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Abstract 

Alkali metal nitrates are both of industrial and scientific interest. In this thesis, we present a 

new rigid-ion force-field for the alkali metal nitrates that is suitable for simulating solution 

chemistry, crystallisation and polymorphism. We show that it gives a good representation of 

the crystal structures, lattice energies, elastic and dielectric properties of these compounds over 

a wide range of temperatures. Since all the alkali metal nitrates are fitted together using a 

common model for the nitrate anion, the force-field is also suitable for simulating solid 

solutions.  

We utilise our model by exploring, in particular, KNO3 behaviour in a range of systems. 

Because the ultimate goal is to model the nucleation, and subsequent crystallisation, of KNO3 

we have explored a few possible scenarios, from an homogeneous to an heterogeneous one. 

We have started by attempting to nucleate KNO3 from pure, supersaturated solutions. Because 

of the statistically rare nature of the event, we tried to make the process possible to investigate 

in a time frame that is also optimal for simulation, by putting said solutions in contact with a 

slab of KNO3. We add a constant chemical potential method (Cμ-MD) to our model to try to 

determine growth mechanisms and rates. At this stage of this work no clear growth behaviour 

has been observed. 

We then swapped the slab of KNO3 for a self-assembled monolayer (SAM) surface to 

investigate the effect of functional groups, charges and defects on the nucleation process. In 

this case, the results were not comparable with the ones obtained for CaCO3 because the 

nucleation was not significantly accelerated by the presence of the defects. 
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Chapter 1 

 

Introduction 

This chapter will outline the fundaments behind this thesis, which explores alkali metal 

nitrates through simulation, to understand their nucleation and crystallisation processes. The 

following sections will give an in-depth explanation of why it is important to possess 

effective tools for simulating nucleation and crystallisation, along with the origin of this 

project, and to highlight its place in the consortium ‘Crystallisation in the Real World’[1] to 

which the PhD position was linked. 

 

1.1 Importance of simulating nucleation and crystallisation 

Nucleation, and crystallisation, are challenging processes to study because of the timescales: 

most experimental techniques available are not able to detect the first steps due to the speed 

and localised nature, especially if the compound of study possesses a high solubility level. In 

these cases, simulation is an important tool to study the missing steps of the process. 

Simulation, by its own nature, is able to cover small time-intervals. However, the nucleation 

process can be classified as a rare event as it is projected to occur infrequently, with a 

probability in the order of 10-3 s-1. Calculating these rare-event probabilities is challenging as 

they are beyond the general time of atomic scale simulations. 

Alkali metal nitrates are characterised by a simple structure, which makes the simulation 

theoretically easy to perform, but they are not exempt from the above challenges (that will be 

outlined in the following chapters).  

 

1.1.1 Crystallisation in the Real World  

'Crystallisation in the Real World: Delivering Control via Theory and Experiment' is an 

EPSRC-funded project started in 2018. Three experimental groups and five modelling groups 

from the universities of Leeds, Sheffield, Warwick, and UCL are involved.  

The goal of this research is to create new methods for understanding and controlling 

crystallisation through integrated experimental and computational work. 

Crystallisation has long caught the attention of many researchers. The dynamic, molecular-

scale mechanisms that underpin nucleation and growth are only now being understood 



34 

 

because we have the necessary instruments and theoretical tools. We are examining the 

nanoscale changes that take place in the solid and solution during crystallisation by fusing 

modelling approaches that address length-scales, time-scales, and environments relevant to 

real-world conditions with carefully crafted multi-scale experiments that range from the 

purposefully basic to cutting-edge. This new insight holds the key to the synthesis of crystal 

polymorphs, either with the help of pre-selected soluble additives that can generate particles 

with the required sizes and shapes, or by merely modifying the reaction conditions. When and 

where we want crystal formation to occur, we can choose particles that can promote 

nucleation, possibly even of a specific polymorph, or create surfaces that can either 

encourage or inhibit it. These new additives can be used in a variety of industries, including 

the chemical industry, environment, healthcare, formulated products, oil and gas, water, 

mining, and sophisticated materials[48]. 

 

1.2 Crystals 

A crystal is defined as a solid material in which the atoms possess a highly ordered structure. 

This highly ordered structure is repeated in all the directions and is called a lattice. In 

contrast, a lack of organisation leads to the formation of a structure called “amorphous”. A 

crystal can be identified by its shape, which means by flat faces characterised by specific 

orientations. Figure 1.1 shows two different types of KNO3 crystals, as an example. 

 

  

Figure 1.1. KNO3 ferroelectric, left hand-side and aragonite, right hand-side. Images 

supplied by F Meldrum, T Dunn (Leeds University)[2] 

 

 

 

 



35 

 

1.2.1 Crystal structure 

A crystal structure is the array of the particles that generates a crystal. Normally, a 

parallelepiped is used in order to define the unit cell, and is characterised by the length of the 

cell on the three cartesian directions (a, b, c) and the angles (α, β, γ). Starting from a chosen 

point, every atom’s position is identified by fractional coordinates (xi, yi, zi)
[3]. Every crystal 

is identified, as well, by all the possible symmetry operations, that together describe the space 

group that a particular crystal belongs to[4]. 

 

1.2.2 Polymorphism 

Polymorphism is the phenomenon by which a material can exist in more than one crystalline 

shape or can be completely amorphous. If the same crystal can be differently packed, it is 

called packing polymorphism, otherwise if the crystals are formed by different conformers of 

the same molecule is called conformational polymorphism. 

 

Figure 1.2. Different polymorphs of calcium carbonate. Top left shows the only amorphous form of calcium carbonate 

(ACC), while vaterite (top-right), aragonite (bottom left) and calcite (bottom right) represent the crystal forms in crescent 

order of thermodynamic stability (http://www.ruhr-uni-bochum.de/sediment/forschung.html) [29] 

For example, as shown in Figure 1.2, calcium carbonate exists in three different crystalline 

forms and one amorphous form. Based on the behaviour of the curve of free energy as a 

function of the temperature it is possible to distinguish two different trends: monotropic[7], 

where the different curves of the polymorphs do not cross before the melting point, meaning 

an irreversible transition between polymorphs, and enantiotropic where the curves cross and 

the transition is reversible. 
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Polymorphism can be controlled by the solvent impurities, the level of supersaturation, the 

temperature and variation in the stirring conditions.[8] Usually, a species with different 

polymorphs follows the Ostwald rule, by which the first polymorph formed is the most 

unstable. [9] 

 

 

Figure 1.3. Behaviour of a monotropic (right) and enantiotropic (left) systems[7]. Green lines represent the contributions to 

the free energy and the blue lines to the enthalpy. Reproduced with the publisher’s permission. 

 

1.2.3 Crystallisation 

Crystallisation is the process that, starting from a fluid or a solution, creates a crystal. 

Different crystals possess different properties and qualities; therefore, it is vital for  industry 

to be able to control and understand the whole range of parameters to obtain a specific 

crystal. Crystallisation can be simplified as a two-step process: nucleation and growth. 

Nucleation is the formation of the first cluster; growth is the increase in the size of the first 

nucleus until the critical size is reached, thus leading to an indefinite growth of the system. 

Usually, the driving force of this process is the level of supersaturation of the system. 

 

1.3 Nucleation 

Nucleation is the first step of crystallisation that, starting from building blocks, leads to the 

formation of a new structure by self-assembly and/or self-organisation. Starting from ions in 

solutions, progressive organising generates intermediary phases, for example high-disorder 

species like multi-ion clusters, dense liquid droplets, transient crystalline or amorphous 

phases. By analysing the intermediate species, it is usually possible to the understand kinetics 

and thermodynamics of formation for what will be the actual crystal generated from this 
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process. It is possible to define two kinds of nucleation: primary and secondary. In primary 

nucleation, the events occur without needing any external crystal to initiate the process. It can 

be homogeneous, when the particles assemble themselves without any help from the external 

environment or heterogeneous if a catalyst is needed.  

Secondary nucleation, requires pre-existing nuclei acting as catalysts. Secondary nucleation is 

usually more efficient than primary nucleation, mainly because it is characterised by a low 

kinetic order, which is proportional to the supersaturation and because it happens with low 

levels of supersaturation, thus leading to the formation of good quality crystals[10]. 

 

1.3.1 Classical nucleation theory 

Classical nucleation theory represents a general framework to model nucleation, crystal 

growth and/or decay and crystal stability on the basis of thermodynamics. This theory leads 

on the foundation of Gibbs’ assumption of this process being the results of the balance of two 

forces, growth and dissolution [11,12] . In order to take place, nucleation should overcome the 

barrier of free energy (ΔGbulk < 0). The free energy for a bulk crystal can be described as 

 

𝛥𝐺𝑏𝑢𝑙𝑘 = 𝛥𝐸𝑝𝑜𝑡 − 𝑇𝛥𝑆 + 𝑝𝛥𝑉 (1.1) 

 

where 𝛥𝐸𝑝𝑜𝑡 represents the potential energy, 𝑝𝛥𝑉is the volume variation depending on the 

pressure (p). Both those terms represent the enthalpic contribution to the Gibbs free energy. 

The entropic contribution is −𝑇𝛥𝑆, and is linearly dependent on the temperature. Therefore, 

for the nucleation process to be spontaneous the ΔG just needs to be negative; the sign of the 

components does not matter. When the condition 

 

𝛥𝐸𝑝𝑜𝑡 + 𝑝𝛥𝑉 = 𝑇𝛥𝑆 (1.2) 

 

is reached, so is the transition point, which implies having defined the saturation 

concentration as a function of temperature and pressure. 

There are, potentially, multiple barriers that the system has to overcome in order to undergo a 

phase transition. These could be the disruption of the solute-solvent interactions and the 

formation of a crystalline surface. In most interpretations of classical nucleation theory, the 

assumption is made to simplify the equations, to assume that growing crystals have a 

spherical shape, therefore 

 

𝛥𝐺𝑐𝑟𝑦 = 𝛥𝐺𝑏𝑢𝑙𝑘 + 𝛥𝐺𝑠𝑢𝑟𝑓 (1.3) 
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Which means that the total free energy of the crystal is made up of a bulk term, which 

depends on the radius of the crystal as r3 in the bulk phase and as r2 in the surface term. A 

more general way to describe the free energy of formation of a crystal, however, does not 

involve a reference to the particle geometry, but instead takes into account only the number 

of particles involved in the process 

 

𝛥𝐺𝑐𝑟𝑦𝑠𝑡(𝑁) = 𝛥𝜇 ⋅ 𝑁 + 𝜎𝑠𝑢𝑟𝑓𝑎𝑐𝑒 ⋅ 𝑁
2 3⁄  (1.4) 

 

where 𝛥𝜇 ⋅ 𝑁 represents the equivalent term for the bulk free energy in equation (1.4) and 

takes in account how the potential energy changes whilst the system evolves from one phase 

to another one. Given the shape of the system (1.4) can be rewritten as  

 

𝜎𝑠𝑢𝑟𝑓𝑎𝑐𝑒 ⋅ 𝑁
2 3⁄ = 𝜎100 ⋅ 𝐴100 + 𝜎110 ⋅ 𝐴110+. .. (1.5) 

 

In (1.5) A is the term related with the known faces and σ is related with the free energy 

needed to observe such faces.  

 

 Figure 1.4. Free energy profiles as function of the number of precipitated formulae units. If Δμ (black curve) is equal to 

zero, the energy barrier is not overcome and the system does not nucleate. In the other 2 cases (red and grey curve) the 

system overcomes the critical radius and as a function of the depth of the free energy well it manages to nucleate a 

proportional amount of formulae units [13] 

As shown in Figure 1.4, the different curves represent the variation of chemical potential 

during the formation of the crystal, and each represents a different driving force in the 

process (concentrations, temperature, etc.). If Δμ < 0 and the energy barrier is crossed (ΔG# = 

G(Ncrit)) growth should occur continuously (until the saturation level changes significantly). 

If N tends to infinity, the free energy converges to the variation of chemical potential. 

Classical nucleation theory allows us to describe the meaning of the nucleation barrier in a 
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thermodynamic sense, but also provides a way to interpret multi-step nucleation and Ostwald 

ripening[14]. In the cases where classical nucleation theory might seem not to be applicable, 

their non-adherence can be explained with one of the cases listed in the following sub-

sections. 

 

1.3.1.1 Transient Microscopic Precursors 

According to CNT, the energy penalty associated with cluster formation can be derived by 

the bulk surface energy. This, however, ignores the fact that, for small-sized clusters, the 

contribution of the difference in energy for different types of surfaces is actually highly 

substantial, and specific atomic configurations of the expanding cluster may therefore 

become more beneficial than others[30]. Based on the classical formulas, assuming spherical 

nuclei with constant surface energy, the relative abundance of these transitory species will be 

larger than expected. Such local minima in free energy associated with specific monomer 

configurations will result in transitory species. Due to kinetic or thermodynamic 

considerations, these species, which can only exist in limited amounts because they are still 

more unstable than free monomers, may offer the simplest route to the final state. 

 

1.3.1.2 Competition of Phases 

While polymorphs and related phases may not be the most stable in ambient conditions, they 

may be stable bulk phases in specific regions of the phase diagram and have a lower energy 

than the solution (or vapour) state at sufficient applied chemical potential. If the energy 

barrier to nucleation is lower than that of the stable phase, they are more likely to form 

initially and then convert to the stable phase either directly or, more commonly, via 

dissolution and re-precipitation once the stable phase nucleates[30]. 

Ostwald's Rule of Stages is based on this type of nucleation, which frequently occurs in 

multiphase systems[31]. This mechanism is a good fit for CNT and, in many ways, supports 

the veracity of the theory. Metastable phases tend to present, most of the time, surface energy 

values that are lower than the stable phase.[32] 

 

∆𝐺∗ ∝
𝛼3

𝜎2
 

(1.6) 

                                                                                              

Equation (1.6) expresses the relationship between the classical free energy barrier (ΔG*), the 

surface energy (α) and the supersaturation (σ). [31, 32] According to CNT, then  
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𝜎𝑠𝑡𝑎𝑏𝑙𝑒
𝜎𝑚𝑒𝑡𝑎𝑠𝑡𝑎𝑏𝑙𝑒

< (
𝛼𝑠𝑡𝑎𝑏𝑙𝑒

𝛼𝑚𝑒𝑡𝑎𝑠𝑡𝑎𝑏𝑙𝑒
)

3
2
 

(1.7) 

 

If the condition described in (1.7) is met and the kinetic prefactors are comparable, then the 

metastable phase will initiate first. 

 

1.3.1.3 Kinetic Trapping of Bulk Metastable or Unstable States 

If the formation of the metastable phase does take place, this can be pushed to the point that 

the system might reach a level of supersaturation so low that inhibits the formation of the 

stable polymorphs. This is one example of how the metastable phase, through the reduction 

of the monomer’s mobility can prevent the polymorph’s conversion over time. That is usually 

the case for the two less-stable polymorphs of calcium carbonate (vaterite and aragonite), as 

well as the amorphous form (amorphous calcium carbonate, ACC). All those forms can 

remain stable, as biominerals, until calcification (formation of calcite) occurs. [33] 

 

1.3.1.4 High Nucleation Density 

The conditions that have to be met in order for a supersaturated system to transition are: 

1. only one particle exists in equilibrium with the depleting solution (or vapour); 

2. the morphology that minimises the surface’s energy gets generated first 

This describes the simplest process, however, if the chemical potential is high enough it is 

possible to obtain multiple, simultaneous nucleation events. The products of these separate 

events can then, over time, have reciprocal interactions, which will eventually lead to the 

formation of either subcritical clusters, which can aggregate with each other to form, or 

directly form, stable nuclei. 

 

1.3.3 Non-classical nucleation theory 

It has been suggested, though the use of novel experimental techniques, that, starting from 

solution, the crystallisation process occurs through various intermediate stages, before the 

thermodynamically stable phase gets formed (so-called rule of stages) [34]. 

According to the Oswald’s rule of stages[34] an unstable (or metastable) system evolves into a 

slightly more stable conformation, which has the closest free energy to the original one and 

though a chain of transformations it reaches the final, most stable, state. If the mechanism of 
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transformation cannot be assimilated into one included in the Section 1.3.1.4, then it may be 

interpreted as a non-classical pathway. (as shown in Figure 1.5, B to E) 

 

 

Figure 1.5 The potential paths and physical mechanisms by which monomers create a stable bulk crystal might have 

thermodynamic (A, B, C) or kinetic (D, E) origins (A) The traditional monomer-by-monomer addition. (B) Metastable 

particle aggregation (aggregation of liquid, amorphous, or weakly crystalline particles, or aggregation of oriented [and 

nearly orientated] metastable nanocrystals). (C) Crystallisation by metastable bulk phase creation (i.e., liquid or solid 

polymorph). (D) Cluster or oligomer aggregation dominated by kinetics. (E) Aggregation of unstable particles with different 

interior structures than equilibrium phases [35]. All the rights to the authors. 

 

One of those cases is the formation of a disordered precursor particle[36, 37], whose order and 

density increase over time though recurring, multiple, transformations. Hydrated ACC 

particles may crystallise this way. Recent in situ TEM studies on Mg-doped CaCO3 solutions 

revealed that once Mg-containing ACC first developed, it eventually transformed into calcite 

without changing its original spheroidal shape and with the loss of structural water[38]. By 

adding more water to the ACC structure, Mg is crucial in destabilising the ionic bonding 

network, according to MD simulations[38]. Systems that quickly polymerise into initially 

disordered networks or build complex frameworks belong to another class of systems that are 

difficult to fully fit within the context of CNT. The classic example comes from silicates[39–

42], but other systems as different as peptides[43], calcium carbonates[46, 47], phosphates[45], and 

iron oxides have also been implicated in this process[44]. Those species are usually referred as 

“prenucleation clusters”. 

 

1.4 Calcium carbonate as a model 

Most of the existing literature regarding nucleation and crystallisation uses calcium carbonate 

as a starting point [15,16]. This compound has previously been chosen as a model because it 

shows a high natural recurrence, with both inorganic and organic roles: it is the constituent of 
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biological scaffolds, and a pure mineral both in earth and extra-terrestrials environments[17,18]. 

It shows a rich polymorphism as well, with three different forms: vaterite, aragonite, and 

calcite (listed in reverse order of stability). Despite its relevance, calcium carbonate is still a 

topic of discussion[19] as in the last years many mechanisms involving non-classical pathways 

have been proposed[20], starting from the analysis of microstructures and biominerals[21]  or 

unusual geological mineral deposits[22]. This involves the formation of prenucleation clusters 

(thermodynamically stable) or dense liquid precursor via liquid-liquid phase separation[19]. 

On the other hand, not only crystallisation seems to be problematic, as calcium carbonate 

shows variation of solubility connected with CO2 pressure[23,24], variation of pH, 

temperature[25,26] and salinity (e.g. interaction with magnesium ions)[27,28]. All these reasons, 

therefore, lead to the necessity to find a new, simpler system to model nucleation and growth.  

 

1.5 Aims and Objectives of this Thesis 

The main focus of this work is a computational study of the nucleation process of KNO3. 

In order to do so, for the reasons highlighted in Chapter 4, we had to make sure to use the 

appropriate force-field. 

Ina progressive order we have started with Chapter 5 by considering a pure, homogeneous 

nucleation process. Being the nucleation from solution a stochastic process, this goal was 

ambitious, for the time limitation of the project and the computational resources needed. 

The following chapters, therefore, have progressively added a nucleating element.  

In Chapter 6 we have attempted secondary homogeneous nucleation (slab of KNO3) and in 

Chapter 7 we have attempted heterogeneous nucleation by adding a self-assembled 

monolayer. 
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Chapter 2 

 

Alkali metal nitrates 

 

2.1 Introduction 

The alkali metal nitrates are the subject of this study, and this chapter will provide information 

about each member of this family of compounds, highlighting their morphology, polymorphism, 

crystal structure and uses. Alkali metal nitrates have the generic formula XNO3 (X=Li, Na, K, Rb, 

Cs).  The nitrate group is a polyatomic anion with a single central nitrogen atom and three oxygens 

connected to the central atom with a trigonal planar structure. The three oxygen formally carry the 

charge equally, each with a value of -2/3, while the nitrogen carries a formal charge of +1. This 

results in a total formal charge of -1. Three resonance structures are formally used to describe the 

nitrate anion, shown in Figure 2.1. Being the conjugate base of a strong acid (nitric acid, HNO3) 

the nitrate group tends to create salts that are mildly acidic in solution. 

 

Figure 2.1. Resonance structures of the nitrate anion. 

 

Alkali metal nitrates are commonly used as fertiliser and food preservatives.  Nitrates are often 

added to food with the purpose of generating in-situ nitrites (NO2
-) which is the active preservative 

ingredient. They are usually added in the form of sodium and potassium salts, labelled as E251 

and E252 respectively. They prevent the growth of Clostridium botulinum and other bacteria, and 
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are also used to maintain the natural colour of meat and avoid the development of unpleasant 

odours and flavours[2]. As fertiliser, nitrates are commonly used because of their high solubility 

and biodegradability. The most common forms are ammonium, sodium, potassium, and calcium 

nitrate. Another use is as heat transfer fluids in concentrated solar power plants[3]. 

 

2.2  Lithium nitrate 

Lithium nitrate is the lithium salt of nitric acid and the first of the family of alkali nitrates. It is 

commercially used as oxidising agent in the manufacture of red-coloured fireworks and flares[6].  

 

2.2.1 Crystal structure, polymorphism and phase transitions 

 

Figure 2.2.  LiNO3 (along the <010> direction)[1]. Reproduced with the publisher’s permission. 

At 298 K, LiNO3 crystallises in the rhombohedral 𝑅3𝑐 group[1] with Z=6, a=4.692. According to 

Wu et al[7] lithium nitrate is isostructural with calcite and nitratine (NaNO3). Being isostructural 

with calcite[8] and nitratine[9], lithium nitrate is expected to have a Bravais-Friedel-Donnay-Harker 

(BFDH) morphology with {012}, {012} and {001} forms, shown in Figure 2.3. 



49 

 

 

 Figure 2.3. BFDH theoretical crystal growth morphology of LiNO3 (calculated)[1]. Reproduced with the publisher’s permission. 

 

2.3 Sodium nitrate 

Sodium nitrate is a white solid with high solubility in water. It has been used in industrial 

applications as a readily available source of 𝑁𝑂3
−. 

 

2.3.1 Crystal structure, polymorphism, and phase transitions 

Sodium nitrate crystallises in the rhombohedral (calcite type 𝑅3𝑐 group[10]) at 298 K with Z=6, a= 

5.0396 Å and c=16.829 Å and transforms into a high-temperature disordered phase (𝑅3𝑚) around 

548.5 K. This polymorph has Z=3, a=5.0889 Å and c=8.868 Å. The nitrate group appears to be 

static in the low temperature phase (II-NaNO3) and becomes rotationally disordered in the high 

temperature phase (I-NaNO3)
[11]. Phase transitions in sodium nitrate have been extensively studied 

because of its analogy with calcite. Despite much effort, it has not been possible to correlate the 

transitions with currently existing standard models [12]. However, both carbonate and nitrate groups 

show orientationally disordered high temperature phases. Starting from a pure solution it is 

possible to grow single {10.4} rhombohedral crystals[13] whilst adding Li+ and K+ ions allow to 

grow {00.1} crystals.[14] 
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 Figure 2.4. Left: II-NaNO3 crystal structure [15]. Right: I-NaNO3 crystal structure[15]. Both viewed along the {010} direction. 

Grey spheres represent sodium atoms, red spheres oxygens from the nitrate group. Reproduced with the publisher’s permission. 

Figure 2.4 shows a projection of the crystal structures for phase I and II along the {010} direction. 

Phase II of sodium nitrate (𝑅3𝑐  group) is stable between 100 and 550 K. It is made up of layers of 

sodium ions and nitrate groups, rotated by 60° around the triad axis. In this conformation sodium 

has an octahedral coordination with respect to the oxygens. Phase II converts into phase I 

(𝑅3𝑚 group) at temperature above 550 K and below the melting point (581 K). Each cell contains 

three formula units, and can be distinguished from the more stable phase II as the nitrate ions show 

rotational disorder. The existence of these two polymorphs has been confirmed by different 

studies[16]. Teo et al[17] identified a new phase above 14 Kbar that, because of a slight volume shift 

during the phase transition, would mimic the II-NaNO3 phase. Some authors[71] propose expanding 

the second-order (order-disorder) transition that separates the low- and high-temperature forms of 

NaNO3 by about 100 K. According to many authors[18], the cell loses the c glide plane and all 

nitrate planes become equivalent. This occurs as a result of the NO3 anion becoming rotationally 

disordered. Fermor and Kjekshus[19], who conducted an extensive study on the electric properties 

of NaNO3, asserted that the apparent energy gap shifts at 433 K, which causes the second order 

transition to begin. The activation of the nitrate group's rotation around its trigonal axis is 

suggested as the reason of this order-disorder transition by all the data collected by Rao et al[20]. 

Spectroscopic studies, however, seem to suggest that NO3 is not capable of free rotation above the 
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transition temperature. This could be due to a lack of the methodology in the detection of said 

process. Since sodium nitrate is a chemical that can be manufactured in a high purity condition 

and has a lengthy transition, it has been considered to be an especially appropriate system for 

testing various hypotheses and relations presented for higher order transitions.[21] Harris [22] 

summarises the two potential models for this second-order transition as the "free rotation" model 

first put forth by Kracek [23] and the "two-position disorder" model first put forth by Ketalaar and 

Strijk.[24] 

 

2.3.2 Crystal growth 

A few authors have looked into how NaNO3 crystals are formed. The first investigation to measure 

crystal formation as a function of temperature (273-323 K) at a continuous supercooling of T-

Tequilibrium = 0.3 K was carried out by Sipyagin and Chernov[32].  

 

Figure 2.5. Theoretical and experimental crystal growth morphology of NaNO3
[1]. Reproduced with the publisher’s permission. 

Figure 2.5 shows the theoretical and experimental morphology of sodium nitrate, with the lowest 

surface in energy being the {104}. 

Kirkova and Nikolaeva [33] examined the growth rate of nitratine faces as a function of flow rate 

at various supersaturations. [32] These observations suffered from two flaws: first, both examples' 

rising face indexes were unclear, and second, the sources do not assess the isothermal growth rate 

required to identify the NaNO3 crystal development process. Treivus [34] drew attention to the fact 

that under a free convection regime, the expansion of the NaNO3 solution occurs in accordance 

with the dislocation process. It is important to draw attention to the work of Benages-Vilau et al[35], 

who constructed an instrument to study the development of isothermal NaNO3 crystals. The 

authors operated at very low supersaturation levels of 0.005, and the growth rate on the {104} 

form was continuously lower than R{104} < 2.5 μm∙min−1. This prevented unwanted nucleation. 
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Even though the growth rate results were of a similar order of magnitude to those of Ristic et al[36], 

separate calculated supersaturations demonstrated that a crossover was still true[1]. The authors' 

final conclusion was that the growing process is influenced by the relative placement of a 

(corresponding) face in reference to the flow direction. Additionally, the same authors demonstrate 

in a previous work [37] how the addition of LiNO3 or KNO3 impurities affects the growth rate. 

 

2.3.3 Crystal morphology 

According to an early investigation by Benages et al [38], single {10.4} rhombohedral crystals are 

consistently formed in pure solutions, whereas rhombohedra, or truncated {001} were produced 

in solutions including K+ and Li+ ions. According to Punin and Fanke[39], the inclusion of certain 

impurities, such as KH2PO4, KHSO4, KF, LiCl, and KIO8, causes the growth of curved {00.1} 

pinacoid faces on NaNO3 crystals. A straightforward cleavage rhombohedron is used to construct 

the athermal equilibrium morphology (at 0 K) while accounting for the surface energy estimated 

at the density functional theory (DFT) level[39]. 

 

2.4 Potassium nitrate 

 

2.4.1 Crystal structure, polymorphism and phase transition 

Potassium nitrate has been studied and extensively used in industry as a source of nitrogen [40] and 

it is also a major constituents of gunpowder[41]. KNO3 exists in three different polymorphic forms 

at atmospheric pressure[42]: 

 Phase II, α-KNO3 orthorhombic 𝑃𝑚𝑐𝑛 aragonite type, stable at 299 K; 

 Phase III γ-KNO3, rhombohedral, 𝑅3𝑚, ferroelectric, stable at 397 K, with a=5.43 Å and 

c=9.112 Å; 

 Phase I, β-KNO3 rhombohedral 𝑅3𝑐, calcite type, stable at 403 K with a=5.42 Å and 

c=19.41 Å; 

α-KNO3 has the stacking sequence ABCABC… In this sequence A corresponds to the K+ ions 

layer, while B and C to the NO3
- layers. The sum of the ions in the B and C layer equals the number 

of the A layer to guarantee the electrical neutrality of the system. 
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β-KNO3, presents a stacking similar to I-NaNO3.
[41] This phase is characterised by the nitrate group 

not being planar, but twisted on the same flat plane, therefore a vibrational disorder seems to be 

more plausible[42]. 

γ-KNO3 phase presents a stacking that is similar to the β-KNO3 phase, but the spacing between 

the layers appears to be different. 

 
 Figure 2.6. Left: α-KNO3, Middle: β-KNO3, Right: γ-KNO3 crystal structures.[1]. All structures are viewed along <010> 

direction Reproduced with the publisher’s permission. 

 

Further studies by Nimmo and Lucas [41,42] confirmed the lattice parameter previously obtained by 

Rao, with the exception of the c parameter in β-KNO3, where their value is half of the original one. 

Not all authors agree about the possibility of obtaining γ-KNO3 at room temperature and 

pressure[43]. A mixture of α-KNO3 and γ-KNO3 phases[45] have also been produced for 

concentrations higher than 5.52 molar. Because the high temperature form has been shown to have 

a NO3
- rotational disorder, the α-KNO3 → β-KNO3 transition may also be considered as an order-

disorder transition. This transition appears to be first order, as references suggest a single 

temperature transition. Some authors[47] argued that, while functioning in the 400-397 K 

temperature range, it is reversible. They made a connection between this result and anomalies in 

the dielectric and lattice constants of KNO3. Nagase et al [48] further discovered that heating during 

the transition from α-KNO3 → β-KNO3 altered the Brillouin shift, line width, and mode number. 

It appeared as though the authors had found an "intermediate phase" as a consequence. 

Additionally, Cornelison et al [49] showed that KNO3 displays significant reflection losses when 

the temperature approaches the order-disorder transition point of 401 K. Simulations of the phase 
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transition have also been conducted by Swaminathan and Srinivasan [50] concluding that the three 

polymorphic transitions can be described as martensitic-like and twinning of the parent phase and 

the transition starting by the rotation of the nitrate ions about their triad axes. Aidynol et al [51] 

performed ab-initio simulations where they made a comparison between the structures and calcite. 

The paraelectric to ferroelectric transition (β-KNO3 → γ-KNO3) was interpreted by Rao et al [20] 

as being caused by the electrostriction effect. The α-KNO3 → β-KNO3 transition is abrupt, as 

determined by Raman scattering[52]. 

 

2.4.2 Crystal growth 

At a growth temperature between 296 and 298 K, Chernov and Sipyagin calculated the growth 

rates of the {111} and {110} faces of KNO3 
[53]. In a ternary KNO3-NaNO3-H2O environment, the 

authors found a decrease in the growth rate for the same faces[54]. The biggest difference between 

the growth rates reported by these authors and those of previous research [55, 56] is nearly two orders 

of magnitude. This disagreement is mostly caused by the different experimental setups, but it is 

also related to the crystal quality. The literature suggest a disagreement with some authors 

preferring a random fluctuation model[57] and others proposing a constant crystal growth model 

[58], in some cases indicated as linear [59]; whereas other authors [60] propose a diffusion controlled 

growth, for specific industrial set-ups. 

 

2.4.3 Crystal morphology 

Van der Voort investigated the morphology of KNO3 crystals both theoretically [61] and 

experimentally [62]. In experiments, the author found that, while maintaining the same sub-cooling 

of Tequilibrium - Tgrowth = 0.15 K, the growth habit varies as the crystallisation temperature is raised. 

Below 305 K[63] potassium nitrates mostly shows the {110}, {111}, {010} and {021} surfaces. They 

pointed out that there was good agreement between the estimated and experimental morphologies 

of KNO3.  

 The {001} cut has the lowest surface energy, according to Lovik et al’s [64] ab-initio DFT estimate 

of the surface stability of numerous KNO3 faces. Simple parallelepipeds made by {100}, {010}, 

and {001} are obtained when drawing the shape with unrelaxed surface energy values. 
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2.5 Rubidium nitrate 

Rubidium nitrate is utilised in industry as a colourant and oxidizer in pyrotechnics[65]. It is also 

utilised as a raw material in the production of various rubidium compounds and rubidium metal, 

as well as in the production of catalysts and scintillation counters. 

 

2.5.1 Crystal structure, polymorphism and phase transition 

 

Figure 2.7 Phases of RbNO3 and their transition temperatures (Rao et al.) III-RbNO3, II-RbNO3, and I-RbNO3 (Pohl et al) and 

IV-RbNO3 (Ahtee et al). The scale of unit cells is not the same. All structures are viewed from the 010> side.[1]. Reproduced with 

the publisher’s permission. 

Rubidium nitrate presents four different phases: 

 Phase IV,  trigonal 𝑃31𝑚, stable at 298 K, with Z=9, a=10.479 Å and c=7.452 Å, 

isostructural with II-CsNO3
[66]; 

 Phase III, cubic (CsCl type), 𝑃𝑚3𝑚, stable between 437 and 492 K, with Z=1, a=4.39 

Å[67]; 

 Phase II, rhombohedral, 𝑅3𝑚, stable around 520 K, with Z=1, a=4.8 Å and ɣ= 70°20’ 

(angle between a and b) despite belonging to the 𝑅3𝑚 group [68, 69]; 

 Phase I, cubic (NaCl type), 𝐹𝑚3𝑚, stable between 557 and 583 K, with Z=4[70] and 

a=7.32 Å 
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Rao et al [20] reported on phase transitions and found that crystals heated from phase IV-RbNO3 to 

phase III-RbNO3 become isotropic. However, crystals shatter and revert to being anisotropic when 

heated from phase III-RbNO3 to phase II-RbNO3. Rb+ positional randomisation appears to change 

throughout the transition between the IV-RbNO3, III-RbNO3, and II-RbNO3 phases, which can be 

derived from XRD analyses. According to Ahtee and Hewat [71], however, these transformations 

can be attributed to the rotational disorder of the nitrate group; this does not work in the case of 

the II-RbNO3 → I-RbNO3, as the randomisation is not present, with the free rotation disorder being 

excluded as a cause for all the phases. According to Shamsuzzoha and Lucas [72]  the transition can 

be defined by a switch from pseudo-cubic to cubic of sublattices of the Rb. This suggests the 

existence of an order-disorder shift of the nitrate group, backed up by the simulation work 

performed by Liu et al [73], which also exclude any possibility of free rotation for the NO3
- group. 

