed), and rounded to 2 decimal
places. The demand of this example is that there is no data provided in the
forward modelling that exists close to this desired response value, and so
the backward model is forced (at least in this case—it is not necessarily true
that an ‘extreme’ value of the response variable requires an extreme value of
the explanatory variable in order to produce it) to search in a new region of
the input variable space (given the forward model posterior distribution) to
find appropriate candidate values. An identical process to what is described
above is now carried out.

Given the scaled chosen value of the linear predictor, the value of the
explanatory variable that produces the desired response of Y ∗ = 0.85 is
given by x∗ = 0.85−0.03

5 = 0.164. The posterior density of X∗|Y ∗ = 0.85 is
given in Figure 5.3, along with two vertical lines: the red value indicates
the true corresponding value of x∗ = 0.164, and the green line indicates the
posterior mode of X∗|Y ∗ = 0.85.
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Figure 5.3: The posterior density of X∗ given the desired response value of
Y ∗ = 0.85, along with two vertical lines: the red indicating the real value of
x∗ = 0.164 and the green indicating the posterior mode of X∗ of 0.165.

The posterior distribution for X∗ in this case of Y ∗ = 0.85 is adequate—
the real value of x∗ = 0.164 is a high-density value in the posterior. The
further distance between the posterior mode and the real value of x∗, com-
pared with that found in Figure 5.1, is likely due to the model having to
extrapolate, having to find values of the explanatory variable that have not
been seen in the forward model in order to produce a response value that
has also not been seen in the forward model (neither in the simulated obser-
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vations nor in the estimates of the true values). This posterior mode is given
by X∗mode = 0.165 to 3 significant figures, and is tested in the forward model
to see what values of the response variable it produces. A plot of the prob-
ability density of prediction values of Ypred|θ, X∗mode with X∗mode = 0.165, is
given in Figure 5.4. A pair of vertical lines are superimposed, showing the
desired response Y ∗ = 0.85 (red) and the mode of Ypred|θ, X∗mode (green),
which is equal to 0.852 to 3 significant figures.
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Figure 5.4: Probability density of Ypred|θ, X∗mode, where X∗mode = 0.165 is
the posterior mode of X∗ given the desired response value of Y ∗ = 0.85. The
red line represents this desired response value, and the green line represents
the value 0.852, the mode of the distribution Y ∗|θ, X∗mode.

As with the previous case of Y ∗ = 0.38, the case of Y ∗ = 0.85 provides
evidence that the backward model is able to find suitable candidate values
for X∗ to be able to produce desired response values, given that Y ∗ = 0.85 is
a high-density value in the distribution of the predictions given the posterior
mode X∗mode = 0.165.

5.1.2 Cubic model

The backward model corresponding to the cubic EIV BR model fitted in
Section 4.2.2 is now considered. This introduces another considerable diffi-
culty for the backward model; consider the bottom-left plot of Figure 4.6,
the fitted model found for the cubic simulation, which shows that there are
multiple values for the input variable that can produce a single response
value.

This is tested by considering the desired response value Y ∗ = 0.404 (after
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scaling). Rough estimates for input values that could produce this desired
response for the cubic simulation (found by trial and error) are given by
x∗ = 0.0512 and x∗ = 0.122 (both rounded to 3 significant figures). For this
cubic simulation, the backward model of interest is

Y ∗ = β0,b + β1,bX
∗
b + β11,b(X

∗
b )2 + β111,b(X

∗
b )3 + ε∗b ,

with ε∗ ∼ N(0, τε,b), and β0,b, β1,b, β11,b, β111,b and τε,b being jointly sampled
from the forward model posterior distribution. This is fitted for each joint
posterior sample b = 1, . . . , Sback, with the prior distribution X∗b ∼ U(0, 1)
for each backward model fit. For each b = 1, . . . , Sback, the MCMC output
of X∗b is checked for mixing and convergence, and a small posterior sample is
randomly selected from each X∗b and combined to build a complete posterior
distribution for X∗.

There are issues here with the mixing and convergence of each of the
backward models for this example. The major issue lies with the conver-
gence of the MCMC output to the posterior distribution, which is assessed
initially using the PSRF. From all Sback backward models, the largest up-
per bound for the 95% confidence interval of PSRF for X∗b is 287.3, which
would initially suggest that the X∗b is not close to converging. Looking fur-
ther into these upper bounds for each backward model, there appear to be
several backward models for which the upper bound is small—looking at the
summary statistics for the upper bound of PSRF for each backward model,
the median upper bound is 1.0086, to 4 decimal places, suggesting that at
least half of the backward models have converged, according to PSRF. On
the other hand, the 75% quantile is 144.6, so there are clearly a signifi-
cant percentage of the backward models that are not converging. Deeming
a backward model to not have converged if the upper bound of the 95%
confidence interval for the PSRF estimate is greater than 1.1, there are 958
out of 4000 (note that for each b = 1, . . . , 2000, 2 parallel chains are run)
backward models that have not converged, meaning 3042 backward models
of the 4000 appear to have converged. It is noteworthy that the smallest
upper bound for the PSRF of those backward models that have not con-
verged is 56.0 to 3 significant figures, which is significantly larger than the
criterion for convergence. This would suggest there is a substantial issue
with the backward models. This is investigated further in Appendix E, to
show that genuine convergence to the posterior distribution occurs in 1 of
the Sback = 2000 backward model runs.

As such, a solution for this issue is not investigated further in this work,
and the investigation of backward models fitted to different simulation ex-
amples continues, despite this issue of a lack of convergence. While the
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relative densities surrounding posterior modes in the complete backward
model posterior for X∗ cannot be compared, there is sufficient evidence
that the modes that are recovered are appropriate for the given simulation
and desired response.

The focus is re-centred onto the complete posterior distribution of X∗,
which is plotted in Figure 5.5. Despite the issues discussed above with the
convergence of each backward model run, it is clear that the backward model
algorithm is still able to identify both possible candidate values with a high
level of accuracy. There are two clear peaks of density, and both are centred
very close to the real values identified earlier.
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Figure 5.5: The posterior density of X∗ for the cubic model simulation,
given the desired response value of Y ∗ = 0.404. This posterior density is
multimodal, with the ‘first’ mode (i.e., the mode with the highest density)
indicated by the solid green line, and the ‘second’ mode indicated by the
dotted green line. The two ‘real’ values are also indicated on the plot, with
x∗ = 0.0512 given by the solid red line (solid as it is relatively close to the
first mode), and x∗ = 0.122 given by the dotted red line.

The posterior modes recovered in the backward modelling are now com-
pared by running these values through the forward model, given the poste-
rior distribution estimated for the model parameters β0, β1, β11, β111 and
τε. This provides a distribution of predictions of the response variable given
each posterior mode, whose densities are directly compared in Figure 5.6.
The mode of the distribution of predictions of the response is slightly closer
to the desired response value in the case of the second mode. In contrast,
the variance of the distribution of predictions of the response variable is
noticeably larger given the second mode. For these reasons, the question of
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which posterior mode is the better candidate value is not straightforward to
answer. As discussed in the following example, this can depend on the ques-
tion being asked—it appears that the second mode is more likely to produce
the desired response, but it appears that the first mode is more likely to
produce values within, say, 5% of the desired response value. If values of
the response variable within 5% of the desired response are equally valuable,
then the first mode is preferable (63.5% of the distribution of predictions
given the first mode are within 5% of the desired response, whereas this
percentage drops 51.0% for the second mode).
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Figure 5.6: Probability densities of Ypred|θ, X∗mode,1 (black line) and
Ypred|θ, X∗mode,2 (blue line), where X∗mode,1 = 0.0514 is the ‘first’ poste-
rior mode of X∗ given the desired response value of Y ∗ = 0.404 and
X∗mode,1 = 0.122 is the ‘second’ posterior mode of X∗ given the desired
response value of Y ∗ = 0.404 (red line). The green line represents the value
0.407 and the orange line represents the value 0.402, the modes of the dis-
tributions Y ∗|θ, X∗mode,1 and Y ∗|θ, X∗mode,2 respectively.

5.1.3 Two explanatory variables

In this section, EIV BR models with two explanatory variables are consid-
ered in the backward modelling. That is, the corresponding input variable
X∗ to the desired response value Y ∗ = y∗ becomes 2-dimensional. The mul-
tidimensional corresponding input variable is denoted as X∗ = (X∗1 , X

∗
2 ),

whose prior distribution can take a variety of 2-dimensional shapes. As dis-
cussed in Section 3.6.5, there are several possible prior specifications for the
corresponding input vector X∗. If, a priori, there are no known assumptions
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for the possible range of values of the input variables as well as for the re-
lationship between the input variables, then placing a uniform box over X∗

(with lower bound 0 and upper bound 1) is the most logical prior, and this
is carried out for this example. Moreover, as hinted in the previous section,
it may be desirable to produce values of the response within a certain range
of the desired response value Y ∗ = y∗; for example, values within 1% of
the desired response value Y ∗ = y∗ may be just as desirable as Y ∗ = y∗,
in which case we want to optimise X∗ in order to produce desired response
values within the range (0.99y∗, 1.01y∗). This is also discussed in Section
3.6.6.

Returning to the example from the forward modelling with one response
variable and two explanatory variables, consider the plot in Figure 5.7, which
provides a heatmap of the simulation on which the example is based (having
scaled the data), i.e.,

Ỹ = 0.3 + 8X̃1 − 0.5X̃2.

Here, the horizontal axis corresponds to the first input variable, the vertical
axis corresponds to the second input variable, and the coloured heatmap
indicates the value of the response variable corresponding to the vector of
inputs (X̃1, X̃2). Furthermore, a red region is indicated on the plot, which
corresponds to vectors of the input variables which are able to produce values
of the response variable within the range (0.99× 0.34, 1.01× 0.34), that is,
values within 1% of some desired response value Y ∗ = 0.34 (found by taking
the mean of the observed data for the response variable and rounding to 2
decimal places). In theory, the backward model should be able to identify
these vectors as suitable candidates for the corresponding input vector X∗.
The backward model of interest is therefore

0.34 = β0,b + β1,bX
∗
1 + β2,bX

∗
2 + ε∗b ,

where ε∗b ∼ N(0, τε,b), with the additional assumption that, for some variable
Y ′,

Y ′ = Y ∗ + Z,

with Z ∼ U(−0.01 × 0.34, 0.01 × 0.34). Thus Z implies a range of values
1% either side of the desired response value y∗ = 0.34. For the initial vector
of values used for X∗b in each model, Latin hypercube sampling is carried
out with two variables and Sback = 2000 samples, and for each backward
model b, a random sample of the Latin hypercube sampling is chosen as the
initial value for X∗b in the MCMC. This is carried out to ensure that the
backward modelling is able to converge to the same posterior distribution
from all possible starting vectors for X∗.
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Figure 5.7: A heatmap of the simulation with two inputs and one response
variable (additive relationship between inputs), with the points highlighted
in the plot that satisfy the inequalities 0.99 × 0.34 ≤ 3 + 8X̃1 − 5X̃2 ≤
1.01× 0.34.

The backward model algorithm as described directly above is then fitted,
and the PSRF is used to check the convergence of each model. With the
corresponding input now being a vector, the PSRF is estimated for both
X∗1,b and X∗2,b for each backward model iteration in b = 1, . . . , Sback, and so
the maximum of the upper bound on the 95% confidence interval of these
estimates is calculated. In an initial run, the PSRF is 2.18 to 3 significant
figures. This is significantly larger than the cutoff of 1.1 for convergence,
suggesting an issue with at least one of the backward models. A 95% con-
fidence interval of these upper bounds (i.e., the upper bounds of PSRF for
X∗1,b and X∗2,b for each b = 1, . . . , Sback is given by [1.00,1.16] to 2 decimal
places, indicating that a significant majority of the backward models are
close to convergence. Inspecting further shows that the 92.75% quantile of
these values is 1.099 to 3 decimal places, indicating that over 92% of the
backward models are converging. In this case, it is fair to suggest that some
adjustment to the MCMC parameters is suitable, with increasing the num-
ber of posterior samples drawn from each backward model (that is for the
purpose of assessing the convergence of each X∗1,b and X∗2,b, as opposed to
drawing further samples of these distributions to build the complete poste-
rior of X∗) being a logical step. Before continuing, the effective sample size
estimates are also calculated to check the levels of autocorrelation in the
MCMC are sufficiently small. The smallest estimate of effective sample size
for either parameter in any of the backward models is 21.1 to 3 significant
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figures, and a 95% credible interval for effective sample size estimates over
all backward models and each random variable within the backward model
is given by [35.8,269] to 3 significant figures. It would seem that the mixing
is only a significant issue for a small percentage of the backward models.

With a burn-in length of 20000 samples, and 15000 posterior samples
stored (taking every 10th sample from 150000 samples), it is noted that
1999 out of 2000 backward models achieve convergence (with the remaining
backward model having a PSRF upper bound of 1.11), and sufficient mixing
is observed. This is deemed to be sufficient, and the complete posterior
distribution of X∗ is built, whose posterior density is now considered. Note
that the marginal posterior densities of X∗1 and X∗2 do not tell much of the
story. It is clear from the plot of possible vectors of X∗ that could produce
the response variable within the desired range of [0.99×0.34, 1.01×0.34] that
there is some relationship between these two variables: a given value of one
of these variables gives a small range of possible values for the other variable.
A joint posterior density of X∗|Y ∗ ∈ [0.99× 0.34, 1.01× 0.34] is provided in
Figure 5.8, with the red region of possible input vectors identified in Figure
5.7 superimposed. The joint posterior density of X∗ is clearly performing
well, identifying the entire region of input vectors from Figure 5.7 as high-
density vectors in the posterior density.
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Figure 5.8: Joint posterior density of X∗ given a desired response range of
[0.99× 0.34, 1.01× 0.34] (blue region), with the red region of input vectors
identified in Figure 5.7 as vectors that produce the desired response to within
the specified range superimposed. The green point indicates the joint pos-
terior mode of X∗, given by X∗mode = (X∗1,mode = 0.0871, X∗2,mode = 0.769).

The joint posterior mode of X∗ is identified as X∗mode = (X∗1,mode =
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0.0871, X∗2,mode = 0.769), rounded to 3 significant figures. This posterior
mode is now tested using the posterior distribution from the forward model
to provide a distribution of predictions of the response variable. These
predictions of the response variable are given by

Ypred,s = β0,s + β1,sX
∗
1,mode + β2,sX

∗
2,mode + εs,

where εs ∼ N(0, τε,s), and the density of these predictions are provided in
Figure 5.9, with the vertical green line representing the mode of Ypred|θ,X∗mode,
0.337, the solid red line representing the desired response value of Y ∗ = 0.34,
and the dotted red lines representing the desired response range [0.99 ×
0.34, 1.01 × 0.34]. The mode of the distribution of predictions overlaps the
lower bound of the desired response range; these values are equal to 4 decimal
places. It is satisfactory to see that the desired response range is practically
centred in the distribution of predictions. We observe in this case that the
backward modelling algorithm is working effectively.
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Figure 5.9: Probability density of Ypred|θ,X∗mode (black line), where
X∗mode = (0.0871, 0.769) is the posterior mode of X∗ given the desired re-
sponse range of [0.99×0.34, 1.01×0.34]. The green line represents the value
0.337, the mode of the distribution Y ∗|θ,X∗mode, the solid red line corre-
sponds to the desired response value Y ∗ = 0.34, and the dotted red lines are
the desired response range.

5.1.4 Two explanatory variables with interaction term

The backward modelling investigation with simulated data continues with
the example considered in Section 4.2.5 of one response variable, two ex-
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planatory variables and a full quadratic linear predictor. In this backward
modelling example, the model of interest is therefore

Y ∗ = β0,b+β1,bX
∗
1,b+β2,bX

∗
2,b+β11,b(X

∗
1,b)

2+β12,bX
∗
1,bX

∗
2,b+β22,b(X

∗
2,b)

2+ε∗b ,

where ε∗b ∼ N(0, τε,b). As in the previous section, the initial values of
(X∗1,b, X

∗
2,b) are randomly selected from a Latin hypercube sampling with

two variables and Sback = 2000 samples, with the uniform ‘box’ prior distri-
bution over [0, 1]× [0, 1].

The desired response value for Y ∗ is selected to be Y ∗ = 0.205, which is
calculated by taking the 40% quantile from the ‘chosen’ true values in the
forward modelling. The relationship between the response variable and the
two explanatory variables, given the chosen values of the model parameters,
is provided in Figure 5.10 as a contour plot, along with a red curve, which
indicates vectors of the two explanatory variables that are able to produce
the desired response value Y ∗ = 0.205.
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Figure 5.10: A contour plot of the simulation with two inputs and one re-
sponse variable (full quadratic relationship between inputs), with the points
highlighted in the plot that satisfy the equation 36 + 28X̃1− 11X̃2− 4X̃2

1 +
6X̃2

2 + 5X̃1X̃2 = 205 (note this is before scaling, and the points in the plot
have then been scaled accordingly).

Issues with the resulting MCMC output for each backward model run
are observed again. The maximum upper bound of the 95% confidence in-
terval of PSRF (for any parameter from any backward model) is 10.9 to
3 significant figures. Moreover, the median upper bound is 1.3, suggesting
that a significant majority of the backward models are not converging. Ap-
propriate adjustments are made for the MCMC tuning parameters, which



5.1. EIV BR ON SD 243

are significant, yet still lead to a lack of convergence. An adaptation length
of 1500 samples, a burn-in length of 25000 and storing 20000 samples from
each backward model chain, produce a maximum upper bound (for the 95%
confidence intervals of PSRF) of 3.34, a median upper bound of 1.06, and a
75% quantile of 1.16. This indicates that a significant proportion of back-
ward models are still not converging.

Given the main desire for recovering the possible input vectors high-
lighted in red in Figure 5.10, the prior distribution for X∗b is adjusted from
a uniform box over [0, 1]×[0, 1] to [0.01, 0.13]×[0.1, 0.9], corresponding to the
existing range of true values for the input variables. The Latin hypercube
sampling for the initialisation of X∗b is also adjusted as above.
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Figure 5.11: Joint posterior density of X∗ given a desired response value of
Y ∗ = 0.205 (blue region), with the red curve of input vectors identified in
Figure 5.10 as vectors that produce the desired response superimposed. This
corresponds to the simulation with one response variable and two explana-
tory variables with a full quadratic relationship between the explanatory
variables, and the backward model algorithm has been fitted with the prior
distributions X∗1,b ∼ U(0.01, 0.13) and X∗2,b ∼ U(0.1, 0.9), and the MCMC
tuning parameters of an adaptation phase of length 500, a burn-in length
of 25000 posterior samples and 5000 posterior samples stored (having taken
every 10th sample from 50000).

The backward model algorithm is fitted again with the tuning parame-
ters (for each backward model iteration) initially used, i.e., an adaptation
length of 500 samples, a burn-in length of 15000 samples, and 2000 posterior
samples stored from 20000 samples, taking every 10th sample. Comparing
the convergence statistics with the analogous case for the uniform box prior



244 CHAPTER 5. PRODUCING DESIRED POWDER FLOW

over [0, 1]× [0, 1] over X∗ shows a clear improvement—the maximum upper
bound for the 95% confidence interval of PSRF is 1.70, compared with 10.9
in the analogous case. The 75% quantile here is 1.03, indicating that a large
majority of the backward models have converged. Further inspection of the
upper bounds indicates that around 96.5% of the backward models have
converged. The backward model algorithm is fitted with further increases
in the MCMC tuning parameters, with the hope that 99% of the backward
models converge.

Increasing the burn-in period to 25000 samples, and storing 5000 poste-
rior samples from 50000 (taking every 10th sample) and fitting the backward
model algorithm produces a maximum upper bound of 1.14, a 75% quantile
of 1.01 and at least 99% of the backward models converging to the posterior
distribution (99% quantile of 1.08). While the effective sample size estimates
have not been discussed for the previous model fits (with more of an empha-
sis on achieving convergence), the minimum effective sample size estimate
from any backward model, any chain, and any parameter is 135.0, which
is sufficiently large and indicates there is not an issue with autocorrelation
between the posterior samples in each backward model.

The complete posterior distribution ofX∗ is compiled, taking 10 random
posterior samples from each X∗b , and the joint posterior density of X∗ is
given in Figure 5.11 in the form of a hexibin chart. The highest-density
region of values looks to surround the joint posterior mode of X∗mode =
(0.0512, 0.363), highlighted as the green point in Figure 5.11.

The posterior mode X∗mode = (0.0512, 0.363) is now tested using the
forward model posterior distribution, giving an indication of the values that
could be expected for the response variable if the posterior mode of X∗mode

were to be observed as an input vector. This is presented by the density
of predictions of the response variable given in Figure 5.12, with the lines
of the desired response (red) and the mode of the predictions (green) also
plotted—the proximity between these two values is very promising.

5.1.5 Multivariate regression models

The backward modelling is applied here to regression models with multiple
response variables (multivariate regression), which introduces the challenge
of having to optimise the input variables to be able to produce desired
response values for multiple response variables simultaneously.

In many cases of backward modelling applied to multivariate regression
models, there are subspaces in the space Rd (for d response variables) where
there are no possible combinations of the explanatory variables that can
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Figure 5.12: Probability density of Ypred|θ,X∗mode (black line), where
X∗mode = (0.0512, 0.363) is the posterior mode of X∗ given the desired re-
sponse value of Y ∗ = 0.205. The green line represents the value 0.204, the
mode of the distribution Y ∗|θ,X∗mode and the solid red line corresponds to
the desired response value Y ∗ = 0.205.

produce some desired response value Y ∗ ∈ Rd. In other cases, it is possible
to find firstly a combination of the explanatory variables which can produce
some desired response value Y ∗1 for say the first response variable, and sec-
ondly another combination of the explanatory variables which can produce
some desired response value Y ∗2 for say the second response variable, but
these combinations for each desired response value may not coincide. This
point reiterates the advantage of considering the joint behaviour between
the response variables and the explanatory variables.

This section considers three possible desired response vectors, for the
forward model estimated in Section 4.2.6, with two response variables and
three input variables. These three desired response vectors are determined
intentionally, having identified the subspace in R2 where possible vectors
of the bivariate response can be produced by the underlying model. This
subspace of possible response vectors is highlighted in Figure 5.13.

The first desired response vector considered is the point given by Y ∗1 =
(Y ∗1,1, Y

∗
2,1) = (0.48, 0.24), located within a high-density region of the possi-

ble response vectors. In this case, the backward model should be able to
identify a subspace of values for the three explanatory variables which is
able to produce the desired response with a high level of accuracy. Given
the underlying relationship in the model is known, this subspace can be de-
termined before fitting the backward model, which provides a check as to
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Figure 5.13: Joint density of possible response vectors that can be produced
given the forward model simulation set up in Section 4.2.6. The red points
correspond to the ‘chosen’ true values of the response variables in the for-
ward modelling, and the green points located at (0.25,0.375), (0.48,0.24) and
(0.95,0.48) are the possible desired response vectors to be explored.

.

whether the backward model is identifying appropriate vectors for the cor-
responding explanatory variable vector X∗ = (X∗1 , X

∗
2 , X

∗
3 ). This is carried

out by producing a sequence of 50 values (evenly spaced) for each explana-
tory variable, ranging through their respective range of values (based on
their minimum and maximum chosen true values)—then, for each combi-
nation of values from the three sequences, the multivariate response value
is produced, giving 503 = 125000 vectors of the bivariate response. Those
response vectors that are within 1% of the desired response vector are then
identified, and their corresponding combination of input vectors are recorded
and produce the subspace of corresponding input vectors. This subspace is
provided by the green points in the three plots in Figure 5.14, with the left
plot corresponding to vectors for the first and second inputs, the middle plot
corresponding to vectors for the first and third inputs, and the right plot
corresponding to vectors for the second and third inputs. Possible input
vectors that can produce the desired value for first response variable are
given by the blue points, and those that can produce the desired value for
the second response variable are given by the red points.

It is clear from Figure 5.14 that the third input variable has the most
influence on this desired response vector (and any desired response, given the
underlying model)—its possible value corresponding to the desired response



5.1. EIV BR ON SD 247

0.02 0.06 0.10

0.
2

0.
4

0.
6

0.
8

X
~

1

X~
2

0.02 0.06 0.10

0.
2

0.
4

0.
6

0.
8

X
~

1

X~
3

0.2 0.4 0.6 0.8

0.
2

0.
4

0.
6

0.
8

X
~

2

X~
3

Figure 5.14: Plots of the three input variables demonstrating points which
can either produce the desired response value Y ∗1,1 = 0.48 (blue points), the
desired response value Y ∗2,1 = 0.24 (red points), or both desired response val-
ues (0.48, 0.24) simultaneously (green points). The left plot provides vectors
for (X∗1 , X

∗
2 ), the middle plot for (X∗1 , X

∗
3 ) and the right plot for (X∗2 , X

∗
3 ).

vector Y ∗1 looks to be restricted to between roughly 0.35 and 0.6. Any
combination of values for the first two input variables look plausible here.

The first backward model to be fitted, with Y ∗ = (0.48, 0.24), is

(
0.48
0.24

)
=

(
β0,1,b β1,1,b β2,1,b β3,1,b

β0,2,b β1,2,b β2,2,b β3,2,b

)
1

X∗1,b
X∗2,b
X∗3,b

+

(
ε∗1,b
ε∗2,b

)
,

with the subscript b denoting joint posterior sample b of the parameters from
the forward modelling posterior. The prior distribution for the correspond-
ing input vector X∗ is a uniform box over the space [0, 1]× [0, 1]× [0, 1]. A
Latin hypercube sampling is carried out (with 3 variables and Sback = 2000
samples), to determine initial vectors for each of the backward model runs
(a random sample (without replacement) from the Latin hypercube sam-
pling is assigned to each backward model run). Having fitted the model,
the MCMC output is investigated for convergence and mixing. The PSRF
estimates give a maximum value for the upper bound of the 95% confidence
interval of 7.18 (to 3 significant figures), indicating that at least one model
has not converged, and is not close to be deemed to have converged. A look
at quantile summary statistics over all upper bounds of PSRF shows that
at least 75% of the models are deemed to have converged. It is clear from
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previous simulations that the possible routes to explore in order to improve
convergence are increasing the burn-in period for the MCMC for each back-
ward model, collecting further posterior samples for the MCMC output, or
restricting the prior distribution on X∗. The restriction on the prior dis-
tribution is only significant for the first explanatory variable, as the range
of its chosen true values is from 0.01 to 0.13, while the prior distribution
on its corresponding input is U(0, 1). While it is plausibly of interest in a
backward modelling scenario to explore regions of the input space that are
not already explored in the forward modelling, in this backward modelling
case, the interest is to recover the values that have been highlighted in Fig-
ure 5.14, which are produced based on the range of chosen true values from
the forward modelling. For this reason, the prior distribution for the first
corresponding input X∗1 is altered, from U(0,1) to U(0.01,0.13). The prior
distributions of X∗2 and X∗3 are similarly adjusted from U(0,1) to U(0.1,0.9)
in both cases (due to their respective ranges of chosen true values existing
in the forward modelling).
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Figure 5.15: Joint marginal posterior density of (X∗1 ,X
∗
3 ), with the possible

vectors of these two explanatory variables which are able to produce the
desired response vector Y ∗1 = (0.48, 0.24) (given the underlying simulation
on which the model is based) also included (dark green points). The pink
point indicates the elements of joint posterior mode of X∗ corresponding to
these two variables.

