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Synopsis 
Pulmonary hypertension (PH) is an incurable severe condition with poor survival and multiple 

clinically distinct sub-groups and phenotypes. Accurate diagnosis and identification of the 

underlying phenotype is an integral step in patient management as it informs treatment choice. 

Outcomes vary significantly between phenotypes. Patients presenting with signs of both PH 

and lung disease pose a clinical dilemma between two phenotypes - idiopathic pulmonary 

arterial hypertension (IPAH) and pulmonary hypertension secondary to lung disease (PH-CLD) 

as they can present with overlapping features. The impact of lung disease on outcomes is not 

well understood and this is a challenging area in the literature with limited progress. All 

patients suspected with PH undergo routine chest Computed Tomography Pulmonary 

Angiography (CTPA) imaging. Despite this, the prognostic significance of commonly 

visualised lung parenchymal patterns is currently unknown. Current radiological assessment is 

also limited by its visual and subjective nature. Recent breakthroughs in deep-learning 

Artificial Intelligence (AI) approaches have enabled automated quantitative analysis of medical 

imaging features.  

 

This thesis demonstrates the prognostic impact of common lung parenchymal patterns on CT in 

IPAH and PH-CLD. It describes how this data could aid in phenotyping, and in identification of 

new sub-groups of patients with distinct clinical characteristics, imaging features and 

prognostic profiles. It further develops and clinically evaluates an automated CT AI model 

which quantifies the percentage of lung involvement of prognostic lung parenchymal patterns. 

Combining this AI model with radiological assessment improves the prognostic predictive 

strength of lung disease severity in these patients. The studies within this thesis represents the 

largest and most comprehensive analysis performed in this domain. They have been published 

in leading journals including The Lancet Respiratory Medicine and European Respiratory 

Journal Open Access. 
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Structure of thesis, hypothesis, aims and objectives 
The thesis contains multiple chapters which have been published as peer-reviewed journal 

articles. Therefore, the thesis is styled in a ‘publication format’. Each chapter has a detailed 

introduction, methods, results, discussion, and conclusion. My contribution to each piece of 

work is outlined at the beginning of the chapter. In addition to these published chapters 

(chapters 2, 4, 5, 6 and 7), there are brief background (chapter 1), methods (chapter 3), 

overarching discussion (chapter 8), future work (chapter 9) and conclusion (chapter 10) 

chapters.  

 

The overarching thesis hypothesis is that in patients with Pulmonary Hypertension and lung 

disease (defined as those with Group 1 IPAH, Idiopathic Pulmonary Arterial Hypertension, and 

Group 3, Pulmonary Hypertension associated with Chronic Lung Disease, PH-CLD), 

radiological lung parenchymal patterns on routine Computational Tomography (CT) imaging 

are of prognostic significance.  

 

The primary thesis aim is to identify lung parenchymal patterns of prognostic significance in 

these patients. The secondary thesis aim is to develop an automated quantitative CT AI model 

to better characterise these patterns.  

 

The objectives are: 

1. Perform a state-of-the-art literature review on artificial intelligence and quantitative chest 

CT (achieved in chapter 2) 

2. Build a large clinic-radiological imaging database from the ASPIRE PH registry (achieved 

in chapter 3) 

3. Investigate the prognostic impact of common CT lung parenchymal patterns (primary aim, 

achieved in chapter 4) 

4. Establish if CT lung parenchymal patterns can be used to identify new phenotypes of 

pulmonary hypertension (primary aim, achieved in chapter 5) 

5. Develop and externally validate a deep-learning automatic lung segmentation algorithm on 

contrast enhanced pulmonary angiography (CTPA, secondary aim, achieved in chapter 6). 

6. Clinically evaluate the prognostic significance of automated AI quantified lung 

parenchymal disease severity (secondary aim, achieved in chapter 7) 
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1 Background 

1.1 Pulmonary Hypertension 
 

Pulmonary hypertension (PH) is a progressive, heterogenous, incurable condition with 

significant morbidity and mortality. It is defined as an elevation of mean pulmonary arterial 

pressure (mPAP) measured by right heart catheterisation (RHC). The threshold of ≥ 25 mmHg 

was defined at the 1st World Symposium on Pulmonary Hypertension in 19731. The most recent 

6th  World Symposium on Pulmonary Hypertension Task Force in 2019 proposed a reduction of 

this threshold to > 20 mmHg, which would be above the 97.5th percentile for pulmonary arterial 

pressure2. The updated definition also considers pulmonary vascular resistance, to allow for 

differences in cardiac output, and should be ≥ 3 Wood Units in addition to mPAP > 20 mmHg. 

This was incorporated into the latest 2022 combined European Respiratory Society (ERS) and 

European Society of Cardiology (ESC) guidelines for Pulmonary Hypertension3. 

 

The underlying condition of pulmonary hypertension has multiple aetiologies, which the World 

Health Organisation (WHO) categorises into five groups with similar clinical and pathological 

characteristics. These are - Group 1: Pulmonary arterial hypertension (PAH), Group 2: PH due 

to left heart disease (PH-LHD), Group 3: PH due to lung disease and/or hypoxia (PH-chronic 

lung disease (PH-CLD)), Group 4: Chronic thrombo-embolic Pulmonary Hypertension 

(CTEPH), and Group 5: PH with unclear/multifactorial mechanisms. Each group has multiple 

sub-groups and sub-classifications, which are detailed in Figure 1.1.  
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Figure 1.1: PH clinical classification taken from the latest 2022 joint ESC/ERS Guidelines for 

the diagnosis and treatment of pulmonary hypertension3. 

 

Given the complexity of the condition, management is recommended in highly specialist 

tertiary referral centres, of which there are nine in the United Kingdom (UK) 4. The Sheffield 

Pulmonary Vascular Disease Unit (SPVDU) at the Royal Hallamshire Hospital, Sheffield 

Teaching Hospitals NHS Trust, is an internationally recognised centre of excellence, one of the 

largest PH centres in the world, responsible for 1 in 4 actively managed PH patients in UK5.  

 

A central goal of management in IPAH is continuous risk-stratification and assessment, with an 

aim to maintain a ‘low-risk’ status. The joint ESC/ERS guidelines defines risk groups as low, 

intermediate and high based on an estimated 1 year mortality of 5%, 5-10%, and >10% 
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respectively 6. This is assessed holistically using a multidimensional approach. Clinical 

variables include signs of heart failure, progression of symptoms, and presence of syncope. 

Traditional biochemical biomarkers include include B-type natriuretic peptide (BNP) and N-

terminal pro-brain natriuretic peptide, which non-specifically correlate with myocardial 

function and pulmonary haemodynamics 7. Heamodynamic variables on RHC include right 

atrial pressure, cardiac index and mixed venous oxygen venous saturations. Functional 

assessment is performed using cardiopulmonary exercise testing and walk tests. Imaging 

variables currently include Right Ventricular End-Systolic Volume Index (RVESVI), Right 

Ventricular Ejection Fraction (RVEF) and Stroke Volume Index (SVI) on cardiac Magnetic 

Resonance Imaging (MRI), and right atrial area on echocardiography. These variables together 

are assessed to provide important prognostic information to both clinicians and patients. 

 

Despite being routinely performed as part of the diagnostic algorithm, Chest Computational 

Tomography (CT) is not currently used for prognostication. Lung disease is not currently 

considered to be a prognostically important factor in PAH in the latest ERS/ESC guidelines3. A 

widely used prognostic risk-score in PAH is REVEAL 2.0 (Registry to Evaluate Early and 

Long-Term PAH Disease Management), which incorporates 11 diverse variables to provide a 

risk-score8. Variables include patient demographics, clinical features, biomarker, imaging, 

spirometric and haemodynamic data. Differing ‘points’ are given for specific thresholds for 

each feature and an overall risk-score is calculated; this is demonstrated in Figure 1.2. Lung 

disease severity is only assessed through one specific variable in pulmonary function testing 

(PFT) - diffusing capacity of the lungs for carbon monoxide (DLco). A <40% predicted DLco 

scores one risk point. REVEAL 2.0 has been validated in the Pulmonary Hypertension Society 

of Australia and New Zealand (PHSANZ) registry 9. The original REVEAL 1.0 risk score has 

been validated and used in in different studies across multiple cohorts and registries. 10–14 Other 

risk scores have been derived by the French Pulmonary Hypertension Registry (FPHR)., 

Swedish Pulmonary Arterial Hypertension Register (SPAHR) and the Comparative, 

Prospective Registry of Newly Initiated Therapies for Pulmonary Hypertension (COMPERA). 
15–18 

 

PFTs are recommended for the initial workup of patients and should include forced spirometry, 

DLCO and arterial blood gas sampling3. A strength of PFTs is their wide availability, relatively 

low cost and extensive established reference values and equations19. They represent an 

important investigation when lung disease is suspected and are routinely used to diagnose 
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obstructive or restrictive disease. However, specifically within PH, PFTs alone can be 

conflicting with patient reported symptoms and outcomes3,20. In Group 1 PAH, PFTs are 

usually normal or may show mild restive, obstructive, or combined abnormalities21,22. DLCO 

may be normal, but it usually mildly reduced21. In Group 3 PH-CLD, more significant 

abnormalities are seen secondary to the associated lung disease. However,  the severity of PH 

does not correlate with the severity of lung disease as assessed by PFTs, and patients with 

preserved lung function can still have severe PH20,23–26. CT imaging offers the advantage of 

another means of assessing lung disease. In IPF, marginal changes in PFT values such as FVC 

can be challenging to interpret as they could reflect either genuine physiological deterioration 

or measurement variation, and CT features such as change in traction bronchiectasis have been 

shown to provide additional prognostic value27. Similarly, in PH, CT features could provide 

additional value, which when used in combination with PFTs, could be of prognostic 

significance. 
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Figure 1.2 REVEAL (Registry to Evaluate Early and Long-Term PAH Disease Management) 

2.0 risk score features and thresholds. Taken from original REVEAL 2.0 publication. 8  

 

1.2 CT Imaging in Pulmonary Hypertension 
Computed Tomography (CT) is the gold standard for evaluating the extent and distribution of 

lung parenchymal disease, and provides an additional non-invasive assessment of vascular, 

cardiac and mediastinal structures 28,29. It plays an integral role in PH management and is 

recommended by the latest joint European Respiratory Society/European Society of Cardiology 

PH guidelines and Pulmonary Vascular Research Institute (PVRI) statement on imaging in 

pulmonary hypertension6,30.  Advantages of CT imaging are near ubiquitous availability, rapid 

time of acquisition and high spatial resolution in addition to the overall assessment of multiple 

structures and features. Whilst often used in adjunct to traditional PFTs in assessing lung 
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disease, quantitative CT features have been shown to provide additional clinically significant 

prognostic benefit in other diseases such as Interstitial Lung Disease (ILD)27.  

1.2.1 Quantitative CT and AI approaches to CT 
Quantitative CT (QCT) is a rapidly developing field which extracts numerical information from 

CT imaging data. Artificial Intelligence (AI) approaches coupled with QCT have had several 

recent breakthroughs in a range of lung diseases. These have been extensively described in 

Chapter 3, which is a published peer-reviewed article which introduces, critically evaluates, and 

discusses the value of these concepts in context of PH imaging. 

1.2.2 CT Features of PH 
* Please refer to Figure 2.2 and Figure 2.3 in Introduction section of Chapter 3 (published 

article) for images that visualise the CT features described. 

 

There are multiple features of PH on CT. Mediastinal features include main pulmonary artery 

dilatation (MPA) and elevated MPA:aorta ratio. Cardiac features include atrial, right ventricular 

dilatation or hypertrophy and flattening of the intraventricular septum. Vascular features 

include pulmonary vessel remodelling such as dilatation, stenosis or tortuisity and 

neovascularity. The most associated finding in PH, common to all groups, on CT is MPA 

dilation, with MPA diameter >29 mm having 84% sensitivity, 75% specificity, and 97% 

positive predictive value (PPV) for PH defined as defined by the threshold of mPAP ≥ 25 

mmHg30,31.  

 

The lung parenchymal features of CT are dependent on the underlying pathophysiology and 

subsequent WHO group. Therefore, these features are particularly helpful in ascertaining the 

aetiology of PH. Group 1 PH can often present with no parenchymal abnormalities. The most 

prevalent feature is ground glass opacification (GGO), particularly centrilobular ground glass 

(CGG) nodularity, and is seen in 41% of patients 28. Within Group 1 PAH, an important sub-

group to identify is pulmonary vascular obstructive disease (PVOD). It presents with a typical 

triad of interlobular septal thickening, ground glass nodularity and mediastinal 

lymphadenopathy. If confused for PAH, PAH-specific vasoactive therapy can lead to 

potentially fatal pulmonary oedema 32,33. In Group 2 PH-LHD, common features include diffuse 

GGO, interlobular septal thickening and pleural effusions due to heart failure. Features in 

Group 3 PH-CLD depend on the underlying chronic lung disease, with emphysema and fibrosis 
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the most common sub-types. Fibrotic features include sub-pleural reticular ground glass 

change, traction bronchiectasis and overall anatomical architectural distortion. Group 4 

CTEPH, features include a mosaic pattern of attenuation, peripheral scarring and GGO.   

 

It is the role of the radiologist to evaluate the multiple mediastinal, vascular, cardiac and lung 

parenchymal features to provide an opinion in classification of PH. A particular challenge is 

attributing the role of lung disease in PH and assigning a diagnosis between Group 1 Idiopathic 

Pulmonary Arterial Hypertension (IPAH) and Group 3 PH due to lung disease and/or hypoxia 

(PH-CLD). 

1.3 Clinical dilemma between IPAH and PH-CLD 
* please note some of this is repeated in Chapter 4 and 5 – the published journal articles – but 

it is included in here to give brief context and introduction to the topic.  

 

Group 3 PH (PH-CLD) is a complex, highly heterogeneous group where pre-capillary PH most 

commonly complicates chronic obstructive pulmonary disease (COPD) and or emphysema, 

interstitial lung disease (ILD) and alveolar hypoventilation 23,26,34,35. These conditions may also 

co-exist to varying degrees and patients with a combination of pulmonary fibrosis and 

emphysema (CPFE) with severe PH having a particularly poor prognosis 34. Usually patients 

with PH in association with lung disease have a mild elevation of pulmonary artery pressure in 

keeping with the severity of the underlying lung disease, however, some patients present with 

severe PH with variable degrees of parenchymal involvement 26. A review by Kovacs et al has 

highlighted the spectrum of pulmonary vascular involvement in patients with COPD 36. In these 

patients it is important to exclude other forms of PH such as Group 1 PH - Pulmonary arterial 

hypertension (PAH) and Group 4 PH (Chronic Thromboembolic Pulmonary Hypertension 

(CTEPH) 37.  

 

Idiopathic pulmonary arterial hypertension (IPAH) is a form of PAH where no other cause of 

PH is identified although in some cases it has a heritable component 38–40. Current guidelines 

recommend that patients with severe pre-capillary PH with no other cause identified be 

classified as Group 1 IPAH 26,41 , whereas patients with severe lung disease and mild PH are 

classified as having Group 3 PH-Lung.  
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However, in clinical practice some patients do not neatly fit into either category and this creates 

a clinical dilemma of significant prognostic importance 42. These patients have 

hemodynamically confirmed PH on Right Heart Catheterisation (RHC) and mild to moderate 

lung disease on CT. However, they have unremarkable spirometry, no thromboembolic disease 

and an absence of a relevant associated medical condition. Do they have PH-CLD or IPAH? 

Accurate diagnosis and identification of the underlying phenotype is vital as it informs 

treatment choice, response, risk-stratification, and prognosis. A 

 

The recommended management of IPAH and PH-CLD are divergent 6. The last decade has 

seen the introduction of multiple novel PAH specific drug therapies targeting the endothelin, 

nitric oxide and prostanoid pathways 43. These therapies are recommended in patients 

diagnosed as Group 1 PAH. They have significantly improved the outlook for these patients, 

with mean five-year survival for IPAH reported between 50-65% 5,44. In contrast, patients 

diagnosed with PH-CLD do not qualify for novel PAH therapy, and management is limited to 

optimisation of the lung disease and lung transplantation in exceptional cases. PH-CLD five-

year survival is between 28-31% 5,34,45. 

 

This dilemma understandably is one of active interest within the literature. The latest 6th World 

Symposium on PH (WSPH) recommended that patients with minor lung disease, who 

otherwise meet the criteria for IPAH (no other significant cause or risk factor identified), 

should be considered to have IPAH despite the lung disease 26. This recommendation was based 

on unpublished subgroup analysis in patients with mild to moderate lung disease from 

randomised controlled studies 26,46–48. However, a recent publication has demonstrated that 

patients diagnosed as IPAH using this criteria from the 6th WSPH with mild lung disease had 

significantly worse outcomes with poor survival and treatment response 41. Furthermore, whilst 

PH-CLD patients are thought to represent an entirely different pathophysiological group 

compared to IPAH, recent studies have raised the possibility of a distinct phenotype that lies in 

between this spectrum - with mild to moderate lung disease 36,41,47. 

 

 

 
A As discussed in later chapters and in the overarching discussion section, a phenotype is defined by its clinical 
characteristics, such as demographics, treatment response and prognosis. The work in this thesis is important as it 
shows a phenotype with differing characteristics. If recognised and incorporated into formal guidance, then this 
‘phenotype’ definition can be subsequently used to inform patient treatment choice, response, risk-stratification, 
and prognosis in clinical practice.  
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The impact of commonly encountered lung parenchymal patterns on Chest CT in PH is 

unknown. As noted in the recent Pulmonary Vascular Research Institute (PVRI) statement on 

imaging and PH, significant parenchymal abnormalities may be seen on CT in the presence of 

simple screening test of lung function such as spirometry alone30. Can Chest CT serve as an 

imaging biomarker to help solve this diagnostic dilemma - can it predict survival and help aid 

in classification and prognostic risk-stratification? If so, can we automate this by developing a 

QCT AI package that can perform this analysis? These are the main questions this thesis aims 

to answer.  

 

The overarching thesis hypothesis is that in patients with Pulmonary Hypertension and lung 

disease (defined as those with Group 1 IPAH, Idiopathic Pulmonary Arterial Hypertension, and 

Group 3, Pulmonary Hypertension associated with Chronic Lung Disease, PH-CLD), 

radiological lung parenchymal patterns on routine Computational Tomography (CT) imaging 

are of prognostic significance.  

 

The primary thesis aim is to identify lung parenchymal patterns of prognostic significance in 

these patients. The secondary thesis aim is to develop an automated quantitative CT AI model 

to better characterise these patterns.  
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2.1 Abstract  
Accurate phenotyping of patients with pulmonary hypertension (PH) is an integral part of in-

forming disease classification, treatment and prognosis. The impact of lung disease on PH out-

comes and response to treatment remains a challenging area with limited progress. Imaging 

with Computed Tomography (CT) plays an important role in patients with suspected PH when 

assessing for parenchymal lung disease, however, current assessments are limited by their semi-

qualitative nature. Quantitative Chest-CT (QCT) allows numerical quantification of lung 

parenchymal disease beyond subjective visual assessment. This has facilitated advances in 

radiological assessment and clinical correlation of a range of lung diseases including 

emphysema, interstitial lung disease and COVID-19. Artificial Intelligence approaches have the 

potential to facilitate rapid quantitative assessments. Benefits of cross-sectional imaging 

include ease and speed of scan acquisition, repeatability and the potential for novel insights 

beyond visual assessment alone. Potential clinical benefits include improved phenotyping and 

prediction of treatment response and survival. Artificial Intelligence approaches also have the 

potential to aid more focused study of PAH therapies by identifying more homogeneous 

subgroups of patients with lung disease. This state-of-the-art review summarises recent QCT 

developments and potential applications in patients with PH with a focus on lung disease. 

 

2.2 Introduction 
 

Pulmonary hypertension (PH) is a heterogeneous, life-limiting condition defined by an elevated 

pulmonary artery pressure and if untreated results in right ventricular failure and death. The 

current classification of PH identifies 5 groups each with shared pathophysiological 

characteristics 6 . However, increasingly patients are identified with overlapping features. 

Group 3 PH - Pulmonary hypertension in association with lung disease and/or hypoxia (PH-

Lung) is a complex, highly heterogeneous group where pre-capillary PH most commonly 

complicates chronic obstructive pulmonary disease (COPD) and or emphysema, interstitial lung 

disease (ILD) and alveolar hypoventilation 23,26,34,35. These conditions may also co-exist to 

varying degrees and patients with a combination of pulmonary fibrosis and emphysema (CPFE) 

with severe PH having a particularly poor prognosis 34. Usually patients with PH in association 
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with lung disease have a mild elevation of pulmonary artery pressure in keeping with the 

severity of the underlying lung disease, however, some patients present with severe PH with 

variable degrees of parenchymal involvement 26. A review by Kovacs et al has highlighted the 

spectrum of pulmonary vascular involvement in patients with COPD 36. In these patients it is 

important to exclude other forms of PH such as Group 1 PH - Pulmonary arterial hypertension 

(PAH) and Group 4 PH (Chronic Thromboembolic Pulmonary Hypertension (CTEPH) 37. 

Idiopathic pulmonary arterial hypertension (IPAH) is a form of PAH where no other cause of 

PH is identified although in some cases it has a heritable component 38–40. Current guidelines 

recommend that patients with severe pre-capillary PH with no other cause identified be 

classified as Group 1 IPAH 26,41 , whereas patients with severe lung disease and mild PH are 

classified as having Group 3 PH-Lung. However, in clinical practice some patients do not 

neatly fit into either category and this creates a clinical dilemma (Figure 2.1). 

The recommended management of IPAH and PH-Lung are divergent. The last decade has seen 

the introduction of multiple novel PAH specific drug therapies targeting the endothelin, nitric 

oxide and prostanoid pathways 43. These have improved the outlook for PAH, particularly in 

younger patients with IPAH where the UK National Audit reports a 5 year survival in excess of 

80% 5. Previous data from the ASPIRE Registry highlighted the impact of lung disease on 

survival compared with other forms of PH. Patients with PH-Lung assessed at a PH referral 

centre had a 5 year survival of 31%, worse than all other forms of PH 50. For patients with 

severe PH-Lung the survival is particularly poor, worse in ILD compared to COPD 50. Severe 

PH occurs in a minority of patients with lung disease, however due to the very high prevalence 

of lung disease, estimates of severe PH in lung disease are seven times more common than 

group 1 PAH 37,47,51,52. In contrast to Group 1 PAH, for patients with Group 3 PH-Lung 

guidelines recommend treatment of the underlying lung disease or in highly selected cases lung 

transplantation. Interestingly, the 6th World Symposium on PH (WSPH) recommended that 

patients with minor lung disease, who otherwise meet the criteria for PAH with no other causes 

identified, should be considered to have IPAH 26. This recommendation was based on 

unpublished subgroup analysis in patients with mild to moderate lung disease from randomised 

controlled studies 46–48. However, a recent publication has demonstrated that patients diagnosed 

as IPAH using criteria from the 6th WSPH with mild lung disease had significantly worse 

survival with no improvement in exercise capacity or quality of life 41. This study highlights the 

challenge of classifying patients with PH and a need for improved disease phenotyping to 

ensure that the most appropriate patients receive treatment and where uncertainty exists that 

patients are entered into appropriate clinical trials.  
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Figure 2.1: Spectrum of lung disease severity within pulmonary hypertension and the 

diagnostic and treatment dilemma. Five-year survival figures quoted from REVEAL registry 

five year outcomes and recent studies 34,44,45 

 

Traditionally the severity of lung disease is quantified using lung function tests using 

spirometric values, lung volumes and measurements of gas diffusion (DLco and Kco), with 

increasing evidence showing that DLco is strongly prognostic in a number of forms of PH 53–55. 

Indeed DLco is part of a widely used risk score, REVEAL 2.0 8. Lung function tests, however, 

show significant variability, low reproducibility, and can be insensitive to change to disease 

progression 56–58. BComputed Tomography (CT) is the gold standard for evaluating the extent 

and distribution of lung parenchymal disease, and provides an additional non-invasive 

assessment of vascular, cardiac and mediastinal structures 28,29. CT is therefore recommended 

by both the latest joint European Respiratory Society/European Society of Cardiology PH 

guidelines and the Pulmonary Vascular Research Institute (PVRI) statement on imaging in 

pulmonary hypertension as an important part of the diagnostic strategy in suspected PH 6,30. 

The features and patterns of disease in PAH and PH-Lung on CT are visualised in Figure 2.2 

and Figure 2.3 respectively. 

 

 

 

 
B The strengths and limitations of pulmonary function testing has been expanded on page 16 to provide more detail 
to this statement.  
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Figure 2.2 CT features of Pulmonary Arterial Hypertension (PAH) on CT. A - dilated main 

pulmonary artery. B - right atrial and ventricular dilation with moderate right ventricular 

hypertrophy and flattening of the interventricular septum. C - centrilobular ground glass 

nodularity. These are a feature of PAH, but are also more commonly seen in another sub-

phenotypes of Pulmonary Hypertension, such as Pulmonary Vascular Obstructive Disease 

(PVOD). In PVOD, they are often accompanied by interlobular septal thickening and 

mediastinal lymphadenopathy. D – zoomed in view of regions of centrilobular ground glass 

nodularity. 
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Figure 2.3 Patterns of lung disease in PH-Lung as visualised on CT. A - mild emphysema, 

localised predominantly to the upper lobe. B - widespread severe emphysema. C - combined 

emphysema and fibrosis. D - interstitial lung disease. 

 

AI has seen a rise in prominence and performance, especially with recent machine learning 

(ML) approaches. It has been labelled as ‘a major paradigm shift’ and ‘one of the most 

fundamental changes in medical care’ 59,60. Within Chest CT and respiratory medicine, there 

has been an explosion in AI research, with a 5x increase in studies between 2014-19 compared 

to 2010-14. Correspondingly, there are now >75 FDA and several CE approved AI software 

packages in Chest CT alone, compared to just 1 in 2014 61. We have reviewed the literature and 

found no studies directly involving AI, Chest CT and PH. There are however many studies 

involving AI, ML and Chest CT in other diffuse lung diseases such as emphysema, COPD, ILD 

and recently COVID-19. The discoveries, solutions and findings of these studies are directly 

applicable to development of AI models in PH.  
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Despite a number of studies highlighting the negative impact of PH on survival in PH-Lung 
23,37,62, data is very limited for the use of PAH therapies. Studies have been performed primarily 

in COPD and ILD and have yielded conflicting results 26. This reflects in part the small 

numbers, study designs and the heterogeneous nature of patients enrolled. Despite studies with 

ambrisentan 63 and riociguat 64 identifying safety concerns in patients with ILD a recent 

randomised controlled study, INCREASE, has demonstrated an improvement in 6 Minute Walk 

Test in patients with ILD 65. This has re-invigorated the PH community to explore PAH 

therapies in PH-Lung. However, given the heterogenous nature of PH in Lung disease a 

technique to aid the identification of more homogeneous subgroups of PH-Lung would be very 

welcome. 

Given the potential of AI approaches to assess the lung parenchyma, vessels and cardiac 

chambers the authors postulate that Quantitative CT (QCT) could ‘come to the rescue’ of 

investigators wishing to improve the outlook for patients with PH-Lung. By improving 

phenotyping AI approaches could aid the characterisation of disease and enrich for populations 

most likely to benefit from PAH therapies. This state-of-the-art review critically appraises the 

recent developments in the adjacent fields of ML in CT imaging and contextualises their 

potential impact on imaging, diagnosis, classification and assessment of prognosis in patients 

with PH with a focus on lung disease.  

 

2.3 AI, Machine Learning and Deep Learning  

2.3.1 Definitions 
Artificial intelligence (AI) is a general term encompassing computer algorithms capable of 

performing tasks requiring human intelligence.Figure 2.4 summarises the relationship between 

different AI approaches. Historically, AI has been trained with a rules-based approach, where a 

programmer explicitly creates a set of conditions upon which the machine executes actions.  
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Figure 2.4 Layers of artificial intelligence approaches applied to medical imaging 

 

Machine learning (ML) is a subset of AI in which algorithms are trained to solve tasks through 

feature learning instead of an explicit rules-based approach. When presented with a ‘training’ 

cohort, the algorithm identifies salient features, which are subsequently used to make 

predictions. Hence the ‘machine’ ‘learns’ from the data itself. 

 

Deep learning (DL) is a subset of ML which uses multiple layers to extract features. Each 

‘layer’ provides information to the algorithm. ‘Convolutional neural networks’ (CNN) is a 

subset and one approach to ‘deep learning’, which is loosely inspired by neurons in the human 

brain. Several ‘nodes’ exist within multiple layers, and each ‘node’ as a data point has a 

weighting which affects the whole ‘network’. This approach in particular is most prevalent in 

the domain of image recognition and analysis and has demonstrated superior problem-solving 

capabilities. While most earlier AI methods have led to applications with subhuman 

performance, recent deep learning algorithms are able to match and even surpass humans in 

task-specific applications.59,66–70. Two recent examples of AI superiority in medical imaging 

include measuring wall thickness in hypertrophic cardiomyopathy on cardiac Magnetic 

Resonance Imaging (MRI) and diagnosing breast cancer in mammography 66,71.  
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2.3.2  Supervised vs unsupervised learning  
Two broad categories of ML methods exist - supervised and unsupervised learning. Supervised 

learning requires explicit labelling of the training data with a ground truth, upon which the 

machine develops its model and makes predictions. Labelling lung parenchymal disease 

patterns as ‘ground glass change’ or ‘emphysema’ is an example of supervised learning. 

Performance is tested by how well it predicts these labels in a validation cohort. Unsupervised 

learning requires no explicit labelling of the training data, rather it learns to cluster/group 

together, thereby requiring very large datasets 72. The algorithm makes its own inferences 

within the data space to learn its internal structure and uses that make predictions. Semi-

supervised learning is a combination of two methods - where a smaller labelled dataset is 

combined with a larger unlabeled dataset. The labelled dataset is used to guide the algorithm 

before it is used in the unlabeled data. The vast majority of all medical imaging AI studies use 

supervised learning and is therefore reliant on accurate labelling.  

2.3.3 General vs narrow intelligence  
General intelligence is the ability to apply knowledge across a range of domains. A radiologist 

is trained to have ‘general’ intelligence across all modalities and age groups, from detecting 

congenital anomalies in fetal ultrasounds to complex neurodegenerative disease in brain MRIs. 

Methods and skills learnt in one domain are often transferable to other domains. In contrast, 

almost all state-of-the-art AI advances are currently limited to narrow intelligence in a defined 

domain 59. The focus of such studies has been to match and occasionally surpass human 

radiologist performance in that narrow specific instance. How ‘narrow’ an algorithm is depends 

on how it was developed and what datasets were used; an algorithm trained entirely on ILD 

could not evaluate emphysema.  

