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Abstract

A flaky test is a test case that can pass or fail without changes to the test case code or the code under
test. They are a wide-spread problem with serious consequences for developers and researchers
alike. For developers, flaky tests lead to time wasted debugging spurious failures, tempting them
to ignore future failures. While unreliable, flaky tests can still indicate genuine issues in the code
under test, so ignoring them can lead to bugs being missed. The non-deterministic behaviour
of flaky tests is also a major snag to continuous integration, where a single flaky test can fail
an entire build. For researchers, flaky tests challenge the assumption that a test failure implies a
bug, an assumption that many fundamental techniques in software engineering research rely upon,
including test acceleration, mutation testing, and fault localisation.

Despite increasing research interest in the topic, open problems remain. In particular, there
has been relatively little attention paid to the views and experiences of developers, despite a
considerable body of empirical work. This is essential to guide the focus of research into areas
that are most likely to be beneficial to the software engineering industry. Furthermore, previous
automated techniques for detecting flaky tests are typically either based on exhaustively rerunning
test cases or machine learning classifiers. The prohibitive runtime of the rerunning approach and
the demonstrably poor inter-project generalisability of classifiers leaves practitioners with a stark
choice when it comes to automatically detecting flaky tests.

In response to these challenges, I set two high-level goals for this thesis: (1) to enhance the
understanding of the manifestation, causes, and impacts of flaky tests; and (2) to develop and
empirically evaluate efficient automated techniques for mitigating flaky tests. In pursuit of these
goals, this thesis makes five contributions: (1) a comprehensive systematic literature review of
76 published papers; (2) a literature-guided survey of 170 professional software developers; (3) a
new feature set for encoding test cases in machine learning-based flaky test detection; (4) a novel
approach for reducing the time cost of rerunning-based techniques for detecting flaky tests by
combining them with machine learning classifiers; and (5) an automated technique that detects and
classifies existing flaky tests in a project and produces reusable project-specific machine learning
classifiers able to provide fast and accurate predictions for future test cases in that project.
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Chapter 1

Introduction

“Don’t cry ‘wolf’, shepherd boy,” said the villagers, “when
there’s no wolf!” - “The Boy Who Cried Wolf”, Aesop

Software developers rely on test cases to identify bugs in their code and to provide a signal as
to their code’s correctness [77]. Should such signals have a history of unreliability, they not only
become less informative, but may also be considered untrustworthy [180, 181]. In the context of
software testing, practitioners refer to these unreliable signals as flaky tests. The definition varies
slightly, but a flaky test is generally defined as a test case that can pass and fail without changes
to the test case code or the code under test, such as Figure 1.1. Concurrency and randomness are
well-established causes among many others [37, 59, 89, 105, 155], though flakiness has far-reaching
negative consequences regardless of origin. These consequences are felt by developers from small
open-source projects to the likes of Google, Microsoft, and Meta [88, 106, 110].

Flaky tests challenge the assumption that a test failure implies a bug, constituting a leading
cause of “false alarm” test failures, and potentially more seriously, having the potential to mask
the presence of a genuine bug [155, 175]. Naturally, this poses serious problems for developers and
researchers alike. For developers, flaky tests may lead to time wasted debugging spurious failures,
leading them to ignore future test failures. This is detrimental to software stability, because while a
flaky test may be unreliable, it could still indicate a genuine bug in some instances [134, 181]. This
is further exacerbated when flaky tests accumulate, as developers may loose trust in the entire test
suite [180]. The non-deterministic behaviour of flaky tests is also a serious hindrance to continuous
integration (CI). A study focused on the Travis CI platform found that 47% of failing builds that
were manually restarted eventually passed without any changes, indicating the presence of flaky
tests [33]. Flaky tests are not a rare phenomenon, with 20% of developers claiming to experience
them monthly, 24% encountering them on a weekly basis, and 15% dealing with them daily [37].

Flaky tests are a threat to the validity of any methodology that assumes test case outcomes
are deterministic, making them an obstacle to the deployment of many techniques in software en-
gineering research. A specific category, known as order-dependent (OD) flaky tests, are dependent
on the test execution order. This means that techniques for accelerating the testing process, in-
cluding test case prioritisation, selection, and parallelisation, are unsound for test suites containing
OD flaky tests [91]. Other techniques negatively impacted by flaky tests include fault localisation
[25, 157], mutation testing [68, 139], and automatic test suite generation [10, 125, 138].

Given the pain caused by flaky tests, interest in the topic has been increasing over the last
ten years. This has culminated in many empirical studies on their presentation and causes [59,
69, 105, 136, 155, 175]. It has also resulted in automated techniques for the detection, debugging,
and repair of flaky tests [8, 16, 64, 90, 133, 141]. Despite valuable advances, there remains open
problems. Particularly in the past five years, the number of papers published on or related to flaky
tests has soared. Zolfaghari et al. [179] provided a literature review on some of the main techniques
for mitigating flaky tests. However, to date there has been no comprehensive survey that covers
not only this core literature but also the wider periphery, such as the influence that flaky tests
have in the wider software engineering field. A complete systematic literature review at this time

1
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1 def test_spinup_time(hook):

2 data = []

3 for i in range(10000):

4 data.append(torch.Tensor(5, 5).random_(100))

5 start_time = time()

6 dummy = sy.VirtualWorker(hook, id="dummy", data=data)

7 end_time = time()

8 assert (end_time - start_time) < 1

Figure 1.1: A flaky test from PySyft [259]. It contains an assertion on line 8 regarding the time taken to
complete an operation. Because the time taken may vary depending on the machine specification, it can
fail regardless of any bugs. This test was so flaky that the developers decided to remove it [269].

of burgeoning interest is long overdue and is essential for existing researchers to identify areas of
future work and for new researchers to get up to speed with the state of the art. Furthermore, there
is little focus on the views and experiences of developers, despite a considerable body of empirical
work. Since flaky tests are primarily a developer problem, there is an underutilised opportunity
to acquire valuable insights from those who experience them first-hand. This is essential to guide
the focus of research into areas that are most likely to be beneficial to the software engineering
industry. Where previous studies do exist, they focus on specific organisations and developers’
self-reported experiences [37, 71], two potential sources of bias [31].

Given the problems associated with flaky tests, researchers introduced automated techniques
to detect them. Many involve a significant number of repeated test executions and some require
instrumentation [15, 17, 35, 47, 90, 144, 175], making them prohibitively expensive for deployment
in large software projects. This motivated researchers to develop techniques based on machine
learning classifiers trained using static features of test cases, such as their length, complexity, and
the presence of particular keywords and identifiers [128, 159]. One study found that combining
static features with dynamically-collected characteristics, like execution time and line coverage,
resulted in better detection performance at the relatively minimal cost of a single, instrumented
test suite run [8]. Prior studies have only evaluated a limited set of features, while the broader
literature has identified many more test case characteristics that may be indicative of flakiness.
Without further evaluation, machine learning classifiers cannot be used to their full potential
for detecting flaky tests. While previous evaluations based on cross-validation show promising
results, researchers have established that classifiers for detecting flaky tests perform poorly when
evaluated on test cases from projects that were not part of their training data [20, 41]. Therefore,
the prohibitive time cost of rerunning-based techniques and the limited performance and potential
lack of inter-project generalisability of machine learning-based techniques leaves practitioners with
a stark choice when it comes to automatically detecting flaky tests in their projects.

1.1 Goals

In response to these open challenges, I set two high-level goals for this thesis:

1. Understanding: To enhance the understanding of the manifestation, causes, and impacts
of flaky tests though literature review, developer survey, and empirical evaluation.

2. Mitigating: To develop and empirically evaluate efficient automated techniques for miti-
gating the problem of flaky tests through accurate and practical detection.

1.2 Contributions

In pursuit of these goals, this thesis makes five main contributions. The following subsections
summarise the chapters associated with each of them (see Figure 1.2).
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Systematic Literature Review
Chapter 2

[120]

Developer Survey
Chapter 3

[122]

Flake16
Chapter 4

[121]

CANNIER
Chapter 5

[124]

FlakeFriend
Chapter 6

Informs
design of

Builds
upon

Builds upon

Informs evaluation of

Motivates

Understanding

Mitigating

Figure 1.2: The relationships between the chapters of this thesis. Citations indicate that a chapter is
based on my published work. Red blocks address “understanding” and green blocks address “mitigating”.

1.2.1 Systematic Literature Review (Chapter 2)

A comprehensive survey of the body of literature relevant to flaky test research, covering 76
papers. I split the analysis into four parts: addressing the causes of flaky tests, their costs and
consequences, detection strategies, and approaches for their mitigation and repair. The findings
and their implications have consequences for how the software testing community deals with test
flakiness, pertinent to practitioners and of interest to those wanting to familiarise themselves with
the research area. The review makes the following contributions:

1. Evaluation (Section 2.2): An evaluation of the growing research area of flaky tests.

2. Causes (Section 2.3): A comparative analysis on the causes of flaky tests.

3. Costs (Section 2.4): A summary of costs and impacts on testing reliability and efficiency.

4. Detection (Section 2.5): A comparison of tools and strategies for detecting flaky tests.

5. Mitigation (Section 2.6): An analysis of techniques to mitigate and repair flaky tests.

6. Discussion (Section 2.7): A discussion of research threads, trends, and future directions.

1.2.2 Developer Survey (Chapter 3)

A developer survey that received 170 responses, the design of which was closely guided by the
findings in Chapter 2. Having previously examined flaky tests through the lens of published lit-
erature, this study characterises the experience of flaky tests by directly consulting developers. I
also searched on StackOverflow and analysed 38 threads relevant to flaky tests, offering a distinct
perspective free of any self-reporting bias. Using a mixture of numerical and thematic analyses,
I made a number of findings, including (1) developers strongly agree that flaky tests hinder con-
tinuous integration; (2) developers who experience flaky tests more often may be more likely to
ignore potentially genuine test failures; and (3) developers rate issues in setup and teardown to
be the most common causes of flaky tests. The survey makes the following contributions:

1. Developer Survey (Section 3.2.1): I designed a survey based on previous literature and
received 170 responses. Through numerical and thematic analysis, I identified alternative
definitions of flaky tests, the most significant impacts of flaky tests, the most frequent causes
of flaky tests, and the most common actions developers perform in response to flaky tests.
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2. StackOverflow Threads (Section 3.2.2): I procured a dataset of 38 StackOverflow
threads and through thematic analysis I offer a unique insight into the causes of flaky tests
experienced by developers and the strategies that they suggest to repair them, independent
of what they self-reported in the developer survey.

3. Findings and Recommendations (Section 3.4): I surfaced a range of findings that sup-
port previous literature and some that were more unforeseen. From these, I offer actionable
recommendations for both software developers and researchers.

1.2.3 Flake16 (Chapter 4)

A new feature set for encoding test cases in machine learning-based flaky test detection. Having
observed an increasing trend of researchers applying machine learning classifiers to detecting flaky
tests in Chapter 2, and having found that developers rate improper setup and teardown as the
most common cause of flaky tests in Chapter 3, this chapter fills a valuable research gap by
considering the detection of OD flaky tests with machine learning. Using 54 distinct pipelines of
data preprocessing, data balancing, and machine learning classifiers for detecting both non-order-
dependent (NOD) and OD flaky tests, I compared Flake16 to a previous feature set. I used
the test suites of 26 Python projects as subjects, consisting of over 67,000 test cases. Along with
identifying the most impactful metrics when detecting both types of flaky test, the empirical study
shows how Flake16 is better than prior work, including (1) a 13% increase in overall F1 score
when detecting NOD flaky tests and (2) a 17% increase in overall F1 score when detecting OD
flaky tests. The study makes the following contributions:

1. Feature Set (Section 4.2): A new feature set for machine learning-based flaky test detec-
tion, Flake16. The evaluation demonstrated an improved detection performance for both
NOD and OD flaky tests compared to a previous feature set.

2. Evaluation (Section 4.3): My evaluation of 54 machine learning pipelines is the first
to consider the detection of OD flaky tests, offering a more complete assessment of the
applicability of machine learning to the problem of flaky test detection.

3. Findings and Implications (Sections 4.4 and 4.5): Leveraging the empirical results,
the study surfaced findings with implications relevant to both the research community and
software developers, including the most impactful test case metrics for detecting flaky tests.

4. Dataset: To collect the data required to perform the experiments, I developed a
comprehensive framework of tools, Flake16Framework. To identify flaky tests, I used
Flake16Framework to execute 5,000 times the test suites for 26 programs containing over
67,000 test cases. Supporting the replication of this study’s results and further investigations
into machine learning for flaky test detection, I make Flake16Framework and all of the data
available in the replication package [218].

1.2.4 CANNIER (Chapter 5)

A novel approach for reducing the time cost of rerunning-based techniques for detecting flaky
tests by combining them with machine learning classifiers. Despite having observed a definite
improvement in machine learning-based detection using Flake16 in Chapter 4, the detection
performance of machine learning classifiers was still fairly lacklustre. My empirical evaluation
involving 30 Python projects demonstrated that CANNIER can reduce the time cost of existing
rerunning-based techniques by an order of magnitude while maintaining a detection performance
that is significantly better than classifiers alone. Furthermore, the comprehensive study extends
existing work on machine learning-based detection and revealed a number of additional findings,
including (1) the performance of machine learning classifiers for detecting polluter test cases (a type
of test case involved in establishing an OD flaky test [141]); (2) using the mean values of dynamic
test case features from repeated measurements can slightly improve the detection performance
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of machine learning classifiers; and (3) correlations between various test case features and the
probability of the test case being flaky. The study makes the following contributions:

1. Approach (Section 5.3): CANNIER significantly reduces the time cost of rerunning-
based flaky test detection with a minimal decrease in detection performance.

2. Tooling (Section 5.4): To facilitate the empirical evaluation and allow for replication, I
developed a framework of automated tools that I make freely available [223].

3. Evaluation (Section 5.5): A comprehensive empirical evaluation demonstrated the ef-
fectiveness of CANNIER’s combination of rerunning and machine learning techniques, re-
vealing further novel findings about machine learning-based flaky test detection, such as the
performance of machine learning classifiers for detecting polluter test cases.

4. Dataset (Section 5.5.1): A dataset containing 89,668 tests from 30 Python projects taking
over six weeks of compute time to produce. I make this available as part of the replication
package to enable further research [217].

1.2.5 FlakeFriend (Chapter 6)

An automated technique that detects and classifies existing flaky tests in a project, and produces
reusable project-specific classifiers able to provide fast and accurate predictions for future test
cases in that project. These classifiers are “friends” of the test suite, warning of flaky tests early
on to avoid them accumulating. While Chapter 5 presented a flaky test detection approach that
can offer the “best of both worlds” between rerunning- and machine learning-based flaky test
detection, this study demonstrates a technique that can save time in the long run as developers
introduce new test cases. Among the findings from the evaluation involving 10 Python projects
are: (1) FlakeFriend is able to detect existing flaky tests in a project in 20% of the time
taken by exhaustive rerunning; (2) FlakeFriend produces classifiers for a project that are better
at detecting future flaky tests in that project than those pre-trained on the test cases of other
projects (mean Matthews correlation coefficient of 0.73 verses 0.18); and (3) FlakeFriend offers
large savings in cumulative time cost when applied to evolving test suites, in the order of months
of single-core CPU time. The study makes the following contributions:

1. Technique (Section 6.2): A novel technique capable of detecting and classifying existing
flaky tests in a project, and of producing machine learning classifiers to provide fast and
accurate predictions for future test cases.

2. Dataset (Section 6.3): Over several months of compute time, I collected a large dataset of
test run information regarding 10,000 executions of 63,090 test cases. This is freely available
in the replication package [205] to enable future testing research.

3. Evaluation (Section 6.4): An extensive empirical evaluation involving 10 open-source
projects shows how FlakeFriend addresses the drawbacks of both rerunning-based and
machine learning-based flaky test detection.



Chapter 2

A Survey of Flaky Tests

The contents of this chapter is based on “O. Parry, G. M. Kapfhammer, M. Hilton, and P. McMinn.
A survey of flaky tests. Transactions on Software Engineering and Methodology, 31(1):1–74, 2021”.

2.1 Introduction

The exact definition of what constitutes a flaky test varies slightly from source to source, but is
generally considered to mean a test case that can be observed to both pass and fail without changes
to the test case code or the code under test. Some seem to take a fairly conservative view, only
considering a test case flaky if the flakiness stems from timing or concurrency issues [155]. Most
sources simply define a flaky test as a test case that can be observed to produce an inconsistent
outcome when only the test case code and the code under test that it exercises remains constant
[105]. This particular definition is inclusive of test cases that are flaky due to external factors,
such as the prior execution of other test cases, or the execution platform itself.

The most common type of flaky test related to the prior execution of other test cases are known
as order-dependent (OD) flaky tests, one whose outcome depends on the test execution order but is
otherwise deterministic [175]. Recently, OD flaky tests, and the test cases on which they depend,
have been categorised by their manifestation [141], and their definition has been generalised by
one study’s authors who considered how non-deterministic test cases can also be OD [92]. While
it might seem initially unlikely that the test run order would change between test suite runs,
several widely studied testing techniques do just that, making OD flaky tests an obstacle to their
applicability and thus a genuine problem rather than just a peculiarity [15, 22, 91].

As for flaky tests related to the execution platform itself, a test case with a platform dependency
may be considered flaky because it might pass on one machine but fail on another. Some may
consider this to be a deterministic failure rather than a form of flakiness. However, researchers
have commented that when using a cloud-based continuous integration service, where different
test runs may be executed on different machines in a manner that appears non-deterministic to
the user, the test outcome is effectively non-deterministic too [37]. One reason why a test case
may be dependent on a particular platform is because it relies on the behaviour of a particular
implementation of an underdetermined specification that leaves certain aspects of a program’s
behaviour undefined [60]. For example, a test case that expects a particular iteration order for an
object with no iteration order mandated by its specification may pass on one platform where the
respective implementation happens to meet its expectations but fail on another [61, 140].

At least one source describes a test case as flaky if its coverage, the set of program elements
that it executes, is also inconsistent [139]. Generalizing further, Strandberg et al. [147] defined
intermittent tests as those with a history of passing and failing, regardless of software or hardware
changes. These authors considered flaky tests to be a special case of intermittent tests that pass
and fail in the absence of changes, as per the traditional definition.

Flaky tests challenge the assumption that a test failure implies a bug, constituting a leading

6
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cause of “false alarm” test failures [155, 175] and causing problems for both developers and re-
searchers. For developers, flaky tests erode trust in test suites and lead to time wasted debugging
spurious failures [180]. A recent survey of industrial developers demonstrated the prevalence and
prominence of flaky tests [37]. The results indicated that test flakiness was a frequently encoun-
tered problem, with 20% of respondents claiming to experience it monthly, 24% encountering it
on a weekly basis and 15% dealing with it daily. In terms of severity, of the 91% of developers who
claimed to deal with flaky tests at least a few times a year, 56% described them as a moderate
problem and 23% thought that they were a serious problem.

This research area is of rapidly growing interest. Of the 76 papers in this literature survey,
63% were published between 2019 and 2021. In 2020, Zolfaghari et al. [179] provided a review on
some of the main techniques with regards to the detection, repair, and root causes of flaky tests.
However, to date there has been no comprehensive survey published that covers not only this core
literature but also the wider periphery, such as the influence that flaky tests have in the wider
software engineering field (see Section 2.4 for additional details). It is thus my position that doing
so at this time of increasing attention will be most valuable, particularly to those researchers and
developers wishing to familiarise themselves with the field of flaky test research.

In this survey, I examine the peer-reviewed literature directly concerning flaky tests, according
to the definitions previously described. I make available a bibliography of the examined literature
in a public GitHub repository [224]. Overall, this survey makes the following contributions:

1. Evaluation (Section 2.2): An evaluation of the growing research area of flaky tests.

2. Causes (Section 2.3): A comparative analysis on the causes of flaky tests.

3. Costs (Section 2.4): A summary of costs and impacts on testing reliability and efficiency.

4. Detection (Section 2.5): A comparison of tools and strategies for detecting flaky tests.

5. Mitigation (Section 2.6): An analysis of techniques to mitigate and repair flaky tests.

6. Discussion (Section 2.7): A discussion of research threads, trends, and future directions.

In Section 2.2, I present the research questions, describe the scope of the survey and explain the
methodology for collecting relevant studies. In Section 2.3, I discuss the underlying mechanisms
and factors I identified as the causes of flakiness, both in general and in more application-specific
domains, and present a list of flakiness categories that emerge from the literature. In Section
2.4, I consider the negative impacts that flaky tests impose upon the reliability and efficiency
of testing, as well as upon a range of specific testing-related activities. In Sections 2.5 and 2.6,
I consider approaches for detecting, mitigating and repairing flaky tests, including insights and
general techniques from the literature as well as a tour of the automated tools available. In Section
2.7, I take a high-level overview of all the sources I consulted and examine their demographics and
emergent research trends before summarizing in Section 2.9. In Section 2.8, I provide an update
to the survey by reviewing relevant papers published between April 2021 and April 2023.

2.2 Methodology

In this section, I present this survey’s four research questions and go on to describe its scope and
give the inclusion and exclusion criteria. Following this, I describe the paper collection approach
and present the results. The research questions, with their relevant sections, are as follows:
RQ1: What are the causes and associated factors of flaky tests? This explores the mech-
anisms behind flakiness. The answer explains the common patterns and categories, as identified
by previous research, and goes on to examine more domain-specific factors. (See Section 2.3.)
RQ2: What are the costs and consequences of flaky tests? This addresses the costs of
flaky tests and their severity as a problem for developers and researchers. (See Section 2.4.)
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Table 2.1: The inclusion and exclusion criteria for papers to be considered in this survey.

Inclusion Exclusion

Discusses the causes of flaky tests Not a peer-reviewed publication
Discusses the factors associated with flaky tests Presents the same study as another included pa-

per
Presents a strategy for detecting or analysing
flaky tests

Discusses redundant tests using the term depen-
dent tests

Presents a strategy for repairing or mitigating
flaky tests

A position paper, if the proposed work has been
published

Describes an impact of flaky tests upon some tech-
nique or concept

Table 2.2: Top five most common publication venues.

Venue Papers

Joint European Software Engineering Conference and Symposium on the Foundations of
Software Engineering

14

International Conference on Software Engineering 13
International Symposium on Software Testing and Analysis 9
International Conference on Automated Software Engineering 8
International Conference on Software Testing, Verification and Validation 5

RQ3: What insights and techniques can be applied to detect flaky tests? This catalogues
the techniques that have been applied to identify flaky tests, many of which have been implemented
as automated tools and scientifically evaluated with real-world test suites. (See Section 2.5.)
RQ4: What insights and techniques can be applied to mitigate or repair flaky tests?
This examines the range of literature presenting attempts at limiting the negative impacts of flaky
tests (as I identified by answering RQ2) or repairing them outright. (See Section 2.6.)

2.2.1 Survey Scope

The scope of this survey is limited to peer-reviewed publications relevant to test flakiness, in-
cluding those regarding order- and implementation-dependent flaky tests. I included papers that
have flakiness as their main topic or are tangentially related, such as those describing a cause of
flaky tests or presenting a method that is impacted by them. Other testing topics share similar
terminology to test flakiness but are not directly related and I took care to exclude them. For
example, I did not include works regarding redundant tests, which are sometimes described as
dependent tests [83, 149, 150, 158]. In that context, the term is used to refer to test cases whose
outcome can be inferred from the outcomes of one or more other test cases, as opposed to those
having non-deterministic outcomes with respect to the test run order.

By only considering peer-reviewed sources, I excluded preprints, theses, blog posts and other
“grey” literature. I also took care to exclude position papers if the proposed work has been
completed and published (as in the case of Bell et al. [13, 15]) and instances where the same (or a
similar) study is presented in multiple publications (such as Luo et al. [104, 105]). The inclusion
and exclusion criteria are in Table 2.1. I consider a study relevant to this survey if it meets at
least one of the inclusion criteria and none of the exclusion criteria.

2.2.2 Collection Approach

To collect the papers for the survey, I conducted query searches on the 15th of April 2021 using
the ACM Digital Library [198], IEEE Xplore [239], Scopus [272] and SpringerLink [232]. I selected
query terms that would cover both the general and order-dependent flaky test literature. The full
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ACM (78)

IEEE (22)

Scopus (68)

Springer (50)

Unique (168) Relevant (56) Final (76)

Conferences (6)

Snowball (14)

Query (218)

Remove Duplicates (-50) Screening (-112)

Figure 2.1: An illustration of the paper collection approach, with the number of papers at each stage.
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Figure 2.2: Number of papers by publication year. Searches were conducted in April 2021.

search query was (”flaky test” OR ”test flakiness” OR ”intermittent test” OR ”order dependent
test” OR ”test order dependency”). While the subject area of the ACM Digital Library and IEEE
Xplore is limited to computing/technology, Scopus and SpringerLink are general search engines
including medicine, the social sciences, and other unrelated areas. For these two search engines,
I made sure to restrict the results to computer science only. When evaluating papers against the
inclusion and exclusion criteria, I read their titles, abstracts, introductions and evaluated their
further sections if necessary. This constituted the screening process for selecting relevant papers.

It is my position that the peer-review process constitutes a sufficient quality bar and so I did not
include an additional quality assessment stage in the methodology. To collect more publications
beyond the query searches, I checked the accepted papers of relevant 2021 conferences (such
as those in Table 2.2) that had not yet published their proceedings, and thus would not have
been found as part of the query searches. In addition, I applied a technique known as backward
snowballing [165]. This involved reading the related work sections and references of the collected
papers, from which I extracted additional studies, subject to the inclusion and exclusion criteria.

2.2.3 Collection Results

Figure 2.1 illustrates the paper collection process and gives the number of papers at each stage.
Following the query searches, I ended up with a total of 168 unique results (after removing dupli-
cates). After the screening process, I selected 56 papers with respect to the inclusion and exclusion
criteria as previously explained. I identified a further six relevant papers from the 2021 accepted
papers of the International Conference on Software Engineering (ICSE) [237], the International
Conference on Software Testing, Verification and Validation (ICST) [238], and the International
Conference on Mining Software Repositories (MSR) [256]. Finally, I collected an additional 14
papers via backward snowballing, making for a total of 76 relevant papers.
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2009 • First reference to flaky tests in the research literature [87].
2011 • First attempt at detecting order-dependent tests [113].
2014 • First empirical evaluation of flaky tests.

Ten categories of flakiness defined [105].
First empirical evaluation of order-dependent flaky tests.
First tool for their detection, DTDetector [175].
First tool for mitigating order-dependent flaky tests, VmVm [16].

2015 • First tool for explicitly detecting state-polluting tests, PolDet [62].
2016 • First tool for detecting implementation-dependent flaky tests, NonDex [61, 140].
2017 • First empirical studies of flaky tests in the context of continuous integration [71, 86, 110].
2018 • First tool for detecting flaky tests based on differential coverage, DeFlaker [16].
2019 • First tool for detecting both order-dependent and non order-dependent flaky tests, iDFlakies [90].

First tool for automatically fixing order-dependent flaky tests, iFixFlakies [141].
First tool to apply natural language processing for the static prediction of flaky tests, FLAST [159].

2020 • First tool for detecting flaky tests in machine learning applications, FLASH [35].
2021 • First large-scale empirical study of general flaky tests in Python [59].

Figure 2.3: Timeline of research milestones in the field of flaky tests.

As shown in Figure 2.2, research interest in flaky tests appears to be increasing over time, as
evidenced from the growing number of collected papers published through the years. Until 2014,
research in the area was fairly limited, at which point several now heavily cited papers emerged.
Namely, these were Luo et al.’s An Empirical Study of Flaky Tests, that introduced a widely
used set of flakiness categories [105] (see Table 2.4), and Zhang et al.’s Empirically Revisiting
the Test Independence Assumption, which presented their tool DTDetector for detecting order-
dependent flaky tests [175] (see Section 2.5.2). I consider these studies to be important research
milestones, as shown in Figure 2.3. The trend indicates that flaky tests are an area of increasing
interest, with just under 63% of all sampled studies published between 2019 and 2021.

Table 2.2 shows the top five conferences where the collected papers were published. The
Joint European Software Engineering Conference and Symposium on the Foundations of Software
Engineering (ESEC/FSE) [233] is first, followed closely by ICSE. Both are very mature conferences
for the field of computer science, with the former dating back to the year 1987 and the latter to
1975. Three of the top five conferences are in the field of software engineering, of which software
testing is a subfield. This result suggests that flaky tests are prominent enough as a topic to be
relevant in the more general field of software engineering, as opposed to being just a peculiarity
of software testing. Together, these top five conferences account for approximately 64% of the
studies examined in this survey. Thus, I recommend that interested researchers regularly check
the proceedings of these conferences for new publications about flaky tests.

2.3 Causes and Associated Factors

This section reviews the studies that address the underlying causes and mechanisms that lead
to flaky tests. Some of these studies, like Luo et al. [105], identified common patterns between
flaky tests and categorised them by their perceived causes. Others examined more general factors,
such as Shi et al. [140], that identified incorrect assumptions regarding library specifications, like
the iteration order of unordered collection types, as a potential avenue for flakiness. This section
answers RQ1, which I achieve by splitting it into three sub-research questions, each with their
own associated subsections. The answers to each sub-research question are summarised at the
end of their respective subsections, and their combined findings and implications, constituting the
overall answer to RQ1, are summarised in Table 2.3. The three sub-research questions are:
RQ1.1: What are the general causes of flaky tests? This explores the different general
causes of flakiness as categorised by various studies. To that end, I examine four studies that
analysed flaky tests in projects of no specific type or application with the aim of establishing
different categories of flakiness and identifying their respective prevalences. (See Section 2.3.1.)
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RQ1.2: What are the causes of order-dependent flaky tests? Motivated by their partic-
ularly negative impacts on test suite acceleration (see Section 2.4.2), this investigates the causes
and factors associated with test order dependencies. (See Section 2.3.2.)
RQ1.3: What are the application-specific causes of flaky tests? This addresses the causes
of flakiness that are specific to particular types of applications or testing strategies. To answer
this question, I examine studies that focused on specific types of software and identified the causes
of flaky tests specific to them. (See Section 2.3.3.)

Table 2.3: Summary of the findings and implications answering RQ1: What are the causes and associated
factors of flaky tests? Relevant to researchers (�) and developers (/).

Finding Implications Source

� Issues regarding asynchronicity and
concurrency appear to be the leading
causes of flaky tests.

Techniques for mitigating or repairing
flaky tests ought to be able to address
asynchronicity and concurrency in or-
der to be the most impactful.

[37, 89,
105,
155]

/ Platform dependencies represented
34% of sampled bug reports indicative of
flaky tests.

Developers should ensure that test out-
comes are consistent across the plat-
forms targeted by their software, espe-
cially when using cloud-based continuous
integration.

[37,
155]

� Order-dependent tests were found to
constitute up to 16% of flaky test bug re-
ports and 9% of previous flaky test repairs.

Test order dependency appears to be a
prominent category with specific neg-
ative impacts (see Section 2.4.2) and thus
deserving of specific attention.

[37,
105,
155]

�
/

The majority of order-dependent
tests are victims, passing in isolation but
failing after the execution of certain pol-
luter tests.

Techniques to eliminate state-pollution
during the execution of tests would indi-
rectly repair most order-dependent
tests. Developers ought to be especially
careful that they do not introduce test
cases that may induce a failure in other
tests in the test suite.

[59,
141]

� The dependency of 76% of order-
dependent tests was related to only
one other test.

Techniques for detecting order-dependent
tests should consider that complex net-
works of dependencies are an un-
likely occurrence.

[175]

� Shared access to in-memory resources
via static fields was the facilitator of 61%
of order-dependent tests in the Java pro-
gramming language.

Approaches for dealing with test order de-
pendency should consider that a significant
minority of cases cannot be identified by
analyzing program state alone.

[175]

�
/

Insufficient waiting for elements to be ren-
dered in user interface testing appears
to be a strong factor associated with flaki-
ness in this domain.

Due to their similarities as timing-based
dependencies, insights into mitigating
asynchronous wait flakiness could be useful
in this context.

[49,
132,
136]

�
/

Algorithmic non-determinism accounts for
60% of flaky tests in machine learning
projects.

Strategies for dealing with flakiness ap-
plied to more general projects, where asyn-
chronous waiting and concurrency are the
leading causes of flakiness, may not be so
applicable to machine learning projects.

[35]

�
/

The distribution of causes of flaky tests
within Android applications appears to
roughly correspond to that of more general
projects created in languages like Java.

Insights gained from studying flaky tests
in general are likely to be relevant to
Android projects.

[152]
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2.3.1 General Causes

Studies have examined and categorised the causes of flaky tests in general software projects, that
is, not constrained to a particular platform or purpose. To that end, objects of study such as
historical commit data [105], bug reports [155], developers’ insights from flaky tests that they
have previously repaired [37], pull requests [89] and execution traces [59] have been analysed,
resulting in a commonly used set of flakiness categories. Two of these studies consider subjects
from the same source, namely the Apache Software Foundation [280], yet interestingly present
different findings [105, 155]. The union of the categories used in each of these sources is presented
and described in Table 2.4. Inspired by previous work [161], I also present each category as a
member of one of three families in order to illustrate their relatedness. The intra-test family
describes flakiness wholly internal to the test, in other words, stemming from issues isolated to
the execution of the test code itself, or the direct code under test. The inter-test family contains
tests that are flaky with respect to the execution of other tests, for example, those with test order
dependencies. The flakiness of tests in the external family stems from factors outside of the test’s
control, such as the time taken to receive a response from a web sever. Table 2.5 presents the
prevalence of these categories as determined by each source, along with their type of subject.

Table 2.4: Categories used to classify flaky tests in various studies.

Family Category Description Source

Intra-test Concurrency Test that invokes multiple threads interacting in an unsafe or
unanticipated manner. Flakiness is caused by, for example,
race conditions resulting from implicit assumptions about
the ordering of execution, leading to deadlocks in certain
test runs.

[37,
59, 89,
105,
155]

Randomness Test uses the result of a random data generator. If the test
does not account for all possible cases, then the test may
fail intermittently, e.g., only when the result of a random
number generator is zero.

[37,
59, 89,
105]

Floating
Point

Test uses the result of a floating point operation. Floating
point operations can suffer from a variety of discrepancies
and inaccuracies such as precision over and under flows, non-
associative addition, etc., which if not properly accounted for
can result in inconsistent test outcomes, e.g., by comparing
the result of a floating point operation to an exact real value
in an assertion.

[37, 89,
105]

Unordered
Collection

Test assumes a particular iteration order for an unordered
collection type object. Since no particular order is specified
for such objects, tests that assume they will iterate in some
fixed order will likely be flaky due to a variety of reasons,
e.g., implementation of the collection class.

[59, 89,
105]

Too Restric-
tive Range

Test where some of the valid output range falls outside of
what is accepted in its assertions. This test is flaky since it
does not account for corner cases and thus it may intermit-
tently fail when they arise.

[37, 59]

Test Case
Timeout

Test specified with an upper limit on their execution time.
Since it is usually not possible to precisely estimate how
long a test will take to run, by specifying an upper time
limit a developer may run the risk of creating a flaky test,
since it could fail on certain executions that are slower than
anticipated.

[37, 59]

Inter-test Test Order
Dependency

Test that depends on some shared value or resource that is
modified by another test which impacts its outcome. In the
case where the test run order is changed, these flaky tests
may produce inconsistent outcomes since the dependencies
upon tests previously executed beforehand are broken.

[37, 89,
105,
155]
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Resource
Leak

Test that improperly handles some external resource, e.g.,
failing to release allocated memory. Improperly handled re-
sources may cause flakiness in subsequently executed test
cases which attempt to reuse that resource.

[37,
59, 89,
105,
155]

Test Suite
Timeout

Test is part of a test suite with a limited execution time.
Intermittently fails because it happens to be running once
the test suite hits an upper time limit.

[37]

External Asynchronous
Wait

Test makes an asynchronous call and does not explicitly wait
for it to finish before evaluating assertions, typically using
a fixed time delay instead. Results may be inconsistent in
executions where the asynchronous call takes longer than the
specified time to finish, leading to the flakiness.

[37,
59, 89,
105,
155]

I/O Test that is flaky due to its handling of input and output
operations. For example, a test that fails when a disk has
no free space or becomes full during file writing.

[37,
59, 89,
105]

Network Test that depends on the availability of a network connec-
tion, e.g., by querying a web server. In the case where the
network is unavailable or the required resource is too busy,
the test may become flaky.

[37,
59, 89,
105]

Time Test relies on local system time and it may be flaky due to
discrepancies in precision and timezone, e.g., failing when
midnight changes in the UTC timezone.

[37,
59, 89,
105]

Platform De-
pendency

Test depends on some particular functionality of a spe-
cific operating system, library version, hardware vendor,
etc.. While such tests may produce a consistent outcome
on a given platform, they are still considered flaky, partic-
ularly with the rise of cloud-based continuous integration
services, where different test runs may be executed upon
different physical machines in a manner that appears non-
deterministic to the user.

[37, 59,
155]

Commits

As part of an empirical evaluation, Luo et al. [105] sampled historical commit data from 51 projects
of varying size and language (mostly Java) from the Apache Software Foundation. They identified
201 individual commits that were evidence of a flaky test being repaired by a developer and stud-
ied these to determine the most common causes of test flakiness. Specifically, they categorised the
type of flakiness that each commit repaired under 11 causes, including a miscellaneous or “hard
to classify” category. They categorised 37% of commits under the asynchronous wait category,
meaning a developer repaired flaky tests that were caused by not properly waiting upon asyn-
chronous calls. Such tests typically employed a fixed time delay following the invocation of some
asynchronous operation instead of explicitly waiting for it to complete before evaluating assertions,
potentially leading to an erroneous outcome in the executions where the time delay was insuffi-
cient. Examples include waiting for a response from a web server or waiting for a thread to finish.
Figure 2.4 shows a concrete example of a flaky test of the asynchronous wait category taken from
the Home Assistant project [234]. They categorised 16% of their commits under the concurrency
category, pertaining to flaky tests whose non-determinism was due to undesirable interactions
between multiple threads, including issues such as data races and deadlocks. The main difference
between this category and asynchronous wait is that the latter refers to synchronisation issues
explicitly concerning external or remote resources. They categorised a further 9% under the test
order dependency category, in other words, a developer fixed order-dependent tests, and 5% under
resource leak. They distributed the remainder among the other eight categories, which included
causes related to networking, time, floating point operations, assumptions regarding the iteration
order of unordered collection types [140] and input/output operations. The authors suggested that
techniques for detecting and fixing flaky tests ought to focus on those related to asynchronicity,
concurrency and test order dependency, the three most commonly observed categories.
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1 async def test_get_image(hass, hass_ws_client, caplog):

2 """Test get image via WS command."""

3 await async_setup_component(

4 hass, "media_player", {"media_player": {"platform": "demo"}}

5 )

6 await hass.async_block_till_done()

7

8 client = await hass_ws_client(hass)

9

10 with patch(

11 "homeassistant.components.media_player.MediaPlayerEntity."

12 "async_get_media_image",

13 return_value=(b"image", "image/jpeg"),

14 ):

15 await client.send_json(

16 {

17 "id": 5,

18 "type": "media_player_thumbnail",

19 "entity_id": "media_player.bedroom",

20 }

21 )

22 msg = await client.receive_json()

23 assert msg["id"] == 5

24 assert msg["type"] == TYPE_RESULT

25 assert msg["success"]

26 assert msg["result"]["content_type"] == "image/jpeg"

27 assert msg["result"]["content"] == base64.b64encode(b"image").decode("utf-8")

28 assert "media_player_thumbnail is deprecated" in caplog.text

Figure 2.4: A flaky test from the home-assistant project [234]. This test case was flaky until the addition
of line 6 [222] (highlighted), which blocks the calling thread until all pending work to setup the components
under test has been completed. Previously, the test case might fail if this had not been completed before
the assertions starting on line 23 were evaluated.

Bug Reports

Vahabzadeh et al. [155] categorised the root causes of test bugs, that is, bugs in the code of tests as
opposed to the code under test, which they mined from the bug repository of the Apache Software
Foundation. In total, they systematically categorised 443 test bugs. They considered five cate-
gories: semantic bugs, environment, resource handling, flaky tests, and obsolete tests. Based upon
their descriptions, I would consider the environment and resource categories, along with flaky tests
of course, to fall under the more inclusive definition of flakiness given in Section 2.1. From this per-
spective, they categorised 51% of test bugs to be flaky tests, 34% of which under the environment
category, which was sub-categorised into tests that were inconsistent across operation systems
and those that were inconsistent across third party library or Java Development Kit versions and
vendors. For the purposes of Table 2.5, I consider these as part of the platform dependency cate-
gory. The resource category was sub-categorised into test order dependency, accounting for 16% of
flaky tests, and resource leak, accounting for 8%. Finally, the flaky tests category consisted of the
asynchronous wait, race condition and concurrency bugs subcategories. Considering the latter two
as part of the more general concurrency category of Table 2.5, they categorised 18% of flaky tests
under asynchronous wait and 19% under concurrency. The results of this study are different from
the previous work of Luo et al. [105], with asynchronous wait being only the third most common
category, for example. This may be surprising given that they both examined subjects from the
same source (i.e., the Apache Software Foundation). However, this study takes bug reports as
objects of study, which developers may not have addressed, whereas Luo et al. explicitly analysed
commits that fixed flaky tests. Therefore, this difference in the results reported by Luo et al. and
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Table 2.5: The prevalences of the causes of flaky tests as categorised by various studies. Dashes indicate
that the study did not consider that category. Percentages are rounded and do not sum to 100% since not
all flaky tests could be categorised by the authors of the referenced source.
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[105] Commits 16% 2% 2% 1% - - 9% 5% - 37% 2% 5% 3% -
[155] Bug reports 19% - - - - - 16% 8% - 18% - - - 34%
[37] Fixed flaky tests 26% 1% 3% 0% 17% 8% 9% 6% 2% 22% 0% 0% 2% 4%
[89] Pull requests 8% 5% 2% 0% - - 0% 5% - 78% 5% 14% 4% -
[59] Execution traces 3% 37% - 1% 0% 1% - 2% - 3% 7% 42% 4% 0%

Vahabzadeh et al. suggests that there may be certain categories of test flakiness that developers
are more likely or more able to repair.

Developer Survey

Eck et al. [37] asked 21 software developers from Mozilla to classify 200 flaky tests that they had
previously fixed, using the categories of Luo et al. [105] as a starting point, but being allowed
to create new ones if appropriate. After reviewing the developers’ responses, they identified four
new emergent categories. The first was test case timeout, which refers to the circumstance in
which a test is flaky due to sometimes taking longer than some specified upper limit for single
test case executions. Another related category was test suite timeout, in which a test times out
non-deterministically as before but due to a time limit on the whole test suite execution. Another
was platform dependency, where a test unexpectedly fails when executed on different platforms,
such as across Linux kernel versions, even if the failure is consistent. The final new category was
too restrictive range, in which some valid output values lie outside of assertion ranges, making
the test fail in these corner cases. Their results showed that the top three categories observed
by the developers were concurrency, asynchronous wait and too restrictive range, accounting for
26%, 22% and 17% of cases, respectively. The test order dependency category, one of the top three
categories in the previous work of Luo et al., came in fourth, responsible for 9% of cases. Since
these insights were also derived from previously fixed flaky tests, one could argue that their results
are more directly comparable to those of Luo et al. than those of Vahabzadeh et al. [155]. This
statement is supported by the fact that the most commonly identified causes of flakiness in this
study are similar to that of Luo et al. [105], albeit with test order dependency not quite making
the top three.

Pull Requests

Lam et al. [89] categorised the type of flakiness repaired in 134 pull requests regarding flaky
tests in six subject projects that were internal to the Microsoft corporation. These projects used
Microsoft’s distributed build system CloudBuild, which additionally contains Flakes, a flaky
test management system. By re-executing failed tests, Flakes identifies those that are flaky and
generates a corresponding bug report. By examining the bug reports that had been addressed by
developers via a pull request, they were able to categorise the respective fixes, using the categories
from previous work [105, 118]. They identified asynchronous wait as a leading category, though
with a significantly higher prominence of 78% of pull requests, in comparison to 37% of commits as
found previously by Luo et al. [105]. Furthermore, they found no cases of the test order dependency
category, which had previously been identified as being common. One possible reason for this is
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that Flakes only re-executes tests in their original order and does no reordering, therefore making
it unlikely to identify, and generate bug reports for, any order-dependent tests.

Execution Traces

Gruber et al. [59] performed an empirical analysis of flaky tests in the Python programming
language. To collect subjects, they automatically scanned the Python Package Index [265]
and selected projects with a test suite that could be executed by PyTest, a popular Python
test runner [266] on which their experimental infrastructure depends. This resulted in 22,352
subject projects containing a total of 876,186 test cases. They executed each test suite 200
times in its original order and 200 times in a randomised order to identify flaky tests including
order-dependent tests. Introducing the concept of infrastructure flakiness, Gruber et al. split
each of these 200 runs into 10 iterations of 20 runs, each executed on the same machine in an
uninterrupted sequence. They considered a flaky test to be due to infrastructure flakiness if it was
flaky between iterations but not within an iteration — for example, a test case that fails in every
run of one iteration but consistently passes every run of every other iteration. They reasoned
that such instances were due to non-determinism in the testing infrastructure. For a sample of
100 flaky tests that were neither order-dependent nor due to infrastructure non-determinism, the
authors classified their causes based on keywords in the execution traces of the flaky test failures.
For instance, they considered keywords such as thread and threading to be indicative of flaky tests
of the concurrency category. In total, they identified 7,571 flaky tests among 1006 projects of
their subject set. Of these, they found 28% to be due to infrastructure flakiness, 59% due to test
order dependencies and 13% due to other causes. Of the 100 automatically classified flaky tests
(randomly sampled from the latter 13%), they found the most common category to be network,
accounting for 42%. This was followed by randomness at 37%. At odds with the general trend of
previous studies [37, 89, 105, 155], asynchronous wait and concurrency were minority categories,
responsible for 3% of the categorised flaky tests each. The authors put this down to use case
differences between the Python and Java programming languages, since these previous studies
focused predominantly on subjects of the latter.

Conclusion for RQ1.1: What are the general causes of flaky tests? The overarching
picture painted by studies examining commit data, bug reports, developer survey responses, and
pull requests suggests that timing dependencies related to asynchronous calls is the leading cause
of test flakiness [37, 89, 105, 155]. One study that categorised pull requests of automatically
generated bug reports of flaky tests found the prevalence of this category to be as high as 78%.
Therefore, techniques for mitigating or automatically identifying such cases would likely address
the most significant share of flaky tests. However, another study examining execution traces
specifically from projects implemented in the Python programming language [59] found this to
be a minority category. Other emergent leading causes include concurrency related issues, other
than asynchronicity and platform dependency. The latter of these, accounting for up to 34% of
bug reports indicative of flaky tests in one study [155], is particularly relevant in the age of cloud-
based continuous integration, where test runs may be scheduled across heterogeneous machines
in a seemingly non-deterministic manner depending on availability [37]. Another prominent
cause of flaky tests are test order dependencies (i.e., order-dependent tests), representing 9% of
flaky test repairs in two studies [37, 105].

2.3.2 Test Order Dependencies

Multiple sources have specifically considered the causes of, and the factors associated with, the test
order dependency category of flaky tests. Some of these have discussed the difficulties associated
with implementing and executing procedures between test case runs for resetting the program
state, specifically setup and teardown methods [14, 67]. Others have examined the impact of
global variables, such as static fields in the Java programming language, as a vector for conveying



2.3. CAUSES AND ASSOCIATED FACTORS 17

1 @pytest.mark.parametrize(

2 "config_dir", ["../hydra/test_utils/configs"],

3 )

4 @pytest.mark.parametrize(

5 "config_file, overrides, expected",

6 [

7 (None, [], {}),

8 (None, ["foo=bar"], {"foo": "bar"}),

9 ("compose.yaml", [], {"foo": 10, "bar": 100}),

10 ("compose.yaml", ["group1=file2"], {"foo": 20, "bar": 100}),

11 ],

12 )

13 class TestCompose:

14 def test_compose_decorator(

15 self, hydra_global_context, config_dir, config_file, overrides, expected

16 ):

17 with hydra_global_context(config_dir=config_dir):

18 ret = hydra.experimental.compose(config_file, overrides)

19 assert ret == expected

20

21 def test_strict_failure_global_strict(

22 self, hydra_global_context, config_dir, config_file, overrides, expected,

23 ):

24 overrides.append("fooooooooo=bar")

25 with hydra_global_context(config_dir=config_dir, strict=True):

26 with pytest.raises(KeyError):

27 hydra.experimental.compose(config_file, overrides)

Figure 2.5: An example of an order-dependent flaky test from the hydra project [220]. The test
case test strict failure global strict appends a string to the list passed as the overrides argu-
ment on line 24, which is part of a class-wide test parametrisation given on line 4. The test case
test compose decorator expects overrides to be of its initial value and would fail if executed after
test strict failure global strict, as may other tests in TestCompose [236] that unexpectedly re-
ceive the modified version of overrides.

information between test cases and thus establishing order-dependent tests [14, 15, 113, 175]. One
study posited that failing to control all the inputs that may later impact assertions leaves tests
open to establishing dependencies on one another [74]. An example of an order-dependent test,
and the test that can cause it to fail, is given in Figure 2.5, taken from Facebook’s Hydra project
for the configuration of Python applications [220].

Classification

Shi et al. [141] introduced the terminology of victim and brittle for describing order-dependent
tests. A victim test passes in isolation but fails when executed after certain other tests. The
tests that cause a victim to fail are known as the victim’s polluters. Conversely, a brittle test fails
in isolation and requires the prior execution of other tests to pass, known as state-setters. Shi
et al. performed an evaluation using 13 modules of open-source Java projects containing 6,744
tests in total. By executing the respective test suites in randomised orders, they identified 110
order-dependent tests. Of these, 100 were victims and 10 were brittles.

As part of their empirical evaluation of flaky tests in Python projects, Gruber et al. [59]
followed a similar procedure upon 22,352 Python projects from the Python Package Index [265].
They identified 4,461 order-dependent tests, 3,168 of which were victims and 738 of which were
brittles. The authors were unable to categorise the remaining 555 due to limitations in their
testing framework. Overall, the combination of these two studies indicates that the vast majority
of order-dependent tests would pass in isolation but may fail due to the action of other tests.
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Setup and Teardown

Haidry et al. [67] reasoned that test order dependencies are a result of interactions between
components of the software under test. Giving an example of a hypothetical piece of software
for running an automated teller machine (ATM) machine, they explained that, since the machine
requires the user to enter their PIN before inputting the desired amount of cash, the test case that
covers the PIN component must be executed before the test case that covers the cash withdrawal
component to ensure that the system is in the required state. A developer could write each
of these test cases to be independent of one another, but that would require some amount of
additional setup for each of them, resulting in a less efficient test suite. Therefore, test order
dependencies may be a consequence of developers prioritizing efficiency and convenience over test
case independence.

Having studied the prevalence of per-test process isolation as a mitigation for test order de-
pendencies, which involves executing each test in its own process to prevent side effects, Bell
et al. [14] suggested that the burden of writing setup and teardown methods could be a factor
in the existence of test order dependencies. Setup methods, which ensure that the state of the
program is as expected before a test is executed, and teardown methods, which reset the state of
the program to as it was before the test run, are a means of avoiding side effects between tests,
meaning isolation should not be necessary. Bell et al. remarked, however, that these methods may
be difficult to implement correctly, perhaps explaining their observation that 41% of 591 sampled
open-source projects used isolated test runs as a catch-all attempt to eliminate side effects and
thus test order dependencies.

Static Fields

Muşlu et al. [113] remarked how the implicit assumptions of developers regarding the way in
which their code is executed, such as the ordering of method calls and data dependencies, leads to
a class of bugs which, when testers are unaware of such assumptions, are likely to be overlooked.
They explained how this can manifest itself as test cases that depend on the execution of other
tests in a test suite and behave differently when executed in isolation. Such tests violate the test
independence assumption that all tests are isolated entities, something that they stated is rarely
made explicit, thus exacerbating the problem. The authors went on to describe and evaluate a
technique for manifesting these implicit dependencies and found the improper use of Java static
fields to be a potential vector.

Of the 96 instances of order-dependent Java tests identified by keyword searches in various
issue tracking systems, Zhang et al. [175] found a majority of 73 requiring only one other test
to manifest the test order dependency. In other words, 76% of their sample were observed to
produce a different outcome if executed after only one other test in isolation from the rest of the
test suite, compared to the outcome when running the test suite as normal. They found that
61% of order-dependent tests were facilitated by a static field, for example, one test modifies some
object pointed to by a static field somewhere which is later used by a subsequent test, with the
remainder caused by side effects within external resources such as files, databases or some other
unknown cause. This finding roughly concurs with that of Luo et al. [105], who found that 47%
of order-dependent tests were caused by dependencies on external resources.

When introducing their test virtualisation approach, Bell et al. [14] described static fields
as potential points of “leakage” between test runs, becoming possible avenues for tests to share
information or resources and thus become dependent upon one another. Through the evaluation of
their order-dependent test detection approach in a later study, Bell et al. [15] discovered that the
test order dependencies identified by their tool were facilitated by a very small number of static
fields. In other words, many order-dependent tests were caused by shared access to the same static
fields in a Java program. Further examination revealed that most of these were within internal
Java runtime code, as opposed to application or test code, and all of them were of a primitive
data type.
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Table 2.6: Leading causes of flakiness in specific domains.

Source Domain Leading Cause

[48, 49, 132, 136] User interface testing Asynchronous wait
[35, 116] Machine learning Randomness
[152] Mobile applications Concurrency

Brittle Assertions

Huo et al. [74] reasoned that brittle assertions, or assertion statements that check values derived
from inputs that the test case does not control, can give rise to order-dependent tests. Tests
containing brittle assertions generally make an implicit assumption that the program state that
constitutes the uncontrolled inputs will always be of some particular value, often their default
value. This assumption can facilitate a test order dependency if another test modifies this
program state before the evaluation of the brittle assertion. The authors gave an example of
a Java test class containing a test method that assumes various instance fields of an object
under test are set to their default values. In the case where a previously executed test method
modifies the values of these fields, the former test becomes order-dependent, stemming from the
uncontrolled, assumed default, field values.

Conclusion for RQ1.2: What are the causes of order-dependent flaky tests? Studies
have attributed test order dependencies to the difficulty of implementing, and the added com-
putational cost of executing, setup and teardown procedures between test case runs [14, 67]. In
terms of how they are facilitated, one source found 61% of order-dependent tests to have been
caused by global variables, specifically static fields, as opposed to external factors such as files,
and that the majority, 76%, appeared to depend on only one other test [175]. Furthermore,
another study found that most test order dependencies are conveyed via a relatively small num-
ber of static fields, mostly found within internal runtime code as opposed to application or test
code [15]. An additional cause that has been associated with order-dependent tests is related to
the assumption that certain parts of the program state will always be of some particular value.
This gives rise to tests that do not fully control all the inputs evaluated within their assertions,
which may go on to become order-dependent if other tests modify such inputs [74].

2.3.3 Application-Specific Causes

As well as the causes of flakiness in general projects, studies have examined the factors associated
with flaky tests specific to particular applications or domains. There exists a line of work explicitly
concerned with flakiness within the test suites exercising user interfaces [48, 49, 132, 136]. In
addition, given the rise in popularity of machine learning techniques, studies have begun to consider
the particularities of flaky tests within such projects [35, 116]. Furthermore, following a similar
methodology to Luo et al. [105], one source categorised flaky tests specific to Android projects
[152].

User Interface Testing

Gao et al. [48] discussed the causes of flakiness in GUI regression testing. The process of GUI
regression testing requires the test harness to take measurements about particular GUI state
properties, such as the positions of various elements, which are then compared with measurements
taken of a later version to identify unexpected discrepancies. During the execution of test cases,
GUI test oracles evaluate an extensive range of properties, including those that may be tightly
coupled with the hardware on which they are executed, such as screen resolution, meaning test
outcomes can be inconsistent across machines. Furthermore, since it is difficult to predict the
amount of time required to render a GUI, or due to instability within the GUI state itself, the
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point in time at which to take these measurements may be unclear. In other words, if measurements
are taken too early, before the GUI has been fully drawn, then the values of these properties may
be inaccurate. All these factors contribute to the potential for these properties to become highly
unstable, something which has been quantified in terms of entropy [49].

A later study by Presler-Marshall et al. [132] evaluated the impact of various environments
and configurations of Selenium [275], a framework for automating UI tests in web apps, upon test
flakiness. Specifically, they analysed the effects of varying five properties of the execution platform.
The first was the waiting method, used by Selenium to wait for the various UI elements to appear
before evaluating test oracles. As previously explained, tests may be flaky if they are too eager
to evaluate assertions before the web browser has fully rendered the page. The second was the
web driver, Selenium’s interface for controlling a web browser to execute tests. In the context
of this study, the term web driver was used interchangeably with web browser, since they have
a one-to-one correspondence with respect to their evaluation. The web drivers they evaluated
were Chrome [227], Firefox [221], PhantomJS [261] and HtmlUnit [235], the latter two
being headless, meaning that they do not render a graphical display and are used primarily for
testing and development purposes. The third factor was the amount of memory available to the
testing process, doubling from 2GB up to 32GB. The fourth was the processor, which they varied
between a notebook CPU, supposed to represent what a software engineering student might use,
and a much more powerful workstation processor. The final factor was the operating system,
specifically Windows 10 or Ubuntu 17.10. The object of their analysis was an on-going software
engineering student project containing nearly 500 Selenium tests. Under five configurations of the
five described properties, they counted the number of test failures after 30 test suite executions,
knowing that tests ought to pass and so a failure would be indicative of flakiness. The authors found
that Java’s Thread.sleep [277] with a fixed time delay as a waiting method yielded the fewest
test failures of all the methods evaluated, compared with not waiting at all or using more dynamic,
conditional waiting methods. They also found that a faster CPU resulted in substantially fewer
flaky tests, presumably since it would render web pages fast enough to ensure that the waiting
method would have less of an impact.

Romano et al. [136] performed an empirical evaluation examining, among other things, the
causes of flakiness in user interface testing. As subjects, they took both web and Android ap-
plications, and, following a methodology inspired by Luo et al. [105], manually inspected 3,516
commits from 7,037 GitHub repositories. Eventually, they narrowed down their objects of analysis
to 235 distinct flaky tests and categorised them by their root causes into four broad categories,
each broken down into subcategories. Their first broad category, asynchronous wait, contained
45% of the 235 flaky tests and consisted of three subcategories. The first subcategory was network
resource loading and describes flaky tests attempting to manipulate remote data or resources that,
depending on network conditions, are not fully loaded (or have failed to load at all). The second
was resource rendering and refers to the case where a flaky test attempts to perform an action
upon a component of the user interface before it is fully drawn. The third was animation timing,
containing flaky tests that rely on animations in the user interface and are thus sensitive to timing
differences across different running environments. Their second broad category was environment,
consisting of two subcategories, and containing 19% of their dataset. The first subcategory was
platform issue, regarding issues with one particular platform that may cause flakiness, and the sec-
ond was layout difference, pertaining to differences in layout engines in different internet browsers.
The third broad category was test runner API issue, accounting for 17% of the flaky tests. This
was broken down into DOM selector issue, problems interacting with the Document Object Model
(DOM) due to differences in browser implementation, and incorrect test runner interaction, incor-
rect behaviour within APIs provided by the test runner. Finally, the last broad category was test
script logic issue and contained 19% of the flaky tests. This was broken down into the familiar
unordered collections, time, test order dependency, and randomness, and contained the additional
subcategory incorrect resource load order, describing flaky tests that load resources after the calls
that load the tests, causing the tested resources to be unavailable at test run time.
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Machine Learning

Nejadgholi et al. [116] studied oracle approximations in the test suites of deep learning libraries.
An oracle approximation in this context refers to the range of acceptable output from some deep
learning-based software under test, which are naturally probabilistic in nature, as estimated by
a developer. These ranges are expressed as assertion statements within test cases which, due to
their probabilistic nature, often take the form of a range of acceptable numerical values or some
approximate equality operator with a defined tolerance. This is in contrast to, for example, a
simple equality test with a pre-defined value that might be applicable when testing a deterministic
algorithm but may be inappropriate in this context. They proposed a set of assertion patterns that
express oracle approximations and identified instances of them across four popular deep learning
libraries implemented in the Python programming language. Across these projects, between 5%
and 25% of all assertions were deemed to be oracle approximations. Since an oracle approximation
may be overly conservative in certain circumstances, this may lead to tests failing inconsistently
for corner cases and thus being flaky tests as part of the too restrictive range category [37].

Dutta et al. [35] argued that machine learning and probabilistic applications suffer especially
from test flakiness as a result of non-systematic testing specific to their domain. They examined
75 previously fixed flaky tests from the commit and bug report data of four popular open-source
machine learning projects written in Python and categorised their causes and fixes. They devised
their own categories to be more specific regarding the origin of the flakiness in their particular
subject set, explaining that under the categories of Luo et al. [105], they would have mostly been
categorised under randomness, which would be too general for this more specific study. They
categorised the majority of flaky tests, 60% of those sampled, as being caused by algorithmic non-
determinism, that is, non-determinism inherent in the probabilistic algorithms under test common
in machine learning projects, such as Bayesian inference and Markov Chain Monte Carlo among
others. For instance, they described the situation in which a developer wishes to test a statistical
model, selecting a small dataset upon which to train it. If the developer does not account for the
non-zero chance that the training algorithm does not converge after some number of iterations,
then any assertions regarding the parameters of the trained model may fail in some cases. They
associated five of their sampled tests with incorrect handling of floating point computations (e.g.,
rounding errors and the mishandling of corner cases such as NaN). A further four were categorised
under incorrect API usage. Unsynchronised seeds — in which the program inconsistently set the
seeds of different random number generators within different libraries — were blamed for two flaky
tests. The remainder were split between concurrency or hardware related causes, or were labelled
by the authors as other or unknown.

Mobile Applications

Thorve et al. [152] claimed that Android apps have a particular set of characteristics that may
make them specifically vulnerable to test flakiness. These include platform fragmentation —
the vast number of versions and variants of the Android operating system available — and the
diversity of interactions — the functionality within Android apps which typically involves many
third-party libraries, networks and hardware with highly variable specifications (e.g., screen size
and processing power). With a methodology inspired by Luo et al. [105], they searched through the
historical commit data of Android projects on GitHub for particular keywords associated with flaky
tests. In total, they identified 77 commits across 29 Android projects that appeared to fix flaky
tests. They categorised 36% as related to concurrency. Unlike Luo et al. [105], they considered
the asynchronous wait category as part of the concurrency category. They categorised 22% as
based upon assumptions or dependencies regarding specific hardware, the Android version or the
version of particular third-party libraries. A further 12% they categorised as being attributable to
erroneous program logic, specifically regarding corner-case program states. The remaining flaky
tests were categorised as being caused by either network or user interface related non-determinism,
or were too difficult to classify.

Fazzini et al. [42] highlighted the significant number of interactions between mobile apps and
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their software environment as a cause of test flakiness. Specifically, they referred to external
calls to application frameworks that collect data from the network, location services, camera, and
other sensors. They explained that a common strategy to mitigate such flakiness is to create test
mocks for these sorts of external calls, providing tests with fictitious but deterministic data [145].

Conclusion for RQ1.3: What are the application-specific causes of flaky tests? In
the context of user interface testing, an insufficient waiting mechanism to allow the interface
to be fully rendered and stable before executing tests appears to be strongly associated with
flakiness in this domain, in a manner comparable to that of flaky tests related to asynchronous
waiting [48, 132, 136]. For machine learning projects, overly conservative approximations re-
garding the valid output of probabilistic algorithms and the high degree of algorithmic non-
determinism in general appears to be a major cause of flaky tests [35, 116]. The distribution
of causes of flaky tests within Android applications appears to roughly correspond to what has
been observed in more general efforts to categorise flakiness [37, 89, 105, 155], with concurrency
and dependencies upon the highly variable execution platform identified as major causes [152].

2.4 Costs and Consequences

This section presents evidence of the negative consequences of test flakiness to illustrate its promi-
nence as a problem. Following the same methodology as outlined in Section 2.2, the goal of this
section is to answer RQ2 by posing three sub-research questions, with findings summarised in
Table 2.7. These three questions aim to capture the variety of discussions and analyses in the
literature regarding the impacts and costs of flaky tests, and are as follows:
RQ2.1: What are the consequences of flaky tests upon the reliability of testing? This
provides insights into the extent to which test flakiness detracts from the value of testing by casting
doubt on the meaning of a test case’s outcome. Consulting studies that analysed issue trackers and
bug reports, my answer examines how flaky tests manifest themselves with respect to incorrectly
indicating the presence of a bug or allowing one to go unnoticed. I go on to consider the impact
that ignoring flaky tests can have on the volume of crashes experienced by users, demonstrating
that, while unreliable, flaky tests may still provide some testing value and should not always be
immediately deleted by developers. (See Section 2.4.1)
RQ2.2: What are the consequences of flaky tests upon the efficiency of testing? This
studies how flaky tests could impose costs on the time taken to receive useful feedback from test
suite executions. By reviewing several empirical studies, my answer specifically examines how a
particular category of flaky test poses a threat to the validity of a variety of techniques designed
to accelerate the testing process. (See Section 2.4.2.)
RQ2.3: What other costs does test flakiness impose? This is a catch-all for any relevant
sources not consulted when answering the previous questions. My answer to aims to identify all
other testing-related areas that are negatively affected by flaky tests. (See Section 2.4.3.)

Table 2.7: Summary of the findings and implications answering RQ2: What are the costs and conse-
quences of flaky tests? Relevant to researchers (�) and developers (/).

Finding Implications Source

/ Of 107 tests identified as flaky by repeat-
edly executing whole test suites, only the
flakiness of 50 could be reproduced by
repeatedly executing them in isola-
tion.

Flaky tests seem more consistent when run
in isolation, meaning attempts to repro-
duce their flakiness this way might be chal-
lenging, but reproducing their failure
for debugging purposes may still be
effective.

