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took on a supervisory role and helped direct the research.

• Chapter 6 contains work from the publication [114] Matos, G., Hallam,
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role and helped direct the research. Jiannis Pachos also computed the
bound of W by the interaction distance. Aydin Deger helped compute
the correlation length across the phase diagram of the XYZ model.

i



Andrew Hallam contributed the robustness under realistic conditions
study.

This copy has been supplied on the understanding that it is copyright mater-
ial and that no quotation from the thesis may be published without proper
acknowledgement.

The right of Gabriel da Fonseca Matos to be identified as Author of this
work has been asserted by him in accordance with the Copyright, Designs
and Patents Act 1988.

© 2023 The University of Leeds and Gabriel da Fonseca Matos.

ii



Acknowledgements

I would like to thank my supervisors, Zlatko Papić and Jiannis Pachos,
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Abstract

Recently, variational quantum algorithms have received much attention,
having the potential to be successfully run on near-term quantum com-
puters. In this thesis, we study these algorithms from a quantum many-
body systems perspective. The Lie theoretical framework for variational
quantum algorithms is expanded upon, and we show that the states that a
variational algorithm can prepare are the ground states of the Hamiltonians
in the Lie algebra of the corresponding parameterised circuit. Leveraging
this, we prove that the 1D QAOA can prepare all states mappable to a fermi-
onic Gaussian state through the Jordan-Wigner transformation. We exploit
this to conduct a numerical study, where we find that the use of symmet-
ries can overly constrain the optimisation when the target Hamiltonian is
non-local. Further, we characterise the overparameterised regime of optim-
isation, where we find that, as the circuit becomes more overparameterised,
the number of iterations to reach the solution sharply decreases before sat-
urating, and that this number goes from a polynomial to a linear scaling
in the size of the lattice. By modifying the variational protocol to increase
its expressibility, we study non-integrable systems, where we find that the
success of state preparation can be quantified by the interaction distance,
an entanglement-based measure of fermionic Gaussianity. We employ this
measure in an analysis of the XYZ model, where we quantify the emerging
freedom of the ground state of the model in the thermodynamic limit. Our
work furthers the understanding of how variational algorithms are influ-
enced by the physical properties of the model, the choice of parameterised
circuit, and the classical optimisation of the associated parameters.
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Quantum computation is expected to become a useful tool for scientific and industrial
applications [126, 213]. With proposed uses in the simulation of quantum condensed
matter and quantum chemistry systems [28, 125, 189], accelerating classical combinat-
orial optimisation routines [71, 108, 125], improving machine-learning models [19, 37],
and providing better methods for molecular biology and drug discovery [21, 145], it has
attracted an increasing amount of attention. Despite the predicted impact of quantum
computing in several industrial and academic sectors, progress in applying it to these
domains has been impacted by the fact that current quantum computers – often called
Noisy Intermediate Scale Quantum (NISQ) [164] devices – lack full-fledged error cor-
rection, currently a prerequisite to the success of quantum algorithms with a speed-up
guarantee.

In the past years, a great deal of interest has been centred in finding quantum
algorithms that can be successfully run on these so-called NISQ devices. The prime
candidate for this are Variational Quantum Algorithms (VQAs) [30], such as the Vari-
ational Quantum Eigensolver (VQE), first proposed in the context of quantum chem-
istry [120], or the Quantum Approximate Optimisation Algorithm (QAOA), which is
designed to tackle certain combinatorial optimisation problems [58]. These involve op-
timising a number of controllable parameters defining a quantum circuit by employing
a classical nonlinear optimisation routine, with the goal of finding a quantum state that
represents a solution to the problem at hand.

Despite being designed to run on NISQ computers using shallow circuit depths, thus
avoiding the accumulation of noise in the course of the computation, employing these
variational algorithms raises a number of other issues. One of the main obstacles to
their practical application is performing the associated classical nonlinear optimisation,
which was in many cases found to be difficult, if not impossible. The most prominent
reason for this is the presence of so-called barren plateaus, first described in [120], where
the gradients with respect to the cost function vanish exponentially in the size of the
system. It occurs in several interconnected contexts, such as the variational preparation
of entangled states [113], the preparation of states using non-local cost functions [31],
the presence of simulation noise [202], or the use of parameterised circuits that are overly
expressive [80]. Several strategies have been proposed to circumvent this difficulty, such
as using classical shadows to avoid regions of high entanglement [167], the adaptative
construction of the parameterised circuit to maximise the gradient at every step [69,
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217], or the transferability of solutions from small to large system sizes [123, 215],
though a universal solution has not yet been found. Another problem arising in the
optimisation of variational quantum algorithms is the presence of several low-quality
local minima [5, 209], which make it necessary to run the algorithm several times with
different initial conditions or to use a global optimisation routine.

Given the above difficulties, the importance of accounting for the optimisation hard-
ness in the design and implementation of the algorithm becomes clear. Much effort has
been directed to this endeavour, and several important factors determining the success
of the optimisation have been identified, such as the boundary conditions used [180],
the locality of interactions (both in the circuit and in the cost function) [79, 190, 193],
the depth of the parameterised circuit [94, 95, 99] and the use of symmetries in the
circuit [65, 101, 124, 175]. The expressibility of the parameterised circuit employed is
likewise important: while universal variational algorithms exist [18, 128], these typ-
ically present with barren plateaus [80]. A number of approaches to characterise the
expressibility of variational algorithms have been developed [1, 48, 133, 176], such as
Lie theoretical techniques inspired by studies on quantum optimal control [3, 99].

In this thesis, we explore and quantify several features determining the hardness
of optimisation in variational algorithms. The principal focus of this study will be the
preparation of ground states of models representing condensed matter systems, though
our conclusions are extended to more general applications. We will link the difficulty
of optimisation to a number of physical properties of the system at hand, such as its
integrability or the structure of its entanglement spectrum; moreover, we explore how
this difficulty is influenced by the choice of the parameterised circuit implementing the
variational algorithm.

Throughout this work, we will focus on one-dimensional spin systems, often taking a
fermionic perspective by employing a spin-fermion mapping. We introduce these topics
in Chapter 2, along with the notion of a free-fermionic system. These admit a repres-
entation that is polynomial in the size of the system, enabling them to be simulated
efficiently on a classical computer. Moreover, the structure of the entanglement of a
quantum state representing such a system follows a well-defined combinatorial pattern
that can be described using a number of parameters linear in the size of the system.
We review how the complexity of a quantum state can be measured in terms of how
the structure of its entanglement diverges from this pattern by computing a quantity
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called the interaction distance.
We proceed to introduce variational quantum algorithms in Chapter 3. There, we

review and expand upon the quantum optimal control based Lie theoretical framework
for the study of these algorithms. In particular, we show that the ground states of
the Hamiltonians belonging to the Lie algebra of the parameterised circuit are pre-
cisely those that can be prepared by the algorithm. Exploiting this, we analytically
demonstrate that the one-dimensional QAOA can prepare exactly all free-fermionic
states.

Leveraging the fact that free-fermionic systems are efficient to simulate classically,
we conduct a comprehensive numerical study of the QAOA in Chapter 4. By running
the optimisation several times with different initial conditions, we draw conclusions
about the influence of symmetries on variational algorithms. Moreover, we are able to
probe large circuit depths and lattice sizes, which enables the study of the so-called
overparameterised regime of optimisation. We characterise this regime by examining
how the optimisation hardness scales with the circuit depth and the lattice size.

This study is extended to interacting models in Chapter 5, where we use the inter-
action distance to quantify the success of ground state preparation in non-integrable
models of many-body systems. We observe that the interaction distance is highly cor-
related with this success, and that this correlation can also yield information about
which phase the model is in. This is observed across the phase diagram of several
non-integrable models, such as the Ising model in both a transverse and a longitudinal
field.

In Chapter 6, we focus our attention on the interaction distance, and we study it in
the context of the XYZ model. We begin by quantifying an emerging freedom in the
entanglement spectrum of the ground state of this model as the size of the lattice tends
to infinity. By analysing a connection between interaction distance and Wick’s theorem,
we explore the possibility of measuring the interaction distance experimentally, and
discuss what this would involve in general cases.

Finally, we conclude in Chapter 7, where we summarise the contributions of this
work and lay out further lines of research to be pursued in the future.
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Chapter 2

Background: Spin systems through a fermionic
perspective

5



2.1 Lattice models

In this chapter, we will review the mathematical description of spin and fermionic
systems. These can be mapped to one another through so-called spin-fermion map-
pings, such as the Jordan-Wigner transformation, which we will describe in detail. We
will then emphasise a subset of fermionic systems which is non-interacting, the free-
fermionic systems. These admit a representation of its quantum states and Hamiltonian
that is polynomial in the size of the system, enabling them to be efficiently simulated
classically. Finally, we review the notions of quantum entanglement and of the en-
tanglement spectrum, and introduce the interaction distance, an entanglement-based
measure of how far generic fermionic systems are from free-fermionic ones [192].

2.1 Lattice models

In quantum many-body physics, the models describing physical phenomena are often
defined on some underlying lattice, which consists of a collection L of points (or sites)
arranged in space. Each site hosts a physical entity (e.g. a particle) described by a
vector space H, along with a natural set of observables. The full system is then de-
scribed by the tensor product of each individual vector space ⊗p∈LHp. The associated
dynamics is defined by a Hamiltonian H that can be expressed in terms of sums of
tensor products of observables on each site. As is usual, where this product is at no
risk of being mistaken for the standard matrix product, we will represent it by omitting
the ⊗ symbol i.e. we write A1 ⊗A2 as A1A2.

In this work, we will concern ourselves with one-dimensional lattices of fermions
(introduced in Section 2.2) and spins (introduced in Section 2.3). We will either work
with open boundary conditions (OBC), in which case the sites are assumed to be
arranged in a straight line, or periodic boundary conditions (PBC), where the first
and last sites are assumed to be adjacent to each other. In certain cases, the system
under study may be symmetric with respect to a permutation of the lattice sites.
If P is an operator representing the effect of such a permutation on ⊗

p∈PHp, this
mathematically translates to the Hamiltonian satisfying H = PHP−1. Two symmetries
we will encounter is a translation symmetry, which results in shifting all the lattice sites
forward by one (the last site is assigned to the first one), and a reflection symmetry,
which assigns the first site to the last site, the second site to the second to last site, and
so forth (if the lattice has an odd number of sites, the centre site remains unchanged).
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2.2 Fermionic systems

2.2 Fermionic systems

A system composed of a single spinless fermion can be represented by a vector space
having two states H = span {|0⟩ , |1⟩}, where |0⟩ indicates the vacuum, i.e. the absence
of a fermion, and |1⟩ is a quantum state representing its presence. The corresponding
description for a lattice of N sites, each potentially hosting a fermion, is commonly
given in terms of a set of creation operators {a†

j}Nj=1 acting as

|α1...αN ⟩ = (a†
1)α1 ...(a†

N )αN |0⟩ . (2.1)

A corresponding set of annihilation operators is defined by the Hermitian conjugate
of the creation operators. As the name suggests, these correspond to the creation, or
destruction, of a fermion on a lattice site. For example, on a lattice with four sites,
|0101⟩ = a†

2a
†
4 |0⟩ corresponds to a quantum state with one fermion occupying the second

site and one occupying fourth site. To be consistent with fermionic exchange statistics
(i.e. the fact that exchanging two fermions incurs a phase of −1 in the corresponding
quantum state), these sets of operators must satisfy the canonical anticommutation
relations

{aj , ak} := ajak + akaj = 0, (2.2)

{a†
j , ak} = a†

jak + aka
†
j = δjk, (2.3)

thus forming a CAR algebra [166] (where CAR is an acronym for canonical anticom-
mutation relations).

The fermions we have introduced so far are complex fermions; these describe particles
distinct from their own antiparticles. This contrasts with the behaviour of the so-called
Majorana fermions, named after Ettore Majorana, who first proposed them when de-
scribing electrically neutral particles [111]. The corresponding operators can be defined
in terms of the fermionic creation and annihilation operators previously introduced as

γ2j−1 := a†
j + aj , (2.4)

γ2j := i(a†
j − aj), (2.5)
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2.3 Spin systems and spin-fermion mappings

and satisfy the relations

{γj , γk} := 2δjk. (2.6)

Note, in particular, that these are involutions, i.e. γ2
j = I, because {γj , γj} = γjγj +

γjγj = 2γjγj = 2I. This reflects the fact that, unlike complex fermions, Majorana
fermions are their own antiparticles. In what follows, we will mainly work with the
latter, as many of the structures of interest to us will have a simplified representation
when expressed in terms of Majorana fermions.

2.3 Spin systems and spin-fermion mappings

The study of quantum spin systems stems principally from the need to understand the
magnetic properties of materials [149]. Mathematically, a single spin-1

2 is represented
as a vector space H = span {|↑⟩ , |↓⟩}, with the states indicating the direction the spin
is pointing. The observables in such a system are given by the Pauli operators

X =

0 1
1 0

 Y =

0 −i
i 0

 Z =

1 0
0 −1

 . (2.7)

A system comprised of multiple spins is obtained by taking the tensor product⊗N
j=1 Hj .

It is often desirable to rewrite a system of spins as a system of fermions e.g. in cases
where this leads to a simplified description, as is the case of the Ising model we will
review in Section 2.7. A common way to accomplish this correspondence is through the
so-called Jordan-Wigner transformation. This transformation was first proposed in [91]
by Jordan and Wigner and was later used by Lieb, Schultz and Mattis to derive an
analytical solution to the XY model in [105]. It can be defined through the assignments

γ2j−1 =
(∏

k

Zk

)
Xj , γ2j =

(∏
k

Zk

)
Yj . (2.8)

For simplicity of notation, we will often represent a string of Zs stretching between
lattice sites j and k as AjZ...ZBk, where A and B are any Pauli matrices. This will
take the form Z...ZAj if the string stretches from the beginning of the lattice up to site j,
and BkZ...Z it stretches from site k to the end of the lattice. This string, which features
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2.4 Free-fermionic systems

in (2.8), is usually denoted by a Jordan string, and it ensures that the anti-commutation
relations (2.2), (2.3) are respected under the Jordan-Wigner transformation. Inverting
this transformation, we obtain

Xj = (−i)j−1

2(j−1)∏
k=1

γk

 γ2j−1, Yj = (−i)j−1

2(j−1)∏
k=1

γk

 γ2j ,

Zj = −iγ2j−1γ2j . (2.9)

As we will see in Section 2.4, quantum Hamiltonians that can be expressed as a sum
of pairs of Majorana operators represent a special type of non-interacting fermionic
system. It will thus be particularly useful to consider the form these pairs take under
the Jordan-Wigner transformation:

−iγ2jγ2k−1 = XjZ...ZXk, −iγ2jγ2k = XjZ...ZYk,

iγ2j−1γ2k−1 = YjZ...ZXk, iγ2j−1γ2k = YjZ...ZYk, (2.10)

where we assume that j < k, and that the string of Zs spans all lattice sites between
the Pauli operators with explicit indices.

Note that there is an implicit degree of freedom in the Jordan-Wigner transform-
ation, the axis of quantisation, which we have chosen to be in the Z direction. We
could have alternatively chosen this to be e.g. the X direction, in which case the
transformation would take the form

γX2j−1 = X...XYj , γX2j = X...XZj . (2.11)

This choice of axis will depend on the problem at hand; we see a practical example of
this in Section 6.4.

2.4 Free-fermionic systems

Amongst all fermionic models, there is a subclass for which the constituent particles do
not interact with each other. These systems are said to be free-fermionic. Physically,
they can represent an idealised system of weakly interacting electrons, and are useful in
e.g. producing approximate descriptions of materials via density functional theory [90]
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2.4 Free-fermionic systems

or in the Hartree-Fock approximation to interacting quantum states [51, 74, 177]. They
also appear as emerging quasiparticles in descriptions such as the BCS theory of su-
perconductivity [10, 22, 106, 194]. In this section, we introduce the basic structures
used in the description of free-fermionic systems and review the properties which will
be relevant to us in what follows.

Free-fermionic systems can be written in terms of a quadratic fermionic Hamiltonian
(which we abbreviate to “quadratic Hamiltonian”). In terms of Majorana fermions, this
Hamiltonian takes the form

H = i
∑
j,k

hj,kγjγk, (2.12)

where hj,k is a 2L× 2L real and antisymmetric matrix by virtue of the relations (2.6).
In terms of Dirac fermions, this Hamiltonian takes the form

H =
∑
j,k

Ajka
†
jak +Bjka

†
ja

†
k + h.c., (2.13)

where A is a Hermitian matrix and B is an antisymmetric matrix by virtue of the
relations (2.2), (2.3). In what follows, we will mainly work with Majorana fermions,
and through an abuse of terminology, we use the terms “quadratic Hamiltonian”, “free-
fermionic Hamiltonian” interchangeably to refer both toH and its corresponding matrix
h. Note that all quadratic Hamiltonians preserve (commute with) the fermionic parity

P :=
∏
j

a†
jaj =

∏
j

γ2j−1γ2j , (2.14)

which takes the form P = ∏
j Zj after applying the Jordan-Wigner transformation (2.8).

A quantum state is an eigenstate of a quadratic Hamiltonian if and only if it is a
fermionic Gaussian state (FGS), which we sometimes also denote by a “free-fermionic
state” or just “free state”. These are the fermionic states that satisfy Wick’s theorem,
named after Gian-Luca Wick, who derived it in his work on quantum field theory [85,
208]. Prior to stating it, we must define the covariance matrix Γ of a quantum state ρ
as

Γjk = i

2⟨[γj , γk]⟩ρ = i

2 tr(ρ(γjγk − γkγj)), (2.15)
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2.4 Free-fermionic systems

which is real and antisymmetric. If ρ is defined on L lattice sites, this matrix will be
2L× 2L-dimensional. Furthermore, we must introduce the notion of a Pfaffian. Given
an antisymmetric matrix M , its Pfaffian is defined as

Pf(M) = 1
2LL!

∑
σ∈S2L

sgn(σ)
L∏
j=1

Mσ(2j−1),σ(2j), (2.16)

where S2L is the permutation group of order 2L, and sgn(σ) is the sign of the permuta-
tion σ1. For example, for a 4× 4 matrix (L = 2), the Pfaffian is

Pf(M) = M1,2M3,4 −M1,3M2,4 +M2,3M1,4 (2.17)

(2.18)

Theorem 1 (Wick). A quantum state ρ with covariance matrix Γ is a fermionic Gaus-
sian state if and only if

tr(ρ γs1
1 ...γ

s2L
2L ) = iw Pf(Γ[s1, ..., s2L]) (2.19)

for all s1, ..., s2L ∈ {0, 1}, where Γ[s1, ..., s2L] is the submatrix obtained from Γ such
that the jth row and column are kept if sj = 1, 2w = ∑

j sj , and Pf denotes the Pfaffian
of a matrix.

This result implies that FGS are uniquely determined (up to a phase) by their
2L×2L covariance matrix. A related structure, expressed in terms of complex fermions,
is the correlation matrix

C :=

Ca†a Ca
†a†

Caa Caa
†

 , (2.20)

Ca
†a
jk = ⟨a†

jak⟩ρ, Ca
†a†
jk =⟨a†

ja
†
k⟩ρ, Caa = −Ca†a† , Caa

† = (I − Ca†a)†.

1A permutation σ ∈ Sn is canonically represented as (α1, ..., αM ), indicating that the object in
the jth position will occupy position αj after applying the permutation. Every permutation can be
decomposed as a sequence of transpositions, i.e. a sequence of permutation of two objects at a time.
The sign of the permutation is −1 if this number of transpositions is odd, and 1 if this number is even.
The sign of a permutation is well-defined, as the parity of the number of transpositions is the same in
any such decomposition. For example, take σ = (2, 3, 4, 1) ∈ S4. Then, σ(1) = 2, σ(2) = 3, σ(3) = 4,
and σ(4) = 1. A decomposition of σ in terms of transpositions would be e.g. (1, 2)(2, 3)(3, 4), meaning
it is an odd permutation and its sign is −1, and no decompositions of this permutation with an even
number of transpositions are possible.
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2.4 Free-fermionic systems

From the above, we conclude that both free-fermionic Hamiltonians and FGS can
be efficiently represented, requiring a number of parameters that is quadratic in the
size of the system to be specified. Moreover, the quantum dynamics associated to
the evolution of a covariance matrix under the action of a quadratic Hamiltonian is
efficiently computable [92, 182, 188, 195]. Indeed, if h is a quadratic Hamiltonian, the
evolution of a fermionic Gaussian state ρ0 represented by covariance matrix Γ0 under
the action of h at time t is given by

Γ = exp(th)Γ0 exp(−th). (2.21)

Likewise, its expectation value with respect to a quadratic Hamiltonian h can be com-
puted as

tr(ρH) = tr(Γh). (2.22)

The Hamiltonian (2.12) admits a canonical form akin to a diagonalisation. Since h
is antisymmetric, there exists an orthogonal matrix O such that [20]

hD = OhOT =
L⊕
j=1

 0 ϵj

−ϵj 0

 . (2.23)

Numerically, O can be obtained by computing the real Schur decomposition of h [43].
This allows us to write H as

H = i
L∑
j=1

ϵj γ̃2j−1γ̃2j =
L∑
j=1

ϵj ã
†
j ãj , (2.24)

where 
γ̃1
...
γ̃2L

 = OT


γ1
...
γ2L

 , (2.25)

and the ϵj are single-particle energies in this new basis. The eigenvalues λj of H,
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2.4 Free-fermionic systems

indexed in ascending order, are given in a combinatorial manner as

λj =
L∑
k=1

bk(j)ϵj , (2.26)

where bk(j) is the kth digit of the binary representation of j (and thus is either zero or
one), and where the ϵk are assumed to be ordered in ascending order. The eigenvectors
of the quadratic Hamiltonian can also be obtained. Define

Vj :=
L⊕
k=1

 0 (−1)bk(j)+1

(−1)bk(j) 0

 . (2.27)

Then, the covariance matrix Γj of the jth eigenvector of H can be computed as

Γj = OTVjO. (2.28)

Finally, the overlap between two pure FGS |ψ⟩ and |ϕ⟩ with the same parity p, repres-
ented by covariance matrices Γ1 and Γ2 is given by [24, 170]

|⟨ψ|ϕ⟩|2 = p2−L Pf(Γ1 + Γ2). (2.29)

The symmetries of a free-fermionic system have a direct influence on the structures
we have just introduced. A covariance matrix represents a translationally invariant
FGS ρ, and hj,k defines a translationally invariant quadratic Hamiltonian if and only
if, respectively:

Γjk = Γj+2m k+2m, hj,k = hj+2m,k+2m, (2.30)

for all integers m, where it is understood that coefficients are taken modulo the lattice
size. A covariance matrix represents a lattice inversion symmetric FGS ρ, and hj,k

defines a lattice inversion symmetric quadratic Hamiltonian, if and only if, respectively:

Γjk = (−1)j−k+1ΓL−k+1 L−j+1, hj,k = (−1)j−k+1hL−k+1 L−j+1. (2.31)

We denote by “symmetric FGS” and “symmetric quadratic Hamiltonians” those that
are invariant both under translation and lattice inversion. This terminology will be
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2.5 Entanglement in many-body systems

useful in Chapter 3 when studying the expressibility of certain variational quantum
algorithms.

