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Abstract 

Running urban rail services can be costly; in some contexts, it requires 

subsidy. Therefore, ensuring that costs are kept in line is vital as it 

affects government expenditure and passenger fares. This condition 

motivates studies that understand the cost structure and whether firms 

operate efficiently. The empirical work presented in this thesis centres 

on urban rail in Japan as its primary focus. This thesis comprises three 

interrelated research studies. Research Study 1 aims to understand 

the cost structure of each urban rail mode in Japan. Research Study 

2 explores the ownership effect on cost efficiency. Research Study 3 

further explores ownership and other effects on cost efficiency, service 

effectiveness, and cost effectiveness. This thesis utilised the trans-log 

cost function and DEA-Tobit regression to achieve the research aims. 

The trans-log cost function is parametric, while DEA-Tobit regression 

is semi-parametric. Nevertheless, they are two widely used methods 

for deriving performance, especially efficiency. There are lessons from 

this thesis, especially on the cost structure, mode differences, and 

ownership effects. First, traffic density and scale affect different 

performance dimensions (i.e., cost efficiency, service effectiveness 

and cost effectiveness) in different ways. Second, mode affects 

different performance dimensions in different ways. Third, Returns to 

Density (RTD) and Returns to Scale (RTS) vary between over-ground, 

monorail, and under-ground. Fourth, private firms are profit-

maximising entities but not necessarily cost-efficiency maximisers. 

Fifth, measuring all the performance dimensions and interpreting the 

results relative to each other is essential. These findings are essential 

for firms, regulators, and funders. Given the interest in the empirical 

performance of private urban rail firms, we suggest future research 

investigate how they perform in cost efficiency, service effectiveness 

and cost effectiveness in other regions. We also hope that future 

empirical research will clarify the RTD and RTS of urban rail modes.  
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Chapter 1 Introduction 

Rail services are a form of transportation that utilises a fixed track 

system, where trains travel on rails to convey passengers and cargo. 

Rail services are classified into two types: freight rail and passenger 

rail. Freight rail is predominantly used to transport long-distance 

goods, such as raw materials, finished products, and heavy 

equipment. It is a necessary form of transportation for enterprises, 

industries, and supply chains that rely on the practical and reliable flow 

of goods. On the other hand, passenger rail is mainly used to move 

people over long and short distances, usually between cities and 

within urban.  

Passenger rail services can be classified into two distinct categories: 

intercity rail and urban rail. Intercity rail services, such as the Eurostar 

in Europe, transport people over extended distances between cities. 

These rail services operate in regions where cities are geographically 

separated. Common features include spacious seating, access to 

refreshments, and even the chance to spend the night if the journey is 

lengthy. In contrast, urban rail services are intended to transport 

people to and from their places of employment and other locations 

within urban or suburban areas. Typical urban rail services include 

subways, light rail, commuter rail, and elevated train systems. They 

commonly run during the busiest times of the day, whereas 

significantly fewer trains operate outside those times. 

Urban rail services provide various advantages over other means of 

transportation, including shorter travel times, less traffic congestion, 

and lower pollutants (Xiaoqiang, 2020). They are also more reliable 

than buses or cars since they run on fixed tracks and are less likely to 

be disrupted by traffic or accidents. 

The cost of operating an urban rail system can vary depending on 

several factors, including the system's size, complexity, and vehicle 

type. Labour, energy, and maintenance and repair are the primary cost 

generators for urban rail. Labour can account for a substantial portion 
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of the operating costs, mainly if the system is operational 24 hours a 

day or provides frequent services. Energy may also be significant, 

especially for systems that rely on fossil fuels or outdated, less efficient 

equipment. Maintenance and repair are critical for keeping trains and 

equipment in excellent working order, and they can be high, especially 

for older systems or those with a large fleet of cars.  

Running urban rail services can be costly; in some contexts, it requires 

subsidy. Therefore, ensuring that costs are kept in line is vital as it 

affects government expenditure and passenger fares. Even where 

governments do not subsidise to a large extent, like in Japan, 

competitive or regulatory pressure would suggest that costs must be 

efficient. This condition motivates studies that understand the structure 

of costs and whether firms are operating efficiently. The findings of 

these studies are essential for firms, regulators, funders, and users.  

An urban rail service's performance, including cost performance, can 

be measured by analysing its historical data or by comparing its data 

against that of others. Let us call the former a self-assessment and the 

latter a peer comparison.  

Self-assessment is a relatively straightforward exercise as it is easy to 

access internal data. Looking at a firm's productivity over time, one can 

tell how the firm has been performing. However, self-assessment has 

two shortcomings. One, self-assessment does not tell where a firm sits 

in the industry or whether its productivity is in tandem with those of 

other firms in the industry average. Two, self-assessment does not tell 

the firm's productivity growth is in tandem with those of other firms in 

the industry.  

Peer comparison can be applied to address these shortcomings. 

However, implementing performance measurement on urban rail 

services through peer comparison faces two intriguing issues: the 

comparability of peers and the variation in previous findings. 

Parks et al. (2010, p. 2) pointed out that "many believe that no two 

transit agencies are alike". For example, Tsamboulas (2006) found 
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that public-owned operators were less efficient and effective than 

privately owned, profit-oriented operators. Besides that, performance 

is also found to be influenced by other factors. For instance, the 

performance of an urban rail service can vary by operating in a 

different population density (Tsai et al., 2015).  

Additionally, previous studies produced differing findings on how 

exogenous factors affect urban rail performances — so much so that 

one contradicted another. For example, Jain, Cullinane, and Cullinane 

(2008) found private operators were the most efficient, followed by 

corporate and public, respectively. On the contrary, Min, Ahn, and 

Lambert (2017) concluded ownership influence on efficiency was 

insignificant. These differences may put one in a dilemma in choosing 

the findings to rely on.  

Over time, there has been significant variation in the definitions of firm 

performance, and there have been limited efforts to establish 

systematic connections between these definitions across different 

studies (Perry et al., 1988). In addition, "some of the reasons for the 

absence of consistent and cumulative research results are 

methodological" (Perry et al., 1988, p. 138). These "methodological" 

causes include different samples, periods, and analytical 

methodologies. With these points in mind, this thesis adapted 

performance definitions (i.e., cost efficiency, service effectiveness, 

and cost effectiveness) introduced by Fielding et al. (1985), applied 

two different approaches (i.e., trans-log cost function and DEA-Tobit 

regression), and analysed the effects of some selected exogenous 

factors (i.e., mode, density, scale, and ownership). More details will be 

elaborated when we discuss the literature review (Chapter 2) and 

methodology (Chapter 3). 

The empirical work presented in this thesis centres on urban rail in 

Japan as its primary focus. The market for urban rail in Japan is one 

of a kind. "Japanese passenger railways are financially healthy and 

performing well in metropolitan areas" (Mizutani, 2014, p. 4). This 

situation contrasts with the case in many other countries. There are 
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private, public, and quasi-public operators participating in this market. 

Most operators are also the owners of the rail infrastructure. A select 

few are responsible for the operation of the rail infrastructure alone, 

while another select few oversee the rail services alone. In addition, 

Japan's regulatory climate is quite distinctive compared to any other 

country or region in the world (further details will be elaborated in 

Chapter 4). Nevertheless, there can be lessons for other countries, 

especially on the cost structure, mode differences, and ownership 

effects. 

This thesis comprises three interrelated research studies. Research 

Study 1 (Chapter 5) aims to understand the cost structure of each 

urban rail mode in Japan and determine whether there is any 

significant difference between them. The research objectives are to: 

a. determine whether operating costs vary between modes and 

whether there is a significant difference between them, 

b. determine whether economies of density characteristics vary 

between modes and whether there is a significant difference 

between them, and 

c. determine whether economies of scale characteristics vary 

between modes and whether there is a significant difference 

between them. 

Research Study 2 (Chapter 6) explores the ownership effect on cost 

efficiency in the Japanese urban rail sector. The research objectives 

are to:  

a. determine whether adding the ownership variable into 

Research Study 1's trans-log cost function model does not 

materially change the coefficients elsewhere,  

b. explore whether different methods (i.e., trans-log cost function 

and DEA-Tobit Regression) would yield similar results, and 

c. determine whether private firms are more cost-efficient than 

other firms.  

Research Study 3 (Chapter 7) aims to explore further the ownership 

effect on each performance dimension (i.e., cost efficiency, service 
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effectiveness and cost effectiveness) in the Japanese urban rail sector 

and investigate the density, scale, and mode effects on each 

performance dimension. The research objectives are to: 

a. determine whether private firms are more service effective than 

other firms, 

b. determine whether private firms are more cost-effective than 

other firms, 

c. compare and evaluate private firms' performance in cost 

efficiency, service effectiveness, and cost effectiveness, and 

d. compare and evaluate how density, scale, and mode affect cost 

efficiency, service effectiveness, and cost effectiveness.  

In Research Study 3, the private firms’ cost efficiency from Research 

Study 2 is used to compare and evaluate the private firms’ service 

effectiveness and cost effectiveness.  

The rest of this thesis is laid out as follows. Chapter 2 reviews the 

literature. We organised the literature into two sections in this chapter. 

The first is the performance of urban rail modes, while the second is 

that of private firms. We evaluated prior studies on urban rail 

performance in the first section. We also discussed the advantages of 

understanding the cost structure. The second section expanded on the 

theoretical expectations for private firm performance. We also looked 

at existing research on private firms' performance compared to other 

firms (including public firms).  

Chapter 3 elaborates on the methodology. We will elucidate the 

research studies' methods based on our research aims. As mentioned, 

there are three primary research aims and a separate study for every 

aim. These studies were conducted in stages since each study has a 

methodological connection. For example, the model specified in the 

first research study was employed in the second. We will also refer to 

some findings from the preceding study when discussing the 

methodologies used in the second and third research studies.  

Chapter 4 looks at the Urban Rail Environment and Data in Japan. We 

will start by discussing eight regulatory aspects in Japan. The 
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principles and strategies commonly employed in the industry include 

the self-sufficiency principle, diversification strategy, subsidies, market 

entry and exit, licences, fare, competition, and regulation. In the 

following part of this chapter, we will describe the data sources used 

in each research project and the variables that were investigated. After 

that, we will discuss the correlation between the Mode variable and the 

Ownership variable and whether this will affect the research studies 

we will conduct. 

Chapter 5 discusses the results and findings of Research Study 1. We 

started by giving a synthesis of the results from simple ratios, which 

are non-econometric methods. After that, we discussed the operating 

costs, Returns to Density (RTD), and Returns to Scale (RTS) based 

on the trans-log cost function, an econometric approach. Then, we 

discussed the differences between the results from simple ratios and 

the trans-log cost function. This chapter's discussion continues with 

several policy implications. 

Chapter 6 discusses the results and findings of Research Study 2. 

Firstly, we compared and evaluated the results from the trans-log cost 

function model used in Research Study 1 against those from the trans-

log cost function model used in Research Study 2. We then compared 

and evaluated the results from the DEA-Tobit regression model 

against those from the trans-log cost function model used in Research 

Study 2. This evaluation is followed by a discussion on private firms' 

performance in cost, cost efficiency and technical efficiency in the 

Japanese urban rail sector. The subsequent discourse in this chapter 

encompasses several plausible reasons for our findings. 

Chapter 7 discusses the results and findings of Research Study 3. We 

began by comparing the regression results for all performance 

dimensions: cost efficiency, service effectiveness, and cost 

effectiveness. Here, we investigated the effects of ownership, traffic 

density, scale, mode, time, and population density on cost efficiency, 

service effectiveness, and cost effectiveness. In general, cost 

efficiency is the relationship between service input and service output; 
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service effectiveness is the relationship between service output and 

service consumption; and cost effectiveness is the relationship 

between service input and service consumption. We then 

concentrated on the performance of Japanese private urban rail firms 

in terms of cost efficiency, service effectiveness, and cost 

effectiveness. This chapter's further discussion presents numerous 

reasons for our findings. 

Chapter 8 concludes this thesis.   
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Chapter 2 Literature Review 

In this chapter, we divided the literature into two sections. First is the 

performance of urban rail modes, and second is the performance of 

private firms. In the first section, we reviewed previous studies on 

urban rail performance. We also explained the benefits of knowing the 

cost structure. In the second section, we elaborated on the theoretical 

expectations of private firms' performance. We also reviewed previous 

studies on private firms' performance relative to other firms (including 

public firms).  

Along the way, we picked up gaps that motivated us to conduct three 

research studies. For completeness and clarity, we restated our 

research aims with objectives at the end of the first section, in the 

middle of the second section, and at the end of the second section — 

where the gaps are found. We also mentioned these aims and 

objectives in the relevant chapters for convenience.  

2.1 The Performance of Urban Rail Modes  

There are numerous studies on the performance of rail services. 

These studies include long-haul services as well as short-haul 

services. Long-haul is inter-state services, while short-haul is urban 

services. There are situations where inter-state services cut across a 

large metropolitan area. They may have two stops or more in that area 

and may indirectly serve the urban commuters. However, this is not 

the nature of their services. The purpose of their existence is to serve 

the inter-state commuters. The inter-state services often consist of 

passenger and cargo transportation, whereas the urban rail services 

mainly transport passengers. Combining inter-state and urban rail 

services in a study may cause complications as each has different 

characteristics. This section of the literature review, therefore, focuses 

on urban rails. At times, we included other studies we found relevant, 

especially in the next section — when we discuss the performance of 

private firms. 
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One concern with the urban rail services is that even after separating 

them from the long-haul services, they further consist of different rail 

modes such as over-ground, monorail, and under-ground. While some 

studies on urban rail performance mentioned the rail modes1 being 

evaluated, others did not.  

Table 1 on page 11 lists 14 studies on urban rail performance from 

1997 to 2018. We checked whether these studies had addressed 

mode differences. We say a study has implemented mode separation 

when it runs separate analyses for different modes. We say a study 

has implemented mode recognition when the sample is kept together, 

but mode dummies are included. We say a study has implemented a 

mode definition when it includes mode definitions. As shown under the 

Mode Separation column, none of these studies separated rail modes 

before making their respective analyses. As shown under the Mode 

Recognition column, some of these studies recognised mode 

differences in their respective analyses. Of the five studies that 

implemented mode recognition, only two — Savage (1997) and Min et 

al. (2017) — treated mode differences more seriously by including 

mode definitions. 