Rerunning the backward modelling algorithm with the same desired re-
sponse vector of Y ∗1 = (0.48, 0.24) along with this adjustment to the prior
distribution, provides sufficient improvement of the convergence of the back-
ward modelling. A maximum upper bound of the PSRF estimate for any
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backward model is 1.08 to 3 significant figures, indicating that all backward
models in the algorithm have converged. Moreover, the minimum estimate
of effective sample size for any dimension of the corresponding input vector
X∗ from any backward model (and any parallel chain) is 210 (to 3 signifi-
cant figures), indicating that sufficient levels of mixing occur in all backward
models. The MCMC output is now considered to be the posterior distribu-
tion and is examined further below.

As explained above, the posterior distribution of X∗ should align with
those vectors that are identified in Figure 5.14; alternatively, the poste-
rior density could be more concentrated within the identified subspace—in
other words, the backward model may not identify the entire subspace in
its posterior density, but it may have high confidence in a region within
the subspace. The posterior density is presented in a similar way to the
presentation of the region of green points in Figure 5.14—that is, the joint
marginal posterior density of (X∗1 ,X

∗
3 ) is provided in Figure 5.15 and the

joint posterior density of (X∗2 ,X
∗
3 ) is presented in Figure 5.16. Note that

the joint marginal posterior density of (X∗1 ,X
∗
2 ) is omitted here, as the two

plots mentioned here provide all of the information needed. It is clear from
both plots that the joint marginal posterior densities are a good representa-
tion of the input vectors that have been identified as being able to produce
the desired response vector Y ∗1 = (0.48, 0.24) given the underlying model.
In both Figure 5.15 and Figure 5.16 the joint marginal posterior densities do
not capture every possible input vector, and instead are more concentrated
on a subspace of these vectors. Note that, in both plots, the joint posterior
mode (pink point) is the joint posterior mode of X∗ = (X∗1 , X

∗
2 , X

∗
3 ), with

the respective elements extracted from the vector and plotted; this is as
opposed to identifying the joint marginal posterior mode of the explanatory
variables considered in each plot.

Given the plots of the joint marginal posterior density of (X∗1 , X
∗
3 ) and

(X∗2 , X
∗
3 ), it is highly likely that the joint posterior mode that has been

identified, given by X∗mode,1 = (0.0532, 0.332, 0.464), is a suitable candidate
vector for producing the desired response vector (note that subscript ‘1’ in
the mode indicates that this mode corresponds to the first desired response
vector of Y ∗ = (0.48, 0.24)).

Without knowledge of the underlying relationship of the simulation, this
would not be possible to know, so the additional step of producing val-
ues of the response variable given this posterior mode is carried out here.
In this case, the distribution of predictions of the response variables is 2-
dimensional, and so there is uncertainty in both response variables. It is
possible that the uncertainty is correlated, which is why the forward and
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Figure 5.16: Joint marginal posterior density of (X∗2 ,X
∗
3 ), with the possible

vectors of these two explanatory variables which are able to produce the
desired response vector Y ∗1 = (0.48, 0.24) (given the underlying simulation
on which the model is based) also included (dark green points). The pink
point indicates the elements of joint posterior mode of X∗ corresponding to
these two variables.
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Figure 5.17: The joint density p(Ypred|θ,X∗mode,1), where the backward
model has been fitted with the desired response vector Y ∗ = (0.48, 0.24)
(red point). The orange point indicates the mode of Ypred|θ,X∗mode,1.



5.1. EIV BR ON SD 251

backward models account for this, and this will also be accounted for in
the plot of the 2-dimensional density of predictions of the response vector.
This distribution of predictions is found using the forward model posterior
distribution, given by

(
Y1,pred,s

Y2,pred,s

)
=

(
β0,1,s β1,1,s β2,1,s β3,1,s

β0,2,s β1,2,s β2,2,s β3,2,s

)
1

X∗1,mode,1

X∗2,mode,1

X∗3,mode,1

+

(
ε1,s
ε2,s

)
,

(5.1.5.1)
where X∗mode,1 = (X∗1,mode,1, X

∗
2,mode,1, X

∗
3,mode,1) = (0.0532, 0.332, 0.464).

The joint density of the predictions of the response variable given the poste-
rior mode, denoted by p(Ypred|θ,X∗mode,1), is plotted in Figure 5.17, with the
mode of the predictions highlighted as the orange point, given by (0.479, 0.241).
The location and uncertainty around the mode of p(Ypred|θ,X∗mode,1) indi-
cate that the backward model has suggested a candidate vector that is highly
likely to produce vectors of the response that are very close to the desired re-
sponse. Given the posterior distribution from the forward modelling, which
had clearly captured the underlying relationship chosen for the model, it is
not a surprise that this backward model is able to recover a suitable candi-
date vector for X∗, in this case of a desired response vector which is likely
to occur for several combinations of the input variables.

A more challenging task for this backward model is the desired response
vector Y ∗2 = (0.95, 0.48), which is located on the far right of the plot in
Figure 5.13. As can be seen in this figure, this desired response vector is
much less likely to occur given any combination of the input variables (given
those input variables taking values in the range of values already explored
in the forward modelling), suggesting the subspace of input vectors will be
more restricted than in the previous case. A visualisation of this is provided
in Figure 5.18 (i.e., given Y ∗1,2 = 0.95 and Y ∗2,2 = 0.48), analogous to the plot
in Figure 5.14. This increase in difficulty of achieving the desired response
vector has lead to more of a restriction of the first input variable (see the
middle plot of Figure 5.14), and the possible values for the third input
variable are also heavily restricted.

The backward model for the case of Y ∗ = (0.95, 0.48) is now fitted, with
the prior distributions of X∗1 ∼ U(0.01, 0.13), X∗2 ∼ U(0.1, 0.9) and X∗3 ∼
U(0.1, 0.9). The upper bounds of PSRF estimates for each backward model
are checked to confirm convergence to the posterior distribution—the largest
such upper bound is 1.03 to 3 significant figures, indicating convergence for
each backward model. With the minimum effective sample size estimate
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Figure 5.18: Plots of the three input variables demonstrating points which
can either produce the desired response value Y ∗1,2 = 0.95 (blue points), the
desired response value Y ∗2,2 = 0.48 (red points), or both desired response val-
ues (0.95, 0.48) simultaneously (green points). The left plot provides vectors
for (X∗1 , X

∗
2 ), the middle plot for (X∗1 , X

∗
3 ) and the right plot for (X∗2 , X

∗
3 ).

for any variable from and backward model run being 899.6, each backward
model has also sufficiently mixed.

The complete posterior distribution of X∗ is now considered, specifically
with two plots of the joint marginal posterior densities of (X∗1 , X

∗
3 ) and

(X∗2 , X
∗
3 ), provided in Figure 5.19 and 5.20 respectively. Both plots have

the vectors indicated in Figure 5.18 superimposed, to be able to compare
the posterior density of X∗ with vectors discovered from the underlying
simulation. This comparison indicates the backward model has been able to
identify suitable values for each of the three input variables. The full range
of possible values of X∗2 has not been explored in the backward model, but
it is clear from both Figures 5.19 and 5.20 that the joint posterior mode of
X∗, given by X∗mode,2 = (0.129, 0.268, 0.896) lies within the possible range
of values for each of the respective variables (subscript ‘2’ in the posterior
mode references the second desired response vector, Y ∗2 = (0.95, 0.48)).

This joint posterior mode of X∗mode,2 = (0.129, 0.268, 0.896) is tested us-
ing the forward model posterior distribution, to discover whether the mode is
a suitable candidate vector for the corresponding desired response vector. A
joint distribution of predictions for the two response variables is provided,
given by p(Ypred|X∗mode,2), estimated analogously to Equation 5.1.5.1, re-
placing the posterior mode X∗mode,1 with the posterior mode X∗mode,2. The
density of this joint distribution of predictions is provided in Figure 5.21.
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Figure 5.19: Joint marginal posterior density of (X∗1 ,X
∗
3 ), with the possible

vectors of these two explanatory variables which are able to produce the de-
sired response vector Y ∗1 = (0.95, 0.48) (given the underlying simulation on
which the model is based) also included (dark green points). The light green
point indicates the elements of joint posterior mode of X∗ corresponding to
these two variables.
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Figure 5.20: Joint marginal posterior density of (X∗2 ,X
∗
3 ), with the possible

vectors of these two explanatory variables which are able to produce the de-
sired response vector Y ∗1 = (0.95, 0.48) (given the underlying simulation on
which the model is based) also included (dark green points). The light green
point indicates the elements of joint posterior mode of X∗ corresponding to
these two variables.
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The orange point indicates the mode of the joint distribution of predictions,
given by (0.954, 0.480) and the red point indicates the desired response vec-
tor (0.95, 0.48). Clearly, the joint distribution of predictions of the response
variables is centred around the desired response vector, as desired. There
appears to be slightly more variation in the predictions of the response vari-
able, comparing with those predictions from the previous case, displayed in
Figure 5.17. The likely reason for this is that the model uncertainty becomes
larger the further away from the mean values for the variables, which occurs
here intentionally to investigate how the models performs in such cases.
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Figure 5.21: The joint density p(Ypred|θ,X∗mode,2), where the backward
model has been fitted with the desired response vector Y ∗ = (0.95, 0.48)
(red point). The orange point indicates the mode of Ypred|θ,X∗mode,2.

The final case of backward modelling considered for this simulation is
with the desired response vector Y ∗3 = (0.25, 0.375). This desired response
vector identified in Figure 5.13 is not in close proximity to those possible
desired response vectors that could be produced given the underlying simu-
lation and the range of values of the three input variables. For this reason,
the interest is to see what occurs in the backward modelling in a scenario
where a corresponding vector of input values cannot be produced for the
desired response vector.

To confirm this, the plot in Figure 5.22 shows possible combinations
of the three input variables that can produce the desired response values
Y ∗1,3 = 0.25 and Y ∗2,3 = 0.375 separately (the blue points and the red points
respectively). In the previous two versions of this plot for the previous
desired response vectors, the green points indicated the combinations of the
three input variables that could produce both desired response variables
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simultaneously; in Figure 5.22, these only occur for combinations of the
first two input variables, for the desired response vector Y ∗3 = (0.25, 0.375).
For these green points, the values of the third input variable are not the
same. This is evident based on the middle and right plots, where there is
no crossover between the red points and blue points.
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Figure 5.22: Plots of the three input variables demonstrating points which
can either produce the desired response value Y ∗1,3 = 0.25 (blue points) or
the desired response value Y ∗2,3 = 0.375 (red points). The green points in the
first plot indicate that there are combinations of the first two input variables
which can produce both desired response values simultaneously, but these
are for different values of X∗3 , as indicated in the middle and right plots.
The left plot provides vectors for (X∗1 , X

∗
2 ), the middle plot for (X∗1 , X

∗
3 )

and the right plot for (X∗2 , X
∗
3 ).

The backward modelling algorithm is now run for the desired response
vector Y ∗3 = (0.25, 0.375). The largest upper bound of PSRF estimates from
any of the backward models is 1.04 to 3 significant figures, indicating that
each backward model has converged to the posterior distribution. There is
also an insignificant level of autocorrelation between the samples for all the
backward models; the minimum estimate of effective sample size from any
backward model and any parallel chain is 695, to 3 significant figures. The
MCMC output is now treated as the posterior distribution.

A plot of the joint marginal posterior density p((X∗1 , X
∗
3 )|Y ∗3 ) is provided

in Figure 5.23. Given there are no dark green points indicating the combi-
nations of the input variables that can produce both desired response values
of Y ∗3 simultaneously, the blue and red points from the middle plot of Fig-
ure 5.22 are provided, which indicate those combinations that can produce
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Figure 5.23: Joint marginal posterior density of (X∗1 , X
∗
3 ) given Y ∗3 , with the

possible vectors of these two explanatory variables which are able to produce
the desired response value Y ∗1,3 = 0.25 (blue points) or the desired response
value Y ∗2,3 = 0.375 (red points). The pink point indicates the elements of
joint posterior mode of X∗ corresponding to these two variables.

Y ∗1,3 and Y ∗2,3 respectively. Interestingly, there seems to be very little vari-
ation around the values of the first input variable that are captured in the
backward modelling, particularly in comparison with the variation of val-
ues for the third input variable captured in the backward modelling. There
appears to be some tendency to head towards those blue points, which in-
dicate vectors that can produce the desired value for the first response,
Y ∗1,3 = 0.25. This is clarified later when considering the joint distribu-
tion of the predictions of the response variables given the posterior mode
X∗mode,3 = (0.0101, 0.103, 0.353).

The joint marginal posterior density of p((X∗2 , X
∗
3 )|Y ∗3 ) is plotted in Fig-

ure 5.24. As with the previous figure, the blue and red points identified in
Figure 5.22, corresponding to input vectors which can produce the desired
response Y ∗1,3 or Y ∗2,3 respectively, are also plotted. As in the previous case,
it appears that there is some tendency for the backward model to try to pro-
duce the desired response for the first response variable, since the posterior
density contains values within the region of the blue points.

The joint distribution of predictions of the response variables given the
posterior mode X∗mode,3|Y ∗3 is now considered. The vectors that build this
distribution are computed analogously to those in Equation 5.1.5.1, replac-
ing X∗mode,1 with the vector X∗mode,3. This joint density of predictions is
presented in Figure 5.21, with the orange point indicating the mode of the
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Figure 5.24: Joint marginal posterior density of (X∗2 , X
∗
3 ) given Y ∗3 , with the

possible vectors of these two explanatory variables which are able to produce
the desired response value Y ∗1,3 = 0.25 (blue points) or the desired response
value Y ∗2,3 = 0.375 (red points). The pink point indicates the elements of
joint posterior mode of X∗ corresponding to these two variables.

predictions, and the red point indicating the desired response vector Y ∗3 . It
is unsurprising that the predictions of the response variable are not in close
proximity with the desired response vector, given the underlying simula-
tion and the reason for choosing this desired response. Interestingly, if this
plot is compared with the density of possible response vectors that could
be produced in the simulation (see Figure 5.13), it would appear that this
joint distribution of predictions given the posterior mode has minimised the
distance between the desired response vector Y ∗3 and the subspace of pos-
sible response vectors from Figure 5.13. This is evidence for the backward
modelling doing the best it possibly can—it has been set up to not be able
to obtain the desired response vector (in other words, given the range of
values of the prior density of X∗, it is impossible to produce Y ∗3 given the
simulation), so the backward model has chosen a candidate vector for X∗3
which produces a vector response that minimises the distance between the
Y ∗3 and the subspace of possible response vectors.
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Figure 5.25: The joint density p(Ypred|X∗mode,3), where the backward model
has been fitted with the desired response vector Y ∗ = (0.25, 0.375) (red
point). The orange point indicates the mode of Ypred|θ,X∗mode,3.

5.2 Errors-in-variables Gaussian processes on sim-
ulated data

In this section, the backward modelling algorithm is explored with simulated
data and forward modelling fitted with an EIV GP. That is, the hyperparam-
eters φ (including the true values of the response and explanatory variables)
for an EIV GP prior have been estimated by the joint posterior distribution
p(φ|Y,X), and can be used to predict the response variable(s) at particular
true values or true vectors of the input variable(s) with the EIV GP poste-
rior. As described in Section 3.6.7, the EIV GP posterior is utilised in the
backward modelling in order to optimise the input variable(s) to be able to
produce a desired response value or vector. In this section, the backward
modelling is applied to single-output, single-input EIV GPs, as well as EIV
MOGPs. The following subsection considers the single-output, single-input
EIV GP, whose forward modelling was demonstrated in Sections 4.3.1, 4.3.2
and 4.3.3.

5.2.1 Single-output, single-input EIV GP

The backward modelling process is briefly summarised below for the case of
one response variable and one explanatory variable.

Assume a desired response value Y ∗ = y∗ has been provided by some ex-
pert; the aim with the backward modelling is to optimise the corresponding
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input variable X∗ in order to produce this desired response Y ∗ = y∗. Given
the posterior distribution of the hyperparameters p(φ|Y,X), the EIV GP
posterior, with consideration of the desired response variable Y ∗, is built
from the joint distribution(

Ỹb
Y ∗

)
∼ Nng+1

((
mb(X̃b)
mb(X

∗
b )

)
,

(
Vb(X̃b, X̃b) K(X̃b, X

∗
b )

K(X∗b , X̃b) vb(X
∗
b , X

∗
b )

))
,

leading to the conditional distribution (EIV GP posterior) of

Y ∗|X∗b ,φb ∼ N(m∗b , v
∗
b ).

Note again that the subscript b refers to joint posterior sample b from the
hyperparameter posterior distribution p(φ|Y,X), and that the mean func-
tion m(X̃i) = α or the covariance kernel k, that inform the vectors and
matrices in the joint distribution, are in turn evaluated given the joint pos-
terior sample b in each case. For example, the mean mb(X

∗
b ) = αb. The

mean and variance m∗b and v∗b of the EIV GP posterior are given by

m∗b = mb(X
∗
b ) +Kb(X

∗
b , X̃b)Vb(X̃b, X̃b)

−1(Ỹb −mb(X̃b))

and
v∗b = vb(X

∗
b , X

∗
b )−Kb(X

∗
b , X̃b)Vb(X̃b, X̃b)

−1Kb(X̃b, X
∗
b ).

In the forward modelling, this EIV GP posterior is used to predict the
response variable given some new, true value of the explanatory variable,
but in the backward modelling, Y ∗ = y∗ is assumed to be observed, and for
each joint posterior sample b, some uniform prior distribution is placed on
X∗b , and an MCMC algorithm is fitted in order to find the best values for each
X∗b , and the posterior distributions of each X∗b are combined (taking random
samples from each) to build the posterior distribution of the corresponding
input variable X∗, p(X∗|Y ∗,φ). For further details the reader is referred to
Section 3.6.7.

The EIV GP model considered here is the single-input EIV GP simu-
lation considered in Section 4.3.1, which has been fitted with a reparame-
terisation of l = klσε and σk = kσkσε, with the uniform prior distributions
kl ∼ U(0, 60) and kσk ∼ U(4, 200). The corresponding model fit is that pro-
vided in Figure 4.30. As can be seen in either this model fit or in the plot
of the simulation function given in Figure 5.26 (which also includes the first
desired response value Y ∗ = 0.24 and the possible input values to produce
this desired response), the majority of the range of response values that
have been considered in the forward modelling are able to be produced by
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multiple values of the input variable. This is likely to lead to a multimodal
posterior distribution for each X∗b , and therefore an issue in the convergence
of the each of these posterior distributions. As previously discussed, the
results from this backward modelling analysis are used despite the lack of
convergence in the posterior distributions of X∗b , and plots of the complete
posterior distribution are not likely to provide any information about how
the relative probability densities of each posterior mode of X∗ (but still
do indicate that the backward modelling was able to capture the posterior
modes).
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Figure 5.26: A plot of the simulation function for the single-input EIV GP
considered in Section 4.3.1, along with a red horizontal line corresponding
to the desired response value Y ∗ = 0.24, and four red vertical lines cor-
responding to the input values X∗ = 0.0293, X∗ = 0.0640, X∗ = 0.0946
and X∗ = 0.123 (all to 3 significant figures), that can produce the desired
response value

The backward modelling algorithm is fitted with the uniform prior dis-
tribution X∗b ∼ U(0, 1), and (for each of 2 parallel chains) the MCMC tuning
parameters of an adaptation length of 500 samples, a burn-in length of 15000
samples, 2000 posterior samples stored for each backward model posterior
X∗b having taken every 10th sample from 20000 posterior samples (these
2000 posterior samples are used for checking mixing and convergence of the
MCMC output), then 10 posterior samples are randomly selected from each
X∗b posterior distribution to build the complete posterior distribution of X∗.
This is firstly fitted with Y ∗ = 0.24, and the PSRF upper bounds from each
posterior distribution X∗b show that a significant majority of the backward
models are not converging in this case. The median upper bound of PSRF
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over all backward models is 8.25, which is significantly larger than than cut-
off of 1.1. A view into one of the backward models that has not converged
according to PSRF is given in Figure 5.27, which provides the posterior den-
sity of X∗b for each of the two parallel chains of the backward model given
posterior sample b = 1 from the forward model. Both chains are signifi-
cantly different from one another—the first chain has a lot of density at all
values of the prior distribution, with a clear peak which is centred at the
existing true values from the forward modelling, and the second chain has
all of its density concentrated close to one of the possible input values that
can produce the desired response (notably the corresponding input value
is a relatively-low density value of the distribution). This is not desired
behaviour—the optimal outcome would be that both chains recover all four
possible input values as posterior modes.
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Figure 5.27: The posterior density of X∗1 (so given the forward model pos-
terior sample b = 1) for its two parallel chains. It is noted that the model
has not converged, with an upper bound of PSRF given by 13.3.

While acknowledging that the MCMC output for each X∗b does not rep-
resent the posterior distribution, samples are still collected from each X∗b
and combined to build the complete ‘posterior’ distribution of X∗ given the
desired response value Y ∗ = 0.24. This allows us to confirm that the possible
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input values identified in Figure 5.26 are captured as modes in the posterior
distribution, noting that the probability density around these modes cannot
be assessed with this output. A plot of this posterior density is found in
Figure 5.28. This desired response value Y ∗ = 0.24 represents an interesting
task for the backward model—this value is found by taking the mean of the
‘chosen’ true values for the response variable in the underlying simulation.
In this particular simulation, where the small differences between the input
variable correspond to potentially large differences in the response variable
(given estimates of the distance-scaling parameter, see the middle plot of
Figure 4.31), the mean prediction of the response variable for input values
beyond what are observed in the forward modelling is close to the mean of
the response variable (this is true for any GP fit, given the nonparametric
behaviour, extrapolation is difficult). For this reason, the mean of the re-
sponse variable being the desired response then appears to allow for density
at almost all input values in the range [0,1] for X∗.
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Figure 5.28: The posterior density of X∗ given the desired response Y ∗ =
0.24 and the forward model posterior φ. The red lines represent the four
possible input values that can produce the desired response given the under-
lying simulation, and the green vertical line represents the ‘posterior’ mode,
given by 0.0626 to 3 significant figures, which is very close to the possible
input value 0.0640.

The backward modelling is carried out again for Y ∗ = 0.24, with the
prior distribution X∗ ∼ U(0.01, 0.13). The purpose of this is to investigate
whether all four possible input values can be captured as modes in the ‘pos-
terior’ distribution of X∗. The word ‘posterior’ is placed in quotes because
it is likely that the multimodal posterior distribution will not be perfectly
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captured by the modelling, since each backward model is not converging to
its posterior distribution. This is confirmed by considering the upper bounds
of PSRF for each of the b = 1, . . . , Sback backward models, with the median
upper bound being 236 to 3 significant figures. As above, the samples from
the MCMC output are still examined, and the ‘posterior’ density of X∗,
having taken 10 samples from the ‘posteriors’ of X∗b , is provided in Figure
5.29. Not much can be said about the relative probabilities of each mode,
given the lack of convergence for the majority of backward models, but it
is evident from Figure 5.29 that averaging over all of the backward models
leads to finding the appropriate posterior modes for X∗.
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Figure 5.29: The posterior density of X∗ given the desired response Y ∗ =
0.24 and the forward model posterior φ. The prior distribution of X∗b in this
case is U(0.01,0.13). The red lines represent the four possible input values
that can produce the desired response given the underlying simulation, and
the green vertical lines represents the four ‘posterior’ modes that have been
recovered in the backward model; from smallest to largest these are given
by 0.0294, 0.0640, 0.0947, and 0.123, to 3 significant figures.

The backward model posterior modes can be checked to see if they are
suitable candidate values for X∗ using the posterior distribution of the for-
ward model. In this case, given the forward model is fitted using the EIV GP,
the EIV GP posterior is used to produce predictions of the response variable
at each posterior mode of X∗. Defining X∗mode to be a posterior mode of
X∗ recovered in the backward model, the EIV GP posterior provides the
distribution for each Y ∗pred,s given φs, given by

Y ∗pred,s|φs, X∗mode ∼ N(m∗pred,s, v
∗
pred,s)
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where

m∗pred,s = ms(X
∗
mode) +Ks(X

∗
mode, X̃s)Vs(X̃s, X̃s)

−1(Ỹs −ms(X̃s))

and

v∗s = vs(X
∗
mode, X

∗
mode)−Ks(X

∗
mode, X̃s)Vs(X̃s, X̃s)

−1Ks(X̃s, X
∗
mode).

Then, the overall distribution for Y ∗pred that accounts for the uncertainty
in the posterior distribution can be summarised by sampling once from
each Y ∗pred,s and plotting the density of the samples. These densities, given
X∗mode,1 = 0.0294 and X∗mode,2 = 0.0640, are given in the same plot in Figure
5.30, where p(Y ∗pred,1|φ, X∗mode,1) is the black curve, p(Y ∗pred,2|φ, X∗mode,2) is
the blue curve, the red vertical line represents Y ∗ = 0.24, the green ver-
tical line represents the mode of p(Y ∗pred,1|φ, X∗mode,1) (value of 0.237) and
the orange vertical line represents the mode of p(Y ∗pred,2|φ, X∗mode,2) (value
of 0.240). The densities look almost identical, with the density of the pre-
dictions given the second mode shifted across slightly, closer towards the
desired response value. The second mode is preferred over the first mode as
a candidate value for Y ∗ = 0.24, given that the mode of the predictions for
the response variable given the second mode is closer to the desired response.
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Figure 5.30: The probability density functions p(Y ∗pred,1|φ, X∗mode,1) (black
curve) and p(Y ∗pred,2|φ, X∗mode,2) (blue curve), with the vertical lines corre-
sponding to Y ∗ = 0.24 (red line), the mode of p(Y ∗pred,1|φ, X∗mode,1) (green
line, value of 0.237) and the mode of p(Y ∗pred,2|φ, X∗mode,2) (orange line, value
of 0.240).

The analogous probability density functions are provided for the third
and fourth modes X∗mode,3 = 0.0947 and X∗mode,4 = 0.123 in Figure 5.31.
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This figure demonstrates a distinction between the third and fourth modes
in terms of the variance in their predictions of the response variable—the
black line, representing p(Y ∗pred,3|φ, X∗mode,3), has more variance than that
of the blue line representing p(Y ∗pred,4|φ, X∗mode,4), while both distributions
produce a mean prediction that is close to the desired response. Comparing
the mode of the predictions given each of the posterior modes of X∗, the
mode most likely to produce the desired response of Y ∗ = 0.24 is the second
mode X∗mode,2 = 0.0640.
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Figure 5.31: The probability density functions p(Y ∗pred,3|φ, X∗mode,3) (black
curve) and p(Y ∗pred,4|φ, X∗mode,4) (blue curve), with the vertical lines corre-
sponding to Y ∗ = 0.24, the mode of p(Y ∗pred,3|φ, X∗mode,3) (green line, value
of 0.242) and the mode of p(Y ∗pred,4|φ, X∗mode,4) (orange line, value of 0.239).