 

Figure 5 outlines the multiple stages within a diagnostic radiology workflow, highlighting the 

potential avenues for AI solutions. This review focuses on the image perception and reasoning 

stages, however each stage is a current active research topic of interest.  
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Figure 2.5 Stages within a radiology diagnostic workflow, with potential AI applications at 

each stage. This review focuses on the image analysis stage - incorporating image perception 

and reasoning. Image reproduced with permission from original author Dr Hugh Harvey 73 

 

2.4 Machine Learning in Chest CT  
Within image analysis, machine learning in chest CT broadly has two domains: nodule 

detection and radiomics. Multiple AI solutions exist for lung cancer nodule detection and have 

shown to have a high level of accuracy, sensitivity and specificity 74–76. Labelled public datasets 

for model development exist, the largest of which is the Lung Image Database Consortium 

Image Collection (LIDC-IDRI) 77. Radiomics is the broad field of study which aims to extract 

information from imaging using computer-aided mathematical analysis that is not accessible 

through traditional visual inspection 78. Initial use was predominantly in oncology settings to 

make predictions on disease course, survival and treatment response from tumour features 78,79. 

Recently the field has expanded to non-oncological settings. In diffuse lung diseases, QCT has 

been the main application of ML algorithms. 

Quantitative CT (QCT) is the principle of extracting quantitative information from standardised 

imaging data. This ranges from simple human hand-drawn manual measurements of anatomical 

structures such as the trachea or main pulmonary artery (mPA) to complex AI driven texture 

analysis of lung parenchymal disease patterns. It has been used in a range of diffuse lung 

diseases 80,81. State-of-the-art applications of QCT use ML and DL to provide end-to-end 

solutions - where the entire CT scan is automatically analysed with an output provided. Such 

approaches require a suite of algorithms - from segmentation where the lung parenchyma is 

accurately identified and extracted - to quantification and incorporation into clinical models. A 



 35 

recent example is CORADS-AI - which automatically quantifies and scores the extent of lung 

parenchymal in COVID-19 82. Figure 6 demonstrates such a QCT approach using an adaptive 

multiple features method, with different parenchymal patterns highlighted 83.  

 
Figure 2.6 Demonstration of a Quantitative CT approach (adaptive multiple features method), 

acquired using PASS software. Different lung parenchymal disease patterns are identified and 

highlighted. Blue - emphysema/low attenuation pattern. Yellow - Fibrotic changes. Pink - 

Ground glass change. 

 

2.5 Promise of Quantitative Chest CT in PH  
The current standard for assessment of Chest CT is by an expert radiologist. This approach 

fundamentally treats scans as pictures for subjective visual assessment. QCT and AI approaches 

in contrast treat scans as imaging data, which can be processed and analysed.  

AI models can be categorised by their domain of application and corresponding endpoints. 

Figure 7 is a summary diagram which visualises the promise and advantages of QCT in each 

domain - imaging, diagnosis, and prognostication.  
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Figure 2.7 Summary figure. Domains of AI application with corresponding advantages. 

Increasing clinical impact through clinically meaningful endpoints. 

2.5.1 Imaging  

2.5.1.1 Repeatability  
Radiological assessment is a subjective process. Reports between radiologists differ 

significantly in their style and content, and there exists significant inter-observer variability on 

visual assessment even between highly experienced radiologists 84–86. Within Chest CT 

imaging, reports are often broad and give an overall impression of the disease process. It is 

either binary (disease present or absent) or a rough categorical assessment of a degree of 

severity (mild, moderate or severe). Clinically significant differences have been demonstrated 

even in assigning final diagnosis in ILD 87.  

QCT in comparison provides reproducible data which numerically quantifies disease severity 
59,88. It therefore provides an objective measure which can be integrated into diagnostic and 

prognostic models. This principle of repeatability minimises the inherent variability from a 

visual approach to imaging.  
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2.5.1.2 Increased efficiency to counter rising demand.  
The demand for medical imaging is rising far steeper than the available radiology workforce 
59,89,90. In 2015, it was estimated that an average radiologist must interpret an image every 3-4 

seconds in a normal 8-hour workday to meet workload demands 91. The demand is particularly 

steep for complex investigations that require longer to report - such as chest CT and cardiac 

MRI. These modalities are routinely used in PH and integral to assessment. 

AI has been shown to improve productivity, reducing the time needed to review imaging. 

Within PAH, routine and repetitive tasks such as measuring pulmonary artery size or right atrial 

area could be automated, saving time over hand-drawing regions. Temporal subtraction is an AI 

method to highlight interval change between successive imaging 92,93. In bone CT scans this 

method reduced reading time by 43% and increased sensitivity by 14.6% 94. PH patients require 

regular reassessment with imaging to monitor treatment response, and such techniques could 

help increase the efficiency of repeat comparative reporting. 

Triaging of scans is another area which has seen significant research 95. Scans are first read by 

the AI model which then categorises them based on probability of disease. This would enable 

more efficient use of resources, with radiologists prioritising those scans that are likely to 

involve the disease, thereby reducing time to report and enabling clinical decision making.  

2.5.1.3  Novel methodologies beyond visual assessment 
A limitation of all current imaging modalities is the inability to visualise and assess the distal 

pulmonary artery vascular - the region of disease in PAH 30. In PAH, large pulmonary arteries 

are known to demonstrate dilation, pruning and abrupt tapering or tortuosity 96. Pulmonary 

vessel morphology is an example of an approach made possible only through quantitative AI 

analysis, as it would be unfeasible visually. The pulmonary vascular tree is segmented and 

features such as lumen size, tortuosity and tapering quantified. There exist several 3D vessel 

lumen segmentation techniques in both CT and MRI to enable this 97. A deep learning CNN 

approach recently demonstrated 94% accuracy in segmentation of the vascular tree 98. The 

findings from clinical applications of such approaches could have an impact on diagnosis and 

prognostication. 
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2.5.2 Diagnosis 

2.5.2.1 Reducing time to diagnosis and error 
A dual reader approach has been shown to reduce error and misses. However, this is 

prohibitively time and radiologist resource intensive. AI systems have therefore been suggested 

as an alternative ‘second reader’ and have shown promise in reducing errors and improving 

sensitivity 93.  

Quantifying severity with a continuous index rather than a broad visually estimated category 

can increase potential to detect more subtle changes 80. 48% of PH patients do not receive a 

diagnosis until one year after experiencing symptoms, and 40% see four or more health care 

providers prior to diagnosis 99. Chest CT is commonly performed however radiologists 

assessing the lungs will not routinely evaluate for features of PH and some characteristic 

abnormalities of CTEPH may be subtle and require specialist radiology expertise limited to 

tertiary centres. AI models that automatically evaluate studies for signs of PH have the potential 

to reduce the time to diagnosis. 

In emphysema, airway wall thickening visualised on incidental Chest CT was shown to be an 

independent predictor of COPD exacerbations that led to hospitalization or death in a large 

multicenter randomised controlled trial 100. A similar simple approach can be applied to PH 

where QCT could automatically segment, measure and plot the main pulmonary artery size 

against a normative curve. This would provide the reporting radiologist with additional context 

to evaluate and consider PH as a potential diagnosis.  

2.5.2.2 Improving phenotyping and classification 
In COPD, new subtypes and phenotypes have been discovered through ML approaches 101,102. 

These distinct patient subtypes characterized by imaging correlate with physiological 

parameters. In ILD, QCT metrics have been shown to correlate well with a range of clinical 

function tests such as lung function tests 81,88,103,104. C 

PH-Lung has multiple different phenotypes with distinct treatment responses 23,34. A current 

clinical dilemma in PH is differentiating IPAH with mild lung disease from PH-Lung; 

 

 

 
C To be more specific, some not all metrics have shown to correlate. For example in IPF, pulmonary vessel volume 
is an example of a novel quantitative metric with no visual scoring equivalent that correlates well, but other QCT 
metrics such as measures of emphysema extent did not correlate well. 
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therefore, there is a need to understand more about different phenotypes and why some patients 

with variable degrees of parenchymal disease do or do not develop PH 26,105. New phenotypes 

have also been proposed in IPAH based on patterns of lung involvement on CT 36,41 that differ 

significantly in treatment response to PAH therapy and prognosis. Quantitative approaches 

could therefore aid identification of new phenotypes and improve on assessments based on 

traditional visual based assessment alone.  

2.5.2.3 Discovering genotype-phenotype associations 
Four large collaborative genomic and multi-omic programmes and biobanks are established for 

PAH - PVDOMICS, NBR, US PAH Biobank and UK national IPAH cohort 39,106–108. Bone 

morphogenetic receptor type 2 (BMPR2) gene abnormalities are the most common cause of 

heritable PAH, comprising ~15% of all cases; but 20+ new genes have been identified 39,109. 

Patients with BMPR2 mutations are unlikely to demonstrate vasoreactivity - which informs 

clinical management 110. Advances in genetic understanding and targeting BMPR2 have 

developed novel therapies that are tested in clinical trials 111.  

The distinct imaging appearances of these phenotypes is not currently well characterised. 

Cardiac MRI has demonstrated RV function to be more severely affected in BMPR2 patients, 

but CT features are currently an area of research 112. Marrying genetic data with imaging data 

offers the potential to better phenotype patients. 

2.5.3 Prognostication  

2.5.3.1 Predicting treatment response and survival 
In Idiopathic Pulmonary Fibrosis (IPF), texture based QCT of lung parenchymal disease 

patterns was superior to both visual scoring and traditional lung function tests in predicting 

outcomes 113. QCT specific lung texture patterns were also found to be an independent 

predictor for survival when comparing short term interval changes between two scans 114. For 

radiologist interpretation, only the overall disease progression was a predictor, and not specific 

lung features. Models have also demonstrated the ability to identify and select patients who 

would be steroid responders 115. In chronic hypersensitivity pneumonitis, extent of fibrosis and 

reticulation independently predicted time to death or lung transplantation 116. Another study 

found severity of traction bronchiectasis and honeycombing to predict mortality 117. As an 

example of going beyond conventional metrics such as lung function tests, severity of traction 
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bronchiectasis on HRCT was found to be an independent predictor for mortality in those 

patients that had marginal annual forced vital capacity (FVC) declines 27.  

In COPD, large longitudinal multicentre prospective trials such as COPDGene and 

SPIROMICS include QCT data to better understand the disease process 118,119. The results of 

these studies have found the impact of QCT metrics on a vast range of outcomes 120,121. In 

emphysema, lung volume reduction surgery is a treatment in which disease distribution pattern 

and fissure integrity are important predictors of success 122. Regional quantification by QCT 

models here has shown to predict postoperative lung function, thereby aiding clinical decision 

making 123. These findings demonstrate the prognostic potential of QCT in PH. 

2.5.3.2 Imaging biomarkers as clinical endpoints 
Traditional biochemical biomarkers in PAH include B-type natriuretic peptide (BNP) and N-

terminal pro-brain natriuretic peptide, which non-specifically correlate with myocardial 

function and pulmonary haemodynamics 7. These are routinely used in practice to inform 

clinical opinion.  

Imaging biomarkers are imaging features of pathological conditions 124. Traditional CT imaging 

biomarkers in PH include mPA size and secondary signs of heart failure such as inferior vena 

cava dilation, pleural effusions and septal lines 28. A mPA size >29 mm has 97% positive 

predictive value for PH and a PA to ascending aorta ratio >1 is 92% specific for a raised mean 

arterial pressure >20 mmHg 30,31,125. Quantitative CT enables more complex biomarkers that 

can combine multiple measurements or perform higher level textural analysis to create a model 

that could be then validated to be diagnostic or prognostic value. Whilst the majority of studies 

focus currently on the analytical performance of such models, Swift et al last year validated a 

CT model against clinical outcomes to demonstrate both diagnostic and prognostic value in 

suspected PH 29.  

Current assessment tools in PH clinics and endpoints used in clinical trials such as the 6 minute 

walking distance and right heart catheterisation are limited in part by their insensitivity to 

change and invasive nature, respectively 30. As highlighted by the Pulmonary Vascular 

Research Institute statement on imaging in PH, there is a need to identify new tools for both 

clinical use and for use as endpoints in studies 30. There is particularly an unmet need for 

biomarkers that can help differentiate between PAH and PH-Lung 47. Imaging biomarkers 

identified by QCT metrics may help solve this clinical dilemma.  

Repeatable and quantifiable imaging biomarkers can measure treatment response and are 

currently being used as endpoints for clinical investigations and trials in emphysema and ILD 
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30,126,127. QCT metrics have been shown to predict outcomes better than lung function tests in 

ILD 27,113.  

2.5.3.3 Enabling precision medicine and big data analysis 
The numerical nature of QCT derived imaging biomarkers naturally integrates well with big 

data analysis in precision medicine. Precision medicine is a process of enabling targeted 

tailored therapies to patient groups through deep phenotyping of patients 128. The goal is 

bringing together data from genetics, imaging, immunology/histology and traditional clinical 

assessment in a holistic manner to refine diagnosis and offer target therapies that improve 

outcomes. PH as a heterogeneous condition with distinct sub-phenotypes is well suited for 

precision medicine. A multi-domain and multimodality approach is already established for 

clinical assessment. The 10th biannual symposium of the International Society for Strategic 

Studies in Radiology recognised the implementation of quantitative imaging as critical to this 

goal 129. It highlighted how imaging findings have strong yet currently untapped potential to 

guide patient care and influence outcome through imaging-based biomarkers.  

2.6 Limitations, Challenges, and Solutions  
The promise and potential of AI should be tempered by a realistic, pragmatic understanding of 

current limitations. We highlight three limitations to chest QCT and discuss three challenges 

faced by all ML, radiomic and imaging biomarker studies. 

2.6.1 Limitations in Quantitative CT Research 

2.6.1.1 Variations in data 
A large number of steps exist within the imaging data pipeline, each of which can add variation 

and noise to the data. These include CT image acquisition parameters, reconstruction, 

segmentation, feature-extraction and post-processing algorithms. These factors reduce the 

robustness, performance, and generalisability of radiomics or imaging biomarker approaches, 

including quantitative CT. 

Solutions are therefore an active area of research. The Image Biomarker Standardisation 

Initiative and groups such as the Quantitative Imaging Biomarker Alliance, and the Association 

of University Radiologists Research Alliance Quantitative Imaging Task Force are dedicated to 

such solutions 80,130,131. These range from standardisation of imaging protocol to more recent 
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algorithms and data processing techniques that limit variance. The SPIROMICS study 

developed an imaging protocol specifically for Chest QCT 119. Pyradiomics is a flexible open-

source approach to feature extraction, allowing for more widespread reproducible feature 

analysis 132. Differences in extracted features between different CT scanners can be tested with 

physical phantoms to understand the underlying variation 133. These features can then be 

standardised amongst protocols to account for this invariance 124,134. Differences in slice 

thickness, voxel sizes and convolutional kernels can be normalised using a range of approaches 

such as voxel-size resampling, batch effect correlation, and grey-level normalisation 135–137. A 

predictive internal calibration approach was shown to improve performance of emphysema 

prediction in a COPD study 138. Moving to an ML based automated approach for segmentation 

has higher accuracy and reduced variability compared to manual segmentation 139. For DL 

approaches, domain adaptation and transfer learning are approaches insensitive to data 

heterogeneity 124,140,141. Convolutional neural networks have been shown to dramatically 

improve the similarity of CT radiomic features obtained with different imaging reconstruction 

algorithms and kernels 142.  

2.6.1.2 Inspiration, breathing and motion artefacts 
Differences in lung volume secondary to inspiratory effort and artefacts from breathing and 

cardiac motion are inherent to chest CT 143. They limit traditional visual asessment for 

radiologists and can lead to misinterpretation, as pulmonary density is influenced by respiratory 

phase. For a quantitative approach, these must be minimised to avoid errors propagating 

throughout the pipeline. Failure to do so can lead to errors where the disease is improperly 

quantified. Solutions include use of modern scanners with rapid acquisition times and larger 

detectors, clear instructions to patients to explain the importance of breath holding, and data 

techniques to adjust for variability. Parametric response mapping is a method where volumetric 

non-rigid registration of both inspiratory and expiratory scans are fused 144. The overall lung 

volume can be quantified to alert for differences and used to normalise or weight measurements 
145. D 

 

 

 
D A limitation of this approach is if there is only a single scan series at one time point (for example, baseline 
incident scan). Variations in lung inflation and motion artefact then cannot be accurately accounted for or 
corrected by the algorithm. 
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2.6.1.3 Lack of studies involving intravenous contrast 
Most QCT applications to date use non-contrast CT. In PH, most studies involve intravenous 

contrast and are performed as a CT Pulmonary Angiogram (CTPA). Intravenous contrast 

increases the opacification of the lung parenchyma due to perfusion of a high density contrast 

media throughout the pulmonary vessels and lung parenchyma. Whilst the volume and speed of 

contrast material administered is routinely standardised, there can be variability between scans 

in the extent of contrast uptake within lung parenchyma. In pulmonary nodule characterization 

studies, this variability was reduced by acquiring images between 60-150 seconds post injection 
124,146. We found only one study assessing lung parenchymal patterns in contrast Chest CT, 

finding significant difference in mean lung density in patients with pulmonary embolism 147. 

This is an area in need of further research. Can the existing algorithms trained on non-contrast 

CT be applied to CTPA? Can they be adapted using additional information such as density of 

contrast in main pulmonary arteries and cardiac chambers? 

2.6.2 Current challenges facing machine learning research 

2.6.2.1 High-quality training data is hard to obtain 
Development of any algorithm requires robust training data - both in quantity and quality. The 

performance of ML models improves logarithmically with increased volume of training data 

available 148–150. As the algorithm ‘learns’ through feature recognition, the quality of the 

training cohort fundamentally shapes its performance. An ideal training data set is contextual to 

the problem it seeks to address, expertly labelled, quality controlled against imaging artefacts 

and noise, and appropriately powered for its clinical use. It should follow the FAIR principles 

of scientific data management and stewardship - be Findable, Accessible, Interoperate and 

Reusable 151. The lack of high-quality labelled training data is a limitation throughout all 

domains of ML research. Carefully preparing, validating and labelling training data often form 

the bulk of the development work 150.  

All patient identifiable information needs to be carefully removed from any imaging data set 

prior to use. Although standards exist for medical imaging data such as DICOM, they are only 

loosely adhered to, with wide variation in the metadata 150. Patient information can be difficult 

to remove, and at times hard coded into the imaging data. Clinical governance standards are 

stricter for medical data, and mandate secure data management and storage solutions. 

To address these challenges, standardised and data validation systems have been proposed. 

Kohli et al proposed an extensive 16 point baseline metadata list to consider to catalog medical 
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imaging data 152. A Medical imaging DAta Readiness (MiDAR) scale has been proposed as a 

four-point framework that assesses the readiness of medical imaging data for development 150. 

All AI studies should have a data preparation and quality control framework that ensures 

training data robustness. 

2.6.2.2 Lack of external multi centre validation and prospective studies 
ML algorithms should be validated in external multi-centre cohorts to avoid overfitting. 

Overfitting describes the ML model being exceedingly narrow in its performance, such that it 

learns from noise and other specific quirks of the training data. Therefore, its performance 

degrades on external validation cohorts when other variances and variables are present. 

Overfitting is a major obstacle that hinders generalisability - the application of the clinical 

model in other similar cohorts or centres. This can be minimised by using a large, diverse 

training dataset and performing techniques such as augmentation, regularisation and dropout 
153. 

Of 82 studies describing 147 patient cohorts that compared AI performance vs health care 

professionals, Liu et al found only 25 performed external validation 70. Of these, only 14 used 

the same sample for comparison. Another review found only 9 to be prospective and 6 to be 

tested in a real world clinical setting 154. Both reviews found a high risk of potential bias in the 

validation procedures and poor methodology in study design. These findings highlight the need 

for further prospective studies designed with external multi-centre validation as a primary 

target. The need for generalisability inherently has the trade-off for poorer performance across 

those several centres over stronger performance at a single centre 155. The retrospective nature 

of studies leads to large variations in imaging protocols, sample sizes and AI approaches. There 

is a need for standardisation in reporting practices 156. In late 2020, SPIRIT-AI (Standard 

Protocol Items: Recommendations for Interventional Trials-Artificial Intelligence) and 

CONSORT-AI (Consolidated Standards of Reporting Trials-Artificial Intelligence) standards 

were published to help improve this in the context of interventions and clinical trials involving 

AI 157,158. 

2.6.2.3 ‘Black box’ and interpretability 
DL approaches by design have multiple hidden layers that obscure the decision-making 

process. This lack of transparency has been labelled a ‘black box’ problem. Approaches are 

being developed that offer more insight to improve interpretation, such as through visualisation 

of features159. Medical systems and workflows value interoperability as assumptions can be 
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checked and errors appropriately evaluated. There are debates from a legal, regulatory and 

accountability standpoint regarding the suitability of such systems. Explainable and 

interpretable AI therefore is a field which is getting more interest. 160. In the near future, we 

expect QCT models to serve as an adjunct to visual assessment. Therefore, AI and ML systems 

which are more clinically comprehensible and better integrated into current clinical imaging 

workflows will be preferred. 

2.7 Conclusion 
Leveraging the power of ML has demonstrated significant breakthroughs in a range of lung 

diseases. These can be applied to improve both radiological assessment and clinical 

management in pulmonary hypertension. Quantitative imaging in particular can lead to a data-

driven decision-making process which combines clinical, physiological, genetic and 

radiological data for better assessment. This would help answer the topical clinical and 

radiological problems in the field - helping with better phenotyping and assessment for 

treatment decisions. Once validated, imaging-based biomarkers can help assess treatment 

response and therefore can be used as endpoints in clinical trials. The growing use of AI will 

help reduce errors, increase productivity, and can enable a precision medicine approach to 

pulmonary hypertension. 

It is, however, important to be realistic and pragmatic about the current state of medical 

imaging using AI, with a clear understanding of its limitations. AI has been shown to excel in 

the narrow domain sensory image perception and identification tasks. It however does not have 

the ability to make broader assessments away from its domain, recognise the larger context of 

its use or even appraise if it is being deployed appropriately. This role falls to humans. Current 

AI should best be viewed and used as a specific tool in a validated narrow clinical context. 

Going forward, further prospective, large multi-centre studies are required to better assess 

technical development in clinical settings. Studies using clinically meaningful endpoints for AI 

algorithms such as treatment response and survival are preferred over purely technical 

performance in image classification.  

In conclusion, for physicians managing patients with PH and associated lung disease, it is 

hoped that the application of AI approaches to CT imaging, may “come to the rescue” by 

providing mechanistic insights and improved phenotyping and by doing so facilitate much 

needed therapy trials. 
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3 Methodology: building clinico-radiological 

database 
 

This chapter outlines the steps taken to build the clinico-radiological database used throughout 

the thesis. Methods for specific analysis are provided in each in each individual chapter. 

3.1 Raw ASPIRE registry data 

3.1.1 Clinical data 
The ASPIRE (Assessing the Spectrum of Pulmonary Hypertension Identified at a Referral 

Centre) is a large database of all consecutive patients referred to the Sheffield Pulmonary 

Vascular Diseases Unit (SPVDU), based in Sheffield Teaching Hospitals NHS Trust. As PH is 

a rare and complex disease, management for adults in the UK is limited to nine specialist 

tertiary referral centres. SPVDU is the largest PH referral centre in the UK, and sees 

approximately one in every four patients in the UK5. This makes it internationally one of the 

largest PH centres. 

 

All patients referred undergo comprehensive clinical and radiological assessment. This includes 

a review with a specialist PH consultant and investigations such as echocardiogram (ECG), 

chest X-ray (CXR), right heart catheterisation (RHC), High resolution Chest CT (HRCT), CT 

pulmonary angiography (CTPA), cardiac MRI, MR angiography (MRA), and isotope perfusion 

scan (Q scan). All patients are discussed in a multidisciplinary team (MDT) involving clinicians 

from respiratory, cardiology, radiology and interventional radiology. 

 

Data from the above investigations and MDT outcome is documented and stored electronically 

in multiple systems. Most clinical data is stored on ‘Infoflex’ and ‘ICE’; radiological data is 

stored on a Picture Archiving and Communication System (PACS), and mortality data is stored 

in the NHS Personal Demographics Service. Data such as patient smoking history is only 

available through manual review of clinical notes and letters. The ASPIRE database has been 

built, maintained, and added to through the contributions of several researchers over the years 

within SPVDU. 
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The database is hosted on encrypted secured shared University storage. All imaging is de-

identified at point of transfer from NHS PACS system to the research POLARIS XNAT 

imaging database. The de-identification is performed by Clinical Scientists with appropriate 

training. Patients are given a unique ‘PHD_’ identifier which is then used for matching with the 

ASPIRE clinical database. A separate spreadsheet, stored in a different location on encrypted 

storage, contains the link between the patient’s hospital numbers and unique ‘PHD_’ 

identifiers. There is a dedicated data management plan in place for this data. 

3.1.2 CT imaging data 
CT scans in Sheffield are typically acquired on a light-speed 64-slice MDCT scanner (GE 

Healthcare). Standard acquisition parameters are: 100 mA with automated dose reduction, 120 

kV, pitch 1, rotation time 0.5s and 0.625 mm collimation. There can be variation in these 

parameters due to different pre-set settings and inbuilt algorithms which automatically adjust 

acquisition parameters based on factors such as patient body mass index. There can also be a 

variation in between scanner types and scanner manufacturers, each of which can have different 

default acquisition parameters and adjustment algorithms. A 400 mm × 400 mm field of view 

with an acquisition matrix of 512 × 512 is a standard parameter for all CT.  

 

The routine scanning protocol for a PH patient in Sheffield involves a volumetric CT 

pulmonary angiogram (CTPA), with High Resolution CT (HRCT) reconstructions and 

additional sequential expiratory slices. Slice thickness is currently set at 0.5 mm. HRCT was 

historically a term used for highly collimated CT acquisition, to enable better spatial resolution 

for image analysis. Acquisition could either be volumetric (continuous acquisition with no 

gaps) or sequential (gaps in between slices). Modern CT scanners have made significant 

advantages in dose reduction through multiple different scientific and technical advantages, 

such as algorithmic iterative reconstruction, wide detector arrays and low tube potential161. 

CTPA scanning involves the administration of intravenous contrast to opacify the pulmonary 

vascular structures. Scans performed by the National Health Service (NHS) Sheffield Teaching 

Hospitals (STH) NHS Trust are stored in their Picture Archiving and Communication System 

(PACS) as a DICOM (Digital Imaging and Communications in Medicine) file. These scans are 

linked to the patient with multiple parameters such as a unique hospital number, date of birth 

and NHS number. 
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The POLARIS (Pulmonary, Lung and Respiratory Imaging Sheffield) XNAT database is a 

platform hosted at the servers of the Academic Unit of Radiology at the University of Sheffield. 

It stores pseudonymised medical imaging data, which is only accessible through appropriate 

authentication. Each patient has a unique identifier, which can be linked to their hospital 

number via a codex sheet. Download of data from STH PACS to POLARIS XNAT is done by 

Clinical Imaging Scientists to ensure it is appropriately anonymised, stored and secured.  

3.2 Merging imaging and clinical data 
I downloaded all DICOM CT scan series of patients identified from the ASPIRE registry. Each 

DICOM file contain metadata and technical information. This includes scanner type, 

manufacturer, number of series, individual series ID, kernel and reconstruction algorithms used, 

x and y spacing, slice thickness, kvp, number of slices, date, orientation, study and series ID. 

This information was extracted directly from the DICOM file into a .csv file using a python 

script. The script was written by Michael Sharkey, Clinical Scientist. 

 

Data from all sources – ASPIRE, POLARIS XNAT, NHS Personal Demographics Service, and 

raw DICOM information, was merged used ‘R’ software (major version 4) into one database 

file. Multiple unique identifier (such as hospital number, date of birth, date of study) were used 

to match across databases to create the imaging database for the study. I wrote all the R scripts 

to perform the merge. I also maintained and updated the database with new data throughout the 

thesis. 

3.3 Quality control and manual radiological review  
The aim of data quality control and radiological review is to take raw NHS data and transform 

it to be appropriate for AI development. This stage is vital to success of the project, and is often 

a limiting step as it is the most time consuming, and requires specialist domain expertise150. All 

steps here were taken by me (speciality trainee radiologist with Fellowship of the Royal 

College of Radiologists), and supported by the supervisor (specialist Cardiothoracic 

Radiologist). All analysis was done in R, with scripts written by me. 

 

The MIDaR scale is a standardised approach for preparing medical data for machine learning 

tasks in radiology150. It incorporates the FAIR guiding principles for scientific data 

management and stewardship of Findable, Accessible, Interoperable and Reusable151. The 
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MIDaR scale ranges from level D where data is inaccessible, un-anonymised and immeasurable 

in terms of quality and quantity to level A where data is contextual, annotated and appropriately 

powered for studies and AI development.  

 

Each CT scan event is stored as a single ‘study’ DICOM file with a unique ‘study ID’. Each 

‘study’ can contain multiple scans, each termed a ‘series’. Each ‘series’ is a distinct acquisition 

event. For example, a single PH Chest CT ‘study’ typically contain three different scan 

acquisitions (‘series’) – volumetric CTPA, volumetric HRCT construction, and sequential 

HRCT expiratory slices.  

 

I manually reviewed each scan ‘series’ within each ‘study’The parameters I evaluated were: 

1. Scan acquisition type  

2. Radiologically acceptable scan quality, defined as: 

a. No severe breathing or motion artefact 

b. No severe noise 

c. ‘Complete’ scan in which the entire chest is imaged in the study  

3. Contrast phase (CTPA phase required) 

4. Slice thickness <1.25 mm   

 

Of 900 scans, 564 were thin slice CTPA scan with radiologically acceptable scan quality. The 

main reason for excluding scans was incorrect scan acquisition type and errors in the coded 

DICOM information. The DICOM file may have been labelled as ‘CTPA’ but upon review it 

was not performed in the right phase, did not contain contrast, or had thick slices. 12 were 

excluded due to breathing or motion artefact. Two cases were excluded due to lobectomy.  

 

This information was added onto the database. For scans with multiple series, information for 

each series was added as separate columns. This ensured the database was at a patient level and 

represented ‘tidy’ data, with each row identifying a unique patient. ‘Tidy data’ refers to a 

structured database which is suited for programmatic statistical analysis162. Every column is a 

unique variable, every row is a unique observation, and every cell is a single value. Although 

time consuming, the manual review and data tidying stages were essential for establishing 

confidence in the data prior to any clinical analysis or AI development.
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Take home message / shareable abstract: Routine radiological reports describing extent of 

CT lung parenchymal disease can identify groups of patients IPAH and CLD-PH with 

significantly different prognoses.  
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4.1 Abstract 
 

Background: Patients with pulmonary hypertension (PH) and lung disease may pose a 

diagnostic dilemma between idiopathic pulmonary arterial hypertension (IPAH) and PH 

associated with lung disease (PH-CLD). The prognostic impact of common CT parenchymal 

features is unknown. 

 

Study Design and Methods: 660 IPAH and PH-CLD patients assessed between 2001-19 were 

included. Reports for all CT scans one year prior to diagnosis were analysed for common lung 

parenchymal patterns. Cox regression and Kaplan-Meier analysis was performed.  