2.5 Entanglement in many-body systems

Let L be a set of points forming a lattice, as described in Section 2.1, and let A,B ⊆ L

be a bipartition of the lattice e.g. A ∩ B = ∅ and A ∪ B = L. If |ψ⟩ is a pure
quantum state of a system on this lattice, each subsystem A and B is described by a
mixed quantum state characterised by a reduced density matrix computed from |ψ⟩⟨ψ|
by taking a partial trace with respect to the other subsystem. For instance, the reduced
density matrix of subsystem A is given by

ρA = trB(|ψ⟩⟨ψ|) =
∑
ϕB

⟨ϕB|ψ⟩⟨ψ|ϕB⟩, (2.32)

where the |ϕB⟩ form a basis for the vector space of B (i.e. the vector space for which the
tensor product is taken only over the lattice sites contained in B)1. Note that, by abuse
of notation and terminology, we refer to a mixed quantum state and its corresponding
density matrix interchangeably. A practical way to compute a partial trace of |ψ⟩⟨ψ| is
through a Schmidt decomposition. We begin by writing the state |ψ⟩ as

|ψ⟩ =
∑
j,k

Mj,k

∣∣∣ψAj 〉⊗ ∣∣∣ψBk 〉 , (2.34)

where the
∣∣∣ψAj 〉 form a basis for the vector space of A, and

∣∣∣ψBk 〉 form a basis for
the vector space of B. Then, one can perform a singular value decomposition on M

to obtain M = UDV T , where U is unitary, D is diagonal and V T is orthonormal.
By performing a change of basis on each subsystem

∣∣∣ϕAj 〉 = ∑
l Uj,l

∣∣∣ψAl 〉 and
∣∣∣ϕBk 〉 =∑

l Vk,l
∣∣∣ψBl 〉, |ψ⟩ can be written as

|ψ⟩ =
∑
j

λj
∣∣∣ϕAj 〉⊗ ∣∣∣ϕBj 〉 , (2.35)

1To be explicit, the inner product in (2.32) is computed only over the degrees of freedom of B e.g.
if |ψA⟩ is in the vector space of A and |ψB⟩ , |ϕB⟩ in the vector space of B, then

⟨ϕB |ψA ⊗ ψB⟩⟨ψA ⊗ ψB |ϕB⟩ = |⟨ψB |ϕB⟩|2 |ψA⟩⟨ψA| (2.33)
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2.5 Entanglement in many-body systems

where the λj are the diagonal entries of D. The partial trace (2.32) can then be directly
obtained as

ρA =
∑
j

|λj |2
∣∣∣ϕAj 〉〈ϕAj ∣∣∣ , (2.36)

where the ρj := |λj |2 form the spectrum of the reduced density matrix, also called
the entanglement spectrum [41]. It characterises the entanglement of the quantum
state across the bipartition, and the celebrated von Neumann entropy (VNE) can be
computed directly from it

SVN := − tr(ρA ln ρA) = − tr(ρB ln ρB) = −
∑
j

ρj ln ρj . (2.37)

From here on, we will drop the index indicating the subsystem, assuming it to be
implicit.

Since a density matrix is always positive semidefinite, its logarithm is well-defined,
and ρ can be written in terms of its entanglement Hamiltonian [41, 103] (also known
as modular Hamiltonian) as

ρ = e−Hent Hent = − log ρ. (2.38)

This can be interpreted as the Boltzmann-Gibbs density matrix of a system in thermal
equilibrium at a temperature β = 1. Surprisingly, in certain circumstances, the entan-
glement Hamiltonian of a reduced density matrix turns out to be local and few-body,
despite no such condition being a priori imposed. This is, for example, the case of
certain integrable models which we will discuss later in this section, or of a system of
free-fermions hopping on a lattice. In fact, the reduced density matrix of the ground
state of a free-fermionic system can be written in the form [34, 35, 155]

Hent =
∑
j,k

Ajka
†
jak (2.39)

Moreover, it is the case that

A = ln 1− Ca†a

Ca†a
, (2.40)
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and the eigenvalues ζk of C satisfy the relation

ζk = 1
eϵk + 1 , (2.41)

where ϵk are the single-particle energies of Hent.
For a general fermionic system, these expressions no longer hold, but the entangle-

ment Hamiltonian can be written in a diagonal form as follows

Hent = E0 +
∑
j

ϵjd
†
jdj +

∑
j,k

ϵjkd
†
jdjd

†
kdk + · · · , (2.42)

where ϵj are the single particle energies, ϵjk are the two particle energies of the entan-
glement Hamiltonian, and so forth. This directly follows from the diagonalisation of ρ.
If ρk is the associated entanglement spectrum in descending order, then, recursively,

ϵS = − ln ρ(∑
j∈S

2j−1
) −∑

R⊊S

ϵR, (2.43)

where S is a set comprised of the site indices for that energy; for instance, ϵ12 =
− ln ρ3 + ln ρ2 + ln ρ1− ln ρ0. Note that we take E0 = − ln ρ0, and we assume summing
over an empty set yields zero. The dj are connected to the operators aj by conjugation
by the diagonalising unitary U . This contrasts with the free-fermionic case, where all
energies other than the single particle energies vanish, and the operators featuring in
the entanglement Hamiltonian (2.39) are the operators aj associated with each lattice
site.

For certain integrable systems, such as the XYZ model, which we will explore in
Chapter 6, or the Ising model, which we introduce in Section 2.7, analytical expressions
for the entanglement Hamiltonian can be obtained in the thermodynamic limit. This
is done by considering their connection to a corresponding 2D classical spin model
[136, 137, 186]. In these cases, the Hamiltonian of the quantum 1D model commutes
with the transfer matrix T of the 2D classical model, and the ground state |ψ⟩ is the
largest energy eigenstate of T . Under such conditions, the reduced density matrix of
|ψ⟩ with respect to a bipartition of the lattice can be seen as the partition function of
the aforementioned 2D model, and can be computed as

ρ = ABCD, (2.44)
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where A,B,C,D are the so-called corner transfer matrices (CTMs) of the model [12].

2.6 Interaction distance

As established in Section 2.4, free-fermionic systems admit efficient representations
in terms of covariance matrices and quadratic Hamiltonians. This description breaks
down in most physical systems, where interactions lead to exotic phenomena such as
fractionalised excitations and topological order [2, 102]. At the same time, there are
many known examples, e.g., Luttinger liquids [66], where interactions give rise to new
collective degrees of freedom which can still be described as nearly free. It is thus
important to have a systematic understanding of the criteria characterising when a
system admits a free-fermionic description. Here, we review a quantity called interac-
tion distance [147, 150, 192], which aims to quantify how far from being free-fermionic
a quantum state is. Given some density matrix ρ, the interaction distance [192] of ρ is
defined as

DF(ρ) := min
σ∈F

1
2 tr

(√
(ρ− σ)2

)
, (2.45)

where F is the manifold

F := {σ = 1
Z
e−H , Z = tr e−H , H is quadratic}. (2.46)

Note that, importantly, there is no restriction placed on the quadratic Hamiltonians
in (2.46), and these may be defined in terms of fermionic operators that are different
from the aj associated to the lattice sites. In Section 5.1, we examine the interaction
distance across the phase diagram of several models, and leverage this quantity to
measure the success of variational quantum algorithms in preparing the corresponding
ground states. Furthermore, in Chapter 6, we study the interaction distance in the
context of the XYZ model, and explore ways to compute it directly in terms of physical
observables.

There is a crucial simplification in evaluating DF as written in Eq. (2.45), which was
shown in [192] leveraging a result from [112]. The minimisation over F is equivalent to

DF(ρ) = min
ϵ

1
2
∑
k

|ρk − σk(ϵ)|, (2.47)
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where the ρk denote the eigenvalues of ρ in descending order (normalised such that∑
k ρk = 1), and

σk(ϵ) = 1
Z
e

−
∑

j
ϵjbk(j)

, (2.48)

where, as in (2.26), bk(j) is the kth digit of the binary representation of j (and thus is
either zero or one). The normalisation Z ensures that ∑k σk = 1, and we assume that
σk are in the same (descending) order as ρk, which is necessary to achieve a minimum
in Eq. (2.47) [112]. Note that the number of modes {ϵj} does not have to be such that
the length of the spectra match; in that case, the smaller spectrum is implicitly padded
with zeros.

The utility of Eq. (2.47) is that the value of DF(ρ) can be determined solely from
the information in the entanglement spectrum. Comparing Eq. (2.45) with Eq. (2.47),
we see that the minimisation over all matrices σ ∈ F was traded for a minimisation over
scalars {ϵj}. The latter is a much simpler optimisation problem, and the number of
parameters scales linearly with the system size. Thus, the problem becomes numerically
tractable, as the computational complexity is only polynomial in system size N once the
spectrum {ρk} is known [192]. Obtaining this spectrum efficiently is possible in many
relevant cases through, e.g., the DMRG algorithm, which we review later in Section 6.2.

We now summarise how Eq. (2.48) is minimised, as described in [192]. The optim-
isation routine starts by heuristically choosing an initial guess for the single-particle
modes, which fixes the number of modes that will be used throughout the optimisation,
in the following way:

1. The candidate normalisation energy E0 = lnZ is chosen to be the lowest element
in {− log ρk}, and removed from this set.

2. The first single-particle energy candidate ϵ1 is picked as the lowest level in the
remaining spectrum, and the closest level to E0 + ϵ1 is removed.

3. The next energy ϵ2 is picked, again as the lowest level in the remaining spectrum,
and the closest levels to E0 + ϵ1ϵ2 and E0 + ϵ2 are removed.

4. The next energy ϵ3 is similarly picked, and the closest levels to E0 + ϵ3, E0 + ϵ1ϵ3,
E0 + ϵ2ϵ3 and E0 + ϵ1ϵ2ϵ3 are removed.
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2.6 Interaction distance

5. This process repeats until the initial spectrum {− log ρk} is either exhausted or
the remaining levels fall below some specified precision.

When evaluating which levels are closest to a newly generated one, a threshold is used;
if no level is below a certain distance to the new one, no levels are removed. After
this initial guess is constructed, a nonlinear optimisation routine having Eq. (2.47) as
the cost function is run. Since this optimisation presents with local minima, a global
optimisation routine is employed. The algorithm chosen for this was a basinhopping
optimisation [192, 201] procedure. This routine runs a local optimisation, stochastically
perturbs the minimum found, and then again runs a local optimisation using this
perturbed minimum as the initial guess. This is repeated a set number of times, and
a candidate for a global minimum is returned. The local optimisation routine used is
the Nelder-Mead gradient-free optimisation algorithm.

Note that DF is strictly bounded 0 ≤ DF ≤ 1 [122], and states that have DF = 0
can be expressed as Gaussian states in terms of some fermionic modes as in Eq. (2.48).
This is, of course, true for product states in the computational basis, but it is also
the case for certain entangled states such as the ground state of the Ising model in
the transverse field [192]. Interestingly, unlike its lower bound, DF does not seem to
saturate its upper bound – it was conjectured that DF ≤ 3 − 2

√
2 [122]. Physical

states that realize this upper bound of DF were identified as ground states of certain
types of parafermion chains [122]. These states do not have a particularly high value
of VNE, but the structure of their entanglement spectrum is as distinct as possible
from that of free-fermions, in the sense of Eq. (2.47). This structure is that of a ”flat”
entanglement spectrum, with ρk = 1/N , where N is the dimension of the single-particle
vector space. For N = 3, this corresponds to (1/3, 1/3, 1/3) with DF(ρ) = 1

6 , and it
was proved analytically in the Supplementary Material to [192] that this maximises the
interaction distance amongst all 4-level spectra (where a zero is added to the spectrum
for padding). In general, the interaction distance for these spectra was conjectured to
be 3 − N

2n − 2n+1

N , where n is the highest integer such that 2n < N ; when N tends to
infinity, this converges to 3− 2

√
2 [122].

The interaction distance of a state ρ bounds the difference between the expectation
values of any observable with respect to ρ and σ, where σ is the state that minimises
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Eq. 2.45. Indeed, it is the case that [151]

|⟨O⟩ρ − ⟨O⟩σ| = |tr (O(ρ− σ))| (2.49)

=
∣∣∣∣∣∑
k

⟨ϕk|O|ϕk⟩ϕk

∣∣∣∣∣ (2.50)

≤
∣∣∣∣∣max

k
⟨ϕk|O|ϕk⟩

∑
k

ϕk

∣∣∣∣∣ (2.51)

= ∥O∥∞
∣∣∣∣∣∑
k

ϕk

∣∣∣∣∣ (2.52)

= ∥O∥∞ tr |ρ− σ| (2.53)

= ∥O∥∞2DF(ρ), (2.54)

where in step (2.50) we made use of the fact that ρ, σ are mutually diagonal, and
assumed |ϕk⟩ to be a common eigenbasis (with ϕk = ρk − σk, where ρk, σk are the
eigenvalues of ρ, σ). In step (2.53) we used the definition of the trace distance, and in
step (2.54) we used the definition of the interaction distance. We will make use of this
bound in Section 6.4, where we study a link between the interaction distance and a
measure of the interactions of a system based on Wick’s theorem.

In [192], it is argued, based on results from [103], that the interaction distance
can diagnose whether the system admits a description in terms of free quasiparticles.
Quasiparticles are elementary excitations which can capture the low-energy behaviour
of a condensed matter system in terms of an effective description. Their use has been
successful in describing the low-energy behaviour of systems such as liquid helium [59,
60, 98], the fractional quantum Hall effect [67] and the AKLT [6] spin chain.

2.7 Example: The Ising model

The quantum Ising model is a well-known, paradigmatic spin model in condensed mat-
ter physics [50]. Its Hamiltonian can be written as

H = −J
L∑
j=1

XjXj+1 − hz
L∑
j=1

Zj − hx
L∑
j=1

Xj , (2.55)
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where we consider the presence of both a transverse field, controlled by the parameter
hz, and a longitudinal field, controlled by the parameter hx. The J parameter is a
coupling defining the energy scale, which we will set to ±1. The properties of the ground
state of this model are insensitive to the sign of J in the absence of the longitudinal
field. However, once hx ̸= 0, the phase diagram is substantially different for the two
models. On the one hand, when J = 1, the model is ferromagnetic, possessing a single
critical point at (hz = 1, hx = 0) described by the free Ising conformal field theory [63]
for which the entanglement entropy of the ground state diverges logarithmically with
system size [27]. On the other hand, when J = −1, the model is antiferromagnetic, and
has a critical line connecting the point (hz, hx) = (1, 0) with the point (hz, hx) = (0, 2).
This critical line is not known analytically, but it has been determined numerically
using density-matrix renormalization group simulations in Ref. [146]. The Ising model
in Eq. (2.55) serves as a useful laboratory for studying a number of phenomena in
condensed matter physics [36, 50, 129]. In Section 5.1.1, we study the interaction
distance, introduced in Section 2.6, across the phase diagram of this model.

The limit of the purely transverse field (hx = 0) is particularly important. Along
this line, both models are equivalent, and the Hamiltonian is quadratic when written
in terms of Majorana operators introduced in Section 2.4 after performing the Jordan-
Wigner transformation [159]. Indeed, applying this transformation to (2.55), we obtain

H = i
N∑
j=1

Jγ2j−1γ2j + ihz

N∑
j=1

γ2jγ2j+1 − hx
N∑
j=1

(−i)j−1

2(j−1)∏
k=1

γk

 γ2j+1. (2.56)

The longitudinal field term attached to the hx parameter is highly non-local under
this transformation, while the remaining terms are quadratic in the Majorana operator
basis, thus corresponding to a free-fermionic system in this representation when hx = 0.
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In that case, the model can be written in the form (2.12), with

h =



0 J . . . . . . 0
−J 0 hz

−hz 0 J
... −J 0 hz

...

−hz 0 . . .
... . . . . . . ...

0 hz

−hz 0 J

0 . . . . . . −J 0



. (2.57)

Using this representation, following Section 2.4, the Ising model can be numerically
efficiently diagonalised and its eigenenergies obtained. For the case of this model,
however, it is well known that this entire process can be performed analytically [105,
182]. To this end, one typically expresses (2.55) (where, again, we are considering
hx = 0) in a fermionic basis to obtain

H =
L−1∑
j=1

J(a†
j+1a

†
j + ajaj+1 − a†

jaj+1 − a†
j+1aj)−

L∑
j=1

hz(2a†
jaj − 1), (2.58)

where we impose OBCs for simplicity (the PBC case is similar with some additional
bookkeeping). Applying a discrete Fourier transformation, we obtain the transformed
operators

fk =
L∑
j=1

aje
−ikj/

√
N, (2.59)

where k = 2nπ
L , with n running over N integer values such that k ∈ [−π, π]. This yields

H =
∑
k>0

[
f †
k fk

] −J cos(k)− hz iJ sin(k)
−iJ sin(k) J cos(k) + hz

f †
k

fk

 . (2.60)

The quadratic Hamiltonian is now in block-diagonal form with 2 × 2 blocks, and can
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be directly diagonalised (this is called a Bogoliubov transformation [22]) to yield

H =
∑
k>0

ωk(d†
kdk + d†

−kd−k − 1), (2.61)

with

ωk = 2
√
h2
z + J2 + 2hzJ cos(k). (2.62)

As we mentioned in Section 2.5, the reduced density matrix and corresponding
entanglement Hamiltonian can be determined for certain integrable models by con-
sidering a connection to a corresponding 2D classical spin model. This is the case of
the transverse-field Ising model, for which the Hamiltonian can be connected to the
transfer matrix of the 6-vertex model. The entanglement Hamiltonian then takes the
form [156, 191]

H =

−2I(k′)∑∞
j=1[jXjXj+1 + k(j − 1

2Zj)], hz > J,

−2I(k′)∑∞
j=1[jkXjXj+1 + (j − 1

2Zj)], hz < J,
(2.63)

where I(k′) is the complete elliptic integral of the first kind and k = min(J/hz, hz/J), k′ =
√

1− k2.
We will employ the transverse field Ising model in Chapter 4, where we extensively

study free-fermionic models in the context of variational quantum algorithms. The
longitudinal field is reintroduced in Chapter 5, where we extend this analysis to non-
integrable models.
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Chapter 3

The expressibility of Variational Quantum
Algorithms
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In recent years, variational quantum algorithms have attracted much attention [30, 58,
154, 189]. A common feature of these algorithms is that they involve optimising a
set of parameters defining a family of quantum circuits to prepare a quantum state of
interest. We begin this chapter by presenting a brief overview of VQAs in Section 3.1.

Successfully employing these parameterised circuits requires an adequate level of
expressibility, which is determined by the set of quantum states that they can prepare.
While universal parameterised circuits exist [18, 128], these are typically difficult or
impossible to optimise [80]. A way to constrain the expressibility of a parameterised
circuit is to employ problem-tailored ansätze [100, 210]. Among them is the Quantum
Approximate Optimisation Algorithm (QAOA), originally proposed for solving com-
binatorial optimisation problems such as the MaxCut problem [58].

In this chapter, we study the expressibility of parameterised circuits from the point
of view of Lie theory, a powerful tool already used in the study of quantum control [38]
and which has recently been applied to VQAs [99–101, 124, 128]. Our contributions cor-
respond to the sections not marked as “Background” (or subsections of those sections),
and can be summarised as follows:

• In Section 3.2.2, we show that the states that can be prepared by a parameterised
circuit are precisely the ground states of the Hamiltonians that belong to its Lie
algebra. We also point out that there is a redundancy in the unitaries that can
prepare a given state, and that this redundancy is characterised by a stabiliser
Gauge group.

• In Section 3.3, we consider the original QAOA proposed in [58] and of a variation
on it with decoupled parameters proposed in [77]. We derive a basis for the Lie
algebra of both on a 1D lattice. We also derive a basis for the generators of the
associated stabiliser Gauge groups.

• Using the above Lie algebra bases, we conclude that the QAOA on a 1D lattice can
prepare precisely all fermionic Gaussian states which have a reflection symmetry
(for the OBC case) or both a reflection and translation symmetries (for the PBC
case). When the angles are decoupled, any FGS can be prepared. No other states
beyond those mentioned can be prepared by the corresponding parameterised
circuit.

We exploit the results above in Chapter 4 to conduct a comprehensive numer-
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ical study of the factors influencing optimisation hardness in variational quantum al-
gorithms.

3.1 Background: Variational Quantum Algorithms

In this section, we offer a brief introduction to variational quantum algorithms. Vari-
ational Quantum Algorithms (VQAs) [16, 30] are generally formulated as a feedback
loop between an optimisation routine running on a classical computer and a quantum
simulator. This routine manipulates a set of controllable parameters defining a family
of quantum circuits, with the objective of finding a circuit that is able to prepare a
quantum state of interest. A sketch of the variational protocol is given in Fig. 3.1.
Given an initial state |ψ(0)⟩ and a set of parameters θ, this circuit prepares the state

|ψ(θ)⟩ = U(θ) |ψ(0)⟩ . (3.1)

The specific form that U(θ) takes is determined by an ansatz; in Section 3.1.1, we
give an overview of the most commonly used ansätze in the literature. The goal, as
outlined above, is to employ a classical optimisation routine in order to find a set of
angles θ∗, such that |ψ(θ∗)⟩ is a quantum state of interest, which we call a target state.
This is done by supplying the optimiser with a cost function which measures a distance
between the prepared state and a target state. An example is the expectation value of
the energy

E(θ) := ⟨ψ(θ)|H|ψ(θ)⟩
⟨ψ(θ)|ψ(θ)⟩ , (3.2)

where H is a Hamiltonian having a target state as its ground state. Once the value of
the cost function is measured, it is passed back to the optimisation algorithm running
on the classical computer. This algorithm returns a new set of angles, which are passed
again to the quantum simulator, and the process repeats itself until the optimisation
algorithm running on the classical computer halts. It must be the case that

min
θ
E(θ) ≥ E0,

where E0 is the ground state energy of H in Eq. (3.2). Equality is achieved for a set
of parameters θ∗ if and only if ψ(θ∗) is a ground state of H.
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3.1 Background: Variational Quantum Algorithms

Figure 3.1: A schematic illustrating a variational quantum-classical optimisation
routine. The optimisation involves n parameters θj , where j = 1, 2, . . . , n. For the
ansatz in Eq. (3.22), n = pm.

3.1.1 Brief summary of different types of VQA

We now briefly summarise the most commonly used VQAs. Our intention is to give
a brief overview of the main types of VQA found in the literature, and not to offer
a comprehensive review. All VQAs we present here follow the general form 3.1, and
mainly differ in the choice of U(θ) and of initial state |ψ(0)⟩.