A new desired response value of Y ∗ = 0.07 is considered from the same
simulation example, calculated by taking the 15% quantile of the chosen true
values of the response variable and rounding to 2 decimal places. This de-
sired response value presents another interesting challenge for the backward
model. As indicated by the plot of the underlying simulation in Figure 5.32,
with the horizontal line of Y ∗ = 0.07, there are again four possible input
values that are candidates for X∗. The two possible modes furthest to the
right of the plot in Figure 5.32 are very close in distance to one another—is
the backward modelling capable of distinguishing between these two val-
ues, or are they so close together than only one peak will be found that is
attributed to both values?

The backward modelling algorithm is fitted twice, firstly with X∗b ∼
U(0, 1) and secondly with X∗ ∼ U(0.01, 0.13). The aim in the first case is to
discover whether there is any density at values beyond the existing range of
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Figure 5.32: A plot of the simulation function for the single-input EIV GP
considered in Section 4.3.1, along with a red horizontal line corresponding
to the desired response value Y ∗ = 0.07, and four red vertical lines cor-
responding to the input values X∗ = 0.0386, X∗ = 0.0551, X∗ = 0.108
and X∗ = 0.110 (all to 3 significant figures), that can produce the desired
response value.

true values of the explanatory variable considered in the forward modelling,
and the aim in the second case is to discover whether all four possible values
can be recovered as posterior modes of X∗. As in the previous multimodal
cases, fitting this backward model with X∗ ∼ U(0, 1) and Y ∗ = 0.07, the
majority of the backward models are deemed to be not converging, given the
median value of PSRF upper bounds over all backward models is 7.07. The
results are carried over from these runs and analysed here, accepting that
the relative probability densities about each mode may not be representative
of those of the genuine posterior distribution. The posterior density of X∗

given Y ∗ = 0.07 and the prior X∗b ∼ U(0, 1) is plotted in Figure 5.33.
As with the previous example (see Figure 5.28) with Y ∗ = 0.24, there is
some density found at extrapolated values (i.e., beyond the range of true
values considered in the forward modelling) for X∗. As noted above, the
relative probabilities of these ‘posterior’ distributions in the cases where each
backward model is not converging are not reliable—the plot would suggest
that there is significantly more density at the modes of X∗ than at the
extrapolated values of X∗, comparing with the posterior density of Figure
5.28. The posterior density in Figure 5.33 is bimodal, with the corresponding
input values provided in Figure 5.32 recovered effectively by the model.

The posterior density of the case with X∗b ∼ U(0.01, 0.13) is provided
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Figure 5.33: The posterior density of X∗ ∼ U(0, 1) given the desired re-
sponse Y ∗ = 0.07 and the forward model posterior density φ. The red
lines represent the four possible input values that can produce the desired
response given the underlying simulation, and the green vertical line repre-
sents the ‘posterior’ mode, given by 0.1081 to significant figures, which is
very close to the possible input values 0.1083 and 0.1099 (to four significant
figures).

in Figure 5.34. The posterior density appears to have three distinct modes.
Unsurprisingly, there is one mode for the two corresponding input values at
X∗ = 0.108 and X∗ = 0.110, with a posterior mode identified in between
these two values of X∗mode,1 = 0.1091 (to 4 significant figures). Again, there is
evidence here to suggest the backward model is recovering appropriate values
for the corresponding input variable despite the issues with convergence.

The three posterior modes of X∗mode,1 = 0.1091, X∗mode,2 = 0.03892
and X∗mode,3 = 0.0550 (to 4 significant figures) from the backward model
with Y ∗ = 0.07 and X∗b ∼ U(0.01, 0.13) are now examined using the for-
ward model posterior distribution, to provide predictions of the response
variable given each forward model sample s and each posterior mode of
X∗. The density of the predictions given the first mode and given the
second mode are compared in Figure 5.35—it is clear that the first poste-
rior mode X∗mode,1 = 0.1091, given the forward model posterior distribu-
tion, provides a more accurate prediction of the response variable relative
to the desired response value Y ∗ = 0.07, and the predictions of the re-
sponse variable are much less variable than those for the second posterior
mode X∗mode,2 = 0.03892. The first posterior mode is now compared with
the third posterior mode in Figure 5.36 with the density of predictions of
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Figure 5.34: The posterior density of X∗ ∼ U(0.01, 0.13) given the desired
response Y ∗ = 0.07 and the forward model posterior φ. The red lines rep-
resent the four possible input values that can produce the desired response
given the underlying simulation, and the green vertical line represents the
‘posterior’ mode, given by 0.1091 to 4 significant figures, which lies in be-
tween the two possible input value 0.1083 and 0.1099 (to 4 significant fig-
ures).
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Figure 5.35: The probability density functions p(Y ∗pred,1|φ, X∗mode,1) (black
curve) and p(Y ∗pred,2|φ, X∗mode,2) (blue curve), with the vertical lines corre-
sponding to Y ∗ = 0.07, the mode of p(Y ∗pred,1|φ, X∗mode,1) (green line, value of
0.0695) and the mode of p(Y ∗pred,2|φ, X∗mode,2) (orange line, value of 0.0724).
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the response variable given the forward model posterior distribution φ. In
this case, it appears that the third posterior mode performs better than the
second posterior mode with respect to the mode of the predictions of the
response at those points. The variance of these predictions is very similar.
The main conclusion is that the first posterior mode provides the most ac-
curate prediction of the response variable and has the least uncertainty in
its prediction, and is recommended as the corresponding input value for X∗.
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Figure 5.36: The probability density functions p(Y ∗pred,1|φ, X∗mode,1) (black
curve) and p(Y ∗pred,3|φ, X∗mode,3) (blue curve), with the vertical lines corre-
sponding to Y ∗ = 0.07, the mode of p(Y ∗pred,1|φ, X∗mode,1) (green line, value of
0.0695) and the mode of p(Y ∗pred,3|φ, X∗mode,3) (orange line, value of 0.0688).

The following section considers the backward modelling process being
applied to the EIV MOGP. Note that an example of a single-output, multi-
input EIV GP backward modelling is not provided here – the EIV MOGP
backward modelling considers multiple input variables, and so demonstrates
this extension of the process while simultaneously demonstrating the multi-
output extension.

5.2.2 Multi-output, multi-input EIV GP

In this section, the backward modelling process is applied to the EIV MOGP.
The posterior distribution of the hyperparameters is taken from the forward
modelling from Section 4.3.5, that is, the backward modelling here corre-
sponds to the forward model, and underlying simulation, from Section 4.3.5.
Below is a brief description of the backward modelling process for the EIV
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MOGP.
Having estimated φ, the posterior distribution of the hyperparameters

and the true values of the output and input variables, given by Ỹ =
(
Ỹ1 Ỹ2

)
and X̃ =

(
X̃1 X̃2

)
respectively, the aim of the backward modelling is to

identify a candidate vector X∗ that can produce some desired response
vector Y ∗. Thus, the conditional distribution of interest is

Y ∗|φ,X∗ ∼ N2(m∗, V ∗),

where

m∗ = (α1, α2)′ +K(X∗, X̃)V −1
MOGP,X̃

(vec(Ỹ )− (α1,α2)′), (5.2.2.1)

and
V ∗ = VMOGP,X∗ −K(X∗, X̃)V −1

MOGP,X̃
K(X̃,X∗). (5.2.2.2)

For clarity, note that

VMOGP,X̃ = VK,1 ⊗K1(X̃, X̃) + VK,2 ⊗K2(X̃, X̃) +

(
σ2
ε1Ing 0ng×ng

0ng×ng σ2
ε2Ing

)
,

with the matrix VMOGP,X∗ derived analogously, and

K(X∗, X̃) = VK,1 ⊗K1(X∗, X̃) + VK,2 ⊗K2(X∗, X̃),

and K(X̃,X∗) = (K(X∗, X̃))T . For further details of other parameters
in the modelling, the reader is referred to Section 3.5.5. While the above
distribution is described in terms of how the hyperparameters φ and the
vector X∗ influence the response vector Y ∗, the behaviour of X∗ given φ
and Y ∗ can be investigated by placing a prior distribution on X∗ and fixing
the desired response at Y ∗ = y∗, and estimating the corresponding input
vector with the posterior distribution.

In order to estimate the posterior distribution of X∗|Y ∗,φ, the above
conditional distribution is investigated for some large Sback random samples
of the posterior distribution of the hyperparameters and true values of φ,
with which a posterior distribution of X∗b is found for each b = 1, . . . , Sback.
The complete posterior distribution of X∗ is then built by collecting a small
set of samples from each X∗b . As noted in previous sections relating to ap-
plying the backward model to simulations, there are convergence and mixing
issues in the backward models where multimodal posterior distributions can
be recovered. This also occurs here, and as previously done, the results of
the backward modelling are still examined despite this.
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The backward model is investigated using the desired response vector
Y ∗ = (18, 237)′ (before scaling). The main aim of this demonstration was to
show that the backward modelling with multiple output variables can lead to
interesting posterior distributions for the corresponding input vector, where
there could be multiple candidate vectors to produce the desired output.
Having considered plots of the underlying true values for the output variables
and the input variables (see Figure 5.37), it was clear that the output true
values of groups 5 and 12 (cyan and yellow) were relatively close, compared
with their corresponding input true values. This indicated that desired
output vectors relatively close to those of groups 5 and 12 were likely to
have multiple vectors of the input variables that could produce the desired
output.
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Figure 5.37: The underlying true values from the EIV MOGP simulation
built in Section 4.3.5. The left plot corresponds to the output true values
(with the second output on the vertical axis, first output on the horizontal
axis), and the right plot corresponds to the input true values (second input
on the vertical axis, first input on the horizontal). The relative distances
between groups 5 and 12 (cyan and yellow) in each plot is noted.

Then, through trial and error, output vectors close to those of groups 5
and 12 were selected, and plots of the input vectors were examined to give an
indication as to whether a multimodal distribution would be recovered in the
posterior (i.e., whether there were multiple regions of the input space with
possible candidate vectors). This plot, for Y ∗ = (18, 237), is provided in
Figure 5.38, which also indicates the locations of the underlying true values
of the input variables. The red curve highlights the input vectors that are
able to produce the desired value for the first output variable to within 1%
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of the value, and the blue curve does the equivalent for the second output.
Therefore, the intersections of these curves indicates the input vectors that
are optimal, i.e., that we hope the backward model can recover as candidate
vectors for the input variables. Expectations must be tempered somewhat –
note that the forward modelling learns about the functional relationship at
the true values, i.e., the black points. As one moves further away from the
true values, the quality of the predictions of the response variables becomes
worse (in the sense of the forward modelling), and therefore the likelihood
the backward model looks to these regions for candidate vectors becomes
smaller. For this reason, it is fair to expect that the possible candidate vec-
tors in close proximity to (0.6,0.34) and (1.23,0.25) would not be recovered
in the backward modelling. Instead, the possible candidate vectors close
to (0.97,0.23), (0.44,0.74) and (0.6,0.6) could be recovered by the backward
modelling.
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Figure 5.38: Plot of the input space demonstrating input vectors that can
produce the desired values for the first output variable (highlighted in red)
and for the second output variable (highlighted in blue), with the black
points being the underlying true values of the input variables from the sim-
ulation.

The backward modelling process is now fitted, with the desired response
vector Y ∗ = (18, 237) (which becomes (0.18,0.237) after scaling) and the
posterior distribution of the hyperparameters and true values φ. Moreover,
the prior distribution assumed for X∗ is a uniform box, with the ranges
in each dimension being [0.1, 1.3] (for the first input variable; note that
this variable was rescaled in the forward modelling, see Section 4.3.5) and
[0.1, 0.9] for the second input variable. The joint posterior density of X∗ is
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provided in Figure 5.39, along with the red and blue curves from Figure 5.38,
as well as the underlying true values of the input variables. Clearly, there
are two distinct regions of the posterior distribution of X∗ surrounding two
posterior modes, with the global mode located at X∗mode,1 = (0.523, 0.671)
(pink point) and a local mode located at X∗mode,2 = (0.974, 0.228) (yellow
point). Given the issues with convergence and mixing in the backward
modelling, it is noted that the relative densities at these points may not
be accurate, and so it is possible that the pink point is just a local mode
with the yellow point being a global mode. Despite this caveat, it is evident
that the backward modelling is functioning as intended here. Moreover, this
plot is the ideal demonstration of the capabilities of the backward modelling
process developed in this work. It provides evidence that, given a forward
modelling posterior distribution, it is possible to find multiple input vectors
which are capable of producing a multivariate desired response.
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Figure 5.39: Joint posterior density of X∗|φ,Y ∗ = (0.18, 0.237), along with
the red and blue curves and the underlying input true values (black points)
from Figure 5.38.

Typically, it would be assumed that the global posterior mode of X∗

would be chosen as the candidate vector, i.e., the best estimate from the
modelling at an input vector which could produce the corresponding desired
response vector. Given the convergence issues, this would not be assumed
here, and the best way to decide which of these two modes is the best candi-
date would be to run these modes through the EIV MOGP posterior, that is,
finding the predictive distribution for the output variables given each mode.
In any case, given a multimodal posterior distribution for X∗, it would be
sensible to estimate the response variables given the multiple modes. Details
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of the EIV MOGP posterior distribution can be found in Section 3.5.5; the
estimation of the response variables here is roughly analogous to the back-
ward modelling process described earlier, with the variable X∗ now fixed to
be either X∗mode,1 or X∗mode,2.
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Figure 5.40: Two plots of the joint probability density function of predictions
of the response variables, with the left plot being predictions at the global
posterior mode X∗mode,1, and the right plot being predictions at the local
mode X∗mode,2. The desired response vector Y ∗ = (0.18, 0.237) is given by
the red point in each plot, and the mode of the distribution of the predictions
is given by the pink point in the left plot, and the yellow point in the right
plot.

The EIV MOGP posterior, providing joint predictions of the response
variable given some input vector, is summarised by the joint density func-
tions given in Figure 5.40 (left plot is the predictive distribution given
the global mode X∗mode,1, right plot is the analogous plot given the local
mode X∗mode,2). The red point in both plots is the desired response vector
Y ∗ = (0.18, 0.237), and the modes of the predictive distribution are given by
Ypred,1 = (0.170, 0.237) (left plot) and Ypred,2 = (0.179, 0.237) (right plot) to
3 significant figures. It is clear from the plots that the predictive distribu-
tion corresponding to the second mode X∗mode,2 = (0.974, 0.228) has a mode
which is slightly closer to the desired response vector, where the difference
between the quality of the modes of the predictive distribution is in the
prediction of the first output variable. In both cases, the uncertainty in the
prediction is similar. It is unsurprising, given that the posterior distribution
of X∗ identified vectors that were known to be able to produce the desired
response vector, that the two posterior modes of X∗ are suitable candidate
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vectors given the EIV MOGP forward modelling (with a slight preference
for the local mode X∗mode,2, which provides a more accurate prediction of the
desired response vector). As noted above, this example demonstrates the
capability of the backward modelling process developed in this work, with a
multimodal posterior distribution identified for X∗, where both modes are
capable of producing the desired response vector accurately.

5.3 Powder flow data

Having demonstrated that the backward modelling algorithm has been able
to capture corresponding input values as posterior modes of X∗ for simulated
data sets, it is now tested on the real-world powder flow data that has
been investigated in the forward modelling in Sections 4.4.3 and 4.4.4. The
following subsection considers the backward modelling process for the EIV
BR, which is applied using the fitted forward model identified in Section
4.4.3, and the content of Section 5.3.2 considers the backward modelling
process for the EIV GP. In both cases, the fitted forward models given the
informed prior distributions are considered.

5.3.1 Errors-in-variables Bayesian regression for powder flow
data

Having taken into consideration the highly plausible overfitting issues with
the six-explanatory-variable forward model that was initially suggested by
the backwards variable selection in Section 4.4.3, it was concluded that a
more appropriate model for this set of data is the two-explanatory-variable
model with CBD and SE as the two input variables. The corresponding
fitted forward model is now investigated for the purpose of optimising the
input variables for a given desired response vector, i.e., optimal values of
CBD and SE are to be found that correspond to desired values for both
tapped density and angle of repose simultaneously.

In this section, the backward modelling algorithm is applied to this
model, given the estimated posterior distribution of the (relevant) model
parameters θ, where

θ = (β0,1, β1,1, β2,1, β0,2, β1,2, β2,2, Tε),

and given some desired response vector Y ∗ = y∗ for TD and AoR. Desirable
values for the two response variables have been elicited from Dr Candice Ma-
jewski. For tapped density, these were provided with respect to the powder
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PA2200 which is one of the powders considered in the forward modelling.
Dr Majewski recommended to use the expected range for the tapped den-
sity from PA2200 as the desired values for tapped density. In this case, the
maximum value of the observed tapped density values from PA2200 is taken
to be the desired response value, given by 0.51 (to 2 decimal places). For
angle of repose, a good basis for its values is

• below 25 degrees is excellent,

• between 25 and 30 degrees is good,

• between 30-40 is passable.

An extra caveat with this information is that, while 25 degrees is consid-
ered excellent (with respect to producing freely flowing powders), there is
some concern that powders that flow too freely could be prone to depositing
poorly onto a powder bed. For this reason, Dr Majewski recommends values
between 25 and 30 degrees as desirable. For this reason, a value of 27.5 de-
grees is chosen as the desired response value for angle of repose (scaled onto
0.275 for modelling purposes), where some attention is required as to what
values of angle of repose are produced given the eventual posterior mode for
X∗.

The desired response vector is chosen to be Y ∗ = (0.51, 0.275). Before
implementing the backward modelling process, the desired response vector
Y ∗ is plotted alongside the joint posterior densities of the true values of
each group for AoR against TD. This plot is provided on the left-hand side
in Figure 5.41, and indicates that Powders 2, 3, 4 and 6 appear to lie in
close proximity to the desired response vector, with Powder 2 being the
closest. On the right side of this plot are the joint posterior densities of the
true values for each group for SE against CBD. Given the proximity of the
desired response vector relative the the response values of existing groups,
it is expected that the posterior density of the corresponding input vector
provides vectors of CBD and SE that are close in proximity to the true input
vectors of these powders – that is, roughly speaking, CBD values between
0.43 and 0.47, and SE values between 0.55 and 0.7. This expectation is made
given the forward modelling is based on an additive relationship between the
two explanatory variables for both response variables.

The prior distribution of X∗ is now determined. For both explanatory
variables, Dr Majewski recommends considering the ranges of CBD and
SE utilised in the forward modelling, while suggesting that there is some
preference for SE values closer to 5 than 8. The prior distribution is chosen to
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Figure 5.41: Two plots relating the true values of the response variables
(left plot) and the true values of the input variables (right plot). The plot
of true values of the response variables also includes the desired response
vector Y ∗ = (0.51, 0.275) (red plus). The ellipses in each case represent
joint 95% credible ellipses for each group.

be a uniform box, with X∗1,b ∼ U(0.35, 0.55) and X∗2,b ∼ U(0.5, 0.8) for CBD
and SE respectively, with values scaled onto [0,1]. Therefore, the backward
models to be fitted for b = 1, . . . , Sback (with Sback = 2000 being a large
number of posterior samples from the forward model posterior distribution)
are (

0.51
0.275

)
=

(
β0,1,b β1,1,b β2,1,b

β0,2,b β1,2,b β2,2,b

) 1
X∗1,b
X∗2,b

+

(
ε∗1,b
ε∗2,b

)
, (5.3.1.1)

where ε∗b = (ε∗1,b, ε
∗
2,b)
′ ∼ N(0, Tε,b), with the subscript b denoting a pos-

terior sample of the parameter from the forward model posterior distri-
bution. Moreover, for each b = 1, . . . , 2000, X∗1,b ∼ U(0.35, 0.55) and
X∗2,b ∼ U(0.5, 0.8) are the prior distributions for the corresponding input
variables, for which a posterior distribution is estimated for each b, and pos-
terior samples are drawn from each X∗b and combined to build the complete
distribution of X∗|θ,Y ∗.

The initialisation for the MCMC algorithm for each b is briefly discussed.
In the simulated-data cases, a Latin hypercube sampling is carried out to
determine unique initial values for eachX∗b that cover the input space, where
the same initial vector for X∗b was chosen for each of the two parallel chains
that were run for each backward model b. In order to provide a more robust
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method for demonstrating the convergence of each backward model run,
unique input vectors are chosen for each parallel chain of each backward
model run in this case of the backward modelling applied to the real data.
In effect, a Latin hypercube sampling is carried out with dimension 2 (for
the two input variables) and 4000 samples, determined by there being 2
parallel chains for each of the 2000 backward models. The initial vectors
of the corresponding input variables are then randomly selected from the
Latin hypercube sampling.

The backward modelling algorithm is firstly run with the MCMC tuning
parameters, for each backward model b, of

• an adaptation phase of length 500 samples,

• a burn-in phase of length 15000 samples,

• 2000 posterior samples stored, taking every 10th sample from 20000
posterior samples,

• two parallel chains for each backward model b.
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Figure 5.42: The posterior density p(X∗|θ,Y ∗) for the real data, given the
desired response vector of Y ∗ = (0.51, 0.275), where the pink dot repre-
sent the joint posterior mode of X∗|θ,Y ∗. This backward model posterior
density function is based on the EIV BR modelling.

Fitting the backward modelling algorithm with these tuning parameters
does not lead to convergence in all backward models. The tuning parame-
ters are adjusted until convergence is observed for each backward model b;
this occurs for an adaptation phase of length 1500 samples, a burn-in phase
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of length 50000 samples, and 10000 posterior samples stored having taken
every 15th sample from 150000 posterior samples. In this case, the MCMC
output from backward model run 485 has not converged, while the remaining
backward models have converged to the posterior distribution. The maxi-
mum upper bound of PSRF from backward model run 485 is 1.17, suggesting
the model is relatively close to the convergence cutoff of 1.1. Running this
backward model iteration with an adaptation phase of 2000 instead of 1500
provides MCMC output which has converged to the posterior distribution,
and so all backward models have now converged, and sufficient levels of mix-
ing are observed in each case. Consequently, 10 samples are taken from each
backward model posterior distribution p(X∗b |θb,Y ∗) to build the complete
posterior distribution of X∗|θ,Y ∗, which is now examined. The posterior
density p(X∗|θ,Y ∗) is provided in Figure 5.42, with the posterior mode of
the distribution, (0.4704, 0.6394) to 4 decimal places, represented by the pink
dot. The posterior distribution is notably unimodal, which is unsurprising
given that each backward model run b was able to converge with relative
ease, and given that an additive linear predictor, with no interaction or
polynomial terms, describes the relationship between the outputs and the
inputs. Interestingly, with respect to the true values plotted in Figure 5.41,
the vectors of CBD and SE recovered in the backward modelling are slightly
larger in both dimensions than those initially expected. The posterior mode
of (0.4704, 0.6394), which is chosen as the candidate value, still appears to
be appropriate.

The posterior mode X∗mode = (0.4704, 0.6394) is now tested using the
forward model posterior distribution, to provide a distribution of predictions
of the response variables Ypred, with each prediction sample given by(

Y1,pred,s

Y2,pred,s

)
=

(
β0,1,s β1,1,s β2,1,s

β0,2,s β1,2,s β2,2,s

) 1
X∗1,mode

X∗2,mode

+

(
ε1,s
ε2,s

)
.

Note that the terms X∗1,mode, X
∗
2,mode are given by each dimension of the

joint posterior mode of X∗|θ,Y ∗, as opposed to being the marginal poste-
rior modes of X∗1 |θ,Y ∗ and X∗2 |θ,Y ∗. The joint probability density function
of the distribution of predictions Ypred is provided in Figure 5.43. The prox-
imity between the mode of the distribution p(Ypred|θ,X∗mode) (given by the
orange point (0.5077,0.2687) in Figure 5.43) and the desired response vector
Y ∗ (given by the red point in Figure 5.43) indicates that the posterior mode
of X∗mode is a suitable candidate vector for X∗, with the desired response
vector Y ∗ = (0.51, 0.275) being a high-density vector of the joint distribu-
tion of predictions. That is, the backward model recommends that a CBD
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Figure 5.43: The joint probability density function p(Ypred|θ,X∗mode) for
the real data, given the joint posterior mode of X∗mode = (0.4704, 0.6394)
determined in the backward modelling given the desired response vector
of Y ∗ = (0.51, 0.275). The orange point represents the mode of the joint
distribution of predictions, given by Ypred,mode = (0.5077, 0.2687), and the
red point represents the desired response vector Y ∗. This predictive density
function is based on the EIV BR modelling.

value of 0.4704 g/ml and an SE value of 6.394 mJ/g are the optimal values
for producing the desired values of tapped density (0.51 g/ml) and angle
of repose (27.5 degrees) simultaneously. Following the suggestion from Dr
Majewski that any values of AoR lying with 25-30 degrees are ‘good’, the
probability of AoR lying within this range given the forward modelling pos-
terior distribution and the posterior mode of X∗ is estimated to be 64.0%.

5.3.2 Errors-in-variables Gaussian processes for powder flow
data

Using the forward model posterior distribution estimated in Section 4.4.4,
having fitted the EIV MOGP to the powder flow data with CBD and SE
as the two input variables, the backward modelling process is now investi-
gated. The forward model posterior distribution estimated for this model
is based on the informed prior distributions discussed in Sections 4.4.3 and
4.4.4, having elicited expert information regarding the measurement error
variability for the response variables TD and AoR, as well as for the ex-
planatory variables CBD, SE and BFE. Moreover, expert information has
been elicited for the range of true values of these variables, assuming the
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powders are appropriate for use in Laser Sintering.
In the backward modelling, as discussed in Section 5.3.1, the desired

response vector to be investigated is Y ∗ = (0.51, 0.275), after scaling. Fur-
thermore, the aim of the backward modelling process for this data set is to
identify the optimal values of the explanatory variables (i.e., the variables
measured from the FT4 powder rheometer) in order to produce a powder
which both flows optimally and deposits optimally onto the powder bed.
Having identified the model with CBD and SE from the EIV BR forward
modelling as the best-fitting model, the EIV MOGP was fitted with TD and
AoR as the output variables and CBD and SE as the input variables, so the
task here is to find optimal values for CBD and SE, as carried out in the
previous section.

The backward model for the EIV MOGP from Section 3.6.7 is described
again here. Having fitted the forward model for the EIV MOGP, the true
values Ỹ ∈ R7×2 and X̃ ∈ R7×2, as well as the hyperparameters for the GP,
have been estimated by the posterior distribution. The parameter vector φ,
including the true values and the hyperparameters, is given by

φ = (Ỹ , X̃,α,σε, l,σk,λ, ρVK ),

with α = (α1, α2), σε = (σε1 , σε2), l = (l1,1, l1,2, l2,1, l2,2), σk = (σk1 , σk2).
Note that measurement error precisions are dropped from the conditioning
as they do not impact ‘new’ true values.

For the backward modelling process, a large random sample Sback of
draws are taken from the forward model posterior distribution φ, to inves-
tigate, for each b = 1, . . . , Sback, the conditional distribution of Y ∗|φb,X∗b
(i.e., the GP posterior), which is derived from the joint distribution

(
vec(Ỹb)
Y ∗

)
∼ N2ng+2



α1,b

α2,b

α1,b

α2,b

 ,

(
VMOGP,X̃,b Kb(X̃b,X

∗
b )

Kb(X
∗
b , X̃b) VMOGP,X∗,b

) .