[92]
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/ Out of 96 sampled order-dependent tests,
94 reportedly caused a test failure in the
absence of a bug, i.e., a false alarm, the
remainder caused a bug to go unnoticed.
Out of a sample of 443 test bug reports,
97% led to a false alarm, and of these, 53%
were flaky tests.

The dominant consequence of flaky tests
appears to be false alarms and flaky tests
also appear to be their leading cause. This
indicates that flaky tests may be a consid-
erable waste of a developer’s time since
they may attempt to go looking for a bug
that does not exist.

[155,
175]

/ Production builds of the Firefox web
browser with one or more flaky test fail-
ures were associated with a median of 234
crash reports. Builds with one or more
test failures in general were associated with
a median of 291.

Despite being less reliable, flaky test fail-
ures should not be ignored, in the same
way that any test failure should not be ig-
nored.

[37]

/ Of the test execution logs of over 75
million builds on Travis, 47% of previ-
ously failing, manually restarted builds
subsequently passed, indicating that they
were affected by flakiness. Projects with
restarted builds experienced a slow down
of their pull request merging process
of 11 times compared to projects without.

Flaky tests can threaten the efficiency
of continuous integration by intermit-
tently failing builds and requiring man-
ual intervention, hindering the process of
merging changes and stalling a project’s
development.

[33]

� At Google, of the 115,160 test targets that
had previously passed and failed at least
once, 41% were flaky. Of the 3,871 dis-
tinct builds sampled from Microsoft’s dis-
tributed build system, 26% failed due to
flakiness.

Test flakiness has been reported within all
sectors of the software engineering
field, from independent open-source soft-
ware projects to the proprietary products
of some of the world’s largest companies.

[88,
110]

/ Over a 30-day period of test execution
data, 0.02% of test executions resulted in
flaky failures, though had these not been
automatically identified by the testing in-
frastructure, 5.7% of all failed builds
would have been due to these flaky
tests.

A relativity small number of flaky tests in
a test suite can have a significant impact
on the number of subsequently failed
builds as part of a continuous integration
system.

[89]

�
/

Across the developer-written test suites
of 11 Java modules, 23% of previously
passing order-dependent tests failed
after applying test prioritisation, 24% after
applying test selection and 5% after paral-
lelizing tests.

Order-dependent tests in particular limit
the applicability of test acceleration
techniques by causing inconsistent out-
comes in the test runs they produce.

[91]

� Flaky tests are a threat to the valid-
ity of experimental test acceleration algo-
rithms, with researchers taking steps to fil-
ter them from their evaluation methodolo-
gies.

Researchers should understand that flaky
tests are inevitable in real-world test
suites and should give forethought to their
implications when creating methods that
reorder or otherwise modify test suite runs.

[97,
106,
127,
169]

� Flaky tests have been shown to detract
from the applicability of mutation test-
ing, fault localisation, automatic test
generation, batch testing and auto-
matic program repair.

Approaches for dealing with flaky tests
would likely have far-reaching impacts,
beyond the obvious benefits of improving
test suite reliability.

[108,
114,
138,
139,
157,
167]

� Out of 89 student submissions of a soft-
ware engineering assignment, 34 contained
at least one flaky test.

Flaky tests may hinder software engineer-
ing education, which, while representative
of industry experience, may place an un-
due burden upon students.

[140]
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2.4.1 Consequences for Testing Reliability

Since the goal of a software test is to provide a signal to the developer indicating the presence
of faults, a flaky test that may pass or fail, regardless of program correctness, represents a signal
with some amount of noise. In a test suite containing multiple flaky tests, this noise accumulates
and may result in an unreliable test suite. Luo et al. [105] explained three deleterious effects
that flaky tests can have on the reliability of testing. First, since non-determinism is inherent
to test flakiness, attempting to reproduce failures of flaky tests can be more difficult and less
valuable. One study empirically evaluated the reproducibility of flaky tests on a large scale [92].
Second, because flaky tests can fail without modifications to the code under test, they can waste
developer time via debugging a potentially spurious failure that is unrelated to any recent changes.
Multiple studies have examined the manifestation of flaky tests in terms of indicating the presence
of non-existent bugs, or conversely, missing real bugs [155, 175]. Lastly, despite flaky tests being
an unreliable signal, they may still convey some useful information as to the correctness of the
code under test, however, a frequently failing flaky test may eventually be ignored by a developer,
thus potentially causing genuine bugs to be missed. To that end, one source found that ignoring
flaky test failures may have a negative effect on software stability, measured in the number of
crash reports received for the Firefox web browser [134].

Reproducibility

Lam et al. [92] posited that, when encountering a failing test during a test suite run, a developer
is likely to run that test in isolation in order to reproduce the failure and thus debug the code
under test. When trying to reproduce the inconsistent outcome of a flaky test, they demonstrated
that this technique may not be effective. They executed the test suites of 26 modules of various
open-source Java projects 4,000 times and calculated each test’s failure rate — the ratio of failures
to total runs. For each test they found to be flaky, meaning a failure rate greater than zero
or less than one, they re-executed it 4,000 times again in isolation. They found that, of the
107 tests identified as flaky, 57 gave totally consistent outcomes in isolation. Furthermore, they
found that the failure rates of flaky tests appear to differ when executed in isolation. Of the 50
flaky tests that were reproduced in isolation, 19 had lower failure rates and 28 had higher ones.
A Wilcoxon signed-rank test demonstrated a statistically significant difference between the two
samples, suggesting that the failure rates when executed within the test suite were significantly
different to the failure rates when executed in isolation. This result shows that flaky tests appear
to behave more consistently when executed in isolation and so this may be a good strategy if
trying to reproduce the failure of a flaky test, but not its flakiness.

Manifestation

Zhang et al. performed an empirical study of test order dependencies [175]. They pointed out that,
unlike other sorts of flaky tests, order-dependent tests would only be manifested when the test
suite changed by adding, removing or reordering test cases. They described how order-dependent
tests can mask bugs, since the order in which the containing test suite is executed might determine
whether or not the dependent test is able to expose faults or not. They also explained how test
order dependencies might lead to spurious bug reports should the test run order be changed for
any reason, potentially manifesting the order-dependent tests and exposing an issue in the test
code (e.g., improper setup and teardown) rather than a bug in the code under test, something
that a developer may have to allocate time to identify themselves. They went on to search for four
phrases related to test order dependency in five software issue tracking systems to understand the
manifestations of order-dependent tests in Java projects. In total, they found 96 such tests, 94 of
which caused a false alarm, a test failure in absence of a bug, and two caused a missed alarm that
was, in other words, a bug in absence of a test failure. The ramifications of a missed alarm are
potentially more serious than a false alarm since they may allow a bug to go unnoticed and thus
persist after testing.
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A later and more general investigation into the prevalence and nature of bugs in test code
was performed by Vahabzadeh et al. [155]. Through their manual analysis, they identified 5,556
unique bug reports across projects of the Apache Software Foundation [280], 443 of which they
systematically categorised. They categorised these by manifestation, that is, whether the test
bug led to a false alarm or to a missed alarm, or a “silent horror” as they termed them, and by
their root cause. They found that 97% of test bugs manifested as a false alarm, with test bugs
categorised as flaky tests, or due to environmental reasons or mishandling of resources (also types
of flaky test according to the definition in Section 2.1), responsible for 53% of these. False alarm
test bugs, while potentially less serious than “silent horrors”, can still take a considerable amount
of time and effort for developers to debug. Since flaky tests are likely to be the dominant root
cause of such bugs this means that they are potentially a significant waste of a developer’s time.
Ultimately, the findings of both of these studies suggest that flaky tests are more likely to manifest
as a spurious test failure rather than an unnoticed bug, though as the operative word in the latter
case suggests, it might simply be that such instances are under reported, because they are, by
definition, unnoticed by developers and researchers.

Ignoring Flakiness

Rahman et al. [134] examined the impact of ignoring flaky test failures on the number of crash
reports associated with builds of the Firefox web browser [221] in both the beta and production
release channels. To identify flaky tests, they searched for records of test executions marked with
the phrase “RANDOM”, a term commonly used by Firefox developers, in the testing logs. In
the median case, they found that builds with one or more flaky test failures were associated
with a median of 514 and 234 crash reports for the beta and production channels, respectively.
Furthermore, a Wilcoxon signed-rank statistical test comparing the numbers of crashes between
the two channels showed a statistically significant difference, with Rahman et al. conjecturing
that developers were more conservative about releasing production builds with known flaky tests.
For those with failing tests in general, these figures were 508 crash reports for the beta channel
and 291 for the production channel. In the case of builds with all tests passing, they recorded
a median of only two crash reports for each channel. These findings indicate that ignoring test
failures, flaky or otherwise, appears to lead to a considerably higher volume of crashes due to
missed bugs.

Conclusion for RQ2.1: What are the consequences of flaky tests upon the reliability
of testing? One study found that, of 107 flaky tests identified by repeatedly executing their
test suites, only 50 could be reproduced as flaky by repeatedly executing them in isolation.
These findings suggest that reproducing the flakiness of a flaky test by executing it in isolation
may be difficult, though it may still be effective for reproducing the failing case for debugging
purposes [92]. In terms of their manifestation, one source identified 94 out of 96 sampled order-
dependent tests to have caused a false alarm, meaning that they failed in the absence of a
real bug [175]. Another found that 97% of bugs in test code manifested as a false alarm, with
flaky tests representing 53% of these [155]. Overall, these results indicate that flaky tests may
be a leading cause of test failures that are false alarms. One study found that builds of the
Firefox web browser with one or more flaky test failures were associated with a median of 234
crash reports in the production channel. This is compared to a median of 291 crash reports
associated with builds containing one or more failing tests in general and two reports associated
with builds that had all passing tests. These results suggest that ignoring test failures, even if
they are flaky, can lead to a higher incidence of crashes [134].

2.4.2 Consequences for the Efficiency of Testing

Projects can benefit from using continuous integration to automate the process of running tests
and merging changes [72]. However, since continuous integration may result in a greater volume
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of test runs, it can highlight the true extent of flakiness in a test suite [87]. In a continuous
integration system, when a developer has been working on their own branch and goes to merge
their changes, their code is remotely built and a test suite run is triggered to ensure their changes
have not introduced bugs. Should any tests fail, their changes will be rejected. Naturally, given the
association between flaky tests and false alarm failures [155, 175], flaky tests can limit the efficiency
of the continuous integration process by incorrectly causing builds to fail [33, 86, 88, 89, 110]. In
addition, since the majority of software build time is spent on test execution [15], numerous
test acceleration approaches have been developed for quickly retrieving the useful information
from test runs [78]. Test selection is a technique for speeding up a test run by only executing
tests deemed likely to indicate a bug, for example, by only executing those test cases that cover
recently modified code [97, 106, 142]. Test prioritisation is used to reorder a test suite such that
the test cases likely to reveal faults are executed sooner, achieved by sorting test cases by, for
instance, the most modified code elements covered, for [67, 127, 169]. Test parallelisation is an
approach for taking advantage of a multi-processor architecture by splitting the execution of a test
suite over multiple processors, potentially resulting in significant speedups [15, 22, 66]. Since all
of these techniques shrink, reorder or split up a test suite (i.e., change the test execution order),
they run the risk of breaking test order dependencies, resulting in inconsistent outcomes for the
order-dependent tests that have them [15, 91, 175]. This is problematic since, even though these
techniques may reduce testing time, if they cause inconsistent test outcomes then the results of the
optimised test run may become unreliable by causing false alarm failures, as previously explained
in Section 2.4.1. Studies have shown that flaky tests do impact the results and deployment of these
techniques [22, 91, 175], to the extent that researchers have taken steps to filter them as part of
their evaluation methodologies [97, 106, 127, 169]. A recent mapping study of test prioritisation
in the context of continuous integration found that 13% of sampled publications on the topic
identified flaky tests as a problem [131].

Continuous Integration

Lacoste [87], a Canonical developer working on the collaborative development service Launchpad
[250], described his experiences of transitioning to a continuous integration system in 2009. His
account provided an insight into how the constant execution of tests in a continuous integration
system can expose flakiness. He remarked how an intermittent failure caused by a “malfunctioning
test”, his description for a flaky test, was a potential reason for a branch being rejected by their
old “serial” integration system, thereby causing the team to miss a release deadline. Upon tran-
sitioning to a continuous integration system, developers witnessed the magnitude of the flakiness
in their test suites, since tests were being executed more often. In particular, he found that the
“integration-heavy” tests, that covered multiple processes, were the most problematic ones in the
studied test suite.

At a software developed company, called Pivotal Software, a survey deployed by Hilton et al.
[71] asked developers to estimate the number of continuous integration builds failing each week due
to genuine test failures and those due to flaky test failures. They found no statistically significant
difference between the two distributions of estimates after performing a Pearson’s Chi-squared
test. This indicated that developers at Pivotal experienced similar numbers of both genuine and
flaky failures, something that the manager at Pivotal indicated was a surprising finding.

As part of a study into the cost of regression testing, Labuschagne et al. [86] examined the
build history of 61 open-source projects that were implemented in the Java programming language
and used the Travis continuous integration service [231]. In each case where a build had previously
transitioned through passed, failed (indicating that the build had failed tests) and back to passed
again consecutively, they re-executed the build at the failing stage three times. They found that
just under 13% of 935 such failing builds in their dataset had failed due to flaky tests.

Durieux et al. [33] performed an empirical study into the prevalence of, and the reasons behind,
manually restarted continuous integration builds. Under normal circumstances, a build would be
triggered following a code change. If the build fails, due to compilation errors or failed tests, the
change is rejected. If a developer decides to manually trigger a build, without making any changes,
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it is referred to as a restarted build. They analysed the logs from over 75 million builds on the Travis
system. They found that 47% of previously failing builds that were restarted subsequently passed,
indicating that they were affected by some non-deterministic behaviour, since no code change was
involved. They went on to identify inconsistently failing tests to be the main reason for developers
restarting builds. Furthermore, they found that projects with restarted builds experienced a slow
down of their pull request merging process of 11 times compared to projects without restarted
builds. This result suggests that flaky tests have the potential to hinder the continuous integration
process by spuriously failing builds and requiring manual developer intervention.

Additionally, Memon et al. [110] performed a study into reducing the cost of continuous testing
at Google. They described flaky tests as a reality of practical testing in large organisations, citing
them as a constraint to the deployment of the results of their work. Specifically, they identified
approximately 0.8% of their total dataset of over five million “test targets”, a term used by Google
to describe a buildable and executable code unit labelled as a test, as flaky. Of the 115,160 test
targets that had historically passed at least once and failed at least once, flaky tests constituted
41%.

Microsoft’s distributed build system, CloudBuild, was the object of analysis in a study by
Lam et al. [88]. By examining the logs from repeated test executions, these authors identified 2,864
unique flaky tests across five projects. Overall, of the 3,871 individual builds that they sampled,
26% presented flaky test failures. Furthermore, data from Flakes, the flaky test management
system integrated into CloudBuild, was used in a later study [89]. Over a 30-day period,
the authors found that Flakes identified a total of 19,793 flaky test failures across six subject
projects, representing just 0.02% of the sampled test executions. However, had the Flakes tool
not identified such cases, they reported that flaky test failures would have been responsible for a
total of 1,693 failed builds, which would have represented 5.7% of all the failed builds sampled.
This finding suggests that, even when flaky tests are not particularly prevalent, the percentage of
builds that may be affected by flaky test failures can be relatively significant.

Test Acceleration

As part of an empirical study of test order dependence, Zhang et al. [175] assessed how many test
cases gave inconsistent outcomes when applying five different test prioritisation schemes across
the test suites of four open-source Java projects. Their results showed that, for one subject in
particular with 18 previously identified order-dependent tests, up to 16 gave a different outcome
compared to a non-prioritised test suite run. This finding indicated that the soundness of test
prioritisation was, at least for this project, significantly impacted by order-dependent tests — even
though test prioritisation methods are not supposed to affect the outcomes of tests at all.

A later evaluation into the impact of test parallelisation on test suites for Java programs was
conducted by Candido et al. [22]. They measured the speedup of the test suite run time and the
percentage of previously passing tests which now failed, indicating flakiness, under five paralleli-
sation strategies across 15 subjects. Their results showed that flaky tests were manifested within
four projects under every strategy and that 11 projects had totally consistent outcomes for at least
one. Their results also indicated that the finer-grained techniques that involved parallelisation at
the test method level, as opposed to just the test class level, manifested the most flaky tests. These
techniques were also the most effective, indicating that the speedup achieved and the reliability of
the test outcomes could be a trade-off for developers to consider when order-dependent tests are
present in the test suite.

Lam et al. [91] evaluated the consequences of order-dependent tests upon the soundness of
regression test prioritisation, selection and parallelisation. They evaluated a variety of algorithms
upon 11 modules of open-source Java projects with both developer-written and automatically
generated test suites with the order-dependent tests already identified in previous work [90]. After
applying test prioritisation, they found a total of 23% of order-dependent tests in their subjects’
developer-written test suites failed and 54% of such tests in their automatically generated test
suites failed, when they were previously passing. For test selection, this was 24% and 4% for
developer and automatic test suites respectively and, for parallelisation, 5% and 36%, respectively.
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Several studies have revealed that researchers are aware of the negative impacts that flaky
tests can have on attempts to improve testing efficiency, as they often take steps to remove them
in their evaluation methodologies. Leong et al. [97] compared the performance of several test
selection algorithms using one months worth of data from Google’s Test Automation Platform.
They demonstrated that, for one particular algorithm that prioritised tests based on how frequently
they had historically transitioned between passing and failing, its performance was better when
evaluated without flaky tests. Specifically, when evaluated with a dataset containing flaky tests,
for up to 3.4% of historical commits, the algorithm did not select one or more tests whose outcome
had changed, compared to up to 1.4% when flaky tests were filtered out. Since the goal of test
selection is to only execute informative tests, by missing more tests whose outcome had changed
(suggesting that a particular commit may have introduced/fixed a bug), the algorithm performed
worse at its intended purpose. They used this as justification for filtering flaky tests in their wider
evaluation methodology. Similarly, Peng et al. [127] found that, when comparing test prioritisation
approaches based on information retrieval techniques, they mostly appeared to perform better
when evaluated with a dataset filtered of flaky tests.

When evaluating a data-driven test selection technique deployed at Facebook, Machalica et al.
[106] remarked how flaky tests represented a significant obstacle to the accuracy of their approach.
Their test selection technique used a classification algorithm, that was trained with previous
examples of failed tests and their respective code changes, to only select tests for execution when it
predicted that they might fail given a new code change. Finding that the set of flaky tests in their
dataset was four times larger than the set of deterministically failing tests, they explained that
if they did not filter flaky tests from their training data then they would run the risk of training
their classifier to capture tests that failed flakily rather than those that failed deterministically
due to a fault introduced by a code change. Yu et al. [169] faced similar problems with their
machine-learning-driven approach for test case prioritisation in the context of user interface
testing. They identified flaky tests as a threat to the internal validity of their research, admitting
that they did not filter flaky tests from their dataset and thus could have limited the accuracy of
their trained model. As future work, these authors planned to explore ways to tackle test flakiness.

Conclusion for RQ2.2: What are the consequences of flaky tests upon the efficiency
of testing? One study found that 13% of failing builds across 61 projects using the Travis
system, which had previously passed and then immediately went on to pass again, were caused
by flaky tests [86]. Similarly, of a sample of over 75 million builds, 47% were manually restarted
builds that previously failed and subsequently passed, indicating that they were affected by non-
deterministic behaviour such as flaky tests [33]. At Google, one study found that 41% of “test
targets” that had previously passed and failed at least once were flaky [110]. At Microsoft,
another study identified flaky test failures within 26% of all the builds they sampled [88].
Another Microsoft study demonstrated that the 0.02% of flaky test failures from over 80 million
test executions, over a 30-day period, could have been responsible for what would have been 5.7%
of all the failed builds in that period, had they not been identified [89]. These results indicate
that flaky tests can limit the efficiency of continuous integration by spuriously failing builds,
thereby requiring manual intervention from developers. Evaluating several test parallelisation
strategies across 15 projects, one study found that order-dependent flaky tests were manifested
within 11 of the 15 under at least one strategy [22]. Across a range of developer-written test
suites with previously identified test order dependencies [90], another source found that 23%
of order-dependent tests failed, when previously passing, after applying test prioritisation, 24%
after applying test selection and 5% after parallelizing tests [91]. These findings suggest that
order-dependent tests in particular are an obstacle to the applicability of test acceleration
techniques. Flaky tests may also hinder the formulation and evaluation of new test acceleration
methods. One study found that when evaluating a transition-based test selection algorithm,
it failed to perform correctly in 3.4% of cases when flaky tests were present in the evaluation
dataset, compared to 1.4% once they were removed [97]. Other sources have described how
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flaky tests were a threat to the validity of their techniques, with most opting to filter them as
a part of their methodologies [106, 127, 169].

2.4.3 Other Consequences

Beyond the general consequences for testing already examined in this section, various sources have
demonstrated that flaky tests can pose a considerable problem to a diverse range of specific testing
activities. The effectiveness of techniques such as mutation testing [76, 139], fault localisation
[157], automatic test generation [125, 138], batch testing [114], and automatic program repair
[108, 167] have all been shown to be impacted by the presence of test flakiness. Furthermore,
in the domain of software engineering teaching, studies have revealed that flaky tests can detract
from the educational value of various teaching activities and possibly become a burden for students
[132, 140, 146].

Mutation Testing

Mutation testing is the practice of assessing a test suite’s bug finding capability by generating many
versions of a software under test with small syntactical perturbations, to resemble bugs, known as
mutants [75]. A test is said to kill a mutant if it fails when executed upon it, thus witnessing the
artificial bug. If a test covers mutated code but does not kill it then the mutant is said to have
survived. At the end of a test suite run, the percentage of killed mutants is calculated and is called
a mutation score, commonly used as a measurement of test suite quality. Demonstrating the extent
to which flakiness can impact mutation testing, Shi et al. [139] conducted an experiment with 30
Java projects. In the context of this study, the flakiness they were specifically referring to relates
to non-determinism in the coverage of tests rather than necessarily the test outcome. As an initial
motivating study, they examined the number of statements that were inconsistently covered across
their subjects when repeatedly executing their test suites. Overall, they found that the coverage
of 22% of statements was non-deterministic. They used a mutation testing framework, called PIT
[262], to generate mutants for these same subjects. The framework first runs the test suite to
analyse each test’s coverage so that it generates mutants that the tests have a chance of killing.
Given the level of flakiness in the coverage of these tests, however, the authors explained that
when they are executed again to measure mutant killing, they may not even cover their mutants,
such that their killed status is unknown. Investigating this phenomenon’s extent by applying PIT
to their subject set, they found that over 5% of mutants ended up with an unknown status due to
inconsistent coverage, leading to uncertainty in the mutation score. Assuming that all unknown
mutants were killed, the overall mutation score would have been 82% and — further assuming
that they all survived — this score would have been 78%, showing that non-deterministic coverage
can limit the reliability of this test effectiveness metric.

Fault Localisation

Vancsics et al. [157] studied the influence of flaky tests on automated fault localisation techniques.
Fault localisation uses the outcomes and coverage of tests to identify the location of faulty program
elements. This is motivated by the reasoning that a group of program statements, for example, that
is disproportionately covered by failing tests is likely to contain a bug. Fault localisation techniques
associate program elements with suspiciousness rankings, calculated in various ways [166], which
capture the probability that they contain a fault. As the subjects of their investigation, they took
multiple versions of a single project from the Defects4J dataset, each version containing a reported
bug, and evaluated the effectiveness of three popular fault localisation techniques in locating each
respective bug. They executed the test suites of each buggy version 100 times, collecting test
outcomes and method-level coverage data. To simulate the presence of flaky tests, they repeatedly
invoked each studied technique to compute suspiciousness rankings for each method, increasingly
adding noise to the test outcomes. Specifically, they artificially changed test outcomes from pass
to fail, or vice versa, at random with an increasing probability, up until the point where each
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test appeared to pass or fail with a 50/50 ratio. This required them to modify the suspiciousness
ranking formulae of each technique to consider a test outcome as a probability of passing or failing
rather than a binary value, since typically fault localisation does not require multiple test suite
runs and would thus only have one recorded outcome for each test. To measure the impact of
the artificial flaky tests, they measured the extent to which the suspiciousness rankings changed
with increasing flakiness. Their results indicated that, in general, each technique was affected by
increasing flakiness. In other words, the magnitude of the difference in the suspiciousness rankings
of each technique for many of the subject bugs was positively correlated with the magnitude of
the artificial flakiness.

Automatic Test Generation

Shamshiri et al. [138] studied the effectiveness of automatically generated test suites for the testing
of Java programs. They applied three unit test generation tools, Randoop [268], EvoSuite [219],
and AgitarOne [199], to a dataset of over 300 faults across five open-source projects, assessing
how many bugs the automatically generated unit tests could detect. Through this process they
also identified the number of flaky tests that were generated by each of the three tools. Of the
tests generated by Randoop, which uses feedback-directed random test generation, an average
of 21% exhibited non-determinism in their outcomes. The EvoSuite tool, which leverages a
genetic algorithm, produced flaky tests at an average rate of 3%. Only 1% of the tests generated
by the commercial, proprietary tool called AgitarOne were found to be flaky. These findings
demonstrate that automated tools, as well as developers, are also capable of producing flaky tests,
threatening the overall reliability of automatically generated test suites.

A later study by Paydar et al. [125] examined the prevalence of flaky tests within the regression
test suites generated specifically by Randoop. They explained how regression test suites are useful
in as far as they capture the behaviour of a program at a given point in time and are used to identify
if a recent code change has any unintended effects. If a regression test suite contains flaky tests
then it does not accurately reflect the behaviour of the program and is thus less informative for
developers. These authors took between 11 and 20 versions of five open-source Java projects and
used Randoop to generate regression test suites, which were the main objects of analysis. Overall,
they found that 5% of their automatically generated test classes were flaky, and on average, 54% of
the test cases within each of these were flaky, further demonstrating that automatically generated
tests can contribute to the flakiness of a test suite.

Batch Testing

Najafi et al. [114] investigated the impact of flakiness on batch testing, a technique for improving
efficiency within a continuous integration pipeline. Instead of testing each new commit individually,
batch testing groups commits together to reduce test execution costs. Should the batch pass then
each commit can proceed to the next stage of the pipeline. Should a batch fail, it has to be
repeatedly bisected to identify the commit(s) that caused the failure, effectively performing a
binary search for the culprit. They explained that flaky tests are a threat to the applicability of
batch testing, since a spurious flaky failure may lead to unnecessary bisections. To mitigate this,
smaller batch sizes can be selected since the flaky failure will affect fewer commits, though this
limits the potential efficiency gains from applying batch testing in the first place. An evaluation
upon three unnamed projects at Ericsson demonstrated the following negative correlation: the
more flakiness within a test suite, the smaller the most cost-effective batch size.

Automatic Program Repair

Test suite-based automatic program repair is a family of techniques for automatically generating
patches for bugs [95]. The test suites of the subject programs are used to assess the correctness of
the patch, such that if all the tests pass then the patch is deemed suitable. Like any technique based
on the outcomes of tests, automatic program repair is sensitive to flaky tests since they introduce
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unreliability into this assessment. Specifically, a flaky test failure could lead to a correct patch
being spuriously rejected [108]. Ye et al. [167] presented an empirical evaluation of automated
patch assessment, analysing 638 automatically generated patches. Specifically, they employed a
technique known as Random testing based on Ground Truth (RGT) to determine if a generated
patch was correct or overfitting. A patch is considered overfitting if it passes the developer-written
tests it was generated from, yet is generally a poor solution to the bug in question and may fail
on tests held out from the patch generation process. To that end, the RGT technique uses an
automatic test generation technique such as Randoop [125] or EvoSuite [40, 44] to assess the
generated patches. If a patch fails an automatically generated test, it is labelled as overfitting.
In this case, the test is also applied to a developer-written, ground truth patch to determine the
behavioural difference with the overfitting patch. Given the potential for automatic test generation
techniques to produce flaky tests [125, 138], the RGT technique includes a preprocessing stage
where it repeatedly executes each generated test on the ground truth patch. Given that the
ground truth patch is considered to be correct, any test failure at this stage is considered to be
flaky and the test is discarded. Having discarded 2.2% of tests generated by EvoSuite and 2.4%
generated by Randoop for this reason, Ye et al. concluded that flaky test detection is an important
consideration for researchers in automatic program repair. The authors remarked how this was a
threat to the internal validity of their study, explaining how the flaky tests they discarded may
still have exposed behavioural differences between generated and ground truth patches. As such,
this could have led to them underestimating the effectiveness of RGT in the context of automated
program repair.

Teaching and Education

Using a contrived electronic health record system developed and tested by students of a software
engineering course as an object of study, Presler-Marshall et al. [132] analysed the effect of various
factors on the flakiness of user interface tests within web apps. As part of their motivation, they
explained that, while it may well reflect real industry experiences, ambiguous feedback from flaky
tests can introduce undue stress to students.

Shi et al. [140] investigated the impact of assumptions about non-deterministic specifications
upon the incidence of flaky tests in both open-source Java projects and student assignments. They
described how the student assignments in software engineering courses are typically graded with
the assistance of automated tests. If it turns out that these tests are flaky, the authors explained,
then incorrect solutions may have passing tests and, visa versa, correct solutions may have failing
tests and thus may result in unfair grades being awarded. They went on to evaluate the incidence
of flaky tests in student submissions of a software engineering assignment, where students were
asked to implement a program and its test suite, and found 110 flaky tests across 89 submissions,
with 34 containing at least one flaky test.

A study by Stahlbauer et al. [146] introduced a formal testing framework for the educational
programming environment called Scratch [273]. The authors instantiated this framework with
the Whisker tool, providing automatic and property-based testing for Scratch programs. Since
Scratch is an educational platform, they reasoned that it would add educational value by assisting
learners to identify functionality issues in their programs. Upon evaluation of their tool, they
found that just over 4% of the combinations of tests and projects to exhibit flakiness if Scratch’s
underlying random number generator was not seeded. This result suggests that flaky tests
have the potential to confound their framework and thus potentially detract from its intended
educational value.

Conclusion for RQ2.3: What are the other consequences of flakiness? Tests with
flaky coverage have been shown to be deleterious to the effectiveness of mutation testing, with
one experiment finding that 5% of mutants ended up with an unknown killed status, resulting
in uncertainty around the final mutation score [139]. One source has demonstrated that fault
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localisation may be sensitive to the inconsistent outcomes of flaky tests, finding the applica-
bility of three popular techniques to be negatively correlated with the magnitude of simulated
flakiness [157]. Automatic test generation was shown to have the potential to produce flaky
tests, in particular the Java tool Randoop, where one study found 21% of the overall tests it
produced across five subjects to be flaky [138]. The potential efficiency benefits of the batch
testing technique was also shown to be negatively affected by test flakiness, as evaluated with
three proprietary subjects [114]. As another technique dependent on the outcomes of tests,
one study evidenced the negative impacts of flaky tests on test suite based automatic program
repair, specifically the automatic assessment of the generated patches [167]. Studies have also
found that flaky tests can be identified within students’ submissions of software engineering as-
signments, potentially impacting grading [140]. Their authors’ suggested that they can become
an obstacle to learning [146] and also place undue stress on students [132].

2.5 Detection

Armed with knowledge of their underlying causes, as covered in Section 2.3, and motivated by
their negative impacts, as described in Section 2.4, I now consult sources presenting insights and
strategies for detecting flaky tests. The automatic identification of flakiness in a test suite has
the potential to be useful for developers by not only highlighting test cases that may need to
be rewritten, but also by enabling the use of various mitigation strategies (see Section 2.6.1).
As in Section 2.3, I separately examine techniques targeting order-dependent flaky tests, which
given their unique costs, have been afforded special attention in the literature. I answer RQ3
by following the same pattern as the previous sections, posing and answering two sub-research
questions, with Table 2.8 providing a summary.
RQ3.1: What techniques and insights are available for detecting flaky tests? This
captures the findings and approaches regarding the detection of flaky tests. My answer provides
a tour of the relevant literature and demonstrates the diversity of techniques available, ranging
from those that require executions of a test suite to those that are entirely static in their analyses.
Beyond presenting specific automatic techniques, I also examine general approaches for flaky test
detection, as well as offering advice for how best to apply automated tools. (See Section 2.5.1.)
RQ3.2: What techniques and insights are available for detecting order-dependent
tests? This demonstrates attempts to identify test order dependencies specifically, motivated by
the specific impacts and causes of this category of flaky tests. I provide a comparative review of
such techniques and demonstrate an emerging line of work. (See Section 2.5.2.)

Table 2.8: Summary of the findings and implications answering RQ3: What insights and techniques can
be applied to detect flaky tests? Relevant to researchers (�) and developers (/).

Finding Implications Source

� Almost all flaky tests were independent
of the execution platform, meaning, for
example, that they could be flaky under
multiple operating systems — even if they
were dependent on the execution environ-
ment.

Techniques for detecting flaky tests ought
to consider environmental depen-
dence with a higher priority than plat-
form dependence.

[105]

� Of the asynchronous wait flaky tests, 34%
used a simple time delay to enforce a par-
ticular execution order.

A considerable portion of asynchronous
wait flaky tests may be manifested by
changing — in particular by decreasing —
a simple time delay.

[105]

� The vast majority of flaky tests of the con-
currency category involved, or could be re-
duced to, only two interacting threads,
and 97% pertained to concurrent access to
in-memory resources only.

Previous approaches to increasing con-
text probability [38] may be applica-
ble to detecting concurrency related flaky
tests.

[105]
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� Dependency on external resources was
blamed for 47% of flaky tests of the test
order dependency category.

Not all order-dependent tests can be de-
tected by considering the internal state of
in-memory objects; modelling of the ex-
ternal environment may be required.

[105]

�
/

Repeating tests as a method of identi-
fying flakiness is a common practice. Be-
tween 15% and 18% of test methods were
found to be flaky in open-source Java
projects using this approach.

Repeating tests can be considered a re-
liable baseline for detecting flaky tests
since it directly witnesses inconsistent out-
comes. It can also become very costly in
terms of execution time when perform-
ing many repeats.

[16, 89,
92]

/ One study found that 88% of flaky tests
were found to consecutively fail up to a
maximum of five times before pass-
ing, though another reported finding new
flaky tests even after 10,000 test suite
runs.

There appears to be no clear, optimum
number of reruns for identifying flaky
tests.

[8, 92]

�
/

By identifying tests that cover un-
changed code but whose outcome
changes anyway, DeFlaker was able to
detect 96% of flaky tests previously iden-
tified by repeatedly executing them up to
15 times.

By taking differential coverage into ac-
count, an automated tool can identify the
vast majority of flaky tests with only a sin-
gle test suite run.

[16]

/ By randomizing the implementations
of non-deterministic specifications, Non-
Dex found 60 flaky tests across 21 open-
source Java projects.

Developers should take care when dealing
with unspecified behaviour, such as the
iteration order of unordered collections, so
as not to introduce flaky tests.

[61,
140]

/ The addition of CPU and memory
stress during test suite reruns was shown
to increase the rate at which flaky tests
were detected.

Since stress-loading tools are readily avail-
able, this technique is easily accessible to
developers and could reduce the run-
time cost of detecting flaky tests.

[144]

� By fitting a probability distribution over
the inputs evaluated in assertion state-
ments and estimating the probability that
they would fail, FLASH identified 11 new
flaky tests in machine learning projects
and verified a further 11 previously fixed
flaky tests.

Despite the differences in the common
causes of flaky tests in machine learning
projects (see Section 2.3.3), specific ap-
proaches for detecting them have demon-
strated some success in this domain.

[35]

� Through static pattern matching
within test code, 807 instances of timing
dependencies potentially indicative of
flaky tests of the asynchronous wait cate-
gory were identified across 12 projects. A
sample of 31 of these were all identified as
true positives via manual analysis.

This technique could prove useful as a first
indicator of potential flakiness, given that
it requires no test executions, but is natu-
rally limited by the fact that it cannot ver-
ify that the tests it identifies are genuinely
flaky.

[161]

�
/

The application of machine learning
techniques to the detection of flaky tests
has shown promising results, with one
study reporting an overall F1 score of 0.86
across 24 open-source Java projects using a
model based on features regarding partic-
ular identifiers in test code, the presence of
test smells and other test characteristics.

Since these techniques do not require re-
peated test suite runs and are not tied
to a specific programming language,
they are potentially very useful to devel-
opers, who may welcome a more general-
purpose technique and may not have the
time or resources to repeatedly rerun their
test suites.

[8, 65,
127,
159]

�
/

Of 245 flaky tests, 75% were flaky from the
commit that introduced them.

Running automatic flaky tests detection
tools only after introducing tests may
identify the majority of cases, but will
exclude a significant portion.

[93]
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�
/

Of 61 flaky tests that were not flaky from
their inception, the median number of
commits between the commit that intro-
duced them into the test suite and the
commit that introduced their flaki-
ness was 144.

Periodically running flaky tests detection
tools after larger numbers of commits, i.e.,
150 or so, is likely to achieve a good cost-
to-detection ratio, as opposed to run-
ning them after every commit, which may
be prohibitively expensive.

[93]

�
/

Executing a test suite in reverse
was able to manifest 72% of all the
developer-written and automatically gen-
erated order-dependent tests that were
identified as part of a larger evaluation
of several strategies within DTDetector.
This approach was also the fastest by at
least one order of magnitude.

Executing tests in their reverse order and
identifying order-dependent tests via in-
consistent outcomes compared to their
original order is a fast and reasonably ef-
fective baseline approach.

[175]

� By monitoring reads and writes to Java
objects between test runs, ElectricTest
detected all the same order-dependent
tests in a single instrumented test suite run
as DTDetector would when it repeat-
edly executes the tests. It also detected
hundreds more that were not verified.

Techniques of instrumenting objects to
identify potential test order dependencies
can be very efficient since they require only
a single test suite run. Yet, they cannot
verify that a given order-dependent test is
manifest and so could be considered prone
to false positives and a low precision,
even if they have a high recall.

[15]

� By executing minimal test schedules
to verify possible order-dependent
tests, PraDeT filters false positives de-
tected using an object instrumentation
technique similar to ElectricTest. How-
ever, it detected fewer order-dependent
tests overall than simple techniques based
upon reversing or shuffling the test run or-
der.

Despite their simplicity, techniques for de-
tecting order-dependent tests based upon
re-executing whole test suites in different
orders may be more efficient and effec-
tive than more sophisticated approaches.

[47]

� Filtering possible order dependencies that
were unlikely to be manifest, using nat-
ural language processing techniques upon
the leading verb and nouns of test case
names, decreased the run time of TEDD
by between 28% and 70% when detecting
order-dependent tests.

There appears to be valuable information
regarding the existence of test order de-
pendencies present in the names of test
cases, which may be extracted using nat-
ural language processing techniques.

[17]

� An evaluation of iDFlakies found that,
of 422 identified flaky tests, 50% were
order-dependent.

The prevalence of order-dependent tests as
reported by automatic tools appears to be
higher than as reported by developers (see
Table 2.5), suggesting that developers may
be unaware of many order-dependent
tests or possibly do not consider them a
priority for repair.

[90]

� A chi-squared statistical test of indepen-
dence revealed that 70 out of 96 flaky tests
had different failure rates when exe-
cuted in different test class orders, to a
statistically significant degree.

The binary distinction of flaky tests into
order-dependent or not may be overly
coarse, since the probability that a flaky
test fails may be dependent on the test run
order, yet still be neither exactly zero or
one.

[92]

2.5.1 Detecting Flaky Tests

Studies have explored the many different ways of identifying flaky tests within test suites. One
paper offered insights on how best to manifest flaky tests derived from inspecting previous repairs
of flaky tests within the commit histories of a multi-language sample of projects [105]. With
regards to automatic techniques, a common baseline approach is to repeatedly execute the tests in
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an attempt to identify inconsistencies in their outcomes [16, 89, 92, 187]. More targeted approaches
have considered test coverage [16] or the characteristics of specific categories of flakiness [35, 140,
144]. Several references have presented approaches that do not explicitly require test reruns,
such as those based on pattern matching [161] or machine learning [8, 82, 128, 159]. Given
the potentially prohibitive costs of repeatedly applying automatic flaky test detection tools, one
reference experimentally examined when it was best to use them in order to achieve a good ratio
of detection to run time cost [93].

Insights from Previous Repairs

By studying historical commits that repaired flaky tests in open-source projects of the Apache
Software Foundation, Luo et al. [105] offered several insights into how best to manifest test
flakiness. They found that 96% of the flaky tests they examined were independent of the execution
platform, meaning that they could be flaky on different operating systems or hardware, even if they
were dependent on a component in the execution environment such as the file system. From this
finding, they suggested that techniques for detecting flaky tests ought to consider environmental
dependence with a higher priority than platform dependence. Of the flaky tests they categorised as
being of the asynchronous wait category, they found that 34% used a simple time delay or a sleep

or waitFor method [263, 277], to enforce a certain ordering in the test execution. They explained
that these particular cases of flakiness may be manifested by changing, specifically decreasing, this
time delay. They suggested a second manifestation approach for tests in this category: adding an
additional time delay somewhere in the code. This technique, they explained, could be applicable
to the 85% of sampled flaky tests in this category that neither depended upon external resources
(since they are harder to control) and involved only a single ordering (one thread or process
waiting on one other thread or process). On this theme, Endo et al. [39] proposed a technique for
manifesting race conditions in JavaScript applications, which are typically highly asynchronous,
by selectively introducing delays between events. Following an empirical study, they found their
technique was also capable of manifesting flaky tests of the asynchronous wait category, identifying
two such instances among 159 test cases. Of the flaky tests Luo et al. categorised as being of
the concurrency category, they found that almost all involved, or could be simplified to, two
interacting threads and that 97% were related to concurrent access to in-memory objects, as
opposed to being related to external resources such as the file system. This, the authors posited,
implies that existing techniques [38] for increasing context switch probability could manifest this
kind of test flakiness. With regards to test order dependencies, the authors found that 47% of
the flaky tests that they categorised under this cause were facilitated by external resources and
thus recording and comparing internal object states may be insufficient to detect these instances,
instead requiring modelling of the external environment or reruns with different test run orders.

Repeating Tests

The most straightforward approach to detecting flaky tests is to repeatedly execute the tests of
a test suite. This is done with the rationale that, if re-executed enough times, the inconsistent
outcomes of any flaky tests will be manifested. This approach has been universally adopted,
becoming a part of the testing infrastructure within large software companies such as Google
[187] and Microsoft [89]. Furthermore, plugins and extensions are available for popular testing
frameworks, such as Surefire [254] for Maven [253] and flaky [206] for PyTest [266], for
repeatedly executing failing tests to identify flakiness. Due to its ubiquity and simplicity, the
repeated execution of tests may be considered a baseline approach from which to evaluate more
sophisticated methods for detecting flakiness [16].

Bell et al. [16] assessed how many flaky tests could be identified in open-source Java projects by
repeating the failing tests until they either passed, thus indicating a flaky test via an inconsistent
outcome, or until a limit was reached. Reasoning that repeatedly executing a test case using
the same strategy may result in it failing for the same reason each time and thus not exposing
a flaky outcome, they used an incremental approach combining three rerunning strategies. They
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first repeated a failing test up to five times within the same Java Virtual Machine (JVM) process,
followed by up to five times within separate processes and then again up to five times, cleaning
the execution environment and rebooting the machine between repeats. The authors applied this
approach to 28,068 test methods across 26 projects and found 18% of the test cases in their dataset
to be flaky. Of these flaky tests, 23% were manifested by re-execution within the same process,
a further 60% required repeats within their own JVM instances and the remainder could only be
identified by removing generated files and directories (by using Maven’s clean command [253])
and then rebooting the machine.

Deciding how many times to repeat a test is a difficult one, since a low number may risk
missing the more elusive flaky tests and a high number can impose significant runtime costs. For
example, at Google, failing tests may be repeated up to ten times to identify if they are flaky
[187]. Whereas Microsoft’s Flakes system repeats failing tests only once by default [89]. Lam
et al. [92] set out to identify what would be a good number of repeats by examining the lengths
of sequences of consecutive failures when repeatedly executing flaky tests, which they referred
to as burst lengths. Initially, they re-executed 4,000 times, in various orders, the test suites of
26 modules of open-source Java projects, consisting of 7,129 test methods, to identify the flaky
tests. They identified 107 flaky tests this way and went on to examine the cumulative distribution
function of their maximal failure “burst lengths”. The authors found that around 88% of the flaky
tests in their study would fail up to five times consecutively before passing and revealing flakiness.
This led them to suggest that no more than five repeats should be necessary to manifest the vast
majority of flaky tests.

Kowalczyk et al. [84] presented a mathematical model for ranking flaky tests by their severity,
based on their outcomes following repeated executions. Their model includes the concept of a
version, a series of test runs where the source code, program data, configuration, and any other
artifact that may be expected to affect test outcomes, remains unchanged. Within a single version,
the authors described two flakiness measures. The first is the entropy of the test, a value between
0 and 1 inclusive where 0 indicates a test that always passes or always fails and 1 indicates a test
that passes half the time and fails the other half. For a test with a probability of passing in a
given version p, this is calculated as −p log2 p − (1 − p) log2(1 − p). Their second measure, the
flip rate, captures the rate at which the test transitions between passing and failing, or vice versa,
and is calculated simply as the ratio of the number of such transitions over the maximum number
possible, which would simply be one less than the number of repeats. To aggregate these scores
for a test across versions, the authors propose an unweighted model — simply the arithmetic mean
of the score across some number of previous versions — and a weighted model — an exponentially
weighted, moving average that gives more weight to more recent versions. Leveraging data from
two services at Apple, the authors also explain how to use this generalisable model for test flakiness
to both identify flaky tests and rank them according to their severity.

Differential Coverage

Bell et al. [16] presented an approach for detecting flaky tests in Java projects without having
to repeatedly execute them. Their technique is based on the notion that if a test previously
passed and now fails, and does not cover any code that was recently changed, then the failure
must be spurious and thus flaky. To that end, they developed a hybrid statement and class-level
instrumentation technique that considers differential coverage only, meaning the statements that
have recently changed according to a version control system, to identify if a given test method
does indeed cover changed code or not. They implemented their technique as a tool named
DeFlaker and evaluated it using 5,966 commits across 26 open-source Java projects. Initially,
they compared their approach to a three-tiered strategy of rerunning failing tests until they passed,
thus identifying flakiness, or until an upper limit was reached. They found that DeFlaker was
able to identify 96% of the flaky tests identified by rerunning tests in this way, demonstrating its
comparable effectiveness with this baseline approach. A further experiment demonstrated that,
out of 96 flaky tests confirmed as genuine based upon historical fixes from version control data,
DeFlaker was able to verify up to 88%. Since DeFlaker is a coverage-based tool with no
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requirement to repeatedly execute tests, it has the advantage of being significantly more efficient.
Examining the cost of DeFlaker’s instrumentation, the authors measured the time overhead
compared to several popular coverage measurement tools. They found that DeFlaker incurred
a mean increase of approximately 5% the un-instrumented run time of the test suite, compared
to a range of 33% to 79% for the other tools, concluding that DeFlaker was lightweight enough
for continuous use during testing.

Non-deterministic Specifications

Shi et al. [140] presented a technique for identifying test flakiness stemming from the assumption of
a deterministic implementation of a non-deterministic specification, or ADINSs as they abbreviated
them, within Java projects. Such specifications are “underdetermined” and leave certain aspects of
behaviour undefined and thus up to the implementation, potentially allowing for multiple correct
outputs for a single input [60]. They went on to describe three categories of ADINSs. The first
was random and relates to the case where code assumes that the implementation of a method
deterministically returns a particular scalar value when it is not specified to do so. They give the
hashCode method of the abstract Object class [258] as an example of a potential subject of such
an ADINS, since it is not specified to return any particular integer value and thus may be highly
implementation dependent. The second category was permute and describes ADINSs regarding a
particular iteration order of a collection type object when it is left unspecified. For example, a test
that assumes a HashMap [229] will iterate over its elements in a particular order would be guilty of
this type of ADINS and could thus be flaky across platforms, where the implementation of HashMap
may vary. The final category was extend and describes the situation where a specification gives the
length of a collection object returned by some method as a lower bound and the assumption is made
by the developer that the object will always be of that length. They gave the getZoneStrings of
the DateFormatSymbols class [213] as an example, since it is specified to return an array of length
at least five, which it does in Java 7, but returns one of length seven in Java 8. If a developer writes
tests that expect this method to return an array of length exactly five then they may fail when
transitioning from Java 7 to Java 8, becoming a flaky test of the platform dependency category in
Table 2.4.

In order to manifest instances of ADINSs, they developed a tool named NonDex (also the
subject of its own paper [61]) that consisted of a re-implementation of a range of methods and
classes in the Java standard library which randomised the non-deterministic elements of their
respective specifications. For example, the implementation of HashMap was changed such that the
iteration order could be randomised each time to deliberately violate and manifest any permute
ADINSs. Applying their tool, they were able to identify up to 60 flaky tests across 21 open-
source Java projects. Furthermore, they executed their approach upon student submissions of an
assignment for a software engineering course that required students to both implement and write
tests for a library management application. They identified up to 110 tests with ADINSs that
were therefore flaky under their randomised implementations.

Developing the same theme, Mudduluru et al. [112] devised and implemented a type system
for verifying determinism in sequential programs. Their Java-targeting implementation consisted
of a type checker and several type annotations including @NonDet, @OrderNonDet and @Det. Re-
spectively, these indicate a non-deterministic expression, an expression evaluating to a collection
type object with a non-deterministic order (e.g. an instance of HashMap), and an entirely deter-
ministic expression. Their type checker verifies these manually-specified determinism constraints
and was demonstrated to expose 86 determinism bugs across 13 open-source Java projects. While
not specifically targeting flaky tests, the authors demonstrated that their type checker was able
to identify determinism bugs that NonDex was not, thus suggesting that it may be useful for
identifying flaky tests, albeit indirectly.
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Noisy Execution Environment

Silva et al. [144] presented a technique, called Shaker, for automatically detecting flaky tests,
particularly of the asynchronous wait and concurrency categories. Their technique uses a stress-
loading tool to introduce CPU and memory stress while executing a test suite, with the rationale
being that this stress will impact thread timings and interleaving, potentially manifesting more
flaky tests than if the test suites were just repeatedly executed as normal. The authors took 11
Android projects and repeatedly executed their test suites 50 times to arrive at an initial dataset
of known flaky tests. Finding 75 flaky tests with this method, they split these into a “training”
set, containing 35, and a “testing” set, containing 40. They used the training set to search for the
set of parameters to the stress-loading tool that manifested the most flaky tests. After identifying
the best parameter set, the authors applied Shaker to the remaining 40 flaky tests to identify
how many it could identify. They compared this with rerunning the respective test suites without
stress, as they did to find the initial set of previously known flaky tests. Their results indicated
that Shaker was able to detect flaky tests at a faster rate than the standard rerunning approach.
In particular, 26 of the 40 flaky tests failed after just a single run with the Shaker tool.

Machine Learning Applications

Dutta et al. [35] presented their FLASH technique for identifying flaky tests specific to machine
learning and probabilistic projects. The reasoning underpinning their approach is that machine
learning algorithms are inherently non-deterministic and operate probabilistically, hence their
outputs ought to be thought of as probability distributions as opposed to deterministic values.
Their technique consists of mining a test suite for approximate assertions, such as those that check
that the output is within a certain range or approximately equal to some expected value with some
specified tolerance. It then instruments the associated test cases and repeatedly executes them
to arrive at a sample of actual values evaluated within each mined approximate assertion. To
determine if the sample of values is large enough, it uses the Geweke diagnostic, which is satisfied
once the mean of the first 10% of samples is not significantly different from the final 50% within
some specified threshold. Once FLASH has collected enough samples for each assertion, it fits an
empirical distribution over each of them, used to calculate the probability of the assertion failing.
Under their technique, a test is considered flaky if it has an inconsistent outcome after repeated
executions, as per the traditional definition, or if it appears to always pass but contains assertions
with a probability of failing above a specified threshold. They evaluated FLASH with 20 open-
source machine learning projects written in Python and identified 11 previously unidentified flaky
tests, ten of which were confirmed to be flaky by the projects’ developers. The authors further
validated their technique by demonstrating that it could detect an additional 11 flaky tests that
had been previously identified by developers as evidenced within their subjects’ version control
histories.

Pattern Matching

Waterloo et al. [161] performed static analysis on the test code of 12 open-source Java projects.
They derived a set of syntactical code patterns associated with common bugs in tests, many of
which they believed to be indicative of potential test flakiness. Their analysis aimed to identify
instances of tests that matched these patterns, which were split into three families. The first was
inter-test and contained code patterns regarding the relationships between test cases, in other
words, instances of violations of the test independence assumption, such as tests that invoke one
another and share static fields or data streams. They cited Zhang et al. [175] to support the value
of this family of patterns as an indicator of potential test order dependencies. The second was
external and referred to tests with dependencies on external resources, specifically, test cases with
hard-coded time delays for waiting on asynchronous results, those with unchecked dependencies
upon the system state (e.g., reading/modifying environment variables) and tests that assume some
network resource will be available during their execution. They specifically highlighted the hard-
coded time delay pattern as being previously identified as a common cause of test flakiness, citing
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Table 2.9: A comparison of four different studies that applied machine learning to the detection of flaky
tests. Static features are those that can be derived without running the test, e.g., number of source lines.
Dynamic features require at least one test run, e.g., line coverage.

Study Classifier Features

King et al. [82] Bayesian network [46] Static and dynamic
Bertolino et al. [159] k-nearest neighbour [80] Static only
Pinto et al. [128] Random forest [143] Static only
Alshammari et al. [8] Random forest [143] Static and dynamic

Luo et al. [105], who also identified network dependency as a possible avenue for flakiness. The
third family was intra-test and pertained to issues with assertion statements within test cases, such
as those that use a serialised version of an entire object, which may contain irrelevant information
and thus result in fragile tests that “over check”.

Their results indicated a very low incidence of inter-test patterns, which was at odds with
what they expected given the prevalence of order-dependent tests as previously identified [175],
suggesting that either their patterns were not indicative of such tests or that static analysis alone
may be insufficient to identify them. As for the external family, the authors found many instances of
potentially problematic patterns across their subject set. With regards to hard-coded time delays
in particular, indicative of potential asynchronous wait flaky tests, their technique identified 807
matches in their subject set. Further manual analysis of 31 such matches showed that they were
all true positives, that is, genuine cases of hard-coded time delays but not necessarily flaky tests,
leading them to reaffirm the value of their static analysis approach for this particular pattern.
Given its association with test flakiness [105], this finding suggests that static analysis may be
useful for identifying possible flaky tests, which is particularly valuable given its low cost (which
is on the order of minutes when run on a commodity laptop) compared to repeatedly re-executing
tests to identify flakiness. Naturally, given its static nature, this approach is unable to verify if
its matches indicate genuine, manifest flaky tests, and could thus have poor precision even if it
exhibits high recall.

Applying Machine Learning to Detection

Using statically identifiable characteristics and the historical execution data of tests, King et al.
[82] showed how to use a Bayesian network to classify a test as flaky. A Bayesian network [46] is a
directed acyclic graph in which each node represents a probability distribution conditioned on its
antecedents. In this case, test flakiness may be considered a “disease” whose probability is condi-
tional on the observation of a variety of test metrics or “symptoms”, as they described it. They
selected a multitude of such metrics, covering characteristics such as complexity, implementation
coupling, non-determinism, performance and general stability. Examples of concrete metrics used
include the number of assertions in a test, the average execution time, and the rate at which a
test alternates between passing and failing based on historical records. The authors evaluated
their approach within the context of a software company called Ultimate Software, where they
gathered training examples from historical instances of flaky tests being identified, quarantined
and eventually fixed. After training and evaluating their model on one of Ultimate Software’s own
products, they reported an overall prediction accuracy of 66%.

Bertolino et al. [159] presented FLAST1, a machine learning model for classifying tests as
flaky or not based purely on static features. To represent a test case in their model, they used the
bag of words technique on the tokens within its source code, such as identifiers and keywords. Bag
of words is a common representation in the field of natural language processing, where a sample
of text is represented as a typically very sparse vector where each element corresponds to the
frequency of a particular token [176]. Their model is a k-nearest neighbour classifier [80], which
classifies representations of tests cases based on the labels (flaky or non-flaky) of their closest k

1While their paper was not published until 2021, their tool has been available in prototype form since 2019.
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“neighbour” training examples according to some metric over the vector space (which is cosine
distance in this case) and a classification threshold that determines the proportion of a test’s
neighbourhood that would have to be flaky to classify it as such. As training examples, they
used the test cases from the subject projects of previous studies that had automatically identified
flaky tests [16, 90]. This meant that they did not have to label the test cases as flaky or non-flaky
themselves. For each of these projects, they individually evaluated the effectiveness of their model.
To that end, they split their set of training examples for each project into 10 equal folds. For each
fold, they trained their model on the other 9 folds and then evaluated its effectiveness on the
remaining fold. Specifically, they calculated the precision and the recall attained by their model
and then calculated the mean of these metrics across the 10 folds. Precision is the ratio of true
positives (the number of tests correctly labelled as flaky) over all positives (the number of tests
labelled as flaky, correctly or incorrectly). Recall is the ratio of true positives over true positives
and false negatives (the number of flaky tests, labelled correctly or incorrectly). For each project,
the authors performed evaluations of their model under four configurations. These were based on
the combination of two values for k and the classification threshold. For k, the authors tried the
values of 7 and 3. For the classification threshold, the authors tried 0.95 and 0.5. In the 0.95 case,
their k-nearest neighbour classifier would have to find the vast majority of a test’s neighbourhood
as flaky to classify it as such, resulting in much more conservative predictions with respect to the
positive case. The configuration that offered the best trade-off between precision and recall was
k = 3 with a threshold of 0.5, giving a mean precision of 0.67 and a mean recall of 0.55, resulting
in an F1 score of 0.60. F1 score is the harmonic mean of precision and recall and is intended
to offer a fair assessment of a model’s accuracy. As a static approach it was very fast, with an
average training time of 0.71 seconds and an average prediction time of 1.03 seconds across their
set of projects.

Pinto et al. [128] performed a related study, investigating the notion of flaky tests having a
“vocabulary” of identifiers and keywords that occur disproportionately in flaky tests and may be
indicative of them. To investigate this, they trained five common machine learning classifiers to
predict flakiness using “vocabulary-based” features derived from the bodies of test cases. Specif-
ically, their features encoded occurrences of whole identifiers and parts thereof (by splitting each
word in a camel case identifier), as well as other metrics such as the number of lines of code in
the test case. To train these classifiers, they used flaky tests previously identified by DeFlaker
[16] as positive examples. As negative examples, they repeatedly executed the test suites of the
DeFlaker subject set and selected the same number of tests with consistent outcomes as flaky
tests, ensuring they had a balanced dataset. The five types of machine learning classifiers they
trained were random forest, decision tree, naive Bayes, support vector machine, and nearest neigh-
bour. To evaluate these, they split their dataset into 80% for training and 20% for evaluation.
Following this, they calculated F1 scores for each classifier. Unlike Bertolino et al., they did not
calculate individual scores for each project and then average these scores. Rather, they trained
and evaluated each classifier just once, using all the training examples from each project all to-
gether. Therefore, it is unknown how the performance of these classifiers varies between projects.
Furthermore, projects with more flaky tests, and thus more training examples, would have more
impact on the final F1 score than those with fewer flaky tests. Their evaluation reported the F1
scores for each type of classifier, with random forest [143] being the best classifier with a score of
0.95. They also identified the most valuable features for classification in terms of their information
gain. Information gain is measured in bits and, in this context, indicates how much information
the knowledge of each feature gives towards knowing if a test is flaky or not. The top three features
they identified were the occurrences of the tokens job, table and id, suggesting that the presence
of these within a test case may be indicative of flakiness.

Studies have attempted to reproduce the findings of Pinto et al. several times in different con-
texts. Ahmad et al. [4] reproduced their methodology with a set of Python projects, and reported
lower precision, recall, and F1 scores for three of the five machine learning classifiers used by Pinto
et al.. Haben et al. [65] sought to investigate the effectiveness of Pinto et al.’s vocabulary-based
feature approach when using a time-sensitive training and evaluation methodology, that is, to
train a model with “present” flaky tests and evaluate it on “future” flaky tests, with respect to
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some time point or commit. They also evaluated the effectiveness of vocabulary-based features
in Python, like Ahmad et al., and went on to consider if identifiers and keywords from the code
under test were of any use to flaky test prediction. For their investigation of the time-sensitive
methodology, they took six of the 24 projects used in the initial evaluation by Pinto et al., each
with at least 30 flaky tests. For each of these six projects, they identified the commit where 80% of
the known flaky tests were present, forming the training set, and 20% were yet to be introduced,
forming the evaluation set. They then trained and evaluated a random forest classifier individ-
ually for each project. Their results showed that, for four of the six projects, the time-sensitive
methodology produced poorer results than the “classical” methodology used by Pinto et al.—
simply splitting the dataset into 80% for training and 20% for evaluation. Haben et al. argued
that the time-sensitive methodology more accurately reflects the expected use case of a flakiness
model, since presumably developers would use it to assess test cases as they introduced them. Fol-
lowing this, they adhered to Pinto et al.’s “classical” methodology for nine Python projects. They
recorded generally good performance across their Python subject set, with a mean F1 score of
0.80 across each project. From this, they concluded that the vocabulary-based feature approach is
generalisable across programming languages. Finally, they investigated whether including features
from the code under test when training a vocabulary-based model would improve its performance.
Since a vital detail of this approach is that it enables static prediction of flaky tests, Haben et al.
did not use actual coverage data to identify the code under test associated with each test case.
Instead, they used an information retrieval technique to statically estimate which functions of the
code under test each test case was likely to cover, from which they extracted identifier counts.
Using both the Java and Python subject sets, they found that including features from the code
under test did not improve the performance of the model.

Alshammari et al. [8] proposed, implemented and evaluated FlakeFlagger, a machine
learning approach for predicting tests that are likely to be flaky. An initial motivating study
demonstrated that, across the test suites of 24 open-source Java projects, flaky tests were still
being detected after up to 10,000 reruns. This demonstrated the impracticality of straight-forward
rerunning as an approach for detecting flaky tests, highlighting the need for alternative methods.
Following a literature review, the authors identified 16 test features that they believed to be
potentially good indicators of flaky tests. These consisted of eight boolean features regarding
the presence or absence of various test smells [12, 50], such as whether or not the test accesses
external resources. The remaining features were numeric, such as the number of lines making
up the test case, the number of assertions, and the total line coverage of production code by
the test. Their approach for collecting these features for a given test was a hybrid of static and
dynamic analysis, since not all features (e.g., line coverage) are attainable from static analysis
alone. The authors evaluated a variety of machine learning models, finding random forest to be
the most effective. As their training and evaluation procedure, Alshammari et al. used stratified-
cross-validation with a 90-10 training-testing split [173]. When training a model, they used the
SMOTE oversampling technique [23] to ensure a balanced data set with an equal number of
flaky and non-flaky training instances. When evaluating a model, however, they did not apply
SMOTE in order to reflect the real-life environment in which their model would be applied, where
non-flaky tests far outnumber flaky tests. The authors went on to compare their approach to
that of Pinto et al. described previously. Alshammari et al. noted that Pinto et al. evaluated
their model using a balanced sampling approach, which may have led to an overestimation of
their model’s effectiveness. To that end, they evaluated both FlakeFlagger and Pinto et al.’s
vocabulary-based feature approach under their training and evaluation methodology, as well as
a hybrid approach combining the feature set of FlakeFlagger with vocabulary-based features.
Unlike Pinto et al., Alshammari et al. presented their F1 scores for each individual project, and
presented an overall average of these, ensuring each project had the same degree of influence on
the final score. Their results showed that FlakeFlagger alone had an average F1 score of 0.66,
the vocabulary-based approach had an average F1 score of 0.19, and the combination of the two
feature sets resulted in an average F1 score of 0.86.
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Applying Automatic Tools

Lam et al. [93] set out to investigate the most effective strategy for applying flaky test detection
tools. As objects of study, they considered two tools, iDFlakies [90] and NonDex [61, 140], and
as subjects, they reused the comprehensive set of the iDFlakies study (see Section 2.5.2). The
combination of these two tools enabled them to identify flaky tests that were order-dependent
via iDFlakies (see Section 2.5.2) and implementation-dependent via NonDex (see Section 2.5.1),
thus covering a wide range of flaky test categories. Initially, they executed these tools on the
commits that were sampled as part of the iDFlakies subject set to identify flaky tests. For
each flaky test, they then ran the tools on the initial commit that introduced it into the test
suite. If they found that it was not flaky on this test introducing commit, they then searched
for the first commit where the test was flaky, reasoning that this commit would have introduced
the flakiness. To that end, they performed a binary search starting with the test introducing
commit and the iDFlakies commit, eventually converging on the flakiness introducing commit.
They identified 684 flaky tests across the iDFlakies commits of their subject set, of which they
were able to successfully compile and execute the test introducing commits of 245. Of these,
75% were flaky from their test introducing commit, the remaining 25% were associated with a
flakiness introducing commit later in their lifetime. Furthermore, they found the median number
of commits between the test introducing commits and the flakiness introducing commits of
these 25% to be 144, representing 154 days of development time. This led them to suggest that
running flaky test detectors immediately after tests are introduced and then periodically every
150 commits or so would achieve a good detection-to-cost ratio, as opposed to running them after
every commit, which would be prohibitively expensive for many projects.