In contrast, Yamamoto et al [16], suggested that because both structures have an eight-fold 

orientational disorder.  

 

2.5.2 Crystal growth 

Chernov and Sipyagin [53] studied the evolution of the {124} and {114} faces of RbNO3 and 

provide kinetic coefficients, exchange fluxes, and other information. The only other information 

available in literature [74] on the kinetics report a linear relationship between the growth rate (V) 

and the excess of mass in the temperature range of 301.2 - 297.6 K for the forms {110} and {100}: 

V = (8.76 ± 0.75)∙10-7Δm, where Δm is the excess of mass expressed in mol∙kg-1 H2O. At this time, 

it is important to emphasise that the growth mechanism cannot be studied using this methodology 

to calculating growth rate. 

 

2.5.3 Crystal morphology 

The only information available regarding rubidium nitrate’s morphology comes from the 

experiments of Franke et al[54] where a pseudo-hexagonal habit is described. This is in good 

agreement with the BFDH calculated growth morphology of Figure 2.8. 
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 Figure 2.8 BFDH growth morphology of RbNO3 calculated by Benages [1]. Reproduced with the publisher’s permission. 

 

 

2.6 Caesium nitrate 

Caesium nitrate is used in industry mainly in pyrotechnic compositions, as a colorant and an 

oxidiser, e.g., in decoys and illumination flares[70]. Prisms are used in infrared spectroscopy, in X-

ray phosphors, and in scintillation counters. 

 

2.6.1 Crystal structure, polymorphism and phase transition 

 

 Figure 2.9. CsNO3 unit cell. Left: phase II and right phase I. All viewed along the <100> direction.[1]. Reproduced with the 

publisher’s permission. 
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It shows two different phases: 

 Phase II, pyroelectric, trigonal 𝑃31𝑚, stable at 296 K, with Z=9, a=10.87 Å, and c=7.76  

Å, isostructural with IV-RbNO3
[75] 

 Phase I cubic has been described as 𝑃𝑚3𝑚, around 400 K, with Z=1, and a=8.96  Å, 

but also as, 𝑃𝑎3 with Z=8 and a=8.98 Å[76] 

 

At about 434 K, the II-CsNO3 phase converts into the I-CsNO3 phase. Charrier et al [77] measured 

the equilibrium temperature for the transition, which was found to be 427 ± 10 K together with the 

transition enthalpy. Near the phase transition, these authors[78] discovered an abnormality in the 

dielectric constant. Kawashima et al[79] and Kawashima[80], who discovered a discontinuity in the 

phase transition, made similar conductivity measurements from room temperature to the melt. 

Additionally, Tagaki et al[81] determined that II-CsNO3 is a true ferroelectric phase after studying 

the phase transition using Brillouin scattering. Research on the high pressure polymorphism of 

CsNO3 was conducted by Dean et al[82] and references therein. The three CsNO3 high pressure 

polymorphs discovered by Kalliomäki and Meisalo[83] are highlighted here. These are the III, IV, 

and V-CsNO3 phases; while having differing axial ratios, all three phases displayed the same 

Pmmn space group. 

 

2.6.2 Crystal growth 

Chernov and Sipyagin about the evolution of the {124} and {114} faces of CsNO3 
[53]. Treivus 

and Franke[74 found a linear relationship between the growth rate (V) and the excess mass (m) in 

the temperature range of 299.3-297 K for the forms {110} and {100}: V=(18 ± 2K) ∙10-7 Δm, where 

Δm is the excess mass expressed in mol∙kg-1 H2O.  

 

2.6.3 Crystal morphology 

Pohl [84] describes the crystal as hexagonal shaped c-axis needles. The BFDH morphology 

calculated by Benages et al[1] is the same as RbNO3, as the two compounds are isostructural.
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Chapter 3  

 

Methodology 

This chapter will cover the theoretical background of all the methods used in this work. Step 

number one was fitting a force-field able to describe equally well alkali metal nitrates both as ions 

in solution and as crystals. To do this a wide set of programs and levels of theory have been applied. 

Some of these have also been used further during this work. This chapter will start by giving a 

brief overview of essential concepts behind the general simulation methodology. 

Energy minimisation has been widely performed, therefore we need to say a few words about 

concepts such as lattice energy, various types of minimisation algorithms, and in particular the 

ones that have been used in this work, these are the conjugate gradient method and the quasi 

Newton-Raphson method. A brief outline of constant pressure minimisation and the purpose of its 

use will also be given. 

A major part of this chapter will be dedicated to the level of theory most extensively used in this 

work: molecular dynamics (MD). A section will cover concepts such as the calculation of the 

forces and time integration algorithms with details of the ones used in this work (Verlet Leap-Frog 

and Velocity Verlet). What parameters are important to set-up for the rest of the simulation, such 

as initial velocities, time-step, equilibration period, neighbour lists and Verlet lists will also be 

considered. 

The major ensembles will be described (NVE, NVT, NpT) and rules that need to be accounted for 

whilst performing MD will be discussed. 

Wherever possible, some parameters calculated to validate the force-field have also been tested 

against density functional theory (DFT) results. This chapter will also include a brief description 

of this level of theory, the program used and the parameters that have to be considered. 
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To conclude this chapter, a detailed outline of the free energy of hydration methods used in the 

force-field validation process will be presented, alongside with a literature review of the topic to 

explain the position of this work in comparison with previous work. 

 

3.1 Development of force-fields  

 

3.1.1 Potential Modelling 

 

This work has made use of so-called ‘interatomic potentials’. The advantage of this choice is that 

there is no need to solve the entire electronic structure of the system; instead, it is possible to make 

use of parametrised equations, which are much simpler to solve. While lacking the accuracy 

intrinsic to ab-initio methods, potential models, allow the simulation of longer timescales and 

significantly bigger systems. In molecular modelling, we call the form of the equations and their 

parameters used to determine the potential interaction between atoms, molecules or particles, the 

force-field. Usually, the force-field can either simulate all the atoms present in the system, or treat 

a group of them as a single entity (e.g. organic moieties, where non-polar H- atoms are grouped 

with their parent carbon). The first case is called ‘all atom’, the second case ‘united atom’ and they 

are mainly used in coarse-grained simulations. In this work ‘all atom’ force-fields were used 

exclusively.  

A relatively simple four-component description (see Figure 3.1) of intramolecular and 

intermolecular forces inside the system can be utilised to comprehend a range of commonly used 

molecular modelling force-fields. Chemical bonds are represented by functions, bonds and angles 

that move away from their equilibrium values are energetically penalised, and the force-field 

incorporates terms that simulate the interaction of the non-bonded constituents of the system. 

The appealing feature of this representation is that different expressions, such as bond lengths, 

angles, bond rotations, or movements of atoms in relation to one another, may be linked to changes 

in certain internal coordinates. This simplifies the parametrisation procedure and makes it easier 

to comprehend the effect of the force-field parameter on the simulation performance. One such 
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force-field that can be helpful for simulating single molecules or collections of atoms and/or 

molecules is the following: 

𝐸(𝑟𝑁) = ∑
𝑘𝑖

2
𝑏𝑜𝑛𝑑𝑠

(𝑙𝑖 − 𝑙𝑖,0)
2
+ ∑

𝑘𝑖

2
𝑎𝑛𝑔𝑙𝑒𝑠

(𝜃𝑖 − 𝜃𝑖,0)
2

+ ∑
𝐸𝑛

2
(1 + 𝑐𝑜𝑠(𝑛𝜔 − 𝛾))

𝑡𝑜𝑟𝑠𝑖𝑜𝑛𝑠

+ ∑ ∑ (4𝜀𝑖𝑗 [(
𝜎𝑖𝑗

𝑟𝑖𝑗
)

12

− (
𝜎𝑖𝑗

𝑟𝑖𝑗
)

6

] +
𝑞𝑖𝑞𝑗

4𝜋𝜀0𝑟𝑖𝑗
)

𝑁

𝑗=𝑖+1

𝑁

𝑖=1

 

(3.1) 

Where the first term accounts for the bond energy (Figure 3.1 (a)), the second for the angle bending 

(Figure 3.1 (b)), the third for the bond rotation (or torsion) (Figure 3.1 (c)) and the fourth for non-

bonded interaction (both electrostatic and Van der Waals) (Figure 3.1 (d), (e)).  

 

 

Figure 3.1 The four main components of a molecular mechanic force-field are represented schematically as bond stretching (a), 

angle bending (b), torsional terms (c), and non-bonded interactions (d) and (e) 
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The potential energy, or 𝐸(𝑟𝑁), is a function of the positions (r) of the N particles. Figure 3.1 shows 

the various contributions schematically. The interaction between pairs of bonded atoms is 

modelled in the first term of Equation 3.1 by a harmonic potential, which results in an increase in 

energy as the bond length li  deviates from the reference value li,0. The second term, which is also 

described using a harmonic potential, is a summation of all valence angles in the molecule (a 

valence angle is the angle formed between three atoms A-B-C in which A and C are both bonded 

to B). The third term in Equation 3.1, the torsional potential, simulates how the energy changes as 

a bond rotates. The non-bonded component is the fourth contribution. This is calculated for all 

atom pairs (i and j) that are in different compounds or that are in the same molecule but are 

separated by at least three bonds. In a straightforward force-field, the non-bonded component is 

often represented by a Lennard-Jones potential for van der Waals interactions and a Coulomb 

potential term for electrostatic interactions[114]. 

 

3.1.2 Short-Range Non-bonded Interactions 

An important parameter to discuss during the evaluation of energies and forces of a system is the 

short- range terms. The first one is considered the Pauli term, to account for electric clouds 

interacting at small atomic separations. Because two electrons cannot have the same quantum 

numbers, one has to be forced into a higher energetic state to solve this issue. This leads to an 

increased repulsion between species for short distances. The other contribution to be considered is 

the London dispersion. This term comes from the formation of a localised, instantaneous dipole, 

that leads to the formation of another dipole. It is usually attractive, but decays rapidly over 

distance. Usually the term for the cation-cation interaction is disregarded, whilst the anion-anion 

and anion-cation terms are considered[4]. This is because anion-cation interactions are typically 

more prevalent and have a more significant impact on chemical behaviour than cation-cation 

interactions. Anion-cation interactions have a substantial impact on the behaviour and properties 

of chemical compounds. When cations and anions come together, they form ionic bonds due to 

electrostatic attraction. These ionic bonds are strong and stable, leading to the formation of 
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crystalline structures in many cases. The strength of these bonds can affect various chemical 

properties such as melting and boiling points, solubility, and conductivity. 

Anion-cation interactions play a crucial role in determining the solubility of ionic compounds in 

solvents. For instance, in aqueous solutions, the interaction between water molecules (which are 

polar) and ions (cation-anion interactions) is vital for dissolving ionic compounds. This is why 

some salts dissolve readily in water while others do not. 

A full set of potentials have been parametrised for the description of these interactions. They all 

differ in the way the attraction and repulsion curves are shaped. Depending on the system of 

interest, it is possible to decide which one works best. They all depend, however, on the parameters 

used to fit the potential equation. Those data usually come from either experiments, ab-initio 

simulations or both. 

 

3.1.2.2 Lennard-Jones Potential 

There are multiple short-range terms that can be used. We have specifically made use of the whole 

Lennard-Jones term[5], especially whilst determining metal ion-metal ion interactions. 

𝑉𝐿𝐽 = 4𝜀 [(
𝜎

𝑟
)
12

− (
𝜎

𝑟
)
6

] 
(3.2) 

Where ε is the depth of the potential well, σ is the radius of the rigid sphere that approximates the 

atomic size and r is the distance between the particles. 
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 Figure 3.2(a) Lennard Jones potential and its parameters. ε represents the depth of the potential well, σ is the radius of the rigid 

sphere that approximates the atomic size and rm is the distance between the particles. 

For our implementation, we used the 12-6 representation of the potential: 

𝑉𝐿𝐽(𝑟) =
𝐴

𝑟12
−

𝐵

𝑟6
 

(3.3) 

Where 

𝐴 = 4𝜀 · 𝜎12 (3.4) 𝐵 = 4𝜀 · 𝜎6 (3.5) 

𝜎 = √
𝐴

𝐵

6

 

(3.6) 
𝜀 =

𝐵2

4𝐴
 

 

(3.4) 

3.1.2.1 Buckingham Potential 

This potential describes the repulsion term using an exponential type form, while the attraction is 

described in a similar fashion to the Lennard-Jones, r-6. 
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𝐸 = 𝐴 · 𝑒
−𝑟
𝜌 −

𝐶

𝑟6
 

(3.5) 

 

In this expression A is expressed in units of eV, ρ in Å, C in eV·Å6 

 

3.1.2.3 Many-bodies interactions 

Additional potential terms are added to account for bonding-based interactions. These interactions 

can be visualised in Figure 3.1.  For this force-field, a harmonic set of terms are used for direct 

bonds. 

𝐸 =
1

2
𝐾2 · (𝑟 − 𝑟0)

2 
(3.6) 

 

Where K2 is expressed in eVÅ-2, r and r0 in Å. 

To describe the interaction in the nitrate group a three-body potential has been used which 

describes the preferred angle between the bonds.  It is defined as  

 

𝐸(𝑡ℎ𝑟𝑒𝑒) =
1

2
𝑘(𝜃 − 𝜃0)

2 
(3.7) 

 

Where k is the spring constant related to the stiffness of the angle and is expressed in eVrad-2, θ is 

the current angle, θ0 is the equilibrium angle, and both are expressed in rad. 

Four this force-field in particular, to maintain the correct geometry of the nitrate group further 

torsional intermolecular interactions were added as well using a bond-bond cross term three body 

potential[7], defined as 

 

𝐸(𝑡ℎ𝑟𝑒𝑒) = 𝐾 · (𝑟12
0 − 𝑟1) · (𝑟13

0 − 𝑟2) (3.8) 

In the expression, the units of K are eVÅ-2, r1 and r2 in Å. 

The bond-angle cross term three body potential[7] has been inserted as well, in the form 
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𝐸(𝑡ℎ𝑟𝑒𝑒) = [𝐾1(𝑟12
0 − 𝑟1) + 𝐾2(𝑟13

0 − 𝑟2)] · (𝜃 − 𝜃0) (3.9) 

 

Here K1 and K2 are expressed in eV/(Å·rad), r1 and r2 in Å, θ0 is the equilibrium angle, and is 

expressed in rad. 

As the nitrate group is planar, it was decided to add an out of plane energy term, which considers 

the harmonic energy penalty for atom 1 (nitrogen) lying out of the plane of atoms 2, 3 and 4 

(oxygens)[7]. 

 

𝐸 = 𝑘 · 𝑑2 + 𝑘4 · 𝑑4 (3.10) 

 

Where d represents the distance to the plane. k is defined in eVÅ-2, k4 is defined in eVÅ-4. Coulomb 

subtraction was applied within all the nitrate molecules. 

 

3.1.2.3.1 Force-field for nitrates 

In this work, to fit the force-field for the nitrate group, as described in the previous section, the 

carbonate force-field from Raiteri et al[8] has been used as a starting point. It was created to study 

the properties of pre-nucleation clusters and provides a correct description of the solution 

chemistry. For those systems, particularly, in the case of ab-initio techniques, where the simulation 

size limit is a few nanometers, they may be simulated for only tens to hundreds of picoseconds, 

and direct simulation of ion aggregation, nucleation, and growth for those systems is well beyond 

what can be performed with the currently available computational tools. Force-field simulations 

are substantially less expensive from a computational point of view and are already being used to 

create microsecond-long atomistic trajectories for systems with sizes and concentrations 

comparable to experiment[9]. The total simulation length, however, depends on factors such as 

number of particles and system size, therefore the bigger the system (higher number of particles 

simulated), the higher the computational cost associated. In this work, given the size of the systems 

investigated, we have only been able to simulate nanoseconds. 
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Although lacking the accuracy of ab-initio methods, if a force-field is properly calibrated against 

experimental thermodynamic data, it can be a very powerful tool for studying the very early stages 

of aggregation and, with the aid of cutting-edge sampling techniques, of the nucleation process 

itself. To create accurate force-field simulations of any system, the choice of the functional form 

and its parametrisation is a crucial first step. There are numerous parameter sets for alkaline-earth 

cations in water that have already been published in the literature[10–16], and numerous force-fields 

for their carbonate salts in solid form[17–23]. There are, however, fewer models that can adequately 

capture the characteristics of the ions in both the solid state and aqueous solution[24−28].  

The key point from Raiteri et al is that because the entropic contribution cannot be ignored, it is 

essential to calibrate for the free energy rather than enthalpies for ions in aqueous solution. As a 

result, their force-field attempts to reproduce the solubility of alkaline-earth carbonates observed 

in experiments and it is based on the free energies of the pertinent systems. Using the software 

GULP[1] and a relaxed fit[29] to the structures and experimental bulk moduli, the interactions 

between the cations and carbonate were identified. 

Fit procedures using the simplex or BFGS minimization algorithms are embedded in GULP. In 

addition to these two minimization algorithms, GULP contains genetic algorithms for generating 

sets of initial parameters for subsequent refinement. Although tests showed that the BFGS 

algorithm in general provides calculated results in a good agreement with the observed data, using 

little computing time, some limitations were observed. As the BFGS algorithm uses gradients 

calculated numerically, the effect of noise in the gradients may make it difficult to fit the potential 

parameters. In this case, methods that require only function evaluations are a good choice. 

Although, GULP does allow some bounds on potentials by using the “absolute” keyword, which 

can restrict values that should be positive, it is not possible to specify the lower and upper bounds 

for each the adjustable parameter. As a consequence, it is possible to obtain good results from 

potential parameters that do not make physical sense and prevent the transferability of the potential 

parameters for other similar compounds. In cases where the fitting methods of GULP do not 

provide good results, it is common to adjust the parameters by means of a process of trial and error. 
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 In their work, the free energies of the crystalline carbonate phases at 298.15 K were also included 

in the observables after the thermodynamics of the ions in solution were properly fitted, ensuring 

that the solubility products of these minerals would be as close to the experimental values as is 

practical. 

 

3.1.3 Long-Range Cut-offs 

For every inter- and intra-molecular interaction, we consider the value of its potential to be zero at 

distances greater than a cut-off, as the values will effectively be almost zero. This is done to save 

computational expense. Figure 3.3 shows the cut-off set for Lennard-Jones type of potential. If the 

goal is to simulate dispersion or repulsion interactions, a new term must be taken in account, the 

so-called switching function, S(r). Setting an arbitrary cut-off can lead to discontinuities in the 

forces and therefore a function is applied to the potential to smooth its decay to zero. 

 

  v(r) for r < rswitch   

V( r) = v(r)∙S(r) for rcut-off ≤ r ≤ rswitch (3.11) 

 0 for r > rcut-off  

 

In this case, we must define a new distance, the so-called switch distance. It is usually set a couple 

of angstroms (Å) before the zero cut-off. We must ensure that 𝑆(𝑟), 
𝑑𝑆(𝑟)

𝑑𝑟
 and preferably 

𝑑2𝑆(𝑟)

𝑑𝑟2  are 

continuous at rswitch, rcut-off. The role of the switching function is to allow the potential to move 

more gently to zero, which avoids an unphysical description of the system without having to deal 

with a discontinuity in the forces. 
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 Figure 3.2(b) Lennard-Jones potential with cut-off highlighted 

 

3.1.3.1 Mei-Davenport-Fernando taper 

The MDF[32](Mei-Davenport-Fernando) taper was applied in all our cases with the form  

 

𝐸𝑠𝑚𝑜𝑜𝑡ℎ(𝑟) = 𝐸(𝑟) ⋅ 𝑓𝑐𝑢𝑡(𝑟) (3.12) 

 

With fcut =1 for r<rm and fcut =0 for r≥rcut
[33]. In between, the value is obtained by 

 

𝑓𝑐𝑢𝑡(𝑟) = ((1 − 𝑥)3) · (1 + 3𝑥 + 6𝑥2) (3.13) 

 

Where 

𝑥 =
(𝑟 − 𝑟𝑚)

(𝑟𝑐𝑢𝑡 − 𝑟𝑚)
 

(3.14) 
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In this case, rm represents the taper range.  In this case, r was set at 9.0 Å and rcut as 3.0 Å. 

 

3.1.3.2 Ewald Decomposition 

Ewald summation accounts for the long-range (φ1), short-range (φ2), and self-interaction (φ3)
 

terms[73, 74].  

𝜑 = 𝜑1 + 𝜑2 + 𝜑3 (3.15) 

According to this method, all the charges are wrapped in diffuse charge densities, whose role is 

neutralising them. This charge is commonly represented with a Gaussian charge density, ρi(r): 

𝜌𝑖(𝒓) =
𝑞𝑖𝛼

3

𝜋
3
2

𝑒(−𝛼2𝑟2) 
(3.16) 

 

where r is the point in space that is in relation to the charge distribution's centre and α determines 

the width of the Gaussian.  

The interaction between each charge and its respective opposite-sign Gaussian counterpart is left 

out. Equation 3.16.a contains the complementary error function. 

𝑒𝑟𝑓𝑐(𝑥) =
2

√𝜋
∫ 𝑒−𝑡2

𝑑𝑡
∞

𝑥

 
(3.16.a) 

The Fourier components in reciprocal space can then be added to find the value of φ1: 

 

𝜑1 =
1

2
∑ ∑∑

1

𝜋𝑉

𝑞𝑖𝑞𝑗

4𝜋𝜀0

𝑁

𝑗=1

𝑁

𝑖=1

∞

𝑘≠0

4𝜋2

𝑘2
𝑒𝑥𝑝(

−𝑘2

4𝛼2)𝑐𝑜𝑠⁡(𝑘 ∙ 𝑟𝑖𝑗) 
(3.17) 

 

where, according to Equations 3.23 and 3.24, k is the volume of the cell and the sums in equation 

(3.17) are over the reciprocal lattice vectors (k) and the ions in the simulation cell (i,j).  

𝒌 =
2𝜋𝑛

𝜆
 

(3.18) 

𝒌 = |𝑘| = √∑𝑘𝑖
2

𝑛

𝑖=1

 

(3.19) 
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For a neutral simulation cell, the term for k=0 in Equation 3.17 can be ignored.  

Charged cells, dipoles, and multipoles can all be incorporated into the Ewald approach[75]. 

The analytical expressions for the two terms, into which the interactions are divided, are 

respectively: 

𝑒𝑟𝑓(𝑥) =
2

√𝜋
∫ 𝑒−𝑡2

𝑑𝑡
𝑥

0

 
(3.20) 

 

𝑒𝑟𝑓𝑐(𝑥) = 1 −
2

√𝜋
∫ 𝑒−𝑡2

𝑑𝑡
𝑥

0

 
(3.21) 

Those two functions are defined in a way that 

𝑒𝑟𝑓(𝑥) + 𝑒𝑟𝑓𝑐(𝑥) = 1 (3.22) 

                                                                                                        

This allows decomposing the Coulombic interaction potential into: 

1

𝑟
=

1

𝑟
[𝑒𝑟𝑓(𝛼𝑟) + 𝑒𝑟𝑓𝑐(𝛼𝑟)] =

𝑒𝑟𝑓(𝛼𝑟)

𝑟
+

𝑒𝑟𝑓𝑐(𝛼𝑟)

𝑟
 

(3.23) 

 

The variable α has been introduced to make sure that the interaction, will, in fact, go down to zero 

at the right r value. The Ewald method is the most commonly used; it divides electrostatic 

interactions in two groups:  

1. Short-range components: in real space it rapidly decays to zero, therefore it can be treated 

as a Lennard-Jones potential. 

2. Long-range components: because of their nature, these components have to be calculated 

in reciprocal space. To do so a so-called Gauss error function (erf) and complementary 

error function (erfc) are employed[30].  
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3.1.3.3 Particle Mesh Ewald 

A method that further approximates the Ewald one is the Particle Mesh Ewald[31]. It works by 

smoothing the charges through a defined finite-sized group of lattice points; on a so-called ‘mesh’, 

that covers the entire simulation cell. This significantly reduces the dimensionality of the charge 

distribution across the entire simulation cell and its infinite periodic images, thus reducing the 

computational cost. This is not, however, connected with a diminished accuracy. By using fast-

Fourier-transform on the charges, it is possible to calculate the long-range terms of the potential. 

For all the benefits described above, this tends to be, the preferred method. 

 

3.2 Ab-initio methods 

By considering the electronic structure of the system it is possible to obtain reliable results. This 

is, unfortunately, also connected with an increased computational cost. When talking about rare-

events such as crystallisation ab-initio methods will struggle to access the necessary time. There 

are other cases, however, such as the calculation of solid-state properties (for example, the elastic 

stiffness constant), which can be calculated from a small cell, therefore making a system that can 

be modelled with an ab-initio approach. Through this work, we made use of these methods to make 

a comparison between the values obtained with ab-initio methods, widely considered, more 

accurate, and the results obtained with a classical approach. Simulations were all performed with 

the CASTEP[65] code (Cambridge Serial Total Energy Package).  

 

3.2.1 Density functional theory 

One of the most popular quantum mechanical modelling techniques in the fields of physics, 

chemistry, and materials science is density functional theory (DFT). This method may be used to 

study many-body systems, such as atoms, molecules, and condensed phases.  

The Born-Oppenheimer approximation states that all the details needed to characterise a molecular 

system are included in the electron density (i.e. considering the electronic and nuclear movements 
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independently). The wave function, which depends on 3N position variables and N spin variables, 

is replaced by the electronic density (which depends on just three variables) to describe an N-

electron system, which is the foundation of DFT. The density ρ(r1) may be calculated by 

integrating the wave function ψ using the spatial and spin variables of electrons x and merely the 

spin variable of electron 1 σ: 

 

𝜌(𝑟1⃗⃗⃗  ) = 𝑁 ∫…∫|𝜓(𝑥1⃗⃗⃗⃗ 𝑥2⃗⃗⃗⃗ … 𝑥𝑛⃗⃗⃗⃗ )|
2𝑑𝜎1𝑑𝑥 2 …𝑑𝑥 𝑁 (3.24) 

The Hohenberg-Kohn theorems[76], on which DFT[66] is founded, demonstrate that the properties 

of a many-electron system may be predicted using functionals of the electron density. A functional 

is defined as a function of other functions. In this theory all the system properties (e.g. total energy) 

are defined as a function of the electron density. In this context, the total energy of a system is 

defined as:  

 

𝐸𝑡𝑜𝑡[𝑛] = 𝐸𝑘𝑖𝑛[𝑛] + 𝐸𝑒𝑥𝑡[𝑛] + 𝐸𝐻[𝑛] + 𝐸𝑋𝐶[𝑛]                                                                              (3.25) 

 

where Ekin[n] is the quantum-mechanics (QM) kinetic energy of electrons, Eext[n] is the energy due 

to the external potential, EH[n] is the Hartree repulsion, and Exc[n] is the exchange correlation 

functional.  

 

3.2.2.1 Exchange Correlation Functionals  

 “Exchange” is a quantum mechanical effect regarding identical particles, and originates from the 

fact that two particles, when subject to exchange symmetry, can see their wave function remaining 

the same (symmetry) or change sign (antisymmetric). 

“Correlation” is the interaction between electrons that is not accounted for by a mean field 

approximation (as in Hartree-Fock theory). The effect of the instantaneous positions matters 

because the mean field underestimates the ability of electrons to avoid each other. In DFT, the 

principle is to approximate these components in the best way possible, as the exact analytical form 

is not known. A useful tool to visualise the concept of efficiency for DFT exchange-correlation 
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(XC) functionals is the Jacob’s ladder shown in Figure 3.3[77]. The local density approximation 

(LDA), states that the XC energy function only depends on the density at that point and is that of 

the uniform electron gas of that density, and is the simplest way to model the exchange-correlation 

term. This functional frequently makes errors, including overestimating lattice parameters, 

underestimating binding energies, and overlooking magnetic material energies[67]. 

 

 

Figure 3.3 Jacob’s ladder of DFT functionals. The functionals are ordered from the bottom to the top based on their accuracy 

and computational cost [78]. 

 

The class of generalised gradient approximations (GGA[68]), employs both the density and its 

gradient at each point. They are often more accurate than LDA since they have more information. 

PBE[69] is not one of the most computationally expensive methods and can be highly accurate, it 

offers good potential for utilisation. However, it is well known to underestimate the band gap in a 

periodic system or the HOMO-LUMO gap. 

Hybrid functionals combines a precise exchange potential (Hartree-Fock) with an experimentally 

or ab-initio-calculated correlation potential. 
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3.2.2.2 Basis set 

When performing a DFT computation, the basis set is a parameter that must be selected. The partial 

differential equations of the model are transformed into algebraic equations by the basis set, a set 

of functions that represents the electronic wave function and is employed for quick computer 

processing. A single particle's states are then represented as linear combinations of the basic 

functions (molecular orbitals). STO-nG is the most prevalent minimum basis set which makes use 

of a linear combination of gaussian type orbitals. The quantity n represents how many basic 

Gaussian functions there are in a single basis function. In addition to localised basis sets, plane-

wave basis sets can also be used in quantum-chemical simulations. These basis sets are the ones 

that are most commonly used for periodic calculations[79]. According to the Bloch equation, a 

periodic system's periodic cell and plane wave components can be combined to form the 

wavefunction, u, of an electron in band n. The periodic portion is defined using a plane wave basis 

set, and u may then be represented as 

 

𝑢𝑛(𝑟 ) = ∑𝐺 𝑐𝑛,𝐺 𝑒
𝑖𝐺 𝑟  (3.26) 

 

where the reciprocal lattice vectors 𝐺  are picked to respect the lattice's periodicity and 𝑐𝑛,𝐺  is a 

coefficient. Combining Bloch’s equation with (3.26), we can now define 

 

𝜓𝑛(𝑟 ) = ∑𝐺 𝑐𝑛,(𝑘⃗ +𝐺 )𝑒
𝑖(𝑘⃗ +𝐺 )𝑟  (3.27) 

 

The k-points and cut-off energy are two significant factors that affect how precisely the method 

works. A new wavefunction is generated for each value of k. However, it is feasible to identify a 

small set of k-points (depending on the system's symmetry) that accurately captures the structure. 

In principle, an endless number of k-points could be chosen, and the computation could be carried 

out anywhere in space. For geometry optimisation, k-point sample densities with low computing 
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cost are around 0.05 2π 1/Å. The computation's upper estimate, or cut-off energy, is typically 

between 350 and 650 eV, with the higher value being more accurate. 

To test the reliability of the force-field fitted with the previously defined terms, the same static 

lattice has been investigated using CASTEP[2]. In CASTEP every single calculation is parallelised 

over a defined number of cores; it is possible to know the number of computationally required 

resources by performing a so-called “dry run”[34]. A “dry run” gives as a result not only the amount 

of memory needed by the calculation, but also the number of k-points examined. Knowing the 

number of k-points is valuable information, as every single one can be used to parallelise the 

calculation, which means that every CPU works on a single k-point (i.e. no data exchange). In this 

case a geometry optimisation was performed, in order to determine lattice constants, energy of the 

polymorph and elastic constants. 

All the calculations were performed using DFT-D method[70], which adds the corrections of 

dispersion to a classic density functional theory calculation. This method improves the previous 

one, giving a result with less than 1% error in the calculation of energy, compared with the same 

experimental values. 

 

𝐸𝑖𝑛𝑡𝑒𝑟 = 𝐸𝑃𝑎𝑢𝑙𝑖 − 𝐸𝑟𝑒𝑝 + 𝐸𝐸𝑆 + 𝐸𝑝𝑜𝑙 + 𝐸(𝑑𝑖𝑠𝑝,𝑠ℎ𝑜𝑟𝑡) + 𝐸(𝑑𝑖𝑠𝑝,𝐿𝑜𝑛𝑑𝑜𝑛)                                                      (3.28) 

 

This is performed by adding a long-range correlation effect (London term)[71]. 

In equation 3.23 EPauli is the Pauli repulsion, Erep the electrostatic repulsion, EES is electrostatic 

energy and Epol the energy associated with the polarisation effect. The PBE[68] exchange correlation 

functional was used, whilst the pseudopotentials were generated “on the fly” by the CASTEP 

program.  

Since the basis set for plane waves does not consist entirely of electrons, it is necessary to employ 

a pseudopotential, which is specified by the functional used. The pseudopotential attempts to 

replace the effects of the motion of the core electrons of an atom and its nucleus with a so-called 

pseudopotential, in order for the Schrödinger equation to contain a modified effective potential 

term rather than the Coulombic potential term for core electrons typically found in the Schrödinger 
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equation. For core electrons, pseudopotentials are produced to replace the Coulombic potential 

term. 

 

3.3 Energy Minimisation 

The goal of energy minimisation is to find the global minimum energy of a system. Whilst 

performing an energy minimisation one must take into account that a system far from equilibrium 

or a non-rational starting configuration is unlikely to lead to a proper optimisation. An additional 

source of error is connected with the presence of local minima, because the algorithm is likely to 

pick the closest minimum, which might not be the global minimum for the system. Whilst, usually, 

a structure is minimised at zero kelvin, this can lead to the errors by not accounting for any 

vibrational modes.  

Energy minimisations in this work have been performed using different levels of theory and a 

range of programs. Ab-initio minimisation has been performed using CASTEP[34], classical 

minimisations have been performed using GULP[1], DL_POLY[36-38] (both classic and 4) and 

LAMMPS[39]. While METADISE[35] has been used for surface cleavage minimisation. 

 

3.3.1 Lattice Energy 

The general protocol for energy minimisation involves moving the atoms with the final aim of 

minimising the forces they are subject to. 

𝐹 =
−𝛿𝑈(𝒓)

𝛿(𝒓)
= 0 

(3.29) 

Where U is the total energy and r are the coordinates at equilibrium.  

The process consists of reducing the energy of the system iteratively where its form is a Taylor 

expansion as a function of the atomic coordinates r. 
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𝑈(𝒓 + 𝛿𝑟) = 𝑈(𝑟) +
𝛿𝑈(𝑟)

𝛿𝑟
𝛿𝑟 +

1

2!

𝛿2𝑈(𝑟)

𝛿𝑟2
𝛿𝑟2 + 𝑂(𝛿𝑟3) 

(3.30) 

 

In (3.30) U(r) represents the minimum of the lattice energy. Usually, the first two terms are 

essential whilst the following ones are incorporated into the term O(δr3) and disregarded. 

 

3.3.2 Minimisation Algorithm 

The following section will give an overview of the most used minimisation algorithms, including 

this work. 

 

3.3.2.1 Steepest Descent 

The steepest descent[40] method uses the gradient of the energy function, which is connected to the 

forces in the form:  

 

𝑔𝑛 =
𝛿𝑈

𝛿𝑟𝑛
 

(3.31) 

𝐹𝑛 = −𝑔𝑛 (3.32) 

                                       

In (3.34) F is the force and  𝐹𝑛̂ its unit vector (in 3.33).  