The block matrices given in the covariance matrix of the above joint distri-
bution are defined by

VMOGP,X̃,b = VK,1,b⊗K1,b(X̃b, X̃b)+VK,2,b⊗K2,b(X̃b, X̃b)+

(
σ2
ε1,b
Ing 0ng×ng

0ng×ng σ2
ε2,b
Ing

)
,

VMOGP,X∗,b = VK,1,b⊗K1,b(X
∗
b ,X

∗
b )+VK,2,b⊗K2,b(X

∗
b ,X

∗
b )+

(
σ2
ε1,b
Ing 0ng×ng

0ng×ng σ2
ε2,b
Ing

)
,
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Kb(X
∗
b , X̃b) = VK,1,b ⊗K1,b(X

∗
b , X̃b) + VK,2,b ⊗K2,b(X

∗
b , X̃b),

and finally Kb(X̃b,X
∗
b ) = Kb(X

∗
b , X̃b)

T . Thus, using standard distribution
theory, the conditional distribution Y ∗|φb,X∗b is given by

Y ∗|φb,X∗b ∼ N2(m∗b , V
∗
b ),

where

m∗b = (α1,b, α2,b)
′ +Kb(X

∗
b , X̃b)V

−1
MOGP,X̃,b

(vec(Ỹb)− (α1,b,α2,b)
′),

and

V ∗b = VMOGP,X∗,b −Kb(X
∗
b , X̃b)V

−1
MOGP,X̃,b

Kb(X̃b,X
∗
b ).

Using the backward modelling process, with Y ∗ fixed at the vector (0.51, 0.275)
and, for each b = 1, . . . , Sback, using the uniform box prior distribution on
X∗b with X∗1 ∼ U(0.35, 0.55) and X∗2 ∼ U(0.5, 0.8), the corresponding input
vector can be optimised using MCMC simulation for the purpose of produc-
ing the desired response vector. This provides a posterior distribution for
X∗b |φb,Y ∗ for each b, from which a small sample is drawn from each and
combined together to give the overall posterior distribution of X∗|φ,Y ∗.

The backward modelling algorithm is fitted with the MCMC tuning pa-
rameters (for each backward model iteration) of an adaptation phase of
length 1000, a burn-in phase of length 50000, then storing every 20th sam-
ple from 200000 posterior draws to given 10000 posterior samples. This
is carried out for two parallel chains to be able to test the convergence of
the MCMC output to the posterior distribution for each backward model
iteration. With these tuning parameters, it is observed that 32 of the 2000
backward models do not converge to the posterior distribution. Of those 32
backward models iterations that do not converge, 9 are deemed to be ‘close’
to convergence, which is being defined here as having an upper bound for
PSRF between 1.1 and 1.15, either for both dimensions of X∗, or given
one dimension of X∗ has already converged. For these 9 cases, it would be
possible to run the MCMC simulation for ‘slightly’ longer (and/or a longer
burn-in period) to obtain convergence. Running the simulation for slightly
longer is hard to define, but given the PSRF convergence statistics, running
the simulation for 1.15 times the number of samples ought to be appropriate
(but is not carried out here). It remains that 23 backward model iterations
are not close to convergence, suggesting a larger issue at hand that is likely
related to the backward model convergence issues from previous sections
when it is expected that the posterior of X∗ is multimodal.
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Moreover, of those 32 backward models that do not converge, there are
some issues with the mixing of the MCMC output. In four of those models,
the minimum estimate of effective sample size for either dimension of X∗ is
below the cutoff for three of the models; the cutoff in this case is the value
20, given by 5m, where m is twice the number of parallel chains. A fourth
model has a minimum estimate of 26.7, which lies close to the cutoff. A
possible solution for these effective sample size issues could be to run the
models for longer, storing more posterior samples to increase the effective
sample size. Given the issues with convergence to the posterior distribution,
a longer burn-in period, as well as storing more posterior samples from the
MCMC output, could also be recommended. An alternative solution, which
is also suggested for the convergence issues where the MCMC is not exploring
enough of the distribution, could be to increase the proposal variance in the
current MCMC algorithm, or choose a different MCMC algorithm. This is
discussed further in Chapter 6.

Because a small proportion of the backward model iterations are affected
by these issues (1.8%), the posterior samples ofX∗b for the affected iterations
are not used to build the complete posterior distribution of X∗|φ,Y ∗. This
distribution is instead built using the backward model iterations that do
not have convergence or mixing issues. It would be recommended here to
explore the alternative solution noted above, so as not to lose information
about the backward model, but this is not carried out here, as I had limited
time.

The posterior density p(X∗|φ,Y ∗) is displayed in Figure 5.44. The
marginal posterior density of X∗1 , corresponding to SE, appears to be more
spread out over its prior distribution relative to the spread of the CBD
marginal posterior density. The peak level of density (the mode) exists in the
region towards the centre of the plot, which is close in proximity to the true
value joint posterior densities for multiple groups (estimated in the forward
modelling – see Powder 2 and Powder 4 in Figure 4.61). The posterior mode
is identified as the pink point, given by X∗mode = (0.4590, 0.6130), each to 4
decimal places.

The posterior mode of X∗mode = (0.4590, 0.6130) is now tested using the
EIV MOGP posterior, given the posterior distribution of φ estimated in the
forward modelling. That is, predictions of the response variable Ypred,s (for
each sample of the posterior distribution) corresponding to the input vector
X∗mode are sampled from the conditional distribution

Ypred,s|φs,X∗mode ∼ N2(m∗s, V
∗
s )
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Figure 5.44: The posterior density of p(X∗|φ,Y ∗) given the forward model
posterior distribution estimated with the EIV GP, where the pink point
represents the posterior mode of X∗|φ,Y ∗. The desired response vector is
given by Y ∗ = (0.51, 0.275). This backward model posterior density function
is based on the EIV GP modelling.

where

m∗s = (α1,s, α2,s)
′ +Ks(X

∗
mode, X̃s)V

−1
MOGP,X̃,s

(vec(Ỹs)− (α1,s,α2,s)
′),

and

V ∗s = VMOGP,X∗mode
−Ks(X

∗
mode, X̃s)V

−1
MOGP,X̃,s

Ks(X̃s,X
∗
mode).

For each s = 1, . . . , 20000, one vector of joint predictions of Ypred,s is sam-
pled, and each vector is combined to build the joint distribution of predic-
tions of Ypred, given the forward model posterior distribution φ and the pos-
terior modeX∗mode. The joint probability density function p(Ypred|φ,X∗mode)
is plotted in Figure 5.45. The testing of the posterior mode using the for-
ward model indicates that the backward model has effectively found an
input vector which is suitable for producing the desired response vector
Y ∗ = (0.51, 0.275). In context, the backward model for the EIV GP recom-
mends that a value of 0.4590 g/ml and an SE value of 6.130 mJ/g are optimal
values for producing the desired values of 0.51 g/ml for tapped density and
an angle of 27.5 degrees for angle of repose. The outcomes of the backward
modelling for the EIV BR and the EIV GP are compared in Section 5.4.
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Figure 5.45: The joint probability density function p(Ypred|φ,X∗mode) for
the real data, given the joint posterior mode of X∗mode = (0.4590, 0.6130)
determined in the backward modelling given the desired response vector
of Y ∗ = (0.51, 0.275). The orange point represents the mode of the joint
distribution of predictions, given by Ypred,mode = (0.5108, 0.2764), and the
red point represents the desired response vector Y ∗. This predictive density
function is based on the EIV GP modelling.

5.4 Method comparison using real data

The backward modelling outcomes are now of interest for both methods.
The first difference between the methods of EIV BR and EIV GP from
the backward modelling was the convergence of the MCMC output for each
backward model iteration to its posterior distribution. From Section 5.3.1,
the EIV BR backward modelling was able to converge to the posterior dis-
tribution for each of the s = 1, . . . , 2000 backward model iterations. This
was not the case with the EIV GP, with 32 of the 2000 backward model
iterations not showing convergence, as noted in Section 5.3.2. In some of
these cases, the backward model iterations are very close to convergence
(with psrf upper bounds rounding to values between 1.10 and 1.15), but
other cases show a more extreme lack of convergence. This highlights an
issue with the sampling in the case of the backward models of the EIV GP
(and in fact more complicated EIV BR models), which is discussed further
in Chapter 6. Furthermore, relating to the assessment of the MCMC out-
put, an issue of mixing occurs for the EIV GP backward model outputs.
This is also discussed further in Chapter 6. For ease of understanding, the
posterior density of the corresponding input vector X∗ given the desired
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response vector Y ∗ = (0.51, 0.275) (after scaling) and given the forward
model posterior distribution from EIV BR is given by p(X∗BR|θBR,Y

∗), and
the posterior density function p(X∗GP|φGP,Y

∗) is the analogous function
given the EIV GP forward model posterior distribution. Moreover, the pos-
terior modes of these distributions are given by X∗BR,mode and X∗GP,mode. A
comparison between the posterior densities p(X∗BR|θBR,Y

∗) (left plot) and
p(X∗GP|φGP,Y

∗) (right plot) is provided in Figure 5.46.
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Figure 5.46: A comparison between the posterior densities of
p(X∗BR|θBR,Y

∗) (left plot), i.e., the posterior density of the correspond-
ing input vector estimated by the EIV BR backward modelling, given the
EIV BR forward model posterior distribution and the desired response vec-
tor Y ∗ = (0.51, 0.275), and p(X∗GP|φGP,Y

∗), the analogous distribution
found with the EIV GP. The pink point in each plot is the posterior mode
of the respective distribution, and the orange point is the posterior mode
found using the other method.

The immediate visual comparison to make is that the posterior density
given the EIV BR is much more concentrated than in the case given the EIV
GP. More specifically, the marginal posterior density of the SE variable is
much more concentrated for the EIV BR. An explanation for this is likely to
be related to the observation drawn from Figure 4.61, that there are multiple
groups whose true value uncertainty for SE is significantly larger in the case
of the EIV GP than for the EIV BR. Note that the posterior true values
for the response variables are practically equivalent from the two modelling
methods. Furthermore, consider again the comparison between the true val-
ues of the response variables inspected in Section 5.3.1, plotted along with
the desired response vector Y ∗ = (0.51, 0.275) in Figure 5.41, which sug-
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gested that the corresponding input vector posterior density would be similar
to the true values estimated for Powders 2, 3, 4 and 6. It appears that both
posterior densities p(X∗BR|θBR,Y

∗) and p(X∗GP|φGP,Y
∗) closely resemble

the joint posterior densities of the true values of these powders for CBD and
SE from Figure 4.61. Finally, it is clear that the two modelling methods have
found distinct candidate vectors for X∗, with the posterior density in the
EIV BR case concentrated around its mode of X∗BR,mode = (0.4704, 0.6394),
and in the EIV GP case, it appears that there is an optimal ‘range’ of values
for SE between 0.6 and roughly 0.65, given values of CBD between 0.45 and
0.46, with the posterior mode of X∗GP,mode = (0.4590, 0.6130).
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Figure 5.47: Four plots of the joint probability density function for predic-
tions of the response variable given the forward modelling and the posterior
mode of the corresponding input vector X∗. The first column of plots cor-
responds to the predictive density of Ypred given the EIV BR modelling, and
the second column corresponds to the analogous density given the EIV GP
modelling. The first row of plots demonstrate these densities given the pos-
terior mode of X∗ for the corresponding backward modelling (e.g., the plot
in row 1, column 1 is the density function given θBR,X

∗
BR,mode), whereas

the second row shows Ypred given the posterior mode of X∗ from the other
modelling method. The red point in each plot represents Y ∗, the orange
points represent the predictive mode of the responses given the correspond-
ing backward modelling, and the yellow points represent the predictive mode
of the responses given the other backward modelling.

In both cases, the joint distribution of predictions of the response vari-
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ables given the posterior modes of X∗ and the forward model posterior dis-
tribution was estimated in Sections 5.3.1 and 5.3.2 for the EIV BR and EIV
GP modelling respectively. The joint probability density functions of these
predictions are provided here in Figure 5.47 (first row of plots, with EIV BR
density function on the left and EIV GP on the right), above the joint prob-
ability density functions of predictions from each modelling method, given
the posterior mode identified by the other modelling method. Comparing
the plots from the first row, it is noted that the mode of the predictive dis-
tribution for the EIV GP (orange dot in top-right plot) is closer to Y ∗ (red
dot in all plots) than that for the EIV BR (orange dot in top-left plot). The
Euclidean distances between the mode of the joint prediction distribution
and the desired response vector is calculated in both cases. For the EIV
BR case, a distance of 0.00669 to 3 significant figures is calculated, given a
difference of 0.00233 g/ml between TD values (i.e., between the first element
of the mode of the joint prediction distribution and the desired TD value),
and a difference of 0.00627 degrees between AoR (over 100) values. In com-
parison, the distance between the mode of the joint predictive distribution
given the EIV GP modelling and the desired response vector is 0.00167 to
3 significant figures, given differences of 0.000845 g/ml for TD and 0.00143
degrees for AoR (over 100). Using the joint predictive distribution in each
case, the probability of being within a given distance of the desired response
vector can also be calculated. As noted in Section 5.3.1, it is desirable for
the value of SE to be within the range of 25 and 30 degrees (0.25 and 0.3
after scaling); given the EIV BR modelling and X∗BR,mode, the probability
that AoR lies in this range is 64%, compared with 71% given the EIV GP
modelling and X∗GP,mode. So, for multiple comparisons between the two
modelling methods, it appears that the EIV GP has performed better in the
backward modelling.

Another comparison between the modelling methods is made when con-
sidering the correlation between the predictions of TD and of AoR. From
Figure 5.47, it is clear that there is some positive correlation between the
estimates of TD and AoR given either of the posterior modes. On the
other hand, there appears to be practically zero correlation between the
predictions of these variables in the EIV GP modelling cases. This can be
investigated further, by estimating the correlation between predictions of
the response variables from Figures 4.59 and 4.60 given some input vec-
tors. For example, the plot in Figure 5.48 provides the correlation be-
tween TD and AoR given the input vectors where X1 ∈ [0.35, 0.55] and
X2 = −1.5X1 + 1.325 (with the correlation plotted against the first input
variable CBD). The black line corresponds to the correlation in the EIV BR,
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and the red line corresponds to the correlation in the EIV MOGP. It is clear
that the correlation between TD and AoR is captured effectively in the EIV
BR fitted model, whereas practically zero correlation is captured in the EIV
MOGP.
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Figure 5.48: A plot of the correlation between TD and AoR at fifty input
vectors, created by a sequence of CBD values in the range [0.35,0.55], with
SE values equal to X2 = −1.5X1 + 1.325. The black line corresponds to the
correlation in the EIV BR, and the red line in the EIV GP.

The second row of plots in Figure 5.47 displays the density of predic-
tions given the posterior mode estimated in the other modelling method.
The first of these plots, corresponding to predictions of response variables
from the EIV BR forward modelling given the posterior mode X∗GP,mode, is
relatively similar to the plot directly above, of the joint probability density
of predictions given X∗BR,mode. This is unsurprising, given the additive rela-
tionship in the linear model, and the relative distance between the posterior
modes X∗BR,mode = (0.4704, 0.6394) and X∗GP,mode = (0.4590, 0.6130) (note
that both elements of the EIV BR mode are larger than those of the EIV
GP mode). Furthermore, the marginal joint posterior densities of the slope
terms from the EIV BR forward modelling are provided in Figure 5.49 to
highlight the relationship between the influence of CBD and the influence of
SE on each response variable. The left plot of Figure 5.49 provides the joint
posterior density of the model coefficients βSE,TD and βCBD,TD (that is, the
slope terms of SE and CBD in the linear predictor for TD), and the right
plot provides the analogous joint posterior density for the slope terms in the
linear predictor for AoR. Evidently, there is a strong positive relationship
between the slope terms in both cases. The highest-density region for the
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slopes relating to TD show that a change of value of CBD has a larger in-
fluence than a change of value of SE, so in order to produce larger values of
TD, it is most likely that a larger value of CBD is required. Similarly, the
highest density region of the slopes relating to AoR indicate that changes
of SE have a larger influence than changes in CBD, thus to produce larger
values of AoR, it is most likely that a larger value of SE is required. Further
evidence of this is found when comparing the plots of the first column of
Figure 5.47; both elements of the mode X∗GP,mode are smaller than those
of X∗BR,mode, hence the predictions of TD and AoR are both smaller given
X∗GP,mode than given X∗BR,mode. Furthermore, this would suggest a better
candidate value from the posterior of X∗BR|Y ∗,θBR could be chosen with a
larger CBD and a larger SE.
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Figure 5.49: Joint posterior densities of the slope terms in each linear pre-
dictor in the EIV BR model, fitted with informed priors with TD and AoR
as the response variables and CBD and SE as the input variables. The left
plot corresponds to the slopes in the linear predictor of TD, and the right
plot to the slopes in the linear predictor of AoR.

In the following chapter, possible continuations of the work are discussed,
relating to either issues that arise in this work that should be resolved, or
suggestions of new avenues on which this work could be explored.



Chapter 6

Further Work

This penultimate chapter details the possible avenues on which the work in
this thesis could be progressed. The avenues are divided into two sections;
the first section highlights the possible development of the existing methods
applied already in this work, while the second section introduces new topics
that have not yet been explored in this thesis.

6.1 Development of existing work

The first development noted here relates to the issues of convergence (as
well as mixing) that primarily exist in cases of multimodal posterior dis-
tributions. The examples of this issue in this work occur in the backward
modelling with the simulation examples, where there are multiple ‘optimal’
input values (or vectors for cases of multiple explanatory variables), which
induces multimodality in the posterior distribution of X∗ (or X∗). Ulti-
mately, the reason that the model does not ‘converge’ is that the MCMC
sampler becomes stuck in a particular input subspace (i.e., in the immediate
vicinity of one of the possible optimal input values) for the entirety of the
sampling. Since the sampler is stuck in the vicinity of an optimal input
value, the sampler is, in a sense, not tempted to explore the input space fur-
ther, and so other optimal input values are not captured by the model. This
leads to a lack of convergence, readily detected by the PSRF, when the par-
allel chains for the MCMC converge to different optimal input values, and
each chain does not explore other areas of the input space. For examples
of this in this work, see Sections 5.1.2 and 5.2. As noted in these sections,
a possible fix that should be applied in these cases is to use a sampler that
implements tempered transitions, which forces the sampler to explore the

291



292 CHAPTER 6. FURTHER WORK

other modes of the posterior distribution. This can be applied in JAGS (the
software that applies MCMC simulation utilised in this work) using its mix
module (see Plummer et al. (2003)).

An alternative solution to the convergence issues would be to utilise
the Hamiltonian Monte Carlo (HMC) algorithm, as opposed to the Gibbs
sampler that is applied in this work. The HMC algorithm is discussed
extensively in Neal (2011) and Betancourt (2017), and implements a physics-
based sampling method, with the main goal of improving the directionality
of the sampling, particularly in high-dimensional problems (models with a
large number of stochastic parameters) using a momentum parameter. Most
notably, a variation of this algorithm called NUTS (No-U-Turn sampler) is
implemented in the computing software Stan (see Gelman et al. (2015)).
In Lalchand & Rasmussen (2020), it is noted that the HMC algorithms
have an advantage over other MCMC algorithms since the random-walk
behaviour does not feature. Conversely, there are other papers which, when
comparing the statistical software JAGS (variants of Metropolis-Hastings
algorithms) with Stan, suggest that this is either case dependent, or simply
the algorithms are hard to separate in terms of performance. For example,
Hecht et al. (2021) claim that, for the multi-level intercept-only model, given
by

yi,j ∼ N(θi, σ
2
ε ), θi ∼ N(µ, σ2

θ),

JAGS performs better (according to the metric effective sample size per
second to measure MCMC efficiency) when considering the classic param-
eterisation given above; on the other hand, Stan performs better for this
metric in the covariance- and mean-based parameterisation (an alternative
parameterisation which is omitted here, but can be found in Hecht et al.
(2021)). There is some suggestion in Monnahan et al. (2017) that Stan
performs better when fitting more complex models, which was investigated
using population ecology models (see Monnahan et al. (2017) for more de-
tails). Given the multimodal posterior distribution issues that occur in some
examples in this work (considering simulated data), and the work in the liter-
ature recommending HMC when estimating parameters in high dimensions,
it is recommended that the continuation of this work considers applying this
algorithm.

It is noted that the model assessment for the EIV BR is different to
that for the EIV GP, in that the approximate LOO-CV-IC methods are not
the same. The Pareto-smoothed importance sampling LOO-CV-IC (PSIS-
LOO-CV-IC) is applied to the EIV BR to compare predictive performances
of models, whereas the mixed LOO-CV-IC is utilised for the EIV GP. While
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these approximations are beneficial simply by saving time, they both have
drawbacks. For the EIV BR, the PSIS-LOO-CV-IC hinges on the estimates
for the shape parameter k for the generalised Pareto distribution, which is
applied to smooth the upper tail of importance ratios in the importance
sampling. The work in Vehtari et al. (2015) demonstrates that, for es-
timates of the shape parameter greater than 0.7, the number of required
posterior samples for convergence of the importance weights becomes sig-
nificantly large (it is unclear exactly how large this is, but a graph in the
paper suggests it is greater than 105 for a shape parameter estimate of 0.7,
which quickly becomes 1010 for a shape parameter estimate of 0.8, which is
clearly infeasible). Without convergence, the smoothing of the importance
ratios becomes unreliable, thus the estimate of predictive performance be-
comes unreliable. As noted in Section 4.4.3, the estimates of the parameter
k are all greater than 0.7. For the EIV GP, the mixed LOO-CV-IC based
on ng = 7 groups has the potential to provide an overestimate of the exact
LOO-CV-IC predictive performance. With the limited size of the data set,
the estimates of hyperparameters such as the model error standard devia-
tion σε (for a single output variable), the distance-scaling parameter l and
the signal standard deviation parameter σk could lead to overly optimistic
estimates of the response variables in the LOO GP posterior.

Generally speaking, while it is recommended to use the approximate ver-
sions of LOO-CV-IC for larger data sets, the size of this data set with ng = 7
could indicate that an exact LOO-CV-IC could be used to estimate predic-
tive performance. However, the errors-in-variables data structure causes
further issues with computation time in the exact LOO-CV-IC, for both
the EIV BR and EIV GP modelling methods. In the exact LOO-CV-IC
method without consideration of measurement error on both the explana-
tory variables and response variables, the statistical model should be fitted
n times, in each case estimating the LOO posterior distribution given n− 1
data points, and assessing predictive performance by testing the model on
the 1 ‘left-out’ data point. With consideration of the hierarchical modelling
structure (as well as replicate measurements), e.g. with the EIV BR, this
number of model fits becomes ngS, for S posterior samples from the LOO
posterior distribution; the true values of each ‘left-out’ (test) group must
be estimated given the LOO posterior distribution. Therefore, for each of
the i = 1, . . . , ng LOO model fits (i.e., for each estimation of the posterior
distribution given ng−1 training groups), a subsequent model must be fitted
in order to estimate the true values of the test group (whilst simultaneously
estimating the log-likelihood for predictive performance). Furthermore, to
properly account for the uncertainty in the LOO posterior distribution, the
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subsequent model must be fitted given a large number of posterior samples
S.

Evidently this is time consuming, and so an alternative is sought. One
possibility is to fit the model ng + 1 times, with ng fits corresponding to
fitting the model with ng − 1 groups (i.e., leaving out a different group
each time), and the final fit corresponding to fitting the model with all
ng groups, which would provide the true values for each test group. This
would not have an influence on the fitted model for each of the ng LOO
posterior distributions, which are all trained given ng − 1 groups. There
is some chance that the posterior density of the true values of the test
group, given the model fit with ng groups, differs significantly from the
analogous density given the model fit with ng − 1 groups. That is, the
posterior density of the true values p(Ỹi′ , X̃i′ |Ỹ−i′ , X̃−i′) may differ from
the posterior density p(Ỹi′ , X̃i′ |ỸLOO,−i′ , X̃LOO,−i′), with the subscript LOO
indicating the training values are estimated in the LOO setting, and the
subscripts i = i′ indicating the test group, and −i′ indicating the training
groups. Estimating the true values of the test group i′ using the model fitted
with all groups is likely to be an overconfident estimate of the true values of
the test group. Alternatively, the model could be fitted ng times, each time
training on a different combination of the ng−1 groups, as is standard for the
exact LOO-CV-IC. Then, estimate the distributions of true values (Ỹi′ , X̃i′)
for the test group i′ by sampling from the true values of the group from
the ng − 1 model fits in which the test group i′ is a training group. In this
case, the estimate of (Ỹi, X̃i) is likely to be an underconfident estimate of the
true values of the test group. Further experimentation would be required
to see which alternative is more appropriate, but both cases are likely to be
better estimates of the predictive performance than the approximate cases,
while still reducing the time consumption of the model comparison process
relative to the exact case significantly.

Given that the models in this work are fitted to data with only seven
groups (so the relationship between the variables must be found with seven
data points), it seems logical to suggest that the analysis should be repeated
with more data. With the current data, the overfitting issues with the
more complicated models restricts the modelling process, with only relatively
few models (simpler models) in consideration. It is plausible that these
more complicated models (with more explanatory variables and/or more
polynomial terms) are desirable, as these would provide more possibilities
for engineering insight into model structure.

Given the application of the modelling process (both forward and back-
ward), this work identifies values for the key input variables of CBD and SE
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of 0.4704 g/ml and 6.394 mJ/g respectively as optimal (based on the avail-
able data and the EIV BR modelling with informed prior distributions) with
respect to producing a powder which flows optimally and deposits optimally
onto a powder bed. While the limitations of the amount of data and of pos-
sible ‘excluded’ input variables from the FT4 powder rheometer relating to
shear cell testing and wall friction tests must be noted, the backward mod-
elling could be tested in a literal sense by asking a powder manufacturer to
design a powder based on the qualities from the inputs noted above, to see if
the powder possesses the qualities from the outputs noted above, providing
an effective powder for Laser Sintering.

It was also established from Section 2.3 that other powder properties that
are not investigated here may have an influence on the powder flow proper-
ties. More specifically, the work of Vetterli (2019) considers the influence of
‘intrinsic’ and ‘extrinsic’ particle properties on the powder flow properties.
It is possible that the properties measured by the powder rheometer do not
account for these, hence they could somehow be explicitly incorporated into
the modelling.

6.2 New avenues to explore

The possible collection of more data noted above leads on to further pos-
sibilities with the overarching theme of experimental design. Experimental
design is a statistical approach to data collection which involves identify-
ing the best possible settings, samples and conditions for an experiment,
in order to maximise the amount of information obtained. Obviously, the
amount of information that can be obtained from an experiment correlates
with the number of observations of the experiment; simply put, to gain more
information, we can take more observations of the experiment. However, in
practical terms this is not always feasible, usually because of time and cost
constraints. In order to gain the most amount of information while trying,
in a sense, to minimise the time and cost of the experiment, an experimen-
tal design is developed. A simple example could be to identify values of key
input variables, possibly input setting of the Laser Sintering machine, or
related to the powders considered in this work, which could be used in ex-
periments in order to reduce the uncertainty on the quality of a 3D-printed
object from Laser Sintering. Experimental design could lead into new ar-
eas to be explored in AM, by suggesting sets of inputs which have quite
uncertain effects and may potentially lead to desirable output values.