Quantum Approximate Optimisation Algorithm

A well-known variational algorithm is the Quantum Approximate Optimisation Al-
gorithm (QAOA), designed to tackle combinatorial optimisation problems [58]. Typ-
ically, one begins by considering a classical spin Hamiltonian H(s1, ..., sn) such that a
solution to the problem is represented by a spin assignment that minimises the energy;
several important NP-hard problems can be written in this form [108]. Given this for-
mulation, we are able to obtain a quantum Hamiltonian by replacing the spin variables
sj by Pauli operators Zj , yielding H(Z1, ..., Zn). Solving the original problem is now
equivalent to finding the ground state of this Hamiltonian. We exemplify this following
the original QAOA proposal [58], where the MaxCut problem is considered. Given a
graph G with edges E, the MaxCut problem asks for a partition of this graph into two
disjoint groups of vertices such that the number of edges between the groups is as large
as possible. This can be translated into finding a spin configuration that maximises the
classical Hamiltonian

H̃ = 1
2

∑
(j,k)∈E

(1− sjsk), (3.3)
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where sj , sk assume values 1 or −1 depending on which partition the vertices j, k were
assigned to. This, in turn, is equivalent to the problem of minimising the Hamiltonian∑

(j,k)∈E sksj , which translates into finding a ground state of the quantum Hamiltonian

H =
∑

(j,k)∈E
ZjZk. (3.4)

The variational procedure then attempts to find a solution of the problem by minimising
the cost function (3.2) featuring this Hamiltonian. The parameterised circuit used for
this purpose consists in alternating the problem Hamiltonian HB = H with a “mixer”
Hamiltonian HA such that

U(θ) = exp(−iθp,1HA) exp(−iθp,2HB)... exp(−iθ1,1HA) exp(−iθ1,2HB), (3.5)

where

HA =
∑
j∈G

Xj , (3.6)

HB = H. (3.7)

The initial state in this case is taken to be an X-polarised state |ψ(0)⟩ = |→ ...→⟩,
which represents a superposition of all possible solutions to the problem. In Section 3.3,
we fully characterise the quantum states that the parameterised circuit (3.5) can pro-
duce in one dimension, i.e., when the graph G is such that the vertices are either
arranged linearly or in a cycle.

Hamiltonian Variational Ansatz

A variational algorithm that is closely related to QAOA is the Hamiltonian Variational
Ansatz (HVA) [204, 210]. It starts by choosing a splitting of the Hamiltonian H for
which we want to prepare the ground state as

H =
m∑
j=1

Hj , (3.8)

28



3.1 Background: Variational Quantum Algorithms

where [Hj , Hk] ̸= 0 for any j, k ∈ {1, ...,m}. The parameterised circuit employed in the
HVA then takes the form

U(θ) = exp(−iθp,mHm)... exp(−iθp,1H1)... exp(−iθ1,mHm)... exp(−iθ1,1H1). (3.9)

and the initial state is taken to be the ground state of one of the Hj . This ansatz is often
used in the preparation of ground states of quantum condensed matter systems [78, 79,
210]; we will employ it to prepare the ground state of several non-integrable models in
Chapter 5.

Variational Quantum Eigensolver

The Variational Quantum Eigensolver (VQE) was one of the first variational algorithms
to be proposed, and was designed to tackle quantum chemistry problems [120, 154].
The ansatz for U(θ) is typically the so-called Unitary Coupled Cluster (UCC) ansatz [4].
It starts by choosing the initial state |ψ(0)⟩ to be a Hartree-Fock approximation of the
target state, and then considers corrections to it which take the form

T (t) =
∑
jk

tjka
†
jak +

∑
jklm

tjklma
†
ja

†
l akam + ... (3.10)

It then includes the Hermitian conjugate terms T (t)† to form the operator T (t)−T (t)†,
which is anti-Hermitian [154], so that the exponentiation

U(t) = exp
(
T (t)− T (t)†

)
(3.11)

is unitary. By trotterising and using a mapping from fermions to qubits (see Section 2.3)
the parameterised circuit takes the form

U(t) =

∏
j

e(itj/p)Pj

p , (3.12)

where p controls both the depth of the circuit and the accuracy of the approximation,
and Pj are tensor products of Pauli matrices resulting from the fermion to spin trans-
formation applied to the terms of (3.10). Note that we have grouped all the indices
appearing in Eq. (3.10) into a single index j.
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Hardware Efficient Ansatz

The parameterised quantum circuits we introduced so far are called “problem-inspired
ansätze”, as their design is rooted in the problem they are tailored to solve. In contrast,
a “hardware efficient ansätz” [93] (HEA) is designed taking into account a specific
quantum hardware implementation, and aims to reduce the circuit depth as much as
possible. These parameterised circuits are “problem-agnostic”, and must be expressive
enough to find a solution without directly considering information about the problem.
This leads to the presence of barren plateaus (see Section 3.1.3), and represents an
obstacle to their practical applicability. A HEA generally takes the form

U(θ) =
p∏
j=1

L∏
k=1

(
U j,k(θj,k)UENT

)
, (3.13)

where U j,k are single-qubit rotations at depth j and acting on qubit k, which are
alternated with non-parameterised entangling gates UENT e.g. C-Phase gates.

3.1.2 Connecting VQAs to Adiabatic State Preparation

The variational algorithms introduced above, except the HEA, can be directly motiv-
ated and understood through the lens of adiabatic quantum state preparation [57, 58,
210]. In adiabatic state preparation, an easy to prepare initial state |ψ(0)⟩ is evolved
under the continuous action of a time-dependent Hamiltonian that interpolates an ini-
tial Hamiltonian HA and a final Hamiltonian HB. The initial Hamiltonian has |ψ(0)⟩
as its ground state, while the final Hamiltonian has the desired state as its ground
state. This interpolation is written as

H(s(t)) = (1− s(t))HA + s(t)HB, (3.14)

where s(t) is a schedule satisfying s(0) = 0, s(1) = 1. A well-known limitation of adia-
batic state preparation is that the schedule must slow down considerably as the energy
gap between the ground state as the first excited state decreases to avoid Landau-
Zehner transitions [9] to excited states. It has been suggested that variational quantum
algorithms can overcome this limitation [215], motivating their use. Moreover, Pontry-
agin’s Minimum Principle has been used to argue that a ”bang-bang” structure (i.e.
where one alternates between a finite set of Hamiltonians as in the variational al-
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gorithms above) is optimal for state preparation [212], as opposed to the continuous
time-dependent evolution in adiabatic state preparation (though this has been con-
tested [23]).

As outlined in [118], adiabatic state preparation can be trotterised and discretised
so that it takes the form of a variational quantum algorithm. First, given a partition of
the total evolution time T = ∑

j ∆j , where ∆j = tj − tj−1, the schedule s is discretised
to a step-function

s̃(t) = sj := s

(
tj + tj−1

2

)
, tj−1 ≤ t < tj , (3.15)

and the resulting evolution operator is then trotterised to the form of QAOA in (3.5),
with

θB,j = sj∆j , (3.16)

θA,j = (1− sj)∆j . (3.17)

Thus, a quantum adiabatic state preparation schedule can be approximated by a vari-
ational algorithm. As p → ∞, and since the angles θ in the variational algorithm are
free to vary, in this limit any adiabatic schedule can be emulated. This connection
between adiabatic state preparation and variational algorithms allows us to obtain an
important guarantee about the latter: since for finite systems the energy gap between
the ground state and the first excited state does not completely close, the variational
algorithm is guaranteed to prepare the target ground state in the p→∞ limit.

3.1.3 The barren plateau phenomenon

One of the principal issues with the use of variational quantum algorithms is the pres-
ence of barren plateaus, which consist in an exponential vanishing of the gradient of
the cost function with respect to the parameters as the size of the problem increases,
making the circuit untrainable. Formally, assuming a uniform distribution over the
parameter space, a variational algorithm with parameterised circuit U(θ), initial state
|ψ(0)⟩, and cost function c(θ), is said to present a barren plateau if, for all indices j
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and ϵ ∈ R+, it is the case that

P

(∣∣∣∣∣ ∂c∂θj
∣∣∣∣∣ ≥ ϵ

)
≤ O

(
e−L

)
. (3.18)

An established method to diagnose the presence of a barren plateaus involves computing
the variance of the gradient for a uniform distribution over the angles. Indeed, by
Chebyshev’s inequality1, it must hold that

P

(∣∣∣∣∣ ∂c∂θj
∣∣∣∣∣ ≥ ϵ

)
≤

Var
(∣∣∣ ∂c∂θj

∣∣∣)
ϵ2

. (3.20)

In the above, we make use of the fact that the mean value of the partial derivative of
the cost function with respect to the uniform distribution over the parameter space is
equal to zero for the circuits we consider [80, 121]. In practice, it has been observed
that the scaling of the variance is the same for all indices j [80], so when computing
the variance numerically it suffices to do so for a single parameter.

The phenomenon of barren plateaus was first identified in the context of random
circuits [73, 121], and was later extended to general parameterised circuits [80] forming
approximate unitary 2-designs. A distribution over a parameterised circuit is said to
form a unitary t-design if averaging a function over this distribution yields the same
results as averaging it over the Haar measure distribution up to the first t moments.
The concept of a unitary 2-design features in randomised benchmarking [42], where
one is interested in sampling over a set of unitaries that is representative of the full
space of unitaries. Intuitively, the closer a distribution is to being a 2-design, the more
expressive the associated parameterised circuit is. In this way, the presence of barren
plateaus is linked to the expressibility of the parameterised circuit.

Before proceeding, we note that the field of variational quantum algorithms has
undergone remarkable development in recent years. These have been extended and
specialised to several other areas, such as machine-learning [19, 37] and finance [52, 141].
An increasing number of modifications and variations on existing algorithms have been

1Chebyshev’s inequality states that, for a random variable X with finite standard deviation σ ̸= 0
and mean µ, ∀ϵ ∈ R+ it is the case that

P (|X − µ| ≥ ϵσ) ≤ 1
ϵ2 . (3.19)
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proposed to tackle existing issues, such as e.g. adaptively constructing the quantum
circuit [68, 217] to be optimised, using classical shadows to avoid barren plateaus [167]
or using specialised optimisers [179], among several others. Moreover, VQAs have
recently been combined with tensor network quantum simulation techniques to enable
efficient quantum circuit compression schemes [8, 45, 82, 107], with applications to
machine learning and quantum dynamics. While at present it is still unclear when
practical quantum advantage will be reached [39, 173], variational quantum algorithms
have proven to be a compelling avenue of research.

3.2 Lie Theory of Parameterised Quantum Circuits

The parameterised quantum circuits we will focus on throughout this thesis are con-
structed by directly adopting an alternating “bang-bang” structure [212], and encom-
pass all the cases described in Section 3.1.1 above except the HEA1. Given a tuple of
Hamiltonians

H = (H1, ...,Hm), (3.21)

the circuit is defined by the unitary operator

U(θ, p) = exp(−iθp,mHm)... exp(−iθp,1H1)... exp(−iθ1,mHm)... exp(−iθ1,1H1), (3.22)

where p controls the circuit depth and θ ≡ {θ1,1, θ1,2, . . . , θp,m} are the parameters
to be optimised. We call such a tuple of Hamiltonians H a protocol. The associated
parameters are often called angles in the literature. Despite the similarity, note that
this framework is more general than the HVA, as the protocol is not necessarily obtained
from a splitting of the target Hamiltonian, nor is it necessary that [Ha, Hb] ̸= 0.

3.2.1 Background: Characterising unitaries generated by a PQC

Lie theoretical techniques provide a powerful tool to characterise the expressibility of
quantum controllable systems [3]. They have been used in the literature to prove the
universality of a set of variational protocols (3.21) under certain assumptions [128],

1This is because we do not consider non-parameterised gates, though the framework we adopt here
could easily be adapted to include this case if necessary.

33



3.2 Lie Theory of Parameterised Quantum Circuits

to characterise barren plateaus and overparameterisation (which we will explore in
Section 4.3) in variational quantum algorithms [99, 100], and have recently found use
in studying symmetries in data in the context of quantum machine learning [101, 124].

We begin by briefly summarising and formalising the existing theory in the liter-
ature and defining the associated notation. Given U(θ, p) as in (3.22) defined by the
Hamiltonians H = (H1, ...,Hm), we define

U =
∞⋃
p=1

Up, Up = {U(θ, p) : θ ∈ Rmp}. (3.23)

The set U contains all unitaries that the protocol H can generate at arbitrary circuit
depth. It is a group, as it contains the product of any two of its elements and the
inverse of any of its elements. Further, since matrix multiplication is differentiable1, it
constitutes a Lie group.

Associated to the Lie group U is a Lie algebra u, which can be defined at a point θ

as

u =
{
∂U(θ, p)
∂θj

: j, p ∈ N+
}
. (3.24)

It characterises how the circuit U(θ, p) changes with an infinitesimal variation of the
parameters. Note that U = {e−iH : iH ∈ u} and that u = ⟨iH1, ..., iHm⟩ [38, 128],
where ⟨...⟩ denotes the Lie algebra generated by these elements i.e. the vector space
obtained by iteratively taking the Lie bracket [A,B] = AB −BA of iH1, ..., iHN until
no new elements linearly independent with the previous ones can be obtained [72]. This
forms the smallest possible Lie algebra that contains the specified generators.

3.2.2 Characterising states generated by a PQC

In this thesis, we introduce

Sp = {U(θ, p)|ψ(0)⟩ : θ ∈ Rmp}, S =
∞⋃
p=1

Sp, (3.25)

1In the sense that the matrix multiplication function m(A,B) = AB is differentiable as a multivari-
ate function.
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as the set of states preparable by the variational quantum circuit at depth p and at any
depth, respectively. Note that S depends on the initial state chosen. We will restrict
our analysis to compact Lie groups, for which there must exist a p∗ such that U = Up

∗

[38]. By the same argument, there must be a p̂ such that S = Sp̂. This represents the
circuit depth at which the circuit has reached maximum expressibility for a given initial
state. We will see that, in general, p̂ < p∗. This happens because we find that there
can be a set G of unitary matrices in U that leave the initial state |ψ(0)⟩ invariant,
forming a stabiliser subgroup. Mathematically, this translates into U having a fibre
bundle structure and S ∼= U/G, where G represents a Gauge symmetry group [132] (see
Figure 3.2 for a graphical representation). As a consequence of this,

dim S = dimU− dimG, (3.26)

justifying that, in general, S will require fewer parameters to describe than U. It is an
open question whether there is a method to systematically determine p∗ and p̂ given a
set of Hamiltonians H. The group G is generated by a subalgebra g of the Lie algebra
u formed by the elements that (infinitesimally) do not change the quantum state, i.e.

g = {K : K |ψ⟩ = λ |ψ⟩ , iK ∈ u, λ ∈ R}. (3.27)

Since U = {e−iA1e−iA2 ....e−iAm : m ∈ N, iAj ∈ u} [38, 128], the unitaries in U can
approximate a quantum adiabatic evolution and thus prepare the ground state of any
Hamiltonian in u [118], provided that |ψ(0)⟩ is the ground state of some H0 ∈ u.
This results from the connection between variational algorithms and adiabatic state
preparation outlined in Section 3.1. Conversely, if |ψ⟩ is prepared by U ∈ U, then it is
the ground state of H = UH0U

† ∈ u. Thus, the Lie algebra u fully characterises the
set S of preparable states; we will exploit this in Section 3.3 to study the expressibility
of certain variational protocols.

3.3 The expressibility of the 1D QAOA in terms of free-
fermions

Following the framework outlined in Section 3.1, in this Section we study two different
protocols:
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Figure 3.2: Schematic depicting the Lie structures introduced in Section 3.2 and their
relation to variational optimisation. From an initial state, the set of unitaries generated
by the parameterised circuit, U, prepares a manifold of states S. The space of directions
that the protocol is able to explore at a given point is characterised by the Lie algebra
u, and there is a redundancy in the unitaries preparing a state which is represented by
a stabiliser Gauge group G. Symmetries in the protocol constrain the optimisation (a)
to a submanifold of states Ssym which, as later explained in Section 4.2, may affect the
landscape by introducing local minima (b) or by restricting the features available to
the optimiser, causing the optimisation to take longer (c).

1. A site-independent protocol, defined by the tuple

I =

∑
j

XjXj+1,
∑
j

Zj

 =

−i∑
j

γ2jγ2j+1,−i
∑
j

γ2j−1γ2j

 , (3.28)

and we denote its Lie algebra by i.

2. A site-dependent protocol, defined by the tuple

D =(X1X2, ..., XN−1XN , Z1, ..., ZN ) (3.29)

=(−iγ2γ3, ...,−iγN−1γN−2,−iγ1γ2, ...,−iγN−1γN ), (3.30)

and we denote its Lie algebra by d.

Both are illustrated in Figure 3.3. The site-independent protocol corresponds to the ori-
ginal QAOA protocol [58] on a 1D lattice, while the site-dependent one results from re-

36



3.3 The expressibility of the 1D QAOA in terms of free-fermions

. . . ...

. . . ...
site-independent

. . . ...

. . . ...
site-dependent

Rz(𝜗)

Rxx(θ)

Rxx(θ)
Rz(𝜗)
Rz(𝜗)

Rxx(θ)

Rxx(θ)

Rxx(θ1)

Rxx(θ3)

Rxx(θ2)

Rxx(θ4)

Rz(𝜗1)

Rz(𝜗2)

Rz(𝜗3)

Figure 3.3: Parameterised circuits corresponding to the variational protocols (3.28),
(3.29).

moving the layer-wise coupling in the angles of this original protocol [77]. In Chapter 4,
we will see that this decoupling results in distinct properties with respect to the optim-
isation of the associated variational algorithm. Writing out the corresponding unitary
explicitly, we obtain

U(θ, p) = exp
(
−i
∑
k

θkp,ZZk

)
exp

(
−i
∑
k

θkp,XXXkXk+1

)
...

exp
(
−i
∑
k

θk1,ZZk

)
exp

(
−i
∑
k

θk1,XXXkXk+1

)
. (3.31)

As mentioned above, the site-independent protocol can be seen as the site-dependent
one with the additional constraint that θia,P = θa,P . Thus, in the site-independent
protocol, the value of an angle is the same across a circuit layer, and is independent of
the lattice sites that the corresponding operator is acting on.

We now deduce the full structure of the Lie algebras corresponding to the proto-
cols (3.28) and (3.29) above for different boundary conditions. Note that, after applying
the Jordan-Wigner transformation, both protocols only feature quadratic Hamiltonians,
which we first introduced in Section 2.4. As such, they commute with the fermionic
parity operator P = ∏

j Zj , and can thus be decomposed into two components, one
acting on the positive parity sector and the other acting on the negative parity sector.
We will begin by deriving a basis for the algebras unrestricted to any symmetry sector,
restricting them to a fixed parity symmetry sector, and seeing how this affects the struc-
ture and dimensions of the algebra. Restricting them to a specific parity sector will,
in particular, allow us to map the resulting algebras to Majorana operators using the
Jordan-Wigner transformation. Note that, for notational simplicity, we often disregard
signs when converting from spin to Majorana operators when it does not influence the
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generated Lie algebras.
In what follows, when computing the generators of the Lie algebra of the stabiliser

Gauge group for a quantum state, it suffices to consider the elements of the relevant
Lie algebra (seen as quadratic Hamiltonians) that commute with the corresponding
covariance matrix, i.e.

g = {K ∈ u : [K,Γ] = 0}. (3.32)

In our derivations, we consider Γ = ⊕L
j=1

 0 1
−1 0

; the corresponding algebra for other

covariance matrices can be obtained by conjugation.

Lemma 2. A basis for the Lie algebra generated by D = {iZj , iXjXj+1}j=1,...L

1. with OBC is

dOBC = {iZj ,

iXjZ...ZXk, iXjZ...ZYk,

iYjZ...ZXk, iYjZ...ZYk : 1 ≤ j < k ≤ L} (3.33)

= {γjγk : 1 ≤ j < k ≤ L}, (3.34)

and it has dimension L(2L − 1). A basis for the Lie algebra of the associated
Gauge group is

g(dOBC) = {iZj ,

iXjZ...ZXk + iYjZ...ZYk,

iYjZ...ZXk − iXjZ...ZYk : 1 ≤ j < k ≤ L} (3.35)

= {γ2j−1γ2j ,

γ2jγ2k−1 − γ2j−1γ2k,

γ2j−1γ2k−1 + γ2jγ2k : 1 ≤ j < k ≤ L}, (3.36)

and it has dimension L2.
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2. with PBC is

dPBC = dOBC ∪ (P · dOBC), (3.37)

where

(P · dOBC) = {iZ...Zj−1Zj+1...Z, iZ...ZXjXkZ...Z,

iZ...ZXjYkZ...Z, Z...ZYjXkZ...Z,

iZ...ZYjYkZ...Z : 1 ≤ j < k ≤ L}, (3.38)

and it has dimension 2L(2L− 1).

Lemma 3. A basis for the Lie algebra generated by I = {i∑j Zj , i
∑
j XjXj+1}

1. with OBC is

iOBC = {iZj + iZL−j+1,

iXjZ...ZXk + iXL−k+1Z...ZXL−j+1,

iXjZ...ZYk + iYL−k+1Z...ZXL−j+1,

iYjZ...ZXk + iXL−k+1Z...ZYL−j+1,

iYjZ...ZYk + iYL−k+1Z...ZYL−j+1,

1 ≤ j < k ≤ ⌈L/2⌉} (3.39)

= {γ2j−1γ2j + γ2L−2j+1γ2L−2j+2,

γ2jγ2k−1 + γ2L−2k+2γ2L−2j+1,

γ2jγ2k − γ2L−2k+2γ2L−2j+2,

γ2j−1γ2k−1 − γ2L−2k+1γ2L−2j+1,

γ2j−1γ2k + γ2L−2k+1γ2L−2j+2,

: 1 ≤ j < k ≤ ⌈L/2⌉}, (3.40)

and this algebra has dimension L2 [100]. A basis for the Lie algebra of the

39



3.3 The expressibility of the 1D QAOA in terms of free-fermions

associated Gauge group is

g(iOBC) = {iZj + iZL−j+1,

iXjZ...ZXk + iXL−k+1Z...ZXL−j+1

+ iYjZ...ZYk + iYL−k+1Z...ZYL−j+1,

iXjZ...ZYk + iYL−k+1Z...ZXL−j+1

− iYjZ...ZXk − iXL−k+1Z...ZYL−j+1,

: 1 ≤ j < k ≤ L} (3.41)

= {γ2j−1γ2j + γ2L−2j+1γ2L−2j+2,

γ2jγ2k−1 + γ2L−2k+2γ2L−2j+1 − γ2j−1γ2k − γ2L−2k+1γ2L−2j+2,

γ2jγ2k − γ2L−2k+2γ2L−2j+2 + γ2j−1γ2k−1 − γ2L−2k+1γ2L−2j+1

: 1 ≤ j < k ≤ L}, (3.42)

and it has dimension 1
2L(L− 1).

2. with PBC is

iPBC = {i
∑
j

(Zj + Z1...Zj−1Zj+1...ZL),

i
∑
j

(XjZ...ZXj+k + Z1...Zj−1XjXj+(L−k)Zj+(L−k)+1...ZL),

i
∑
j

(XjZ...ZYj+k + YjZ...ZXj+k + Z1...Zj−1XjYj+(L−k)Zj+(L−k)+1...ZL

+ Z1...Zj−1YjXj+(L−k)Zj+(L−k)+1...ZL),

i
∑
j

(YjZ...ZYj+k + Z1...Zj−1YjYj+(L−k)Zj+(L−k)+1...ZL)

: 1 ≤ k ≤ L− 1}, (3.43)

and it has dimension 3L− 2.