⌊𝐹𝑛⌋ = √∑𝐹𝑖
2

𝑛

𝑖=1

2

 

(3.33) 
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𝐹𝑛̂ =
𝐹𝑛
|𝐹𝑛|

 
(3.34) 

The positions of the atoms are updated by: 

𝑟𝑛+1 = 𝑟𝑛 + 𝛼𝑛𝐹𝑛̂    (3.35) 

 

The advantage of this method is the computational simplicity, as the calculations require little 

memory. The disadvantage is that it might require additional steps in order to find the minimum. 

It is efficient in the case where only a few strong interatomic forces are present, as these are 

responsible for the direction of the gradient. 

 

3.3.2.2 Conjugate Gradient 

Following the first step, which is a steepest descent step[41], the step size and direction are both 

then modified. The direction is expressed as a vector in the form:                                                                                                                 

𝐹𝑛 = −𝑔𝑛 + 𝛾𝑛𝐹𝑛−1 (3.36) 

𝛾𝑛 =
𝑔𝑛 ∙ 𝑔𝑛

𝑔𝑛−1 ∙ 𝑔𝑛−1
                                                                   (3.37) 

 

The term γn is a scalar coefficient and gives information on how the gradient should be corrected 

systematically. From the values derived by (3.36) combined with (3.37) it is possible to obtain 

information regarding the new position. 

 

3.3.2.3 Newton-Raphson 

When information about the second derivative of the energy (W) is included, the method will 

account for the change of the gradient of the energy, not just the gradient itself. The Newton-
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Raphson[42] method is one of these, so-called, second order methods. Starting from the Taylor 

expansion 

𝑊(𝑟) = 𝑊(𝑟𝑛) + (𝑟 − 𝑟𝑛)𝑊′(𝑟𝑛) +
(𝑟 − 𝑟𝑛)2𝑊′′(𝑟𝑛)

2
+ ⋯ 

(3.38) 

The first derivative of W(r) is  

 

𝑊′(𝑟) = 𝑟𝑊′(𝑟𝑛) (3.39) 

For a purely quadratic function the second derivative does not depend on the position, namely 

𝑊′′(𝑟) = 𝑊′′(𝑟𝑛) 

At the minimum (r*) the first derivative is null, therefore 

 

𝑟∗ = 𝑟𝑛 − 𝑊′ (𝑟𝑛) 𝑊′′⁄ (𝑟𝑛) (3.40) 

To solve this algorithm it is required to calculate the Hessian (second derivative matrix) and invert 

it: 

𝑊𝑛 = (
𝛿2𝑈

𝛿𝑟𝑛
2 ) 

(3.41) 

 

Then the positions are updated with 

𝑟𝑛+1 = 𝑟𝑛 − 𝑔𝑛𝑊𝑛 (3.42) 

Because of its nature and the involvement of quadratic equations, this method can be used to locate 

the minimum in a single step, assuming that U is quadratic. It is usually referred to as the harmonic 

approximation. Because of the need to calculate and invert the Hessian matrix the method is 

usually very expensive from a computational point of view and requires a reliable minimisation 

algorithm to approach the minimum. This first approach can then be followed by the application 

of the Newton-Raphson method to better locate the true minimum.  
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3.3.2.4 BFGS Method 

The Broyden-Fletcher-Goldfarb-Shanno (BFGS) algorithm is an iterative approach for addressing 

unconstrained nonlinear optimisation problems in numerical optimisation. It is a quasi-Newton 

Raphson method. This is much less expensive since, instead of calculating the inverse Hessian at 

each step, it approximates the inverse Hessian using gradient information for most optimisation 

steps. It only performs a full calculation of the inverse Hessian occasionally, Full details can be 

found in reference [80]. 

 

3.3.3 Constant Pressure Minimisation 

Alongside the atomic positions, it is also possible to optimise the simulation cell itself. This 

methodology is usually referred to as ‘constant pressure’ because of the equivalence of said 

pressure with the forces. In this method, it is necessary to consider the cell parameters as new 

additional variables. The variation of the lattice parameter as a consequence of the application of 

a defined pressure can be see as a strain of said lattice vector, which follows from Hooke’s law in 

the form[40]: 

𝜀 = 𝐶−1 ∙ 𝜎 (3.43) 

In (3.43) C is the elastic stiffness matrix.  

 

3.4 Molecular dynamics 

Molecular dynamics[43] is a simulation technique which aims to reproduce the dynamic behaviour 

of atoms in a system. By using the energy function, as described Section 3.1.2.3.1, it is possible to 

calculate the force on any atom. 

𝐹𝑎 =
−𝜕𝑈

𝜕𝑟𝑎
 

(3.44) 
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The forces can be used to calculate each atom’s motion by Newton’s second law. Each Molecular 

dynamics simulation is divided in time into discrete time steps, no more than a few femtoseconds 

(10–15 s) each.  

 

3.4.1. Periodic boundary conditions 

Real crystals have different properties and behaviour at the interfaces. Usually the size of a crystal 

is such that one can consider modelling the behaviour of the bulk while ignoring the surfaces’ 

effect. In order to avoid having to take in account these effects for each simulation, unless explicitly 

required, it is possible to use a number of approximations. Here, the ones that have been actively 

used during this work are listed and described. Periodic Boundary Conditions (or PBCs)[44] make 

use of a ‘simulation cell’, which does not necessarily correspond to the crystal primitive cell, to 

simulate, in a convenient way, the periodicity inside an infinite lattice. This cell is then reproduced 

around the original one, in a way such that every object leaving the simulation cell is then 

reintroduced at the opposite side of the cell, see Figure 3.4. This type of periodicity does not 

account for the presence of defects and it can be considered, therefore, artificial. In order to 

overcome possible problems deriving from this induced artificial periodicity it is important to 

choose a cell with a size that accounts for this effect, without disrupting the computational 

efficiency. 

When calculating size-dependent properties, such as diffusion or dynamical properties, thermal 

expansion, heat capacity and thermal conductivity it is necessary to use a unit cell that is several 

times bigger than the primitive cell of the crystal.  
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Figure 3.4. Schematic representation of PBCs 

 

3.4.1.1 Minimum Image convention 

 

Figure 3.5 The minimum image convention within PBCs. 
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The minimum image convention[45] states that the cut-off distance for two different particles should 

be at least half the length of the shortest cell vector. The goal of this condition is to prevent a 

particle from colliding with another particle twice, resulting in artificial effects.  

 

3.4.2 Calculation of Forces 

Calculation of the forces using molecular dynamics is performed with the following route: the first 

step is to estimate the interatomic distances, using the atomic Cartesian coordinates with               

𝑟𝑖𝑗 = 𝑟𝑖 − 𝑟𝑗                                                                                                                                    (3.45) 

 

In (3.45) ri and rj are the coordinate for atoms i and j  

𝑟𝑖𝑗 = |𝑟𝑖𝑗| = √𝑥𝑖𝑗
2 + 𝑦𝑖𝑗

2 + 𝑧𝑖𝑗
2                                                                                                             (3.46) 

In (3.46), rij is the distance between atoms i and j, its modulus refers to the value being made 

positive (i.e. the positive root). Because the equation calculates the interatomic distances, it comes 

that when calculating forces they will also be interatomic ones. This is done by using 

𝐹𝑖𝑗 =
−𝑑𝑈

𝑑𝑟𝑖𝑗
 

(3.47) 

 

After that, by utilising the distance unit vector to divide the force into components from each 

dimension: 

𝑭𝑖𝑗 = 𝐹𝑖𝑗

𝒓𝑖𝑗

|𝒓𝑖𝑗|
= −

𝑑𝑈

𝑑𝒓𝑖𝑗
 

(3.48) 

 

 

By adding up all the forces operated by all the atoms on a single atom, it is possible to obtain the 

total as: 
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𝐹𝑖 = ∑𝐹𝑖𝑗

𝑁

𝑖=1

 

𝑤𝑖𝑡ℎ⁡𝑖 ≠ 𝑗 

(3.49) 

 

The derivation of acceleration from force is done by applying Newton's second law. In (3.50) t 

represents the time, a the acceleration, and m the mass. 

𝐹 =
𝑑2𝑟

𝑑𝑡2
= 𝑚 ∙ 𝒂 

 

(3.50) 

 

3.4.3 Time Integration Algorithms 

Once the force acting on an atom has been calculated, it is possible to build equations that update 

the position and velocities of atoms based on accelerations and prior positions and velocities using 

a Taylor expansion:    

𝒓(𝑡 + ∆𝑡) = 𝒓(𝑡) + 𝒗(𝑡)∆𝑡 +
𝒂(𝑡)∆𝑡2

2
 

(3.51) 

𝒗(𝑡 + ∆𝑡) = 𝒗(𝑡) + 𝒂(𝑡)∆𝑡 (3.52) 

                                                                                                                 

In (3.51) r represents the position, v represents the velocity and a the acceleration of the atoms. 

In molecular dynamics, because the timestep is finite, discreet equations (3.51) and (3.52) cannot 

be used as these equations do not include the higher terms of the Taylor expansions and therefore 

their accuracy is poor [46]. 
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3.4.3.1 Verlet Leap-Frog 

Verlet Leap-frog algorithm[47] estimates the velocities at the half-time step. These velocities are 

then used to re-estimate the current one. The half-time step velocities in this method are determined 

by: 

𝑣 (𝑡 +
∆𝑡

2
) = 𝑣 (𝑡 −

∆𝑡

2
) + 𝑎(𝑡)∆𝑡 

(3.53) 

For each timestep, then, the velocities are extrapolated by using the time-average of neighbouring 

velocities 

𝑣(𝑡) =
𝑣 (𝑡 +

∆𝑡
2 ) + 𝑣 (𝑡 −

∆𝑡
2 )

2
 

(3.54) 

From (3.53) and (3.54) it is possible to derive the position as 

𝑟(𝑡 + ∆𝑡) = 𝑟(𝑡) + 𝑣 (𝑡 +
∆𝑡

2
)∆𝑡 

(3.55) 

  

Leapfrog integration has two key benefits when utilised to resolve mechanics problems. The time-

reversibility of the Leapfrog approach is the first. One can integrate forward n steps to reach the 

same starting point, and then integrate backward n steps by switching the direction of integration. 

The second benefit is its symplectic nature, which occasionally enables the energy (slightly 

modified) of a dynamical system to be conserved (only true for certain simple systems). 
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3.4.3.2 Velocity Verlet 

The Velocity Verlet[48] method can be summarised as the following: 

𝑟(𝑡 + ∆𝑡) = 𝑟(𝑡) + 𝑣(𝑡)∆𝑡 + 𝑎(𝑡)
∆𝑡2

2
 

(3.56) 

By using (3.56) it is possible to use the current positions, velocities and accelerations of a particle 

to calculate its new position. 

𝑣 (𝑡 +
∆𝑡

2
) = 𝑣(𝑡) +

𝑎(𝑡)∆𝑡

2
 

(3.57) 

By knowing the new position is then, straightforward, to derive new forces and accelerations. 

𝑣(𝑡 + ∆𝑡) = 𝑣 (𝑡 +
∆𝑡

2
) = 𝑣(𝑡) +

𝑎(𝑡 + ∆𝑡)∆𝑡

2
 

(3.58) 

By using (3.58) it is possible to update accelerations and velocities. 

 

3.4.4 Initialisation 

Velocity Verlet algorithm requires the knowledge of the initial coordinates and velocities for each 

particle.  

∑𝑚𝑖𝑣𝑖
2 = 3𝑁𝑘𝑏𝑇

𝑁

𝑖=1

 
(3.59) 

By using (3.59) it is possible to correlate the average atom velocities to the temperature. In this 

equation, mi is the mass and vi is the velocity of any given particle; N is the total number of particles 

and kb is the Boltzmann constant. 

𝑝 = ∑𝑚𝑖𝑣𝑖

𝑁

𝑖=1

= 0 
(3.60) 
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As stated in (3.60), an essential requirement is, also, that the linear momentum, and the angular 

momentum, of the system is zero.  

 

3.4.5 Equilibration Period 

Before analysing a trajectory, one must make sure to run the simulation for an extended period to 

avoid including any initialisation effects.  

A large force will be created quickly if the atoms start too near to one another. The substantial 

acceleration and force will cause the molecule to split. As a result, it can be concluded that the 

system under investigation is not the desired original molecule. If a maximum force restriction is 

used, the initial molecule might outlast equilibration. After the equilibration has taken place, the 

system can be examined. 

 

3.4.6 Ensembles 

By ensemble, we mean a set of parameters with the purpose of controlling the particular system 

conditions. For each ensemble, we must specify a different Hamiltonian, whose role is to account 

for the invariant quantities of the system itself. All the ensembles that this work has made use of 

are described in the following paragraphs. 

 

3.4.8.1 Canonical ensemble (NVT) 

The so-called “canonical ensemble” simulates a system by retaining the amount of substance (N), 

volume (V) and temperature (T). In NVT, the simulation box is connected to a reservoir much 

larger than itself, which maintains the system at a constant temperature. The energy exchange in a 

MD simulation box can be simulated by a range of algorithms, approximating the canonical 

ensemble. Popular methods to control temperature include velocity rescaling, the Nosé–Hoover 

thermostat[55,56], Nosé–Hoover chains, the Berendsen thermostat[57], the Andersen thermostat[58,59] 
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and Langevin dynamics[60]. It is not trivial to obtain a canonical ensemble distribution of 

conformations and velocities using these algorithms. The dependence of the algorithm from the 

system size, thermostat choice, thermostat parameters, time step and integrator is currently still 

studied. 

 

3.4.8.2 Isothermal–isobaric (NPT) ensemble 

In the isothermal–isobaric ensemble, the amount of substance (N), pressure (P) and temperature 

(T) are conserved. To do so a thermostat and a barostat are needed[61]. The temperature is kept 

constant in a similar way as done for the NVT ensemble. To keep the pressure constant the cell is 

allowed to adjust itself and expand/contract. This can occur in multiple ways, and there are various 

options to do so: the cell can be let free to change isotropically, anisotropically, retain or vary the 

angles in between the cell vectors. 

 

3.5 Free energies of hydration of isolated ions 

It is not possible to experimentally measure the thermodynamic properties of isolated ions 

Experiment (values of the free energy of solution) can give only the value of a neutral combination 

of ions. To get the value of the free energy of hydration of the isolated ion one value must be fixed. 

This represents a significant limit, because every value obtained with the simulation will not have 

an experimental reference counterpart to support it.  

Historically, the solution to this problem has been to pick a reference system, the proton, and set 

its free energy to a standard value of zero, such that all the others could have been scaled starting 

from this value (conventional values). This results in a non-transferable approach, therefore there 

is a need to find something more physically based. To do so the Born model of hydration has been 

used, leading to an estimation of the free energy of the proton of ΔG0([H+](aq) abs) = -1056 ± 6 
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kJ mol-1 (Marcus[81]). However, even this approach is not free from errors, and the following 

section will attempt to give an overview of those problems. 

 

3.5.1 The experimental problem 

The approach used by Marcus[82], quoted in the previous section can be summed up as: the free 

energy of hydration needed to transfer a solute particle from the gas phase (in its fixed position) to 

the solvent (in another fixed position). By fixing the ions in a defined position, it is then possible 

to ignore the translational degrees of freedom of solute particles. In this scenario, the solute is 

assumed to be at infinite dilution, with no solute-solute interactions considered.  

It is necessary to know the difference between the free energies (or enthalpies) required to hydrate 

the solute in solution and the solute in the gas phase in order to calculate a free energy or enthalpy 

ΔH0(hydration, Mz, conv) = ΔHf
0(Mz, aq) - ΔHf

0(Mz, g) + 1536.2z kJ mol-1 (3.61) 

ΔG0(hydration, Mz, conv) = ΔGf
0(Mz, aq) - ΔGf

0(Mz, g) + 1516.9z kJ mol-1 (3.62) 

ΔS0(hydration) = S∞(aq) - S0(g) J  mol-1K-1 (3.63) 

  

In (3.61), (3.62) and (3.63) the superscript 0 refers to 298.15 K and atmospheric pressure. 

In (3.61), 1536.2 kJ mol-1
 is the enthalpy of formation of a gaseous proton[83] while in (3.70), 

1516.9 kJ mol-1 is the free energy of formation of the gaseous proton at 298.15K[84]. The entropy 

is S∞(aq), the partial molar entropy at infinite dilution.  

In this approach, however, an important detail is missing: the ions’ movement between the two 

phases is not taken in account. Hofer and Hünenberger[85] refer to them as intrinsic quantities rather 

than bulk or real quantities as a result, since they do not depend on the details of the 

gas/liquid  interface and the experimental values of the solution energies of systems can be 

obtained by adding up the values  of the individual absolute free energies of hydration. According 

to Marcus, values for the absolute thermodynamic quantities of the proton are  
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ΔG0([H+](aq) abs) =   -1056 ± 6 kJ mol-1 (3.64) 

ΔH0([H+](aq) abs) =   -1094 ± 6 kJ mol-1 (3.65) 

S∞([H+](aq) abs) =   -22.2 ± 1.2 J mol-1K-1 (3.66) 

S0([H+](g)) =   108.85 J mol-1K-1 (3.67) 

ΔS0([H+](aq) abs) = S∞([H+](aq) abs) - S0([H+](g)) =  -131.05± 1.2 J mol-1K-1 (3.68) 

  

These numbers are thermodynamically self-consistent, at least to the level of the quoted errors. It 

is now possible to convert from the conventional scale (conv) to the absolute scale (abs) using the 

following equations where z is the charge on the ion. 

ΔG0(hyd, Xz, abs) = ΔG0(hyd, Xz, conv) + zΔG0([H+](aq) abs) kJ mol-1 (3.69) 

ΔH0(hyd, Xz, abs) = ΔH0(hyd, Xz, conv) + zΔH0([H+](aq) abs) kJ mol-1 (3.70) 

ΔS0(hyd, Xz, abs) = ΔS0(hyd, Xz, conv)  + zΔS0([H+](aq) abs) kJ mol-1 (3.71) 

 

The tabular data in refs [81, 82] includes terms accounting for the change in volume that is available 

to the solute when it goes from the gas to the aqueous phase, therefore corrections are required 

(details in Marcus[81, 82]). In every instance, the corrections are the same and are 

ΔG*(hydration) = ΔG0(hydration) + 7.93 kJ mol-1   

ΔH*(hydration) = ΔH0(hydration) + 2.29 kJ mol-1 (3.72) 

ΔS*(hydration) = ΔS0(hydration) - 18.9 J mol-1K-1  

 

Marcus' model is the foundation for the data obtained in Tables 2 and 3 of ref [81], which are the 

most often utilised free energies of hydration 

The values for the absolute thermodynamic quantities for proton hydration have been the subject 

of considerable research since Marcus created his table. Malloum et al review's from six years ago 

is the most recent[86]. This leads to the conclusion that the free energy of proton hydration is 

roughly equal to the estimate made by Hofer and Hünenberger[85] and much more negative than 
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Marcus' value. There are fewer figures for the enthalpy of hydration; the one from Tissandier et 

al[84] based on cluster solvation data is probably the most trustworthy. For 298.15K, the entropy 

value is calculated by requiring thermodynamic consistency. The result is as follows. 

ΔG0([H+](aq) abs) =   -1100 ± 14 kJ mol-1 

ΔH0([H+](aq) abs) =   -1150 ± 1 kJ mol-1 

ΔS0([H+](aq) abs) =    -167 ± 14 J mol-1K-1 

These data suggest considerable changes to each of the Marcus values. The hydration free energy 

of the cations, Mz+, shifts from being more negative by -44 kJ mol-1, and the anions, Xz-, shift from 

more positive by +44 kJ mol-1, assuming that this is the only major correction needed. For the ions 

being discussed in the project, this results in the following absolute free hydration energies. 

Table 3.1 Absolute free hydration energies for the ions used in this work 

Li+ -519 kJ mol-1 

Na+ -409 kJ mol-1 

K+ -339 kJ mol-1 

Rb+ -319 kJ mol-1 

Cs+ -294 kJ mol-1 

Mg2+ -1918 kJ mol-1 

Ca2+ -1593 kJ mol-1 

Sr2+ -1468 kJ mol-1 

Ba2+ -1338 kJ mol-1 

F- -421 kJ mol-1 

Cl- -296 kJ mol-1 

Br- -271 kJ mol-1 

I- -231 kJ mol-1 

NO3
- -256 kJ mol-1 

CO3
2- -1227 kJ mol-1 

SO4
2- -992 kJ mol-1 

H2PO4
- -421 kJ mol-1 

PO4
3- -2633 kJ mol-1 

 

There is a good agreement with the values from Hofer et al[85, 87], that have been obtained using 

ab-initio methods and correction for the electrostatics.  
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3.5.2 The simulation problem 

All parties agree that Born's solvation model is insufficient and that classical molecular, or 

wherever possible, quantum simulations are necessary in its place. Experts in the field also concur 

that these simulations need to be changed. However, the necessary changes and their justifications 

are disputed. Building on prior research by Hummer et al[93], Hünenberger and McCammon[92] 

underlined the importance of restricted size effects and provide guidance on how to account for 

them. The majority of the field’s experts concur on this despite using several nomenclatures to 

describe them and, worse, embedding them into codes in various ways. Whether it is crucial to 

consider how the electrostatic sums are computed and how that may affect how the electric 

potential zero is defined is a matter of dispute. Hünenberger and colleagues often incorporate their 

methodology into other efforts, as summarised in two papers[94,95]. Hummer and others list their 

positions in their original articles (for instance, ref [93]) and further recent work[96]. In this work, 

Hünenberger's strategy has been used as a framework in what follows, showing how it differs from 

Hummer's plan in crucial ways. 

 

3.5.2.1 Absolute free energy of hydration of a single ion  

Periodic boundary conditions with either the Ewald summation or one of its close analogues are 

the most widely used method in the literature for determining ΔG0(hyd, Xz, abs). The Coulomb 

potential's long-range nature is the root of all the issues. In circumstances where using a charged 

simulation cell is feasible, these are very difficult. In this context, charged defects in solids and 

ions in liquids are typical instances. The obvious similarities between the two problems are rarely 

discussed because few experts cross both fields[97]. The terms of the infinite sum are added in 

spherical shells around a central box, and the expanding sphere is immersed in a conducting 

medium. For further information, see ref [98], which also uses a Gaussian for the cancelling charge 

distribution.; 𝑞𝑖𝜅
3𝑒𝑥𝑝 (−𝜅2𝑟2) 𝜋3 2⁄⁄ . In addition to summations of the Ewald type, electrostatics 

can also be solved using periodic boundary conditions and the reaction field approach (e.g. refs 
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[85, 87]). It is also possible to contain the charged ion inside a large, unlimited water droplet[94]. 

There are a number other truncation techniques as well[94], however they are rarely used. 

 

Figure 3.6 Schematic representation of the charge compensation obtained by using corrections to the simulation. Credits to the 

author [115]. 

The Ewald summation exhibits a divergence that needs to be eliminated when a charge is added 

to the periodic cell. To remove the charge, the simplest method is to provide a uniform neutralising 

adjustment. Two adjustments are involved; they were first defined individually but are now 

frequently used jointly. First, a straightforward idea of metals with charged ionic cores encased in 

a neutralising backdrop with an infinite dielectric constant was discussed[99]. The interaction 

between the charges and the background, which acts as a neutraliser, is included in the Fuchs 

correction. The second[20], the Wigner correction, offers the self-energy of the extra charge through 

its periodic images. Currently, we ignore the finite dielectric constant of the solvent. The overall 

correction of a cubic cell is (ref [98], eqn (6.5); ref [101], eqn (2.13)) 

𝑉𝑐ℎ𝑎𝑟𝑔𝑒 =
−𝑁𝐴𝑒2

8𝜋𝜀0𝜅
2𝐿3 |∑𝑞𝑖

𝑁

𝑖=1

|

2

 

(3.73) 

 

In (3.81), L is the cell's length, 𝜅 is the Gaussian's width parameter, and 𝑞𝑖 is the charge of the cell's 

ith ion. The total Ewald potential energy, EEw, under specified boundary conditions can be 

expressed as the sum of interionic interactions and self-interactions (with the adjustment for a 

charged simulation cell included). For a cubic simulation cell of length L[92,101,102] can be written 

as 
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𝐸𝐸𝑤 =
1

8𝜋𝜀0
∑𝑞𝑖𝑞𝑗

𝑖≠𝑗

𝑉𝐸𝑤(𝑟𝑖𝑗) +
𝑀

8𝜋𝜀0𝐿
∑𝑞𝑖

2

𝑖

 
(3.74a) 

where 

𝑉𝐸𝑤(𝑟𝑖𝑗) = ∑
𝑒𝑟𝑓𝑐(𝜅|𝑟𝑖𝑗 + 𝐿𝑚|)

|𝑟𝑖𝑗 + 𝐿𝑚|
𝑚

+
4𝜋

𝐿3
∑

𝑒𝑥𝑝(−𝑘2 4𝜅2⁄ )

𝑘2

𝑘≠0

𝑒𝑥𝑝(−𝑖𝑘. 𝑟𝑖𝑗) −
𝜋

𝜅2𝐿3
 

(3.74b) 

 

In (3.74a) M is the Madelung constant for a group of similar charges, denoted by M = -2.837297, 

and the Wigner potential is the last term. Different formulations are possible and important since 

they determine which terms are incorporated to standard codes implicitly and which must be 

explicitly included. The literature contains numerous presentation methods, some of which 

incorporate discussions of thermodynamic integration[103,104]. 

The Wigner potential terms are already present in codes using the P3M (particle-particle-particle-

mesh) and SPME (smooth particle mesh Ewald) techniques, however this may not be immediately 

obvious (see ref [101] especially Appendix A). Examples include DL POLY[37] (except for the 

Ewald option in DL POLY Classic[38]), LAMMPS[39], AMBER[105], CHARMM[106] and 

GROMACS[107] (except for the Ewald option and also generally disregarded - see the manual). 

According to Hünenberger et al[85,94,95], four fundamental types of correction to the electrostatics 

mentioned above emerge when we consider an ion dissolved in a solvent. First and second, the 

ionic charge's representation of the solvent's polarisation may be inaccurate (type A and B 

corrections below). 

Third, when the Born model is employed to correct polarisation problems, mistakes could be 

produced. As a result, there are no physical boundaries between the parts where the dielectric 

continuum is modelled and the sections where the solvent is explicitly modelled. These result in 

the generation of electrostatic potentials, which include the ion (type C corrections). 
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Fourth are a few minor corrections (collected together as type D). Only certain corrections are 

necessary; not all simulations require them. This work’s approach is in adherence to Hünenberger's 

categorisation.  

 

Figure 3.7 Single point-multipole particle (left) describing a point-charge distribution (right). Credits to the authors [115] 

 

3.5.2.1.1 Corrections of type A  

Periodic boundary conditions may be used in the system, but type A corrections are needed to 

account for flaws in precisely capturing the polarisation of the solvent by the charge caused by the 

use of approximations to the electrostatic interactions (e.g., truncations, shifting, reaction fields). 

This correction is not required because with the Ewald method as the summation in the limit of 

infinite system size correctly manages the electrostatics. There is no type A correction for direct 

Coulombic summations over a finite droplet of solvent or for Ewald-type summations with 

periodic boundary conditions.  

 

3.5.2.1.2 Corrections of type B  

The use of a finite system (such a droplet) or a finite-sized box with periodic boundary conditions 

that fails to show the polarisation of the solvent by the charge at great distances is corrected by 

this. The Ewald summation grows the system's size to infinity in the second example, but it does 
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so by creating periodic images. This calls for a modification. Therefore, rather than being polarised 

with respect to a single central charge (see Figure 1 of ref [92]) in one of the periodic pictures, the 

solvent is polarised with respect to the periodic image's representation of the charge. The type B 

adjustment for the finite droplet includes the estimate of solvent polarisation beyond the droplet's 

edge from the Born model. This can be expressed as 

𝛥𝐺𝐵(𝑑𝑟𝑜𝑝𝑙𝑒𝑡) = −𝑁𝐴𝑄2𝑒2(1 − 𝜀𝑆
−1) 8𝜋𝜀0𝑆⁄                     (3.75) 

 

In (3.83) S is the radius of the droplet and 𝜀𝑆́ is the dielectric constant of the solvent predicted by 

the model. The correction for the Ewald summation using periodic boundary conditions is 

𝛥𝐺𝐵(𝐸𝑤𝑎𝑙𝑑) =
−𝑁𝐴𝑄2𝑒2

8𝜋𝜀0𝐿
[
−𝑀

𝜀𝑆́
+ (1 − 𝜀𝑆

−1) {
4𝜋

3
(
𝑅𝐼

𝐿
)
2
−

16𝜋2

45
(
𝑅𝐼

𝐿
)
5
}]                                                  (3.76) 

In (3.84) RI represents the radius of the ion, L represents the length of the (cubic) box.  

M = -2.837297 is the Madelung constant for a cubic array of like charges. In this formulation, the 

equation does not account for the basic Wigner correction term, 𝑉𝑊𝑖𝑔𝑛𝑒𝑟 =
−𝑁𝐴𝑄2𝑒2

8𝜋𝜀0𝐿
𝑀,  

while only describing the term the effect of dielectric screening on the Wigner potential. 

This is due to the fact that VWigner is already taken into account[87]. Since the adjustment is already 

accounted for in Simonson and Roux's free energies, they also omit it from equation (17). Since 

many codes (as mentioned above) already include this term, the type B adjustment for results 

produced using such codes is low and the dependency of the raw results (i.e., with no corrections 

at all) on the simulation box size is rather weak. The fundamental Wigner correction is specifically 

addressed in Hünenberger's (and Hummer's) formulations[94,95] since their programmes either do 

not contain the basic Wigner correction or (as in ref [94]) explicitly deduct it from the raw data 

and add it to the correction. 

𝛥𝐺𝐵(𝐸𝑤𝑎𝑙𝑑) =
−𝑁𝐴𝑄2𝑒2

8𝜋𝜀0𝐿
(1 − 𝜀𝑆

−1) [−𝑀 +
4𝜋

3
(
𝑅𝐼

𝐿
)
2
−

16𝜋2

45
(
𝑅𝐼

𝐿
)
5
]                                                   (3.77) 
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The other terms in powers of RI/L in equations (3.83) or (3.84) are negligible for box sizes 

comparable to the one used in this work.  

 

3.5.2.1.3 Corrections of type C  

The consequences of an erroneous electrostatic potential produced by the solvent at the location 

of the ion are taken into consideration by the C term. The specific summation technique employed 

for the electrostatics summations is to account for this. There are essentially only two conceivable 

processes. The electrostatic forces between the molecules are added after the electrostatic forces 

within the solvent molecule have been summed up (this is also known as the M-scheme). Or the 

alternative is to sum all the charges whether they are in separate molecules [P-scheme]. The Ewald 

summation is one example of a P-scheme. The possibility of a dipole at the border is seen to be 

significant because to the implications it has there (even though the boundary is infinitely far 

away). (See Figure 1 of reference [116], here reproduced as Figure 3.8. Take note that the authors 

do not come to the same findings as Hünenberger et al)  

 

Figure 3.8 Radially averaged electric potential Φ(r) in units of volts as a function of the radial distance r from the center of 

water clusters with N = 256 (magenta) and 1024 (green) SPC water molecules at 298 K. Extracted from ref [116], see reference 

for further details. Reproduced with the author’s permission 
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The electrostatic potential of the ion may then be affected, adding an energy term as a result. The 

following section will give more information about the solvent potentials. 

The two issues we started with—the significance of the experimental results and the nature of the 

corrections needed for the summing methods—are connected by the type C corrections suggested 

in references[85,94,95]. The fundamental concepts underlying these modifications are laid out in 

Appendix A of ref [108]. 

The transfer of charge into the centre of a large solvent droplet from a distant position in a vacuum 

results in a shift in potential known as the Galvani potential. An example of this is shown in Figure 

1 in reference [96]. This needs to be considered while relating our simulated value to experiment. 

Three conventions exist for choosing the zero of potential when calculating the absolute potential 

in a cavity. The first is setting the zero outside of the liquid droplet, 𝜙𝑅, (also called R convention), 

the second is setting the zero as an average over the bulk liquid , 𝜙𝑃, (also called P-summation 

convention), and the third is setting the zero as an average over the bulk liquid but excluding the 

interior of the solvent molecules, 𝜙𝑀, (M-summation convention). 

The exclusion potential of the solvent model, 𝜉́,is provided by 𝜙𝑃 − 𝜙𝑀. This can be determined if 

the quadrupole moment trace of the solvent molecule is known. Nevertheless, this figure is totally 

arbitrary. We wish to carefully establish the exclusion potential so that our model can make an 

extra-thermodynamic assumption that is consistent with the Born model. The correction can be 

written as follows. The exclusion potential is given by 

𝜉́ = 𝑁𝐴𝜌́𝑆 𝛾́𝑆 6⁄ 𝑀𝑆𝜀0                                                                                                                       (3.78) 

In (3.78) 𝜌𝑆́ represents the solvent density, MS represents the molar molecular weight of the solvent 

(see Table below for clarification on units) and 𝛾𝑆́ represents the trace of the quadrupole moment 

of the solvent molecule relative to its molecular centre, M. This can be assumed to be our water 

model's oxygen atom. Given 𝛾𝑆́ = ∑ 𝑞𝑖 < 𝑟𝑖
2 >𝑛

𝑖=1  ,qi is the charge on atom i, and<ri
2> is the 

expected value of the square of the H-O distance[30] if a molecule is flexible. Every atom in the 

solvent molecule is included in the sum. The method of summing and the shift in potential at the 
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air-liquid interface lead to two different kinds of C corrections, respectively. This influence must 

be reduced since we use the natural free energy of hydration to connect with the Marcus numbers. 

Since a droplet must contain a whole number of molecules and a straight coulombic summation is 

M-type, the initial adjustment for the finite droplet is zero. Given by is the overall type C correction 

(see ref [109] for all the details) 

𝛥𝐺𝐶(𝑑𝑟𝑜𝑝𝑙𝑒𝑡; 𝑘𝐽𝑚𝑜𝑙−1) = −𝑄 (70.3 −
107.0

𝑆
)                                                                                 (3.79) 

In (3.79) Q, which is the cell charge due to a single ion, is expressed in units of |e| and S,  which is 

the droplet radius, is in units of nm. For the Ewald-type summation the total type-C correction is 

𝛥𝐺𝐶(𝐸𝑤𝑎𝑙𝑑; 𝑘𝐽𝑚𝑜𝑙−1) =
−𝑄𝑁𝐴𝑒𝑓𝜉

1000
+ 𝑄(𝑓 − 1) (70.3 −

10.9

𝑅𝐼
)                                                           (3.80) 

In (3.80) f represents the fraction of the box occupied by the solvent. If the ion is considered 

spherical then f can be expressed as  

𝑓 = 1 −
4𝜋𝑅𝐼

3

3𝐿3     (3.81) 

 RI is the Born radius of the ion (and must be in nm in Equation (3.80)).  