 

Results: At univariate analysis of the whole cohort, centrilobular ground glass (CGG) changes 

(Hazard Ratio, HR 0.29) and GGO (HR 0.53) predicted improved survival while 

honeycombing (HR 2.79), emphysema (HR 2.09) and fibrosis (HR 2.38) predicted worse 

survival (p all <0.001). Fibrosis was an independent predictor after adjusting for baseline 

demographics, PH severity and DLco (HR 1.37, p<0.05). Patients with a clinical diagnosis of 

IPAH who had an absence of reported parenchymal lung disease (IPAH-noLD) demonstrated 

superior survival to patients diagnosed with either IPAH who had coexistent CT lung disease or 

PH-CLD (2-year survival of 85%, 60% and 46% respectively, p<0.05). CGG changes were 

present in 23.3% of IPAH-noLD and 5.8% of PH-CLD patients. There was no significant 

difference in survival between IPAH-noLD patients with or without CGG changes. PH-CLD 

patients with fibrosis had worse survival than those with emphysema. 

 

Interpretation: Routine clinical reports of CT lung parenchymal disease identify groups of 

patients IPAH and CLD-PH with significantly different prognoses. Isolated CGG changes are 

not uncommon in IPAH and are not associated with worse survival.  
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4.2 Introduction 
 

Pulmonary hypertension (PH) is a heterogenous, progressive and incurable condition associated 

with significant morbidity and mortality. Five classification groups with similar clinical and 

pathological characteristics are described including group 1 (Pulmonary Arterial Hypertension, 

PAH) and Group 3 (PH due to chronic lung disease and/or hypoxia, PH-CLD)6. PH-CLD most 

commonly complicates chronic obstructive pulmonary disease (COPD) and/or emphysema, 

interstitial lung disease (ILD) and alveolar hypoventilation23,26,34,35. Patients with PH-CLD 

typically present with mild to moderate PH, although a small proportion of patients have severe 

PH. In contrast patients with idiopathic PAH tend to have more severe PH at presentation. 

Accurate classification of the form of PH is important as it informs prognosis and impacts on 

treatment decisions. In PH-CLD the importance of haemodynamically characterising disease 

severity has also been highlighted51,163,164  

 

In practice, distinguishing between IPAH and PH-CLD may be challenging 47. 

Recommendations from the 6th World Symposium on PH recommended that patients with 

minor lung disease, who otherwise meet criteria for IPAH, may be considered to have IPAH 26. 

More recently it has been suggested that those with mild lung disease who are 

haemdynamically similar to IPAH with a so-called  “pulmonary vascular phenotype”23,36 are 

not part of the IPAH continuum but a different entity closer to PH-CLD165. We have recently 

demonstrated that the presence of a reduced diffusion capacity for carbon monoxide (DLco) 

percent predicted (<45%) is associated with poorer survival and response to PAH therapy in 

patients diagnosed with IPAH 42, in a carefully phenotyped population with minor lung disease 

were excluded. Hoeper et al subsequently identified a cluster amongst patients diagnosed with 

IPAH characterised by older age, frequent comorbidities, a higher proportion of males and a 

reduced DLco 166     

 

In addition to pulmonary function assessment, many patients undergoing assessment for 

suspected PH also undergo chest CT imaging. We therefore hypothesised that descriptions of 

lung parenchyma at routine radiological reporting could be used to predict outcomes in patients 

with IPAH and PH-CLD. 
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4.3 Methods 

4.3.1 Patient cohort 
Patients assigned a diagnosis of IPAH, Hereditary PAH (HPAH), or PH-CLD between 

February 2001 and January 2019 were identified from the ASPIRE registry (a database of 

consecutive patients referred to the Sheffield Pulmonary Vascular Diseases Unit). All patients 

underwent comprehensive multimodality assessment including right heart 

catheterisation. Patients with PH-CLD associated with conditions other than COPD and/or 

emphysema or ILD were excluded. Patients with two or more radiological features of possible 

pulmonary veno-occlusive disease (centrilobular ground-glass opacities, significant mediastinal 

lymphadenopathy and interlobular septal lines) were also excluded 167. 

4.3.2 CT analysis 
All CT scans, including those performed externally, were reported by specialist cardiothoracic 

radiologists with expertise in pulmonary hypertension. Patients were assigned diagnoses 

following a multidisciplinary meeting. The clinical reports of CT scans performed in the year 

prior to diagnosis were retrieved. Reports were searched using a regular expression string-

search function for mention of 6 specific lung parenchymal patterns - centrilobular ground glass 

(CGG) changes, ground glass opacification (GGO), honeycombing, consolidation, fibrosis, and 

emphysema. Each result was manually validated to ensure they represented a true positive. 

Reports containing false positive phrases such as ‘no evidence of emphysema’ were not 

counted. The radiologist (KD) who reviewed the CT reports was blinded to the results of other 

investigations. E 

4.3.3 Clinical and morality data 
Clinical data collected included age, sex, World Health Organization (WHO) functional class 

(FC), pulmonary haemodynamics obtained at right heart catheterisation and pulmonary 

function tests. Mortality data were obtained from systems linked to the National Health Service 

Personal Demographics Service (PDS), which is updated when a death is registered in the UK. 

 

 

 
E Further detail discussed in the viva. ‘Minor’ disease was coded as ‘mild’ disease. ‘Mild to moderate’ was coded 
as ‘moderate’ and ‘moderate to severe’ was coded as ‘severe’. 
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Patients who emigrated (n=3) were excluded, as were patients without a record on the PDS 

(n=2). Patients undergoing lung transplantation were censored at the time of surgery, and 

mortality data were collected using a census date of May 31, 2019. 

4.3.4 IPAH sub-group analysis 
Patients with an initial diagnosis of IPAH but with a radiological report of a degree of 

emphysema or fibrosis were reclassified as ‘IPAH-Lung Disease’ (IPAH-LD). The remainder 

of the patients were classified as IPAH-no Lung Disease (IPAH-noLD). Separate analysis also 

compared the effect of patients with initial diagnosis of IPAH and CGG changes. Patients with 

no significant lung disease and CGG were reclassified as ‘IPAH-CGG’. Survival and group 

comparison was performed between IPAH-CGG, IPAH-LD and IPAH-noLD. Those with both 

CGG and significant lung disease (n=8) were excluded from this sub-group analysis.   

4.3.5 Statistics 
Analysis was performed using R statistical software package using version 4.0.3, using 

packages ‘tidyverse’ and ‘survminer’, and SPSS version 26.0 (IBM Corp). Continuous data is 

presented as mean±SD (compared using paired/unpaired t-tests) or median (interquartile range) 

for nonparametric data (compared using Wilcoxon signed-rank/Mann–Whitney U-tests). 

Frequencies are compared using the Chi-square test. Categorical variables are shown in 

magnitude and percentage.  

 

Cox proportional hazard’s regression was used to determine association between different CT 

parenchymal features and survival. Hazard ratios are presented with 95% confidence intervals. 

Three separate multivariate models were created. Model 1 adjusted for patient demographics: 

age, gender and WHO functional class.  Model 2 adjusted for all demographics and additionally 

mPAP. Model 3 adjusted further for diffusing capacity for carbon monoxide (DLco).F  Kaplan–

 

 

 
F Model 3 includes DLCO, which is known to be prognostic and correlate with extent of emphysema and fibrosis. 
This analysis was performed to see if the CT features are prognostic in addition to the effect of DLCO. A 
limitation of this analysis is that a small prognostic effect of CT features will be ‘subtracted’ and therefore not 
meet statistical significance in emphysema and fibrosis. The three separate prognostic models were used in the 
methodology to allow us to investigate, and account for this effect, as model 2 does not include DLCO. This has 
been discussed in the discussion section of this paper.  
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Meier survival curves were compared using the log-rank test, truncated at 5 years. Group 

comparisons were made with two-tailed ANOVA with post-hoc Bonferroni correction. 

4.3.6 Ethics 
Ethical approval was granted by Sheffield Teaching Hospitals NHS Foundation Trust 

(STH14169) and approved by the National Research Ethics Service (16/YH/0352). All research 

was conducted in agreement with the Declaration of Helsinki and the European General Data 

Protection Regulation. 
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4.4 Results 

4.4.1 Patient characteristics  
 

From 5643 patients diagnosed with all forms of pulmonary hypertension, 660 patients met the 

inclusion criteria and formed the main study cohort (Figure 1). This included 335 patients 

diagnosed with IPAH and 325 with PH-CLD, who formed the sub-groups for analysis. Patients 

with PH-CLD were more frequently male (58% vs 39%, p<0.001), older (67 ±17 years vs 60 

years ±17 years, p<0.001), had lower mPAP (42 ±10 mmHg vs 53 ±12mmHg, p<0.001) and 

DLco (28 ±14% vs 44 ± 20%, p<0.001) compared to those diagnosed with IPAH (table 1). 

Two hundred and eighty-three (43%) patients had imaging performed externally. RHC data was 

available in 100% and PFT data in 95% of patients. 

4.4.2 Cox regression analysis 
 

Univariate regression results for demographics, clinical parameters and CT features are shown 

in Table 2. Being older, male, and having a higher WHO Functional Class were significant 

univariate predictors of poor survival across all groups. Table 3 shows the results for the 

different multivariate regression models performed on significant univariate variables.  

4.4.2.1 Main Cohort 
CGG changes (HR 0.29, 0.17-0.50) and GGO (HR 0.53, 0.38-0.74) were significant (p<0.001) 

predictors of improved survival at univariate analysis while honeycombing (HR 2.79, 1.57-

4.99), emphysema (HR 2.09, 1.71-2.56) and fibrosis (HR 2.38, 1.94-2.91) were significant 

predictors of poor survival (p all <0.001). After adjusting for the impact of age, gender and 

WHO FC in multivariate model 1, CGG changes (HR 0.50, 0.28-0.89, p=0.01), emphysema 

(HR 1.48, 1.21-1.83, p<0.001) and fibrosis (HR 1.75, 1.42-2.15, p<0.001) remained significant 

predictors of outcome. These parameters were also significant predictors of mortality in model 

2 after additionally adjusting for the severity of PH. In model 3, fibrosis (HR 1.37, 1.09-1.73, 

p=0.008) remained an independent predictor after additionally adjusting for DLco.  
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4.4.2.2 IPAH 
In patients assigned a diagnosis of IPAH, the presence of CGG changes (HR 0.44, 0.25-0.78, 

p=0.005) or GGO (HR 0.52, 0.32-0.86, p=0.01) predicted improved outcomes while the 

presence of any degree of emphysema (HR 2.74, 1.96-3.81, p<0.001), fibrosis (HR 2.48, 1.76-

3.50, p<0.001) or honeycombing (HR 3.72, 1.37-10.1, p=0.01) were significant univariate 

predictors of increased mortality. Subgroup univariate analysis of IPAH patients with no degree 

of parenchymal lung disease demonstrated that CGG changes and GGO no longer significantly 

predicted survival (table A1).  In multivariate model 1 of the overall IPAH group, only the 

presence of emphysema (HR 1.72, 1.22-2.42, p=0.002) remained a significant predictor. 

Emphysema was also a significant prognostic factor in model 2 (HR 1.76, 1.24-2.49, p=0.002) 

but not in model 3 (p=0.3).  

4.4.2.3 PH-CLD 
Fibrosis (HR 1.83, 1.04-4.30, p<0.001) and honeycombing (HR 2.11, 1.04-4.30, p=0.039) were 

significant predictors of mortality at univariate analysis while the presence of emphysema or 

GGO did not predict mortality. Fibrosis was an independent predictor in all multivariate 

models, including after adjustment for DLco (Model 3, HR 1.46, 1.09-1.96, p<0.001). 

Honeycombing was not a significant predictor in any of the multivariate models. 

 

4.4.3 Prognostic effect of extent of emphysema and fibrosis 
Increasing extent of both emphysema and fibrosis derived from radiology reports was 

associated with increasing risk of mortality in the whole cohort at univariate analysis 

(Emphysema; mild: HR 1.78 (1.3-2.43), moderate: HR 2.18 (1.69-2.81), severe: HR 2.92 (2.15-

3.97). Fibrosis; mild: HR 1.94 (1.46-2.58), moderate: 2.77 (1.99-3.85), severe: 3.19 (2.3-4.43), 

table 2). A similar pattern was observed in the IPAH group while in the PH-CLD group the 

presence of emphysema was not associated with significant increased mortality. 

 

4.4.4 Kaplan-Meier survival analysis stratified by CT Features 
The Kaplan-Meier survival curves for each cohort are presented in figure 2. In the full cohort, 

survival was significantly worse in patients with any form of parenchymal lung disease 
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(p<0.001 in all). Survival was also significantly worse in patients with reported fibrosis 

compared to emphysema (p=0.023).  

 

In patients diagnosed with IPAH, the presence of any parenchymal lung disease was associated 

with significantly poorer survival (p all<0.001) with no significant difference in survival 

between patients with the different forms of lung disease. There was no significant difference in 

survival between patients with isolated CGG compared to those with no reported parenchymal 

abnormalities (p=0.57). 

 

In patients diagnosed with PH-CLD, survival in patients with emphysema was superior to 

survival in patients with fibrosis (p=0.02). Although some evidence of improved survival was 

observed between patients without parenchymal lung disease compared to those with 

emphysema, differences between groups did not meet conventional levels of statistical 

significance (p=0.09).  

 

4.4.5 IPAH sub-group analysis  

4.4.5.1 Impact of lung disease in IPAH compared to PH-CLD 
Patients with an initial clinical diagnosis of IPAH (n=335) were firstly reclassified as either 

IPAH-lung disease (IPAH-LD, n=138) or IPAH-no lung disease (IPAH-noLD, n=197), based 

on the presence or absence of emphysema and/or fibrosis. Survival in patients with IPAH-noLD 

was significantly superior to patients with IPAH-LD or PH-CLD (p<0.001, figure 3). Patients 

with IPAH-LD were distinct from those diagnosed with PH-CLD with less severely impaired 

spirometry but more severely abnormal pulmonary haemodynamics (table A2). There was no 

statistically significant difference in survival (p=0.065)  in patients with PH-CLD when 

compared to IPAH-LD. Two-year survival for patients with IPAH-noLD, IPAH-LD and PH-

CLD was 85%, 60% and 46%, respectively (table A3).   

4.4.5.2 Impact of CGG  
The impact of CGG changes on characteristics and survival of patients with an initial clinical 

diagnosis of IPAH (n=335) was then assessed. CGG changes were uncommon in patients with 

co-exisiting lung disease (being present in 8/138 patients (5.8%) with IPAH-LD, table A2) 

compared with patients with no co-existing lung disease (being present in 46/197 patients 
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(23.3%), table 4). Eight patients who had both CGG changes and parenchymal lung disease 

were excluded from this analysis. One hundred and thirty patients with emphysema or fibrosis 

were therefore reclassified as IPAH-LD, 46 patients with CGG changes as IPAH-CGG and 151 

patients with no parenchymal abnormalities as IPAH-noLD. Patients with IPAH-CGG had 

more severe PH but a similar DLco when compared with patients with IPAH-noLD (table 4). 

Patients with IPAH-LD were older, with a greater proportion in WHO FC IV and less severe 

PH but a lower DLco than patients with IPAH-noLD. There was no significant difference in 

survival between patients with IPAH-noLD and IPAH-CGG while survival in patients with 

IPAH-LD was significantly worse (figure 4). 
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4.5 Discussion  
 

We have demonstrated that parenchymal abnormalities noted at routine radiological reporting 

of CT scans performed in patients with suspected IPAH or PH-CLD have diagnostic and 

prognostic utility. We have also found that isolated CGG changes are not uncommon in patients 

with IPAH and are not associated with lower DLco or worse survival. 

4.5.1 Routine radiological reports of the presence of emphysema or fibrosis 

have diagnostic and prognostic utility in patients diagnosed with IPAH 
 

Differentiating PH-CLD from IPAH is an important part of the PH diagnostic algorithm and 

may be straightforward in the presence of severe lung function abnormalities or severe 

parenchymal lung disease. The presence of less severe degrees of lung disease provides more of 

a diagnostic challenge as has been highlighted by others 47,165. The 6th World Symposium on 

Pulmonary Hypertension (WSPH) task force suggested that patients with significant PH but 

only modest parenchymal abnormalities should be assigned a diagnosis of IPAH26. In the 

present study we found that radiological reports of emphysema or fibrosis in patients who had 

been clinically assigned a diagnosis of IPAH in keeping with the 6th WSPH recommendations 

was associated with significantly worse survival at Kaplan-Meier analysis. This supports the 

comments of Godinas et al who suggest that such patients represent a distinct group from those 

with IPAH being phenotypically closer to PH-CLD165.  

 

 

However, we also observed at Cox regression analysis that this prognostic importance of 

emphysema or fibrosis in patients diagnosed with IPAH was not independent of DLco. The 

prognostic importance of reduced DLco with or without co-existing parenchymal lung disease 

in patients assigned a diagnosis of IPAH has previously been reported. 41,168,169 We have 

previously demonstrated that response to PAH therapies in patients with IPAH-noLD and DLco 

<45% is lower than in patients with IPAH-noLD and DLco ≥45%, while on average patients 

with IPAH-LD exhibit a lack of response to PAH therapies in terms of exercise capacity and 

quality of life.41 Therefore, the identification of emphysema or fibrosis on CT provides 

clinically-relevant information in addition to that provided by DLco alone. 
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4.5.2 Routine radiological reports of the extent and nature of parenchymal 

lung disease have prognostic utility  
 

In addition to the presence of parenchymal lung disease identified at routine reporting being 

associated with worse survival, we also observed that the extent and nature of lung disease 

described at routine reporting provided additional prognostic information. In patients originally 

assigned a diagnosis of IPAH, the extent of emphysema or fibrosis described qualitatively at 

reporting was strongly associated with prognosis. In patients with PH-CLD, the nature of 

parenchymal lung disease impacted on survival with the presence of fibrosis conveying a worse 

prognosis than emphysema, as previously described.50   

4.5.3 Centrilobular ground glass in IPAH 
 

CGG changes in the absence of emphysema or fibrosis were not uncommon, being reported in 

23.3% of those IPAH patients who had no emphysema or fibrosis but were only reported in 

only 5.8% of patients with co-existing emphysema or fibrosis. The nature of CGG changes in 

patients diagnosed with IPAH is not clear. It is possible they represent pulmonary veno-

occlusive disease (PVOD), however we excluded patients with an additional radiological 

feature of PVOD (significant mediastinal lymphadenopathy or interlobular septal lines). 

Furthermore, there was no significant difference in DLco compared to IPAH-noLD patients 

without CGG changes. Nolan et al postulated that they represented cholesterol granulomas 

while Horton et al presented a case report of a patient with fenfluramine-induced PAH with 

diffuse micronodules on CT who had an extensive diffuse plexogenic arteriopathy at lung 

biopsy.170,171  In addition to IPAH, CGG changes have also been commonly described in other 

forms of PAH including PAH associated with connective tissue disease and congential heart 

disease 28. In Eisenmenger syndrome and IPAH it has been postulated that this may be a feature 

of lung neovasulcarity172 173. It is interesting to note that in our study there was no significant 

difference in survival compared with patients with IPAH-noLD at Kaplan-Meier analysis 

despite having significantly more severe pulmonary haemodynamics.  
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4.6 Limitations 
This study has utilised clinical radiological reports involving qualitative descriptions from the 

time of PH diagnosis rather than subsequent quantitative analysis. By using this approach, we 

have, however, been able to demonstrate that features described in routine “real-world” 

radiological reports have the ability to refine diagnostic and prognostic processes. It may well 

be that more in-depth quantitative analysis utilising artificial intelligence algorithms may 

provide superior diagnostic and prognostic information and further studies are therefore 

warranted.49  

 

 

4.7 Conclusion 
CT lung parenchymal descriptions in routine radiological reporting have diagnostic and 

prognostic utility in patients with idiopathic pulmonary arterial hypertension and pulmonary 

hypertension associated with chronic lung disease. Chest CT features should therefore be 

considered in patient assessment and risk-stratification. Patients diagnosed with IPAH who 

have modest lung disease demonstrate unique clinical and survival characteristics and are likely 

to represent a distinct phenotype separate from IAPH. Centrilobular ground glass changes are 

not uncommon in patients with IPAH and are associated with more severe pulmonary 

haemodynamics but non-inferior survival. 
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4.9 Tables 

4.9.1 Table 1: Baseline characteristics.  
 Full 

Cohort 

Subgroups 

Characteristic N = 660 IPAH, N = 

335 

PH-CLD, N = 325 p-

value 

Age at diagnosis 64 (15) 60 (17) 67 (11) <0.001 

Male Gender 318 (48%) 131 (39%) 187 (58%) <0.001 

WHO Functional Class    0.020 

II 78 (12%) 44 (13%) 34 (10%)  

III 398 (61%) 213 (64%) 185 (57%)  

IV 181 (28%) 76 (23%) 105 (32%)  

CT – Centrilobular Ground Glass (CGG) 54 (8.2%) 54 (16%) 0 (0%) <0.001 

CT – Ground Glass Opacification (GGO) 93 (14%) 62 (19%) 31 (9.5%) <0.001 

CT – Honeycombing 15 (2.3%) 5 (1.5%) 10 (3.1%) 0.2 

CT – Consolidation 31 (4.7%) 9 (2.7%) 22 (6.8%) 0.013 

CT – Fibrosis 213 (32%) 72 (21%) 141 (43%) <0.001 

CT – Fibrosis (by severity)    <0.001 

None 447 (68%) 263 (79%) 184 (57%)  

Mild 82 (12%) 54 (16%) 28 (8.6%)  

Moderate 53 (8.0%) 9 (2.7%) 44 (14%)  

Severe 48 (7.3%) 0 (0%) 48 (15%)  
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Unknown 30 (4.5%) 9 (2.7%) 21 (6.5%)  

CT – Emphysema 302 (46%) 98 (29%) 204 (63%) <0.001 

CT – Emphysema (by severity)    <0.001 

None 358 (54%) 237 (71%) 121 (37%)  

Mild 77 (12%) 48 (14%) 29 (8.9%)  

Moderate 129 (20%) 38 (11%) 91 (28%)  

Severe 69 (10%) 5 (1.5%) 64 (20%)  

Unknown 27 (4.1%) 7 (2.1%) 20 (6.2%)  

CT – CPFE 101 (15%) 32 (9.6%) 69 (21%) <0.001 

mPAP (mmHg) 47 (13) 53 (12) 42 (10) <0.001 

mRAP (mmHg) 10.2 (5.6) 11.4 (5.8) 9.0 (5.1) <0.001 

PAWP (mmHg) 11.3 (3.8) 10.8 (3.3) 11.8 (4.2) 0.002 

Cardiac output (L/min) 4.65 (1.66) 4.31 (1.62) 5.00 (1.64) <0.001 

Cardiac index (L/min/m2) 2.53 (0.87) 2.32 (0.81) 2.73 (0.87) <0.001 

PVR (Wood Units) 9.0 (5.1) 11.0 (5.2) 7.0 (4.1) <0.001 

SvO2 % 63 (9) 61 (9) 65 (8) <0.001 

FEV1 % predicted 72 (25) 83 (18) 60 (25) <0.001 

FVC % predicted 88 (26) 96 (20) 80 (28) <0.001 

FEV1 / FVC Ratio 66 (15) 71 (10) 61 (18) <0.001 

DLco % predicted 37 (19) 44 (20) 28 (14) <0.001 

Table 4.1: Baseline characteristics 

Data are presented as number (percentage) or mean (standard deviation). Abbreviations: CT – Computed 

Tomography, WHO – World Health Organisation, CPFE – Combined Pulmonary Fibrosis and Emphysema, mPAP 

– mean pulmonary arterial pressure, mRAP – mean right atrial pressure, PAWP – pulmonary arterial wedge 

pressure, PVR – pulmonary vascular resistance, SvO2 – mixed venous oxygen saturation. FEV1 – forced expiratory 

volume in 1 second, FVC – forced vital capacity, DLco – diffusing capacity of carbon monoxide 
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4.9.2 Table 2: Univariate analysis  
 

 Full cohort (n= 660) IPAH (n= 335) PH-CLD (n= 325) 

Characteristic HR 95% 

CI 

p-

value 

HR 95% 

CI 

p-

value 

HR 95% 

CI 

p-

value 

CT – Centrilobular 

Ground Glass (CGG) 

0.29 0.17, 

0.50 

<0.001 0.44 0.25, 

0.78 

0.005    

CT – Ground Glass 

Opacification (GGO) 

0.53 0.38, 

0.74 

<0.001 0.52 0.32, 

0.86 

0.010 0.72 0.46, 

1.14 

0.2 

CT – Honeycombing 2.79 1.57, 

4.99 

<0.001 3.72 1.37, 

10.1 

0.010 2.11 1.04, 

4.30 

0.039 

CT – Consolidation 0.84 0.50, 

1.40 

0.5 1.10 0.45, 

2.68 

0.8 0.60 0.32, 

1.13 

0.11 

CT – Fibrosis 2.38 1.94, 

2.91 

<0.001 2.48 1.76, 

3.50 

<0.001 1.83 1.42, 

2.35 

<0.001 

CT – Fibrosis (any 

present, ref: none) 

         

None — —  — —  — —  

Mild 1.94 1.46, 

2.58 

<0.001 2.51 1.72, 

3.66 

<0.001 1.73 1.11, 

2.71 

0.016 

Moderate 2.77 1.99, 

3.85 

<0.001 4.53 2.07, 

9.92 

<0.001 1.71 1.18, 

2.48 

0.005 

Severe 3.19 2.30, 

4.43 

<0.001    1.98 1.40, 

2.80 

<0.001 

CT – Emphysema 2.09 1.71, 

2.56 

<0.001 2.74 1.96, 

3.81 

<0.001 1.13 0.87, 

1.47 

0.4 

CT – Emphysema (any 

present, ref: none) 

         

None — —  — —  — —  

Mild 1.78 1.30, 

2.43 

<0.001 2.90 1.89, 

4.46 

<0.001 0.89 0.56, 

1.42 

0.6 

Moderate 2.18 1.69, 

2.81 

<0.001 3.16 2.01, 

4.97 

<0.001 1.13 0.82, 

1.55 

0.5 

Severe 2.92 2.15, 

3.97 

<0.001 11.1 3.92, 

31.6 

<0.001 1.37 0.97, 

1.93 

0.075 
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CT – CPFE 2.20 1.72, 

2.80 

<0.001 2.09 1.33, 

3.29 

0.001 1.82 1.36, 

2.44 

<0.001 

Age at diagnosis 1.05 1.04, 

1.05 

<0.001 1.06 1.05, 

1.08 

<0.001 1.02 1.01, 

1.04 

<0.001 

Male Gender 1.66 1.36, 

2.03 

<0.001 1.59 1.16, 

2.18 

0.004 1.42 1.10, 

1.83 

0.007 

WHO Functional Class 

III & IV (ref: I & II) 

1.78 1.45, 

2.18 

<0.001 1.88 1.34, 

2.64 

<0.001 1.74 1.35, 

2.25 

<0.001 

WHO Functional Class          

II — —  — —  — —  

III 2.57 1.70, 

3.89 

<0.001 3.00 1.51, 

5.96 

0.002 2.45 1.46, 

4.13 

<0.001 

IV 5.08 3.31, 

7.79 

<0.001 5.49 2.69, 

11.2 

<0.001 4.80 2.81, 

8.21 

<0.001 

mPAP (mmHg) 0.99 0.98, 

1.00 

0.028 0.98 0.97, 

0.99 

0.006 1.04 1.03, 

1.05 

<0.001 

mRAP (mmHg) 1.01 0.99, 

1.03 

0.4 1.03 1.00, 

1.06 

0.023 1.03 1.00, 

1.05 

0.057 

PAWP (mmHg) 1.02 0.99, 

1.04 

0.3 1.03 0.98, 

1.09 

0.2 0.98 0.95, 

1.01 

0.2 

Cardiac output (L/min) 0.92 0.86, 

0.98 

0.009 0.88 0.78, 

0.99 

0.035 0.79 0.72, 

0.86 

<0.001 

Cardiac index 

(L/min.m2) 

0.87 0.76, 

0.98 

0.028 0.80 0.63, 

1.01 

0.063 0.61 0.51, 

0.74 

<0.001 

PVR (Wood Units) 1.04 1.00, 

1.08 

0.036 0.98 0.91, 

1.05 

0.5 1.10 1.05, 

1.16 

<0.001 

SvO2 % 0.98 0.97, 

0.99 

0.001 0.97 0.95, 

0.98 

<0.001 0.96 0.94, 

0.97 

<0.001 

FEV1  % predicted 1.00 0.99, 

1.00 

0.032 0.99 0.98, 

1.00 

0.11 1.01 1.01, 

1.02 

<0.001 

FVC % predicted 1.00 0.99, 

1.00 

0.028 1.00 0.99, 

1.01 

0.9 1.00 1.00, 

1.01 

0.4 

FEV1/FVC Ratio 0.99 0.99, 

1.00 

0.038 0.97 0.95, 

0.98 

<0.001 1.02 1.01, 

1.03 

<0.001 

Dlco % predicted 0.95 0.95, 

0.96 

<0.001 0.95 0.94, 

0.96 

<0.001 0.96 0.95, 

0.97 

<0.001 

Table 4.2 Univariate analysis 
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Abbreviations: HR - Hazard Ratio, CI - Confidence Interval , CT – Computed Tomography, WHO – World Health 

Organisation, CPFE – Combined Pulmonary Fibrosis and Emphysema, mPAP – mean pulmonary arterial pressure, 

mRAP – mean right atrial pressure, PAWP – pulmonary arterial wedge pressure, PVR – pulmonary vascular 

resistance, SvO2 – mixed venous oxygen saturation. FEV1 – forced expiratory volume in 1 second, FVC – forced 

vital capacity, Dlco – diffusing capacity of carbon monoxide.