Mode difference was recognised as early as 1997 by Savage (1997), 

but many studies did not follow suit after that. Studies like Babalik-

Sutcliffe (2002) and Walter (2011) encompassed some urban rail 

modes but did not recognise mode differences. Furthermore, studies 

like Sekiguchi et al. (2010) which coined 'urban railway'2, did not even 

mention the modes involved, let alone recognise mode difference. 

 

1 The categorisation of urban rail services varies from one region to another. 
For example, in the United States, urban rail services are categorised 
into five: heavy rail (HR), light rail (LR), monorail (MR), streetcar rail 
(SR), and commuter rail (CR). On the other hand, in Japan, urban rail 
services are generally categorised into three: over-ground (OG), 
monorail (MR), and under-ground (UG). 

2 Companies performing the functions of a railway and operating rail cars on 
fixed rail guides/tracks; serving urban areas with population of 300,000 
or more. 
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Stating and recognising mode differences has not been a standard 

practice.  

Four of the five studies that recognised mode difference focused on 

the production aspect — albeit in varying ways. These four are 

Graham (2008), Ingvardson and Nielsen (2018), Min et al. (2017) and 

Tsai et al. (2015). Only one, Savage (1997), focused on the costs 

aspect. Savage (1997) conducted his study more than two decades 

ago. We are unaware of any study that recognised urban rail mode 

difference when evaluating the cost structure aspects since then — 

especially in extracting Cost Elasticity w.r.t Density (CED) and Cost 

Elasticity w.r.t Scale (CES) for each rail mode3.  

 

 

 

3 More about cost elasticity w.r.t density and scale will be discussed in 
Chapter 3: Methodology. 
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Table 1. Studies on urban rail performance 

Author(s) Mode 

Separation4 

Mode 

Recognition5 

Mode 

Definition6 

Mode Evaluated Region Method Remark 

Babalik-Sutcliffe 

(2002) 

No No No Metros & light 

rails  

USA, Canada, 

& UK.  

Case Study The term used: urban rail 

systems 

Graham (2008) No Yes No Metro, light rail, 

& suburban rail 

Worldwide DEA & Trans-

log Production 

Function 

 

Ingvardson and 

Nielsen (2018) 

No Yes No Metro, 

Suburban rail, 

light rail, & bus 

Europe Multiple 

Regression & 

Factor 

Analysis 

Some cities operate several 

modes; some do not. 

 

4 Separating rail modes before evaluating operators 
5 Addressing mode difference through the use of variables such as dummies 
6 Providing definition for each rail mode 
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Author(s) Mode 

Separation4 

Mode 

Recognition5 

Mode 

Definition6 

Mode Evaluated Region Method Remark 

Karlaftis (2004) No No No No clear 

breakdown or 

explanation 

USA DEA The term used: urban transit 

systems 

Min et al. (2017) No Yes Inferred from 

FTA 

definitions 

Light rail, 

streetcar, bus, 

etc. 

USA DEA & Tobit 

Regression 

The term used: mass transit. 

Some DMUs operate in several 

modes.  

Mizutani (2004) No No No No clear 

breakdown or 

explanation 

Japan Trans-log 

Cost Function 

The term used: urban railway 

Mizutani and Shoji 

(2004) 

No No No No clear 

breakdown or 

explanation 

Japan Trans-log 

Cost Function 

The term used: rapid transit 

railway  
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Author(s) Mode 

Separation4 

Mode 

Recognition5 

Mode 

Definition6 

Mode Evaluated Region Method Remark 

Mizutani et al. 

(2009) 

No No No No clear 

breakdown or 

explanation 

Japan Cost function The term used: urban railway  

Novaes (2001) No No No No clear 

breakdown or 

explanation 

Worldwide DEA The term used: rapid transit 

systems 

Savage (1997) No Yes Yes Heavy rail & 

light rail 

USA Trans-log 

Cost Function 
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Author(s) Mode 

Separation4 

Mode 

Recognition5 

Mode 

Definition6 

Mode Evaluated Region Method Remark 

Sekiguchi et al. 

(2010) 

No No No No clear 

breakdown or 

explanation 

Japan DEA The term used: urban railway7  

Tsai et al. (2015) No Yes No Heavy rail, rapid 

rail, & commuter 

rail 

Worldwide DEA & Tobit 

Regression 

Only one dummy variable 

(heavy rail) was used. 

Tsamboulas 

(2006) 

 

No No No No clear 

breakdown or 

explanation 

Europe DEA & Tobit 

Regression 

 

 

7 Companies performing the functions of a railway and operating rail cars on fixed rail guides/tracks; serving urban areas with population of 300,000 or 
more. 
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Author(s) Mode 

Separation4 

Mode 

Recognition5 

Mode 

Definition6 

Mode Evaluated Region Method Remark 

Walter (2011) No No No Metro, light rail, 

tram, & bus 

Germany Cost Function Used 'railcar utilisation rate' to 

address rail influence on 

performance; but did not specify 

rail mode. 
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With the availability of relevant data on Japanese urban rail services, 

we are motivated to understand the cost structure of each urban rail 

mode8 in Japan and determine whether there is any significant 

difference between them. The cost structure is defined in this thesis to 

relate operating cost levels, economies of density, and economies of 

scale. Knowing these components carries three key benefits.  

One, if operating costs differ between urban rail modes, it is necessary 

to recognise that different rail modes would naturally require different 

financial commitments. Operating and infrastructure construction 

costs could be considered when selecting which rail mode to 

construct. This combination enables policymakers to decide which 

mode to construct when considering a new urban rail project — 

particularly from the operating costs aspect of Cost Benefit Analysis 

(CBA). 

Two, if economies of density are different between urban rail modes, 

different urban rail modes will experience different impacts on costs 

when the output level is increased or decreased. An output increase 

may result in higher operating costs for one rail mode but lesser 

additional operating costs for another. It may eventually result in higher 

average operating costs for the former. With this information, 

policymakers can consider and specify the expected output level from 

an urban rail service. Not only that, a realistic amount of incentive and 

subsidy can also be allocated.  

Three, if economies of scale are different between urban rail modes, 

different urban rail modes will experience different impact on costs 

when traffic and network length is increased or decreased. Just like 

output increment, a network expansion may result in higher additional 

operating costs for one rail mode and may eventually result in a higher 

average operating cost. This information will help policymakers decide 

on expanding the current urban rail network.    

 

8 Over-ground, monorail, and under-ground. 



17 
 

 

 

Therefore, in Research Study 1 (Chapter 5), we aim to understand the 

cost structure of each urban rail mode in Japan and determine whether 

there is any significant difference between them. In doing so, we will 

a. determine whether operating costs vary between modes and 

whether there is a significant difference between them, 

b. determine whether economies of density characteristics vary 

between modes and whether there is a significant difference 

between them, and 

c. determine whether economies of scale characteristics vary 

between modes and whether there is a significant difference 

between them. 

2.2 The Performance of Private Firms 

There are reasons to believe that private firms are better positioned 

than public firms in profitability9. The first reason is property rights 

assignment. The assignment of property rights to private entities 

allows ownership to be traded. Private owners' goal of gaining 

benefits10 from their investment puts firm managers under constant 

pressure to perform well. Private owners may change the firm's 

management if poor performance affects profitability. Alternatively, 

they may sell their ownership to new owners, who would likely set up 

a new management team to improve performance11. Hence, private 

firms will strive to maximise profit in such an environment. "The 

property rights theory of the firm suggests that public enterprises 

should perform less efficiently and profitable than private enterprises" 

(Boardman & Vining, 1989, p. 1).   

The second reason is the principal-agent problem. Although the 

problem exists in both public and private firms' environments, it is more 

 

9 We will explain how profitability leads to cost efficiency and service 
effectiveness in later paragraphs. 

10 Such as dividends and higher share prices. 
11 We know that it will be challenging to impose changes under multiple 

owners. However, our aim in this paragraph is to present the basic idea 
of the theory.  
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severe in the former's due to the challenge of implementing 

performance-based pay systems (Rees, 1985). Moreover, there are 

layers of principal-agent problems under public ownership. Figure 1 on 

page 19 illustrates principal-agent layers that typically exist under 

public ownership. Conceptually, citizens are owners of public firms. 

They are represented by a politician-appointed Minister with the 

relevant portfolio. It is the first layer in which citizens act as the 

principal and the minister as the agent. The minister delegates his 

authority to civil servants to monitor the performance of public firms. It 

is the second layer in which the minister acts as the principal, and civil 

servants act as the agent. Civil servants interact with firm managers 

about the firm's performance. The third layer is where civil servants act 

as the principal and firm managers act as the agent. Under a typical 

bureaucratic environment, communication is relayed through these 

principal-agent layers.  

More so within each party, there exists bounded rationality — which is 

conceptualised as "a kind of rational behaviour that is compatible with 

the access to information and the computational capacities that are 

possessed by organisms, including man, in the kinds of environments 

in which such organisms exist" Simon (1955, p. 99). This cognitive 

limitation is coupled with short-termism, which surfaces from the 

political cycle and career promotion. This situation makes asymmetry 

issues severe under public ownership — causing inaccurate or 

delayed information and response on the performance of public firms.  
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Figure 1. Typical agents under public ownership 

The third reason is the differing goals between private and public firms. 

While private firms strive for profit maximisation, public firms prioritise 

social welfare, although they may be given a profit target amongst 

other targets. These three reasons suggest private firms are better 

positioned to generate profit than public firms.  

On another note, there is a debate on the importance of ownership in 

the presence of competition. For example, Caves and Christensen 

(1980) suggested that the most crucial factor in determining the 

success of Canadian railroads is not the type of ownership but rather 

competition. However, Vining and Boardman (1992) later disputed that 

Caves and Christensen (1980) investigated a duopoly market lacking 

a competitive environment. Vining and Boardman (1992) further 

showed that: (1) ownership is both theoretically and empirically 

significant; (2) most of the evidence purporting to demonstrate the 

"primacy of competition versus ownership" or "no difference in 

efficiency" does not and cannot do so convincingly; and (3) new 

empirical evidence using Canadian data confirms the significance of 

ownership.  

Citizens (principal) 

Ministers (agent/principal) 

Civil Servants (agent/principal) 

Firm Managers (agent) 
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2.2.1 Performance Measurement Framework for Transit 

Sector 

As stated in one of the preceding paragraphs, private firms aim to 

maximise profit. Profit maximisation can be achieved by maximising 

revenue and minimising cost. Holding product and input prices 

constant, maximising output and minimising input can maximise profit. 

It leads to the basic concept of efficiency — "the relationship between 

resource input12 and produced output13" (Fielding et al., 1985, p. 73). 

However, this concept needs adjustments when measuring efficiency 

in the transit sector. It is because transit outputs are non-storable as 

opposed to factory outputs. Kamaruddin (2012, p. 10) explained non-

storable outputs as follows:  

"However, different from factory products, transport services are non-

storable. A factory product, say a car, can be stored in a warehouse 

until there is an order from a customer. But a transport service, say a 

flight from Heathrow to Paris, cannot be put on hold until all the seats 

are sold (or occupied). This is because transport services are schedule 

driven. When the time comes, an aeroplane must fly regardless of how 

many passengers are on board. Some of the seats are going to be 

occupied, and some are not. The occupied seats are regarded as 

services consumed while the empty ones are regarded as services 

wasted." 

 

12 Also referred as service input. 
13 Also referred as service output. 
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Figure 2. Framework for transit performance. Source: Fielding et al. 

(1985) 

Fielding et al. (1985) presented a performance measurement 

framework for the transit sector (Figure 2 on page 21). In this 

framework, there are three main variables under consideration. The 

first one is service inputs like labour, capital, and fuel. The second one 

is service outputs like vehicle hours, vehicle miles, and capacity 

miles14. The third one is service consumption, such as passengers, 

passenger miles, and operating revenue. The relationship between 

service input and service output is called cost efficiency. The 

relationship between service output and service consumption is called 

service effectiveness. The relationship between service input and 

 

14 Such as seat-km. 

Service Effectiveness 

Service Inputs:  

• Labour  

• Capital  

• Fuel 

Service Outputs:  

• Vehicle Hours  

• Vehicle Miles  

• Capacity Miles 

Service 
Consumption:  

• Passengers 

• Passenger Miles 

• Operating Revenue 
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service consumption is called cost effectiveness. In the absence of 

cost data, technical efficiency15 (as opposed to cost efficiency) and 

technical effectiveness16 (as opposed to cost effectiveness) could be 

used — as exercised by Lan and Lin (2003). Fielding et al. (1985) 

treated the abovementioned relationships as ratio variables. In this 

research, we used regression equations. More details will be 

discussed in Chapter 3: Methodology. 

The framework has been applied in several pieces of research about 

rail performance evaluation. Karlaftis (2004) referred to the framework 

when evaluating the efficiency and effectiveness of urban transit 

systems (256 US transit systems). Lan and Lin (2006) applied the 

framework when examining the technical efficiency and service 

effectiveness of 39 worldwide railway systems. Yu and Lin (2008) did 

the same when evaluating the technical efficiency and service 

effectiveness of 20 selected railway firms worldwide in 2002. Other 

researchers that utilised the framework include Currie et al. (2011), 

Tsai et al. (2015), and Kleinová (2016). 

Under this framework, profit can be maximised by maximising cost 

effectiveness (i.e., maximising service consumption and minimising 

service input). Assuming regulation constrains service output17, profit 

can be maximised by maximising cost efficiency (i.e., minimising 

service input) and service effectiveness (i.e., maximising service 

consumption). Furthermore, assuming the regulation constrains 

output prices18, service effectiveness can be maximised by maximising 

 

15 The relationship between service input and service output in their 
respective units such as the number of labours for resource input and 
the amount of train journey (car-km) for produced output.  

16 The relationship between service input and service consumption in their 
respective units such as the number of labours for resource input and 
the amount of passenger journey (passenger-km) for service 
consumption. 

17 Firms are expected to provide reliable routine services which in turn, limits 
their service output adjustment. 

18 Ticket prices are typically set with the regulator’s agreement. In some 
regions like Japan, price caps are imposed. Any adjustment beyond 
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output consumed (i.e., passengers or passenger miles). With this 

framework in mind, privatisation seems beneficial to the transit market. 

Better cost efficiency, service effectiveness, and cost effectiveness are 

to be expected from privatisation. Figure 3 on page 23 depicts the 

theoretical expectations of private firms' performance. 

 

Figure 3. Theoretical Expectations of Private Firms' Performance 

2.2.2 Expected Private Firms' Performance in a 

Monopolistic Market and a Perfectly Competitive 

Market 

Although a private firm strives to maximise profit, its performance on 

cost efficiency and service effectiveness are expected to differ in a 

monopolistic market compared to a perfectly competitive market. For 

simplicity, we will use an unregulated environment19 to explain how a 

 

price caps needs the regulator’s approval. More about price caps in 
Japan will be explained later.  