Conclusion for RQ3.1: What techniques and insights are available for detecting
flaky tests in general? The most straight forward techniques for automatically detecting
flaky tests are based on repeatedly executing them [16, 92]. Since this can be very time consum-
ing, more efficient and more targeted approaches have been proposed. One technique makes use
of the difference in coverage between consecutive versions of a piece of software to identify flaky
tests as those whose outcome changes despite not covering any modified code. An evaluation of
this approach found that it was able to identify 96% of the flaky tests identified by repeated test
suite runs [16]. One paper evaluated a tool that randomises the implementations of various Java
classes which have non-deterministic specifications with the aim of manifesting implementation-
dependent flaky tests [140]. Across 21 open-source Java projects, this technique identified 60
flaky tests. Another study presented an approach targeting flaky tests of the asynchronous wait
and concurrency categories by introducing CPU and memory stress to impact thread timings
and interleaving during test suite reruns [144]. An empirical evaluation found that this ap-
proach could detect such flaky test at a faster rate than standard rerunning alone. One paper
presented an approach for detecting flaky tests of the randomness category, specifically within
machine learning projects [35], and demonstrated its effectiveness by detecting 11 previously
unknown flaky tests. Techniques from the field of machine learning have been applied to flaky
test detection, with several studies considering the presence of particular identifiers in test code,
and other general test characteristics, as potential predictors of flakiness [8, 128, 159]. With
regards to prediction based on identifiers, also known as the vocabulary-based model [65], three
separate studies presented different degrees of effectiveness on the same subject set [8, 65, 128],
highlighting the impact of different evaluation methodologies.

2.5.2 Detecting Order-Dependent Tests

Given their particular costs to methods for test suite acceleration, a thread of work has emerged
specifically concerned with detecting order-dependent tests. Some authors has proposed methods
that, while not detecting order-dependent tests directly, may still be of use to developers for debug-
ging them [62, 74]. For detecting order-dependent tests directly, one early study [113] explained
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how isolating test cases can identify bugs that are masked by implicit dependencies between other
test cases. Since then, more sophisticated and multi-faceted approaches have emerged, often mo-
tivated by the desire to mitigate against the unsoundness that order-dependent tests impose upon
techniques for test suite prioritisation [175] and parallelisation [15, 17]. Many of these approaches
directly build upon one another, iteratively making improvements or adding additional features
[15, 17, 47, 175]. Three of these studies perform evaluations with the developer-written test suites
of the same four Java projects [15, 47, 175], the results and analysis costs of which are summarised
in Table 2.10. Other work has presented techniques based on repeating test suites in different
orders in a systematic way as a method for identifying order-dependent tests [90, 163].

Brittle Assertions

Huo et al. [74] developed a way to detect brittle assertions, assertion statements that are affected by
values derived from inputs uncontrolled by the test, and unused inputs, inputs that are controlled
by the test but that do not affect any assertions. Brittle assertions in particular may create an
opportunity for order-dependent tests to arise since they make the outcome of a test depend upon
inputs that it does not control, but that could potentially be set by another test. To detect
brittle assertions, they presented a technique based on input tainting. This involves associating
“taint marks” to uncontrolled inputs that are propagated across data and control dependencies to
identify if they eventually end up affecting an assertion statement. The technique, targeting Java
programs, selects the static and non-final fields of a test’s containing class as the initial uncontrolled
inputs. For example, when a test assumes that a particular field is at its default value and makes
use of it in an assertion statement, this is an uncontrolled input since the test does not set the
default value and another source (i.e., a previously executed test) could have modified it. In an
attempt to eliminate false positives, for each input identified as the cause of a brittle assertion,
their technique re-executes the respective test and mutates the value of the uncontrolled input.
In the case where this does not impact the test outcome, the result is considered a false positive.
The authors implemented their approach as the OraclePolish tool, evaluating it with a subject
set of over 13,609 tests, within which 164 brittle assertions were detected and verified as true
positives. Their approach incurred a run-time cost of between five to 30 times that of a regular
test suite run.

Test Pollution

Gyori et al. [62] proposed a technique that specifically identifies tests that leave side-effects, as
opposed to the tests that are impacted by them. Such tests may induce order dependency in
subsequently executed tests, and thus their detection may assist developers in debugging them.
Their approach models the internal memory heap as a multi-rooted graph, with objects, classes
and primitive values as nodes and fields as edges. The roots of this graph represent global vari-
ables accessible across test runs, that is, the static fields of all the loaded classes in the current
execution. Their approach compares the state of the heap graph before the setup phase and after
the teardown phase of a test method’s execution to identify any changes, or as they termed them,
“state pollution”. They implemented their technique as a tool named PolDet, which integrates
with the popular Java testing framework JUnit [248], complete with various measures for ignoring
side-effects upon irrelevant global state and thus avoiding false positives, by ignoring mock classes
for example. They leveraged a modified JUnit test runner to invoke their state graph build-
ing logic, which is implemented using reflection upon all loaded classes at each “capture point”,
i.e., before a test’s setup method is invoked and after its teardown method. Furthermore, they
equipped PolDet with functionality for capturing the state of the file system across test runs to
identify file system pollution, another potential avenue for test order dependencies.

The authors evaluated their tool with the test suites of 26 open-source projects, in total com-
prising over 6,105 test methods. They found that, when it was configured to ignore irrelevant
state, PolDet identified 324 heap polluting tests and a further 8 that polluted the file system.
To determine if a positive result for heap pollution was true or false, the authors manually in-
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Table 2.10: The number of developer-written order-dependent tests detected by DTDetector [175],
ElectricTest [15] (ETest), and PraDeT [47] (PDT) and the time taken to do so in seconds. The
figures for analysis cost are not directly comparable between studies, since they used machines of different
specifications. For DTDetector, figures reported are those of Zhang et al. [175]. For ElectricTest, the
number of order-dependent tests reported are the numbers of tests identified as reading a shared resource
previously written to by another test. Since this does not necessarily imply that they are order-dependent,
some may be false positives. An asterisk (*) indicates that the execution timed out after 24 hours.

DTDetector [175]

Randomised Exhaustive Dep. Aware

Subject Tests Rev. n = 10 n = 100 n = 1000 k = 1 k = 2 k = 1 k = 2 ETest [15] PDT [47]

Order-Dependent Tests Detected

Joda-Time 3875 2 1 1 6 2 2* 2 2 * 121 8
XML Security 108 0 1 4 4 4 4 4 4 103 4
Crystal 75 18 18 18 18 17 18 17 18 39 2
Synoptic 118 1 1 1 1 0 1 0 1 117 4

Total 4176 21 21 24 29 23 24 23 25 380 18

Time Taken in Seconds

Joda-Time 3875 11 57 528 5538 1265 86400* 291 86400* 2122 46
XML Security 108 11 65 594 5977 106 11927 93 3322 57 146
Crystal 75 2 14 131 1304 166 7323 95 4155 22 106
Synoptic 118 1 7 67 760 25 3372 24 1797 34 14914

Total 4176 26 143 1320 13579 1562 109022 503 95674 2235 15212

spected each one, labelling them as a true positive if they could write another test whose outcome
would depend on whether it was run before or after the reported polluting test (thus, by definition,
creating an order-dependent test), or a false positive if they could not. They identified 60% of the
positive results as true this way, suggesting that their tool may have some issues with its precision.
In terms of efficiency, the authors found that PolDet had an overhead of 4.5 times the usual test
run duration, but with significant variance across different projects.

Dependence Aware

Zhang et al. [175] proposed four algorithms for manifesting order-dependent flaky tests in Java
test suites by comparing their outcomes when executed as normal to when executed in a different
order. The first, reversal, simply reverses the test run order. The second, randomised, shuffles the
test run order. The third, exhaustive, executes every k-permutation of the test suite in isolation,
that is, in a separate Java Virtual Machine. The fourth, dependence-aware, aims to improve the
efficiency of the exhaustive technique by filtering permutations that are unlikely to reveal a test
order dependency, which it does by analysing the access patterns of shared resources, such as global
variables and files, across test runs. In the case where k = 1, the dependence-aware algorithm
performs a test run in the default order to establish their baseline outcomes. Any tests that do
not read or write any shared resources during this run are considered unlikely to be involved in
a test order dependency and are filtered out. The remaining tests are executed in isolation and
if their outcomes differ from the baseline then they are reported as order-dependent. In the case
where k ≥ 2, each test is first executed in isolation to establish the baseline, again monitoring
reads and writes to shared resources. When generating permutations, if it is the case that each
test does not read any shared resources that are written to by any previous tests, as measured
during the baseline isolation run, then the permutation is discarded. To record reads and writes
to global variables, their approach uses bytecode instrumentation to monitor accesses of static
fields, conservatively considering any read to also be a potential write. To identify test order
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dependencies facilitated by files, DTDetector installs a custom SecurityManager [274] that
monitors the files read from and written to by each test.

Zhang et al. evaluated each of these approaches on the developer-written and automatically
generated test suites of four open-source projects implemented in the Java programming language.
They found, in both cases, that the reversal technique manifested the fewest order-dependent tests
but was also the cheapest in terms of run-time by a considerable margin. The randomised approach
with 1,000 repeats manifested the most, but had a relativity significant cost, proving to be three
orders of magnitude greater than reversal. The exhaustive and dependence-aware techniques with
k = 1 had run times comparable to randomised with 100 repeats but manifested order-dependent
tests. With k = 2, both techniques timed-out after 24 hours and failed to perform better than
the randomised approach. These results indicate that executing a test suite in reverse may be an
acceptable baseline approach, since it could detect 72% of all identified order-dependent tests and
ought to take no longer than a standard test suite run.

Object Tagging

Bell et al. [15] aimed to develop a technique more efficient than DTDetector [175] for iden-
tifying order-dependent tests. Their approach differentiates between two types of dependency
relationship. The first, read-after-write, refers to the case where testB reads a shared resource
last written to by testA, such that testB must be executed after testA to preserve the depen-
dency. The second, write-after-read, describes the scenario where testC also writes to the same
resource as testA, meaning that testC should not be executed between testA and testB. They
implemented their technique as a tool, called ElectricTest, that can identify instances of the
two relationships during an instrumented test suite run. The authors explained that recording
accesses to static fields would be insufficient to accurately detect all test order dependencies fa-
cilitated by in-memory shared resources. This is because a test could read a static field to get a
pointer to some object and then write to that object’s instance fields, with the whole operation
being reported as just a read. While DTDetector gets around this problem by conservatively
considering all static field reads to also be potential writes, ElectricTest takes a more fine-
grained approach. To detect read-after-write relationships, it forces a garbage collection pass after
each test run and tags any reachable objects as having been written to by the test that was just
executed, provided that they have not already been tagged as such by another test. In subsequent
test executions, ElectricTest is notified when a tagged object is read from, in which case the
reading test is marked as being dependent on the writing test. The tool follows a similar approach
for identifying cases of write-after-read. This tagging functionality is provided by the JVM Tooling
Interface [244]. As well as in-memory resources, ElectricTest uses the Java Virtual Machine’s
built-in IOTrace features to detect test order dependencies over external resources such as files.

Evaluating their tool against DTDetector [175], using the same four developer-written test
suites, they found that ElectricTest could detect all the same order-dependent tests as DT-
Detector and many more, indicating that the recall of ElectricTest was at least as good as
that of DTDetector. Since ElectricTest requires only a single test suite run, it was found
to be up to 310 times faster than the dependence-aware mode of DTDetector. The fact that
ElectricTest does not verify the dependencies it detects by executing the concerned tests means
that its precision may be poorer since, as Bell et al. noted, the order-dependent tests it identifies
may not be manifest, in other words, while they may read resources written to by previous tests,
their outcomes may not be impacted. One could consider these cases as false positives since they
do not hinder test suite acceleration techniques (see Section 2.4.2), one of the primary motivations
for detecting order-dependent tests. This is a particularly pertinent point given the cost of accom-
modating order-dependent tests (see Section 2.6.1), which means that too many false positives
could become a significant burden. A further evaluation of ElectricTest with the test suites
of ten open-source projects not previously used, with an average of 4,069 test methods between
them, indicated a mean relative slowdown of 20 times a regular test suite run and an average of
1,720 test methods that wrote to a shared resource that was later read from and 2,609 that read
a previously written resource.
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Dependency Validation

Building on the work of ElectricTest [15], Gambi et al. [47] presented PraDeT. One limitation
of ElectricTest, as previously explained, is that it may identify order-dependent tests that are
not manifest, meaning that breaking their dependencies by reordering the test suite does not
result in a different test outcome. Initially, PraDeT operates in a similar way to ElectricTest,
monitoring access patterns of in-memory objects between test executions to identify instances
of possible test order dependencies. One improvement of PraDeT over ElectricTest at this
stage, as the authors explained, is in its handling of String objects and enumerations, respecting
their pooled and immutable implementation, which results in fewer false positives.

Modelling a test suite as a graph, with tests as nodes and possible dependencies as directed
edges, PraDeT verifies the dependencies it identifies by selecting edges, inverting them as to
break the dependency, and generating a corresponding test run schedule using a topological sort
on the graph. For efficiency, the schedule does not contain tests that are irrelevant to the selected
dependency, that is to say, those that do not belong to the weakly connected component. When
executing the schedule, in the case where the dependent test corresponding to the inverted edge
does not produce a different outcome, as compared to a regular test suite run, the dependency is
considered non-manifest and is removed. The tool follows a source-first strategy, selecting edges
corresponding to the later executed tests first. Compared to a random approach, this allows
initially impossible schedules, as in the case where inverting a dependency leads to a cycle, to be
reliably deferred to a later stage, such as when the cycle is broken by another candidate dependency
being removed. Figure 2.6 gives a visual summary of this verification approach used by tools like
PraDeT.

They performed two evaluations of their tool, comparing PraDeT to DTDetector using
its reverse mode and its exhaustive mode with k = 1 and k = 2. The first evaluation used
the developer-written test suites of the same four subjects as used in its initial evaluation of
DTDetector by Zhang et al. [175]. Their findings suggested that PraDeT identified more
order-dependent tests than any of these modes, although this is at odds with what Zhang et al.
reported (and as presented in Table 2.10), which would indicate that PraDeT actually detected
the fewest. The second evaluation used a wider subject set of 15 projects. In this setup, the
exhaustive mode with k = 2 detected the most order-dependent tests by a significant margin,
followed by the reverse mode, and then by PraDeT. In terms of analysis cost, PraDeT was
more than five times faster than the exhaustive mode with k = 2, though it was about ten times
slower than with k = 1. Unsurprisingly, the reverse mode was the fastest, since it only requires a
single test suite run with no isolation overhead.

Web Applications

Biagiola et al. [17] presented an approach, implemented as a Java program named TEDD, for
building dependency graphs of tests within the test suites of web applications. In this context,
a dependency graph consists of nodes representing individual Selenium test cases and directed
edges representing test order dependencies. Previous approaches based upon read/write operations
on Java objects [15, 47, 175] are unsuitable in this domain since web applications are more prone
to test order dependencies from persistent data stored on the server-side and implicit shared data
via the Document Object Model on the client-side. Their multi-faceted technique consisted of four
stages.

In the first stage, the technique extracts the initial dependency graph by iterating through
each test case in the test suite’s original order and identifying the set of named inputs submitted
by each test, such as the values inserted into input fields of a web page via sendKeys [249]. Then,
for every following test, the set of inputs used when evaluating oracles are also identified. When
these two sets have an intersection, and at least one test submits an input that another uses, a
candidate dependency is added to the dependency graph between the two tests in question. They
referred to this technique as sub-use string analysis graph extraction. Alternatively, the tool can
connect every pairwise combination of tests according to the original test run order, a baseline
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testE (pass) testE (pass)
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testB (pass)testA (pass)

testE (pass)
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testB (pass)testA (pass)
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testD (pass)testC (skip)

testB (skip)testA (skip)

testE (pass)

testD (pass)testC (pass)

testB (pass)testA (pass)

(a) All tests pass in their original
order.

(b) Candidate dependency
selected (dotted line).

(c) Selected dependency
inverted and schedule executed
with unexpected failure (bold).

(d) Selected dependency made
manifest (double line) and new
candidate dependency selected.

(e) Selected dependency inverted
and schedule executed with no

unexpected failure.

(f) Selected dependency
removed and new candidate

dependency selected.

Figure 2.6: An illustration of several iterations of the dependency verification stage used by PraDeT [47]
and TEDD [17]. Test nodes are represented by rectangles and dependency edges by arrows. The tests of
the disconnected components with respect to the inverted dependencies in parts (c) and (e) are skipped,
since they are deemed irrelevant for verifying the dependency.

method they referred to as original order graph extraction.

In the second stage, natural language processing techniques applied to the names of test cases
are used to filter likely false dependencies. A technique known as part-of-speech-tagging [85] is
used to identify the verbs and nouns of each name. Semantic analysis on each verb decides the
CRUD operation (i.e., create, read, update, or delete) to which it is closest. This is considered
with respect to the nouns in the name to identify if they suggest dependence. For instance, the
names updateFile and readFile would pass this filtering stage since they both concern the same
noun, File, and the verbs suggest a read-after-write dependence. Their approach offers three
configurations for this filtering stage: consider only the verb in the name, consider the verb and
the direct object it applies to only, or the most comprehensive, consider the verb and all the nouns
in the name of the test case.

In the third graph-building stage, the TEDD tool validates the candidate dependencies that
survived the filtering stage using a similar inversion approach to that of PraDeT [47]. Given
that the filtering stage may not be conservative, TEDD attempts to recover any dependencies
that may be missing from the graph. To that end, after executing a schedule with a candidate
dependency inverted and witnessing a failure in the corresponding dependent test, when the test
was otherwise passing in the original order, TEDD then generates and executes another schedule
with the dependency not inverted. This is to identify if the failure was due to the inverted
dependency or a potentially missing one. In the case were one or more tests unexpectedly fail
in the non-inverted schedule, it is assumed that one or more dependencies are missing and need
to be recovered. To do so, TEDD connects the first failing test to each of its preceding tests
in the original test run order, that were not executed in the non-inverted schedule, as candidate
dependencies. In turn, these newly added edges are inverted and tested as the validation stage
continues until all candidate dependencies from the previous stages have either been verified or
removed.

In the fourth and final stage, missing dependencies are recovered for disconnected components,
these are nodes (tests) with no outgoing edges (no dependencies) or those that are fully isolated
with no incoming edges (no dependents) either. To that end, all such tests are executed in isolation
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in separate Docker containers [214]. For each failing test, TEDD connects it as a candidate
dependent to every preceding test in the original order. For each passing test that is not an isolated
node, having a non-zero in-degree, TEDD executes every schedule containing the test according
to the dependency graph’s current state. If a test in any of these schedules fails, TEDD connects
it with every preceding test as before. To verify these newly added candidate dependencies, it
re-executes the third graph building stage.

The authors went on to evaluate TEDD using six open-source subjects. They considered every
combination of both the original order and the sub-use string analysis graph extraction methods
along with four initial filtering modes, no filtering plus the three granularities of natural language
processing techniques, for a total of eight (2 × 4) overall configurations. In terms of effective-
ness, they found that every configuration found roughly the same number of order-dependent
tests, between 32 and 34. In terms of performance, they found that the combination of sub-use
string analysis with filtering considering every noun to be the fastest. Analysing filtering methods
specifically, in the case of original order extraction, the verb only, direct object only and all nouns
filtering methods achieved run time savings of 27%, 67% and 70% respectively over no filtering.
For sub-use string analysis, these were -69% (i.e., in this case the filtering increased the total run
time), 17% and 28%, respectively. These findings indicate that the most comprehensive natural
language filtering technique of examining the verb and all the nouns in the names of tests was the
most effective.

Repeating Failing Orders

Lam et al. [90] presented iDFlakies, a framework and tool for detecting flaky tests in Java
projects. This framework can classify a flaky test as being the result of a test order dependency or
not. Their approach involves repeatedly rerunning the test suite in a modified order, the type and
granularity of which can be specified by the user, that is, reversed or randomised at the class-level,
method-level or both. Initially, the test suite is repeatedly executed to determine which tests pass
in their original order. Following this stage, the test suite is repeatedly executed in a modified
order. Upon a new test failure, the test suite is re-executed up to and including the failing test
both in the modified order that witnessed the failure and in the original test suite order where
the test was previously passing consistently. When the test fails in the modified failing order but
passes in the original order, it is classified as an order-dependent (OD) flaky test, otherwise, it is
classified as a flaky test that is not order-dependent (NOD).

They took projects from previous work [16] and augmented them with 150 popular projects
from GitHub, to arrive at a total of 2,921 modules across 183 projects, which they referred to
as their comprehensive subject set. They took a further 500 projects from GitHub, disjoint from
their comprehensive set, to form what they called their extended subject set. Using the union of
these two subject sets, they evaluated their tool in a configuration that randomises the test run
order at both the class and method granularity (i.e., shuffles the order of test classes and then
shuffles the order of test methods within these classes). They identified a total of 213 OD flaky
tests and 209 NOD flaky tests across 111 modules of 82 projects. This would suggest that just
over 50% of flaky tests were order-dependent, which is at odds with the findings of Table 2.5. This
discrepancy could be due to the existence of many more order-dependent tests than developers
are aware of, which makes sense if they are not using automatic tools such as iDFlakies. Using
only the comprehensive set, they then compared the effectiveness of the different configurations
of iDFlakies at detecting flaky tests. They found that randomizing at both the class and method
level, as before, was the clear winner, manifesting 162 OD tests and 74 NOD tests. For comparison,
the runner up, randomizing at the class level only, identified 40 OD tests and 53 NOD tests.

Later findings by Lam et al. [92] suggest that classifying tests into OD and NOD may be too
coarse. Using a subset of the modules used to evaluate iDFlakies, they calculated the failure
rates (i.e., the ratio of failures to total runs) of 96 flaky tests identified by repeatedly executing
test suites in different test class orders. A chi-squared test of independence identified that 70 such
flaky tests had failure rates that were different across orders to a statistically significant degree.
They concluded that such tests failed more often in some orders and less often in others and were
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therefore likely to be non-deterministically order-dependent (NDOD), in other words, somewhere
between OD and NOD.

Tuscan Squares

Wei et al. [163] proposed a technique for generating test run orders that are more likely to manifest
order-dependent tests than simply sampling orders at random (such as the randomised mode of
iDFlakies [175]). Given that the majority of test-order dependencies depend on only a single
other test [141, 175], their technique generates the provably smallest number of test run orders
in some instances, such that every pair of tests is covered, that is, executed consecutively both
ways. For example, for 4 test cases, each of the 12 permutations of length 2 can be covered by the
following 4 test run orders: {〈t1, t4, t2, t3〉, 〈t2, t1, t3, t4〉, 〈t3, t2, t4, t1〉, 〈t4, t3, t1, t2〉}. To determine
these orders, their technique computes the Tuscan square [53] from the field of combinatorics. A
Tuscan square for the natural number m is equivalent to a decomposition of the complete graph of
m vertices into m Hamiltonian paths. This object contains m rows, each of which is a permutation
of the integers [1..m]. For every pair of distinct numbers in that same range, there exists a row in
the Tuscan square where they occur consecutively. In this context, each number represents a test
case and each row represents a test run order.

Having observed that Java test suite runners do not interleave test cases within classes, the
authors extended the concept of test pairs to that of intra-class and inter-class pairs. For a set
of test run orders to attain full intra-class pair coverage, for every test class, each pair of test
cases must be executed consecutively. For a Java class with n tests, there are n(n− 1) intra-class
pairs. To attain full inter-class coverage, for every pair of classes, each test case from the first
class must be executed consecutively with each test case from the second class. For a test suite
with k test classes, there are 2

∑
1≤i<j≤k ninj inter-class pairs. In order to avoid generating

test run orders that test runners would not execute (due to the interleaving of test classes), and
thus potentially detecting false-positive order-dependent tests, the authors devised a randomised
algorithm, based on computing Tuscan squares, to ensure all intra-class and inter-class pairs are
covered with substantially less cost. They evaluated their algorithm on 121 modules from the
same set of Java projects used to evaluate iDFlakies [90], finding that it only required 51.8%
of the test case runs that executing every pair of tests exhaustively in isolation would require, a
trivial method of ensuring that all test pairs are covered.

Conclusion for RQ3.2: What methods have been developed to detect order-
dependent tests? One early study presented a technique for detecting brittle assertions,
which the authors reasoned may indirectly detect order-dependent tests [74]. After implement-
ing their technique as a Java tool named OraclePolish, they identified 164 brittle assertions
across a subject set of 13,609 test cases. A later study presented PolDet, a tool for detecting
tests that modify shared program or environmental state, thus potentially creating test-order
dependencies. One issue with their approach was that it was difficult to identify if the tests it
detected would genuinely go on to induce order dependency in other tests. With the aim of de-
tecting order-dependent tests directly, another study presented DTDetector, a multi-faceted
approach consisting of four modes of varying complexity for detecting order-dependent tests
[175]. Following an evaluation upon four open-source Java projects, the authors found that the
more complex modes incurred a very high run-time cost and did not perform significantly better
than the simpler ones. Following this, two tools emerged that improved upon some of DTDe-
tectors short-comings, these were ElectricTest and PraDeT [15, 47]. Unfortunately, the
former of these was prone to false positives and the latter was shown to incur a potentially pro-
hibitive run-time cost. Focusing specifically on web applications, a later study presented TEDD,
a multi-stage technique that included the novel application of natural language processing tech-
niques on the names of test cases. Following an evaluation on six open-source projects, the tool
was able to identify between 32 and 34 flaky tests depending on its configuration. Based on
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executing test suites in randomised orders, another study presented iDFlakies, a framework
for detecting flaky tests and classifying them as order-dependent or not [90]. Following a large
empirical evaluation upon 111 modules of open-source Java projects, the authors identified 422
flaky tests, just over half of which were order-dependent. Finally, a later study presented a more
systematic approach to detecting order-dependent tests via rerunning the test suite in different
orders, based on the mathematical concept of Tuscan squares [163]. Additionally, the technique
was mindful of test run orders that typical test runners would not execute.

2.6 Mitigation and Repair

Having examined techniques for detecting flaky tests, I now turn to approaches for their mitigation
and repair. The mitigation strategies I examine attempt to limit the negative impacts of flaky
tests without explicitly removing or repairing them. Once again, given their specific costs to
test suite acceleration, as explained in Section 2.4.2, I consult several studies on the mitigation
of order-dependent flaky tests. Beyond that, I examine sources on the mitigation of flaky tests
with regards to some of the more specific testing-related activities previously identified as being
negatively influenced by test flakiness. In the context of repairing flakiness, I present and analyze
studies offering advice on repairing specific categories of flaky tests, listed in Table 2.4, derived
from previous fixes. I then go on to examine techniques that may assist developers in fixing flaky
tests and those capable of repairing them automatically [141, 175]. To answer RQ4, I address two
sub-research questions, with the findings summarised in Table 2.11.
RQ4.1: What methods and insights are available for mitigating against flaky tests?
This addresses techniques that minimise the negative impacts of flaky tests without explicitly
removing or repairing them. My answer considers adjustments to the methodologies of many of
the testing activities identified as being negatively impacted by flaky tests. (see Section 2.6.1.)
RQ4.2: What methods and insights are available for repairing flaky tests? By answering
this question I provide insights into how developers may eliminate the flakiness in their test suites.
The answer presents common strategies employed by developers and discusses which pieces of
information are the most important for repair. I also examine a technique for the automatic
repair of order-dependent tests. (see Section 2.6.2.)

Table 2.11: Summary of the findings and implications answering RQ4: What insights and techniques
can be applied to mitigate or repair flaky tests? Relevant to researchers (�) and developers (/).

Finding Implications Source

/ Isolating the execution of tests in their
own processes is an expensive mitigation
for order-dependent tests with an average
time overhead of 618%. By only reini-
tializing the relevant program state
between tests runs, as with VmVm, the
same effect can be achieved with an av-
erage overhead of 34%.

While full process isolation for each test
run ought to eliminate all test order depen-
dencies facilitated by shared in-memory re-
sources, and is straightforward to imple-
ment, developers should avoid using it due
to its prohibitive costs.

[14]

�
/

When order-dependent tests are present
and known, scheduling approaches
for sound test suite parallelisation
achieved an average speedup of 7 times
a non-parallelised test suite run. This is
compared to an average speedup of 19
times if order-dependent tests did not
have to be considered.

It is possible to achieve sound paralleli-
sation in test suites with known order-
dependent tests, placing further value
upon tools for detecting them (see Sec-
tion 2.5.2) beyond highlighting their pres-
ence. Yet, test suite parallelisation is most
effective when no order dependent
tests are present, so repairing the under-
lying test order dependencies ultimately
may be necessary.

[15]
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/ When order-dependent tests are
present and not known, certain configu-
rations for test suite parallelisation are
more accommodating than others. An
evaluation found the most sound to wit-
ness an average of 2% of tests failing with
a speedup of 1.9 times a non-parallelised
test suite run. The least sound saw an
average of 24% of tests failing and a
speedup of 12.7 times.

When order-dependent tests are not known
in advance, reliability may become
a trade off for speed when applying
test suite parallelisation. Given the poor
speedup of the most sound configuration,
it may be preferable to apply tools to de-
tect order-dependent tests so they can be
specifically mitigated, or better, repaired.

[22]

�
/

An algorithm for re-satisfying known test
order dependencies broken by the appli-
cation of test suite prioritisation, se-
lection or parallelisation reduced the
number of failed order-dependent tests in
developer-written test suites by between
79% and 100%.

Beyond test suite parallelisation, detecting
order-dependent tests is beneficial to the
sound application of other test suite ac-
celeration techniques such as prioritisation
and selection.

[91]

/ One study demonstrated that a technique
for sorting test failures by their stability
in the context of GUI regression test-
ing was able to rank the failures witness-
ing genuine, known bugs over those that
were more flaky.

Given the specific factors that lead to
flakiness in GUI testing (see Section 2.3.3),
developers may find it useful to apply tools
that specifically mitigate against them.

[49]

� Repeating and isolating test executions in
the mutant killing run of mutation test-
ing was shown by one experiment to re-
duce the number of mutants with an un-
known killed status by 79%.

Those using mutation testing to assess the
quality of their test suites should consider
how repeating and isolating tests may
improve this method’s reliability.

[141]

� Several modifications to EvoSuite, a test
suite generation tool, reduced the num-
ber of generated flaky test methods from
an average of 2.43 per class to 0.02.

Given the capability of automatic test
generation tools to quickly generate
many tests, it is important to develop
methods for decreasing the potentially sig-
nificant amount of test flakiness often in-
troduced into automatically created test
suites.

[10]

/ Between 71% to 88% of historical repairs
of flaky tests were exclusively applied to
test code.

By fixing a flaky test, a developer may
identify weakness in the code under
test, as evidenced by the fact that some
repairs of flaky tests pertained to source
code outside of the test suite.

[37, 89,
105]

/ Between 57% and 86% of previous fixes
of asynchronous wait flaky tests and up
to 46% of concurrency flaky tests involved
the addition or modification of an explicit
waiting mechanism such as waitFor.

Developers should prefer waiting mecha-
nisms such as waitFor over fixed time
delays such as via the sleep method,
which require a developer to estimate
timings that may be inconsistent across
machines.

[37,
105]

� The nature, the origin, and the con-
text leading to the failure, of a flaky
test were rated by developers as the most
important information needed to repair it.

Automatic approaches for assisting devel-
opers in repairing flaky tests should focus
on retrieving these pieces of informa-
tion as they would likely be the most use-
ful.

[37]

� An approach for identifying the code loca-
tions that likely contained the root cause of
a flaky test, based upon comparing pass-
ing and failing execution traces, was
considered useful for repairing them in 68%
of cases.

Researchers should consider how tech-
niques for automatically identifying
the causes of flaky tests could be useful
for developers.

[178]
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� Techniques have emerged for the au-
tomatic repair of order-dependent
flaky tests and implement-dependent
flaky tests, with generated fixes sub-
mitted to the repositories of open-source
projects and accepted by their developers.

Initial techniques for the automatic repair
of flaky tests show promising results but
further work is required to address other
categories of flakiness.

[141,
174]

2.6.1 Mitigation

As well as detecting flaky tests, many sources have proposed and evaluated techniques for the
mitigation of their negative impacts. Many of these studies specifically examine order-dependent
tests with respect to minimizing their costs to test suite acceleration techniques, given the well
documented issues that they cause. One such source presented a technique for unit test virtualisa-
tion, a faster alternate to isolating each test case execution in its own process, a technique shown
to be particularly costly in terms of execution time [14]. Other studies have proposed revisions and
alternatives to various approaches for test suite prioritisation, selection and parallelisation in the
face of order-dependent tests [15, 22, 91]. As well as test order dependencies, other techniques have
been examined for reducing the costs of flaky tests upon user interface testing [48, 49], mutation
testing [139] and automatic test suite generation [10].

Order-Dependent Tests

Bell et al. [14] presented a lightweight approach for mitigating against order-dependent tests.
Initially, they examined the prevalence and the overhead of executing test cases in isolation from
one another, by executing each one within their own process. This strategy is used to prevent any
state-based side effects of each test case run from impacting later tests, thereby eliminating test
order dependencies facilitated by shared in-memory resources. By parsing the build scripts of over
591 open-source Java projects, they found that 240 of them executed their tests with isolation,
suggesting that the practice was commonplace. Their results also indicated that there was a
positive correlation between the probability that a project used isolated test runs and both its
number of tests and its lines of code. This suggests that the developers of more complex projects
were more likely to have experienced order-dependent tests. They performed an evaluation with
20 open-source Java projects, where they executed each of their test suites with and without
isolation to calculate the time cost of this strategy. They found that, on average, test runs
using isolation had a time overhead of 618%, indicating that it is a very expensive mitigation2.
Having established the significant cost of per-test process isolation, they proposed a lightweight
alternative, which they implemented as a tool named VmVm for Java projects. Their high-level
approach is to identify which static fields of classes could act a vector for state-based side effects.
The classes containing such fields are then dynamically reinitialised, as opposed to reinitializing
the entire program state between each test run. Initially, static fields are labelled as “safe” if
they hold constant values not derived from other non-constant sources, as identified via static
analysis of the source code. Under normal circumstances, the Java Virtual Machine initialises
a class (if not yet done so) when it is instantiated, when one of its static methods or fields is
accessed or when explicitly requested to do so via reflection. Through bytecode instrumentation,
VmVm ensures that all classes containing unsafe static fields are reinitialised under those same
conditions repeatedly, thus eliminating any possible side effects that they may propagate between
test case executions. An empirical evaluation found that their approach was significantly more
efficient than full process isolation, with an average time overhead of only 34%. Furthermore,
their results indicated that, under VmVm, test outcomes were the same as when executed with
isolation, indicating that their more efficient approach was also just as effective for its intended
purpose.

2In recent years, Nie et al. [117], including Bell, identified and submitted a patch for a bug in Maven [253],
considerably reducing the overhead of isolation.
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As part of the evaluation of their order-dependent test detection tool, ElectricTest, Bell
et al. [15] proposed two approaches for test suite parallelisation that respect test order dependen-
cies. Given a test dependency graph, generated by their tool or a similar one such as PraDeT
[47], they described a naive scheduler and a more optimised greedy one that both group tests into
units that can be safely executed in parallel. The naive scheduler simply traverses the graph and
groups tests into chains representing dependencies, where each test appears in only one group con-
taining all the dependencies for every test within it. The greedy scheduler takes into account the
execution time of each test as well as their dependency relationships to opportunistically achieve
better parallelisation while still respecting order dependencies, by allowing some tests to appear
in multiple groups. For example, given ten CPUs and ten tests which all take ten minutes to run,
and are all dependent on a single test that takes 30 seconds to run, the naive scheduler would place
each of these tests into a single execution group where the 30 second test would run first, achieving
no parallelisation. In contrast, the greedy scheduler would create ten groups, each containing the
30 second test followed by one of the ten minute tests. While this duplicates the execution of the
faster test ten times, the speedup attained from the parallelisation of the ten slower tests, which
is now possible given their satisfied dependency, far outweighs the cost. Using ElectricTest to
generate the dependency graphs, they evaluated their two schedulers with ten open-source Java
projects using a 32 CPU machine. They found that their naive scheduler attained an average
speedup of 5 times a non-parallelised test suite run, whereas their greedy scheduler achieved an
average speedup of 7 times. For comparison, they measured the speedup they would have achieved
had they not had to respect any test order dependencies and found this to be 19 times on average.
These findings demonstrate that order-dependent tests can be mitigated to achieve sound test
suite parallelisation (i.e., not leading to inconsistent outcomes) but at the cost of considerable
effectiveness.

Candido et al. [22] offered several insights into applying test suite parallelisation to Java test
suites with order-dependent tests not necessarily known in advance. They found that forking the
Java Virtual Machine process to achieve parallelisation and allocating each instance a portion of
the test classes to execute in serial was the most robust approach with respect to manifesting
the fewest test failures, in tests that were otherwise passing when executed in serial. Under
this strategy they observed approximately 2% of tests failing on average within the test suites
of 15 open-source projects. This method was also the least effective in terms of speeding up
the test run, with Candido et al. reporting an average speedup of only 1.9 times a serial test
suite run. This was as opposed to more flexible configurations that parallelised using multiple
threads within a single process and executed test methods concurrently, which were found to be
considerably unsound. One such strategy resulted in an average of up to 24% of failed tests in
the most extreme case. However, this was also the most effective configuration, achieving a much
more significant speedup of 12.7 times a non-parallelised test suite run on average. These findings
indicate that the soundness and effectiveness of test suite parallelisation may be at odds with one
another when order-dependent tests are present. This led them to suggest that developers should
address the order-dependent tests in their test suites, using a tool such as ElectricTest [15],
allowing them to utilise the more powerful parallelisation strategies that were less accommodating
of test order dependencies.

Lam et al. [91] proposed an algorithm for enhancing the soundness of test suite prioritisation,
selection and parallelisation with respect to test order dependencies, again with the requirement
that they are known and specified. As input, their algorithm takes the original test suite, a modified
test suite, for example, a subset of the original test suite as produced by test selection, and a set
of test order dependencies. The set of dependencies consists of a list of pairs of tests where the
latter is impacted by the prior execution of the former. These are split into positive dependencies,
where the first must be run before the second for the second to pass, and negative dependencies,
where the second would fail if executed after the first. Using previous terminology, the former case
represents a state-setter and a brittle and the latter case represents a polluter and a victim [141].
Examples of tools that could produce such a set include many of those examined in Section 2.5.2.
As output, the algorithm produces an enhanced test suite — a test suite as close to the modified
test suite as possible while respecting the specified test order dependencies. Initially, the algorithm
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computes the set of tests that the tests of the modified test suite transitively depend upon from
the specified positive dependencies. Iterating through the modified test suite, each test is inserted
into to an initially empty enhanced test suite. This is done with the pre- and post-condition that
the enhanced suite has all of its dependencies satisfied and the additional post-condition that the
test is added to the end of the enhanced suite. To that end, the algorithm uses the previously
computed set of dependencies to determine the sequence of tests that are needed to be executed
before the test to be inserted into the enhanced suite. This sequence is sorted such that the order
of the emergent enhanced suite will be as close to the optimised order of the input modified suite as
possible. The dependent tests of this sequence are then iteratively inserted into the enhanced suite
in a recursive manner, such that they also have their dependencies resolved (if any). To evaluate
their algorithm, they performed prioritisation, selection and parallelisation upon a range of open-
source Java subjects from previous work [90], using DTDetector [175] to identify the dependency
pairs. They measured the reduction in failures of order-dependent tests after enhancing both the
modified developer-written and automatically generated test suites of their subjects. In the case of
prioritisation, they observed an 100% reduction in failures for the developer-written test suites (i.e.,
all tests passed) and a 57% reduction for the automatically generated test suites. For selection,
the result was 79% and 100%, respectively and for parallelisation, it was 100% and 66%.

User Interface Testing

Gao et al. [48] set out to investigate which external factors are the most important to control
in an attempt to reduce flakiness in system user interface tests, performing an experiment upon
five GUI-based Java projects. Specifically, they measured the impact of varying the operating
system, the initial starting configuration, the time delay used by the testing framework (used to
wait for a user interface to be fully rendered and stable before evaluating oracles) and the Java
vendor and version, upon non-deterministic behaviour during test suite runs with respect to three
application layers. For each layer, they derived metrics to measure the magnitude of the non-
determinism across repeated test runs under various configurations of the investigated external
factors. The lowest level layer was the code layer and refers to the source code of the software
under test, where they measured the line coverage. To measure the magnitude of the variation
in this layer, they calculated an entropy-based metric to measure the extent to which the line
coverage was inconsistent over multiple test suite executions. The next layer was the behavioural
layer which pertains to invariants regarding functional data, such as runtime values of variables
and function return values, which are mined over a run of a test suite. Once again, they derived an
entropy-based metric to measure how inconsistently invariants could be observed when repeating
tests. The highest level layer was the user interaction layer, representing the interface state visible
to the end user. They used a metric based upon the number of false positives observed from a
GUI state oracle generator as a measure of the stability in this layer. From the findings of their
experiments, they arrived at three overall guidelines for researchers and developers for promoting
the reproducibility of test suite executions. The first was to ensure that the exact configuration
of the application and the state of the execution platform when running a test suite is explicitly
reported and shared. Referring to how some examples of non-determinism appeared unaffected
by controlling the various external factors examined, the second was to run tests multiple times to
accommodate these cases. The third was to use application domain information in an attempt to
control test suite variability, giving an example of controlling the system time as an environmental
factor when testing a time-based application.

In a related study, Gao et al. [49] presented an approach for ranking flaky test failures in the
context of GUI regression testing based on their stability. The authors described the process of
GUI regression testing as executing a regression test suite upon two versions of a GUI application,
which invokes particular events to get the GUI into some particular state, where various properties
(e.g., the coordinates and dimensions of elements such as text boxes) are measured and compared
to identify discrepancies indicative of bugs. Given the flakiness of such tests, developers may
face difficulty when identifying which discrepancies represent genuine faults as opposed to being
artifacts of external factors such as window placement or resolution. Under the reasoning that
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the most unstable properties are the least useful for finding bugs, they described an approach for
ranking test failures based upon the entropy of the properties they compare. To calculate the
entropy, the test suite must be repeatedly executed to arrive at a decent sample of values for each
measured property. They evaluated their approach on three Java GUI applications with known
bugs and found that their ranking technique indeed percolated the genuine, known bugs to within
the top 30 of all the lists of discrepancies.

Mutation Testing

Shi et al. [139] investigated ways to mitigate tests with inconsistent coverage when performing
mutation testing. In particular, they used 30 open-source Java projects to evaluate the effectiveness
of various modifications to the Java mutation testing tool called PIT [262]. Specifically, they
investigated the impact of repeating and isolating tests during the coverage collection and mutant
killing runs of PIT. The purpose of the coverage collection run is to identify the set of program
statements each test covers so that PIT can generate mutants which they have a chance of killing.
Given the finding that 22% of statements were inconsistently covered in their motivating study,
they reasoned that repeating tests improves the reliability of this process since a single run may
not accurately represent which lines a test may cover. As for the motivation behind isolating tests
at this stage, they referred to the potential for test order dependencies to impact coverage. They
found an insignificant increase in the number of generated mutants when repeating and isolating
tests for the considerable increase in the amount of time taken to do so, thus concluding that it
may not be worthwhile. They went on to investigate the impact of repeating and isolating tests
during the mutant killing run, citing the same motivations as before. In this run, tests are executed
to identify which mutants they are able to identify by failing and thus kill. The authors found
that repeating and isolating tests at this stage reduced the number of mutants with an unknown
killed status (i.e., mutants that a test ought to cover based on the coverage collection run, but at
the mutant killing stage, does not) by 79%, demonstrating the benefits of this approach.

Automatic Test Generation

Arcuri et al. [10] extended the search-based test suite generation tool called EvoSuite [44] to
improve the coverage and “stability”, a term they used to mean the absence of flakiness, of test
suites generated for Java classes with environmental dependencies. Their multifaceted approach
involved instrumenting the bytecode of generated tests to reset the state of static fields following
executions and extending EvoSuite’s genetic algorithm to generate test methods capable of
writing to the standard input stream to accommodate classes which read user input. They also
implemented a virtual file system, by mocking Java classes that perform input and output, that
is reset after the execution of each test case. Finally, they mocked methods and classes which
provide sources of environmental input or other non-determinism, such as the Calendar [208] and
Random [267] classes, both of which make use of system time. An experiment using 30 classes of
the SF100 corpus [44] known to lead to flaky generated tests indicated that the combination of
these mitigations reduced the number of flaky generated tests from an average of 2.43 per class
to 0.02.

Conclusion for RQ4.1: What methods and insights are available for mitigating
against flaky tests? An early study proposed and evaluated a lightweight alternative to
mitigating test order dependencies via process isolation, based on dynamically re-initializing
modified values following test runs, finding it to introduce an average time overhead of only
34% compared to 618% [14]. In the context of test suite parallelisation, one study proposed
and evaluated schedulers for making the most of available CPUs when executing test suites
with known and specified order-dependent tests, reporting an average speedup of up to 7 times
compared to a regular test suite run without breaking any test order dependencies [15]. Another
source examined how best to configure concurrent execution when faced with order-dependent
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tests, with the main finding being that ensuring consistent test outcomes appears to be a trade
off with achieving the fastest test runs [22]. One experiment demonstrated the applicability of an
algorithm for satisfying broken dependencies following rescheduling by prioritisation, selection
or parallelisation, reducing the number of failed order-dependent tests in developer-written
test suites by between 79% and 100% [91]. In the area of user interface testing, one study
suggested three guidelines after studying the impact of various factors pertaining to the test
execution environment and platform on the flakiness of tests. They recommended that the
exact application configuration and state of the execution platform be explicitly reported, that
it may be useful to re-execute tests several times to account for unknown or uncontrollable non-
determinism, and that information regarding the application domain ought to be taken into
account when attempting to control flakiness [48]. A study into mitigating flaky test coverage
in mutation testing found that repeating and isolating test runs during the mutant killing phase
reduced the number of non-deterministically killed mutants by 79% [139]. Finally, extensions
to the automatic test generation tool called EvoSuite [44] were found to significantly reduce
the number of flaky tests it generated, from an average of 2.43 per test class to 0.02 [10].

2.6.2 Repair

With regards to repairing flaky tests, numerous sources have presented insights and strategies to
assist developers in removing the flakiness from their test suites, as opposed to simply mitigating it.
Some have mined insights from examining previously repaired flaky tests [37, 105, 136]. With the
aim of helping developers improve the reliability of their test suites in the shortest amount of time,
one study presented a technique for prioritizing flaky tests for repair [160]. Another deployed a
survey with the aim of identifying the most important pieces of information, as rated by software
developers, needed to repair flaky tests [37]. A line of research concerned with automatically
identifying the root causes of flaky tests, in order to assist developers in repairing them, has
emerged in recent years [88, 151, 178]. Finally, I examine techniques for the automatic repair of
order- and implementation-dependent flaky tests and those that are flaky due to external data [42,
141, 174].

Insights from Previous Repairs

Studies have provided insights into repairing various kinds of flaky tests by considering previously
applied fixes in general software projects. Luo et al. [105] examined commits that repaired flaky
tests within projects from the Apache Software Foundation. Eck et al. [37] surveyed Mozilla
developers about flaky tests they had previously fixed. The prevalence of the different types of
repairs as reported by these two studies are summarised in Table 2.12. In terms of where these
were were applied, figures range from between 71% to 88% exclusively test code [37, 89, 105].
The remainder were applied to either the code under test, both the test code and the code under
test or elsewhere, such as within configuration files. This finding indicates that the origin of test
flakiness may not exclusively be test code, and in the cases where fixes were applied to non-test
code, suggests that a flaky test has, possibly indirectly, led a developer to discover and repair a
bug in the code under test. This provides an additional argument against ignoring flaky tests, as
previously discussed in Section 2.4.1. With regards to repairing flaky tests of the asynchronous
wait category, the most common fix involved introducing a call to Java’s waitFor [263], or Python’s
await [210], or modifying an existing such call, accounting for between 57% and 86% of previous
cases. The waitFor method blocks the calling thread until a specific condition is satisfied, or until
a time limit is reached. This would be used to explicitly wait until an asynchronous call has fully
completed before evaluating assertions, thus eliminating any timing-based flakiness. Similarly, Luo
et al. identified fixes regarding the addition or modification of a fixed time delay, such as via a
call to Java’s sleep [277], to make up 27% of historical repairs. Compared to waitFor, sleep is a
less reliable solution since the specified time delay can only ever be an estimate of the upper limit
of the time taken for the asynchronous call to complete in any given test run. To that end, the
authors identified that 60% of such repairs increased a time delay, suggesting that the developers
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believed their estimate to be too low or perhaps too unreliable across different machines. A study
by Malm et al. [107] found sleep-type delays to generally be more common than waitFor, via
automatic analysis of seven projects written in the C language. Another solution was to simply
reorder the sequence of events such that some useful computation is performed after making an
asynchronous call instead of quiescently waiting for it to complete, accounting for between 3% and
13% of cases. Such a change does not actually address the root problem, but may be preferable
to simply blocking the calling thread.

For fixing flaky tests of the concurrency category, the most common repair, according Eck
et al., again pertained to the introduction or modification of a call to waitFor or await, with
a prevalence of 46%. Adding locks to ensure mutual exclusion between threads accounted for
between 21% and 31% of fixes for flaky tests in this category. Between 9% and 26% of historical
repairs involved modifying concurrency guard conditions, such as the conditions for controlling
which threads may enter which regions of code at any one time. Making code more deterministic
by eliminating concurrency and enforcing sequential execution made up between 5% and 25% of
fixes. An additional type of repair as identified by Luo et al. consisted of modifying test assertions,
and nothing else, to account for all possible valid behaviours in the face of the non-determinism
permitted by the concurrent program, describing 9% of previous repairs.

Ensuring proper setup and teardown procedures between test runs was the most common fix
for order-dependent tests according Luo et al., accounting for 74% of cases. Another fix was to
explicitly remove the test order dependency by, for instance, making a copy of the associated
shared resource (e.g., an object or directory), making up between 16% and 100% of repairs.
Another repair was to merge tests into a single, independent test by, for example, simply copying
the code of one test into another, which described 10% of fixes for order-dependent tests according
to Luo et al..

As part of an empirical evaluation into flakiness specific to user interface tests, Romano et al.
[136] examined 235 developer-repaired flaky user interface tests across a sample of web and Android
applications. They categorised the type of repair applied into five categories. The first category,
delay, accounted for 27% of cases and was subcategorised into repairs involving the addition or
increase of a fixed time delay or those relating to an explicit waiting call, as described previously.
The second category, dependency, related to repairs regarding an external dependency, such as
fixing an incorrectly called API function or changing the version of a library. The authors placed
8% of flaky tests into this category. The final three categories were refactor test, disable features
(specifically disabling animations in the user interface, which was found to be a significant cause
of flakiness), and remove test. These represented 32%, 2% and 31% of repairs respectively, the
latter category not being a true repair, but simply eliminating the flaky test from the test suite.

Prioritizing Flaky Tests for Repair

Vysali et al. [160] presented GreedyFlake, a technique for prioritizing the fixing of flaky tests
based on the number of flakily covered program statements that would become robustly covered if
the flaky test was repaired. They defined a flakily covered statement as one that is only covered
by flaky tests and a robustly covered statement as one that is covered by one or more non-
flaky tests. Their motivation for this approach was based on the notion that program elements
covered exclusively by flaky tests are unlikely to be as well-tested as those covered by tests with
more deterministic behaviour. They evaluated this technique with the test suites of three large
open-source Python projects by comparing how quickly flakily covered program statements would
become robustly covered when prioritizing flaky test repairs based on other schemes. Specifically,
they compared their approach to random prioritisation (i.e., merely shuffling the list of flaky tests
to be repaired), prioritisation based on total statement coverage, prioritisation based on newly
covered statements (in a regression testing context) and prioritisation based on total number of
flakily covered statements. Their evaluation demonstrated that GreedyFlake outperformed all
of the other methods for every subject with regards to identifying the best fixing order for reducing
the greatest number of flakily covered program statements in the fewest number of flaky test fixes.
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Table 2.12: Prevalence of different types of repairs for three prominent categories of flaky tests according
to Luo et al. [105] and Eck et al. [37]. Dashes indicate that the study did not consider that type of repair.

Category Repair Luo et al. [105] Eck et al. [37]

Asynchronous Wait Add/modify waitFor/await 57% 86%
Add/modify sleep 27% -
Reorder code 3% 13%
Other 13% 1%

Concurrency Add/modify waitFor/await - 46%
Add lock 31% 21%
Modify concurrency guard 9% 26%
Make code deterministic 25% 5%
Modify assertions 9% -
Other 26% 2%

Test order dependency Setup/teardown state 74% -
Remove dependency 16% 100%
Merge tests 10% -
Other 0% 0%

Important Information for Repair

From a multi-vocal literature review, Eck et al. [37] identified eight pieces of useful information for
fixing flaky tests. They asked developers via an online survey to rate on a Likert scale, for each piece
of information, how important they considered it and how difficult they thought it was to obtain.
The results of this survey are presented in Table 2.13. The most import of these, as considered
by developers, was the context leading to the failure, which the developers also identified as the
second hardest to obtain. As one developer described: “the most difficult operation is reproducing
a flaky test, as sometimes only 1/20 fails”. Another respondent explained how the verification
of the failing behaviour can be even more difficult due to the slowness of tests and the execution
environment, among other factors, citing their slow UI tests as an example. The second most
important was the nature of the flakiness, or its category, which the developers considered the
most difficult to obtain. On this topic, one developer referred to identifying the root cause of
a flaky test as “a big challenge”, due to the wide array of possible contributing factors such as
concurrency issues or cache related problems. The remaining pieces of information in descending
order of perceived importance were: the origin of the flakiness (i.e., whether it is rooted in test
code of the code under test), the involved code elements, the changes needed to perform the fix,
the context leading to the flaky test passing, the commit introducing the flakiness and the history
of the test’s flakiness (i.e., previous causes and fixes).

Identifying Root Causes to Assist Repair

Having identified the nature and origin of flaky tests to be the most important pieces of information
needed to repair flaky tests [37], several approaches have been developed to assist developers by
revealing information about their root causes. One such approach, RootFinder, was presented
by Lam et al. [88] and compares attributes of the execution of flaky tests in their passing and
failing cases. Their technique leverages the Torch framework for instrumenting API method calls.
Specifically, the framework replaces method calls with a generated version, which calls the original
method, but also provides three callbacks, one just before the call, one just after and one upon
a raised exception. As part of RootFinder, they implemented callbacks to measure properties
including, but not limited to, the identifiers of the calling process, thread and parent process, the
caller API, the timestamp of the call, the return value and any exception that was raised. During
repeated test suite runs, the information recorded by these callbacks is stored in separate logs for
passing and failing test executions. Using these logs, RootFinder evaluates various predicates,
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Table 2.13: Useful information for repairing flaky tests as rated on a Likert scale by developers with
regards to importance and difficulty in obtaining, as found by Eck et al. [37].

Information Importance Difficulty

Context leading to failure 2.69 1.65
Nature of the flakiness 2.40 1.71
Origin of the flakiness 2.22 1.17
Involved code elements 2.21 1.13
Changes to perform the fix 2.08 1.59
Context leading to passing 1.95 1.20
Commit introducing the flakiness 1.89 0.75
History of the test’s flakiness 1.79 0.83

the outcomes of which are kept in predicate logs, again with one for passing tests and one for
failing. Along with the values of these predicates, the code location of the instrumented method
call, the calling thread id and an index that is incremented each time the method is called at the
same location is also recorded to provide additional context, referred to as epochs. Examples of
predicates that RootFinder evaluates include whether the return value at some epoch is the same
as all chronologically previous epochs (which is useful for identifying non-determinism), whether
a specified amount of time is observed between a particular sequence of calls (which is useful for
identifying thread interleavings), and whether the method call took longer than a specified upper
limit. RootFinder uses these predicate logs to perform further analysis to identify those that
are indicative of flaky tests. Those that are always true in passing cases and always false in failing
cases (or vice versa) indicate that a method consistently behaves differently in passing and failing
runs, which they posited, may help to explain why a test is flaky by showing how the passing
and failing executions differ. They went on to provide examples of methods to instrument and
predicates to evaluate that may be useful in identifying examples of several of the categories of
flaky tests identified by Luo et al. [105]. For instance, for the asynchronous wait category, the
predicate should indicate that the asynchronous call always took longer in the failing runs such
that some timing assumption did not hold (e.g., a fixed time delay was insufficient to wait for an
asynchronous method and thus results in the failing test cases).

Ziftci et al. [178] presented another way to compare passing and failing executions. For a given
flaky test, their approach performs some number of instrumented runs, collecting execution traces.
For a given failing run of the flaky test, their technique identifies the passing execution with the
longest common prefix and extracts the point at which the execution diverges into the failing case.
They posited that by inspecting the code location of the divergence between passing and failing
cases, developers might understand why their test is flaky. They implemented their approach as
a tool in Google’s continuous integration platform, making use of its internal flakiness scoring
mechanism to select tests that are flaky, but whose failing cases are not too rare, citing limited
resources for repeated executions. To assess the applicability of their tool, they performed several
case studies. One such study involved two developers fixing 83 flaky tests, that had previously
been repaired by other developers, with the assistance of the tool. The developers reported that,
in between 36% and 43% of cases, the divergent lines reported by the tool contained the exact
code location that required repair. For between 25% and 32% of cases, the fix was applied to a
different region of code, but the report was still helpful and relevant. In 15% of cases, the report
was inconclusive, hard to understand or not useful.

Terragni et al. [151] proposed a new technique for identifying the root causes of flaky tests,
motivated by two main limitations of RootFinder [88]. First, the Torch-based instrumentation
incurs some amount of runtime overhead which may be problematic for several reasons, such as
potentially impacting the manifestation of time-sensitive flaky tests and increasing the overall
analysis times. Second, a general limitation of any strategy based upon rerunning tests, is that
it passively explores the non-deterministic space of test executions. In other words, repeatedly
executing a test under the exact same conditions means that the more elusive flaky tests that
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Table 2.14: Overview of three studies that proposed techniques for repairing specific types of flaky tests.

Study Targets Underlaying Technique

Shi et al. [141] Order-dependent tests Delta debugging [172]
Fazzini et al. [42] External dependencies Component-based program synthesis [81]
Zhang et al. [174] Implementation-dependent tests Template-based repair [101]

are manifested only in rarely occurring scenarios, such as a particular execution order of multiple
threads, are unlikely to be identified without a significant number of repeats. This led the authors
to propose their technique, which they described as actively exploring this space. Specifically, their
approach executes some test under analysis repeatedly in separate containers (i.e., via Docker
[214]), each designed to manifest a particular category of flakiness. For example, one container
attempts to manifest flaky tests of the concurrency category by varying the number of available
CPU cores and randomly spawning threads that execute dummy operations to occupy the available
resources. Another container attempts to identify order-dependent tests by arbitrarily executing
other tests before the test under analysis, randomly taken from its containing test suite. As well
as these, the test is executed in a baseline container, which makes no explicit attempt to manifest
any particular kind of flakiness. After some upper limit of executions, the failure rate (i.e., the
ratio of test failures to total runs) is calculated for each container and the category associated with
the container that has the largest difference in failure rate compared to the baseline container is
presented as the most likely cause.

In the domain of web applications, Morán et al. [111] proposed a technique named FlakyLoc
for identifying the root causes of flaky tests. Similar to the work of Presler-Marshall et al. [132],
their technique consisted of repeatedly executing a Selenium [275] test suite under multiple config-
urations of a range of factors believed to impact the likelihood of manifesting test flakiness. These
factors were: the operating system, the screen resolution, the web driver (i.e., web browser), the
number of CPU cores, the network bandwidth, and the amount of available memory. In the case
that a test fails under some configurations and not others, FlakyLoc identifies the likely cause
by calculating suspiciousness rankings for each factor, as would be done for source code lines in
the context of fault localisation [21, 25, 157, 166].

Formalizing a test case as a series of discrete “steps”, Groce et al. [55] presented a modification
to the delta debugging approach [172], a type of binary search, for minimizing the set of such
steps required to exhibit non-determinism. Conceivably, this could help a developer to identify
the specific cause of a flaky test. Their approach operates with two types of non-determinism.
The first, that they term horizontal non-determinism, refers to a divergence in execution traces
between two independent runs of a test case. The second, vertical non-determinism, describes the
case where a supposedly idempotent operation, such as a file system operation that fails due to
access permissions, returns inconsistent results following repeated executions in the same trace.
Implementing their technique in Python, an evaluation with four subjects found that it reduced
the number of steps in non-deterministic test cases by between 85% to 99%.

Automatic Approaches to Generate or Improve Repairs

Shi et al. [141] developed a tool for automatically repairing order-dependent tests, named
iFixFlakies, using the statements of other tests in the test suite, which they refer to as helpers.
They identified two categories of order-dependent test, victims, which pass when run in isolation
but may fail when executed after other tests, and brittles, which fail in isolation and thus depend
on previous tests to be executed beforehand to pass. They refer to a subsequence of tests which
appear to induce a failure in a victim as a polluter and those which result in a brittle passing
as a state-setter. Furthermore, they refer to a sequence of tests executed between a polluter and
a victim that appears to enable the victim to pass as a cleaner, in other words, it appears to
“clean” the state pollution. Together with state-setters, these constitute the two types of helpers
which they reasoned may contain the functionality needed to repair the order dependence in the
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corresponding victim or brittle. Given an order-dependent test and an example of a passing and
a failing test run order, their tool employs delta debugging [172] to identify a minimal sequence
of tests that act as a polluter in the case of a victim, or a state-setter in the case of a brittle. In
the case of a victim, iFixFlakies will apply a delta debugging approach again to find a minimal
cleaner for the identified polluter. Applying delta debugging once more, it identifies the minimal
set of statements from the identified helper tests which, when arranged as a generated method
called at the beginning of the order-dependent test (much like a set up method), induces it to pass
in the previously failing order. To evaluate their framework, they recycled subjects from previous
work [90], arriving at a subject of 13 Java modules. Their respective test suites contained a to-
tal of 6,744 tests, 110 of which were identified as order-dependent. With these order-dependent
tests, iFixFlakies was able to generate an average of 3.2 unique patches, with a mean size of
1.5 statements, that removed their order dependency. On average, it took only 186 seconds to
generate a patch. They reported no cases where iFixFlakies was unable to generate a patch
for an order-dependent test. To further demonstrate the validity of their generated patches, they
submitted them as pull requests to their respective projects. At the time of writing, 21 had been
accepted by their developers.

Having categorised flaky tests discovered by Microsoft’s distributed build system, Lam et al.
[89] identified the majority (78%) as being of the asynchronous wait category. This motivated
them to specifically examine how such flaky tests had been previously repaired. By examining
pull requests, they determined that the most common fix was related to changing the time delay
between making the asynchronous call and evaluating assertions, accounting for 31% of cases.
This further motivated them to propose the Flakiness and Time Balancer or FaTB technique for
automatically improving such fixes by reducing their execution time. Their approach is essentially
a binary search for the shortest waiting time that does not result in flakiness. Starting with the
waiting time before the flaky test was fixed and the new waiting time that fixed the flaky test, the
FaTB technique repeatedly bisects this interval and re-executes the test 100 times. For example, if
a flaky test previously waited for 500ms before being adjusted to wait for 1000ms, FaTB would try
750ms. If this reintroduced flakiness after 100 repeats, then it would attempt 875ms. Otherwise
if no flakiness was observed, it would try the middle point between no waiting and the previously
successful time of 750ms (i.e., 375ms). This process then continues up to some upper limit of
iterations. To evaluate this technique, they randomly sampled five applicable flaky tests from
their dataset. In each case, their technique was able to find a waiting time that did not manifest
flakiness and was shorter than the initial developer’s fix. However, for four of their sampled tests
they never observed any flakiness at all, indicating that a larger set of tests may be needed to
properly evaluate the technique.

Fazzini et al. [42] proposed a technique for the automatic generation of test mocks [145] in
mobile applications. Test mocks replace real interactions between a mobile application and its
environment (e.g. camera, microphone, GPS), a potential source of flakiness [152]. As such,
their framework may not only improve the maintainability and performance of a test suite, but
may also repair flaky tests. Their proposed technique, named MOKA, attempts to generate
test mocks using a multi-stage strategy. Initially, MOKA leverages component-based program
synthesis [81] to attempt to generate a test mock using a database of other mobile applications
and their corresponding test suites. Should this fail, MOKA falls back to a “record and play”
approach, which is to create a mock based on previous data recorded from the environmental
interaction. On the same theme, Zhu et al. [177] proposed a machine learning based technique,
named MockSniffer, for suggesting to developers whether a particular external dependency
ought to be mocked or not within a test case. Following an empirical study involving four large
Java projects, the authors devised ten rules to match cases where developers had decided to use
mock objects when testing. These rules stemmed from several observations, for example, the
tendency of developers to mock classes related to networked services or concurrency. Encoding
a mocking decision as a tuple consisting of the test case, the class under test, the dependency
(a class used in the test case but not in the class under test) and a label indicating whether the
dependency was mocked or not, the authors devised 16 features to train their machine learning
model, based on their earlier observations. Using the same four projects as their training set,
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the authors built static analysers for each feature and evaluated several models, finding Gradient
Boosting [45] to be the best. To evaluate their approach in the absence of similar techniques,
they compared MockSniffer to three baselines: one based on existing heuristics from previous
studies, another using the mock list used by EvoSuite [40, 44], and a third based on the authors’
observations from their empirical study. Using an evaluation set of six projects distinct from
their four training projects, the authors found MockSniffer to generally outperform the three
baselines.

Extending on the work of NonDex (see Section 2.5.1), Zhang et al. [174] proposed and
evaluated a technique for repairing flaky tests arising from assumptions about non-deterministic
or “underdetermined” specifications. Their approach, implemented as a tool named DexFix,
uses an enhanced version of NonDex to identify tests in need of repair, their failing assertion
and the root cause of the flakiness. Their technique then applies one of four template-based
repair strategies based on the nature of the non-determinism. The first is to replace the AssertJ
assertion method containsExactly [203], for comparing collections, to an alternative method
that only checks contents and not the order. This addresses flaky tests that expect a particular
order for unordered collection type objects, such as sets or hash maps, in an assertion statement.
The second is to replace the statement new HashMap [229] or new HashSet [230] with new

LinkedHashMap [251] or new LinkedHashSet [252] respectively. These latter classes subclass their
respective former, unordered classes but guarantee a deterministic iteration order. This strategy
addresses flaky tests that expect a particular iteration order for objects of these types. The third
strategy is to sort the output of the getDeclaredFields method [209], which is specified to
return an array of the fields of a class but in no particular order. This addresses flaky tests that
expect some kind of order, previously identified as a common cause of implementation dependent
flakiness in Java projects [61, 140]. The final strategy addresses assertions that compare JSON
strings [246] by replacing JUnit’s Assert.assertEquals [202] method, which performs an exact
string comparison, with JSONAssert.assertEquals from the JSONassert project [247]. The
latter method does not consider the order of JSON objects, a set of key/value pairs, and so is far
less strict and brittle than a simple string comparison. Using NonDex, Zhang et al. identified
275 flaky tests across 37 open-source Java projects from GitHub. Using DexFix, they were able
to automatically repair 119. Of these generated patches, they submitted 102 as pull requests to
the respective projects’ repositories. At the time of writing, 74 had been accepted, 23 were still
pending and 5 had been rejected. One reason for rejection, the authors noted, was the developer’s
hesitance to introduce a dependency on JSONassert.