4.9.3 Table 3: Multivariate analysis G 
 

 

 

 

Univariate Multivariate 1 

(adjusted for demographics – 

age, gender, WHO FC) 

Multivariate 2 

(adjusted for demographics & 

mPAP) 

Multivariate 3 

(adjusted for demographics,  

mPAP & DLco) 

Full Cohort (n= 660) 

Characteristic HR 95% 

CI 

p-value HR 95% 

CI 

p-value HR 95% 

CI 

p-value HR 95% 

CI 

p-value 

CT - Centrilobular 

Ground Glass 

(CGG) 

0.29 0.17, 

0.50 

<0.001 0.50 0.28, 

0.89 

0.010 0.48 0.26, 

0.86 

0.007 0.76 0.39, 

1.47 

0.4 

CT - Ground Glass 

Opacification 

(GGO) 

0.53 0.38, 

0.74 

<0.001 0.82 0.58, 

1.16 

0.2 0.84 0.60, 

1.19 

0.3 0.80 0.54, 

1.18 

0.2 

CT - 

Honeycombing 

2.79 1.57, 

4.99 

<0.001 1.73 0.97, 

3.11 

0.087 1.74 0.97, 

3.12 

0.086 1.10 0.54, 

2.24 

0.8 

 

 

 
G A discussion during the viva was the surprise that honeycombing is not prognostic model 3. This may be because of the relatively low prevalence (therefore sample size) of 
honeycombing in this cohort (only 2% of subjects had it). Another possible limitation is that the scans were not re-reviewed for honeycombing, so ‘minor’ disease may have not 
been reported by the original reporting radiologist. 
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CT - Emphysema 2.09 1.71, 

2.56 

<0.001 1.48 1.21, 

1.83 

<0.001 1.52 1.23, 

1.88 

<0.001 1.13 0.89, 

1.44 

0.3 

CT - Fibrosis 2.38 1.94, 

2.91 

<0.001 1.75 1.42, 

2.15 

<0.001 1.77 1.43, 

2.18 

<0.001 1.37 1.09, 

1.73 

0.008 

IPAH (n=335) 

CT - Centrilobular 

Ground Glass 

(CGG) 

0.44 0.25, 

0.78 

0.005 0.79 0.43, 

1.45 

0.4 0.80 0.43, 

1.48 

0.5 0.92 0.47, 

1.82 

0.8 

CT - Ground Glass 

Opacification 

(GGO) 

0.52 
0.32, 

0.86 
0.010 0.88 

0.52, 

1.47 
0.6 0.91 

0.54, 

1.52 
0.7 0.96 

0.55, 

1.69 
0.9 

CT - 

Honeycombing 
3.72 

1.37, 

10.1 
0.010 1.69 

0.61, 

4.65 
0.3 1.68 

0.61, 

4.62 
0.4 1.35 

0.49, 

3.74 
0.6 

CT - Emphysema 
2.74 

1.96, 

3.81 
<0.001 1.72 

1.22, 

2.42 
0.002 1.76 

1.24, 

2.49 
0.002 1.26 

0.85, 

1.86 
0.2 

CT - Fibrosis 
2.48 

1.76, 

3.50 
<0.001 1.42 

0.99, 

2.02 
0.060 1.44 

1.00, 

2.07 
0.056 1.23 

0.84, 

1.81 
0.3 

PH-CLD (n= 325) 

CT - 

Honeycombing 
2.11 

1.04, 

4.30 
0.039 1.80 

0.88, 

3.67 
0.14 2.02 

0.99, 

4.14 
0.081 1.06 

0.39, 

2.91 
>0.9 
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CT - Fibrosis 
1.83 

1.42, 

2.35 
<0.001 1.73 

1.34, 

2.24 
<0.001 1.63 

1.26, 

2.10 
<0.001 1.46 

1.09, 

1.96 
0.011 

Table 4.3: Multivariate analysis  

Abbreviations: HR, Hazard Ratio; CI, Confidence Interval; CT, computed tomography; IPA, idiopathic pulmonary arterial hypertension; PH-CLD, pulmonary hypertension 

associated with chronic lung disease. 
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4.9.4 Table 4: Baseline characteristics of patients with initial diagnosis of 

IPAH 
Characteristic IPAH-noLD, N = 

151 

IPAH-CGG, N = 

46 

IPAH-LD, N = 

130 

p-

value 

Age at diagnosis 56 (18) ‡ 48 (19) ‡ 70 (9) *† <0.001 

Male Gender 48 (32%)‡ 11 (24%) ‡ 69 (53%)*† <0.001 

WHO Functional Class ‡ ‡ *† 0.011 

II 25 (17%) 9 (20%) 9 (6.9%)  

III 98 (65%) 29 (64%) 81 (62%)  

IV 27 (18%) 7 (16%) 40 (31%)  

CT – Centrilobular Ground 

Glass 

0 (0%) † 46 (100%) *‡ 0 (0%) † <0.001 

CT – Ground Glass 

Opacification 

9 (6.0%) † 39 (85%) 

*‡ 

8 (6.2%) † <0.001 

CT – Honeycombing 0 (0%) ‡ 0 (0%) *‡ 5 (3.8%) * 0.021 

CT – Consolidation 5 (3.3%) 2 (4.3%) 2 (1.5%) 0.4 

CT – Fibrosis 0 (0%) ‡ 0 (0%) ‡ 68 (52%) *† <0.001 

CT – Fibrosis (by severity) ‡ ‡ *† <0.001 

None 151 (100%) 46 (100%) 62 (48%)  

Mild 0 (0%) 0 (0%) 52 (40%)  

Moderate 0 (0%) 0 (0%) 9 (6.9%)  

Unknown 0 (0%) 0 (0%) 7 (5.4%)  

CT – Emphysema 0 (0%) ‡ 0 (0%) ‡ 94 (72%) *† <0.001 

CT – Emphysema (by severity) ‡ ‡ *†  

None 151 (100%) 46 (100%) 36 (28%)  

Mild 0 (0%) 0 (0%) 44 (34%)  

Moderate 0 (0%) 0 (0%) 38 (29%)  

Severe 0 (0%) 0 (0%) 5 (3.8%)  

Unknown 0 (0%) 0 (0%) 7 (5.4%)  

CT – CPFE 0 (0%) ‡ 0 (0%) ‡ 32 (25%) *† <0.001 

mPAP (mmHg) 54 (12) †‡ 62 (13) *‡ 49 (8) *† <0.001 

mRAP (mmHg) 12 (6) 10 (5) 11 (5) 0.3 

PAWP (mmHg) 10.91 (3.10) 9.72 (2.77) 11.03 (3.21) 0.055 

Cardiac output (L/min) 4.64 (1.87) †‡ 3.85 (0.98) * 4.08 (1.44) * 0.014 

Cardiac index (L/min/m2) 2.47 (0.95) ‡ 2.13 (0.52) 2.23 (0.73) * 0.031 

PVR (Wood Units) 10.7 (5.2) † 14.6 (6.2) *‡ 10.3 (4.4) † <0.001 

SvO2 % 61 (10) 62 (7) 59 (8) 0.030 
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FEV1 % predicted 82 (17) 88 (15) 83 (20) 0.124 

FVC % predicted 93 (20) 101 (18) 99 (21) 0.016 

FEV1/FVC 74 (10) ‡ 74 (8) ‡ 67 (10) *† <0.001 

DLco % predicted 52 (20) ‡ 56 (17) ‡ 31 (14) *† <0.001 

Table 4.4 Baseline characteristics of patients with initial diagnosis of IPAH per subgroups 

Data are presented as number (percentage) or mean (standard deviation). Between-group comparisons 

performed using one-Way ANOVA with Bonferroni Post-Hoc Correction. Difference between groups noted: * 

significant difference to IPAH-noLD, † significant difference to IPAH-CGG, ‡ significant difference to IPAH-

LD. 8 patients with both CGG and LD not included. Abbreviations: WHO, World Health Organisation; CT, 

computed tomography; FEV1, forced expiratory volume in 1 second; FVC, forced vital capacity; DLco, 

diffusing capacity of carbon monoxide; IPAH, idiopathic pulmonary arterial hypertension; CGG, centrilobular 

ground glass; LD, lung disease; CPFE, combined pulmonary fibrosis and emphysema 
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4.10 Figures 

4.10.1 Figure 1. CONSORT (Consolidated Standards of Reporting 

Trials) flow diagram showing selection of study cohort.  
 

 
Figure 4.1: CONSORT (Consolidated Standards of Reporting Trials) flow diagram showing selection of study 

cohort. 

 

Abbreviations. CTEPH , Chronic ThromboEmbolic Pulmonary Hypertension; LHD-PH, Pulmonary 

Hypertension with Left Heart Disease; PH-CLD, PH due to chronic lung disease and/or hypoxia; IPAH, 

Idiopathic Pulmonary Arterial Hypertension; HPAH, Hereditary Pulmonary Arterial Hypertension; CT, 

Computed Tomography; IPAH-noLD, Idiopathic Pulmonary Arterial Hypertension with no lung disease; IPAH-

LD, Idiopathic Pulmonary Arterial Hypertension with Lung Disease
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4.10.2 Figure 2: Kaplan-Meier survival curves stratified by CT 

features of CGG, emphysema and fibrosis for: a. All patients, b. 

Patients initially diagnosed with IPAH and c., Patients initially 

diagnosed with PH-CLD.  
 

 
Figure 4.2: Kaplan-Meier survival curves stratified by CT features of CGG, emphysema and fibrosis for: a. All 

patients, b. Patients initially diagnosed with IPAH and c., Patients initially diagnosed with PH-CLD. 

 

Abbreviations IPAH – Idiopathic Pulmonary Arterial Hypertension; PH-CLD – PH due to chronic lung disease 

and/or hypoxia.  
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4.10.3 Figure 3: Kaplan-Meier survival curves for patients classified 

as IPAH-LD, IPAH-noLD and PH-CLD. 
 

 

Figure 4.3: Kaplan-Meier survival curves for patients classified as IPAH-LD, IPAH-noLD and PH-CLD 

Abbreviations. IPAH-noLD, idiopathic pulmonary arterial hypertension with no CT features 

of lung disease; IPAH-LD, idiopathic pulmonary arterial hypertension with CT features of 

lung disease; PH-CLD, pulmonary hypertension associated with chronic lung disease. 
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4.10.4 Figure 4: Kaplan-Meier curve comparing survival in IPAH-

noLD (IPAH with no CT features of lung disease), IPAH-LD (IPAH 

with CT features of lung disease) and IPAH-CGG (IPAH with 

centrilobular ground glass on CT).  
 

 
Figure 4.4: Kaplan-Meier curve comparing survival in IPAH-noLD (IPAH with no CT features of lung disease), 

IPAH-LD (IPAH with CT features of lung disease) and IPAH-CGG (IPAH with centrilobular ground glass on 

CT). 

 

Abbreviations. IPAH-noLD, idiopathic pulmonary arterial hypertension with no CT features 

of lung disease; IPAH-LD, idiopathic pulmonary arterial hypertension with CT features of 

lung disease; IPAH-CGG, idiopathic pulmonary arterial hypertension with centrilobular 

ground glass changes.  
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4.11 Appendix 

4.11.1 Univariate analysis of patients with IPAH-noLD  
 

Characteristic HR1 95% 

CI1 

p-

value 

CT - Centrilobular Ground Glass 

(CGG) 

0.62 0.30, 

1.26 

0.2 

CT - Ground Glass Opacification 

(GGO) 

0.64 0.32, 

1.26 

0.2 

CT - Honeycombing 
   

CT - Consolidation 1.55 0.48, 

4.96 

0.5 

Age at diagnosis 1.05 1.03, 

1.07 

<0.001 

Male Gender 1.50 0.90, 

2.52 

0.12 

WHO Functional Class III & IV (ref: 

I & II) 

1.78 1.12, 

2.81 

0.014 

WHO Functional Class 
   

II — — 
 

III 2.61 1.02, 

6.67 

0.046 

IV 5.62 2.07, 

15.2 

<0.001 

mPAP (mmHg) 0.99 0.97, 

1.01 

0.3 

mRAP (mmHg) 1.04 1.00, 

1.08 

0.085 

PAWP (mmHg) 1.10 1.00, 

1.20 

0.040 
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Cardiac output (L/min) 1.00 0.84, 

1.18 

>0.9 

Cardiac index (L/min/m2) 0.98 0.70, 

1.38 

>0.9 

PVR (Wood Units) 0.97 0.92, 

1.02 

0.2 

SvO2 % 0.96 0.94, 

0.99 

0.011 

FEV1 % predicted 0.98 0.97, 

0.99 

0.008 

FVC % predicted 0.99 0.98, 

1.00 

0.11 

FEV1/FVC Ratio 0.96 0.94, 

0.98 

<0.001 

DLco % predicted 0.95 0.93, 

0.97 

<0.001 

Table 4.5 Univariate analysis of patients with IPAH-noLD 

Abbreviations: HR - Hazard Ratio, CI - Confidence Interval, IPAH-noLD, Idiopathic Pulmonary Arterial 

Hypertension with no lung disease, CT – Computed Tomography, WHO – World Health Organisation, CPFE – 

Combined Pulmonary Fibrosis and Emphysema, mPAP – mean pulmonary arterial pressure, mRAP – mean 

right atrial pressure, PAWP – pulmonary arterial wedge pressure, PVR – pulmonary vascular resistance, SvO2 – 

mixed venous oxygen saturation. FEV1 – forced expiratory volume in 1 second, FVC – forced vital capacity, 

DLco – diffusing capacity of carbon monoxide. 
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4.11.2 Baseline characteristics of IPAH-noLD vs IPAH-LD vs PH-

CLD 
 

Characteristic IPAH-noLD,  

 N = 197 

IPAH-LD, 

N = 138 

PH-CLD, 

N = 325 

p-value 

Age at diagnosis 54 (18) †‡ 70 (10) * 67 (11) * <0.001 

Male Gender 59 (30%)†‡ 72 (52%)* 187 (58%)* <0.001 

WHO Functional Class †‡ * * <0.001 

2 34 (17%)†‡ 10 (7.2%)* 34 (10%)  

3 127 (65%) 86 (62%) 185 (57%)  

4 34 (17%) 42 (30%) 105 (32%)  

CT - Centrilobular Ground Glass (CGG) 46 (23%)†‡ 8 (5.8%)* 0 (0%)* <0.001 

CT - Ground Glass Opacification (GGO) 48 (24%)†‡ 14 (10%)* 31 (9.5%)* <0.001 

CT - Honeycombing 0 (0%) 5 (3.6%) 10 (3.1%) 0.013 

CT - Consolidation 7 (3.6%) 2 (1.4%)‡ 22 (6.8%)† 0.031 

CT - Fibrosis 0 (0%)†‡ 72 (52%)* 141 (43%)* <0.001 

CT - Fibrosis (by severity) †‡ *‡ *† <0.001 

Mild 0 (0%) 54 (39%) 28 (8.6%)  

Moderate 0 (0%) 9 (6.5%) 44 (14%)  

None 197 (100%) 66 (48%) 184 (57%)  

Severe 0 (0%) 0 (0%) 48 (15%)  

Unknown 0 (0%) 9 (6.5%) 21 (6.5%)  

CT - Emphysema 0 (0%)†‡ 98 (71%)* 204 (63%)* <0.001 

CT - Emphysema (by severity) †‡ *‡ *† <0.001 

Mild 0 (0%) 48 (35%) 29 (8.9%)  

Moderate 0 (0%) 38 (28%) 91 (28%)  

None 197 (100%) 40 (29%) 121 (37%)  

Severe 0 (0%) 5 (3.6%) 64 (20%)  

Unknown 0 (0%) 7 (5.1%) 20 (6.2%)  

CT - CPFE 0 (0%)†‡ 32 (23%)* 69 (21%)* <0.001 

mPAP (mmHg) 56 (13) †‡ 49 (9)* ‡ 42 (10)* † <0.001 

mRAP (mmHg) 11.4 (6.1) ‡ 11.3 (5.3) ‡ 9.0 (5.1)* † <0.001 

PAWP (mmHg) 10.6 (3.1) ‡ 11.1 (3.6) 11.8 (4.2)* 0.004 

Cardiac output (L/min) 4.46 (1.74) ‡ 4.10 (1.41) 5.00 (1.64) <0.001 

Cardiac index (L/min x m^-2) 2.39 (0.87) ‡ 2.23 (0.71) ‡ 2.73 (0.87)* † <0.001 
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PVR (Wood Units) 11.6 (5.7) †‡ 10.2 (4.4)* ‡ 7.0 (4.1)* † <0.001 

SvO2 % 62 (10) ‡ 59 (8) ‡ 65 (8)* † <0.001 

PFT - FEV1 % predicted 83 (17)* ‡ 83 (20) ‡ 60 (25)* † <0.001 

PFT - FVC % predicted 95 (20) ‡ 98 (21) ‡ 80 (28)* † <0.001 

PFT - FEV1 / FVC Ratio 74 (10) †‡ 67 (10)* ‡ 61 (18)* † <0.001 

PFT - DLCO % predicted 53 (19) †‡ 32 (15)* ‡ 28 (14)* † <0.001 

Table 4.6 Baseline characteristics of IPAH-noLD vs IPAH-LD vs PH-CLD 

 
Data are presented as number (percentage) or mean (standard deviation). Between-group comparisons 

performed using one-Way ANOVA with Bonferroni Post-Hoc Correction. Difference between groups noted: * 

significant difference to IPAH-noLD, † significant difference to IPAH-LD, ‡ significant difference to PH-CLD. 

Abbreviations: IPAH-LD, Idiopathic Pulmonary Arterial Hypertension with lung disease, PH-CLD, PH due to 

chronic lung disease and/or hypoxia, CT – Computed Tomography, WHO – World Health Organisation, CPFE 

– Combined Pulmonary Fibrosis and Emphysema, mPAP – mean pulmonary arterial pressure, mRAP – mean 

right atrial pressure, PAWP – pulmonary arterial wedge pressure, PVR – pulmonary vascular resistance, SvO2 – 

mixed venous oxygen saturation. FEV1 – forced expiratory volume in 1 second, FVC – forced vital capacity, 

DLco – diffusing capacity of carbon monoxide. 
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4.11.3 Survival of patients with IPAH-noLD, IPAH-LD and PH-CLD 
 

Characteristic 1 Year 2 Year 3 Year 4 Year 5 Year 

IPAH-noLD 92% 85% 82% 78% 70% 

IPAH-LD 87% 60% 41% 29% 21% 

PH-CLD 69% 46% 36% 28% 20% 

Table 4.7 Survival of patients with IPAH-noLD, IPAH-LD and PH-CLD 

Abbreviations: IPAH-noLD, Idiopathic Pulmonary Arterial Hypertension with no lung disease; IPAH-LD, 

Idiopathic Pulmonary Arterial Hypertension with lung disease; PH-CLD, PH due to chronic lung disease and/or 

hypoxia. 
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5.1 Abstract 
 

Background: Among patients diagnosed with idiopathic pulmonary arterial hypertension 

(IPAH), there is an emerging lung phenotype characterised by a low diffusion capacity for 

carbon monoxide (DLCO) and a smoking history. These patients need to be further 

characterised.  

Methods: We analysed data from two European pulmonary hypertension (PH) registries, 

COMPERA and ASPIRE, to identify patients diagnosed with IPAH who presented with a 

lung phenotype defined by a DLCO <45% predicted and a smoking history. We compared 

these patients with a cohort of patients with classical IPAH, defined by the absence of 

cardiopulmonary co-morbidities and DLCO ≥45% predicted and with a cohort of patients 

with PH due to lung disease (group 3 PH).  

Findings: The COMPERA analysis included 128 patients with classical IPAH, 268 patients 

with IPAH and a lung phenotype, and 910 patients with PH due to lung disease. The 

corresponding numbers from ASPIRE were 185, 139, and 375, respectively. In both cohorts, 

patients with IPAH and a lung phenotype and patients with group 3 PH showed comparable 

age and sex distribution, exercise limitation, response to therapy, and survival. In contrast, 

patients with IPAH and a lung phenotype differed substantially in all these categories from 

patients with classical IPAH. 

Interpretation: A cohort of patients diagnosed with IPAH suffers from a distinct, 

presumably smoking-related form of pulmonary hypertension accompanied by a low DLCO. 

Phenotypically, these patients resemble those with PH due to lung disease rather than 

classical IPAH. These observations have pathogenetic, diagnostic, and therapeutic 

implications, which must be further explored. 
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5.2 Introduction 
The current clinical classification of pulmonary hypertension (PH) consists of 5 major 

groups: Group 1, pulmonary arterial hypertension (PAH); group 2, PH associated with left 

heart disease; group 3, PH associated with lung disease; group 4, chronic thromboembolic 

PH; and group 5, PH due to systemic or multifactorial conditions2,6. The criteria for the 

diagnosis and classification of PH have been outlined in recent guidelines,6 but in some 

patients, the individual classification is not always straightforward. This problem is 

frequently encountered in patients with idiopathic PAH (IPAH), the most common form of 

PAH. Originally, IPAH, formerly called primary pulmonary hypertension, was described as a 

disease occurring mostly in younger, otherwise healthy individuals, predominantly women.174 

Such patients represent the classical phenotype of IPAH. However, registries from Europe 

and the US have demonstrated that IPAH is now more frequently diagnosed in elderly 

patients, many of whom have cardiac and/or pulmonary comorbidities.15,175,176 In such 

patients, it is not always easy to distinguish IPAH from group 2 or group 3 PH. Several 

disease phenotypes have been reported, including a subtype of patients diagnosed with IPAH 

who present with a lung phenotype, mainly characterized by a history of smoking and a low 

lung diffusion capacity for carbon monoxide (DLCO), but otherwise no or only subtle signs 

of parenchymal lung disease. In accordance with current guidelines, these patients are 

classified as IPAH rather than group 3 PH.41,168,177  

In a recent cluster analysis from the Comparative, Prospective Registry of Newly Initiated 

Therapies for Pulmonary Hypertension (COMPERA), a European PH registry, only 12.6% of 

846 patients diagnosed with IPAH presented with the classical phenotype while 35.8% had a 

left heart phenotype and 51.6% a lung phenotype, respectively.166 The high proportion of 

patients with a lung phenotype came as surprise. To further characterize these patients, we 

used the COMPERA database to identify those with IPAH and a lung phenotype and to 

compare them with patients with classical IPAH and those classified as PH associated with 

lung disease, i.e., group 3 PH, focussing on demographics, disease characteristics at 

diagnosis, response to PH therapy, and survival. Data obtained from the Assessing the 

Spectrum of Pulmonary hypertension Identified at a REferral centre (ASPIRE) registry were 

utilized for independent validation.50 

 



86 
 

5.3 Methods 

5.3.1 Databases  
Details of COMPERA (www.COMPERA.org; registered at Clinicaltrials.gov under the 

identifier NCT01347216) have been reported previously.166,176 COMPERA is an ongoing PH 

registry launched in 2007 that prospectively collects baseline, follow-up, and outcome data of 

newly diagnosed patients who receive targeted therapies for any form of PH. PH centres from 

several European countries participate (Austria, Belgium, Germany, Greece, Hungary, Italy, 

Latvia, Lithuania, Netherlands, Slovakia, Switzerland, United Kingdom), with about 80% of 

the enrolled patients coming from Germany. COMPERA has been approved by the 

responsible ethics committee, and all patients provided written, informed consent prior to 

inclusion. 

Details of the ASPIRE registry have been previously reported.41,50 The ASPIRE Registry 

includes data on patients undergoing investigation for suspected PH at the Sheffield 

Pulmonary Vascular Disease Unit, a PH centre with a referral population of 15-20 million, 

based in Sheffield UK, from 2001 onwards. During their assessment, patients undergo 

systematic evaluation including multimodality imaging and right heart catheterisation, in 

accordance to annually audited national standards of care. Ethical approval was granted by 

the Institutional Review Board and approved by the National Research Ethics Service 

(16/YH/0352). Analyses were conducted in accordance with General Data Protection 

Regulation. 

 

5.3.2 Patient selection 
All analyses from COMPERA and ASPIRE were performed separately and the data were not 

combined. From COMPERA, patients were selected to form three cohorts: (i) patients with 

classical IPAH (PH group 1.1), defined by the absence of risk factors for left heart disease 

(body mass index (BMI) ≥ 30 kg/m2, hypertension, diabetes mellitus, and coronary heart 

disease), and a DLCO ≥ 45%; (ii) patients diagnosed with IPAH and a lung phenotype, 

defined by a smoking history and a DLCO < 45% of the predicted value; and (iii) patients 

classified by their physicians as group 3 PH with the underlying conditions being either 

COPD (PH group 3.1) or ILD (PH group 3.2). The same selection criteria were used for 
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ASPIRE, except for risk factors for left heart disease not being considered as these data were 

not available.  

The DLCO cut-off value of <45% versus ≥45% was derived from previous studies that have 

determined the prognostic value of this threshold.41,53,166,168  

For all cohorts, further inclusion criteria were age ≥18 years, PH diagnosis made between Jan 

2009 and Dec 2020 in COMPERA, and between Feb 2001 and Jan 2019 in ASPIRE, and data 

from right heart catheterization available at baseline showing mean pulmonary arterial 

pressure (mPAP) ≥ 25 mmHg, pulmonary artery wedge pressure (PAWP) ≤ 15 mmHg, and 

pulmonary vascular resistance (PVR) > 3 WU. Furthermore, only incident patients with at 

least one follow-up documentation were considered for COMPERA and incident patients for 

ASPIRE.  

 

5.3.3 Imaging 
Chest computed tomography (CT) data were available only from ASPIRE. CT scans were 

evaluated by experienced radiologists for the presence of fibrotic or emphysematous changes, 

which were graded as absent, mild, moderate, or severe as previously described.41,178  

 

5.3.4 Statistical analyses 
This was a post-hoc analysis of prospectively collected data. Analysis was performed using R 

software major version 4. Categorical data are presented as number and percentage, 

continuous data as median and first and third quartile [Q1, Q3]. First follow-up was defined 

as the first assessment within 3 to 12 months after treatment initiation. Vital status was 

ascertained by on-site visits or phone calls to the patients or their caregivers. Patients who 

underwent lung transplantation and patients who were lost to follow-up were censored at the 

date of the last contact.  

The focus of the present study was the identification of similarities and differences between 

patients diagnosed with IPAH who present with a lung phenotype and group 3 PH. To 

compare the cohort of patients with IPAH and a lung phenotype with each of the two other 

cohorts, two-sample Welch t-tests were computed for continuous data. For non-normally 

distributed data, the Wilcoxon rank sum test was used. Categorical data were compared by 
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Pearson’s Chi-squared test or by Fisher’s exact test. Response to therapy was determined by 

changes from baseline to first follow-up in WHO functional class (FC), 6-minute walking 

distance (6MWD), N-terminal fragment of pro-brain natriuretic peptide (NT-proBNP), and 

mortality risk using the ESC/ERS 4-strata model.16 These data were available only from 

COMPERA. Survival estimates from the time of enrolment were done by Kaplan-Meier 

analyses, log-rank test, and Cox proportional hazard regression models to adjust for age and 

sex.  

 

5.3.5 Role of the funding source 
COMPERA is funded by unrestricted grants from Acceleron, Bayer, GSK, Janssen and OMT. 

These companies were not involved in data analysis or the writing of this manuscript. The 

ASPIRE Registry is supported by Sheffield Teaching Hospitals NHS Foundation Trust. 

 

5.4 Results 

5.4.1 Patient characteristics of the study cohorts 
In COMPERA, a total of 128 patients with classical IPAH, 268 patients with IPAH and a 

lung phenotype, and 910 patients with group 3 PH fulfilled the eligibility criteria and were 

included in the present analysis. The corresponding numbers from ASPIRE were 185, 139, 

and 375. Patient selection is shown in Figures 1a and 1b. The patient characteristics at 

baseline are shown in Tables 1a and 1b. The number of missing values for each variable is 

shown in the supplementary tables S1a and S1b. Histograms showing the age distribution of 

the cohorts are depicted in Figures 2a and 2b. The baseline characteristics of patients with 

IPAH who were excluded from the analyses are shown in supplementary tables S2a and S2b.  

Patients with classical IPAH were mostly young with a median age of 45 and 52 years, 

respectively (although some patients were in the seventies and eighties as shown in Figures 

2a and 2b) and predominantly female. About one third of these patients had a smoking 

history with a median of 14 and 20 pack years. Lung function was preserved while the DLCO 

was mildly reduced, and blood gas analyses (data available from COMPERA only) showed a 
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near-normal PaO2 and a low PaCO2. Haemodynamic assessment at time of diagnosis showed 

severe pre-capillary PH and most had a moderately impaired exercise capacity. 

Compared to patients with classical IPAH, patients with IPAH and a lung phenotype were 

older (mean age of about 70 years) and more often male. Per inclusion criteria, all patients 

were smokers, and the median tobacco exposure was 40 (COMPERA) and 30 (ASPIRE) pack 

years. Forced vital capacity (FVC) and forced expiratory volume in 1s (FEV1) were mostly 

normal. However, the DLCO was severely reduced (30% and 27% of the predicted value, 

respectively), and the patients were more hypoxaemic than patients with a classical 

phenotype. Severity of PH as determined by mPAP and PVR was comparable to patients with 

the classical phenotype, but exercise capacity was substantially lower. 

Patients with group 3 PH had a similar age to patients with IPAH and a lung phenotype and 

had nearly the same age distribution as well as a comparable male-to-female ratio (Figures 2a 

and 2b). Eighty-one percent had a smoking history with a median of 40 pack years (data 

available for COMPERA only). FVC and FEV1 were lower than in patients with IPAH and a 

lung phenotype, but most patients did not have severely impaired pulmonary function, except 

for a very low DLCO (26% and 25%, respectively, of the predicted value). Blood gas 

analyses showed marked hypoxaemia, comparable to patients with IPAH and a lung 

phenotype. mPAP and PVR were lower than in the other cohorts but still much elevated. The 

degree of exercise limitation was similar to patients with IPAH and a lung phenotype. 

 

5.4.2 Imaging (ASPIRE data only) 
The chest CT studies from ASPIRE showed absence of parenchymal lung disease in most 

patients with classical IPAH. The majority of patients with IPAH and a lung phenotype had 

normal CT findings. Although more parenchymal abnormalities were present in this group, 

most were mild. In contrast, almost all patients with group 3 PH had parenchymal 

abnormalities, mostly moderate or severe. Details are shown in Table 2. 

 

5.4.3 Changes from baseline to first follow-up (COMPERA data only) 
The first follow-up visit took place 4·7 [3·5, 6·6] months after baseline. FC, 6MWD, NT-

proBNP and risk at baseline and first follow-up are shown in Figures 3a-d. In all categories, 
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patients with classical IPAH improved most, whereas there were less and quantitatively 

similar changes in the two other cohorts.  

 

5.4.4 Survival  
In COMPERA, the median observation time was 3·9 [1·8, 6·6] years for patients with classic 

IPAH, 2·0 [1·2, 3·4] years for patients with IPAH and a lung phenotype, and 1·7 [0·7, 3·3] 

years for patients with group 3 PH. In the cohort of patients with classic IPAH, 23 (18%) 

patients died, 5 (4%) underwent lung transplantation, and 8 (6%) were lost to follow-up. The 

corresponding numbers for patients with IPAH and a lung phenotype were 138 (52%), 5 (2%) 

and 13 (5%), respectively. Among the patients with group 3 PH, 583 (64%) died, 22 (2%) 

underwent lung transplantation and 46 (5%) were lost to follow-up. 

In ASPIRE, the median observation time was 4·5 [2·1, 7·8] years for patients with classic 

IPAH, 1·7 [0·9, 2·8] years for patients with IPAH and a lung phenotype, and 1·4 [0·6, 3·1] 

years for patients with group 3 PH. No patients were lost to follow-up. In the cohort of 

patients with classic IPAH, 42 (23%) patients died and 7 (4%) underwent lung 

transplantation. The corresponding numbers for patients with IPAH and a lung phenotype 

were 90 (65%) and 0 respectively. Among the patients with group 3 PH, 286 (76%) died and 

5 (1%) underwent lung transplantation.H 

In both registries, the survival rates of patients with idiopathic PAH with a lung phenotype 

and of patients with group 3 PH were comparable and both much inferior to the survival rate 

of patients with classical IPAH (Figures 4a and b).  