The proofs for these statements follow by directly taking the brackets of the gener-
ators of these algebras. Here, we provide a proof for the structure of dOBC; the others
can be derived similarly.

Proof. By induction on L:
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L = 2: Taking the Lie brackets iteratively of {iZ1, Z2, iX1X2}, one obtains the
linearly independent set {iZ1, iZ2, iX1X2, iX1Y2, iY1X2, iY1Y2}, which has 6 elements.

L =⇒ L+ 1: Assume the Lemma holds for L. Then, define

Ga,b := {iZj , iXjXj+1}j=a,...,b, (3.44)

La,b := {iZj , iTj,k : a ≤ j < k ≤ b}, (3.45)

Tj,k :=Aj ⊗

 k−1⊗
m=j+1

Zm

⊗Bk, Am, Bm ∈ {Xm, Ym}, (3.46)

and let Ra,b be the Lie algebra generated by Ga,b. We must prove that R1,L+1 = L1,L+1.
By induction hypothesis R1,L = L1,L. Using this, and the definition of Lie algebra

generators, we obtain L1,L ⊆ R1,L+1. Since it is easy to prove that

[iTi,j , iTk,l] ∝ δjkiTi,l, (3.47)

and [iTi,j , iZk] ∝ (δik + δjk)iTi,j , we conclude that R1,L+1 \ L1,L ⊆ {iTk,L+1}k=1,...,L ∪
{iZL+1}. But Tk,L+1 ⊂ Lk,L+1 = Rk,L+1 ⊆ R1,L+1, and ZL+1 ∈ G1,L+1. Thus, it must
be the case that R1,L+1 = L1,L+1.

Since, from the above, L1,L+1 = L1,L ∪ {Tk,L+1}k=1,...,L ∪ {ZL+1}, and since these
sets are disjoint, using the induction hypothesis, the dimension of L1,L+1 is L(2L−1)+
4L+ 1 = (L+ 1)(2(L+ 1)− 1).

We now state the structure of these algebras restricted to each of the parity sym-
metry sectors. As can be seen in Lemma 2 for the generators D, when restricting to
a parity sector, the algebra in the OBC case remains unchanged, while the algebra in
the PBC case is cut in half, and is equal to former. Hence:

d := dOBC = dOBC
∣∣∣
P=±1

= dPBC
∣∣∣
P=±1

, (3.48)

and it has dimension L(2L − 1). For the case of the set of generators I, the algebra
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with OBC also remains unchanged when restricted to a parity sector. Hence,

iOBC = iOBC
∣∣∣
P=±1

, (3.49)

and it has dimension L2. Finally, the same set of generators with PBC yields

iPBC
∣∣∣
P=±1

=
{
i
∑
j

Zj ,

i
∑
j

(XjZ...ZXj+k ∓ YjZ...ZYj+L−k),

i
∑
j

(XjZ...ZYj+k + YjZ...ZXj+k

±XjZ...ZYj+L−k ± YjZ...ZXj+L−k),

i
∑
j

(YjZ...ZYj+k ∓XjZ...ZXj+L−k) :

1 ≤ k ≤ L− 1
}

(3.50)

=
{∑

j

γ2j−1γ2j ,

∑
j

γ2jγ2(j+k)−1 ± γ2j−1γ2(j+L−k),

∑
j

γ2jγ2(j+k) − γ2jγ2(j+k)−1

± γ2jγ2(j+L−k)−1 ∓ γ2j−1γ2(j+L−k)−1,∑
i

γ2j−1γ2(j+k) ± γ2jγ2(j+L−k)−1

: 1 ≤ k ≤ L− 1
}
, (3.51)
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and it has dimension ⌊3L/2⌋. A basis for the associated Gauge group Lie algebra is:

g(iPBC
∣∣∣
P=±1

) = {i
∑
j

Zj ,

i
∑
j

(XjZ...ZXj+k ∓ YkZ...ZYj+L−k

− YjZ...ZYj+k ±XjZ...ZXj+L−k) :

1 ≤ k ≤ L− 1 } (3.52)

= {
∑
j

γ2j−1γ2j ,

∑
j

γ2jγ2(j+k)−1 ± γ2j−1γ2(j+L−k)

+ γ2j−1γ2(j+k) ± γ2jγ2(j+L−k)−1

: 1 ≤ k ≤ L− 1}, (3.53)

and it has dimension ⌊L/2⌋.
We can now characterise the expressibility of the protocols (3.28), (3.29) by ex-

amining the corresponding Lie algebra. In particular, we are able to determine the set
of unitary operators U that each protocol can generate and the set of states S that
each can prepare. We consider the initial state to be a fermionic Gaussian state of
a given parity respecting the symmetries of the circuit. Our results are summarised
in Table 3.1. After applying the Jordan-Wigner transformation to the derived Lie
algebras, these can be seen to form the set of free-fermionic Hamiltonians satisfying
the symmetries of the circuit. As shown in Section 3.2, every ground state of such a
Hamiltonian can be prepared by the circuit at some depth; and the set of these ground
states are precisely the fermionic Gaussian states having the same parity as the initial
state and respecting the appropriate symmetries. As outlined in Section 3.2, there can
be a symmetry subgroup G of U that leaves the initial state invariant. In the case of
a FGS, there is a U(L) freedom in the fermionic modes, which can be rotated without
changing the underlying state [211]. The subset of these rotations contained in U will
form G; this can be all of the U(L) freedom, as is the case of the site-dependent protocol,
or only part of it, in which case dimG < dimU(L).
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Dependent Independent
OBC PBC OBC PBC

S fixed parity FGS

fixed
parity
FGS

satisfying
(2.31)

fixed
parity
FGS

satisfying
(2.30) & (2.31)

u (3.33) (3.37) (3.39) (3.43)
u

(fixed parity) (3.33) (3.39) (3.50)

g
(fixed parity) (3.35) (3.41) (3.52)

dimU L(2L− 1) 2L(2L− 1) L2 3L− 2
dimU

(fixed parity) L(2L− 1) L2 ⌊3L/2⌋

dimG L2 L(L+ 1)/2 ⌊L/2⌋
dim S L(L− 1) L(L− 1)/2 L

Table 3.1: Table summarising the expressibility of the site-dependent, Eq. (3.28), and
site-independent, Eq. (3.29), protocols. The basis for the corresponding Lie algebra u

is referenced in this table. As outlined in the main text, these are used to analytically
deduce U, the space of unitaries that each protocol can generate, and S, the space of
states that each protocol can prepare. We assume that the initial state is a FGS of a
given parity respecting the symmetries of the circuit.

3.4 Conclusion

In this section, we have reviewed and expanded upon the Lie theoretical framework for
parameterised quantum circuits, a fundamental tool in the analysis of their express-
ibility. While it had been previously established that the Lie algebra of a variational
protocol can be used to characterise the unitaries that it can generate [3, 99, 100, 128],
we have pointed out that it also fully determines the set of quantum states that can
be prepared, which is formed by the ground states of the Hamiltonians in this algebra
(provided that the initial state is one such ground state). Furthermore, we show that, in
general, the dimension of this set of states is smaller than that of the corresponding Lie
algebra, and that there is a Gauge symmetry group that effectively maps Hamiltonians
having the same ground state into each other.

Leveraging these results, we analytically proved that a state can be prepared by
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the one-dimensional QAOA (as defined in Eqs. (3.31)) at some depth if and only if
it is free-fermionic (under the Jordan-Wigner transformation) and respects the sym-
metries of the circuit. A fermionic perspective on QAOA had been previously taken
to analytically study the ground state preparation of the Ising model [47, 203], and
variational preparation of particular free models had been performed, both numeric-
ally [47, 78, 86, 139] and on real devices [32, 181]; here, we show that the ground state
of any such model can be obtained using the QAOA. This was done by deriving a
basis for the associated Lie algebra, which also provided us with an explicit form for
the vector space of Hamiltonians for which the ground state can be prepared by the
algorithm. We will exploit this in Chapter 4, to conduct a comprehensive numerical
study of the associated classical optimisation. Values for the dimension of the Lie al-
gebra and space of preparable states are included in Table 3.1; the latter imposes a
minimum number of parameters the circuit should have to successfully prepare any
fermionic Gaussian state, while the former is known to determine how fast the gradient
with respect to the cost function vanishes [100]. By fully characterising these circuits
on 1D lattices, we open the possibility to describe the QAOA on more complex graphs
by first splitting them into simpler graphs. This could also help better understand the
variants of QAOA which attempt to first solve the optimisation problem on subgraphs
of the original graph before joining them [64, 216].
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Chapter 4

Optimisation in free-fermionic Variational
Quantum Algorithms
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In Chapter 3, we have studied the expressibility of the Quantum Approximate Optim-
isation Algorithm and concluded that, when the geometry of the underlying lattice is
one-dimensional, the quantum states it can prepare are precisely the fermionic Gaus-
sian states respecting the symmetries of the circuit. Despite elucidating which quantum
states can be prepared, the aforementioned results do not say anything about the dif-
ficulty of the associated optimisation, nor identifies the circuit depth at which the al-
gorithm can prepare these states. In this chapter, we exploit the fact that free-fermionic
systems are efficient to simulate classically to perform a comprehensive numerical study
of these questions.

We systematically explore how the variational protocol and the Hamiltonian featur-
ing in the cost function can affect the associated optimisation. Moreover, we character-
ise overparameterisation [94, 210], which is known to make the optimisation significantly
easier. We do this by exploiting the fact that overparameterisation starts at a circuit
depth that is polynomial in lattice size for the ansätze we consider (this follows from
the work in [99, 100] and our characterisation of dim S in Chapter 3). Though the list
below is not exhaustive, we highlight the following contributions in this chapter (which
we further discuss in the conclusions in Section 4.4):

• In Section 4.2 we observe that, when the quadratic Hamiltonian used in the
cost function is non-local, enforcing symmetries introduces local minima to the
landscape (which otherwise did not feature any), making the optimisation more
difficult.

• In Section 4.3, we characterise overparameterisation with increasing circuit depth
and for large lattice sizes, finding that:

– The optimisation difficulty becomes largely independent of the quadratic
Hamiltonian used in the cost function (see Figure 4.1).

– As circuit depth increases, the average number of iterations to converge to
the solution rapidly decreases, before tapering off and saturating at a depth
p ∝ L2 (see Figure 4.6).

– The nr. of iterations to converge initially scales polynomially with lattice
size, but this turns into a linear scaling as circuit depth increases (see Fig-
ure 4.7).
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4.1 Minimum circuit depth for maximum expressibility

Following the framework set out in Section 3.2, we attempt to numerically determine
the minimum depth p̂ necessary to prepare any state in S for the protocols (3.28),
(3.29). Recall that we denote by m the number of variational parameters per unit
of p; note that, from (3.22), this corresponds to the number of Hamiltonians in the
protocol. While it is clear that mp̂ must be greater than dim S, the circuit must be
also be deep enough so that correlations are able to propagate across the lattice [118].
A consequence of this is that p̂ ≥ ⌈L/2⌉.

We numerically compute p̂ by randomly generating Hamiltonians in u and verifying
that their ground states are prepared to numerical precision. These Hamiltonians are
created by taking a linear combination of the basis elements of the corresponding Lie
algebras, derived in Section 3.3, where the coefficients are sampled from a normal
distribution with mean equal to zero and standard deviation equal to one. We find,
in cases where periodic boundary conditions (PBC) are employed, or where the site-
dependent protocol is used, that p̂ = ⌈L/2⌉, saturating the aforementioned lower bound.
This is also the minimum circuit depth found in the literature to be needed successfully
prepare the ground state of the transverse field Ising model [78, 118, 203], which is a
specific case of a free-fermionic model. For the remaining case, which corresponds to
the site-independent protocol using open boundary conditions (OBC), p̂ proved to be
unfeasible to determine numerically in a precise manner due to a significantly higher
number of local minima.

The quantity

mp̂− dim S (4.1)

represents the number of parameters in the circuit that exceeds dim S. In the site-
independent case with periodic boundary conditions, qp̂ = dim S. This suggests that,
in this case, U(p̂,θ) |ψ(0)⟩ forms a parameterisation of S, as each fermionic Gaussian
state should correspond to a unique set of circuit parameters when the associated
angles are appropriately restricted (by e.g. taking into account their periodic nature).
In contrast, in the site-dependent case with PBCs, there are qp̂−dim S = L redundant
parameters at p̂. However, we note that one can do away with them by removing the
last e−i

∑
j
θp,ZZj layer from this circuit, and we found that we were still able to prepare
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4.2 Effect of symmetry on cost minimisation

randomly generated states in S after doing this.
By abuse of terminology, and to separate the cases where the circuit depth is p̂ from

those where the circuit depth exceeds this value, we refer to the behaviour at circuit
depth p̂ as the exactly parameterised regime, regardless of whether qp̂ = dim S.

4.2 Effect of symmetry on cost minimisation

We proceed to study the hardness of the optimisation and the characteristics of the op-
timisation landscape when running a variational algorithm using the site-independent,
Eq. (3.28), and site-dependent, Eq. (3.29), protocols. We work with PBC, and target
the ground state of two models:

1. The critical transverse field Ising model [78]

HI = −
∑
j

XjXj+1 −
∑
j

Zj . (4.2)

2. Randomly generated symmetric quadratic Hamiltonians

HG = i
∑
jk

hjkγjγk, (4.3)

where hjk respects Eq. (2.30) and Eq. (2.31).

The Ising model was introduced in Section 2.7, and is a well-known quantum-critical
model in condensed matter physics [50] possessing a ground state for which the entan-
glement entropy diverges logarithmically with system size [27]. The second Hamiltonian
is obtained by sampling at random out of all the ones for which the ground state is
possible to prepare with both protocols. As mentioned at the end of Section 3.2, this is
characterised by the Lie algebra corresponding to each protocol; in practice, the algebra
of the site-dependent protocol contains that of the site-independent protocol, and the
latter, when using PBC, consists of all quadratic Hamiltonians satisfying Eqs. (2.30)-
(2.31). Just as in the previous section, these Hamiltonians are sampled by directly
generating entries in hij using a normal distribution with mean equal to zero and
standard deviation equal to one respecting these constraints. Moreover, throughout
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4.2 Effect of symmetry on cost minimisation

this chapter we use a Z-polarized state

|ψ(0)⟩ = |↑ ... ↑⟩ (4.4)

as the initial state of the protocol, and the shifted energy density

e(|ψ⟩) = ⟨ψ|H|ψ⟩ − E0
L

(4.5)

as the cost function, where E0 is the ground state energy of H and L is the size of the
system under consideration. The classical minimisation is performed using the BFGS
optimisation algorithm; though other optimisers such as Nelder-Mead and conjugate
gradient were checked, and the behaviour obtained was qualitatively the same.
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Figure 4.1: Cost function optimisation traces exposing the differences between the min-
imisations as the protocol and target Hamiltonian change. The effect of circuit depth
is probed using the exactly parameterised regime (p = L/2) and the overparamet-
erised regime (p = L2/4). The target Hamiltonian is (Top row): the Ising model, as in
Eq. (4.2), and 5 random initialisations per value of p, lattice size and protocol. (Bottom
row): 3 randomly generated symmetric quadratic Hamiltonians, as in Eq. (4.3), and 5
random initialisations per generated Hamiltonian, value of p, lattice size and protocol.
The maximum lattice size in each plot reflects the time taken to optimise the circuits,
which depends on the number of parameters and on the number of iterations needed
for convergence.

Figure 4.1 shows the optimisation traces after classically optimising the algorithm.

50



4.2 Effect of symmetry on cost minimisation

We compare two circuit depths: p = L/2, which we have numerically found to be
the minimum depth for which the protocol reaches maximum expressibility, and p =
L2/4, well into the overparameterised regime (as we quantify in Section 4.3), where the
redundancy in parameters is known to greatly reduce the computational cost of the
optimisation [94, 95, 99, 210]. We defer a discussion of the latter for Section 4.3. In
the following subsections, we observe different ways in which the characteristics of the
optimisation can change when varying the target state and the protocol employed.

4.2.1 Influence of Hamiltonian locality on problem difficulty

Here, we explore how different properties of the target Hamiltonian can give rise to some
of the phenomenology observed in Figure 4.1. One obvious property that distinguishes
the Ising Hamiltonian, Eq. (4.2), from that of the random Hamiltonian, Eq. (4.3), is
that the former is local, while generically this is not the case for the latter. Locality of
the target Hamiltonian is known to influence whether the optimisation associated to a
quantum circuit will feature barren plateaus, with non-local terms generally present-
ing exponentially vanishing gradients [31]. Locality can also have an influence below
system sizes at which barren plateaus appear, and it has been argued that long-range
interactions in the target Hamiltonian make the optimisation harder [109], resulting
in higher values of the cost function at the optimum and requiring more iterations to
converge.

In this section, we will see that the influence of the locality of the target Hamiltonian
on optimisation depends on the constraints of the protocol being used. In particular, we
will show that the site-independent and the site-dependent protocol behave differently
in this respect. We use three families of models to quantify how the locality of the
target Hamiltonian affects the hardness of the optimisation:

1. A special type of a long-range Ising Hamiltonian:

H(α) = −
∑
r

e−αr∑
j

XjZj+1Zj+2 . . . Zj+rXj+r+1 −
∑
j

Zj , (4.6)

where α > 0 describes exponentially decaying interactions in a lattice. The
choice of this Hamiltonian is motivated by the fact that its ground state can
be expressed in terms of free-fermions for any α, unlike the related models with
power-law decaying interactions studied in Refs. [79, 109].
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4.2 Effect of symmetry on cost minimisation

2. (k + 2)-local, symmetric, quadratic Hamiltonians

HLG(k) = i
∑
jl

h̃jlγjγl, h̃jl =

random, if |j − l| < 2(k + 2),

0, if |j − l| ≥ 2(k + 2),
(4.7)

which are derived from the randomly-generated generic symmetric quadratic
Hamiltonians in Eq. (4.3) by setting hjl = 0 for any pair of Majoranas at a
distance ≥ 2(k + 2).

3. A cluster Ising model at criticality [46, 139]

HC(k) = −
∑
j

XjZj+1Zj+2 . . . Zj+rXj+k+1 −
∑
j

Zj , (4.8)

for which the ground state in one of the gapped phases is a symmetry-protected
topological state [165].

In the two latter models, interactions are strictly limited to sites at most k + 2 sites
away, while in the first model they are exponentially suppressed.

Figure 4.2 compares the effect of locality on the optimisation. We vary the para-
meters controlling localisation of the couplings in each of the models Eqs. (4.6)-(4.8),
and we measure the success probability in the site-independent case or the number of
iterations to converge in the site-dependent case. The success probability is defined as
the ratio between the number of random initialisations that resulted in the cost func-
tion dropping below numerical precision (and thus the target state being successfully
prepared) versus the total number of initialisations. This measure was not used as
a benchmark for the site-dependent protocol, as we have found that this protocol is
not susceptible to getting trapped in local minima, and thus the success probability is
always equal to one regardless of the locality of the Hamiltonian.

We see in Figure 4.2 that the more non-local the target Hamiltonian is, the lower the
success probability is in the site-independent protocol. Surprisingly, however, we see
that the more non-local the target Hamiltonian is, the lower the number of iterations is
to converge in the site-dependent case. Both statements are verified for all the models
introduced above. Thus, while locality makes it easier to prepare the target state using
site-independent protocol, it makes the site-dependent protocol harder to optimise. We
argue that, on the one hand, the symmetry constraints in the site-independent protocol
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Figure 4.2: Effect of Hamiltonian locality on optimisation hardness in both the site-
dependent and site-independent protocols in the exactly parameterised regime using
PBCs. The labels refer to the target Hamiltonians defined in Eqs. (4.6), (4.7) and
(4.8). The lattice size is 12, except for HLG, which was computed for L = 16, as was
HC with the site independent protocol (this has no particular significance or influence
in the results). Between 20 and 150 random initialisations were computed for each
Hamiltonian parameter in the site-dependent cases, and between 200 and 500 were
computed in the site independent ones. These indicate the number of samples until the
results converged; the exact number needed depends on the specific Hamiltonian. The
solid line is the mean value, while the shaded area indicates one standard deviation.

cause non-locality in the cost function to drive the optimisation into difficult regions
that trap it in local minima. The site-dependent case, on the other hand, is free
to explore the entire manifold of fermionic Gaussian states and bypass these traps,
with the non-local terms leading the optimisation to converge faster, consistent with
Figure 3.2(a), (b), (c).

4.2.2 Cost stagnation and “staircase” plateaus

In Figure 4.1, we identify a “staircase” pattern emerging both when employing the
site-dependent protocol to target the Ising model [Figure 4.1(a)] and when using the
site independent protocol to target generic quadratic Hamiltonians [Figure 4.1(d)]; we
highlight this in Figure 4.3(a). Noting that a similar sharp drop in the cost function
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4.2 Effect of symmetry on cost minimisation

occurs when employing the site independent protocol to target the Ising model [Fig-
ure 4.1(b)], we plot the overlap of the state under preparation along the optimisation
with the eigenstates of this Hamiltonian. Though this is only shown for one random
initialisation of the parameters, we have run the optimisation several times for different
initial conditions and observed the same behaviour. We notice that the overlap with the
first excited state is orders of magnitude higher than with other excited eigenstates.
The dynamics of state preparation is thus dominated by a competition between the
ground state and the first excited state. We conjecture that the staircase plateaus we
observe follow a similar mechanism: in each plateau, there is a state in the Hilbert
space (akin to the first excited state in the previous description) that fully captures the
features that the cost function struggles to distinguish from those of the ground state.

(a) (b)

Figure 4.3: (a) Optimisation traces showing the “staircase” pattern seen in Figure 4.1.
Here, the system size is 40, and the label refers to the protocol used and the Hamiltonian
targetted, respectively. PBCs and p = L/2 are used. (b) Overlaps of the lowest excited
states of the target Hamiltonian with the state under preparation |ψ(θ)⟩. Numbers
in the legend indicate eigenstate indices, with 0 being the ground state, 1 being the
first excited state, etc. Single indices indicate that overlap with the corresponding
eigenstate is being plotted. A range of indicate that the sum of the overlaps with the
eigenstates having indices in that range is being plotted. We see a high overlap with the
first excited state throughout the optimisation, indicating that the cost function cannot
easily distinguish this state from the ground state. The site-independent protocol was
used and the Ising model (4.2) was targeted at p = L/2 and L = 16.
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4.2.3 Rate of vanishing of gradients with lattice size

Here, we study how the variance of the gradient with respect to the centre angle in
the vector of parameters θ scales with the size of the lattice and the circuit depth. As
mentioned in Section 3.1.3, this scaling with respect to the centre angle is taken to be
representative of the scaling with respect to the other angles [7]; moreover, when the
variance vanishes, so do the gradients themselves; as explained in Section 3.1.3, this
phenomenon is dubbed a barren plateau [80, 121] when this vanishing is exponential in
the size of the lattice.