The idea of designing experiments leads to a further possibility, which
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has notably been explored very recently in multiple papers in the AM liter-
ature (see Section 2.3), that being the use of Bayesian optimisation (BO),
a process for arriving at optimal decisions about future input values for an
experiment specifically in order to learn the most information about max-
imising an output variable. This links to the work in this thesis, as the
typical method for learning about the behaviour of a function in BO is
Gaussian processes. Once the function relating the output variable(s) to
the input variables is estimated, one has the choice of multiple methods for
discovering the values of the input variables which is most likely to provide
the largest improvement in understanding the function. These methods in-
clude expected improvement and knowledge gradient, which are discussed
further in Frazier & Wang (2016).



Chapter 7

Conclusions

The work set out in this thesis provides a statistically-sound modelling pro-
cess for investigating AM-related data, with two specific aims: firstly, identi-
fying which combination of input variables provides the best understanding
of the response variables, and, secondly, ‘inverting’ this relationship to find
optimal values for these input variables to produce desired values of the
responses. Two modelling processes were investigated—errors-in-variables
Bayesian regression (EIV BR), and errors-in-variables Gaussian processes
(EIV GP)—with which both of the aims above were achieved. These meth-
ods differ in their assumptions of the relationship between the response
variables and the output variables. The parametric method of EIV BR as-
sumes a predetermined relationship between the variables that is linear in
its model coefficients, whereas the the nonparametric method of EIV GP
makes no such assumption. Both modelling methods considered multiple
explanatory variables and multiple response variables simultaneously to an-
swer questions regarding both of the aims above.

The first of two notable elements of these modelling methods is the
fully-Bayesian setting in which the models were fitted, that is, treating all
parameters in the modelling as random variables and estimating them with
a posterior distribution. Secondly, the structure of observed data of these
explanatory variables and response variables in this work was that there
were multiple ‘replicate’ measurements on multiple groups for each of the
variables, with the measurements known to be affected by some error. As
mentioned above, these structures were dealt with by implementing errors-
in-variables models, which are handled capably by the Bayesian modelling,
which treats the modelling parameters as random variables (therefore, it is
straightforward to estimate ‘true’ values for each of the groups).
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Before applying these methods to real-world data, both were ‘trained’
extensively using simulated data, assuring that the modelling processes were
performing as intended. For the EIV BR, this training process proceeded
by simulating data for several possible linear predictors, each differing in
their complexity, and comparing the posterior distribution from the fitted
models with the ‘chosen’ values from the underlying simulation (such as
the model coefficients, the measurement error variability, etc.). In cases
where there were clear issues with the modelling, the issues were further
investigated by considering the posterior densities of particular parameters,
and appropriate adjustments to the prior distributions were implemented to
improve the model fit. For the EIV GP, multiple simulations were considered
with differing underlying functions that related the response variable(s) to
the input variable(s), where the underlying functions were difficult for the
EIV GP to recover. These functions represented extreme cases, and so the
modelling process performing as intended provided evidence for the EIV
GP to be successful in any case. Again, appropriate adjustments to prior
distributions were carried out where necessary. Furthermore, the backward
modelling processes were also trained using simulated data, with ‘would-
be’ desired response values selected based on the ‘chosen’ true values from
the underlying simulation, again to test the model with extreme cases. In
both the forward and backward modelling, for both modelling methods, and
with simulated data, it was demonstrated that the relationships between
the response variable(s) and input variable(s) were recovered effectively, as
well as the candidate values of the input variable(s) for the given desired
response(s).

Moreover, this modelling process has been applied to real-world data,
relating to powder behaviour in the AM process Laser Sintering. The two
output variables that were utilised in the modelling were tapped density
(TD) and angle of repose (AoR), which are good proxies for powder bed
deposition and powder flow respectively. By comparing several EIV BR
models, each with different combinations of the input variables, it was con-
cluded that the best-fitting EIV BR model is the two-covariate model which
assumed an additive relationship between conditioned bulk density (CBD)
and specific energy (SE). This was concluded with the help of approximate
LOO-CV-IC to evaluate predictive performance and compare this between
models. Moreover, these variables were selected given fears of overfitting
with more complicated models. The EIV GP with CBD and SE as the
input variables was also fitted for comparison; its predictive performance
(evaluated using mixed LOO-CV-IC) was inferior to that of the EIV BR
model. In addition, due to the possible overfitting issues with more com-
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plicated models (given the models were fitted based on seven groups, thus
seven true values for each variable), the EIV BR modelling is preferred in
this case. This worry of overfitting also contributed to the decision to choose
the two-covariate EIV BR model over a more complicated model with six
covariates, despite the better performance according to approximate LOO-
CV-IC of the six-covariate model.

In order to demonstrate the most complete form of Bayesian modelling,
an elicitation was carried out to gather expert information regarding aspects
of the real data, using which particular prior distributions in the model were
created. The expert information comprised ranges of the variables TD, AoR,
CBD, SE and basic flowability energy (BFE) for which 95% of the possi-
ble powders could lie within and ranges of those variables for which 95%
of subsamples of a given powder could lie within. Informed prior distribu-
tions were built for the measurement error precision, the between-materials
precision of the input variables and the model coefficients, based on this in-
formation. More appropriate prior distributions for those variables on which
no prior information was acquired were also developed. The improvements
in the model fits were noted both visually and numerically, namely with
smaller model error standard deviations being estimated with the informed
priors.

Having identified the best-fitting ‘forward’ model, the backward mod-
elling process was carried out. It was identified that desired values for the
response variables were 0.51 g/ml for TD and 27.5 degrees for AoR (where
values between 25 and 30 degrees were also acceptable). Applying the back-
ward modelling process using the EIV BR with uniform prior distributions
over the elicited ranges of the variables CBD and SE, the ‘optimal’ corre-
sponding values to the desired response vector were estimated to be 0.4704
g/ml and 6.394 mJ/g respectively. Having assumed these optimal values
to be the candidate vector for X∗, the candidate vector was tested using
the forward modelling, to provide a distribution of predictions for the re-
sponse variables. The mode of this distribution was found to be 0.5074
g/ml and 26.81 degrees for TD and AoR respectively. Additionally, the EIV
GP backward modelling was also carried out for demonstration, and further
comparison with the EIV BR. The candidate vector (i.e., the posterior mode
of X∗) identified in the backward modelling using the EIV GP contained
values of 0.4590 g/ml and 6.130 mJ/g for CBD and SE respectively. An
indication of the quality of the backward modelling was provided by run-
ning this candidate vector through the forward modelling for the EIV GP,
producing a mode for the distribution of response predictions of 0.5108 g/ml
and 27.64 degrees for TD and AoR respectively.
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At stages throughout this thesis, limitations of the work were highlighted.
These limitations, which are discussed previously in Chapter 6, included the
small data set and its consequence of overfitting, the differences between the
approximate methods of model evaluation for the EIV BR and the EIV GP,
the Pareto smoothing parameter estimates in the approximate LOO-CV-IC,
and the selection of variables used from the FT4 powder rheometer. Most
notably, due to the dangers of overfitting, EIV BR modelling is preferred
to EIV GP modelling for data sets of the size and complexity that were
considered here. It is noted that the FT4 powder rheometer offers scope for
collecting further data which could also play a role in the continuation of
this case study.

In conjunction with the observations made about the existing statistical
research in AM, there are clearly several possibilities for applying these ro-
bust methods to other aspects of either laser sintering, or even other AM
methodologies. The most logical application for these methods would be to
investigate the relationship between final-part properties (for example, ten-
sile strength and Young’s modulus simultaneously) and processing parame-
ters. While processing parameters relating to printer settings are exact (i.e.,
there is no measurement error), other processing parameters not related to
printer settings, even the variables tapped density and angle of repose inves-
tigated here, could be incorporated, which are clearly both measured with
error, and influence the final-part properties.

Finally, the next steps set out for this work are clearly laid out in Chap-
ter 6. Given the forward and backward modelling outcomes, a practical test
could be implemented by organising the manufacturing of a powder with
CBD and SE values outlined above, with the aim of producing a powder
which can flow optimally through chutes and hoppers and deposit optimally
onto a powder bed. Further data collection, and an investigation of FT4
powder rheometer variables not considered here using the modelling process
outlined in this work, would be recommended prior to the test. Another
AM-related data collection could be carried out in order to apply the mod-
elling process to optimise other aspects of AM or Laser Sintering, such as
the example described in Chapter 6. Additionally, this introduces a possi-
bility to contribute to the statistical research within AM by considering an
application of experimental design to real-world problem.



Appendix A

Exact and Approximate
leave-one-out cross-validation

This section gives a more detailed demonstration of evaluating Bayesian
model fits using leave-one-out cross-validation information criterion (LOO-
CV-IC), with both the exact method, and the approximate method using
Pareto smoothing.

A.1 Exact leave-one-out cross-validation for EIV
BR

The exact LOO-CV-IC is demonstrated here using the simple linear model
without measurement error on either the response or explanatory variable,
defined by

Yi = β0 + β1xi + εi,

for i = 1, . . . , n, where εi ∼ N(0, τε). The parameter vector for this model
(assuming no hyperparameters in the modelling) is

θ = (β0, β1, τε).

Firstly, define µi to be the mean of this regression model, that is,

µi = E(Yi) = β0 + β1xi. (A.1.0.1)

Then, it follows from above that Yi conditioned on θ is normally distributed
with mean µi and precision τε. That is,

Yi|θ ∼ N(µi, τε). (A.1.0.2)
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The log-likelihood of the value Yi given θ can be investigated, that is, the
values

log p(Yi|θ).

The additional notation of Ynew as a future observation of the response
variable is introduced, with some corresponding explanatory variable value
Xnew, assumed to be not known. Note that the model has not been trained
on the pair of values (Ynew, Xnew), so the idea here is to calculate some out-
of-sample predictive accuracy of the model for external validation, which is
given by the log predictive density for Ynew; that is,

log(ppost(Ynew|Xnew)) = log(Epost(p(Ynew|θ, Xnew))

= log

∫
p(Ynew|θ, Xnew)ppost(θ)dθ,

(A.1.0.3)

where ppost(Ynew|Xnew) represents the predictive density of the new data
point Ynew given the joint posterior distribution p(θ|Y ,x) and the corre-
sponding new explanatory variable value Xnew. The subscript ‘post’ refers
to averaging over the posterior distribution of θ. Since θ is a random vari-
able, the log predictive density of Ynew is not conditioned on some point
estimate of θ, rather the expectation averaging over the entire posterior is
taken to account for the uncertainty in the posterior.

Then, since the joint future data point (Ynew, Xnew) is unknown, the
expected (out-of-sample) log predictive density for a single new data point
Ynew is defined to be

elpd = Ep(log(ppost(Ynew|Xnew))

=

∫ ∫
(log(ppost(Ynew|Xnew))p(Ynew, Xnew)dYnewdXnew.

(A.1.0.4)

Further, the expected log predictive density for a vector of out-of-sample
data points Ynew,1, . . . Ynew,nnew given the corresponding explanatory vari-
able values Xnew,1, . . . , Xnew,nnew , is defined by the expected log pointwise
predictive density given by the sum of the expected log predictive densities
for each point, i.e.,

elppd =

nnew∑
m=1

Ep(log(ppost(Ynew,m|Xnew,m))). (A.1.0.5)

In an ideal world, some form of the elpd in Equation A.1.0.4 (or elppd
in Equation A.1.0.5) would be used to assess the model fit, but the distri-
bution of the new observation Ynew is not known, so an alternative based
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on something known must be used. That is, some evaluation of the model
using the log-likelihoods log(p(Yi|θ)).

Since the parameter vector θ is not known, the log-likelihood log(p(Yi|θ))
is also not known, so it is estimated with the help of the posterior distribution
p(θ|Y ,x). To evaluate the predictive accuracy of the fitted model, the log
pointwise predictive density, given by,

lppd = log

(
n∏
i=1

ppost(Yi|xi)

)
=

n∑
i=1

log

(∫
p(Yi|θ, xi)ppost(θ)dθ

)

=

n∑
i=1

log(p(Yi|xi)),

(A.1.0.6)

is estimated by the computed log pointwise predictive density, using poste-
rior samples θs for s = 1, . . . , S, where S is the (large) number of samples
taken from the posterior distribution. The computed lppd is

computed lppd =

n∑
i=1

log

(
1

S

S∑
s=1

p(Yi|θs, xi)

)
. (A.1.0.7)

For large enough S, the lppd and the computed lppd (Equations A.1.0.6 and
A.1.0.7 respectively) should be equivalent, as the posterior samples should
be large enough to capture the complete posterior distribution.

The computed lppd in Equation A.1.0.7 is a good starting point as an
estimate of the elpd. Using the response variable data Yi in this way will
overestimate the elppd for future data (from Equation A.1.0.4 or A.1.0.5)
since the model has been built on this data, so an adjustment needs to be
made to estimate out-of-sample predictive performance while using the data
Yi. This comes with the help of information criteria, and in particular the
preference here is to consider some form of cross-validation, in particular
leave-one-out cross-validation.

To calculate the exact LOO-CV-IC involves fitting the model n times
(with n being the number of data points), each time leaving out one of the
data points to use as a ‘test’ data point, and training the model on the re-
maining data points. This introduces n posterior distributions p(θ−i|Y−i,x−i),
where θ−i is defined to be the parameter vector

θ−i = (β0,−i, β1,−i, τε,−i), (A.1.0.8)

and the vectors Y−i and x−i are the observed data without the ith data
point. That is,

Y−i = (Y1, . . . , Yi−1, Yi+1, . . . , Yn)
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and

x−i = (x1, . . . , xi−1, xi+1, . . . , xn).

Each posterior distribution is summarised by some large number S of pos-
terior samples, leading to the log pointwise predictive density

lppdLOO-CV =
n∑
i=1

log(p(post,−i)(Yi|xi))

=

n∑
i=1

log

(
1

S

S∑
s=1

p(Yi|θ−i,s, xi)

)
.

(A.1.0.9)

The density p(post,−i)(Yi) represents the predictive density of the ‘test’ data
point Yi given the posterior distribution p(θ−i|Y−i,x−i). Finally, the LOO-
CV-IC is calculated by multiplying the lppdLOO-CV by −2, converting the
metric onto the deviance scale. That is,

LOO-CV-IC = −2× lppdLOO-CV (A.1.0.10)

An estimate of the effective number of parameters is given by (for easier
comparison with other information criteria)

pLOO-CV = lppd− lppdLOO-CV. (A.1.0.11)

Some adjustments are required for the exact LOO-CV and to account for
errors-in-variables in both the response variable and explanatory variable.
That is, consider now the errors-in-variables Bayesian regression with one
input variable with replicate observations on each group, defined in Equa-
tions 3.2.3.1 and 3.2.3.2, with the parameter vector θ defined in Equation
3.3.0.1.

The first main difference to be aware of is that the response variable
data Yi from the non-EIV case are replaced with the true, unobservable
values Ỹi, which must be estimated in the posterior distribution. A subset
of the parameter vector θ (corresponding to the parameter vector defined
in Equation 3.3.0.1) must be introduced, since the true values Ỹi are part of
the parameter vector, and so the conditional statement of Ỹi|Ỹi occurs when
conditioning the true values of the response variable on θ. The parameter
vector φi = (β0, β1, X̃i, τε) is therefore introduced, with the log-likelihood of
the true value Ỹi given φi now of interest. That is, the values

log p(Ỹi|φi),
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for i = 1, . . . , ng. Moreover, the expectation of Ỹi is defined to be µ̃i, i.e.

µ̃i = E(Ỹi) = β0 + β1X̃i, (A.1.0.12)

and so the log-likelihood is computed assuming µ̃i as the mean and τε as the
precision of the normal distribution.

An adjustment to the log pointwise predictive density from Equation
A.1.0.6 is then provided in Equation A.1.0.13, given by

lppdEIV = log

( ng∏
i=1

ppost(Ỹi)

)
=

ng∑
i=1

log

(∫
p(Ỹi|φi)ppost(φi)dφi

)

=

ng∑
i=1

log(p(Ỹi|Y,X)).

(A.1.0.13)

This is then estimated by the computed lppd accounting for measurement
error, given by

computed lppdEIV =

ng∑
i=1

log

(
1

S

S∑
s=1

p(Ỹi,s|φi,s)

)
.

In the case of this EIV Bayesian regression model, the exact LOO-CV is
slightly more complicated based on the need to estimate the unobservable
true values on the response variable, as well as the covariate. That is, in
the exact case, we need to learn about β0,−i, β1,−i and τε,−i just from the
true values Ỹ−i and X̃−i (which we also learn about simultaneously, with
help from their respective observations), and not from Ỹi and X̃i. But, while
finding the log-likelihood of the true value Ỹi given β0,−i, β1,−i, τε,−i and X̃i,
we need to simultaneously estimate the true values Ỹi and X̃i.

More specifically, for a fixed i = i′, the posterior distribution p(θ−i′ |Y−i′ , X−i′)
must firstly be estimated, where θ−i′ is defined to be the parameter vector

θ−i′ = (Ỹ−i′ , X̃−i′ , β0,−i′ , β1,−i′ , τε,−i′ , τX̃,−i′ , τη,−i′ , τδ,−i′ , τβ0,−i , τβ1,−i),
(A.1.0.14)

and the matrices Y−i′ and X−i′ are the matrices of the observed data without
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the replicate measurements of the (i′)th group. That is,

X−i′ =



X1,1 · · · X1,nc
...

. . .
...

Xi′−1,1 · · · Xi′−1,nc

Xi′+1,1 · · · Xi′+1,nc
...

. . .
...

Xng ,1 · · · Xng ,nc


,

and equivalently for Y−i′ . Secondly, using the posterior distribution p(θ−i′ |Y−i′ , X−i′),
the relationships

Ỹi′ = β0,−i′ + β1,−i′X̃i′ + εi′ , (A.1.0.15)

Yi′,j = Ỹi′ + ηi′,j , (A.1.0.16)

and

Xi′,k = X̃i′ + δi′,k, (A.1.0.17)

are utilised to find the posterior distribution p(Ỹi′ , X̃i′ |θ−i′ , Yi′ , Xi′) (for
j = 1, . . . , nr and k = 1, . . . , nc). The random error terms in Equations
A.1.0.15, A.1.0.16 and A.1.0.17 take normal distributions with mean 0 and
precisions τε,−i′ , τη,−i′ and τδ,−i′ respectively. Moreover, the prior distri-
bution X̃i′ ∼ N(µX , τX̃,−i′) is utilised, with µX fixed. In order to capture
the uncertainty of the posterior distribution p(θ−i′ |Y−i′ , X−i′) when esti-
mating Ỹi′ and X̃i′ , the model represented by Equations A.1.0.15, A.1.0.16
and A.1.0.17 is fitted for each posterior sample s = 1, . . . , S, giving S pos-
terior distributions of p(Ỹi′ , X̃i′ |θ−i, Yi, Xi), from which a single posterior
sample is taken, and these samples are combined together to acquire the
complete posterior distribution of p(Ỹi′ , X̃i′ |θ−i, Yi′ , Xi′), from which the
marginal posterior distribution p(Ỹi′ |θ−i, X̃i′ , Yi′ , Xi′) is obtained. This pos-
terior distribution is comprised of S posterior samples, which are used for
finding Equation 3.4.2.1, given by

lppdLOO-CV-EIV =

ng∑
i=1

log(p(post,−i)(Ỹi))

=

ng∑
i=1

log

(
1

S

S∑
s=1

p(Ỹi,s|θ−i,s, X̃i,s)

)
.

It is noted that exact LOO-CV for models which factor in measure-
ment error for both the response variable and explanatory variable are even
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more time-consuming—for S posterior samples and ng groups, Sng models
must be fitted using MCMC. An approximate LOO-CV method is therefore
preferable, and is provided in Appendix A.2.

A.2 Approximate leave-one-out cross-validation with
Pareto smoothing

This section describes the process for approximating LOO-CV-IC, with dis-
cussions of importance sampling which lead to the approximate method of
PSIS-LOO-CV-IC.

Raw importance sampling was first described in Gelfand et al. (1992)—
the expected log predictive density adjusted for leave-one-out cross-validation
is defined as

elpdloo =
n∑
i=1

log(p(Yi|Y−i, xi,x−i)) (A.2.0.1)

where

p(Yi|Y−i, xi,x−i) =

∫
p(Yi|θ−i, xi)p(θ−i|Y−i,x−i)dθ−i. (A.2.0.2)

The notation of the conditioning on the explanatory variable values of
(x−i, xi) in Equation A.2.0.1, as opposed to just conditioning on x, is for
ease of understanding, with correspondence to the posterior distribution
p(θ−i|Y−i,x−i) in Equation A.2.0.2.

Given conditional independence of n data points in the model, then
Equation A.2.0.2 can be evaluated with samples θs from the posterior con-
ditional distribution p(θ|Y ,x), that is, the posterior conditional distribution
given all the data points Y , using importance ratios

ri,s =
1

p(Yi|θs)
∝ p(θs|Y−i)

p(θs|Y )
. (A.2.0.3)

This leads to the importance sampling leave-one-out predictive distribution
for the ‘test’ data point Yi

p(Yi|Y−i) ≈
∑S

s=1 ri,sp(Yi|θs)∑S
s=1 ri,s

=
1

1
S

∑S
s=1

1
p(Yi|θs)

. (A.2.0.4)

The issue with the raw importance sampling is that the variance of the pos-
terior distribution p(θ|Y ,x) is likely to be smaller than that of the posterior
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distributions p(θ|Y−i,x−i)—because of this, the distribution of importance
ratios defined in Equation A.2.0.3 can have a large variance (specifically a
long right tail, discussed in Peruggia (1997) and Epifani et al. (2008)).

One potential modification to this is suggested in Ionides (2008) where
the weighted importance ratios, given by

ws = min(rs,
√
Sr̄), (A.2.0.5)

replace the importance ratios rs. It is true that these weighted importance
ratios provide finite variance. Vehtari et al. (2015) show in some experiments
that these weighted importance ratios introduce a bias.

This is taken a step further, leading to the application of Pareto smooth-
ing to the importance ratios, first discussed in Vehtari et al. (2015). Speaking
generally about the Pareto distribution, it is named after Italian economist
Pareto, who observed that the distribution of wealth in society is such that
80% of society’s wealth is held by 20% of the society’s population, leading
to the 80-20 rule (Pareto principle). The Pareto distribution has probability
density function of

fX(x) =

{
αxαm
xα+1 if x ≥ xm,
0 otherwise.

(A.2.0.6)

A plot of the probability density function produces a curve in the positive
quadrant which has domain [xm,∞) for xm > 0 and range (0, α] for α > 0.
Finally, the probability density function equals α > 0 at xm.

The method of Pareto-smoothed importance sampling involves fitting a
generalised Pareto distribution to the largest 20% of the importance ratios,
so as to smooth these values and reduce sensitivity to them. The remaining
80% of the importance ratios are left unchanged. The Pareto smoothing is
carried out for each data point i = 1, . . . , n, leading to new weights wi, s
for s = 1, . . . , S and each data point i. Further details of the procedure for
fitting the generalised Pareto distribution and carrying out the smoothing
are given in Vehtari et al. (2015) and Vehtari et al. (2017). The method
does not guarantee stable estimates for the importance ratios—when the es-
timated shape parameter k̂ for the generalised Pareto distribution is greater
than 0.7, it is likely that the ratios are unstable.

This leads to the PSIS estimate of the LOO expected log predictive
density of

êlpdPSIS-LOO-CV =

n∑
i=1

log

(∑S
s=1wi,sp(Yi|θs)∑S

s=1wi,s

)
, (A.2.0.7)
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which, after multiplying by −2 to convert onto the deviance scale, is used to
approximate LOO-CV-IC. The effective number of parameters is then given
by

pPSIS-LOO-CV = lppd− êlpdPSIS-LOO-CV. (A.2.0.8)

An adjustment is provided for the consideration of measurement error
on both the response and explanatory variables, as in Appendix A.1. The
PSIS estimate of the LOO expected log predictive density, accounting for
measurement error in the response and explanatory variables, is given by

êlpdPSIS-LOO-CV,EIV =

ng∑
i=1

log

(∑S
s=1wi,sp(Ỹi,s|φi,s)∑S

s=1wi,s

)
,

which is used to approximate the exact LOO-CV-IC accounting for mea-
surement error. This statistic is multiplied by −2 so that the values are
placed on the deviance scale.

A.3 Exact leave-one-out cross-validation for EIV
GP

Firstly, the exact LOO-CV-IC for the EIV GP with one input is presented.
That is, the quantities of interest are the log-likelihoods of the ‘test’ true
value Ỹi given the ‘training’ true values Ỹ−i and the model parameters for the
Gaussian process, which are ‘trained’ by the true values Ỹ−i. The parameter
vector θ for the EIV GP fitted to all true values is defined as

θ = (α, σk, σε, l, Ỹ , X̃, τX̃ , τη, τδ).

Since the EIV GP model is fitted ng times in the case of carrying out LOO-
CV-IC, this leads to ng posterior distributions for each iteration of LOO, so
the LOO parameter vector θ−i is defined for each ‘test’ true value i, that is,

θ−i = (α−i, σk,−i, σε,−i, l−i, Ỹ−i, X̃−i, τX̃,−i, τη,−i, τδ,−i)

is the LOO parameter vector. The hyperparameter vectors, i.e. excluding
the true values, is then defined to be φ−i = (α−i, σk,−i, σε,−i, l−i). The log-
likelihood of the ‘test’ true value Ỹi given the ‘training’ true values is then
log(p(Ỹi|φ−i, Ỹ−i, X̃i)). This log-likelihood is constructed with the Gaussian
process posterior, where the GP prior is given by(

Ỹ−i
Ỹi

)
∼ N

((
m(X̃−i)

m(X̃i)

)
,

(
V (X̃−i, X̃−i) k(X̃−i, X̃i)

k(X̃i, X̃−i) v(X̃i, X̃i)

))
, (A.3.0.1)
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where m(X̃−i) ∈ Rng−1, V (X̃−i, X̃−i) = K(X̃−i, X̃−i) + σ2
ε Ing−1, with

K(X̃−i, X̃−i) being the matrix

kcov(X̃1, X̃1) · · · kcov(X̃1, X̃i−1) kcov(X̃1, X̃i+1) · · · kcov(X̃1, X̃ng)
...

. . .
...

...
. . .

...

kcov(X̃i−1, X̃1) · · · kcov(X̃i−1, X̃i−1) kcov(X̃i−1, X̃i+1) · · · kcov(X̃i−1, X̃ng)

kcov(X̃i+1, X̃1) · · · kcov(X̃i+1, X̃i−1) kcov(X̃i+1, X̃i+1) · · · kcov(X̃i+1, X̃ng)
...

. . .
...

...
. . .