 

3.5.2.1.4 Corrections of type D  

This accounts for inaccurate solvent permittivity assumptions that lead to inaccurate polarisation 

results. It is the same for all summation methods and often not significant. Since the 

thermodynamic parameters for hydration were derived using a unique definition of the standard 

state, there is also a correction. This holds true for all plans once more. 

A Born model is applied to determine the effects of deviations from the forcefield-predicted 

dielectric constant. It can be expressed in the form[113]. 

𝛥𝐺𝐷 = −𝑁𝐴𝑄2𝑒2(𝜀𝑒𝑥𝑝𝑡
−1 − 𝜀−1) 8𝜋𝜀0𝑅𝐼⁄                                           (3.82) 
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For this purpose, Marcus contains born radii that are accurate enough[81, 82]. The correction has 

little influence on the free energies of hydration because of the large dielectric constant of water. 

The summaries in the cited references[85,94,95] mention a cavity term. With the exception of the 

Coulomb terms, this describes all of the immediate effects of introducing a solute ion to a solution. 

If the thermodynamic integrations already take into account these interactions, this term should be 

ignored. Corrections stated in equation (3.76) must also be taken into account in order to fit 

Marcus'[2] and the definition of the standard state given above. 

 

3.5.2.2 Calculating the corrections for example cases 

Table 4.3.1 below shows the information needed to calculate the corrections. Also provided are 

the figures that were utilised to calculate the adjustments for the current study. The necessary 

adjustments to the present calculations are shown in the tables below. 

 

Table 3.2. Data required for the corrections 

Parameter Value Comment 

qO (|e|) -0.82 SPC/Fw model; see reference [111] Table I 

<rOH> (nm) 0.1031 SPC/Fw model; see reference [111] Table II 

𝜌́𝑆 (gm cm-3) 1.012 SPC/Fw model; see reference [111] Table II 

MS (kg) 0.018 Although we use the value of Avogadro's number for the gram molecular 

weight; MS must be quoted in kg because the rest of the equation is given 

in SI units. 

𝛾́𝑆 (|e| nm2) 8.58 x 10-3 Calculated using SPC/Fw data 

𝜉 (V) 0.876 Calculated from Equation (3.90) for SPC/Fw model 

𝜀𝑆 79.63 SPC/Fw model; see reference [111] Table II 



 
 

 

 

108 
 

 

𝜀𝑒𝑥𝑝𝑡 80.10 293K; Book of data (Nuffield 1972) ed. R.D. Harrison; p 122. 

L (nm) 4.56 Unit cell length (cubic; 3200 water molecules) 

S (nm) 2.83 Droplet radius (assumed spherical with same number of solvent molecules 

as the simulation cell. 

RI (nm) - Na+ 0.102  

 

Ionic radius (Marcus[2] 

Table 2) 

f - 1 (Na+) -4.688 x 10-5 

RI (nm) - K+ 0.138 f - 1 (K+) -1.161 x 10-4 

RI (nm) - NO3
- 0.179 f - 1 (NO3

-) -2.534 x 10-4 

RI (nm) - Cl- 0.181 f - 1 (Cl-) -2.620 x 10-4 

RI (nm) - Br- 0.196 f - 1 (Br-) -3.326 x 10-4 

Rl (nm) - CO3
2- 0.178 f - 1 (CO3

2-) -2.491 x 10-4 

RI (nm) - SO4
2- 0.240 f - 1 (SO4

2-) -6.107 x 10-4 

 

 Table 3.3 Droplet corrections 

Ion Correction Value 

(kJ mol-1) 

Ion Correction Value 

 (kJ mol-1) 

K+ 𝛥𝐺𝐴 0 NO3
- 𝛥𝐺𝐴 0 

 𝛥𝐺𝐵 -24.3  𝛥𝐺𝐵 -24.3 

 𝛥𝐺𝐶  -32.5  𝛥𝐺𝐶  +32.5 

 𝛥𝐺𝑠𝑡𝑑  +7.93  𝛥𝐺𝑠𝑡𝑑  +7.93 

 TOTAL -48.9  TOTAL +16.1 
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Table 3.4 Ewald corrections 

Ion Correction Value 

(kJ mol-1) 

Ion Correction Value 

(kJ mol-1) 

Na+ 𝛥𝐺𝐴 0 Cl- 𝛥𝐺𝐴 0 

 𝛥𝐺𝐵 +0.8  𝛥𝐺𝐵 +1.0 

 𝛥𝐺𝐶  -84.5  𝛥𝐺𝐶  +84.5 

 𝛥𝐺𝑠𝑡𝑑 +7.93  𝛥𝐺𝑠𝑡𝑑  +7.93 

 TOTAL -75.8  TOTAL +93.4 

 

Ion Correction Value 

(kJ mol-1) 

Ion Correction Value 

(kJ mol-1) 

K+ 𝛥𝐺𝐴 0 NO3
- 𝛥𝐺𝐴 0 

 𝛥𝐺𝐵 +1.1  𝛥𝐺𝐵 1.1 

 𝛥𝐺𝐶  -84.5  𝛥𝐺𝐶  +84.5 

 𝛥𝐺𝑠𝑡𝑑 +7.93  𝛥𝐺𝑠𝑡𝑑  +7.93 

 TOTAL -75.5  TOTAL +93.5 

 

Ion Correction Value 

(kJ mol-1) 

Ion Correction Value 

 (kJ mol-1) 

Ca2+ 𝛥𝐺𝐴 0 CO3
2- 𝛥𝐺𝐴 0 

 𝛥𝐺𝐵 +4.4  𝛥𝐺𝐵 +4.4 
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 𝛥𝐺𝐶  -169  𝛥𝐺𝐶  +169 

 𝛥𝐺𝑠𝑡𝑑 +7.93  𝛥𝐺𝑠𝑡𝑑  +7.93 

 TOTAL -156.7  TOTAL +181.3 

 

Ion Correction Value (kJ 

mol-1) 

Ion Correction Value (kJ mol-

1) 

Br- 𝛥𝐺𝐴 0 SO4
2- 𝛥𝐺𝐴 0 

 𝛥𝐺𝐵 1.1  𝛥𝐺𝐵 +4.4 

 𝛥𝐺𝐶  +84.5  𝛥𝐺𝐶  +169 

 𝛥𝐺𝑠𝑡𝑑 +7.93  𝛥𝐺𝑠𝑡𝑑  +7.93 

 TOTAL +93.5  TOTAL +181.3 

 

3.5.3 Conclusions 

To summarise all the previous discussions, it is possible to notice that regarding the type A and B 

adjustments, there is no disagreement. Everyone (in one manner or another) has demonstrated the 

insignificance of the terms and have included them when it was appropriate. They mostly concern 

the finite size of the simulation and how that impacts the polarisation effects for charged systems. 

Finding out which corrections have already been included into a certain software is the main 

problem. 

Type C adjustments are the subject of much more controversy. The core of the issue is what needs 

to be computed in order to connect with the experiment. Raiteri et al claim in their study that they 

are referring to the P-summation from Hummer et al but they do not give a further explanation of 

the form in which they are incorporating said correction. The problem is that whether you choose 

to include or omit the type C variables depends on the boundary conditions of your computation, 



 
 

 

 

111 
 

 

which must coincide with the implicit choice made in the experimental data with which you will 

be comparing findings. This is the rationale behind Hünenberger et al[85] differentiation between 

their "intrinsic" and "actual" numbers. 

The key distinction in this case is whether or not one considers how the charged ion's potential is 

impacted by crossing the boundary. These effects are removed from the Ewald-type summations 

by the type C adjustment because experimentalists often do not include them (creating "intrinsic" 

values). This is merely a claim that the calculations performed by Hummer et al[96] differ from 

those that were performed. If the same process is utilised throughout, either summation type can 

be used to get "real" figures that account for the impacts of the interface potential. 

In light of the adjustments to the free energy of hydration for both the Ca2+ and CO3
2- ion, we may 

examine the degree of agreement of the Raiteri et al force-field[8]. Table 4 displays two values for 

the absolute free energy of hydrating Ca2+: -1447 kJ mol-1 and -1503 kJ mol-1 (potential set 1) 

(potential set 2). The uncorrected values of Marcus[81] and David[113] of -1505 kJ mol-1 and -1446 

kJ mol-1, respectively, might be used to reflect the experimental results in contrast to these. 

Marcus and David both use the same absolute free energy value for proton hydration; therefore 

both values require the same correction, resulting in updated values of -1534 kJ mol-1 for Marcus 

and -1593 kJ mol-1 for David. The Type C adjustment is the main thing Rateri's calculations leave 

out. These numbers become -1660 kJ mol-1 (potential set 1, the one from the autor) and -1604 kJ 

mol-1 when this is accounted for (potential set 2, the one with included corrections).  

Strong agreement between this and the set 2 corrected Marcus value is provided. Marcus's 

measurements are the only ones available for the carbonate anion, and after correction, they yield 

a value of -1227 kJ mol-1. Raiteri's uncorrected results for potential set 1 are -1175 kJ mol-1 and -

1301 kJ mol-1 (potential set 2). After rectification, these are changed to -994 kJ mol-1 (potential set 

1) and -1120 kJ mol-1 (potential set 2). The best forcefield is still Set 2, but it is around 100 kJ mol-

1 too positive. However, their core argument - that set 2 is generally better than set 1 - is still valid 

and, if anything, is enhanced, which is a fortunately unexpected development. 
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Chapter 4  

 

Force-field fitting 

A large amount of the work of this chapter is published in 

V Fantauzzo et al 2022 J. Phys. Commun. 6 055011, https://doi.org/10.1088/2399-

6528/ac6e2b 

 

4.1 Introduction 

Modelling any system relies on good quality force-fields, which must be as accurate and 

consistent as possible without being computationally expensive. It is essential to balance 

computational cost against the ability of the simulation to reproduce the observed 

phenomena. In this chapter, we fit a reliable set of force-fields in order to be able to 

simulate the nucleation and growth of the alkali metal nitrates and use them to help 

understand the mechanisms of crystallisation. 

The shortcomings of the various existing force-fields, that would affect our use of them, 

are discussed in detail in this Chapter. Briefly, Ni[7], Xie[8] and Mort[9] fail to obtain the 

correct order for the relative energy of polymorphs in some nitrates; Ribeiro[6] fails to 

optimise several crystal structures; none of the models (except that of Hammond[5]) 

predict real values for all the high-symmetry branches of the phonon spectra of the 

polymorphs to which they were fitted (showing that the true predicted structure must be 

of lower symmetry than the ones considered). The existing force-fields are adequate for 

the purposes they were intended for but there is clearly room for improvement. Also, 

there is no force-field that is suitable for all the alkali metal nitrates, their solution 

chemistry and their solid state solutions.  

 

4.1.1 Structures of the alkali metal nitrates 

As previously mentioned in Chapter 2, all the alkali metal nitrates present various polymorphs 

and the ones shown in Figure 4.1 will be the main focus of this study. 

 

https://doi.org/10.1088/2399-6528/ac6e2b
https://doi.org/10.1088/2399-6528/ac6e2b
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calcite structure  

(trigonal: 𝑅3̅𝑐) 

ferroelectric structure 

(trigonal: R3m) 

aragonite structure 

(orthorhombic: Pnma) 

RbNO3 structure 

(trigonal: P31) 

 

Figure 4.1 Structures of the phases of the alkali metal nitrates that are used in the fitting. Purple spheres are the alkali metal 

ions; light blue spheres are the nitrogen atoms; red spheres are the oxygen atoms. 

 

 

4.2 Methodologies 

We require a force-field that can describe alkali metal nitrates equally well in a solution and as 

a solid phase. To keep the costs of molecular dynamics simulations down, a rigid ion model 

with flexible nitrate ions was used. This type of model has proved successful for many 

molecular ions, in particular the carbonates and sulphates. Full ionic charges (qM = 1) are used 

for the alkali metal ions. The fitting of charges on the nitrogen and oxygen atoms is discussed 

below. Buckingham potentials were used for all intermolecular interactions except for those 

between the alkali metal cations where the Lennard-Jones form was used for consistency with 

the model of Joung and Cheatham[26], frequently used to study solution chemistry of the alkali 

halides. The parameters for these interactions are given in Table 4.1.  

 

Table 4.1 Interactions between alkali metal ions[26] qM = 1.0 for M = Li-Cs where ε and Rmin  are  defined as the energy 

and interatomic  distance at the minimum, i.e.  we use the Lennard-Jones potential in the form 

  𝑉(𝑟) = 𝜀 [(
𝑅𝑚𝑖𝑛

𝑟
)

12

− 2 (
𝑅𝑚𝑖𝑛

𝑟
)

6

] 

 

 Alkali ions ε(eV) Rmin (Å) 

Li-Li 0.01459 1.582 

Na-Na 0.01528 2.424 

K-K 0.01860 3.186 

Rb-Rb 0.01930 3.474 

Cs-Cs 0.00390 4.042 
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A force-field developed by Ratieri et al.[27] for the carbonate anion was used as a starting point 

for the nitrate but with the initial partial charges adjusted (using charges from electronic 

structure calculations as a guide) to give the correct overall charge on the nitrate anion and 

subsequently fitted to the crystal structures and properties as described below. To describe the 

interactions within the nitrate group, harmonic interactions were used for the N-O bond and 

three-body bond-angle potentials used to maintain the preferred angle between the bonds. 

Further many-body interactions were added (as specified by Raiteri et al) to maintain the 

planarity of the nitrate anion. Coulomb subtraction was applied within all the nitrate molecules. 

Examination of the Raman lines demonstrated that the internal interactions of the carbonate 

group could approximate the internal interactions of the nitrate group. The force-field for the 

nitrate anion is given in Table 4.2. A tapering cut-off for the short-range intermolecular 

potentials was applied during the fitting. The basic interatomic interaction is multiplied by an 

additional mathematical function that smooths both its energy and derivatives to zero at the 

cut-off. In this case, rm was set at 6.0 Å and rcut at 9.0 Å. 

 

4.2.1 Fitting procedures 

The GULP[29,30] code was used to fit the force-fields using the relaxed fitting 

algorithm[31].  

Details of the code, including the methods used to calculate the long-range electrostatic 

summations, can be found in Chapter 3 and Section 4.5 of this chapter. An iterative 

procedure was used to obtain the charges on the nitrogen and oxygen atoms. First, the 

individual nitrates were fitted to experimental data to obtain interactions between the 

alkali metal ions and the atoms of the nitrate anion. Then the nitrogen charge, qN, and 

short-range oxygen-oxygen intermolecular interactions were refitted to data for the 

observed low temperature polymorphs of all the alkali earth nitrates together, assuming 

that the intramolecular interactions of the nitrate ions and the intermolecular interactions 

(including electrostatic interactions) between the nitrate ions were the same for all the 

alkali metal nitrates. The oxygen charge, qO, is fixed by the requirement that the total 

charge of the nitrate anion be -1. Then the alkali metal - nitrate interactions were re-

fitted for each compound. This process was iterated until a self-consistent solution was 

obtained. 

A considerable amount of experimental data is available for fitting the force-field. This 

includes structural data for many of the polymorphs, often at several temperatures (see 
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the earlier discussion); elastic properties including the thermoelastic constants 

(dlog[Cij]/dT)[32]; dielectric data[33] (more details are given in the following sections of 

this Chapter). Although partial occupancy can be modelled in GULP, using a fractional 

occupation number, structures with partial occupancy were not used in the fitting 

process. Corrections need to be made to the available data before they can be compared 

with simulations. Lattice parameters obtained from experiment will be at a finite 

temperature and contain zero-point motion effects. Both these must be corrected for to 

compare with a lattice statics simulation (most often used in fitting). Lattice energies 

can be obtained from experiment and compared with the simulations, but individual 

enthalpies of formation are not easily usable since they require a model of the elements 

in their standard states. 

Table 4.2. Force-field Parameters for the nitrate ion (qN = 0.7802|e|, qO = -0.5934|e|) 

     Interaction type Force constants Distances Angles 

𝑉𝑁𝑂(𝑟)  =  
1

2
 𝑘2(𝑟 − 𝑟0)2 

k2(eVÅ-2)  

40.849 

 𝑟0(Å)  

1.255 

  

𝑉𝑁𝑂𝑂(𝜃)  =  
1

2
 𝑘𝜃(𝜃 − 𝜃0)2 

kθ (eVrad-2)  

13.234 

   0 (deg) 

120.0 

𝑉𝑁𝑂𝑂(𝑟12, 𝑟13) = 𝑘𝑏𝑐(𝑟12 − 𝑟12
0 )(𝑟13 − 𝑟13

0 ) kbc (eVÅ-2)  

12.818 

 𝑟12
0 (Å) 

1.255 

𝑟13
0 (Å) 

1.255 

 

𝑉𝑁𝑂𝑂(𝑟12, 𝑟13, 𝜃) = 

[𝑘𝑏𝑐𝑎
12 (𝑟12 − 𝑟12

0 ) + 𝑘𝑏𝑐𝑎
13 (𝑟13 − 𝑟13

0 )](𝜃 − 𝜃0) 

𝑘𝑏𝑐𝑎
12 (eVÅ-1)  

1.533 

𝑘𝑏𝑐𝑎
13 (eVÅ-1)  

1.533 

𝑟12
0 (Å) 

1.255 

𝑟13
0 (Å) 

1.255 

0 (deg) 

120.0 

𝑉𝑁𝑂𝑂𝑂(𝑑) = 𝑘2
𝑜𝑜𝑝

𝑑2 + 𝑘4
𝑜𝑜𝑝

𝑑4 𝑘2
𝑜𝑜𝑝

(eVÅ-2) 

 13.647 

𝑘4
𝑜𝑜𝑝

(eVÅ-4)  

360.0 

   

 

We have performed density functional calculations using the CASTEP[34] (Cambridge 

Serial Total Energy Package) program to calculate the structures and properties of 

selected phases of the nitrates. This program uses a plane wave basis set to perform 

calculations on periodic systems. All the calculations were performed within the GGA 

approximation using the PBE functional[35] and adding dispersion corrections[36] 

(employing the DFT-D method[37]). Pseudopotentials were generated "on the fly". The 

plane-wave energy cut-off was set at 800 eV; a Monkhorst-Pack grid was used for k-

point sampling (8 x 8 x 8 grid, spacing 0.001 Å-1). Those parameters were chosen after 

optimisation and convergence testing. Geometry optimisation was performed using the 

BFGS algorithm[38]. Since the force-field is needed for aqueous systems, we require a 
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model for the interactions between water and the alkali earth cations and the nitrate 

anion. We use the SPC/Fw model for water[39] since it is cheap on computer resources 

and performs well in conjunction with the carbonate and sulphate anions.  

Amongst the other water models, the most popular are: 

1. TIP3P (Transferable Intermolecular Potential 3-Point): TIP3P is known for its simplicity and 

computational efficiency. It represents water as a rigid molecule with a fixed bond angle and 

length. Despite its simplicity, it captures many bulk water properties accurately. 

2. TIP4P (Transferable Intermolecular Potential 4-Point): TIP4P introduces more complexity 

by adding a fourth interaction site to represent the lone pairs of electrons on oxygen. This model 

improves the representation of hydrogen bonding but requires more computational resources. 

3. SPC/E (Extended Simple Point Charge): SPC/E is an extension of the SPC model with 

improved accuracy. It incorporates more parameters to better reproduce water's properties, 

such as the dielectric constant and vaporization enthalpy. 

The SPC/Fw (Simple Point Charge/Flexible Water) model is a popular choice in molecular 

simulations for representing water molecules. It characterises water as a flexible molecule with 

three-point charges: one on each hydrogen atom and two on the oxygen atom. This flexibility 

allows SPC/Fw to more accurately capture the structural properties of water compared to rigid 

models like SPC, while maintaining computational efficiency by using point charges. 

SPC/Fw's versatility and balance between simplicity and accuracy make it suitable for a wide 

range of research applications, from studying bulk water properties to simulating solvation 

effects in biomolecular systems, where it strikes a balance between accuracy and computational 

cost. 

For completeness, the parameters for the interactions between alkali metal ions and 

water are listed in Table 4.3 and those for the water model itself are listed in Table 4.4 
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Table 4.3 Interactions between alkali metal ions and water [26] qM = 1.0 for M = Li-Cs where ε and Rmin are defined as the 

energy and interatomic distance at the minimum, i.e., the Lennard-Jones potential is written as 

 𝑉(𝑟) = 𝜀 [(
𝑅𝑚𝑖𝑛

𝑟
)

12
− 2 (

𝑅𝑚𝑖𝑛

𝑟
)

6
] 

Alkali ions ε(eV) Rmin (Å) 

Li-O (H2O) 0.009921 2.5676 

Na-O (H2O) 0.010152 2.9886 

K-O (H2O) 0.011207 3.3696 

Rb-O (H2O) 0.011406 3.5136 

Cs-O (H2O) 0.005125 3.7976 

H2O-H2O 0.006740 3.553145 

 

 

Table 4.4 SPE/Fw parameters for the water molecule (qH = 0.41|e|, qO = -0.82|e|) Wu et al.[39] The water-water interaction 

is given in Table 4.3 

 

Molecular dynamics simulations were performed to investigate the high-temperature 

behaviour of the force-fields. The DL_POLY[40] code was used to perform canonical 

ensemble calculations over a temperature interval from 1 to 500 K to model lattice 

conversion. A Nosé-Hoover thermostat with a relaxation time of 0.1 ps was used. The 

time step was set to 0.5 fs. The selected number of time steps was 50000 (25 ps), of 

which 10000 (5 ps) were used as an equilibration period. A temperature-scaling interval 

of 10 K was used, whilst the radial distribution function (RDF) was collected every 1000 

time steps, using a bin width of 0.1 Å to obtain the plot. The Ewald summation real 

space cut-off was set to 8.0 Å, whilst the width of the Verlet shell was 1 Å. The Ewald 

sum precision was set to a relative error of 10-5. In order to calculate the long ranged 

electrostatic (Coulombic) potentials the Smoothed Particle Mesh Ewald (SPME[41]) 

summation method was used. The grid for the k-vector summation was set with 

dimensions of 8x8x8, and α, the Ewald splitting parameter, set to 0.36037 Å-1. 

Isothermal-isobaric (NPT) ensemble calculations were performed using the Nose-

Hoover NPT ensemble, with the pressure set to 1 atm and the temperature changed from 

300 K to 500 K. The thermostat and barostat relaxation times were 0.1 ps. Other 

parameters were set as for the NVT simulation. 

 

Interaction type Force constants Distances Angles 

𝑉𝐻𝑂(𝑟)  =  
1

2
 𝑘2(𝑟 − 𝑟0)2 k2(eVÅ-2)  45.93 𝑟0(Å) 1.012   

𝑉𝐻𝑂𝑂(𝜃)  =  
1

2
 𝑘𝜃(𝜃 − 𝜃0)2 kθ (eVrad-2) 3.291   0 (deg) 113.24 
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4.2.2 Simulation of solution properties 

To obtain the free energies of ion solvation we performed thermodynamic integration 

(TI) calculations with the LAMMPS code[42]. To perform a thermodynamic integration 

we must define a pathway between the two systems of interest, in this case the ion in 

solution and the ion in vacuum. The pathway must be continuous and reversible. The 

point along the pathway may be defined by the parameter λ. The free energy may then 

be obtained by integrating over this pathway. The variation of the free energy is defined 

as Δ𝐴: 

Δ𝐴 = ∫ ⟨
𝜕𝑈(𝜆)

𝜕(𝜆)
⟩

𝜆

𝑑𝜆
𝜆=1

𝜆=0

 
(4.1) 

 where U(λ) is the potential energy of the system at the point along the pathway given 

by λ. Hence the term in the angle brackets represents the average of the derivative of the 

potential energy with respect to λ over the course of a simulation at that λ value. We do 

not use λ directly but instead use a nonlinear function of λ 

𝑓(𝜆) =  𝜆5(70𝜆4 − 315𝜆3 + 540𝜆2 − 420𝜆 + 126)                           (4.2) 

The use of the nonlinear function stabilises the calculation of the system as λ approaches 

0 or 1[43]. Using the f(λ) of (4.2) is equivalent to sampling more heavily near the tail end 

values of λ, with a reweighting scheme given by the derivative of f(λ) with respect to λ. 

The derivative in Equation (4.1) is obtained via the chain rule 

𝜕𝑈(𝜆)

𝜕(𝜆)
=

𝜕𝑈(𝑓(𝜆))

𝜕𝑓(𝜆)

𝜕𝑓(𝜆)

𝜕(𝜆)
 

(4.3) 

 

where the derivative of the nonlinear function with respect to λ is obtained analytically. 

The derivative of the potential energy with respect to the nonlinear function is obtained 

numerically by re-analysing the simulation trajectory and recalculating the potential 

energy with slightly perturbed values of f(λ) and entering the result into a central 

differencing scheme for the computation of the derivative. The perturbed values of f(λ) 

are chosen to be 1% of the value of f(λ) to avoid unphysical negative force-field 

parameters arising in the central differencing scheme. 

The pathway we choose between the solvated and desolvated ion is to deactivate all 

inter-molecular interactions between the ion and the water simultaneously. We construct 

a cubic simulation cell containing 3,200 water molecules and equilibrate in an NPT 
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ensemble at 300 K and 0 atm pressure for 1 ns with lattice vectors averaged every 100 

fs to get average lattice vectors for the correct density of pure water.  We then insert a 

single ion into the simulation cell (either K or NO3). This leads to a small additional 

pressure in the cell when the interactions of the water with the ion are at full strength 

but is negligible at the simulation cell sizes we use.  

Table 4.5. Buckingham parameters fitted for a rigid ion force-field (unit charge for all metal ions) 

Interaction A (eV) 𝜌(𝐴) C (eVA6) 

Li -- O 170.7 0.30063 0.0 

Li -- N 1155.8 0.260907 0.0 

Na -- O 1842.1 0.24778 0.0 

Na -- N 10598.7 0.2376 0.0 

K -- O 220.6 0.36777 0.0 

K -- N 4.99 x 1012 0.09385 0.0 

Rb -- O 2324.9 0.28467 0.0 

Rb -- N 81681.5 0.20626 0.0 

Cs -- O 34792.7 0.22944 0.0 

Cs -- N 98642.0 0.22721 0.0 

O -- O 44806.0 0.20659 31.0 

 

The TI simulations were each run in an NVT ensemble for 100 ns with the trajectory 

printed for re-analysis every 50 ps. We ran 42 simulations at a λ interval of 0.025 (except 

below the point at 0.025 where the simulations became unstable, however this represents 

a small error in our calculation and may be excluded). The integration was performed 

using the trapezoidal rule to obtain the free energy of solvation.  

Comparison of our results with "experimental" tabulations of free energies of solvation 

is not a simple matter. In addition to ensuring that the results are converged with respect 

to the size of the simulation cell, it is also necessary to correct for polarisation effects 

and for the electrostatic potential generated at the site of the ion in a manner consistent 

with the assumptions that underly the tabulations we wish to compare with. Such issues 
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have been discussed by various authors[45-48] who have reached apparently different 

conclusions. We consider this matter in the following section. 

 

4.3 Results and discussion 

We have fitted force-fields for all five alkali metal nitrates using the procedures outlined 

above. The parameters are given in Table 4.5. We begin by investigating how well the 

various force-fields can describe the relative stability for all the polymorphs reported 

for alkali metal nitrates[4]. 

 

Figure 4.2. Lattice energies for possible polymorphs of alkali metal nitrates as indicated by filled symbols.  Different crystal 

structures are shown in different colours: calcite (blue), aragonite (red), RbNO3 phase IV structure (yellow) ferroelectric 

trigonal (purple). The stable low temperature polymorphs are calcite (Li, Na), aragonite (K) and RbNO3 phase IV (Rb, Cs). 

The ionic radii come from Shannon[44]; Roman numerals denote the coordination number to which they refer. 

 

Figure 4.2. shows that the new force-field predicts (qualitatively) the correct stable 

polymorph for each of the alkali metal nitrates. It also predicts the correct structure for 

the only case where the crystal structure of a mixed alkali halide is known 

(NaRb2(NO3)3). These results give confidence in the transferability of the forcefield. A 

fuller discussion of these issues, including the behaviour of other force-fields, is given 

in Section 4.3.3. We compared the predictions of the force-fields with experimental 

static dielectric constant data (Table 4.6) and with elastic stiffness and crystal structure 

data obtained both from experiment and from ab-initio calculations (Table 4.7). The 
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lattice parameters are also in excellent agreement with experiment (the experimental 

lattice parameters are corrected to those for a static lattice i.e. the effects of temperature 

and zero-point vibrations are removed). The fit for the KNO3 aragonite phase is shown 

in Figure 4.3.  

Table 4.6 Comparison between dielectric constants calculated using various force-fields and experimental values for the 

aragonite phase of potassium nitrate (KNO3). *Note that the axes have been changed from the original references to conform 

to the crystallographic axes used for the Pnma space group in ref [18]. 

 11 22 33 

Expt [33] 2.28 1.56 2.25 

Force-field (this work) 3.6 2.9 2.8 

Force-field [6] 1.79 2.55 2.47 

Force-field [7] 0.5 2.17 2.11 

Force-field [8] 3.5 4.24 3.95 

Force-field [9] 2.58 2.22 2.33 

Force-field [10] 2.6 2.86 2.66 

 

The agreement with the experimental dielectric[33] and elastic constants (extrapolated to 

0 K)[32] shown in Tables 4.6 and 4.7 is as good as that obtained with previous sets of 

parameters where comparison is possible.  

Table 4.7(a) Comparison of the lattice parameter ‘a’ using this work L-J force-field, DFT and experimental data. All the 

values are expressed in Å. 

 Lennard-Jones DFT experimental 

aragonite 6.04 5.93 5.96 

trigonal 5.47 4.10 5.41 

 

Table 4.7 also shows that the forcefields compare reasonably well with the results of 

density functional calculations for the elastic properties. However, the new force-field 

improves on previous work in its ability to reproduce the experimental lattice dynamics. 

All previous force-fields show instabilities in the phonon spectra for at least some of the 

alkali nitrate polymorphs to which they were fitted except for those of Hammond[5]. This 

indicates that the structures obtained using previous force-fields were calculated using 
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the full crystal symmetry and will distort away from the experimental crystal space 

group if the symmetry constraint is reduced or removed.  

 

Figure 4.3 Lattice parameter fits for potassium nitrate (aragonite and trigonal (ferroelectric) structure) 

 

 

Table 4.7(b) Comparison between elastic stiffness constants (GPa), calculated using various force-fields and density 

functional calculations and experimental values for the aragonite phase of potassium nitrate (KNO3). *Note that the axes (and 

hence the Voigt notation) for the elastic constants has been changed from the original references to conform to the 

crystallographic axes used for the Pnma space group in ref [18]. $Values extrapolated back from the measured values at 293 

K to 0 K using the thermo-elastic constants reported in the same paper [32]. 

  C11 C22 C33 C44 C55 C66 C12 C13 C23 

Expt (ref [32])*$ 26.1 49.7 40.7 10.5 9.6 7.0 12.8 14 22.1 

Force-field (this work) 15.3 39.3 28.4 8.4 9.6 8.2 8.5 9.5 16.2 

Force-field (ref [6]) 18.1 41.3 32.8 10.1 10.3 8.9 9.6 11 17.6 

Force-field (ref [7]) 44.7 59.9 39.3 11.7 15.1 13.5 20.1 21.9 30.4 

Force-field (ref [8]) 24.4 42.6 35.1 9.9 12.4 11.1 7.4 9 20 

Force-field (ref [9]) 9.9 37.6 29.0 8.00 8.0 6.7 13.3 13.3 18.9 

Force-field (ref [10]) 18.1 39.5 30.6 9.6 10.5 8.8 10.1 11.4 17.2 

DFT (this work) 28.7 64.6 37.6 11.3 8.8 7.2 18.4 14.5 34.6 

DFT (ref [45]) 21.9 40.2 32.9 9.6 8.8 7.3 10.4 12.1 17.3 
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To obtain the interaction between the nitrate anion and the water molecules, we fit to 

the experimental crystal structure of the only known hydrate of the alkali metal nitrates, 

LiNO3
.3H2O

[46]. We assumed the lithium interactions given in Tables 4.1 and 4.5, the 

nitrate model of Table 4.2 and the water model of Table 4.4. We use mixing rules for 

the interactions between the nitrate oxygen and water oxygen atoms. This leaves only 

the interaction between the hydrogen atoms of water and the oxygen atoms of the nitrate 

ion to fit. All the parameters for the interactions between water and the nitrate ion are 

given in Table 4.8 and the comparison with the structure of LiNO3
.3H2O in Table 4.9. 

Table 4.8 Interactions between water and the nitrate anion using a Buckingham potential form 𝑉(𝑟) = 𝐴𝑒𝑥𝑝(−𝑟 𝜌⁄ ) − 𝐶 𝑟6⁄  

Interactions A(eV) 𝝆 (Å) C(eV Å6) 

H(H2O)-O(NO3
-) 577.7 0.226352 0.0 

O(H2O)-O(NO3
-) 225677 0.18661 29.0 

 

 

Table 4.9 Comparison with structural data for LiNO3.3H2O (space group Cmcm (63))[46]. Comparison of the atomic positions 

can be found in Section 4.3.5. 

Lattice  

parameters 

expt force-field 

a (Å) 6.8018 6.7756 

b (Å) 12.7132 12.7464 

c (Å) 5.9990 5.9296 

 

4.3.1 Comparison of force-fields with crystal structures  

Previous work on developing force-fields appears to have performed the fit to the experimental 

data using a lattice statics approach for the simulation but without correcting for the effects of 

the temperature at which the experiments were performed or for zero temperature vibration 

effects. Table 4.10 gives a comparison for all these force-fields with the experimental lattice 

parameters corrected to a zero temperature static lattice to match the conditions of the 

simulation. The final column of the table gives an indication of the quality of the fit defined as 

𝐺𝑜𝐹 = 100 ∑ |𝑀𝑖 − 𝐸𝑖| |𝐸𝑖|⁄𝑖                             (4.4) 

where (Mi, Ei) are the ith model prediction and Ei is the corresponding experimental data point. 