Figure 4.4 illustrates the scaling of this variance with the lattice size, expressed in
terms of the dimension of the Lie algebra, following Ref. [100], which conjectured that
the variance of the gradient is inversely proportional to this dimension. We see that
while this seems to hold in general, it depends on the circuit depth and the state under
preparation. When preparing the Ising model, increasing the circuit depth changes this
proportionality by a constant factor. Curiously, when preparing generic FGS with the
site-dependent protocol, this factor is independent of the circuit depth. Note also that,
when the circuit enters the overparameterised regime, for instance when targeting the
Ising model in the site-independent case at p = 7L, this relation can break down as the
variance of the gradient saturates at high circuit depths. Finally, we note that there are
exceptions to this relation; in particular, we note that when preparing a generic FGS
using the site independent protocol, the gradient seems to oscillate around a constant
value of ∼ 10 without decaying as the system size increases.
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Figure 4.4: Variance of gradient taken at the centre angle ||∂e/∂θj || using the site-
dependent protocol (left) and the site-independent protocol (right) with the ground
state of the Ising model as a target state (top) and 5 generic quadratic Hamiltonians
(symmetric quadratic Hamiltonians in the independent case) as a target state (bottom),
plotted against the inverse of the dimension of the Lie algebra of the protocol, as
computed in Section 3.3 and listed in Table 3.1 (note that here the parity is fixed).
Various circuit depths, represented by the quantity p/L in the labels, were used. 20000
samples were taken per value of p, Hamiltonian and lattice size. Though the samples
pertaining to the 5 generic quadratic Hamiltonians are considered simultaneously in the
computation of the variance, plotting this variance separately for each such Hamiltonian
does not significantly alter the plots shown.

Figure 4.5 illustrates the scaling of the variance of the gradient with circuit depth.
We see that, when targeting the Ising model, there is an initial drop in this variance,
which then stabilises to a fixed value. In contrast, when preparing a generic FGS, the
variance almost immediately converges to this stable value, particularly in the site-
dependent case.
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Figure 4.5: Variance of gradient taken at centre angle ||∂e/∂θi|| using the site-dependent
protocol (left) and the site-independent protocol (right) with the ground state of the
Ising model as a target state (top) and 5 generic quadratic Hamiltonians (symmetric
generic quadratic Hamiltonians in the independent case) as a target state (bottom),
plotted against various values of p between 1 and 4L. Several system sizes (bottom
labels) were used. 20000 samples were taken per value of p, random state and lattice
size. The vertical line indicates p = L/2.

4.3 The overparameterised regime

It has been pointed out [94, 210] that, when taking the circuit depth to be very large,
the optimisation associated with Eq. (3.1) becomes considerably easier – a phenomenon
dubbed overparameterisaton. The onset of the overparameterised regime has been ar-
gued to correspond to the circuit depth at which the Quantum Fisher Information
Metric saturates at every point θ in the optimisation landscape [75, 99]. This is equi-
valent to the circuit depth at which an increase in p does not lead to an increase in
the states that can be prepared by the variational circuit in Eq. (3.1), i.e., the circuit
depth corresponding to p̂ as defined in Section 3.2.
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Figure 4.6: Number of iterations to converge vs. the circuit depth in the overpara-
meterised regime. We see a decrease, consistent between different system sizes, which
is at first pronounced, but then tapers off until it finally saturates at a circuit depth
proportional to L2. The insets use a linear scale for the vertical axis; they emphasise
the point at which this saturation is reached. The target Hamiltonian is that of the
Ising model, Eq. (4.2). Between 5 and 40 random initialisations were performed for
each circuit depth; solid lines represent the mean value, and the shaded area indicates
standard deviation.

.

4.3.1 Change in optimisation with increasing circuit depth

Here, we study how the number of iterations that the optimiser takes to prepare the
state scales with the size of the lattice as the depth of the circuit increases well into
the overparameterised regime. We find that, as depth increases, the average number of
iterations to converge to the solution initially undergoes a large initial decay, until it
slows down and saturates at p ∝ L2, i.e., past that point, no further increase in circuit
depth provides a decrease in the number of iterations to converge. We observe this
trend consistently between different optimisers and different system sizes, the latter
shown in Figure 4.6. Further, by comparing how the average number of iterations that
the optimiser takes to converge scales with lattice size, both when the circuit depth
is equal to p̂ and into the overparameterised regime, we see that what is initially a
polynomial scaling turns into a linear scaling with lattice size – see Figure 4.7.

From the above, we note that the overparameterised regime can represent a shift
in the workload from the classical computer to the quantum computer, as increasing
the number of parameters makes the classical optimisation easier, but the preparation
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Figure 4.7: Number of iterations to converge vs. lattice size corresponding to the
data in Figure 4.1. Solid line is the mean value, and the shaded area indicates the
standard deviation. The legend refers to the Hamiltonian targeted and protocol used,
in this order. The target Hamiltonians are either the Ising model, Eq. (4.2), or generic
symmetric quadratic Hamiltonians, Eq. (4.3). The number of iterations to converge
scales polynomially with system size when p = L/2. This turns into a linear scaling as
the circuit enters the overparameterised regime (right).

of the state in the quantum computer harder given the increased circuit depth. Thus,
as noise levels in a device decrease, increasing the depth of the circuit so that it is
overparameterised might directly allow variational algorithms to take advantage of this.
This has the caveat that when the number of parameters passes a certain threshold,
the overhead associated with certain algorithms, such as BFGS, exceeds the advantage
obtained from overparameterising the circuit; we quantify this in Section 4.3.2. In this
case, algorithms designed to handle a large number of parameters, such as ADAM or
stochastic gradient descent, should be employed instead.

In what follows, we propose and test an explanation for the phenomenon of over-
parameterisation in the case of gradient based optimisers. We argue that there is a
change in the very properties of the parameterisation of the manifold as the circuit
depth increases. A gradient based optimiser is an algorithm that, given an initial
condition θ0, and defining e(θ) := e(|ψ(θ)⟩), iterates the following update function

θi+1 = θi − ηA∇e(θi) (4.9)
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Figure 4.8: Quantification of how well the gradient accounts for the change in the
cost function along the optimisation, both in the exactly parameterised (p = L/2) and
in the overparameterised (p/L = 8) regimes. The plot shows the quantity defined in
Eq. (4.10) recorded throughout the optimisation. We see that in the overparameterised
regime, the value of the gradient consistently predicts the decrease in the cost function
up to a constant factor; while it only accounts for a decreasing fraction of this variation
in the exactly parameterised regime. Here, the target state was that of the Ising model
with PBCs.

until it converges, that is, it can not find a value of η such that the update reduces the
cost function e. Note that, here, i indexes the vector of angles at the ith iteration. The
matrix A is a bias that provides extra information to the algorithm. It can be the inverse
of the Hessian H−1 in the case of Newton based methods (or an approximation of it as
in the case of quasi-Newton methods such as BFGS), or the inverse of the metric of the
manifold being optimised over, as is done in e.g. Quantum Natural Gradient descent
methods [179]. Importantly, the gradient of a function is a linear local approximation
of the function at that point. While that means that, if ∥∇e∥ ≠ 0, there is a value of η
such that e(θi+1) < e(θi), it does not offer any real guarantee about the actual change
∆ei+1 = e(θi)− e(θi+1).

Here, we examine how good this local approximation is as the optimisation pro-
gresses, both when the circuit depth is equal to p̂ and in the overparameterised regime.
We run the BFGS algorithm, and η is picked on a per-iteration basis by using the strong
Wolfe conditions, an established heuristic based on a minimum descent criterion [138].
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BFGS is a quasi-Newton method, and so A = H̃−1 will be an approximation to the
inverse of the Hessian. In Figure 4.8, we plot

l = ∆ei
||H̃−1∇ei||2||∆θi||2

, (4.10)

which quantifies how much of the variation in the cost function can be attributed to
the local approximation given by the gradient at the ith iteration. We see that in
the overparameterised regime, most of the variation in the cost is accounted for by
this approximation, leading to the exponential decay seen in Figure 4.1. We conclude
that the overparameterised regime leads to parameterisations that are more amenable
to optimisation, as they capture the variation in the cost for longer distances in the
parameter space (see Figure 4.9).

Figure 4.9: The parameterisation at minimal circuit depth p̂ (a) matches the dimension
of the manifold of states. By the implicit function theorem, the overparameterisation
(b) defines local, lower-dimensional parameterisations, also matching the dimension
of the manifold. These more adequately capture its features, while describing the
optimisation path in a piecewise manner. It is an open question whether a global
parameterisation with these properties could be found.

4.3.2 Number of parameters and choice of optimisation algorithm

In Figure 4.10, we examine the effect of increasing the circuit depth on the total time
taken to run an optimisation and on the time it would take to prepare these states
on a quantum simulator (measured by the sum of the angles). We see that, despite
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Figure 4.10: Different quantities characterising the hardness of the optimisation with
increasing circuit depth. On the left, we plot the mean of the logarithm of the number
iterations to converge; the centre plot depicts the mean of the sum of all the angles of
the protocol, where periodicity is appropriately taken into account; on the right, the
average of the logarithm of the total computational time is shown. Generic symmetric
quadratic Hamiltonians were targeted, and results were averaged over 5 random states
and 5 random initialisations per state. Filled line corresponds to the site-dependent
protocol, while dotted line represents the site-independent protocol; these two cases
essentially display the same behaviour. Periodic boundary conditions were used, and
the black vertical line indicates p = L/2, the depth at which the circuit is exactly
parameterised. These results were obtained on an Intel(R) Xeon(R) CPU E5-2650 v4
@ 2.20GHz.

increasing the circuit depth into the overparameterised regime making the optimisation
easier, the sum of the angles in the protocol grows linearly with the circuit depth.
Furthermore, we see that, despite the number of iterations to converge decreasing
into the overparameterised regime, when one looks at the actual time taken to run
the optimiser, there is an inflexion point where this number first goes down and then
starts increasing again. This is due to the algorithm (BFGS) used, which stores an
approximation to the Hessian; as the size of the Hessian increases, the computational
cost associated to storing and manipulating it dominates the computational time. Thus,
while it is feasible to useful a larger class of optimisation algorithms at lower system
sizes, as one increases the circuit depth, one has to switch to algorithms specialized to
dealing with a large number of parameters e.g. ADAM or stochastic gradient descent.
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4.4 Conclusion

In this chapter, we began by numerically computing the circuit depth p̂ needed to
achieve maximum expressibility for the one-dimensional QAOA defined in Eq. (3.5).
This is the circuit depth such that, if a state can be prepared at p > p̂ it can also
be prepared at p̂. In Chapter 3 we had denoted this set of states by S, and we had
determined it to be equal to the set of all fermionic Gaussian states under the Jordan-
Wigner transformation for the one-dimensional QAOA. These states are efficient to
simulate classically, as explained in Section 2.4; we exploited this in this chapter to
systematically study the numerical optimisation of the associated parameterised circuit.

We observed that making the angles of the protocol dependent on the lattice sites
makes the preparation of non-local Hamiltonians easier, and of local Hamiltonians
harder, which is the opposite of what is observed when the angles are made to be
independent of the lattice sites for each circuit layer. We argued that this is due
to the symmetries in the system constraining the features available to the optimiser.
This contrasts with the more common case where the use of symmetries in variational
algorithms is beneficial [11, 101, 124, 144, 175], and points to there being circumstances
where relaxing a symmetry in the circuit is desirable.

Further, we studied in detail the overparameterised regime, exploiting the larger
system sizes and circuit depths accessible to us. We find that what is initially a poly-
nomial scaling in the number of iterations to converge to the solution with lattice size
turns into a linear scaling. Moreover, we found that the number of iterations to con-
verge to the solution begins by sharply decreasing with the depth of the circuit, before
tapering off and saturating at a depth p ∝ L2. This indicates that we do not need
large circuit depths much past the threshold p̂ to benefit from overpameterisation, and
that even circuit depths just beyond this value can result in significant improvements.
We also note that the saturation depth of p ∝ L2 scales quadratically with the size of
the lattice, which contrasts with the linear scaling of the quantities in Table 3.1 for the
site-independent case. This indicates that the dimension of the Lie algebra or of the
manifold of states S can not in general be used to predict this saturation point. Over-
all, the above results can help better design variational algorithms to take advantage
of overparameterisation.

The parameterised circuits we have studied could be used to help benchmark vari-
ational algorithms in quantum computers, as free-fermionic systems can be classically
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simulated in a noiseless, ideal environment for large system sizes. This type of study
has already been performed in a non-variational setting using certain fermionic Gaus-
sian states such as, e.g., Majorana zero modes [181] or the ground state of the Ising
model [32]. Moreover, this could potentially be leveraged into error correcting methods
by comparing the results from classically simulating a variational algorithm that can
be expressed in terms of free-fermions with the results obtained from running the same
algorithm on a noisy quantum computer, similarly to what is done in [127].

In addition, our results provide a framework to better understand the theory be-
hind the preparation of fermionic Gaussian states using variational algorithms, already
studied in models such as the Ising model [47, 78], the Kitaev model in the exactly
solvable limit [86], or the cluster model [139]. Importantly, while there are established
algorithms to build circuits that prepare FGS [88, 96], these require a full description
of the corresponding covariance matrix; a variational approach is relevant where this
structure is not known beforehand e.g. when approximating interacting states [115, 139]
or maximising a quantity of interest such as magic [76, 143].
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Chapter 5

Effect of interactions on state preparation with
variational quantum algorithms
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5.1 Preparing the ground state of non-integrable quantum models

In Chapter 3, we studied the expressibility of variational algorithms and found that the
1D QAOA is able to prepare exactly all free-fermionic states. In Chapter 4, we leveraged
this to comprehensively study the associated optimisation. While free-fermions are able
to capture important phenomena in quantum many-body physics, such as being able to
host certain topological phases of matter, they represent a set of models which are not
only integrable but also efficient to simulate classically. While these properties greatly
simplify their study, it also means that they generally fail to adequately capture most
complex quantum many-body phenomena.

In this chapter, we address the problem of using a variational algorithm to prepare
the ground state of a number of models depending on tunable parameters H(h1, h2, ...),
where H is non-integrable for general values of h1, h2, .... We are interested in predict-
ing the relative success of state preparation across the phase diagram defined by the
parameters; moreover, our aim is to relate the success of preparation to some physical
property of the target state. Our main contribution is as follows: we find that, ulti-
mately, the quality of state preparation correlates with the interaction distance [192],
introduced in Section 2.6. Our findings are numerically supported by examples of non-
integrable quantum models, and we show that the slope of this cross-correlation can be
used to identify the existence of different phases in the model.

5.1 Preparing the ground state of non-integrable quantum
models

In this section, we address the problem of using a variational algorithm to prepare the
ground state of a number of non-integrable models. Throughout, the models under
study take the form

H =
m∑
j=1

hjHj , (5.1)

where the hj are a set of tunable parameters. An immediate question is how to choose an
appropriate variational protocol to tackle this problem, as the ones we have studied in
Chapters 3, 4 are not expressible enough to prepare non free-fermionic quantum states.
The approach we take is to split the Hamiltonian into individual non-commuting terms
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5.1 Preparing the ground state of non-integrable quantum models

to form the protocol

P = (H1, ...Hm), (5.2)

a method known as the Hamiltonian Variational Ansatz (HVA) [204, 210], which we
first introduced in Section 3.1. This provides us with a guarantee that, as p → ∞,
the algorithm can prepare the ground state of the model regardless of the values of
the controllable parameters hj . This is because, following the framework developed in
Section 3.2, the components of the Hamiltonian then comprise the generators of the
Lie algebra associated to the protocol; and so, this Hamiltonian is trivially contained
in this algebra (in fact, the Lie algebraic construction of variational protocols can be
seen as a generalisation of the HVA).

In what follows, we study the variational preparation of the ground state of the
transverse and longitudinal field Ising model [5.1.1], the three-spin Ising model [5.1.2]
and the cluster Ising model [5.1.3]. In all cases, we take the cost function to be the
quantum infidelity,

1− f ≡ 1− |⟨ψtarget|ψ(θ)⟩|2, (5.3)

which is bounded between 0 and 1. Although evaluating fidelity in experiment is
impractical or even impossible, it is useful in numerical simulations where the target
state is known. The initial state of the protocol is taken to be the ground state of
−
∑L
j=1Xj , i.e., all spins polarized along x-direction, |ψinit⟩ = | → . . .→⟩.

5.1.1 Transverse and longitudinal field Ising model

Here, our target Hamiltonian will be the one-dimensional quantum Ising model in
the presence of both transverse and longitudinal fields, which we first introduced in
Section 2.7,

H = −
L∑
j=1

(±1)ZjZj+1 − hx
L∑
j=1

Xj − hz
L∑
j=1

Zj , (5.4)

where we assume periodic boundary conditions. Note that, despite the spins in (5.4)
being rotated compared to the model introduced in Section 2.7, these are equivalent.
The model is either ferromagnetic (FM) or antiferromagnetic (AFM) depending on
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5.1 Preparing the ground state of non-integrable quantum models

whether the coupling of the first term is chosen to be +1 or −1, respectively. The Ising
models in Eqs. (5.4) serve as a useful laboratory for studying a number of phenomena in
condensed matter physics [36, 50, 129]. The properties of the ground state of the model
in Eq. (5.4) are insensitive to the sign of the FM/AFM coupling in the absence of the
longitudinal field hz. However, once hz > 0, the phase diagram is substantially different
for the two models. The FM model has a critical point at (hx, hz) = (1, 0), while the
AFM model has a critical line connecting the point (hx, hz) = (1, 0) with the point
(hx, hz) = (0, 2). The critical line is not known analytically, but it has been determined
numerically using density-matrix renormalization group simulations in Ref. [146].

The phase diagrams of the FM and AFM models in their ground state, as diagnosed
by the value of the interaction distance DF (introduced in Section 2.6) are shown
in Fig. 5.1(a)-(b), respectively. The ground state of the Hamiltonian in Eq. (5.4) is
obtained numerically using exact diagonalization, and its entanglement spectrum is
computed by partitioning the system into two equal halves. From the entanglement
spectrum, DF is evaluated by numerical optimisation as described in Section 2.6. For
both models, DF is found to be zero (to machine precision) when hz = 0, regardless
of the value hx. This agrees with the findings in [78] and the study in Chapter 3.
Away from this line, DF is a sensitive indicator of interaction effects and changes
by many orders of magnitude depending on the location in the phase diagram. For
example, in the FM model, DF exhibits a sharp peak just off the free Ising critical point,
(hx = 1, hz = 0). While the Ising critical point is described by the free Ising conformal
field theory [63], and thus it has DF = 0, the properties of this CFT change dramatically
once hz field is introduced [214]. This is consistent with the fermionic picture, where
the hz field introduces long-range interaction between fermions after the Jordan-Wigner
transformation, which makes the system’s ground state highly interacting. Somewhat
surprisingly, away from the critical point, the value of DF sharply decays to values as
low as ∼ 10−7, even though the interaction is comparable in magnitude to other terms
in the Hamiltonian. This implies that there are large regions of the phase diagram
where the ground state of the system is effectively free-fermion-like, even though the
Hamiltonian itself is “interacting”. On the other hand, the AFM model features a
critical line that extends from the free Ising critical point (hx = 1, hz = 0). While
DF = 0 at (hx = 1, hz = 0), the value of interaction distance progressively increases
along the critical line towards the interior of the phase diagram – see Fig. 5.1(b).
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Figure 5.1: Top row: Interaction distance for the ground state of FM (a) and AFM
(b) model in Eq. (5.4) as a function of fields hx and hz. Bottom row: the infidelity
1− f between the prepared state and the ground state for the FM (c) and AFM model
(d). See text for the details of the variational protocol. All data is for system size
L = 8 using PBCs. Red dot denotes the critical point of the FM model, which is in a
ferromagnetic phase (i) throughout the diagram, while the red line is the critical line
in the AFM model according to Ref. [146] separating an antiferromagnetic phase (ii)
from a paramagnetic phase (iii).

As discussed in the beginning of this section, the variational protocol used will be
P = (H1, H2, H3), with

H1 = −
L∑
j=1

Zj , (5.5)

H2 = −
L∑
j=1

Xj , (5.6)

H3 = −
L∑
j=1

ZjZj+1, (5.7)

obtained from splitting the problem Hamiltonian and illustrated in Figure 5.2. Note
that the operators Hj satisfy e−i(θ+π)Hj ∝ e−iθHj . Indeed, Hj = −∑L

k=1 Pk, where Pk
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5.1 Preparing the ground state of non-integrable quantum models

are tensor products of single-site Pauli operators, and a well-known identity is that

eiθPk = cos(θ)I + sin(θ)Pk. (5.8)

This implies that ei(θ+π)Pk = −eiθPk , hence,

e−i(θ+π)Hj =
L∏
k=1

ei(θ+π)Pk = (−1)L
L∏
k=1

eiθPk = (−1)Le−iθHj . (5.9)

As a consequence, in what follows, we restrict the angles θ to the [0, π) interval by
disregarding the resulting phase. We further restrict the angles θj,3 associated with H3

to the [0, π2 ) interval, since

L∏
k=1

e−i(θ+ π
2 )ZkZk+1 =

L∏
k=1

ZkZk+1

L∏
k=1

eiθZkZk+1 (5.10)

=
L∏
k=1

eiθZkZk+1 . (5.11)

The equality (5.10) comes from the fact that

ei(θ+ π
2 )ZkZk+1 = cos

(
θ + π

2

)
I + sin

(
θ + π

2

)
ZkZk+1 (5.12)

= sin(−θ)I + cos(−θ)ZkZk+1 (5.13)

= ZkZk+1(cos(−θ) + sin(−θ)ZkZk+1), (5.14)

while the equality (5.11) is due to the fact that ∏L
j=1 ZjZj+1 = I, as for each lattice

site two Z operators get multiplied, and the product of any Pauli operator with itself
is the identity.

The initial guesses for the angles were determined sequentially as p is increased,
following the method in Appendix B1 of Ref. [215]. For minimisations involved in both
the variational algorithm and DF, we use a basinhopping algorithm with a Metropolis
acceptance criterion [201], as implemented in the Python package scipy.optimize-

.basinhopping. This is an optimisation strategy that performs multiple minimisations,
taking as the initial condition for the next minimisation the stochastically perturbed
result of the previous one. This allows us to avoid the local minima associated with
the rugged landscapes of both the variational algorithm and DF, as discussed further
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in Sec. 5.3. This, however, was not enough to completely eliminate local minima, and
all the data presented here required two additional rounds of minimisation. Each of
these consisted in running the basinhopping algorithm across the phase diagram again,
this time using as initial value for each point the optimal values of each of the adjacent
points from the previously obtained data, and keeping the minimum value found.

Figure 5.2: An m = 3-step variational algorithm for the preparation of the ground state
of the Ising model in both transverse and longitudinal fields, discussed in Sec. 5.1.