Conclusion for RQ4.2: What methods and insights are available for repairingflaky
tests? By examining historical commits in Apache Software Foundation projects, and
surveying Mozilla developers, two studies agreed that the most common type of fix for flaky
tests of the asynchronous wait category involved a waitFor method or its equivalent [37, 105].
For those of the concurrency category, common repairs also involved waitFor-like constructs,
as well as ensuring mutual exclusion via adding locks to concurrent code [37, 105]. For order-
dependent tests, the most common fixes involved a test’s setup and teardown methods or explicit
attempts to eliminate the dependency, by for instance creating a duplicate instance of some
shared resource [37, 105]. A survey asking software developers to rate the most important pieces
of information needed for fixing a flaky test, and the difficulty in obtaining them, identified
the context leading to failure as the most important and the nature of the flaky test as the
most difficult to obtain [37]. To that end, one study presented the RootFinder tool that
compares attributes from the execution of tests in passing and failing cases to identify any
differences that could indicate the root cause of flakiness [88]. Another technique employs
multiple containers that each attempt to manifest some specific category of flakiness, with the
category associated with the container with the greatest difference in failure rate, as compared to
a baseline, considered the most likely cause [151]. For the automatic repair of order-dependent
flaky tests, one source presented an approach using program statements from elsewhere in
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Table 2.15: The top ten most cited studies.

Author Paper Cited by

Luo et al. An Empirical Analysis of Flaky Tests [105] 251
Shamshiri et al. Do Automatically Generated Unit Tests Find Real Faults? An Em-

pirical Study of Effectiveness and Challenges [138]
160

Martinez et al. Automatic Repair of Real Bugs in Java: A Large-Scale Experiment
on the Defects4J Dataset [108]

160

Zhang et al. Empirically Revisiting the Test Independence Assumption [175] 126
Memon et al. Taming Google-Scale Continuous Testing [110] 105
Hilton et al. Trade-Offs in Continuous Integration: Assurance, Security, and

Flexibility [71]
105

Bell et al. DeFlaker: Automatically Detecting Flaky Tests [16] 77
Bell et al. Unit Test Virtualization with VMVM [14] 76
Vahabzadeh et al. An Empirical Study of Bugs in Test Code [155] 73
Gyori et al. Reliable Testing: Detecting State-Polluting Tests to Prevent Test

Dependency [62]
66

Table 2.16: The top five most prolific authors.

Author Papers

Darko Marinov [16, 61, 62, 70, 71, 90, 92, 93, 105, 139–142, 163, 174] 15
August Shi [35, 61, 62, 90, 91, 127, 139–142, 174] 11
Wing Lam [88–93, 141, 163, 175] 9
Jonathan Bell [8, 14–16, 47, 70, 93, 117, 139] 9
Michael Hilton [8, 16, 33, 70, 71] 5

the test suite, generating fixes for 110 order-dependent tests, with 21 accepted by developers
through pull requests [141]. For mobile applications, another study presented a framework
for automatically generating test mocks, which could potentially repair flaky tests of several
categories, including network, concurrency, and randomness. Another study presented DexFix
[174], a template-based repair technique for automatically repairing implementation-dependent
flaky tests, such as those detected by NonDex [61, 140]. Of 275 flaky tests across 37 open-
source Java projects, DexFix could repair 119, the generated patches of 74 of which had been
submitted as pull requests to their respective repositories and merged by their developers.

2.7 Analysis

This section takes a high-level view of the studies examined in this survey. I identify the most
prominent papers and authors and examine the various individual threads of research in the area,
offering insights to those readers who want to familiarise themselves with the field. Furthermore,
I provide a roundup of all the well-known tools, as examined in this survey, for detecting, miti-
gating, and repairing flaky tests and consider the various sets of projects used as subjects in their
evaluations. Finally, I suggest future directions for research on flaky tests.

2.7.1 Prominent Papers and Authors

Table 2.15 shows the top ten most cited papers examined in this survey. This data is provided
by Google Scholar [228] and is accurate as of the 7th of May, 2021. The most cited paper is An
Empirical Analysis of Flaky Tests published in 2014 by Luo et al. [105]. Furthermore, it is cited
by the majority of my sample of papers published after 2014, with two describing it as “seminal”
[128, 159]. For these reasons, I consider it essential reading for people who want an introduction to
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the field of flaky tests. The fourth most cited paper Empirically Revisiting the Test Independence
Assumption, was the first to compare different strategies for detecting order-dependent flaky tests,
and to present an automated tool for doing so [175]. This prefaced a line of further studies and
a range of related tools [15, 17, 62, 90]. Several of the top ten papers are not specifically about
flaky tests, but discuss a negative impact of flaky tests, such as Taming Google-Scale Continuous
Testing [110]. I would recommend anyone beginning research into flaky tests to read these papers
for a solid foundation in the research area.

The top five most frequent authors in the set of examined studies are listed in Table 2.16.
At the top is Darko Marinov [212]. Marinov has been active in the area of flaky tests since its
early beginnings, being a coauthor of An Empirical Analysis of Flaky Tests [105]. Along with his
students, August Shi [204] and Wing Lam [282], second and third in the list respectively, he has
been involved in the development of several automatic tools for detecting flaky tests, including iD-
Flakies [90], PolDet [62] and NonDex [61, 140]. Along with other collaborators, they were the
first to develop and evaluate a fully automatic approach for repairing order- and implementation-
dependent flaky tests [141, 174]. At number four on the list, but joint third with Lam, is Jonathon
Bell [245], who has also been involved in the creation of numerous flaky test detection techniques
such as ElectricTest [15], PraDeT [47] and DeFlaker [16]. Bell frequently coauthors with
Michael Hilton [255], at number five on the list, who has been particularly active on test flakiness
in the context of continuous integration [33, 71]. I would direct those who want to read more
about flaky test research to the publications of these five authors.

2.7.2 Tools and Subject Sets

Table 2.17 provides a complete list of all the named tools for detecting, mitigating and repairing
flaky tests examined in this survey. To evaluate the performance of these tools, a number of sets
of projects have been created as subjects and in several cases have been reused in multiple stud-
ies. Zhang et al. [175] used four open-source Java projects, containing a combined total of 4,176
developer-written tests, to compare the performance of various configurations of DTDetector,
their order-dependent test detection tool. These four subjects were then reused as part two fur-
ther evaluations of later tools, namely ElectricTest [15] and PraDeT [47], and, along with
the results of these three evaluations, are presented in Table 2.10. Bell et al. [16] presented a set
of 5,966 commits across 26 open-source Java projects comprising 28,068 test methods. They used
these to evaluate the performance of DeFlaker, their flaky test detection tool. The DeFlaker
subject set was also used by Pinto et al. to train various classifiers using natural language pro-
cessing techniques in an attempt to statically identify flaky tests [128]. Projects from this subject
set, along with various other sources, such as popular projects on GitHub, were combined by
Lam et al. [90] to create two subject sets for their evaluation of their own detection tool called
iDFlakies. The first of these two sets, called the comprehensive set, contained 183 open-source
Java projects. The second of these, called the extended set, consisted of 500 further projects dis-
joint from the comprehensive set. The projects of the comprehensive set were then reused in later
studies involving Lam [89, 91, 93, 141]. Flaky tests identified from these subject sets were later
called the Illinois Dataset of Flaky Tests [8, 163].

Table 2.17: A list of named techniques examined in this study.

Technique Description Source Section

DTDetector Detects order-dependent tests by either reversing the test suite
order, shuffling it, executing every k-permutation in isolation or
only executing permutations that are likely to expose a test order
dependency, based upon conservative analysis of static field access
between tests and monitoring file usage.

[175] §2.5.2

OrcalePolish May indirectly identify order-dependent tests, or tests that have
the potential to become order-dependent, by detecting brittle as-
sertions using taint analysis.

[74] §2.5.2
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VmVm Implements a lightweight alternative to full process isolation for
mitigating possible test order dependencies by only reinitializing
classes containing static fields that may facilitate state-based side
effects between test runs.

[14] §2.6.1

ElectricTest Refines the dependency analysis of DTDetector by considering
aliasing, using an approach that leverages garbage collection and
object tagging. Unlike DTDetector, ElectricTest does not
verify the order-dependent tests it identifies, i.e., by executing
them, meaning that it may give many false positives.

[15] §2.5.2

PolDet Models heap memory as a multi-rooted graph, with objects, classes
and primitive values as nodes, fields as edges and static fields of all
loaded classes as roots. Computes and compares heap graph before
the setup phase and after the teardown phase of each test run to
identify any observable changes in program state or ”pollution”,
to arrive a list of polluting tests, i.e., tests that may cause (but
may not themselves be impacted by) test order dependencies.

[62] §2.5.2

NonDex Manifests flaky tests caused by the assumption of a determinis-
tic implementation of a non-deterministic specification by reim-
plementing a range of methods and classes in the Java standard
library to randomise the non-deterministic elements of their re-
spective specifications.

[61,
140]

§2.5.1

DeFlaker Given a new version of the software under test, i.e., after a commit,
detects flaky tests as those whose outcome changes despite not
covering any modified code.

[16] §2.5.1

PraDeT Follows a similar methodology as ElectricTest, but verifies its
findings by modelling a test suite as a graph, with tests as nodes
and possible dependencies as edges, and proceeds to invert each
edge and schedule a corresponding test run to identify if the re-
spective dependency is manifest, i.e., if it affects the outcome of
the dependent test.

[47] §2.5.2

RootFinder Collects and processes information recorded from passing and fail-
ing executions of repeated test runs via instrumented method calls.
Aims to assist developers in understanding the causes of flaky tests
by, for example, showing the differences in the execution environ-
ment between passing and failing cases.

[88] §2.6.2

TEDD Detects order-dependent tests in web applications by considering
dependencies facilitated by persistent data stored on the server-
side and implicit shared data via the Document Object Model on
the client-side, rather than by internal Java objects.

[17] §2.5.2

iDFlakies Classifies flaky tests as being order-dependent or not based upon
comparing the outcomes of repeated executions of failing tests in
a modified test run order to the original test run order.

[90] §2.5.2

iFixFlakies Generates fixes for an order-dependent test from the statements of
other tests in the test suite that have been identified as ”helpers”,
i.e., that enable the dependent test to pass when executed previ-
ously.

[141] §2.6.2

FLASH Targeting Machine Learning applications, mines test suites for ap-
proximate assertions and repeatedly executes the containing tests
to arrive at a sample of actual values evaluated within them. From
these samples, FLASH estimates the probability that an assertion
will fail and declares a containing test flaky if it is above a thresh-
old.

[35] §2.5.1

FLAST A purely static approach to flaky test detection, represents tests
using a bag of words model over the tokens of their source code
and trains a k-nearest neighbour classifier to label them as flaky
or not.

[159] §2.5.1
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MOKA Uses component-based program synthesis to automatically gener-
ate test mocks for mobile apps, thereby potentially repairing flaky
tests caused by dependence upon external data.

[42] §2.6.2

Shaker Introduces CPU and memory stress during repeated test suite ex-
ecutions in an attempt to increase the probability of manifesting
flaky tests of the asynchronous wait and concurrency categories.

[144] §2.5.1

DexFix Uses template-based automatic program repair to fix
implementation-dependent flaky tests, such as those detected by
NonDex.

[174] §2.6.2

FlakeFlagger A technique for detecting flaky tests without requiring test suite
reruns, using a machine learning model. Requires a combination
of dynamic test data, such as line coverage, and static data, such
as features of the test’s source code.

[8] §2.5.1

2.7.3 Related Research Areas

In many instances, the flaky test literature is tangential with several other research areas. An
index of these are given in Table 2.18, with relevant citations from the set of collected papers,
and references to the sections in this survey that mention them. Emerging as the area with the
strongest intersection is continuous integration research. The associated citations pertain to the
evaluation of the prevalence and impacts of test flakiness with respect to continuous integration
systems. Since such systems involve a vast number of test executions, it is perhaps unsurprising
that there is a strong overlap between this area of study and flaky test research. Test acceleration
research, producing techniques that often change the test execution schedule, such as test suite
selection [97, 106, 142], prioritisation [67, 127, 169], reduction [9, 100, 158] and parallelisation
[15, 22, 66], is another area with a significant relationship with flaky tests.

Continuous Integration

Flaky tests have been studied several times in the context of continuous integration systems. An
early source described an account of how transitioning to a continuous integration system led
to developers observing the true scale of the flakiness in their test suites, since tests were being
executed more often [87]. Since then, continuous integration systems have been a frequent object
of study due to the vast amount of test execution data they make available. Labuschagne et al.
[86] studied the build history of open-source projects using Travis and found that 13% of a sample
of transitioning tests were flaky. Hilton et al. [71] deployed a survey asking to developers to
estimate the number of continuous integration builds that failed due to true test failures and
due to flaky test failures, finding no significant difference between the two distributions. Memon
et al. [110] analysed Google’s internal continuous integration system and found flakiness was to
blame for 41% of “test targets” that had previously passed at least once and failed at least once.
Microsoft’s distributed build system has also been an object of study several times, with one study
finding that had it not automatically identified and filtered the 0.02% of sampled test executions
that were flaky, they would have gone on to cause what would have been 5.7% of all failed builds,
demonstrating the impact that a relatively small number of flaky tests can impose [89]. Finally,
Durieux et al. [33] found that 47% of previously failing builds that had been manually restarted
went on to pass, suggesting that they may have initially failed due to flaky tests.

Test Acceleration

A specific category of flaky tests, order-dependent tests, have been identified as a potential burden
to the soundness of much research in the area of test acceleration. This is because they may produce
inconsistent outcomes when their containing test suites are reordered or otherwise modified. Zhang
et al. [175] examined how many test cases gave inconsistent outcomes when applying five different
test prioritisation schemes. Bell et al. [15] proposed a scheduler for achieving sound parallelisation
when test suites contain order-dependent tests, though this was found to be at the cost of a
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Table 2.18: Connections between related areas and the field of flakiness, with citations and references to
relevant sections in this paper.

Area Reference Section

Continuous integration [33, 70, 71, 86, 87, 89, 97, 110, 142] §2.3.1, §2.4.2, §2.6.2
Test acceleration [15, 17, 22, 47, 91, 175] §2.3.2, §2.4.2, §2.5.2, §2.6.1
User interface testing [48, 49, 132, 136, 169] §2.3.3, §2.4.2, §2.4.3, §2.6.1
Software engineering education [132, 140, 146] §2.4.3
Automatic test generation [10, 125, 138] §2.4.3, §2.6.1
Mutation testing [68, 139] §2.4.3, §2.6.1
Automatic program repair [108, 167] §2.4.3
Machine learning testing [35, 116] §2.3.3, §2.5.1
Fault localisation [157] §2.4.3

considerable degree of efficiency. Candido et al. [22] examined the degree to which order-dependent
tests were manifested when applying several different test suite parallelisation techniques. Lam
et al. [91] proposed an algorithm for ensuring order-dependent tests had their dependencies
satisfied after applying test acceleration, while attempting to minimise the loss of speedup in the
test suite execution process.

2.7.4 Limitations and Future Directions

In this literature review, I examined many empirical studies on flaky tests [33, 59, 105, 152, 155,
175]. However, there is relatively little focus on the views and experiences of software developers.
Since flaky tests are primarily a developer problem, there is an underutilised opportunity to acquire
valuable insights from those who experience them first-hand. This is important to ensure that
future research is relevant developers. Hilton et al. [71] and Eck et al. [37] both conducted
developer-oriented studies concerning flaky tests. However, both suffer from organisational and
self-reporting bias [31]. This is because they both focus on a single organisation and both take the
form of questionnaires and interviews. In Chapter 3, I address these limitations by conducting a
developer study involving both a questionnaire and an analysis of StackOverflow threads about
flaky tests. Because the respondents to the questionnaire are from many different organisations, the
results are unlikely to be skewed by organisational bias. Analysing StackOverflow threads mitigates
self-reporting bias because this does not involve developers recounting their own experiences.

In Section 2.5.1, I examined several studies that use machine learning classifiers to detect flaky
tests [4, 8, 82, 128, 159]. However, there remains little research into the features used to encode
the test cases. Furthermore, none of these studies consider the detection of order-dependent flaky
tests. As discussed in Section 2.4.2, order-dependent flaky tests can cause unique and significant
difficulties for both developers and researchers. Therefore, it is worthwhile to consider their
detection via machine learning classifiers. In Chapter 3, I address this research gap by proposing
a new feature set for encoding test cases in machine learning-based flaky test detection. An
evaluation involving 26 projects shows that classifiers based on this feature set outperform the
previous state-of-the-art [8] when detecting both order- and non-order-dependent flaky tests.

In Section 2.5, I described a range of automated techniques for detecting flaky tests. Many are
based on rerunning test cases, such as iDFlakies [90]. The main drawback of these techniques is
the excessive number of repeated test case executions. This makes them expensive and likely im-
practical for deployment in large software projects. Another approach is to use a machine learning
classifier, such as FlakeFlagger [8]. While this is significantly faster than any rerunning-based
technique, the accuracy of the classifiers can be questionable. Addressing both of these limitations
simultaneously, I introduce CANNIER in Chapter 5. An empirical evaluation involving 30 open-
source projects demonstrates that CANNIER can achieve a good balance between high detection
performance and low run time cost when detecting flaky tests.

On the topic of machine learning-based detection, another limitation of many studies is that
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they evaluate techniques using hold-out sets of test cases from the same projects the classifiers
were trained with. Furthermore, they do not consider how well the techniques apply to future
test cases as projects evolve. Both of these factors are important to consider when evaluating the
generalisability of any such technique. Addressing these shortcomings, in Chapter 6 I introduce
FlakeFriend. Building upon the successes of CANNIER, this automated technique classifies
existing test cases in a given project and produces a reusable classifier for the future test cases
in that project. Furthermore, the empirical evaluation of FlakeFriend uses hold-out sets of
test cases from projects that were not involved in training, offering a reliable assessment of the
technique’s inter-project generalisability.

On a more general note, Harman and O’Hearn [68] proposed the aphorism “Assume all
Tests Are Flaky” (ATAF), thereby taking the view that all tests have the potential to be non-
deterministic and that testing methodologies ought to accommodate for this, rather than to assume
that tests are generally deterministic and that flaky tests are an exception. Overall, the general
thesis of ATAF is to move away from efforts to control and mitigate flakiness, in the hope of mak-
ing testing fully deterministic, and to move towards a situation where flaky tests are considered
an unavoidable aspect of testing that are fully considered and accommodated. To that end, the
authors proposed five open research questions regarding the assessment, prediction, amelioration,
reduction and general accommodation of test flakiness.

Assessment

The first research question considers the possibility of an approximate measurement of the flakiness
of a test case that goes beyond simply classifying it as flaky or not. So far, studies have measured
flakiness using entropy [49, 84] and recently one has defined its own flakiness-ratio (FR) calculated
for a test case τ as FR(τ) = 2 ∗min(τP , τF ) ÷ (τP + τF ), where τP and τF are the numbers of
passing and failing runs of τ respectively [157]. Another study considered the failure rates of flaky
tests when executed under different settings, drawing various conclusions about the probability of
a flaky test manifesting itself and how many repeated test runs are likely to be necessary. Their
finding that certain test run orders can lead to different failure rates for the same test, as opposed
to just always failing or always passing, suggests that the binary classification of a flaky test as
order-dependent or not may be insufficient, providing further motivation for a more continuous
assessment of flakiness [92].

Prediction

Their second research question concerns the development of predictive models for flaky tests,
such that they may be identified without having to execute them repeatedly. An attempt at
fitting a Bayesian Network model to predict flakiness based on a diversity of test features, such
as code complexity and historical failure rates, demonstrated mixed results [82]. Machalica et al.
[106] trained a model to predict if tests would fail, given a set of code changes, that was used
as part of a test selection system. It is conceivable that a similar approach might be useful for
predicting if a test might fail flakily. An emerging thread of research has been concerned with
the application of machine learning models and natural language processing techniques for the
prediction of test flakiness based on purely static features of the body of the test case [128, 159].
Recently, Alshammari et al. [8] combined these static features with dynamic features of a test case,
such as its line coverage, demonstrating that the combination of both feature sets considerably
improves the model’s predictive effectiveness. However, their results demonstrated that there is
still some way to go before the development a predictive model that would be reliable enough for
practical use by developers.

Amelioration

Their third question asks if one can find ways to transform test goals so that they yield stronger
signals to developers when tests are flaky. For example, in the context of regression testing, it
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may be desirable to apply test acceleration techniques such as selection or prioritisation to reduce
the amount of time taken to receive useful feedback from the runs of a test suite. In the past,
objectives have included the selection/prioritisation of tests based on the coverage of modified
program elements, runtime and energy consumption [168]. Under ATAF, a new objective could
be the degree of test determinism, to achieve greater certainty sooner in the test run. To that end,
a reliable measure of test flakiness is required, as per their previous research question regarding
the assessment of flaky tests.

Reduction

Their fourth question regards how to reduce the flakiness of a test, or more abstractly, to reinterpret
the signal of a flaky test in some way that makes flakiness less of an issue. The authors then go on
to describe the possibility of an abstract interpretation approach [28] for testing and verification
such that an increased degree of abstraction reduces the degree of variability and non-determinism
in test outcomes. A possible realisation of this, to potentially reduce the flakiness stemming from
the algorithmic non-determinism commonly seen in machine learning projects [35, 116], could
reinterpret the outputs of probabilistic functions as parameterised probability distributions instead
of concrete values. An assertion which then checks if an output is within an acceptable range, a
type of oracle approximation [116] linked to flakiness when too restrictive [37], would instead pass
if the probability of observing a value in that range within the abstractly interpreted distribution
was above some acceptable threshold. Such a reinterpretation could eliminate the flakiness when
corner cases are outside of the assumed range of acceptable outputs.

Reformulation

Their fifth and final question asks how the various techniques impacted by flaky tests, such as those
examined in Section 2.4, could be reformulated to cater for non-deterministic tests. To that end,
one recent study proposed reformulations of various fault localisation metrics that are “backward
compatible” with their original forms but are able to accommodate flaky test outcomes [157].
Beyond flaky outcomes, the coverage of tests has also been observed to be inconsistent [48, 70, 139].
This potentially motivates the need for the reformulation or generalisation of techniques which
depend on coverage information, such as fault localisation again, and also mutation testing [139]
and search-based automatic test generation [79]. In the latter case, the coverage of automatically
generated tests is often used as part of a fitness function that guides a search algorithm such as hill
climbing, simulated annealing or an evolutionary search [109]. Given that the coverage of tests,
automatically generated or otherwise, may not always be as deterministic as perhaps initially
thought, more abstract measures of test suite quality may be preferable.

2.8 April 2023 Update

In April 2023, I repeated the paper collection methodology described in Section 2.2. I found a
further 32 relevant studies, according to the inclusion and exclusion criteria in Table 2.1, published
between April 2021 (when I performed the initial paper collection) and April 2023. In this section,
I update my answers to the four research questions posed in Section 2.2 with the new findings
presented in these papers. This section did not appear in the published article associated with
this chapter, because it was published in October 2021 [120].

2.8.1 RQ1: What are the causes and associated factors of flaky tests?

Developer Studies

Ahmad et al. [5] performed an empirical analysis of developers’ perceptions of test flakiness.
They set out to investigate the root causes of flakiness in closed-source industrial projects and
how the developers address them. They also aimed to discover what factors developers perceive
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as affecting flakiness and if these factors can determine if a test case is flaky. To do so, they
conducted surveys, online workshops, site visits, and physical workshops at five companies. The
survey results indicated asynchronous waiting, and configuration and dependency issues, were the
most common causes. The authors concluded that many of the factors identified by developers as
being associated with a non-flaky test were simply properties of good test cases, such as a small
and simple test case with a single responsibility.

Habchi et al. [63] conducted a qualitative study involving interviews with 14 practitioners with
a diverse range of roles, experience, and domains. One of their research questions concerned where
flakiness typically originated from in a software system. Their results indicated that, in addition
to test cases themselves, flakiness stems from poor orchestration between system components, the
testing infrastructure, and external factors such as the operating system and firmware. This led
the authors to recommend that future studies should consider these sources of flakiness rather
than focusing solely on factors related to the test case code and the code under test.

Gruber et al. [56] also conducted a study involving developers, but their’s involved a question-
naire rather than interviews. They received 335 responses from two populations of participants.
The first were recruited from a particular automotive company, from which they received 102.
The second were recruited globally using Prolific, and online service for recruiting subjects for sci-
entific studies, from which they received 301. One of their research aims was to establish the most
common causes of flaky tests. They identified concurrency and test order dependency as the most
common, broadly following the results of previous work [105]. They also identified uninitialised
variables, compiler differences, and unexpected API behaviour as uncommon causes.

Open-Source Projects

Hashemi et al. [69] conducted an empirical study of flaky tests in JavaScript projects. Following a
similar methodology to Luo et al. [105], they categorised the causes of the flakiness in 481 commits
that repaired flaky tests within the top-40 JavaScript projects on GitHub in terms of number of
stars. The top-three categories were concurrency, asynchronous waiting, and operating system,
accounting for 74, 70, and 66 commits respectively. In the context of this study, concurrency
and asynchronous waiting had the same meaning as used in previous empirical studies [59, 105,
152]. The authors described the operating system category as test cases that fail on a specific
operating system (or specific version of an operating) due to an implicit dependency on features
or environmental factors specific to a particular to that operating system.

Costa et al. [27] analysed 741 open issues related to flakiness in GitHub projects written in C,
Go, Java, JavaScript, and Python. Overall, they found that the top-three most common causes
were asynchronous waiting, accounting for 103 issues, concurrency, representing 97, and platform
dependency, responsible for 87. However, the results varied slightly by programming language. For
C, the top-three were resource leak, platform dependency, and concurrency. Because C requires
manual memory management, it is not surprising that resource leak was the most common. For
the remaining languages, the most common causes were broadly similar, mostly asynchronous
waiting, concurrency, platform dependency, and network with varying distributions.

Conclusion for RQ1: What are the causes and associated factors of flaky tests?
Developer studies indicate that the most common causes of flaky tests broadly align with previ-
ous empirical studies [37, 105], with root cause categories such as asynchronous waiting and test
order dependency being common. They also identified causes that were previously unreported
in the literature or only rarely mentioned, including configuration issues, poor orchestration
between system components, and compiler differences [5, 56, 63]. An empirical study on test
flakiness in C, Go, Java, JavaScript, and Python projects found that the most common causes
of flaky tests are broadly similar between languages with the exception of C [27].
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2.8.2 RQ2: What are the costs and consequences of flaky tests?

Developer Studies

As part of a qualitative study involving interviews with 14 developers, Habchi et al. [63] aimed
to understand practitioners’ perceptions of the impacts of flaky tests. The authors remarked how
the impacts of flakiness are typically reported through the lens of industrial reports and empirical
studies, rather than through direct discussions with practitioners. As well as wasting developers’
time and disrupting continuous integration (CI), as has been extensively reported by other studies
[33, 122], they found that flaky tests negatively impact testing practices, prompting developers to
write fewer test cases to avoid problems in the worst-case scenario. They also found that flaky
tests can undermine system reliability and disguise bugs by confusing developers, leading them to
question the test suites ability to detect bugs and even ignore failures.

Gruber et al. [56] conducted a related study involving a questionnaire with 335 developer
respondents. One of their research questions concerned the negative effects of flaky tests. Similarly
to Habchi et al. [63] they found eroding trust in test suites, wasting developers’ time, and hindering
CI were the foremost costs of flakiness.

No-Fault-Found Test Failures

Rehman et al. [135] performed a case study involving a radio base station system at Ericsson.
They were interested in test failures that did not lead a developer to identify a fault, also known
as “No-Fault-Found” (NFF) test failures. The authors remarked that flaky tests are one of the
most common causes, among others. Their dataset consisted of 9.9 million test runs of 10,383
test cases over four releases of the system. Each release is tested for 180 days before deployment,
with the test runs in the second half (day 90 to day 180) defined as the “stable period” where
new development is restricted. Their first research question aimed to quantify how often each
test case failed without identifying a fault. They defined the “NFFRate” of a test case during a
particular release as the ratio of the number of test runs that failed without identifying a fault
to the total number of test runs. They defined the “StableNFFRate” of a test case during a
release as the NFFRate of that test case during the stable period of the previous release. They
found that between 24% to 36% of test cases never had a NFF failure, 56% to 76% to have had
fewer than 5 NFF failures in 100 runs and 18% to 22% to have had more than 10. Their second
research question concerned the number of test cases that had been executed a sufficient number
of times for statistical confidence in their outcome. Using the standard sample size formula and
the StableNFFRate of a test case, the authors estimated that between 78% and 83% of test cases
had been executed enough times for 95% confidence in their results at the end of each release cycle.
Their subsequent investigations concerned the number of test cases to exhibit instability during a
release, the number of test failures that are likely to be NFF failures that can be deprioritised for
investigation, and how to prioritise test reruns to find test instabilities sooner.

Simulating Flakiness

Cordy et al. [26] introduced FlakiMe, a tool for simulating flaky failures to assess their impact on
automated software engineering techniques. The tool instruments the bytecode of test cases and
can trigger flaky failures at any execution point in the test case, termed flake points. To simulate
a flaky failure, FlakiMe raises an unchecked exception that would cause the test case to fail. The
exception is guarded by a probabilistic condition that can be tuned to control the volume of flaky
failures. Using Defects4J, the authors used their tool to assess the impact of flakiness on mutation
testing and automated program repair. For mutation testing, they found that a small degree
of flakiness can affect the mutation score, but as the degree of flakiness increase, the mutation
score follows an asymptotic growth where increasing flakiness has a diminishing effect. This led
them to conclude that flakiness is a potential issue for mutation testing but with limited impact.
They found the impact of flakiness on automated program repair to be more significant, with a
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considerable drop in the number of patches such techniques were able to produce after introducing
artificial flakiness.

Conclusion for RQ2: What are the costs and consequences of flaky tests? Devel-
oper studies indicate that flaky tests have many negative consequences. They waste developers’
time, erode developers’ trust in test suites, disrupt CI, and negativly impact testing practices
[56, 63]. An empirical study on test failures that do not lead developers to discover a fault, of
which flaky tests are one of the most common causes, estimated that between 78% and 83%
of the test cases of a proprietary project at Ericsson had been executed enough times for 95%
confidence in their results [135]. Cordy et al. [26] introduced FlakiMe, a tool that simulates
flaky failures, and demonstrated the impacts of flaky tests on mutation testing and automated
program repair. They found the negative impacts to be considerably worse for automated
program repair than for mutation testing.

2.8.3 RQ3: What insights and techniques can be applied to detect flaky
tests?

Continuous Integration and Version Control

Lampel et al. [94] evaluated the suitability of machine learning classifiers for detecting “orange”
builds at Mozilla. Orange builds are Mozilla’s term for CI builds that fail due to flaky tests. They
explained that typically after a Mozilla developer pushes changes and triggers a CI build that fails,
a “sheriff” will manually classify the failure as due to a genuine bug or due to flakiness (an orange
build). Therefore, their approach of using classifiers automates the job of the sheriff. As subjects,
they mined telemetry data from nearly two-million historical builds from 20 projects. This data
contained the sheriffs’ verdicts about whether each build was flaky, providing the ground-truth
labels. They encoded each build using a mixture of categorical and numeric features, including
the total run time, average CPU load, and platform information. They split their dataset at a
particular time point such that they had a test set consisting of 85% and an testing set of 15%.
As the classifiers, they evaluated various tree-based ensemble models such as random forest [18].
They used their training set for both classifier training and hyper-parameter optimisation. When
evaluated on their testing set, they observed a mean F1 score of approximately 0.75.

Ahmad et al. [2] evaluated a machine learning-based technique to determine if a specific test
failure was flaky or not. Their approach, named MDFlaker, requires a project to have version
control (e.g., Git) and CI (e.g., TravisCI) setup. MDFlaker encodes test cases for classification by
a K-Nearest Neighbors (KNN) model using features based on trace-back coverage, flaky frequency,
test smells, and test case size. The core idea behind trace-back coverage is to locate the changes
in the code under test and identify if the failed test case covered those changes. The authors
defined flaky frequency as the ratio of the number of previous transitions between passing and
failing in the test case’s history to the total number of failures. The test smells the authors were
interested in were associated with several well-established causes of flakiness, such as fixed-time
sleeps in the test case code. The authors measured test case size in terms of the number of
non-commented physical lines of test case code. The authors evaluated MDFlaker using three
open-source Python projects. They selected 212 versions of these projects that had at least one
failing test, leading to a set of 2,166 test failures. To establish a ground truth, they executed each
one 30 times to determine which were flaky failures and identified 1,372 as flaky. They split their
dataset into 75% for training and 25% for testing and repeated the evaluation of the KNN classifier
for every combination of the four categories of features. With all features, the KNN achieved an
F1 score of 0.87.

Gruber et al. [58] performed an empirical study into detecting flaky tests using static features
derived from version control and CI histories. As their evaluation subject, they used a large
automotive software project written primarily in C and C++ and consisting of nine repositories
organised as Git submodules. The project is configured with a CI system that automatically
reruns test cases on weekends, when very little development takes place. This enables the system
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to identify and label flaky tests. From the CI history, the authors randomly sampled the data for
100 flaky and 100 non-flaky “test units”. In this context, a test unit refers to a specific test case
at a specific time. For each test unit, they collected the test outcomes and durations from the
last three months. This information, combined with version control data from Git, enabled the
authors to compute features about each test unit. They computed the flip rate of each test unit,
a ratio based on the number of times the outcome has changed over a specific window of runs.
The flip rate can be configured with a decay function to apply smaller weights to older runs and
larger weights to newer runs. They also calculated the entropy based on the probability of the
test unit failing and further metrics regarding the duration of its execution. From the Git history,
they calculated the number of changes to files of each file extension in the project in the past
3, 14, and 54 days. There were 38 different file extensions in the project, which combined with
the three window sizes, led to 114 features. They also one-hot encoded the submodule each test
unit belonged to, contributing nine boolean features. Furthermore, they measured the number
of modified files in the current pull request and the number of distinct contributors to produce
two additional numeric features. Following cross-validation and feature selection, their empirical
evaluation demonstrated an F1 score of 95.5% using a gradient boosting classifier and a feature
set consisting of the flip rate (with a reciprocal squared decay function), the number of changes to
files with the .cpp extension in the past 54 days, and the number of modified files in the current
pull request.

Concurrency

Dong et al. [32] presented FlakeScanner, a technique for detecting concurrency-related flaky
tests in Android apps. All Android apps have a main or “UI” thread that is the only thread that
had access to GUI elements. When a user performs an action such as tapping on an element, an
“event” is enqueued on the UI thread and eventually dequeued by its event loop for processing.
If this processing is going to take a long time, the UI thread will delegate it to a background
thread. Once the background thread has finished, it will notify the UI thread by sending it an
event. When testing Android apps, a testing thread sends events to the UI thread to simulate user
input. The significant asynchronicity that can occur between the UI thread, the testing thread,
and an arbitrary number of background threads, can lead to concurrency-related flaky tests. The
key innovation behind FlakeScanner is to repeatedly execute test cases while reordering the
events in the UI thread. The authors use dynamic analysis to ensure FlakeScanner does not
schedule infeasible orders (scheduling an event before another event on which it is dependent).
They evaluated their technique on 33 subject apps. They found that FlakeScanner was able
to detect 45 out of 52 flaky tests known by the maintainers in 10 of the 33 apps. On average, it
detected a flaky tests within three test runs. They also found that it outperformed Shaker (see
Section 2.5.1) and plain rerunning 100 times both in terms of the number of detected flaky tests
and the average execution time. Finally, FlakeScanner detected 245 previously unknown flaky
tests in 19 apps. The authors reported 20 of these and 13 were confirmed and addressed by the
developers.

Vocabulary-Based Detection

Camara et al. [20] performed a replication study of Pinto et al. [128]. As explained in detail
in Section 2.5.1, Pinto et al. performed an empirical evaluation on the performance of machine
learning classifiers for detecting flaky tests based on identifiers in the test case code. This is often
referred to as a “vocabulary-based approach” [6, 8]. As well as calculating various performance
metrics for the classifiers, Pinto et al. also evaluated the information gain offered by individual
tokens. In their replication, Camara et al. set out to investigate whether they could obtain similar
results using different types of machine learning classifiers or different implementations of the same
types of classifiers. To that end, they replicated the methodology of Pinto et al. with three addi-
tional classifiers and using scikit-learn instead of Weka. Their results were very similar to Pinto
et al., with the change of implementation having only a small impact on the performance metrics
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for each classifier and the three additional classifiers having similar performance to the original
ones. Furthermore, they found that the tokens with the most information gain were associated
with executing and coordinating tasks and persistence, similar to the original study. Camara et al.
also reproduced the methodology of Pinto et al. but using different datasets to evaluate the per-
formance of the classifiers. In the original study, Pinto et al. calculated performance metrics over
the entire subject set of test cases with no consideration for project boundaries. Camara et al.
found that the performance of all the classifiers was very poor when applied to projects outside of
the training data, demonstrating a low degree of inter-project generalisability.

Test Smells

Camara et al. [19] presented an empirical study on the use of test smells for the prediction of flaky
tests. Using a dataset of 24 projects containing 49,919 test cases, they evaluated the performance
of eight types of machine learning classifiers, including random forest, logistic regression, and
KNN. They encoded each test case with feature vectors indicating the presence of 19 possible test
smells, augmented with two additional numerical features: the number of lines of code in the test
case, and the total number of smells present. Included in the 19 smells were assertion roulette,
when a test case has multiple assertions, mystery guest, when a test case instantiates file and
database classes, and sleepy test, when a test case invokes the Thread.sleep method. Following
the classic evaluation methodology of splitting the dataset into distinct training and testing sets,
they observed an F1 score of 0.83 for the random forest and decision tree classifiers. Following the
same inter-project methodology applied in their previous work [20], they observed considerably
poorer performance, establishing once again that the classifiers did not generalise well to projects
outside of their training data. Finally, they went on to compare the test small-based approach
to the vocabulary-based approach used by Pinto et al. [128]. They found the vocabulary-based
approach performed better following the classic evaluation methodology but significantly poorer
following the inter-project methodology. This echoes their previous findings that this approach
has very poor inter-project generalisability [20].

Order-Dependent Flaky Tests

Li et al. [99] introduced IncIDFlakies, a technique that builds upon iDFlakies [90], an ap-
proach for automatically detecting flaky tests in Java projects and classifying them as non-order-
dependent (NOD) or order-dependent (OD) (see Section 2.5.2). The classification stage of iD-
Flakies involves repeatedly executing a whole test suite in random orders to identify OD flaky
tests. The main contribution of IncIDFlakies is to reduce the execution time of iDFlakies
when executed repeatedly over a project’s development. Given the state of a project at one com-
mit and the state at a later commit, IncIDFlakies seeks to detect any new OD flaky tests by
only considering test cases affects by the changes between the two commits. To do so, it leverages
two existing Regression Test Selection (RTS) techniques. For detecting OD flaky tests, it would
not be enough to only rerun the test cases directly impacted by the changes, because to detect
any OD flaky test requires the prior execution of other test cases to pollute the depended-upon
shared state [141]. In addition to returning the list of test cases affected by recent changes, the
leveraged RTS techniques also identify the production classes each test case depends on. From
this list of classes, IncIDFlakies identifies all the additional test cases that need to be rerun
alongside the test cases directly affected by the changes. These additional test cases represent the
potential polluters. An empirical evaluation demonstrated that IncIDFlakies requires between
65% to 70% of the time taken by iDFlakies, depending on the choice of RTS technique.

Wei et al. [162] performed an empirical study on Non-Idempotent-Outcome (NIO) flaky tests.
They defined NIO flaky tests as test cases that give a different outcome after repeated, consecutive
execution within the same testing session. They also described them as being simultaneously
latent-victims and latent-polluters. They defined a latent-victim as a test case that contains brittle
assertions (see Section 2.3.2), such that it could be, or currently is, a victim test case (order-
dependent, see Section 2.6.2). They defined a latent-polluter as a test case that modifies shared
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state, such that it could, or currently does, cause a victim flaky test to fail. Therefore, the
authors motivated their work by arguing that detecting NIO flaky tests is useful because they
could preempt future test order dependencies. Their approach for detecting NIO flaky tests
involved executing every test method twice with three possible levels of process-based isolation.
They implemented their approach for both Java and Python programs and applied it to 127 Java
modules and 1,006 Python projects used as subjects in previous studies on flakiness [59, 93, 163].
They detected a total of 223 NIO flaky tests in 34 of the Java modules and 138 NIO flaky tests in
90 of the Python modules. Given their dataset came from previous studies, many test cases were
already labelled as victims or polluters. This enabled the authors to calculate the overlap with
the detected NIO flaky tests. Of the 223 Java NIO flaky tests, 13 were victims but not polluters,
7 were polluters but not victims, and 8 were both victims and polluters. Of the 138 Python NIO
flaky tests, 36 were victims (the Python dataset was not previously labelled for polluters).

Pre-Trained Language Models

Fatima et al. [41] presented Flakify, a machine-learning based technique for detecting flaky tests
based purely on their source code. To encode test cases, Flakify uses CodeBERT, a pre-trained
source code language model provided by Microsoft. Given up to 512 tokens, representing the source
code of a test case, CodeBERT produces an integer-valued vector with 768 elements. For large test
cases with more than 512 tokens, Flakify only tokenises the parts of the test case that are likely
to be relevant to flakiness. To do so, Flakify parses the abstract syntax tree of the test case code
to extract statements that match predefined patterns corresponding to various test smells. Given
the vector representations of test cases, the actual classification is performed by a feed-forward
neural network. To evaluate the technique, the authors performed an empirical evaluation using
the same dataset as used by Alshammari et al. [8] in their evaluation of FlakeFlagger (see
Section 2.5.1). This was to enable a direct comparison with FlakeFlagger. They performed
both standard cross-validation and inter-project validation to evaluate the detection performance
of Flakify. In the latter case, the authors trained Flakify using the test cases of every subject
project excluding one and then evaluated it on that excluded project. Using cross-validation,
Flakify achieved an F1 score of 0.79 and FlakeFlagger achieved 0.65 (see Table 2.19). Using
inter-project validation, Flakify achieved a mean F1 score of 0.73 and FlakeFlagger achieved
a mean of 0.07. These results led the authors to conclude that Flakify was better suited at
detecting flaky tests than FlakeFlagger, not only because of the greater detection performance,
but also because Flakify does not require the execution of any test cases to produce features.

Qin et al. [133] proposed PEELER, another technique for detecting flaky tests without ex-
ecuting them. Unlike other static approaches, PEELER constructs a Test Dependency Graph
(TDG) that captures the data dependency relationships between statements of the test case code
and the code under test. From the TDG, PEELER enumerates every contextual path, that is
a path from a start node to a node representing an assertion statement. From these contextual
paths, PEELER leverages code2vec, a pre-trained language model for source code comparable to
CodeBERT, to produce a vector encoding of the test case. To evaluate PEELER, the authors
performed cross-validation using the same subject set as used by Alshammari et al. [8] to evaluate
FlakeFlagger. Their results showed that PEELER achieved an F1 score of 0.85 and Flake-
Flagger achieved 0.63 (see Table 2.19). They went on to evaluate their approach on three further
projects that were not part of the subject set. To do so, they trained PEELER on the entire
subject set and applied it to the three project in turn. In total, PEELER indicated that 65 test
cases out of 1,835 were flaky. Of these 65, the authors reported the 21 test cases with a predicted
probability of flakiness greater than 0.7 to the respective maintainers of the three projects. At the
time of publication, 12 had been confirmed, 9 were still pending, and none had been refuted.

Conclusion for RQ3: What insights and techniques can be applied to detect flaky
tests? Three studies introduced automated techniques for detecting flaky tests based on
data from a project’s CI and version control system. They are all based on machine learning
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Table 2.19: Precision (Pr.), recall (Re.), and F1 score (F1) of three machine learning-based flaky test
detection techniques from three studies. These metrics are calculated from cross-validation on the same
subject set of 24 open-source Java projects. Dashes indicate that a study did not evaluate a technique.

Alshammari et al. [8] Fatima et al. [41] Qin et al. [133]

Technique Pr. Re. F1 Pr. Re. F1 Pr. Re. F1

FlakeFlagger [8] 0.60 0.74 0.66 0.60 0.72 0.65 0.58 0.69 0.63
Flakify [41] - - - 0.70 0.90 0.79 - - -
PEELER [133] - - - - - - 0.77 0.85 0.81

classifiers such as KNN and tree-based ensemble models. Lampel et al. [94] introduced a
technique that detects if a build failure is due to flaky tests or not. Ahmad et al. [2] introduced
MDFlaker to determine if a specific test failure is flaky. Finally, Gruber et al. [58] evaluated
a range of classifiers to detect if a test case was flaky based on its history and recent changes
to the project. Dong et al. [32] introduced FlakeScanner for detecting concurrency-based
flaky tests in Android apps. An empirical evaluation involving 33 apps found that it was able to
detect 45 out of 52 known flaky tests. Camara et al. [20] performed a replication of Pinto et al.
[128], that previously examined the performance of machine learning classifiers for detecting
flaky tests based on identifiers in the test case code. By evaluating the approach on test cases
from projects outside the classifier’s training data, the authors demonstrated that it has poor
inter-project generalisability. Camara et al. [19] also performed an empirical study on the use
of test smells for the prediction of flaky tests with machine learning classifiers. Once again,
they found that while the technique showed promise following a cross-validation evaluation
methodology, it demonstrated poor generalisability when evaluated on projects outside of the
training data. Two studies introduced techniques related to the detection of OD flaky tests. Li
et al. [99] introduced IncIDFlakies, a technique that optimises iDFlakies [90] by leveraging
RTS techniques to limit the number of test cases that need to be executed in random orders
based on recent changes to the project. Following an empirical evaluation, they found that
IndIDFlakies requires between 65% to 70% of the time taken by iDFlakies. Wei et al. [162]
presented a study on NIO flaky tests, that have the potential to become OD flaky tests as the
test suite evolves. Finally, two studies presented machine learning-based techniques based on
pre-trained language models [41, 133]. The results of their empirical evaluations, as compared
to previous work [8], are summarised in Table 2.19.

2.8.4 RQ4: What insights and techniques can be applied to mitigate or
repair flaky tests?

Adjusting Assertion Bounds

Dutta et al. [36] presented FLEX, a technique for automatically fixing flaky tests due to ran-
domness in machine learning algorithms. The technique repairs test cases that contain assertions
comparing actual and expected values representing the quality of the outcomes of machine learn-
ing algorithms. For example, such an assertion could assert that the accuracy of a classification
algorithm is greater than some upper-bound (e.g., 0.95). While this randomness could trivially be
controlled by setting the seed of the random number generators used by such algorithms, develop-
ers may be hesitant to do so because this may limit the number of possible scenarios covered by
the test case [34]. FLEX is based on Extreme Value Theory (EVT), a branch of statistics used
to to model extreme events. The authors use the Peak Over Threshold (POT) method from EVT
to estimate the tail distribution of the quality value. With this method, the tail distribution con-
verges in the limit to an instance of the Generalised Pareto Distribution (GPD), parameterised by
a shape parameter that determines if the value has a left or right tail that exponentially bounded.
If it is, the tail quickly converges to the GPD and can be used to estimate an appropriate bound
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in the assertion. Otherwise, FLEX resorts to other fixing strategies, including simply annotating
the test case as flaky as a last resort. Following an empirical evaluation involving 35 existing flaky
tests in 21 projects, the authors found that FLEX was able to address 28, though in 9 instances
the technique resorted to just annotating the test case.

Predicting Root Causes

Ahmad et al. [3] introduced a tool named FlakyPy for detecting and identifying the root cause
of flaky tests. The user of FlakyPy specifies a test case and a number of reruns to perform. The
tool then executes the test case that many times, and in each run, traces the test execution. This
takes the form of a list of entries indicating one of three events: the execution of a line, a function
call, or a return from a function. The entry for a function call also records the values of the
local variables. After the test executions, FlakyPy identifies divergences and anomalies in the
execution traces. It inspects only the failing runs for divergences, which are points where the trace
diverges. It defines an anomaly as a local variable which takes a value during a failing run that
is not observed in any passing runs with a matching execution trace. When a failing run contains
a divergence, only the anomalies in function calls that returned before the point of divergence
are considered. The tool classifies anomalies as either inconsistent-in-failing, where the anomalies
have different values across the failing runs, or consistent-in-failing, where they have matching
values across all failing runs. FlakyPy reports consistent-in-failing anomalies as a potential root
cause of the flakiness.

Akli et al. [6] presented FlakyCat, a technique for predicting the root cause category of a flaky
test. The technique is based on Few-Shot Learning (FSL), an approach in machine learning for
training classifiers with imbalanced datasets where particular classes may have very few training
examples. FSL is particularly suited to this application, since some flaky test categories are
considerably rarer than others (see Table 2.5) and so it is difficult to acquire examples. Given
a test case, FlakyCat tokenises the source code and leverages CodeBERT to produce a vector
representation. This forms the input to a Siamese network, a type of neural network designed for
FSL. To evaluate their technique, the authors combined existing flaky test datasets to produce
a new dataset of 343 flaky tests. Each flaky test is associated with a label, indicating its root
cause category out of ten possibilities. In this dataset, the most common four categories were
asynchronous waiting, concurrency, time, and unordered collections. Following 4-fold stratified
cross-validation, the weighted F1 scores with respect to predicting these four categories were 0.74,
0.46, 0.66, and 0.85 respectively.

Mitigating External Assumptions

Dietrich et al. [30] presented their approach for handling test cases with network dependencies.
Initially, they described the assumption feature of JUnit. Similar to an assertion, it allows a
developer to test a condition. Unlike an assertion, if the condition is false then the state of the
test case becomes skip, indicating that is has been skipped. Unlike fail, this does not result
in the entire test suite run failing. They also explained how the error test case state is distinct
from the fail state. During test case execution, if an exception occurs that is not handled by the
test case, the test case enters the error state. This can be thought of as the implicit assertion
that no test case will throw exceptions (other than AssertionError). The authors remarked
how, in the case of network-dependent test cases, it is difficult for developers to reliably include
assumptions to check that the network is available. This is because, while it may be available
when checking the assumption, it may become unavailable during the actual execution of the test
case. This led them to introduce the notion of external assumptions, that are assumptions that
cannot be checked using a unit testing API such as JUnit. They also introduce the concept of
sanitisers, testing framework extensions that instrument test case execution and check for external
assumptions on-the-fly. The authors implemented a sanitiser to handle the assumption that the
network is always available. The sanitiser instruments the constructors of three specific exception
classes associated with network availability issues. When an instance of one of these classes is
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created during test case execution, a flag is set to communicate to the test case that a network
exception has occurred. If the state of the test case ends up as fail, the sanitiser changes it
to skip if the flag was set. If the state was error, it changes it to skip if the network-related
exception is visible in the stack trace.

Developer Studies

Habchi et al. [63] interviewed 14 practitioners about their views on flaky tests. They set out to un-
derstand how developers address flaky tests and how mitigation measures could be improved with
automated tools. They found that practitioners avoid flaky tests by implementing stable testing
infrastructure, involving mock servers and containerisation, by defining good testing guidelines,
such as “the testing pyramid” which discourages excessive integration and end-to-end test cases,
and by limiting external dependencies. In terms of how flakiness mitigation could be improved
with automated tools, the developers expressed the need for reliable root cause identification and
reproduction. They also suggested that managing flaky tests would be either with effective tools
for monitoring test case execution and analysing generated logs.

Similarly, Gruber et al. [56] aimed to understand the most common mitigation strategies ap-
plied by developers and their wishes for automated tools. The found that rerunning and rewriting
test cases were by far the most common approaches, and automated techniques were rarely ap-
plied by developers. They summarised the main wishes of developers regarding automated tools
as: dashboards to visualise test outcomes over time, IDE plugins to detect potentially flaky tests
statically, and automated debugging and root cause analysis.

Open-Source Projects

Hashemi et al. [69] conducted an empirical study of flaky tests in JavaScript projects. Like Luo
et al. [105], they categorised the repair strategies applied by developers to repair flakiness in 481
commits within the top-40 JavaScript projects on GitHub in terms of number of stars. They found
that in 82% of cases the developers attempted to repair the flakiness. In these cases, the results
were broadly similar to that of Luo et al. and Eck et al. [37] (see Table 2.12), with adding explicit
waits for events, introducing/extending delays, and reordering code as common changes applied
to flaky tests of the concurrency and asynchronous wait categories. Of the remaining commits, 7%
aimed to reduce the flakiness of test cases without completely removing it, 7% skipped or disabled
the test case, 2% quarantined the test case for a later fix and 2% deleted the test case.

Reproducing Concurrency Flakiness

Leesatapornwongsa et al. [96] presented FlakeRepro, a technique for reproducing concurrency-
related flaky tests. Given a known flaky test and the error message from the failure, FlakeRe-
pro explores the space of potential thread interleavings. Because this space grows exponentially
with the number of threads, FlakeRepro follows heuristics to make the exploration tractable.
Following data- and control-flow analysis, FlakeRepro only considers interleavings of shared
memory accesses that can influence the target error message. The authors remarked that many
concurrency-related flaky tests follow the asynchronous waiting pattern [105], where the test case
fails because an object involved in an assertion reads a critical shared value in the absence of a
write. Therefore, in its exploration of possible interleavings, FlakeRepro prioritises patterns of
critical access instance pairs where the reading object is fixed to be the instance from the failed
assertion. Another heuristic it applies is to deprioritise exploration of repeated critical accesses
in a loop after the first case. The technique uses binary-level instrumentation to induce different
interleavings during exploration and to reproduce a specific interleaving that induces the given
error message once found. An empirical evaluation involving 22 projects internal to Microsoft
found that FlakeRepro could deterministically reproduce 26 out of 31 flaky tests after exploring
fewer than six interleavings on average.
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Order-Dependent Flaky Tests

Li et al. [98] presented ODRepair, a tool for generating cleaners for victims. The tool builds
upon iFixFlakies [141] (see Section 2.6.2) that automatically detects victims and their cleaners
(test cases that reset the shared state that enable the victim to pass). Given a victim’s cleaners,
iFixFlakies uses delta-debugging to identify the necessary statements in the cleaners to produce
a patch to repair the victim. One limitation of iFixFlakies is that if no cleaners exist in the
test suite, it cannot repair the victim. ODRepair addresses this gap by generating a cleaner
for a given victim so that iFixFlakies can repair it. Given a victim and its polluter (the test
case that corrupts the shared state causing the victim to fail), ODRepair identifies the polluted
state (in-memory heap state reachable from static fields) and searches through the code base for
methods that can reset the shared state. ODRepair then leverages the automatic test generation
tool Randoop to generate tests for each reset method. The goal of this is to produce cleaners
for the victim, rather than genuine test cases for finding bugs. Once ODRepair has generated
cleaners, it passes them iFixFlakies to verify that they are actually cleaners for the victim and
to then generate a patch. An empirical evaluation involving a subject set of 327 victim flaky tests
demonstrated that ODRepair can automatically identify the polluted state for 181. Of these,
ODRepair generated a patch for 141, which was 24 more than iFixFlakies alone.

Localizing Flakiness

Habchi et al. [64] performed an empirical study into the applicability of Spectrum-Based Fault
Localisation (SBFL) for identifying classes in the code under test that may be responsible for
flakiness. In SBFL, a suspiciousness score is calculated for every program element (e.g., line,
function, class, etc.) based on a formula concerning the number of passing and failing test cases
that cover it, and the number of passing and failing test cases that do not cover it. A high
suspiciousness score suggests that a particular program element may contain a bug. In this study,
the authors focused on classes and substituted non-flaky and flaky test cases for passing and failing
test cases in the formula. As their dataset, they collected 38 commits that repaired flaky tests,
involving changes to the code under test, in five open-source Java projects. For each commit,
the authors inspected the diff and message to manually label the flaky tests, the “flaky classes”
(modified classes in the code under test assumed to be responsible for the flakiness), and the root
cause category of the flakiness. They also executed the test suites to collect coverage information.
They initially evaluated four well-established SBFL formulae and an approach based on Genetic
Programming (GP) that evolves a formulae. They found that, using the four existing formula,
the flaky classes were in the top-10 in terms of suspiciousness score for between 47% and 53% of
the commits. The GP approach performed the best at 58% in the top-10. They repeated this
methodology but for just the commits in each of the root cause flakiness categories. They found
concurrency and asynchronous waiting to the most common categories, accounting for 16 and 10
commits respectively. With respect to concurrency, they found that with the GP approach the
flaky classes were in the top-10 for 50% of the commits. For asynchronous waiting, it was 80%.

Gruber et al. [57] performed a related study but focused on statements rather than classes
and applied a more nuanced approach for adapting SBFL for localizing flakiness. While still
substituting non-flaky and flaky test cases for passing and failing test cases in the SBFL formulae,
they considered a statement to have been covered by a flaky test only if it was covered in every run
of the test suite following repeated executions to measure coverage. In contrast, they considered a
statement to have been covered by a non-flaky test if it was covered in any run. They referred to
this approach as Spectrum-based Flaky Fault Localisation (SFFL). Their motivation for this was
based on their observation that 80% of all flaky tests and 12% of all non-flaky tests had at least
two different coverage patterns, and so to apply standard SBFL definitions as Habchi et al. [64]
did could lead to misleading suspiciousness scores. For their evaluation, Gruber et al. executed
the test suites from 1,006 Python projects 800 times and identified 874 NOD and 4,633 OD flaky
tests. Of these, they randomly sampled 89 NOD and 29 OD to manually label with fault locations
to form their ground-truth, against which they evaluated five existing SBFL formulae adapted
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for SFFL. As an evaluation metric, they used EXAM score. For a given statement, the EXAM
score is the ratio of its rank in the suspiciousness score ratings over the total number of lines in
the project. This is a value between zero and one where a lower score is better. Using the DStar
formula, the authors observed an average-case mean EXAM score of 0.035.

Conclusion for RQ4: What insights and techniques can be applied to mitigate
or repair flaky tests? Dutta et al. [36] presented FLEX, an automated technique
that adjusts assertion bounds in flaky tests caused by algorithmic randomness. An empirical
evaluation involving 35 existing flaky tests showed that FLEX was able to address 28 of them.
Two studies presented automated techniques to predict the root causes of flaky tests. Ahmad
et al. [3] presented FlakyPy that compares the execution traces between passing and failing
runs of flaky tests to identify divergences and pinpoint the possible code locations where the
flakiness originates from. Akli et al. [6] presented FlakyCat that leverages a Siamese neural
network to detect the root cause category of a flaky test. Leesatapornwongsa et al. [96] presented
FlakeRepro for reproducing the specific thread interleavings that cause concurrency-related
flaky tests to fail. An empirical evaluation involving 22 projects internal to Microsoft found that
FlakeRepro could deterministically reproduce 26 out of 31 flaky tests. Li et al. [98] presented
ODRepair, a technique that leverages an existing automated test generation tool to produce
cleaners for victim flaky tests when they do not currently exist in the test suite. This is to enable
iFixFlakies [141] to generate a patch for the victim. An empirical evaluation involving 327
victim flaky tests demonstrated that ODRepair was able to repair 24 more than iFixFlakies.
Two studies investigated the applicability of existing SBFL techniques for identifying elements
of the code under test that may be responsible for flaky tests. Habchi et al. [63] focused on
classes and adapted existing formulae by substituting non-flaky and flaky tests for passing and
failing test cases. Gruber et al. [57] focused on line abd proposed a more nuanced approach for
adapting SBFL to debugging flaky tests.

2.9 Conclusion

In this survey, I examined 76 sources related to test flakiness and answered four research questions
regarding their origins, consequences, detection, mitigation and repair. My first research question
considered the causes of flaky tests and the factors associated with their occurrence. I identified
a taxonomy of general causes and considered the specific factors associated with order-dependent
flaky tests in particular as well as how the causes of flakiness can differ across specific types of
projects. I then set out to examine what areas of testing are impacted by flaky tests, allowing
me to answer my second research question regarding their consequences and costs. I found that
they impose negative effects on the reliability and efficiency of testing in general, as well as being
a hindrance to a host of techniques in software engineering. My third research question concerned
the detection of flaky tests. I first examined approaches for detecting flaky tests in general, before
discussing a series of tools for the detection of order-dependent flaky tests in particular. My final
research question set out to investigate the ways in which the negative impacts of flaky tests can be
mitigated, or going a step further, repaired entirely. To that end, I presented a range of techniques
for alleviating some of the problems presented by flaky tests and described a technique for the
automatic repair of order-dependent tests. Overall, I provided researchers with a snapshot of the
current state of research in the area of flaky tests and identified topics for which further work
may be beneficial. I also gave those wishing to familiarise themselves with the field the necessary
reading for a succinct knowledge of the insights and achievements to date.

In pursuit of the first goal of this thesis, to further the understanding of flaky tests, this chapter
has examined the problem in great detail through the lens of published research. In spite of the
scientific rigour of the papers I reviewed, there is a danger that their findings and insights do
not fully reflect, or are not fully applicable to, the day-to-day realities of professional software
developers dealing with flaky tests. While previous studies have directly consulted developers
[37, 71], many more are based on the authors’ observations following automated experiments.
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Therefore, a survey of developers’ experiences of flaky tests, guided by the findings from the
literature, is required for a more well-rounded understanding of flaky tests. This is essential to
keep the focus of the research community on issues that are most likely to benefit industry.



Chapter 3

Surveying the Developer
Experience of Flaky Tests

The contents of this chapter is based on “O. Parry, G. M. Kapfhammer, M. Hilton, and P. McMinn.
Surveying the developer experience of flaky tests. In Proceedings of the International Conference
on Software Engineering: Software Engineering in Practice (ICSE-SEIP), pages 253–262, 2022”.

3.1 Introduction

Since flaky tests are primarily a developer problem, there is an underutilised opportunity to
acquire valuable insights from those who experience them first-hand. Where previous studies
do exist, they focus on specific organisations and developers’ self-reported experiences [37, 71],
two potential sources of bias [31]. In this study, I examine multiple sources to understand how
developers define and react to flaky tests and their experiences of the impacts and causes. I use the
findings from the literature discussed in Chapter 2, in combination with insights from greyerature,
to inform the design of a developer survey. I received 170 responses after deploying the survey on
social media with the help of my collaborators.

In addition to the survey, I searched StackOverflow and filtered the results to produce a dataset
of 38 threads about flaky tests. With the help of my collaborators, I performed thematic analysis
[29] on the questions and accepted answers to gain insights into the flaky tests that developers
require assistance to diagnose and repair. Through this unique perspective, I was able to identify
themes regarding additional causes and actions that were not revealed by the developer survey.

By examining flaky tests through the lens of developers, as I did through the lens of published
research in Chapter 2, I am able to further the understanding of flaky tests through multiple, oc-
casionally conflicting, perspectives. As such, some of the findings of this chapter support previous
literature while others were unanticipated. For example, I found that participants who experience
flaky tests more often may be more likely to ignore potentially genuine test failures, supporting the
position of experts such as Martin Fowler [180]. I also found that participants rated asynchronic-
ity and concurrency as only the fourth and fifth most common causes of flaky tests respectively,
despite studies reporting these to be the most common [37, 105, 136]. I make all data and artifacts
available in the replication package [194].

In summary, the main contributions of this study are as follows:

1. Developer Survey (Section 3.2.1): I designed a survey based on previous literature and
received 170 responses. Through numerical and thematic analysis, I identified alternative
definitions of flaky tests, the most significant impacts of flaky tests, the most frequent causes
of flaky tests, and the most common actions developers perform in response to flaky tests.

2. StackOverflow Threads (Section 3.2.2): I procured a dataset of 38 StackOverflow
threads and through thematic analysis I offer a unique insight into the causes of flaky tests
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experienced by developers and the strategies that they suggest to repair them, independent
of what they self-reported in the developer survey.

3. Findings and Recommendations (Section 3.4): I surfaced a range of findings that sup-
port previous literature and some that were more unforeseen. From these, I offer actionable
recommendations for both software developers and researchers.

3.2 Methodology

To understand how software developers define, experience, and approach flaky tests, I asked the
following research questions:

RQ1: Definition: How do developers define flaky tests?

RQ2: Impacts: What impacts do flaky tests have on developers?

RQ3: Causes: What causes the flaky tests experienced by developers?

RQ4: Actions: What actions do developers take against flaky tests?

To answer these, I conducted a multi-source study consisting of a developer survey, with
both closed- and open-ended questions, and an analysis of StackOverflow threads. I performed
numerical analysis on the closed-ended survey questions and thematic analysis [29] on the open-
ended questions and the StackOverflow threads. Before conducting the study, I received ethical
approval for the developer survey from the University of Sheffield (see Appendix A). I include the
participant information sheet in the replication package [194].

3.2.1 Developer Survey

I designed a survey of 11 questions for software developers. Some presented a list of prepared
statements and asked participants to respond to them in a closed-ended fashion. I reviewed
the findings from Chapter 2 and other greyerature to ensure the relevance of these statements.
With the help of my collaborators, I disseminated the survey on Twitter and LinkedIn, specifically
asking for developer participants. We also circulated the survey among Sheffield Digital, a regional
technology business forum [276]. The 11 survey questions are as follows:

SQ1: A flaky test is a test case that can both pass and fail without any changes to the code
under test. Do you agree with this definition? Participants could indicate that they agreed or
disagreed. This is a common definition, though it is not universal. Vahabzadeh et al. [155] only
considered test cases whose non-determinism was caused by timing or concurrency to be flaky
tests. On the other hand, Shi et al. [139] included test cases with inconsistent coverage in their
study on mitigating the effects of flaky tests on mutation testing.