19 Usually, urban rail market is regulated but the intensity of regulation is 
different from one region to another. To make the scenario equal 
between a perfectly competitive market and a monopolistic market, we 
set aside government intervention. 
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private firm would perform on cost efficiency and service effectiveness 

in both markets — except that the service output is constrained. Here, 

we assumed urban operators could not freely adjust their service 

output20. Constraining service output has been practised in the 

literature, such as Kerstens (1996), Lan and Lin (2003) and Tsai et al. 

(2015).  

When their service output is constrained, the operators' decision is 

limited to adjusting ticket prices to increase or decrease service 

consumption in pursuit of profit maximisation. We also expect 

operating costs to increase when service consumption rises. For 

example, more personnel are needed to handle more station 

commuters.  

Usually, urban rail ticket prices are subject to price cap regulation. 

Ticket prices are capped because the urban rail market is not perfectly 

competitive. If the market is perfectly competitive, price capping is not 

needed. To make the scenario equal between a perfectly competitive 

market and a monopolistic market, we set aside government 

intervention on price. 

Monopolistic Market 

Figure 4 on page 25 illustrates profit maximising conditions for a firm 

in a monopoly market. To maximise profit, the monopoly firm will find 

that it is best to operate at point Y when its average total cost (ATC) is 

still downward sloping.  

 

20 Urban rail operation is expected to meet the minimum service level or 
frequency. The operation is also limited to maximum traffic density. 
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Figure 4. Profit maximising conditions for a firm in a monopoly market. 

Suppose the firm does not have enough service consumption to 

maximise profit (i.e. on the left side of point Q in Figure 4 on page 25). 

It may reduce ticket prices to induce service consumption. When 

service consumption increases, the new combination of revenue and 

cost will result in a better profit. It goes on until the profit is maximised. 

In this situation, service effectiveness increases21 compared to the 

previous one. However, cost efficiency22 decreases resulting from 

increased operating costs.   

On the other hand, if the firm finds reducing service consumption can 

maximise profit (i.e. on the right side of point Q in Figure 4 on page 

25), it may increase ticket prices. Service consumption will decrease, 

and the new combination of revenue and cost will result in a better 

profit. In this case, service effectiveness decreases following reduced 

 

21 Bear in mind that we hold the service output constant, and service 
effectiveness is the relationship between service output and service 
consumption such as service consumption divided by service output. 

22 Bear in mind that we hold the service output constant, and cost efficiency 
is the relationship between operating costs and service output such as 
service output divided by operating costs. 

P = price set 

Q = services consumed 

(e.g., passenger miles) 

 
Y 

Z 
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service consumption, and cost efficiency increases resulting from 

decreased operating cost.  

Note that the monopoly firm is not operating at point Z, where marginal 

cost (MC) equals the lowest average total cost (ATC) — when 

productive efficiency is achieved. Therefore, we can say that a firm in 

a monopolistic market does not aim to be productively efficient even 

though it has a profit maximising goal.  

Perfectly Competitive Market 

The situation is different for a private firm that operates in a perfectly 

competitive23 market. The firm is a price taker. To maximise profit, it 

must find ways to reduce operating costs and increase service 

consumption — it does not have control over ticket prices. Figure 5 on 

page 27 illustrates the profit maximisation condition for a private firm 

in a perfectly competitive market. The firm survives when the marginal 

cost (MC) equals the lowest average total cost (ATC), making it 

productively efficient. At the exact moment, its average total cost 

(ATC) equals average revenue (AR), resulting in zero profit24.  

 

 

23 We are aware that perfect competition is ideal and implausible in the transit 
market due to some limitations. For example, there can only be one train 
at one route stop at one time. However, we illustrate perfect competition 
for conceptual understanding.  

24 Operating at different points results in losses since the average total cost 
is more than the average revenue. 
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Figure 5. Profit maximising conditions for a firm in a perfectly 

competitive market. 

Suppose the firm does not have enough service consumption to 

survive (i.e., on the left side of point Q in Figure 5 on 27). It can 

increase advertising and promotion to induce more service 

consumption. Service consumption will increase, and the new 

combination of revenue and cost will enable the firm to survive in the 

market (at point Q). In this case, cost efficiency25 will decrease, 

resulting from increased operating costs (advertising and promotion). 

On the other hand, service effectiveness26 will increase following the 

increase in service consumption — compared to its previous 

performance.   

If the firm has so much service consumption that it finds its average 

cost more than its average revenue, which results in losses (i.e. on the 

right side of point Q in Figure 5 on page 27), it can decrease 

 

25 Bear in mind that we hold the service output constant, and cost efficiency 
is the relationship between operating costs and service output such as 
service output divided by operating costs. 

26 Bear in mind that we hold the service output constant, and service 
effectiveness is the relationship between service output and service 
consumption such as service consumption divided by service output. 

P = price set 

Q = services consumed 

(e.g., passenger miles) 

  Z 
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advertising and promotion. Service consumption may then reduce, 

and the new combination of revenue and cost will result in zero loss 

(at point Q, where the average cost equals the average revenue). In 

this case, cost efficiency will increase following a decrease in cost, but 

service effectiveness will decrease27 following a reduction in service 

consumption compared to its previous performance. The process is 

dynamic in a perfectly competitive market because firms strive to 

increase cost efficiency and service effectiveness.  

Also, note that the firm operates at point Z, where marginal cost (MC) 

equals the lowest average total cost (ATC) — when productive 

efficiency is achieved. Therefore, we can say that a firm in a perfectly 

competitive market aims to be productively efficient on top of having a 

profit maximising goal (or loss-minimising goal). However, as we 

stated earlier, a firm in a monopolistic market does not aim to be 

productively efficient even though it has a profit maximising goal. 

Given this difference, we expect a firm's performance on cost 

efficiency and service effectiveness to differ in a monopolistic market 

compared to a perfectly competitive market. 

Urban Rail Market  

The urban rail market is usually oligopolistic, but the degree of 

oligopoly varies from one region to another. Because we expect 

private firms’ cost efficiency and service effectiveness performance to 

differ in a monopolistic market compared to a perfectly competitive 

market, we expect private firms’ cost efficiency and service 

effectiveness performance to also vary between oligopolistic markets 

and regions. One caveat is that regulation is imposed at varying 

degrees in different regions (Nash & Smith, 2021). Although it may 

reduce the differences in private firms' cost efficiency and service 

effectiveness between monopolistic and perfectly competitive 

markets, the efficacy of regulation between markets may also differ. In 

 

27 Assuming the regulation constrains service outputs. 
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their study, Smith et al. (2018) employed a sample of 17 European 

railways from 2002 to 2010. The study revealed that the existence of 

robust economic regulations is associated with reduced costs of the 

rail system. Nonetheless, the aforementioned cost reduction is solely 

observable when combined with vertical separation.  

Vertical separation is not ubiquitous across all rail markets. According 

to Nash and Smith (2021), the rail markets in North America and Japan 

exhibit a vertically integrated structure. For this reason, we intend to 

choose only one urban rail market to study. By doing so, we will have 

consistent expectations of private firms' cost efficiency and service 

effectiveness (i.e., holding market structure and regulatory conditions 

constant). 

Having explained the theoretical concept, we are motivated to 

contextualise it within the Japanese urban rail market. We will evaluate 

the performance of private firms on cost efficiency, service 

effectiveness, and cost effectiveness relative to other firms28.  

2.2.3 Cost Efficiency 

Many public firms worldwide have been converted to private firms 

since the late 1970s. This ownership conversion is widely known as 

privatisation. It started in Great Britain and spread to countries 

worldwide (Bortolotti et al., 2004; Karlaftis, 2008; Young, 1987). The 

privatisation exercise includes bus, railway, and urban rail firms in the 

land transport sector.  

Since there are only a handful of studies on the ownership effect on 

the cost efficiency, service effectiveness, and cost effectiveness of 

urban rail services, we expanded the scope of the literature review to 

the land transport sector. We do not include air and maritime transport 

sectors because of their market uniqueness. 

 

28 Quasi-public and public firms. 



30 
 

 

 

Many empirical studies have been conducted on private firms' 

efficiency29 in the land transport sector after privatisation. It implies the 

importance of ownership concerning efficiency in the literature. 

However, not all define efficiency as the relationship between service 

inputs and service outputs, as shown in Figure 2 on page 21.  

The first example is Jain et al. (2008), who looked at 15 urban rail 

transit systems worldwide to assess the connection between 

ownership structure and technical efficiency. They used labour, 

capital, and line (network length) as service input and car-kilometre 

and passenger-trip as service output to measure technical efficiency. 

While car-kilometre is a form of service output, passenger-trip is a form 

of service consumption. Combining them is impractical because 

passenger-trip is dependent on car-kilometre. Passenger trip is zero 

when car-kilometre is zero, but car-kilometre is not necessarily zero 

when passenger-trip is zero. In other words, passengers could not 

travel when the train is not moving, but there could be no passengers 

on board when the train is moving.   

The second example is Min et al. (2017), who looked at 515 mass 

transit agencies in the USA to identify factors influencing efficiency30. 

Their service inputs are operating expenses, funds, passenger trips, 

and passenger miles, while their service outputs are fare-revenue, 

vehicle miles, and vehicle hours. Note that operating expenses are a 

form of service input, vehicle miles and vehicle hours are service 

output, and passenger trips and passenger miles are forms of service 

consumption. As explained in the previous example, combining them 

is impractical.  

The third example is Costa et al. (2021). Their service inputs are 

operating costs, asset value, and liabilities31, while their service 

 

29 This can either be cost efficiency or technical efficiency. We will separate 
them in later paragraphs. 

30 The authors mixed input cost and input units. 
31 as a percentage of asset 
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outputs are revenue32 and earnings33. Revenue is a form of service 

consumption, and "inputs do not necessarily vary very systematically" 

with such a demand-related output measure (Kerstens, 1996, p. 439; 

Roy & Yvrande-Billon, 2007). Filippini and Maggi (1993, p. 205) stated 

that "it is not evident why cost depends on the number of passengers 

on a train — running an empty train is not cheaper than running a full 

one". Therefore, the efficiency scores might be misleading (Scheffler 

et al., 2013). From our perspective, the relationship between revenue 

and operating costs reflects cost effectiveness instead of efficiency. 

Perry et al. (1988, p. 137) stated that "there was considerable variation 

of form-performance definitions over time and few attempts to relate 

them systematically from study to study". To address this, we 

evaluated findings from studies that adopt the efficiency definition by 

Fielding et al. (1985). Still, there seems to be no conclusive answer to 

the ownership effect on efficiency in the land transport sector. The 

findings are as follows. 

For bus services, Mizutani and Urakami (2003) found that private firms 

are more efficient than public firms in Japan. They stated private firms 

received limited subsidies and had to be self-sufficient through fare-

revenue collection. On the other hand, public firms continued receiving 

subsidies despite having higher employee salaries than private firms. 

Ottoz et al. (2009) also found private firms more efficient than public 

firms in Italy, but they did not explain why. In contrast, Scheffler et al. 

(2013) found ownership had no impact on the efficiency of German 

bus firms. They pointed out that ownership did not influence efficiency 

in a monopoly market, as seen by Megginson and Netter (2001), and 

in a regulated non-competitive market, as found by Jørgensen et al. 

(1997). Perry et al. (1988) reviewed 20 international studies regarding 

the efficiency of private firms and found that some studies concluded 

 

32 from tickets 
33 earnings before interest, taxes, depreciation, and amortisations — as a 

percentage of revenue 
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that private firms are more efficient than public firms, while others 

concluded otherwise. They stated that "some of the reasons for the 

absence of consistent and cumulative research results are 

methodological", including different samples, periods, and analytical 

methods (Perry et al., 1988, p. 138).  

For railway services, Filippini and Maggi (1993) found that ownership 

does not affect efficiency in Switzerland. They concluded that in "a 

federal state with a complex ownership and subsidy structure, private 

versus public ownership issues are probably of less relevance than 

questions relating to the adequate federal distribution of tasks and 

funds" (Filippini & Maggi, 1993, p. 212). In contrast, Cowie (1999) 

found private firms more efficient than public firms in Switzerland. He 

explained that private firms faced fewer organisational constraints than 

public firms. Cowie (1999) also stated that private firms receive a 

different form of subsidy from public firms without further elaboration. 

However, Lan and Lin (2003) found that ownership did not affect 

efficiency based on their worldwide study. No explanation was given 

for the finding.  

For urban rail services, Mizutani (2004) found that there was not much 

difference in efficiency between private firms and public firms in Japan 

— when variable costs were measured. He recommended measuring 

variable costs instead of total costs since rail firms could not optimise 

their facilities in the short run. He stated three reasons for his finding. 

First, smaller private firms are regional monopolies, and fare regulation 

protects them. Second, public firms are relatively new, and new 

technology saves operating costs. Third, governmental budget 

constraints that time decreased wasteful operating expenditures. 

However, from his worldwide study, Canavan (2015) found that private 

firms were less efficient than public firms. While suggesting that the 

finding needed further examination, he stated that one possible reason 

was "private metros may be more likely to sacrifice services in an effort 

to profit maximise" (Canavan, 2015, p. 104). We assumed he meant 

service outputs.  
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Although these studies are similar in efficiency definition, they differ in 

the sample, period, and efficiency type. It can be why their findings are 

inconsistent (Perry et al., 1988). Table 2 on page 33 lists such 

differences.  

Table 2. The difference in sample, period, and efficiency type between 
studies assessing the efficiency of private firms in the land transport 
sector. 

Author(s) Sample Period Efficiency Type 

Caves and Christensen 

(1980) 

Canadian 

Railroads 

1956-1975 technical 

efficiency 

Filippini and Maggi 

(1993) 

railway firms in 

Switzerland 

1985-1988 cost efficiency 

Cowie (1999) railway firms in 

Switzerland 

1995 technical 

efficiency 

Pollitt and Smith (2002) British Rail 1999-2000 cost efficiency 

Mizutani and Urakami 

(2003) 

bus firms in Japan 1997-2000 cost efficiency 

Lan and Lin (2003) railway firms 

worldwide 

1999-2001 technical 

efficiency 

Mizutani (2004) urban rail firms in 

Japan 

1970, 1975, 

1980, 1985, 

1990, 1995, 

2000 

cost efficiency 

Ottoz et al. (2009) bus firms in Italy 1998-2002 cost efficiency 

Scheffler et al. (2013) bus firms in 

Germany 

2004-2009 technical 

efficiency 

Canavan (2015) urban rail firms 

worldwide 

2004-2012 technical 

efficiency 

Because of this, we are motivated to explore the ownership effect on 

different efficiency types — given the same sample in the same period. 