In COMPERA, the Kaplan-Meier estimated survival rates of patients with classical IPAH at 

1, 3 and 5 years were 95%, 90%, and 84%, respectively. In patients with IPAH and a lung 

phenotype, the corresponding numbers were 89%, 49%, and 31%. In patients with group 3 

PH, the respective survival rates were 78%, 43%, and 26%. The unadjusted survival rates 

differed significantly between patients with classical IPAH and IPAH with a lung phenotype 

 

 

 
H A limitation of the high mortality rate in Group 3 is that few patients reach the 5-year figures follow-up 
reported. Furthermore, all patients, regardless of their date of diagnosis were included in the analysis (we did not 
exclude those with <5 years follow-up). Therefore, there are patients who will only have been observed for less 
than 5 years, which explains the drop off in total numbers at the yearly time points. 
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(p=<0·0001) and between the latter group and patients with group 3 PH (p=0·0159; Figure 

4a). When adjusted for age and sex, the risk of death remained lower for patients with 

classical IPAH than for patients with IPAH and a lung phenotype (HR 3·48; 95% confidence 

interval 2·04 to 5·95, p<0·0001). The survival difference between patients with IPAH and a 

lung phenotype and patients with group 3 PH was smaller albeit still statistically significant 

(HR 0·79; 95% confidence interval 0·66 to 0·96, p=0·0150).  

In ASPIRE, the Kaplan-Meier estimated survival rates of patients with classical IPAH at 1, 3 

and 5 years were 98%, 91%, and 80%, respectively. In patients with IPAH and a lung 

phenotype, the corresponding numbers were 79%, 35%, and 21%. In patients with group 3 

PH, the respective survival rates were 64%, 32%, and 18%.  The unadjusted survival rates 

differed significantly between patients with classical IPAH and IPAH with a lung phenotype 

(p<0·0001) and between the latter group and patients with group 3 PH (p=0·0450; Figure 4b). 

When adjusted for age and sex, the risk of death remained much higher for patients with 

IPAH and a lung phenotype than for patients with classical IPAH (HR 3·61, 95% confidence 

interval 2·35 to 5·54). The survival difference between patients with IPAH and a lung 

phenotype and patients with group 3 PH was smaller albeit still statistically significant (HR 

0·74; 95% confidence interval 0·58 to 0·94, p=0·010).  
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5.5 Discussion 
 

The key finding of this analysis was that patients diagnosed with IPAH and a lung phenotype 

defined by a smoking history and a low DLCO had little in common with classical IPAH 

patients, with the exception of severe pre-capillary PH, having similar baseline 

characteristics, treatment response and survival as patients with group 3 PH. These 

observations challenge the current classification of PH. 

In the present cohorts, patients categorized as classical IPAH resembled those initially 

described as primary pulmonary hypertension, i.e., predominantly young, otherwise healthy 

females174. These patients had an 80% survival rate 5 years after diagnosis, which is about 

twice as high as in historical controls,179 presumably owing to therapeutic advances. 

However, the classical form has become the least common phenotype of IPAH, at least in 

most European countries, where IPAH is now being diagnosed predominantly in elderly 

patients with co-morbidities15,166. These patients continue to have a high mortality risk.166 In 

these patients, the diagnostic classification can be challenging. This problem is illustrated by 

our cohorts of patients diagnosed with IPAH who presented with a lung phenotype. Most of 

these patients had normal or near-normal static and dynamic lung function parameters, and, 

where available, the majority had normal or near-normal chest CT findings, but severe pre-

capillary PH. Hence, the diagnosis of IPAH was in accordance with current guidelines.6,26  

When we compared patients with IPAH and a lung phenotype with patients classified as 

group 3 PH (PH associated with either COPD or ILD, 81% of whom were smokers as well), 

we found striking similarities. Age distribution and male-to-female ratio were comparable as 

were FC and 6MWD. The same was true for the prevalence of risk factors for left heart 

disease, which may have contributed to the development of PH. Patients with IPAH and a 

lung phenotype and patients classified as group 3 PH had a similar response to medical 

therapy, i.e., comparable changes from baseline to first follow-up in FC, 6MWD, NT-

proBNP and mortality risk. Taken together, patients with IPAH and a lung phenotype 

resembled those of patients with group 3 PH, while they had little in common with classical 

IPAH, except for the presence of severe pre-capillary PH.  

As in previous studies,41,53,168 a DLCO ≥45% or <45% of the predicted value discriminated 

between patients with classical IPAH and patients with IPAH and a lung phenotype. It is 

unknown whether the low DLCO in the latter group of patients is caused by parenchymal 
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abnormalities or by a distinct pulmonary vasculopathy involving the loss of small pulmonary 

vessels, for which the term vanishing pulmonary capillary syndrome has been proposed.180 In 

animal models, prolonged exposure to tobacco smoke causes endothelial cell apoptosis in 

pulmonary capillaries, which precedes the development of emphysema,181 and most of the 

patients diagnosed with IPAH and a low DLCO are elderly individuals with a history of 

heavy smoking (which may also explain the male predominance of this phenotype). We 

therefore speculate that in these patients, smoking may have been a contributor to the 

development of PH, or even its main cause. In addition, it is possible that the pulmonary 

vasculopathy of patients with IPAH and a lung phenotype and patients with group 3 PH is 

similar, yet distinct from classical IPAH.  

Our findings have implications not only for the diagnostic classification but also for 

therapeutic considerations. We have insufficient data on the safety and efficacy of PAH drugs 

in patients diagnosed with IPAH who present with a lung phenotype. None of the pivotal 

trials of globally approved PAH drugs reported the DLCO of their participants.182–190 This 

lack of data is particularly worrisome when considering a recent study showing that PAH 

drugs may further impair gas exchange in patients with a low DLCO.191 Moreover, the 

response to therapy in patients with IPAH and a lung phenotype was blunted compared to 

patients with classical IPAH, but it is unclear if this was due to a distinct pulmonary 

vasculopathy, less aggressive therapy, or co-morbidities leaving little room for functional 

improvement.  

It is important to note that IPAH with a low DLCO may also be found in patients who have 

never smoked. Such patients may suffer from various conditions such as unrecognized 

pulmonary veno-occlusive disease or connective tissue disease. A similar disease phenotype 

has been reported in patients who have been exposed to organic solvents,192 and in certain 

forms of heritable PAH.193  

Limitations of the present study include its post-hoc nature, missing values, lack of imaging 

data in COMPERA, and heterogeneities between the two registries. Even though all patients 

were evaluated at referral centres, we cannot fully exclude the possibility that 

misclassification bias may have interfered with our analysis, especially as a small proportion 

of patients diagnosed as IPAH had more than mild lung function test or CT abnormalities. 

Furthermore, for the present analysis, patients with IPAH were highly selected to ensure a 

proper phenotypic characterization, and the results may not be generalizable to patients with 

mixed phenotypes. 
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In conclusion, patients diagnosed with IPAH who present with a lung phenotype have much 

more features of group 3 PH rather than classical IPAH. These observations challenge the 

current diagnostic classification of PH, and we propose to add a phenotypic component to the 

classification of unexplained pre-capillary PH. In addition, further data is needed on the 

safety and efficacy of PAH drugs in these patients, and future clinical trials on PAH should 

collect and report data on smoking status and DLCO of their participants. Finally, our 

observations support the hypothesis that there is a distinct smoking-related pulmonary 

vasculopathy, which needs to be further investigated. 
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5.6 Research in context 
 

5.6.1 Evidence before the Subject 
Idiopathic pulmonary arterial hypertension (IPAH), originally observed mainly in young, 

otherwise healthy individuals, is increasingly diagnosed in elderly patients with co-

morbidities. Among these patients, a distinct lung phenotype is emerging, characterized by a 

history of smoking and a low diffusion capacity for carbon monoxide (DLCO, <45% of the 

predicted value) without overt signs of parenchymal lung disease. This disease phenotype is 

not well characterized. When we searched PubMed on Oct 19, 2021, and on Dec 17, 2021, 

using the search terms “pulmonary arterial hypertension” AND “smoking” AND “diffusion 

capacity”, we found only three case series describing patients with this phenotype. 

 

5.6.2 Added value of this study  
This study demonstrates that patients diagnosed with IPAH who present with a lung 

phenotype share many features with patients suffering from pulmonary hypertension (PH) 

associated with lung disease including sex and age distribution, functional impairment at 

diagnosis, response to PH medications, and survival. At the same time, these patients have 

very little in common with patients who present with a classical IPAH phenotype, i.e., 

patients without cardiopulmonary co-morbidities and a DLCO ≥45% of the predicted value.  

 

5.6.3 Implications of the available evidence 
We expect our findings to lead to a re-classification of some forms of pulmonary 

hypertension. A better characterization of patients with IPAH and a lung phenotype will also 

allow an evaluation of the safety and efficacy of PAH medications in this cohort. Finally, our 

data support the hypothesis that there is a distinct pulmonary vasculopathy, seemingly related 

to extensive tobacco exposure, which adds another component to the spectrum of smoking-

related lung injury.  
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5.7 Tables 

5.7.1 Patient characteristics at baseline in COMPERA 
 

 Classical 

IPAH (i) 

n=128 

P-value 

(i) vs. 

(ii) 

IPAH with a 

lung 

phenotype 

(ii) 

n=268 

P-value 

(ii) vs. 

(iii) 

Group 3.1 or 

3.2 PH 

n=910 (iii) 

Age, years 45 [32, 60] <0·0001 72 [65, 78] 0·886 71 [65, 77] 

Female 99 (77%) <0·0001 95 (35%) 0·712 336 (37%) 

BMI, kg/m2 24 [22, 27] <0·0001 27 [24, 32] 0·0002 26 [23, 29] 

WHO FC 

   I 

   II 

   III 

   IV 

 

2 (2%) 

30 (24%) 

85 (67%) 

10 (8%) 

<0·0001 

0 (0%) 

16 (6%) 

184 (73%) 

51 (20%) 

0·055 

0 (0%) 

32 (4%) 

612 (71%) 

223 (26%) 

6MWD, m 
410 [320, 

476] 
<0·0001 

234 [167, 

310] 
0·926 

238 [159, 

318] 

NT-proBNP, ng/L 

 

BNP, ng/L 

 

1,027 [360, 

2,058] 

127 [73, 249] 

 

0·0002 

 

0·1117 

 

1,871 [583, 

4,348] 

304 [120, 

441] 

 

0·042 

 

0·004 

 

1,423 [462, 

3,380] 

120 [59, 276] 

 

Pulmonary function 

TLC, % pred 

FVC, % pred 

FEV1, % pred 

FEV1/FVC (%) 

DLCO, % pred 

 

98 [87, 110] 

92 [78, 103] 

85 [74, 96] 

80 [76, 85] 

69 [59, 76] 

0·0011 

<0·0001 

<0·0001 

<0.0001 

<0·0001 

<0·0001 

 

93 [79, 103] 

80 [66, 94] 

71 [60, 85] 

71 [63, 79] 

30 [24, 36] 

<0·0001 

<0·0001 

<0·0001 

0.0003 

0·769 

0·791 

 

85 [67, 100] 

68 [53, 84] 

59 [44, 74] 

68 [52, 81] 

26 [20, 35] 
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PaO2, mmHg 

PaCO2, mmHg 

 

78 [71, 84] 

33 [30, 35] 

 

<0·0001 56 [50, 63] 

35 [31, 39] 

 

<0·0001 57 [49, 64] 

37 [33, 43] 

 

Smoking history 

   Ever 

   Never 

   Pack years 

 

 

40 (34%) 

76 (66%) 

14 [10, 30] 

 

<0·0001 

 

<0·0001 

 

268 (100%) 

0 (0%) 

40 [21, 50] 

 

<0·0001 

 

0·167 

 

212 (81%) 

50 (19%) 

40 (30, 60] 

 

Comorbid 

conditions 

   BMI >30 kg/m2 

   Hypertension 

   Coronary heart 

disease 

   Diabetes mellitus 

   Atrial fibrillation 

 

 

0 (0%) 

0 (0%) 

0 (0%) 

 

0 (0%) 

7 (6%) 

 

 

<0·0001 

<0·0001 

<0·0001 

 

<0·0001 

0·033 

 

86 (32%) 

183 (70%) 

110 (42%) 

 

94 (36%) 

36 (14%) 

 

 

0·0023 

0·526 

0·171 

 

0·011 

0·576 

 

194 (23%) 

506 (68%) 

270 (37%) 

 

206 (27%) 

106 (12%) 

 

Haemodynamics 

RAP, mmHg 

mPAP, mmHg 

PAWP, mmHg 

CI, L/min/m2 

PVR, WU 

 

SvO2, % 

 

 

6 [4, 9] 

48 [40, 57] 

8 [5, 10] 

2·1 [1·7, 2·7] 

10·9 [7·8, 

15·6] 

66 [59, 70] 

 

0·126 

0·0016 

0·0003 

0·680 

0·0005 

 

0·0011 

 

7 [5, 10] 

43 [36, 51] 

10 [7, 12] 

2·0 [1·6, 2·4] 

8·7 [6·5, 

12·0] 

62 [55, 66] 

 

0·0011 

<0·001 

0·0148 

0·051 

<0·0001 

 

<0·0001 

 

6 [4, 9] 

39 [33, 46] 

9 [6, 11] 

2·1 [1·8, 2·6] 

7·4 [5·9, 

10·1] 

65 [59, 57] 

 

Risk (4-strata 

model)a 

Low 

Intermediate-low 

Intermediate-high 

High 

 

 

 

16 (12%) 

42 (33%) 

57 (45%) 

13 (10%) 

 

 

<0·001 

 

 

5 (2%) 

34 (13%) 

139 (52%) 

88 (33%) 

 

 

0·966 

 

 

16 (2%) 

108 (12%) 

463 (52%) 

311 (35%) 
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PH medications 

CCB 

ERA 

PDE5i 

sGCs 

PPA 

 

Monotherapy 

Combination 

therapy 

26 (20%) 

56 (44%) 

82 (64%) 

11 (9%) 

7 (5%) 

 

81 (63%) 

47 (37%) 

<0·0001 

0·0007 

<0·0001 

0·217 

0·166 

 

<0·0001 

 

10 (4%) 

70 (26%) 

223 (83%) 

13 (5%) 

6 (2%) 

 

220 (82%) 

48 (18%) 

0·032 

<0·0001 

<0·0001 

0·005 

0·341 

 

<0·0001 

 

13 (1%) 

59 (6%) 

852 (94%) 

15 (2%) 

11 (1%) 

 

871 (96%) 

37 (4%) 

Table 5.1 Patient characteristics at baseline in COMPERA 

 

Categorical data are shown as n and (%) of the respective population. Continuous data are 

depicted as median [Q1, Q3]. 

aRisk was determined as published elsewhere (14 ref) 

Definition of abbreviations: BMI, body mass index; IPAH, idiopathic pulmonary arterial 

hypertension; PH, pulmonary hypertension; WHO FC, World Health Organization Functional 

Class; 6MWD, 6-minute walking distance; NT-proBNP, N-terminal fragment of pro-brain 

natriuretic peptide; TLC, total lung capacity; FVC, forced vital capacity; FEV1, forced 

expiratory volume in 1 s; DLCO, diffusion capacity of the lung for carbon monoxide; RA, 

right atrial pressure; mPAP, mean pulmonary arterial pressure; PAWP, pulmonary arterial 

wedge pressure; CI, cardiac index; PVR, pulmonary vascular resistance; SvO2, mixed-venous 

oxygen saturation; CCB, calcium channel blocker; ERA endothelin receptor antagonists; 

PDE5i, phosphodiesterase-5 inhibitors; sGCs, stimulator of soluble guanylate cyclase; PPA, 

prostacyclin pathway agents. 
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5.7.2 Table 2 Patient characteristics at baseline in ASPIRE 
 

 

Classical 

IPAH (i) 

n=185 

P-value 

(i) vs. 

(ii) 

IPAH with a 

lung 

phenotype 

(ii) 

n=139 

P-value (ii) 

vs. (iii) 

Group 3.1 or 

3.2 PH 

n=375 (iii) 

Age, years 52 [38, 64] <0.0001 71 [65, 76] 0.0486 69 [63, 74] 

Female 133 (72%) <0.0009 75 (54%) 0.0032 148 (39%) 

BMI, kg/m2 28 [25, 34] 0.431 28 [25, 31] 0.0561 27 [23, 31] 

WHO FC 

   I 

   II 

   III 

   IV 

 

0 (0%) 

47 (25%) 

119 (64%) 

19 (10%) 

<0.0001 

0 (0%) 

10 (7%) 

80 (58%) 

49 (35%) 

0.939 

0 (0%) 

29 (8%) 

208 (56%) 

135 (36%) 

ISWD, m 
260 [140, 

400] 
<0.0001 90 [30, 150] 0.199 70 [30, 140] 

Pulmonary 

function 

    

FVC, % pred 

FEV1, % pred 

FEV1/FVC (%) 

DLCO, % pred 

 

 

 

 

97 [84, 110] 

87 [75, 97] 

75 [69, 80] 

62 [52, 73] 

 

 

 

 

0.0114 

0.259 

<0.0001 

<0.0001 

 

 

 

 

103 [91, 112] 

88 [74, 99] 

70 [63, 76] 

27 [22, 34] 

 

 

 

<0.0001 

<0.0001 

<0.0001 

0.0498 

 

 

 

82 [62, 102] 

62 [44, 80] 

63 [48, 76] 

25 [19, 32] 

 

Smoking history 

   Ever 

   Never 

   Pack years 

 

 

76 (45%) 

92 (55%) 

20 [10, 30] 

 

<0.0001 

 

139 (100%) 

0 (0%) 

30.0 [20, 40] 

 

n/a n/a 
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Haemodynamics 

RAP, mmHg 

mPAP, mmHg 

PAWP, mmHg 

CI, L/min/m2 

PVR, WU 

 

SvO2, % 

 

 

9 [7, 14] 

54 [46, 64] 

10 [8, 12] 

2.3 [1.8, 2.9] 

10.5 [7.2, 

14.8] 

64 [58, 69] 

 

0.328 

<0.0001 

0.636 

<0.0001 

0.5 

 

<0.0001 

 

10 [7, 14] 

49 [43, 56] 

10 [8, 13] 

2.0 [1.6, 2.4] 

11.1 [7.8, 

14.6] 

58 [53, 66] 

 

0.0002 

<0.0001 

0.3722 

<0.0001 

<0.0001 

 

<0.0001 

 

8 [5, 12] 

41 [34, 49] 

11 [8, 13] 

2.6 [2.0, 3.1] 

6.5 [4.2, 9.9] 

 

66 [60, 71] 

 

Treatment* 

None 

CCB 

Oral monotherapy 

Oral combination 

PPA ± oral 

therapy  

 

2 (1.1%) 

17 (10%) 

40 (24%) 

79 (47%) 

29 (19%) 

 

 

 

0.0004 

 

2 (1.4%) 

0 (0%) 

43 (31%) 

72 (52%) 

21 (15%) 

 

 

 

<0.0001 

 

180 (48%) 

1 (0.3%) 

165 (44%) 

22 (6%) 

7 (2%) 

Table 5.2 Patient characteristics at baseline in ASPIRE 

 

Categorical data are shown as n and (%) of the respective population. Continuous data are 

depicted as median [Q1, Q3]. 

Definition of abbreviations: BMI, body mass index; IPAH, idiopathic pulmonary arterial 

hypertension; PH, pulmonary hypertension; WHO FC, World Health Organization Functional 

Class; ISWD, incremental shuttle walk distance; FVC, forced vital capacity; FEV1, forced 

expiratory volume in 1 s; DLCO, diffusion capacity of the lung for carbon monoxide; RA, 

right atrial pressure; mPAP, mean pulmonary arterial pressure; PAWP, pulmonary arterial 

wedge pressure; CI, cardiac index; PVR, pulmonary vascular resistance; SvO2, mixed-venous 

oxygen saturation; CCB, calcium channel blockers; PPA, prostacyclin pathway agents. 

*Oral monotherapy includes PDE5i or ERA or SGCs; oral combination includes ERA in 

combination with PDE5i or SCGs; PPA +/- oral therapy includes prostanoids either alone or 

in combination with PDE5i or sGCs +/- ERA. 
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5.7.3 Table 3 Lung parenchymal abnormalities on chest computed 

tomography (ASPIRE) 
 

 

 Classical 

IPAH (i) 

n=185 

P-value 

(i) vs. 

(ii) 

IPAH with a 

lung 

phenotype (ii) 

n=139 

P-value 

(ii) vs. 

(iii) 

Group 3.1 or 

3.2 PH 

n=375 (iii) 

CT available 109 (79%) 0·1145 86 (70%) 0·3147 219 (75%) 

CT – Fibrosis (any 

present) 
9 (8%) <0·0001 26 (30%) 0·0093 102 (47%) 

CT – Fibrosis (by 

severity) 

  None 

  Mild 

  Moderate 

  Severe 

 

 

100 (93%) 

6 (6%)  

1 (1%) 

0 (0%)  

<0·0001 

 

60 (71%) 

21 (25%) 

4 (5%) 

0 (0%) 

<0·0001 

 

117 (57%) 

21 (10%) 

33 (16%) 

36 (17%) 

CT – Emphysema 

(any present) 
15 (14%) <0·0001 42 (49%) 0·0694 132 (60%) 

CT – Emphysema 

(by severity) 

    

None 

Mild 

Moderate 

Severe 

 

 

 

 

94 (89%) 

11 (10%) 

1 (1%) 

0 (0%) 

 

 

 

 

<0·0001 

 

 

 

 

44 (52%) 

22 (26%) 

16 (19%) 

3 (4%) 

 

 

 

<0·0001 

 

 

 

87 (41%) 

21 (10%) 

62 (30%) 

40 (19%) 

 
Table 5.3 Lung parenchymal abnormalities on chest computed tomography (ASPIRE) 

 

Data are shown as n (%). Statistical comparisons were made by Pearson’s Chi-squared test or 

Fisher’s exact test.  
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5.8 Figures 
* Please note the numbering for the figures differences between the overall thesis and the 

paper. Both (eg, 1a and 1b) have been included, and please use the original paper figures to 

refer to the manuscript body. 

5.8.1 STROBE diagram showing patient selection in COMPERA 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

*more than one reason for exclusion could apply 
1 (i) Patients with classical IPAH, defined by the absence of risk factors for left heart disease 

(body mass index (BMI) ≥ 30 kg/m2, hypertension, diabetes mellitus, and coronary heart 

disease), and a DLCO ≥ 45% 
2 (ii) Patients diagnosed with IPAH and a lung phenotype, defined by a smoking history (i.e., 

current or former smoker) and a DLCO < 45% of the predicted value 

Incident adult patients  

with Dana Point 1.1, 3.1 or 3.2 

diagnosed in 2009 to 2020 

with mPAP ≥ 25 mmHg,  

PAWP ≤ 15 mmHg, PVR > 3 WU 

and at least one follow-up visit 

n=2,712 

Excluded*: 

• n=6,263 patients with diagnosis other than Dana 

Point 1.1, 3.1 or 3.2 

• n=2,332 patients not diagnosed in 2009 to 2020 

• n=2,348 not incident patients 

• n=995 patients not fulfilling mPAP ≥ 25 mmHg 

• n=2,647 patients not fulfilling PAWP ≤ 15 

mmHg 

• n=2,061 patients not fulfilling PVR > 3 WU 

• n=929 patient with baseline information only 

• n=228 patients <18 years at baseline 

Patients in the COMPERA registry 

n=11,013 

Eligible patients 

n=1,306 

Excluded*: 

• n=1,406 IPAH patients not assignable to 

cohorts (i)1 or (ii)2 

Figure 5.1 STROBE diagram showing patient selection in COMPERA 
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5.8.2 STROBE diagram showing patient selection in ASPIRE 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

*more than one reason for exclusion could apply 
1 (i) Patients with classical IPAH and a DLCO ≥ 45% 
2 (ii) Patients diagnosed with IPAH and a lung phenotype, defined by a smoking history (i.e., 

current or former smoker) and a DLCO < 45% of the predicted value 
  

Incident adult patients  

with Dana Point 1.1, 3.1 or 3.2 

diagnosed in 2001 to 2019 

with mPAP ≥ 25 mmHg,  

PAWP ≤ 15 mmHg, PVR > 3 WU 

n=847 

Excluded*: 

• n=4,592 patients with diagnosis other than Dana 

Point 1.1, 3.1 or 3.2 

• n=25 patients not fulfilling mPAP ≥ 25 mmHg 

• n=125 patients not fulfilling PAWP ≤ 15 mmHg 

• n=25patients not fulfilling PVR > 3 WU 

• n=2 patients <18 years at baseline 

Patients in the ASPIRE registry 

n=5,643 

Eligible patients 

n=699 

Excluded*: 

• n=148 IPAH patients not assignable to cohorts 

(i)1 or (ii)2 

Figure 5.2 STROBE diagram showing patient selection in ASPIRE 
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5.8.3 Grouped barplot showing age distribution of patients classified as 

classical IPAH, IPAH with a lung phenotype, and group 3 PH in 

COMPERA 
 

 

 

  

Figure 5.3 Grouped barplot showing age distribution of patients classified as classical IPAH, IPAH with 
a lung phenotype, and group 3 PH in COMPERA 
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5.8.4 Grouped barplot showing age distribution of patients classified as 

classical IPAH, IPAH with a lung phenotype, and group 3 PH in 

ASPIRE 
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Figure 5.4 Grouped barplot showing age distribution of patients classified as classical IPAH, IPAH with a lung 
phenotype, and group 3 PH in ASPIRE 
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5.8.5 Baseline and first follow-up measurement for (a) functional class 

(FC), (b) 6-minute walking distance (6MWD), (c) N-terminal 

fragment of pro-brain natriuretic peptide (NT-proBNP) and (d) 

mortality risk (as determined by the ESC/ERS 4-strata model) in 

COMPERA 
 

a) 

 

 

 

 

 

 

 

 

 

WHO FC improved from baseline to first follow-up in 54% of the patients with classical 

IPAH, 26% of patients with IPAH and a lung phenotype and 22% in patients with group 3 PH 

(p<0·0001 for classical IPAH versus IPAH and a lung phenotype, and p=0·194 for IPAH and 

a lung phenotype versus group 3 PH).  

 

  



107 
 

b) 

 

 

 

 

 

 

 

 

 

 

 

 

6MWD improved from baseline to first follow-up by 83 ± 111 m in patients with classical 

IPAH, by 31 ± 82 m of patients with IPAH and a lung phenotype, and by 27 ± 89 m in 

patients with group 3 PH (p=0·0015 for classical IPAH versus IPAH and a lung phenotype, 

and p=0·64 for IPAH and a lung phenotype versus group 3 PH).  
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c) 

 

 

 

 

 

 

 

 

 

 

 

NT-proBNP decreased from baseline to first follow-up by 58 [-85, -6] % in patients with 

classical IPAH, by 27 [-64, 18] % of patients with IPAH and a lung phenotype, and by 16 [-

62, 30] % in patients with group 3 PH (p=0·0043 for classical IPAH versus IPAH and a lung 

phenotype, and p=0·142 for IPAH and a lung phenotype versus group 3 PH).  

  



109 
 

d)  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Risk improved from baseline to first follow-up in 64% of the patients with classical IPAH, 

32% of patients with IPAH and a lung phenotype and 29% in patients with group 3 PH 

(p<0·0001 for classical IPAH versus IPAH and a lung phenotype, and p=0·343 for IPAH and 

a lung phenotype versus group 3 PH).  

  

Figure 5.5 Baseline and first follow-up measurement for (a) functional class (FC), (b) 6-minute 
walking distance (6MWD), (c) N-terminal fragment of pro-brain natriuretic peptide (NT-proBNP) 
and (d) mortality risk (as determined by the ESC/ERS 4-strata model) in COMPERA 
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5.8.6 Kaplan-Meier survival estimates for patients classified as classical 

IPAH, IPAH with a lung phenotype, and group 3 PH in COMPERA 
 

 

 

 

 

 

 

 

 

Figure 5.6 Kaplan-Meier survival estimates for patients classified as classical IPAH, IPAH with a lung 
phenotype, and group 3 PH in COMPERA 
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5.8.7 Kaplan-Meier survival estimates for patients classified as classical 

IPAH, IPAH with a lung phenotype, and group 3 PH in ASPIRE 
 

  

Figure 5.7 Kaplan-Meier survival estimates for patients classified as classical IPAH, 
IPAH with a lung phenotype, and group 3 PH in ASPIRE 
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6.1 Abstract 
Objectives: For clinical translation of segmentation studies, there is a need to radiologically 

evaluate outputs, understand limitations and identify failure points. This study develops an 

accurate lung segmentation model in contrast enhanced CT pulmonary angiography (CTPA), 

and clinically radiologically evaluates outputs in two diverse patient cohorts with pulmonary 

hypertension (PH) and interstitial lung disease (ILD).  

 

Materials and Methods: This retrospective study develops an nnU-net-based segmentation 

model using data from two specialist centres (UK & USA). Model was trained (n=36), tested 

(n=12) and clinically evaluated (n=177) on a diverse ‘real-world’ cohort of 225 PH patients 

with volumetric CTPAs. Ground truth was segmented by a radiologist. Dice score coefficient 

(DSC) and Normalised Surface Distance (NSD) were used for testing. Clinical evaluation of 

outputs was performed by two radiologists who assessed clinical significance of errors. 

External validation was performed on CTPA, HRCT, arterial and non-contrast scans from 28 

ILD patients. All analysis was performed at patient level. 

 

Results: Both patient cohorts had diverse demographic and clinical characteristics. Mean 

accuracy, DSC, NSD scores were 0.998 (95% CI 0.9976, 0.9989), 0.990 (0.9840, 0.9962), 

and 0.983 (0.9686, 0.9972) respectively. There were no segmentation failures. 82% and 71% 

of internal and external cases respectively were segmented without error. 18% and 25% 

respectively had clinically insignificant errors. Failure analysis demonstrated peripheral 

atelectasis and consolidation as common causes for suboptimal segmentation. One external 

case with patulous oesophagus had a clinically significant error. 

 

Conclusion: 3D CTPA lung segmentation model provides accurate outputs with few 

clinically significant errors on validation across two diverse cohorts with PH and ILD.  

 

Key words: Computational Tomography, Contrast enhanced CT, Artificial Intelligence, 

Segmentation, Deep-learning, Clinical evaluation, External Validation, Pulmonary 

Hypertension, Interstitial Lung Disease 
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6.2 Introduction 
Lung segmentation in Computational Tomography (CT) imaging is the detection and 

extraction of the anatomical lung boundary on each slice of the study. Automated lung 

segmentation is an important and necessary step in almost all chest CT clinical artificial 

intelligence (AI) applications such as lung nodule detection or lung parenchymal disease 

severity quantification. Accurate segmentation allows for detection of the region of interest 

(lung parenchyma) and removal of confounders (cardiac and mediastinal structures) and is 

important as any segmentation error propagates throughout the rest of the data analysis 

pipeline. Manual segmentation is time consuming, arduous, and has significant inter and 

intraobserver variability 194,195. It is impractical for radiologists to perform segmentation 

during routine clinical reading. 

 

For translation into the clinical domain, there is a need to better evaluate segmentation 

outputs from a clinical perspective to understand model limitations and common failure 

points. A vast range of lung segmentation techniques exist for non-contrast chest CT, from 

traditional computer vision methods approaches, to newer machine and deep learning 

approaches using convolutional neural networks, which have surpassed the performance of 

older methods 194,196–199. However, the vast majority of studies in this domain focus on 

technical developments with advances in underlying network architectures or processing 

techniques 196.  