Note that our protocol is a generalisation of the one considered in Ref. [78], which
was restricted to the purely transverse field (hz = 0), and made use of a 2-step ansatz
with onlyH2 andH3 (this is the symmetric 1D QAOA protocol we studied in Chapters 3
and 4). In that case, both the Hamiltonian and the protocol conserve the total fermion
parity, generated by P = ∏L

j=1Xj . This symmetry is broken once the z-field is in-
troduced and the ground state acquires a non-zero magnetization ⟨ψ|∑L

j=1 Zj |ψ⟩ ̸= 0.
While it is easy to come up with a two-step protocol that does not conserve parity, we
have not been able to find one that accurately prepares the ground state for general
values of (hx, hz).

In Figs. 5.1(c)-(d) we present results of the variational protocol across the phase
diagram (hx, hz). The colour scale in Fig. 5.1(c)-(d) shows the infidelity 1− f between
the prepared state and the ground state obtained after fixed p = L

2 steps. We observe
that this metric of ground state preparation looks remarkably similar to the behaviour
of DF in Figs. 5.1(a)-(b). In particular, we recover f = 1 when hz = 0 [78], while the
variational algorithm no longer finds an exact ground state when hz > 0. Nevertheless,
it approximates the ground state very closely when DF is small. Once again, it is easy
to see that in this case there is no clear relation between 1 − f and the VNE of the
ground state. For example, in the FM model, the VNE should be largest at the critical
point; further, as adding hz opens a gap in the spectrum, increasing this parameter
should reduce the VNE, as its scaling changes from logarithmic divergence with system
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size to an area law. However, from the point of view of the variational algorithm, we
find precisely the opposite: it is harder to prepare the state with some small amount
of hz compared to hz = 0.

Examining the optimal angles found at each point of the phase diagram of both
the FM/AFM Ising models when running the protocol in Eqs.(5.5)-(5.7), we found
no continuous variation of the angles across the phase diagram of the kind, e.g., in
Ref. [215], where it was observed that plotting the optimal angles θk,j for a fixed j

against the circuit depth k results in a smooth function as L increases. In Fig. 5.3,
we show a scatter plot of DF vs. 1 − f from the data extracted from phase diagrams
such as in Fig. 5.1, but using different numbers of steps p, indicated in the legend.
In both FM and AFM models, we expect correlation between DF and 1 − f around
p = L

2 . This correlation peak is relatively broad as p is increased further. Eventually,
as p→∞, we expect states to be exactly prepared and this correlation to break down,
as in this limit our protocol should have the same power as quantum annealing with
an arbitrary schedule ([119], see also Section 3.2). In the opposite limit, as p → 1, we
expect that the variational method, in general, is not powerful enough for a correlation
to emerge. However, in special cases such as the FM model, we see that DF and 1− f
are correlated even at lower p. We compute the Pearson correlation coefficients for the
data in Fig. 5.3 and discuss them in Section 5.1.4; as expected, the Pearson coefficient
jumps to a value close to 1 around p = L

2 .
For the AFM Ising model in Fig. 5.3(ii)-(iii), we found that the correlation between

DF and 1− f follows a different slope in the two phases of the AFM model separated
by the critical line in Fig. 5.1(b),(d). In particular, the behaviour in the ordered phase
of the model, Fig. 5.3(ii), clearly illustrates that the correlation between DF and 1− f
only starts to emerge around p = L/2. Moreover, different slopes of the correlation in
the two phases suggest that by carefully examining the correlation between these two
metrics one could infer about the existence of different phases in models with unknown
phase diagrams.
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Figure 5.3: (i) Scatter plot of interaction distance DF against 1 − f for the FM Ising
model from Fig. 5.1(a),(c). (ii)-(iii): Analogous plot for the AFM Ising model in
Fig. 5.1(b),(d), where the data points are taken from the antiferromagnetic (ii) or
paramagnetic (iii) phase. Data is for L = 8 spins with PBCs and different values of p
indicated in the legend.

5.1.2 Three-spin Ising model

Here we demonstrate that our findings also apply in a different model featuring three-
spin interactions. The model is defined by the Hamiltonian

H = −
L∑
j=1

ZjZj+1Zj+2 − hx
L∑
j=1

Xj − hz
L∑
j=1

Zj , (5.15)

where, again, we assume PBCs. The critical behaviour of this model is in the same
universality class as the two-dimensional classical three-state Potts model [63], and its
ground state is much harder to prepare than that of the quantum Ising model. Its phase
diagram has been mapped out in Ref. [153] (see also Ref. [83] for further generalisations
of the model). In the hx > 0, −3 ≤ hz < 0 region, it contains a critical line connecting
(hx, hz) = (0,−3) to (hx, hz) = (1, 0). Below that critical line, corresponding to region
(ii) in Figure 5.4, there exists a threefold ground state degeneracy, while above it,
corresponding to region (i) in the same figure, the ground state is unique.

The motivation for studying the model in Eq. (5.15) is that its ground state is
expected to be more strongly interacting and have a higher value of DF. Indeed, the
3-fold ground state degeneracy in the ordered phase gives rise to an approximate 3-fold
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Figure 5.4: Top row: Interaction distance for the 3-spin Ising model in Eq. (5.15) as a
function of fields hx and hz (a) and the infidelity 1 − f (b). The protocol is based on
Eqs. (5.5), (5.6), (5.17). All data is for system size L = 9 using PBCs. Red line is the
critical line in the 3-spin Ising model according to Ref. [153] Bottom row: Scatter plot
of DF against 1− f for the 3-spin Ising model, system size N = 9 and different values
of p indicated in the legend. Vertical red line, drawn heuristically, separates the data
belonging to the phase above and below the critical line (respectively to the left and
right of the vertical line).

degeneracy of the entanglement spectrum, as generally found in “symmetry-protected
topological phases” [163]. This can be understood by picking a point (hx = 0, hz = −1),
where the exact ground state of the system (with zero momentum under translation)
is given by

|ψ0⟩ = 1√
3

(| ↑↓↓↑↓↓ . . .⟩+ | ↓↑↓↓↑↓ . . .⟩+ | ↓↓↑↓↓↑ . . .⟩). (5.16)

The corresponding entanglement spectrum is given by ρk = {1
3 ,

1
3 ,

1
3 , 0, 0, . . .}. This is

the type of entanglement spectrum that gives DF = 1
6 , a value close to the upper bound

3 − 2
√

2 [122], as explained in Section 2.6. An approximate 3-fold degeneracy in the
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entanglement spectrum persists throughout the ordered phase of the model; thus we
expect the ground state throughout this phase to be more difficult to prepare using
QAOA compared to the disordered phase.

The comparison betweenDF and the variational algorithm for the model in Eq. (5.15)
is shown in Fig. 5.4. The protocol was chosen such that H1 and H2 are defined as in
Eqs. (5.5)-(5.6), but for H3 we use

H3 = −
L∑
j=1

ZjZj+1Zj+2 (5.17)

so that the protocol satisfies H3 + hxH2 + hzH1 = H. We have found that, like the
two-spin Ising model, the success of the protocol also correlates well with interaction
distance, as we see in the top row of Fig. 5.4. Here, as in Section 5.1, minimisations are
done using a basinhopping algorithm, and the results required two additional rounds
of minimisation. Moreover, we find correlation between DF and 1−f for several values
of p, as shown in the bottom row of Fig. 5.4. As before, the data in the bottom row
of Fig. 5.4 was obtained by sampling across the entire phase diagram in the top row of
Fig. 5.4.

It is worth noting that we can prepare the ground state in Eq. (5.16) exactly by
choosing the protocol H2 = −∑j Zj−1ZjZj+1 and H1 = −∑j(XjXj+1+YjYj+1), while
the initial state is the ground state of H2 in the sector with magnetization −N/3, as
this is the sector where the states {|↑↓↓ ...⟩ , |↓↑↓ ...⟩ , |↓↓↑ ...⟩} live. It can be verified
that this protocol prepares the exact ground state in Eq. (5.16) in N/2 steps. Moreover,
supplementing the protocol with a third operator, H3 = −∑j Xj , leads to good results
across the entire phase with the 3-fold ground-state degeneracy. However, the infidelity
1 − f of the latter protocol does not capture the phase transition in a way that the
protocol [Eqs.(5.6), (5.5), (5.17)] does. Moreover, the initial state is more difficult to
prepare in this case, unlike the product state of spins in our protocol.

Similar to the models studied in Sec. 5.1, we found no continuous variation of
angles in the three-spin Ising model, and the angles θk,1 tended to be close to multiples
of π/2 (see Fig. 5.7). However, in this case the heuristic arguments of Sec. 5.2 do not
directly apply as the Gaussianity of the protocol is broken by the triple spin interaction
term (5.17). It is an interesting open problem to analytically explain the approximate
Gaussianity in the regions where interaction distance is close to zero in this case.
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5.1.3 Non-integrable Cluster Ising model

Here, we study the model that realises the so-called cluster state [25], which is of
importance in measurement-based quantum computation [134] and also in symmetry-
protected topological phases of matter [33, 61, 163, 172]. Note that, unlike the related
model defined in Eq. (4.8) and studied in Section 4.2.1, the model we now introduce
is non-integrable. It displays a critical line in its phase diagram when placed in an
external magnetic field, like the AFM model, and we demonstrate similar correlation
between the interaction distance and variational preparation of its ground state. It is
defined in terms of Pauli matrices (assuming periodic boundary conditions) as

H = −
L∑
j=1

Xj−1ZjXj+1 − hyy
L∑
j=1

YjYj+1 + hy

L∑
j=1

Yj . (5.18)

When hy = 0, the model can be solved using a combination of Jordan-Wigner/Bogoliubov
transformations [178], but for general values of hy the model is not solvable. It has
a critical line described by a conformal field theory with central charge c = 3/2, con-
necting the points (hyy = 1, hy = 0) and (hyy = 0, hy = 1). The critical line has been
mapped out using density-matrix renormalisation group calculations in Ref. [197].

As seen in Fig. 5.5(a)-(b), both the variational algorithm and DF are highly sensitive
to the critical line, just like we have previously seen in the AFM Ising and 3-spin
Ising models. Despite small system size, the critical behaviour is in good qualitative
agreement with results of Ref. [197]. The protocol in Fig. 5.5 has been defined by
splitting H into its three components

H1 = −
L∑
j

Yj , (5.19)

H2 = −
L∑
j

YjYj+1, (5.20)

H3 = −
L∑
j

Xj−1ZjXj+1. (5.21)

For the initial state, one can choose the ground state of H1. However, with this ini-
tial state, the convergence of the optimisation below the critical line, in region (ii) in
Figure 5.5, was found to be very slow. The convergence is considerably more robust
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Figure 5.5: Top row: Interaction distance for the cluster Ising model in Eq. (5.18) as
a function of hyy and hy (a) and the infidelity 1 − f of the protocol (b). All data
is for system size L = 8 with periodic boundary conditions. Critical line, in red,
is reproduced from Ref. [197] and separates a cluster phase (i) from a paramagnetic
phase (ii). Bottom row: Scatter plot of DF against 1 − f for the cluster Ising model,
system size L = 8 and different values of p indicated in the legend. Panel (c) shows
points in region (i) while (d) shows points in region (ii).

if we use as initial state the ground state of H2 in this regime instead. In producing
the phase diagram in Fig. 5.5(b) we have run two sweeps of QAOA starting in either
of these initial states, and plotting the smaller value of the obtained 1− f .

It is worth noting that the line with hy = 0 is prepared exactly (to machine precision)
in p = L/2 steps using the 2-step protocol involving only H3 and H2, similar to the
case of the transverse field Ising model. Moreover, there is correlation between DF and
1− f across each of the two phases of the model, as illustrated in Fig. 5.5(c)-(d).
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5.1.4 Additional data

We compute the Pearson correlation coefficients for the data in Figs 5.3, 5.4(c) and
5.5(c)-(d), and plot them in Fig. 5.6. We see that the Pearson coefficient is close to 1
around p = L/2, indicating direct correlation. We expect this to mark the beginning
of a broad plateau where the Pearson coefficient remains close to 1, until it eventually
starts to drop at larger values of p. The reason for this decay is the exact preparation of
the state in the limit p→∞ for the protocol considered here. Conversely, in the limit
p→ 1, we expect that, in general, the variational ansatz is not sufficiently powerful for
the correlation to emerge.

Figure 5.6: Pearson correlation coefficients as a function of p. Labels ”FM” and ”AFM”
refer to the data for the ferromagnetic and antiferromagnetic models in Figures 5.3,
”3s” refers to the data for three-spin model in 5.4(c) and ”Cluster” refers to the data
for the cluster model in 5.5(c). The inset zooms in on the top-right corner of the plot.

5.2 Relation between variational algorithms and interac-
tion distance

In Sec. 5.1, we have numerically established a correlation between DF and the success
of variational protocols. This suggests that the protocol’s success depends on how close
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to being Gaussian (in the sense of Eq. (2.46)) the target ground state is. In this section,
we support these numerical observations with analytic arguments. We will first focus
on the case of the transverse and longitudinal field Ising model studied in Section 5.1.1.

Note that a shift of π/2 in the θk,1 part of the protocol results in an overall parity
flip, as easily seen from the following sequence of identities:

exp

i(θk,1 + π

2

)∑
j

Zj

 exp

iθk,2∑
j

Xj

 (5.22)

= exp

iθk,1∑
j

Zj

∏
j

Zj exp

iθk,2∑
j

Xj

 (5.23)

= exp

iθk,1∑
j

Zj

 exp

iθk,2∑
j

−Xj

∏
j

Zj . (5.24)

Further,

∏
j

Zj |→ ...→⟩ = |← ...←⟩ , (5.25)

where | →⟩, | ←⟩ denote the eigenstates of X. This implies that, if we have the freedom
of choosing either |→ ...→⟩ or |← ...←⟩ as the initial state, we can restrict, without
loss of generality, all angles θk,1 to an interval of length π/2. Moreover, we found that,
after enforcing this restriction, the optimal angles θk,1 had a striking tendency to be
very close to multiples of π

2 (see Fig. 5.7), and can thus all be mapped to be close to 0.
Since both |→ ...→⟩ and |← ...←⟩ are product states, they are also fermionic Gaus-

sian states. Moreover, the evolution under the unitaries generated by H3 and H2 maps
fermionic Gaussian states into fermionic Gaussian states, while the evolution under H1

spoils this property. However, for θk,1 close to 0, the evolution under H1 introduces
only a small, perturbative deviation from a Gaussian state. Added to the fact that
the interaction distance can predict the success of the algorithm, this suggests that the
Hamiltonian H1 has a restricted role in the evolution, since this is the only Hamiltonian
in the protocol that is not quadratic (and thus can lead to the preparation of states
that are not fermionic Gaussian).

This heuristically accounts for the high correlation with interaction distance of
the target state, as the states prepared are close to being free. As p gets larger,
more perturbations are possible and the success variational algorithm increases. At a
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Figure 5.7: Distribution of angles θk,1 associated with the Hamiltonian in Eq. (5.5)
across phase diagrams of FM/AFM, 3-spin and cluster Ising models in Eqs. (5.4),
Eq. (5.15) and Eq. (5.18). Data is for system size L = 8 with the exception of L = 9
for the 3-spin Ising model. In all the plots, p = 4.

fixed p, this success is related to the distance of the target state from the Gaussian
state manifold. Thus, the symmetry which led us to use a 3-step protocol for the
transverse and longitudinal field Ising model could perhaps be broken in a simpler way
by substituting either H2 or H3 by a non-quadratic Hamiltonian and doing away with
H1. Furthermore, this property could be exploited by having the initial guess be close
to multiples of π2 through an ansatz, or by giving higher weight to regions close to these
two points (0 and π

2 ) in the minimisation algorithm.
While the analysis above can be directly adapted to case of the non-integrable

cluster Ising model in Section 5.1.3, for which the H3 (5.21) is a quadratic Hamiltonian
after applying the Jordan-Wigner transformation, this is not the case for the three-spin
Ising model in Section 5.1.2. Recall, however, that interaction distance is computed in
terms of fermionic modes that are, in general, not the ones defined on the underlying
lattice using the Jordan-Wigner transformation, as explained in Section 2.6. The fact
that the interaction distance captures the success of the variational algorithm in this
case suggests that there could be fermionic modes for which the H3 (5.17) used in this
model is quadratic, in which case the analysis above would apply. More generally, H2

and H3 could be generating a “small” Lie algebra (see Chapter 4), and introducing H1

extends the expressibility of the protocols by adding another generator.
We conclude that there is a practical limitation to the “natural” protocol proposed

in Sec. 5.1, which was obtained as a Trotter splitting of the model Hamiltonians into
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translation invariant components: the protocol is unable to prepare ground states that
are far from being Gaussian (as measured by interaction distance). This limitation
seems to be fundamentally related to the probability spectrum of the target state, i.e.,
the eigenvalue spectrum of its reduced density matrix. Indeed, when performing the
optimisation using as a cost function the relative entropy [135] between the probability
spectra of the trial state and of the target state, one finds heat maps similar to those
in Fig. 5.1 (data not shown). Thus, there is a correlation between the success of the
variational algorithm and DF, even though the former minimises the overlap of two
vectors, while the latter employs a minimisation using the probability spectrum of the
subsystem’s reduced density matrices.

5.3 Optimisation landscape

In this section, we explore the minimisation landscape of the optimisation problem
studied in Sec. 5.1 for the AFM Ising model. The target state in the cost function is
taken to be the ground state of the Hamiltonian at a set of representative points in the
(hx, hz) phase diagram,

S = {(0.1, 0.1), (0.1, 2), (1, 1), (2, 0.1), (2, 2)}. (5.26)

These points are drawn from regions of both “hard” and “easy” state preparation
according to Fig. 5.1. Here, we use the rescaled relative energy as the cost function [118,
148]

ϵ ≡ ⟨ψ(θ)|H|ψ(θ)⟩ − Emin
Emax − Emin

, (5.27)

where Emin, Emax are the extremal eigenenergies in the spectrum of H. The relative
energy ϵ is bounded between 0 and 1, such that ϵ = 0 corresponds to finding an exact
ground state. Note that, throughout this section, we place restrictions on the total
“time” taken by the protocol,

T (θ) =
p∑
j=1

M∑
k=1

θj,k. (5.28)

In Fig. 5.8 we first look at the probability distribution function for log ϵ for the points
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in S. We generate a sample of 104 initial θ angles, drawn from a uniform distribution
in the [0, π) interval. The distribution of log ϵ gives us insight about the structure of
the landscape. A sharply-defined distribution of log ϵ is only obtained in the case where
hx = hz = 0.1, with the peak at ϵ close to 0. The mean of the distribution shifts to
large values of ϵ upon approaching the critical line, e.g., at hx = hz = 1. In addition
to the shift of the mean, the distribution also develops multiple peaks corresponding
to local minima. At other points in the phase diagram, such as hx = hz = 2, the
separate minima form a smooth curve with larger variance. Finally, in some cases like
hx = 2, hz = 0.1, we observe a clear bimodal distribution of the minima. Thus, the
distribution of minima varies considerably across the phase diagram and, generally, has
multiple peaks.
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Figure 5.8: Probability distribution function P (log(ϵ)) of QAOA outcomes on 10000
uniformly generated initial angles having as target the ground state of the points in S.
Data is for system size L = 8 and p = 4, with the protocol in Eqs. (5.7)-(5.5).

A systematic investigation of the nature of the landscape of a related minimisation
problem was performed in Refs. [26, 44, 104] using a discretised adiabatic state pre-
paration protocol. In these works, the behaviour of the minimisation landscape was
examined as a function of the total allowed time for the protocol. It was found [26, 44]
that there are distinct “phases” associated with different intervals for the total al-
lowed time. Particularly, at intermediate times, there is a glassy phase presenting
with multiple clusters of minima where the minimisation becomes difficult. Following
Refs. [26, 44], we have probed the nature of the minimisation landscape in our models
and using our protocol and model in Section 5.1.1 when the total time (5.28) is re-
stricted. We impose this restriction in two different ways. First, we allow T (θ) to be
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5.3 Optimisation landscape

less than or equal to some maximum total time T≤max, which can be easily achieved
by constraining the allowed interval for each θj,k angle in our protocol. The second
method is to demand T (θ) to be exactly equal to a given total time T=max. The results
of these two approaches are contrasted in Fig. 5.9(a) and (b).

2.5 5.0 7.5

T≤max

10−10

10−8

10−6

10−4

10−2

ε

(a)
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Figure 5.9: Characterisation of the minimisation landscape of the AFM Ising model.
Legend indicates the Hamiltonian featuring in the cost function ϵ(θ), and corresponds
values of (hx, hz) taken to be representative of different regions in the phase diagram.
(a)-(b) Minimum relative energy ϵ found after running the basinhopping optimisation
plotted against T≤max (resp. T=max), where we restrict the optimisation to circuits for
which the total amount of time to run (5.28) is less than T≤max (resp. to be equal
to T=max). (c)-(d) t-SNE plot identifying relative positions of minima for 500 random
initialisations taken at (hx, hz) = (1, 1) and T=max = 1 (resp. T=max = 8), where the
optimisation is performed using the L-BFGS algorithm. All data is for system size
L = 6 and p = 3. Color scale in (c), (d) represents the value of ϵ at the minimum.

In Fig. 5.9(a) we see that, as expected, as T≤max increases, ϵ decreases. Perhaps
surprisingly, this occurs in a very clear step-wise fashion, suggesting that there are
discrete values of T≤max that show significant improvement in state preparation. By
contrast, in Fig. 5.9(b) we see that as T=max increases, the behaviour of ϵ is more erratic,
indicating that there are discrete, optimum values of T for which states can be prepared
under this restriction. This shows that the protocol can not accommodate non-optimal
values T=max, that is, there is no way for the protocol to continuously “stall” and
wait, “wasting time” so as to emulate the last optimal value of T=max. The protocol
can, however, “stall” in discrete values of π, due to the symmetry in the angles. A
consequence of this seems to be the peaks and troughs in the graphs in Fig. 5.9(b), which
show an irregular pattern. This contrasts with the results in Ref. [26, 44], which display
an almost monotonically increasing success in state preparation as T=max increases.

Next, we took 500 random angle samples restricted to either T=max or T≤max and
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ran the variational algorithm with target state coming from the ground state at each of
the representative points in S. Here, we have used the L-BFGS local optimisation al-
gorithm, as implemented in the scipy Python package, to perform the minimisation. In
order to plot the high-dimensional minimisation landscape, we have used t-SNE [196],
a dimensionality-reduction algorithm for data visualization that embeds high dimen-
sional data in a space with lower dimension while preserving the relative position of the
data points. Performing t-SNE on these samples, we find that, for T≤max, T=max < 1,
there exists clustering of minima, although some of the clusters are significantly less
compact than others – see Fig. 5.9(c). For T≤max, T=max > 1, the clustering rapidly dis-
appears, first for the T≤max restriction and then for the T=max restriction – an example
of the latter is shown in Fig. 5.9(d) for T=max = 8. This indicates that the variational
algorithm, which usually does not place restrictions on the values of θ angles and there-
fore implicitly operates in the large-T regime, does not display a glassy phase in its
minimisation landscape as found for a different protocol in Refs. [26, 44].