There are two efficiency types: cost efficiency and technical efficiency. 
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The ownership effect on cost efficiency can be measured using a 

trans-log cost function, while the ownership effect on technical 

efficiency can be measured using a DEA-Tobit regression.  

Besides a trans-log cost function, a DEA-Tobit regression can also 

measure the ownership effect on cost efficiency. It brings us to another 

motivation: to explore the ownership effect on cost efficiency — given 

the same sample in the same period but different methods. 

It is also important to highlight that the studies on urban rail firms listed 

above (i.e., Mizutani (2004) and Canavan (2015)) did not account for 

the mode effect. Furthermore, we are unaware of any study that 

accounted for the mode effect when assessing the ownership effect 

on efficiency in the urban rail sector. For this reason, we are motivated 

to include the mode effect in the models when exploring the ownership 

effect on efficiency in the Japanese urban rail sector.  

We are also motivated to explore whether private firms in the 

Japanese urban rail sector have better cost efficiency than other firms. 

Theoretically, private firms are expected to be more cost-efficient than 

other firms.  

Therefore, in Research Study 2 (Chapter 6), we aim to explore the 

ownership effect on cost efficiency in the Japanese urban rail sector. 

In doing so, we will:  

a. determine whether adding the ownership variable into 

Research Study 1's trans-log cost function model does not 

materially change the coefficients elsewhere,  

b. explore whether different methods (i.e., trans-log cost function 

and DEA-Tobit Regression) would yield similar results, and 

c. determine whether private firms are more cost-efficient than 

other firms.  

2.2.4 Service Effectiveness 

While there are many studies on cost efficiency (and technical 

efficiency), there is very little attention on private firms' service 



35 
 

 

 

effectiveness in the land transport sector, especially on rail services. 

For example, Lan and Lin (2003) investigated the ownership effect on 

technical efficiency — but not service effectiveness — when they 

measured both performance dimensions on railways in America, 

Africa, Asia, Europe and Oceania.  

To our knowledge, only Currie and De Gruyter (2016) investigated the 

effect of ownership on service effectiveness. They evaluated the 

performance of light rail services in the USA and Australia and found 

private firms performed better in service effectiveness than public 

firms. They explained that competitive tendering and performance-

based contracts tied to private firms have resulted in better ridership 

performance over time than direct awards given to public firms. 

Because of this, we are motivated to explore whether private firms in 

the Japanese urban rail sector have better service effectiveness than 

other firms. Theoretically, private firms are expected to be more 

service effective than other firms. 

2.2.5 Cost Effectiveness 

Like service effectiveness, few empirical studies exist on private firms' 

cost effectiveness in the land transport sector, especially on rail 

services. They include authors using the term 'efficiency' in their 

studies but actually measured cost effectiveness, i.e., the relationship 

between service inputs and service consumption. One example is 

Costa et al. (2021).  

Note that even though we have expanded our scope of literature from 

the rail sector to the land transport sector for cost efficiency, service 

effectiveness and cost effectiveness, we found that the studies on 

private firms’ service effectiveness and cost effectiveness are not as 

many as those on private firms’ cost efficiency. However, we decided 

not to include the air and maritime transport sectors because of their 

market uniqueness. 

There seems to be no conclusive answer to the ownership effect (i.e., 

private firms’ effect) on cost effectiveness in the land transport sector, 
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except for urban rail services. Regarding bus services, Merkert et al. 

(2017) found that private firms were less cost-effective than other firms 

worldwide. They explained that due to several factors, the result 

contradicted the predictions of economic theories. First, public-owned 

systems dominated the sample. Second, private and public entities 

could receive public support through subsidies, transfer payments, or 

contractual revenue guarantees. Third, high service standards cost 

more, so bus rapid transit systems might have needed more public 

assistance.  

Regarding railway services, Kunz and Shiel (1988) concluded that 

private firms' cost effectiveness performance could not be 

differentiated from other firms in the United Kingdom, France, 

Germany, Japan, New Zealand, Australia, the United States of 

America, and Canada. According to them, the fact that the 

organisational and institutional changes happened so recently could 

explain why the results were unclear. It could take years to affect a 

shift in corporate culture and organisational structure, and it might take 

even longer to see the results of those efforts.  

However, in the case of urban rail services, private firms are found to 

be more cost-effective than other firms. For example, Mizutani (1994) 

found that private firms were more cost-effective than other firms in 

Japan. He explained that private firms were superior in many ways. 

They required fewer subsidies, travelled faster, charged lower fares, 

experienced higher labour productivity34, and benefitted from a lesser 

average employee wage than public firms. Costa et al. (2021) also 

found that private firms were more cost-effective than other firms in 

Portugal. Private firms were said to be capable of delivering higher 

productivity levels and social welfare. Because of this, we are 

motivated to explore whether private firms in the Japanese urban rail 

 

34 Due to the practice of contracting-out. 



37 
 

 

 

sector have better cost effectiveness than other firms. Theoretically, 

private firms are expected to be more cost-effective than other firms. 

In the literature, many authors treated cost effectiveness as cost 

efficiency. A recent example is Costa et al. (2021), who used costs as 

the input and revenue as the output in their DEA-OLS models when 

measuring the effects of ownership on the efficiency of urban rail firms. 

Using these terms inaccurately may give a partial picture of the overall 

performance — especially when there is a difference in how 

exogenous factors (such as density, scale, and mode) affect cost 

efficiency and cost effectiveness. For this reason, we are motivated to 

evaluate how density, scale and mode affect cost efficiency, service 

effectiveness, and cost effectiveness. 

Therefore, in Research Study 3 (Chapter 7), we aim to explore further 

the ownership effect on each performance dimension (i.e., cost 

efficiency, service effectiveness and cost effectiveness) in the 

Japanese urban rail sector and investigate the density, scale, and 

mode effects on each performance dimension. In doing so, we will: 

a. determine whether private firms are more service effective than 

other firms, 

b. determine whether private firms are more cost-effective than 

other firms, 

c. compare and evaluate private firms' performance in cost 

efficiency, service effectiveness, and cost effectiveness, and 

d. compare and evaluate how density, scale, and mode affect cost 

efficiency, service effectiveness, and cost effectiveness.  

In this study, private firms' cost efficiency from Research Study 2 is 

used to compare and evaluate private firms' service effectiveness and 

cost effectiveness.  
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Chapter 3 Methodology 

In this chapter, we elaborated on the methods utilised in the research 

studies based on our research aims. We have three main research 

aims. First, we aim to understand the cost structure of each urban rail 

mode in Japan and determine whether there is any significant 

difference between them. Second, we aim to explore the ownership 

effect on efficiency35 in the Japanese urban rail sector. Third, we aim 

to explore further the ownership effect on each performance 

dimension (i.e., cost efficiency, service effectiveness and cost 

effectiveness) in the Japanese urban rail sector and investigate the 

density, scale, and mode effects on each performance dimension. 

Each aim will have a dedicated research study. So, there are three 

research studies, and they were carried out in stages since there is a 

methodology linkage between one study and another that follows. The 

model specified in the first research study was subsequently utilised in 

the second research study. Furthermore, we referred to some findings 

from the preceding study when discussing the methods used in the 

second and third research studies.  

3.1 Method for Research Study 1 

In Research Study 1 (Chapter 5), we aim to understand the cost 

structure of each urban rail mode in Japan and determine whether 

there is any significant difference between them. In doing so, we will:  

a. determine whether operating costs vary between modes and 

whether there is a significant difference between them, 

b. determine whether economies of density characteristics vary 

between modes and whether there is a significant difference 

between them, and 

 

35 Cost efficiency and technical efficiency. 
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c. determine whether economies of scale characteristics vary 

between modes and whether there is a significant difference 

between them. 

We chose a cost function regression because it can offer valuable 

insights into the cost structure of each rail mode for a given range of 

operation size — in terms of both density and scale. The cost function 

is widely used in urban rail and broader literature. Some examples 

include Couto and Graham (2008), Mizutani and Uranishi (2013), and 

Wheat and Smith (2015). In rail services, the size of an operation is 

typically measured either by the output volume (such as car km) or the 

network length (such as track km). Output can also be expressed in 

terms of density (e.g., car-km per track-km) to understand the impact 

of increasing traffic on a fixed network. Henceforth, RTD measures the 

benefit (decrease in unit cost) or setback (increase in unit cost) if the 

density is increased. RTS measures the benefit (reduction in unit cost) 

or setbacks (increase in unit cost) if the scale is increased (output and 

network length increase together).  

Increasing either density or scale may result in one of these three 

circumstances: 

a. an increasing RTD or RTS in which the marginal costs are lower 

than the average costs, 

b. a constant RTD or RTS in which the marginal costs are the 

same as the average costs, or  

c. a decreasing RTD or RTS in which the marginal costs are 

higher than the average costs.  

Generally, there are two types of cost functions: Cobb-Douglas and 

trans-log. The Cobb-Douglas is an example of the first-order functional 

form, while the trans-log is an example of the second-order functional 

form. They are polynomial cost functions which can accommodate 

microeconomic theories (Reynès, 2011). Greene (2008, p. 100) 

stated, "the Cobb-Douglas and trans-log models overwhelmingly 

dominate the applications literature in stochastic frontier and 

econometric inefficiency estimation". The Cobb-Douglas cost function 
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has the advantage of being universally smooth and convex isoquants. 

It is a well-behaved function. However, this function adopts a strong 

assumption stating that elasticities are constant. Trans-log cost 

function, alternatively, is less restrictive than Cobb-Douglas — 

allowing the accommodation of the U-shaped average cost curve.  

There are many trans-log cost function studies on rail services, 

including a mix of regional, long-distance, commuter and some urban 

operations. Wheat and Smith (2015) estimated a hedonic trans-log 

cost function on 28 British railway operators concerning mergers 

between train operators. Couto and Graham (2008) analysed the role 

of allocative inefficiency on the cost by estimating a trans-log cost 

function on 27 railway firms from European countries. Mizutani and 

Uranishi (2013) applied the trans-log cost function on 30 railway 

organisations in 23 European and East Asian OECD countries to 

evaluate vertical and horizontal separation cost implications.  

Walter (2011) used the trans-log cost function for urban rail services 

to evaluate cost efficiency and its determinants of multi-output transit 

operators36 in Germany. However, he did not split tram, light railway, 

and metro services "into different outputs because there is no clear 

definitional separation between these services" Walter (2011, p. 30). 

Savage (1997) evaluated the costs of 13 heavy rails and nine light rails 

in the United States by applying the trans-log cost function37. The 

study was conducted over two decades ago, and the current urban rail 

environment may differ.   

 

36 These operators provided bus, tram, light rail, and metro services. 
However, it cannot be determined whether every firm provided every 
service. The description of ‘unbalanced data’ suggests that not every 
firm provided every service. See Walter, M. (2011). Some determinants 
of cost efficiency in German public transport. Journal of Transport 
Economics and Policy (JTEP), 45(1), 1-20.   

37 The author included each type in the same trans-log cost function. Each 
type was represented by dummy variables. However, when evaluating 
economies of density and system size, the author divided the 22 
systems into six generic groups and plotted average variable cost curve 
for each group.  
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The cost function studies on rail services were prevalent in the North 

American and European regions, according to a survey by Catalano 

et al. (2019). These studies were uncommon in the Asian region, 

possibly due to the scarcity of data. Japan, perhaps being a developed 

nation, is an exception. Mizutani et al. (2009) used the Cobb-Douglas 

cost function of 34 private railway firms to evaluate the effects of 

yardstick regulation in Japan. Mizutani and Shoji (2004) compared the 

infrastructure maintenance costs of a vertically separated railway 

company against 76 vertically integrated railway firms in Japan using 

the trans-log cost function. Mizutani (2004) explored the optimal size 

of a private urban rail company by applying the trans-log cost function 

to 56 railway firms in Japan.  

In estimating a cost function, the trans-log model is typically preferred 

over the Cobb-Douglas model as the former "offers greater flexibility 

with respect to the relationship between the cost and the explanatory 

variables, which may offer more intuitive economic interpretations" 

(Smith et al., 2017, p. 628).  Cobb-Douglas is nested within trans-log. 

Therefore, testing can be done to evaluate whether additional terms in 

the trans-log are necessary. Note that other factors are also important 

in the model selection. 

3.1.1 Trans-log Cost Function Model 

We specified a trans-log cost function model in which the traffic density 

variable (car-km/track-km) replaced the output variable (car-km). 

Principally, using either variable in the model would yield the same 

RTD and RTS — except that the former allows for a more 

straightforward calculation of the RTS than the latter as shown in (1) 

and (2) respectively. 

𝑅𝑇𝑆𝐷𝑡
= [

𝜕𝐿𝑛𝐶

𝜕𝐿𝑛𝑁
]

−1

 for  𝐿𝑛𝐶 = 𝛼 + 𝛽𝐷𝑡
𝐿𝑛𝐷𝑡 + 𝛽𝑁𝐿𝑛𝑁    

(1) 

𝑅𝑇𝑆𝑄 = [
𝜕𝐿𝑛𝐶

𝜕𝐿𝑛𝑄
+

𝜕𝐿𝑛𝐶

𝜕𝐿𝑛𝑁
]

−1

 for 𝐿𝑛𝐶 = 𝛼 + 𝛽𝑄𝐿𝑛𝑄 + 𝛽𝑁𝐿𝑛𝑁 
(2) 
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Where: 

𝐷𝑡 = traffic density; 𝑄 = output; 𝐶 = cost; 𝑁 = network length; 𝛼 = 

constant; 𝛽 = coefficient value. 

We divided the continuous variable by their sample mean. By doing 

so, we could easily hold variables other than traffic density and 

network length at their mean values when plotting the RTD and the 

RTS. It also means that the coefficient on the first-order density and 

scale terms can be interpreted as elasticities evaluated at the sample 

mean. All continuous variables were subsequently converted to the 

natural log form. This practice enabled us to treat the coefficients on 

the right-hand side of the equation as the cost elasticity.  