...

kcov(X̃ng , X̃1) · · · kcov(X̃ng , X̃i−1) kcov(X̃ng , X̃i+1) · · · kcov(X̃ng , X̃ng)


,

(A.3.0.2)
which has dimension (ng − 1)× (ng − 1). Furthermore, the vector

k(X̃−i, X̃i) =



kcov(X̃1, X̃i)
...

kcov(X̃i−1, X̃i)

kcov(X̃i+1, X̃i)
...

kcov(X̃ng , X̃i)


, (A.3.0.3)

and k(X̃i, X̃−i) = (k(X̃−i, X̃i))
T are column and row vectors respectively,

both of length ng − 1. Then, the posterior distribution of Ỹi|φ−i, Ỹ−i, X̃i

takes mean m∗i and variance v∗i , given by

m∗i = m(X̃i) + k(X̃i, X̃−i)V (X̃−i, X̃−i)
−1(Ỹ−i −m(X̃−i)) (A.3.0.4)

and

v∗i = v(X̃i, X̃i)− k(X̃i, X̃−i)V (X̃−i, X̃−i)
−1k(X̃−i, X̃i). (A.3.0.5)

Given that some large S posterior samples summarise the posterior distribu-
tion of each parameter, this leads to S likelihoods for each ‘test’ true value
given the ‘training’ true values, leading to the lppdLOO-CV

lppdLOO-CV-IC =

ng∑
i=1

log

(
1

S

S∑
s=1

p(Ỹi,s|φ−i,s, Ỹ−i,s, X̃i,s)

)
, (A.3.0.6)

where the subscript s represents the sth posterior sample of the parameters.
As discussed for the exact LOO-CV-IC for the EIV Bayesian regression

discussed in Section 3.4.2, since the true values Ỹi and X̃i must also be esti-
mated, a second MCMC must be carried out in order to find the true values
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in the likelihoods in Equation A.3.0.6. For a fixed i = i′, the relationships

Ỹi′ ∼ N(m∗i′ , v
∗
i′), (A.3.0.7)

Yi′,j = Ỹi′ + ηi′,j (A.3.0.8)

and
Xi′,k = X̃i′ + δi′,k, (A.3.0.9)

where ηi′,j ∼ N(0, τη,−i) and δi′,k ∼ N(0, τδ,−i), are utilised to find the poste-
rior distribution p(Ỹi′ , X̃i′ |θ−i′ , Yi′ , Xi′), where Yi′ and Xi′ are the observed
data for the ith group for the response variable and covariate respectively.
The true value X̃i′ takes the prior distribution N(µX , τX̃,−i′). In order to
take into account the uncertainty of the posterior distribution for the train-
ing true values, these relationships are investigated for each posterior sample
s, giving S posterior distributions for Ỹi′ , X̃i′ |θ−i′ , Yi′ , Xi′ , from which a sin-
gle posterior sample is taken from each posterior, and these are combined to-
gether to give a complete posterior distribution. Finally, the lppdLOO-CV-IC

in Equation A.3.0.6 is calculated using the samples from this posterior.

A.4 Mixed leave-one-out cross-validation

An alternative to the approximate LOO-CV, explained in Appendix A.2
for the EIV BR, is the mixed LOO-CV, which acts as an intermediate step
between carrying out full LOO-CV and PSIS-LOO-CV. Note that the full
LOO log-likelihood for posterior sample s of the true value Ỹi is given by

p(Ỹi,s|φ−i,s, Ỹ−i,s, X̃i,s),

where the hyperparameters are trained on the data without the true value
(and its replicate measurements) for group i. Note also that the log-likelihood,
for the approximate LOO-CV, for posterior sample s of the ‘new’ true value
Ỹnew,i is given by

p(Ỹnew,i,s|θs),

where the hyperparameters (and the true values for the model) are all esti-
mated based on all the available data.

The mixed LOO is carried out by estimating the hyperparameters (and
true values for the model) using all the available data, then finding the LOO
log-likelihood for posterior sample s of the true value Ỹi based on leaving
the data for the ith group out of the log-likelihood, i.e., finding

p(Ỹi,s|φs, Ỹ−i,s, X̃s), (A.4.0.1)
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where the vector φs is posterior sample s for all the hyperparameters, esti-
mated using all the available data. This is essentially analogous to the full
LOO-CV, but the hyperparameters are estimated just once, using all of the
data. Thus the out-of-sample predictive performance of the EIV GP using
mixed LOO-CV-IC is given by

lppdmixed-LOO-CV-EIV =

ng∑
i=1

log

(
1

S

S∑
s=1

p(Ỹi,s|φs, Ỹ−i,s, X̃s)

)
,



Appendix B

EIV GP prior exploration

B.1 Single-input EIV GP

Given the clear relationships noted between the parameters in Section 4.3.1,
a reparameterisation of the model, with l and σk depending on σε being
justified. That is, defining

l = klσε and σk = kσkσε. (B.1.0.1)

In this case, a uniform prior distribution is placed on the scalars kl and
kσk . A suitable starting point can be provided from the first fitted model
from Section 4.3.1, where the ratio between each posterior sample of l and
σε (as well as between σk and σε) provides an implied posterior distribution
for kl (as well as for kσk , with the obvious restriction of considering posterior
samples such that σε < 0.075. A centred 95% credible interval is computed
for the implied posterior distributions for kl and kσk , and rough estimates
of these are taken to be the limits of their uniform priors. This provides the
prior distributions

kl ∼ U(0, 3000)

and
kσk ∼ U(5, 1000)

where the 95% credible intervals from the implied prior distributions were
[0.446,49.5] for kl and [5.66,838] for kσk (to 3 significant figures). There has
been some adjustment here to the limits of the uniform prior for kl to be
able to cover future simulation examples cases (or real data cases) where the
value of l is much larger—it is still possible that l could be close to 1, which
is 50 times larger than the estimate of l we expect to find for the current
simulation, and so the upper limit of 3000 is the starting point.

313
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This reparameterised version of the EIV GP is now fitted to the same
set of simulated data, with the prior specification

σε ∼ Gamma(aσε , bσε),

σk = kσkσε,

l = klσε,

kσk ∼ U(5, 1000),

kl ∼ U(0, 3000),

α ∼ N(0, 0.01),

X̃i ∼ N(µX , τX̃),

τη ∼ Gamma(aη, bη),

τδ ∼ Gamma(aδ, bδ),

τX̃ ∼ Gamma(aX̃ , bX̃).

(B.1.0.2)

Again, the shape and rate parameters in the Gamma prior distributions are
all set equal to 0.001, apart from for σε ∼ Gamma(1, 1

0.1), and µX = 0.5.
The MCMC output is assessed for mixing and convergence. The PSRF
metric shows that the largest (of all parameters) upper bound on the 95%
confidence interval of each estimate is 1.00, so the output has converged to
the posterior distribution. The smallest estimate of effective sample size of
any parameter from any of the four chains is 17993, which indicates excellent
levels of mixing. The MCMC output is now considered to have converged
to the posterior distribution.

The posterior densities of σε, l and σk is provided in Figure B.1. There
are clearly issues with these posterior densities, relative to what is expected
from these. Most importantly, the values of σε (top plot) are large, compared
with the cutoff of 0.075 that was identified in the previous EIV GP fit for
this simulation. Moreover, the values of l and σk are also large, which is no
surprise given the priors on their respective scalars and the values found in
the marginal posterior of σε. The posterior densities of kl and kσk are also
provided in Figure B.2. These posterior densities of kl and kσk are expected
given the posterior densities of σε, l and σk observed in Figure B.1. Given
the desire to capture larger values of l even with smaller values of σε, it still
seems necessary to have this wide-ranging prior for the scalar for kl.

It is not too surprising that this reparameterisation, as fitted here, was
unsuccessful in finding an appropriate joint posterior distribution for the
hyperparameters. While the uniform priors for the scalars kl and kσk was
adjusted for the case that the posterior samples of σε were less than 0.075,
there has been no adjustment in the prior distribution for σε, which can
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Figure B.1: Posterior density of σε (top plot), l (middle plot) and σk (bottom
plot), corresponding to the model fitted with σε ∼ Gamma(1, 1

0.1), l = klσε,
kl ∼ U(0, 3000), σk = kσkσε, kσk ∼ U(5, 1000), and uninformed Gamma
priors for measurement error precision and between-materials precision for
the input variable.
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Figure B.2: Posterior densities of kl (top plot) and kσk , corresponding to the
model fitted with σε ∼ Gamma(1, 1

0.1), l = klσε, kl ∼ U(0, 3000), σk = kσkσε,
kσk ∼ U(5, 1000), and uninformed Gamma priors for measurement error
precision and between-materials precision for the input variable.
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clearly still find quite large values of model error standard deviation. An
adjustment to the prior distribution of σε is discussed further here, firstly
with consideration of the ‘initial’ parameterisation (i.e., not assuming a di-
rect relationship between σε and both l and σk), and secondly with the
reparameterisation of the model.

As the prior distribution on σε was first discussed in Section 4.3.1, it
was mentioned that the mean could be shifted closer to 0 if it appeared
necessary from simulation examples. In truth, given that a model error
standard deviation of 0.25 is the maximum that can be considered (given
a constant mean for the response variable at 0.5, the model error can then
cover the range [0,1], and so setting 1− 0 = 4σε gives the rough estimate of
0.25), there should be zero density in the prior distribution to the right of this
value. With the prior Gamma(1, 1

0.1), it was noted that the probability of a
sample from the prior being greater than 0.25 is 0.0821, i.e., this occurs over
8% of the time, which is likely allowing for too much density to σε at values
larger than what can be feasibly measured. An adjustment to the mean
of the prior closer to 0 will decrease this probability, or an increase in the
shape of the prior. Both of these options are considered in Figure B.3, which
displays the posterior densities of four Gamma distributions, along with the
probability that a sample from the distribution is larger than 0.25. The
four Gamma distributions considered are Gamma(1, 1

0.1), Gamma(1, 1
0.05),

Gamma(2, 2
0.1) and Gamma(2, 2

0.05). Note from the probability statements
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a ~ Gamma(1,1/0.1) density
b ~ Gamma(1,1/0.05) density
c ~ Gamma(2,2/0.1) density
d ~ Gamma(2,2/0.05) density

P(a > 0.25) = 0.0821
P(b > 0.25) = 0.00674
P(c > 0.25) = 0.0404

P(d > 0.25) = 0.000499

Figure B.3: The probability density function for four Gamma distributions
that are considered as possible prior distributions for σε. Relevant proba-
bility statements are also provided.

the change in the probability as the shape is increased from 1 to 2, and as the
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mean is decreased from 0.1 to 0.05. Given we want almost zero probability
of the model error standard deviation being greater than 0.25, it seems like
a mean for the distribution of 0.1 should be ruled out. This probability
is clearly much smaller for the two Gamma distributions with mean 0.05;
note that the probability that a random sample is greater than 0.25 is still
over 10 times larger for Gamma(1, 1

0.05) than for Gamma(2, 2
0.05) (note the

difference in probability density at values around 0.15 to 0.2). The other
notable difference is the density at values very closer to 0, which is much
larger for the Gamma prior with shape 1 (which has its mode at 0). It
possibly makes more sense for this reason to use the shape 2 prior, since a
shape 1 prior suggests a priori that the most likely value for the model error
standard deviation is 0.

The EIV GP model is fitted again to this set of simulated data, firstly
with the assumptions that σε ∼ Gamma(2, 2

0.05), σk ∼ Gamma(3, 3
0.4) and

l ∼ Gamma(2, 2
0.25), to see whether the reparameterisation considered above

is necessary, or the issue the whole time was with the prior on σε. The
MCMC output is checked for convergence, and shows that the PSRF esti-
mates for l have a mean of 1.29 and upper bound (95% C.I.) of 1.82. There
appears to still be significant issues with this version of the EIV GP. The
mixing within each parallel chain is comparatively interesting—the mini-
mum effective sample size estimates of the second and third chains are 14032
and 13988 respectively, whereas for chains 1 and 4 these are 90.9 and 42.2
respectively. This suggests that chains 2 and 3 have at least mixed very well,
and the posterior distribution may look different to what has been found in
chains 1 and 4.

The joint posterior samples of l and σε from each of the four parallel
chains are considered in Figure B.4. Evidently, the joint posterior samples
of l and σε for chains 2 and 3 look different from those in chains 1 and 4, and
it is clear to see that chains 2 and 3 have mixed much better than chains 1
and 4. It is still interesting to see that there is a lot of posterior density for
σε at values greater than 0.1 for both the first and fourth chain, although the
aim of the change in the prior was to minimise the probability of sampling
values greater than 0.25. It is still clear from the Gamma distributions
considered for the prior of σε in Figure B.3 that the probability density for
values between 0.1 and 0.2 is reduced by changing the mean of the prior
from 0.1 to 0.05. There is possible evidence here that the density between
0.1 and 0.2 in the prior of σε should be reduced further.

The joint posterior samples of σk and σε are also compared here (see
Figure B.5), with a brief note that the relationship between σk and σε, for
values of σε < 0.075, still exists, and is evident in each parallel chain.
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Figure B.4: Four plots of the joint posterior samples of l and σε for each
of the four parallel chains (top left is chain 1, top right is chain 2, bottom
left is chain 3, bottom right is chain 4), corresponding to the model fitted
with σε ∼ Gamma(2, 2

0.05), l ∼ Gamma(2, 2
0.25), σk ∼ Gamma(3, 3

0.4) and
uninformed Gamma priors for measurement error precision and between-
materials precision for the input variable.
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Figure B.5: Four plots of the joint posterior samples of σk and σε for each
of the four parallel chains (top left is chain 1, top right is chain 2, bottom
left is chain 3, bottom right is chain 4), corresponding to the model fitted
with σε ∼ Gamma(2, 2

0.05), l ∼ Gamma(2, 2
0.25), σk ∼ Gamma(3, 3

0.4) and
uninformed Gamma priors for measurement error precision and between-
materials precision for the input variable.
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The reparameterisation is considered here again, due to the severity of
the convergence issue in the previous attempt. As was carried out before, a
rough estimate of the limits on the uniform priors for kl and kσk is gathered
from the posterior samples of this model fit by looking at the ratio of the
joint posterior samples of l to σε, and also of σk to σε, only considering values
of σε less than 0.075. An adjustment is then performed in order to be able to
find larger values of l which could occur with real data or future simulated
data examples, by multiplying the upper limit by 50 (since the mean of l is
roughly 0.02, and larger values of l are considered to be around 1). A 95%
credible interval over these ratios is given by [0.395,8.73] corresponding to
kl, and [4.90,156] corresponding to kσk . The uniform priors are now given
by

kl ∼ U(0, 400)

and

kσk ∼ U(4, 200).

The EIV GP model is fitted again to the same set of simulated data,
now with σε ∼ Gamma(2, 2

0.05), l = klσε, kl ∼ U(0, 400), σk = kσkσε and
kσk ∼ U(4, 200). The MCMC output is checked for convergence and mixing.
The upper bounds for the 95% confidence interval of PSRF estimates for σε,
l and σk are 7.28, 6.84 and 5.81 respectively, giving a clear indication that
the model is not converging. The mixing of the chains also shows there are
issues with autocorrelation in the MCMC output—each parallel chain has
an effective sample size estimate for one of its parameters that is less than
5.

Given a clear lack of convergence, the posterior density of σε is explored
for each of the four parallel chains. These are provided in Figure B.6, with
the top-left plot corresponding to the first chain, the top-right corresponding
to the second chain, the bottom-left corresponding to the third chain, and
the bottom-right corresponding to the fourth chain. These plots provide
some understanding as to why the model is not converging, as the behaviour
of σε appears slightly different in each one, or at least the proportion of the
density found at values of σε around 0.1 to 0.15 is different in each case. In
truth, the behaviour is similar, in that the majority of the posterior density
is found at values between 0 and (roughly) 0.04, and the rest of the posterior
density is found in the region between 0.1 and 0.15. Interestingly, in each
case there seems to be zero density between values of roughly 0.05 and 0.09.
The posterior densities in chains 3 and 4 are essentially multimodal, with
peaks at roughly 0.01 and 0.12. Given the exploration of the GP posterior



320 APPENDIX B. EIV GP PRIOR EXPLORATION

samples in Figure 4.28, it is clear that this level of posterior density at larger
values of σε will correspond to a poor fit for the EIV GP posterior.
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Figure B.6: Four plots of the posterior density of σε for each of the four
parallel chains (top left is chain 1, top right is chain 2, bottom left is chain
3, bottom right is chain 4), corresponding to the model fitted with σε ∼
Gamma(2, 2

0.05), l = klσε, kl ∼ U(0, 400), σk = kσkσε, kσk ∼ U(4, 200), and
uninformed Gamma priors for measurement error precision and between-
materials precision for the input variable.

The posterior densities of l and kl for this model fit are displayed in
Figures B.7 and B.8 respectively. It is immediately clear from Figure B.7
that the values of l being recovered in the posterior distribution are far too
large for this simulation example. Consequently, the posterior densities of
kl in Figure B.8 are unsurprising. At this point, an alteration to the prior
density for σε would possibly eliminate too much density at values that are
still in a way plausible given the scaling of the data onto [0,1], and so the
other logical adjustment would be to change the upper bound on the prior
distribution of kl, so that these incredibly large values of l are not possible.
This is a compromise for the opposite extreme case, where large values of l
close to (or above) 1 are required, as these will still be attainable, but will
sacrifice smaller values of σε in order to achieve them. In this example, the
cutoff for ‘suitable’ σε was found to be 0.075 (that is not to say that we
should always want values below 0.075 for σε for any example—if in another
simulation (or real data) example values of l are required, and the maximum
value to be desired for σε were 0.075, then the smallest upper limit for the
uniform prior on kl would be 1

0.075 = 13.3333. In this case, there is still
a significant amount of leeway for the adjustment to the upper bound for
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Figure B.7: Four plots of the posterior density of l for each of the four
parallel chains (top left is chain 1, top right is chain 2, bottom left is chain
3, bottom right is chain 4), corresponding to the model fitted with σε ∼
Gamma(2, 2

0.05), l = klσε, kl ∼ U(0, 400), σk = kσkσε, kσk ∼ U(4, 200), and
uninformed Gamma priors for measurement error precision and between-
materials precision for the input variable.
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Figure B.8: Four plots of the posterior density of kl for each of the four
parallel chains (top left is chain 1, top right is chain 2, bottom left is chain
3, bottom right is chain 4), corresponding to the model fitted with σε ∼
Gamma(2, 2

0.05), l = klσε, kl ∼ U(0, 400), σk = kσkσε, kσk ∼ U(4, 200), and
uninformed Gamma priors for measurement error precision and between-
materials precision for the input variable.
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the uniform prior on kl. The idea here is now to decrease the upper bound,
and fit the model again, and continue to do this until we have a suitable
joint posterior distribution for the hyperparameters which produces a suit-
able fit for the EIV GP posterior. At that point, the corresponding prior
specification will be tested on other simulation examples, and adjustments
can be made to the prior specification if necessary based on the fits for other
examples.

Alterations to the upper bound of kσk are not considered here. In this
example, it is clear that smaller values of l are to be recovered in the posterior
distribution so that the EIV GP is fitted well, along with smaller values of
σε. We have observed an ideal ratio of kl within the range [0.395,8.73]
from the model fitted with prior specification σε ∼ Gamma(2, 2

0.05), l ∼
Gamma(2, 2

0.25), σk ∼ Gamma(3, 3
0.4) and uninformed Gamma priors for

measurement error precision and between-materials precision for the input
variable, and this range was adjusted to account for the possibility that
values of l to be recovered are around the value 1 as opposed to the value
0.02. In the case of σk, it was clear from looking into possible prior values
that we expect to find values smaller than 1 for all examples, and it was
actually observed from this model fit that values exceeding 1 are possible—
a slight adjustment was made to the identified ratio for kσk to account for
possibly finding even larger values of σk in other cases, so there could be
some justification for slightly decreasing this upper bound. The main focus
here is on l and kl, as this has more of an influence on the behaviour of the
GP posterior.

The EIV GP model, with prior specification σε ∼ Gamma(2, 2
0.05), l =

klσε, kl ∼ U(0, 300), σk = kσkσε and kσk ∼ U(4, 200) and uninformed
Gamma priors for measurement error precision and between-materials pre-
cision for the input variable, is now fitted to this set of simulated data. The
MCMC output is firstly checked for convergence using PSRF estimates. The
largest upper bound for the 95% confidence interval of this estimate for any
parameter is 1.13 for σε, suggesting that there has been some improvement
towards convergence, but this has still not been achieved. The estimates of
effective sample size show that the chains are not mixing well, and posterior
samples are heavily correlated—the smallest effective sample size estimate
for each chain is below 6.

The posterior density of σε for each of the four parallel chains is displayed
in Figure B.9. While convergence has improved, it appears that the chains
are converging to a posterior distribution that is not desired, with 3 of the
4 chains having a lot of posterior density for σε at values around 0.1 to
0.2. It is clear that posterior density at these values coincides with a much
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larger range of l being possible—the plots of posterior density for l and kl
are omitted here and the model is fitted again with an adjustment to the
upper bound on the uniform prior for kl.
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Figure B.9: Four plots of the posterior density of σε for each of the four
parallel chains (top left is chain 1, top right is chain 2, bottom left is chain
3, bottom right is chain 4), corresponding to the model fitted with σε ∼
Gamma(2, 2

0.05), l = klσε, kl ∼ U(0, 300), σk = kσkσε, kσk ∼ U(4, 200), and
uninformed Gamma priors for measurement error precision and between-
materials precision for the input variable.

The EIV GP model, with prior specification σε ∼ Gamma(2, 2
0.05), l =

klσε, kl ∼ U(0, 200), σk = kσkσε and kσk ∼ U(4, 200) and uninformed
Gamma priors for measurement error precision and between-materials pre-
cision for the input variable, is now fitted to this set of simulated data.
The PSRF shows poor levels of convergence, with the parameters σε, l and
σk having values above 7 for the 95% confidence interval upper bound on
this estimate. The effective sample size estimates show that the mixing of
the chains is satisfactory for chains 1 and 4, but poor for chains 2 and 3.
Some understanding of this can be found when considering the posterior
densities of σε from each parallel chain (see Figure B.10), where the chains
are understandably mixing better if they are not getting stuck in another
region (often happens in cases of multimodal posterior distributions, where
the chain remains in the ‘vicinity’ of one mode for a long time, then jumps
to the vicinity of the other mode and remains there for a long while. This
occurs consistently in backward model cases, and is discussed further in Sec-
tion 5). A trace plot of the posterior samples confirms this is happening in
chains 2 and 3 (see Figure B.11).
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Figure B.10: Four plots of the posterior density of σε for each of the four
parallel chains (top left is chain 1, top right is chain 2, bottom left is chain
3, bottom right is chain 4), corresponding to the model fitted with σε ∼
Gamma(2, 2

0.05), l = klσε, kl ∼ U(0, 200), σk = kσkσε, kσk ∼ U(4, 200), and
uninformed Gamma priors for measurement error precision and between-
materials precision for the input variable.
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Figure B.11: Four trace plots of the posterior samples of σε for each of
the four parallel chains (top left is chain 1, top right is chain 2, bottom
left is chain 3, bottom right is chain 4), corresponding to the model fitted
with σε ∼ Gamma(2, 2

005), l = klσε, kl ∼ U(0, 200), σk = kσkσε, kσk ∼
U(4, 200), and uninformed Gamma priors for measurement error precision
and between-materials precision for the input variable.
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Adjusting the upper bound on the uniform prior of kl to 100 and fitting
the EIV GP model provides a fit where the MCMC output has converged
to the posterior distribution, with the upper bound on the 95% confidence
interval for PSRF of each parameter being 1.00 to 3 significant figures. The
level of mixing in the second parallel chain is poor, with the smallest estimate
of effective sample size for any parameter given by 6.33, whereas the other 3
chains have achieved sufficient mixing (smallest estimate for any parameter
of 322 from those 3 chains). Given convergence has been observed, the poor
effective sample size from one of the four chains is not an issue, though it is
still of interest to see what has occurred in that chain.

Of most interest are the posterior densities of σε from each of the four
parallel chains, plotted in Figure B.10, where it is noted that chains 1 and
3 (top-left and bottom-left plots respectively) are not finding any density at
larger values of σε (i.e., anything larger than 0.075). In comparison, chains
2 and 4 (top-right and bottom-right plots respectively) are capturing some
(relatively minimal, particularly in the case of chain 4) density at larger
values of σε.
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Figure B.12: Four plots of the posterior density of σε for each of the four
parallel chains (top left is chain 1, top right is chain 2, bottom left is chain
3, bottom right is chain 4), corresponding to the model fitted with σε ∼
Gamma(2, 2

0.05), l = klσε, kl ∼ U(0, 100), σk = kσkσε, kσk ∼ U(4, 200), and
uninformed Gamma priors for measurement error precision and between-
materials precision for the input variable.

It is hard to define at what point the posterior distribution is satisfactory
so that the prior specification can be considered suitable and tested further
on other simulation examples. Given the model above has converged to
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the posterior distribution, the effective sample size issue with chain 2 is
somewhat alleviated, as the effective sample sizes from each chain can be
collected together in the same way the posterior samples can be collected
together from each chain. Having some level of posterior density at these
‘larger’ values of σε seems unsatisfactory. A crude estimate for the posterior
probability that P (σε > 0.075) can be computed using the posterior samples
(this does not account for the autocorrelation between samples)—taking
the posterior samples from all four chains (of which there are 80000) and
counting the number of posterior samples from each chain for which σε >
0.075 gives a rough estimate of P (σε > 0.075) = 0.0266, so every 1 in
roughly 38 posterior samples will have σε > 0.075. Furthermore, a 95%
credible interval for σε (over all posterior samples from all four chains) has
an upper bound of 0.101 to 3 significant figures. This helps introduce a
sensible cutoff—if the upper bound of the 95% credible interval is less than
0.075, then the posterior distribution is satisfactory. So, the upper limit
for the uniform prior on kl is decreased until the upper bound on the 95%
credible interval for σε is less than 0.075 (assuming also that the MCMC
output has converged and mixed sufficiently well).

The upper limit for the uniform prior on kl is set to 80, and the EIV GP
model is fitted again. The MCMC output has converged to the posterior
distribution based on PSRF (upper bound on all estimates rounds to 1.00).
The effective sample size estimates show some issues with autocorrelation of
posterior samples in chain 2, with the remaining 3 chains performing well.
A 95% credible interval for σε is given by [0.00120,0.117] to 3 significant
figures, and so the upper bound is still above the cutoff of 0.075.

Setting the upper limit for the uniform prior on kl to 60 provides the
desired model fit. The MCMC output has converged to the posterior dis-
tribution according to PSRF (largest upper bound for the estimate is 1.00
to 3 significant figures), and the mixing of each chain is at a sufficient level,
with the minimum effective sample size estimate for any parameter from
any chain being 1403. The 95% credible interval for σε over the four parallel
chains is [0.00120,0.02160], with the upper bound here being less than 0.075.
A plot of the GP posterior is provided in Figure B.13.