 

Computed tomography pulmonary angiography (CTPA) involves administration of 

intravenous contrast which enables assessment of the pulmonary vasculature in addition to 

other structures on chest CT. It is performed routinely for patients with suspected pulmonary 

embolism (PE) and pulmonary hypertension (PH). A known limitation of current deep-

learning segmentation algorithms is failure to segment high density objects such as subpleural 

consolidation 196,200,201. There are significant differences in the attenuation of the lung 

parenchyma between CTPA and non-contrast imaging due to parenchymal uptake of contrast. 

To the best of our knowledge, no study has trained a lung segmentation algorithm in PH or 

CTPA imaging and externally tested it in a heterogeneous mixed cohort of chest CT 

protocols. 

 



115 
 

This study develops a 3D deep-learning CTPA lung segmentation algorithm using the state-

of-the-art nnU-net architecture 202. nnU-net has shown breakthrough performance and has 

become the new standard in a variety of medical imaging segmentation tasks 203. The study 

aims are to: 

1. To develop a novel state-of-art nnU-net based 3D lung segmentation algorithm in 

CTPA imaging. 

2. To clinically evaluate and score segmentation outputs by review from expert 

subspeciality thoracic radiologists, then perform failure analysis on cases with 

suboptimal performance. 

3. To deploy and externally validate the algorithm in a heterogeneous patient cohort at 

another centre. 

 

6.3 Materials and methods 
This retrospective study uses data from two patient cohorts - Sheffield, UK and Stanford, 

USA. All patient data was de-identified as per GDPR and HIPAA compliant local guidelines. 

Ethical approval was granted by the Institutional Review Board at both centres and approved 

by the UK National Research Ethics Service (16/YH/0352). All analysis is done at the patient 

level, with each patient having a single corresponding CT scan. 

6.3.1 Study cohorts 

6.3.1.1 Sheffield (reference dataset) 
Patients were selected from the ASPIRE registry, the details of which have been previously 

reported 41,50. The registry prospectively includes comprehensive clinical and radiological 

data on patients referred with suspected pulmonary hypertension (PH) to a tertiary referral 

centre.  

 

226 patients with a heterogeneous mix of normal and abnormal chest CT findings formed the 

internal reference dataset. 48 random cases were used for model development, randomly 

divided into 36 for model training (8 for tuning) and 12 for technical performance testing. 

Training cohort sample size was based on recent studies in which similarly sized cohorts 

utilising 3D segmentation approaches demonstrated high technical performance 196,204. 
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Radiological clinical validation was performed on all remaining unseen 177 cases. All scans 

were performed on two General Electric (GE) scanners with the patient in a supine position. 

Scanning parameters included multiple doses and kernels. All patients had thin-slice 

volumetric scans with contrast in the CTPA protocol. Patients had a diagnosis of either 

Idiopathic Pulmonary Arterial Hypertension (IPAH) or Pulmonary Hypertension secondary 

to Chronic Lung Disease (PH-CLD). 

 

6.3.1.2 Stanford (external dataset) 
To evaluate the model’s generalisation performance on external data, an additional test set of 

CT scans was selected from a mixed cohort of patients evaluated for interstitial lung disease 

at Stanford Hospital and Clinics in a tertiary care setting. From a total of 2300 CT scans from 

1330 patients, 28 scans were randomly selected. Scans were acquired using Siemens (n=21), 

GE (n=6) or Toshiba CT scanners (n=1) and reconstructed with a variety of convolutional 

kernels. All scans were performed with the patient in a supine position. 25 (89.3%) CT scans 

were non-enhanced, two (7.1%) of the scans were obtained using a CTPA protocol, and one 

scan (3.5%) was obtained using a CTA protocol. The underlying ILD diagnostic groups were 

connective tissue disease-related ILD (11 (39.3%)), exposure-related ILD (7 (25%)), 

idiopathic interstitial pneumonia (6 (21.4%)), post-infectious scarring of the lung parenchyma 

(1 (3.5%)) and IPAH (1 (3.5%)). No signs of ILD were seen in two scans (7.1%).  

 

6.3.2 Model development 

6.3.2.1 Ground truth manual segmentation 
MIM (MIM Software, Cleveland, USA) was used to label and generate ground truth lung 

segmentation masks. A workflow was developed which used built-in operators to create an 

initial mask, and each step was continually reviewed by a certified radiologist. The 

RegionGrow tool was used to segment the lungs and airways from the trachea, manually 

checking for errors. Thresholds were -350 to -4000 Hounsfield Units (HU). Tendril diameter 

was 4.0, with ‘fill holes’ set to none and smoothing enabled. The workflow was continuously 

manually evaluated, with appropriate technical parameters adjusted to improve performance. 

After achieving this baseline result, the scan was then manually adjusted and contoured on a 
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slice-by-slice level by the radiologist to ensure correct segmentation of the lung border. This 

output was used as the ground truth for model development.  

6.3.2.2 Deep-learning model development 
Pre-processing steps included truncating the HU range to -1024 to 2500 then normalisation 

using SD (199HU) and mean (-761HU) of the segmented lung region across all training 

images.  A single fold training approach was used, consisting of 1000 epochs with 250 mini-

batches per epoch. Data augmentation during training was used with random rotation (-30o to 

30o about 3 axes, p=0.2) , scaling (0.7 to 1.4, p=0.2), gamma correction (0.7 to 1.5, p=0.3) 

and mirroring about 3 axes (p=1). A two stage cascade was used where the output 

segmentation from the first stage was passed to the second stage. During training the output 

from the first stage has augmentations to randomly remove connected pixels and conduct 

morphological operations to enlarge/shrink the output to reduce co-adaptation. For the first 

stage the training images are resampled to a mean pixel size of 1.01x1.01x0.84mm and a 

380x380x346 matrix, with a mean pixel size of 0.75x0.75x0.625 and 512x512x467 matrix for 

the second stage. A patch size of 256x224x224 with a batch size of 2 was used with a 

learning rate of 1x10-3. Dice’s Similarity Coefficient (DSC), accuracy, and normalised 

surface distance (NSD) were calculated by comparing manual to deep learning segmentations 

for each case in the test cohort. Hardware used was a NVIDIA A6000 48GB GPU, 32 Core 

64 thread processor, 256GB RAM. Post processing steps involved removal of regions <250 

ml in volume.  

6.3.3 Clinical segmentation scoring system: RadSeg 
Segmentation outputs were clinically reviewed by two radiologists (KD and CB) with 4 and 7 

years of experience in interpreting thoracic CT scans. An ordinal score (RadSeg score) was 

given to each segmentation output, scored as: 

● 0 - failed to output a segmentation. 

● 1 - lung segmented with clinically significant error. 

● 2 - lung segmented with minor clinically insignificant error. 

● 3 - full lung segmented without any clinically significant errors. 

 

One radiologist reviewed all 177 cases from the ‘Site 1’ test cohort. The 28 external ‘Site 2’ 
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test set cases were reviewed by two radiologists. Cases with differing scores were reviewed 

together and a consensus RadSeg score was given.  

6.3.4 Statistical Analysis 
All   analyses   from   Sheffield   and   Stanford were performed separately; the data were not 

combined. Analyses were performed using R software major version 4. Categorical data are 

presented as number and percentage, continuous data as median and interquartile range. 

Segmentations were compared using an overlap-based-metric (Dice Similarity Coefficient 

(DSC)), and a boundary-based-metric (Normalised Surface Distance (NSD). For NSD a 

threshold of 1.5 mm was used, as it was felt to be a clinically appropriate threshold. A p value 

of 0∙05 or less was considered statistically significant. 

6.3.5 Role of the funding source  
The funders of the study had no role in study design, data collection, data analysis, data 

interpretation, or writing of the report. 

 

6.4 Results  
Patient clinical characteristics of both cohorts are shown in Table 1. Patients had a diverse 

range of hemodynamic, spirometric and demographic factors. 

6.4.1 Technical results 
Mean accuracy, DSC score, and NSD across the internal validation cases was 0.998 (95% CI 

0.9976 to 0.9989), 0.990 (95% CI 0.9840 to 0.9962) and 0.983 (95% CI 0.9686 to 0.9972) 

respectively. Scores for each patient are shown in Appendix Table 1a. 

6.4.2 Clinical segmentation scores 

6.4.2.1 Sheffield internal validation 
There were no failures (RadSeg score 0) and all cases were successfully segmented by the 

algorithm. 146 (82%) cases had a full lung segmentation without any clinically significant 

error (RadSeg score 3) and 31 (18%) had a minor clinically insignificant error (RadSeg score 



119 
 

2). No cases were segmented with a clinically significant error (RadSeg score 1). The most 

common reasons for segmentation errors were consolidation (9, 29%), atelectasis (7, 23%) 

and pleural effusion (6, 19%). These findings are shown in Table 2. 

6.4.2.2 Stanford external validation 
There were no failures (RadSeg score 0) and all cases were successfully segmented by the 

algorithm. 20 (71%) cases had a full lung segmentation without any clinically significant 

error (RadSeg score 3) and 7 (25%) had a minor clinically insignificant error (RadSeg score 

2). The reasons for segmentation errors were atelectasis, pleural effusion and basal severe 

fibrosis. 

 

The one case with a clinically significant error had a patulous dilated oesophagus secondary 

to scleroderma, in which the gas filled oesophagus was included within the lung 

segmentation. 

 

6.5 Discussion 
This study presents a state-of-the-art 3D lung segmentation algorithm with clinical validation 

across two centres in distinct well phenotyped clinical cohorts. The model achieved high 

technical precision, indicated by high DICE and NSD scores, and clinical utility, indicated by 

high scores on radiological review. To our knowledge, this is the first model developed 

specifically in CTPA imaging and in a cohort of PH patients. 

 

The study differs significantly in study design, patient cohort and model evaluation compared 

to most segmentation studies currently in the literature. The methods were specifically 

designed to address common limitations that make clinical use and translation challenging. 

These are a lack of clinical evaluation of the segmentation output from expert radiologists, 

lack of diverse, heterogenous real world clinical cohorts, and external validation. This study 

addresses each limitation by clinically evaluating model outputs, and by developing and 

testing the model on two different patient cohorts from two centres.  

 

Importance of radiological review of segmentation outputs 
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The most common parameter used to report and compare segmentation performance is the 

Dice Similarity Coefficient (DSC). However, technical parameters alone are insensitive in 

assessing clinical utility. Almost all studies show DSC scores >0.97, but failure analysis of 

cases with suboptimal performance is rarely reported (14). DSC itself is known to be  highly 

reliant on structure size and providing artificially high scores by ignoring missing values 205. 

The structure size limitation is particularly appropriate in the clinical use of lung 

segmentation, where due to the large lung volume, small volume but highly clinically 

significant segmentation errors - such as segmenting the oesophagus or failing to segment 

basal ground glass change in interstitial lung disease - have minimal impact on the reported 

DSC score.  

 

We therefore propose and utilise a clinical segmentation scoring system (RadSeg score), 

which accounts for the small volume and clinical significance of errors. Our model had no 

major clinically significant errors when validated against scans from the reference centre 

(Sheffield) and only one after deployment in an external centre (Stanford). As radiologists are 

the target user in mind for such AI models, their involvement in the development and clinical 

evaluation of such models, we believe will help create trust in the model’s output and help 

increase uptake in routine clinical practice 60,206.  

 

Analysis of suboptimal outputs 

Transparency of the algorithm limitations and causes of suboptimal performance is important 

to clinical trust. The training and test cohorts in our study included cases with severe 

parenchymal abnormalities (Figure 2, panel C), and the majority of these accurately 

segmented. The most common reasons for suboptimal segmentation (RadSeg Score 1 or 2) 

were consolidation and atelectasis. Accurate segmentation of these high-density parenchymal 

abnormalities is challenging, and is a limitation common to all lung segmentation models and 

studies 196,200. The causes for suboptimal performance are hard to directly compare, as they 

are often not reported or characterised.  

 

Importance of external deployment and validation. 

Our model had no failures either in the internal or external test sets, with only one clinically 

significant error in the external set. External validation of any AI model is vital to test model 

performance and generalisability. However only 6% of published deep learning studies in the 

field of diagnostics performed external validation 207. The majority of studies with external 
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validation demonstrate diminished algorithm performance 208. Within the domain of lung 

segmentation, Yoo et al found a significant drop off (DSC 99.4 in internal test to DSC 95.3 in 

external test) in the  performance on their 3D U-Net based model on external validation 201. 

This study performs external validation not only after deployment in a different centre, but on 

a different clinical cohort of patients, and demonstrates good results on clinical evaluation. 

The external cohort is heterogeneous both in containing patients with and without PH, but 

also a random mix of different volumetric chest CT protocols, with and without contrast 

opacification.  

 

Need for heterogeneous ‘real world’ clinical cohorts 

Our technical results of mean DSC of 0.990 and NSD of 0.983 compare favourably against 

other published 3D and 2D segmentation approaches on non-contrast scans 196,199,201,209,210. 

This result likely can be attributed to the use of a state-of-the-art nnU-net architecture 

combined with a heterogeneous ‘real world’ clinical training cohort with a mix of pathology. 

Hofmanninger et al. showed that the accuracy and reliability of lung segmentation algorithms 

on difficult cases primarily relies on the strength of the training data, more so than the 

underlying model architecture 196. This effect is particularly pronounced on external 

validation against a variety of test sets, with algorithms trained on more diverse data being 

more generalisable.  Previous studies have been limited by training on relatively homogenous 

cohorts, which is a by-product of utilising public datasets, which only contain normal scans 

or variations of a specific disease class 203,211.  

 

Implications for practice, and intended clinical use 

Accurate lung segmentation is a necessity for any quantitative chest CT analysis. We 

envisage clinical use of this model as the first pre-processing step in quantitative CT analysis 

models such as lung parenchymal disease severity quantification in PH. There is a clinical 

need and great interest in better characterising the severity and extent of lung parenchymal 

disease in PH 212. Qualitative routine radiological report descriptions of parenchymal disease 

have shown to be prognostic biomarkers 178. A new IPAH phenotype has been identified with 

distinct radiological and clinical characteristics 213. These clinical scenarios will benefit 

greatly from automated end-to-end lung segmentation and parenchymal disease 

quantification models. The implications of this work also exist beyond PH, given the good 

performance on the external test cohort. CTPA is routinely performed for the acute diagnosis 

of PE. Automated lung segmentation models can enable further quantitative vessel analysis 
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and clot burden estimation 214,215. With appropriate transfer learning to further improve 

performance, this model may be used as a tool for both contrast and non-contrast imaging.  

 

Limitations 

The training set contains only patients with a known diagnosis of pulmonary hypertension, 

and thin-slice volumetric CTPA protocol scans, from a single tertiary centre with a 

predominantly white European population. The range of lung disease in this cohort has been 

previously reported, and whilst this represents a realistic heterogeneous clinical cohort of 

patients, there is a relative skew and bias to pathological cases due to a lack of truly ‘normal’ 

scans 178.  A limitation to using real world clinical data is a lack of ‘rare’ cases in the training 

data which can limit performance. Future work will seek to address the limitations of this 

study by developing and testing the DL model in a large cohort of multi-ethnicity patients. 

Despite good performance in the heterogeneous external test cohort, the intended clinical use 

of the developed model at this stage is limited to patients with suspected diagnosis of PH. 

 

In conclusion, we developed a 3D nnU-net based model for lung segmentation in CTPA 

imaging that is highly accurate, clinically evaluated, and externally tested in well phenotyped 

patient cohorts with a spread of lung disease. The model is suited to important clinical 

scenarios of lung disease quantification in pulmonary hypertension. 
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6.6 Figures 

6.6.1 Fig 1: STROBE flow diagram  

 
Figure 6.1 STROBE diagram showing patient selection in both internal reference datasets (Sheffield, ASPIRE 

cohort) and external datasets (Stanford ILD cohort).  

Patient groups per study stage (model development and clinical segmentation scoring) are 

also shown. 
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6.6.2 Fig 2: Example of RadSeg scores 

 
Figure 6.2 Examples of cases with corresponding RadSeg scores.  

A (score 1) - example of significant clinical error (oesophagus erroneously included). B 

(score 2) - example of minor clinical error (consolidation at left lung base partially not 

included). C (score 3) - example of no clinical error in a difficult case with severe lung 

disease. D (score 2) - another example of minor clinical error (bullous emphysema partially 

not included) 
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6.7 Tables 

6.7.1 Table 1: Patient characteristics  
Characteristic Sheffield 

Reference 

Cohort 

N = 2251 

Stanford 

External Cohort 

N = 28 

Age at scan 68 (60, 74) 62 (51, 74) 

Female gender 106 (47%) 22 (79%) 

Body Mass Index 27.2 (23.9, 31.8) 6 (21%) 

WHO Functional Class   

       2 30 (13%) N/A 

       3 126 (56%) N/A 

       4 67 (30%) N/A 

Baseline Intermittent Shuttle Walk Test distance (m) 90 (30, 182) N/A 

PFT - FVC % predicted 83 (67, 105) 64 (52, 76) 

PFT - FEV1 % predicted 70 (49, 89) 68 (52, 81) 

PFT - FEV1 / FVC Ratio 68 (52, 76) 79 (75, 84) 

PFT - DLCO % predicted 29 (22, 47) 63 (58, 68) 

Smoker (ever)   

      Never 26 (34%) 15 (54%) 

      Ever 50 (66%) 13 (46%) 

      Pack years 24 (20, 40) N/A 

RHC - Mean Right Atrial Pressure (mmHg) 9.0 (6.0, 14.0) N/A 

RHC - Mean Pulmonary Arterial Pressure (mPAP) 45 (35, 53) N/A 

RHC - Pulmonary Arterial Wedge Pressure (mmHg) 11.0 (9.0, 14.0) N/A 
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RHC - Cardiac index (L/min x m^-2) 2.58 (2.05, 3.29) N/A 

RHC - Pulmonary Vascular Resistance (Wood Units) 7.1 (4.1, 10.7) N/A 

RHC - Mixed venous oxygen saturation SvO2 % 65 (59, 70) N/A 

1 Median (IQR); n (%)   

Table 6.1 Patient characteristics for both internal reference and external cohorts 

Abbreviations used – WHO – World Health Organisation, PFT – Pulmonary Function Test, 

FEV1 – Forced Expiratory Volume in 1 second, FVC – Forced Vital Capacity, DLco – 

Diffusing capacity of carbon monoxide, RHC – right heart catheterisation. 

6.7.2 Table 2: Clinical evaluation of radiological segmentation (RedSeg) 

results  
 

 Sheffield 

Reference 

Cohort 

N = 1771 

Stanford 

External 

Cohort 

N = 281 

RadSeg score   

0 (failed to output a 

segmentation) 

0 0 

1 (segmented with clinically 

significant error) 

0 1 (3.6%) 

2 (segmented with minor 

clinically insignificant error) 

31 (18%) 7 (25%) 

3 (segmented without any 

clinical significant errors) 

146 (82%) 20 (71%) 

Failure analysis - reasons for 

RadSeg score 1 or 2 

  

Consolidation 9 (29%) 0 

Atelectasis 7 (23%) 3 (38%) 
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Pleural effusion 6 (19%) 2 (25%) 

Bullous emphysema 3 (9.7%) 0 

Apical scarring 2 (6.5%) 0 

Lung mass/nodule 2 (6.5%) 0 

Fibrosis  0 2 (25%) 

Azygous fissure (thickened) 1 (3.2%) 0 

Collapsed lobe 1 (3.2%) 0 

Patulous dilated oesophagus  1 (12%) 

1 n (%)  

Table 6.2 Clinical evaluation of radiological segmentation (RedSeg) results and failure analysis for suboptimal 

performance in each cohort. 
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6.8 Supplemental Material / Appendix 
 

6.8.1 DICE and accuracy scores for each patient in performance testing. 
 

Case Accuracy Dice Similarity 

Coefficient (DSC) 

Normalised Surface 

Distance (NSD) 

1 0.999 0.995 0.988 

2 0.995 0.967 0.941 

3 0.999 0.996 0.994 

4 0.999 0.996 0.994 

5 0.998 0.993 0.990 

6 0.998 0.987 0.991 

7 0.999 0.995 0.991 

8 0.997 0.974 0.930 

9 0.998 0.992 0.992 

10 0.999 0.995 0.989 

11 0.999 0.995 0.999 

12 0.999 0.996 0.996 

Mean (95% 

Confidence Interval) 

0.998 (95% CI 

0.9976 to 0.9989) 

0.990 (95% CI 

0.9840 to 0.9962) 

0.983 (95% CI 

0.9686 to 0.9972) 
Table 6.3 DICE and accuracy scores against validation cases. 
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6.8.2 DICOM information for each cohort 
 

Characteristic Sheffield 

Reference 

Cohort 

N = 2251 

Stanford External 

Cohort 

N = 28 

Scanner manufacturer   

GE MEDICAL SYSTEMS 225 (100%) 6 (21%) 

SIEMENS  21 (75%) 

TOSHIBA  1 (4%) 

Scanner model name   

LightSpeed Pro 32 64 (26%) 0 (0%) 

LightSpeed VCT 161 (72%) 4 (14%) 

SOMATOM Definition AS+  7 (25%) 

SOMATOM Definition Edge  4 (14%) 

SOMATOM Definition Flash  2 (7%) 

SOMATOM Force  3 (11%) 

Sensation 64  5 (18%) 

Aquilion  1 (4%) 

Scan slice thickness   

0.625 225 (100%) 1 (4%) 

1.0  20 (71%) 

1.25  5 (18%) 

2.0  2 (7%) 

kvp   

80 0 (0%) 1 (4%) 
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100 39 (17%) 4 (14%) 

120 186 (83%) 23 (82%) 

1 n (%)   

Table 6.4 Scan DICOM (Digital Imaging and Communications in Medicine) information for each cohort. 
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7.1 Abstract 
Background Gold standard for Computed Tomography (CT) lung disease quantification is 

visual scoring by specialist radiologists. Due to overlapping characteristics, distinguishing 

between Idiopathic Pulmonary Arterial Hypertension (IPAH) and PH secondary to Chronic 

Lung Disease (PH-CLD) is challenging in patients with ‘mild’ lung disease. This 

retrospective multicentre study deploys an AI model to quantify and establish the prognostic 

value of common lung parenchymal patterns. 

 

Methods 

521 consecutive patients with incident CT imaging between 2001-19 were included from the 

ASPIRE registry. AI quantified the percentage of normal lung, ground glass, ground glass 

with reticulation (GGR), emphysema, honeycombing and fibrosis. Fibrosis severity was 

scored by sub-specialist radiologists. Multivariate cox regression adjusting for age, sex, 

WHO function class, and diffusing capacity of carbon monoxide (DLCO) was performed. 

Findings were externally validated in 246 patients from 33 centres and 37 scanners. 

 

Findings 

All patterns were prognostic univariate predictors. GGR% (HR 1.02, p=0.015) and fibrosis% 

(HR 1.01, p=0.05) were prognostic multivariate predictors (Hazard ratio reflects 1% increase 

in lung involvement)I. 2% GGR and 4% fibrosis corresponded to 20% 1-year mortality. In the 

external cohort, these thresholds were multivariate prognostic predictors (2% GGR HR 1.74, 

p=0.011 and 4% fibrosis HR 1.85, p=0.004). In 300 patients scored by radiologists as having 

‘no’ fibrosis, AI identified minor disease (1.2% GGR) which was prognostic (HR 1.03, 

p=0.006). Adding GGR to a predictive model of radiologically scored disease significantly 

improved the model (c-index 0.763 vs 0.742, p=0.038). 

 

Conclusion 

AI quantified GGR and fibrosis are prognostic markers for survival, independent of age, sex, 

WHO function class and DLCO. AI is sensitive to minor lung disease, and when used in 

 

 

 
I This has been slightly modified from the original published manuscript to improve clarity. 
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combination with radiological reporting, provides additional predictive value. These findings 

have implications for patient phenotyping, radiological reporting, and patient management.  
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7.2 Research in context panel 

7.2.1 Evidence before this study 
Patients with evidence of significant precapillary pulmonary hypertension (PH) but with a 

‘mild’ degree of parenchymal lung disease on Computational Tomography (CT) pose a 

diagnostic dilemma between two phenotypes - Idiopathic Pulmonary Arterial Hypertension 

(IPAH) and PH secondary to Chronic Lung Disease (PH-CLD). Current guidance assigns 

these patients as IPAH, but recent evidence has shown they have poorer outcomes compared 

to those with ‘no’ lung disease. There is a need for better characterising lung disease in these 

patients. Recent Artificial Intelligence (AI) advances have enabled truly quantitative 

approaches to CT which can directly quantify individual imaging features. 

PubMed was searched on 13 December 2022 using the terms “pulmonary 

hypertension” AND “artificial intelligence” AND “lung disease”, with no date or language 

restrictions. Variations of those search themes were combined with the OR operator. The 

search retrieved 38 results. These included papers that investigated the use of machine 

learning in PH in other diagnostic modalities, such as ECG, cardiac MR, or blood profiling. 

There were two reviews on the current use of machine learning in PH, and a further review of 

the imaging modalities used in PH. One study used a composite of imaging, clinical, lab and 

haemodynamic variables to identify additional disease phenotypes in PH.  

Of the three directly related studies, two used machine learning methods on CT 

angiography to assess coronary and vascular features respectively, in patients with PH. The 

final paper used a CT based mathematical model to distinguish Chronic Thromboembolic 

Pulmonary Hypertension (CTEPH) from pulmonary embolism. No studies applied 

quantitative chest CT models that assessed parenchymal lung disease. 

7.2.2 Added value of this study 
Current lung disease severity assessment on CT is limited to a subjective visual score for an 

overall disease (eg, ‘none’/‘mild’/’moderate’/’severe’ for fibrosis). This study better 

characterises lung disease on CT as a percentage of involvement of individual radiological 

parenchymal patterns, and establishes their respective prognostic impact. Ground glass 

change with reticulation is an important prognostic marker that is currently overlooked. The 

study establishes the added value of this combined quantitative AI approach when used in 
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adjunct to routine reporting by a specialist radiologist. Importantly, we externally validate our 

findings with imaging from 37 centres, performed on 33 scanners. 

7.2.3 Implications of all the available evidence 
Better characterisation of lung disease as a percentage of lung involvement of individual 

radiological patterns will help in improving patient phenotyping. Lung disease severity is 

important to clinical outcomes, referral decisions and management. This automated AI 

approach identifies prognostic imaging biomarkers, which can be combined with clinical, 

genomic and multimodality approaches to identify or discover new clusters and sub-

phenotypes of disease.  
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7.3 List of abbreviations  
CT Computed Tomography  

CTPA Computed Tomography Pulmonary Angiogram 

PH Pulmonary Hypertension 

PAH Pulmonary Arterial Hypertension 

IPAH Idiopathic Pulmonary Arterial Hypertension 

LOESS LOcally Estimated Scatterplot Smoothing 

ILD Interstitial Lung Disease 

DSC Dice Score Coefficient 

NSD Normalised Surface Distance 

HRCT High Resolution Computed Tomography 

AI Artificial Intelligence 

GDPR General Data Protection Regulation 

ASPIRE Assessing the Severity of Pulmonary Hypertension In a Pulmonary 

Hypertension REferral Centre 

PH-CLD Pulmonary Hypertension associated with Chronic Lung Disease 

HU Hounsfield units 

WHO World Health Organisation 

PFT Pulmonary Function Test 

FEV1 Forced Expiratory Volume in 1 second 

FVC Forced Vital Capacity 

DLCO Diffusing capacity of carbon monoxide 

RHC Right Heart Catheterisation 
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7.4 Introduction 
Lung disease severity in Pulmonary Hypertension (PH) is an important factor to accurately 

phenotype patients between Group 1 Pulmonary Arterial Hypertension (PAH) and Group 3 

Pulmonary Hypertension associated with Chronic Lung Disease (PH-CLD). In practice, 

distinguishing between these two groups is challenging due to overlapping clinical 

characteristics, particularly in the most common form of PAH, Idiopathic Pulmonary Arterial 

Hypertension (IPAH)42,47,213. Patients presenting with ‘mild’ to ‘moderate’ lung disease pose 

a clinical diagnostic dilemma of substantial diagnostic and prognostic importance, as only 

patients diagnosed as PAH are eligible for novel targeted therapies which improve survival 3. 

Current guidance recommends patients with mild lung disease be classified as IPAH 3. 

However, recent studies have demonstrated that these patients have poorer outcomes, and 

likely represent a new distinct phenotype 36,41,213. Chest Computed Tomography (CT) 

imaging is routinely performed for diagnosis but is not currently used for prognostication 30. 

 

The gold-standard for lung parenchymal disease assessment is a visual assessment by a 

specialist radiologist. However, this is not reproducible and there exists significant inter and 

intra observer viability even amongst specialist radiologists84,86. Quantification is also limited 

to at best a subjective semi-quantitative score, such as none/mild/moderate/severe. Advances 

in artificial intelligence (AI) deep-learning approaches have made possible truly quantitative 

analysis of imaging features 49. AI models can automatically identify the parenchyma, 

classify regions of disease, and provide metrics such as volume and percentage of lung 

involvement of common radiological parenchymal patterns 49,80,88.  

 

This retrospective study deploys an automated end-to-end CT AI model that quantifies the 

extent of lung disease on a large consecutive clinical cohort of patients with a diagnosis of 

IPAH and PH-CLD. The principal hypothesis is that AI quantified percentage of individual 

radiological parenchymal patterns is prognostic, independent from and of added value beyond 

current established methods of lung disease severity assessment - pulmonary function testing 

(DLCO) and semi-quantitative radiological assessment. The primary aim of the study is to 

test this hypothesis with imaging performed across multiple centres and scanner types. 

Secondary aims are to derive thresholds for any significant lung disease features and 

externally validate their added prognostic value in predicting patient survival.  
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7.5 Methods  

7.5.1 Study population 
All incident patients with a primary assigned diagnosis of IPAH or PH-CLD were identified 

from the ASPIRE (Assessing the Severity of Pulmonary Hypertension In a Pulmonary 

Hypertension REferral Centre) registry. The combined cohort, irrespective of original 

assigned diagnosis, was chosen to minimise misclassification, selection or misdiagnosis bias. 

The registry contains comprehensive multimodality clinical and imaging data from patients 

across the United Kingdom, with a referral population 15-20 million patients213. Inclusion 

criteria was CT imaging performed at time of diagnosis, which was appropriate for AI 

quantitative analysis – a thin slice chest CT pulmonary angiogram (CTPA) without severe 

respiratory motion artefact. Exclusion criteria were patients with PH-CLD associated with 

conditions other than COPD and/or emphysema or ILD, and those with two or more 

radiological features of possible pulmonary veno-occlusive disease167. These eligibility 

criteria were chosen to represent a consecutive patient cohort with a spectrum of lung disease 

and PH aetiology. The cohort was divided into an internal derivation and external validation 

cohort based on location of their imaging. Mortality data were obtained from systems linked 

to the National Health Service Personal Demographics Service (PDS), which is updated when 

a death is registered in the UK. Patients who emigrated were excluded, as were patients 

without a record on the PDS. Patients undergoing lung transplantation were censored at the 

time of surgery, and mortality data were collected using a census date of May 31, 2019. 