We introduced mode dummy intercepts as follows so that we can 

evaluate whether operating costs vary between modes: 

 𝐿𝑛 (
𝐶𝐸𝐿𝑀

𝐶̅𝐸𝐿𝑀
) =  𝛼 +  𝛽𝐷𝑀𝑀𝑅

 𝐷𝑀𝑀𝑅 +  𝛽𝐷𝑀𝑈𝐺
 𝐷𝑀𝑈𝐺 (3) 

Where: 

𝛼  = constant 

𝛽  = coefficient value 

𝐶𝐸𝐿𝑀 = cost of energy, labour, and material & repairs 

𝐷𝑀𝑀𝑅  = mode dummy for monorail 

𝐷𝑀𝑈𝐺  = mode dummy for under-ground 

𝐷𝑀𝑂𝐺  = mode dummy for over-ground (omitted) 

We introduced mode dummy interactions with density and scale as 

follows so that we can evaluate whether economies of density and 

economies of scale vary between modes: 

 𝐿𝑛 (
𝐶𝐸𝐿𝑀

𝐶̅𝐸𝐿𝑀
) = 𝛼 +𝛽𝐷𝑡

𝐿𝑛
𝐷𝑡

𝐷̅𝑡
+𝛽𝐷𝑡

𝐿𝑛
𝐷𝑡

𝐷̅𝑡
𝛽𝐷𝑀𝑀𝑅

𝐷𝑀𝑀𝑅 +

𝛽𝐷𝑡
𝐿𝑛

𝐷𝑡

𝐷̅𝑡
𝛽𝐷𝑀𝑈𝐺

𝐷𝑀𝑈𝐺 + 𝛽𝑁𝐿𝑛
𝑁

𝑁̅
+ 𝛽𝑁𝐿𝑛

𝑁

𝑁̅
𝛽𝐷𝑀𝑀𝑅

𝐷𝑀𝑀𝑅 +

𝛽𝑁𝐿𝑛
𝑁

𝑁̅
𝛽𝐷𝑀𝑈𝐺

𝐷𝑀𝑈𝐺  (4) 
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Where: 

𝛼  = constant 

𝛽  = coefficient value 

𝐶𝐸𝐿𝑀 = cost of energy, labour, and material & repairs 

𝐷𝑡 = traffic density (car-km/track-km) 

𝑁  = network length (track-km) 

𝐷𝑀𝑀𝑅  = mode dummy for monorail 

𝐷𝑀𝑈𝐺  = mode dummy for under-ground 

𝐷𝑀𝑂𝐺  = mode dummy for over-ground (omitted) 

The base model is defined as follows: 

𝐿𝑛 (
𝐶𝐸𝐿𝑀

𝐶̅𝐸𝐿𝑀

𝑃𝑀

𝑃̅𝑀
⁄ ) = 𝛼 + 𝛽𝐷𝑡

𝐿𝑛 
𝐷𝑡

𝐷̅𝑡
+ 𝛽𝑃𝐸

𝐿𝑛 (
𝑃𝐸

𝑃̅𝐸

𝑃𝑀

𝑃̅𝑀
⁄ ) +

𝛽𝑃𝐿
𝐿𝑛 (

𝑃𝐿

𝑃̅𝐿

𝑃𝑀

𝑃̅𝑀
⁄ ) + 𝛽𝑁𝐿𝑛

𝑁

𝑁̅
+

1

2
𝛽𝐷𝑡𝐷𝑡

(𝐿𝑛 
𝐷𝑡

𝐷̅𝑡
)

2

+

1

2
𝛽𝑃𝐸𝑃𝐸

(𝐿𝑛 (
𝑃𝐸

𝑃̅𝐸

𝑃𝑀

𝑃̅𝑀
⁄ ))

2

+
1

2
𝛽𝑃𝐿𝑃𝐿

(𝐿𝑛 (
𝑃𝐿

𝑃̅𝐿

𝑃𝑀

𝑃̅𝑀
⁄ ))

2

+

1

2
𝛽𝑁𝑁 (𝐿𝑛

𝑁

𝑁̅
)

2

+ 𝛽𝐷𝑡𝑃𝐸
𝐿𝑛 

𝐷𝑡

𝐷̅𝑡
𝐿𝑛 (

𝑃𝐸

𝑃̅𝐸

𝑃𝑀

𝑃̅𝑀
⁄ ) +

𝛽𝐷𝑡𝑃𝐿
𝐿𝑛

𝐷𝑡

𝐷̅𝑡
𝐿𝑛 (

𝑃𝐿

𝑃̅𝐿

𝑃𝑀

𝑃̅𝑀
⁄ ) + 𝛽𝐷𝑡𝑁𝐿𝑛

𝐷𝑡

𝐷̅𝑡
𝐿𝑛

𝑁

𝑁̅
+

𝛽𝑃𝐸𝑃𝐿
𝐿𝑛 (

𝑃𝐸

𝑃̅𝐸

𝑃𝑀

𝑃̅𝑀
⁄ ) 𝐿𝑛 (

𝑃𝐿

𝑃̅𝐿

𝑃𝑀

𝑃̅𝑀
⁄ ) + 𝛽𝑃𝐸𝑁𝐿𝑛 (

𝑃𝐸

𝑃̅𝐸

𝑃𝑀

𝑃̅𝑀
⁄ ) 𝐿𝑛

𝑁

𝑁̅
+

𝛽𝑃𝐿𝑁𝐿𝑛 (
𝑃𝐿

𝑃̅𝐿

𝑃𝑀

𝑃̅𝑀
⁄ ) 𝐿𝑛

𝑁

𝑁̅
+ 𝛽𝐷𝑀𝑀𝑅

𝐷𝑀𝑀𝑅 +

𝛽𝐷𝑀𝑈𝐺
𝐷𝑀𝑈𝐺+𝛽𝐷𝑡

𝐿𝑛
𝐷𝑡

𝐷̅𝑡
+𝛽𝐷𝑡

𝐿𝑛
𝐷𝑡

𝐷̅𝑡
𝛽𝐷𝑀𝑀𝑅

𝐷𝑀𝑀𝑅 +

𝛽𝐷𝑡
𝐿𝑛

𝐷𝑡

𝐷̅𝑡
𝛽𝐷𝑀𝑈𝐺

𝐷𝑀𝑈𝐺 + 𝛽𝑁𝐿𝑛
𝑁

𝑁̅
+ 𝛽𝑁𝐿𝑛

𝑁

𝑁̅
𝛽𝐷𝑀𝑀𝑅

𝐷𝑀𝑀𝑅 +

𝛽𝑁𝐿𝑛
𝑁

𝑁̅
𝛽𝐷𝑀𝑈𝐺

𝐷𝑀𝑈𝐺 + 𝑇 + 𝜀  (5) 

Where: 

𝛼  = constant 

𝛽  = coefficient value 

𝐶𝐸𝐿𝑀 = cost of energy, labour, and material & repairs 
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𝐷𝑡 = traffic density (car-km/track-km) 

𝑃𝐸 = energy price 

𝑃𝐿  = labour price 

𝑃𝑀  = material & repair price 

𝑁  = network length (track-km) 

𝐷𝑀𝑀𝑅  = mode dummy for monorail 

𝐷𝑀𝑈𝐺  = mode dummy for under-ground 

𝐷𝑀𝑂𝐺  = mode dummy for over-ground (omitted) 

𝑇  = time (year) 

𝜀  = error term 

The model excludes the capital costs associated with infrastructure 

and rolling stock due to two primary reasons. Firstly, these costs are 

substantial and occur infrequently compared to energy, labour, and 

material expenses, making short-term facility optimization challenging 

for rail firms (Mizutani, 2004). Secondly, variations exist among 

operators concerning the timing of these costs and their depreciation 

treatment, with private firms more likely to underestimate depreciation 

compared to public firms (Mizutani, 1994). Consequently, 

incorporating these costs as input or controlled factors may lead to 

inaccurate cost structures in the model. Furthermore, the model does 

not account for new infrastructure investments, depreciation, or taxes. 

However, it does include maintenance and repair costs for track, 

cable, and rolling stocks.  

In Appendix B, we assessed different regression methods like 

Ordinary Least Squares (OLS), Fixed Effects (FE), and Random 

Effects (RE). We also acknowledged the widespread use of Stochastic 

Frontier Analysis (SFA) across various domains, including its 

application to measure efficiency in urban rail contexts (Battese & 

Coelli, 1995). SFA is an expanded form of standard regression. For 

instance, the B-C version of the SFA model functions as a random-
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effects model but incorporates an inefficiency component. Likewise, 

the "true" random-and fixed-effects models are traditional models that 

have been adjusted (Titus & Pusser, 2011). However, we chose not to 

incorporate SFA in our analysis for two main reasons.  

Firstly, our objective is to evaluate the efficiency performance of 

private firms as a group, not individual firms. The efficiency of this 

group can be gauged by examining the ownership coefficient in regular 

regression analysis. Our approach has also been used by other 

authors such as Fumitoshi et al. (2015), who compared the costs of 

vertical separation, integration, and intermediate organisational 

structures in European and East Asian railways. Journal of Transport 

Economics and Policy 2015 Vol. 49 Issue 3 took the same approach 

of incorporating dummies to capture vertical separation effects, using 

a cost function, not SFA, as the focus was on the impact of structure, 

not on country efficiency. SFA is more relevant when the concern is 

the efficiency of individual firms.  

Secondly, the implementation of SFA can be more intricate (Greene, 

2005). SFA hinges on specific assumptions regarding error term 

distribution and inefficiency presence (Street, 2003). Changes in 

model specification, like using logarithmic transformations or including 

extra explanatory variables, might render SFA unnecessary and result 

in a normal OLS residual. In such situations, the entire error term is 

considered noise, complicating the identification of discrepancies in 

relative efficiency. 

3.2 Method for Research Study 2 

In Research Study 1 (Chapter 5), we looked at the cost structure of 

each urban rail mode in Japan to determine whether they vary. We 

now move from evaluating the cost structure of urban rail modes to 

assessing the efficiency of private firms. In Research Study 2 (Chapter 

6), we aim to explore the ownership effect on cost efficiency in the 

Japanese urban rail sector. In doing so, we will:  
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a. determine whether adding the ownership variable into 

Research Study 1's trans-log cost function model does not 

materially change the coefficients elsewhere,  

b. explore whether different methods (i.e., trans-log cost function 

and DEA-Tobit Regression) would yield similar results, and 

c. determine whether private firms are more cost-efficient than 

other firms.  

We applied two methods in this study. One is the trans-log cost 

function, and another is the DEA-Tobit regression. DEA-Tobit is a two-

stage modelling approach where a Data Envelopment Analysis (DEA) 

programme is run on input and outputs to compute efficiency in the 

first stage. This efficiency is then used in the second stage regression 

to understand the drivers of efficiency (Tobit regression). The trans-

log cost function is parametric, while DEA-Tobit regression is semi-

parametric38. Nevertheless, they are two widely used methods for 

deriving efficiency. Nash and Smith (2014) discussed the advantages 

and disadvantages between them. 

Note that we are assessing efficiency that considers efficient use of 

resources, not just purely benchmarking. This assessment requires 

the presence of a production frontier. Efficiency is measured based on 

deviation from the production frontier. Because of that, a parametric 

approach needs a priori specification of a functional form for 

production technology, while a non-parametric approach establishes 

the frontier by 'enveloping' the data with piecewise linear functions or 

hyperplanes (Karlaftis & Tsamboulas, 2012). We imposed a linear 

homogeneity condition for the trans-log cost function model and 

checked for monotonicity. For the DEA-Tobit model, the convexity 

constraint in the standard DEA method relates to the production 

frontier and allows economic interpretation (Sigaroudi, 2016; Zhu, 

2020).  

 

38 DEA is non-parametric, and the Tobit regression is fully parametric. The 
term semi-parametric refers to the combined approach. 
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It is worth mentioning that the network DEA method is not the same 

as the standard DEA method. Convexity constraint is absent in the 

network DEA method since the multiplier and envelopment models are 

not equivalent (or dual) under the network DEA (Chen et al., 2014; 

Zhang et al., 2021; Zhu, 2020). Therefore, we cannot measure 

efficiency using the network DEA39. 

One advantage of the standard DEA is that it does not necessitate the 

imposition of restrictive behavioural assumptions such as cost 

minimisation in the econometric cost function, which requires a 

functional form specification. The standard DEA is constructed in such 

a way that it satisfies the monotonicity and curvature restrictions 

(Reinhard et al., 2000). A drawback is its difficulty separating 

economies of density and scale. Tobit regression can be applied after 

running the DEA to address this drawback.  

One advantage of the trans-log cost function is that it does not require 

another regression to distinguish density and scale effects. Another is 

that it accounts for the allocative efficiency (or inefficiency) associated 

with various input combinations. A drawback is that it needs input 

prices, and one obstacle is inconsistencies in the treatment of costs 

like depreciation and interest. Variable costs (excluding capital costs) 

can be used to mitigate this. 

Data Envelopment Analysis (DEA) 

Data Envelopment Analysis (DEA) aims to identify the peer group with 

the lowest input or highest output. An input-oriented model can seek 

input minimisation, while an output-oriented model can be used to 

pursue output maximisation. A business or Decision-Making Unit 

(DMU) can assess its cost (or technical) efficiency and service 

effectiveness using the peer group as a reference. An illustration of an 

input-oriented model is shown in Figure 6 on page 48. There are four 

 

39 The network DEA method is relatively new and still undergoing 
development. We prefer to utilise the standard DEA method which has 
been established in the literature.    
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distinct DMUs, A, B, C, and D. Different input combinations (input one 

and input 2) are used by the respective DMUs at Points A, B, C, and 

D to generate the same quantity of output. An inner border, known as 

the efficient frontier, is formed by points B, C, and D. The efficient 

frontier is considered technically feasible because technically feasible 

points formed it. DMU A's peer group consists of DMU B and DMU C. 

Their performance is used to find point E, which is the efficiency goal 

for DMU A. The technical efficiency of DMU A is then described as the 

ratio of 0E to 0A, or: 

 TEDMU A  =  0E/0A (6) 

A ratio value of 1 means a DMU is fully efficient. 

 

Figure 6. Input-Oriented DEA. Source: Attenborough et al. (2005, p. 

56) (with slight modification) 
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Figure 7. Output-Oriented DEA. Source: Metcalfe (2012) (with slight 

modification) 

Figure 7 on page 49 illustrates an output-oriented model. There are 

four distinct DMUs, A, B, C, and D. Different combinations of outputs 

(output one and output 2), produced by the respective DMUs using the 

same quantity of input, can be seen at Points A, B, C, and D. A line 

connecting points B, C, and D is known as the efficient frontier. The 

efficient frontier is considered technically feasible because technically 

feasible points formed it. DMU A's peer group comprises DMU B and 

DMU C. Their performance is used to calculate point E, the DMU A 

efficiency target. The technical efficiency of DMU A is then described 

as the ratio of 0E to 0A, or:  

TEDMU A  =  0A/0E  (7) 

A ratio value of 1 means a DMU is fully efficient. 