SQ2: If you answered “No, I do not agree” to the previous question, please give your own
definition of a flaky test. This gave participants who disagreed with the proposed definition the
opportunity to offer their own. Together with SQ1, these questions address RQ1.

SQ3: How often do you observe flaky tests in the projects you’re currently working on? Par-
ticipants could answer Never, A few times a year, Monthly, Weekly, or Daily. I used this to gauge
the prevalence of flaky tests and as a demographic variable in the analysis.

SQ4: To what extent do you agree with the following statements: To address RQ2, this
question posed eight statements and asked participants to rate their agreement on a four-point
scale. With reference to previous literature reviewed in Chapter 2, the statements are as follows:

SQ4.1: Reliability: Flaky tests reduce the reliability of testing. Vahabzadeh et al. [155] cate-
gorised 443 bug reports regarding test cases. They found that 97% caused the test to fail without
indicating a bug, i.e., they were false alarms. They categorised 53% of these as either flaky
tests, resource mishandling, or caused by factors in the execution environment. According to the
proposed definition in SQ1, I also consider the latter two categories as flaky tests.

SQ4.2: Efficiency: Flaky tests reduce the efficiency of testing. A specific category of flaky tests,
known as order-dependent (OD) flaky tests [90, 141, 175], are influenced by previously executed
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test cases. Techniques to improve the efficiency of testing by reordering, reducing or splitting-
up the test suite are unsound when OD tests are present. For instance, in the test suites of 11
Java modules, Lam et al. [91] found that 23% of OD tests failed after they applied test case
prioritisation, 24% after test case selection, and 5% after parallelisation.

SQ4.3: Productivity: Flaky tests lead to a loss of productivity. John Micco [183] explained
that developer productivity relies on the capability of test cases to identify issues in a timely and
reliable manner. Flaky tests are unreliable and could harm the productivity of the developers who
experience them as well as those who rely on the productivity of those developers [190].

SQ4.4: Confidence: Flaky tests lead to a loss of confidence in testing. Given how flaky tests
may manifest as a false alarm [155], there is a danger that developers will lose confidence in testing
if they continuously experience flaky tests. This could lead to a culture of ignoring tests, which
may cause genuine bugs to go unnoticed [181].

SQ4.5: CI: Flaky tests hinder continuous integration (CI). Durieux et al. [33] analysed over
75 million build logs on Travis CI. They found that 47% of previously failing builds that were
manually restarted by a developer subsequently passed. Since no changes were involved, these
builds may have failed due to flaky tests.

SQ4.6: Ignore: Flaky tests make it more likely for you to ignore (potentially genuine) test
failures. Martin Fowler [180] explained how developers may be tempted to ignore flaky test
failures. He explained that if a test suite contains too many flaky tests, developers could lose the
discipline to ignore just the flaky failures. Rahman et al. [134] found that ignoring test failures,
flaky or not, was associated with a higher volume of crashes due to missed bugs.

SQ4.7: Reproduce: It is difficult to reproduce a flaky test failure. Lam et al. [92] described
how, upon encountering a failing test, a developer might rerun it in isolation from the rest of the
test suite in order to reproduce the failure and debug the code under test. They reran in isolation,
for 4,000 times each, the 107 flaky tests from 26 Java modules, only reproducing the failures of 57
and concluding that this may be ineffective at reproducing flaky test failures.

SQ4.8: Differentiate: It is difficult to differentiate between a test failure due to a genuine bug
and a test failure due to flakiness. Lamyaa Eloussi [185] remarked how flaky tests are a source
of wasted time, particularly during regression testing, where flaky test failures may appear linked
with a commit but can actually be unrelated.

SQ5: In the projects you’re currently working on, how often have you encountered flaky tests
caused by... I gave participants a list of causes and asked them to rate on a four-point scale how
often they had experienced them. The list of causes is as follows:

SQ5.1: Waiting: Not correctly waiting for the results of asynchronous calls to become available.
This has been considered in numerous studies and is widely agreed upon by researchers to be a
leading cause of flaky tests [37, 89, 105, 136]. For example, a flaky test that spawns a new process
to perform an operation but does not wait for the process to finish falls under this category.

SQ5.2: Concurrency: Synchronisation issues between multiple threads interacting in an unsafe
or unanticipated manner (e.g., data races, atomicity violations, and deadlocks). Like SQ5.1,
studies point to this category as being very common. Eck et al. [37] explained that flaky tests
caused by local thread synchronisation issues belong in this category, while synchronisation issues
with remote resources, such as web servers or external processes, would be SQ5.1.

SQ5.3: Setup/teardown: Tests not properly cleaning up after themselves or failing to set up
their necessary preconditions. Many studies identified OD flaky tests to be a very prevalent
category [37, 59, 90, 105]. Bell et al. [14] suggested that one cause may be the burden of writing
correct setup and teardown methods, executed by a test runner before and after the main body of
a test case. Shi et al. [141] differentiated between victims, an OD flaky test that fails if executed
after a polluter test case, and brittles, an OD flaky test that only passes if executed before a
state-setter. In the former, the victim does not perform proper setup and/or the polluter does not
perform proper teardown. The latter instance is similar but reversed.

SQ5.4: Resources: Improper management of resources (e.g., not closing a file or not deallocating
memory). The specific case of failing to release acquired resources (i.e., a resource leak) has
been identified at a generally lower prevalence than the preceding categories in previous research
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[37, 59, 89, 105]. Bearing some similarities to SQ5.3, the test case that improperly manages the
resource may not be the test case that is flaky, but rather a subsequently executed test.

SQ5.5: Network: Dependency on a network connection. Any test case that requires a network
connection will inevitably be flaky since infrastructure issues or periods of high traffic may cause
the test case to fail. Several empirical studies have described this particular cause, with varying
degrees of prevalence [37, 89, 105, 152].

SQ5.6: Random: Not accounting for all the possible outcomes of random data generators or
code that uses them. Test cases that use random data, or cover code that utilises randomisation,
can become flaky for a variety of reasons. One reason is that it may be difficult for developers to
approximate test oracles, such as the appropriate range of output values in assertion statements
[37, 116]. This is a particular problem for machine learning applications [35, 36].

SQ5.7: Time/date: Reliance on the local system time/date. Test cases that depend on time
and date are fraught with difficulty, such as inconsistencies in representation and precision across
systems as well as timezone conversion issues [37, 59, 89, 105].

SQ5.8: Floating point: Inaccuracies when performing floating point operations. Given their
limited precision and other idiosyncrasies, floating point comparisons can sometimes produce un-
expected results. In the context of flaky tests, previous work generally considered this specific
cause to be quite rare [37, 89, 105].

SQ5.9: Unordered: Assuming a particular iteration order for an unordered collection-type object
(e.g., sets). This is a special case of a general cause pertaining to assumptions regarding the
implementations of non-deterministic program specifications [61, 140, 174].

SQ5.10: Unknown: Reasons that cannot be precisely determined. Finally, developers could
indicate how often they had encountered flaky tests whose cause they could not precisely identify.

SQ6: Have you encountered any other causes of flaky tests that we have not described above?
This question gave participants the chance to tell me about any other causes of flaky tests that I
did not list in SQ5. Together with SQ5, these questions address RQ3.

SQ7: After identifying a flaky test, how often do you... This question offered a list of actions
and participants could rate how often they perform them on a four-point scale. They were:

SQ7.1: No action: Take no action. Quite simply, a developer may choose to take no action
when encountering a flaky test.

SQ7.2: Re-run: Re-run the build. Perhaps the most straight-forward action, a developer may
just restart the failing build and hope that the flaky test passes this time. In their study of Travis
CI build logs, Durieux et al. [33] found this to be a common practice.

SQ7.3: Document: Document and defer (e.g., submit an issue/bug report). A developer may
not have the time to immediately repair a flaky test and may choose to document it for attention
later. For example, they could raise an issue in a GitHub repository.

SQ7.4: Delete: Delete the test. Another straight-forward action is to permanently remove the
flaky test from the test suite. Recounting on his experiences at Facebook, Kent Beck remarked
how it was routine to delete non-deterministic test cases [191].

SQ7.5: Quarantine: Quarantine the test. Martin Fowler [180] advised that flaky tests should
be quarantined from the main test suite into a dedicated test suite that is understood by the
development team to be unreliable. He advised that developers should keep the quarantined
test suite small by promptly fixing flaky tests. Otherwise, there is a danger of flaky tests being
forgotten about and the whole process becoming equivalent to just deleting test cases.

SQ7.6: Mark skip: Mark the test to be skipped or as an expected failure (e.g., xfail). Many
testing frameworks allow test cases to be marked as skipped, meaning they are not deleted from
the test suite but are not executed either. Alternatively, some frameworks, such as pytest, allow
test cases to be marked as expected failures or xfails. This signals to the testing framework that
they are expected to fail, in which case they should not fail the entire test suite.

SQ7.7: Mark re-run: Mark the test to be automatically repeated (e.g., by using the flaky plugin
for pytest). Often via the support of plugins, some testing frameworks allow test cases to be
marked such that they are repeated some number of times upon failure. One example of such a
plugin is flaky for pytest [206].
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SQ7.8: Repair: Attempt to repair the flakiness. Finally, a developer may attempt to repair the
underlying cause of the flaky test rather than just mitigating it with one of the previous actions.

SQ8: Are there any other actions that you would take that we have not listed above? In this
question, participants could report any additional actions. This addresses RQ4 along with SQ7.

SQ9: Which languages are you currently developing in? Participants could select from a list
of programming languages, with an option to specify any other languages that I did not include. I
asked this question to obtain further demographic information about the participant population.

SQ10: How many years experience do you have in commercial and/or open-source software
development? Participants could select one of 0–1, 2–4, 5–8, 9–12, or 13+ years. Like SQ3, I
used this as an additional demographic variable in the analysis.

SQ11: Is there anything else that you would like to tell us about flaky tests? The final question
gave participants the opportunity to relay any miscellaneous insights they had about flaky tests.

3.2.2 StackOverflow Threads

I analysed StackOverflow threads where a developer asked for help addressing one or more flaky
tests. I selected StackOverflow specifically due to its widespread popularity and its use in previous
software engineering research [115]. This analysis adds further depth to the answer for RQ3 by
considering the causes of flaky tests that developers ask for help with, as opposed to the causes
they report as the most common. It is also free of any self-reporting bias that may result from
the survey [31]. For RQ4, this analysis offers insights into how developers repair flaky test cases,
since the survey only asks participants how often they attempt to do so.

A thread on StackOverflow consists of a single question followed by answers. A user can
indicate that an answer has addressed their question by accepting it. To find relevant threads, I
used the website’s search feature. The query I used was “flaky test hasaccepted:yes”. The
latter part of the query is a search operator that only matches threads where the user who asked
the question has accepted an answer. This is to increase the probability that I can identify a
recommended course of action for RQ4. From the search results, I created a dataset of relevant
threads. I only included threads where the question was specifically asking about the cause of one
or more flaky tests and/or how to repair them. I excluded threads where the question was more
tangential, such as asking how to handle flaky tests in a specific testing framework [184]. This
is because such threads do not present causes or possible repairs and are therefore of no use for
addressing RQ3 or RQ4.

3.2.3 Analysis

I designed SQ4, SQ5, and SQ7 to be answered using a four-point Likert scale, quantifying
agreement in the case of SQ4 and frequency for SQ5 and SQ7. Each of these questions asked
participants to respond to a list of prepared statements. For each statement, I assigned a score
between 0 and 3 to each point on the Likert scale. As an example, for each statement of SQ4,
participants could select Strongly disagree, Agree, Disagree, or Strongly disagree, corresponding
to a score of 0, 1, 2, or 3 for that statement, respectively. For each question, I calculated the
mean score of each statement across all participants and four specific populations. The first two
populations were participants who said they experienced flaky tests on at least a monthly basis
and those who experienced them less frequently (see SQ3). I chose to split the participants by
this criterion since those who frequently experience flaky tests may have different views to those
who experience them rarely [180].

The final two populations were participants who said they had at least 13 years of software
development experience and those who had fewer (see SQ10). I made this split because, when
compared to participants with less experience, those with more may be better at accurately diag-
nosing the causes of flaky tests and may be more likely to take certain actions to address them. I
excluded any respondent from the analysis of a particular question if they did not respond to all
of that question’s statements. For each question, I calculated the ranks of every statement, based
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on mean score, to quantify the most significant impacts in the case of SQ4 and the most common
causes and actions for SQ5 and SQ7, respectively.

With the help of my collaborators, I performed inductive thematic analysis [29] on the responses
to the open-ended survey questions (SQ2, SQ6, SQ8, and SQ11) and the StackOverflow threads.
For each survey question, I met with my three collaborators (the three co-authors of the conference
paper this chapter is based on [122]) and discussed each response. We split responses containing
logical connectives such as “and” and “or” into their atomic components. We then assigned
one or more labels or codes to each response, representing its key concepts. By collaboratively
performing the coding, we minimised the impact of any individual biases and ensured our coding
was as consistent as possible. From these codes we derived a set of themes, representing the
definition of flaky tests, their causes, and developers’ actions against them for SQ2, SQ6 and
SQ8, respectively. For SQ11, the themes represent more general insights. We performed a very
similar procedure for the StackOverflow threads. Next, we assigned themes regarding causes and
actions to each thread in two separate sessions. Finally, we encountered several accepted answers
prescribing multiple actions, in which case we assigned them to multiple action themes.

3.2.4 Threats to Validity

All methodologies carry the risk of biasing results, including this study’s. This section discusses
both these risks and the mitigations.

Replicability: Can others replicate the results? The numerical analysis is straightforward
to replicate. I make the response data from the developer survey and the Python script for
performing the numerical analysis available as part of the replication package [194]. In general,
thematic analysis is more challenging to replicate. Nonetheless, I include in the replication package
the spreadsheets I used to facilitate the collaborative thematic analysis.

Construct: Am I asking the right questions? The construction of the study can bias the
results, as in any study. To attain the highest quality of results possible, I designed a multi-source
approach. The numerical analysis of the closed-ended survey questions provides broad, high-
level insights. The thematic analysis of the open-ended questions offers a more specific, but much
more detailed, understanding of developers’ experiences. Finally, the analysis of the StackOverflow
threads provides an alternative perspective, free of any potential self-reporting bias [31]. I selected
these three components to collect inherently different but complementary data, thereby giving a
more complete understanding of flaky tests.

Internal: Did I skew the accuracy of the results with how I collected and analysed informa-
tion? It is possible for the results of surveys to be impacted by biases, from both participants and
researchers. During the numerical analysis, there is little I can do to mitigate this on the partici-
pants’ side, though since the analysis is purely mathematical in nature, there is very limited scope
for researcher bias. During the thematic analysis, I mitigated any individual researcher bias by
collaboratively performing all analyses. Due to the nature of the recruitment, I could not verify
that participants genuinely were software developers. Therefore, I have no guarantee that the
participant population accurately reflects the target population. I mitigated this by specifically
asking for developers in the Twitter and LinkedIn posts and by making it clear in the partici-
pant information sheet that I was seeking developers. Furthermore, the technical nature of the
questions mean the survey would be difficult for non-developers to complete.

External: Do the results generalise? I cannot make any claims regarding the generalisation of
the results beyond the survey population. Even though this is a natural limitation of any survey-
based study, I mitigated it by not targeting any specific organisation and recruiting participants
through more than one platform.

3.3 Results

I received 170 responses to the survey. Figure 3.1 shows the results of SQ3 and SQ10. For SQ3,
just over half of the participants reported that they observe flaky tests on at least a monthly
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SQ3: How often do you observe flaky tests ... ?

Never A few times a year Monthly Weekly Daily

792532268

SQ10: How many years experience ... ?

0 - 1 2 - 4 5 - 8 9 - 12 13 +

Figure 3.1: Results for SQ3 and SQ10.
Ja

va
Sc

ri
pt

P
yt

ho
n

Ja
va

T
yp

eS
cr

ip
t

C
# G
o

R
ub

y

C
+

+

Sw
if
t C

90

59 51 45 38
20 18 16 14 13

Figure 3.2: Results for SQ9: Which languages are you currently developing in? (Top 10 languages.)

basis. This shows that flaky tests are a frequent phenomenon, especially given that 23 reported
experiencing them daily. For SQ10, just under half said they had 13 years or more of software
development experience. For SQ9, the top three programming languages were JavaScript, Python,
and Java. The distribution roughly corresponds to the most popular languages according to the
2021 StackOverflow developer survey [193] (see Figure 3.2). This reassures me that the participant
population is generally representative of the wider community of developers.

After performing the search on StackOverflow, I found 169 threads. I carefully examined each
one and narrowed them down to the 38 that are relevant according to the criteria in Section 3.2.2.
I now answer each research question using the results of the analysis of the responses to the survey
and the StackOverflow threads. See Table 3.1 for the results of the thematic analysis for SQ11.

3.3.1 RQ1: Definition

Of the 169 respondents who answered SQ1, 6.5% disagreed with the proposed definition. In order
of prevalence, the themes following the thematic analysis for SQ2:

SQ2t1: Beyond code: The definition extends beyond the test case code and the code that it
covers. Participant 97 (P97) said “... a flaky test is any test that changes from pass to fail (or vice
versa) in different environments”. P147 relayed a similar view, but specifically for test cases that
only fail in a CI environment. P27 stated more generally that a test case whose outcome depends
on changes irrelevant to the code under test is flaky. Arguably, this includes the environmental
changes referenced by P97 and P147 and more.

SQ2t2: Flaky code under test: A flaky test can indicate that the code under test is flawed,
rather than the test case itself. In the words of P155, “... a flaky test is therefore either unreliable
itself or it proves the code under test is flawed and unreliable”. P25 indicated that the term
flaky is inappropriately used to blame test cases when their flakiness is inevitable if they test
nondeterministic code.

SQ2t3: Beyond test outcomes: A test case can be considered flaky despite having a consistent
outcome. P58 wrote “... this includes pass/fail, but can encompass other aspects such as coverage
or test time”. P25 generalised by considering more abstract characteristics such as the extent that
the test case controls the system under test.
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Table 3.1: Themes for SQ11 regarding miscellaneous insights about flaky tests, in order of prevalence.

Title and description Representative quote

SQ11t1: Developer culture: The relationship
between flaky tests and testing practices and de-
veloper culture.

“It’s often an organisational problem...” – P89

SQ11t2: Emotive response: An expression of
anger or other emotion.

“They suck.” – P91

SQ11t3: Poor tooling support: Tooling for
handling flaky tests is inadequate or not well
known.

“Library support for automatically handling them
in Scala is poor or not well popularised.” – P7

SQ11t4: Execution environment: The in-
terplay between execution environment and flaky
tests.

“Caused by poor quality of coding and poor test
specification coupled with a lack of understanding
of the environment.” – P101

SQ11t5: Silver lining: Flaky tests may have
some utility.

“Flaky tests can be valuable as they often point to
an underlying weakness in the codebase.” – P133

SQ11t6: Time/date logic: Test cases handling
time/date logic are notoriously flaky.

“90% of the time it’s date and or timezone logic
...” – P28

SQ11t7: External service: Flaky tests caused
by third party services.

“Recently, seen a lot of flaky tests when running
CI on Azure due to failures to download libraries
...” – P31

SQ11t8: Not worth fixing: The resources re-
quired to repair flaky tests are too great to make
it worthwhile.

“... We haven’t got the time to address them all.”
– P64

SQ2t4: Learn to live with it: Flakiness is an inevitable aspect of testing. P62 agreed with the
proposed definition, but indicated that some test cases may be flaky by nature, saying “... not all
tests are deterministic”. P25 expressed that there may be limited value in labelling test cases as
flaky, since they are an inescapable aspect of testing. Conceivably, SQ11t5 is a continuation of
this concept and indicates that some participants consider them to have value.
SQ2t5: Usefulness of the test: A test case that cannot effectively identify bugs is flaky. In
reference to the proposed definition, P116 stated “I think it’s broader than that and includes
things like tests that pass independent of conditions”. P101 said that a test case is flaky if it
cannot clearly identify problems in the code under test. This theme is similar to SQ2t3 but leans
more towards bug-finding capability.

Conclusion for RQ1: Definition: How do developers define flaky tests? Most participants
(93.5%) agreed with the proposed definition of flaky tests in SQ1. Following the thematic
analysis for SQ2, I identified more general definitions. Some participants indicated that the
definition should consider factors beyond the test case code or the code under test. Others
expressed that only taking the outcome of a test case into consideration when defining flaky
tests is not enough. They conveyed that other behaviours, such as coverage, and more abstract
properties, such as usefulness, should be part of the definition. Several offered more digressive
insights, such as test cases should not always be considered at fault for the flakiness, as it is an
inevitable aspect of testing.

3.3.2 RQ2: Impacts

The top third of Table 3.2 shows the mean scores and ranks of each impact statement. For all
participants, SQ4.5 scored the highest. This indicates that developers strongly agree with the
notion that flaky tests hinder CI. Second and third were SQ4.3 and SQ4.2, regarding losses to
productivity and the efficiency of testing, respectively. The lowest scoring impact was SQ4.8,
which, as illustrated by the distribution bar, was the most evenly split between agreement and
disagreement. This suggests that differentiating between a true test failure and a spurious failure
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due to flakiness is relatively straightforward for some developers.
The most significant difference in mean score between participants who experienced flaky tests

on at least a monthly basis and those who did not was for SQ4.6. This indicates that developers
who experience flaky tests more often could be more likely to ignore potentially genuine test
failures. Beyond that, the scores are similar, with both scoring SQ4.5 the highest and SQ4.8
the lowest. The scores between the participants with at least 13 years of development experience
and those with fewer are also similar. In SQ11t2, participants expressed anger or frustration at
flaky tests. P96 said they “they’re very annoying”. Along with SQ4.4 and SQ4.6, this further
evidences the psychological cost of flaky tests.

Conclusion for RQ2: Impacts: What impacts do flaky tests have on developers? The
analysis for SQ4 indicates that developers strongly agree with the notion that flaky tests hinder
CI. They also agree that flaky tests lead to both a loss of productivity and a reduction in testing
efficiency. Respondents were mixed with regards to the difficulty of differentiating between a
failure due to a true bug and one due to flakiness, implying that some developers may not find
this challenging. The analysis also suggests that developers who experience flaky tests more
often may be more likely to ignore potentially genuine test failures.

3.3.3 RQ3: Causes

The middle third of Table 3.2 shows the mean scores of each cause for SQ5. The cause with the
highest score across all participants was SQ5.3. This suggests that improper setup and teardown
is the most frequent cause of flaky tests. Flakiness caused by network issues (SQ5.5) and unknown
reasons (SQ5.10) had the second and third highest scores, respectively. This indicates that the
causes of many flaky tests go undiagnosed by developers. The lowest scoring was SQ5.8 concerning
floating point issues.

Comparing the participants who experienced flaky tests at least monthly to those who did
not, there is agreement that SQ5.3, SQ5.5, and SQ5.8 were the first, second, and least most
common causes, respectively. The greatest difference in score is for SQ5.1. It could be that
those participants who said they experience flaky tests on a less than monthly basis do not work
on projects that heavily rely on asynchronicity. This could also explain why these particular
participants do not experience flaky tests frequently, since the participants who do also scored this
cause relatively highly. The differences in mean scores between participants with at least 13 years
experience and those with fewer are comparatively small.

According to these results, time and date (SQ5.7) appears to be a fairly uncommon cause of
flaky tests. Despite this, two participants made strong statements about how time and date logic
is a significant cause of flaky tests in SQ11t6. P28 said “date handling is the worst thing I have
ever had to program around”. This suggests that if a project does rely on time and date logic,
this is likely to be a significant cause of the flaky tests of the project’s test suite.

After the thematic analysis for SQ6, I identified the following themes in order of prevalence:
SQ6t1: External artifact: An issue in an external service, library, or other artifact, that is
outside the scope and control of the software under test. As a potential cause of flaky tests, P8
reported “third-party artifacts, services, or dependencies ... which you do not have full control
of ...”. Responses of this prevalent theme were split between highlighting instabilities in remote
services (in some instances a special case of SQ5.5), and issues in third-party libraries. The
common aspect is that participants did not have control over the external artifact. On the external
services side, SQ11t7 is a special case of this theme, further evidencing its prevalence.
SQ6t2: Environmental differences: Environmental differences between local development ma-
chines and remote build machines. P21 referred to “environmental differences in local vs CI like
different Java Virtual Machine (JVM) defaults.” Almost all the responses in this theme made
reference to CI. P97 offered a more nuanced explanation, highlighting how file system latency and
concurrency-related issues may cause code to behave differently on a CI system. This theme is a
special case of SQ11t4 and directly supports SQ2t1.
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Table 3.2: Results of the numerical analysis of the responses for SQ4, SQ5, and SQ7. The five “Mean
Score (Rank)” columns are the mean scores of each impact, cause, or action for the four specific populations
and all participants (All). In each case, the ranks in descending order of mean score are in parentheses.
The final column visualises the distribution of responses.

Mean Score (Rank)

≥ Monthly (SQ3) ≥ 13 Years (SQ10)

Question Yes No Yes No All Distribution (All)

RQ2: Impacts Strongly disagree

Disagree Agree

Strongly agree

SQ4.1: Reliability 2.43 (4) 2.47 (2) 2.49 (4) 2.41 (4) 2.45 (4)
SQ4.2: Efficiency 2.53 (3) 2.38 (4) 2.52 (2) 2.42 (3) 2.47 (3)
SQ4.3: Productivity 2.58 (2) 2.41 (3) 2.52 (2) 2.49 (2) 2.50 (2)
SQ4.4: Confidence 2.18 (6) 2.25 (5) 2.27 (5) 2.17 (5) 2.21 (5)
SQ4.5: CI 2.63 (1) 2.63 (1) 2.68 (1) 2.59 (1) 2.63 (1)
SQ4.6: Ignore 2.32 (5) 1.96 (7) 2.21 (6) 2.11 (6) 2.16 (6)
SQ4.7: Reproduce 2.05 (7) 2.14 (6) 2.07 (7) 2.11 (6) 2.09 (7)
SQ4.8: Differentiate 1.70 (8) 1.85 (8) 1.76 (8) 1.77 (8) 1.76 (8)

RQ3: Causes Never Rarely

Sometimes Often

SQ5.1: Waiting 1.48 (3) 1.08 (5) 1.26 (4) 1.34 (4) 1.30 (4)
SQ5.2: Concurrency 1.27 (5) 0.95 (7) 1.24 (5) 1.02 (5) 1.12 (5)
SQ5.3: Setup/teardown 1.73 (1) 1.64 (1) 1.84 (1) 1.56 (1) 1.69 (1)
SQ5.4: Resources 0.82 (7) 0.97 (6) 0.93 (7) 0.85 (7) 0.89 (7)
SQ5.5: Network 1.63 (2) 1.21 (2) 1.53 (2) 1.36 (2) 1.44 (2)
SQ5.6: Random 0.69 (8) 0.70 (9) 0.68 (9) 0.70 (8) 0.69 (9)
SQ5.7: Time/date 1.01 (6) 1.12 (4) 1.11 (6) 1.02 (5) 1.06 (6)
SQ5.8: Floating point 0.33 (10) 0.66 (10) 0.59 (10) 0.37 (10) 0.48 (10)
SQ5.9: Unordered 0.69 (8) 0.78 (8) 0.84 (8) 0.63 (9) 0.73 (8)
SQ5.10: Unknown 1.45 (4) 1.16 (3) 1.29 (3) 1.35 (3) 1.32 (3)

RQ4: Actions Never Rarely

Sometimes Often

SQ7.1: No action 1.40 (4) 0.91 (5) 1.41 (4) 1.01 (4) 1.19 (4)
SQ7.2: Re-run 2.81 (1) 2.46 (2) 2.68 (1) 2.66 (1) 2.67 (1)
SQ7.3: Document 1.58 (3) 1.67 (3) 1.59 (3) 1.65 (3) 1.62 (3)
SQ7.4: Delete 0.86 (7) 1.06 (4) 1.09 (5) 0.80 (7) 0.94 (5)
SQ7.5: Quarantine 0.74 (8) 0.79 (7) 0.81 (7) 0.73 (8) 0.77 (8)
SQ7.6: Mark skip 0.98 (5) 0.85 (6) 1.04 (6) 0.84 (5) 0.93 (6)
SQ7.7: Mark re-run 0.96 (6) 0.55 (8) 0.74 (8) 0.84 (5) 0.79 (7)
SQ7.8: Repair 2.23 (2) 2.64 (1) 2.53 (2) 2.31 (2) 2.41 (2)
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SQ6t3: Host system issues: Problems regarding the machines running the test suites. In the
words of P155, the most common aspect of this theme is “changes in hardware that the code and
tests are running on”. In many instances, this is a hardware analogue of SQ6t2, where a change
in a machine is the cause of the flakiness.
SQ6t4: Test data issues: Issues originating from the data used by test cases. Some participants
described flakiness caused specifically by test data. Most of these responses were brief and made
reference to test data that was “deteriorated”, “changing”, or “external”.
SQ6t5: Resource exhaustion: Limited computational resources, such as memory and storage.
P49 wrote “unrelated system load on a shared resource causing low-level timeouts”. P133 also
made reference to system load from unrelated processes, giving antivirus software as an example.
Other responses leaned more towards test cases that consume too many resources themselves.
This theme is distinct from SQ5.4, which is specifically about mismanagement.
SQ6t6: OS differences: Differences between operating systems (OS) or different versions of the
same OS. P62 described their experience after upgrading to a later version of Windows — “user
interface (UI) changes with new OS. Things like EggPlant, that uses graphics. Moving to a new
version of Windows (I think), changed the battleship gray ever so slightly and failed our UI tests”.
P76 explained how filesystem differences between OSes can cause flaky tests.
SQ6t7: Virtual machines: Complications arising from the use of virtual machines or contain-
ers. Put simply by P52, “the automation of virtual machines is asking for trouble”. Vagrant and
Docker were specific technologies referred to by the participants.
SQ6t8: UI testing: Non-determinism inherent to the testing of UIs. P147 wrote “UI not being in
the expected state, i.e., keyboard not closed, or animations not completed when checking results”.
P100 specifically described how “random quirks in how Selenium works” caused them to have
flaky tests. In many instances, this theme is a special case of SQ5.1, since UI test cases often
have to wait for a specific element of a UI to be in the correct state [132].
SQ6t9: Conversion issues: Inconsistencies when converting between data representations. In
the words of P48, “in my code that tests database interactions, I’ve run into issues where my
coding language has more time precision than my storage ...”. P103 relayed a similar experience
regarding timestamps. While both referred to time, this theme is applicable to any data type.
SQ6t10: Timeouts: Test execution exceeding a time limit and being prematurely terminated by
the test runner. P76 wrote “not waiting long enough for an environment to be set up”. P79
referred to input and output operations occurring within a specific time limit.

I identified eight themes after analysing the StackOverflow threads. In order of prevalence:
Ct1: UI Timing: Test case does not wait for a user interface to be in the correct state. This
theme is a subset of SQ5.1 regarding general asynchronicity and a special case of SQ6t8 pertaining
specifically to timing. This theme is related to SQ6t3 since the execution speed of the machine
is likely to significantly impact any timing issues.
Ct2: Logic error: Error in the logic of the test code or the code under test. This theme is
broadly characterised by an oversight or misunderstanding on the part of the author of the test
case. In one specific instance, a test case used an inappropriate method to wait for a condition
in a UI [188]. This led to flakiness by Ct1, though since the root cause was that the developer
misunderstood the use case of the waiting method, I placed this thread in Ct2.
Ct3: Shared state: Test case depends on state shared with other test cases. In one thread, the
question describes a test case that shares a database connection with other test cases and only
passes when executed in isolation [186]. This is an example of an OD test.
Ct4: Unknown: The cause was never resolved. Like its counterpart in the survey, SQ5.10, this
theme was fairly prevalent.
Ct5: Setup/teardown: Test case does not properly clean up after itself or fails to set up its
necessary preconditions. This is equivalent to SQ5.3. While OD tests were the main motivation
for SQ5.3, the threads in Ct5 describe test cases that do not appear to be OD. This theme was
uncommon yet SQ5.3 was rated as the most common by participants in the survey. This suggests
that the most common causes are not necessarily the hardest for developers to repair.
Ct6: External library: Bug in a third-party library or package. This is a special case
of SQ6t1 pertaining specifically to third-party libraries. In one instance, an intermittent
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NullPointerException from an external package is the cause of flaky tests [182].

Ct7: Resource leak: Test case does not release acquired resources. This theme is a subset of
SQ5.4 specifically regarding test cases that do not release resources, rather than general mis-
management. It is similar but not equivalent to SQ6t5, since the exhaustion of computational
resources is not necessarily due to mismanagement.

Ct8: Improper mocking: Test case does not mock an object or method correctly. Like Ct2,
this theme is unique to the StackOverflow analysis and describes flaky tests caused by improper
mocking. A mock is a method or object that simulates the behaviour of its real counterpart to
make testing more straightforward [145].

Conclusion for RQ3: Causes: What causes the flaky tests experienced by developers? The
analysis for SQ5 suggests that improper setup and teardown is the most common cause of
flaky tests. Second to that is network-related issues and third is unknown causes, implying that
many flaky tests may go undiagnosed by software developers. Participants rated floating point
idiosyncrasies to be the rarest cause. The thematic analysis for SQ6 revealed additional insights
into the causes of flaky tests. The most common theme pertains to issues in external artifacts
that the developer has no control over, such as third-party libraries and remote services. Another
described differences between local development environments and remote build environments,
such as CI. The analysis of the StackOverflow threads, with respect to the causes of flaky tests
suggested that timing issues in testing user interfaces were the most common theme. Like the
developer survey, the StackOverflow analysis showed that the causes of flaky tests were never
resolved in many threads.

3.3.4 RQ4: Actions

The bottom third of Table 3.2 presents the numerical analysis for SQ7. The most common action
as scored by all participants was to simply re-run the failing build (SQ7.2). The second most
common was to attempt to repair the flaky test (SQ7.8). After these two, there is a significant drop
in mean score for the remaining actions. This implies that re-running the build and attempting
to repair the flaky test are generally the most common actions developers take when encountering
flaky tests. The greatest difference in score between the participants who experienced flaky tests at
least monthly and those who did not was for SQ7.1. This suggests that developers who experience
flaky tests more often are more likely to take no action. There is also a considerable difference
for SQ7.8, implying that developers who experience flaky tests less frequently are more likely to
attempt to repair them. Furthermore, SQ11t8 indicates that the costs of repair are too great for
the potential gains. Arguably, this is less applicable when developers rarely experience flaky tests,
which could partially explain the differences in SQ7.1 and SQ7.8.

The thematic analysis for SQ8 identified the themes regarding actions, in order of prevalence:

SQ8t1: Emotive response: An expression of anger or some other emotion. This theme is
generally equivalent to SQ11t2, but specifically in the context of a direct response to flaky tests.

SQ8t2: Alert proper person: Inform other member or members of the development team about
the flaky test. In the words of P52, “tell the person who maintains that codebase”. This theme is
similar to SQ7.3 but is more direct than just documenting the flaky test.

SQ8t3: Reorder tests: Adjust the order of the test cases. P7 said “reorder tests to fail faster”
and P111 said “reorder tests in case they are order-dependent”. The former seems to be referring
to test case prioritisation [131]. The latter is talking about OD tests, but rather than repairing
them they are seeking to find a test run order that does not manifest their flakiness [91].

SQ8t4: Repair resource: Ensure a resource is in the correct state. summarised by P8, “when
the test depends on the global state ... the test needs to be neither deleted/skipped, nor re-
paired, but rather, the state of the resource needs to be repaired ...”. This theme is arguably a
manifestation of SQ11t5, since the flaky test highlights a flaw in the software under test.

SQ8t5: Rewrite code under test: Modify the code under test, as opposed to the test code. P133
said “rewrite problematic code to make it more testable”. This has clear links with SQ2t2, since
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it proves that a flaky test can highlight issues in the code under test. It is also a manifestation of
SQ11t5, for the same reason as SQ8t4.

In order of prevalence, the StackOverflow analysis resulted in the following action themes:
At1: Fix logic: Repair a logic error. All instances of this theme address an instance of Ct2.
Given that Ct2 is generally about API misuse, or inappropriate use of specific elements of an
API, answers in At1 typically highlight the correct API usage or recommend a more appropriate
method for a particular purpose [188].
At2: Wait for condition: Add an explicit wait for a condition. These answers address most
instances of Ct1 and prescribe waiting for a specific condition, rather than a fixed time delay.
At3: Add mock: Mock out an object or method. This theme directly addresses Ct8 but is also
applicable to many other causes, such as Ct1. In one instance, the answer recommends mocking
to address a timing issue that causes flakiness in a user interface test [192].
At4: Add/adjust external library: Use a third-party library or adjust the version of a library
already in use. All answers in this theme address an instance of Ct6. In one specific thread, the
answer highlights the latest version of a particular third-party library that previously contained a
bug that was causing the flakiness [182].
At5: Fix setup/teardown: Repair insufficient setup or teardown procedure. This directly ad-
dresses Ct5 by suggesting changes to setup and/or teardown methods that were causing flakiness.
At6: Isolate state: Remove dependency on a shared state. This theme mostly addresses Ct4,
but not always. One accepted answer suggests decoupling shared database connections [186].

Conclusion for RQ4: Actions: What actions do developers take against flaky tests? For
SQ7, the analysis revealed that re-running the failing build and attempting to repair the flaky
test were the most common actions as rated by the participants. The remaining actions scored
significantly lower, indicating that developers are unlikely to perform them. The findings also
suggested that developers who experience flaky tests more often are more likely to take no action
in response to them. While not a bona fide action, the thematic analysis for SQ8 showed that
an emotive response was very common among the participants. Other themes involved alerting
another member of the development team, reordering test cases, or repairing aspects of the
software under test, but not the flaky test itself. The thematic analysis of the StackOverflow
threads demonstrated that many action themes directly address a single cause theme.

3.4 Recommendations

Table 3.3 lists my six recommendations. I found that SQ2t1, the most common theme in SQ2,
extends my proposed definition of flaky tests to consider factors beyond the code of the test case
and the code under test, particularly the execution environment. Furthermore, SQ6t2 represents
environmental differences as a cause of flaky tests and is a special case of SQ11t4. This supports
a line of research that considers how changes in the implementations of third-party libraries can
manifest flaky tests [61, 140, 174]. These results and previous studies are the basis for R1. The
second most common theme in SQ2, SQ2t2, represents the idea that flaky tests can indicate that
the code under test is flawed. Following the thematic analysis for SQ8, I identified SQ8t4 and
SQ8t5, regarding repairing a resource and the code under test respectively, as actions in response
to flaky tests. Furthermore, SQ11t5 relays the concept that flaky tests have utility. These results
form the foundation of R2, along with one of the findings of Eck et al. [37], that, for certain types
of flaky test, developers sometimes considered the cause to originate from the code under test.

For SQ4, I found that participants strongly agreed that flaky tests hinder CI. This is the
motivation for R3, along with the findings of Hilton et al. [71], who asked developers to estimate
the number of weekly failing CI builds caused by genuine and flaky test failures. They found no
significant difference between the two estimates. This also supports Durieux et al. [33], who found
that 47% of previously failing CI builds that were manually restarted passed without changes,
suggesting the influence of flaky tests. Previous studies identified waiting for asynchronous events
(SQ5.1) and concurrency (SQ5.2) to be the most common causes of flaky tests [37, 105, 136].
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Table 3.3: My recommendations. Relevant to researchers (�) and developers (/).

Supported by

Recommendation Results Literature

/ R1: Consider beyond code. The definition of a flaky test should
include factors beyond the test case code or the code under test,
such as properties of the execution environment. Developers should
consider the behaviour of test cases in different environments, par-
ticularly when going from a local environment to CI.

SQ2t1,
SQ6t2,
SQ11t4

[61, 140,
174]

/ R2: Not completely useless. Flaky tests may indicate a flaw in
the code under test or another aspect of the software system. There-
fore, developers should not write them off as completely useless.

SQ2t2,
SQ8t4,
SQ8t5,
SQ11t5

[37]

� R3: Impact on CI. Flaky tests can become an obstacle to the
effective deployment of CI. Researchers should consider the creation
and evaluation of new approaches to better mitigate this trend.

SQ4.5 [33, 71]

/ R4: Careful setup/teardown. Insufficient setup and teardown is
a common cause of flaky tests. Developers should exercise particular
care when writing setup and teardown methods for their test suites.

SQ5.3,
Ct5, At5

[14]

� R5: Identify root causes. It is difficult to manually determine
the root cause of many flaky tests. Researchers should continue to
develop automated techniques for this challenging task [88].

SQ5.10,
Ct4

[105]

/ R6: Repair promptly. The results suggest that participants who
said they experienced flaky on at least a monthly basis may be more
likely to ignore genuine test failures, more likely to take no action
in response to flaky tests, and less likely to attempt to repair them.
Therefore, developers should to repair flaky tests as soon as possible
after identifying them to avoid them accumulating and potentially
being ignored.

SQ4.6,
SQ7.1,
SQ7.8,
SQ11t8

[180]

According to the survey, these causes were only the fourth and fifth most common. I found
inadequate setup/teardown (SQ5.3) to be the most common and also identified this theme in
the StackOverflow analysis (Ct5 and At5), forming the basis of R4. However, these studies
were based on previously repaired flaky tests, whereas in my case, the participants reported the
frequency of each cause according to their experience. It could be that the most common causes
of flaky tests are not necessarily the ones that developers prioritise for repair. On the other hand,
Bell et al. [14] suggested that the difficulty of writing correct setup and teardown could cause OD
tests. However, as attested by Ct5, this cause may not always result in a flaky test that is OD.

For SQ5, I found that participants scored SQ5.10, regarding unknown causes, as the third
highest overall. Similarly, I found that the cause of the flakiness was never resolved in many of the
StackOverflow threads (Ct4). This is reflected by Luo et al. [105], who categorised the causes of
the repaired flakiness in 201 commits and found “Hard to classify” to be the second most common
category. Taken together, these results are the rationale for R5. I found that participants who
said they experience flaky tests on at least a monthly basis scored SQ4.6, regarding ignoring
potentially genuine test failures, considerably higher than those who did not. Martin Fowler [180]
wrote that flaky tests have an “infectious” quality, and as they proliferate, developers may ignore
test failures in general. Furthermore, the results for SQ7.1 and SQ7.8 indicate that developers
who experience more flaky tests may be more likely to take no action against them and less likely
to attempt to repair them. I therefore suggest R6 in response to these findings.
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3.5 Related Work

Luo et al. [105] performed an empirical study that investigated the causes, manifestations, and
fixing strategies of flaky tests. As objects of analysis, they used 201 commits that repaired flaky
tests in a range of Apache Software Foundation projects. They introduced ten cause categories
that have since been used in subsequent research [37, 59, 89, 136]. They found that the top three
causes of flaky tests were asynchronicity, concurrency, and test-order dependency (OD tests).
Unlike my study, Luo et al. did not base any of their findings on the self-reported experiences of
developers. In that respect, their methodology is closer to the StackOverflow analysis.

Eck et al. [37] performed a related study. They asked 21 developers from Mozilla to classify 200
flaky tests that they had previously repaired and also conducted a broader online survey, receiving
121 responses. Using Luo et al.’s ten categories as a starting point, through their Mozilla study,
they identified four additional causes, including overly restrictive assertion ranges and platform
dependency (broadly similar to SQ6t2 and SQ6t6, respectively). To keep my results as general
as possible, I chose not to focus on any particular organisation in any part of the study. Moreover,
I included additional objects of analysis beyond developers’ testimonies to limit any self-reporting
bias [31]. As part of their broader survey, they asked developers to estimate how often they dealt
with flaky tests. Their results are very similar to mine for SQ3.

As part of a wider study on the uptake of CI, Hilton et al. [71] deployed a survey at Pivotal
Software. Among other questions, the survey asked developers to estimate the number of CI builds
failing each week due to genuine test failures and due to flaky test failures. Following a Pearson’s
chi-squared test, they found no statistically significant difference between the genuine and the
flaky distributions. My findings confirm that flaky tests are very prevalent (SQ3) and that flaky
tests are a hindrance to CI (SQ4.5). Gruber et al. [56] also deployed a survey about flaky tests,
with a specific focus on the support that developers need from tools.

3.6 Conclusion

I deployed an online survey about flaky tests, not restricted to any organisation, and received 170
responses. It focused on understanding how developers define and react to flaky tests and their
experiences of the causes and impacts. I also procured a dataset of 38 StackOverflow threads,
upon which I performed thematic analysis to identify further causes and repair strategies with
the help of my collaborators. From the findings, I offer six actionable recommendations for both
researchers and developers. In summary, these are: (1) developers should consider the behaviour
of test cases in different environments, particularly when going from a local environment to a
continuous integration environment; (2) developers should not write flaky tests off as completely
useless; (3) researchers should consider techniques to better mitigate the impact of flaky tests on
continuous integration; (4) developers should exercise particular care when writing setup and tear-
down methods; (5) researchers should continue working on automated techniques for determining
the root causes of flaky tests; and (6) developers should to repair flaky tests as soon as possible
after identifying them.

Having furthered the understanding of flaky tests through reviewing published research and
consulting professional software developers, I am well positioned to tackle the goal of mitigating
them. In Chapter 2, I identified a growing trend of studies applying machine learning classifiers
to the detection of flaky tests (see Section 2.5.1). However, none of them consider the detection
of order-dependent flaky tests. In this chapter, I found that developers rated improper setup and
teardown as the most common cause of flaky tests, while previous studies have identified this as a
primary cause of order-dependent flaky tests [14]. Therefore, an evaluation of machine learning-
based detection including order-dependent flaky tests is likely to be of value to developers.



Chapter 4

Evaluating Features for Machine
Learning Detection of Order- and
Non-Order-Dependent Flaky Tests

The contents of this chapter is based on “O. Parry, G. M. Kapfhammer, M. Hilton, and P. McMinn.
Evaluating features for machine learning detection of order- and non-order-dependent flaky tests.
In Proceedings of the International Conference on Software Testing, Verification and Validation
(ICST), pages 93–104, 2022”.

4.1 Introduction

Given the problems associated with flaky tests, the research community has developed automated
techniques to detect them. Many of these techniques involve a significant number of repeated
test executions and some require extensive instrumentation [15, 17, 35, 47, 90, 144, 175], making
them prohibitively expensive for practical deployment in large software projects. This motivated
researchers to develop detection techniques based on machine learning classifiers that they trained
using static features of test cases, such as their length, complexity, and the presence of particular
keywords and identifiers [128, 159]. One study found that combining static features with several
dynamically-collected characteristics, like execution time and line coverage, resulted in better
detection performance at the relatively minimal cost of a single, instrumented test suite run [8].

Previous studies trained and evaluated classifiers using datasets of flaky tests that do not
include order-dependent (OD) flaky tests. Yet, Lam et al. found that over 60% of their detected
flaky tests were OD [90], suggesting that previous studies may have labelled a large portion of flaky
tests as non-flaky when training classifiers. This means they have only considered a subset of the
problem of flaky test detection. In Chapter 3, developers rated issues regarding setup and teardown
as one of the most common causes of flaky tests (see Table 3.2). Since this is generally associated
with OD flaky tests [14], it would be beneficial to developers to consider them in evaluations
of machine learning classifiers. Given the difficulties caused by OD flaky tests to techniques in
software testing research, their efficient detection has significant benefits for researchers too (see
Section 2.4). Furthermore, prior studies have only evaluated a limited range of features while the
literature has identified many more test case characteristics that may be indicative of flakiness (see
Section 2.3). Without further evaluation of a wider range of features, machine learning classifiers
cannot be used to their full potential for detecting flaky tests.

This study evaluates the performance of 54 pipelines of data preprocessing, data balancing,
and machine learning classifiers for detecting flaky tests in 26 open-source Python projects. Given
previous successes with random forest classifiers [8, 128, 143], it focuses on the decision tree
classifier and ensemble models thereof [51, 137]. It also introduces Flake16, a new feature set
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for encoding test cases using seven metrics from a previously established feature set [8] and nine
additional metrics, including the depth of the abstract syntax tree of the test case code and the
maximum memory usage during test case execution. The results show that Flake16 offered a
13% increase in overall F1 score compared to the previous feature set when detecting non-order-
dependent (NOD) flaky tests. The experiments also study the same machine learning pipelines
with both feature sets for the task of detecting OD flaky tests. In this setup, Flake16 offered
a 17% increase in the overall F1 score. Finally, the study examines the impact of each Flake16
feature on the classifiers’ predictions, revealing that the peak number of concurrently running
threads and the number of read- and write-related system calls during test execution are the most
valuable features for detecting NOD and OD flaky tests, respectively.

In summary, the main contributions of this study are:

1. Feature Set (Section 4.2): A new feature set for machine learning-based flaky test detec-
tion, Flake16. The evaluation demonstrated an improved detection performance for both
NOD and OD flaky tests compared to a previous feature set.

2. Evaluation (Section 4.3): My evaluation of 54 machine learning pipelines is the first
to consider the detection of OD flaky tests, offering a more complete assessment of the
applicability of machine learning to the problem of flaky test detection.

3. Findings and Implications (Sections 4.4 and 4.5): Leveraging the empirical results,
the study surfaced findings with implications relevant to both the research community and
software developers, including the most impactful test case metrics for detecting flaky tests.

4. Dataset: To collect the data required to perform the experiments, I developed a
comprehensive framework of tools, Flake16Framework. To identify flaky tests, I used
Flake16Framework to execute 5,000 times the test suites for 26 programs containing over
67,000 test cases. Supporting the replication of this study’s results and further investigations
into machine learning for flaky test detection, I make Flake16Framework and all of the data
available in the replication package [218].

4.2 The Flake16 Feature Set

Alshammari et al. [8] proposed a range of features for encoding test cases in machine learning-based
flaky test detection and split them into two groups. These were eight boolean features indicating
the presence of test smells [154], and eight numerical features measuring a mixture of static and
dynamic test case properties. They found the test smell features to be of limited value and excluded
them from their evaluation of their flaky test detection framework, FlakeFlagger. One of the
remaining eight features, the total number of covered production classes, was not applicable in the
context of this study. This is because the dataset of test cases used by Alshammari et al. are from
Java projects [16] and mine are from Python projects. In Java, classes are a central construct for
building programs, whereas in Python, they are less critical and it is possible to write programs
without them [197]. I refer to the remaining seven features as the FlakeFlagger feature set,
which is subsumed by Flake16. One of these features captures the “churn” of the lines covered
by a test case, that is, how frequently they are changed. This requires a window of past commits
to consider. Alshammari et al. evaluated eight windows and found 75 commits to be the most
informative, and thus I selected this value for this study. Beyond these seven features, Flake16
contains nine more static and dynamic test case metrics, with Table 4.1 providing a summary.

Several empirical studies identified files as a potential vector for OD flaky tests to arise [15,
17, 47, 105, 175]. In particular, Zhang et al. [175] found that 39% of OD flaky tests were caused
by side effects left behind by other test cases in external resources, such as files and databases.
Furthermore, flaky tests specifically caused by complications during input and output operations
were one of the flaky test categories presented by Luo et al. [105]. This motivated the inclusion
of read count and write count in Flake16. These measure the number of read- and write-related
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Table 4.1: The metrics of Flake16. The FF column indicates if the feature is also part of the Flake-
Flagger feature set. The Static column indicates if the feature can be measured without executing the
test case. The Impact Rank columns are the ranks of each feature in descending order of impactfulness
for detecting both NOD and OD flaky tests (see Figure 4.2 for more details).

Impact Rank

# Feature Description FF Static NOD OD

1 Covered Lines Number of lines covered. X 8 6
2 Covered Changes Total number of times each covered line has

been modified in the last 75 commits.
X 3 5

3 Source Covered Lines Number of lines covered that are not part of
test cases.

X 7 7

4 Execution Time Elapsed wall-clock time of the test case execu-
tion.

X 5 9

5 Read Count Number of times the filesystem had to perform
input [241].

6 2

6 Write Count Number of times the filesystem had to perform
output [241].

4 1

7 Context Switches Number of voluntary context switches. 10 8
8 Max. Threads Peak number of concurrently running threads

(excluding the main thread).
1 11

9 Max. Memory Peak memory usage. 11 4
10 AST Depth Maximum depth of nested program state-

ments in the test case code.
X 2 13

11 Assertions Number of assertion statements in the test
case code.

X X 14 3

12 External Modules Number of non-standard modules (i.e., li-
braries) used by the test case.

X X 16 16

13 Halstead Volume A measure of the size of an algorithm’s imple-
mentation [7, 126, 129].

X 15 14

14 Cyclomatic Complexity Number of branches in the test case code [52,
126, 129].

X 12 12

15 Test Lines of Code Number of lines in the test case code [126, 129]. X X 9 10
16 Maintainability A measure of how easy the test case code is to

support and modify [164, 279].
X 13 15

system calls during test execution. Another finding that many empirical studies have in common is
that asynchronous operations and concurrency are frequent causes of flaky tests [37, 89, 105, 136].
Thus, I incorporated context switches and maximum threads into Flake16. The former measures
the number of voluntary context switches performed during test case execution. These occur when
a process gives up its CPU time because it has nothing to do, such as when a test case sleeps for
a fixed amount of time. Previous studies have identified this as a hallmark of flaky tests in the
asynchronous category [37, 105]. I also integrated maximum memory into Flake16. This feature
measures the peak memory usage during test case execution, a property identified by an author
of the Google Testing Blog to be correlated with the likelihood of a test case being flaky [243].

The Flake16 feature set also contains four additional static metrics that aim to capture the
size and complexity of the test case code. A recent study identified this general property to
be a possible indicator of flaky tests [129]. With that said, another recent study cast doubt on
the reliability of various code complexity metrics for measuring program comprehension difficulty
[126]. Nevertheless, this does not necessarily imply that they would be of no use for detecting
flaky tests, so this study evaluates them. The first of these is Abstract Syntax Tree (AST) depth.
Specifically, this feature measures the maximum depth of nested program statements, such as if

statements and for loops. The second is Halstead volume, which attempts to capture the “size”
of an algorithm’s implementation. Where N is the total number of operators and operands in the
test case code and η is the number of distinct operators and operands, Halstead volume is given
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by Nlog2(η) [7]. The third static metric is cyclomatic complexity, which measures the number
of branches in a piece of code [52]. In Python, and many other programming languages, an if

statement corresponds to a branch and so would increase the cyclomatic complexity by 1. Other
examples of branches include for and while statements, since they both evaluate a condition
before every iteration. The fourth metric is maintainability. This is an empirical measure of
how easy a piece of code is to support and modify [164]. There are several formulations, though
I used the one implemented by the Radon library [279]. The library calculates maintainability
(MI) in terms of Halstead volume (V ), cyclomatic complexity (G), test lines of code (L), and the
percentage of lines that are comments, converted to radians (C):

MI = max

[
0, 100

171− 5.2 lnV − 0.23G− 16.2 lnL+ 50 sin
√

2.4C

171

]
(4.1)

4.3 Evaluation

I designed and conducted experiments to answer the following three research questions:
RQ1. Compared to the features used by FlakeFlagger, does the Flake16 feature set improve
the performance of flaky test case detection with machine learning classifiers?
RQ2. Can machine learning classifiers effectively detect order-dependent flaky test cases?
RQ3. Which features of Flake16 are the most impactful?

4.3.1 Data Collection

To evaluate the performance of any machine learning classifier for detecting flaky tests, I needed a
labelled dataset of test cases. To that end, I sampled 26 popular Python projects, most of which are
considered critical to open-source infrastructure [260]. In total, these 26 projects, listed in Table
4.2, gave me a dataset of over 67,000 test cases. In order to train and evaluate a machine learning
classifier, I needed to label each test case as non-flaky, NOD flaky, or OD flaky. To that end, I
created a framework of tools, called Flake16Framework, to automatically execute each project’s
test suite 2,500 times in a consistent order and an additional 2,500 times in a random order.
For reproducibility and isolation between test suite runs, Flake16Framework installs each project
inside of a fully-specified virtual environment [195] to produce a Docker image [215], which it uses
to create a separate container for each test suite run. The framework also records the outcome
(i.e., pass or fail) of every test during each test suite execution. It labels a test as NOD flaky if it
has an inconsistent outcome during the runs in a consistent order. Otherwise, it labels a test as
OD flaky if it has an inconsistent outcome during the random order runs. Failing that, it labels a
test as non-flaky. This is an established practice for identifying flaky tests [59, 92].

Given the non-deterministic nature of flaky tests, it is impossible to label a test case as non-
flaky with complete certainty. Naturally, confidence increases with the number of test suite runs,
but so too does the computational cost. Alshammari et al. [8] executed test suites 10,000 times.
Based on their findings, the cumulative number of detected flaky tests appears sublinearly related
to the number of test suite runs. In other words, continuing to re-execute a test suite gives
diminishing returns with respect to the confidence of labelling a test case as non-flaky. This study
confirms these findings, for both NOD and OD flaky tests, as illustrated by the curves in Figure
4.1. As such, I selected a smaller number of test suite runs to reduce the time to finish the labelling
process. Despite this, labelling still took over four weeks of computational time on a computer
with a 24-core AMD Ryzen 5900X CPU.

As well as having labels for each test case, I also needed to measure values for each of the
metrics of Flake16. To that end, I designed Flake16Framework to perform the necessary static
analysis on the source code of every test case and to instrument test case execution to collect the
dynamic features. I implemented this with the help of several existing Python libraries. To collect
most of the static metrics, I used the Radon library [279]. To determine the number of external
modules used by a test case, I implemented my own approach that analyses the AST of a test
case. To measure line coverage data, I used Coverage.py [211]. For the majority of the remaining



4.3. EVALUATION 101

Table 4.2: The 26 open-source Python subjects. The Stars column is the number of times a GitHub user
has indicated their interest in the project [270]. The Tests column is the total number of test cases. The
NOD and OD columns are the number of non-order-dependent and order-dependent flaky tests.

GitHub Repository # Stars # Tests # NOD # OD

apache/airflow 23175 3458 66 293
celery/celery 17952 2365 - 15
conan-io/conan 5274 3707 - 13
encode/django-rest-framework 21906 1402 - 1
spesmilo/electrum 5154 544 1 1
Flexget/Flexget 1342 1335 1 4
fonttools/fonttools 2850 3456 1 42
graphql-python/graphene 6810 347 - 1
facebookresearch/hydra 4861 1540 - 19
HypothesisWorks/hypothesis 5379 4386 5 6
ipython/ipython 14982 846 6 304
celery/kombu 2221 1025 2 23
apache/libcloud 1788 9840 3 133
Delgan/loguru 9838 1255 4 21
mitmproxy/mitmproxy 24702 1231 - 17
python-pillow/Pillow 8983 2583 - 26
PrefectHQ/prefect 6897 7038 25 20
PyGithub/PyGithub 4664 711 - 4
Pylons/pyramid 3593 2633 - 4
psf/requests 46050 537 5 -
scikit-image/scikit-image 4525 6281 - 12
mwaskom/seaborn 8772 1028 1 8
pypa/setuptools 1439 704 1 23
sunpy/sunpy 629 2072 - 2
urllib3/urllib3 2788 1900 15 1
xonsh/xonsh 5133 4782 9 19

Total 241707 67006 145 1012

dynamic features, I used psutil [264]. In keeping with previous work [8], Flake16Framework

executed each of the 26 test suites just once to measure these values to keep its computational
cost as low as possible. While there may be some expected variance in these values, I leave it as
future work to investigate if the repeated measurement of these features improves the performance
of flaky test detection (see Section 5.6.2).

4.3.2 Data Preprocessing

Preprocessing of raw feature data is a typical component of machine learning pipelines [54, 171].
To that end, I evaluated two common data preprocessing techniques. The first was scaling (also
known as standardisation), which, for each feature, involves subtracting the mean over the entire
dataset and dividing by the standard deviation. This has the effect of “centering” the distribution
of each feature with a mean of zero and a variance of one, such as a standard normal distribution.
This is a common requirement for many machine learning models [196]. The second was principal
component analysis (PCA) [1]. This is a technique used to transform a dataset such that each
new feature corresponds to a principal component. The principal components of a dataset can
be thought of as an ordered set of orthogonal vectors representing axes that best capture the
variance of the data. The first principal component captures the most variance and the subsequent
components capture increasingly less. A common use of PCA is to reduce the number of features
in a dataset while sacrificing as little data as possible. This is known as dimensionality reduction
[156]. Because the principal components are orthogonal to one another, PCA also decorrelates the
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Figure 4.1: The relationship between the number of test suites runs performed by Flake16Framework and
the percentage of flaky tests it identified, both NOD and OD. The relationship in both cases is sublinear.

features. Since the dimensionality of the dataset is relatively low, and Table 4.3 shows that many
of Flake16’s features are correlated, decorrelation is my primary use case for PCA.

4.3.3 Data Balancing

As shown by Table 4.2, the number of non-flaky tests in the dataset vastly outnumbers both the
NOD and OD flaky tests. Training machine learning classifiers with imbalanced data potentially
limits their performance [102, 148]. To address this, I evaluated five data balancing techniques.
Data balancing techniques can be split into two categories: those that undersample (reduce) the
majority class (non-flaky), and those that oversample (increase) the minority class (flaky). I
evaluated two undersampling, one oversampling, and two combined techniques. The first under-
sampling technique removes the non-flaky samples within Tomek links of the dataset. A Tomek
link occurs between two samples when a sample of one class is the nearest neighbour of a sample of
the other [153]. The second technique, edited nearest-neighbors, removes non-flaky samples whose
nearest neighbors are all flaky. With a neighbourhood of only one sample, edited nearest-neighbors
is equivalent to the previous technique. I used a neighbourhood of three, the implementation’s
default. For oversampling, I evaluated the synthetic minority oversampling technique (SMOTE)
[23], which generates synthetic flaky samples by interpolation. The two combined techniques I
evaluated were the combination of SMOTE with Tomek links and edited nearest-neighbors. In
both instances, SMOTE is applied first and the undersampling technique acts as a data cleaning
method, rather than to undersample the non-flaky samples [11]. To ensure the correctness of these
balancing techniques, I used those in the imbalanced-learn Python library [240].

4.3.4 Machine Learning Classifiers

For the classification of test cases as flaky or non-flaky, I evaluated three machine learning classi-
fiers. Previous studies have found the Random Forest classifier [18] to be particularly performant
in this domain [8, 128]. Random forest is an ensemble model, which combines many base models,
in this case Decision Tree [137]. Decision tree is a non-parametric model that learns simple if-
then-else decision rules from the training data, forming a binary tree. In this context, their output
is the estimated probability of a test case being non-flaky. The Random Forest classifier trains
each Decision Tree on a random sample with replacement of the training data, that is, a sample
where individual data points can appear more than once. The overall classification is based on
the average of their estimated probabilities. A related classifier, extremely randomised trees [51],
also known as Extra Trees, trains trees on random samples without replacement and introduces
additional randomisation in how they are trained. I evaluated Random Forest and Extra Trees,
as well as the base Decision Tree classifier, using the implementations provided by scikit-learn

[271].
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Table 4.3: Spearman rank-order correlation coefficients between each pair of features in Flake16. Values
range between -1 and 1, with 0 indicating no correlation and -1 or 1 indicating an exact monotonic
relationship. A negative value indicates that as the feature in the row increases, the feature in the column
decreases. Darker shaded cells indicate a greater magnitude of correlation.
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Cov. Lines 1.00 0.72 1.00 0.48 -0.05 0.32 0.50 0.15 0.21 -0.09 -0.07 -0.30 -0.11 -0.08 0.15 0.09
Cov. Changes 0.72 1.00 0.72 0.41 -0.01 0.25 0.35 0.13 0.21 0.04 0.14 -0.14 0.08 0.13 0.17 -0.09
Src. Cov. Lns. 1.00 0.72 1.00 0.48 -0.05 0.32 0.49 0.14 0.21 -0.10 -0.06 -0.31 -0.10 -0.07 0.13 0.08
Exec. Time 0.48 0.41 0.48 1.00 0.55 0.48 0.48 0.30 0.76 0.03 0.17 -0.01 0.13 0.14 0.09 -0.12
Read Count -0.05 -0.01 -0.05 0.55 1.00 0.40 0.12 0.18 0.73 0.17 0.21 0.30 0.21 0.22 0.12 -0.18
Write Count 0.32 0.25 0.32 0.48 0.40 1.00 0.52 0.32 0.45 0.00 -0.07 -0.06 -0.04 -0.07 0.13 0.04
Con. Switches 0.50 0.35 0.49 0.48 0.12 0.52 1.00 0.31 0.36 -0.11 -0.04 -0.18 -0.05 -0.06 0.09 0.07
Max. Threads 0.15 0.13 0.14 0.30 0.18 0.32 0.31 1.00 0.26 0.05 -0.01 0.05 0.01 0.00 0.10 -0.01
Max. Memory 0.21 0.21 0.21 0.76 0.73 0.45 0.36 0.26 1.00 0.10 0.21 0.16 0.20 0.20 0.06 -0.16
AST Depth -0.09 0.04 -0.10 0.03 0.17 0.00 -0.11 0.05 0.10 1.00 0.21 0.16 0.24 0.42 0.42 -0.26
Assertions -0.07 0.14 -0.06 0.17 0.21 -0.07 -0.04 -0.01 0.21 0.21 1.00 0.15 0.73 0.89 0.30 -0.69
Ext. Modules -0.30 -0.14 -0.31 -0.01 0.30 -0.06 -0.18 0.05 0.16 0.16 0.15 1.00 0.28 0.18 0.18 -0.24
Halstead Vol. -0.11 0.08 -0.10 0.13 0.21 -0.04 -0.05 0.01 0.20 0.24 0.73 0.28 1.00 0.75 0.35 -0.91
Cyclo. Comp. -0.08 0.13 -0.07 0.14 0.22 -0.07 -0.06 0.00 0.20 0.42 0.89 0.18 0.75 1.00 0.43 -0.72
Test LoC 0.15 0.17 0.13 0.09 0.12 0.13 0.09 0.10 0.06 0.42 0.30 0.18 0.35 0.43 1.00 -0.39
Maintainability 0.09 -0.09 0.08 -0.12 -0.18 0.04 0.07 -0.01 -0.16 -0.26 -0.69 -0.24 -0.91 -0.72 -0.39 1.00

4.3.5 Methodology

I used the Flake16Framework to evaluate all combinations of data preprocessing, data balancing,
and machine learning classifier, including no preprocessing and no balancing. This resulted in
54 machine learning pipelines. The framework evaluated these using both the Flake16 and the
FlakeFlagger feature sets and applied them to two binary classification problems, non-flaky
or NOD flaky and non-flaky or OD flaky, culminating in 216 classifiers. It used stratified 10-fold
cross validation for classifier training and testing, as done by Alshammari et al. in their evaluation
of their FlakeFlagger framework [8]. This creates 10 folds, in which 90% of the dataset is used
for training and 10% is used for testing. The class balance of each fold roughly follows that of the
entire dataset, and Flake16Framework applied data balancing to the training set only. This is so
the classifier testing accurately reflects the imbalanced nature of the classification problem. After
training the classifier, the framework applied it to each test case of the testing set, resulting in
a prediction of flaky or non-flaky. Since the testing portion of each fold is unique, after 10 folds
every test case in the dataset has a predicted label.