Hence the lower the value of GoF, the better the fit. 
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Table 4.10 Comparison of current force-field with experimental data (in italics; corrected to a static lattice) and previous 

forcefields 

Nitrate Phase a (Å) b (Å) c (Å) Goodness of fit (GoF) 

LiNO3 calcite (expt)[10s] 4.6368 4.6368 14.8373  

This work (DFT including dispersion term) 4.5994 4.5994 14.9582   

This work 4.6016 4.6016 14.9659 2.4 

Hammond[5] 4.7108 4.7108 14.8927 3.6 

Jayaraman[11] 4.71 4.71 14.9677 3.9 

Ni[8] 4.7076 4.7076 14.9678 3.9 

Ribeiro[6] 4.7051 4.7051 14.9723 1.1 

Xie et al[7] 4.506 4.506 15.2709 8.7 

NaNO3 calcite (expt)[16s] 5.0493 5.0493 16.1893  

This work (DFT including dispersion term) 5.0328 5.0328 16.1856  

This work 5.033 5.033 16.1835 0.6 

Mort[9] 4.957 4.957 17.0603 9.0 

Jayaraman[11] 5.1335 5.1335 16.3624 4.5 

Ni[8] 5.1325 5.1325 16.3638 4.5 

Ribeiro[6] 5.1299 5.1299 16.3757 4.2 

Xie[7] 4.9013 4.9013 16.5613 8.1 

KNO3 aragonite (expt)[18] 6.044 5.3772 9.104  

This work (DFT including dispersion term) 5.9255 5.3629 9.0147  

This work (forcefield) 5.9576 5.4546 9.132 3.3 

Mort[9] 6.6017 5.3516 9.023 10.5 

Jayaraman[11] 6.1291 5.4591 9.1297 3.3 

Ribeiro[6] 6.0894 5.4528 9.2161 3.3 

KNO3 trigonal ferro-electric (expt)[20] 5.41 5.41 8.67  

This work (DFT including dispersion term) 5.3886 5.3886 8.5514  
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This work 5.4726 5.4726 8.5597 3.6 

Mort[9] 5.6763 5.6726 7.4723 23.7 

Jayaraman[10] 5.4849 5.4849 8.6153 3.3 

Ribeiro[6] 5.3666 5.3666 8.8189 3.3 

RbNO3 trigonal (expt)[23] 10.3313 10.3313 7.2282  

This work 10.3061 10.3061 7.251 0.6 

Hammond[5] 10.5686 10.5686 7.3849 6.9 

CsNO3 trigonal (expt)[24] 10.642 10.642 7.543  

This work 10.7015 10.7015 7.51 1.5 

Ribeiro[6] 10.6526 10.6526 7.574 1.5 

 

 

Table 4.11 Comparison of force-field prediction with structural data for LiNO3∙3H2O[71] 

Structure (Cmcm)  expt forcefield 

a (Å) 6.8018 6.7756 

b (Å) 12.7132 12.7464 

c (Å) 5.9990 5.9296 

Li (fractional)  0, 0, 0 0, 0, 0 

N (fractional)  0, 0.2176, ¼ 0, 0.2098, ¼ 

 O (fractional) 0, 0.1703, 0.0701 0, 0.1605, 0.0667 

O (fractional) 0, 0.3161, ¼ 0, 0.3074, ¼ 

O (fractional) 0.2903, 0.4784, ¼ 0.2902, 0.4816, ¼ 

O (fractional) 0, 0.6382, ¼ 0, 0.6295, ¼ 

H (fractional) 0.2169, 0.4144, ¼ 0.2278, 0.4085, ¼ 

H (fractional) 0.3057, 0.0341, ¼ 0.3220, 0.0373, ¼ 

H (fractional) 0, 0.6826, 0.1227 0, 0.6776, 0.1119 

 

The force-field also works well for solid solutions as can be seen from Table 4.12, which shows 

the ability of the force-field to reproduce the crystal structure of ordered mixed nitrates where 

the experimental information is available. The Lorenz-Bertholet rules were used to generate 

the force-fields between unlike cations. 
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Table 4.12 Comparison of experimental[72] crystal structure of NaRb2(NO3)3 and force-field. 

Structure (Pmc21) expt force-field 

a (Å) 5.313 5.3103 

b (Å) 9.077 8.8598 

c (Å) 9.700 9.5617 

Rb (fractional) ½, 0.0828, 0.5326 ½, 0.0828, 0.5326 

Rb (fractional) ½, -.3784, 0.7065 ½, -.3803, 0.7087 

Na (fractional) 1, 0.2987, 0.7520 1, 0.2943, 0.7612 

N (fractional) 1, -.0531, 0.7396 1, -.0625, 0.7456 

N (fractional) ½, -.2517 0.3837 ½, -.2527, 0.3900 

O (fractional) 1, 0.0592, 0.6636 1, 0.0574, 0.6756 

O (fractional) 0.7910, -.1055, 0.7734 0.7955, -.1208, 0.7816  

O (fractional) 0.2975, -.2289, 0.4447 0.2959, -.2276, 0.4503  

O (fractional) ½, -.2987, 0.2620 ½, -.3040, 0.2683  

O (fractional) 1, 0.5419, 0.8310 1, 0.5339, 0.8387  

O (fractional) 0.7977, 0.3903, 0.5120 0.7970, 0.3805, 0.5219  

 

4.3.2 Stability of polymorphs 

The only reliable values for the enthalpy differences between nitrate polymorphs[32] are for 

KNO3 (phase II; aragonite, (Pnma) → phase I, trigonal (𝑅3̅𝑚)); Δ𝐻 = 5.0 kJ mol-1) and for 

RbNO3 (phase IV (P31) → phase III (𝑃𝑚3̅𝑚)); Δ𝐻 = 4.0 kJ mol-1). These are small numbers 

and hence represent a challenge. Of the available force-fields which consider the three nitrates 

(Li, Na, K), only Jayaraman[11] and this work get the correct stable polymorph for all cases. 

Only the current work obtains lattice energies in reasonable agreement with experiment for all 

five nitrates (Table 4.13). 
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Table 4.13 Energy of polymorphs with respect to the most stable one (kJ mol-1) as predicted by different force-fields. Dashes 

indicate the failure of a forcefield to optimise a particular structure. The most stable polymorph is emphasised in bold. 

Structures / nitrates LiNO3 NaNO3 KNO3 

Calcite 0.0 (Hammond)[5] 

0.0 (Jayaraman)[10] 

0.0 (Ni)[8] 

0.0 (Ribeiro)[6] 

0.0 (Xie)[7] 

0.0 (This work) 

7.7 (Mort)[9] 

0.0 (Jayaraman)[10] 

6.8 (Ni)[8] 

0.0 (Ribeiro)[6] 

0.0 (Xie)[7] 

0.0 (This work) 

  -     (Mort)[9] 

1.0   (Jayaraman)[10] 

16.4 (Ni)[8] 

  -     (Ribeiro)[6] 

0.0   (Xie)[7] 

1.9   (This work) 

Trigonal 29.0 (Hammond)[5] 

30.0 (Jayaraman)[10] 

15.0 (Ni)[8] 

38.0 (Ribeiro)[6] 

37.0 (Xie)[7] 

30.0 (This work) 

5.8    (Mort)[9] 

16.4 (Jayaraman)[10] 

0.0   (Ni)[8] 

 -      (Ribeiro)[6] 

16.4 (Xie)[7] 

49.0 (This work) 

1.0   (Mort)[9] 

6.8   (Jayaraman)[10] 

0.0   (Ni)[8] 

  -     (Ribeiro)[6] 

0.0   (Xie)[7] 

6.8   (This work) 

Aragonite 7.7  (Hammond)[5] 

10.6 (Jayaraman)[10] 

15.0 (Ni)[8] 

38.0 (Ribeiro)[6] 

37.0 (Xie)[7] 

30.0 (This work) 

0.0   (Mort)[9] 

10.6 (Jayaraman)[10] 

3.9   (Ni)[8] 

 -      (Ribeiro)[6] 

10.6 (Xie)[7] 

6.8   (This work) 

0.0   (Mort)[9] 

0.0   (Jayaraman)[10] 

9.6   (Ni)[8] 

  -     (Ribeiro)[6] 

0.0   (Xie)[7] 

0.0   (This work) 

RbNO3 (IV) structure 8.0 (Hammond)[5] 

8.4 (Jayaraman)[10] 

1.0 (Ni)[8] 

  -  (Ribeiro)[6] 

2.9 (Xie)[7] 

11.6 (This work) 

6.8   (Mort)[9] 

6.8  (Jayaraman)[10] 

0.0  (Ni)[8] 

  -    (Ribeiro)[6] 

3.9  (Xie)[7] 

5.8 (This work) 

4.8    (Mort)[9] 

4.8    (Jayaraman)[10] 

19.3  (Ni)[8] 

  -      (Ribeiro)[6] 

10.6  (Xie)[7] 

3.9   (This work) 
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Table 4.14 Lattice energies (kJ mol-1) for alkali metal nitrates compared with those obtained from those obtained from the 

NBS Tables[70]. Values quoted for the stable polymorph at standard temperature and pressure (STP). Dashes mean either 

that no forcefield is available or that the forcefield could not produce a stable minimised structure. 

 Alkali metal nitrate 

(STP stable polymorph) 

LiNO3 

(calcite) 

NaNO3 

(calcite) 

KNO3 

(aragonite) 

RbNO3 

(RbNO3 IV) 

CsNO3 

(RbNO3 IV) 

Experiment[9] -832.61 -740.91 -672.59 -648.85 -627.63 

This work -836.3 -755.3 -650.0 -642.1 -627.3 

Hammond[5] -734.3 - - -523.5 - 

Jayaraman[10] -804.1 -732.1 -675.9 - - 

Ni[8] -804.4 -732.2 -681.8 - - 

Ribeiro[6] -804.5 -732.4 - - - 

Xie[7] -909.6 -818.4 -731.6 - - 

Mort[9] - -1344.4 -1261.2 - - 

 

4.3.3 Comparison with crystal properties 

Most previous forcefields fail to calculate phonon spectra for the stable polymorph at STP. The 

only exceptions are Hammond[5] (LiNO3 and RbNO3), Jayaraman[10] and Xie[8] (both for KNO3 

only). All the other cases where forcefields are available yield negative eigenvalues along at 

least of one the main symmetry directions of the phonon spectrum. The existence of these 

imaginary modes means that their predicted structures are stabilised only by the symmetry 

constraints imposed by the space group used. The figures below show dispersion curves for 

sodium and potassium nitrate obtained using the force-field fitted here (Figure 4.4-4.7) and the 

available neutron diffraction data[73,74]. In this case, no imaginary mode is present and it is 

possible to see a resemblance with the experimental pattern. Note that the high-frequency 

modes associated with the vibrations of the nitrate ion are omitted here for reasons of space. 

They form a narrow band in the range 1350-1400 cm-1 whose position is only weakly dependent 

on the nitrate in question. The position of the band is consistent with the available Raman 

data[75]  There is reasonable agreement between the experimental data available for sodium 

nitrate and the result obtained with the force-field presented in this work. 
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Table 4.15 Elastic stiffness constants for LiNO3 calculated with different force-fields and compared with experimental data. 

(C14 is omitted from the goodness of fit calculation) 

 C11 C33 C44 C66 C12 C13 C14 GoF 

Expt (GPa)[32] 119.2 77.8 23.7 42.6 32.7 19.9 -0.7  

This work 120.7 86.8 21.1 39.1 42.4 21.4 5.6 69.2 

Hammond[5] 97.9 48.5 23.2 31.6 34.8 34.7 12.7 164 

Jayaraman[10] 79. 1 48. 9 18.9 27.2 24. 8 21.1 8.7 137 

Xie[8] 163.0 151.0 32.5 58.6 45.9 36.2 4.8 328 

 

Table 4.16 Elastic constants for NaNO3 calculated with forcefield and compared with experiment. 

 C11 C33 C44 C66 C12 C13 C14 GoF 

Expt (GPa)[25] 72 38 17.8 24.1 24 21.7 12.5  

This work 70.9 33 18.1 23.2 24.6 25.3 12.2 41.6 

Mort[9] 53.5 23.4 9.1 14.3 24.9 25.8 7.7 341 

Jayaraman[10] 55.7 23.4 13.7 18.2 19.4 18.6 8.8 166 

Ni[8] 56.4 23.4 13.7 18.4 19.6 18.8 8.9 167 

Ribeiro[6] 59.1 23.6 13.7 20 19.2 19.2 9.2 154 

Xie[7] 93.9 60.4 25.1 28.4 37 40.6 15 309 
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Figure 4.4 Phonons NaNO3 obtained with this force-field (black lines) compared with experiment[32] (red symbols). 

 

Figure 4.5 Phonons for KNO3 (Σ direction) obtained with this force-field (black curves) compared with experiment[73]( 

red symbols) 
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Figure 4.6  Phonons for KNO3 (Δ direction) obtained with this force-field (black curves) compared with 

experiment[73](red symbols). 

 

Figure 4.7 Phonons for KNO3 (Λ direction) obtained with this force-field (black curves) compared with experiment[73](red 

symbols). 
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4.3.4 The Lattice thermal expansion 

Table 4.17 Comparison between lattice parameter ‘a’ for various alkali metal nitrates, obtained using this ff Lennard-Jones, 

Buckingham and experimental values. All the values are expressed in Å. 

 Lennard - Jones Buckingham Experimental 

 0 K 300 K 0 K 300 K 0 K 300 K 

LiNO3  4.6368 4.692 4.5995 4.6477 4.6016 4.6221 

NaNO3  5.0493 5.0701 5.0327 5.0552 5.033 5.0491 

KNO3 - aragonite 6.003 6.4512 6.044 6.436 5.9576 6.5155 

KNO3 - trigonal 5.4726 5.5168 - - 5.41 5.469 

RbNO3  10.3313 10.55 10.3093 10.5516 10.3061 10.5503 

CsNO3  10.642 11.0093 10.6655 10.9095 10.6546 10.8796 

 

4.3.5 Simulation of the crystal structures at high temperature 

We finally turn to a more detailed consideration of the structures predicted by the 

simulations. NPT molecular dynamics simulations were performed as previously 

described and showed that for the lithium nitrate system the structure is calcite-like 

(space group R3̅c) at all temperatures and the peaks retain their shape (Figure 4.8). The 

structure loses some long-range order when the system is heated up from 100 K to 500 

K (peaks between 4.5 and 5 Å and between 5 and 7.8 Å merge). However, changes in 

the polymorph are not visible (lithium nitrate is monotropic as experimentally reported). 

If the temperature is raised to 600 K the long-range order decays further (peaks shift to 

the right/broaden and their height decreases). At greater atomic separations, the lack of 

coherence becomes more evident with more peaks merging (around 6, 7 and 9 Å). The 

behaviour is similar for sodium nitrate (Figure 4.9). At all temperatures, the structure is 

calcite-like (space group R3̅c); the peaks lose their shape as the temperature rises. 
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Figure 4.8 Radial distribution functions for Li-O (top) and Li-N (bottom) in LiNO3. 

0.00

1.00

2.00

3.00

4.00

5.00

6.00

7.00

8.00

0
.0

0
.3

0
.6

0
.9

1
.2

1
.4

1
.7

2
.0

2
.3

2
.6

2
.8

3
.1

3
.4

3
.7

4
.0

4
.3

4
.5

4
.8

5
.1

5
.4

5
.7

5
.9

6
.2

6
.5

6
.8

7
.1

7
.3

7
.6

7
.9

8
.2

8
.5

8
.8

g
(r

)

Li-O distance (Å)

100K

300K

500K

0.00

2.00

4.00

6.00

8.00

10.00

12.00

14.00

0
.0

4

0
.3

2

0
.6

0

0
.8

8

1
.1

6

1
.4

4

1
.7

2

2
.0

0

2
.2

9

2
.5

7

2
.8

5

3
.1

3

3
.4

1

3
.6

9

3
.9

7

4
.2

5

4
.5

4

4
.8

2

5
.1

0

5
.3

8

5
.6

6

5
.9

4

6
.2

2

6
.5

0

6
.7

9

7
.0

7

7
.3

5

7
.6

3

7
.9

1

8
.1

9

8
.4

7

8
.7

5

g
 (

r)

Li-N distance (Å)

100K

300K

500K



 

 

143 

 

 

 

Figure 4.9 Radial Distribution Function for Na - O (top) and Na - N (bottom) in NaNO3 
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Figure 4.10 Radial Distribution Function for Na - N in NaNO3 for the two different polymorphs (R3c, blue line and R3m, 

orange line) extracted at 300K. 

Analysing the R3m sodium nitrate structure at different temperatures is possible to notice no 

interconversion of the structure as well into the previously presented R3c. The energetic order 

is clearly retained, showing the R3m structure being more stable.  This effect can be explained 

by considering an entropic contribution to the configurational energy. 

 

Table 4.18 Energy values of the two different polymorphs of NaNO3 (R3c and R3m) at 600K. 

  R3m R3c 

600 K -7.731 eV -7.528 eV 

 

Potassium nitrate is a more interesting case to study because the RDFs show evidence 

for three different polymorphs (see Figure 4.13): the ferroelectric trigonal structure 

(space group R3m) at 100 K; the aragonite structure at 300 K and the trigonal R3̅m 

structure, (quasi-calcite form) at 500 K. On cooling down the system returns to the 

original structure but not directly. Cooling down the 500 K trigonal structure gives a 

distorted aragonite structure, whereas the 300 K structure returns to the ferro-electric 
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trigonal form on further cooling. This suggests that the force-field is able to reproduce 

the polymorph changes and shows that those changes are temperature-dependent 

(potassium nitrate is enantiotropic). Figure 4.14 shows the good agreement between the 

experimental K-O distances obtained by X-ray diffraction[75] and those obtained by 

simulation. 

 

Figure 4.11 Radial Distribution Function for K - N in KNO3 as the temperature increases. The yellow line represents the 

system at 100 K, the blue line at 300 K and the green line at 500 K. 

 

Figure 4.12 Radial Distribution Function for K - N in KNO3 as the temperature decreases. The yellow line represents the 

system at 100 K, the blue line at 300 K and the green line at 500 K. 
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Figure 4.13 Radial Distribution Function for K - O in KNO3 as the temperature increases. The yellow line represents the 

system at 100 K, the blue line at 300 K and the green line at 500 K, the dotted line (same colours) represent the cooling 

down of the system 

 

 

Figure 4.14 Radial Distribution Function for K-O in KNO3 obtained by cooling down the simulation at 500 K 

(blue) and the RDF of the polymorph obtained from cooling down the aragonite structure (red). Dotted lines 

represent the positions of XRD[75]  peaks for the experimental R3m structure[13]. 
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4.3.6 Calculating the corrections to the free energy of hydration 

We considered a small correction for the definition of the standard state used by Marcus[68] 

(connected with the change in volume that is available to the solute when it moves from the 

gas to the aqueous phase). The correction is the same for all ions and is + 7.93 kJ mol-1  

The data required to calculating the corrections is given in Table 3.4, Chapter 3, Section 3.5.2.2. 

The values used to obtain the corrections for the current work also given. More details of the 

origin of these corrections can be found in the supplementary material of the reference cited in 

Chapter 3. 

The most important correction omitted by Joung and Cheatham is the one involving the 

electrostatic potential at the site of the cation. When this is added, their result for the free energy 

of hydration of the potassium ion becomes -371 kJ mol-1.      

 

4.3.7 Solubility  

Using the method described by Boothroyd et al.[69] studies regarding the solubility of the alkali 

metal nitrates systems have been performed. To obtain those data, values for both the free 

energy of formation of water and the enthalpy of formation of water at 298.15 K have been 

used, respectively equal to -237.149 kJ/mole and -285.83 kJ/mole. All thermodynamic 

quantities reported in Table 4.19 are calculated at 298.15 K.  Formation enthalpies and free 

energies are reported with respect to elements in standard states. One needs to apply a 

correction of +2.29 kJ/mole to enthalpies when going from ideal gas to solution 

Table 4.19 Thermodynamic properties for alkali metal nitrates systems 

Compound Solubility (expt) 

saturation conc 

Free energy of 

formation of 

salt [70] 

Enthalpy of 

formation of 

salt [70] 

Free energy of 

formation; dilute 

solution [70] 

Enthalpy of 

formation; dilute 

solution [70] 

 molality/kg water kJ/mole kJ/mole kJ/mole kJ/mole 

NaCl 6.15 -384.148 -411.153 -393.133 -407.27 

LiNO3 12.3 -381.1 -483.13 -404.5 -485.85 

NaNO3 10.8 -367.0 -467.85 -373.15 -447.48 

KNO3 3.75 -394.86 -494.63 -394.53 -459.74 

RbNO3 4.45 -395.78 -495.05 -395.24 -458.52 

CsNO3  -406.54 -505.97 -403.27 -465.52 

LiNO3.3H2O 12.3 -1103.5 -1374.4 -404.5 -485.85 
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Compound Free energy of 

solution [70] 

Enthalpy of 

solution [70] 

Lattice enthalpy 

[70] 

Formation Energy; 

gas cation [70] 

Formation Energy; 

gas anion [70] 

 kJ/mole kJ/mole kJ/mole kJ/mole kJ/mole 

NaCl -9.00 +3.88 -787.38 609.358 -233.13 

     Jenkins[63] 

LiNO3 -23.4 -2.72 -832.61 685.783 -336.3 

NaNO3 -6.15 +20.37 -740.91 609.358 -336.3 

KNO3 +0.33 +34.89 -672.59 514.26 -336.3 

RbNO3 +0.54 +36.53 -648.85 490.101 -336.3 

CsNO3 +3.27 +40.33 -627.63 457.964 -336.3 

      

LiNO3.3H2O -12.39 +31.06 -1720.48 685.783 -336.3 

 

Compound Free energy of 

cation hydration[64] 

Enthalpy of cation 

hydration[64] 

Free energy of 

anion hydration 

Enthalpy of anion 

hydration[64] 

Enthalpy of 

solution[64]* 

 kJ/mole  kJ/mole  kJ/mole  kJ/mole  kJ/mole 

NaCl -365 -415 -340 -365 12.0 

LiNO3 -475 -531 -300 -310 -3.8 

NaNO3 -365 -415 -300 -310 20.5 

KNO3 -295 -334 -300 -310 34.2 

RbNO3 -275 -308 -300 -310 35.5 

CsNO3 -250 -283 -300 -310 40.1 

LiNO3
.3H2O -475 -530 -300 -310 22.5 

 

The data contained in this section will be used in the work reported in chapter 5. Also, 

a section containing information about density of the solution and analysis of the 

behaviour of a pure solution have been included in that chapter, because the rest of the 

work included there uses those values as a logical starting point. 

 

4.4 Conclusions 

In this Chapter, we discussed the need for a reliable, transferable force-field for the alkali 

metal nitrates that can be used for all the nitrates including solid solutions.  Our force-
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field reproduces the order of stability of the polymorphs for each alkali nitrate, the 

crystal structures of the polymorphs together with the elastic and dielectric properties of 

the materials where these are available. Stable phonon spectra (i.e. no imaginary modes) 

are obtained in all cases. The model also behaves well as a function of temperature, 

reproducing the experimental lattice expansion and also showing the transformation of 

the structures to disordered forms (due to the thermally activated rotation of the nitrate 

groups) where appropriate. The model is also compatible with the well-known model of 

Joung and Cheatham[26] for alkali metal ions in solution. Future work will demonstrate 

the application of this model to aqueous interfaces and crystallisation. 

 

4.5 Appendix – Force-field fitting details 

The fitting process begins with a set of crystal structures (e.g. potassium nitrate structures). A 

range of common functional forms are chosen such as  a Lennard-Jones potential, Coulombic 

interactions for electrostatics, and bond, angle, and dihedral terms to denote bond stretching, 

angle bending, and torsional rotations. A set of reference data, (experimental observations 

and/or quantum mechanical computations) are used for the fitting process. This information 

could be vibrational frequencies, interaction energies, dihedral angles, equilibrium bond 

lengths, or angles. 

The force field parameters (e.g., bond strengths, atomic charges, van der Waals parameters) 

are adjusted or "fit" to reproduce the reference data as closely as possible. This is done through 

an iterative optimisation process. An objective function or cost function is defined to quantify 

the difference between the force field's predictions and the reference data. The goal is to 

minimise this objective function during the fitting process. GULP employs optimisation 

techniques, such as nonlinear least-squares fitting or genetic algorithms, to adjust the force 

field parameters iteratively. The optimisation seeks to minimise the difference between the 

computed force field properties and the reference data. 

The optimisation process continues until certain convergence criteria are met. These criteria 

could include reaching a minimum value for the objective function or achieving specific 

tolerances on the fitted parameters. Once the force field parameters are determined, it is 

essential to validate the force field's predictive accuracy. This is typically done by comparing 

the force field's predictions to additional reference data that was not used in the fitting process. 
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The force field should provide good agreement with experimental or high-level quantum 

mechanical results for a variety of molecular or material properties. 

The final set of force field parameters is stored for future use in simulations. These parameters 

can then be used to model the interactions in molecular dynamics simulations, Monte Carlo 

simulations, or other types of simulations in GULP and translated into other programs. 

Force field fitting in GULP is a crucial step in accurately representing the interactions between 

atoms or molecules in a system. The success of the force field depends on the quality and 

diversity of the reference data and the effectiveness of the parameter optimisation process. 

 

 

Figure 4.15 Scheme of the fitting process using GULP for this force field 
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Chapter 5 

 

Supersaturated solutions of Potassium Nitrate 

This chapter will focus on work examining the behavior of potassium nitrate in a pure, 

homogeneous, supersaturated solution. 

As previously mentioned, nucleation is a rare event, therefore with the use of classical 

molecular dynamics, the goal was not to see the formation of one or multiple nuclei, but instead 

to check for clustering, and to see if any of those clusters would resemble a polymorph 

nucleating in solution. 

Calculations have been performed at various concentrations, all above the expected saturation 

value [1]. 

 

5.1 Behaviour of KNO3 solutions 

Starting from a box of water and potassium nitrate, molecular dynamics simulations 

using DL_POLY in an NVT ensemble have been performed (2,000 water molecules and 

50 potassium nitrate formula units). The radial distribution function (RDF) for KNO3-

water was extracted and analysed (see Figure 5.1). The first maximum in the RDF for 

the nitrogen and the oxygen in the water molecule (rmax (N–Ow)) is at 3.59 Å, shows 

good agreement with those found in the literature (Table 5.1). 

Table 5.1 Comparison between rmax(N-Ow) obtained in this work and available data in literature 

 rmax (N–Ow)  

Experimental[59] 3.5 ±0.311 Å 

Xie et al.[7] 3.65 Å 

Dang et al.[60] 3.40 Å 

Banerjee et al.[61] 3.50 Å 

This work  3.59 A 

 



158 

 

 

Figure 5.1 Radial distribution function (RDF) for nitrogen of nitrate- oxygen of the water at 300K 

 

 

The coordination number of water oxygen atoms around the nitrogen has been 

calculated (9.6), by integrating the RDF and shows good agreement with the values from 

previous literature as seen in Table 5.2 

 

Table 5.2 Comparison between coordination number obtained in this work and available data in literature. 
 

 

 

 

 

 

 

Starting from various boxes containing the theoretically exact calculated value for 

molality, the true density of the solution has been extracted and plotted in Figure 5.2. 

The trend is in perfect agreement with the experimental one and the offset visible can be 

explained by considering that the density of the water model used (SPC-Fw), as highlighted in 

Table 5.3 is 15 kg/m3 larger than the experiment al value. 
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Table 5.3 Comparison of density values, for pure water at room temperature. 

 Pure water density, 298.15K 

Wu et al.[3] 1012 kg/m3 

Exp. 997 kg/m3 

 

 

Figure 5.2 Comparison between experimental density of KNO3 solution and the values obtained using force-field from this 

work [2] 

 

5.1.1 Classical Molecular Dynamics 

A set of filled boxes containing various concentrations of potassium nitrate were built using 

PACKMOL[4]. 

 

Figure 5.3. 6 molal box of potassium nitrate. Purple balls represent potassium ion, blue ball represent the nitrogen, red 

balls oxygens from the nitrate group and water, white balls represent the hydrogens from water. 
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Various numbers of formula units of KNO3 were randomly packed into a cube with a volume 

based on the density data extracted from Figure 5.2. Concentration varied from 6 molal to 12 

molal (including 8m and 10m). MD simulations were performed using the DL POLY_4 

package[5]. All the boxes have been pre-equilibrated using an npt ensemble, with a Nose-

Hoover barostat, at 300 K and 1 atmosphere of pressure for 2 ns. There was little to no 

fluctuation in the volume and the final configuration was used as a starting point.  

The MD was performed with a nvt ensemble and run with a time step of 0.5 fs for a total of 10 

ns, after the system had reached convergency. Potassium nitrate and its interactions with water 

were modelled using the force-field developed in this work, see Chapter 4[2]. 

 

5.1.1.1 Radial distribution functions 

Radial distribution functions have been extracted and analysed for all the different 

concentrations after the 10 ns runs. In the attempt to find a resemblance in the organisation of 

the ions in solution, with the polymorph structure, significant guidance can come from the 

analysis of the RDF: the two different polymorphs of KNO3 differ from one another in the 

coordination of K with respect to the oxygens of the nitrate group. This information can be 

derived by the integration of the first peak of said RDF. The aragonite structure shows a 

coordination number of 9, and the calcite structure a coordination of 6. 

Figure 5.4 shows the RDF of the K to ON (oxygen of the nitrate anion) interaction in a block 

of solid KNO3-aragonite. At 0 K the first peak (first coordination shell) is split in two, as it 

differentiates the oxygens in the plane between the oxygens perpendicular to the potassium 

core (the first peak integrates to 3.6, while the second to 5.4). 

However, by 300 K the nitrate groups are ‘spinning’, as shown in Figure 5.6, leading to  

rotational disorder. Their position is no longer stable in time, as captured by the two snapshots, 

and therefore the RDF peaks now merged and what we obtain is an average of the two, with a 

non-integer integral number, (instantaneous position of the oxygen might be away from the 

expected position). The integration of the peak results in a coordination number of 8.6, which 

can be approximated to the aragonitic structure. 
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Figure 5.4 RDF for the K to O(NO3) solid potassium nitrate (aragonite) at 0K 

 

Figure 5.5 RDF for the K to O(NO3) solid potassium nitrate (aragonite) at 300K. 
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Figure 5.6 Snapshot of a KNO3-aragonite box in two different timesteps of the simulation. Black circle highlights how the 

same nitrate group changes position though the simulation. 

The analysis of the RDF for all the different concentrations in solution shows a clear (Table 

5.4) coordination maximum of 11 oxygens. As the concentration increases, the number of those 

oxygens belonging to a nitrate group increases, while the number of oxygens belonging to a 

water molecule decreases. There is less hydration around the potassium as the concentration 

increases, which might favour clustering. The following section will explore this possibility in 

detail. 

Table 5.4 Coordination number for K in respect to O of the nitrate group and O of the water for different molality boxes 

 Coordination number 

 K-ON K-OW total 

6 m 4.7 5.3 11 

8 m 5 6 11 

10 m 6.7 4.3 11 

12 m 7.5 3.5 11 

 

5.2 Cluster Analysis 

A system behaving according to classical nucleation theory should keep forming and dissolving 

nuclei until they reach and overcome the critical radius, as previously discussed in Chapter 1, 

Section 1.3.1.  

K ions were recorded as being in a cluster if they were within 4.5 Å of another K ion. 

Clusters fall between small molecules or ions in solution and bulk material. We define a cluster 

as an aggregate of a countable number of particles (from 2 to 10n, where n can be up to 6 or 7). 
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The constituent particles may be identical (homo-atomic) or molecular, (Aa) or contain two or 

more different species (hetero-atomic or molecular clusters AaBb). We might consider defining 

the clusters by the number of potassium atoms or clusters of potassium and nitrate ions. 

Clusters are of importance in the context of nucleation. The fact that clusters cover a vast range 

of particle sizes, from the molecular (with quantised states) to the microcrystalline, is perhaps 

one of the strongest arguments for researching clusters (where states are quasi-continuous). 

Additionally, clusters make up a brand-new class of material called nanoparticles, which may 

have characteristics that are different from those of single molecules or bulk matter. 

Another important fundamental area of research is the evolution of clusters' geometric and 

electrical structures as well as their chemical and physical characteristics. 

What we are interested to capture here, for the chosen system of interest, KNO3, is: 

1) The correlation between a cluster size and the resemblance of its structure to that of the bulk 

crystal; 

2) Possible phase transitions; 

3) The geometric structure of the cluster and its relationship to the cluster size, in order to 

understand how it relates to crystal growth at the nano level.  

The most likely polymorph to develop may be a product of thermodynamic and kinetic aspects 

of the material growth process. A phase must initially emerge through some sort of nucleation 

process that involves the creation of an interface with the surrounding solution in order to form. 

According to classical nucleation theory (CNT), at small sizes interfacial energies dominate 

the change in free energy of the developing nuclei [6]. Therefore, it is more likely for nuclei 

with relatively low interfacial energy to expand past a certain size before further growth 

becomes spontaneous. 

We can assume that the topological arrangement of atoms will, at some point, match the final 

crystal structure, even though a developing nucleus is expected to have greater disorder than a 

typical bulk crystal. We can locate these in a solution of potassium nitrate using the geometric 

characteristics of the polymorphs, calcite and aragonite. We can also identify prospective 

candidates for crystal nuclei in the system. The ions that have formed a structure resembling 

calcite or aragonite may eventually develop into large crystals. We need to determine the 
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degree to which a particular group of atoms differs structurally from the general ion distribution 

present in the solution. 

The thermodynamically most stable polymorph for potassium nitrate is the aragonite one[7].  

Work from Meldrum et al.[8] has proven that under defined experimental conditions it is 

possible to observe the formation of the ferroelectric phase first. Their set-up consisted of 

poking microdroplets containing a supersaturated solution of potassium nitrate, using different 

materials as a stimulant. Those poking elements would vary from a standardised one, such as 

a functionalised glass rod, to ‘less predictable’ ones, such as human, feline or canine hairs, as 

shown in Figure 5.8. 

 

Figure 5.8 A collection of tip types and crystalline products at a variety of KNO3 concentrations. (a) Canine hair producing 

two prismatic Phase II crystals at 4.25 M. (b) An APTES-treated (amine-terminated silane) glass tip producing a 5-6 

prismatic Phase III crystals. (c) Human hair nucleating a single, prismatic Phase III crystal. (d) The feline whisker with a 

frayed tip creates many contact points with the droplet resulting in fast, dendritic growth of a Phase II crystal aggregate.
 [8]

. 

Images supplied by F Meldrum, T Dunn (Leeds University). 

Figure 5.7 Unit cell of 

potassium nitrate (aragonite) 
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Figure 5.9 KNO3 aragonite. Images supplied by F Meldrum, T Dunn (Leeds 

University)[2] 

  

Figure 5.10 KNO3 ferroelectric. Images supplied by F Meldrum, T Dunn (Leeds 

University)[2] 

 

These experiments have also proven that there is no evidence of crystallisation, for 

concentrations lower than 6 molar, without poking the droplets. Based on the literature[9] and 

confirmed by our experimental collaboration we know that the process does not involve a 

microscopically visible dissolution-recrystallisation process. The following chapter will 

present the cluster analysis of various solutions of KNO3 starting from a value sufficient to 

expect nucleation (6 molal), and boxes with gradually increasing concentration (8, 10 and 12 

molal). 