Constant Returns to Scale (CRS), Increasing Returns to Scale (IRS), 

Decreasing Returns to Scale (DRS) and Variable Returns to Scale 

(VRS) 

Constant Returns to Scale (CRS) indicates that the output increases 

at the same rate as the input, while Increasing Returns to Scale (IRS) 

and Decreasing Returns to Scale (DRS) suggest that the output 
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increases at a higher and lower rate, respectively. CRS, IRS, and DRS 

constitute Variable Returns to Scale (VRS). CRS and VRS are 

depicted in Figure 8 on page 51 in a "single output - single input" 

scenario. A, B, C, D, E, and F are each unique DMUs. Points A, B, C, 

D, E, and F represent the respective DMUs' productivity. DMU C is the 

most productive of all the units. It has the highest ratio of output to 

input. A radial line that intersects point C is known as CRS. VRS is the 

boundary between points A, B, C, D, and E. VRS is split into two 

sections, with point C in the centre. The section on the left is IRS, while 

the section on the right is DRS. 

VRS considers DMU A, B, C, D, and E efficient. However, according 

to CRS, only DMU C is considered efficient, whereas DMU A, B, D and 

E are deemed inefficient. Being on IRS (DMU A and B) and DRS (DMU 

D and E) made them scale inefficient. DMU F, which does not sit on 

the frontier, is regarded both technically and scale inefficient. The 

following equations correspondingly represent how efficient DMU F is 

on both a technical and scale level: 

TEDMU F  =  XZ/XF  (8) 

SEDMU F  =  XY/XZ  (9) 
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Figure 8. CRS, IRS, DRS and VRS. Source: Cubbin and Tzanidakis 

(1998, p. 79) (with modification) 

Tobit Regression 

The Tobit, a censored regression model, is intended to estimate linear 

relationships between variables when there is left- or right-censoring 

in the dependent variable — also known as censoring from below and 

above, respectively (UCLA, 2017). The Tobit model is deemed 

appropriate to censor the left side of the regression equation between 

0 and 1, given that the dependent variable contains an efficiency value 

between 0 and 1. Studies examining the relationship between 

efficiency and exogenous factors employ the Tobit model. 

DEA-Tobit Regression 

Implementing DEA (Data Envelopment Analysis) encounters a 

challenge due to the presence of a diverse operating environment. 

Ideally, to yield meaningful outcomes, the operating environment 

should be uniform. Yang and Pollitt (2009) reviewed various 
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approaches proposed in literature to tackle the issue of dissimilar 

operating conditions. 

Among these approaches are the two-stage models. These models 

consider the relationship between initial efficiency scores and 

environmental variables through regression analysis (Holý, 2022). 

This technique accommodates the impact of environmental factors on 

efficiency. DEA-Tobit regression stands out as a two-stage model 

merging Data Envelopment Analysis (DEA) and Tobit regression to 

handle operating environment variables in efficiency analysis.  

DEA, a non-parametric method, gauges the relative efficiency of 

decision-making units (DMUs) by comparing their input-output 

connections (Simar & Wilson, 2011b). It produces a score indicating 

the efficiency of each DMU. Nevertheless, DEA overlooks the 

influence of external factors on efficiency. To surmount this limitation, 

DEA-Tobit regression introduces Tobit regression, a parametric 

method used to analyse censored or constrained dependent variables 

Blank and Valdmanis (2010). In the DEA context, efficiency scores 

derived from DEA serve as the dependent variable in the Tobit 

regression model. This Tobit model permits the incorporation of 

independent variables representing operating environment factors that 

impact efficiency40. The results of Tobit regression analysis unveil 

connections between these factors and efficiency scores. The 

amalgamation of these techniques leads to the term "semi-parametric" 

for DEA-Tobit regression. 

DEA-Tobit regression is particularly advantageous when efficiency 

scores from DEA are fractional, a common occurrence in efficiency 

analysis. Fractional regression models like Tobit regression are more 

suitable for proportions and offer improved specification compared to 

conventional linear regression models (Martins, 2018). 

 

40 See Section 3.2.2 for the factors included in our DEA-Tobit regression 
model. 
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Oum and Yu (1994) used the two-stage DEA-Tobit regression to 

obtain residual efficiency for each firm. They considered factors such 

as density and subsidy that could influence a firm's efficiency. To date, 

the DEA-Tobit regression continues to be one of the preferred 

approaches when assessing performance. Three recent examples are 

Yahia and Essid (2019), Dalei and Joshi (2020), and Dar et al. (2021).  

However, there is a debate on whether DEA-Tobit regression is an 

appropriate approach. Simar and Wilson (1998, p. 49) asserted that 

"since statistical estimators of the frontier are obtained from finite 

samples, the corresponding efficiency measures are sensitive to the 

sampling variations of the obtained frontier". They proposed the 

application of bootstrapping to define a reasonable data-generating 

process. Simar and Wilson (2007) further proposed a double bootstrap 

procedure for better results. Under this new procedure, bootstrapping 

is done at the first stage DEA and the second stage regression. They 

also recommended using the OLS regression instead of the Tobit 

regression at the second stage, as they said the latter was catastrophic 

in their Monte Carlo experiments.  

Since then, some counter-argument surfaced. Tziogkidis (2012a) 

argued that the equality assumption between the bootstrap and DEA 

bias used in bootstrapping is implausible. Tziogkidis (2012b) advised 

that simple bootstrapping should be used instead of double 

bootstrapping because of the former's consistent and good 

performance. Double bootstrapping should be avoided due to the 

technical complexity and sensitivity. Moreover, Tsai et al. (2015, p. 30) 

explained that the non-bootstrapped scores could still be used as the 

dependent variable in the second stage Tobit regression since "the 

significance and magnitude of the impact of the explanatory variables 

on the efficiency scores are similar, whether the original or 

bootstrapped TE scores are used".   

Foster and Kalenkoski (2013) found that the qualitative results were 

generally similar between the OLS and Tobit regression. They opined 

that the OLS regression was not statistically better than the Tobit 
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regression. Their work supported Hoff (2007), who found the OLS 

regression performed just as well as the Tobit regression at the second 

stage. 

In a more extensive comparison, Banker and Natarajan (2008) found 

that the DEA-based procedures (i.e. the DEA-Tobit, DEA-OLS, and 

DEA-ML41) performed as well as the parametric methods — when 

assessing the impact of contextual variables on productivity. Indeed, 

the former performed better than the latter when evaluating individual 

productivity. In another extensive comparison, Fitzová and Matulová 

(2020) concluded that the DEA-Tobit regression, Simar and Wilson's 

bootstrap approach, and the parametric SFA yield qualitatively similar 

results.  

Despite their variety, these counterarguments do not provide any 

evidence showing that the DEA-Tobit regression could be used as an 

alternative to the trans-log cost function regression, which is more 

complex. Table 3 on page 54 lists the regression techniques and the 

functional forms that have been proven to have similar results to the 

DEA-Tobit regression. We are motivated to explore whether there 

would be similar results between the DEA-Tobit regression and the 

trans-log cost function if we apply both techniques to Japan's urban 

rails data.    

Table 3. Proven regression techniques and functional forms that have similar 
results to DEA-Tobit Regression 

Author(s) Regression 

Technique(s) 

Functional 

Form(s) 

Measure(s) 

Foster and 

Kalenkoski 

(2013) 

OLS; Tobit. Simple Linear coefficient sign and 

value 

Hoff (2007) DEA-OLS; DEA-

Tobit. 

Simple Linear coefficient sign and 

value 

 

41 Maximum Likelihood 
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Author(s) Regression 

Technique(s) 

Functional 

Form(s) 

Measure(s) 

Banker and 

Natarajan 

(2008) 

DEA-OLS; DEA-

MLE; One-Stage 

Cubic Polynomial 

MLE; Two-Stage 

Cubic Polynomial 

MLE; One-Stage 

Trans-log OLS; 

Two-Stage Trans-

log COLS; One-

Stage Trans-log 

MLE; Two-Stage 

Trans-log MLE; 

Cobb-Douglas. 

Log-Linear for 

DEA-based 

procedures; 

Cubic 

Polynomial; 

Trans-log 

Production 

Function; Cobb-

Douglas 

Production 

Function 

(a) mean absolute 

deviation 

percentage, and 

(b) root mean 

squared deviation 

percentage 

Fitzová and 

Matulová 

(2020) 

DEA-Tobit; Single 

Step Bootstrap DEA 

(Simar and Wilson 

2007); Stochastic 

Frontier Analysis 

(SFA). 

Log-Linear42 for 

DEA-based 

procedures; 

Trans-log 

Production 

Function 

(a) efficiency 

scores, and (b) 

coefficient sign and 

value 

We used DEAP 2.1, provided by Coelli (1996), to generate CRS and 

VRS efficiency scores. DEAP 2.1 generates non-bootstrapped DEA 

scores. The non-bootstrapped DEA scores are still being used in 

recent literature, such as by Fitzová et al. (2018), Yahia and Essid 

(2019), Dalei and Joshi (2020), and Dar et al. (2021).  

3.2.1 Trans-log Cost Function Model 

We utilised the trans-log cost function model from Research Study 1. 

Now, we added an ownership variable. This addition served two 

purposes. First, we wanted to observe whether adding an ownership 

variable would significantly alter the results in Research Study 1. The 

 

42 This is not specifically mentioned by the authors. We assume the log-form 
variables are used in both DEA based regressions as well as the trans-
log regression.  



56 
 

 

 

observation tests the robustness of our model and the validity of its 

results. Second, we wanted to compare the results from a trans-log 

cost function model against those from a DEA-Tobit regression model. 

The trans-log cost function43 is parametric, whereas DEA-Tobit 

regression is semi-parametric. The trans-log cost function is a single-

stage modelling technique that interprets the ownership coefficient as 

an efficiency effect. DEA-Tobit is a two-stage modelling technique. In 

the first stage, efficiency is calculated by running a Data Envelopment 

Analysis (DEA) software on inputs and outputs. This efficiency is then 

used in the second stage regression (Tobit regression) to determine 

the efficiency drivers.  

3.2.2 DEA-Tobit Regression Model 

DEA-Tobit regression has two stages. In the first stage, we set the 

following specifications to produce DEA cost efficiency scores and 

DEA technical-efficiency scores: 

Type of score Input for DEA Output for DEA 

Cost efficiency CELM (Yen) Q (thousand car-km) 

Technical efficiency energy (kWh), labour 

(persons), rolling stock (unit) 

Q (thousand car-km) 

We applied input orientation DEA since we assumed firms are 

expected to provide reliable routine services, limiting their service 

output adjustment. Other authors who have used input orientation 

include Kerstens (1996) and Tsai et al. (2015). 

In the second stage, Tobit regression, we specified the efficiency 

scores (i.e., cost efficiency in one regression and technical efficiency 

in another) as the dependent variable. We then selected Dt (car-

km/operating-km), N (operating-km), DMMR (dummy for monorail), 

 

43 Note that we do not use Stochastic Frontier Analysis (SFA) as the focus is 
not on individual firm’s efficiency but rather private firms. We can get 
private firms’ efficiency from the coefficient on ownership in the cost 
function. 
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DMUG (dummy for under-ground), DOB (dummy for private firms), and 

T (year) as the independent variables. These are variables available 

from our data set.  

Dt is relevant for considering economies of density, and N is for 

economies of scale. It is essential to distinguish density and scale 

effects since rail services "are subject to economies of traffic density" 

(Nash & Smith, 2014, p. 8). Mizutani (2004) included these variables 

when studying the ownership effect on rail efficiency. We included DOB 

to determine whether private firms are more service-effective or cost-

effective than other firms. We included Dt, N, DMMR, and DMUG to 

evaluate how density, scale, and mode affect cost efficiency.  

We converted all variables into the natural log form since "the log-

linear (or double logarithmic) functional form yields considerably better 

statistical results than the linear functional form" (Oum & Yu, 1994, p. 

132). We set zero as the upper limit for the dependent variable44. The 

Tobit regression model is defined as follows: 

𝐿𝑛𝐸 = 𝛼+𝛽𝐷𝑡
𝐿𝑛𝐷𝑡 + 𝛽𝑁𝐿𝑛𝑁 + 𝛽𝐷𝑀𝑀𝑅

𝐷𝑀𝑀𝑅 +

𝛽𝐷𝑀𝑈𝐺
𝐷𝑀𝑈𝐺+𝛽𝐷𝑂𝐵

𝐷𝑂𝐵 + 𝑇 + 𝜀  (10) 

 Where: 

𝐸 = efficiency scores (either cost or technical efficiency) 

𝐷𝑡 = traffic density (car-km/operating-km) 

𝑁  = network length (operating-km) 

𝐷𝑀𝑀𝑅  = mode dummy for monorail 

𝐷𝑀𝑈𝐺  = mode dummy for under-ground 

𝐷𝑀𝑂𝐺  = mode dummy for over-ground (omitted) 

 

44 The dependent variable (i.e., efficiency scores) initially have values 
between 0 to 1. After conversion into the natural log, the values become 
negative. Note that Ln (1) = 0. Therefore, the log transformation naturally 
sets the upper limit as zero. 
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𝐷𝑂𝐵  = ownership dummy for private firms  

𝐷𝑂𝐺  = ownership dummy for other firms (omitted) 

𝑇  = time (year) 

𝛼  = constant term 

𝜀  = error term 

3.2.3 Results Comparison 

We compared the results from the trans-log cost function model used 

in Research Study 2 against those from the model used in Research 

Study 1. Both are parametric models. The difference is that we added 

the ownership variable into the former to evaluate the ownership effect 

on efficiency. There could be some correlation between ownership and 

mode, and we wanted to inspect how adding ownership changes the 

other coefficients in the model. Thus, in addition to providing new 

information on the impact of ownership on costs and efficiency, we can 

study ownership and mode effects together and check the robustness 

of Research Study 1's findings to the addition of ownership effects.  

We also compared the results from the DEA-Tobit regression model 

against those from the trans-log cost function model used in this study. 