Where flaky is the positive label and a predicted label for a test case is true if it matches the
label assigned to it during data collection, Flake16Framework enumerated the number of false
positives, false negatives, and true positives, for the test cases of each project and for the entire
dataset. From these, it calculated the precision, the ratio of true positives to all positives, and the
recall, the ratio of true positives to the sum of true positives and false negatives. In other words,
precision is the fraction of genuine flaky tests among all test cases the classifier labelled as flaky
and recall is the fraction of genuine flaky tests that the classifier labelled as flaky. The framework
also calculated the F1 score, or the harmonic mean of these two metrics. These are all common
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metrics used in previous studies of machine learning to detect flaky tests [8, 128, 159]. The F1
score metric is particularly well-suited to imbalanced binary classification problems, like the one
in this study, since it penalises significant differences between a classifier’s precision and recall.
This is important because a classifier that trivially labels all test cases as non-flaky would achieve
maximum recall but very poor precision. I answered RQ1 by comparing the performance of the
best pipeline using the FlakeFlagger feature set to the best using the Flake16 set, for both
the NOD and OD classification problems. I answered RQ2 by focusing on the OD problem.

To rank each feature of Flake16 in terms of its impact, I used the Shapely Additive Explana-
tions (SHAP) technique [103]. This automated technique leverages concepts from game theory to
quantify the contribution that a feature has on the output of a machine learning model. SHAP re-
quires a dataset (i.e., a matrix where each row is a data point and each column represents a feature)
and a trained model, and it returns a matrix of SHAP values in the same shape as the dataset.
Each column of the SHAP values matrix corresponds to the impact that the respective feature
had on the decision of the trained model for each data point. In my case, Flake16Framework
applied SHAP to estimate the contribution of each feature of Flake16 to a classifier’s estimated
probability of each test case being non-flaky. It did this for the best non-PCA pipelines for both
test case classification problems when using Flake16.

Since the features of a PCA-transformed dataset correspond to a linear combination of the
original features [1], it would be difficult to relate their impact back to the features of Flake16.
To answer RQ3, Flake16Framework quantified the impact of each feature for detecting both
NOD and OD flaky tests by taking the mean absolute value of each column of the SHAP values
matrices for both pipelines. A common alternative technique I could have used is to calculate the
permutation importance of each feature. Given a trained model, this would involve shuffling the
values of each feature across the dataset and measuring the impact this has on the performance of
the model when applied to the shuffled dataset (e.g., the F1 score). Yet, this technique can give
misleading results when features are correlated [73], as Table 4.3 shows is the case for the features
used to predict whether or not a test is flaky.

4.3.6 Threats to Validity

This section considers the potential threats to the validity of this evaluation and discusses how
I mitigated them. First, during data collection Flake16Framework could have labelled some
flaky tests as non-flaky. Given the non-deterministic nature of flaky tests, it is impossible to
fully rectify this issue, although I mitigated it by performing as many test suite runs as possible
within the limits of the computational resources available. Furthermore, some specific categories
of flaky tests are unlikely to be manifested by rerunning alone [105, 140]. The only category I
made special arrangements to detect were OD flaky tests; I consider other categories requiring
additional means to identify out of the scope of this study. Second, Flake16Framework could have
contained bugs, which may have impacted the results of the evaluation. To that end, I used well-
established Python libraries for the bulk of its functionality. These included Coverage.py [211] to
measure line coverage, psutil [264] to measure many other dynamic properties of test cases, and
scikit-learn [271] for the classifier implementations. These are all popular open-source projects
with many contributors, giving me confidence that any bugs would be identified, documented, and
patched in a timely manner. I also wrote unit tests for greater confidence in the correctness of the
bespoke elements of Flake16Framework. Third, individual projects with significantly more test
cases than others could bias the overall results. For example, airflow had the highest number of
NOD flaky tests at 66, or 264% more than that of the second highest. To resolve this concern, I
calculated performance metrics with respect to each individual project.
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Table 4.4: Top 10 pipelines for detecting flaky tests. Train time (Tr.) and test time (Te.) are in seconds.

FlakeFlagger Flake16

Time Time

Pre. Balancing Classifier Tr. Te. F1 Pre. Balancing Classifier Tr. Te. F1

NOD

None Tom. Links Ext. Trees 8 0.27 0.46 PCA SMOTE Ext. Trees 133 0.57 0.52
Scaling None Ext. Trees 11 0.37 0.44 PCA SMOTE Tom. Ext. Trees 100 0.26 0.52
None SMOTE Tom. Ext. Trees 41 0.26 0.43 Scaling SMOTE Tom. Ext. Trees 123 0.59 0.51
None SMOTE Ext. Trees 21 0.21 0.43 Scaling SMOTE Ext. Trees 139 0.49 0.51
None ENN Ext. Trees 6 0.13 0.43 None SMOTE Rand. For. 269 0.22 0.48
None None Ext. Trees 14 0.49 0.43 None ENN Ext. Trees 34 0.25 0.48
Scaling ENN Ext. Trees 10 0.46 0.43 PCA SMOTE ENN Ext. Trees 146 0.53 0.48
Scaling Tom. Links Ext. Trees 4 0.16 0.43 Scaling SMOTE Tom. Rand. For. 209 0.25 0.48
Scaling SMOTE Tom. Ext. Trees 41 0.56 0.42 None SMOTE Tom. Ext. Trees 53 0.20 0.48
PCA Tom. Links Ext. Trees 13 0.27 0.42 PCA SMOTE Tom. Rand. For. 334 0.32 0.48

OD

None SMOTE Tom. Ex. Trees 70 1.23 0.47 Scaling SMOTE Rand. For. 148 0.52 0.55
None SMOTE Ex. Trees 75 1.16 0.46 Scaling SMOTE Tom. Rand. For. 173 0.65 0.55
None SMOTE Tom. Rand. For. 83 0.81 0.46 Scaling SMOTE Ex. Trees 150 0.92 0.54
None SMOTE Rand. For. 85 0.28 0.45 Scaling SMOTE Tom. Ex. Trees 155 1.49 0.54
None ENN Ex. Trees 13 0.80 0.45 None SMOTE Ex. Trees 128 1.24 0.53
Scaling ENN Ex. Trees 13 0.92 0.45 Scaling ENN Ex. Trees 37 0.79 0.52
Scaling Tom. Links Ex. Trees 18 1.08 0.45 None SMOTE Tom. Ex. Trees 38 0.43 0.52
Scaling None Ex. Trees 21 1.17 0.44 None Tom. Links Ex. Trees 27 0.62 0.51
None None Ex. Trees 12 0.69 0.44 Scaling Tom. Links Ex. Trees 29 0.79 0.51
None Tom. Links Ex. Trees 14 0.70 0.44 None ENN Ex. Trees 27 0.80 0.50

4.4 Empirical Results

4.4.1 RQ1. Compared to the features used by FlakeFlagger, does the
Flake16 feature set improve the performance of flaky test case
detection with machine learning classifiers?

The top half of Table 4.4 shows the top 10 pipelines for detecting NOD flaky tests with both the
FlakeFlagger and Flake16 feature sets. The best pipeline with the Flake16 feature set was
preprocessing with PCA, balancing with SMOTE, and Extra Trees as the classifier. Its F1 score
was 13% higher than the best pipeline with the FlakeFlagger feature set. Table 4.5 shows the
per-project performance of the best pipelines with both feature sets. This table excludes projects
for which I could not calculate precision, recall, or F1 score due to a division by zero. For all the
included projects, with the exception of xonsh, the F1 score is either unchanged or higher with
Flake16. Overall, the best pipeline with Flake16 had a better trade-off between precision and
recall, whereas the best pipeline with the FlakeFlagger feature set had significantly greater
precision than recall, which was relatively poor. This result suggests that the FlakeFlagger
pipeline was particularly conservative with regard to labelling a test case as flaky. The bottom
half of Table 4.4 gives the best pipelines for the OD classification problem. In this case, the best
pipeline with Flake16 had an F1 score that was 17% greater than the best pipeline with the
FlakeFlagger feature set. Table 4.6 gives the per-project scores for these two pipelines. Once
again, I excluded projects if I could not calculate precision, recall, or F1 score. For 11 of the 18
projects listed, the F1 score was greater when using Flake16. Overall, the best pipeline with
Flake16 had a recall that was 36% greater than that of the FlakeFlagger feature set and a
precision that was unchanged, indicating a clear improvement in the performance.
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Table 4.5: For NOD flaky tests, the per-project comparison of the best pipeline for both feature sets. FP,
FN, and TP are false positives, false negatives, and true positives. Pr. is precision and Re. is recall.

FlakeFlagger Flake16

Project FP FN TP Pr. Re. F1 FP FN TP Pr. Re. F1

airflow 7 37 29 0.81 0.44 0.57 20 30 36 0.64 0.55 0.59
ipython 0 4 2 1.00 0.33 0.50 3 2 4 0.57 0.67 0.62
loguru 1 2 2 0.67 0.50 0.57 1 2 2 0.67 0.50 0.57
prefect 2 17 8 0.80 0.32 0.46 5 12 13 0.72 0.52 0.60
requests 1 3 2 0.67 0.40 0.50 1 3 2 0.67 0.40 0.50
xonsh 4 4 5 0.56 0.56 0.56 3 5 4 0.57 0.44 0.50

Total 16 97 48 0.75 0.33 0.46 49 76 69 0.58 0.48 0.52

Conclusion for RQ1 The Flake16 feature set offered a 13% increase in overall F1 score when
detecting NOD flaky tests and a 17% increase when detecting OD flaky tests. These results
indicate that the Flake16 feature set improves machine learning-based flaky test detection
performance compared to the FlakeFlagger feature set.

4.4.2 RQ2. Can machine learning classifiers effectively detect order-
dependent flaky test cases?

As shown in the bottom half of Table 4.4, the most performant pipeline for detecting OD flaky
tests used the Flake16 feature set with scaling for preprocessing, SMOTE for balancing, and
Random Forest as the classifier, and achieved an F1 score of 0.55. Compared to the best NOD
pipeline, its overall precision was 14% lower and its recall was 25% higher, resulting in an F1 score
that was just 6% higher. These differences are too marginal to conclude that machine learning
classifiers are any better at detecting OD flaky tests than NOD flaky tests, but suggests that their
performance at both classification problems was roughly the same. For the best OD pipeline, the
per-project F1 scores showed a significant degree of variance, achieving an F1 score of just 0.31
for conan and up to 0.79 for fonttools. Comparatively, the best NOD pipeline had a much lower
per-project variance, though the sample size of projects in this case is rather small to draw any
reliable conclusions. This per-project variance is not unique to this study [8, 159], however this is
the first to report it in the context of using machine learning to detect OD flaky tests.

Conclusion for RQ2 The performance of the best OD pipeline was broadly similar to that
of the best NOD pipeline, suggesting that machine learning classifiers are just as applicable to
the task of detecting OD flaky tests as they are to detecting NOD flaky tests.

4.4.3 RQ3. Which features of Flake16 are the most impactful?

Figure 4.2 shows each feature of Flake16 in descending order of their mean absolute SHAP
value in the context of detecting both NOD and OD flaky tests. The lines connecting the boxes
indicate how their ranks differ between the two classification problems. As indicated by the
number of lines with steep gradients, the difference is significant. For detecting NOD flaky tests,
the maximum threads feature was the most impactful by a considerable margin. For OD flaky
tests, the number of read- and write-related system calls were the most impactful metrics. All
these features are exclusive to Flake16, which could partially explain why it improved detection
performance compared to the FlakeFlagger feature set. In general, the dynamic features occupy
the higher ranks and the static features occupy the lower ranks for both classification problems.
This shows that the static features had less influence on the classifiers’ decisions, implying that
they may be less useful for detecting flaky tests. Clear exceptions to this are the AST depth
feature, which was the second most impactful for NOD flaky tests, the number of assertions,
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Table 4.6: For OD flaky tests, the per-project comparison of the best pipeline for both feature sets. FP,
FN, and TP are false positives, false negatives, and true positives. Pr. is precision and Re. is recall.

FlakeFlagger Flake16

Project FP FN TP Pr. Re. F1 FP FN TP Pr. Re. F1

airflow 89 94 199 0.69 0.68 0.69 133 55 238 0.64 0.81 0.72
celery 6 7 8 0.57 0.53 0.55 4 9 6 0.60 0.40 0.48
conan 23 7 6 0.21 0.46 0.29 14 8 5 0.26 0.38 0.31
Flexget 2 3 1 0.33 0.25 0.29 0 3 1 1.00 0.25 0.40
fonttools 19 5 37 0.66 0.88 0.76 21 1 41 0.66 0.98 0.79
hydra 19 9 10 0.34 0.53 0.42 4 13 6 0.60 0.32 0.41
ipython 96 248 56 0.37 0.18 0.25 274 126 178 0.39 0.59 0.47
kombu 6 13 10 0.62 0.43 0.51 1 15 8 0.89 0.35 0.50
libcloud 62 91 42 0.40 0.32 0.35 103 78 55 0.35 0.41 0.38
loguru 4 2 19 0.83 0.90 0.86 6 6 15 0.71 0.71 0.71
mitmproxy 10 11 6 0.38 0.35 0.36 5 12 5 0.50 0.29 0.37
Pillow 14 20 6 0.30 0.23 0.26 21 11 15 0.42 0.58 0.48
prefect 9 16 4 0.31 0.20 0.24 1 16 4 0.80 0.20 0.32
PyGithub 0 1 3 1.00 0.75 0.86 1 1 3 0.75 0.75 0.75
scikit0image 31 3 9 0.23 0.75 0.35 2 7 5 0.71 0.42 0.53
seaborn 11 6 2 0.15 0.25 0.19 1 6 2 0.67 0.25 0.36
setuptools 5 5 18 0.78 0.78 0.78 4 7 16 0.80 0.70 0.74
xonsh 10 12 7 0.41 0.37 0.39 8 13 6 0.43 0.32 0.36

Total 440 569 443 0.50 0.44 0.47 608 401 611 0.50 0.60 0.55

which was third for OD flaky tests, and test lines of code, which occupied the lower-middle ranks
in both instances.

Conclusion for RQ3 The most impactful feature when detecting NOD flaky tests was the
peak number of concurrently running threads during test case execution. When detecting OD
flaky tests, the number of read- and write-related system calls were the most impactful. In
general, the dynamic features were more impactful than the static features, though there were
notable exceptions to this.

4.5 Discussion

4.5.1 General Classifier Performance

The best pipeline for detecting NOD flaky tests achieved an F1 score of 0.52 and the best for
OD flaky tests achieved an F1 score of 0.55. For a binary classification problem with balanced
classes, an F1 score of 0.50 can be trivially attained by randomly guessing labels with uniform
class probabilities. Yet, both of this study’s classification problems are significantly imbalanced.
For the NOD problem, flaky tests account for just 0.02% of the entire dataset. For the OD
problem, flaky tests represent 1.5%. In both cases, one would expect uniform random guessing to
yield an F1 score significantly lower than 0.5. Considering the NOD problem, one would expect
random guessing to render half of the 66,861 non-flaky test cases as true negatives and half as false
positives. Similarly, one would expect half of the 145 flaky test cases to become false negatives
and the other half true positives. Applying the calculations for precision and recall described in
Section 4.3.5, this strategy would score 0.5 and 0.002 respectively, giving an ultimate F1 score
of 0.004. The F1 score would be similarly low for the OD problem and for both problems using
other trivial approaches, such as guessing according to class prior probabilities or labelling all test
cases as non-flaky. Therefore, the two pipelines that use Flake16 are significantly better suited
to flaky test detection than these trivial approaches.
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Figure 4.2: Impact of each feature of Flake16 for both classification problems. Each box represents
a feature and contains its mean absolute SHAP value, of which they are in descending order. The left
column contains the values for detecting NOD flaky tests and the right for of detecting OD flaky tests.
Features are connected between each column with a line, representing how significantly the ranks differ.
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Alshammari et al. [8], who presented the FlakeFlagger framework, recorded an F1 score of
0.66 when detecting NOD flaky tests. This is considerably higher than the F1 score achieved by the
best pipeline with the FlakeFlagger feature set in this study, which was 0.46. Yet, Alshammari
et al. used an entirely different dataset of tests from projects in the Java programming language,
which makes the comparison largely invalid. With this Python dataset, I demonstrated that
Flake16 improved NOD flaky test detection performance. There is no evidence to suggest that
this would not also be the case on Alshammari et al.’s dataset.

4.5.2 Reliability of Performance Metrics

Extrapolating the curves of Figure 4.1 suggests that I would identify more flaky tests of both
categories if I had Flake16Framework perform more test suite runs. Since more runs can only
result in test case labels transitioning from non-flaky to flaky, true negatives may become false
negatives and false positives may become true positives. The effect that this would have on
precision, recall, and F1 score would entirely depend on the frequency of both types of change.
However, I do not consider it likely that more test suite runs would change the overall conclusion of
RQ1 for two reasons. First, any label transitions would affect the results for the FlakeFlagger
feature set the same as they would for Flake16. Second, given the sublinear curves, I would expect
to identify increasingly fewer flaky tests as Flake16Framework performed more runs, meaning that
any changes in the F1 scores would be increasingly small.

4.5.3 Impact of Features

The results for RQ3 indicate that maximum threads was the most impactful feature when de-
tecting NOD flaky tests. This is unsurprising given the prevalence of flaky tests caused by asyn-
chronicity and concurrency, as reported in the literature [37, 89, 105, 136]. Naturally, both of
these causes imply multiple running threads during test case execution. For OD flaky tests, the
results indicate that the number of read- and write-related system calls were the most impactful.
Similarly, this could be explained by the relationship between filesystem activity and OD flaky
tests that has been described in previous studies [15, 17, 47, 105, 175]. Interestingly, these two
features were also highly impactful when detecting NOD flaky tests. A possible explanation for
this is that input and output operations may be performed asynchronously [210], which has been
established as a common cause of NOD flaky tests [105].

Alshammari et al.’s evaluation suggested that execution time was the most informative feature
that they considered for their FlakeFlagger framework [8]. In the results of this study, execution
time was the fifth most impactful feature when detecting NOD flaky tests, but was considerably less
impactful for OD flaky tests. They also determined that the three coverage features were highly
informative. Similarly, I found these to occupy the upper-middle ranks for both classification
problems, supporting the notion that they are valuable features for detecting flaky tests. In general,
one would expect features such as execution time, the three coverage features, and maximum
memory to be higher for larger and more complex test cases. I hypothesise that the impactfulness
of this group of features is simply a consequence of the intuition that the more a test case is doing,
the greater the margin for both error and flakiness.

Many of the static features of Flake16, such as cyclomatic complexity, Halstead volume, and
maintainability, appeared to have the lowest impact for both classification problems. A recent
study cast doubt on the fitness for purpose of Halstead volume and other code complexity metrics
[126]. This could be the reason why they appeared to be of limited value in the context of flaky
test detection. This is despite another recent study finding that the Halstead volume of flaky
tests was greater than non-flaky tests to a statically significant degree, albeit with a small effect
size [129]. With this result in mind, concluding that static features are generally less valuable
than dynamic features could be misguided, especially since I identified three static features that
appeared to make a considerable contribution to the classifiers’ predictions.
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4.5.4 Impact of Preprocessing, Balancing, and Classifier Choice

Table 4.4 does not indicate any clear best choice of preprocessing or balancing. For both the
FlakeFlagger and Flake16 feature sets, pipelines with different preprocessing and balancing
are in the top 10 for both classification problems with only small differences in F1 score. Most
interestingly, given the significant class imbalances, pipelines with no data balancing are in the top
10 for both classification problems with the FlakeFlagger features. In general, these results
indicate that Extra Trees was the better choice of classifier, though this is not definitive since
Random Forest was best for detecting OD flaky tests with Flake16, though in comparison to
extra trees the difference in F1 score is minimal. Overall, the only reliable conclusions I can draw
from these findings is that data balancing mostly improves detection performance, though there
is no clear best technique, and Extra Trees appears to have a slight edge over random forest.
When compared to Random Forest, Extra Trees trades increased bias for reduced variance [51].
Having increased bias means the model may fail to recognise relationships between feature data
and labels, known as underfitting. Having reduced variance means the model may be less sensitive
to noise and outliers, avoiding overfitting. It could be that the particular bias-variance trade-off
of Extra Trees makes it generally more suited to the specific problem of using machine learning
for flaky test detection.

4.5.5 Implications

Researchers. This study shows that using Flake16 improved machine learning-based flaky
test detection performance compared to the FlakeFlagger dataset. This demonstrates that
measuring a greater diversity of test case properties allows classifiers to better distinguish between
flaky and non-flaky test cases. The results also reveal that machine learning classifiers are just
as applicable to detecting OD flaky tests as they are to detecting NOD flaky tests. Therefore,
researchers should consider how machine learning classifiers can improve the scalability of OD
flaky test detection, since many previous techniques incur a significant time cost [47, 90, 175].

Developers. This study establishes that the maximum number of concurrently running threads
during test case execution is a very impactful feature when detecting NOD flaky tests. As such,
my advice to developers would be to avoid concurrency in tests as much as is possible. When
developers cannot heed this advice, it may be useful for them to assume such tests are likely to
be flaky [68]. The same can be said for test cases that perform significant input and output,
given that I found the number of read- and write- related system calls to be impactful features for
detecting both NOD and OD flaky tests.

4.6 Related Work

Lam et al. [90] presented iDFlakies, a technique for detecting flaky tests and labelling them as
OD or NOD. Initially, iDFlakies repeatedly executes a test suite in its original test run order, the
default order scheduled by the test runner, to identify which test cases pass consistently. It then
repeatedly executes the test suite in modified orders to distinguish between NOD and OD flaky
tests. Since iDFlakies requires many repeated test executions, it may not scale well to large or
slow-running test suites. Bell et al. [16] presented DeFlaker, which, unlike iDFlakies, cannot
identify OD flaky tests. Should a test case fail, having passed on a previous version of the software
under test and without covering any modified code, DeFlaker labels it as flaky. To measure
coverage, DeFlaker requires instrumentation. Likewise, Flake16Framework requires instrumen-
tation to measure coverage and other metrics in Flake16. In both cases, this instrumentation
introduces run-time overhead. However, Flake16Framework only requires a single instrumented
run to detect flaky tests, whereas DeFlaker requires instrumentation every time it is used.

The drawbacks of previous techniques, specifically the high volume of test executions, moti-
vated several studies to evaluate machine learning classifiers for detecting flaky tests. Bertolino
et al. [159] presented FLAST for predicting if a test case is flaky based purely on its source code.
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Their technique uses a k-nearest neighbour classifier [80] which labels test cases based on their co-
sine distance to labelled training instances within a bag-of-words feature space. The bag-of-words
approach is used to represent test cases as sparse vectors where each element corresponds to the
frequency of a particular identifier or keyword in its source code. Pinto et al. [128] performed a
similar study but included additional static features beyond the bag-of-words representation such
as the number of lines of code that make up a test case. This work was subsequently replicated
and expanded by Haben et al. [65]. Alshammari et al. [8] presented FlakeFlagger, a Random
Forest classifier encoding test cases with a feature set that is mostly a subset of Flake16. Their
evaluation showed that their feature set offered a 347% improvement in overall F1 score compared
to Pinto et al.’s purely static feature set at the relatively minimal cost of the single test suite run,
required to collect the dynamic features. One aspect these three studies have in common is that
they used datasets based on Bell et al.’s evaluation of DeFlaker [16]. Recall that DeFlaker
does not detect OD flaky tests, meaning they would be labelled as non-flaky during the training
and evaluation of the classifiers in these studies.

4.7 Conclusion

This study presented Flake16, a new feature set that encodes test cases for machine learning-
based flaky test detection. I evaluated the performance of 54 machine learning pipelines when
detecting both NOD and OD flaky tests using both Flake16 and a previously established feature
set. For both categories of flaky test, experiments involving 26 real-world Python projects showed
greater detection performance when using Flake16. Offering a more complete evaluation of the
problem of flaky test detection, this study is the first to apply machine learning classifiers to the
detection of OD flaky tests. Using the SHAP technique to evaluate the impact that each Flake16
feature has on the classifiers’ decisions, the results show the peak number of concurrently running
threads during test case execution to be the most impactful for detecting NOD flaky tests. For
OD flaky tests, the number of read- and write-related system calls have the greatest impact.
The experiments also reveal that static code complexity features such as cyclomatic complexity,
Halstead volume, and maintainability has little impact in both cases.

As demonstrated by Table 4.4, the machine learning pipelines were very fast but their detection
performance was suboptimal, with F1 scores around 0.5. This raises the question of how machine
learning classifiers can be combined with rerunning-based detection techniques. Such a hybrid
approach could potentially outperform a classifier while imposing a time cost that is significantly
lower than rerunning every test case. Arguably, this would have considerably more utility with
respect to mitigating flaky tests because it is accurate enough to identify the majority of the flaky
tests in a test suite but fast enough that developers can realistically be expected to use it.



Chapter 5

Empirically Evaluating Flaky Test
Detection Techniques Combining
Test Case Rerunning and Machine
Learning Models

The contents of this chapter is based on “O. Parry, G. M. Kapfhammer, M. Hilton, and P. McMinn.
Empirically evaluating flaky test detection techniques combining test case rerunning and machine
learning models. Empirical Software Engineering, 28(72), 2023”.

5.1 Introduction

The research community has introduced a multitude of automated techniques to detect flaky tests.
Many are rerunning-based, meaning they may require an excessive number of repeated test case
executions, making them expensive for deployment in large software projects [90, 175]. Alshammari
et al. [8] repeatedly executed the test suites of 24 Java projects and were still detecting non-order-
dependent (NOD) flaky tests after 10,000 reruns. The time cost of rerunning-based detection
led researchers to investigate techniques that do not require test case runs but are instead based
on machine learning classifiers [8, 128, 159]. However, they only offer an approximate solution
in this domain. For example, in Chapter 4, after evaluating 54 machine learning pipelines for
detecting flaky tests, the best detection performance I observed was an F1 score of around 0.5.
The prohibitive time cost of rerunning-based techniques and the limited performance of machine
learning-based techniques leaves practitioners with a stark choice.

This study introduces CANNIER (maChine leArNiNg assIsted tEst Rerunning), a high-level
approach for reducing the time cost of rerunning-based detection techniques by combining them
with machine learning classifiers. It does this by using the output of the classifier as a heuristic
to reduce the problem space for the rerunning-based technique. I demonstrate the applicability
of CANNIER by instantiating it for three previously established detection techniques. I imple-
mented these within an automated tool and empirically evaluated them using 30 Python projects
as subjects. I found that CANNIER could significantly reduce time cost at the expense of only
a minor reduction in detection performance. For example, by applying CANNIER to the Clas-
sification stage of iDFlakies [90] (that distinguishes NOD flaky tests from OD flaky tests), I
was able to reduce its time cost by 84% at the expense of misclassifying just 8 flaky tests out of
1,130. Therefore, CANNIER represents a “best of both worlds” solution to flaky test detection.
Furthermore, the evaluation of CANNIER builds upon the findings from Chapter 4 by extending
the Flake16 feature set, evaluating the impact of repeated feature measurements on detection
performance, and analysing the impact of each feature in greater detail.
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In summary, the main contributions of this study are:

1. Approach (Section 5.3): CANNIER significantly reduces the time cost of rerunning-
based flaky test detection with a minimal decrease in detection performance.

2. Tooling (Section 5.4): To facilitate the empirical evaluation and allow for replication, I
developed a framework of automated tools that I make freely available [223].

3. Evaluation (Section 5.5): A comprehensive empirical evaluation demonstrated the ef-
fectiveness of CANNIER’s combination of rerunning and machine learning techniques, re-
vealing further novel findings about machine learning-based flaky test detection, such as the
performance of machine learning classifiers for detecting polluter test cases.

4. Dataset (Section 5.5.1): A dataset containing 89,668 tests from 30 Python projects taking
over six weeks of compute time to produce. I make this available as part of the replication
package to enable further research [217].

5.2 Background

5.2.1 Rerun

The research community has presented many automated flaky test detection techniques that are
based on rerunning test cases. The most straight-forward such technique is to repeatedly execute a
test case until it exhibits both passing and failing behaviour. In its most basic form, this technique
involves rerunning the test cases of a test suite in the same test run order and under the same
environmental conditions each time [16]. I refer to this specific technique as Rerun. Since the test
run order remains constant, Rerun can only identify non-order-dependent (NOD) flaky tests. As
its only parameter, Rerun requires an upper-limit on the number of times to execute a test case
without observing an inconsistent outcome. If the upper-limit is reached, the technique classifies
the test case as non-flaky and stops rerunning it. Since many test cases may require hundreds or
even thousands of runs to manifest their flakiness (see Figure 4.1), this technique can become very
expensive for long-running test suites, thus limiting the technique in practice.

5.2.2 iDFlakies

Lam et al. [90] presented iDFlakies, a technique for detecting flaky tests and classifying them
as NOD or a victim 1 (OD). The technique consists of three stages: Setup, Running, and Classi-
fication. In the Setup stage, iDFlakies repeatedly executes the test suite in its original order to
identify and filter any consistently-failing test cases. In the Running stage, iDFlakies continues
to rerun the test suite, but this time in modified test run orders. In the Classification stage, for
every test case that failed during the Running stage, iDFlakies re-executes the test suite in both
the original order and in the modified order that witnessed the failure, truncated up to and includ-
ing the failing test case. I refer to this stage as iDFClass (iDFlakiesClassification). Should
the test case fail again in the truncated modified order and pass again in the truncated original
order, iDFlakies classifies it as a victim. Otherwise, it classifies the test case as NOD. Should a
test case fail multiple times during the Running stage, iDFlakies can repeat the Classification
stage for a percentage of the additional failures for greater confidence in the final label.

iDFlakies has several parameters: the number of reruns during the setup stage, the number
of reruns during the Running stage, the method of generating the modified test run orders during
the Running stage (e.g., shuffle), and the percentage of additional failures to recheck in the Clas-
sification stage. Depending on the choice of values for these parameters, iDFlakies can require
a significant number of test executions and thus impose a prohibitive time cost.

1The paper that introduced the victim/polluter terminology [141] also introduced the terms brittle/state-setter
for when the order-dependent flaky test fails in isolation. In this chapter, I use the victim/polluter terms generally,
regardless of the order-dependent flaky test’s outcome.
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5.2.3 Pairwise

While the iDFlakies technique can detect victim flaky tests, it cannot identify their associated
polluters. Polluters are the test cases that induce order-dependency in victims by leaving behind
side-effects [141]. Zhang et al. [175] proposed a technique that can detect a subset of a test suite’s
victims and their polluters (although the authors designed the technique primarily for detecting
victims). It involves executing every permutation of test cases of length two (every pair in both
orders) in isolation, such as in separate Java Virtual Machine or Python interpreter processes. I
refer to this technique as Pairwise. Initially, Pairwise requires an expected outcome for every
test case. It could obtain these by executing each test case in isolation to observe their outcome
independent of the possible side-effects of other test cases.

Once every test case has an expected outcome, Pairwise executes every 2-permutation of test
cases, such that each test case has a turn at being both the first and second to be executed in the
pair — the candidate polluter and victim, respectively. For more reliable results, Pairwise ought
to filter out any pairs with a known NOD flaky test as the candidate victim because they do not
have a reliable expected outcome (although Zhang et al. did not propose this filtering stage in
their paper). For a given pair, if the second test case yields an outcome different from expected,
Pairwise classifies it as a victim and classifies the first test as one of its polluters.

Previous work has determined that an order-dependency can involve more than two test cases
[141], though as part of their empirical study, Zhang et al. found that 76% of order-dependencies
did involve just two. Considering only pairs of test cases, the time complexity of Pairwise is
already quadratic in the size of the test suite and hence very expensive, and so to consider longer
permutations would quickly render the technique intractable.

5.3 The CANNIER Approach

CANNIER (maChine leArNiNg assIsted tEst Rerunning) is a high-level approach that combines
a rerunning-based flaky test detection technique and one or more machine learning classifiers. The
classifiers must provide a predicted probability that a given test case is flaky. The general concept
behind CANNIER is to use the predicted probabilities as a heuristic to reduce the problem space
for the rerunning-based technique. As attested by the later empirical evaluation (see Section 5.5),
this approach can dramatically reduce the number of test case executions, and therefore time cost,
at the expense of only a minor decrease in detection performance. The specifics of how CANNIER
uses the predicted probabilities depends on the nature of the rerunning-based technique. Figure
5.1 provides a visual summary of the application of CANNIER to the three rerunning-based
detection techniques introduced in Section 5.2.

5.3.1 Motivating Example

I used the airflow project, developed by the Apache Software Foundation, as one of the subjects
in the empirical evaluation [201]. Its test suite contains 3,251 test cases as of version 1.10.14.
I executed the test suite 2,500 times in its original order and identified 66 NOD flaky tests.
Following the empirical evaluation, I found that the single-core time cost to detect these flaky
tests, using Rerun with a maximum of 2,500 reruns per test case, is 1.69× 106 seconds. This is
based on the time cost of each individual test case that I measured on a machine with a 24-core
AMD Ryzen 5900X CPU. Having the same number of virtual cores and a comparable single-core
performance, m5zn.6xlarge is arguably the most similar cloud instance offered by Amazon Web
Services [257]. As of August 2022, Amazon offers this instance at the on-demand hourly rate of
1.982 USD. This means that to detect the NOD flaky tests in airflow using Rerun would take
((1.69× 106)÷ 24)÷ 602 ≈ 19.56 hours and cost 19.56× 1.982 ≈ 38.77 USD on this instance.

Given the cost in both time and money of using Rerun to detect flaky tests, a developer may
instead opt to use a machine learning classifier. I trained an Extra Trees classifier, a variation
of Random Forest [51], to detect NOD flaky tests and evaluated it using stratified 10-fold cross
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(a) For Rerun and iDFClass, CANNIER uses a single machine learning classifier to predict the probability of a
given test case being of the positive class (flaky). If the probability is below a lower-threshold or above an upper-
threshold, CANNIER assigns the test case a negative or positive predicted label respectively. In the ambiguous
region between the two thresholds, CANNIER delegates to the rerunning-based technique to predict the label.
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(b) For Pairwise, CANNIER uses one machine learning classifier to predict the probability of each test case being
a victim and another to do the same for being a polluter. All those with a probability of being a victim above
a threshold join the set of candidate victims, TV . Similarly, those with a probability of being a polluter above a
threshold enter the candidate polluters set, TP . CANNIER then restricts Pairwise to consider only test cases from
TP as the first test case of each pair, and only test cases from TV as the second.

Figure 5.1: CANNIER uses the predicted probabilities from one or more machine learning classifiers
as a heuristic to reduce the problem space of a rerunning-based flaky test detection technique. A single
machine learning classifier is suitable for Rerun and the Classification stage of iDFlakies (iDFClass)
(a). Two machine learning classifiers are required for Pairwise (b).
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validation. Within airflow, I found that it misclassified 26 test cases that were flaky as non-
flaky, and 26 test cases that were non-flaky as flaky. With only 40 of the 66 NOD flaky tests cases
actually classified as such, the classifier achieved a precision of 40÷(40+26) ≈ 61% and a recall of
40÷ (40 + 26) ≈ 61%. In this context, precision is the percentage of detected flaky tests that are
genuinely flaky and recall is the percentage of genuinely flaky tests that were detected. Therefore,
machine learning-based detection offers a very approximate solution. Because the classifier uses
dynamic features, the time cost of applying it is approximately equal to the time cost of a single
test suite run to produce a feature vector for each test case. I observed a single-core time cost for
this of 7.77× 102 seconds for Airflow. This would require ((7.77× 102)÷ 24)÷ 602 ≈ 0.01 hours
on the m5zn.6xlarge instance, costing 0.01× 1.982 ≈ 0.02 USD. I do not consider the time cost
associated with applying the Extra Trees classifier to each test case because it is negligible relative
to the time taken to execute the test suite (typically less than one second, see Table 4.4). I also do
not consider the time taken to train the Extra Trees classifier. This is because the classifier only
needs to be trained once and can then be applied any number of times, and so I consider training
to be an off-line stage that does not contribute to the time cost of applying the classifier.

Rerunning-based detection and machine learning-based detection represent opposite extremes.
As shown in this example, Rerun is very expensive and the Extra Trees classifier is cheap but
very approximate. By applying CANNIER to Rerun (CANNIER+Rerun), developers get a
flaky test detection technique that is much cheaper than Rerun and much more accurate than
the Extra Trees classifier. Following the empirical evaluation, I found that the single-core time
cost to detect the 66 NOD flaky tests in airflow using CANNIER+Rerun is 7.71×105 seconds.
This would require ((7.71× 105)÷ 24)÷ 602 ≈ 8.92 hours on an m5zn.6xlarge instance at a cost
of 8.92×1.982 ≈ 17.68 USD. Therefore, CANNIER reduces the cost in USD of Rerun by 54%. I
also found that it misclassified three flaky tests as non-flaky but correctly classified the remaining
62. This leads to a precision of 63÷ (63 + 0) = 100% and a recall of 63÷ (63 + 3) ≈ 95%. This is
far more accurate than the Extra Trees classifier that only achieved a precision and recall of 61%.

The empirical evaluation demonstrates that CANNIER is effective for multiple projects and
the three rerunning-based detection techniques introduced in Section 5.2. For the whole dataset
of 89,668 test cases from 30 projects, I found that CANNIER was able to reduce the time cost
(and therefore monetary cost) by an average of 88% across the three techniques.

5.3.2 Single-Classifier CANNIER

Using CANNIER with a single machine learning classifier is suitable for reducing the time cost
of Rerun and iDFClass. In the case of Rerun, the flaky test classification problem is that of
distinguishing NOD flaky tests from the rest of the test cases. Since it is a binary problem, NOD
flaky tests are the positive class and the rest of the test cases are the negative. For iDFClass,
it is telling apart NOD and victim (OD) flaky tests. In this case, NOD flaky tests are the
positive class and victims are the negative. For both Rerun and iDFClass, the machine learning
classifier should provide a predicted probability of belonging to the positive class for each test
case. CANNIER assigns a positive predicted label to a test case if this probability is above an
upper threshold and a negative predicted label if it is below a lower threshold. This leaves an
ambiguous region between the two thresholds. CANNIER delegates any test cases with predicted
probabilities within this ambiguous region to the rerunning-based technique.

5.3.3 Multi-Classifier CANNIER

Using two classifiers, CANNIER can reduce the time cost of Pairwise. The first classifier is
used to predict the probability of each test case being a victim. In other words, it addresses the
classification problem of distinguishing victims from non-victims. The second is used to do the
same but for being a polluter. In both instances, CANNIER classifies every test case above a
threshold as the positive class (a victim or a polluter) and every other test case as the negative (not
a victim or not a polluter). In this way, CANNIER produces two non-mutually exclusive sets,
one of victims, TV , and one of polluters, TP (there is no reason why a test case cannot be both a
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Table 5.1: The 18 features measured by pytest-CANNIER.

# Feature Description

1 Read Count Number of times the filesystem had to perform input [241].
2 Write Count Number of times the filesystem had to perform output [241].
3 Run Time Elapsed wall-clock time of the whole test case execution.
4 Wait Time Elapsed wall-clock time spent waiting for input/output operations.
5 Context Switches Number of voluntary context switches.
6 Covered Lines Number of lines covered.
7 Source Covered Lines Number of lines covered that are not part of test cases.
8 Covered Changes Number of times each covered line has been modified in the last 75 commits.
9 Max. Threads Peak number of concurrently running threads.

10 Max. Children Peak number of concurrently running child processes.
11 Max. Memory Peak memory usage.
12 AST Depth Maximum depth of nested program statements in the test case code.
13 Assertions Number of assertion statements in the test case code.
14 External Modules Number of non-standard modules (i.e., libraries) used by the test case.
15 Halstead Volume A measure of the size of an algorithm’s implementation [7, 126, 129].
16 Cyclomatic Complexity Number of branches in the test case code [52, 126, 129].
17 Test Lines of Code Number of lines in the test case code [126, 129].
18 Maintainability A measure of how easy the test case code is to support and modify [164, 279].

victim and a polluter [162]). Then, CANNIER applies Pairwise with only the members of TP as
the first test in each pair and only the members of TV as the second. Therefore, CANNIER can
reduce the time complexity of Pairwise from O(|T |2), where T is the set of all test cases in the
test suite, to O(|TV |× |TP |), that is considerably faster even when TV and TP are not significantly
smaller than T .

5.4 Tooling

To produce the dataset and facilitate the empirical evaluation, I developed a suite of automated
tools including a plugin for the Python testing framework pytest [266], named pytest-CANNIER

[225], and a command-line tool named CANNIER-Framework [223]. The purpose of pytest-CANNIER
is to add the functionality to pytest necessary for the evaluation. This includes recording test
case outcomes and measuring feature values. The purpose of CANNIER-Framework is to automate
every aspect of the evaluation, including executing pytest-CANNIER on the subject test suites,
collating raw data, and training and evaluating machine learning classifiers.

5.4.1 pytest-CANNIER

I decided to target pytest due to its compatibility with test suites written for other frameworks
such as unittest [278]. pytest-CANNIER takes a test suite T as input and offers four execution
modes: Baseline, Shuffle, Features, and Victim. In the Baseline mode, the plugin executes the
test suite as normal. For each test case t ∈ T , pytest-CANNIER records its outcome bt, that is
either pass, bt = 0, or fail, bt = 1. In the Shuffle mode, the plugin randomises the order of the test
cases and records the outcome of every test case st.

In the Features mode, pytest-CANNIER produces a feature vector xt ∈ R18, for each test case
t. This contains the 16 features of Flake16 alongside two additional metrics. The first of these is
Wait Time. This is the amount of time during test case execution spent waiting for input/output
(I/O) operations to complete. Previous research identified I/O in test cases as being potentially
associated with flakiness [105]. The second additional feature is Max. Children. This measures
the peak number of concurrently running child processes. A finding that many empirical studies
have in common is that asynchronous operations and concurrency are very frequent causes of flaky
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Figure 5.2: As input, pytest-CANNIER takes a test suite T =(t1, t2, t3) and can be launched in four
modes: Baseline, Shuffle, Features, or Victim. In the Baseline mode, the plugin runs the test suite in
its original order and records the pass/fail outcome of every test case (b1, b2, b3). In the Shuffle mode,
pytest-CANNIER executes the test suite in a random order and also records test case outcomes (s1, s2,
s3). In the Features mode, the plugin produces a feature vector for each test case (x1, x2, x3). In the
Victim mode, pytest-CANNIER takes a victim test case as an additional input (t1) and initially executes
it in isolation to ascertain its expected outcome (o1). Then, the plugin executes every other test case in
a separate process with the victim immediately following and records its outcome (o2,1, o3,1). This is to
identify polluters of the victim.

tests [37, 89, 105, 136]. This was my rationale for the inclusion of Max. Threads into Flake16.
However, due to the global interpreter lock implemented within the CPython interpreter [226], it
may be necessary for developers to achieve concurrency with child processes. Table 5.1 offers a
description of all 18 features. In the Victim mode, the plugin takes a test case v, executes the
test sequence 〈v〉, and records the outcome of v, ov. This is to ascertain the expected outcome
of v when executed in isolation from the rest of the test suite. Following this, pytest-CANNIER
executes the sequences 〈p, v〉 for every test case p in T −{v}, while recording the outcome of v when
executed immediately after each p, op,v. This is to identify the polluters of v where op,v 6= ov. For
isolation between sequence runs, the plugin executes them in separate Python processes [16, 175].
This implements the Pairwise technique with respect to a single candidate victim v. Figure 5.2
provides a visual summary of pytest-CANNIER.

5.4.2 CANNIER-Framework

Classifier Training and Evaluation Data

As input, CANNIER-Framework takes a subject set of test suites U . With every test suite T ∈ U as
input, the framework executes the plugin NB times in the Baseline mode, resulting in NB values
of bt, (bt,1, bt,2, . . . , bt,NB ), for each test case t ∈ T . Similarly, CANNIER-Framework runs every
test suite NS times in the Shuffle mode, leading to NS values of st, (st,1, st,2, . . . , st,NS ). The
framework counts the number of times that every test case fails in the Baseline mode Bt and in
the Shuffle mode St. The definition of both values is given in the following equation.

Bt =

NB∑
i=1

bt,i St =

NS∑
i=1

st,i (5.1)

CANNIER-Framework also executes each test suite NF times with pytest-CANNIER in the Fea-
tures mode, resulting in NF feature vectors for every test case t (xt,1,xt,2, . . . ,xt,NF ). As an
additional input, the framework takes I, a random sample of nF indices ranging from 1 to NF
inclusive without replacement. With this, the framework produces a mean feature vector Xt(I),
to encode each test case according to the following equation.

Xt(I) =
1

nF

∑
i∈I

xt,i (5.2)
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Table 5.2: The four flaky test classification problems. For test suite T , the domain Tφ is the subset of
T that is relevant to the problem φ. For a specific Tφ, the negative class for each problem (T −φ ) is the
complement of the positive.

φ Name Domain (Tφ) Positive Class (T +
φ )

1 NOD-vs-Rest T {t|t ∈ Tφ, 0 < Bt < NB}
2 NOD-vs-Victim {t|t ∈ T , Bt < NB ∧ St > 0} {t|t ∈ Tφ, 0 < Bt < NB}
3 Victim-vs-Rest T {t|t ∈ Tφ, (Bt = 0 ∨Bt = NB) ∧Bt 6= St}
4 Polluter-vs-Rest T {p|p ∈ Tφ, ∃v ∈ Tφ − {p}(op,v 6= ov)}

For each T ∈ U , the framework runs the Victim mode of pytest-CANNIER with every test case
that had a consistent outcome in the Baseline mode (Bv = 0 ∨ Bv = NB) and an inconsistent
outcome in the Shuffle mode (Bv 6= Sv) as the candidate victim v. The former condition is to
ensure that every v has the reliable expected outcome that Pairwise requires. The latter is a
time saving measure — if a test case is consistent in the Shuffle mode then it is very unlikely to be
a victim and therefore would have no polluters. For the purposes of greater reproducibility and
isolation, CANNIER-Framework executes the plugin in a separate Docker container for every run
of a test suite [214]. The Dockerfile contains all the commands needed to reproduce the Docker
image and is available as part of the replication package [217].

Once the plugin has finished performing the test suite runs, CANNIER-Framework determines
a ground-truth label yt,φ, for every test case t in the whole subject set, t ∈

⋃
T ∈U T , and flaky

test classification problem φ. Recall from Section 5.3 that these problems are: NOD flaky tests
versus the rest of the test cases (NOD-vs-Rest, φ = 1), NOD flaky tests versus victim flaky tests
(NOD-vs-Victim, φ = 2), victim flaky tests versus the rest (Victim-vs-Rest, φ = 3), and polluters
versus the rest (Polluter-vs-Rest, φ = 4). Each problem has a domain Tφ ⊆ T , that is the subset
of test cases in a given test suite T that are relevant. Since the problems are binary classifications,
they also have a positive class, T +

φ ⊂ Tφ, and a negative class, T −φ = Tφ − T +
φ . The ground-truth

label for a test case is positive if it is in the positive class of a problem (yt,φ = 1) and negative
otherwise (yt,φ = 0). For a test case t belonging to test suite T , the following equation defines the
ground truth label yt,φ.

yt,φ =

{
0 if t ∈ T −φ
1 if t ∈ T +

φ

(5.3)

For the NOD-vs-Rest problem (φ = 1), the positive class is the set of NOD flaky tests, that
I define as those with an inconsistent outcome in the Baseline mode (0 < Bt < NB). The
only test cases that are relevant to the NOD-vs-Victim problem (φ = 2) are those that did not
consistently fail during the runs in the Baseline mode (Bt < NB) and failed at least once in
Shuffle mode (St > 0). The former condition corresponds to the Setup stage of iDFlakies where
such test cases would be excluded from further analysis. The latter corresponds to the Running
stage, where any test case that fails at least once goes on to the Classification stage. For this
problem, the positive class is also the set of NOD flaky tests. For the Victim-vs-Rest problem
(φ = 3), the positive class is the set of test cases with a consistent outcome in the Baseline mode
(Bt = 0 ∨Bt = NB) and an inconsistent outcome in the Shuffle mode (Bt 6= St). This represents
the set of victims. Finally, for the Polluter-vs-Rest problem (φ = 4), the positive class is the set
of test cases that behaved as polluters in the Victim mode. Table 5.2 gives a definition of each
problem.

Classifier Training and Evaluation Procedure

CANNIER-Framework follows a general machine learning pipeline for classifier training and evalua-
tion. The pipeline leaves the specific classifier and data balancing technique unspecified, such that
it can be instantiated with a choice for both of these components to create a concrete pipeline.
The pipeline performs stratified 10-folds cross validation. This creates ten folds where 90% of the
test cases in the whole subject set are for training and the other 10% are for evaluation. The
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Figure 5.3: CANNIER-Framework performs stratified k-folds cross validation upon the set of all test cases
in the subject set,

⋃
T ∈U T . Following this, it applies a data balancing technique to the training portion

of each fold. The framework then trains a machine learning classifier using the mean feature vectors
Xt(I), and ground-truth labels yt,φ, of every test case t in each training portion. Finally, for each fold,
CANNIER-Framework applies the trained classifier to the feature vectors of every test case in the evaluation
portion. Since the evaluation portion of each fold is unique, every test case ends up with a predicted
probability of being in the positive class, P (yt,φ = 1|Xt(I)).
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class proportion of each fold roughly follows that of the whole subject set, and since that is highly
imbalanced for every classification problem, the framework applies the data balancing technique
to the training set only [23]. For each fold, the framework fits the machine learning classifier with
the training set and applies it to every test case in the evaluation set. For a given problem φ, this
results in a predicted probability P (yt,φ = 1|Xt(I)), of each test case in the evaluation set being
of the positive class. Since the evaluation portion of every fold is unique, after ten folds each
test case in the whole subject set has a prediction. Figure 5.3 offers an overview of the general
pipeline. Given a lower-threshold ωl and an upper-threshold ωu on the predicted probability as
further inputs, CANNIER-Framework assigns a predicted label zt,φ(I, ωl, ωu), to every test case, as
previously shown in Figure 5.1. The following equation defines the predicted label for a test case,
denoted zt,φ.

zt,φ(I, ωl, ωu) =


0 if P (yt,φ = 1|Xt(I)) < ωl
1 if P (yt,φ = 1|Xt(I)) ≥ ωu
yt,φ if ωl ≤ P (yt,φ = 1|Xt(I)) < ωu

(5.4)

Using the ground-truth and predicted labels for each test case in a given test suite T , the
framework calculates the frequencies of the four confusion matrix categories: true-positive (TP),
false-positive (FP), false-negative (FN), and true-negative (TN). From these, it calculates the
Matthews correlation coefficient (MCC) to assess the detection performance of the machine learn-
ing classifier for a given problem φ. The possible values of MCC are the closed real range between
-1 and 1, where 1 indicates a classifier with perfect agreement between the ground-truth labels
and the predicted labels and 0 indicates a classifier that is no better than random guessing of
the predicted labels. A classifier with an MCC of -1 indicates perfect disagreement between the
ground-truth labels and the predicted labels, such that taking a classifier with an MCC of 1 and in-
verting the predicted labels would yield an MCC of -1. I selected MCC as the overall performance
metric, as opposed to F1 score, because it only produces a high value if the classifier performs well
in terms of all four confusion matrix categories, whereas F1 score ignores true-negatives [24]. See
Figure 5.4 for a summary of how CANNIER-Framework combines pytest-CANNIER and the general
machine learning pipeline from Figure 5.3 to produce this data. The following equation defines
MCCTφ with respect to the four confusion matrix categories respectively denoted as TPTφ , FPTφ ,
FNTφ , and TNTφ .

TPTφ(I, ωl, ωu) =
∑
t∈Tφ

yt,φ zt,φ(I, ωl, ωu),

FPTφ(I, ωl, ωu) =
∑
t∈Tφ

[1− yt,φ] zt,φ(I, ωl, ωu),

FNTφ(I, ωl, ωu) =
∑
t∈Tφ

yt,φ [1− zt,φ(I, ωl, ωu)],

TNTφ(I, ωl, ωu) =
∑
t∈Tφ

[1− yt,φ] [1− zt,φ(I, ωl, ωu)],

MCCTφ(I, ωl, ωu) =
TPTφTNTφ − FPTφFNTφ√

(TPTφ + FPTφ)(TPTφ + FNTφ)(TNTφ + FPTφ)(TNTφ + FNTφ)

(5.5)

Technique Evaluation Procedure

CANNIER-Framework evaluates the application of CANNIER to Rerun (CANNIER+Rerun),
the Classification stage of iDFlakies (CANNIER+iDFClass), and Pairwise (CAN-
NIER+Pairwise). I developed a mathematical model, that I implemented within the framework,
to estimate the detection performance and single-core time cost associated with a set of param-
eters for the three techniques. CANNIER-Framework uses the ground-truth labels and predicted
probabilities for each test from the NOD-vs-Rest problem (φ = 1) to model CANNIER+Rerun.
It uses the data from the NOD-vs-Victim problem (φ = 2) to model CANNIER+iDFClass in an
equivalent fashion. In both of these cases, the ground-truth labels represent the output from the
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Figure 5.4: An overview of how CANNIER-Framework combines pytest-CANNIER and the general machine
learning pipeline, with subject set U , random sample I, and thresholds ωl and ωu as input. It references
previously defined figures (F.) and equations (E.).
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“Rerun/iDFClass” block and the predicted probabilities represent the output from the “Model”
block in Figure 5.1a. The parameters of CANNIER+Rerun are the lower- and upper-thresholds
on the classifier prediction, ωl and ωu, the sample size to produce the mean feature vectors for each
test case, denoted nF , and the maximum number of times to execute a test case without observing
an inconsistent outcome, written as Rmax . For CANNIER+iDFClass, the parameters are ωl,
ωu, nF , and the percentage of additional failures to recheck, denoted γ. The framework uses the
outcomes from the Victim mode and the predicted probabilities from the Victim-vs-Rest (φ = 3)
and Polluter-vs-Rest (φ = 4) problems to model CANNIER+Pairwise. The outcomes represent
the “Pairwise” block and the predicted probabilities represent the “Victim model” and “Polluter
model” blocks in Figure 5.1b. For CANNIER+Pairwise, the parameters are the threshold for
the victim classifier ωV , the threshold for the polluter classifier ωP , and nF .

Given a random sample I of size nF along with ωl and ωu, CANNIER-Framework estimates the
detection performance of CANNIER+Rerun and CANNIER+iDFClass as an MCC value.
For every test case t in a given test suite T , the framework needs its individual time cost Ct,
and the number of times Rerun is expected to execute it Rt(I, ωl, ωu), to estimate the time cost
of CANNIER+Rerun, CRerun

T (I, ωl, ωu). It can find Ct from the output of pytest-CANNIER

in the Features mode, since this is the third feature in Table 5.1. As for Rt(I, ωl, ωu), when
P (yt,1 = 1|Xt(I)) is not in the ambiguous region between ωl and ωu, CANNIER+Rerun does
not delegate to Rerun and so it never executes t (Rt(I, ωl, ωu) = 0). Otherwise, when yt,1 = 0,
Rerun would execute t exactly Rmax times since t is not NOD flaky and therefore Rerun would
never observe an inconsistent outcome (Rt(I, ωl, ωu) = Rmax ). If yt,1 = 1, Rerun would execute
t until it either observes an inconsistent outcome or reaches a limit of Rmax runs. I refer to the
final run number where either of these conditions are met as rt. In this case, Rt(I, ωl, ωu) is
the expected value of the discrete, finite distribution P (rt = x). The probability of t giving an
inconsistent outcome after exactly x runs is Exact(t, x). This is the probability of t failing x − 1
times and then passing once, or passing x − 1 times and then failing once. When x < Rmax ,
P (rt = x) = Exact(t, x). However, when x = Rmax , P (rt = x) is the probability of t giving
an inconsistent outcome after exactly Rmax runs, Exact(t, Rmax ), or not giving an inconsistent
outcome after reaching the limit of Rmax runs. Where E[P ] is the expected value of the distribution
P , the definition of the time cost of CANNIER+Rerun, denoted CRerun

T , is given by the following
equation.

Ct =
1

NF

NF∑
i=1

xt,i,3,

Exact(t, x) =

(
Bt
NB

)x−1(
1− Bt

NB

)
+

(
1− Bt

NB

)x−1
Bt
NB

,

P (rt = x) =

{
Exact(t, x) if 1 < x < Rmax

Exact(t, Rmax) + (1−
∑Rmax
r=2 Exact(t, x)) if x = Rmax

,

Rt(I, ωl, ωu) =


0 if P (yt,1 = 1|Xt(I)) < ωl ∨ P (yt,1 = 1|Xt(I)) ≥ ωu

Rmax if ωl ≤ P (yt,1 = 1|Xt(I)) < ωu ∧ yt,1 = 0
E[P (rt = x)] if ωl ≤ P (yt,1 = 1|Xt(I)) < ωu ∧ yt,1 = 1

,

CRerun
T (I, ωl, ωu) =

∑
t∈T

CtRt(I, ωl, ωu)

(5.6)

To estimate the time cost of CANNIER+iDFClass, CiDFClass
T (I, ωl, ωu), for a given test

suite T , CANNIER-Framework requires the number of times that iDFClass is expected to attempt
to classify each test case t ∈ T2 as either NOD or a victim, Γt(I, ωl, ωu). As before, when P (yt,2 =
1|Xt(I, ωl, ωu)) is not in the ambiguous region, CANNIER+iDFClass does not delegate to
iDFClass and so it never classifies t (Γt(I, ωl, ωu) = 0). Otherwise, iDFClass will classify a
test case after its first failure during the Classification stage and will reclassify a percentage of
the additional failures as determined by γ. I assume that any test case undergoing classification
by iDFClass has a uniform probability of appearing at any position in the original and modified
test run orders. Under this assumption, the mean length of the truncated original and modified
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orders would both be equal to half the size of the test suite. Therefore, the mean time cost of
classifying a single test case is equal to that of one full test suite run, as given by the following
equation.

Γt(I, ωl, ωu) =

{
0 if P (yt,2 = 1|Xt(I)) < ωl ∨ P (yt,2 = 1|Xt(I)) ≥ ωu

1 + γ(St − 1) if ωl ≤ P (yt,2 = 1|Xt(I)) < ωu
,

CiDFClass
T (I, ωl, ωu) =

(∑
t∈T2

Γt(I, ωl, ωu)

)∑
t∈T

Ct

(5.7)

CANNIER-Framework estimates the detection performance of CANNIER+Pairwise as the
ratio of victim-polluter pairs that would be detected by Pairwise to all such pairs in a given
test suite T . I selected this simpler metric, as opposed to MCC, because I assume that CAN-
NIER+Pairwise will never incorrectly label a pair of test cases as having a victim-polluter
relationship when they do not (false-positive). Under this assumption, this metric is equivalent to
true-positive rate (TPR), also known as sensitivity. It has a range between 0 and 1, where 0 indi-
cates that CANNIER+Pairwise detected none of the victim-polluter pairs and 1 indicates that
it detected all of them. Since I designed the framework to only consider non-NOD flaky tests as
candidate victims, such that they all have a reliable expected outcome, I have sufficient assurance
that the assumption holds. Recall from Section 5.3.3 that CANNIER+Pairwise builds a set of
victims TV (I, ωV ), and polluters TP (I, ωP ), given victim- and polluter-thresholds ωV and ωP . It
then executes Pairwise with only the pairs in TP (I, ωP )×TV (I, ωV ). CANNIER-Framework builds
these sets using the predicted probabilities from the Victim-vs-Rest (φ = 3) and Polluter-vs-Rest
(φ = 4) problems. The framework calculates TPR by dividing the number of victim-polluter pairs
in TP (I, ωP ) × TV (I, ωV ) by the number of such pairs in T × T . In other words, it divides the
number of true-positives (TP) by the number of positives (P). To know how many pairs are in
both sets, CANNIER-Framework relies on the outcomes recorded by pytest-CANNIER in the Victim
mode. The framework estimates the time cost of CANNIER+Pairwise, CPairwise

T (I, ωV , ωP),
based on the sizes of both sets and the individual time costs of their members. The definition of
TPRT and the time cost of CANNIER+Pairwise, denoted CPairwise

T , is provided by the following
equation.

TV (I, ωV ) = {v|v ∈ T , P (yt,3 = 1|Xt(I)) >= ωV },
TP (I, ωP ) = {p|p ∈ T , P (yt,4 = 1|Xt(I)) >= ωP },

TPT (I, ωV , ωP ) =
∑

p∈TP (I,ωP )

|{v|v ∈ TV (I, ωV )− {p}, op,v 6= ov}|,

PT =
∑
p∈T

|{v|v ∈ T − {p}, op,v 6= ov}|,

TPRT (I, ωV , ωP ) =
TPT (I, ωV , ωP )

PT
,

CPairwise
T (I, ωV , ωP ) =

|TP (I, ωP )|
∑

v∈TV (I,ωV )

Cv

+

|TV (I, ωV )|
∑

p∈TP (I,ωP )

Cp



(5.8)

5.5 Empirical Evaluation

I conducted experiments to answer the following research questions:

RQ1. How effective is machine learning-based flaky test detection?

RQ2. What impact do mean feature vectors have on the performance of machine learning-based
flaky test detection?

RQ3. What contribution do individual features have on the output values of machine learning
classifiers for detecting flaky tests?

RQ4. What impact does CANNIER have on the performance and time cost of rerunning-based
flaky test detection?
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5.5.1 Subject Set

For this study’s subject set, I used the test suites of the 26 open-source Python projects2 studied in
Chapter 4. I selected these at random from a list of projects critical to open-source infrastructure
created by the Open Source Security Foundation of [260]. For this study, I randomly selected
four more projects to improve the generalisability of the results. I used CANNIER-Framework to
produce a dataset from these 30 test suites that contains 89,668 tests. I set the framework to
perform 2,500 runs of each test suite in the Baseline mode of pytest-CANNIER (NB = 2500),
2,500 runs in the Shuffle mode (NS = 2500), and 30 runs in the Features mode (NF = 30).
Table 5.3 shows each project’s GitHub repository; the total number of tests (|T |); the number of
NOD flaky tests (|T +

1 |), victims (|T +
3 |), and polluters (|T +

4 |); the number of victim-polluter pairs
(
∑
p∈T |{v|v ∈ T − {p}, op,v 6= ov}|); and the combined mean time cost of every test in seconds

(
∑
t∈T
[

1
NF

∑NF
i=1 xt,i,3

]
).

The projects of the subject set cover a wide variety of topics. All are hosted on the Python
Package Index [265] that allows developers to associate them with zero or more “topic classifiers”.
Topic classifiers are multi-level, for example: Software Development :: Libraries :: Python Modules.
A developer may also specify a parent classifier on its own (e.g., just Software Development). Table
5.4 lists the topic classifiers of the 30 Python subjects. It also provides the frequencies of each
classifier, taking into account their hierarchical nature.

5.5.2 Methodology

RQ1. How effective is machine learning-based flaky test detection?

The motivation behind this question is to establish a baseline for the performance of machine
learning models for detecting flaky tests. While several studies have addressed this question for
NOD flaky tests [8, 128, 159], and I addressed it for victims in the Chapter 4, no previous study
has addressed it for polluters. It is important to consider polluters when answering RQ1 since they
offer developers useful information when repairing victim flaky tests and are a necessary input to
techniques for mitigating them [91, 119, 141].

I used CANNIER-Framework to evaluate 24 concrete machine learning pipelines for each of
the four flaky test classification problems. I derived these from the combination of two choices of
classifier type, four choices of classifier configuration, and three choices of data balancing technique.
These choices form the concrete instantiations of the “Data Balancing” and “Model” blocks in
the general pipeline from Figure 5.3. The two classifier types I considered were Random Forest
[18, 143] and Extra Trees [51]. I selected these due to their success in Chapter 4 and the related
work of other authors [8]. These are ensemble classifiers that can predict the probability that a
test case is flaky based on a set of Decision Tree classifiers [137].

A Decision Tree is essentially a collection of nested if-then-else decision rules concerning the
feature values. A given input traces a path through the Decision Tree, and the predicted probability
of that input being of a given class is based on the class proportions of the training inputs with
the same trace. When training a Random Forest classifier, each Decision Tree is fitted using a
bootstrap sample (i.e., with replacement) of the training set and a random subset of features. The
training procedure for each Decision Tree finds the decision rules that best discriminate between
the positive and negative class (i.e., flaky or not flaky). When training an Extra Trees classifier,
each Decision Tree is constructed using the entire training set, but still with random subsets of
features. Furthermore, the training procedure selects the decision rules at random. For both
Random Forest and Extra Trees, the final predicted probability of flakiness for a given test case
is the average of the predicted probabilities of each Decision Tree.