 

5.2.1 6m solution clustered 

To induce crystallinity, atoms must begin to adopt the coordination and shape of the crystal. A 

box of solution corresponding to a 6 molal concentration was been built using Packmol[4]. The 

ions were inserted in a limited region of the box, to induce clustering. The results reported here 
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show that, as expected, all the ions, having being forced together have the tendency to form a 

cluster. 

Table 5.5 Cluster size (number of potassium ions) as a function of the radius of gyration (expressed in Å) for a 6 molal 

clustered solution of KNO3 

Cluster size Radius of gyration (Å) 

1 0 

2 1.46 

3 1.86 

4 2.24 

5 2.65 

6 3.43 

7 3.80 

8 3.45 

5843 34.29 

 

The K are nearly all in one cluster of 5843 ions out of the total 6000 ions in solution. These 

numbers are supported by Figure 5.11, which shows the number of potassium units in a cluster 

as a function of the radius of gyration (in Å), the actual numbers are clarified in Table 5.5. 

Apart from a few clusters showing a limited number of units, the system is entirely dominated 

by a large cluster with a radius of gyration of 34.3 Å, which clearly shows the formation of a 

single unit. 

 

 

Figure 5.11 Cluster size vs radius of gyration 

Figure 5.12 shows the behaviour of the data used to obtain the fractal dimension of the average 

cluster. The cluster method used is 
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𝑑𝑓 =
𝑑𝑙𝑛𝑁(𝑟)

𝑑𝑙𝑛(𝑟)
 

(5.1) 

 

 

Figure 5.12 Fractal dimension of the largest finite cluster in solution for a 6 molal clustered box. 

By extracting the logarithm of the number of connections (ln N(r), where r is the cluster radius), 

it is possible to obtain the linear trend shown in Figure 5.12. By interpolating this data, it is 

possible to obtain the fractal dimension of the cluster, which is the slope of the plot. 

The expression "fractal dimension" is used to characterise the complexity of fractal patterns or 

set as a ratio of the change in scale to the change in detail.[10][11]. A wide range of objects[12,13] 

can be described using fractal dimensions. Theoretically, the topological or Euclidean 

dimension of a set expressing a common geometric shape is identical to the set's fractal 

dimension. [13-16] 

Although it might be assumed that the relationship between an increasing fractal dimension 

and space-filling implies that fractal dimensions measure density, the two are not actually 

strictly correlated.[17,18]  

Fractal complexity can be quantified by fractal dimensions, even though it is not always easy 

to break it down into understandable units of size and detail without the use of time-consuming 

analytical techniques. Table 5.6 shows, for comparison, some integer dimension and some 

fractal dimensions. 
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Table 5.6 Schematic representation of cluster organisation and their number of connection (absolute and average) 

 

In this case, the number 2.5 shows a dimensionality between 2 and 3. The cluster is not linear, 

a plate, or a solid sphere either. The value of 2.5 suggests “holes” between the potassiums, 

which can be justified with the presence of water, which, in the previous section of this Chapter, 

has been shown to be part of the coordination shell of the ions. 

 

5.2.2 8 molal solution 

In this section, we are going to discuss the cluster analysis of an 8 molal box of KNO3. The 

box has been built randomly, so unlikely the previous section there is no artificially induced 

clustering. 

Figure 5.13 shows the probability of connection for each potassium in the box. We consider 

two ions to be connected if their distances is below the first coordination shell in a perfect 

crystal. Most of the potassium appear to form about 1.7 connections to other potassiums (e.g. 

they are a single ion that forms and break dimers constantly), while, the total number of 

connections shows an exponential decrease, as would be expected from a system following 

classical nucleation theory. For the first 8 ns, there is no noticeable variation over time, while 

in the last couple of nanoseconds there seems to be a small increases in the number of 

connections. We would have expected something to happen in this timeframe, therefore 

running the system for longer seemed unnecessary at this stage. 
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Figure 5.13 8 molal solution: probability of connection versus number of connection for each potassium in the solution. 

 

Figure 5.14(a) shows that the average size for a finite cluster appears to be stable around 1.9 

units, with a slight increase at the end of the simulation (1.98). On the other hand, Figure 

5.14(b) shows the trend for the largest finite in cluster. This number seems to vary more though 

the simulation, from a minimum of 20 potassium to a maximum of 22.5. 

Figure 5.14(c) shows the number of potassiums with no connections at all (single unit clusters). 

Out of a total of 8,000 potassiums in the box, an average of 2,240 appears to have no 

connections at all, with this number slightly decreasing through the simulation time to a 

minimum of approximately 2,216. 

Figure 5.15 shows the logarithm of the number of connections as a function of the radius of a 

cluster, it presents a slope of 1.7, which indicates that the cluster is probably not a very dense 

2-D one, and can be imagined as a flat surface with holes and gaps. 
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Figure 5.14 8 molal solution: (a) average number of potassium unit included in a finite size cluster though the 10 ns of 

simulation; (b) average number of potassium unit included in the largest detected cluster though the 10 ns of simulation; (c) 

average number of potassium unit not showing any connection at all though the 10 ns of simulation normalised as a function 

of the total number of potassiums. 

 

Figure 5.15 Fractal dimension of the largest finite cluster in solution for an 8 molal box 
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5.2.3 10 molal solution 

In this section, we are going to discuss the cluster analysis of a 10 molal box of KNO3. Figure 

5.16 shows the probability of connection for each potassium in the box. The potassium appear 

to be forming an average of 1.15 connections (lower than the 8 molal case), and as reported for 

the previous case the total number of connections, shows an exponential decrease.  

 

Figure 5.16 10 molal solution: probability of connection versus number of connection for each potassium in the solution. 

The reduced average number of connections can be explained, in Figures 5.18(a/c). Figure 

5.18(a) shows that the average size for a finite cluster, that appears to be stable is around 2.29 

units, indicating that all the ions are involved in the formation of dimers. In fact the average is 

closer to that for a chain of three potassiums, or sometimes a triangular-shaped cluster. Those 

different shapes are highlighted in Figure 5.18. Figure 5.18(b) shows the trend for the largest 

finite cluster, which again appears to be doubled in size in comparison with the 8 molal cell 

case, it ranges from a minimum of 40.4 to a maximum of 42.3. Figure 5.18(c) shows the number 

of potassium with no connections at all (single unit clusters). Out of a total of 10,000 

potassiums in the box, an average of 2,452 appears to have no connections at all, a similar 

number compared to the 8 molal box case, but it has to be considered that the total number is 

also increased, therefore, in this case, a smaller fractions of ions are left with no connections. 
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Figure 5.17 Collection of dimer and triangular-shaped cluster. 

Figure 5.19 shows the logarithm of the number of connections as a function of the radius of a 

cluster, it presents a slope of 1.7, which indicates, like the previous case, that the cluster are 

probably not very dense 2-D one, and can be imagined as a flat surface with holes and gaps 

(see Figure 5.24). 

  
 

 
Figure 5.18 10 molal solution: (a) average number of potassium unit included in a finite size cluster though the 10 ns of 

simulation; (b) average number of potassium unit included in the largest detected cluster throughout the 10 ns of simulation; 

(c) average number of potassium unit not showing any connection at all though the 10 ns of simulation, normalised as a 

function of the total number of potassiums. 
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Figure 5.19 Fractal dimension of the largest finite cluster in solution for a 10 molal box. 

 

5.2.4 12 molal solution 

As for the previous cases, this box has been built randomly. Figure 5.20 shows the probability 

of connection for each potassium in the box. Most of the potassium appear to be forming an 

average of 1.3 connections, which is less than the previous cases for lower concentrations of 8 

molal, but more than 10 molal. As before, the total number of connections shows an 

exponential decrease. There is no significant variation of said trend over time. 

Table 5.7 Schematic representation of cluster organisation and their number of connection (average) 
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Figure 5.20 12 molal solution: probability of connection versus number of connection for each potassium in the solution. 

 

The reduced average number of connection can be explained, from Figures 5.21(a/c). 

Figure 5.21(a) shows the average size of the clusters is around 2.73 units. This number is 

appreciably bigger than the previous cases. Figure 5.21(b) shows that the average size of the 

biggest cluster detected in solution is 3.5 times the biggest detected in the 8 molal solution. 

Figure shows the number of potassiums with no connections at all (single unit clusters). As 

visible from Figure 5.21(c), out of a total of 12,000 potassiums in the box, an average of 2,356 

appears to have no connections at all. This number is comparable with the one estimated for 

the 8 molal solution (2,216), as there were less potassiums in that box on average more atoms 

are involved in the formation of less clusters in the 12 molal case so they are bigger in size, 

which leads to a lower connectivity due to their shape. 
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Figure 5.21 12 molal solution: (a) average number of potassium unit included in a finite size cluster though the 10 ns of 

simulation; (b) average number of potassium unit included in the largest detected cluster though the 10 ns of simulation; (c) 

average number of potassium unit not showing any connection at all though the 10 ns of simulation, normalised as a 

function of the total number of potassiums. 

 

 

Figure 5.22 Fractal dimension of the largest finite cluster in solution for a 12 molal box 
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5.2.5 Comparison of Molalities 

Trying to summarise the behaviour of all the different molal solutions, it is interesting to notice 

that the percentage of ions not involved in connection appears to decrease with the increase of 

the concentration, and it spans from 28 to 19.6%, with 8.4 % interval. This trend is shown in 

Figure 5.23. 

 

 

Figure 5.23 Percentage of ‘single unit’ cluster as a function of total number of potassium ions 

The system appears to form a plethora of clusters with various shape and dimensions. The 

majority of clusters, though are highly hydrated chains that appear to fold to include water in 

‘pockets’, as visible from Figure 5.25. 
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Figure 5.24 Isolated medium-sized cluster. Picture shows only potassiums in green. 

 

 

Figure 5.25 Collection of clusters in various shapes and sizes, with potassium ions shown in green. At the top of the figure, 

highlighted in a black circle is an isolated ion, the middle of the figure shows the biggest cluster, a long chain with a few 

folds. At the bottom of the figure, highlighted in black circles, are a pair and a triangle-shaped cluster. 

 

Figure 5.24 shows one of the biggest, better organised clusters detected in a 12m solution. In 

this case, the chain scrunches itself in the formation of an almost 3-D structure, but with visible 

holes and gaps, as the analysis of the fractal dimension suggested. The structure resembles the 

so-called DOLLOPs (dynamically ordered liquid-like oxyanion polymer, a form of stable 
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prenucleation mineral clusters that are considered to be small liquid-like ionic polymer 

clusters) in calcium carbonate. 

Therefore, it does not appear, in the timeframe analysed, it is possible to identify any nuclei. 

The next step will be to check if any of those small-sized clusters resemble, in any way an 

organised crystalline structure.  

 

5.3 Manhattan distance 

The 'Manhattan distance' refers to a geometry in which the conventional distance function or 

metric of Euclidean geometry is substituted with a new metric in which the distance 

between two points is the sum of their Cartesian coordinates' absolute differences [19]. 

In ℝ2, the Manhattan distance between two points is given by 

𝑑 = |𝑥1 − 𝑥2| + |𝑦1 − 𝑦2|                                                                                                       (5.2) 

 

 

Figure 5.26 Orange Euclidean distance, green, light blue and yellow Manhattan distances 
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5.3.1 Reference Systems 

The standard coordination of potassiums with respect to the oxygens of the nitrate group 

(respectively six for calcite and nine for aragonite) of the ions in the solutions is compared to 

crystal reference structures. The aim of this work is to check similarities in a high dimensional 

parameter space by using a cluster analysis technique. A nitrate was assumed to be coordinated 

to a potassium if the oxygen atoms of the anion were 3.5 Å or less from the cation. For each 

potassium ion surrounded by six or nine oxygens, discrete probability distributions were 

calculated and represented by the vectors Pα and Pβ, respectively for the distances and angles. 

Measurements of the crystalline similarity to known references included 

 

𝑠𝛼 = ‖𝑃𝛼(𝑑) − 𝑃𝛼
𝑟𝑒𝑓(𝑑)‖                                                                                                                        (5.3) 

𝑠𝛽 = ‖𝑃𝛽(𝜃) − 𝑃𝛽
𝑟𝑒𝑓(𝜃)‖                                                                                                                        (5.4) 

 

where the average probability distributions 𝑃𝛼
𝑟𝑒𝑓(𝑑) and 𝑃𝛽

𝑟𝑒𝑓(𝜃) are vectors of identical length 

for the reference crystal (shown for crystals at 300K in Figure 5.27/5.29). The metric used is 

the Manhattan one, described in the previous section. 

In contrast to the references, the geometric ordering of the atoms differs less in sα and s β values. 

As a result, a genuine amorphous material should have average s(α) and s(β) values that are 

not zero and almost equal. 

We define the order of a structure in comparison with the perfect crystalline system by the 

number of standard deviation its distance and angles differ from the perfect crystal. We 

analysed only ions with distances and angles equal or less than three standard deviations from 

the reference crystal. 
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Figure 5.27 Angles reference 

 

 

Figure 5.28 Distances reference K-N 
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Figure 5.29 Distances reference N-N 

 

5.3.2 Average Polymorphs 

In this section, we analyse the mean value of the Manhattan distance difference. As previously 

discussed, for a perfect crystal the average is close to zero. 

Table 5.8 shows the results for a 6 molal clustered solution. This system was run only for 2 

nanoseconds, as the intention was to capture the system before it had the opportunity to 

rearrange itself. In this case, the average is very close to zero, with a deviation only in the fourth 

decimal digit. Therefore, the system shows almost no sign of any proto-cluster or KNO3(n) 

units with a geometry like crystalline KNO3. There is a slight preference for the calcite structure 

over the aragonite one. 

For the other molalities, both numbers vary though the simulation time. We can see in some 

cases a large fraction of those potassium with 6 or 9 neighbouring oxygen resemble the crystal 

structures. Calcite seems to have on average smaller values even when considering three 

standard deviations. 
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Table 5.8 Mean fractions of the Manhattan distance difference for calcite and aragonite within 1 and 3 standard deviation 

from the mean 

 Average Calcite Average Aragonite 

 1 Standard 

Deviations 

3 Standard 

Deviations 

1 Standard 

Deviations 

3 Standard 

Deviations 

 0-2 ns 8-10 ns 0-2 ns 8-10 ns 0-2 ns 8-10 ns 0-2 ns 8-10 ns 

6m clustered 0.0001 - 0.0006 - 0.0002 - 0.0008 - 

8m 0.0791 0.0234 0.4480 0.0723 0.1469 0.0440 0.8166 0.0941 

10m 0.0963 0.0954 0.5220 0.5203 0.1779 0.1763 0.8754 0.8753 

12m 0.1079 0.0154 0.5751 0.0827 0.1997 0.0287 0.9103 0.1310 

 

5.3.3 8 molal solution 

Figures 5.30 and 5.31 show the Manhattan separation N-N versus the N-K-N angle for both 

calcite (Figure 5.30) and aragonite (Figure 5.31) respectively for the 8 molal solution. In these 

graphics the z value represents the number of K with 6 or 9 Oxygen coordinated that are within 

the number of standard deviations indicated on the x and y axis of the value of N-K-N angle 

and N-N separation respectively. Figure 5.30 shows that, during the first 2 ns of the simulation 

all the potassiums coordinated with six oxygens are distributed within three standard deviations 

of the calcite structure, with a higher concentration in the radius of 2.5 standard deviations. The 

area in the 0.5 standard deviation radius appears to contain the highest number of entries. 

Moving towards the end of the simulation, at 10 ns it appears that all the numbers are still 

contained in three standard deviations; however, the area where the concentration is higher is 

much more limited this time, with an average radius of 0.5 standard deviation. The rest of the 

points are then clustered in areas with higher concentration, but the behaviour is not as 

continuous as the previous case. The aragonite polymorph shows a similar behaviour, however, 

as shown in Figure 5.31, the probability of occurrence of an aragonite-like structure seems 

higher that the calcite equivalent: all the entries are condensed in a 2 standard deviation radius, 

with a higher prevalence in the one standard deviation radius. This system does not seem to be 

as symmetrical as the previous one. 

Moving toward the end of the simulation the total number of potassium coordinated with 9 

oxygens seems to increase, but not the local order in respect to the oxygens. 

The area of interest, in fact, keeps being included in the 2.5 standard deviation radius. 
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 Calcite 

0-2 ns 

 

 

8-10 ns 

 

 

Figure 5.30 s(α) vs s(β) for calcite in a 8 molal solution after 2 and 10 ns of simulation. The areas of more intense blue 

represent the combination of standard deviation with the highest occurrence of polymorph resemblance. 
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 Aragonite 

0-2 ns 

 

 

8-10 ns 

 

 

Figure 5.31 s(α) vs s(β) for aragonite in a 8 molal solution after 2 and 10 ns of simulation. The areas of more intense blue 

represent the combination of standard deviation with the highest occurrence of polymorph resemblance. 
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5.3.4 10 molal solution 

For the first two nanoseconds of the simulation, as shown in Figure 5.32, all of the potassiums 

coordinated with six oxygens are spread within three standard deviations, while the radius of 

the region with a greater concentration is only two standard deviations. The remaining points 

subsequently group together in areas of higher concentration, however the pattern is not as 

continuous as it was in the first situation. By the conclusion of the simulation, this behaviour 

matches the 8-molal instance (10 ns). This suggests that, regardless of concentration, this may 

be the highest organised state a solution may achieve. At the simulation's end, this pattern is 

almost unaltered (10 ns). 

Similar behaviour is seen by the polymorph of aragonite. Similar to the other examples, this 

system does not appear to be highly symmetrical, creating larger density clusters in areas with 

varying x/y values. The calcite level does not alter significantly during the course of the 

experiment, and neither does the aragonite. 
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 Calcite 

0-2 ns 

 

 

8-10 ns 

 

 

Figure 5.32 s(α) vs s(β) for calcite in a 10 molal solution after 2 and 10 ns of simulation. The areas of more intense blue 

represent the combination of standard deviation with the highest occurrence of polymorph resemblance. 
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 Aragonite 

2 ns 

 

 

10 ns 

 

 

Figure 5.33 s(α) vs s(β) for aragonite in a 10 molal solution after 2 and 10 ns of simulation. The areas of more intense blue 

represent the combination of standard deviation with the highest occurrence of polymorph resemblance. 
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5.3.5 12 molal solution 

Figure 5.34 shows that, for the first 2 ns of the simulation all the potassiums coordinated with 

six oxygens are distributed within three standard deviations. However, the area where the 

concentration is higher is limited to a radius of 0.5 standard deviation. The rest of the points 

are then clustered in areas with higher concentration, but the behaviour is not as continuous as 

the previous case. This behaviour resembles the 8 molal case, towards the end of the simulation 

(10 ns). This leads to the idea, that, perhaps that is the most ordered structure a solution could 

reach no matter what the concentration. This trend is barely unchanged at the end of the 

simulation (10 ns). 

The aragonite polymorph shows a similar behaviour. As the previous cases, this system does 

not seem to be very symmetrical, forming clusters of higher density at regions with different 

x/y values.  As for the calcite, even the aragonite does not show a significant change through 

the simulation time. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



189 

 

 Calcite 

0-2 ns 

 

 

8-10 ns 

 

 

Figure 5.34 s(α) vs s(β) for calcite in a 12 molal solution after 2 and 10 ns of simulation. The areas of more intense blue 

represent the combination of standard deviation with the highest occurrence of polymorph resemblance. 
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Aragonite 

0-2 ns 

 

 

8-10 ns 

 

 

Figure 5.35 s(α) vs s(β) for aragonite in a 12 molal solution after 2 and 10 ns of simulation. The areas of more intense blue 

represent the combination of standard deviation with the highest occurrence of polymorph resemblance. 
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5.3.6 Polymorphs resemblance 

By analysing the six- coordinated potassium (with respect to the oxygens), it is possible to 

identify and visualise highly coordinated potassium units. Figure 5.36 shows a potassium with 

a hybrid coordination in-between the standard calcite and aragonite ones. It is, in fact 

surrounded by eight oxygens belonging to nitrate groups, equally distributed between bi-

dentate coordination and mono-dentate coordination. 

What is interesting to highlight from this Figure is that the first shell of solvation of the 

potassium ion contains three water molecules. This brings the total coordination of the 

potassium with respect to the oxygens (from both the nitrate group and water) to a total of 11: 

we are visualising the numerical description of the RDF reported in Section 5.1.1. 

 

Figure 5.36 intermediate coordination 8 oxygen of NO3 and 3 water oxygens 

In a similar manner, it is possible to identify both aragonite like and calcite like polymorphs, 

reported in Figures 5.36/5.41. 

Figure 5.37 shows a calcite-like structure with all the nitrate groups sharing only one oxygen 

to create the bond with the potassium core (monodentate). Out of the six total connected 

oxygens fours are on the xy plane and two perpendicular to the plane (z axis). The first 

hydration shell consist of five water molecules, which brings, again, the total coordination 

number up to 11. Those water molecules, however appear to be away from the central core, 

giving the impression that the structure might, in fact, be partially dehydrated. This will require, 
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for a longer simulation period, a further analysis of the distance to check the oxygen of the 

water further from the organised structure. 

 

Figure 5.37 Calcite like with only monodentate binder oxygens. Total oxygen coordination 11 

Figure 5.38 shows the coordination polyhedron of only the central potassium and the oxygens 

of the nitrate groups. This shows that the structure appears to be quite regular, as expected from 

a proto-nucleus. 

 

Figure 5.38 Coordination polyhedron of Figure 5.37 
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Figure 5.39 shows a calcite like unit, this time with the four oxygens in the xy plane coming 

from two nitrate groups (bidentate). The same unit is also reported in Figure 5.40, viewed from 

the z-axis, to enhance the denticity. 

As in the previous case five water molecule constitute the first hydration shell and the total 

coordination of the potassium in respect to all the oxygens adds up to 11. 

 

Figure 5.39 Mono and bi-dentate calcite on xy plane 

 

Figure 5.40 Mono and bi-dentate calcite on z axis 
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Finally, figure 5.42 shows an aragonite like structure. The nine oxygens are divided in the 

following way: six come from 3 nitrate groups, all of then sharing two oxygens each 

(bidentate), and the other three come from three more nitrate groups sharing only one oxygen 

each (monodentate). Again the first hydration shell consists of only two water molecules, 

bringing the total coordination to 11. 

 

Figure 5.41 Aragonite-like structure. Total coordination sums up to 11. 

 

5.3.7 Conclusions 

Based on the preceding work, one may draw the conclusion that many of the 6- and 9-

coordinated systems have a structure that is similar to the perfect crystal; however, this could 

be because nitrate crystals have a larger structural variety (natural disorder). It may still be 

possible for them to have water coordination while they are in these units, which makes it more 

difficult for them to match the crystal structure. 

There is no sign that nuclei are developing since there is no progression over time towards a 

higher number of crystal-like units or an increase in their overall order. As a result, there is no 

evidence that nuclei are forming in the timeframe analysed. Going to higher order of magnitude 

timeframe could give a better insight of the system, however given the resources and the 

purpose of this work we have considered the analysed timeframe bounteous. 

 

 



195 

 

5.4 References 

[1] J. E. Helt, M. A. Larson, Effects of temperature on the crystallization of potassium nitrate by direct 

measurement of supersaturation, 1977, AlChE Journal (Vol. 23, No. 6), 822-820; 

[2] V. Fantauzzo, S. R. Yeandel, C.L. Freeman, J.H. Harding, A transferable force-field for alkali metal nitrates, 

2022, J. Phys. Commun., 6,055011; 

[3] X. Wu, F.R. Fronczek, L.G. Butler, Structure of LiNO3: Point Charge Model and Sign of the 7Li Quadrupole 

Coupling Constant, Inorg. Chem., 1994, 33, 1363; 

[4] L. Martínez, R. Andrade, E. G. Birgin, J. M. Martínez, PACKMOL: A package for building initial 

configurations for molecular dynamics simulations, Comput Chem, 2009, 30, 2157–2164; 

[5] I.T. Todorov, W. Smith, THE DL POLY 4 USER MANUAL, Version 4.02.0, 2011; 

[6] D. Kashchiev, Nucleation, Elsevier, 2000; 

[7] R. Benages-Vilau, T. Calvet, M.À. Cuevas-Diarte, Polymorphism, crystal growth, crystal morphology and 

solid-state miscibility of alkali nitrates, Crystallography Reviews, 2014, 20:1, 25-55; 

[8] T. Dunn, F. Meldrum, 2023, to be submitted; 

[9] E.J. Freney, L.A.J, Garvie, T.L. Groy, P.R. Buseck, Growth and single-crystal refinement of phase-III 

potassium nitrate, KNO3, Acta Cryst., 2009, B65:659–663; 

[10] B. Mandelbrot, The fractal geometry of nature, Macmillan, 1983;  

[11] B. Mandelbrot, How Long is the Coast of Britain? Statistical Self-Similarity and Fractional Dimension, 

Science, 1967, 156 (3775): 636–8; 

[12] K. Falconer, Fractal Geometry, 2003, Wiley. p. 308; 

[13] A. Alexanderson, Benoit Mandelbrot: In his own words, Mathematical people: profiles and interviews, 2008, 

AK Peters. p. 214. ISBN 978-1-56881-340-0. 

[14] B. Mandelbrot, Fractals and Chaos, Springer. p. 38;  

[15] A. Sharifi-Viand, M. G. Mahjani, M. Jafarian, Investigation of anomalous diffusion and multifractal 

dimensions in polypyrrole film, Journal of Electroanalytical Chemistry, 2012, 671: 51–57; 

[16] H.Sagan, Space-Filling Curves, 1994, Springer-Verlag. p. 156; 

[17] A. Balay-Karperien, Defining Microglial Morphology: Form, Function, and Fractal Dimension, Charles 

Sturt University, 2004, p. 86; 

[18] H. von Koch, On a continuous curve without tangents constructible from elementary geometry, Edgar, 2004, 

pp. 25–46; 

[19] P.E. Black, Manhattan distance, Dictionary of Algorithms and Data Structures, 2019. 



196 

 

 



197 

 

Chapter 6 

 

Growth of KNO3 

The subject of the study of this chapter will be the molecular control of crystal nucleation and 

growth of potassium nitrate. It will start by giving an overview of the experimental reasons that 

lead to the set-up of the simulations included in this chapter and it will explain the methodology 

choice based on preliminary results obtained using classical MD (which has been used 

extensively during the entire work). 

 

6.1 Purpose of this work 

It has been stressed during the previous chapter that homogeneous nucleation is a rare event, 

and from the computational point of view, even the creation of a confined environment is not 

of any help when it comes to make the process statistically more probable. 

The first approach has been, therefore, to start from a pre-existent surface. This would act as 

an homogeneous nucleant, and allows us to perform an ‘in medias res’ simulation: we are 

assuming that we take control of the experimental droplet after the first nucleation has taken 

place. By using this snapshot of the system as our starting configuration, we have then 

performed classical molecular dynamics over the system. The following section will give more 

details about the system. 

 

6.2 Creation of KNO3 slabs 

Various surfaces of potassium nitrate have been cleaved using METADISE[1], which considers 

the crystal as a block made up of a stack of planes periodic in two dimensions and parallel to 

the defect (surface).  
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6.2.1 Methodology 

METADISE starts from an assumption: only those ions close to the defect will need to relax 

from their lattice sites. Therefore, the blocks are split into two regions. Region 1, the inner 

region, contains those ions close to the defect while region 2, the outer region, incorporates 

ions more distant from the defect. 

The ions in region 1 are allowed to relax to their mechanical equilibrium. Those in region 2 are 

fixed at their bulk lattice sites. The energy and forces on the ions are calculated within the Born 

model of solids[2]. This uses a potential model which includes long range electrostatic terms 

and short range interactions. 

The specific surface energy is defined as the energy per unit area required to transform a bulk 

region into a surface region. The surface energy is thus given by: 

𝛾 =
𝑈𝑠𝑢𝑟𝑓 − 𝑈𝑏𝑢𝑙𝑘

𝐴
 

(6.1) 

In (6.1) Usurf is referred to the energy of region I of a surface calculation; Ubulk is referred to the 

energy of an equivalent number of bulk ions; and A is one of the two surface areas cleaved. 

Tasker[3] defined three types of surface. Type I surfaces are composed of stoichiometric layers 

and thus have no dipole perpendicular to the surface (Figure 6.1, top). Type II surfaces are 

composed of multi-layer repeat units which have no dipole (Figure 6.1, middle). Type III 

surfaces have a multi-layer repeat unit and have a dipole perpendicular to the surface (Figure 

6.1, bottom). In order to calculate the surface energy, there must be no dipole perpendicular to 

the surface. Such a dipole would lead to a divergent surface energy[7]. 

Because of the lack of experimental data, the calculated surface energies of a crystal are very 

difficult to compare. However, one strategy is to evaluate the morphology. This can be either 

at thermodynamic equilibrium or controlled by kinetic growth. 
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Figure 6.1. Definition of the three types of surfaces according to Tasker[3,5] 

 

6.2.2 Results 

Various surfaces of KNO3 have been cleaved using the methodology described in the previous 

section, with attention paid to data available in literature (see Chapter 2, section 2.4.3). 

The goodness of the results has been tested by comparison with ab-initio calculations 

performed using CASTEP[10], using the following parameters 

Table 6.1. CASTEP parameters 

Cut-off energy 800 eV 

K-point grid 8 8 8 

Spacing 0.001 Å-1 

 

The Monkhorst-Pack[6] k-point grid was set as 8 8 8 with a spacing of 0.001 Å-1. 
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The results obtained for KNO3-aragonite are highlighted in Table 6.2. There is no experimental 

data available about the relative energy of the surfaces, but previous DFT calculation[8] confirm 

the energetic order obtained in this work. 

Table 6.2 Comparison between surface energy obtained with DFT and force field from this work. Surfaces are listed by their 

energy values (ranked form the lowest to the highest) 

  Fitted force field DFT 

  J·m-2 

0 0 1 0.237 0.199 

1 0 0 0.246 0.250 

1 1 0 0.276 0.297 

0 1 0 0.310 0.344 

Calcite and ferroelectric phases are supposed to behave, according to the literature[9], like 

calcium carbonate, with {104} being the most stable surface. The calcitic phase presents a non-

full occupancy of the sites, therefore studies with the ferroelectric polymorph have been 

conducted here.  

(a) (b) 

 

 

Figure 6.2 (a) ferroelectric potassium nitrate, (b) aragonite potassium nitrate 
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6.3 Classical Molecular Dynamics 

With the use of classical molecular dynamics, simulations of the possible behaviour of crystal 

nucleation and growth have been performed on aragonite- KNO3. 

The most stable surface cleaved using the methodology described in the previous section, 

{001} has been put in contact with saturated solutions of KNO3. 

 

6.3.1 Methodology 

Molecular dynamics simulations were performed using the DL_POLY[9] code. We 

performed canonical ensemble calculations over a temperature interval from 1 to 300 K 

in order to relax the simulation box and let the system equilibrate itself. A Nosé-

Hoover[35,36] thermostat with a relaxation time of 0.1 ps was used. The time step was set 

to 0.5 fs. The selected number of time steps was 50000 (25 ps), of which 10000 (5 ps) 

were used as an equilibration period, where the temperature was scaled from 1 to 300 

K. This interval has been proven sufficient to reach convergence. A temperature-scaling 

interval of 10 K was used, whilst the radial distribution function (RDF) was collected 

every 1000 time steps, using a bin width of 0.1 Å to obtain the plot. The Ewald 

summation real space cut-off was set to 8.0 Å, whilst the width of the Verlet shell was 

1 Å. The Ewald sum precision was set to a relative error of 10-5. In order to calculate 

the long ranged electrostatic (Coulombic) potentials the Smoothed Particle Mesh Ewald 

(SPME[11]) summation method was used. The grid for the k-vector summation was set 

with dimensions of 8x8x8, and α, the Ewald splitting parameter, set to 0.36037 Å-1. 

Isothermal-isobaric (NPT) ensemble calculations were performed using the Nose-

Hoover NPT ensemble, with the pressure set to 1 atm and the temperature set to 300 K. 

The thermostat and barostat relaxation times were 0.1 ps. Other parameters were set as 

for the NVT simulation. 

 

6.3.2 Results 

A slab of <0 0 1> potassium nitrate with the size of 120x109x180 Å has been cleaved 

and put in contact with various solutions of potassium nitrate (namely 3.5, 4.3 and 5 

molal). 
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Figure 6.3 shows the initial configuration for the 5 molal case. Water is not displayed 

for clarity. After running this simulation box with the specification listed in previous 

section, it was possible to notice that, swiftly (1.5 ns), the ions in the solution would 

approach the surface. Simulations have been ran at three fixed values of temperature 

(100, 200 and 300 K).These have shown that the solution tends to crystallise on top of 

the existing surface with a behaviour that is influenced by temperature and 

concentration.  

 

 

Figure 6.3. Simulation box of <0 0 1> KNO3 surface in contact with high concentration KNO3 solution. Red arrow indicates 

the x, green y, and blue z axis. 

At low temperature, (100/200 K) the system appears to freeze, while at 300 K it shows a 

tendency for the ions to layer, although with no apparent order, on the surface. 

Because the simulation is run as an NVT ensemble, while the ions layer on the surface, the 

space once occupied by the solution becomes empty, as it is possible to see from Figure 6.4 

 

 

Figure 6.4. Simulation box of <0 0 1> KNO3 surface in contact with a high concentration KNO3 solution after 2 picoseconds 

run in the NVT ensemble. Red arrow indicates the x, green y, and blue z axis. 
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The structure is periodic along the x-axis, therefore the ions on the left-hand side of the box 

should be considered belonging to the top of the surface on the right-hand side. 

It is possible to identify two separate regions in Figure 6.4: the one defined as (1) represents 

the centre of the slab and it clearly shows a retained crystalline structure, however the region 

of new growth, identified as (2) does not appear as ordered and it also shows the presence of 

encapsulated water. 

 

6.3.2.1 Analysis of the radial distribution function (RDF) 

Analysis of the radial distribution function of the two sections might help understanding their 

nature. 

 

Figure 6.5. RDF for the zone 1 reported in Figure 6.4 

 

Figure 6.6. RDF for the zone 2 reported in Figure 6.4 
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Figure 6.5 shows the RDF of the region marked as (1) in Figure 6.4, as we expected, there are 

clear peaks that resemble the crystalline structure. In contrast, Figure 6.6 shows the RDF of the 

region marked as (2) in Figure 6.4. In this case, there is barely any trace left of clear peaks, and 

as we expected, the region appears to be amorphous. 