The former is semi-parametric, while the latter is parametric. The 

purpose is to evaluate whether there is any difference between the 

results. DEA-Tobit regression and trans-log cost function are two 

different approaches. Perry et al. (1988) mentioned that different 

analytical methods may cause inconsistent results. So, we inspected 

how density, scale, mode, and ownership affect:  

a. cost efficiency under the trans-log cost function model,  

b. cost efficiency under the DEA-Tobit regression model, and  

c. technical efficiency under the DEA-Tobit regression.  

Chapter 7 (Research Study 2) discusses how ownership generally 

affects efficiency and how private firms perform in cost efficiency in the 

Japanese urban rail sector.  
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3.3 Method for Research Study 3 

We assessed the efficiency of private firms in Research Study 2 

(Chapter 6). Specifically, we determined whether private firms are 

more cost-efficient than other firms. We now move from assessing the 

cost efficiency of private firms to evaluating the service effectiveness 

and cost effectiveness of private firms.  

In Research Study 3 (Chapter 7), we aim to explore further the 

ownership effect on each performance dimension (i.e., cost efficiency, 

service effectiveness and cost effectiveness) in the Japanese urban 

rail sector and investigate the density, scale, and mode effects on each 

performance dimension. In doing so, we will:  

a. determine whether private firms are more service effective than 

other firms, 

b. determine whether private firms are more cost-effective than 

other firms, 

c. compare and evaluate private firms' performance in cost 

efficiency, service effectiveness, and cost effectiveness, and 

d. compare and evaluate how density, scale, and mode affect cost 

efficiency, service effectiveness, and cost effectiveness.  

Recall that in the framework for transit performance introduced by 

Fielding et al. (1985), cost efficiency is the relationship between 

service input and service output; service effectiveness is the 

relationship between service output and service consumption; and 

cost effectiveness is the relationship between service input and 

service consumption. Fielding et al. (1985) treated the 

abovementioned relationships as ratio variables. In DEA, we used one 

component as input and another as output. In deriving cost efficiency, 

for example, we used the service input component (i.e., the cost of 

energy, labour, and material and repairs) as input for DEA; and the 

service output component (i.e., car-km) as output for DEA.  

Also, note that network DEA emerged because of the linkage between 

these relationships. However, we prefer not to apply network DEA in 
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this study for the same reason we mentioned in the method for 

Research Study 2 section.     

In Research Study 2, we applied parametric and semi-parametric 

models. Their similar results led to the same conclusions (see Chapter 

6). This similarity is not unusual, considering the findings from several 

other authors. Foster and Kalenkoski (2013) found that the qualitative 

results are generally similar between the OLS and Tobit regression 

when carrying out a second-stage regression of efficiency scores on 

explanatory variables. Their finding concurred with Hoff (2007), who 

found the OLS regression performed just as well as the Tobit 

regression at the second stage. In a more extensive comparison, 

Banker and Natarajan (2008) found the DEA-based procedures (i.e. 

the DEA-Tobit, DEA-OLS, and DEA-ML45) performed as well as the 

parametric methods — when assessing the impact of contextual 

variables on productivity. In another comparison, Fitzová and 

Matulová (2020) concluded that the DEA-Tobit regression, Simar and 

Wilson's bootstrap approach, and the parametric SFA would yield 

qualitatively similar results. For this reason, we decided to adopt one 

method in Research Study 3: the DEA-Tobit regression.  

3.3.1 Single-Input Single-Output Specification 

In Research Study 2 (Chapter 6), we compared the results from the 

trans-log cost function, DEA-Tobit regression cost efficiency, and 

DEA-Tobit regression technical efficiency models. We concluded that 

among the DEA-Tobit regression models, the DEA-Tobit regression 

cost efficiency (VRS) model produced the most similar results to the 

trans-log cost function model. We opine that the strong similarity 

between DEA-Tobit regression cost efficiency (VRS) model and trans-

log cost function model was attributed to the single-input single-output 

specification that existed in both models. 

 

45 Maximum Likelihood 
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In the DEA-Tobit regression cost efficiency (VRS) model, service input 

(operating costs in Yen) was treated as the input for DEA and service 

output (thousand car-km) was treated as the output for DEA. In other 

words, the cost efficiency refers to the relationship between operating 

costs in Yen and thousand car-km — a single-input and single-output 

specification. 

In the trans-log cost function model, service input (operating costs in 

Yen) was placed on the left-hand side of equation and service output 

(thousand car-km) was placed on the right-hand side of equation. 

When other factors are hold constant, the model shows the 

relationship between operating costs in Yen and thousand car-km — 

the same single-input single-output specification applied in the DEA-

Tobit regression cost efficiency (VRS) model.  

Single-input single-output specification can be found in several cost 

function studies. Some examples include those of Fumitoshi Mizutani 

(1997), Mizutani (2004), and Mizutani et al. (2009). This specification 

can also be found in several DEA studies like those of Banker and 

Natarajan (2008), Simar and Wilson (2011a), and Tziogkidis (2012b). 

However, these DEA studies are simulation rather than empirical.  

Sigaroudi (2016) argued that evaluating business performance based 

on a single input and output ratio is an oversimplification that fails to 

capture the complexity of businesses and their operating 

environments. Considering multiple inputs and outputs provides a 

more comprehensive and accurate assessment of a firm's 

performance. We agree to this reasoning in the case of evaluating 

technical efficiency. We used multiple-inputs single-output 

specification for the DEA-Tobit regression technical efficiency models. 

To recall, the service inputs were energy (kWh), labour (persons), and 

rolling stock (unit), and the service output was (thousand car-km).  

When it comes to measuring cost efficiency and cost effectiveness, we 

opine that treating operating costs as a single input is sufficient since 

the costs generally reflect all consumed resources. Perhaps there can 

be additional service output variable(s) — such as service quality level 
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— in addition to the typical service output variable used in the literature 

(i.e., car-km). We admit that one limitation of our research is difficulty 

in accessing additional data. In the concluding chapter (Chapter 8), we 

recommend considering service quality level if such data is accessible.  

For Research Study 3, we used single-input single-output specification 

in DEA-Tobit regression cost effectiveness (a semi-parametric 

approach) since based on our findings in Research Study 2, doing so 

will produce results that are most similar to the trans-log cost function 

(a parametric approach). For cost effectiveness, service input 

(operating costs in Yen) was treated as the input for DEA and service 

consumption (thousand passenger-km) was treated as the output for 

DEA. We also used single-input single-output specification in DEA-

Tobit regression service effectiveness to maintain consistency. For 

service effectiveness, service output (thousand car-km) was treated 

as the input for DEA and service consumption (thousand passenger-

km) was treated as the output for DEA. 

3.3.2 DEA-Tobit Regression 

We set the following specifications to produce service effectiveness 

and cost effectiveness scores: 

Type of score Input for DEA Output for DEA 

Service effectiveness Q (thousand car-km) Y (thousand passenger-km) 

Cost effectiveness CELM (Yen) Y (thousand passenger-km) 

We used VRS scores since the scale is prevalent in the rail industry 

(Lan & Lin, 2003; Merkert et al., 2017; Tsai et al., 2015). 

For service effectiveness scores, we used output orientation since we 

assume firms are expected to provide reliable routine services, limiting 

their service output46 (car-km) adjustment. Service output denotes 

 

46 Service output (car-km) is used as the input for DEA in calculating service 
effectiveness. 
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supply availability to consumers, and in local transport, providing 

service output is considered a service obligation (Cowie, 1999; Walter, 

2011). Lan and Lin (2003) applied output orientation for service 

effectiveness when evaluating 39 worldwide railway systems. 

We applied input orientation for cost effectiveness scores since 

demand-related factors partly influence service consumption, and 

firms have more control over service input (Fitzová et al., 2018). Other 

authors applying input orientation for cost effectiveness include 

Kleinová (2016) and Costa et al. (2021).  

In the second stage, Tobit regression, we specified the effectiveness 

scores (i.e., service effectiveness in one regression and cost 

effectiveness in another) as the dependent variable. We then selected 

Dt (car-km/operating-km), N (operating-km), DMMR (dummy for 

monorail), DMUG (dummy for under-ground), DOB (dummy for private), 

PD (population density), and T (year) as the independent variables.  

We included DOB to determine whether private firms are more service-

effective/cost-effective than other firms. 

We included Dt, N, DMMR, and DMUG to evaluate how density, scale, 

and mode affect cost efficiency (measured in Research Study 2), 

service effectiveness, and cost effectiveness. This inclusion will help 

us understand more about these performance dimensions' 

differences.  

We included PD since population density positively influences service 

consumption (Ingvardson & Nielsen, 2018; Lobo & Couto, 2016).  

For the same reason, we converted all variables into the natural log 

form as in Research Study 2. The Tobit regression model is defined 

as follows: 

𝐿𝑛𝐹𝑋 = 𝛼+𝛽𝐷𝑡
𝐿𝑛𝐷𝑡 + 𝛽𝑁𝐿𝑛𝑁 + 𝛽𝐷𝑀𝑀𝑅

𝐷𝑀𝑀𝑅 +

𝛽𝐷𝑀𝑈𝐺
𝐷𝑀𝑈𝐺+𝛽𝐷𝑂𝐵

𝐷𝑂𝐵+𝛽𝑃𝐷𝑃𝐷 + 𝑇 + 𝜀  (11) 
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Where: 

𝐹𝑋 = effectiveness scores (either service or cost effectiveness)  

𝐷𝑡 = traffic density (car-km/operating-km) 

𝑁  = network length (operating-km) 

𝐷𝑀𝑀𝑅  = mode dummy for monorail 

𝐷𝑀𝑈𝐺  = mode dummy for under-ground 

𝐷𝑀𝑂𝐺  = mode dummy for over-ground (omitted) 

𝐷𝑂𝐵  = ownership dummy for private firms  

𝐷𝑂𝐺  = ownership dummy for other firms (omitted) 

𝑃𝐷 = population density 

𝑇  = time (year) 

𝛼  = constant term 

𝜀  = error term 
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Chapter 4 Japan Urban Rail Environment and Data 

As noted in the introduction, urban rail in Japan forms the basis for the 

empirical work in this thesis. The urban rail market in Japan is unique. 

Unlike many others, "Japanese passenger railways are financially 

healthy and performing well in metropolitan areas" (Mizutani, 2014, p. 

4). The market comprises private, public, and quasi-public47 operators. 

Most operators own the rail infrastructure. A few operate the rail 

infrastructure, and another few run the rail services only. 

Furthermore, the regulatory environment in Japan is substantially 

different from anywhere else in the world. We will discuss eight 

regulatory aspects in Japan. They are the self-sufficiency principle, 

diversification strategy, subsidies, market entry and exit, licenses, fare, 

competition, and regulation. 

Self-sufficiency principle 

The fundamental principle in Japan has always been that urban rail 

firms must cover operating and infrastructure costs. This self-

sufficiency principle also applies to small private firms. The ratio of fare 

revenue to operating costs — excluding depreciation and debt interest 

— should be greater than 100% (Shoji, 2005). 

Despite this, most private rail firms provide adequate urban 

transportation services. They are self-sufficient financially, with 

profitable rail operations. They have farebox ratios that are far above 

100%. Even though the market conditions for urban railway systems 

in Japanese metropolitan areas may be unique regarding passenger 

volume, the success of Japanese mass transit is more likely due to the 

private ownership and business diversification of many railway 

operators (Shoji, 2001). 

  

 

47 Shared ownership between public and private. 
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Diversification strategy 

It has long been the practice of Japanese private rail firms to 

participate in non-rail businesses in addition to rail operations. 

Throughout their early years, many private firms engaged in various 

businesses. These include real estate, theme parks, and other modes 

of transportation – particularly along the rail lines (Song & Shoji, 2016). 

This diversification strategy has assisted them in establishing the 

stable ridership required for long-term success. Externalities such as 

the effect of housing development along rail lines can be captured, but 

a deliberate cross-subsidisation strategy is not permitted. The Railway 

Accounting Regulations clearly distinguished between rail lines and 

non-rail businesses in financial reporting (Mizutani, 2005).  

Diversification confers several benefits (Shoji, 2001), including the 

following:  

• Ridership rises as passengers are drawn to other in-house or 

group companies, 

• Group businesses can take advantage of the large number of 

people who use the train, 

• Profitability, made possible by internalising externalities resulting 

from the development of rail infrastructure, allows the business 

(and its affiliated companies) to invest in service enhancements 

more easily, and 

• The business can more easily establish a market-oriented outlook 

due to the experience gained from operating in a non-rail business 

environment. 

Subsidies 

Following the self-sufficiency principle, subsidies are only available for 

specific investment activities, such as constructing new rail lines, 

reconstructing infrastructure after natural disasters, modernising 

facilities, and upgrading crossings. It is important to note that subsidies 

are unavailable for operational activities (Shoji, 2005). 
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The government of Japan established several specialised subsidy 

initiatives for circumstances, most notably for projects involving the 

construction of new lines, which require significant financial 

investments. However, these subsidy programmes were applied to the 

lines supplied by public and quasi-public firms but not to more efficient 

private firms (Shoji, 2005). Private firms may only be eligible for 

assistance with interest payments on newly constructed or extended 

lines, which contributes nothing given the historically low levels of 

market interest rates. Despite being eligible for construction subsidies 

and concessionary fare reimbursements for senior citizens, many 

publicly operated subways operate at a loss (Shoji, 2001).  

Market Entry and Exit 

The market for new entrants was liberalised mainly in the year 2000 

(Mizutani, 2005). The requirement for a demand-supply balance was 

eliminated because it was a deterrent to competition. Two criteria were 

connected to this requirement in the old Railway Business Law, which 

was in effect before 2000. One, it is necessary to ascertain adequate 

demand for railway service. Two, there should not be any imbalance 

between supply and demand for railway service when a prospective 

new entrant enters the market. 

Licensing was phased out and replaced by a permission system, 

allowing more market players to be present. Permission is granted if a 

firm meets the following criteria: 

a. it possesses a sound business strategy, 

b. it complies with applicable safety regulations, 

c. it functions appropriately, and 

d. it assumes financial and technological risk. 

The permission granted is not time limited. However, permission will 

be revoked upon negligence or market exit. If a firm's operation is no 

longer financially viable, it may shut down, but it must notify the 

Ministry and the relevant local governments one year before ceasing 

operations. Before the permission system, a firm may cease 
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operations only with the approval of the Ministry when the cessation of 

service does not jeopardise the public interest. 