7.5.2 CT image acquisition, analysis and quantitative AI model 
CT scans were performed in multiple centres on scanners from all major manufacturers with 

varying technical parameters. All scans were reported by experienced sub-speciality chest 

radiologists, who scored fibrosis semi-quantitatively as none/mild/moderate/severe as 

previously described 178,213. The five parenchymal patterns, classified in accordance with the 

Fleishner Society glossary of terms, are ‘normal lung’, ‘ground glass’(GG), ‘ground glass 

with reticulation’ (GGR), ‘emphysema’ and ‘honeycombing 216. ‘Fibrosis’ is a composite 

variable formed by summating regions of GG, GGR and honeycombing to reflect routine 

radiological reporting practice in these patients.  
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A supervised quantitative CT AI classification model was developed, as previously described 
217. In brief, the model takes a CTPA scan as an input and provides the respective percentage 

of lung volume involvement of each pattern as an output. Expert labelling of these patterns 

was performed by two qualified radiologists, with 12 and 2 years of specialist experience in 

cardiothoracic imaging. Lung segmentation is performed using a trained CTPA nnU-net 

based model202. Parenchyma classification is performed using a patch-based sliding window 

approach with a trained DenseNet-121. The parenchyma is divided into multiple overlapping 

patches, which are classified, then reconstructed to form a classified mask. Parameters 

hypertuned and tested for optimal DenseNet-121 performance were patch size, 

dimensionality, selection radius, minimum fill factor, and number of patches. The optimum 

hyperparameters were found to be 2.5D patches, pixel size of 64, selection radius of 3mm, 

minimum fill factor of 0.625 and the maximum number of patches. Post-processing was 

performed on the ’Emphysema’ class using a patch threshold of 925 Hounsfield Units (HU) 

and fill factor of >5%. 

7.5.3 Statistics 
All analysis is performed at the patient level with one single corresponding incident CTPA. 

This is a retrospective post-hoc analysis of routinely collected prospective data. Analysis was 

performed with R version 4.1.2. Categorical data are presented as number and percentage, 

continuous data as median and IQR. To compare the derivation and validation cohorts, two-

sample Welch t-tests or Wilcoxon rank sum tests were used for continuous data. Categorical 

data were compared by Pearson's χ2 test or by Fisher's exact test. Correlations with 

pulmonary function tests and association with radiologically reported disease severity was 

performed on a full cohort level.  

 

Cox proportional hazard's regression was used to determine association between different CT 

parenchymal features and survival. Hazard ratios are presented with 95% confidence intervals 

and p value of <0.05 was considered significant. Unadjusted univariate and three separate 

adjusted multivariate models incorporating known prognostic variables were created for each 

AI CT feature. Model 1 adjusted for patient demographics – age, sex and WHO functional 

class; model 2 adjusted for all demographics and additionally haemodynamic disease severity 

by including pulmonary vascular resistance (PVR); and model 3 adjusted for all 

demographics and DLCO. In the internal derivation cohort, thresholds for 20% 1-year 
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mortality were derived for features that were independent predictors after adjusting for age, 

sex, WHO FC and DLCO (model 3), from locally estimated scatterplot smoothing (LOESS) 

curves. Patients in the external validation cohort were stratified by the derived thresholds. All 

three multivariate models were again analysed for the external validation cohort. Age, PVR 

and DLCO was stratified by thresholds of 50 years, 5 Wood Units and 45% DLCO, as per 

prior studies. Survival estimates from the time of enrolment were done by Kaplan-Meier 

analyses and log-rank test. 

 

In a subgroup of patients scored as ‘no disease’ for fibrosis by radiologists, cox proportional 

hazard's regression was used to determine association between the percentage of lung 

involvement of disease features and survival. To assess whether CT AI features provide 

additional prognostic value, three different multivariate models were tested in the external 

derivation cohort. Model A included demographics alone – age, sex, and WHO function 

class. Model B included demographics and additionally the radiological scoring of 

none/mild/moderate/severe. Model C included demographics, radiological scoring and 

additionally prognostic AI metrics. The model c-index and Akaike information criterion 

(AIC) were measured to assess the relative prognostic strength of the model. A better model 

fit is indicated by a higher c-index, which represents the rate of correct survival predictions, 

and a lower AIC, which represents rate of prediction errors. In addition, the likelihood ratio 

test was performed to assess if there is a statistically significant difference between models. 

7.5.4 Ethics 
Ethical approval was granted by the Institutional Review Board and approved by the National 

Research Ethics Service (16/YH/0352). All research was conducted in agreement with the 

Declaration of Helsinki and the European General Data Protection Regulation. 

7.5.5 Role of the funding sources 
The funders of the study had no role in study design, data collection, data analysis, data 

interpretation, or writing of the report.   
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7.6 Results 

7.6.1 Patient and cohort characteristics  
From 5643 patients in the ASPIRE registry, 521 patients between February 2001 and January 

2019 met the eligibility criteria and were included for analysis. 275 patients had CT imaging 

in our centre on four different scanners and formed the internal derivation cohort. 246 with 

CT imaging performed in 37 centres on 33 different scanners formed the external validation 

cohort. Patient characteristics are described in Table 1 and scanner type information in 

supplementary table s1a. Data availability for each variable is provided in appendix table s4a. 

 

The combined cohort had a representative wide range of lung disease on pulmonary function 

testing (Interquartile range, IQR, 22-49 for DLCO, 72-107 for FVC percent predicted and 55-

90 for FEV1 percent predicted) and haemodynamic disease severity on right heart 

catheterisation (PVR IQR 5.0-11.6). There was a 50% even split between IPAH and PH-

CLD. Patients in the external validation cohort were younger, more female, and had more 

severe haemodynamic disease diagnosed as IPAH. They had less severe lung disease 

quantified by FEV1 and FVC, but there was no significant difference in DLCO between 

groups. There was no significant difference in the extent of AI quantified normal lung, GG, 

GGR, honeycombing or fibrosis. The internal cohort had slightly higher extent of emphysema 

(8% IQR 1-27% vs 3% IQR 0-20%) compared to the external cohort.  

7.6.2 Correlations with existing methods of quantifying lung disease 

severity 
Percentage of normal had moderate positive correlation with DLCO (R = 0.56). Percentage of 

fibrosis and GG had moderate negative correlation with DLCO (R = +0.41 and +0.46 

respectively). Percentage of GG, emphysema and honeycombing had a weak negative 

correlation with DLCO (R = -0.32, -0.35, -0.34 respectively). These and further correlations 

for FEV1 and FVC percent predicted are presented in Appendix table S2a. 

 

AI quantified emphysema and fibrosis corresponded well with radiological assessment. There 

were significant between-group difference in percentage of emphysema and fibrosis when 

stratified by their respective radiological severity (1%, 4%, 23% and 57% for none, mild, 
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moderate, and severe emphysema, p<0.001 and 4%, 9%, 31% and 54% for none, mild, 

moderate and severe fibrosis, p<0.001). Appendix table S3a describes this and further 

significant between group differences (p<0.001 for all) for GG, GGR and honeycombing 

when grouped by radiologically reported fibrosis severity.  

7.6.3 Survival analysis 

7.6.3.1 Internal derivation cohort 
Univariate and multivariate associations between each parenchymal pattern and mortality in 

the internal cohort are presented in table 2. Median follow-up duration was 1.96 (0.91, 4.35) 

years. The outcome of mortality occurred in 183 (67%) patients. Two (0.7%) underwent 

transplantation. All lung disease features were significant (p<0.001) on univariate analysis, 

after adjusting for demographics (multivariate model 1 including age, sex and WHO FC) and 

additionally for PVR (p<0.001, model 2 including age, sex, WHO FC and PVR). In model 3, 

after adjusting for demographics and DLCO, percentage of normal (HR 0.99, 95% CI 0.98-

1.00, p=0.003), GGR (HR 1.02, 95% CI 1.00-1.04, p=0.015) and fibrosis (HR 1.01, 95% CI 

1.00-1.01, p=0.050) remained significant prognostic predictors for survival. Percentage of 

normal, GGR and fibrosis were established as significant independent predictors for 

mortality, and LOESS curves for each variable are presented in figure 3. Derived thresholds 

for 20% 1-year mortality were 61% for normal lung (39% abnormal lung), 3% for GGR and 

8% for fibrosis.  

7.6.3.2 External validation cohort 
Patients were stratified by the above identified thresholds for percent normal, GGR and 

fibrosis in the external validation cohort. Univariate and multivariate associations between 

each parenchymal pattern and mortality in the internal cohort are presented in table 3. Median 

follow-up duration was 1.95 (0.80, 4.07) years. The outcome of mortality occurred in 118 

(48%) patients. Two (0.8%) underwent transplantation. All three patterns were significant 

(p<0.001) on univariate analysis and after adjusting for demographics (p<0.001, multivariate 

model 1 including age, sex and WHO FC) and additionally for PVR (p<0.001, model 2 

including age, sex, WHO FC and PVR). In model 3, after adjusting for demographics and 

DLCO, GGR (HR 1.74, 95% CI 1.12-2.68, p=0.011) and fibrosis (HR 1.85, 95% CI 1.22-

2.80, p=0.004) remained significant prognostic predictors for survival.  
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Kaplan-Meier survival analysis demonstrated that patients with lung disease above the 

identified thresholds had significantly (log rank p<0.0001, figure 4) poorer survival. When 

grouped by the threshold of 2% GGR, the estimated survival rates were 71% vs 89% for 1 

year, 38% vs 68% for 3-year and 24% vs 60% for 5-year survival.  

7.6.4 Additional prognostic value of CT AI features 
Of 444 patients with radiological reports available, 300 (67.6%) were reported as having no 

fibrosis. On quantitative analysis, these patients had a minor degree of ground glass (2% 

(0,5)), GGR (1.2% (0.3,4.6)), honeycombing (0.47% (0.24,0.96)) and fibrosis (4% (1,11)). 

Despite the small volumes of disease, GGR (HR 1.03, 95% CI 1.01-1.06, p=0.006), 

honeycombing (HR 1.13, 95% CI 1.07-1.19) and fibrosis (HR 1.01, 95% CI 1.00-1.02, 

p=0.019) were significant univariate predictors for mortality in this sub-group (table 4). 

 

In the external validation cohort, Model A incorporating demographics alone (age, sex, and 

WHO FC) had a c-index of 0.721 and AIC of 1090 (table 5). Model B which additionally 

incorporated radiological semi-quantitative fibrosis severity scoring had a significantly 

(p=0.036) better predictive value than Model A with a c-index of 0.742 and AIC of 604. 

Model C which additionally incorporated percentage of GGR on top of radiological severity 

scoring and demographics had significant (p=0.038) additional predictive value compared to 

Model B, with a c-index of 0.763 and AIC of 601.  
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7.7 Discussion  
The key finding of this study is that AI quantified lung parenchymal patterns on CT are 

prognostic for survival in patients with PH and lung disease. This is independent of 

demographics, PVR, DLCO, and externally validated across imaging from 37 centres. AI is 

sensitive to minor lung changes and when used in combination with radiological reporting, it 

provides additional predictive value. Of 38 prior studies in the domain of PH, AI and lung 

disease, this is the first study to deploy or clinically evaluate an AI quantitative CT model for 

lung disease assessment in PH. 

 

The motivation of this work was to use AI on a routine investigation (CT) to help solve an 

important clinical problem. Patients with significant precapillary PH, unremarkable 

spirometry, no thromboembolic disease, and absence of other risk factors but with a ‘mild’ 

degree of parenchymal lung disease are a significant population that cannot currently 

confidently be phenotyped. Accurate phenotyping is vital as it informs treatment and 

management. Current guidelines recommend these patients be classified as IPAH 26. 

However, these patients have been shown to have poorer survival and treatment response 

compared to those with truly ‘classical’ IPAH with no lung disease 41. A recent seminal study 

by Hoeper et al characterises this problem and identifies a new phenotype of ‘IPAH with a 

lung phenotype’ which lies in between the spectrum of Group 1 IPAH and Group 3 PH-CLD 
213. There is a clear clinical need to better characterise and quantify lung disease in these 

patients, to inform their phenotyping. All existing work uses either PFTs (DLCO) or semi-

quantitative radiological scoring for lung disease assessment. PFTs show significant 

variability, low reproducibility, and can be insensitive to change in disease progression 56–

58,113,J. Radiological scoring is limited at subjective scoring, and has significant inter- and 

intra-observer variability even amongst specialist radiologists.84,86. This is typically provided 

as a categorical score (none/mild/moderate/severe). The AI approach in this study provides a 

continuous percentage of disease at an individual lung parenchymal pattern (ground glass 

with reticulation) level. There exist a few continuous visual scoring scales in which 

radiologists quantify to the nearest 5% lobar disease, but these have been limited to the 

 

 

 
J Please refer to the background section for more detail on the strengths and limitations of pulmonary function 
tests. 
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research domain 113. Visually quantifying each lung parenchymal pattern for each lobe is time 

consuming and impractical in routine clinical practice.  

 

Independence from PVR and DLCO is important as it demonstrates the strong prognostic 

predictive strength of our findings. The PVR threshold of 5 WU was chosen based on recent 

studies that demonstrate its significance in predicting mortality across both IPAH and PH-

CLD51,163,164. The DLCO threshold of 45% was derived from previous studies that 

determined the strong prognostic value of this threshold 41,53,166,168 168,169. DLCO is often the 

only biomarker used for lung disease severity across multiple studies and is part of the 

REVEAL 2.0 risk score for PAH risk-stratification 8,36,41,213. CT AI quantified lung disease 

metrics correlate well with DLCO and radiological scoring across multiple scanners and 

centres, which adds clinical confidence to the AI outputs. In the internal cohort, percentage of 

normal, GGR and fibrosis were significant predictors after adjusting for DLCO. In the 

external cohort, GGR and fibrosis remained significant after adjusting for DLCO, and there 

were significant between group differences in survival between patients stratified by our 

derived thresholds (figure 4). We postulate this may be because DLCO is a functional marker 

of gas exchange, whereas CT features are a more gross anatomical marker of architectural 

distortion. As both CT and DLCO are recommended by guidelines and performed in routine 

practice, combining the respective strengths of both modalities could aid in prognostication. 

 

The predictive strength of our model for mortality was significantly improved when we 

added AI derived GGR percentage on top of radiological lung disease severity reporting. In 

patients who were radiologically scored as having ‘no’ fibrosis, the AI picked up minor levels 

of lung disease, which were significant predictors for mortality. This may be because such 

minor disease is currently overlooked or not felt to be significant enough by radiologists to be 

classified as ‘mild disease’. In idiopathic pulmonary fibrosis, automated quantitative CT was 

found superior to visual scoring 88, and provided additional prognostic value over visual 

scoring 113. Radiologists and AI systems each have respective strengths and limitations, and 

combining both together has shown improved overall performance in other settings such as 

breast cancer diagnosis 218. Radiologists use their clinical expertise to assess multiple features 

simultaneously and assess their relative clinical significance. This transparent, explainable 

assessment is vital and central to image analysis. However, accurate volume level 

quantification of parenchymal features on 500+ slices is an impractical, unrealistic task for a 

radiologist in routine reporting. Similar to automated segmentation studies, which aid 
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radiological reporting, this study proposes the use of such AI CT approaches as an adjunct 

radiological reporting, and demonstrates the additional prognostic value of this combined 

approach. 

 

The AI model and findings were externally validated with imaging across 33 scanners and 37 

centres. Our study is substantially larger and more representative (521 patients, 246 with 

external validation) than all three prior studies which have deployed AI on chest CT imaging 

in PH. They had 125219 and 42 patients 220, and 82 scans (patient numbers unreported)221. 

None performed external validation. External deployment of our model and clinical validity 

of our findings in a different PH centre or registry with differing population demographics is 

warranted future work which would help better evaluate generalisability.  

 

We acknowledge limitations inherent in the retrospective setting, within chest CT imaging, 

and imaging AI studies. The study was designed to minimise misclassification and selection 

bias and be representative of a ‘real-world’ consecutive clinical cohort with a spectrum of 

lung disease in PH. Whilst all patients were assigned diagnosis in a specialist centre, we 

cannot fully exclude the possibility of some misclassification bias and missed cases, 

including those never identified nor referred in non-specialist settings. Variations in breath 

holding by patients during CT scan acquisition can cause respiratory motion artefacts. Severe 

artefact limits traditional visual assessment for radiologists and can lead to misinterpretation. 

This study excluded patients with severe artefact, and it is possible for the model to overcall 

severely artifactual regions as pathology. Objective ‘gold-standard’ level classification of 

lung parenchyma, agreeable by all readers, is fundamentally challenging due to variability 

between highly experienced radiologists. Certain patterns such as severe subpleural 

emphysema with interstitial thickening look visually similar to honeycombing and there is 

some overlap in these cases. The intended clinical use and deployment of the model is as an 

adjunct to reporting by a radiologist, who will be aware of such inherent limitations. All AI 

classification models have inherent, difficult to quantify, biases skewed by their development 

training set. To best account for these, we preferentially chose a highly heterogeneous 

external validation cohort to validate our findings. Our thresholds, although validated 

externally, might not be generalisable to all different sites, and may need to shift to adjust for 

different prevalence rates.  
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In conclusion, this study better characterises lung disease on CT using AI by both increasing 

the precision of assessment as a percentage of total lung involvement, and specificity, by 

quantifying individual radiological parenchymal features. These features provide additional 

prognostic value beyond current established methods of lung disease assessment in PH and 

can be used in combination with radiological reporting to improve prognostication. These 

findings have implications for patient phenotyping, which affect treatment and management 

decisions.  
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7.8 Figures 

7.8.1 Fig 1 - STROBE diagram 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1: STROBE diagram showing patient selection. Abbreviations used: ASPIRE 

(Assessing the Severity of Pulmonary Hypertension In a Pulmonary Hypertension REferral 

Centre) registry, IPAH (Idiopathic Pulmonary Arterial Hypertension), PH-CLD (Pulmonary 

Hypertension associated with Chronic Lung Disease), CT (Computed Tomography), CTPA 

(Computed Tomography Pulmonary Angiogram).  

Patients in the ASPIRE registry 
n=5,643 Excluded: 

n=4,500 patients with diagnosis 
other than Idiopathic Pulmonary Arterial 
Hypertension (IPAH) or Pulmonary 
Hypertension associated with Chronic 
Lung Disease (PH-CLD) 

n=243 patients without baseline 
incident CT  

 

Incident adult patients  
with diagnosis of IPAH or PH-CLD 

diagnosed in 2007 to 2019 with 

baseline CT imaging 

Excluded: 

n=379 patients with scans inappropriate 
for AI quantitative analysis – incorrect scan 
series (not thin slice CTPA imaging) or 
significant breathing, motion artefact or 
noise on radiological review.  

Eligible patients 

n=521 

Figure 7.1 STROBE diagram showing patient selection. 
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7.8.2 Fig 2 - AI output 

 
Figure 7.2: Example outputs from the AI model. 

Figure 2: Example outputs from the AI model. Lung parenchyma is automatically 

segmented then classified into five lung parenchymal patterns - normal (red), emphysema 

(teal), honeycombing (yellow), ground glass (green) and ground glass with added reticulation 

(blue). This is done for every slice of the CT pulmonary angiogram.  
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7.8.3 Fig 3 - Kaplan Meier curves stratified by significant lung disease 

thresholds in external cohort 

 
Figure 7.3 Kaplan-Meier survival estimates for patients in the external validation cohort (n=246) stratified into 

groups by thresholds for significant disease derived in the internal derivation cohort (n=275). 

Figure 3: Kaplan-Meier survival estimates for patients in the external validation cohort 

(n=246) stratified into groups by thresholds for significant disease derived in the 

internal derivation cohort (n=275). Figure 4A represents percentage of normal lung 

(grouped by threshold of 61%), 4B percentage of ground glass with additional reticulation 

(GGR) (grouped by threshold of 2%), and 4C percentage of fibrosis (grouped by threshold of 

8%). Log-rank p<0.0001 for all three between group comparisons. 
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7.9 Tables 

7.9.1 Table 1 - demographics and clinical characteristics 
 

 Full Cohort Cohorts 
Characteristic N = 5211 Internal derivation, 

N = 2751 
External validation, 

N = 2461 
p-value2 

  Age at diagnosis, years 67 (57, 74) 68 (60, 75) 65 (51, 72) <0.001 
  Sex, female 270 (52%) 128 (47%) 142 (58%) 0.011 

Body Mass Index 27.6 (24.0, 32.0) 27.5 (24.1, 32.4) 27.9 (23.9, 31.7) 0.8 
WHO Function Class    0.4 

II 67 (13%) 37 (14%) 30 (12%)  
III 309 (60%) 155 (57%) 154 (63%)  
IV 143 (28%) 81 (30%) 62 (25%)  

Pulmonary Function Tests     

FVC, percent predicted 90 (72, 107) 85 (67, 105) 93 (76, 107) 0.007 
FEV1, percent predicted 75 (55, 90) 70 (51, 89) 78 (59, 91) 0.014 
FEV1 / FVC ratio 68 (57, 77) 68 (55, 77) 69 (60, 78) 0.4 
DLCO, percent predicted 31 (22, 49) 30 (22, 47) 32 (23, 53) 0.2 
Haemodynamics     

RAP, mm Hg  9.0 (6.0, 13.0) 8.5 (6.0, 13.0) 10.0 (7.0, 13.0) 0.060 
mPAP, mm Hg 46 (38, 54) 44 (35, 52) 48 (41, 56) <0.001 
PAWP, mm Hg 11.0 (9.0, 14.0) 11.0 (9.0, 14.0) 11.0 (8.0, 13.0) 0.038 
Cardiac index, L/min/m2 2.41 (1.88, 3.02) 2.56 (1.95, 3.17) 2.29 (1.81, 2.78) <0.001 
PVR, wood units 8.0 (5.0, 11.6) 7.2 (4.2, 10.8) 9.4 (6.4, 13.2) <0.001 
SvO2, % 64 (58, 70) 65 (59, 70) 64 (56, 69) 0.061 
PH phenotype    <0.001 

Group 1 IPAH 259 (50%) 110 (40%) 149 (61%)  
Group 3 PH-CLD 262 (50%) 165 (60%) 97 (39%)  

AI Quantified CT parenchymal 

pattern  

(percentage of) 

    

Normal lung 59 (37, 74) 59 (35, 76) 58 (38, 71) 0.2 

Ground glass 3 (1, 10) 3 (1, 9) 3 (1, 11) 0.6 

Ground glass with additional 

reticulation (GGR) 

3 (1, 11) 3 (1, 11) 2 (1, 10) 0.4 

Honeycombing 0.72 (0.32, 1.57) 0.64 (0.28, 1.84) 0.77 (0.39, 1.36) 0.4 

Fibrosis 7 (2, 24) 7 (2, 24) 6 (2, 23) 0.6 
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Emphysema 6 (0, 24) 8 (1, 27) 3 (0, 20) 0.002 
2Wilcoxon rank sum test; Pearson's Chi-squared test; Fisher's exact test 

Table 7.1 Patient characteristics for the full, international derivation and external validation cohorts, with 

group comparison p-values for between cohort comparisons. 

Table 1: Patient characteristics for the full, international derivation and external 

validation cohorts, with group comparison p-values for between cohort comparisons. 

Categorical data are shown as n and (%) of the respective population. Continuous data are 

depicted as median [Q1, Q3]. Bold text represents significant between group difference. 

 

Definition of abbreviations: BMI, body mass index; IPAH, idiopathic pulmonary arterial 

hypertension; PH, pulmonary hypertension; PH-CLD, Pulmonary Hypertension associated 

with Chronic Lung Disease; WHO FC, World Health Organization Functional Class; FVC, 

forced vital capacity; FEV1, forced expiratory volume in 1 s; DLCO, diffusion capacity of 

the lung for carbon monoxide; RA, right atrial pressure; mPAP, mean pulmonary arterial 

pressure; PAWP, pulmonary arterial wedge pressure; CI, cardiac index; PVR, pulmonary 

vascular resistance; SvO2, mixed-venous oxygen saturation; AI, artificial intelligence; GGR, 

ground glass with reticulation 
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7.9.2 Table 2 – Univariate and multivariate regression analysis for survival in internal cohort 
 Univariate Multivariate 1 (adjusting for 

demographics - age, gender, 

WHO FC) 

Multivariate 2 (adjusting for 

demographics and PVR) 
Multivariate 3 (adjusting for 

demographics and DLCO) 

AI Quantified CT feature  

(percentage of) 
N HR1 95% 

CI1 
p-

value 
HR1 95% 

CI1 
p-

value 
HR1 95% 

CI1 
p-

value 
HR1 95% 

CI1 
p-value 

Normal lung 275 0.98 0.97, 

0.98 
<0.001 0.98 0.98, 

0.99 
<0.001 0.98 0.98, 

0.99 
<0.001 0.99 0.98, 

1.00 
0.003 

Ground glass 275 1.02 1.01, 

1.03 
<0.001 1.02 1.00, 

1.03 
0.017 1.02 1.00, 

1.03 
0.026 1.01 0.99, 

1.02 
0.3 

Ground glass with additional 

reticulation (GGR) 
275 1.04 1.03, 

1.06 
<0.001 1.04 1.02, 

1.05 
<0.001 1.03 1.02, 

1.05 
<0.001 1.02 1.00, 

1.04 
0.015 

Honeycombing 275 1.06 1.04, 

1.09 
<0.001 1.05 1.02, 

1.07 
0.002 1.04 1.02, 

1.07 
0.003 1.03 1.00, 

1.06 
0.082 

Fibrosis 275 1.02 1.01, 

1.02 
<0.001 1.01 1.01, 

1.02 
<0.001 1.01 1.01, 

1.02 
<0.001 1.01 1.00, 

1.01 
0.050 

Emphysema 275 1.01 1.01, 

1.02 

<0.001 1.01 1.00, 

1.02 

0.012 1.01 1.00, 

1.02 

0.016 1.01 1.00, 

1.02 

0.057 

Table 7.2 Unadjusted univariate and adjusted multivariate cox proportional hazard's regression for each AI quantified CT feature in the internal derivation cohort (n=275 

patients). 
Table 2: Unadjusted univariate and adjusted multivariate cox proportional hazard's regression for each AI quantified CT feature in the 

internal derivation cohort (n=275 patients). Multivariate model 1 adjusted for patient demographics – age (grouped at 50 years), sex and 

WHO functional class; model 2 adjusted for all demographics and additionally haemodynamic disease severity by including pulmonary vascular 
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resistance (PVR, grouped at 5 WU); and model 3 adjusted for all demographics and DLCO (grouped at 45%). Bold text represents significant 

prediction.  
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7.9.3 Table 3 - Univariate and multivariate regression analysis for survival in external cohort  
 Univariate Multivariate 1 (adjusting for 

demographics - age, 

gender, WHO FC) 

Multivariate 2 (adjusting for 

demographics and PVR) 

Multivariate 3 (adjusting 

for demographics and 

DLCO) 

AI Quantified CT feature  

(grouped by significant derived 

threshold) 

N HR1 95% 

CI1 

p-

value 

HR1 95% 

CI1 

p-

value 

HR1 95% 

CI1 

p-

value 

HR1 95% 

CI1 

p-

value 

Normal lung  246 0.37 0.25, 

0.55 

<0.00

1 

0.45 0.30, 

0.67 

<0.00

1 

0.49 0.32, 

0.76 

<0.00

1 

0.67 0.42, 

1.06 

0.082 

Ground glass with additional 

reticulation (GGR) 

246 2.78 1.88, 

4.11 

<0.00

1 

2.00 1.34, 

2.96 

<0.00

1 

2.13 1.40, 

3.22 

<0.00

1 

1.74 1.12, 

2.68 

0.011 

Fibrosis 246 2.71 1.86, 

3.93 

<0.00

1 

2.07 1.41, 

3.03 

<0.00

1 

2.03 1.36, 

3.04 

<0.00

1 

1.85 1.22, 

2.80 

0.004 

Table 7.3 Unadjusted univariate and adjusted multivariate cox proportional hazard's regression performed in the external validation cohort (n=246 patients) for each AI 

quantified CT feature grouped by thresholds for significant disease derived in the internal cohort 

Table 3: Unadjusted univariate and adjusted multivariate cox proportional hazard's regression performed in the external validation 

cohort (n=246 patients) for each AI quantified CT feature grouped by thresholds for significant disease derived in the internal cohort. 

Multivariate model 1 adjusted for patient demographics – age (grouped at 50 years), sex and WHO functional class; model 2 adjusted for all 

demographics and additionally haemodynamic disease severity by including pulmonary vascular resistance (PVR, grouped at 5 WU); and model 

3 adjusted for all demographics and DLCO (grouped at 45%). Bold text represents significant prediction. 
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7.9.4 Table 4 – Significance and extent of AI quantified disease in those 

patients radiologically scored as ‘no fibrosis’  
Characteristic N Median (IQR) HR1 95% CI1 p-value 

Percentage ground glass 300 2 (0,5) 1.01 0.99, 1.03 0.3 

Percentage ground glass 

with added reticulation 

300 1.2 (0.3,4.6) 1.03 1.01, 1.06 0.006 

Percentage honeycombing 300 0.47 (0.24, 0.96) 1.13 1.07, 1.19 <0.001 

Percentage fibrosis 300 4 (1,11) 1.01 1.00, 1.02 0.019 

 1 HR = Hazard Ratio, CI = Confidence Interval  

Table 7.4 For sub-group of patients scored by radiologists as having no fibrosis (n=300 patients), extent of and 

univariate cox proportional hazard's regression analysis for each significant AI quantified CT feature. 

Table 4: For sub-group of patients scored by radiologists as having no fibrosis (n=300 

patients), extent of and univariate cox proportional hazard's regression analysis for 

each significant AI quantified CT feature. Bold text represents significant prediction. 
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7.9.5 Table 5 - Additive value of AI metrics on radiological fibrosis 

severity scoring 
 

Multivariate Cox proportional hazard's 

regression model for survival 

C-index AIC P value 

Model A – Demographics alone 0.721 1090 Reference standard 

Model B -Demographics  

+ Radiological severity scoring 

(none/mild/mod/severe) 

0.742 604 P=0.036  

(compared to Model A - demographics alone) 

Model C - Demographics  

+ Radiological fibrosis severity scoring 

(none/mild/mod/severe)  

+ AI radiological GGR severity quantification 

(continuous variable) 

0.763 601 P=0.038 

(compared to Model B - demographics and 

radiological severity scoring) 

Table 7.5 Comparison of predictive strength of three multivariate cox proportional hazard's regression models 

in the external validation cohort (n=246 patients). 