The choices of classifier configuration were four values for the number of decision trees used by
the Random Forest or Extra Trees classifier. These values were 25, 50, 75, and 100. In Chapter 4,
I only considered Random Forest and Extra Trees models with 100 decision trees — the default
value of my selected implementation [271]. Finally, for the three choices of data balancing, I

2I only reused the projects themselves as subjects. I did not reuse any of the data from the previous study.
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Table 5.3: The 30 open-source Python projects examined in this study. The Tests column is the
total number of test cases. The following three indicate the number of NOD flaky tests, Victims,
and Polluters. The Pairs column gives the number of victim-polluter pairs. The Cost column is the
combined mean time cost of every test case in seconds. The final row gives the totals for the whole subject
set. Since pytest-CANNIER identifies polluters the same way as Pairwise, only considering pairs of test
cases, polluters involved in more complex order-dependencies are not included. This is why the table
shows that some projects appear to have victims without polluters.

GitHub Repository Tests NOD Victims Polluters Pairs Cost (s)

apache/airflow 3251 66 279 3241 45819 7.77× 102

celery/celery 2332 - 15 17 24 1.31× 102

quantumlib/Cirq 12048 - 17 2 32 8.67× 102

conan-io/conan 3687 - 13 13 18 1.48× 103

dask/dask 8015 1 1 37 37 1.34× 103

encode/django-rest-framework 1402 - 1 3 3 2.63× 103

spesmilo/electrum 542 1 1 2 2 5.99× 101

Flexget/Flexget 1330 1 4 3 4 1.73× 103

fonttools/fonttools 3448 1 42 - - 1.19× 102

graphql-python/graphene 346 - 1 1 1 1.73× 101

facebookresearch/hydra 1538 - 19 348 952 1.77× 102

HypothesisWorks/hypothesis 4348 5 6 3699 7401 3.92× 103

ipython/ipython 807 6 297 796 118869 1.10× 102

celery/kombu 1024 2 23 20 63 3.62× 101

apache/libcloud 9809 3 133 471 1686 2.66× 102

Delgan/loguru 1255 4 21 6 26 6.23× 101

mitmproxy/mitmproxy 1232 - 18 338 735 3.12× 101

python-pillow/Pillow 2567 - 26 2 26 9.38× 101

PrefectHQ/prefect 7035 25 20 227 230 1.56× 103

PyGithub/PyGithub 711 - 4 678 2712 5.55× 101

Pylons/pyramid 2633 - 4 252 383 5.98× 101

psf/requests 535 5 - - - 1.40× 102

saltstack/salt 2672 12 4 65 65 2.52× 102

scikit-image/scikit-image 6275 - 12 5882 5890 2.54× 103

mwaskom/seaborn 1020 - 8 1 7 5.01× 102

pypa/setuptools 694 1 23 4 4 2.08× 102

sunpy/sunpy 1857 - 2 9 9 4.31× 102

tornadoweb/tornado 1159 1 1 - - 4.03× 101

urllib3/urllib3 1320 15 1 - - 8.57× 101

xonsh/xonsh 4776 9 19 3114 9459 1.81× 102

Overall 89668 158 1015 19231 194457 1.99× 104
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evaluated the synthetic minority oversampling technique (SMOTE) [23], SMOTE combined with
edited nearest-neighbors (SMOTE+ENN), and SMOTE with Tomek links [153] (SMOTE+Tomek).
SMOTE performs oversampling, meaning it produces synthetic data points of the minority class
via interpolation. The ENN and Tomek techniques on their own perform undersampling, meaning
they remove data points of the majority class based on similarity with their neighbors. The
combination of these with SMOTE produces a hybrid balancing approach.

For each of the 24× 4 = 96 concrete machine learning pipelines, I fixed the feature sample size
at a single sample (nF = 1) and had the framework repeat the classifier training and evaluation
procedure 30 times (see Figure 5.3), using a different random sample I to produce the mean
feature vectors every time. In each instance, this resulted in 30 values of P (yt,φ = 1) for every
test case t and problem φ. To evaluate the performance of the pipelines, CANNIER-Framework

needed predicted labels to calculate the confusion matrix category frequencies and MCC against
the ground-truth labels for each problem. To produce the predicted labels to address this research
question, I substituted zt,φ(I, ωl, ωu) in Equation 5.5 for the following definition of zt,φ(I) that
assigns a test case to its most likely class:

zt,φ(I) =

{
0 if P (yt,φ = 1|Xt(I)) < 0.5
1 if P (yt,φ = 1|Xt(I)) ≥ 0.5

(5.9)

With these predicted labels, I used CANNIER-Framework to calculate the confusion matrix
category frequencies and the MCC of the 96 pipelines with respect to each of the 30 subject test
suites in turn. I also had the framework calculate this with respect to the whole subject set for
each pipeline by summing the category frequencies for each project and calculating the overall
MCC from this total. This is to provide an individual assessment with respect to each test suite
as well as an overview for the whole subject set. For the per-project and overall evaluations,
CANNIER-Framework calculated mean values for the category frequencies and the MCC over the
30 repeats of classifier training and evaluation. This is to offer an evaluation that is more reliable
given the non-determinism inherent to the machine learning models, the data balancing techniques,
and potentially the dynamic feature values.

RQ2. What impact do mean feature vectors have on the performance of machine
learning-based flaky test detection?

In previous studies on machine learning-based flaky test detection with dynamic test case features,
researchers performed only a single instrumented test suite run to create the feature vectors. The
rationale for this question is to investigate the impact of using feature vectors that are the mean
from multiple instrumented test suite runs. In the context of this study, that is multiple runs in
the Features mode of pytest-CANNIER. This is to mitigate against the possible variance in the
dynamic features. As an example, previous studies have found that the line coverage of test cases
can vary across repeated executions [70, 139, 160]. Since three features in Table 5.1 are based on
line coverage, I expect there to be some degree of noise in their values for each test case that could
impact the detection performance of the classifier.

I took the best machine learning pipeline (in terms of the overall MCC) for each classification
problem from the previous research question and followed the same methodology for training and
evaluation, except I gave CANNIER-Framework a range of values for nF to produce I between 1 and
15 samples inclusive. With 30 repeats of classifier training and evaluation for each value of nF ,
this resulted in 15× 30 = 450 rounds of stratified 10-fold cross validation for each problem. This
process enabled us to investigate the correlation between the number of repeated measurements
to produce the mean feature vectors and the MCC of the resultant classifier.

RQ3. What contribution do individual features have on the output values of machine
learning classifiers for detecting flaky tests?

In the interest of model explainability, I set out to investigate the impact of each individual feature
in Table 5.1. To address this question, I applied the Shapely Additive Explanations (SHAP) tech-
nique [103]. It leverages concepts from game theory to quantify the contribution of an individual
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Table 5.4: The topic classifiers of the subject projects and their frequencies. If a project declares
derived classifiers I also incremented the frequencies of the parent classifiers. For a example, if a project
declares Internet, Internet :: Proxy Servers, and Software Development :: Libraries, I would increment
the frequencies of Internet, Internet :: Proxy Servers, Software Development, and Software Development
:: Libraries.

Topic Classifier Frequency

Communications 1
Education 1
Education :: Testing 1
Internet 5
Internet :: Proxy Servers 1
Internet :: WWW/HTTP 5
Internet :: WWW/HTTP :: WSGI 1
Multimedia 3
Multimedia :: Graphics 3
Multimedia :: Graphics :: Capture 1
Multimedia :: Graphics :: Capture :: Digital Camera 1
Multimedia :: Graphics :: Capture :: Screen Capture 1
Multimedia :: Graphics :: Graphics Conversion 2
Multimedia :: Graphics :: Viewers 1
Scientific/Engineering 4
Scientific/Engineering :: Physics 1
Scientific/Engineering :: Visualization 1
Security 1
Software Development 12
Software Development :: Build Tools 1
Software Development :: Libraries 7
Software Development :: Libraries :: Python Modules 3
Software Development :: Object Brokering 1
Software Development :: Testing 2
System 9
System :: Archiving 1
System :: Archiving :: Packaging 1
System :: Clustering 1
System :: Distributed Computing 4
System :: Logging 1
System :: Monitoring 1
System :: Networking 2
System :: Networking :: Monitoring 1
System :: Shells 1
Text Processing 1
Text Processing :: Fonts 1
Utilities 1
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feature to the output value of a machine learning model for an individual data point. As inputs,
SHAP takes a feature matrix and a model and returns a matrix of SHAP values in the same shape
as the feature matrix. The SHAP value at (i, j) in the matrix represents the contribution of the
jth feature on the model output for the ith data point relative to the mean output value over the
dataset. This is such that summing the rows of the SHAP value matrix and adding the mean
output value gives the original model output values.

In the context of this study, the features are those in Table 5.1, the data points are test cases,
and the model output values are the predicted probabilities of each test case being in the positive
class for a given flaky test classification problem. As the feature matrix, I used the mean feature
vector for each test case over the 30 runs of pytest-CANNIER in the Features mode (nF = NF ).
As the machine learning model, I used CANNIER-Framework to train the best pipeline from RQ1
using the mean feature matrix. I did this for each of the four classification problems.

Once I had a SHAP value matrix for each problem, I ranked every feature in terms of their
mean absolute SHAP value over every test case. A high value would indicate that the feature has
a significant impact on the classifier’s decision (regardless of whether the impact is in favour of
the negative class or the positive) and a low value would suggest the opposite. I then retrained
the best pipeline for each problem with just the top 15, 12, 9, 6, and 3 features (with 30 repeats in
each case). This is to observe the effect of dropping the less impactful features on the performance
of the classifier.

RQ4. What impact does CANNIER have on the performance and time cost of
rerunning-based flaky test detection?

The motivation behind this research question is to investigate if CANNIER is able to reduce
the time cost of rerunning-based flaky test detection techniques while maintaining good detec-
tion performance. For the application of CANNIER to the three techniques from Section 5.2,
I used CANNIER-Framework to calculate the detection performance and single-core time cost as-
sociated with every point in a sample of their parameter spaces. For CANNIER+Rerun and
CANNIER+iDFClass, the space represents the values of the 3-tuple (ωl, ωu, nF ), that is, the
lower-threshold, the upper-threshold, and the number of samples to produce the mean feature vec-
tors. In the case of CANNIER+Rerun, since Rmax (the maximum number of times to execute
a test case without observing an inconsistent outcome) is a parameter of the underlying Rerun
technique, rather than a parameter introduced by CANNIER, I kept its value fixed at NB (the
number of test suite runs in the Baseline mode: 2,500). Similarly, for CANNIER+iDFClass,
I fixed the value of γ (the percentage of additional failures to recheck) to 20% because it is a
parameter of iDFClass and not one introduced by CANNIER. This particular value was rec-
ommended by the authors of iDFlakies [90]. For the detection performance and time cost of
a given point for CANNIER+Rerun/CANNIER+iDFClass, CANNIER-Framework calculated
the mean over the 30 sets of predicted probabilities for the NOD-vs-Rest/NOD-vs-Victim problem
from the 30 repeats of classifier training and evaluation for the given value of nF from RQ2. For
CANNIER+Pairwise, the parameter space represents (ωV , ωP , nF ), the victim-threshold, the
polluter-threshold, and the number of samples once more. In this case, the framework calculated
the mean detection performance and time cost over 30 random pairs of the 30 sets of predicted
probabilities for the Victim-vs-Rest problem and the 30 sets for the Polluter-vs-Rest problem for
the given value of nF .

For the sample of points in (ωl, ωu, nF ), I used the values for ωl from 0 to 1 inclusive with a
step of 0.01, the values for ωu from ωl to 1.01 inclusive with a step of 0.01, and the values for nF
in the closed integer range from 1 to 15, except when ωl = 0 ∧ ωu = 1.01, in which case nF = 0.
The reason for starting from ωl and going up to 1.01 for ωu is to ensure that ωl ≤ ωu always
holds and so that CANNIER-Framework evaluates the points where there is no upper-threshold
on P (yt,1 = 1|Xt(I)) (see the second clause of Equation 5.4). The reason that nF = 0 when
ωl = 0 ∧ ωu = 1.01 is to indicate that the machine learning classifier, and therefore feature
collection, is redundant because the ambiguous region is the entire range of P (yt,1 = 1|Xt(I))
under these conditions. Therefore, CANNIER+Rerun and CANNIER+iDFClass reduce to
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the original rerunning-based Rerun and iDFClass respectively (see the third clause of Equation
5.4). As the sample of points in (ωV , ωP , nF ), I used the values for both ωV and ωP from 0 to
1 inclusive with a step of 0.01. This excludes 1.01, since when one or both thresholds is greater
than 1, the set of victims and/or polluters is empty and therefore Pairwise has nothing to do
since TV (I, ωV ) × TP (I, ωP ) = ∅. For nF , the framework considers from 1 to 15, except when
ωV = ωP = 0, where nF = 0. The reason that nF = 0 in this case is to indicate that the classifier
is redundant because TV (I, ωV ) = TP (I, ωP ) = T and thus CANNIER+Pairwise reduces to
original Pairwise.

I had CANNIER-Framework add the time taken to collect features to the overall time cost for
each point. Since many features are dynamic, they require nF test suite runs to measure, making
the time cost of doing so nF

∑
t∈T Ct for some test suite T . For the points where nF = 0, where

the other parameters render the machine learning classifier redundant, this additional time cost
is zero. I did not consider the time cost associated with applying the classifier to each test case
because it is negligible relative to the time taken to execute the test suite (see Table 4.4). I also
did not consider the time taken to train the classifier as part of the time cost of applying it. This
is because the classifier only needs to be trained once and can then be applied any number of
times, making training an off-line stage with a cost that can be amortised across uses.

I used CANNIER-Framework to compute the two-dimensional Pareto fronts of detection per-
formance and time cost, with respect to the whole subject set, for the sample of points for
CANNIER+Rerun, CANNIER+iDFClass, and CANNIER+Pairwise. In this context, the
Pareto front represents the subset of points such that, for each point, the detection performance
is the greatest compared to all other points with the same time cost. To answer this research
question, I compared the detection performance and time cost associated with the point rep-
resenting the balanced application of CANNIER to the point where it reduces to the original
rerunning-based detection technique, for each of the three fronts. As the point representing bal-
anced CANNIER, I used the knee point. The knee point is the point with the smallest Euclidean
distance to the utopia point on the Pareto front [170]. The utopia point represents a “perfect”
solution that does not necessarily exist. In the context of this study, that would be the point with
a detection performance of 1, for either MCC or true-positive rate (TPR), and a time cost of 0
seconds. For CANNIER+Rerun and CANNIER+iDFClass, I also considered the point where
they reduce to pure machine learning-based detection as an additional baseline. For this special
case, I used the point on the Pareto front with the greatest MCC that also satisfies ωl = ωu. For
all points that satisfy this condition, the techniques never defer to Rerun or iDFClass because
there is no ambiguous region between the two thresholds. For CANNIER+Pairwise, there is no
such point, because it only limits the problem space for Pairwise but nevertheless always defers
to it.

5.5.3 Threats to Validity

When deciding the ground-truth labels, CANNIER-Framework could incorrectly label some flaky
tests as non-flaky. I used the framework to execute every test suite 2,500 times in their original
test run orders to identify NOD flaky tests and 2,500 times in shuffled orders to identify victims.
Given the non-deterministic nature of flaky tests, it is generally not possible to label a test case
as non-flaky with complete certainty [68]. I mitigated this issue by having CANNIER-Framework

perform as many reruns as possible within the limits of the available computational resources.
In total, this stage required over six weeks of computational time on a computer with a 24-core
AMD Ryzen 5900X CPU. While confidence in the label increases with the number of reruns, so
too does the computational cost. In Chapter 4, I found the relationship between the number of
detected flaky tests and the number of test suite reruns to be sublinear (see Figure 4.1). This
finding supports another previous study, the authors of which identified a similar relationship [8].
This implies that continuing to re-execute a test suite gives diminishing returns with respect to
the confidence of labelling a test case as non-flaky. This encourages us that the overall results of
this study would be the same had the plugin performed more reruns, because it is unlikely that it
would have detected significantly more flaky tests. Furthermore, pytest-CANNIER is unlikely to
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detect certain flaky test categories by rerunning alone. For example “implementation-dependent”
flaky tests may require changes to standard library implementations to manifest [140, 174]. The
only category I made specific arrangements to detect were victims and their polluters; other special
categories are out of the scope of this study.

The concrete machine learning pipelines of the Random Forest/Extra Trees classifier with
SMOTE data balancing and the 18 features in Table 5.1 may unfairly represent machine learning-
based flaky test detection. A whole host of previous studies [8, 19, 20, 65, 128, 130] identified
Random Forest to be the most suitable type of machine learning classifier for detecting flaky tests.
In the Chapter 4, I found that the Extra Trees classifier, a variant of Random Forest, was better
suited for detecting flaky tests in some cases. Furthermore, the 18 features are based on the 16
features of Flake16 that I found to yield better detection performance when used to encode
test cases compared to the previous state-of-the-art feature set [8]. This implies that my choice of
pipeline and features is among the most suitable for detecting flaky tests currently in the literature.

There is a chance that CANNIER-Framework and pytest-CANNIER contain bugs that may go on
to influence the results of the evaluation. Naturally, it is impossible to be totally sure that any non-
trivial software system is totally free of bugs. However, I made sure to use well-established Python
libraries for the bulk of the framework’s important functionality. These included Coverage.py

[211] to measure line coverage, psutil [264] to measure many other dynamic test case properties,
Radon [279] to measure source code metrics, scikit-learn [271] for an implementation of the
Random Forest and Extra Trees classifier, and shap [281] to calculate the SHAP value matrices
for RQ3. These are all popular open-source projects with many contributors, giving us confidence
that any bugs would be identified, documented, and patched in a timely manner. I also wrote unit
tests for greater confidence in the bespoke elements of CANNIER-Framework and pytest-CANNIER.

It is possible that the results of the study would not generalise to other Python projects outside
of the 30 that I sampled, or to projects written in other programming languages. I randomly
sampled 30 Python projects from a list of the top-200 most critical to open-source infrastructure, as
determined by the Open Source Security Foundation [260]. Part of their metric for determining the
criticality of a project is based on how many other projects declare a dependency on it. Therefore,
any issues caused by flaky tests in these projects could potentially impact a wider portion of the
Python ecosystem. Of course, this does not guarantee that the sample generalises to all Python
projects, but does give us some assurance that the flaky tests I examined could represent a more
serious problem compared to flaky tests in less critical projects. Without extending the subject
set to include projects written in other languages, I cannot make any assurances that the results
generalise outside of Python. Broadly speaking, however, the approach is language-agnostic.
Considering Table 5.1, the 18 features could apply to almost any commonly used programming
language. Therefore, I see no compelling reason to suggest that the results could not be reproduced
with projects written in other languages, such as Java. In addition, it is possible that individual
projects in the subject set with significantly more test cases than others could bias the overall
results. For example, airflow had the highest number of NOD flaky tests at 66 — 264% of the
second highest. To resolve this concern, CANNIER-Framework calculated performance metrics with
respect to each individual project.

Given the empirical nature of this study, it may be difficult to reproduce the results. I took
steps to make the methodology as repeatable as possible. Firstly, I included all scripts and
software that I developed to facilitate this study in the replication package [217]. This includes
the Dockerfile and requirements files for generating Python virtual environments [195]. Secondly,
any aspects of the study that could be impacted by non-determinism, such as producing the
predicted probabilities of test cases being flaky, I repeated 30 times. As such, the final results
reported in this study involve taking the mean across these 30 repeats. Finally, where any aspects
of CANNIER-Framework relied on random number generators (such as when instantiating machine
learning models), I made sure to set the seed to a constant value to ensure that the results are the
same across repeated runs.
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Table 5.5: The top-12 pipelines (out of 24) for each flaky test classification problem in terms of overall
MCC. The MCC values are the mean over 30 repeats of classifier training and evaluation, rounded to
three significant figures.

(a) NOD-vs-Rest

Classifier Trees Balancing MCC

Extra Trees 100 SMOTE 0.532
Extra Trees 100 +Tomek 0.529
Extra Trees 75 SMOTE 0.527
Extra Trees 50 SMOTE 0.526
Extra Trees 25 SMOTE 0.521
Extra Trees 50 +Tomek 0.519
Extra Trees 75 +Tomek 0.519
Extra Trees 25 +Tomek 0.507
Random Forest 100 SMOTE 0.488
Random Forest 75 SMOTE 0.479
Random Forest 50 SMOTE 0.479
Random Forest 25 SMOTE 0.477

(b) NOD-vs-Victim

Classifier Trees Balancing MCC

Random Forest 75 SMOTE 0.693
Random Forest 100 SMOTE 0.690
Extra Trees 100 SMOTE 0.689
Extra Trees 50 SMOTE 0.686
Extra Trees 75 SMOTE 0.686
Random Forest 50 SMOTE 0.685
Random Forest 75 +Tomek 0.684
Random Forest 25 SMOTE 0.679
Random Forest 100 +Tomek 0.675
Extra Trees 100 +Tomek 0.673
Extra Trees 75 +Tomek 0.669
Random Forest 25 +Tomek 0.668

(c) Victim-vs-Rest

Classifier Trees Balancing MCC

Extra Trees 75 SMOTE 0.520
Extra Trees 100 SMOTE 0.519
Extra Trees 50 SMOTE 0.518
Extra Trees 100 +Tomek 0.515
Extra Trees 75 +Tomek 0.513
Extra Trees 50 +Tomek 0.511
Extra Trees 25 SMOTE 0.510
Extra Trees 25 +Tomek 0.502
Random Forest 50 SMOTE 0.501
Random Forest 75 SMOTE 0.498
Random Forest 100 SMOTE 0.498
Random Forest 25 SMOTE 0.490

(d) Polluter-vs-Rest

Classifier Trees Balancing MCC

Random Forest 100 SMOTE 0.946
Random Forest 75 SMOTE 0.945
Random Forest 50 SMOTE 0.944
Random Forest 25 SMOTE 0.943
Random Forest 100 +Tomek 0.941
Extra Trees 100 SMOTE 0.941
Random Forest 75 +Tomek 0.940
Extra Trees 75 SMOTE 0.940
Random Forest 50 +Tomek 0.940
Extra Trees 50 SMOTE 0.939
Random Forest 25 +Tomek 0.937
Extra Trees 100 +Tomek 0.937

5.6 Results

5.6.1 RQ1. How effective is machine learning-based flaky test detec-
tion?

Table 5.5 shows the top-12 concrete machine learning pipelines (out of 24) for each flaky test
classification problem in terms of overall MCC. Recall from Section 5.5.2 that these MCC values
are with respect to the entire subject set and are the mean over 30 repeats of classifier training and
evaluation (see Equation 5.5). Extra trees appears to be the best classifier for the NOD-vs-Rest
and Victim-vs-Rest problems, and pipelines using Extra Trees are consistently at the top of these
tables. For NOD-vs-Victim and Polluter-vs-Rest, the most performant classifier appears to be
Random Forest, though with less consistency. In terms of data balancing, the best pipelines for
each problem used plain SMOTE. Unlike SMOTE+Tomek, SMOTE+ENN did not make it into
the top-12 for any problem. In all cases, the negative gradient of detection performance going
down the table is small, such that the difference in overall MCC between the best pipeline and
the 12th best pipeline is not that significant.

Tables 5.6 and 5.7 show the per-project and overall confusion matrix category frequencies (TN,
FN, FP, TP) and MCC of the best pipeline for each flaky test classification problem. Table 5.6a
shows the performance for the NOD-vs-Rest problem. The table lists relatively few projects with
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Table 5.6: The per-project and overall results of the best pipelines from Table 5.5 for the NOD-vs-Rest (a)
and NOD-vs-Victim (b) problems. The tables give the confusion matrix category frequencies (i.e., column
labels TN, FN, FP, TP), rounded to the nearest integer, and the Matthews correlation coefficient (i.e.,
column label MCC). Captions give the mean (µ) and standard deviation (σ) of the per-project MCC.
Values are the mean over 30 repeats of model training and evaluation. Dashes indicate that the value is
exactly zero. The “⊥” symbol indicates that the value is not defined, which was caused by a division by
zero when a project does not have any test cases of certain categories.

(a) NOD-vs-Rest (µ = 0.52, σ = 0.29)

Project TN FN FP TP MCC

airflow 3159 26 26 40 0.59
celery 2332 - - - ⊥
Cirq 12048 - - - ⊥
conan 3687 - 0 - ⊥
dask 8014 1 0 - ⊥
django-rest-... 1402 - - - ⊥
electrum 540 1 1 - ⊥
Flexget 1329 1 - - ⊥
fonttools 3447 1 - - ⊥
graphene 346 - - - ⊥
hydra 1538 - - - ⊥
hypothesis 4341 5 2 - 0.00
ipython 800 2 0 4 0.76
kombu 1022 2 - - ⊥
libcloud 9806 3 - - ⊥
loguru 1250 2 1 2 ⊥
mitmproxy 1232 - - - ⊥
Pillow 2567 - 0 - ⊥
prefect 7005 13 5 12 0.58
PyGithub 711 - - - ⊥
pyramid 2633 - - - ⊥
requests 530 2 - 3 0.82
salt 2660 4 0 8 0.82
scikit-image 6275 - 0 - ⊥
seaborn 1020 - - - ⊥
setuptools 693 1 - - ⊥
sunpy 1857 - - - ⊥
tornado 1157 1 1 - ⊥
urllib3 1295 13 10 2 0.16
xonsh 4763 5 4 4 0.45

Overall 89460 83 50 75 0.53

(b) NOD-vs-Victim (µ = 0.55, σ = 0.22)

Project TN FN FP TP MCC

airflow 250 11 25 45 0.66
celery 14 - 1 - ⊥
Cirq 17 - - - ⊥
conan 13 - 0 - ⊥
dask 1 - - - ⊥
django-rest-... 0 - 1 - ⊥
electrum 0 1 1 0 ⊥
Flexget 3 1 1 - ⊥
fonttools 42 - - - ⊥
graphene 1 - - - ⊥
hydra 19 - - - ⊥
hypothesis 6 3 0 0 ⊥
ipython 296 2 1 4 0.71
kombu 23 1 - - ⊥
libcloud 133 3 0 - ⊥
loguru 20 1 1 2 0.55
mitmproxy 6 - 0 - ⊥
Pillow 26 - 0 - ⊥
prefect 17 1 3 16 0.79
PyGithub 4 - - - ⊥
pyramid 4 - - - ⊥
requests - 0 - 4 ⊥
salt 3 1 1 11 0.69
scikit-image 12 - - - ⊥
seaborn 8 - 0 - ⊥
setuptools 23 0 0 1 ⊥
sunpy 2 - - - ⊥
tornado 0 - 1 - ⊥
urllib3 - 3 1 12 0.12
xonsh 14 3 5 6 0.33

Overall 957 32 42 99 0.69
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Table 5.7: The per-project and overall results of the best pipelines from Table 5.5 for the Victim-vs-Rest
(a) and Polluter-vs-Rest (b) problems. See Table 5.6 caption for more details.

(a) Victim-vs-Rest (µ = 0.51, σ = 0.24)

Project TN FN FP TP MCC

airflow 2880 81 92 198 0.67
celery 2316 9 1 6 0.59
Cirq 12030 3 1 14 0.88
conan 3666 8 8 5 0.38
dask 8013 1 1 - ⊥
django-rest-... 1400 1 1 - ⊥
electrum 539 1 2 - ⊥
Flexget 1325 3 1 1 ⊥
fonttools 3395 6 11 36 0.82
graphene 345 1 0 - ⊥
hydra 1513 13 6 6 0.37
hypothesis 4341 3 1 3 0.57
ipython 377 206 133 91 0.05
kombu 1000 12 1 11 0.68
libcloud 9612 86 64 47 0.38
loguru 1225 5 9 16 0.69
mitmproxy 1213 13 1 5 0.50
Pillow 2530 18 11 8 0.37
prefect 7014 16 1 4 0.40
PyGithub 707 1 0 3 ⊥
pyramid 2629 3 0 1 ⊥
requests 535 - - - ⊥
salt 2668 4 0 - ⊥
scikit-image 6261 5 2 7 0.69
seaborn 1009 8 3 0 ⊥
setuptools 668 5 3 18 0.81
sunpy 1855 2 - - ⊥
tornado 1156 1 2 - 0.00
urllib3 1318 1 1 - ⊥
xonsh 4753 14 4 5 0.36

Overall 88292 529 361 486 0.52

(b) Polluter-vs-Rest (µ = 0.46, σ = 0.34)

Project TN FN FP TP MCC

airflow 0 5 10 3236 0.01
celery 2311 15 4 2 0.20
Cirq 12032 1 14 1 0.12
conan 3621 6 53 7 0.25
dask 7947 0 31 37 0.73
django-rest-... 1397 3 2 - ⊥
electrum 525 2 15 - 0.01
Flexget 1327 3 0 - ⊥
fonttools 3443 - 5 - ⊥
graphene 344 1 1 - ⊥
hydra 1186 13 4 335 0.97
hypothesis 563 11 86 3688 0.91
ipython 7 165 4 631 0.13
kombu 1002 15 2 5 0.42
libcloud 9315 195 23 276 0.73
loguru 1249 6 0 0 ⊥
mitmproxy 880 71 14 267 0.82
Pillow 2534 2 31 0 0.02
prefect 6781 184 27 43 0.33
PyGithub 17 8 16 670 0.58
pyramid 2355 52 26 200 0.82
requests 530 - 4 - ⊥
salt 2605 16 2 49 0.85
scikit-image 331 191 62 5691 0.71
seaborn 990 1 29 0 0.01
setuptools 686 2 4 2 0.39
sunpy 1835 6 13 2 0.21
tornado 1156 - 3 - ⊥
urllib3 1310 - 10 - ⊥
xonsh 1608 102 54 3012 0.93

Overall 69889 1077 548 18154 0.95
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a defined value for MCC because many in the subject set contain zero or only very few NOD flaky
tests (see Table 5.3). The overall MCC for this problem is 0.53 and the mean per-project MCC
is close at 0.52. Recall that CANNIER-Framework calculated the overall MCC from the overall
confusion matrix category frequencies, that are the sum of the per-project frequencies. An MCC
of 1 indicates a perfect classifier and an MCC of 0 indicates a classifier no better than random
guessing. Therefore, the detection performance of the best pipeline for this problem was fairly
lacklustre. Furthermore, the standard deviation of the per-project MCC is relatively high at 0.29,
suggesting that the performance of the pipeline is quite variable between projects. This is further
evident from the wide range of MCC values among the different projects. Table 5.6b shows the
results for the NOD-vs-Victim problem. Once again, the table contains relatively few projects
with an MCC value for the same reason as before. At 0.69, the overall MCC for this problem is
greater than that for NOD-vs-Rest. Also, the standard deviation of the per-project MCC is lower
at 0.22. However, the mean of 0.55 is considerably lower than the overall MCC.

Table 5.7a gives the performance for the Victim-vs-Rest problem. At 0.52, the overall MCC
is very close to the mean per-project MCC of 0.51 and is comparable to that of NOD-vs-Rest.
Unlike the previous two problems, there are many more projects with a defined value for MCC,
since most test suites in the subject set contained victim flaky tests. Finally, Table 5.7b gives
the results for the Polluter-vs-Rest problem. While the overall MCC is very high at 0.95, the
mean per-project MCC is much lower at 0.46 and the standard deviation is the greatest of all four
problems at 0.34.

Conclusion for RQ1 The overall MCC of the best pipelines for the four classification problems
ranges from 0.95 for Polluter-vs-Rest to 0.52 for Victim-vs-Rest. For NOD-vs-Rest and Victim-
vs-Rest, the mean per-project MCC is close to the overall MCC. The standard deviation of the
per-project MCC ranges from 0.22 to 0.34. These findings suggest that the performance of ma-
chine learning-based flaky test detection is lackluster and variable between projects, motivating
the need for an alternative approach.

5.6.2 RQ2. What impact do mean feature vectors have on the perfor-
mance of machine learning-based flaky test detection?

Figure 5.5 shows the relationship between the sample size to produce the mean feature vectors (nF )
and the overall detection performance (MCC) of the best pipeline for each classification problem.
Recall from Section 5.4.2 that CANNIER-Framework encoded test cases with feature vectors that
were the mean of a random sample (I) of the output from 30 test suite runs in the Features mode
of pytest-CANNIER. Figure 5.5a shows the relationship for the NOD-vs-Rest problem. At 0.86,
the Spearman’s rank correlation coefficient (ρ) indicates that the relationship is positive. However,
the gradient (a) of the line of best fit (in red) is small at just 0.0014. The MCC when nF = 15
on the line of best fit is only 4% greater than the MCC when nF = 1. For the NOD-vs-Victim
problem, Figure 5.5b indicates that the relationship is weaker with a correlation coefficient of 0.71.
In this case, the gradient is even smaller (0.0007), with just a 1% increase in MCC from nF = 15
to nF = 1.

Figure 5.5c shows the relationship for Victim-vs-Rest. The correlation coefficient of 1.00 indi-
cates a very strong positive correlation, as is clear from the plot. The gradient of the line of best
fit is comparable to NOD-vs-Rest (0.0019). In the case of the Polluter-vs-Rest problem, Figure
5.5d also shows a very strong positive relationship between nF and MCC with a corresponding
correlation coefficient of 1. However, the gradient is very small (0.0008).

Conclusion for RQ2 The relationship between the sample size to produce the mean feature
vectors and the overall MCC of the best pipeline is positive but of variable strength across
the four flaky test classification problems. For all problems, particularly NOD-vs-Victim and
Polluter-vs-Rest, the gradient is small. These results indicate that using mean feature vectors
has a small but positive impact on detection performance.
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Figure 5.5: Plots showing that the relationship between the number of samples to produce the mean
feature vectors (nF ) and the overall detection performance (MCC) of the best machine learning pipeline is
positive but variable in terms of strength and gradient across the four problems. MCC values are the mean
over 30 repeats. Captions give the coefficients of the red least-squares best-fit line (MCC = a × nF + b)
and the Spearman’s rank correlation coefficient (ρ).
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5.6.3 RQ3. What contribution do individual features have on the out-
put values of machine learning classifiers for detecting flaky tests?

Figure 5.6 shows the SHAP values for the four flaky test classification problems as beeswarm
plots. In each plot, every feature in Table 5.1 is represented by a row, with each value in its
corresponding column in the SHAP value matrix plotted as a coloured dot, for which there is one
for every test case in the whole subject set. The horizontal position of each dot represents the
SHAP value itself, with negative SHAP values towards the left and positive SHAP values towards
the right, as indicated by the x-axis labels. Recall from Section 5.5.2 that a positive SHAP value
means the contribution of the feature to the classifier output value from the best pipeline for a
given test case and problem was positive (increased it). Conversely, a negative SHAP value means
the contribution was negative (decreased it). In this context, the output value is the predicted
probability of the test case belonging to the positive class of the problem. This means if a feature
contributes positively to the output, it “pushes” the classifier towards predicting the positive
class, and if it contributes negatively, it pushes towards the negative class. The colour of the dots
represent the feature value relative to the mean feature value, with lower values coloured blue and
higher values coloured red. For example, a blue dot on the left side of the x-axis indicates a test
case with a relatively low feature value and a positive contribution. The vertical positions of the
dots represent density, such that dots with similar SHAP values “swarm” around one another.
From top-to-bottom, the features are in descending order of mean absolute SHAP value. In other
words, the features closer to the top have a greater overall impact on the classifier output.

For the NOD-vs-Rest problem, the contribution of AST Depth, Run Time, Read Count, Con-
text Switches, Write Count, Wait Time, Max. Children, and Test Lines of Code appears positive
(towards predicting NOD flaky) when their values are high and negative when their values are
low. This is evident from how the dots on the left side of their rows in Figure 5.6a are mostly blue
and those on the right are mostly red. Conversely, the contribution of Assertions appears negative
when high and positive when low, as visualised by mostly red dots on the left and mostly blue on
the right. The contribution of some features appears more nuanced. For example, when the con-
tribution of Covered Change is negative its value is mostly high. However, when its contribution
is positive its value is mixed. For the NOD-vs-Victim problem (Figure 5.6b), Context Switches,
Run Time, Max. Threads, Read Count, Write Count, Cyclomatic Complexity, External Modules,
Max. Children, and Halstead Volume appear to contribute positively (towards predicting NOD
flaky) when their values are high and negatively when low. The contribution of the individual
features for this problem appear considerably less well-defined compared to NOD-vs-Rest. There
are some similarities between the results for these two problems, such as Run Time, Read Count,
Context Switches, Write Count, and Max. Children mostly contributing positively when high and
negatively when low.

As shown by Figure 5.6c the contribution of Maintainability, Write Count, Read Count, and
Wait Time features appear broadly positive when their values are high (towards predicting victim
flaky) and negative when low. On the other hand, Source Covered Lines, Cyclomatic Complexity,
and Halstead Volume show the opposite behaviour with moderate consistency. The impact of
the features for this problem differs significantly compared to the NOD-vs-Victim problem. For
example, the Maintainability and Cyclomatic Complexity feature appears to have nearly the exact
opposite contribution pattern. Finally, for the Polluter-vs-Rest problem (Figure 5.6d), Run Time,
Assertions, Halstead Volume, and Wait Time contribute positively when high. Covered Lines,
Source Covered Lines, and Max. Children show the opposite contribution.

Figure 5.7 shows how the overall MCC of the best pipelines for each problem decreases as the
number of features used by CANNIER-Framework to train the classifier are reduced, starting from
the least impactful in terms of mean absolute SHAP value. For example, for the NOD-vs-Rest
problem, the MCC value at 6 on the x-axis corresponds to a classifier that only considers AST
Depth, Max. Threads, Run Time, Max. Memory, Read Count, and Context Switches. Initially,
the detriment to detection performance is fairly small as only the least important features are
pruned. At around 9 features, the overall MCC begins to fall for every problem.
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Figure 5.6: SHAP values for the four flaky test classification problems as beeswarm plots. These are
based on the classifiers from best pipelines for each problem from RQ1. Blue dots represent lower feature
values and red dots represent higher feature values. Purple dots represent feature values closer to the
mean value. The vertical positions of the dots represent density, such that dots with similar SHAP values
“swarm” around one another. Features are in descending order of their mean absolute SHAP value, which
each beeswarm plot gives in parentheses. This is a measure of their overall impact on the classifier’s
decision.
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Figure 5.7: The relationship between the overall MCC of the best machine learning pipelines for each
flaky test classification problem and the number of top features used by CANNIER-Framework to train the
classifier in terms of mean absolute SHAP value. On the left side of the plot, only the less impactful
features are removed, which has little effect on detection performance. Towards the right, the more
impactful features are dropped, resulting in a significant reduction of MCC. MCC values are the mean
over 30 repeats of classifier training and evaluation.

Conclusion for RQ3 In terms of mean absolute SHAP value, the most impactful features for
the NOD-vs-Rest problem were AST Depth, Max. Threads, and Run Time; and for the NOD-vs-
Victim problem were Context Switches, Run Time, and Max. Threads. For the Victim-vs-Rest
problem, the most impactful were Max. Memory, Maintainability, and AST Depth; and for the
Polluter-vs-Rest problem were Max. Memory, Max. Threads, and Run Time. Some features
had a clear contribution pattern to the classifier and others less so, suggesting potentially more
complex relationships.

5.6.4 RQ4. What impact does CANNIER have on the performance and
time cost of rerunning-based flaky test detection?

Figure 5.8 shows the Pareto fronts of overall detection performance and time cost for the applica-
tion of CANNIER to the three rerunning-based detection techniques (see Equations 5.5, 5.6, 5.7,
and 5.8). From right-to-left, the first pin on each curve is at the point representing the original
rerunning-based technique (where the machine learning classifier becomes redundant). The sec-
ond is at the point representing the balanced application of CANNIER (the knee point). Tables
5.8, 5.9, and 5.10 give the per-project and overall results at this point. For CANNIER+Rerun
and CANNIER+iDFClass, the third is at the point representing pure machine learning-based
detection (greatest MCC where ωl = ωu). Above each pin in square brackets is the detection
performance and time cost associated with the point (its coordinates on the axes). Below in
parentheses are its parameters.

Figure 5.8a and Table 5.8a give the results for CANNIER+Rerun. As shown by the figure,
the time cost associated with the point representing balanced CANNIER+Rerun (middle pin)
is 89% lower than the time cost associated with the point representing original Rerun (right pin).
At 0.92, the MCC at the balanced CANNIER+Rerun point is significantly greater than the
MCC at the point representing pure machine learning-based detection (left pin), which is 0.55. As
shown by the table, the per-project MCC is very consistent. Naturally, the MCC at the original
Rerun point is exactly 1, since the predicted labels are the same as the ground-truth labels in
this case (see Equation 5.4). Furthermore, the time cost at the pure machine learning point is
significantly lower than the time cost at the other points of interest. This is because the only
time cost associated with this point is that of collecting feature data. These results demonstrate
that applying CANNIER to Rerun can significantly reduce its time cost while maintaining a
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Figure 5.8: The Pareto fronts of detection performance and time cost for the application of CANNIER
to the three rerunning-based detection techniques. From right-to-left, the first pin on each curve is at
the point representing the original rerunning-based technique. The second is at the point representing
the balanced application of CANNIER. For CANNIER+Rerun (a) and CANNIER+iDFClass (b),
the third is at the point representing pure machine learning-based detection. There is no third pin for
CANNIER+Pairwise (c) because it is not possible to use a pure machine learning-based approach in
this context (see Section 5.5.2). Above each pin in square brackets is the detection performance and time
cost with respect to the whole subject set. Below in parentheses are the parameters.
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Table 5.8: The per-project and overall results for CANNIER+Rerun. The table gives the confusion
matrix categories, rounded to the nearest integer, and the MCC at the point in the parameter space
representing balanced CANNIER+Rerun (ωl = 0.07, ωu = 1.01, nF = 15). It also gives the time cost
(in seconds) at this point (CANNIER+) and at the point representing original Rerun (Original). The
time cost is significantly reduced when using CANNIER. Values are the mean over 30 repeats of model
training and evaluation. Dashes indicate that the value is exactly zero. The “⊥” symbol indicates that
the value is not defined, which was caused by a division by zero when a project does not have any test
cases of certain categories.

Time cost (s)

Project TN FN FP TP MCC CANNIER+ Original

airflow 3185 3 - 63 0.98 7.71× 105 1.69× 106

celery 2332 - - - ⊥ 8.53× 104 3.28× 105

Cirq 12048 - - - ⊥ 2.32× 105 2.17× 106

conan 3687 - - - ⊥ 2.42× 105 3.70× 106

dask 8014 - - 1 1.00 3.01× 105 3.34× 106

django-rest-... 1402 - - - ⊥ 8.85× 104 6.57× 106

electrum 541 1 - - ⊥ 5.12× 104 1.39× 105

Flexget 1329 1 - - ⊥ 7.25× 104 4.32× 106

fonttools 3447 1 - - ⊥ 1.09× 104 2.97× 105

graphene 346 - - - ⊥ 2.55× 103 4.31× 104

hydra 1538 - - - ⊥ 2.34× 104 4.42× 105

hypothesis 4343 4 - 1 ⊥ 1.68× 106 9.57× 106

ipython 801 0 - 6 0.98 5.04× 104 2.63× 105

kombu 1022 1 - 1 ⊥ 1.27× 104 9.05× 104

libcloud 9806 1 - 2 ⊥ 5.00× 103 6.66× 105

loguru 1251 2 - 2 ⊥ 4.73× 104 1.48× 105

mitmproxy 1232 - - - ⊥ 2.11× 103 7.79× 104

Pillow 2567 - - - ⊥ 2.89× 104 2.35× 105

prefect 7010 2 - 23 0.96 4.05× 105 3.80× 106

PyGithub 711 - - - ⊥ 1.41× 104 1.39× 105

pyramid 2633 - - - ⊥ 1.10× 103 1.49× 105

requests 530 0 - 5 1.00 8.48× 104 3.46× 105

salt 2660 1 - 11 0.96 8.75× 104 6.27× 105

scikit-image 6275 - - - ⊥ 5.73× 105 6.36× 106

seaborn 1020 - - - ⊥ 6.41× 104 1.25× 106

setuptools 693 1 - - ⊥ 1.40× 105 4.75× 105

sunpy 1857 - - - ⊥ 3.89× 105 1.08× 106

tornado 1158 1 - - ⊥ 6.44× 103 1.01× 105

urllib3 1305 3 - 12 0.89 3.53× 104 2.13× 105

xonsh 4767 1 - 8 0.94 2.94× 104 4.50× 105

Overall 89510 24 - 134 0.92 5.54× 106 4.91× 107
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Table 5.9: The per-project and overall results for CANNIER+iDFClass. The table gives the confusion
matrix categories, rounded to the nearest integer, and the MCC at the point in the parameter space
representing balanced CANNIER+iDFClass (ωl = 0.18, ωu = 1.01, nF = 14). It also gives the time cost
(in seconds) at this point (CANNIER+) and at the point representing original iDFClass (Original).
See Table 5.8 caption for more details.

Time cost (s)

Project TN FN FP TP MCC CANNIER+ Original

airflow 275 3 - 53 0.97 9.22× 106 7.24× 107

celery 15 - - - ⊥ 6.95× 104 2.06× 105

Cirq 17 - - - ⊥ 3.23× 104 4.47× 106

conan 13 - - - ⊥ 2.47× 104 4.84× 105

dask 1 - - - ⊥ 1.87× 104 6.60× 105

django-rest-... 1 - - - ⊥ 1.00× 106 9.66× 105

electrum 1 1 - 0 ⊥ 1.11× 103 3.95× 102

Flexget 4 1 - 0 ⊥ 1.44× 106 1.75× 106

fonttools 42 - - - ⊥ 2.91× 104 2.48× 106

graphene 1 - - - ⊥ 2.42× 102 4.27× 103

hydra 19 - - - ⊥ 2.93× 104 1.31× 106

hypothesis 6 1 - 2 0.85 6.32× 105 9.55× 105

ipython 297 0 - 5 0.99 1.80× 104 7.84× 105

kombu 23 1 - - ⊥ 4.63× 103 1.38× 105

libcloud 133 1 - 2 ⊥ 8.73× 104 8.74× 106

loguru 21 0 - 3 0.98 4.15× 104 2.35× 105

mitmproxy 6 - - - ⊥ 2.61× 103 3.70× 104

Pillow 26 - - - ⊥ 2.55× 103 1.51× 104

prefect 20 - - 17 1.00 7.84× 105 1.04× 106

PyGithub 4 - - - ⊥ 7.82× 102 3.11× 102

pyramid 4 - - - ⊥ 8.37× 102 3.54× 104

requests - - - 4 ⊥ 1.81× 104 1.61× 104

salt 4 - - 12 1.00 1.26× 106 1.33× 106

scikit-image 12 - - - ⊥ 4.89× 105 6.98× 105

seaborn 8 - - - ⊥ 7.64× 104 1.29× 105

setuptools 23 - - 1 1.00 7.53× 104 1.95× 105

sunpy 2 - - - ⊥ 6.20× 103 1.94× 105

tornado 1 - - - ⊥ 6.05× 102 4.03× 101

urllib3 1 0 - 15 0.99 1.25× 104 1.13× 104

xonsh 19 1 - 8 0.95 5.18× 105 5.75× 105

Overall 999 8 - 123 0.97 1.59× 107 9.98× 107
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Table 5.10: The per-project and overall results for CANNIER+Pairwise. The table gives the number of
detected victim-polluter pairs (TP), the total number of such pairs (P), and the true-positive rate (TPR)
at the point in the parameter space representing balanced CANNIER+Pairwise (ωV = 0.06, ωP =
0.09, nF = 9). It also gives the time cost (in seconds) at this point (CANNIER+) and at the point
representing original Pairwise (Original). See Table 5.8’s caption for more details about the entities in
this table.

Time cost (s)

Project TP P TPR CANNIER+ Original

airflow 45490 45819 0.99 2.60× 106 5.05× 106

celery 7 24 0.31 2.95× 104 6.12× 105

Cirq 30 32 0.94 1.15× 105 2.09× 107

conan - 18 - 2.13× 105 1.09× 107

dask 1 37 0.03 2.39× 105 2.15× 107

django-rest-... 0 3 0.07 4.92× 104 7.37× 106

electrum - 2 - 7.57× 103 6.49× 104

Flexget 2 4 0.43 1.70× 104 4.60× 106

fonttools - - ⊥ 1.93× 104 8.19× 105

graphene - 1 - 3.66× 102 1.19× 104

hydra 839 952 0.88 3.48× 104 5.44× 105

hypothesis 4071 7401 0.55 2.07× 106 3.41× 107

ipython 112497 118869 0.95 1.56× 105 1.78× 105

kombu 44 63 0.70 8.20× 103 7.42× 104

libcloud 984 1686 0.58 1.42× 105 5.23× 106

loguru 3 26 0.13 3.77× 103 1.56× 105

mitmproxy 90 735 0.12 1.13× 104 7.68× 104

Pillow 23 26 0.88 4.57× 104 4.82× 105

prefect 103 230 0.45 5.29× 105 2.19× 107

PyGithub 2703 2712 1.00 1.45× 104 7.89× 104

pyramid 262 383 0.68 4.34× 103 3.15× 105

requests - - ⊥ 6.63× 103 1.50× 105

salt 50 65 0.78 2.96× 104 1.34× 106

scikit-image 5887 5890 1.00 6.30× 106 3.19× 107

seaborn 5 7 0.72 8.31× 104 1.02× 106

setuptools 4 4 1.00 1.76× 104 2.89× 105

sunpy - 9 - 1.48× 105 1.60× 106

tornado - - ⊥ 3.05× 103 9.35× 104

urllib3 - - ⊥ 7.90× 103 2.26× 105

xonsh 9442 9459 1.00 1.15× 105 1.73× 106

Overall 182538 194457 0.94 1.30× 107 1.73× 108
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detection performance that is far greater than the Extra Trees classifier alone.

Figure 5.8b and Table 5.8b show the results for CANNIER+iDFClass. As shown by the
figure, the general picture is similar to CANNIER+Rerun but somewhat attenuated. The re-
duction in time cost from original iDFClass to balanced CANNIER+iDFClass is 84%, slightly
less than that for CANNIER+Rerun. In addition, the difference in MCC between the balanced
CANNIER+iDFClass point (0.97) and the pure machine learning point (0.71) is slightly less
significant. The per-project MCC is broadly consistent, as shown by the table. The overall impli-
cations of these results are the same as before, namely that applying CANNIER to iDFClass
scarifies a minimal degree of detection performance for a considerable reduction in time cost.

Figure 5.8c and Table 5.8c give the results for CANNIER+Pairwise. Again, the overall
story is similar to the two prior techniques. In this case, the drop in time cost between original
Pairwise and balanced CANNIER+Pairwise is the greatest at 92%. Furthermore, the true-
positive rate (TPR) at the point representing balanced CANNIER+Pairwise is very high at
0.94. Yet, the table shows that the per-project detection performance varies significantly, far
more than the previous two techniques. This could be explained by the relatively high variance
in the per-project detection performance of the machine learning pipeline for the Polluter-vs-Rest
problem (see Table 5.7b).

Conclusion for RQ4 When applied to Rerun, iDFClass, and Pairwise, CANNIER is able
to reduce time cost by an average of 88% at the expense of only a minor decrease in detection
performance.

5.7 Discussion

5.7.1 RQ1. How effective is machine learning-based flaky test detec-
tion?

As shown by Table 5.5, there is not much difference in terms of overall MCC between consecutive
pipelines in the top-12 for each classification problem. Nonetheless, there are some patterns that
have emerged from our choice of pipeline configurations. For NOD-vs-Rest and Victim-vs-Rest,
it appears that Extra Trees is the clear winner for the type of classifier, consistently occupying
the top positions in both tables. Extra trees is a more randomised variant of Random Forest, an
ensemble model based on decision trees [18, 51, 137, 143]. Both fit individual trees on a random
subset of the features from a random sample of the data points from the training data. The major
difference between the two models is how nodes in the decision tree are split. Random forest uses
an optimal split, whereas Extra Trees uses a random split. The additional randomness introduced
by Extra Trees trades increased bias for reduced variance. Increased bias means the classifier may
fail to recognise relationships between feature data and labels, known as underfitting. Reduced
variance means the classifier may be less sensitive to noise and outliers, avoiding overfitting. The
fact that Extra Trees was more performant with respect to NOD-vs-Rest and Victim-vs-Rest
could suggest that this particular trade-off was more beneficial when tackling these two problems,
compared to NOD-vs-Victim and Polluter-vs-Rest. The reason for this however would require
further investigation.

The pipelines with more trees tended to yield greater detection performance than those of the
same classifier type and balancing but with fewer trees. This is expected, since the motivation
behind Random Forest and Extra Trees is to fit decision trees with decoupled prediction errors,
such that taking an average of their individual predictions leads to some errors cancelling out.
Therefore, it stands to reason that more trees would lead to greater performance. Of course,
increasing the number of trees can only improve the classifier up to a point — and, moreover,
there are some instances in our results where more trees did not lead to better performance.

Plain SMOTE (without additional underbalancing) appeared to yield better pipelines com-
pared to SMOTE+ENN and SMOTE+Tomek. Recall from Section 5.5.2 that SMOTE [23] syn-
thetically increases the number of data points in the minority class via interpolation. However,
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the combination of SMOTE with additional underbalancing techniques produces both synthetic
members of the minority class but also discards some members of the majority class. It could be
that the removal of real data points was detrimental to the performance of the pipelines that used
these techniques, though further investigation would be required to be sure.

Table 5.6b shows the per-project and overall results of the best pipeline for the NOD-vs-
Victim problem. There is a fairly significant difference between the overall MCC of 0.69 and
the per-project mean MCC of 0.55. Recall that CANNIER-Framework calculates the overall MCC
from the sum of the per-project confusion matrix category frequencies. This disparity is probably
caused by the individual results for IPython and Airflow having a disproportionate impact
on the overall result since they have significantly more victim flaky tests than the other subject
projects (see Table 5.3). This is also seen in Table 5.7b for Polluter-vs-Rest, though in this case
the difference between the mean and overall MCC is much larger. Once again, this is likely due
to the influence of individual projects with relatively many polluters.

The per-project MCC varies quite considerably, with a standard deviation ranging from 0.22
to 0.34 across the four problems. One would expect that projects with fewer flaky tests would
have a poorer MCC than those with more, simply because they have fewer positive examples to
train the classifier. However, our results do not appear to show this trend. Therefore, further
investigation is required to fully understand why the MCC for some projects is so much greater
than that of others.

5.7.2 RQ2. What impact do mean feature vectors have on the perfor-
mance of machine learning-based flaky test detection?

Our conclusion for RQ2, as illustrated by Figure 5.5, is that increasing the sample size to produce
the mean feature vectors increases the overall MCC of the best pipeline for the four flaky test
classification problems. This is not surprising, given how the literature has already established a
degree of non-determinism in some of the dynamic features in Table 5.1 [70, 139, 160]. What is
more interesting is how weak the effect on MCC appears to be, despite being clearly positive, as
illustrated by the very small gradient of the line of best fit. Despite this, at the point representing
balanced CANNIER for all three flaky test detection techniques in RQ4, the number of samples
to produce the mean feature vectors (nF ) is fairly high (15, 14, and 9 for CANNIER+Rerun,
CANNIER+iDFClass, and CANNIER+Rerun, respectively). This suggests that the added
time cost of performing the extra feature measurements may be a worthwhile trade-off for the
increased detection performance.

5.7.3 RQ3. What contribution do individual features have on the out-
put values of machine learning classifiers for detecting flaky tests?

Figure 5.6 gives the SHAP value beeswarm plots based on the best pipelines for the four flaky test
classification problems. These visualise the contribution of the 18 features in Table 5.1 towards
the output value of the classifier for a given test case. It is important to remember that Random
Forest and Extra Trees are not causal models and therefore it is not appropriate to infer causality
by applying SHAP without considering confounding [189]. Furthermore, as demonstrated by our
results for RQ1, the detection performance of the classifiers is limited and therefore the SHAP
values may not even offer a reliable insight into the correlations between the feature values and the
probability of a test case being flaky. Despite this, some of our findings support general intuition
and the consensus of the flaky test literature.

For the NOD-vs-Rest problem, I found that Wait Time appears to contribute positively to the
Extra Trees classifier output (towards predicting NOD flaky) when its value is high and negatively
when low. This feature measures the elapsed wall-clock time spent waiting for input/output (I/O)
operations to complete. Many empirical studies have pointed to “asynchronous waiting” as a
leading cause of NOD flaky tests [37, 89, 105, 136], where a test case waits for an insufficient
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def test_create_pool(self):

pool = self.client.create_pool(name='foo', slots=1, description='')

self.assertEqual(pool, ('foo', 1, ''))

self.assertEqual(self.session.query(models.Pool).count(), 2)

(a) This test case from the Airflow project [200] has an AST depth of 1.

def test_top_level_return_error(self):

tl_err_test_cases = self._get_top_level_cases()

tl_err_test_cases.extend(self._get_ry_syntax_errors())

vals = ('return', 'yield', 'yield from (_ for _ in range(3))',

dedent('''

def f():

pass

return

'''),

)

for test_name, test_case in tl_err_test_cases:

# This example should work if 'pass' is used as the value

with self.subTest((test_name, 'pass')):

iprc(test_case.format(val='pass'))

# It should fail with all the values

for val in vals:

with self.subTest((test_name, val)):

msg = "Syntax error not raised for %s, %s" % (test_name, val)

with self.assertRaises(SyntaxError, msg=msg):

iprc(test_case.format(val=val))

(b) This test case from the IPython project [242] has an AST depth of 5.

Figure 5.9: Two test cases with different values for the AST depth feature. This feature measures the
maximum depth of nested program statements.

amount of time for an asynchronous operation, such as I/O, to complete. I also found Context
Switches and Max. Children to have a similar contribution pattern. Both of these features are
associated with concurrency, another leading cause of flakiness as attested by the same studies.
Furthermore, Read Count and Write Count, that measure the number of times the filesystem
performed input and output respectively, also appear to contribute positively to the classifier
output when high and negatively when low. Previous work has identified I/O itself as a cause
of flaky tests [105], but this behaviour could also be related to asynchronous waiting, since Wait
Time is time spent waiting for I/O and could correlated with Read Count and Write Count.

For NOD-vs-Rest and NOD-vs-Victim, Run Time has a positive contribution when high and
a negative contribution when low and ranks highly in terms of overall contribution (i.e., the
mean absolute SHAP value). In their evaluation of FlakeFlagger, Alshammari et al. [8] also
found the execution time of test cases to be correlated with the probability of being NOD flaky.
However, they were unable to establish any casual link. For the Victim-vs-Rest problem, Write
Count, Read Count, and Wait Time seem to contribute have a similar contribution pattern, but to
varying degrees of consistency. Since these features are associated with I/O, this correlation could
be explained by the relationship between filesystem activity and victim flaky tests established in
previous studies (e.g., [15, 17, 47, 105, 175]).

Seven of the 18 features are static, meaning they are based on the test case code and do not
require a test case execution to measure. One of these is AST Depth that measures the maximum
depth of nested program statements. Figure 5.9 compares two test cases with different values
for the AST depth feature. In terms of mean absolute SHAP value, AST Depth was the most
impactful for the NOD-vs-Rest problem. While no previous study has examined the relationship
between AST Depth and flakiness, intuitively one might expect a high AST Depth to be associated
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with a higher chance of flakiness. This is simply because a test case with a higher AST Depth
is likely to be more complex and therefore offer more opportunities for flakiness to arise. The
beeswarm plot for NOD-vs-Rest appear to broadly support this notion yet the plots for the other
problems do not indicate a clear relationship. This suggests that AST Depth may be correlated
with the probability of a test case being NOD flaky.

There appear to be some tentative relationships between the contribution patterns of features
for the four problems. For NOD-vs-Rest and NOD-vs-Victim, the contribution of Run Time, Read
Count, Context Switches, Write Count, and Max. Children are broadly positive when high and
negative when low. This could be due to the positive class being the same for both problems
and the negative class of NOD-vs-Victim being a subset of the negative class of NOD-vs-Rest.
Moreover, the contribution pattern of the features for the NOD-vs-Victim differs significantly
that of the Victim-vs-Rest problem. As I reported in Section 5.6.3, the Maintainability and
Cyclomatic Complexity features appear to have nearly opposite contribution patterns between
the two problems. This is expected, because the positive class of Victim-vs-Rest is the negative
of NOD-vs-Victim, and the negative class of Victim-vs-Rest is a superset of the positive of NOD-
vs-Victim.

It is clear from Figure 5.7 that dropping the less impactful features (in terms of mean absolute
SHAP value) has little impact on the detection performance of the best pipeline for each problem.
Since the time to fit a Random Forest/Extra Trees classifier grows linearly with the number of
features, this is a useful result for expediting the training stage. This is not directly relevant
to the conclusions of this study however, as I am not concerned with the time cost of classifier
training since that is performed off-line from the perspective of a developer using the CANNIER
approach.

5.7.4 RQ4. What impact does CANNIER have on the performance and
time cost of rerunning-based flaky test detection?

I presented CANNIER+iDFClass as a drop-in replacement for the Classification stage of iD-
Flakies. In theory, the combination of the NOD-vs-Rest and Victim-vs-Rest classifiers could be a
substitute for the entire iDFlakies pipeline. This could be realised as CANNIER+iDFlakies,
a multi-classifier approach with a multi-label output: NOD, Victim, or Rest (non-flaky). In prac-
tice, the difficulty arises when either of the classifiers are ambiguous for a given test case. To
delegate the prediction for such a test case to iDFlakies in this hypothetical scenario, CAN-
NIER+iDFlakies would need to rerun the entire test suite in different orders until the test case
fails or the upper-limit is reached. This corresponds to the Running stage of iDFlakies. As
with the single-classifier CANNIER+iDFClass given in the study, it would then execute the
prefix of the failing test order, representing the Classification stage of iDFlakies. Naturally,
with even a handful of ambiguous cases, the hypothetical multi-classifier CANNIER+iDFlakies
would be unlikely to noticeably reduce the time cost of the Running stage, but would reduce
the time cost of the Classification stage in the same way as the existing single-classifier CAN-
NIER+iDFClass. Therefore, the benefit of CANNIER+iDFlakies is effectively the same as
CANNIER+iDFClass, since the latter makes no attempt to expedite the Running stage. For
these reasons, I opted to focus on CANNIER+iDFClass due to its simplicity and the fact that
it would require fewer modifications to iDFlakies to implement.

As shown in Figure 5.8a and Table 5.8, for the point representing balanced CAN-
NIER+Rerun, the lower-threshold (ωl) is very low at 0.07 and the upper-threshold (ωu) is
at its maximum value of 1.01. The latter means that there effectively is no upper-threshold on
the predicted probability (see the second clause of Equation 5.4). Figure 5.10 illustrates the dis-
tribution of predicted probabilities for test cases in, and gives the frequencies of, each confusion
matrix category, for each of the four flaky test classification problems. I produced this figure
from the results of RQ1, such that the figure for each classification problem corresponds to its
respective table in Tables 5.6 and 5.7. Figure 5.10a focuses on the NOD-vs-Rest problem. The
distribution for true-negatives (TN) is focused largely around 0 and represents the vast major-
ity of test cases. Furthermore, the distribution for false-negatives (FN) appears highly separable
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(a) NOD-vs-Rest
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(b) NOD-vs-Victim
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Figure 5.10: The distribution of predicted probabilities for test cases in, and the frequencies of, each
confusion matrix category, for each of the four flaky test classification problems. The data is based on
the best pipelines from RQ1. Whiskers represent the range from the 5th to the 95th percentile and boxes
represent the 25th to the 75th. Middle lines represent the median (50th).

from true-negatives. This might explain why ωl is so low, because it means CANNIER+Rerun
labels most true-negative test cases as negative and prevents them from being delegated to Re-
run, significantly reducing time cost. It also means CANNIER+Rerun labels only a handful
of false-negatives as negative, limiting the reduction in detection performance. The distribution
for true-positives (TP) is clearly different from false-positives (FP) but not as easily separable.
However, there are few test cases in both categories relative to true-negatives. Therefore, by set-
ting ωu to its maximum value, CANNIER+Rerun makes no false-positive predictions, ensuring
no decrease in detection performance at the expense of a minor increase in time cost. This could
explain why there are no false-positive predictions in Table 5.8.

Figure 5.10b illustrates the distribution of predicted probabilities for NOD-vs-Victim. The
situation for this problem and the thresholds for the point representing balanced CAN-
NIER+iDFClass is very similar to NOD-vs-Rest and CANNIER+Rerun. The biggest dif-
ference is that the frequency of the true-negative category for NOD-vs-Victim is two orders of
magnitude smaller than that for NOD-vs-Rest. The distribution for true-negatives also spreads
much further into the distribution for false-negatives. This may explain why the lower-threshold
for CANNIER+iDFClass is greater at 0.18 and why the reduction in time cost from iDFClass
to CANNIER+iDFClass is smaller.

Figure 5.10c and 5.10d are for Victim-vs-Rest and Polluter-vs-Rest respectively. Once again,
the overall picture is similar for both problems. That is, the true-negative category contains the
vast majority of test cases and its distribution is broadly separable from the false-negative cate-
gory. This explains why the victim-threshold (ωV ) and polluter-threshold (ωP ) for the balanced
CANNIER+Pairwise point are low at 0.06 and 0.08 respectively. Uniquely for Polluter-vs-Rest,
the true-positive distribution appears very distinct from the false-positive distribution. Perhaps
because this problem has significantly more positive examples in the dataset compared to the other
problems, the machine learning classifier can discern unseen positive cases with greater confidence.
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5.7.5 Implications

Researchers

Our findings for RQ1 extend the existing body of work in machine learning-based flaky test
detection into the detection of polluter test cases. Identifying polluters is vital for mitigating
test-order dependencies [91, 119, 141] and so our results demonstrate the wider applicability of
machine learning classifiers for tackling flaky tests. Our results for RQ2 (and supported by RQ4)
demonstrate that using mean feature vectors can improve the detection performance of machine
learning classifiers. I therefore suggest that researchers consider the implications of this when
evaluating machine-learning based techniques that use dynamic features. Our results for RQ3
tentatively identify correlations between test case metrics and the probability of a test case being
flaky. This is an important foundation for future work in elevating flaky test detection techniques
to comprehensive flaky test root causing techniques, a vital intermediate step towards automated
flaky test repair. While such root causing and repair techniques exist [88, 151, 162], they are
expensive and limited in scope.