B.2 Multi-input EIV GP

The fitting of the multi-input EIV GP is firstly considered with prior spec-
ification analogous to that given in Equation 4.3.1.6, with the two main
points being that the initial parameterisation, with prior distributions for
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Figure B.13: A ‘fitted values’ plot for the EIV GP posterior given the
joint posterior distribution of the hyperparameters and true values (Ỹi, X̃i)

′,
corresponding to the model fitted with σε ∼ Gamma(2, 2

0.05), l = klσε,
σk = kσkσε, kl ∼ U(0, 60), kσk ∼ U(4, 200), and uninformed Gamma pri-
ors for measurement error precision and between-materials precision for the
input variable. The black dotted line represents the mean GP posterior sam-
ple over the joint posterior samples of the hyperparameters, and the black
dotted lines represent the mean 95% prediction interval of the GP posterior
over the joint posterior samples of the hyperparameters. The uncertainty in
the true values of the response variable and input variable are demonstrated
by the 95% credible ellipses over the joint marginal posterior distribution of
each (Ỹi, X̃i)

′. The simulation is built from the function defined in Equation
4.3.1.1.
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the distance-scaling parameters (in the case there are two with the SE-ARD
kernel) and for the signal standard deviation σk, is firstly used, and secondly,
that the true values are now vectorised corresponding to the multiple inputs,
which induces the precision matrices TX̃ and Tδ, as well as their Wishart
prior distributions with SX̃ and Sδ as the respective scale matrices. The
prior distributions for l1 and l2 are both Gamma(2, 2

0.25) as in Section 4.3.1,
and similarly, the prior distributions for σk and σε are Gamma(3, 3

0.4) and
Gamma(2, 2

0.05) respectively. As a reminder, the MCMC tuning parameters
are an adaptation length of 1000 samples, a burn-in length of 25000 samples,
and 20000 posterior samples stored from 200000 posterior samples, taking
every 10th sample from the 200000. The model is fitted with four parallel
chains.

The multi-input EIV GP is now fitted to this set of simulated data
provided in Section 4.3.4. The MCMC output notes that, with an adaptation
phase of length 1000, the model does not run in the optimal state with
regards to its sampling behaviour. In order to avoid suboptimal sampling
behaviour (with regards to efficiency), the recommendation is to run the
model again with an increasing number of samples in the adaptation phase,
so that the sampling is optimal. This is achieved with an adaptation phase
of length 2000. The upper bounds of PSRF estimates are checked for each
parallel chain and each parameter, and the maximum of these is 1.01 to 2
decimal places, indicating that the MCMC has converged. The minimum
effective sample size estimate is 661 to 3 significant figures, which suggests
that the levels of autocorrelation between posterior samples are sufficiently
small.

Having confirmed the MCMC output is from the posterior distribution,
the joint posterior distribution is now considered. The marginal posterior
density of σε is provided in Figure B.14. As in the case of Section 4.3.1,
where larger values of σε cause too much uncertainty in the predictions of
the response variable (when considering the initial parameterisation with
prior distributions for l and σk), this looks to be the case here with the
multi-input model. The reparameterised model, aimed to deal with issues
of the MCMC output not converging, does not seem to be needed here, given
the upper bounds of PSRF, but will be introduced to see if this improves
the model fit. A check of the joint posterior samples of l1 and σε for this
model with the ‘initial’ parameterisation, confirms that there is dependency
between these parameters, with larger values of σε coinciding with larger
variance in the values of l1. This plot of the joint posterior samples of l1
and σε is provided in Figure B.15.
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Figure B.14: The marginal posterior density of σε, from the multi-input
EIV GP with σε ∼ Gamma(2, 2

0.05), l1, l2 ∼ Gamma(2, 2
0.25), σk ∼

Gamma(3, 3
0.4), TX̃Wishart(I2, 2), Tδ ∼Wishart(1000I2, 2)
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Figure B.15: A plot of the joint posterior samples of l1 and σε, from the
multi-input EIV GP with σε ∼ Gamma(2, 2

0.05), l1, l2 ∼ Gamma(2, 2
0.25),

σk ∼ Gamma(3, 3
0.4), TX̃Wishart(I2, 2), Tδ ∼Wishart(1000I2, 2)
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The multi-input EIV GP is fitted again, with the reparameterisation

ld = kldσε, for d = 1, 2,

and

σk = kσkσε,

where the the model error standard deviation σε still takes the prior dis-
tribution Gamma(2, 2

0.05). The prior distributions for the scalar values are
kld ∼ U(0, 60) for d = 1, 2, and kσk ∼ U(4, 200), as were found to be effective
in Sections 4.3.1 to 4.3.2. With the same MCMC tuning parameters, the
adaptation phase of length 2000 is too short, indicating that the sampling
behaviour of the MCMC will not be optimal. The model is run again with
an increased adaptation phase of length 3000, which provides optimal sam-
pling behaviour in this case. The convergence to the posterior distribution
is checked by considering the maximum upper bound of PSRF confidence
intervals, over all parameters and over the four chains. The parameter l1,
which is just equal to kl1σε, is shown to be not converging with a PSRF
upper bound of 1.14, despite the convergence of the two parameters kl1 and
σε, who have PSRF upper bounds of 1.04 and 1.02 respectively (all the 3
significant figures). The model is run again, with an increase in the burn-
in period and the number of stored posterior samples to 30000 and 25000
respectively (from 25000 and 20000 respectively). In this case, the PSRF
upper bound of l1 is now 1.15. Another attempt at increasing the burn-in
and stored samples to 35000 and 30000 posterior samples respectively and
refitting the model then provides an upper bound of PSRF for l1 of 1.17,
and for σk of 1.13.

It seems curious that the convergence of these parameters would become
worse as more samples were drawn, and a longer burn-in was run for the
model. It is possible that continuing down the avenue of drawing more sam-
ples would improve the convergence of the model; on the other hand, other
adjustments to the prior specification could be considered, similarly to the
case of the EIV BR simulation with two input variables and a full quadratic
linear predictor, discussed in Section 4.2.5. That is, weakly informed prior
distributions are introduced, which are obtained using the fact that the data
is scaled onto the range [0,1].

The weakly informed prior distributions derived in Section 4.2.5, relating
to the measurement error precision and between-materials precision, are
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utilised here. That is, it is assumed that

τη ∼ Gamma(1, 6.57× 10−4),

Tδ ∼Wishart(Sδ, 2), with Sδ =

(
1522.07 0

0 1522.07

)
,

TX̃ ∼Wishart(SX̃ , 2), with SX̃ =

(
15.3664 0

0 15.3664

)
.

Additionally, the prior distribution for the GP prior mean α is adjusted from
N(0,0.01) to N(0.5,10.8241), where 0.5 is the midpoint of the range [0,1], and
the precision value 10.8241 is derived from the probability statement

P (0 ≤ α ≤ 1) = 0.9

and that
P (−1.64σα ≤ α ≤ 1.64σα) = 0.9,

with the latter using the assumption that α is normal at the 90% of its
density lies within the range [−1.64σα, 1.64σα] (with σα being the standard
deviation of α). With these adjustments to the prior specification, the initial
parameterisation, with l1, l2 ∼ Gamma(2, 2

0.25), σk ∼ Gamma(3, 3
0.4) and

σε ∼ Gamma(2, 2
0.05) is firstly investigated. It is noted that the adaptation

phase required a length of 2000 in order to optimise the sampling behaviour
of the algorithm. Once more, it is observed that the posterior density of σε
is capturing larger values of model error standard deviation, which coincide
with larger values of l1, which is indicated by the plot of joint posterior
samples in Figure B.16.

The EIV GP model with the reparameterisation was then fitted, with the
weakly informed priors discussed above, as well as ld = kldσε, σk = kσkσε,
kl1 , kl2 ∼ U(0, 60) and kσk ∼ U(4, 200). It is noted that the adaptation
length required to optimal sampling behaviour was 3000. The convergence
of the MCMC output to the posterior distribution is confirmed, and sufficient
levels of mixing are observed for each parameter. Interestingly, the issues
with the model capturing larger values of σε still exist, but the frequency
with which this occurs is small. The plot in Figure B.17 demonstrates that
the number of posterior samples of σε greater than 0.075 is smaller, and
comparing with Figure B.16, the issue of larger l1 values has also diminished.
Moreover, the number of posterior samples for which σε > 0.075 is 131, and
with 80000 posterior samples stored in total (from all four parallel chains),
it is estimated that P (σε > 0.075) = 0.00164 to 3 decimal places. While this
issue is not completely eliminated, given that convergence in all parameters



332 APPENDIX B. EIV GP PRIOR EXPLORATION

0.00 0.05 0.10 0.15 0.20 0.25 0.30

0.
0

0.
2

0.
4

0.
6

0.
8

σε

l 1

Figure B.16: A plot of the joint posterior samples of l1 and σε, from the
multi-input EIV GP with σε ∼ Gamma(2, 2

0.05), l1, l2 ∼ Gamma(2, 2
0.25),

σk ∼ Gamma(3, 3
0.4), and weakly informed prior distributions for TX̃ , Tδ, τη

and α.
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Figure B.17: A plot of the joint posterior samples of l1 and σε, from the
multi-input EIV GP with σε ∼ Gamma(2, 2

0.05), ld = kldσε (for d = 1, 2),
σk = kσk , kl1 , kl2 ∼ U(0, 60), kσk ∼ U(4, 200), and weakly informed prior
distributions for TX̃ , Tδ, τη and α. Note that these posterior samples are
taken from the first parallel chain.
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is observed (and so the issue is not prevalent enough to cause issues with the
MCMC output), this issue is not further investigated. Some plots of the GP
posterior, for various vectors of the input variables, are provided in Section
4.3.4.

B.3 EIV MOGP

The EIV MOGP model outlined in Section 4.3.5 is applied to the simula-
tion outlined in the same section. It is noted that the required adaptation
length for optimal sampling behaviour was 2000, and the typical values for
the MCMC tuning parameters lead to convergence and sufficient levels of
mixing. Summary statistics of the posterior distribution are examined, and
suggest a possible issue with the posterior of σε1 , similarly to the issue noted
in the previous two sections of the appendix (that is, the issue when using
the uninformed prior distributions for Tδ, TX̃ and τη). That is, the model
captures slightly larger values of σε1 that are not appropriate for this ex-
ample. A plot of the marginal posterior density of σε1 is provided in Figure
B.18, which looks comparatively worse than the case of Figure B.14. This
in spite of the fact that the weakly informed priors for α1, α2, τη1 , τη2 , Tδ
and TX̃ are implemented.
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Figure B.18: The marginal posterior density of the σε1 , from the EIV MOGP
with σε1 , σε2 ∼ Gamma(2, 2

0.05), α1, α2 ∼ N(0.5, 10.8241), l1,1, l1,2, l2,1, l2,2 ∼
Gamma(2, 2

0.25), σk1 , σk2 ∼ Gamma(3, 3
0.4), TX̃Wishart(SX̃ , 2), Tδ ∼

Wishart(Sδ, 2), where SX̃ and Sδ are the scale matrices for the weakly in-
formed priors of TX̃ and Tδ respectively.
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Notably, the reparameterisation that is applied in the multi-input, single-
output EIV GP from Appendix B.2 is not applied here. Compare the plot in
Figure B.16 with those of Figure B.19, which both plot the posterior samples
of the distance-scaling parameter corresponding to the first input variable
(which is the same input variable in both cases) against the model error
standard deviation for the same output variable (with the output variable
being the sole output in Figure B.16, and the output variable being the first
of two output variables in Figure B.19). There are two plots in the case of
Figure B.19, since there are two covariance kernels. As previously discussed
with this example, small changes in the input variable correspond to large
changes in the output variable, meaning values of the distance-scaling pa-
rameter must be relatively small, in order to capture the appropriate model
fit. As the model error standard deviation becomes larger, this allows larger
values of the distance-scaling parameter to be captured (see Figure 4.28 for
a visualisation of this). It had appeared that a cutoff for this behaviour was
around σε = 0.075, where values below this restricted the distance-scaling
parameter to be small, and values above this allowed for more variation in
the values of the distance-scaling parameter. This does not occur in Figure
B.19 – it is evident that there is a lot of variation in values of the distance-
scaling parameter (for both l1,1 in the left plot, and l2,1 in the right plot),
even when the model error standard deviation for the first output variable
is below the cutoff of 0.075. It must be noted that there does seem to be
some a dip in the values of the distance-scaling parameter around this cutoff
of σε1 = 0.075, which suggests that there is still some relationship between
the distance-scaling parameters and the model error standard deviation.

Two plots of the joint posterior samples of l2,1 against l1,1 are considered
in Figure B.20. Note again that l1,1 represents the distance-scaling param-
eter for first input variable in the SE-ARD kernel for the first covariance
function, and l2,1 is the analogous parameter for the second covariance func-
tion. The left plot provides the posterior samples for l1,1 and l2,1 without any
restrictions on σε1 , whereas the right plot considers the posterior samples of
those distance-scaling parameters with the restriction that σε1 < 0.075. An
interesting observation is noted here, that small values of l1,1 correspond to
large values of l2,1, and vice versa, which is exemplified by restricting σε1
to those values which provide an appropriate model fit. It is plausible that
some reparameterisation of the EIV MOGP that considers a relationship
between the distance-scaling parameters of the first covariance function and
those of the second covariance function, but this is not explored here.

An alternative solution for trying to reduce the model error standard
deviation for the first output variable in the EIV MOGP simulation is to
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Figure B.19: Left plot presents the joint posterior samples of l1,1 against
σε1 , and the right plot presents l2,1 against σε1 , both from the EIV MOGP,
with the equivalent prior specification as mentioned in the caption of Figure
B.18.
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Figure B.20: The joint posterior samples of l2,1 against l1,1 from the EIV
MOGP, with the equivalent prior specification as mentioned in the caption
of Figure B.18. The left plot provides those samples without any restrictions
on σε1 , whereas the right plot provides the posterior samples of the distance-
scaling parameters where σε1 is less than 0.075.
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adjust the scaling for the first input variable. It has been clarified throughout
the investigation of the EIV GP with the simulations used in this work that
small values of the distance-scaling parameter are required for the first input
variable, in the case where the underlying relationship between this input
variable and the output variable is either a sine curve (see Section 4.3.1) or
some combination of a sine curve and exponential curve (see Section 4.3.4).
The reason for this requirement is due to the small differences in the input
variable resulting in large differences in the output variable, and the reasons
this requirement is hard to fulfil are multiple – the prior on the model error
standard deviation, the prior on the distance-scaling parameter, and also the
scaling of the input variable itself. Changes relating to the first two reasons
have been considered so far in Appendix B.1 and Appendix B.2, and now a
change relating to the scaling of the input variable is considered.

The prior distribution of the distance-scaling parameter that has been
effective up to now is the Gamma(2, 2

0.25) distribution. It is noted that the
extreme values of the distance-scaling parameter that are required are still
relatively low-density values in this prior distribution. For example, the pos-
terior mode of l1 in the two-input example is 0.0212 (to 3 s.f.); the probability
of sampling a smaller value than this from the distribution Gamma(2, 2

0.25) is
0.0128, indicating it is an extreme value in this prior distribution. Changing
the prior is a possibility, but also note that the right tail of this distribu-
tion must be long enough to capture larger values of the distance-scaling
parameter. This is not considered here.

Instead, the observed data of the input variable could be scaled differ-
ently. While it has been indicated that this example has been designed to
be extreme, since the input variable true values are chosen to span relatively
small values (in this case, [0.01,0.13]), it is clear that this scaling is causing
some issues for the model. A simple solution could be to choose a better
way to scale the data. A straightforward solution is provided here, simply
by multiplying the observed data for the first input variable by 10, so that
they span the range [0.1,1.3]. In a sense, this is a manual override of the
data-scaling process, where the main difference now is that the model should
(in theory) identify larger values of the distance-scaling parameter, since the
function is more stretched in the direction of the input variable (i.e., small
differences in the input variable result in smaller difference in the output
variable than with the previous scaling). This scaling adjustment is only
carried out here; it is recommended that an adjustment to the data-scaling
process be considered in the future (see Chapter 6).

The EIV MOGP prior specification is adjusted slightly to account for
the different scaling for the first input variable. The diagonal elements of
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the scale matrix SX̃ of between-materials precision matrix TX̃ were 15.3664,

which was built using the probability statement that P (0 ≤ X̃i ≤ 1) = 0.95.
This assumption is no longer justified because of the different scaling, so as
a compromise, the diagonal elements for this scale matrix are now 6 (with
the assumption that the mean of X̃i is 0.5, the upper bound of the 95%

confidence interval assuming a standard deviation of
√

1
6 is 0.5+1.96×

√
1
6 =

1.300 to 4 d.p.). Similarly, the scale matrix Sδ for the measurement-error
precision matrix Tδ is adjusted to suggest more variation in the measurement
error, and so the diagonal element is changed from 1522.07 to 1000.

With these adjustments, the EIV MOGP is fitted to the data. An adap-
tation phase of length 2000 samples was required for optimal sampling be-
haviour in the algorithm, and sufficient levels of mixing and convergence were
observed with 20000 posterior samples stored by taking every 10th sample
from 200000 draws, after having discarded (i.e., the burn-in) 25000 samples.
The marginal posterior densities of the model error standard deviations σε1
(left plot) and σε2 (right plot) from this model, as well as the previous fit
with scaling the first input variable (roughly) onto [0.01,0.13], are given in
Figure B.21. The red curves denotes the posterior densities from the rescaled
model, and the black curves correspond to those from the model fitted with
the previous scaling. Considering the left plot of Figure B.21 with the pos-
terior densities of σε1 , it appears that changing the scaling of the first input
variable provides a noteworthy improvement in posterior, with the multi-
modality from the previous fit (black curve) being eliminated in the current
fit (red curve). Furthermore, it is noted that P (σε1 > 0.075) = 0.0184 in the
current fit, compared with P (σε1 > 0.075) = 0.245 in the previous fit. Con-
versely, the adjustment to the scaling of the first input variable has notably
influenced the parameter σε2 – the density at values greater than 0.01 is
much larger for the current fit. While this compromise is not ideal, the cur-
rent model fit seems preferable due to the elimination of the multimodality
of σε1 .

The differences between the distance-scaling parameters for the first in-
put variable from the two models are compared in Figure B.22 with marginal
posterior density plots. The first row of plots corresponds to the current
model fit; the second row corresponds to the previous model fit; the first
column corresponds to the distance-scaling parameter l1,1; the second col-
umn corresponds to l2,1. With the difference in model error standard devi-
ation for the first output variable noted above, it is unsurprising that there
are differences between the models (so comparing row 1 with row 2) in the
posterior densities of the distance-scaling parameters. To clarify, given the
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Figure B.21: The marginal posterior densities of σε1 (left plot) and σε2 (right
plot) from the previous EIV MOGP model fit (black curves) with the old
scaling, compared with those from the current model fit (red curves), where
the first input variable is unscaled.

only change in the model is to adjust the scaling of the first input variable,
specifically by multiplying its data by 10, the model fits would be, in a sense,
equivalent if the posterior samples of the distance-scaling parameters were
divided by 10. That is, the SE-ARD kernel

exp

{
−

(X̃1,i − X̃1,i′)
2

2l21,1
−

(X̃2,i − X̃2,i′)
2

2l21,2

}
is equivalent to

exp

−
(
X̃1,i−X̃1,i′

10

)2

2
(
l1,1
10

)2 −
(X̃2,i − X̃2,i′)

2

2l21,2

 .

The plots of the second column are somewhat similar; the posterior mode of
roughly 0.25 in the current fit (top-right plot) looks similar to 10 times the
posterior mode of the previous fit (bottom-right plot), albeit there is some
density beyond values of 0.1 in the bottom-right plot, which is not found in
the top-right plot (i.e., little density at values beyond 1). In contrast, the
posterior densities for l1,1 are notably different. Firstly, the posterior mode
of the current fit (top-left plot, roughly a value of 0.25) is the smaller of
two modes in the previous fit (bottom-left plot, roughly a value of 0.025),
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where it looks like the values are different by a factor of 10. The secondary
peak of the top-left plot, and the primary peak of the bottom-left plot, are
notably different, considering the difference of a factor of 10 in the values.
The rough maximum value of the top-left plot is 1.5, which appears close
to the posterior mode in the bottom-left plot. Having changed the scaling
of the input variable, the model is essentially able to find relatively smaller
values of the distance-scaling parameter, which has improved the model fit.
This is also in part due to the prior distribution Gamma(2, 2

0.25), where the
probability of observing a value larger than 0.1 in the prior, which would
be unsuitable for the previous scaling of the first input variable, is 0.809,
whereas the probability for the value of 1, which would be equally unsuitable
for the current scaling of the first input variable, is 0.00302.
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Figure B.22: The marginal posterior densities of l1,1 (first column) and l2,1
(second column) from the current EIV MOGP model fit (first row) and the
previous EIV GP model fit (second row).

Finally, the EIV MOGP posteriors are compared, that is, the predictions
of the response variable for given vectors of the input variables. The details
for how this is carried out are given in Section 4.3.5. The first of these fig-
ures, Figure B.23, is for the previous model fit; this demonstrates the mean
predictions of the response variables (solid black curve) as well as the uncer-
tainty of these predictions (95% predictions intervals, given by dotted black
lines), which can be compared with the underlying values of the response
variables (i.e., the values of the response variable produced by the under-
lying simulation function, given by the red curve). The predictions of the
response variables are carried out jointly using the EIV MOGP, then plotted
separately, with the first column corresponding to the first response variable,
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and the second column corresponding to the second response variable. The
first row of plots indicates predictions of the response variable given the in-
put vectors that satisfy the equation X2 = 20

3 X1 + 1
30 , with X1 ∈ [0.01, 0.13].

Similarly, the second row of plots is predictions for the input variables satis-
fying the straight line X2 = −20

3 X1 + 29
30 , with X1 ∈ [0.01, 0.13]. This figure

is compared with Figure B.24, which demonstrates the analogous plots for
the current model fit (adjusting the equation relating the second and first
input variables for which the outputs are predicted). It is evident that there
is an improvement in the predictions for the first output variable, but more
uncertainty is observed in the predictions for the second output variable.

In essence, what this shows is that it is very difficult to find a prior
distribution for the distance-scaling parameter that is appropriate for an
input variable whose observed data, for example, range from 0.01 to 0.13
as well as for another input variable whose observed data range from 0.1
to 1, for example. As suggested here, a manual override of the data-scaling
process could be a possible workaround for this, but a more preferable so-
lution would be to explore a different method for scaling the data, so as to
ensure that the range of [0,1] is sufficiently covered. In effect, the data stan-
dardisation carried out here, at least for the EIV GP, may be insufficient at
standardising.
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Figure B.23: Joint predictions of the output variables given the lines
X2 = 20

3 X1 + 1
30 (first row) and X2 = −20

3 X1 + 29
30 (second row). The

predictions of the first output variable are given in column 1, and for the
second output variable in column 2. The solid black lines provides the mean
of the predictions, the dotted black lines provide 95% prediction intervals,
and the red lines provide the underlying values of the output variables pro-
vided by the simulation function.
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Figure B.24: Joint predictions of the output variables given the lines
X2 = 2

3X1 + 1
30 (first row) and X2 = −2

3X1 + 29
30 (second row). The predic-

tions of the first output variable are given in column 1, and for the second
output variable in column 2. The solid black lines provides the mean of the
predictions, the dotted black lines provide 95% prediction intervals, and the
red lines provide the underlying values of the output variables provided by
the simulation function.



Appendix C

Informing and initialising
priors for real data

C.1 Building informed priors for the real data

The probability statements from the fourth column of Table 4.10 are con-
verted into parameters for probability distributions, following the same pro-
cess established in Section 4.2.5. In order to do this, two further assump-
tions are required, as single point estimates that can be derived from the
statements are not sufficient for describing a probability distribution with
multiple parameters, such as the gamma distribution. The first of these
assumptions that is made regards the ratio between the measurement error
precision and the between-materials precision for the explanatory variables,
that is, the ratio between τδ and τX̃ . It is expected that the variation of the
subsamples would be less than the variation between the powders, that is,
the precision of the subsamples would be greater than the precision between
the powders, and so it is assumed that P (τδ ≥ τX̃) = 0.99 (this proba-
bility statement was enquired about in the elicitation, and the author has
assumed the probability of 0.99, given the elicitation suggests it is expected
that τδ ≥ τX̃). The second assumption that is made is that the shape pa-
rameters of the gamma prior distributions for τδ and τX̃ is the same, which
is equivalent to assuming that the measurement error precision behaves in
the same way to the between-materials precision, but on different scales.

The process of producing the parameter estimates for τδ and τX̃ is now
demonstrated for the explanatory variable CBD. Consider the probability
statement, corresponding to the elicited information for CBD,

P (0.35 ≤ X̃i ≤ 0.55) = 0.95. (C.1.0.1)

343
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Using the fact that, for any normal distribution Y ∼ N(µ, σ2), where µ and
σ2 represent the mean and variance respectively, we have

P (µ− 1.96σ ≤ Y ≤ µ+ 1.96σ) = 0.95,

which says that 95% of the probability density of the random variable Y lies
in the interval [µ− 1.96σ, µ+ 1.96σ]. Subtracting the lower bound from the
upper bound gives the values 3.92σ, i.e., the width of the interval. Given that
X̃i is also normally distributed, and given the statement above in Equation
C.1.0.1, it can be concluded that

P (0.35 ≤ X̃i ≤ 0.55) = 0.95 =⇒ 0.55− 0.35 = 0.2 = 3.92σ
X̃
,

where σ
X̃

represents the standard deviation of the variable X̃i. This pro-
vides an estimate of the standard deviation of 0.2

3.92 = 0.0510, rounded to 3
significant figures. This can be rearranged to give an estimate of the pre-
cision, by squaring the value and then taking its reciprocal, giving 384.16.
This value is taken to be the mean estimate of the precision τ

X̃
. Consider

now the probability statement

P (0.99X̃i ≤ Xi,k ≤ 1.01X̃i) = 0.95.

The value 0.45, the midpoint of the elicited range of true values, is assumed
in this case for X̃i and thought of as the true value of CBD for an average
powder. The above probability statement is then equivalent to

P (0.99×0.45 ≤ Xi,k ≤ 1.01×0.45) ⇐⇒ P (0.4455 ≤ Xi,k ≤ 0.4545) = 0.95

and, following the same process as above, an estimate of the standard devi-
ation of δi,k, given by σδ, is

3.92σδ = 0.009 =⇒ σδ = 0.0230 (C.1.0.2)

to 3 significant figures. The equivalent precision is therefore given by 189708.7,
which is taken to be the mean estimate of the precision parameter τδ.

With Gamma distributions assumed for τδ and τX̃ , the mean estimates
calculated above equate to

a
X̃

b
X̃

= 384.16 (C.1.0.3)

and
aδ
bδ

= 189708.7, (C.1.0.4)
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where

τ
X̃
∼ Gamma(a

X̃
, b
X̃

) (C.1.0.5)

and

τδ ∼ Gamma(aδ, bδ), (C.1.0.6)

with the Gamma distributions parameterised by shape and rate. It is as-
sumed that the shape parameters are equal, giving aX̃ = aδ = a. Choosing
some value for a then provides the value for the rate of each distribution,
using the mean estimates of the distribution provided above. What remains
is to choose some value for a so that

P (τδ ≥ τX̃) = 0.99,

which is found in this case using simulation (that is, simulating samples of
the distributions of τδ and τX̃ and choosing a value of a such that a random
sample of τδ is larger than τX̃ 99% of the time). Following a trial and error
process with the simulations, it is found that the value a = 0.696 satisfies
the assumptions, which implies the informed probability distributions

τ
X̃
∼ Gamma(0.696, 0.00181) (C.1.0.7)

and

τδ ∼ Gamma(0.696, 0.00000367), (C.1.0.8)

with the rate parameters given to 3 significant figures. This process is per-
formed analogously for SE and BFE; the measurement error precision τη is
discussed after a comparison of the uninformed and informed priors below.