5.4 Conclusions

In this chapter, we have investigated the preparation of ground states of non-integrable
quantum models using a variational algorithm. Our motivation was to identify phys-
ical properties of the state that have an impact on its preparation, thereby allowing
us to bound their relative success. While this task appears challenging for rigorous
analytical treatment, we have numerically demonstrated a correlation between inter-
action distance and the success of the variational protocols in several variants of the
quantum Ising model. This suggests that, in these models, states which are far from
free, as measured by interaction distance, are harder to prepare, i.e., in order to prepare
states with larger interaction distance, the variational algorithm needs higher values
of p to achieve the same degree of success as for states with lower interaction distance
and lower p. We have also performed an analysis of the landscape associated with
the QAOA optimisation problem. We have found that there are several local minima
associated with this landscape, though they are spread out and show no distinctive
clustering. Limiting the total allowed time did not alter this landscape significantly for
total times T ≳ 1.

One of the applications of our results is that theoretical insight into the closest
fermionic Gaussian state representing the target state can be gained by using the ex-
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5.4 Conclusions

perimentally obtained ansatz and setting the small θk,1 angles to be zero. The absence
of the glassy phase in the minimisation landscape implies that the protocols construc-
ted here do not lead to a NP-hard optimisation problem and the time to find optimal
angles should scale polynomially with the system size.
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Chapter 6

Towards an experimental quantification of
fermionic interactions
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6.1 Background: The XYZ Model

In the previous chapter, we have quantified the hardness of preparation of a quantum
state in terms of how far that state is from a free-fermionic one. We did so by comparing
the success of the variational quantum algorithm with the interaction distance of the
target state, which measures how far a quantum state is from being free-fermionic based
on its entanglement spectrum.

In this chapter, we employ the interaction distance to study a well-known model in
quantum condensed matter, the XYZ model, which we introduce in Section 6.1. Our
contributions correspond to the sections not marked as “Background” (or subsections of
those sections), and can be summarised as follows: Using DMRG techniques to obtain
its ground state for system sizes on the order of hundreds of lattice sites, we study an
emerging freedom in the XYZ model as the lattice size tends to the thermodynamic
limit in Section 6.3. By considering Wick’s theorem as a defining property of free-
fermionic states, in Section 6.4 we leverage it to obtain an equivalent way of quantifying
how far from being free-fermionic a state is; we then use this to devise a method to
experimentally measure fermionic interactions. We finish by analysing the robustness
of this method in Section 6.5, before concluding in Section 6.6.

6.1 Background: The XYZ Model

The 1D spin-1/2 XYZ model with open boundary conditions and on a lattice of size L
is given by

H = Jx

L−1∑
j=1

XjXj+1 + Jy

L−1∑
j=1

YjYj+1 + Jz

L−1∑
j=1

ZjZj+1, (6.1)

where Xi, Yi, Zi are the usual Pauli matrices on site i. This model hosts certain
paradigmatic models as special cases, such as the Heisenberg model (Jx = Jy = Jz ̸= 0)
or the XXZ model (Jx = Jy = 1), both natural lattice models of magnetism solvable
by the Bethe ansatz [17, 184], the XY-model (Jz = 0), which is mappable to a system
of spinless fermions hopping on a lattice [105] and can help elucidate the low-energy
properties of the unconstrained model [131], or the classical nearest-neighbour Ising
model (Jy = Jz = 0), a celebrated model of ferromagnetism in statistical mechanics
[84]. By employing the Jordan-Wigner transformation (see Section 2.3), the XYZ model
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6.1 Background: The XYZ Model

Figure 6.1: Phase diagram of the XYZ model (6.1). Red lines denote gapless regions,
and the conformal (C) and non-conformal (E) tricritical points are indicated.

can be mapped to interacting spinless fermions

H =
L−1∑
j=1

J+aja
†
j+1 + J−ajaj+1 + h.c. + Jz(4ninj+1 − 2nj − 2nj+1 + I), (6.2)

where J± = (Jx ± Jy) and nj = a†
jaj . In this fermionic representation, Jz becomes

the interaction coupling between fermion populations at neighbouring sites [105]. The
other parameters of the model are associated to “non-interacting”, free-fermionic terms
in this representation, as defined in Section 2.4.

In what follows, without loss of generality, we take Jx = 1. The phase diagram of
the XYZ model is depicted in Figure 6.1, where gapless regions are represented in red.
There are six distinct rotated instances of the XXZ model embedded along the lines
Jy = ±1, Jz = ±1, Jy = ±Jz. The intersection between these lines form two pairs
of tricritical points; there are two points at (1, 1) and (−1,−1), each corresponding to
three XXZ models at their Berezinskii-Kosterlitz-Thouless transition, and two points
at (1,−1) and (−1, 1), each corresponding to three XXZ ferromagnets at their first
order phase transition. In what follows, due to the symmetries (Jy, Jz)↔ (−Jz,−Jy),
(Jy, Jz)↔ (Jz, Jy) of the Hamiltonian (6.1), we restrict ourselves to Jy ≥ 0 [55].

In 1970, Sutherland observed that the transfer matrix of the 2D zero-field eight-
vertex model commutes with the Hamiltonian of the XYZ model [183]. This was
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6.1 Background: The XYZ Model

independently studied by Baxter, who famously used this result to derive a number of
analytical results on this model [13–15]. The connection between the XYZ model and
the 2D zero-field eight vertex model was expressed by Baxter [13] as

Γ = Jy/Jx,∆ = Jz/Jx, (6.3)

where Γ, ∆, are parameters of the zero-field eight-vertex model. This is valid in the so-
called principal regime, i.e. |Jy| < Jx < −Jz; the remainder of the phase diagram can
be covered by utilising the symmetries of the model, which were covered in Section 6.1.
The parameters Γ,∆ are in turn expressed in terms of elliptic functions using two other
parameters, k and λ, as

Γr = (1 + k sn2iλ)/(1− k sn2iλ), (6.4)

∆r = −cn iλ dn iλ/(1− k sn2iλ), (6.5)

where sn, cn,dn are the Jacobian elliptic functions. The natural domains of these
parameters are

0 ≤ k ≤ 1, (6.6)

0 ≤ λ ≤ I(k′), (6.7)

where I denotes the complete elliptic integral of the first kind, and

k′ =
√

1− k2. (6.8)

The correlation length of a translationally invariant spin model is conventionally defined
as the exponent ξ such that for some τ ,

⟨ZjZj+k⟩ ∼ k−τ exp
{
−k
ξ

}
. (6.9)

Johnson and Baxter obtained [15, 89] the analytical formula for ξ in the ordered re-
gime of the XYZ model in the thermodynamic limit, expressing it in terms of the
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6.2 Background: Matrix Product States and the DMRG algorithm

parameterisation (6.4) as

ξ−1 =


− ln k1 (µ ≤ π/2),

− ln k1

dn2
[
I(k1)I(k′)

2I(k) −I(k′
1),k′

1

] (π/2 < µ), (6.10)

where k1 = 2
√
x
∏∞
m=1

(
1+x4m

1+x4m−2

)
and x = e−πλ/2I(k).

6.2 Background: Matrix Product States and the DMRG
algorithm

The density matrix renormalisation group (DMRG) was first established in 1992 by
Steve White [205, 206], and has since become a cornerstone in the study of one di-
mensional quantum many-body systems [169]. In many relevant applications, it is able
to efficiently compute the ground state for lattice sizes on the order of hundreds – a
breakthrough in the classical simulations of quantum models, for which the exponen-
tial scaling of the vector space is one of the main limiting factors. In this section, we
review the DMRG procedure following [169]. Here, we will adopt the matrix product
state (MPS) formalism, which was independently developed [2, 12, 56] and later con-
nected to the DMRG algorithm [49, 142, 185, 207]. Matrix product states turned out
to be a natural language for expressing and extending the DMRG, and enabled sev-
eral advancements in the area, such as the time-evolution of quantum states [200] and
infinite-size simulations [199].

We begin by describing how an MPS approximation of a quantum state |ψ⟩ can be
obtained. This representation expresses each amplitude of this state as a product of
matrices by successively applying a singular value decomposition followed by a trunca-
tion of the resulting singular values. The process proceeds as follows: first, note that
this state can be written as |ψ⟩ = ∑

σ1,...,σL
cσ1,...,σL |σ1...σL⟩, where the σl are indices

for the local single-particle bases at each site, and cσ1...σL is a tensor representing the
amplitudes of this quantum state. By regrouping the indices1 and performing an SVD

1This regrouping consists in indexing the basis for the tensor product space using a single index,
as opposed to using separate indices for each single-particle space.
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(as introduced in 2.5) on the matrix ca1,(σ2...σL), we obtain the representation

|ψ⟩ =
∑

σ1,...,σL

Aσ1
a1ca1,σ2,...,σL |σ1...σL⟩ . (6.11)

By repeating this process for each lattice site, we obtain

|ψ⟩ =
∑

σ1,...,σL,a1,...aL

Aσ1
a1A

σ2
a1,a2 ...A

σL
aL
|σ1...σL⟩ . (6.12)

A graphical representation of this iterative process is given in Figure 6.2. At each step
l, the singular value decomposition yields

U(al−1σl),al
Sal

V T
al,(σl+1,...,σL) = Aσl

al−1,al
cal,σl+1,...,σL , (6.13)

where Sl is absorbed into the remaining tensor cal,σl+1,...,σL . The state is approximated
by truncating the singular values Sal

under a certain threshold at each step – the number
of singular values retained is called the bond dimension and is usually denoted by the
symbol χ. The condition for an MPS to efficiently approximate a state is that this
truncation is such that the number of remaining singular values scales efficiently with
the size of the system. This is related to the entanglement entropy across the bipartition
of the lattice over which the SVD is being computed; indeed, the operation performed
at each step is analogous to a Schmidt decomposition, and the squared singular values
yield the entanglement spectrum, from which the entanglement entropy is computed.
(as explained in Section 2.5). Although this correspondence is not mathematically
rigorous (it is possible to construct states with e.g., low entanglement entropy but for
which the MPS construction is not efficient), it is for relevant physical models a good
indication of whether a state is amenable to being approximated by an MPS [171].
In one dimension, this indicates that gapped systems (for which the entanglement
entropy scales as a constant with lattice size) and critical systems, which admit a
logarithmic correction to the entanglement entropy, can be successfully studied using
matrix product states.

Note that, in the process just described, one could likewise have started from the
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...

...
...

...

...

Figure 6.2: The process of approximating a quantum state with amplitudes encoded
by the tensor cσ1,σ2,...,σL by a product of matrices Aσ1

a1A
σ2
a1,a2 ...A

σL
aL

as in (6.12). A
singular value decomposition is successively applied to a matrix obtained by regrouping
the indices of the amplitude tensor. This introduces a new index al at each step,
corresponding to the multiplication of the matrices in the decomposition. This index
is truncated so that the smallest singular values are discarded, yielding an efficient
approximate representation for quantum states where the number of relevant singular
values scales efficiently with the size of the system. This is the case for e.g. the ground
states of gapped systems and certain systems at criticality admitting a logarithmic
correction to the entanglement entropy.

right end of the lattice to obtain

|ψ⟩ =
∑

σ1,...,σL,a1,...aL

Bσ1
a1B

σ2
a1,a2 ...B

σL
aL
|σ1...σL⟩ , (6.14)

where

U(al−1σl),al
Sal

V T
al,(σl+1,...,σL) = cσ1,...,σl−1al−1B

σl
al−1,al

, (6.15)

and Sl is again absorbed into the remaining tensor cσ1,...,σl−1al−1 . One could even have
mixed both (6.12) and (6.14) by starting from each end of the lattice and meeting at
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some lattice site l to obtain

|ψ⟩ =
∑

σ1,...,σL,a1,...aL

Aσ1
a1 ...A

σl
al−1,al

Sal
B
σl+1
al,al+1 ...B

σL
aL
|σ1...σL⟩ . (6.16)

The form (6.12) is said to be left canonical, while the one in (6.14) is said to be
right canonical and the one in (6.16) is said to be mixed canonical. The key property
differentiating the matrices A,B is that ∑σl

Aσl †Aσl = I, while ∑σl
BσlBσl † = I; the

matrices Aσl are said to be left-normalised, while the matrices Bσl are said to be right-
normalised. In practice, this can be exploited to simplify the index contractions in the
DMRG algorithm implementation.

Before moving on to the DMRG algorithm, we must establish how an operator can
be represented in a format analogous to (6.12). Note that an operator H can be written
as

H =
∑

σ1,...,σL,σ
′
1,...,σ

′
L

cσ1,...,σL,σ
′
1,...,σ

′
L
|σ1, ..., σL⟩⟨σ′

1, ..., σ
′
L|. (6.17)

By pairing indices referring to the same site and following the procedure outlined for
matrix product states, we obtain a matrix product operator

H =
∑

σ1,...,σL,σ
′
1,...,σ

′
L

W σ1σ′
1 ...W σLσ

′
L |σ1, ..., σL⟩⟨σ′

1, ..., σ
′
L|. (6.18)

In practice, when H is local, this structure can be exploited to efficiently construct an
MPO representation [81, 169]. The inner product between states represented by matrix
product states |ψ⟩ as in (6.12) and |ϕ⟩ = ∑

σ1,...,σL
Ãσ1 ...ÃσL |σ1...σL⟩ can be expressed

as

⟨ψ|ϕ⟩ =
∑

σ1,...,σL

(Aσ1 ...AσL)(Ãσ1 ...ÃσL)†, (6.19)

and the expectation value of ψ with respect to H can be computed as

⟨ψ|H|ψ⟩ =
∑

σ1,...,σL,σ
′
1,...,σ

′
L

(Aσ1Aσ2 ...AσL)(W σ1σ′
1 ...W σLσ

′
L)(Aσ′

1Aσ
′
2 ...Aσ

′
L)†. (6.20)

Note, however, that the naive evaluation of these expressions is unfeasible. Not only
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the order of index contraction greatly influences the speed with which the computation
is performed, and must be taken into account, but also there are intermediate computa-
tions that can be iteratively constructed; in what follows, we will address how the latter
consideration plays into the DMRG algorithm. While the expressions involved can be
unwieldy, here we are mainly concerned with conveying the principal ideas behind an
efficient implementation of the DMRG algorithm; for a more complete treatment, we
refer the reader to [169].

The expectation value of a state |ψ⟩ in mixed-canonical form at a site l as in (6.16)
with respect to an operator H represented by an MPO as in (6.18) can be evaluated as

⟨ψ|H|ψ⟩ =
∑
σl,σ

′
l

∑
a′

l−1,a
′
l

∑
al−1,al

∑
bl−1,bl

L
al−1,a

′
l−1

bl−1
W

σl,σ
′
l

bl−1,bl
R
al,a

′
l

bl
M

σ†
l

al−1,alM
σ′

l

a′
l−1,a

′
l
. (6.21)

where A, B represent the subsystems on either side of site l, Mσ′
l

a′
l−1,a

′
l

represents the
centre site matrices in this mixed-canonical representation, and L,R are defined as

L
al−1,a

′
l−1

bl−1
=

∑
ai,bi,a′

i;i<l−1

∑
σ1σ′

1

Aσ1†

1,a1W
σ1,σ′

1
1,b1

A
σ′

1
1,a′

1

 ... (6.22)

 ∑
σl−1σ

′
l−1

A
σ†

l−1
al−2,al−1W

σl−1,σ
′
l−1

bl−2,bl−1
A
σ′

l−1
a′

l−2,a
′
l−1

 , (6.23)

R
al,a

′
l

bl
=

∑
ai,bi,a′

i;i>l

 ∑
σl+1σ

′
l+1

B
σ†

l+1
al,al+1W

σl+1,σ
′
l+1

bl,bl+1
B
σ′

l+1
a′

l
,a′

l+1

 ... (6.24)

∑
σLσ

′
L

B
σ†

L
aL−1,1W

σL,σ
′
L

bL−1,1B
σ′

L

a′
L−1,1

 . (6.25)

The main reason behind writing (6.21) in terms of the matrices L and R is that these
are iteratively built during the DMRG algorithm, as we will observe in what follows.

In finding the ground state |ψ⟩ of a Hamiltonian, we seek to minimise the energy
⟨ψ|H|ψ⟩

⟨ψ|ψ⟩ . To this end, the DMRG algorithm aims to find the extrema of the function

⟨ψ|H|ψ⟩ − λ⟨ψ|ψ⟩, (6.26)

where λ is a Langrange multiplier. This is done by iteratively fixing all matrices in the
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decomposition, except those for a single site σl, and solving an eigenvalue problem so
as to minimise (6.26). The process consists of several ”sweeps” across the lattice, and
runs as follows:

1. Choose an MPS in right canonical form (6.14) to serve as the initial guess for the
algorithm. Iteratively compute the R matrices (6.25) in (6.21).

2. Sweep right by starting from site l = 1 and successively improving the ground
state approximation at the current site, left normalising the resulting matrix by
performing an SVD so that the MPS is now in mixed-canonical one site to the
right, and shifting to that site. Iteratively build the L matrices (6.23) in (6.21)
during the sweep.

3. Sweep left, analogously to the previous step: starting at the last site, improve the
ground state approximation, right normalise the resulting matrix by performing
an SVD and shift one site to the left. Iteratively compute the R matrices (6.25)
in (6.21) during the sweep.

4. Repeat until convergence is achieved or a specified number of sweeps is performed.

6.3 Interaction distance and emergent freedom in the XYZ
model

In this section, we use interaction distance to characterise the entanglement spectrum
of the ground state of the XYZ model as the size of the system tends to infinity.
This spectrum was derived in the thermodynamic limit in [53] using a connection [15]
between this model and the so-called corner transfer matrices (CTMs) of the 2D zero-
field eight vertex model1, which we briefly touched upon in Section 2.5. In this limit, in
the basis where the corner transfer matrices are mutually diagonal, the density matrix
takes the form

ρ =

1 0
0 x

⊗
1 0

0 x2

⊗
1 0

0 x3

 ... (6.27)

1This connection between quantum models and a 2D classical counterpart [136, 137, 186] had
previously been used by Peschel, Kaulke and Legeza to derive the structure of the reduced density
matrix of the ground state of the transverse field Ising model and of the XXZ model [158]
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where x = exp(−πλ/I(k)), with λ, k being defined in (6.4), (6.5). The spectrum of this
matrix can be seen to follow the structure (2.48) with single-particle modes ϵj = xj ;
thus the ground state of this model is free-fermionic in the thermodynamic limit.

While the entanglement spectrum is known in this limit, it is of interest to examine
it at finite sizes, and to study how it converges as the lattice grows to an infinite number
of sites. This is relevant to simulations in near-term quantum computers, for which
the number of qubits is at most on the order of hundreds [164]. In the remainder of
this section, we conduct this study by computing the interaction distance across the
phase diagram of the model as the system size increases. We do so by employing the
density matrix renormalisation group (DMRG) algorithm [169, 205], as implemented in
the iTensor [62] library, to obtain the entanglement spectrum of the ground state of the
model at each point in the diagram. As explained in Section 6.2, this is an algorithm
that can efficiently compute the ground state of a local 1D quantum Hamiltonian on
the order of hundreds of lattice sites.

There are technical issues arising from the use of DMRG that we must consider. The
model (6.1) possesses a quasi-degeneracy that is exponentially vanishing with system
size; that is, as the system size approaches infinity, the gap between the ground state
of the model and its first excited state decreases exponentially, resulting in degenerate
ground states in this limit. Consequently, when we employ DMRG to find the ground
state of the model for large system sizes, a superposition between the ground state and
the first excited state will generally be returned. Since here we concern ourselves with
quantities computed from the entanglement spectrum of the state, and this spectrum
is greatly affected by the presence of a superposition, this degeneracy must be lifted so
that accurate results can be obtained.

This issue was solved by simply picking an appropriate, physically motivated, ini-
tial state for the algorithm. We found that when this is done, the algorithm naturally
resolves the quasi-degeneracy. Concretely, the initial state is picked in the basis asso-
ciated to the largest coefficient in the Hamiltonian, and depends on the sign of this
coefficient. If this sign is negative, a Néel state |↑↓ ... ↑↓⟩ in the appropriate basis is
picked, corresponding to an antiferromagnetic ordering in the direction of the largest
coupling; if it is positive, a fully polarised state |↑↑ ... ↑⟩ in the appropriate basis is
picked, corresponding to a ferromagnetic ordering in the direction of the largest coup-
ling. For instance if |Jy| > |Jx|, |Jy| > |Jz| and Jy < 0, then a Y -polarized Néel initial
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state is picked.
The interaction distance for the XYZ model (6.1) is shown in Fig. 6.3 for 200 spins.

Along the line Jy = Jz, which is equivalent to the XXZ model with antiferromagnetic
couplings studied in Ref. [150], DF is large around the gapless critical phase |Jy| > 1.
On the line Jy = −Jz, DF is large across a much narrower region around its |Jy| > 1
gapless phase. Away from the critical regions, DF tends to zero, showing that the
entanglement spectrum starts to quickly converge to that of a free-fermionic state. We
will focus our investigation around the gapless regions, where DF exhibits non-trivial
behaviour.

Figure 6.3: Interaction distance, DF, in Eq. (2.45), obtained using DMRG across the
phase diagram of the XYZ model for L=200 spins. Red lines denote critical lines, and
the conformal (C) and non-conformal (E) tricritical points are indicated [54]. Vectors
−→u 1,
−→u 2 are orthogonal to the critical lines and are used in Fig. 6.4. Interaction distance

is strongly suppressed in gapped phases of the XYZ model, signalling the emergence of
Gaussianity. The DMRG bond dimension was allowed to scale as necessary.

While the ground state of the XYZ model presents with free-fermionic entanglement
when L→∞, we expect that the model becomes free when L exceeds the correlation
length ξ by a certain amount. As argued in [192] and reviewed in Section 2.6, this is
because the system then hosts quasiparticles spanning this number of lattice sites, and
the correlations between these quasiparticles, which have a free-fermionic nature, then
dominate the entanglement spectrum. When applied to the XYZ model, the interaction
distance can diagnose the emergence of freedom and thus quantify the point at which
the entanglement spectrum becomes free-fermionic for various system sizes L compared
to ξ. Without loss of generality, we consider the behaviour of DF along the −→u1 vector,
which crosses the Jy = Jz critical region, and the −→u2 vector, which crosses the Jy = −Jz
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critical region, as shown in Fig. 6.4(a). We find that, for values of the couplings away
from the critical lines, DF tends to zero exponentially fast as system size increases,
signalling the emerging freedom.

To analyse the conditions under which this happens, we determine the system size
Lmin beyond which the interaction distance starts decreasing, as well as the rate r at
which DF ∝ exp(−rL) approaches zero. Fig. 6.4(b) shows that r decreases as the cor-
relation length ξ increases, i.e. the rate of exponential decay of DF decreases the closer
we are to the critical regions. Hence, DF can quantify the point at which the results
in the thermodynamic limit become valid, and shows that the quantum correlations of
the XYZ model become free-fermion-like by having DF → 0 exponentially fast with L,
provided that the size is larger than a minimum value Lmin. The latter is a polynomial
function of the correlation length ξ, as can be seen in Fig. 6.4(c). We observe that the
larger the correlation length, i.e., the closer to criticality, the larger the system needs to
be in order for the interaction distance to exhibit the exponential decay. We emphasise
that this strong dependence of DF on L allows one to efficiently identify the emergent
Gaussianity in a simulation of the XYZ model with an exponential accuracy with a
linear cost in the size of the simulated system.