Table 5: Comparison of predictive strength of three multivariate cox proportional 

hazard's regression models in the external validation cohort (n=246 patients). A higher 

c-index indicates a better model fit and a lower Akaike information criterion (AIC) indicates 

a relative lower prediction error. Bold text represents significant log-rank difference between 

models by likelihood ratio test. Adding AI quantified ground glass reticular severity to the 

multivariate cox proportional hazard’s regression model for survival significantly improves 

the predictive model (c-index 0.763 vs 0.742, AIC 601 vs 604, log-rank p= 0.038)`  



158 
 

 

7.10 Supplementary material  

7.10.1 Table S1a - Scanner types between cohorts 
Characteristic Internal, N = 2751 External, N = 2461 
manufacturer   

GE MEDICAL SYSTEMS 223 (81%) 63 (26%) 
SIEMENS 0 (0%) 113 (46%) 
TOSHIBA 52 (19%) 58 (24%) 
Philips 0 (0%) 12 (4.9%) 

manufacturer_model_name   
LightSpeed VCT 160 (58%) 22 (8.9%) 
LightSpeed Pro 32 63 (23%) 3 (1.2%) 
Aquilion PRIME 37 (13%) 12 (4.9%) 
Aquilion 0 (0%) 40 (16%) 
Sensation 16 0 (0%) 29 (12%) 
SOMATOM Definition AS+ 0 (0%) 23 (9.3%) 
Aquilion ONE 15 (5.5%) 5 (2.0%) 
Optima CT660 0 (0%) 15 (6.1%) 
SOMATOM Definition AS 0 (0%) 13 (5.3%) 
SOMATOM Definition Flash 0 (0%) 11 (4.5%) 
Sensation 64 0 (0%) 8 (3.3%) 
LightSpeed16 0 (0%) 7 (2.8%) 
Brilliance 64 0 (0%) 6 (2.4%) 
Sensation 40 0 (0%) 5 (2.0%) 
SOMATOM Definition 0 (0%) 5 (2.0%) 
Definition AS 0 (0%) 4 (1.6%) 
Definition AS+ 0 (0%) 4 (1.6%) 
Revolution EVO 0 (0%) 4 (1.6%) 
Definition 0 (0%) 3 (1.2%) 
Ingenuity Core 128 0 (0%) 3 (1.2%) 
LightSpeed Plus 0 (0%) 3 (1.2%) 
LightSpeed Ultra 0 (0%) 3 (1.2%) 
SOMATOM Definition Edge 0 (0%) 3 (1.2%) 
Discovery CT750 HD 0 (0%) 2 (0.8%) 
Ingenuity CT 0 (0%) 2 (0.8%) 
LightSpeed Pro 16 0 (0%) 2 (0.8%) 
Sensation Cardiac 0 (0%) 2 (0.8%) 
Aquilion Prime SP 0 (0%) 1 (0.4%) 
BrightSpeed 0 (0%) 1 (0.4%) 
iCT 256 0 (0%) 1 (0.4%) 
Optima CT540 0 (0%) 1 (0.4%) 
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Perspective 0 (0%) 1 (0.4%) 
Sensation 16 with Akron Q tube 0 (0%) 1 (0.4%) 
Volume Zoom 0 (0%) 1 (0.4%) 

1n (%) 
Table 7.6 Scanner types between internal derivation and external validation cohorts. 

Appendix Table S1a: Scanner types between internal derivation and external validation 

cohorts. 

7.10.2 Association between AI CT disease and radiological reporting 
 

AI quantified CT feature / 

Reported fibrosis severity 
None, 

N = 

3001 

Mild, 

N = 

511 

Moderate

, N = 361 
Severe, 

N = 391 
p-

value2 

Ground glass 2 (0, 5) 4 (1, 

10) 
10 (5, 22) 16 (6, 

30) 
<0.00

1 
Ground glass with additional 

reticulation  
1 (0, 5) 4 (1, 

11) 
15 (9, 25) 26 (12, 

34) 
<0.00

1 
Fibrosis 4 (1, 

11) 
9 (3, 

26) 
31 (19, 43) 54 (26, 

69) 
<0.00

1 
Honeycombing 0.47 

(0.24, 

0.96) 

0.69 

(0.30, 

1.25) 

2.35 (1.06, 

4.98) 
4.20 

(1.75, 

12.27) 

<0.00

1 

Reported emphysema 

severity 

None, 

N = 

2371 

Mild, 

N = 1 

Moderate

, N = 361 

Severe, 

N = 391 

p-

value2 

Emphysema 1 (0, 7) 4 (0, 

13) 
23 (11, 37) 57 (33, 

71) 
<0.00

1 
Table 7.7 Association between AI quantified CT features and radiologically reported semi-quantitative disease 

severity 

Appendix Table S2a: Association between AI quantified CT features and radiologically 

reported semi-quantitative disease severity. Data presented as median (IQR). Kruskal-

Wallis rank sum test used to compare groups. 

 

7.10.3 Available data for each variable 
 

Characteristic Internal, N = 275 External, N = 246 

  Age at diagnosis, years 275 (100%) 246 (100%) 
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  Sex, female 275 (100%) 246 (100%) 

Body Mass Index 245 (89%) 226 (92%) 

WHO Function Class 273 (99%) 246 (100%) 

FVC, percent predicted 255 (93%) 238 (97%) 

FEV1, percent predicted 256 (93%) 239 (97%) 

FEV1 / FVC ratio 253 (92%) 239 (97%) 

DLCO, percent predicted 234 (85%) 216 (88%) 

RAP, mm Hg  270 (98%) 226 (92%) 

mPAP, mm Hg 273 (99%) 241 (98%) 

PAWP, mm Hg 265 (96%) 223 (91%) 

Cardiac index, L/min/m2 262 (95%) 215 (87%) 

PVR, wood units 265 (96%) 221 (90%) 

SvO2, % 248 (90%) 209 (85%) 

PH phenotype 275 (100%) 246 (100%) 

Treatment 274 (100%) 231 (94%) 

Table 7.8 Available data for each variable. 

Table S3a: Available data for each variable. Data are shown as n and (%) of the respective 

population.  

7.10.4 Fig S1a - LOESS curves 

 
Figure 7.4 LOESS (LOcally Estimated Scatterplot Smoothing) curves 
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Figure s1a: LOESS (LOcally Estimated Scatterplot Smoothing) curves with percentage of 1 

year mortality on the y-axis and percentage of AI quantified disease feature on the x-axis. 

Analysis performed in the internal derivation cohort (n= 275 patients). Figure 3A represents 

percentage of normal lung, 3B percentage of ground glass with additional reticulation 

(ground glass reticular) and 3C percentage of fibrosis.



 

8 Discussion  
* This is a brief, overarching discussion of the work. Please also refer to individual chapters 

for additional dedicated discussion for each aspect of the thesis.  

 

This thesis establishes CT lung parenchymal patterns as prognostic biomarkers in patients with 

precapillary pulmonary hypertension (IPAH and PH-CLD). It further develops and clinically 

validates a deep-learning automated AI model which quantifies the extent of these parenchymal 

patterns, and their respective prognostic strength. Both are novel contributions to the fields of 

medical imaging and respiratory medicine.  

 

Chapter two is a state-of-the-art literature review (published in Diagnostics) performed at the 

outset of the PhD, which establishes the context in which this thesis and its work is performed. 

AI has recently enabled a quantitative, data-first approach to medical imaging and made 

automated end-to-end approaches to image analysis possible. Within Chest CT imaging, this 

thesis is the first body of work using AI for lung parenchymal analysis in PH. The review 

outlined the promises and challenges associated with this approach.  

 

Two significant contributions of the thesis, beyond the published chapters and scientific 

discoveries, is the creation of the large clinico-radiological database (detailed in chapter three), 

and workflows for AI development within the research group. The experience of training and 

building an in-house end-to-end automated AI model from routine NHS imaging data I feel was 

particularly instrumental in my development as a clinical academic radiologist. This required 

collaboration between multiple domain experts – radiologists, clinicians, clinical scientists, 

physicists, and computer scientists. All members of Sheffield Cardiothoracic Imaging Research 

group can use the database and AI pipeline on other research questions going forward.  

 

Chapter four (published in European Respiratory Journal Open Access) achieves the primary 

aim of the thesis and establishes the clinical prognostic significance of CT lung parenchymal 

patterns in patients with PH and lung disease. I wrote code within R to automatically search CT 

reports using a regex string search algorithm, but I manually validated and checked each report. 

The approach here was semi-quantitative, as CT reports and subjective visual scores were used 
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to analyse the scans within the database. This is limited compared to an automated AI approach 

but has the advantage of being widely and more immediately clinically applicable. The work 

won the prestigious Radiological Society of North America (RSNA) Trainee Prize in Chest 

imaging. The take home message for radiologists was the importance of quantifying 

emphysema and fibrosis severity. Fibrosis is a predictor of outcome independent of age, sex, 

WHO function class, PH severity and DLCO. Routine clinical reports of CT lung parenchymal 

disease identify groups of patients IPAH and CLD-PH with significantly different prognoses. 

After this work, I performed a service evaluation to assess if patients who undergo CT scans for 

PH diagnosis have their emphysema or fibrosis quantified as none/mild/moderate/severe. Over 

18 years and 660 patients, emphysema severity was quantified in 91.1% of patients and fibrosis 

is 86.0%. The work won the second prize at the Royal College of Radiologists RADIANT 

Audit Day 2022. 

 

Chapter five (published in The Lancet Respiratory Medicine) is a large comprehensive 

international multi-centre registry analysis which defines a new phenotype of Pulmonary 

Hypertension. The proposed IPAH-LD phenotype is characterised by a smoking history and 

DLCO <45%, but also has distinct CT features. The work has been cited 30 times in the last 9 

months since publication and was an entire session of discussion at the European Respiratory 

Conference 2022. It is probable this work will lead to a reclassification of the Group 1 PAH and 

establishes that better characterisation of lung disease in PH patients is warranted213. The work 

has wide ranging implications for patient diagnosis, risk-stratification, management, and 

therapy decisions. 

 

Chapter 6 (submitted to European Radiology) describes the development and clinical 

evaluation of a novel CTPA lung segmentation algorithm. The model was developed in-house 

using the state-of-the-art nnU-net and has a high technical accuracy (0.998) with no failures.  

An important aspect of the work was collaboration with the Stanford Center for Artificial 

Intelligence in Medicine & Imaging (AIMI). The algorithm was installed and deployed at AIMI 

prior to external validation on a different disease cohort (ILD). Within the medical imaging AI 

domain, few studies take this step of deployment at an external centre. An important message 

of the paper was the need for clinical and radiological review of AI outputs and limitations of 

traditional technical metrics of assessment. The work was presented at the 2022 UK Imaging 

and Oncology conference as an oral presentation and won the 2022 Grainger Prize. 
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Chapter 7 (submitted to Lancet Digital Health) describes the clinical utility of the automated 

lung parenchymal disease quantification model developed for this thesis. The model 

automatically classifies the lung parenchyma into five classes – normal, emphysema, ground 

glass, ground glass with reticulation, and honeycombing. The percentage of lung involvement 

of each parenchymal pattern is provided as an output. The prognostic strength of this 

continuous variable as a metric for lung disease assessment is established in the study. 

Combining radiological (semi-qualitative, none/mild/moderate/severe) and AI assessment 

(continuous variable as 0-100% of lung involvement) together improves the prognostic 

predictive strength of CTPA imaging as an imaging biomarker. In patients that had their 

fibrosis quantified has ‘none’ by radiologists, the AI identified minor lung disease, which was 

of prognostic significance. A particular strength of the study is external validation of the 

developed AI model across 33 centres and 37 scanners. 

 

8.1 Limitations 
* Please also refer to individual chapters for additional dedicated discussion on limitations and 

solutions for each aspect of the thesis. In particular, section 2.6 is a detailed discussion on 

limitations, challenges and solutions to quantitative chest CT and AI. 

 

The thesis was designed to address and rectify common limitations in AI medical imaging 

studies – lack of comprehensive clinical data, lack of expert labelling for training data and lack 

of external validation in a diverse ‘real world’ clinical cohort. The clinico-radiological dataset 

created from the ASPIRE registry for this thesis is likely the largest in this patient group. It is 

‘tidy’, contextual, anonymised, and quality controlled, therefore reaches the highest level, Level 

A, on the MIDaR scale150. ‘Tidy’ data refers to a structured database suited for programmatic 

statistical analysis162. All labelling has been performed by two FRCR radiologists with 

subspeciality experience in cardiothoracic imaging. The findings in this thesis are validated in a 

realistic clinical cohort with multiple scanners from multiple centres. 

In addition to the specific limitations detailed in each chapter, there are some overarching 

limitations. All analysis is performed on retrospective data. All efforts have been made to 

account for the multiple inherent biases of this approach, as detailed in the individual chapters, 

but these are impossible to entirely account for. Whilst all patients were assigned diagnosis in a 

specialist centre, we cannot fully exclude the possibility of some misclassification bias and 

missed cases, including those never identified nor referred in non-specialist settings. An 
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unavoidable limitation of a clinical cohort spanning 18 years is the variance in diagnostic 

criteria, treatment options, patient management guidelines, and inherent quality of CT scanners. 

Prospective validation of these findings is required. Although the database incorporates data 

from multiple centres and scanners, the current overall automated end-to-end AI approach is 

deployed in a single centre. External deployment of the model and clinical validity of our 

findings in a different PH centre or registry with different population demographics would help 

better demonstrate generalisability.  

 

Chapter 5 validates the ‘IPAH lung phenotype’ group in the COMPERA cohort, but a 

limitation of this work is differences between the study cohorts. COMPERA is a prospective 

registry which collects data of patients confirmed as suffering from pulmonary hypertension 

and treated with targeted therapies176,213. ASPIRE includes all patients suspected of having 

pulmonary hypertension, not just those that receive therapies. This may introduce some 

selection bias for COMPERA, as patients who do not receive treatment are not included. The 

difference is most pronounced in Group 3 PH, where all COMPERA patients received 

treatment, compared to 52% in ASPIRE. However, the impact of treatment in Group 3 PH is 

not well understood and it is uncertain if it improves outcomes. Group 3 also is a highly 

heterogenous group, and there may be within group differences in patients that are not 

recognised in the summary statistics. This is an avenue of research I will be investigating in 

detail, as described later in the ‘Future Works’ section. Other differences between cohorts is the 

median follow-up time (3.9 years for COMPERA compared to 4.5 years for ASPIRE) and 

omission of patients with risk factors for cardiovascular disease in COMPERA.  These 

limitations are important to acknowledge, but they do not significantly detract from the strong 

overall message of the paper. The ‘IPAH lung phenotype’ has strikingly similar clinical 

characteristics and survival compared to ‘Classical IPAH’ and ‘Group 3 PH’ across two large 

independent multi-centre patient registries.  

 

Radiological assessment is ultimately a subjective visual process. Reports between radiologists 

differ significantly in their style and content, and there exists significant inter-observer even 

between highly experienced radiologists84–86. Adjacent to this thesis, I am supervising a trainee in 

conducting a systematic review and meta-analysis of interobserver variability among 

radiologists in the reporting of chest CT studies, which investigates this in more detail222.  
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It is important to acknowledge that truly ‘ground truth’ level objective classifications of the 

lung parenchyma, agreeable by all readers, is fundamentally challenging. This is a limitation 

acknowledged across other medical imaging domains223,224. All AI classification models have 

inherently, difficult to quantify, biases skewed by their development training set. The AI model 

will learn from the preferences, biases, and opinions of the two radiologists that labelled the 

training data. In the future, we aim to involve more radiologists of differing levels of expertise 

to create a more representative model. Certain patterns such as severe subpleural emphysema 

with interstitial thickening look visually identical to honeycombing and there is some overlap 

or overcall in these cases. There is also some overlap between severe traction bronchiectasis 

and honeycombing at the lung bases. CT features of ‘fibrosis’ are context dependant. In the 

context of pulmonary hypertension and lung disease, where scleroderma and interstitial lung 

disease are highly prevalent, it was decided to include extent of ‘ground glass’, ‘ground glass 

with reticulation’ and ‘honeycombing’ together in ‘fibrosis’. A limitation of this approach is 

that this is not the case for all chest CT and lung disease. ‘Ground glass’ change is a non-

specific feature and can also be associated with infective changes or malignancy. Therefore, 

this specific AI model would likely call infective changes as ‘fibrosis’. The intended clinical 

use and deployment of the model is as an adjunct to reporting by a radiologist, who will be 

aware of such inherent limitations in image analysis. Ground glass change can be further 

characterised as centrilobular or diffuse ground glass change, but this was not done in this 

thesis due to the high degree of overlap and difficulty distinguishing between both patterns. It 

may be possible in the future to create a downstream two-class classification algorithm which 

sub-classifies regions classified as ‘ground glass’ in this approach.  

 

The lung airways and vasculature were not individually segmented in this model. These 

approaches have corresponding limitations, particularly in more distal airways and vessels. 

Even on CTPA imaging, it is highly challenging to segment pulmonary arteries from veins97,225. 

A limitation of including airways and vasculature in the parenchymal classification is potential 

noise from these imaging features, but this was felt to be a better trade-off. Errors within a lung 

airway or vascular segmentation tool would propagate down to the classification model and 

reliance on multiple segmentation algorithm would also make deployment in external centres 

more challenging. Using percentage of lung involvement as a means of quantifying disease also 

has limitations. There are visual radiological differences between mild and severe parenchymal 

features, but the AI was not trained to stratify and distinguish these. Radiologically severe and 

highly localised disease would have a low percentage of lung involvement, but pathologically 
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be more significant. Fibrosis and interstitial lung disease is associated with lung volume loss, 

which influences the percentage of lung involvement for parenchymal features in these 

patients88, However, the impact of this is difficult to accurately quantify, as non-fibrosed 

regions of lung can expand to partially compensate for this effect. There was no spirometric 

gating of CT scans, which could mean a variable state of inflation of the lungs. Spirometric 

gating however is not widely used in clinical practise and AI tools developed using such 

approaches would likely not be translatable to routine clinical practice. 

 

Each AI model is trained to answer a specific question, in the case of this thesis, prognostic 

impact. The algorithm is therefore appropriately trained on a biased dataset of patients with a 

known assigned diagnosis of IPAH or PH-CLD. The AI model is trained and tested only on 

contrast enhanced CTPA imaging, which is the standard acquisition protocol used in these 

patients. However, non-contrast CT imaging is overall more commonly in other lung diseases 

such as COPD, and ILD. There are significant differences in the appearances of parenchymal 

between non-contrast and CTPA imaging due to the uptake of contrast from the lung 

parenchyma. It therefore would not be appropriate as a screening or diagnostic tool in other 

diseases or non-contrast CT without further training, adaptive methods, or transfer learning. 

The algorithm has been developed and tested in a predominantly white European population, 

limited by the demographics of the prevalent population. Future work will seek to address the 

limitations of this study by testing the model in larger cohorts of multi-ethnicity patients. 
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9 Future Work 
Several avenues of potential future research have been identified from the multiple studies 

within this thesis. I aim to work on these future projects at a post-doctoral level as a clinical 

lecturer. 

 

In depth phenotyping and characterisation of Group 3 PH to investigate treatment 

response. This thesis studies both Group 1 and Group 3 PH, and defined a new phenotype of 

‘IPAH lung phenotype’ which appears to lie in between. Group 3 PH is a highly heterogenous 

group including diseases with different pathological and physiological processes. The two 

major subgroups are Group 3.1 – ‘Obstructive disease or emphysema’ and 3.2 ‘Restrictive lung 

disease.’ Currently, all Group 3 patients are managed similarly, with the recommendation to 

maximise the treatment of their underlying lung disease. PAH specific vasoactive therapies, 

which have significantly improved survival in Group 1, are not indicated for use in Group 3.  

 

Several randomised control trails have been performed in both Subgroup 3.1 and 3.2 with 

mixed results. In ILD (Group 3.2), Endothelin receptor antagonists (bosentan, ambrisentan and 

macitentan) were found to have no significant effect or were associated with worse outcomes in 

patients 63,226–228. Sildenafil was also shown to stabilise 6-min walk distance and improve 

quality of life in one study, but two other subsequent studies failed to reach their primary 

endpoints 229,230. In COPD (Group 3.1), studies on bosentan, sildenafil and tadalafil in patients 

with moderate PH on echocardiography failed to reach their primary endpoint and show a 

benefit 231–233. In contrast, the SPHERIC-1 trial showed a significant improvement in PVR and 

quality of life in a small number of patients with more severe RHC proven PH 234. Most 

promisingly, the INCREASE study demonstrated an improvement in exercise capacity and 

reducing in clinical worsening events in ILD 65. Subgroup analysis also interestingly revealed 

that the benefits were seen only seen in patients with significant heamodynamic disease 

(defined as PVR > 4 WU)51. 

 

A significant limitation of the literature on the efficacy of PAH therapies on Group 3 is the 

large variability of the selection criteria between trails. Trials included or excluded patients 

based on extremes of either mild or severe heamodynamic disease or lung disease as quantified 

by pulmonary function tests and qualitative scoring of chest CT. The studies that showed 

benefit tended to be in those with severe haemodynamic PH 65,234. There is a great opportunity 
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and great clinical need for further studies in this area that can identify a sub-phenotype that may 

benefit from PH therapy. A hypothesis is this phenotype may be characterised with severe 

haemodynamic disease, but only mild or moderate lung disease on pulmonary function testing 

and CT imaging. Discovery of such a sub-phenotype would open a further avenue for 

mechanistic research and drug development. 

 

Improve understanding of the overall impact of lung disease in pulmonary hypertension. 

There is active interest within the PH community to better characterise lung disease and its 

prognostic impact. Chapter 6, the Lancet Res Med paper on the new IPAH-lung disease 

phenotype, was one of the main topics of discussion at the 2022 European Respiratory Society 

conference. The work described above for Group 3 can also be applied to Group 1 and the 

newly defined ‘IPAH lung phenotype’. Should these patients be treated more or less 

aggressively compared to the ‘Classical IPAH’ group? Could aggressive treatment improve 

their prognosis, and if so, by how much compared to ‘Classical IPAH’ and ‘Group 3 PH’? 

There is conflicting evidence surrounding treatment response, partially due to differing 

definitions of what truly constitutes a new phenotype. This thesis has investigated survival as 

the endpoint outcome for prognosis, but treatment response is an important endpoint to 

investigate. There is industry and community interest in identifying sub-groups within 

phenotypes that could be treatment responders. A limitation to this analysis is that treatment in 

PH is complex, and patients undergo combination therapy with multiple overlapping agents. 

The duration of treatment with specific agents, prior treatments, and severity of disease on 

commencement are important but hard to control confounders. This work would very much 

require prospective, randomised control trials with careful but broad selection criteria. 

 

Investigate impact of DLCO, KCO and derive discriminating cut-offs. Current work uses a 

DLCO threshold of 45% percent predicted as a threshold for binary ‘low’ or ‘high’ DLCO. This 

was taken from multiple studies in this domain, but this choice of threshold has not formally 

been investigated. Future work could investigate the prognostic impact of DLCO as a 

continuous variable (0-100% percent predicted) and use different thresholds that account for its 

bimodal distribution. This analysis would help better identify an appropriate threshold for when 

DLCO is used in addition to the quantitative CT metrics, as it may be that they both have 

supplementary effects on prognosis. This would be important work as all PH patients routinely 

undergo DLCO testing and CT imaging, and a more discriminating cut-off could increase their 

prognostic predictive value. Going further, DLCO is derived from multiplying the Va (alveolar 
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volume) and Kco (CO transfer coefficient)235. The impact of these separately can be assessed, 

as it may be that KCO is more discriminating than DLCO when used with CT features. There 

exists some work in the literature investigating this in PH secondary to systemic sclerosis, 

where KCO changes predicted mortality, but this was less than DLCO236.  Our work will 

investigate the relative impact of this in the spectrum of IPAH, IPAH lung phenotype and 

Group 3 PH (including sub-phenotypes to adjust for heterogeneity). 

 

Prospective validation, external and clinical deployment. As stated in the limitations and 

discussion, the work described is retrospective and the AI model has been deployed in a single 

PH centre. Clinical deployment of the AI model, and subsequent prospective validation of its 

additive value on radiological reporting can help better understand the limitations of the model. 

Clinical deployment would involve working with senior clinical imaging scientists to 

incorporate the model as a part of an existing workflow and pipeline. It also requires gaining 

appropriate regulatory approvals. The cardiothoracic research group for this project has succeed 

in clinical translation of research models. An automated cardiac MRI segmentation tool was 

successfully clinically deployed and won the 2022 Medipex NHS Innovation Award237. 

Challenges of deploying any research model into clinical use are both technical and regulatory. 

From a technical perspective, the clinical service uses an existing set of workflows and 

pipelines, and the research model needs to be able to interact with the existing imaging 

pipeline. For example, in the clinical domain, the DICOM image format is regularly used, and 

tools (scanners, PACS system and any existing additional software used) need to work in that 

format. In the research domain, the DICOM format is often converted to the NIFTI 

(Neuroimaging Informatics Technology Initiative) format as this is more amenable to data 

analysis and machine learning. The pipeline for the AI model itself has multiple intermediary 

files and steps that generates other formats. For clinical deployment, all these steps and files 

need to be streamlined and made interactive with each other. The end output of the AI model 

needs to be a DICOM file, that can then be integrated back to the clinical imaging PACS 

system. Each step needs to pass clinical information governance and data regulatory steps. 

Integrating any AI model into clinical use requires regulatory approval, discussion and 

evaluation of the potential clinical impact, and careful consideration of the patient population in 

which it is used. For the AI model developed in this thesis, we feel the approach of generating 

an additional scan ‘series’ would work well, and would only be deployed in the PH population 

on which it was trained. This additional scan ‘series’ would contain a labelled DICOM image 

with the AI output mask which visualises what each region of the CT scan is classified as by 
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the AI model. Explain ability of the model outputs is an important step towards deployment of 

AI in clinical practice. The reporting radiologist can then have access to this additional 

information to aid in making their clinical opinion. The AI model itself will not ‘report’ any 

findings and will only be used as an adjunct additional tool.  

 

External deployment of the model in other PH centres through collaborations would further 

strengthen the evidence base. This would require further significant technical and regulatory 

work. The model would first need to be packaged in a way that it can be shared and then steps 

would need to be taken by the other institution to correctly integrate it with their respective 

PACS and radiology systems. The lung segmentation model in the thesis has been successfully 

deployed at the Stanford Center for Artificial Intelligence in Medicine and Imaging in a 

research domain, and the aim would be for similar collaborations at first for the entire 

parenchymal classification model. 

 

Quantifying other imaging features to create ensemble prognostic imaging models. 

The AI methodologies and approaches used in this thesis to quantify lung parenchymal patterns 

can be used to automate the quantification of other imaging features. Within chest CT, potential 

targets include pulmonary embolism clot burden quantification, and automated measurement of 

cardiac and vascular structures. Some of the initial development work for these approaches has 

been carried out in parallel. A medium-term goal would be creating an ensemble overall CT 

model which incorporates multiple AI models that quantify and automate these different 

imaging features together. Each incident CTPA could then have its lung parenchyma 

quantified, cardiac and mediastinal structures measured, and clot burden quantified. This would 

aid significantly in radiological reporting, but also provide quantitative endpoints which can be 

used for assessing prognostic impact. The data can be put together in a machine learning or 

linear regression model, which could potentially be of higher prognostic strength. 

 

The longer-term goal is to create a multi-modality imaging model which incorporates the 

relative strength of each imaging modality. For example, echocardiography is the first line 

recommended tool for screening for pulmonary hypertension, chest CT is the gold standard for 

lung disease assessment and clot burden estimation, and cardiac MRI is the gold standard for 

cardiac structural and functional assessment. The research department is working on AI models 

for each modality to automate the assessment and quantification of imaging features. 

Combining all these together, to replicate the current clinical workflow for the radiologist, 
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could greatly aid in patient phenotyping. An even more ambitious target would be combine all 

imaging features with clinical data such as pulmonary function tests, exercise tests and patients 

demographics for a ‘big data’ machine learning approach to see if such a model could 

accurately aid with screening and diagnosis of PH. 

 

Direct comparison of AI metrics against expert radiologists. The current approach validates 

the AI approach against radiologists using two approaches. Firstly, it directly compares the AI 

classified outputs as a patch against the labelled patches by the radiologists. Secondly, it 

correlates the overall AI reported extent of disease against reports from multiple expert 

radiologists in normal clinical practice. Further prospective direct validation can be performed 

in which the same CT scan is reported concurrently by both an expert radiologist and the AI. 

Lobar segmentation can be performed, and each lobe divided into uniform equal regions, for 

which a radiologist estimates the extent of the lung parenchymal features to the nearest 5%. 

This approach has been previously used in Idiopathic Pulmonary Fibrosis when establishing the 

value of quantitative CT approaches27,113. A benefit of this approach would be a more 

systematic and detailed understanding of the limitations of the current AI model. For example, 

it would help establish whether the current model classifies traction bronchiectasis as 

‘honeycombing’ and investigate what cardiac pulsation and breathing artefacts are quantified 

as. A limitation of this approach is the time intensive and laborious nature of the work, but this 

would help further clinically validate the AI outputs. Feedback from other radiologists, who 

will be the end users of the AI model, can also help shape future development to improve 

model usability and performance. 

 

Investigating impact in other PH phenotypes and diseases and application to non-contrast 

CT. The AI package has been developed and trained specifically using patients with IPAH or 

PH-CLD. The CT texture patterns identified by the algorithm – such as ground glass, 

emphysema and fibrosis - are the basic foundational features of CT Chest pathology. With 

appropriate adaptive methods and transfer learning, the model could therefore be developed to 

be more widely applicable in other diseases. Within PH, the connective tissue disease 

phenotype (PH Group 1.4.1 as per latest classification) is an ideal target to first investigate the 

generalisability of the model as it is most adjacent to IPAH and is commonly associated with 

fibrotic lung disease. Outside of PH, pulmonary embolism and COVID-19 are diseases where 

CTPA imaging is common. Longer term and with substantially more development, the model 

could be adapted potentially to work in both non-contrast and contrast-enhanced CT imaging. 
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This would allow for uses in diseases which would benefit from severity quantification such as 

asthma, COPD and ILD. 

 

 

  



174 

10  Conclusion  
This thesis establishes lung parenchymal patterns on routine CTPA imaging as prognostic 

imaging biomarkers for survival in patients with IPAH and PH-CLD. It further develops and 

establishes the clinical significance of an automated AI model to quantify these lung 

parenchymal patterns. Combining the strengths of AI and radiologists together improves the 

prognostic predictive strength of lung disease assessment. The ‘in-house’ development and 

external clinical evaluation of these AI models are significant milestones within the 

cardiothoracic medical imaging research group, and within the domain of medical imaging 

artificial intelligence more broadly. This work has advanced the understanding of the impact of 

lung disease in this cohort of patients, and it will contribute to a likely reclassification and sub-

phenotyping of ‘IPAH’ into ‘Classical IPAH’ and ‘IPAH with lung disease’ in the next PH 

guidelines213. This will have implications on patient diagnosis, risk-stratification, treatment 

decisions and management.  

 

Finally, the thesis has been a journey of personal and professional development beyond the 

described traditional ‘research outputs’. Learning coding and statistical programming are 

personal highlights for skills I have developed during my PhD. The opportunity to collaborate 

and work with world experts in the fields of AI in medicine (Prof Curtis Langlotz, Director of 

Stanford Center for Artificial Intelligence in Medicine and Chair of Board for Radiological 

Society of North America, co-author of chapter 6) and Pulmonary Hypertension (Prof Marius 

Hoeper, PH Lead for PH at Hannover Medical School and section editor of 2022 European PH 

guidelines, co-author of chapter 5) has been instrumental to my development as a clinical 

academic and my understanding of the domain.  

 

I finish this thesis fully committed to a substantive clinical academic career, and eternally 

grateful to the Wellcome Trust, my supervisors, my family and all for supporting my 

development. 
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