Developers

Our findings for RQ4 demonstrate that CANNIER is a “best of both worlds” approach between
rerunning-based and machine learning-based flaky test detection. As shown by Figure 5.8, CAN-
NIER reduces time cost by an average of 88% across the three rerunning-based techniques while
maintaining good detection performance. For developers, this means not having to trade high time
cost for limited detection performance. Furthermore, while I used the knee-point of the Pareto
front to represent CANNIER in our evaluation, developers could customise the approach towards
lower time cost or greater detection performance by selecting a different point.

5.8 Related Work

Luo et al. [105] performed one of the earliest empirical studies of test flakiness. Using 51 projects of
the Apache Software Foundation as subjects, they classified 201 commits that repaired flaky tests
into 10 categories based on the cause of the flakiness. The most common cause they identified was
related to waiting for asynchronous operations. For example, a test case that launches a thread
to perform input/output (I/O) and waits a fixed amount of time for it to finish may fail when
it takes longer than expected. One of the findings for RQ3 was that the amount of time spent
waiting for I/O operations to complete was positively correlated with the probability of a test case
being NOD flaky.

Gruber et al. [59] repeatedly executed the test suites of 22,352 open-source projects and
automatically identified 7,571 flaky tests. Like this study, these projects were primarily written in
the Python programming language. They randomly sampled 100 NOD flaky tests in their dataset
to classify their causes using the categories introduced by Luo et al. [105]. Unlike Luo et al., they
found causes related to networking and randomness to be the most prevalent.

Bell et al. [16] presented an automated technique, called DeFlaker, for detecting NOD flaky
tests. The key advantage of DeFlaker over Rerun is that it does not require repeated test
case executions. Instead, the technique takes advantage of a project’s history in a version control
system. When a test case that passed on a previous version of the software now fails, and does
not cover modified code, DeFlaker labels it as flaky. Naturally, DeFlaker requires a test
suite run with code instrumentation to measure coverage. Detecting flaky tests using Extra Trees
models with CANNIER-Framework also requires an instrumented run to measure coverage and the
other metrics in Table 5.1. In both cases, this test suite run introduces time overhead. However,
DeFlaker requires a run every time a change is made, whereas CANNIER-Framework requires at
least one to produce encodings for each test case that would likely remain relevant over a series
of changes. Furthermore, DeFlaker can only detect flaky tests after they fail. In contrast, the
models trained by the CANNIER-Framework can detect flaky tests preemptively.
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Pinto et al. [128] and Bertolino et al. [159] both presented machine learning-based flaky test
detection techniques based purely on static features of the test case code. Both techniques encoded
test cases using a bag-of-words approach. This represents test cases as sparse vectors where each
element corresponds to the frequency of a particular identifier or keyword in its source code. Pinto
et al. used additional static features such as the number of lines of code. Bertolino et al. used a
k-nearest neighbour classifier [80] for the machine learning classifier and Pinto et al. evaluated a
range of different models, including Random Forest. They found Random Forest to yield the best
detection performance, of which I use the Extra Trees variant in this study, having found it to
be the most effective in Chapter 4. Alshammari et al. [8] presented FlakeFlagger, a detection
technique using a Random Forest classifier and encoding test cases with a feature set containing
a mixture of static and dynamic test case metrics. Their evaluation showed that their feature set
offered a 347% improvement in overall F1 score compared to Pinto et al.’s purely static feature
set at the cost of a single instrumented test suite run to measure the dynamic features. For this
reason, I included both static and dynamic test metrics in the feature set instead of relying on
purely static features.

Shi et al. [141] presented iFixFlakies, a technique for automatically generating patches for
victim flaky tests. Their approach uses delta-debugging [172] to identify a victim’s polluters and
other test cases that may contain the statements needed to repair the victim, known as clean-
ers. CANNIER+Pairwise could provide a drop-in replacement for this aspect of iFixFlakies.
However, I cannot say for certain if it would be faster than using delta-debugging because I have
not yet evaluated it in this context.

Lam et al. [90] presented iDFlakies, a technique for detecting flaky tests and classifying them
as either NOD or Victim. The overall process involves repeatedly executing a test suite in a modi-
fied order (e.g., shuffled) to identify flaky test cases. Following this, the tool enters a Classification
stage where it attempts to determine the category of each flaky test. In this study, I evaluated the
application of CANNIER to the Classification stage of this tool (CANNIER+iDFClass). The
empirical results demonstrated that CANNIER was able to significantly reduce the execution
time overhead of the Classification stage at minimal detriment to its detection performance.

5.9 Conclusions

This study expanded the existing work on machine learning-based flaky test detection and in-
troduced CANNIER, an approach for significantly reducing the time cost of rerunning-based
detection techniques by combining them with machine learning classifiers. Initially, using a vari-
ety of machine learning pipelines and a feature set of 18 static and dynamic test case metrics, I
performed a baseline evaluation of machine learning-based detection on a dataset of 89,668 test
cases from 30 Python projects. I evaluated their performance with respect to detecting NOD flaky
tests, victim flaky tests, and polluter test cases. The results suggested that the performance of
the machine learning classifiers was lacklustre and variable between projects. I then went on to
investigate the impact of mean feature vectors on machine learning-based flaky test detection. I
identified a positive relationship between the sample size to produce the mean feature vectors and
the detection performance of the machine learning classifier. In the interest of model explainabil-
ity, I applied the SHAP technique [103] to quantify the contribution of each individual feature
to the output value of the classifier. While this technique can only reveal correlations and is not
appropriate for inferring causality, I made several findings that support both the general intuition
of developers and results from the flaky test literature. Finally, I evaluated CANNIER’s impact
on three rerunning-based methods for flaky test detection: Rerun, the Classification stage of
iDFlakies, and Pairwise. I found that CANNIER was able to significantly reduce time cost at
the expense of only a minor decrease in detection performance.

While the evaluation in this chapter does indeed demonstrate that CANNIER is the “best of
both worlds” between using classifiers and rerunning test cases for detecting flaky tests, it could
still impose a significant cumulative time cost over repeated use as developers introduce new test
cases. Hypothetically, a classifier trained only on the test cases of a specific project could provide



5.9. CONCLUSIONS 151

better predictions for the future test cases of that project than a classifier trained on the test
cases of many projects. This is because such a classifier would not have to generalise to other
projects. While a project-specific classifier may accurately detect future flaky tests very quickly,
providing the training data would be a problem. This is because one would need an efficient
approach to detect the existing flaky tests in the project to provide the training labels for the
classifier. Because the classifier is effectively using this approach as a ground truth it needs to be
very accurate, but the time cost cannot be too high otherwise the long-term benefits of using the
project-specific classifier will be significantly eroded.



Chapter 6

Automatically Training
Project-Specific Machine Learning
Models to Detect and Classify
Flaky Tests

The contents of this chapter is based on research currently under review at the International
Conference on Automated Software Engineering 2023.

6.1 Introduction

Researchers have introduced automated techniques for the detection of flaky tests based on ex-
haustively rerunning test cases, reasoning that flaky tests will exhibit inconsistent outcomes after
enough executions [16, 59, 90, 92]. The downside is the time cost of executing test cases hun-
dreds or even thousands of times. For developers working with large test suites, this cost can
be prohibitive. The intractability of rerunning-based techniques has pushed research towards
machine-learning based detection. A typical methodology is to rerun the test suites of a corpus
of projects many times to produce a set of ground-truth labels, with which to train a machine
learning classifier in combination with features regarding every test case [8, 128, 133, 159]. While
evaluations based on cross-validation show promising results, researchers have established that
classifiers perform poorly when evaluated on test cases from projects that were not part of their
training data [20, 41]. Since the idea is that a developer takes the pre-trained classifier and applies
it to their own projects, this poor inter-project generalisability seriously threatens their usefulness.

In this study, I present the FlakeFriend technique. It is capable of not only detecting and
classifying existing flaky tests in a project, but also of producing reusable project-specific machine
learning classifiers able to provide fast and accurate predictions for future test cases in that project.
These classifiers can be viewed as a “friend” of the test suite, warning developers of flaky tests
early on to avoid them accumulating [180]. I developed a concrete implementation to enable an
extensive empirical evaluation involving 63,090 test cases from 10 open-source Python projects.
The implementation and evaluation draws strongly on the findings of Chapters 3 and 5 to ensure
relevance to developers and practicality respectively. I found that FlakeFriend is able to detect
existing flaky tests in a project in just 20% of the time taken by exhaustive rerunning on average.
I found that the machine learning classifiers produced by FlakeFriend for a project can detect
future flaky tests in that project with a mean Matthews Correlation Coefficient (MCC), a reliable
metric for evaluating a classifier [24], of 0.73. This is significantly better than classifiers pre-trained
on the test cases of other projects, that I found to be consistently poor with a mean MCC of just
0.18. This supports previous findings that classifiers for detecting flaky tests do not generalise

152



6.2. FLAKEFRIEND 153

well between projects [20, 41]. I also found that FlakeFriend offers considerable savings in
cumulative time cost over repeated use when detecting flaky tests in evolving test suites compared
to a previous state-of-the-art approach.

In summary, the main contributions of this study are:

1. Technique (Section 6.2): A novel technique capable of detecting and classifying existing
flaky tests in a project, and of producing machine learning classifiers to provide fast and
accurate predictions for future test cases.

2. Dataset (Section 6.3): Over several months of compute time, I collected a large dataset of
test run information regarding 10,000 executions of 63,090 test cases. This is freely available
in the replication package [205] to enable future testing research.

3. Evaluation (Section 6.4): An extensive empirical evaluation involving 10 open-source
projects shows how FlakeFriend addresses the drawbacks of both rerunning-based and
machine learning-based flaky test detection.

6.2 FlakeFriend

Machine learning classifiers for detecting flaky tests perform poorly when evaluated on projects
that were not part of their training data [20, 41]. Their performance could be improved by some
oracle on their predicted probabilities, providing binary “flaky or not flaky” labels for every test
case. It would be expected to impose a small time cost, relative to exhaustive rerunning, for
significantly greater detection performance. While this may provide a “best of both worlds” solu-
tion between applying classifiers alone and exhaustive rerunning, it may still impose a significant
cumulative time cost over repeated use as developers introduce new test cases. The innovation
behind FlakeFriend is to use an existing project-agnostic model, a classifier pre-trained on many
projects, in combination with an oracle to provide project-agnostic labels, binary labels indicat-
ing flakiness, for the existing test cases of an unseen project, with which to train a project-specific
model for that project. Because the project-specific model does not need to generalise to other test
suites, it should produce high-quality project-specific labels for the future test cases of that project
without the support and added time cost of the oracle. Therefore, the time cost of applying the
project-specific model is minimal and the majority of the cumulative time cost of FlakeFriend
is paid when the test suite is smaller, as opposed to over time as the test suite grows.

FlakeFriend requires a test suite as input, a set of n test cases t1, t2, ..., tn. At the point
in time when FlakeFriend is first applied, the test suite is split between existing and future
test cases. The index of the first future test case is k, such that t1, t2, ...tk−1 are existing and
tk, tk+1, ...tn are future. Figure 6.1 provides an overview of the technique and an example with
three existing test cases and three future tests cases. Where αi is the time cost of extracting a
feature vector for a test case ti to feed into the various models, and βi is the time cost imposed
by the oracle of acquiring project-agnostic labels for it, the cumulative time cost of applying
FlakeFriend in this example is

∑6
i=1 αi +

∑3
i=1 βi. This results in every test case having

predicted labels, the project-agnostic labels for the three existing test cases and the project-specific
labels for the three future test cases. Generalizing, the initial cost paid by a user of FlakeFriend
is
∑k−1
i=1 (αi + βi). For every future test case ti, the user pays αi, the cost of extracting a feature

vector to feed into the project-specific models to get project-specific labels. If the user were to
obtain project-agnostic labels instead, they would pay the additional cost imposed by the oracle,
thus paying αi +βi for each future test case. The recovery of βi can result in considerable savings
as the test suite evolves. As part of the empirical evaluation, I found that FlakeFriend saved an
average of 118 days of single-core cumulative time cost after doubling the size of the test suite (see
Section 6.5.3). Therefore, the more complex process involved in FlakeFriend is clearly justified.
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Figure 6.1: An overview of FlakeFriend. The inputs are a set of n test cases (t1, t2, ..., tn), a set of
m project-agnostic models (A1, A2, ..., Am), and parameters for the Project-Agnostic Oracle stage (Ω).
Where k is the index of the first future test case, t1, t2, ...tk−1 are existing test cases and tk, tk+1, ...tn are
future test cases. The primary outputs are a set of (k − 1) ×m project-agnostic labels (a11, a

1
2, ..., a

m
k−1),

a set of m project-specific models (S1, S2, ..., Sm), and a set of (n − k + 1) × m project-specific labels
(s1k, s

1
k+1, ..., s

m
n ). The intermediate outputs are a set of n feature vectors (x1,x2, ...,xn) and a set of

(k− 1)×m predicted probabilities (p11, p
1
2, ..., p

m
k−1). For processing an individual test case ti, the Feature

Extraction and Project-Agnostic Oracle stages contribute a time cost of αi and βi respectively to the
cumulative time cost of applying FlakeFriend. In this example, n = 6, m = 2, k = 4, and the
cumulative time cost is

∑6
i=1 αi +

∑3
i=1 βi. See Sections 6.2.1 to 6.2.5 for further explanation.

6.2.1 Feature Extraction

The first stage of the technique is to extract a feature vector xi to represent every test case
ti. The technique places no explicit requirements on this stage since the nature of the features
are dependent on the type of machine learning classifiers used in the later stages. However,
it may involve executing the test cases, potentially with run-time instrumentation. Therefore,
FlakeFriend expects a feature cost αi to be associated with producing the feature vector for a
test case ti. In Figure 6.1, the test suite consists of six test cases in total, and the output of the
Feature Extraction stage is six feature vectors.

6.2.2 Project-Agnostic Prediction

FlakeFriend requires m pre-trained project-agnostic models as input A1, A2, ..., Am. The first,
A1, should predict the probability p1i ∈ [0, 1] that a test case ti is flaky. The subsequent models
should predict the probability that a test case is a specific category of flaky. In other words, where
y1i ∈ {0, 1} is a ground-truth label indicating if ti is flaky (unknown to the user of the technique),

A1 estimates P (y1i = 1). For j > 1, where yji is a ground-truth label indicating if ti is a specific

category of flaky, Aj estimates P (yji = 1).
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Much research in the field of flaky tests has enumerated many different categories of flakiness
(see Table 2.4). These are useful for developers to know when attempting to repair them [56].
FlakeFriend expects the project-agnostic models to have been pre-trained on a set of projects
that does not include the project that the input test suite is from. For each project-agnostic model,
FlakeFriend applies the Project-Agnostic Prediction stage to the existing test cases only. In
Figure 6.1, the technique applies two project-agnostic models to the three existing test cases,
resulting in six predicted probabilities.

6.2.3 Project-Agnostic Oracle

The purpose of the Project-Agnostic Oracle stage is to take each predicted probability pji from the

previous stage and convert it into a project-agnostic label aji ∈ {0, 1} with equivalent semantics

to its corresponding ground-truth label yji . To ensure consistent labelling, the only restriction

FlakeFriend places on this stage is that aji = 1 =⇒ a1i = 1 for j > 1 must always hold, since
this also naturally applies to the ground-truth labels. In other words, the oracle should never
label a test case ti as a specific category of flaky (aji = 1) if it does not also label the test case
as flaky (a1i = 1). The technique expects an oracle cost βi to be associated with processing ti,

that is, converting every pji to aji . Furthermore, FlakeFriend can take an additional input Ω
representing the parameters of the oracle, though the technique does not specify what they may
be. Figure 6.1 shows the six predicted probabilities for the three existing test cases becoming six
project-agnostic labels.

6.2.4 Project-Specific Training

Given x1,x2, ...,xk−1 as feature vectors from the Feature Extraction stage and aj1, a
j
2, ..., a

j
k−1 as

training labels from the previous stage, the Project-Specific Training stage produces a project-
specific model Sj to correspond with a project-agnostic model Aj . In other words, FlakeFriend
uses Aj via the oracle to train Sj to detect the same type of flakiness as Aj exclusively within
the context of the input project. The details of the training procedure depends on the type of
machine learning classifier, and so FlakeFriend places no restrictions on how this is performed.
Figure 6.1 shows FlakeFriend using the three project-agnostic labels from A1 to train S1 and
the three project-agnostic labels from A2 to train S2.

6.2.5 Project-Specific Prediction

This stage takes the project-specific models from the Project-Specific Training stage and applies
them to the future test cases. For a future test case ti, a project-specific model Sj predicts

a project-specific label sji ∈ {0, 1}. These labels are semantically equivalent to their project-
agnostic counterparts. At this stage, FlakeFriend enforces the same labelling restriction as it
did in the Project-Agnostic Oracle stage, namely that sji = 1 =⇒ s1i = 1 for j > 1 must always
hold. In Figure 6.1, the technique applies the two project-specific models to the three future test
cases that were not involved in training, producing six project-specific labels as output.

6.3 Implementation

I implemented FlakeFriend with a plugin to the Python testing framework pytest [266] and a
collection Python scripts, named FlakeFriendEvaluator. These are freely available within the
replication package [205]. While FlakeFriend is formulated to operate upon a single test suite
and to execute each stage once, the implementation supports multiple subject projects as input
and repeats stages over a range of classifier types, feature sets, and parameters to facilitate the
evaluation and to improve its generalisability.
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Table 6.1: The features collected by the modes of pytest-FlakeFriend. (1Scalar metric feature. 2Sparse
boolean feature vector. 3Feature excluded from training project-agnostic models.)

Mode Features

Static AST Depth1, External Modules1, Assertions1, Halstead Volume1, Cyclomatic
Complexity1, Test Lines of Code1, Maintainability1, Test Function Tokens2

Dynamic Static + Elapsed Time1, User Time1, System Time1, Wait Time1, Read Count1,
Write Count1, Context Switches1, Max. Threads1, Max. Children1, Max. Memory1

DFunc Dynamic + Function Coverage2,3, Function Transition Coverage2,3

DLine Dynamic + Covered Lines1, Covered Line Tokens2, Line Coverage2,3, Line Arc
Coverage2,3

DFL DFunc + DLine

6.3.1 Feature Extraction

To implement this stage, I created a pytest plugin named pytest-FlakeFriend. It offers six
modes for executing a test suite where five collect test case features (see Table 6.1). Most are
metrics but some are sparse boolean vectors, where each element represents an occurrence. In
each of these five modes, the plugin records the feature cost αi of every test case ti as a time
cost in seconds. For each subject project and for each of the five modes, FlakeFriendEvaluator
launches the plugin inside a Docker container on a high-performance cluster with a 72 hour timeout.

The first feature-collecting mode is named Static, in which pytest-FlakeFriend statically
analyses the test function associated with every test case without executing them. Since the
pytest framework allows test cases to be parameterised, multiple test cases can share a single
test function and would therefore share the same features. Included in the features collected in
this mode are the seven static features from Flake16 (see Table 4.1), capturing the complexity
of the test function code. pytest-FlakeFriend also produces a sparse boolean feature vector for
every test case representing the occurrences of tokens in the source code of its test function. This
follows previous evaluations of machine learning classifiers for flakiness detection [128, 159].

The second mode is named Dynamic. It includes all the analyses of the Static mode but also
executes every test case to collect dynamic metrics. Many of the metrics are taken from the
evaluation of the CANNIER approach for detecting flaky tests (see Table 5.1), with some minor
additions. The User Time feature measures the amount of time spent in user-mode code within
the process during test case execution. The System Time feature measures the time spent in the
kernel, which is typically required for privileged system services.

The third mode, named DFunc (Dynamic + Function), subsumes the Dynamic mode. It also
produces two sparse boolean feature vectors: Function Coverage and Function Call Coverage.
Each element in Function Coverage represents a function in the code under test that could be
called, and an element is set if the function is called at least once during test case execution. Each
element in Function Transition Coverage represents a possible transition between a caller function
and a callee function and is set if the caller calls the callee.

The fourth mode is DLine (Dynamic + Line). Like the third mode, it subsumes Dynamic
but concerns line coverage rather than function coverage. It introduces a metric, Covered Lines,
that is the number of lines in the code under test covered during test case execution. It also
introduces three sparse boolean vectors. The Covered Line Tokens feature is similar to Test
Function Tokens, but records the tokens that occur in the lines covered by a test case rather than
in its test function. The Line Coverage feature is similar to Function Coverage, but each element
represents a line that could be covered. The Line Arc Coverage feature, analogous to Function
Transition Coverage, records the transitions between lines.

The fifth and final mode, DFL (Dynamic + Function + Line), is the combination of the two
previous modes and therefore includes the analyses of all modes. This collects the most information
about each test case at the cost of the most extensive run-time instrumentation.
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6.3.2 Project-Agnostic Prediction

I used two project-agnostic models focusing on non-order-dependent (NOD) flaky tests. The first
(A1) estimates the probability that a test case is NOD flaky. The second (A2) estimates the
probability that a test case is NOD flaky due to the specification of the machine (NODSpec).
Developers highlighted this category during the survey in Chapter 3 (see Section 3.3).

Training them requires a ground-truth label yji for every pair of test case ti and project-agnostic
classifier Aj . To collect these, FlakeFriendEvaluator executes each subject project’s test suite
10,000 times on a cluster using the sixth mode of pytest-FlakeFriend, Rerun. Unlike the others,
Rerun does not collect features but records the pass/fail outcome of every test case ti as well
as its time cost in seconds γli on each run l. FlakeFriendEvaluator launches each run inside a
Docker container with the --cpu, --disk-read-bps, and --disk-write-bps options (that limit
the CPU and disk speed) set to random values to simulate machines of varying specification [214].
They record the ground-truth label y1i for a test case ti and project-agnostic model A1 as positive
(y1i = 1) if the test case gave an inconsistent outcome. For A2, they record the ground truth label
y2i as positive if the test case was NOD flaky (y1i = 1) and there is a significant difference in the
values for any of the Docker options between the passing and failing runs of ti. For each flaky test,
FlakeFriendEvaluator performs a Mann-Whitney U test with a 95% interval for each option.

For each subject, FlakeFriendEvaluator produces 15 pairs of concrete classifiers for A1 and
A2, considering all combinations of the five feature-collecting modes of pytest-FlakeFriend and
three types of classifier. For their implementation, I used scikit-learn [271]. The first type is
Extra Trees (ET) [51], a variant of Random Forest [18] with SMOTE preprocessing to balance the
classes in the training data [23]. I selected this pipeline due to its performance when detecting
flaky tests in recent studies [8] and in Chapters 4 and 5. Since this is designed for scalar fea-
tures, it cannot use any of the sparse binary feature vectors collected by pytest-FlakeFriend.
For this setup, FlakeFriendEvaluator uses the meta-parameters that led to the best detection
performance in the evaluation of CANNIER (see Table 5.5a). The second is K-Nearest Neighbors
(KNN) with Random Projection preprocessing to reduce dimensionality, as used by Verdecchia
et al. in their study on detecting flaky tests [159]. In contrast with ET, FlakeFriendEvaluator
only uses the sparse features. In this case, it uses the same meta-parameters as used by Verdecchia
et al.. The third type is the combination of the previous two (ET+KNN). FlakeFriendEvaluator
uses the probability predicted by the KNN classifier as a feature for the ET classifier, allowing it
to use all the features in training. In addition to the restrictions imposed by the classifier type,
it excludes the Function Coverage, Function Transition Coverage, Line Coverage, and Line Arc
Coverage features from training. Because they track coverage within the code under test and are
specific to the project the test cases are from, they are inappropriate for a project-agnostic model.

FlakeFriendEvaluator trains the classifiers using the test cases from every subject excluding
one. Then, it gets probabilities from the trained classifiers for the test cases of the excluded
subject. FlakeFriendEvaluator repeats this procedure for every subject to collect probabilities
for every test case as if its test suite was the input test suite to FlakeFriend and was not part of
the training data for the project-agnostic models. This methodology has been termed cross-project
validation in previous work [20].

6.3.3 Project-Agnostic Oracle

To implement this stage, I applied the CANNIER approach (see Section 5.3). That is, to label
test cases with a predicted probability of flakiness above some upper-threshold ωu as flaky, those
below some lower-threshold ωl as non-flaky, and to delegate the rest to some rerunning-based
technique. These thresholds are the parameters Ω in this implementation. This leads to the
definitions of the project-agnostic labels a1i and a2i for test case ti, corresponding to A1 and A2:

a1i =


y1i if ωl ≤ p1i < ωu
1 if p1i ≥ ωu
0 otherwise

a2i =


y2i if ωl ≤ p1i < ωu
1 if a1i = 1 ∧ p2i ≥ 0.5
0 otherwise

(6.1)
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Table 6.2: The repository names, commit SHAs, and topic classifiers of the subject projects. (xonsh/xonsh
had no topic classifiers.)

Project SHA Topic Classifiers

apache/airflow 0bcdba0 System :: Monitoring
home-assistant/core b4f1683 Home Automation
dask/dask a77ce95 Scientific/Engineering, System :: Distributed Computing
fonttools/fonttools 8bc00a6 Multimedia :: Graphics, Multimedia :: Graphics ::

Graphics Conversion, Text Processing :: Fonts
HypothesisWorks/hypothesis 173de52 Education :: Testing, Software Development :: Testing
ipython/ipython 15ea1ed System :: Shells
PrefectHQ/prefect f6648e4 Software Development :: Libraries
saltstack/salt 4bbdd65 System :: Clustering, System :: Distributed Computing
urllib3/urllib3 64b7f79 Internet :: WWW/HTTP, Software Development :: Li-

braries
xonsh/xonsh ebadfac -

For NOD flakiness, FlakeFriendEvaluator uses the value of the ground-truth label, repre-
senting the outcome of exhaustive rerunning, for the project-agnostic label if the probability from
A1 is between the thresholds. If the probability is greater than or equal to the upper-threshold,
it labels the test case as flaky. For NODSpec flakiness, FlakeFriendEvaluator again uses the
ground-truth label if the probability from A1 is between the thresholds. This is because, due to
the nature of the rerunning-based technique described in the previous section, the ground-truth
labels for both NOD and NODSpec are acquired together for the same time cost. Otherwise, if
FlakeFriendEvaluator previously labelled the test case as NOD flaky, and the probability from
A2 indicates that the test case is more likely than not NODSpec flaky, the it labels the test case
as such. The time cost of acquiring the ground-truth labels for a test case between the thresholds
is the total time cost of executing it 10,000 times. Therefore, the oracle cost for test case ti is:

βi =

{ ∑10,000
l=1 γli if ωl ≤ p1i < ωu

0 otherwise
(6.2)

Since this stage requires values for the thresholds (ωl, ωu), FlakeFriendEvaluator repeats it
over

{
(0.04a, 0.04b)|a ∈ {0, ..., 27}, b ∈ {a, ..., 27}

}
. This set represents a uniform sample of the

space of valid threshold values such that ωl ≤ ωu. It contains 378 pairs of threshold values, and
therefore FlakeFriendEvaluator produces 378 sets of project-agnostic labels for each of the 15
sets of predicted probabilities from the Project-Agnostic Prediction stage for each subject project,
making 5,670 per project.

6.3.4 Project-Specific Training

Since there are two project-agnostic models in this implementation, there must also be two project-
specific models S1 and S2 per subject project. For each set of project-agnostic labels from the
Project-Agnostic Oracle stage and for each classifier type, FlakeFriendEvaluator uses the feature
vectors associated with the set of project-agnostic labels, and the project-agnostic labels them-
selves, to train ten pairs of concrete classifiers of the classifier type for the two project-specific
models. This is the result of ten-fold cross-validation over the test cases of the project associated
with the set of project-agnostic labels. The test cases in the training portion of each fold rep-
resent the existing test cases at a given point in time and those in the testing portion represent
future test cases. Unlike when training the project-agnostic models, FlakeFriendEvaluator does
not exclude the Function Coverage, Function Transition Coverage, Line Coverage, and Line Arc
features. Considering 5,670 sets of project-agnostic labels, three classifier types, and ten folds,
FlakeFriendEvaluator produces 170,100 pairs of classifiers for S1 and S2 per project.
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Table 6.3: The number of test cases, NOD and NODSpec flaky tests, and the total feature costs for the
five feature-collecting modes. A dash (-) indicates the value is zero. An up tack (⊥) indicates there is no
value because the run timed out after 72 hours.

Tests Total Feature Cost (seconds)

Project All NOD NODSpec Static Dynamic DFunc DLine DFL

airflow 4116 18 17 1.37× 102 4.79× 103 8.78× 103 6.63× 104 7.15× 104

core 21693 3 - 6.36× 102 3.26× 103 3.28× 103 ⊥ ⊥
dask 10555 35 17 2.03× 101 1.42× 103 5.89× 103 6.64× 104 7.27× 104

fonttools 2039 - - 1.14× 101 9.40× 101 1.88× 102 1.15× 103 1.25× 103

hypothesis 5429 5 - 9.47× 100 1.84× 103 7.33× 103 6.51× 103 1.42× 104

ipython 865 3 3 4.44× 100 7.25× 101 1.16× 102 2.27× 103 2.27× 103

prefect 7200 18 15 1.75× 101 9.50× 102 1.69× 103 1.94× 104 2.00× 104

salt 4703 22 11 3.14× 101 1.83× 103 2.62× 103 2.19× 105 2.23× 105

urllib3 1516 17 12 2.19× 100 9.86× 102 1.02× 103 1.91× 103 1.94× 103

xonsh 4974 14 9 4.30× 100 2.40× 102 3.57× 102 3.08× 104 3.09× 104

Total 63090 135 84 8.74× 102 1.55× 104 3.13× 104 4.14× 105 4.38× 105

6.3.5 Project-Specific Prediction

For each set of project-agnostic labels from the Project-Agnostic Oracle stage and for each classifier
type, FlakeFriendEvaluator takes the ten pairs of trained classifiers for S1 and S2 from the
previous stage, corresponding to the ten folds, and applies both classifiers to the test cases of the
testing portion of each fold. This results in two project-specific labels s1i and s2i for every test case
ti in the subject project associated with the set of project-agnostic labels. To ensure the labelling
restriction holds, FlakeFriendEvaluator does not apply S2 to any test case ti where s1i = 0 and
will assume s2i = 0. The output at this stage is 17,100 sets of project-specific labels per project.

6.4 Evaluation

Using the implementation of FlakeFriend and 10 open-source Python projects as subjects, this
empirical evaluation addressing the following research questions:
RQ1. What is the detection performance and time cost of FlakeFriend for existing test cases?
RQ2. What is the detection performance of FlakeFriend for future test cases?
RQ3. To what extent does FlakeFriend reduce cumulative time cost as the test suite grows?

6.4.1 Subjects

Table 6.2 lists the ten subject projects in this evaluation. Each row shows the name of the GitHub
repository, the shortened SHA of the commit, and the topic classifiers declared by the project’s
maintainers. With the exception of home-assistant/core, these projects are a subset of those
from the evaluation of CANNIER (see Table 5.3). Like the others, home-assistant/core is
considered one of the most critical Python projects to open-source infrastructure [260] and is also
one of the largest Python projects hosted on GitHub.

6.4.2 RQ1. What is the detection performance and time cost of Flake-
Friend for existing test cases?

FlakeFriendEvaluator produces thousands of sets of project-specific labels for every subject and
compares them to their corresponding ground-truth labels to assess the detection performance for
S1 and S2. It calculates the confusion matrix (true-positive, true-negative, false-positive, false-
negative) and the Matthews Correlation Coefficient (MCC) [24]. For each set of project-specific
labels, FlakeFriendEvaluator calculates these metrics for A1 and A2 as well, using the associated
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Table 6.4: The classifier types for the project-agnostic (Agn.) and project-specific (Spe.) models, the
pytest-FlakeFriend mode, and the lower- and upper-thresholds at the knee and maximum points. In
addition, the classifier type, mode, and threshold representative of classifier-only detection for RQ2.

Knee Maximum

Type Type Classifier

Project Agn. Spe. Mode ωl ωu Agn. Spe. Mode ωl ωu Type Mode ωl/ωu

airflow E+K ET DLine 0.16 0.72 ET ET DFunc 0.08 0.84 ET DFunc 0.08
core ET KNN DFunc 0.00 0.20 ET KNN Dynamic 0.04 0.28 ET Dynamic 0.12
dask ET KNN Static 0.08 0.68 ET ET DLine 0.00 0.56 ET Static 0.08
hypothesis ET ET Dynamic 0.12 0.16 ET E+K DFunc 0.00 0.08 ET Dynamic 0.12
ipython E+K KNN Dynamic 0.08 0.08 E+K KNN Dynamic 0.08 0.08 ET DFunc 0.28
prefect E+K KNN DFunc 0.00 0.08 KNN E+K DLine 0.00 0.60 ET DFL 0.36
salt ET ET Dynamic 0.16 0.52 ET ET Dynamic 0.04 0.52 E+K DFunc 0.12
urllib3 E+K ET DFunc 0.00 0.04 E+K ET DFL 0.00 0.76 ET DFunc 0.16
xonsh ET KNN DLine 0.08 1.04 ET KNN DLine 0.08 1.04 ET DLine 0.08

set of project-agnostic labels. It also calculates the time cost of acquiring the project-agnostic
labels as the sum of the total feature cost and the total oracle cost.

Given 17,100 sets of project-specific labels per subject, I cannot compare them all. Considering
them as points in a two-dimensional space over the MCC for S1 and the time cost, each associated
with a classifier type for the project-agnostic and project-specific models, a mode, and threshold
values, FlakeFriendEvaluator identifies two points of interest per subject. The first is the knee
point on the Pareto front for maximizing MCC and minimizing time cost — the point with the
shortest Euclidean distance to the utopia point [170], the theoretical point with an MCC of 1 and
a time cost of 0. The second is the maximum point, with the locally-minimum time cost among
those with the globally-maximum MCC.

To address this question, I compare the time cost and the performance metrics for A1 and A2

between the points of interest for each subject. As a baseline, FlakeFriendEvaluator calculates
the time cost of acquiring the ground-truth labels via exhaustive rerunning. In this context, that
is the time cost of executing the test suite 10,000 times as described in Section 6.3.2.

6.4.3 RQ2. What is the detection performance of FlakeFriend for
future test cases?

I compare the performance metrics for S1 and S2, as before. FlakeFriendEvaluator calculates
the metrics for detecting flaky tests using just a classifier as a baseline. For each project, it
calculates these from the set of project-agnostic labels associated with the set of project-specific
labels associated with the greatest MCC for A1 with equal thresholds (ωl = ωu). Equal thresholds
means the Project-Agnostic Oracle never resorts to rerunning, which is equivalent to using a
classifier on its own with a single threshold on the predicted probability at which to declare a test
case flaky.

6.4.4 RQ3. To what extent does FlakeFriend reduce cumulative time
cost as the test suite grows?

I compare the cumulative time cost of applying FlakeFriend normally as the subjects’ test suites
grow in size to that of applying the Project-Agnostic Oracle stage to future test cases instead of
the Project-Specific Prediction stage. In Figure 6.1, this would correspond to sending future test
cases down the same pipeline as the existing test cases and stopping after the Project-Agnostic
Oracle stage, producing project-agnostic labels for the future test cases instead of project-specific
labels. This is representative of applying the CANNIER approach on its own (see Section 5.3).
FlakeFriendEvaluator calculates the initial time cost of applying both approaches to each subject
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using the parameters at both points of interest. This is the cost of producing feature vectors
and project-agnostic labels for every existing test case,

∑k−1
i=1 (αi + βi). The cost of acquiring a

project-specific label for a future test case ti is αi and the cost of acquiring a project-agnostic
label is αi + βi. As the expected values for these time costs for an arbitrary future test case,
FlakeFriendEvaluator uses the mean value between all the existing test cases. It is able to
calculate the expected cumulative time cost of acquiring project-agnostic labels for the existing
test cases and project-specific labels for the future test cases, modelling FlakeFriend, as:

k−1∑
i=1

(αi + βi) + (n− k + 1)

∑k−1
i=1 αi

k − 1
(6.3)

For the expected cumulative time cost of acquiring project-agnostic labels for all test cases,
modelling CANNIER:

k−1∑
i=1

(αi + βi) + (n− k + 1)

∑k−1
i=1 (αi + βi)

k − 1
(6.4)

6.4.5 Threats to Validity

FlakeFriendEvaluator may label some flaky tests as non-flaky in the ground-truth labels, since
they could have exhibited flakiness only after more reruns. However, 10,000 is among the highest
in the literature and the relationship with the number of detected flaky tests is sublinear [8]. The
conclusions of this study would be the same had FlakeFriendEvaluator performed more, since
it is unlikely that it would have detected many more flaky tests.

FlakeFriendEvaluator uses a Mann-Whitney U test with a 95% interval when deciding if
a flaky test is NODSpec flaky. One would expect around 5% of those labelled as such to be
false-positives. Using a more conservative interval results in far fewer positive examples, meaning
training classifiers for A2 and S2 becomes impossible. Therefore, accepting that a small number
of false-positives may exist in the ground-truth labels is necessary for the empirical evaluation.
In general, when studying a non-deterministic phenomenon such as flaky tests, some level of
uncertainty in the results is unavoidable.

The results of this study might not generalise to other Python projects. The subjects are
in the top-200 most critical to open-source infrastructure [260]. While this does not guarantee
generalisability, it indicates that the flaky tests in these projects could cause a more serious problem
compared to less critical projects. The results may also not generalise to projects written in other
languages. However, since FlakeFriend does not make use of any Python-specific features, there
is no reason it could not be implemented in other languages.

The implementation may contain bugs that affect the results of the evaluation. To mitigate
this, I used well-established Python libraries such as Coverage.py [211], psutil [264], Radon [279],
and scikit-learn [271]. These are highly active open-source projects and the chance that any
serious bugs would be identified and fixed in a timely manner is high.

6.5 Results

For each subject, Table 6.3 shows the number of test cases, the number labelled by
FlakeFriendEvaluator as NOD flaky, the number labelled as NODSpec, and the total feature
costs for each of the five feature-collecting pytest-FlakeFriend modes. For core, the values for
DLine and DFL are missing because the test suite run timed out after 72 hours. Table 6.4 shows
the classifier types for the project-agnostic and project-specific models, the mode, and the lower-
and upper-thresholds at the knee and maximum points for each subject except for fonttools,
since it has no flaky tests. It also shows the classifier type, mode, and threshold representative
of classifier-only detection for RQ2. Some subjects contain so few flaky tests that their MCC is
unreliable. These projects would benefit very little from FlakeFriend, and so focusing on those
with more makes for a fairer assessment. Therefore, I disregard subjects with fewer than ten NOD
flaky tests when calculating statistics.
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Table 6.5: The performance metrics for detecting existing NOD and NODSpec flaky tests with Flake-
Friend at the knee and maximum points. A dash (-) indicates the value is exactly zero. An up tack (⊥)
indicates there is no value due to a division by zero.

Knee Maximum

Project TP TN FP FN MCC TP TN FP FN MCC

NOD

airflow 8 4093 5 10 0.52 16 4098 - 2 0.94
core 3 21670 20 - 0.36 3 21680 10 - 0.48
dask 17 10518 2 18 0.66 35 10517 3 - 0.96
hypothesis 4 5206 218 1 0.12 5 4846 578 - 0.09
ipython 3 848 14 - 0.42 3 848 14 - 0.42
prefect 18 6875 307 - 0.23 18 7180 2 - 0.95
salt 12 4680 1 10 0.71 20 4680 1 2 0.93
urllib3 17 1417 82 - 0.40 17 1499 - - 1.00
xonsh 12 4960 - 2 0.93 12 4960 - 2 0.93

NODSpec

airflow 7 4096 3 10 0.54 15 4099 - 2 0.94
core - 21693 - - ⊥ - 21693 - - ⊥
dask 15 10538 - 2 0.94 17 10538 - - 1.00
hypothesis - 5429 - - ⊥ - 5429 - - ⊥
ipython - 862 - 3 ⊥ - 862 - 3 ⊥
prefect 8 7185 - 7 0.73 15 7183 2 - 0.94
salt 7 4692 - 4 0.80 11 4692 - - 1.00
urllib3 10 1504 - 2 0.91 12 1504 - - 1.00
xonsh 8 4965 - 1 0.94 8 4965 - 1 0.94

6.5.1 RQ1. What is the detection performance and time cost of Flake-
Friend for existing test cases?

Table 6.5 shows the performance metrics for detecting existing NOD and NODSpec flaky tests
with FlakeFriend at the knee and maximum points. Table 6.6 shows the time cost at both
points, compared to the time cost of exhaustive rerunning. When detecting NOD flaky tests
with FlakeFriend at the knee point, the mean MCC is 0.57 and the standard deviation is 0.22.
When detecting NODSpec flaky tests, the MCC is considerably higher and more consistent, with a
mean of 0.81 and a standard deviation of 0.15. The mean time cost at the knee point is 2.15×106

seconds. When detecting NOD flaky tests at the maximum point, the predictions are near-perfect,
with a mean MCC of 0.95 and a standard deviation of 0.02 For NODSpec flaky tests, these figures
are only marginally different, with a mean of 0.97 and a standard deviation of 0.03. However, the
mean time cost at the maximum point is 1.03× 107 seconds, which is 9.94 times that at the knee
point on average. As a baseline, the mean time cost of rerunning is 1.14 × 107 seconds. This is
10.7 and 1.62 times that of FlakeFriend at the knee and maximum points respectively.

Conclusion for RQ1. When detecting existing NOD and NODSpec flaky tests with Flake-
Friend at the knee point, the mean MCC is 0.57 and 0.81 respectively. At the maximum point,
the mean MCC is 0.95 and 0.97 respectively, but the time cost is 9.94 times that at the knee
point on average. The mean time cost of exhaustive rerunning is 1.14 × 107 seconds. This is
10.7 and 1.62 times that of FlakeFriend at the knee and maximum points respectively.
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Table 6.6: The time cost, in seconds, of detecting existing flaky tests with FlakeFriend at the knee and
maximum points, compared to exhaustive rerunning.

FlakeFriend

Project Knee Maximum Rerunning

airflow 6.80× 106 1.97× 107 2.47× 107

core 1.11× 106 1.92× 106 2.11× 106

dask 2.25× 106 2.30× 107 2.32× 107

hypothesis 6.16× 107 2.54× 108 3.46× 108

ipython 7.25× 101 7.25× 101 3.72× 105

prefect 1.88× 106 7.12× 106 7.20× 106

salt 1.64× 106 4.76× 106 5.61× 106

urllib3 1.76× 105 6.82× 106 6.82× 106

xonsh 1.76× 105 1.76× 105 7.57× 105

6.5.2 RQ2. What is the detection performance of FlakeFriend for
future test cases?

Table 6.7 shows the metrics for detecting future NOD and NODSpec flaky tests with Flake-
Friend at the knee and maximum points, compared to with just a classifier. When detecting
NOD flaky tests with FlakeFriend at the knee point, the mean MCC is 0.52 and the standard
deviation is 0.24. The detection performance is better and more consistent at the maximum point,
where the mean MCC is 0.73 and the standard deviation is 0.09. The performance of the classifier-
only approach is consistently only marginally better than random guessing, with a mean MCC of
just 0.18 and a standard deviation of 0.10. For NODSpec flaky tests, the majority of the values in
Table 6.7 are missing. This is because FlakeFriendEvaluator skips the Project-Specific Training
stage if there are fewer than ten training examples of either class before balancing, due to the
requirements of my chosen implementation of the classifiers. Therefore, I cannot draw conclusions
about detecting future NODSpec flaky tests.

Conclusion for RQ2. When detecting future NOD flaky tests with FlakeFriend at the knee
point, the mean MCC is 0.52. At the maximum point, the mean MCC is 0.73. The detection
performance of the classifier-only approach is consistently poor, with a mean MCC of just 0.18.

6.5.3 RQ3. To what extent does FlakeFriend reduce cumulative time
cost as the test suite grows?

Table 6.8 shows the expected cumulative time cost of FlakeFriend and CANNIER at the knee
and maximum points after extending the test suite by 1,000 test cases and to twice its original
size. At the knee point, FlakeFriend saves an average of 4.62× 105 seconds in cumulative time
cost after introducing 1,000 test cases compared to CANNIER. After doubling the size of the
test suite, FlakeFriend saves 2.14 × 106 seconds on average. The savings are greater at the
maximum point, where FlakeFriend saves 2.30 × 106 seconds after adding 1,000 test cases to
the test suite and 1.02× 107 seconds after extending it to twice its size.

Conclusion for RQ3. At the knee point, FlakeFriend saves 4.62×105 seconds in cumulative
time cost after introducing 1,000 test cases and 2.14 × 106 after doubling the size of the test
suite. The savings at the maximum point are 2.30× 106 and 1.02× 107 seconds respectively.
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Table 6.7: The performance metrics for detecting future NOD and NODSpec flaky tests with Flake-
Friend at the knee and maximum points, compared to with just a classifier. A dash (-) indicates the
value is exactly zero. An up tack (⊥) indicates there is no value due to a division by zero or having fewer
than ten training examples of either class during the Project-Specific Training stage.

FlakeFriend

Knee Maximum Classifier

Project TP TN FP FN MCC TP TN FP FN MCC TP TN FP FN MCC

NOD

airflow 5 4097 1 13 0.48 11 4095 3 7 0.69 16 2923 1175 2 0.09
core 2 21678 12 1 0.31 2 21686 4 1 0.47 1 20916 774 2 0.02
dask 15 10520 - 20 0.65 23 10516 4 12 0.75 17 9751 769 18 0.09
hypothesis 3 5181 243 2 0.08 5 4896 528 - 0.09 4 4860 564 1 0.07
ipython 3 859 3 - 0.71 3 859 3 - 0.71 3 859 3 - 0.71
prefect 17 6877 305 1 0.22 12 7178 4 6 0.71 1 7182 - 17 0.24
salt 12 4680 1 10 0.71 17 4678 3 5 0.81 15 4503 178 7 0.22
urllib3 10 1405 94 7 0.22 7 1497 2 10 0.56 2 1470 29 15 0.07
xonsh 11 4959 1 3 0.85 11 4959 1 3 0.85 12 4887 73 2 0.34

NODSpec

airflow ⊥ ⊥ ⊥ ⊥ ⊥ 11 4096 3 6 0.71 - 4099 - 17 ⊥
core ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ - 21693 - - ⊥
dask 15 10538 - 2 0.94 15 10538 - 2 0.94 - 10504 34 17 0.00
hypothesis ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ - 5429 - - ⊥
ipython ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ - 862 - 3 ⊥
prefect ⊥ ⊥ ⊥ ⊥ ⊥ 7 7184 1 8 0.64 - 7185 - 15 ⊥
salt ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ - 4692 - 11 ⊥
urllib3 ⊥ ⊥ ⊥ ⊥ ⊥ 5 1503 1 7 0.59 - 1504 - 12 ⊥
xonsh ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ - 4965 - 9 ⊥

6.6 Discussion

6.6.1 Detection Performance

The MCC when detecting existing and future flaky tests with FlakeFriend at the maximum
point is typically greater than that at the knee point. This is to be expected, given how
FlakeFriendEvaluator selects the maximum point. Looking at Table 6.4, the greater detec-
tion performance is most likely caused by the wider separation of the thresholds at the maximum
point. In practice, this would mean that the Project-Agnostic Oracle stage would delegate more
existing test cases to exhaustive rerunning for their project-agnostic label. In the context of this
evaluation, FlakeFriendEvaluator would use the value of the ground-truth labels as the project-
agnostic labels for more test cases. Since it calculates the performance metrics with respect to the
ground-truth labels, this results in a greater MCC. Furthermore, better project-agnostic labels are
more likely to result in better project-specific models and therefore better project-specific labels,
and a greater MCC when detecting future flaky tests.

The mean MCC of FlakeFriend when detecting existing NODSpec flaky tests at the knee
point is 0.81, compared to 0.57 when detecting existing NOD flaky tests. This could be due to the
labelling restriction imposed by the Project-Agnostic Oracle stage, namely aji = 1 =⇒ a1i = 1 for
j > 1. This means that FlakeFriendEvaluator will not label a test case as NODSpec flaky if it
did not previously label the test case as NOD flaky. At the knee point, FlakeFriend has a mean
positive rate of 0.02 and a mean recall of 0.72 when detecting NOD flaky tests. This means that,
on average, FlakeFriendEvaluator can only give 2% of test cases a positive project-agnostic label
for NODSpec flakiness, and this sample accounts for 72% of the genuine NOD flaky test cases.
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Table 6.8: The expected cumulative time cost of FlakeFriend and CANNIER at the knee and maximum
points after extending the test suite by 1,000 test cases (+1,000) and to twice its original size (Ö2).

Knee Max

FlakeFriend CANNIER FlakeFriend CANNIER

Project +1,000 Ö2 +1,000 Ö2 +1,000 Ö2 +1,000 Ö2

airflow 6.82× 106 6.87× 106 8.62× 106 1.36× 107 1.97× 107 1.97× 107 2.45× 107 3.94× 107

core 1.11× 106 1.12× 106 1.16× 106 2.23× 106 1.92× 106 1.93× 106 2.01× 106 3.85× 106

dask 2.25× 106 2.25× 106 2.46× 106 4.50× 106 2.30× 107 2.31× 107 2.53× 107 4.61× 107

hypothesis 6.16× 107 6.16× 107 7.30× 107 1.23× 108 2.54× 108 2.54× 108 3.01× 108 5.07× 108

ipython 1.57× 102 1.45× 102 1.57× 102 1.45× 102 1.57× 102 1.45× 102 1.57× 102 1.45× 102

prefect 1.88× 106 1.89× 106 2.15× 106 3.77× 106 7.12× 106 7.14× 106 8.25× 106 1.42× 107

salt 1.64× 106 1.64× 106 1.99× 106 3.29× 106 4.76× 106 4.76× 106 5.77× 106 9.51× 106

urllib3 1.77× 105 1.77× 105 2.92× 105 3.52× 105 6.82× 106 6.83× 106 1.14× 107 1.36× 107

xonsh 1.83× 105 2.07× 105 2.13× 105 3.53× 105 1.83× 105 2.07× 105 2.13× 105 3.53× 105

Because a test case cannot be NODSpec flaky if it is not NOD flaky, this means that A2 has a
significantly smaller margin for error than A1 and thus a greater mean MCC.

The MCC of FlakeFriend when detecting existing flaky tests is typically greater than
that when detecting future flaky tests. For example, the mean MCC for NOD flaky tests
at the maximum point is 0.95 for existing and 0.73 for future. This is unsurprising since
FlakeFriendEvaluator calculates the former from the project-agnostic labels from A1, which
forms the training data for S1, which produces the project-specific labels from which it calculates
the latter. The advantage of the project-specific models is that they do not impose an oracle
cost, and so the lower detection performance may be considered a trade-off in favour of a lower
cumulative time cost.

6.6.2 Time Cost

The mean time cost of obtaining project-agnostic labels for existing test cases with FlakeFriend
at the knee point is 2.15 × 106 seconds. This may seem prohibitive, but it is a single-core time
cost. Correct as of May 2023, Amazon offers a c6g.8xlarge instance, with 32 CPU cores and 64
GiB of memory, at the on-demand hourly rate of 1.088 USD [216]. On this instance, the mean
time cost would be ((2.15 × 106) ÷ 32) ÷ 602 ≈ 18.7 hours. This translates into a monetary cost
of 18.7 × 1.088 ≈ 20.3 USD. As an upper-bound to compare to, consider the mean time cost of
exhaustive rerunning, 1.14×107 seconds. On a c6g.8xlarge instance, this would require 99 hours
at a cost of 108 USD.

At the knee point, FlakeFriend saves 4.62 × 105 seconds in cumulative time cost after
introducing 1,000 test cases and 2.14×106 after extending it to twice its original size. The savings
at the maximum point are 2.30 × 106 and 1.02 × 107 seconds respectively. This is compared to
CANNIER. On a c6g.8xlarge instance at the knee point, this saving equates to 4.01 hours and
4.36 USD after adding 1,000 test cases and 18.6 hours and 20.2 USD after doubling the size of the
test suite. At the maximum point, it equates to 20 hours and 21.7 USD and, respectively, 88.5
hours and 92.4 USD.

6.6.3 Implications for Developers

This evaluation has demonstrated that FlakeFriend can address the drawbacks of both
rerunning-based and machine learning-based flaky test detection. It has also shown that Flake-
Friend offers software developers benefits that CANNIER cannot by reducing the cumulative
time cost of detecting and classifying flaky tests as the test suite evolves over time. Following an
off-line training stage to produce project-specific models, developers could configure their contin-
uous integration system to execute the Specific Prediction stage after commits that introduce new
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test cases. This is beneficial because it makes developers aware of flaky tests immediately after
introducing them, which means flaky tests will be less likely to accumulate [180]. The additional
information that FlakeFriend can offer with regards to the category of flakiness may also help
developers repair flaky tests [56].

6.7 Related Work

Pinto et al. [128] evaluated five types of machine learning classifiers for detecting NOD flaky tests
in Java projects, including K-Nearest Neighbors and Random Forest [18]. Like this study, they
used sparse features encoding the occurrence of tokens in the test case code and a small number
of static metrics. Unlike this study, they did not investigate any other types of features. In their
empirical evaluation, they reported very good detection performance for all types of classifier. This
contrasts with the results of this evaluation, where I found classifier-only detection to be generally
very poor. However, Pinto et al. calculated detection performance metrics via cross-validation
over the entire set of 64,382 test cases from their 12 subject projects. Therefore, their evaluation
did not take into account inter-project generalisability, and projects with more test cases would
have had a greater impact on their results.

Verdecchia et al. [159] performed a related study focusing on tokens in test case code and
a K-Nearest Neighbors classifier with varying meta-parameters. They prefaced their classifiers
with a stage of Random Projection to reduce data dimensionality, a setup that I also used in this
study. Like Pinto et al., they evaluated their classifiers via cross-validation over the entire set of
test cases. However, they calculated performance metrics with respect to each of their subject
projects. While this prevents particular projects skewing the results, it still does not account for
inter-project generalisability.

Alshammari et al. [8] evaluated seven types of classifier. They considered token-based features,
but introduced additional dynamic metrics including the execution time and the number of covered
lines. They found that adding these metrics led to a greater detection performance, at the cost of
having to execute the test suite. In the study presented in Chapter 4, I found that extending this
set of dynamic metrics with properties including the peak number of threads improved detection
performance even further. I used many of the metrics from both studies in this evaluation (see
Table 6.1). The methodologies of these two studies were similar to Verdecchia et al. in that
they evaluated classifiers using cross-validation over the entire set of test cases but calculated
per-project performance metrics.

Camara et al. [20] performed a replication study of Pinto et al.. They confirmed the poor
inter-project generalisability of classifiers for detecting flaky tests. Following the same procedure
as Pinto et al., but evaluating classifiers using cross-project validation as in this study, they
observed markedly lower detection performance. Fatima et al. [41] observed a similar result in
their evaluation of a classifier for flaky tests based on CodeBERT [43]. Akli et al. [6] evaluated
machine learning classifiers based on CodeBERT for the prediction of flaky test categories. They
manually labelled the ground-truth categories of the flaky tests in their dataset, whereas I used an
automated approach (see Section 6.3.2). While predicting categories is a feature of FlakeFriend,
it is not its primary contribution, which is instead the reduced cumulative time cost over repeated
use as the test suite evolves.

6.8 Conclusion

I presented FlakeFriend for detecting and classifying existing flaky tests in a project and pro-
ducing machine learning classifiers to provide predictions for future test cases in that project. The
evaluation considered a specific category of flaky tests, NODSpec, that is non-order-dependent
flaky tests that appear to be dependent on the CPU and/or disk read/write speed of the machine.
I demonstrated that FlakeFriend is able to detect and classify existing flaky tests in a project
considerably faster than exhaustive rerunning. I found that the detection performance of the
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classifiers produced by FlakeFriend for a project, with respect to the future flaky tests in that
project, is significantly greater than classifiers pre-trained on the test cases of other projects. I also
found that FlakeFriend offers considerable savings in cumulative time cost when detecting flaky
tests in evolving test suites compared to CANNIER. These findings demonstrate that developers
can save time in the long run by using FlakeFriend to detect and classify flaky tests, making
it suitable to be implemented as part of a continuous integration system, automatically triggered
when developers introduce new test cases.



Chapter 7

Conclusion and Future Work

In this thesis, I enhanced the understanding of the manifestation, causes, and impacts of flaky
tests. I also presented techniques to mitigate the problem of flaky tests by automatically detecting
them, which I empirically evaluated on large datasets of test cases from open-source projects. See
Table 7.1 for a summary of the primary research chapters of this thesis.

In Chapter 2, I systematically reviewed 76 published papers on the topic. In doing so, I
identified a taxonomy of causes of flaky tests, and found that they impose negative effects on the
reliability and efficiency of testing in general, as well as being a hindrance to a host of techniques
in software engineering. I also presented a range of techniques for mitigating some of the problems
presented by flaky tests and described a technique for the automatic repair of order-dependent
tests. In Chapter 3, I deployed an online survey about flaky tests, not restricted to any particular
organisation, and received 170 responses. I also procured a dataset of 38 StackOverflow threads,
upon which I performed thematic analysis. The analyses of both sources focused on how developers
define and react to flaky tests and their experiences of the causes and impacts. From the findings,
I was able to offer six actionable recommendations for both researchers and developers.

In Chapter 4, I presented Flake16, a new feature set that encodes test cases for machine-
learning-based flaky test detection. I evaluated the performance of 54 machine learning pipelines
when detecting both non-order-dependent and order-dependent flaky tests using both Flake16
and a previously established feature set [8]. For both categories, experiments involving 26 real-
world Python projects showed greater detection performance when using Flake16. In Chapter
5, I presented CANNIER, an approach for reducing the time cost of rerunning-based detection
techniques by combining them with machine learning classifiers. Following an evaluation involving
30 Python projects, I found that CANNIER was able to reduce the time cost of three existing
rerunning-based methods for flaky test detection, including iDFlakies [90], by an order of magni-
tude at the expense of only a minor decrease in detection performance. In Chapter 6, I presented
FlakeFriend for detecting and classifying existing flaky tests in a project and producing machine
learning classifiers to provide predictions for future test cases in that project. I demonstrated that
FlakeFriend is able to detect and classify existing flaky tests in a project considerably faster
than exhaustive rerunning. Furthermore, I found that the detection performance of the classifiers
produced by FlakeFriend for a project, with respect to the future flaky tests in that project, is
significantly greater than classifiers pre-trained on the test cases of other projects.

7.1 Restrictions and Limitations

7.1.1 Types of Subject Programs

The empirical evaluations throughout this thesis focus on open-source subject programs written in
the Python programming language. This means that I cannot generalise the findings to proprietary
programs or those written in other languages with complete certainty. Conducting open research
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Table 7.1: Summary of the primary research chapters of this thesis.

# Summary

3 Technique: -
Subjects: 170 developer participants, 38 StackOverflow threads.
Findings: 1. Some developers suggest that the definition of a flaky test should extend beyond

the test case code or the code under test. 2. Developers strongly agree that flaky tests
hinder continuous integration. 3. Developers rated improper setup and teardown as
the most common cause of flaky tests. 4. Developers rated rerunning the failing build
as the most common action they take when encountering flaky tests.

4 Technique: Flake16
Subjects: 67,006 test cases from 26 open-source Python projects.
Findings: 1. Flake16 offered a 13% increase in overall F1 score when detecting NOD flaky tests

and a 17% increase when detecting OD flaky tests compared to FlakeFlagger. 2.
Machine learning classifiers are just as applicable to detecting OD flaky tests as they
are to detecting NOD flaky tests. 3. The most impactful feature when detecting NOD
flaky tests was the peak number of concurrently running threads. When detecting OD
flaky tests, the number of read- and write-related system calls was the most impactful.

5 Technique: CANNIER
Subjects: 89,668 test cases from 30 open-source Python projects.
Findings: 1. The performance of machine learning classifiers alone for flaky test detection is

lacklustre and variable between projects. 2. The relationship between the number
of repeated feature measurements to produce mean feature vectors and the overall
MCC of a classifier is positive. 3. Some test case metrics have a clear effect on the
output of a classifier for detecting flaky tests and others appear to have more complex
relationships. 4. CANNIER is able to reduce time cost by an average of 88% between
three previously established rerunning-based flaky test detection techniques.

4 Technique: FlakeFriend
Subjects: 63,090 test cases from 10 open-source Python projects.
Findings: 1. When detecting existing NOD flaky tests with FlakeFriend at the knee and

maximum points, the mean MCC is 0.57 and 0.95 respectively. The mean time cost
of exhaustive rerunning is 10.7 and 1.62 times that of FlakeFriend at the two points
respectively. 2. When detecting future NOD flaky tests with FlakeFriend at the
knee and maximum points, the mean MCC is 0.52 and 0.72 respectively. The mean
MCC of the classifier-only approach is 0.18. 3. At the knee point, FlakeFriend
saves 4.62× 105 seconds in cumulative time cost after introducing 1,000 test cases and
2.14× 106 after doubling the size of the test suite. The savings at the maximum point
are 2.30× 106 and 1.02× 107 seconds respectively.
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involving proprietary software can present unique challenges, such as restrictions imposed by non-
disclosure agreements. However, this is not unprecedented in the literature [88]. The techniques
presented in this thesis are broadly language-agnostic, in the sense that they do not rely on
Python-specific behaviour. This means they could be implemented in other languages.

7.1.2 Empirical Uncertainty

Many results in this thesis stem from empirical evaluations involving datasets of flaky tests. I
produced these datasets myself by repeatedly executing the test suites of open-source projects in
various ways. As shown in Figure 4.1, and found by other studies [8], one is likely to continue to
detect flaky tests even after a significant number of reruns (e.g., 10,000). This implies that there
may be flaky tests labelled as non-flaky in the datasets of this thesis, simply because more reruns
would have been needed to detect them. This has the potential to affect the results. I performed
as many reruns as was feasible given the time constraints and available computational resources.

7.2 Future Work

7.2.1 Extended Replication

I could replicate the empirical evaluations in this thesis with a wider subject set involving propri-
etary programs and programs written in languages other than Python. If the results were broadly
similar, it would demonstrate that the findings of this thesis are indeed generalisable. If not, it
would raise the interesting question of why not, which could warrant further investigation into the
properties of software that make the techniques presented in this thesis more or less applicable.
Such a replication presents various challenges, including establishing industrial partners willing to
share their internal software for evaluation and reimplementing the techniques in other languages.

7.2.2 Extended Developer Survey

I could further build upon the understanding of flaky tests by extending the scope of Chapter 3. I
could do this by conducting focused surveys in different types of communities. For instance, I could
consider administering the survey at one or more of the following: a large company, a medium-
sized company, a startup company, a government organisation, and an open-source project. I
could also conduct open-ended follow-on video interviews with a small sample of respondents,
leading to further insights beyond the questions I already asked. I could also analyze new sources
of external data beyond the StackOverflow threads, including GitHub Discussions and the GitHub
issue tracker. While flaky tests may not be frequently discussed in such channels, there might be
more discussions about flaky tests before merging a pull request. Finally, I could interview the
founders and engineers at startup companies that build tools for handling flaky tests, such as
BuildPulse [207], as they may be willing to characterise the flaky tests their tool finds.

7.2.3 Automatically Generated Flakiness

Previous studies have established that automatic test case generation tools, such as EvoSuite
[44], can sometimes generate flaky tests [40, 125, 138]. In this thesis, and in many other studies
involving machine learning-based flaky test detection, there is a persistent problem of highly
imbalanced training data. Specifically, training sets contain many more examples of non-flaky
tests than flaky tests. This have previously been addressed with interpolation techniques such as
SMOTE [23], but it may be worth investigating if automated test generation tools can be used
as a means of seeding training data with additional examples of flaky tests. While such examples
would be synthetic, they would arguably be more realistic than the data points generated by
SMOTE, which do not even correspond to real test cases.
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7.2.4 Latent Flakiness

An order-dependent flaky test is called latent if it is not flaky in the current state of the test
suite, but could become so in the future [162]. This is typically caused by a test case containing
one or more brittle assertions that have the potential to be influenced by some shared state. If
developers eventually introduce a new test case that pollutes that state, then the latent flaky test
will be manifested. Arguably the best time to discover latent test flakiness is immediately after
the developer has created the test case. I could facilitate this with an automated technique that
attempts to generate a test case that induces flakiness in a given developer-written test case. The
generated test case would demonstrate to the developer why their test case is flaky and serve as a
guide to repair it. Such a technique could follow a search-based approach, attempting to generate
a test case that when executed prior to the developer-written test case, induces it to execute in an
unexpected fashion. The search could be driven by three fitness functions: the first to maximise
the number of modifying operations performed by the generated test case upon mutable objects
referenced by the developer-written test case; the second to consider how “close” assertions in
the developer-written test case are to being evaluated differently; and the third to consider how
“close” the path through the code under test is to being different from the default [119].

7.2.5 Automated Explanation

Leveraging the techniques I have already developed, I could develop a more comprehensive au-
tomated technique for mitigating flaky tests that not only detects them but also identifies the
context leading to the flaky failure, from which to generate human-readable explanations. This
would be of considerable value to developers, since an explanation of why a test case could be
flaky is far more useful when attempting to repair it than simply flagging it as potentially flaky
[56]. Such a technique would need to address three primary objectives. Firstly, it would need
to automatically reproduce environmental conditions that occur during test case execution. My
work in Chapter 6 involving the CPU and disk speed is a first step towards this goal, but I would
need to investigate other conditions that could impact the outcome of a test case. Secondly, it
would need to reliably reproduce the conditions that lead to passing and failing executions of a
flaky test. This could be realised as a search-based technique where the environmental conditions,
and the types of conditions, are the search space [109]. A major challenge is the development of a
fitness function, since not all instances of test flakiness are feasible to control. Thirdly, from the
conditions generated to induce passing and failing, it would need to generate a human-readable
explanation. A key challenge here is minimizing the set of conditions to ensure the explanations
only include relevant information and are actionable by developers.
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