 

6.4 Constant Chemical Potential Molecular Dynamic (Cμ-MD) 

The results obtained with the classical MD analysis demonstrate a common limitation of the 

technique. Classical MD can be subjected to size limitations; being based on empirical 

potentials, it can typically study systems of size up to 104 - 109 atoms. Another limitation, which 

is especially relevant when trying to simulate rare events such as nucleation, is the relatively 

small time scales that can be simulated. All those limitations become particularly dramatic in 

the simulation of phase transformations, as for the crystal growth from solution.  As the 

crystallisation proceeds, the solution is depleted and this causes a change in its chemical 

potential, which affects the growth process itself[14-16]. Therefore, it is reasonable to think that 

this might have affected the results presented in the previous section. To try to eliminate those 

effects, sizeable finite-size corrections are required. This will make the simulation results more 

reliable and comparable with the experimental results. 

One of the most common methods to account for these effects is to use a numerical approach 

to prevent such finite size problems, which means effectively to sample the configurations in 

the Grand-Canonical (GC) ensemble[17-31]. In this case we decided to use a recently developed 

approach, constant chemical potential molecular dynamics [32]. 

 

6.4.1 Methodology 

Figure 6.7 shows the standard set-up for a constant-chemical potential MD simulation: on the 

left we can see a crystal region, with solid density nC, while on the other side of zI we can see 

the transition Region (TR), of length ξ.  

The TR is extended so that when z > zI + ξ, the density approaches its bulk value, nB[12]. 
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Figure 6.7. Scheme of a standard constant chemical potential molecular dynamics simulation. Reproduced with permission 

from [12] 

The concentration profile, nu changes inside the TR, as determined by the crystallisation 

kinetics and the diffusivity of the liquid, and cannot be predicted with high confidence a 

priori[27]. 

The aim is to establish the target concentration in a section of the solution volume, defined as 

Control Region (CR), while the rest of the solution is used as a molecule reservoir. To control 

the solution density, an external force, Fμ, is applied at a fixed distance (DF) from the moving 

crystal interface. Fμ acts as a membrane, regulating the flux of molecules between the CR and 

the reservoir, in order to maintain the former at a constant concentration.  

To keep the solution environment around the developing crystal interface stable, the force is 

delivered at a constant distance from the interface. The external force is defined as 

 

𝐹𝑖
𝜇(𝑧) = 𝑘𝑖(𝑛𝑖

𝐶𝑅 − 𝑛0𝑖)𝐺(𝑧, 𝑍𝐹)                                                                                            (6.2) 

 

 

where the bell-shaped function 𝐺(𝑧, 𝑍𝐹) is not zero close to the force centre and provides a 

harmonic-like force acting on solution molecules at a set distance DF from the solid to correct 

for instantaneous CR density, 𝑛𝑖
𝐶𝑅 variations from the desired 𝑛0𝑖. The species of interest are 

denoted by i, and ki is a force constant that acts on them. We evaluate 𝑛𝑖
𝐶𝑅  as where 𝑛𝑖  is the 

total number of species and VCR is the volume of CR, then 𝑛𝑖
𝐶𝑅 [27]: 

 

𝑛𝑖
𝐶𝑅 =

1

𝒱𝐶𝑅
∑ 𝜃(𝑧𝑗)

𝑁𝑖

𝑗=1

 
{

1 𝑖𝑓𝑧𝑗  ∈ 𝐶𝑅

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

(6.3) 
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𝐺𝑤(𝑧 − 𝑍𝐹) =
1

4𝑤
[1 + cos h (

𝑧 − 𝑍𝐹

𝑤
)]

−1

 
(6.4) 

 

Gw has a peak intensity proportional to w-1 and a width proportional to w. In the z ∼ ZF case, 

Gw is the only z-value that is not zero. Fμ is not a conserving force; hence, there is no one 

formulation of the potential function that will lead to Equation 6.3. It separates the solute and 

solvent into two distinct forces or interactions. Both species affect the chemical potential of the 

solution, so controlling their concentration is crucial. Since the barostat method ensures that 

the concentration of the other species will quickly reach equilibrium, treating more than one 

population to Fμ in NPT simulations is unnecessary. If NVT dynamics is taken into 

consideration, then Fμ should have impacts on both the solute and solvent species.  In other 

words, there is a finite amount of time, Fμ, that the chemical potential may be maintained before 

the reservoir is depleted due to further crystallisation. So that Fμ may function well during the 

period of interest, it is crucial to keep this time limitation in mind and construct the simulation 

box accordingly[27]. 

 

To summarise, the Cμ-MD set up consists of the following steps[27]: 

1. In order to examine the distribution of solvent molecules within the box, the solid-liquid 

interface point zI is determined dynamically. 

2. The CR position is modified in accordance with the revised force centre ZF, which is 

kept at a constant distance, DF, from zI. 

3. Using (6.5), it is possible to derive the densities, 𝑛𝑖
𝐶𝑅  

𝑛𝑖
𝐶𝑅 =

1

𝒱𝐶𝑅
∑ 𝜃(𝑧𝑗)

𝑁𝑖

𝑗=1

 

   (6.5) 

 

4.  The MD equations of motion (and the external forces) are integrated. 

Simulations have been carried using LAMMPS[33,42] interfaced with PLUMED[34-36]. 

The initial temperature was set to 0 K and ramped up to 300 K during the equilibration period. 

We set a time step of 0.5 fs for the equilibration then 1 fs for the production run and a PPPM[26] 

long range coulombic interactions solver with an accuracy of 1.0105. All non-bonded 

interactions were subjected to a cut-off of 9 Å. Simulations were carried out in the NVT 

ensemble using a Nosé-Hoover thermostat[37,38] at 300 K. In the following  sections, pictures 

have been produced using VMD[39] and OVITO[40]. 
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6.4.2 Moving interface 

Standard Cμ-MD was been developed using urea (a molecular system)[32]. As described in the 

previous section it was engineered to guarantee that the interface would move as the solution 

crystallises on the surface. The process has been further extended to ionic system using NaCl[41] 

as the model system. The main difference between the two examples in the literature is that the 

urea crystallisation process is rough, and the crystal grows quickly into the control region, 

therefore the need to develop the ‘moving interface’. On contrary, sodium chloride’s 

crystallisation process proved to be slow and, in the case of the simulation, the new crystal does 

not grow into the control region during τF. The moving interface has not been tested for ionic 

system before being applied to KNO3. The next section will report the results obtained by 

testing this methodology using potassium nitrate in its trigonal ferroelectric form. 

 

6.4.2.1 KNO3 ferroelectric 

Figure 6.8 shows the Cμ-MD simulation of a {104} surface cut of calcite-potassium nitrate. 

The simulation has been performed at 300 K and the concentration of the control region set up 

equal to 5 molar. For clarity, the figure only shows the potassium cores from the slab and the 

potassium from the solution (water and nitrates are hidden). The upper section of the picture 

shows the initial configuration of the simulation. In the picture, we can also identify three red 

lines: the one crossing the middle of the slab represents its centre. The two parallel lines 

adjacent to the reservoir delimit the control region, whose concentration, as previously 

mentioned has been set up for a value (5M) which according to the literature[20] is close to the 

minimum value at which we expect to see crystallisation. The bottom section of the picture 

shows the same system after 0.25 ns of simulation. It is possible to see a shift of the atoms on 

the z axis as the position of the centre of the slab no longer corresponds with the initial one. 

However, there is also a clear dissolution process starting at the interface. 
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Figure 6.8. Cμ-MD simulation of a KNO3-calcite slab, at the beginning of the application of the forces and after 0.25 ns. 

Red line on the left hand side shows the centre of the slab while the two parallel lines in the middle show the control region 

(concentration set to 5 M). For clarity, figure shows only the potassium cores (red balls). 

Figure 6.9 shows the evolution of the density (expressed in atoms per cubic nanometre) as a 

function of time in the control region. It is possible to see that, while the water’s concentration 

value stabilise over an average for the solution, the nominal concentration for potassiums and 

nitrates does not change. This trend is also confirmed by Figure 6.10, which shows the potential 

bias for both potassiums and nitrates. This value is expected to decrease to zero. This is clearly 

an artefact of the simulation, since, based on Figure 6.8 it is actually possible to see the ion 

flow from the reservoir to the control region. 
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Figure 6.9. Evolution over time (ps) of water (purple symbols), potassium (green symbols) and nitrogen (light blue symbols) 

concentration expressed as number of ions per cubic nanometre. The potassium and nitrate lines are both equal to zero for 

the whole simulation and therefore overlap perfectly. 

 

Figure 6.10. Evolution over time (ps) potassium (green symbols) and nitrogen (light blue symbols) potential bias (kJ/mol). 

The two quantities have constantly the same value and overlap perfectly. 

  

6.4.3 Fixed interface 

To overcome the issues stated in the previous section and since it has been proved to work 

effectively for sodium chloride, it has been decided to try a fixed interface approach. As the 

name suggests, in this case the control region position does not move accordingly to the 

expansion (in case of crystallisation) or contraction (in case of dissolution) of the slab. The 

issue that this could cause is, if the system nucleates swiftly, the crystal would rapidly grow 



210 

 

into the control region, thus destroying the whole set-up. Based on the preliminary study it 

appears that potassium nitrate might grow quickly, however experimental set-up is not in 

agreement with the simulation result. Because of this discrepancy and with the idea in mind 

that the results of the classical MD might be artificial, we decided to proceed by testing the 

fixed interface. 

 

6.4.3.1 KNO3 ferroelectric 

 

Figure 6.11. Cμ-MD simulation of a KNO3-calcite slab, at the beginning of the application of the forces and after 1 ns. Red 

line on the left hand side shows the centre of the slab while the two parallel lines in the middle show the control region 

(concentration set to 5 M). For clarity, figure shows only the potassium cores (red balls). 

In this case, as it is possible to see from Figure 6.11, the application of constraining forces at 

the centre of the slab avoided its drifting in the z direction. This allows us to compare the initial 

and final configuration even visually. The red line at the left-hand side of the figure shows the 

centre of the slab for both systems and because of the periodicity in z we can see a layer of ions 

belonging to the surface at the right-hand side of the picture. This is again, showing only the 
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potassium cores of the slab and the reservoir, for clarity. The two red lines in the middle of the 

picture enhance the control region, whose concentration was set to 7 M. We can clearly see, 

after 3 ns that most of the slab does dissolve. We can see the behaviour of the fixed interface 

from Figure 6.12. After the initial adjustment the concentration of the ions, it reaches the target 

concentration for both the water and the ions in solution. Figure 6.13 confirms the trend, where 

it is possible to see the potential bias fluctuating around zero. 

 

Figure 6.12. Evolution over time (ps) of water (purple symbols), potassium (green symbols) and nitrogen (light blue 

symbols) concentration expressed as number of ions per cubic nanometre. 

 

Figure 6.13. Evolution over time (ps) potassium (green symbols) and nitrogen (light blue symbols) potential bias (kJ/mol). 
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6.4.3.1.1 Collective variables analysis 

To analyse this system we have made use of a particular collective variable: the sixth order 

Steinhardt parameter[38], referred to as q6. Steinhardt parameters are a group of variables based 

on spherical harmonics that are used to investigate the local atomic environment. These 

variables have been widely used for a variety of purposes, including the differentiation of 

crystal structures, the identification of solid and liquid atoms, and the detection of defects. This 

parameter allow us to measure the degree to which the first coordination shell around an atom 

is ordered.  As it is possible to see from Figure 6.14, the mean value of q6 lies in a symmetrical 

position in the diagram, which means the system is ordered. 

 

Figure 6.14. q6 mean (anion-cation) of the system depicted in Figure 6.11 at the beginning of the simulation 
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Figure 6.15. q6 mean (anion-cation) of the system depicted in Figure 6.11 after 1 ns 

 

Shifting to the end of the simulation, this mean stops being symmetric and it spreads: we can 

recognise the formation of the amorphous phase from this shape, as shown in Figure 6.15. 

 

6.4.3.1.2 Results 

Dissolution of KNO3 –calcite can be explained from different points of view and it has been 

observed as well on preliminary studies. It has been proven, as well, to affect more the unstable 

polymorphs (phase I and II). It could be due, as well by the energetic implication coming from 

the unbalanced surface to bulk energy ratio, which could be potentially resolved by extending 

the box dimension in the direction of periodicity. 

 

6.4.3.2 KNO3 aragonite 

To overcome the size problem, when testing KNO3-aragonite we made use of a slab 180 Å 

long in the z direction, and the total length of the cell was set to 607 Å. Out of the total length 

of the cell the reservoir occupies 100 Å and its concentration has been set to 12 M. For this set 

up, we did not put the reservoir in contact with pure water. Instead, we decided to create a less 

concentrated solution. The purpose of this was to avoid any possible initial dissolution due to 
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the fact that the surface, for the early stage of the simulation, and before the Fermi forces would 

have moved the ions in the control region, would have been in contact with pure water. 

 
Figure 6.16. Set up for a Cμ-MD simulation of a KNO3-aragonite slab. On the right- hand side we can see the slab, in contact with a low 

concentration solution (5 M) and then the reservoir (15M). Because of the system’s periodicity the reservoir is in the middle of two low concentration 

solutions. 

 

We decided to check, then, two different scenarios: in the first case, we set up the control region 

at a concentration equal to 2 molar: in this case we would expect to see dissolution. For growth, 

we set up another system with control region concentration equal to 7 molar. The next sections 

will discuss in detail the two set ups 

 

6.4.3.2.1 Control Region 2 M 

Figure 6.17 shows a zoom on the slab for the configuration at the beginning and after 3 ns. The 

picture only shows the potassium cores. The black lines at the left and right-hand side enhance 

the edge of the surface. After 3 ns the slab has lost, symmetrically on both sides, one layer of 

potassiums, confirming the expectation of dissolution. The black box enhances the missing 

layer. 
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Figure 6.17. Cμ-MD simulation of a KNO3-aragonitee slab, at the beginning of the application of the forces and after 3 ns. 

Black lines underline the very last layer of the surface. Black box on the right hand-side enhances the dissolution process. 

 

6.4.3.2.1.1 Water ordering  

Figure 6.18 shows, on the left-hand side the concentration for hydrogens and oxygens of the 

water inside the reservoir. Because the concentration of potassium nitrate is nearly doubled 

compared to the control region, the water concentration is lower than the control region. 

Around bin size of 2500 it is possible to see the Fermi wall and the ion drift. The concentration 

becomes stable in the control region and then it is possible to see a peak right next to the surface. 

The water concentration swiftly goes to zero inside the bulk and the behaviour is repeated 

symmetrically on the other side of the slab. 

Figure 6.19 and 6 .20 show close ups of the water level near the Fermi wall and the surface, as 

they change over time. 
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Figure 6.18. z-density as a function of the bin size for hydrogen (yellow lines) and oxygen of the water (blue line). Green line 

represents the hydrogen bond density. 

From Figure 6.19 we can see that as soon as the concentration reaches its target value in the 

control region, the amount of water flowing in diminishes. Figure 6.20, however, shows the 

water density and how its value spikes close to the surface, before going to zero inside the slab. 

This spike can be justified considering the interaction water would create with the ions sitting 

on the surface. 

 

Figure 6.19. Close up next to the surface of the z-density as a function of the number of bins for hydrogen (yellow lines) and 

oxygen of the water (blue line). Green line represents the hydrogen bond density 
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Figure 6.20 Close up next to the Fermi wall of the z-density as a function of the number of bins for hydrogen (green lines) 

and oxygen of the water (blue lines). Green line represents the hydrogen bond density 

 

Figure 6.21. Close up next to the surface of the z-density as a function of the number of bins at the beginning of the 

application of the forces and after 3 ns of simulation, for hydrogen (light green, beginning, dark green after 3ns) and oxygen 

of the water ((light blue, beginning, dark blue after 3ns). 
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6.4.3.2.1.2 z-density analysis  

Figure 6.22 shows the behaviour of all the potassium nitrate’s ions throughout the entire 

simulation box. We can clearly identify the ordered slab and the variation of the concentration 

in the different area of the Cμ-MD set-up. Figure 6.23 shows a close-up of the surface. We can 

see the peaks getting less neat as the surface approaches the solution: this already gives an idea 

of how soluble potassium nitrate is, since the very top layer loses ions (dissolves) very quickly. 

Figure 6.24 shows a comparison of the nitrogen behaviour over time, this shows some of the 

bulk peak centred in almost the same position and by counting the total number we can see that 

the very last one is missing. This quantifies what we were able to see visually from Figure 6.17. 

The system is clearly dissolving. 

 

Figure 6.22. z-density as a function of the number of bins for potassium (yellow lines), nitrogen (orange line) and oxygen of 

the nitrate (green line). 
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Figure 6.23. Close up next to the surface of the z-density as a function of the number of bins for potassium (yellow lines), 

nitrogen (orange line) and oxygen of the nitrate (green line). 

  

In this case, the system appears very symmetrical and analyzing the right/left-hand side shows 

a similar behaviour. 

 

Figure 6.24. Close up next to the surface of the z-density as a function of the number of bins for nitrogen. Yellow line 

represents the system at the beginning of the application of the forces, the green line after 3 ns of simulation. 
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6.4.3.2.2 Control Region 7 M  

When it comes up to the 7 molar control region case the result is not as neat and evident as in 

the previous case. To have a better idea, this time, Figure 6.25 shows all the ions present in 

solution. Before adding the constant chemical potential, the system had to be equilibrated using 

classical MD NPT ensemble at 300 K. In this timeframe, the system had time to adjust the last 

layer. As we can see, from the left hand side of the picture, indicated with a black circle, some 

nitrates have already dissolved. The goal here, should be to see whether the target concentration 

stops the dissolution or not. This is not as easy to visualise, that is why the z-density analysis, 

in this case gives results that are very helpful in understanding the system. 

 

 

Figure 6.25. Cμ-MD simulation of a KNO3-aragonitee slab, at the beginning of the application of the forces and after 3 ns. 

Black lines underline the very last layer of the surface. Black box on the right hand-side highlights the surface’s behaviour. 
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6.4.3.2.2.1 Water ordering  

 

Figure 6.26 z-density as a function of the number of bins at the beginning of the application of the forces and after 3 ns of 

simulation, for hydrogen (light green, beginning, dark green after 3ns) and oxygen of the water ((light blue, beginning, dark 

blue after 3ns). 

 

 

Figure 6.27. Close up next to the surface of the z-density as a function of the number of bins at the beginning of the 

application of the forces and after 3 ns of simulation, for hydrogen (light green, beginning, dark green after 3ns) and oxygen 

of the water ((light blue, beginning, dark blue after 3ns). 

The water behaviour over time shows very similar behaviour to the previous case and, because 

the target concentration is much higher this time, the discrepancy between the amount of water 

flowing is much higher as well. Overall, from a close up, it appears like the surface is losing 
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water over time, as it is possible to see from Figure 6.26. Analysis of the ions' behaviour would 

clarify what the surface is going through at this stage. 

 

6.4.3.2.2.2 z-density analysis  

Figure 6.28 shows the nitrogen’s behaviour at one of the surfaces. The slab is nitrate 

terminating, which is the reason why we are analysing nitrate and not potassium. As previously 

mentioned, what is presented as the ‘beginning’ of the simulation is actually a system that has 

already gone through relaxation, so the ions have already had time to approach the surface. We 

have seen the system interacting with a solution at a concentration not high enough to avoid 

dissolution, which is what we saw at the very beginning. This layer of partially dissolved 

nitrates, however, based on Figure 6.25 is reincorporating the lost nitrates: the system is filling 

its gaps. To quantify the variation, each layer contains 760 nitrogens. The peak at the beginning 

integrates for 110 ions, while the one after for 170 ions. 

 

Figure 6.28. Close up next to the surface of the z-density as a function of the number of bins for nitrogen. Yellow line 

represents the system at the beginning of the application of the forces, the green line after 3 ns of simulation. 
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6.5 Final considerations and future work 

We can conclude that, based on the results obtained with constant chemical potential molecular 

dynamics, the results obtained with classical molecular dynamics might have been an artifact. 

There is no experimental evidence of the ability of potassium nitrate to nucleate with a rate as 

quick as the one we might have derived from classical MD simulation. The Cμ-MD correctly 

represents the high solubility of potassium nitrate. At the stage of this work, we cannot confirm 

clearly the growth behaviour.  This behaviour is in agreement with the sodium nitrate case. It 

looks like the growth rates for the two systems are similar, which would need further studies 

to be confirmed. Based on the primary results however, we can confirm the correctness of the 

choice to apply fixed-distance control regions: the growth is slow enough to allow this 

methodology to be used successfully. There is evidence of order forming but that should be 

confirmed with much longer period simulations. That would allow considering in a more 

precise way, from the statistical perspective, the system’s behaviour. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



224 

 

6.6 References 

[1] N.H. de Leeuw, G.W. Watson, S.C. Parker, Atomistic simulation of adsorption of water on three-, four-, and 

five-coordinated surface site of magnesium oxide, J Chem Soc Faraday Trans, 1996, 92, 2081–209; 

[2] P.W. Tasker, The stability of ionic crystals, J Phys C, 1979,12, 4977–4983; 

[3] G.W. Watson, P.M. Oliver, S.C. Parker, Computer simulation of the structure and stability of forsterite 

surfaces, Phys Chem Minerals, 1997, 25, 70–78; 

[4] H. J. Monkhorst, J. D. Pack, Special points for Brillouin-zone integrations, Phys. Rev. B, 1976, 13, 5188; 

[5] R. Benages-Vilau, T. Calvet, M.À. Cuevas-Diarte, Polymorphism, crystal growth, crystal morphology and 

solid-state miscibility of alkali nitrates, Crystallography Reviews, 2014, 20:1, 25-55; 

[6] J.K. Nimmo, B.W. Lucas, The crystal structures of γ- and β-KNO3 and the α-γ-β phase transformations, Acta 

Cryst., 1976, B-32:1968–1971; 

[7] W. Smith, T.R. Forester, DL_POLY_2.0: A general-purpose parallel molecular dynamics simulation 

package, J. Molec. Graphics, 1996, 14 136 

[8] M. Salvalaglio, C. Perego, F. Giberti, M. Mazzotti, M. Parrinello, Molecular-dynamics simulations of urea 

nucleation from aqueous solution, Proc. Natl. Acad. Sci., 2015, 112, E6; 

[9] J. W. Schmelzer, A. S. Abyzov, Crystallization 2012 Proceedings of the 10th International Symposium on 

Crystallization in Glasses and Liquids Goslar, Germany, September 23–26, 2012, J. Non-Cryst. Solids, 2014, 

384, 2; 

[10] R. Grossier, S. Veesler, Reaching One Single and Stable Critical Cluster through Finite-Sized Systems, Cryst. 

Growth Des., 2009, 9, 1917 

[11] H. L. Yau, S. Y. Liem, K.-Y. Chan, A contact cavity-biased method for grand canonical Monte Carlo 

simulations, J. Chem. Phys., 1994, 101, 7918; 

[12] A. Papadopoulou, E. D. Becker, M. Lupkowski, F. van Swol, Molecular dynamics and Monte Carlo 

simulations in the grand canonical ensemble: Local versus global control, J. Chem. Phys., 1993, 98, 4897; 

[13] C. Lo, B. Palmer, Alternative Hamiltonian for molecular dynamics simulations in the grand canonical 

ensemble, J. Chem. Phys., 1995, 102, 925; 

[14] T. Ça˘gin and B. M. Pettitt, Grand Molecular Dynamics: A Method for Open Systems, Mol. Phys., 1991, 72, 

169; 

[15] G. C. Lynch, B. M. Pettitt, Grand canonical ensemble molecular dynamics simulations: Reformulation of 

extended system dynamics approaches, J. Chem. Phys., 1997, 107, 8594; 

[16] R. Delgado-Buscalioni, P. V. Coveney, USHER: An algorithm for particle insertion in dense fluids, J. Chem. 

Phys., 2003, 119, 978; 

[17] H.Wang, C. Hartmann, C. Schütte, L. Delle Site, Chemical potential of liquids and mixtures via adaptive 

resolution simulation, Phys. Rev.X3, 2013, 011013; 

[18] R. Potestio, S. Fritsch, P. Español, R. Delgado-Buscalioni, K. Kremer, R. Everaers, D. Donadio, Hamiltonian 

Adaptive Resolution Simulation for Molecular Liquids, Phys. Rev. Lett., 2013, 110, 108301; 

[19] R. Potestio, P. Español, R. Delgado-Buscalioni, R. Everaers, K. Kremer, D. Donadio, Monte Carlo adaptive 

resolution simulation of multicomponent molecular liquids, Phys. Rev. Lett., 2013, 111, 060601; 



225 

 

[20] D. Mukherji, K. Kremer, Coil–Globule–Coil Transition of PNIPAm in Aqueous Methanol: Coupling All-

Atom Simulations to Semi-Grand Canonical Coarse-Grained Reservoir, Macromolecules, 2013, 46, 9158; 

[21] S. Piana, M. Reyhani, J. D. Gale, Simulating micrometre-scale crystal growth from solution, Nature, 2005, 

438, 70; 

[22] S. Piana, F. Jones, J. Gale, Assisted Desolvation as a Key Kinetic Step for Crystal Growth, J. Am. Chem. 

Soc., 2006, 128, 13568; 

[23] D. Cheong, Y. Boon, Comparative Study of Force Fields for Molecular Dynamics Simulations of α-Glycine 

Crystal Growth from Solution, Cryst. Growth Des., 2010, 10, 5146; 

[24] J. Anwar, D. Zahn, Uncovering Molecular Processes in Crystal Nucleation and Growth by Using Molecular 

Simulation, Angew. Chem., 2011, Int. Ed. 50, 1996; 

[25] M. Salvalaglio, T. Vetter, F. Giberti, M. Mazzotti, M. Parrinello, Uncovering Molecular Details of Urea 

Crystal Growth in the Presence of Additives, J. Am. Chem. Soc., 2012, 134, 17221; 

[26] M. Salvalaglio, T. Vetter, M. Mazzotti, M. Parrinello, Controlling and Predicting Crystal Shapes: The Case 

of Urea, Angew. Chem., 2013, 52, 13369; 

[27] C. Perego, M. Salvalaglio, M. Parrinello, Molecular dynamics simulations of solutions at constant chemical 

potential, J. Chem. Phys., 2015, 142, 144113; 

[28] S. Plimpton, Fast Parallel Algorithms for Short-Range Molecular Dynamics, J. Comput. Phys., 1995, 117, 

1–19; 

[29] The PLUMED consortium. Promoting transparency and reproducibility in enhanced molecular simulations, 

Nat. Methods 16, 670 (2019); 

[30]  G.A. Tribello, M. Bonomi, D. Branduardi, C. Camilloni, G. Bussi, PLUMED2: New feathers for an old bird, 

Comp. Phys. Comm., 2014, 185, 604; 

[31]  M. Bonomi, D. Branduardi, G. Bussi, C. Camilloni, D. Provasi, P. Raiteri, D. Donadio, F. Marinelli, F. 

Pietrucci, R.A. Broglia, M. Parrinello, PLUMED: a portable plugin for free energy calculations with 

molecular dynamics, Comp. Phys. Comm. , 2009, 180, 1961; 

[32]  S. Nose’, A unified formulation of the constant temperature molecular dynamics methods, J. Chem. Phys., 

1984, 81, 511; 

[33] W. G. Hoover, Canonical dynamics: Equilibrium phase-space distributions, Phys. Rev. A: At., Mol., Opt. 

Phys., 1985, 31, 1695; 

[34]  W. Humphrey, A. Dalke, K. Schulten, VMD: visual molecular dynamics, J. Mol. Graphics, 1996, 14, 33–38; 

[35]  A. Stukowski, Visualization and analysis of atomistic simulation data with OVITO–the Open Visualization 

Tool, Modelling Simul. Mater. Sci. Eng., 2010, 18, 015012; 

[36]  A. Finney, M. Salvalaglio, Multiple pathways in NaCl homogeneous crystal nucleation, Faraday Discuss., 

2022, 235, 56-80; 

[37]  A. P. Thompson, H. M. Aktulga, R. Berger, D. S. Bolintineanu, W. M. Brown, P. S. Crozier, P. J. Veld, A. 

Kohlmeyer, S. G. Moore, T. D. Nguyen, R. Shan, M. J Stevens, J. Tranchida, C. Trott, S. J. Plimpton, 

LAMMPS - a flexible simulation tool for particle-based materials modeling at the atomic, meso, and 

continuum scales, Comput. Phys.Commun., 2022, 271, 108171; 



226 

 

[38] P. J. Steinhardt, D.R. Nelson, M. Ronchetti, Bond-orientational order in liquids and glasses, Phys. Rev. B, 

1983, 28, 784  



227 

 

Chapter 7 

 

Behaviour of Potassium Nitrate on Self-Assembled 

Monolayer surfaces 

This chapter explores how self-assembled monolayers, whose nature will be explained in the 

following section, may alter the nucleation process of potassium nitrate. Previous work[1] has 

proved that this system appears to work as an effective catalyst for calcium carbonate. Given 

the similar geometric structure of the nitrate group to the carbonate group (already stressed in 

the previous chapters), the idea behind this work was to examine any similarity, or difference, 

between how the two systems (carbonate and nitrate) respond to the presence of SAMs. 

 

7.1 Introduction 

The behaviour of clusters of potassium and nitrate ions in water can be influenced by various 

factors, including surface chemistry, substrate concentration, solubility, flexibility, and 

topology. Atomic-scale defects represents a class of nucleant that has not been deeply 

investigated yet. Work contained in this chapter naturally follows the two previous ones: in 

Chapter 5, we have tried to nucleate potassium nitrate from homogeneous solution, Chapter 6 

tried to add a nucleant to an homogeneous system (KNO3 slabs). In this chapter, the aim is to 

investigate the significance of atomic-scale defects in a flexible self-assembled monolayer 

surface and their effect on the behaviour of ion clusters. We used molecular dynamics 

simulations to estimate the diffusion coefficients of ion clusters around different topological 

surface features and obtain ionic radial distribution functions around these features of interest. 

 

7.1.1 Self-Assembled Monolayers (SAMs)  

We define a self-assembled monolayer (SAM) as an assembly of organic molecules. These 

organic molecules are fixed to a surface via strong adsorption. Weak interactions between the 

chains then organise them with respect to each other.[2,3] The connection with the base substrate 

can be weak or strong (proper adsorption) either way that is usually enough to stabilise the 

system and allow the chain-to-chain interactions to take place. Figure 7.1 shows the classical 
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structure of a SAM. We can identify the head group (shown in yellow). Common head groups 

are thiols, silanes, carboxylic acids and other organic moieties with the ability to be 

functionalised, oxidised-reduced, and protonated/deprotonated. 

SAMs are formed through the chemisorption of "head groups" from the vapour or liquid phase 

onto a substrate, followed by the slow organisation of "tail groups"[4,5,6] . At low molecular 

density on the surface, adsorbate molecules form a disordered mass of molecules or an ordered 

two-dimensional "lying down phase,"[4] whereas at higher molecular coverage, crystalline or 

semi crystalline structures form on the substrate surface over minutes to hours.[7] The "head 

groups" form on the substrate, while the "tail groups" form in the solution. Nuclei of densely 

packed molecules form and grow until the surface of the substrate is covered in a single 

monolayer. Because of van der Waals interactions[2,8], the monolayer packs tightly, lowering 

its own free energy.[2] 

 

Figure 7.1. Schematic representation of a SAM. Blue balls represents the terminal group, yellow balls the head group, zig-

zag lines the organic chains. 

 

It is challenging to characterise surfaces with efficient nucleating qualities, despite the 

prediction from classical nucleation theory that numerous surfaces should encourage 

nucleation and crystallisation. Certain surfaces have a significant affinity for the crystallising 

species and can facilitate nucleation. This might be via an epitaxial matching, in which the 

developing crystal and substrate have a good lattice fit, or if the surface is charged, its presence 

can accelerate local supersaturation and speed up the nucleation process. Surface flaws like 
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faults, pits, or fractures on nucleants may boost localised ion concentrations and encourage 

nucleus development. 

Surface defects can be formed because of "pits" in the underlying substrate and can appear as 

a vacancy or step defect. In nature, this might be caused by corrosion or erosion of the substrate 

prior to the assembly of SAMs on the surface[9]. A vacancy defect is a full offset in the substrate, 

but a step defect contains a few sequential steps in the offset, resulting in a slope-like structure. 

Figure 7.2 depicts the two flaws. 

 

Figure 7.2: Different types of surface defects in SAM surfaces: a) Vacancy and b) Step defect 

Since they enable simple modification of surface chemistry, charge, and flexibility in both 

computational and experimental contexts, self-assembled monolayers (SAMs) provide a 

versatile platform for studying how surfaces influence the substrate’s behaviour.  

 

7.1.2 SAMs with calcium carbonate 

SAMs have been proved to accelerate crystallisation in calcium carbonate[10,11,12] . The addition 

of nanoscale surface defects has also been analysed and proved to enhance crystallisation, for 

some bio molecular systems[13,14]. The process of CaCO3 nucleation on alkanethiol SAMs as a 

model system for biomineralisation processes in living things has been extensively studied.[10]  

It has been shown[1] that, for calcium carbonate, some defects (called ‘active defects’), can 

affect the ionic surface diffusion. The authors suggest that these topological features could 

promote ion clustering and, as a result, increase the local ionic concentration at specific surface 
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sites. By showing how the presence of microscopic atomic-scale faults may affect a surface's 

function in the process of heterogeneous nucleation, the study helps to define what makes a 

surface an effective nucleating agent. 

 

7.2 Methodology 

In this work, we followed the same methodology applied in the work of Marinova et al.[1] 

Systems were generated in collaboration with V Marinova to produce the input files and force 

field terms. Details of the force-field will be given in the following sections. 

Only one type of defect has been investigated here, the one that the authors have reported to be 

the most efficient in concentrating calcium carbonate ions. Because potassium nitrate nucleates 

at much higher concentrations than calcium carbonate, the ratio of potassium nitrate to water 

has been increased compared to previous values[1]. 

 

7.2.1 Introduction of defects 

Surface defects in the monolayers were created by removing atoms from the Au(111) surface. 

A layer of Au(111) is placed on top of a layer of argon atoms to provide a non-reactive 

underlayer in which to apply and anchor SAMs chains. 

 

Figure 7.3 Schematic representation of the defect on the xy plane 
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Figure 7.4. Figure 7.4. A vacancy defect in 16-MHDA SAM. The three yellow layers represent gold atoms. Their role is to 

anchor the SAMs at various heights, thus generating the defect. Underneath it is possible to see a red layer (argon) that 

operates  as a barrier for the molecules and ions moving across the periodic boundaries of box.’ 

  

In particular, the role of gold is to create the defects in the SAM: the argon layer remains flat, 

while the chain connects one another in an offset manner. Figure 7.3 shows the type of vacancy 

used in this work. This vacancy is extended parallel to the xy plane as shown in Figure 7.4. 