A comparison between the uninformative gamma prior distribution with
shape 0.001 and rate 0.001, that has been used for both τ

X̃
and τδ, and

the newly constructed informed prior distributions, is now given. Consider
firstly a plot of the probability density function of Gamma(0.001, 0.001),
given in Figure C.1, which shows that the majority of the density of the
distribution is found at values close to 0 (meaning a sample from the dis-
tribution is likely to be relatively close to 0). Furthermore, consider the
plot in Figure C.2, which plots the probability that a random sample from
Gamma(0.001, 0.001) is greater than the value x (this is referred to as the
survival function of a probability distribution). Note the range of the x-
axis in this plot of [0,1], and that the probability of a random sample being
greater than 0.2 (for example) is 0.0079, i.e., it is very unlikely for a ran-
dom sample to be greater than 0.2. An analogous plot to Figure C.2 is
then provided in Figure C.3, with the range of x now [0,1000]. Provided
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Figure C.1: The probability density function of some uninformative prior
τ ∼ Gamma(0.001, 0.001)
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Figure C.2: A plot of the probability that a random sample from the unin-
formed prior τ ∼ Gamma(0.001, 0.001) is greater than x, over the domain
[0,1] (i.e., a plot of the survival function), with a vertical dotted line at
x = 0.2.
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on the plot is also the mean estimate of τ
X̃

from the elicitation, with the
probability that a random sample from the uninformative prior is greater
than the estimate being 0.00073. In other words, the probability that the
uninformative gamma prior produces a sample greater than the mean es-
timate of between-materials precision for CBD is very small. A final plot
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Figure C.3: A plot of the probability that a random sample from the unin-
formed prior τ ∼ Gamma(0.001, 0.001) is greater than x, over the domain
[0,1000] (i.e., a plot of the survival function), with a vertical line at the mean
estimate of the between-materials precision for CBD.

relating to Gamma(0.001, 0.001) is given in Figure C.4, which plots the same
function, now over the domain [0,106]. In this case, the mean estimate of
τδ is given, with the probability of a random sample from the uninforma-
tive prior distribution being larger than it given by 0, to 10 decimal places.
The uninformative prior distribution has such little density in the right tail
of its distribution, that the mean estimates of these precision parameters
are such extreme samples from this prior, particularly for the measurement
error precision τδ.

The plot in Figure C.5 is a plot of the survival function of the informed
prior for τ

X̃
, given in Equation C.1.0.7, over the domain [0,10000]. This

demonstrates the suitability of this distribution over the uninformative prior
distribution previously considered, with the probability of sampling larger
precision values like the mean estimate of τ

X̃
being more likely to occur with

this informed prior distribution. Similarly, the plot in Figure C.6 is a plot of
the survival function of the informed prior for τδ, given in Equation C.1.0.8,
over the domain [0,106]. Again, this demonstrates the suitability of this
distribution over the uninformative prior distribution previously considered.
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Figure C.4: A plot of the probability that a random sample from the unin-
formed prior τ ∼ Gamma(0.001, 0.001) is greater than x, over the domain
[0,106] (i.e., a plot of the survival function), with a vertical line at the mean
estimate of the measurement-error precision for CBD.
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Figure C.5: A plot of the probability that a random sample from the in-
formed prior distribution τ

X̃
∼ Gamma(0.696, 0.00181) is greater than x,

over the domain [0,10000] (i.e., a plot of 1 minus the cumulative distribu-
tion function)
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This shows that the probability of sampling larger precision values like the
mean estimate of τδ is more likely to occur in this informed prior distribu-
tion. Note that, the survival function of these informed prior distributions
evaluated at their respective means gives the same probability because the
shapes of the distributions are equal to one another.
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Figure C.6: A plot of the probability that a random sample from the in-
formed prior distribution τδ ∼ Gamma(0.696, 0.00000367) is greater than x,
over the domain [0,106] (i.e., a plot of 1 minus the cumulative distribution
function)

The means of the prior distribution of the true values are also informed
by the elicitation, given the ranges of the true values for CBD, SE and BFE.
That is, for a given powder i, the mean of the joint distribution of true
values for CBD, SE and BFE (in that order below), is given by

µX̃ =

0.450
0.650
0.889

 ,

to 3 significant figures.

The remaining precision parameters that require thought are the mea-
surement error precision τη and the model error precision τε (the univariate
case is dealt with here, and further discussion of the multivariate case is
given below). While the between-materials precision and measurement er-
ror precision for an explanatory variable is investigated jointly above, this
is not as straightforward to do for the measurement error precision of the
response variable and the model error precision. This is because the model
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error precision measures the variability in the model error, whereas the
between-materials precision measures the variability of the true values for
the variable—these ideas are not equivalent.

A way of building a lower bound for the model error precision τε is to
consider a univariate regression model with just an intercept term, that is,

Ỹi = β0 + εi,

where εi ∼ N(0, τε). Being the simplest linear model to be fitted, a model
containing any further information should provide at least the same quality
of model fit, and so the standard deviation of the model error can only be
decreased by providing the model with more information. The maximum
possible range of tapped density values is given by the true value range
provided by the elicitation of 0.494 to 0.725, so an upper bound of the
model error standard deviation can be estimated by

0.725− 0.494

3.92
= 0.05892857,

giving an estimate of the lower bound of the model error precision τε1 (for
tapped density) of

1

0.058928572
= 287.9706.

In order to use a gamma prior distribution for τε1 , there must be some
compromise for the density at values lower than this estimate; if this density
were to be minimised, a large value of the shape parameter would have to
be chosen, which would force all of the prior density to be close to this
lower bound of model error precision. The shape and rate parameters of
this gamma distribution needs to be able to satisfy the following (rough)
probability statements:

• the probability P (τε1 < 287.9706) must be as small as possible,

• the probability P (287.9706 < τε1 < 350) (350 chosen arbitrarily, to
correspond to relatively small levels of model error precision given
tapped density values) must be not too small,

• the probability P (τε1 > 10000) (10000 chosen arbitrarily, to corre-
spond to relatively large levels of model error precision) must be not
too small.

Satisfying these criteria would allow for a prior distribution that makes it
unlikely for unrealistic model error precisions to occur, makes it somewhat
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likely that relatively poor model fits with (relatively) small model error
precisions can occur, and makes it somewhat likely that relatively good
model fits with (relatively) large model error precisions can occur. Finding
suitable shape and rate parameters to satisfy these criteria is very difficult,
and some compromise must be made, which falls on making density below
the lower bound estimate being larger than preferred, so that the density at
values just above the lower bound isn’t too small. After trial and error, a
seemingly suitable informed prior distribution for the model error precision
is with shape aε1 = 0.2 and rate bε1 = 2 × 10−6. For this prior, P (τε1 ≤
287.9706) = 0.245, P (287.9706 ≤ τε1 ≤ 350) = 0.010 and P (τε1 ≥ 10000) =
0.010=0.504 (all to 3 decimal places).

The informed prior for the measurement error precision on the response
variable is of interest. An estimate of the mean of the informed gamma
prior is built analogously to the above example with CBD. In this case, a
comparison with the between-materials precision is not possible in order to
find a suitable value for the shape of the distribution. Instead, this value is
assumed to be 0.6. Given the cases for the measurement error precision of the
explanatory variables (see Table 4.11), appropriate shape parameters appear
to range from 0.2 to 1, and so a value of 0.6 is chosen. The mean estimate
of the measurement error precision from the elicitation, using the 2σ rule
to estimate the standard deviation and rearranging to find the precision, is
given by 103410.5, and so aη1 = 0.6 and bη1 = 0.6

103410.5 .
The prior distributions for the model error precision and measurement

error precision for AoR are estimated analogously to those of tapped density.
In the case for AoR, the lower bound estimate for the model error precision
is 198.8303, leading to shape and rate parameters of aε2 = 0.2 and bε2 =
3 × 10−6. The mean estimate of the measurement error precision derived
from the elicitation is 10154.84, leading to shape and parameter estimates
of aη2 = 0.6 and bη2 = 0.6

10154.84 .
The above description of finding the informed prior distributions for the

measurement error precision and between-materials precision have been car-
ried out in the case of considering one explanatory variable and one response
variable in a regression model. When considering multiple explanatory vari-
ables, it is the case that the true values X̃i are multivariate normally dis-
tributed, with some mean vector and precision matrix TX̃ . In this case, a
Wishart prior distribution is placed on the precision matrix TX̃ , and the
informed Wishart prior is formed by a diagonal scale matrix whose diagonal
elements are the mean estimates of between-materials precision from the elic-
itation. This applies also for the case where the replicate measurements are
assumed to be jointly distributed, with the scale matrix Sδ being a diagonal
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matrix whose diagonal elements are the mean estimates of the measurement
error precision from the elicitation. For the model error precision matrix
Tε, the scale matrix for the Wishart prior is also a diagonal matrix whose
diagonal elements are the means from the informed priors distributions for
τε1 and τε2 (i.e., for tapped density, Sε1,1 =

aε,1
bε,1

= 0.2
2×10−6 = 105. These are

summarised in Table 4.11.

The priors for the precisions of those variables that do not have any prior
information are also adjusted from the simulation section. Given the data
is scaled onto the range [0,1] for each variable, this directly provides a range
of true values for the variable, from which a mean estimate of the between-
materials precision can be derived, given by 15.3664 = 3.922. An estimate of
the measurement error precision is hard to come by, so the assumption that
the shape parameters are the same is carried over and strengthened further
by assuming it is equal to 1. Using simulation, a value of the rate parameter
bδ is chosen so that P (τδ > τX̃) = 0.99 is satisfied, given aδ = aX̃ = 1 and
bX̃ = 1

15.3664 . A suitable value is bδ = 0.000657, to 3 significant figures.

The corresponding model coefficients for the explanatory variables also
take informed prior distributions. For the model intercept terms, these are
normally distributed, taking the midpoints of the elicited range of true values
for the corresponding response variable as means, and precision values of
0.0001 (i.e., a standard deviation of 100). The small value for the precision
is used as there is no much information available for the intercept term,
but it should be an easy parameter to estimate. The slope terms are also
normally distributed, with mean 0—the precision parameters are informed
by the possible range of values the slope can take given the response variable
range and the explanatory variable range. This is demonstrated using TD
and CBD—the maximum value that the slope βCBD,TD can take is given by

0.494 + βCBD,TD(0.55− 0.35) = 0.725,

which implies the maximum value of βCBD,TD = 0.725−0.494
0.55−0.35 = 1.155. A

minimum value is therefore given by βCBD,TD = −1.155, which provides
a range of possible slope values of [−1.155, 1.155]. In this case, additional
uncertainty is assumed for the standard deviation, assuming a 90% interval
instead of a 95% interval—this is because the precision is fixed for the model
coefficient prior, and so more uncertainty is placed on the fixed value. That
is, for any normal distribution Y ∼ N(µ, σ2), where µ and σ2 represent the
mean and variance respectively, we have

P (µ− 1.645σ ≤ Y ≤ µ+ 1.645σ) = 0.9,
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and so the width of the interval is set equal to 3.29σ. This gives an esti-
mate of the standard deviation of βCBD,TD of 2×1.155

3.29 = 0.7021277, which is
rearranged to give the precision estimate 2.028466. Therefore, the informed
prior distribution for βCBD,TD is a normal distribution with mean 0 and
precision 2.028 to 3 decimal places. The analogous process is carried out
for the variables SE and BFE, and similarly for some generic explanatory
variable for which no prior information is available; in this case the fact that
the data is scaled onto the range [0,1] is utilised. The prior distributions for
the model coefficients are summarised in Table 4.12.

C.2 Initialisation

A formal process is defined here for choosing initial values for the MCMC
simulation when considering the real data.

Firstly, a Latin hypercube sampling is simulated to provide quantiles for
covering as much of the multivariate sampling space for the prior distribu-
tions as possible. The number of samples of the LHS is determined by the
number of parallel chains, which is four in this case. The dimensionality of
the LHS is dependent on the number of prior distributions to be initialised,
which is dependent on the model to be fitted. In this work, the prior distribu-
tions are used to choose initial values that are overdispersed—overdispersed
in the prior distribution is a suitable alternative to choosing values that are
overdispersed with respect to the posterior distribution. It is implemented
here as there are several models to be fitted, which is time-consuming to
have to fit twice (the first time to provide a posterior distribution, the sec-
ond time to choose overdispersed values from the posterior to use as initial
values for the priors in the following model fit).

The notable detail of the initialisation is how the precision matrices
are chosen to ensure they are overdispersed with respect to the posterior
distribution. In this work, this is carried out by sampling a large number
of precision matrices from the Wishart prior distribution, and evaluating
the determinant of each matrix sample, then choosing overdispersed values
with respect to the determinants. In this sense, the determinant is used
to compare matrices with one another, with large determinants likely to
be found with large diagonal elements and small off-diagonal elements, and
small determinants likely to be found with small diagonal elements and
(relatively) large off-diagonal elements. So, if the quantile simulated from
the LHS is 0.34, then the matrix whose determinant is closest to the 34%
quantile of the determinants is chosen as the initial matrix.
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The remaining parameters to be initialised in the model are treated
independently, i.e., using the respective marginal prior distribution to choose
overdispersed values. As an example, for a given powder i, the true values
of powder i for the explanatory variables are assumed to have a joint normal
distribution, i.e.,

X̃i = (X̃1,i, . . . , X̃ng ,i)
′ ∼ Nng(µX̃ , TX̃).

Despite this, the true value for each explanatory variable is randomly se-
lected using the LHS from the marginal distributions, for example for the
first explanatory variable, X̃1,i ∼ N(µX̃1

, SX̃1,1
), using the corresponding di-

agonal element of the scale matrix SX̃ for the precision matrix TX̃ as the
precision.

The model intercept parameters are treated slightly differently, as their
prior distributions are very vague. Choosing a starting value from this prior
leads to the intercept terms for the model getting stuck at the starting value
in the MCMC, and it is very likely that the posterior distributions for the
intercept will be concentrated at values close to the prior mean (given the
scaling of the data and the likely influence of other explanatory variables on
the model). Instead, initial values are chosen using the prior distribution
for the intercept with the same mean as in Table 4.12 and precision 15.3664
(corresponding to a standard deviation of 1

3.92 .



Appendix D

Model plots

D.1 EIV BR model for simulated data

In this section, plots are provided from model fits to simulated data.

The simple-linear-model simulation is firstly considered, in particular the
true values of the model. If it is observed that these values are not estimated
appropriately given the observed data, then the rest of the model clearly will
not have been fitted well. The estimated density of posterior samples from
the first parallel chain are plotted in each case. The plot in Figure D.1
shows the posterior densities of true values of randomly selected materials
(groups), along with green vertical lines corresponding to the observed data
and a red vertical line corresponding to the ‘chosen’ true value (i.e., the
chosen true value of X̃3 for this simulation is 0.03), with these values also
having been scaled onto [0,1].

The model appears to have estimated the true values very well, with the
posterior densities appearing to be normally distributed (this is expected).
The range on the x-axis has been determined by the minimum and maxi-
mum of the posterior samples for the corresponding true value. The visuali-
sation provides a good indication of the variance of the posterior samples in
each case, given the limits on the x-axis, and it is clear that each observed
data point (green vertical lines) is indicated on the plots. It seems possible
that the variance in the posterior for each true value is slightly larger than
expected, given there is fairly significant density away from the observed
values in each case. The analogous plot to Figure D.1 for randomly selected
true values on the response variable is found in Figure D.2, with the same
observations made above for Figure D.1 being applicable.
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Figure D.1: Posterior densities for X̃4 (top left), X̃11 (top right), X̃7 (bot-
tom left), and X̃2 (bottom right), along with the observed data from the
corresponding material (group) from the simulation (vertical green lines)
and the ‘chosen’ true values (vertical red lines).
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Figure D.2: Posterior densities for Ỹ5 (top left), Ỹ6 (top right), Ỹ13 (bottom
left), and Ỹ1 (bottom right), along with the corresponding observations of
each true value from the simulation (vertical green lines) and the ‘chosen’
true values (vertical red lines).
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D.2 EIV BR model for powder flow data

In this section, some plots are provided relating to the EIV BR model fit to
the real data with all seven input variables considered simultaneously (i.e.,
a seven-covariate EIV BR model). The plots in Figure D.3 demonstrate
examples of the model recovering appropriate marginal posterior densities
for the true values of each group for the variables tapped consolidation, CBD,
TD, AoR respectively. These plots indicate the true values are recovered
well, with posterior means lying close to the line Ỹ = Y of X̃ = X (i.e., true
values of the response or explanatory variable close to observed data of the
response or explanatory variable).
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Figure D.3: Posterior densities, in the form of 95% credible intervals, plotted
against the respective observed data for each group i = 1, . . . , 7, for the
variables tapped consolidation, CBD, TD and AoR (row-wise). Output is
based on the fitted model including all seven explanatory variables.

Along with the comparisons between the posterior densities of true values
and the respective observed data, the fitted values of the model are also
inspected to see whether the relationship between the true values has been
appropriately estimated. These fitted values plots are given for each response
variable, i.e., these are marginal predictions of the response variables given
the estimated relationship with the seven explanatory variables. These are
given in Figure D.4. The fitted values plots indicate the model is estimating
the relationship effectively—the mean fitted values align with the respective
mean true value for both response variables for all groups. It is also clear
from the ellipses that there is more uncertainty in the posterior distribution
for the predictions of the response variable than there is is the estimates of
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the true values, given the vertical radius of the ellipses is larger than the
horizontal radius.
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Figure D.4: Joint 95% credible ellipses for the joint distribution of fitted
values and true values of the response variable TD. Output is based on the
fitted model including all seven explanatory variables.



Appendix E

Backward model posterior
convergence issues

The issues with convergence to the posterior distribution for the backward
model, specifically the cubic simulation, is discussed below. Note that this
issue of lack of convergence is prevalent in all simulations where a multimodal
posterior distribution is expected.

Note that each backward model is run with two parallel chains, with
both parallel chains starting at the same initial value for X∗b (a random value
between 0 and 1, which is the range of the uniform prior). The posterior
mode is found for each parallel chain, giving two modes for each backward
model. The posterior modes of those models that did not converge in the
cubic simulation with Y ∗ = 0.404 are provided in the left plot of Figure
E.1, and the equivalent for those models that did appear to converge are
provided in the right plot of Figure E.1. These plots are noteworthy for many
reasons—the first reason is that, in those models that did not converge, the
reasons appears to be that the two parallel chains for a given model are
converging to different modes. It should be noted that more of the posterior
density should be investigated in each of these cases, to confirm whether
or not the given chain is finding density only in the region immediately
surrounding the posterior mode. A second noteworthy outcome is that,
overall, the model is recovering the two ‘real’ values of x∗ = 0.0512 and x∗ =
0.122 that were highlighted above, and these are being recovered as high-
density values in these chains. Thirdly, the models which have converged
according to the PSRF estimates only appear to be converging because both
parallel chains are identifying the same posterior mode.

To confirm whether the parallel chains are finding any posterior density
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Figure E.1: Two plots comparing the posterior modes of the two parallel
chains for each backward model run in the cubic backward model simulation,
with Y ∗ = 0.404. The left plot corresponds to those backward model runs
that did not converge, and the right plot corresponds to those run that did
converge.

at both of the possible posterior modes, the minimum and maximum values
of each parallel chain are examined. The four plots in Figure E.2 represent
the differences between the maximum and minimum values within each par-
allel chain; the top row of plots represents the model that have apparently
converged, and the bottom row represents those that have not converged,
and the first column represents the differences from the first chains, and the
second column represents the differences from the second chains. Unsurpris-
ingly, given the models that have not converged (bottom row of Figure E.2,
the differences between the maximum and minimum values are relatively
small, particularly compared with the difference between the two ‘real’ val-
ues of x∗ = 0.0512 and x∗ = 0.122, given by 0.0709 to 3 significant figures.
As suspected above, these same differences for the models that have ‘con-
verged’ are also relatively small, and indicate that these ‘converged’ models
are only finding one of the posterior modes, and zero density in the re-
gion surrounding the other posterior mode. However, the solitary backward
model that has converged which sticks out in the top row of plots appears to
have performed as desired, with the difference between the maximum and
minimum posterior sample of X∗s being greater than the difference between
the ‘real’ values of x∗. This backward model run corresponds to b = 461,
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and the posterior density of X∗461 for this converged backward model is pro-
vided in Figure E.3. The posterior density of X∗461 represents the desired
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Figure E.2: Four plots considering the differences between the maximum
and minimum values of the posterior samples of X∗b from each parallel chain
of each backward model run. The top row shows those differences for models
that have converged, and the bottom row for those that have not converged.
The first column corresponds to the first parallel chain from these models,
and the second column the second parallel chain.

kind of outcome, which occurs only once from 2000 backward model runs,
in which the model identifies the two possible posterior modes of X∗ that
could produce the corresponding desired output value Y ∗.

The issue highlighted above with the model struggling to cope with a
multimodal posterior distribution is common in Bayesian regression mod-
elling. There are possible methods to deal with this, such as implementing
a tempered transition sampler (the sampler itself is discussed in Gelman
et al. (2013), and the recommendation for using it can be found in Plummer
et al. (2003)), specifically designed to jump between distant modes of some
multimodal posterior distribution, which are available to use in JAGS, but
were not implemented in this work.
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Figure E.3: The posterior density of X∗461 (i.e., the posterior density of X∗

given joint posterior sample 461 from the randomly selected joint posterior
samples from the forward model). The posterior density from the first paral-
lel chain of this model corresponds to the solid black line, and the posterior
density from the second parallel chain corresponds to the solid red line.
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Model code

The content of this appendix demonstrates some examples of code that
produce some of the models examined in Chapters 4 and 5.

Listing F.1: Simple linear EIV BR forward model

model{

t a u d e l t a ˜ dgamma( a de l ta , b d e l t a )

tau e ta ˜ dgamma( a eta , b eta )

t a u e p s i l o n ˜ dgamma( a e p s i l o n , b e p s i l o n )

tau Xt ˜ dgamma( a Xt , b Xt )

for ( i in 1 : n m){

mu[ i ] <− inprod (Xt [ i , 1 : 2 ] , beta [ 1 : 2 ] )

Yt r e s i d [ i ] <− Yt [ i ] − mu[ i ]

Yt [ i ] ˜ dnorm(mu[ i ] , t a u e p s i l o n )

l o g l i k [ i ] <− l o g d e n s i t y . norm(Yt [ i ] , mu[ i ] , t a u e p s i l o n )

Xt [ i , 1 ] <− 1
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Xt [ i , 2 ] ˜ dnorm(mu X, tau Xt )

for ( j in 1 : n r ){

Y[ i , j ] ˜ dnorm(Yt [ i ] , t au e ta )

}

for ( k in 1 : n c ){

X[ i , k ] ˜ dnorm(Xt [ i , 2 ] , t a u d e l t a )

}

}

for ( d X in 1 : 2 ){

beta [ d X ] ˜ dnorm( mu beta [ d X ] , tau beta [ d X ] )

tau beta [ d X ] ˜ dgamma( a tau beta [ d X ] , b tau beta [ d X ] )

}

}

Listing F.2: Single-input single-output reparameterised EIV GP forward
model

model{

l <− k l ∗ s i gma eps i l on

k l ˜ dun i f ( k l U [ 1 ] , k l U [ 2 ] )

s i gma eps i l on ˜ dgamma( s i gma eps i l on shape ,
s i gma eps i l on shape / s igma eps i lon mean )

sigma k <− k s igma k ∗ s i gma eps i l on
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k s igma k ˜ dun i f ( k sigma k U [ 1 ] , k sigma k U [ 2 ] )

alpha ˜ dnorm (0 , 0 . 0 1 )

t a u d e l t a ˜ dgamma( a de l ta , b d e l t a )

tau Xt ˜ dgamma( a Xt , b Xt )

tau e ta ˜ dgamma( a eta , b eta )

for ( i 1 in 1 : n m){

mu[ i 1 ] <− alpha

S [ i 1 , i 1 ] <− pow( s igma eps i l on , 2 ) + pow( sigma k , 2 )

for ( i 2 in ( i 1 +1):n m){

S [ i 1 , i 2 ] <− pow( sigma k , 2 ) ∗
exp ( −0.5 ∗ pow( ( Xt [ i 1 ] − Xt [ i 2 ] ) / l , 2 ) )

S [ i 2 , i 1 ] <− S [ i 1 , i 2 ]

}

}

S . inv <− i n v e r s e (S)

Yt ˜ dmnorm(mu, S . inv )

for ( i in 1 : n m){

Xt [ i ] ˜ dnorm(mu X, tau Xt )

for ( k in 1 : n c ){

X[ i , k ] ˜ dnorm(Xt [ i ] , t a u d e l t a )
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}

for ( j in 1 : n r ){

Y[ i , j ] ˜ dnorm(Yt [ i ] , t au e ta )

}

}

}

Listing F.3: Simple linear EIV BR backward model

model{

X star ˜ dun i f (−rho X + centre X , rho X + centre X )

mu star <− inprod ( c (1 , X star ) , beta ) # beta f i x e d

Y star ˜ dnorm( mu star , t a u e p s i l o n ) # t a u e p s i l o n f i x e d

}

Listing F.4: Single-input single-output reparameterised EIV GP backward
model

model{

# Xt , Yt , s i gma eps i l on , sigma k , l , alpha f i x e d

Y star ˜ dnorm( m star , pow( S star , −1))

m star <− m X star + t ( k X s ta r X t ra in ) %∗%
i n v e r s e ( S X tra in ) %∗% (Yt − m X train )

S s t a r <− S X star − t ( k X s ta r X t ra in ) %∗%
i n v e r s e ( S X tra in ) %∗% k X sta r X t ra in
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m X star <− alpha

S X star <− pow( s igma eps i l on , 2) + pow( sigma k , 2 )

for ( i 1 in 1 : n m){

m X train [ i 1 ] <− alpha

k X s ta r X t ra in [ i 1 ] <− pow( sigma k , 2 ) ∗
exp ( −0.5 ∗ pow( ( X star − Xt [ i 1 ] ) / l , 2 ) )

S X tra in [ i 1 , i 1 ] <− pow( s igma eps i l on , 2) + pow( sigma k , 2 )

for ( i 2 in ( i 1 +1):n m){

S X tra in [ i 1 , i 2 ] <− pow( sigma k , 2 ) ∗
exp ( −0.5 ∗ pow( ( Xt [ i 1 ] − Xt [ i 2 ] ) / l , 2 ) )

S X tra in [ i 2 , i 1 ] <− S X tra in [ i 1 , i 2 ]

}

}

X star ˜ dun i f ( centre X − rho X , centre X + rho X )

}
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