6.4 Violation of Wick’s theorem as an experimental proxy
for interaction distance

Investigating the behaviour of the XYZ model in terms of the interaction distance re-
veals the emergence of Gaussianity in a quantitative way. Ideally, however, we would
like to have an experimentally accessible quantity that enables one to detect this emer-
gent freedom in the laboratory, as in general the full entanglement spectrum of the
system can be difficult to extract in an experimental context [40, 97, 160]. To this ef-
fect, we first start by studying how a violation in Wick’s theorem, which is satisfied by
all fermionic Gaussian states, can be quantified and related to the interaction distance.
This approach will eventually lead us to an identification of the emergent freedom of a
many-body quantum system using simple, physical observables.

Wick’s theorem provides the means to calculate higher-point correlators of a Gaus-
sian state in terms of its two-point correlators (see Section 2.4). For a four-point

98



6.4 Violation of Wick’s theorem as an experimental proxy for interaction
distance

Figure 6.4: (a) Exponential decay of DF with system size at different points along −→u1

and −→u2 cuts through the phase diagram in Fig. 6.3. We observe a short initial increase,
followed by a plateau and the final decrease beyond some crossover length scale, Lmin,
indicated by the dotted lines. Dashed lines are fits to the asymptotic exponential
decay, DF ∝ exp(−rL), for data points L > Lmin. (b) Slope k of the exponential
decay, extracted at various points along −→u1 and −→u2, exhibits a power-law dependence
on correlation length ξ. The latter is computed using the analytic formulas (6.10)
applicable in the thermodynamic limit. (c) Correlation length ξ displays power-law
dependence on Lmin. The DMRG bond dimension was set to 512 for computations
included in this figure

operator a†
iaia

†
jaj , it states that

⟨a†
jaja

†
kak⟩ρ = ⟨a†

jaj⟩ρ⟨a
†
kak⟩ρ, (6.28)

where ⟨O⟩ρ := tr(ρO) and ρ is a FGS. For a general quantum state, this is no longer
necessarily true. To quantify the degree of violation of (6.28), we will consider

W(ρ) = |⟨d†
jdjd

†
kdk⟩ρ − ⟨d

†
jdj⟩ρ⟨d

†
kdk⟩ρ|, (6.29)

where the operators di used in the computation of W are the eigenoperators associated
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to the entanglement Hamiltonian of ρ, which, as explained in Section 2.5, can for a
general quantum state be written in the following form:

H int
E =

∑
j

ϵjd
†
jdj +

∑
j,k

ϵjkd
†
jdjd

†
kdk + · · · , (6.30)

where ϵi are the single particle energies and ϵij are the two particle energies of the
entanglement Hamiltonian, and so forth. If this state is Gaussian with respect to the
bipartition chosen, then all energies other than the single particle ones vanish.

Like the interaction distance, this quantity can be used to identify the effect of
fermionic interactions. In fact, we can show that whenever a model is identified as free
by the interaction distance, this is necessarily also the case for W(ρ), as W(ρ) ≤ 6DF(ρ).
To prove this bound, let first σ be a fermionic Gaussian state. Then, W(σ) = 0, and
we can write

W(ρ) = |⟨d†
jdjd

†
kdk⟩ρ − ⟨d

†
jdjd

†
kdk⟩σ − ⟨d

†
jdj⟩ρ⟨d

†
kdk⟩ρ + ⟨d†

jdj⟩σ⟨d
†
kdk⟩σ| ≤

|tr(d†
jdjd

†
kdk(ρ− σ))|+ |⟨d†

jdj⟩ρ||tr(d
†
kdk(ρ− σ))|+ |tr(d†

jdj(ρ− σ))||⟨d†
kdk⟩σ|. (6.31)

We know that (see Section 2.6)

tr(O(ρ− σ)) ≤ 2∥O∥DF(ρ), (6.32)

where ∥O∥ can be taken to be the largest eigenvalue of the operator O [151]. Then,
from (6.31), we obtain

W(ρ) ≤ 6DF(ρ). (6.33)

The two-point correlator with respect to

ρ = exp
(
−H int

E

)
(6.34)

can be computed as [157]
⟨d†
jdj⟩ρ = 1

eϵj + 1 , (6.35)

and the four point correlators as

⟨d†
jdjd

†
kdk⟩ρ = 1

eϵjk
+ eϵjk−ϵj + eϵjk−ϵk + 1. (6.36)
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By leveraging these expressions, we can calculate the violation (6.29) of Wick’s theorem
exclusively in terms of the entanglement energies ϵj , ϵk and ϵjk. As in interaction
distance, we do this to avoid computing an explicit representation of the eigenoperators
dj (see Section 2.4). In what follows, we obtain these energies heuristically by assuming
that the two smallest levels (excluding the one corresponding to the normalisation) are
ϵj and ϵk. We then assume that the level closest to their sum corresponds to ϵjk.
Despite the heuristic nature of this approach, it yields very good results, as can be
seen in the relationship between W and DF throughout the phase diagram of the XYZ
model (6.1) plotted in Figure 6.5(a). Not only the inequality (6.33) we have derived is
satisfied, but there is a clear polynomial relationship between the two quantities, which
indicates that they capture the same information. This suggests that the optimisation
involved in the computation of interaction distance may in certain cases be replaced
by the heuristic approach we have taken in determining the single-particle modes.
Furthermore, it reflects that DF is principally determined by the largest elements of
the entanglement spectrum. As explained in Section 2.5, the eigenoperators dj , d†

j are,
in general, related to the operators aj , a†

j defined on the underlying lattice model (6.2)
through a non-local transformation. At this stage, therefore, we are presented with the
same issue as with interaction distance: in order to determine (6.29) experimentally,
one needs full state tomography.

To measure the emerging freedom of the system in terms of physical observables,
we directly compute the violation of Wick’s theorem relative to the local operators aj ,
a†
j . We later analyse the generality of this approach. We find that the best results

are obtained when the aj , a†
j are constructed for a Jordan-Wigner quantisation axis

matching the coefficient in the model which is largest in absolute value, as shown in
Fig. 6.5(c). For instance, where |Jz| ≥ |Jy|, |Jz| we define the violation of the local
Wick’s theorem as

Wl(ρ) = |⟨ZjZj+1⟩ρ − ⟨Zj⟩ρ⟨Zj+1⟩ρ − ⟨YjXj+1⟩ρ⟨XjYj+1⟩ρ + ⟨XjXj+1⟩ρ⟨YjYj+1⟩ρ|,
(6.37)

which is written in terms of two-spin correlators that are experimentally accessible.
In general, this axis of quantisation could be optimised depending on the underlying
quantum state and physical model being studied, and could possibly even continuously
vary along the phase diagram. This would bring the choice of fermionic operators closer
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Figure 6.5: (a)-(b) Scatter plots comparing |W| in Eq. (6.29) and |Wl| in Eq. (6.37) with
DF, for sizes L = 600 and L = 400, respectively. We see that |W| essentially coincides
with DF, while |Wl| strongly correlates with DF below the threshold D∗

F ≈ 10−9. The
shaded area, DF > D∗

F, corresponds to data points near critical regions with high
correlation lengths, where the relationship between DF and Wl breaks down. (c) |Wl|
across the phase diagram of the XYZ model in Eq. (6.1) for size L = 400. When
computing |Wl|, we use a different Jordan-Wigner axis of quantisation for each region,
labelled as follows: in 1 we pick the z quantisation axis, in 2 we pick the x-axis, and
in 3 the y-axis. The DMRG bond dimension was allowed to scale as necessary in (a),
and was set to 128 in (b) and (c).

to the di eigenbasis, which result from generic unitary transformations of the underlying
lattice modes on each side of the bipartition.

While Wl does not necessarily satisfy the inequality (6.33), we have numerically
determined that it is tightly related to DF with a monotonic one-to-one correspondence
in the gapped region of the XYZ model, as shown in Fig. 6.5(b). Discrepancies from
this behaviour only emerge near the critical regions, due to the finite-size effects. Thus,
Wl can successfully identify the emerging freedom of the XYZ model. In Fig. 6.5(c),
we evaluated Wl throughout the phase diagram of the XYZ model, finding similar
behaviour to DF in Fig. 6.3(b). Wl becomes identical to W when the model is in
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the gapped antiferromagnetic phase of the XXZ-model, when J2
y + J2

z → ∞, or when
J2
y + J2

z → 0. In this case the violation of the local Wick’s theorem Wl provides the
same information as DF, while it can be measured in the laboratory.

6.5 Robustness of experimental probe under realistic con-
ditions

To demonstrate the experimental relevance of our results, we analyse the applicability of
Wl in the presence of realistic conditions, such as variations in the range of interactions,
coupling inhomogeneities and local random potentials. For example, in a cold atom
implementation, the interactions between the constituent particles are characterised by
a long-range algebraic decay [29, 117]. Moreover, there might be inhomogeneities in the
engineered couplings due to imperfections in the laser control procedures or spurious
random local potentials.

We first consider the effect that a polynomial profile of interactions has on the
behaviour of Wl. We introduce a long-range XYZ model

HLR =
∑
j,k

1
|j − k|α

(JxXjXj+k + JyYjYj+k + JzZjZj+k) , (6.38)

where α controls the power-law decay of the couplings. The ground-state properties of
this model can be captured using finite DMRG by expressing the algebraically decaying
interaction as a sum of exponentials; this allows us to represent the Hamiltonian as
a matrix-product operator [140, 162]. In Fig. 6.6(a) we show the behaviour of Wl

as a function of system size in the long-range model. We picked a representative
point which is in the gapped, antiferromagnetic phase for the entire range of α values
considered [110]. As in the short-range model, Wl decreases rapidly after the system
exceeds a certain size Lmin. Note that, in contrast to the short-range case, Wl now levels
off at a very small but non-zero value as L → ∞, indicating that the entanglement of
the ground state does not become completely free in the thermodynamic limit. The
saturation value depends on the couplings and α.

A second type of robustness check we performed is the effect of experimental noise on
Wl. To model this, we firstly introduce randomised couplings on each site. In Fig. 6.6(b)
the couplings along the −→u2 cut are sampled uniformly from [Jj − δJmax, Jj + δJmax]
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Figure 6.6: (a) Wl as a function of system size for the long-range XYZ model in
Eq. (6.38) with fixed Jx−1.0, Jy = −1.0 and Jz = 5.0 and various α. (b) Wl across the
−→u2 cut with different amounts of per-site randomness δJmax applied to the couplings
Jx, Jy and Jz at system size L = 100. (c) Wl across the −→u2 cut with a random local
field of strength hmax applied to every site of an L = 100 system. The DMRG code
was run with bond dimension χ = 128.

on each site with Wl remaining stable and increasing only a small amount up to large
variations in the couplings. We additionally consider the impact of a spurious local
magnetic field in the z-direction. In Fig. 6.6(c) a random local field sampled uniformly
from [−hmax, hmax] was added on each site of the chain along the −→u2 cut. Wl also
shows stability under this class of perturbations. Hence, the emerging freedom of
the XYZ model persists in the presence of experimental imperfections that break its
integrability, while the behaviour of its ground-state correlations, as witnessed by DF

and Wl, remains largely the same.

6.6 Conclusions

There is a stark contrast between genuinely interacting systems and free ones in terms
of the complexity of their description, as well as their physical properties, such as
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their thermalisation behaviour and out-of-equilibrium dynamics. The entanglement
spectrum of the ground state of the XYZ model, which encompasses a large family of
physically relevant models, has a free-fermionic structure in the thermodynamic limit,
even though it incorporates fermionic interactions in its definition. Here, we identified
the system size conditions for the freedom to emerge near and away from the critical
regions of the model as a function of the correlation length of the system.

We proposed a way to observe the emergence of Gaussianity in the correlations of
the XYZ model in terms of observables that can be directly measured in the laboratory.
Moreover, we quantified the emergent Gaussian behaviour in the XYZ model for the
experimentally relevant cases of finite system sizes, long-range interaction potentials, as
well as inhomogeneous couplings and random local potentials. As Gaussianity emerges
exponentially fast with system size, we anticipate that our results can be experimentally
verified in several experimental realisations of XYZ-type models, both in solid state
materials as well as synthetic ultracold atom systems [70, 87, 130, 152, 161, 168, 187].

As our method does not rely on the integrability techniques, which are mainly
restricted to one spatial dimension, it could be applied to other non-integrable 1D
systems or even 2D models, provided a suitable lattice bipartition can be identified. An
open question is, of course, how the transformation of W to Wl should be performed
in general. A rigorous method to express W in terms of experimentally measurable
operators would involve considering the explicit transformation of the eigenoperators
dj to the fermionic operators aj defined in terms on the lattice degrees of freedom.
This will in general be unfeasible in practice – a direct decomposition would result in
an exponential number of terms, most of which are non-local. This would make a finite-
size study quite difficult, while analytical results in the thermodynamic limit may be
ultimately irrelevant (where e.g. the ground state is already known to be free-fermionic
in this limit).

Thus, though a formal study and general characterisation of the eigenoperators dj
would be of great interest, case-by-case heuristic approximations backed up by numer-
ical and physical arguments may be the best goal for experimental applications. On
this note, aspects worth exploring are the nature of the fermion-qubit mapping used –
in this work, the standard Jordan-Wigner transformation was employed, which results
in highly non-local operators due to the presence of a string of Z operators. Mappings
such as the Bravyi-Kitaev [174] or Verstraete-Cirac [198] transformations could allow
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for a more elaborate approximate decomposition while maintaining the locality of the
resulting operators.

106



Chapter 7

Conclusions
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In this work, we have explored how variational algorithms can be used to prepare
the ground state of a number of many-body models in quantum condensed matter.
We have, in particular, probed how the interplay between the physical properties of
the models and the associated optimisation procedure can affect the success of the
algorithm. To this end, we made use of several techniques, such as the interaction
distance, which aims to measure the distance between an interacting fermionic state
and a corresponding optimal fermionic Gaussian state. We reviewed this measure in
Section 2.6, and later independently studied it in Chapter 6, where we computed it
in context of the XYZ model of magnetism and explored the possibility of measuring
Gaussianity through simple physical observables.

After a review of spin and fermionic systems in Chapter 2, our analysis started
in Chapter 3, where we expanded upon the Lie theoretical framework for variational
algorithms. There, we have pointed out that the states that the algorithm can prepare
form the set of all ground states of the Hamiltonians in the Lie algebra of the variational
protocol. Moreover, we identified a Lie subalgebra which generates a Gauge subgroup
of the unitaries in the protocol. This Gauge subgroup leaves the initial state invariant,
justifying that one does not need the entire set of unitaries to prepare every possible
state, and that certain directions in the parameter space will leave the state under
preparation unchanged. By computing the Lie algebra of the Quantum Approximate
Optimisation Algorithm defined on a 1-dimensional lattice, we analytically showed that
a state can be prepared by this protocol if and only if that state is free-fermionic. This
was exploited in Chapter 4 to conduct a comprehensive numerical study. By carefully
modifying the variational protocol, we extend it to non-integrable models in Chapter 5.

We proceeded to perform this extensive numerical characterisation of the 1D QAOA
in Chapter 4. There, we exploited the efficient classical simulation of free-fermionic
systems, both to counteract the overhead imposed by the necessity of performing a
nonlinear optimisation, and to reach large system sizes not ordinarily attainable in
exact classical simulations. In our exploration, we found that the physical properties of
the target Hamiltonian greatly affect the optimisation of the algorithm. In particular,
we observed that using a protocol with fewer symmetries makes the preparation of non-
local Hamiltonians easier, and of local Hamiltonians harder, while the opposite happens
when symmetries are enforced. We argued that constraining the space of states that
the optimiser can explore causes non-local Hamiltonians to drive it into regions that
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trap it in local minima. This evidences how the mutual influence between the physical
features of the model and the parameter optimisation needs to be taken into account
when employing these algorithms. It also highlights that in certain cases, the use of
symmetries may be detrimental to the optimisation. This is particularly interesting,
since symmetries are generally believed to benefit the algorithm by reducing its search
space.

In contrast with the case above, there exist conditions where the influence of the
physical features predominantly dominates the parameter optimisation – and vice versa.
On the one hand, in our study of overparameterisation in Section 4.3, we see that by
increasing the circuit depth beyond a certain threshold, the optimisation converges
to the target state exponentially in the number of iterations regardless of the target
Hamiltonian chosen. Interestingly, we see that the number of iterations that the al-
gorithm takes to converge to the solution also decreases with this depth, indicating that
the effects of overparameterisation are quickly established beyond this threshold. On
the other hand, in our study of non-integrable models in Chapter 5, the success of state
preparation was dominated by how far from being free-fermionic the model is, as meas-
ured using the entanglement spectrum of the model through the interaction distance.
Moreover, we observe that the connection between the success of the optimisation and
the interaction distance can provide information about which phase the model is in.
This reinforces the idea that the success of the optimisation is mainly determined by a
physical property of the model in this case. Thus, in the case of the overparameterised
circuit, factors directly related to the algorithm determine its success, while in the in-
teraction distance case, it is a property of the model that predominantly influences how
effective the algorithm ultimately is.

By taking a quantum many-body perspective, our work furthers the understanding
of variational algorithms and their applications. Its conclusions, however, are not re-
stricted to condensed matter systems, as many problems must ultimately be mapped
to such a system to be optimised variationally e.g. combinatorial optimisation prob-
lems which are translated to the problem of finding the ground state of an Ising-type
Hamiltonian [108].

An interesting future direction would be to rigorously prove some of the results
involving free-fermionic systems in Chapter 4. While these systems are known to be
amenable to an analytical treatment (see e.g. [47]), the associated variational optim-
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isation tends to make this challenging [203]. A problem that may be within reach is
that of determining the minimum circuit depth for maximum expressibility. A family of
circuits that can provably parameterise fermionic Gaussian states is relevant, as there
are no known examples (to the best of the author’s knowledge) of a practical para-
meterisation of that manifold of states. Such a parameterisation can improve upon
approaches to optimisation where the state is a priori unconstrained and is explicitly
projected back to a fermionic Gaussian state at every step, resulting in a truncation
error [211]. In addition, the possibility to overparameterise the circuit, potentially mak-
ing the optimisation in such studies trivial, is a significant advantage in this approach.
An application of this would be to variationally approximate quantum states by fermi-
onic Gaussian states, which would also yield a measure of fermionic Gaussianity. This
measure would depend on the cost function chosen – if e.g. this is the overlap with
the target state, we would obtain a distance to the set of fermionic Gaussian states
defined in terms of a given set of fermionic modes. However, if we chose a distance
to the entanglement spectrum of the target state (with respect to some bipartition) as
the cost, this measure would then be equivalent to the interaction distance, which we
reviewed in Section 2.6 and studied in Chapter 6 in the context of the XYZ model.

Another compelling line of research would be to systematically explore the differ-
ences between various protocols having the same Lie algebra. Indeed, a Lie algebra can
admit several sets of generators – and from the results in Section 3.2, the corresponding
algorithms will all ultimately produce the same set of states. A comparison between pro-
tocols constructed in such a way would be relevant in determining differences between
variational algorithms with the same expressibility. Indeed, given some target state,
we expect it to be the case that a protocol is more suitable to its preparation than
others; more generally, the minimum circuit depth for maximum expressibility may be
smaller for certain sets of generators. Moreover, it would be interesting to explore how
the Gauge degree of freedom that we have pointed out affects the Hamiltonian in the
cost function. Indeed, an entire family of Hamiltonians still in the Lie algebra having a
specified target state as its ground state can be obtained by conjugation by elements of
the Gauge group. One could hope that it is the case that some of these Hamiltonians
will work better as a cost function (through faster convergence or fewer local minima).
Finally, this Lie algebraic approach could provide a suitable set of Hamiltonians for
adaptively constructed circuits [68, 217] to generate quantum gates from – as long as

110



this set contains elements of the Lie algebra which include at least one set of generators,
the algorithm’s expressibility is determined.
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[142] Stellan Östlund and Stefan Rommer. Thermodynamic limit of density
matrix renormalization. Physical Review Letters, 75(19):3537–3540, 1995.
doi:10.1103/physrevlett.75.3537.

[143] Micha l Oszmaniec, Ninnat Dangniam, Mauro E.S. Morales, and Zoltán Zimborás.
Fermion sampling: A robust quantum computational advantage scheme using
fermionic linear optics and magic input states. PRX Quantum, 3:020328, 2022.
doi:10.1103/PRXQuantum.3.020328.

[144] Matthew Otten, Cristian L. Cortes, and Stephen K. Gray. Noise-
resilient quantum dynamics using symmetry-preserving ansatzes, 2019.
doi:10.48550/ARXIV.1910.06284.

[145] Carlos Outeiral, Martin Strahm, Jiye Shi, Garrett M. Morris, Simon C. Benjamin,
and Charlotte M. Deane. The prospects of quantum computing in computational
molecular biology. WIREs Computational Molecular Science, 11(1):e1481, 2021.
doi:https://doi.org/10.1002/wcms.1481.

[146] A. A. Ovchinnikov, D. V. Dmitriev, V. Ya. Krivnov, and V. O. Cheranovskii.
Antiferromagnetic Ising chain in a mixed transverse and longitudinal magnetic
field. Phys. Rev. B, 68(21):214406, 2003. doi:10.1103/PhysRevB.68.214406.

[147] Jiannis K. Pachos and Zlatko Papic. Quantifying the effect of interactions
in quantum many-body systems. SciPost Phys. Lect. Notes, page 4, 2018.
doi:10.21468/SciPostPhysLectNotes.4.

[148] Guido Pagano, Aniruddha Bapat, Patrick Becker, Katherine S. Collins, Arin-
joy De, Paul W. Hess, Harvey B. Kaplan, Antonis Kyprianidis, Wen Lin Tan,
Christopher Baldwin, Lucas T. Brady, Abhinav Deshpande, Fangli Liu, Stephen
Jordan, Alexey V. Gorshkov, and Christopher Monroe. Quantum approximate
optimization of the long-range ising model with a trapped-ion quantum simu-
lator. Proceedings of the National Academy of Sciences, 117(41):25396–25401,
2020. doi:10.1073/pnas.2006373117.

127

https://doi.org/https://doi.org/10.1016/j.revip.2019.100028
https://doi.org/10.1103/physrevlett.75.3537
https://doi.org/10.1103/PRXQuantum.3.020328
https://doi.org/10.48550/ARXIV.1910.06284
https://doi.org/https://doi.org/10.1002/wcms.1481
https://doi.org/10.1103/PhysRevB.68.214406
https://doi.org/10.21468/SciPostPhysLectNotes.4
https://doi.org/10.1073/pnas.2006373117


BIBLIOGRAPHY

[149] J.B. Parkinson and D.J.J. Farnell. An Introduction to Quantum Spin Systems.
Lecture Notes in Physics. Springer Berlin Heidelberg, 2010. ISBN 9783642132902.

[150] Kristian Patrick, Vincent Caudrelier, Zlatko Papić, and Jiannis K. Pachos. In-
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