The role of the argon layer is to block unwanted interactions between the SAM layer and the 

solution in the direction of periodicity (z-axis) 

The aim was to determine the mean square displacement (MSD) and use it to calculate the 

average diffusion coefficient for said cluster. 

 

Figure 7.5 Vacancy defect of 16-MHDA SAM on the xy plane 
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7.2.2 Simulation set-up 

We used, as a building block for the SAM structure, chains of 16-mercaptohexadecanoic acid, 

whose chemical formula is HS(CH2)15COOH as shown in Figure 7.5: 

 

Figure 7.6 Chain of 16-mercaptohexadecanoic acid 

 

Figure 7.7 Single chain of 16-mercaptohexadecanoic acid on a SAM surface set-up 

 

340 alkanethiol molecules were used to create self-assembled monolayer surfaces on an 80 × 

80 Å grid on an Au(111) surface utilising 16-MHDA as a building block. The 30 degree angle 

of the chains with respect to the normal to the surface plane (shown as the z-axis in Figure 7.2) 

was maintained throughout the system.[15,16] In the xy-plane, a gap of 4.98 Å was maintained 

between the sulphur atoms. Figure 7.3 show a cross-section of the defect in the xz-plane, 
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whereas Figure 7.4 and Figure 7.5 show a schematic of the defect running parallel to the y-

axis. 

A box of potassium nitrate in water solution has been placed about 5 nm above the SAM 

surface. Surface defects were created by removing underlying gold atoms, resulting in a 

vacancy defect. Figures 7.8(a) and 7.8(b) show the two SAM surfaces. 

a) b) 

  

Figure 7.8 a) Flat SAM surface and b) Vacancy defect SAM surface with a box of water and Potassium Nitrate. Water is not 

displayed. 

 

7.2.2.1 Force-field parameters  

The conventional ANTECHAMBER process was used to parametrise the organic component, 

the chains of 16-MHDA, in line with the AMBER force field.[17,18,19] The neutral 

parametrisation of the chains means that the functional carboxylic groups are uncharged (–

COOH). The pH of the majority of experimental settings is one where we would expect the 

functional groups to ionise (–COO-) but the same number of potassium ions has been added to 

the simulation box to neutralise the charges. The main focus of this work remains to study how 

surface flexibility works in conjunction with variable surface topography. We can thoroughly 

examine the impact of these factors by preventing strong Coulombic interactions that might 

cloud the interpretation of the data by simplifying the surface chemistry. The overlap between 

16-MHDA and the Au under-layer at faults was avoided via non-bonded Au interactions.[20] 

For those atoms, the interactions were estimated using the typical Lorenz-Berthelot mixing 
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rules.[21, 22] The Lorenz-Berthelot mixing rules were also applied to generate interactions 

between the 16-MHDA chains and water, as well as interactions between the 16-MHDA chains 

and the oxygen on the nitrate ion. AMBER carboxylic C-atom interactions were used to 

simulate the non-bonding interactions between SAM chains and nitrogens from the nitrate 

group. Finally, non-bonded interactions between the carboxylic oxygens in the SAM functional 

group and potassium ions were parameterised using the procedure outlined by Freeman et 

al[23].  

 

7.2.2.2 Molecular dynamics set-up 

Molecular dynamics (MD) simulations were performed using both the DL_POLY 4[32] and 

LAMMPS[24,25] codes with a time step of 1 fs and a PPPM[26] long range Coulombic interactions 

solver with an accuracy of 1.0 x10-5. All non-bonded interactions were subjected to a cut-off 

of 9 Å. Simulations were carried out in the NVT ensemble using a Nosé-Hoover 

thermostat[27,28] at 300 K and a relaxation time of 200 ps . All the configurations have been 

built using Packmol[33]. 

 

7.2.2.2.1 SAMs-water simulations 

Both flat and defective SAMs surface were equilibrated with a box of water. The simulations 

were run for an initial period of 200 ps, to allow the system to relax and the water to equilibrate 

its density. The simulation was then restarted for a further period of 2 ns. 

 

7.2.2.2.2 Ion cluster at SAMs defect in water 

Clusters of potassium nitrate were positioned close to the SAM surface and run as MD 

simulations. Simulations were run with varying sized clusters from 10 formula units up to 50 

formula units, as reported in Table 7.1 (which gives the concentrations for the various 

solutions). 

Initially the cluster structure was relaxed for 100 ps in water. The next step was running the 

full configuration of flat/defective SAMs and the solution for 0.5 ns (which is referred to as the 
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‘initial study’ in the following section) and then for a total of further 3.5 ns (referred to as 

‘further studies)’. 

Table 7.1 Concentrations expressed in number of moles per litre of solution for the boxes containing different amount of 

KNO3 

 Molality (number of moles of solute 

(n)/mass of solvent (kg)) 

10 KNO3 0.032 

20 KNO3 0.063 

30 KNO3 0.095 

40 KNO3 0.127 

50 KNO3 0.159 

 

 

7.2.3 Diffusion coefficient calculations 

A diffusion coefficient for the ions was calculated for the charged system using a mean squared 

displacement (MSD). Figure 7.9 shows the diffusion coefficient derived from the slope of a 

matching MSD plot for the time step section between 2 ns and 30 ns in each production run. 

We did an interquartile range (IQR) analysis on the 3D MSD values across the cluster to derive 

an average cluster diffusion coefficient that is consistent with the overall cluster behaviour. 

Figure 7.10 shows an example of this approach. The graphic shows the mean value of the 

cluster diffusion coefficient (in red) as well as all individual ion diffusion data points (in blue). 

The diffusion of many ions that are orders of magnitude greater than the dataset's median 

(shown in green) would distort the mean cluster diffusion. These points belong to individual 

ions that have separated from the cluster and must thus be omitted from the ionic cluster's 

diffusion coefficient calculation. In our results, we employ the IQR (in brown) to identify 

which points are to be omitted and give the revised mean (in orange). OVITO was used to 

create the simulation pictures in this study[34]. Python 3 was used for trajectory analysis[35]. 
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Figure 7.9 Example of an MSD plot of an ion broken into x-, y- and z-components. The region used for the calculation of 

diffusion coefficients is marked in red. 

 

Figure 7.10 Interquartile range analysis on the diffusion coefficients of ions within a cluster. The analysis identifies some 

outliers, as marked on the plot, which are removed from the mean cluster diffusion coefficient to obtain a corrected mean. 

 

 

 

Outliers 
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7.3 Results 

The work here is divided into five sections: first, we have the study on the neutral SAMs 

surface, divided into three sections, two preliminary studies for the neutral flat and defective 

studies and the follow-up for the defective surface. The final section contains the results for the 

charged SAMs surfaces (flat and defective). 

 

7.3.1 Neutral SAMs, Preliminary Studies - Flat SAM 

This section is dedicated to the preliminary study regarding flat SAMs and a single vacancy 

configuration SAMs.  

Simulations have been performed using DL_POLY 4 for a short amount of time, equal to 0.5 

ns. The interaction of potassium nitrate with the SAM can be seen graphically in Figure 7.11. 

The whole solution relaxed onto the SAM surface, as shown in Figure 7.11(a), removing the 

vacuum gap from the starting configuration. Potassium nitrate ions relax with the aqueous 

solution in all configurations, coming closer to the SAM surface. However, there is not a 

noticeable grouping of ions on the SAM surface. 

Potassium nitrate ions were concentrated in the bottom half of the fluid in the initial setup for 

the simulation with 10 Potassium Nitrate ions (Figure 7.11(b)), bringing them closer to the 

SAM surface. By doing this, the intention was to provide the opportunity for the ions to stay 

close to the surface rather than drift off. Despite the closer starting condition the ions still did 

not cluster on the surface but remain in the solution. This is most likely because the ions and 

SAM surface interact only weakly, and as a result, the ions have little reason to travel towards 

the surface from elsewhere in the solution. Visually, as seen in Figure 7.12, as nitrate 

approaches the surface, the oxygen molecule will interact with the hydrogen in the functional 

group, but potassium has a stronger interaction with nitrate and displays no contact with the 

surface. 
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Figure 7.11: a) Configuration of system after 1 ns with water visualised and configurations containing b) 10, c) 20, d) 30, e) 40, f) 50 Potassium 

Nitrate Ions before and after 1 ns. For figures b) to f) water molecules not shown for clarity. 

 

 

Figure 7.12 Nitrate on the SAM surface 
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7.3.1.1 Analysis of the radial distribution function (RDF) 

 

Figure 7.13 RDF of the interaction between nitrogen of the nitrate group and oxygen of the water 

Figure 7.13 shows the RDF of the interaction between nitrogen of the nitrate and oxygen of the 

water. It shows little to no variation with the concentration through the simulation. All the 

curves appear to have the same trend. This means that the entire nitrate appear to be as solvated 

as it would be in a pure solution. 

Figure 7.14 shows the RDF for the nitrogen of the nitrate group to the oxygen of the carboxylic 

acid. The centre of the peak is constant and the shape is the same through all the concentrations 

although the intensity appears to vary randomly with the concentration, which suggests no link 

between the concentration and surface interaction. Integration of the first peak of the RDFs 

confirms numerically what is possible to see from the pictures. Coordination with the water 

seems unchanged with respect to pure solution and coordination with respect to the surface is 

close to zero. These results point to random variance, which is most likely caused by nitrate 

passing close to the surface rather than significant interactions.  
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Figure 7.14 RDF of the interaction between nitrogen of the nitrate group and oxygen of the carboxylic head group of the 16-

MDHA chains 

 

Table 7.2 Coordination number for the nitrogen of the nitrate group in respect of the oxygen of the water and oxygen of the 

carboxylic head group of the 16-MDHA chains, for the various concentration solutions. 

Pair 
Number of potassium nitrate 

ions in configuration 
Coordination number 

N-OW 

10 11.169 

20 10.733 

30 10.628 

40 11.076 

50 10.969 

N-oh 

10 0.0106 

20 0.0094 

30 0.0062 

40 0.0110 

50 0.0104 
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7.3.2 Neutral SAMs, Preliminary Studies - Defective SAM  

The visual behaviour of potassium nitrate with the defective SAM is shown in Figure 7.15. To 

stimulate contact between the ions and the SAM surface, the potassium nitrate ions were 

concentrated closer to the SAM surface in all configurations. Regardless of the beginning 

configuration, the ions disperse throughout the water solution in all situations, with the SAM 

having minimal effect on their ultimate placements. There is also no discernible grouping of 

ions on the SAM surface. This is the same behaviour as the flat surface, demonstrating that the 

vacancy defect has no additional influence at this stage of the simulation. 

 

Figure 7.15 (a) Configuration of system after 0.25 ns with water visualised and configurations containing b) 10, c) 20, d) 30, 

e) 40, f) 50 Potassium Nitrate Ions before and after 0.25 ns. Except for (a), which depicts the whole system, the water 

molecules have been eliminated for clarity. 
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7.3.2.1 Analysis of the radial distribution function (RDF) 

The RDF of the interaction between nitrogen and water oxygen is shown in Figure 7.16. It 

suggests minimal to no fluctuation with concentration throughout the simulation. The curves 

all appear to follow the same pattern. This indicates that all of the nitrate seems to be solvated 

as it would be in a pure solution. 

Figure 7.17 depicts the RDF for the nitrogen of the nitrate group to the oxygen of the carboxylic 

acid. Despite the fact that the intensity appears to change randomly, the peak's centre and shape 

stay similar across all concentrations: for each concentration, in a random matter, the nitrogens 

get closer to and further away from the surface. Again, the numerical confirmation of what is 

visible in the images comes from the integration of the first peak of the RDFs. Coordination 

with water appears to remain unchanged as compared to pure solution, and coordination with 

the surface appears to be almost non-existent, for the time frame analysed. 

Table 7.3 Coordination number for the nitrogen of the nitrate group in respect of the oxygen of the water and oxygen of the 

carboxylic head group of the 16-MDHA chains, for the various concentration solutions. 

Pair 
Number of potassium nitrate 

ions in configuration 
Coordination number 

N-OW 

10 11.025 

20 11.200 

30 11.199 

40 11.010 

50 11.219 

N-oh 

10 0.0066 

20 0.0039 

30 0.0115 

40 0.0125 

50 0.0065 
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Figure 7.16 RDF of the interaction between nitrogen of the nitrate group and oxygen of the water 

 

 

Figure 7.17 RDF of the interaction between nitrogen of the nitrate group and oxygen of the carboxylic head group of the 16-

MDHA chains 
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7.3.3 Further studies on defective SAM 

To provide more confidence in the results of the previous section, some of the simulations were 

transferred to LAMMPS and run for a total of 3 ns. Figure 7.18 shows the starting configuration 

selected, the highest concentration previously studied with a defect. 

 

Figure 7.18 Starting configuration, in LAMMPS, for defective SAMs surface and 50 KNO3. Picture does not include water. 

 

 

7.3.3.1 Analysis of the radial distribution function (RDF) 

Figure 7.19 shows the RDF of the interaction nitrogen of the nitrate-oxygen of the water, while 

Figure 7.20 shows the RDF of the interaction nitrogen of the nitrate-oxygen of the carboxylic 

head group. Table 7.4 shows the coordination number obtained by the integration of the first 

peak of each RDF. Comparison with the first 0.5 ns of simulations shows that though the 

simulation the affinity of the nitrate group for the SAM surface does increase quite drastically. 

As we have noticed for the pure solution case, even this time the nitrogen can accommodate a 

maximum number of oxygens that does not change (nine). What changes is the nature of those 
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oxygens: when there is no interaction with the surface the nitrogen of the nitrate is fully 

hydrated, as it approaches the surface it starts pushing this water away, getting closer and 

creating ‘bonds’ with the surface. 

Table 7.4 Coordination number for the nitrogen of the nitrate group in respect of the oxygen of the water and oxygen of the 

carboxylic head group of the 16-MDHA. 

 Coordination number 

 K-OW K-oh total 

50 KNO3 5.7 3.3 9 

 

7.3.4 Charged SAMs 

Based on the results obtained in the previous section, which showed little interaction between 

the neutral SAM and the nitrates, it was decided to consider the role of the head group’s charges 

in nucleation. This is the equivalent of changing the pH of the solution, experimentally. 

All the–COOH head groups were artificially deprotonated for the simulation and the 

appropriate amount of potassium ions has been added to neutralise the surface. As for the 

previous case, simulations were performed with a flat and a defective SAMs surface. The 

results obtained for each simulation set up will be discussed in details in the following sections. 

 

7.3.4.1 Flat SAM 

To analyse nucleation in the system, a cluster of potassium nitrate was used as a starting point 

for the simulations, as shown in Figure 7.21.  As can be seen from Figure 7.22 the cluster does 

not remain clustered: all the ions are generally diffusing freely through the solution, and no 

longer in one unit. 
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Figure 7.19 Clustered KNO3 on a flat, charged, SAM surface. Starting configuration for the simulation. Water not displayed 

for clarity. 

 

 

Figure 7.20 Cell of Figure 7.19 after 30 ns of nvt run. Water not displayed for clarity.  
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7.3.4.1.1 Analysis of the radial distribution function (RDF) 

 

Figure 7.21 RDF for the potassium to nitrogen interaction for the solution on top of a flat SAM surface. 

 

Figure 7.22 RDF for the potassium to nitrogen interaction for potassium nitrate – aragonite. 

The analysis of the interaction of the potassium ions with the nitrogens in the solution shows a 

clear, neat, single peak. This proves that each potassium is not able to expand its organisation 

of the surrounding water further than a single shell. The peak is centred at 3.5 Å, and presents 

a shape similar to the one of potassium in an aragonitic system, as it is possible to see by 

comparison to Figure 7.24, although none of the longer-range structure is present. 
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7.3.4.1.2 Mean-square displacement analysis 

 

Figure 7.23 MSD of K ions on a flat SAM surface. The blue line represents the x-, the orange line the y- and the green line 

the z- components. The black like shows the total MSD 

 

Figure 7.24 IQR analysis for K ions on a flat SAM surface. Blue dots represent the data set, red dashed line the mean, 

purple dashed line the standard deviation, green dashed line the median, brown dashed line the interquartile range and 

orange dashed the correct mean 

Figures 7.23 and 7.24 show the analysis on the potassium ions. The mean square displacement 

shows that the particles in the system do not have a large degree of freedom in z. They primarily 

move in the xy plane and the curves for the two axis plateau after approximately 10 ns. In this 

period of time, on average, the particles do move, otherwise, after 15 ns they do not have longer 

range diffusion. We can imagine the whole surface as being divided into four quadrants and 
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the majority of the particle composing a ‘cluster’ appear to be confined in that region, it appears 

as if they are limited in this energetic well. 

Figure 7.24 confirms that there are only a few ions able to freely escape the surface; the 

majority cannot diffuse away from the surface. This behaviour is in agreement with what shown 

in literature for calcium carbonate. Figure 7.25 and 7.26 show the analysis on the nitrogen ions. 

 

 Figure 7.25 MSD of nitrogen ions on a flat SAM surface. The blue line represents the x-, the orange line the y- and the 

green line the z-() components. Black like shows the total MSD. 

 

Figure 7.26 IQR analysis for nitrogen ions on a flat SAM surface. Blue dots represent the data set, red dashed line the mean, 

purple dashed line the standard deviation, green dashed line the median, brown dashed line the interquartile range and 

orange dashed the correct mean 
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The nitrate ions show an enhanced tendency to diffuse along the z-axis compared to the 

potassiums. They appear to move faster and have longer range diffusion. The potassium ions 

appear to have some clustering and are restricted in moving in z. This suggests that some 

layering of ions i.e. stern layer is occurring but the layer is mobile on the xy plane. 

 

7.3.4.1.3 Cluster analysis 

In order to understand the behaviour of potassium nitrate in solution, cluster analysis has been 

performed. Table 7.5 shows the average coordination for the ions in solution, which is less than 

2. It means that, on average, each potassium ion connects and loses connection with another 

potassium ion, similarly to the previous case. Table 7.5 also reports the number of ions included 

in the largest finite cluster, which represents less than 3% of the total ions in solution. On the 

other hand, almost 50% of the total ions appear to form no connection at all. 

Table 7.5 Statistics about the cluster connection in a potassium nitrate solution sitting on a flat SAM surface. 

 Total number Percentage 

Average Coordination 1.71 - 

Largest finite cluster 12.69 2.6% 

Ion with no connections 206.10 42% 

 

The average radius of gyration appears to increase over time as it is possible to see from Figure 

7.27. After it reaches a maximum, it tends to fluctuate regularly. The behaviour of the curve 

beyond 30 ns suggest that there might be a large cluster breaking into two and reforming. 
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Figure 7.27 Radius of gyration over time 

 

Figure 7.28 shows the logarithm of the number of connections as a function of the radius of a 

cluster, it presents a slope of 1.6, which indicates that the cluster have a low density 2-D shape, 

and can be imagined as a flat surface with holes and gaps. 

The behaviour of the radius of gyration over time can be interpreted with the potassium ions 

approaching the surface and spreading over it. This causes the formation of what can be 

considered a flat cluster, which eventually separates in two different units. The behaviour can 

also come from the drifting of said ions in and out the surface. 

 

Figure 7.28 Fractal dimension of the average finite cluster in solution for a solution of KNO3 sitting on a flat SAM surface 
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Figure 7.29 shows the average number of potassium in a cluster versus its probability of 

existence (normalised). The probability, overall, decreases exponentially, which is good 

agreement with the expected behaviour of a system following the classical nucleation theory. 

 

Figure 7.29 Number of potassium in a cluster vs probability (normalised) 

 

7.3.4.2 Defective SAM  

As can be seen in Figure 7.31, again, the cluster does not remain unchanged. All of the ions 

can be seen approaching the surface and generally diffusing through the solution. 

 

Figure 7.30 Clustered KNO3 on a defective, charged, SAM surface. Starting configuration for the simulation 
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Figure 7.31 Cell of Figure 7.30 after 30 ns nvt run 

 

Figure 7.32 Cell of Figure 7.30 after 30 ns nvt run. Only KNO3 displayed. Black line show the defects on the xy plane 

 

7.3.4.2.1 Analysis of the radial distribution function (RDF) 

The analysis of the interaction of the potassium ions with the nitrogens in the solution shows a 

double peak not as neat as the previous case. Again, this shows that each potassium is not able 

to expand its organised coordination further than a single shell. The top-split peak, in this case, 

presents a shape similar to the one of potassium in a trigonal ferroelectric system, as it is 

possible to compare with Figure 7.34. The RDF of the solution on the SAM surface shows a 

first peak that is much shorter than the crystalline system, but also compared with the flat-

SAM. 
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Figure 7.33 RDF for the potassium to nitrogen interaction for the solution on top of a defective SAM surface. 

 

 

Figure 7.34 RDF for the potassium to nitrogen interaction for potassium nitrate – calcite. 

 

7.3.4.2.2 Mean-square displacement analysis 

Also, for this system, the mean square displacement indicates that there is little degree of 

freedom in z for the particles in the system. They primarily move in the xy plane, and the curves 

for both axes reach a plateau after approximately 10 ns. 
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Figure 7.35 MSD of K ions on a defective SAM surface. The blue line represents the x-, the orange line the y- and the green 

line the z-() components. Black like shows the total MSD 

 

Figure 7.36 IQR analysis for K ions on a flat SAM surface. Blue dots represent the data set, red dashed line the mean, 

purple dashed line the standard deviation, green dashed line the median, brown dashed line the interquartile range and 

orange dashed the correct mean 

We may picture the entire surface divided into four quadrants, with the majority of the particles 

constituting a 'cluster' appearing to be restricted in that region, as if they are constrained in this 

energy well. Figure 7.36 shows that just a few ions may readily depart the surface, whereas the 

bulk cannot diffuse away from the surface. 

Figures 7.37 and 7.38 show the analysis of the nitrogen motion. In addition, in this case, the 

nitrate ions are less likely than potassium ions to propagate along the z-axis. Figure 7.38 shows 

that the majority of the ions prefer to stick to the original clustered configuration when we 

analyse the initial configuration with all of the ions combined. 
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Figure 7.37 MSD of nitrate ions on a defective SAM surface. The blue line represents the x-, the orange line the y- and the 

green line the z-() components. Black like shows the total MSD 

 

 

 Figure 7.38 IQR analysis for nitrate ions on a defective SAM surface. Blue dots represent the data set, red dashed line the 

mean, purple dashed line the standard deviation, green dashed line the median, brown dashed line the interquartile range 

and orange dashed the correct mean 

 

7.3.4.2.3 Cluster analysis 

The average coordination for the ions in solution is less than 2, as shown in Table 7.6. That 

indicates that each potassium ion interacts and disconnects with another potassium ion on 

average. The table also shows the number of ions in the biggest finite cluster, which accounts 
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for less than 3% of the total ions in solution. On the other hand, over half of all ions appear to 

have no connection at all. 

Table 7.6 Statistics about the cluster connection in a potassium nitrate solution sitting on a flat SAM surface. 

 Total number Percentage 

Average Coordination 1.7051  

Largest finite cluster 17.56 3.5% 

Ion with no connections 208.1 42% 

 

The average radius of gyration for clusters appears to increase over time, as it is possible to see 

from Figure 7.39. After it reaches a maximum, it tends to increase/decrease regularly. 

 

Figure 7.39 Radius of gyration over time 

Figure 7.40 shows the logarithm of the number of connections as a function of the radius of a 

cluster, it presents a slope of 1.6, which indicates that the cluster is probably a not very dense 

2-D one, and can be imagined as a flat surface with holes and gaps. 

Even in this case, the behaviour of the radius of gyration over time can be explained by 

potassium ions coming and diffusing over the surface. This results in the creation of a flat 

cluster, which ultimately divides into two distinct groups. The activity can also be caused by 

ions moving in and out of the surface. 
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Figure 7.40 Fractal dimension of the average finite cluster in solution for a solution of KNO3 sitting on a flat SAM surface 

 

Figure 7.41 shows the average number of potassium in a cluster versus its probability of 

existence (normalised). The probability, overall, decreases exponentially, which is good 

agreement with the expected behaviour of a system following the classical nucleation theory. 

Its behaviour is basically the same as the flat charged surface. The defect appears to generate 

little to no difference. 

 

 

Figure 7.41 Number of potassium in a cluster vs probability (normalised) 
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7.4 Conclusions 

Calcium carbonate solutions outperform potassium nitrate solutions in terms of organisation 

on the SAM surface. Recent research has demonstrated that the crystallisation of calcium 

carbonate on carboxyl-terminated SAMs follows classical nucleation theory, with nucleation 

on the surface growing into a crystal[29]. Analysis of the RDF shows that there is a weaker 

potassium nitrate ion interaction with the SAM surface, since there is little organisation. 

In recent research[1], certain defects are hypothesised to facilitate ion clustering, raising solute 

concentration at particular places and facilitating surface nucleation. The behaviour of 

potassium nitrate seen in this study does not correspond to these data since the ion distributions 

in solution are very similar for both surfaces. This might be due to the weak interactions 

between the ions and the SAM functional group, which have less impact on the ions and so 

have a considerably smaller effect than if these interactions were stronger. 

Calcium carbonate has a lower solubility in water than potassium nitrate, having a solubility of 

around 0.013 g/L at 25oC compared to 383 g/L[30, 31]. As a result, a large local concentration of 

potassium nitrate must be reached to lead to nucleation. Therefore our system may be limited 

by the general solubility. 

The comparison with calcium carbonate, again, shows that the energy barrier, and in particular 

the ΔG term does not contribute, for potassium nitrate, as significantly as it does for calcium 

carbonate. The system does tend to aggregate but not to reorganise into a crystalline form. 
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7.5 Appendix: force field parameters 

Tables 7.7 and 7.8 report the values used in this work, respectively for all the non-bonded and 

bonded type of interactions. 

Table 7.7 Non-bonded interactions 

Lennard-Jones ε (eV) σ(Å) 

C3 - C3 0.004748 3.39961 

C3 - C 0.00420798 3.39974 

C3 - OH 0.006581 3.23316 

C3 - O 0.006575 3.1799 

C3 - HC 0.0018 3.02437 

C - C 0.003733 3.39958 

C - OH 0.005839 3.23297 

C - O 0.00583 3.17984 

C - HC 0.001593 3.02491 

OH - OH 0.009127 3.06654 

OH - O 0.009123 3.01315 

OH - HC 0.002497 2.85771 

O - O 0.009111 2.95997 

O - HC 0.00249 2.80488 

HC - HC 0.000677 2.65083 

   

Ow - Ow 0.00674 3.16549 

   

C3 – Ow 0.005657 3.28255 

C – Ow 0.005016 3.28253 

OH - Ow 0.007843 3.11602 

O - Ow 0.00783631 3.06273 

HC - Ow 0.00213658 2.90816 

   

C3 – Au 0.00283275 3.1673 

C – Au 0.00251174 3.16729 

OH - Au 0.0039275 3.00077 
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O - Au 0.00392396 2.94749 

HC - Au 0.00106987 2.79291 

   

K - OW 0.011207 3.00195 

   

C3 – NN 0.00592642 3.37481 

C – NN 0.00525483 3.37479 

OH - NN 0.008217 3.20827 

O - NN 0.008209 3.15498 

HC - NN 0.002238 3.00042 

   

C3 – ON 0.009986 3.0748 

C – ON 0.008854 3.0748 

OH - ON 0.013845 2.9083 

O - ON 0.013832 2.8549 

HC - ON 0.003771 2.7004 

 

Buckingham A(eV) ρ(Å) C(eV Å6) 

K – ON 220.6 0.3678 0 

K – NN 4990000000000 0.0939 0 

ON – ON 44806 0.2066 31 

ON – OW 225677 0.18661 29 

ON – HW 577.7 0.22635 0 

K - O 261 0.3678 0 

K - OH 1999.8 0.27151 0 

K - C 0.3678 0.12 0 

K – C3 120000000 0.12 0 
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Table 7.8 Bonded interactions 

Harmonic k2 (eV Å-2) r0 (Å) 

C3 - C3 13.042 1.5375 

C3 - C 13.567 1.524 

C3 - HC 14.33 1.0969 

C - OH 17.342 1.3513 

C - O 27.642 1.2183 

OH – HO 16.098 0.973 

C3 - S 13.042 1.845 

   

OW – HW 22.965 1.012 

   

NN – ON 20.24465 1.255 

 

Angle-bending kθ (eV rad-2) θ0 (deg) 

C3 - C3 - C3 2.726 111.51 

C3 - C3 - HC 2.006 109.8 

C3 - C3 - C 2.743 111.04 

C3 - C – OH 2.964 112.73 

C3 - C – O 2.921 123.2 

C - C3 - HC 2.032 108.77 

C- OH – HO 2.162 106.55 

OH – C – O 3.289 122.1 

HC - C3 - HC 1.707 107.58 

   

HW – OW – HW 1.645 113.24 

   

ON – NN – ON 6.617 120 

 

Dihedrals kφ (eV) n δ(deg) 

C3 - C3 - C3 - C3 0.0078 3 0 

C3 - C3 - C3 - C3 0.0087 1 180 
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C3 - C3 - C3 - C3 0.0108 2 180 

C3 - C3 - C3 – HC 0.0069 3 0 

C - C3 - C3 – HC 0.0067 3 0 

C3 - C – OH – HO 0.0997 2 180 

O - C - C3 – HC 0.0347 1 0 

O - C - C3 – HC 0.0035 3 180 

O - C – OH – HO 0.0824 1 0 

HC – C3 - C3 – HC 0.0069 3 0 

    

Out of plane k2 (eV Å-2) k4 (eV Å-4)  

NN – ON – ON – ON 13.647 360  
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Chapter 8 

 

Conclusions and Future work 

During the course of this study, we discussed the necessity of a reliable and transferable force-

field for the nitrates of alkali metals. This force-field would be applicable to all nitrates, 

including solid solutions.  The order of stability of the polymorphs for each alkali nitrate is 

reproduced by our force-field, and so are the crystal structures of the polymorphs, as well as 

the elastic and dielectric properties of the materials, when these are accessible. It is always 

possible to produce stable phonon spectra (i.e., no imaginary modes). The model also performs 

well as a function of temperature, accurately recreating the experimental lattice expansion and 

demonstrating, if applicable, how the structures might convert into disordered forms as a result 

of the thermally induced rotation of the nitrate groups.  

This force-field has been evaluated in the research of the behaviour of a variety of solutions, at 

different molalities. It is worth noting that the percentage of ions not involved in connection 

appears to decrease in all of the situations. It would appear that the system forms a variety of 

clusters, each of which has its own distinct form and dimensions. The vast majority of clusters, 

however, are made up of highly hydrated chains that appear to fold in such a way as to 

incorporate water into "pockets." 

According to the results of the study of the fractal dimension, the chain in this scenario 

scrunches itself up into the form of what is virtually a three-dimensional structure, but it also 

has obvious flaws and gaps. The structure is quite similar to the so-called DOLLOPs that are 

found in calcium carbonate. 

As a result, it does not appear that any nuclei can be identified in the time-frame being studied. 

The subsequent phase will consist of determining whether any of those clusters of a smaller 

size resemble an organised crystalline structure in any way. This could lead to another piece of 

work following the present. Longer timeframe studied could possibly lead to the visualisation 

of some clustering occurring.  

The previous research may lead one to conclude that many of the 6- and 9-coordinated systems 

have a structure that is close to the ideal crystal; however, this could be because nitrate crystals 

have a greater structural variation (natural disorder). When they are in these units, there is still 
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a possibility that they will have water coordination, which makes it more difficult for them to 

match the crystal structure.  

There is no indication that nuclei are developing because there is no movement over time 

towards a bigger number of crystal-like units or an increase in their overall order. This indicates 

that there is no evidence that nuclei are growing. As a direct consequence of this, there is no 

evidence to suggest that nuclei are being formed. 

In the section that is dedicated to the application of constant chemical potential, in the process 

of trying to nucleate potassium nitrate on a homogeneous slab, we can conclude that the results 

obtained with classical molecular dynamics might be an artefact. There is no experimental 

evidence to support the hypothesis that potassium nitrate shows the ability to nucleate at a pace 

comparable to the one that we may have predicted using classical MD simulation. On a similar 

subject, the high solubility of potassium nitrate is accurately represented by the constant 

chemical potential molecular dynamics. We are unable to establish with absolute certainty the 

growth behaviour at this level of the process.  This pattern of activity is consistent with the 

sodium nitrate investigation. It seems as though the growth rates for the two systems are 

comparable; nevertheless, this hypothesis would need to be confirmed by additional research. 

However, based on the primary results, we can confirm that the choice to apply fixed-distance 

control regions was the right one: the growth is slow enough to make it possible to use this 

methodology successfully. There are indications that order is building, but this should be 

validated using simulations conducted over significantly longer time periods. That would make 

it possible to think about the behaviour of the system in a more precise manner, from a 

statistical point of view. The fact that this methodology has never been used before on an ionic 

system, in which the anion is not composed of a single atom that has been ionised, was a 

limitation for the study. Because of the challenges presented by the spinning of the nitrates, in 

conjunction with the high solubility of the system, this configuration turned out to be more 

articulated than was originally anticipated. As a result, the time available for the investigation 

is somewhat restricted, which opens the door to the possibility of additional research. 

Previous stages of the setting up process have involved using pure water immediately in contact 

with the slab. This has shown that, by the time the right concentration is reached we see 

dissolution. 

To avoid such an issue an intermediate molarity value between  one where dissolution is 

expected and the one where growth is expected. Even in this case it was possible to notice an 
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initial readjustment of the slab. It appears that potassium nitrate is a very soluble salt and 

therefore, for this system in particular it would be advised to create a solution in contact with 

the slab that is already above the supersaturation value. 

When a surface of a SAM is used in place of the slab of potassium nitrate, it is important to 

note that calcium carbonate solutions perform better than potassium nitrate solutions in terms 

of organisation on the SAM surface. This is something that should be kept in mind. 

Crystallisation of calcium carbonate on carboxyl-terminated SAMs has been shown to follow 

the classical nucleation theory pathway, with nucleation occurring on the surface and 

developing into a crystal. Due to the lack of organisation, an analysis of the RDF reveals that 

the interaction between the potassium nitrate ion and the SAM surface is significantly weaker 

than expected. 

 Because the ion distributions in solution are so comparable between the two surfaces, the 

behaviour of potassium nitrate that was observed in this study does not correspond to the data 

that were collected. This may be caused by the weak contacts between the ions and the SAM 

functional group, which have less of an effect on the ions and a smaller effect overall than if 

these interactions were stronger. 

It could be possible that defects that were not classified as very successful for calcium 

carbonate may influence the ions and solution. Because of the different charges between the 

two species there is a chance that a different behaviour might be observed. Another interesting 

point of study could be investigating a hypothetical species with a charge between the two (e.g. 

+1.5). While this does not have any experimental counterpart, it could be beneficial in the 

setting up of the methodology itself. 