Licenses 

Japanese rail firms are granted three licences under the Rail Business 

Law (Shoji, 2005). A Class 1 licence is given to a firm that provides rail 

services through its infrastructure. A Class 2 licence is granted to a 

firm that operates on borrowed tracks, whereas a Class 3 licence is 

given to a firm that manages only the infrastructure. A firm classified 

as Class 1 is vertically integrated, while one classified as Class 2 or 

Class 3 is vertically segregated. Class 1 licensees are common, but 

Class 2 and Class 3 licensees are scarce. It is important to note that a 

rail firm can simultaneously have two different rail classes. For 

example, a Class 1 licensee can hold a Class 2 license if it uses 

another firm's track.  

Fare  

The Ministry regulates passenger fares under the Railway Business 

Law. All fares must be approved by the Minister of Land, Infrastructure, 

Transport and Tourism, and the total amount charged should be 

sufficient to cover a firm's costs and profits. Subsidies are, therefore, 

unlikely to be sought by firms (Shoji, 2005). 

The Ministry of Land, Infrastructure, Transport and Tourism regulates 

passes and regular tickets by price ceilings. This mechanism allows 

rail firms to charge any fares within the specified price ceilings. The 

price ceiling mechanism includes other ticket types, such as serial and 

group tickets. However, the firms must notify the Ministry of Land, 

Infrastructure, Transport and Tourism of their fares. The Ministry may 

order them to change prices if they engage in discriminatory or unfair 

practices (Mizutani, 2005; Okabe, 2004). 

Competition 

Competition is minimal, whether for or within the market (Mizutani, 

2005). The Railway Business Law requires that when a new railway 

plan is being considered, the transportation committee appointed by 
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the Ministry of Land, Infrastructure, and Transport solicits input from 

relevant rail firms and individuals. This condition may act as an indirect 

barrier to entry. Moreover, the regulator typically permits a firm to 

operate a monopolistic rail service. It then supervises rail fares and 

service standards to protect rail users from the dangers of a true 

monopoly. Therefore, most rail firms are Class 1 licensees that provide 

rail services on their tracks. Almost all private rail operators in the 

Tokyo Metropolitan Area who ran trains in 2015 had their rail system 

and infrastructure (Kato, 2016). Although a few firms operate services 

on another firm's track, they primarily collaborate to provide more 

convenient rail services rather than compete. There is competition 

between lines and firms on some of the most important routes between 

cities (F. Mizutani, 1997). However, such competition is not 

widespread. For example, urban rail operations in Tokyo are 

considered regionally monopolistic (Kato, 2016).  

Competition could also cause a setback to social outcomes (Kato, 

2016). One example is the competition between the three rail firms, JR 

East, Keikyu Co., and Tokyu Co., which all run three different lines 

from Tokyo to Yokohama. Even though this helps improve service and 

brings down fares, the increased competition among train operators 

could result in less effective coordination. One explanation is that 

private businesses do not want to cooperate with rival companies to 

protect their current clientele from being taken away. Another reason 

is that private firms do not want to shoulder the investment cost alone 

to enhance connectivity. In Japan, there is an unspoken guideline that 

a proposing player is responsible for paying the project's total cost, 

regardless of whether the project could benefit other stakeholders.  

Regulation 

A yardstick competition scheme — a form of fare regulation via a 

benchmarking cost model — has been implemented to avoid the 

inefficiency associated with monopolistic situations (Mizutani, 2005). 

There were no public or smaller private railways included in this 

scheme before a more sophisticated tool was developed in 1997, 
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allowing for the application of the scheme in three distinct groups: 15 

large private rail firms, 6 JR passenger firms48, and ten public rail firms 

(Okabe, 2004). However, about 130 rail firms still have not been 

regulated by yardstick competition. The Ministry of Land, Infrastructure 

and Transport regulates these remaining rail firms separately. The 

costs of these rail lines are reviewed on a case-by-case basis by the 

Ministry with confidentiality (Mizutani et al., 2009). 

Under this scheme, the regulator establishes several performance 

measures, such as operating costs, and evaluates the performance of 

rail operators against these measures. Each rail firm's performance is 

assessed by comparing its actual costs to the market's standard. For 

a less efficient rail firm with actual costs that exceed the market's 

standard costs, the 'reasonable costs' used to determine the fare level 

are the market's standard costs. Over the evaluation period, the rail 

firm is expected to maintain costs in line with the market's standard. 

For a more efficient rail firm with actual costs less than standard 

market costs, the 'reasonable costs' used to determine the fare level 

are the average of the firm's actual and market standard costs. Half 

the difference between actual and market standard costs is returned 

to the firm to reward its good efforts. The yardstick competition scheme 

will also evaluate any requests for fare increases. 

While the scheme does not foster an ideal environment for 

competition, it does appear to promote some form of competition. F. 

Mizutani (1997) found that yardstick competition between large 

Japanese private rail firms is effective to a certain extent. Firms 

subjected to yardstick competition significantly improve their cost 

efficiency compared to firms not subjected to yardstick competition 

(Mizutani et al., 2009). 

 

48 JR is the abbreviation of Japan Railways Group. JR has one freight 
operator (Japan Freight) and six passenger operators (Hokkaido, East 
Japan, Central Japan, West Japan, Shikoku, and Kyushu). Almost all 
passenger services are provided within the respective areas. 
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Further Note on Yardstick Competition 

25 of the observed firms are regulated under the Yardstick 

Competition (see Table 4 on page 72), whereas the remaining 21 firms 

are separately regulated by the Ministry of Land, Infrastructure and 

Transport (MLIT) on a case-by-case basis by the Ministry with 

confidentiality Mizutani et al. (2009).  

Fumitoshi Mizutani (1997) discovered that yardstick competition 

between large Japanese private rail operators is effective to some 

extent from 1980 to 1993. Mizutani et al. (2009) discovered that firms 

subjected to yardstick competition considerably improved their cost 

efficiency compared to firms not subjected to yardstick competition 

from 1995 to 2000. However, Mizutani and Usami (2016) stated that 

the statistical significance of yardstick regulation explained by dummy 

variable was only detected at 10% level, implying that its effect may 

be minimal. They also examined the performance of firms subject to 

yardstick competition and those subject to full cost pricing from 1990 

to 2011. They did not find any clear evidence that the yardstick 

regulation for large private railways improved productivity when 

compared to the traditional full-cost price regulation for small private 

railways. 

We concluded that adding yardstick competition or regulation dummy 

variable is not necessary since for the most part of our sample period 

(i.e., 2004-2011 of 2004-2015), there is no significant difference 

between firms that are regulated under the yardstick competition and 

firms that are regulated under the full cost pricing.  
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Table 4. Firms that are subject to Yardstick Competition 

ID Name Yardstick 

Competition 

Metropolitan Area Private Quasi- 

public 

Public Over- 

Ground 

Monorail Under- 

Ground 

1 Tobu (Tōbu Railway) Yes Tokyo (Kantō) ○ 

  

○ 

  

2 Seibu (Seibu Railway) Yes Tokyo (Kantō) ○ 

  

○ 

  

3 Keisei (Keisei Electric 

Railway) 

Yes Tokyo (Kantō) ○ 

  

○ 

  

4 Keio (Keiō Corporation) Yes Tokyo (Kantō) ○ 

  

○ 

  

5 Odakyu (Odakyū Electric 

Railway) 

Yes Tokyo (Kantō) ○ 

  

○ 

  

6 Tokyu (Tōkyū Corporation) Yes Tokyo (Kantō) ○ 

  

○ 

  

7 Keikyu (Keihin Electric 

Express Railway) 

Yes Tokyo (Kantō) ○ 

  

○ 
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ID Name Yardstick 

Competition 

Metropolitan Area Private Quasi- 

public 

Public Over- 

Ground 

Monorail Under- 

Ground 

8 Soutetsu (Sagami Railway 

(Sōtetsu)) 

Yes Tokyo (Kantō) ○ 

  

○ 

  

9 Meitetsu (Nagoya Railroad) Yes Nagoya (Chūkyō) ○ 

  

○ 

  

10 Kintetsu (Kintetsu Railway) Yes Nagoya (Chūkyō) ○ 

  

○ 

  

11 Nankai (Nankai Electric 

Railway) 

Yes Keihanshin ○ 

  

○ 

  

12 Keihan (Keihan Electric 

Railway) 

Yes Keihanshin ○ 

  

○ 

  

13 Hankyu (Hankyū 

Corporation) 

Yes Keihanshin ○ 

  

○ 

  

14 Hanshin (Hanshin Electric 

Railway) 

Yes Keihanshin ○ 

  

○ 
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ID Name Yardstick 

Competition 

Metropolitan Area Private Quasi- 

public 

Public Over- 

Ground 

Monorail Under- 

Ground 

15 Nishitetsu (Nishi-Nippon 

Railroad) 

Yes Fukuoka–Kitakyushu ○ 

  

○ 

  

16 Tokyo Metro (Tokyo Metro) Yes Tokyo (Kantō) ○ 

    

○ 

17 Shinkeisei (Shin-Keisei 

Electric Railway) 

No Tokyo (Kantō) ○ 

  

○ 

  

18 Tokyo monorail (Tokyo 

monorail) 

No Tokyo (Kantō) ○ 

   

○ 

 

19 Senboku (Semboku Rapid 

Railway) 

No Keihanshin ○ 

  

○ 

  

20 Kobe (Kōbe Electric 

Railway) 

No Keihanshin ○ 

  

○ 

  

21 Sanyo (Sanyo Electric 

Railway) 

No Keihanshin ○ 

  

○ 
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ID Name Yardstick 

Competition 

Metropolitan Area Private Quasi- 

public 

Public Over- 

Ground 

Monorail Under- 

Ground 

22 Nose (Nose Electric 

Railway) 

No Keihanshin ○ 

  

○ 

  

23 Hokushin (Hokushin Kyūkō 

Electric Railway) 

No Keihanshin ○ 

  

○ 

  

24 Kita Kyushu (Kitakyushu 

Monorail) 

No Fukuoka–Kitakyushu 

  

○ 

 

○ 

 

25 Saitama new transit 

(Saitama New Urban 

Transit) 

No Tokyo (Kantō) 

 

○ 

  

○ 

 

26 Saitama Rapid (Saitama 

Railway) 

No Tokyo (Kantō) 

 

○ 

   

○ 

27 Hokuso (Hokusō Railway) No Tokyo (Kantō) 

 

○ 

   

○ 
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ID Name Yardstick 

Competition 

Metropolitan Area Private Quasi- 

public 

Public Over- 

Ground 

Monorail Under- 

Ground 

28 Chiba monorail (Chiba 

Urban Monorail) 

No Tokyo (Kantō) 

 

○ 

  

○ 

 

29 Yokohama seaside 

(Yokohama New Transit) 

No Tokyo (Kantō) 

 

○ 

  

○ 

 

30 Yurikamome (Yurikamome) No Tokyo (Kantō) 

 

○ 

  

○ 

 

31 Tokyo rinkai (Tokyo 

Waterfront Area Rapid 

Transit) 

No Tokyo (Kantō) 

 

○ 

   

○ 

32 Toyo rapid (Tōyō Rapid 

Railway) 

No Tokyo (Kantō) 

 

○ 

   

○ 

33 Tama monorail (Tama 

Toshi Monorail) 

No Tokyo (Kantō) 

 

○ 

  

○ 
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ID Name Yardstick 

Competition 

Metropolitan Area Private Quasi- 

public 

Public Over- 

Ground 

Monorail Under- 

Ground 

34 Yokohama rapid 

(Yokohama Minatomirai 

Railway) 

No Tokyo (Kantō) 

 

○ 

   

○ 

35 Kita Osaka (Kita-Osaka 

Kyūkō Railway) 

No Keihanshin 

 

○ 

 

○ 

  

36 Kobe new transit (Kobe 

new transit) 

No Keihanshin 

 

○ 

  

○ 

 

37 Osaka monorail (Osaka 

monorail) 

No Keihanshin 

 

○ 

  

○ 

 

38 Sapporo (Sapporo City 

Transportation Bureau) 

Yes Sapporo 

  

○ 

  

○ 

39 Sendai (Sendai Subway) Yes Sendai 

  

○ 

  

○ 
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ID Name Yardstick 

Competition 

Metropolitan Area Private Quasi- 

public 

Public Over- 

Ground 

Monorail Under- 

Ground 

40 Tokyo subway (Toei 

Subway) 

Yes Tokyo (Kantō) 

  

○ 

  

○ 

41 Yokohama sub (Yokohama 

Municipal Subway) 

Yes Tokyo (Kantō) 

  

○ 

  

○ 

42 Nagoya sub (Nagoya 

Municipal Subway) 

Yes Nagoya (Chūkyō) 

  

○ 

  

○ 

43 Kyoto sub (Kyoto Municipal 

Subway) 

Yes Keihanshin 

  

○ 

  

○ 

44 Osaka sub (Osaka Metro) Yes Keihanshin 

  

○ 

  

○ 

45 Kobe sub (Kobe Municipal 

Subway) 

Yes Keihanshin 

  

○ 

  

○ 

46 Fukuoka (Fukuoka City 

Subway) 

Yes Fukuoka–Kitakyushu 

  

○ 

  

○ 
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4.1 Data and Variables 

We used data from 46 Japanese urban rail firms from 2004 to 2015. 

These firms are located in six major metropolitan areas in Japan, 

namely Sapporo, Sendai, Tokyo, Nagoya, Osaka (or Keihanshin), and 

Fukuoka (see Figure 19 on page 191 and Table 37 on page 192 for 

further details). The data was sourced from Japan's Annual Statistics 

of Railways and the Statistics of Japan (Japanese Government 

Statistics). Table 5 on page 80 and Table 6 on page 83 are the variable 

definitions and descriptive statistics. A table containing complete 

values of the key variables will consume about 20 pages. Alternatively, 

a one-page snapshot of the table is provided to give the reader a 

general idea on the values of the key variables. For this purpose, Table 

7 on page 84 shows a snapshot of representative values of key 

variables.  

Operating costs are the sum of the annual energy, labour, and material 

& repair costs. The capital costs relating to the infrastructure and the 

rolling stock are excluded from the model for two reasons. Firstly, 

these costs are high and infrequent compared to energy, labour, and 

material & repair costs. Rail firms could not optimise their facilities in 

the short run (Mizutani, 2004). Secondly, operators have variations 

regarding when these costs are incurred and how their deprecation is 

treated. Depreciation is more likely to be underestimated in private 

firms than in public firms (Mizutani, 1994). Therefore, including these 

costs as input or controlled factors may cause the model to present 

inaccurate cost structures. Also, new infrastructure investment is not 

included — so are depreciation and taxes. However, the maintenance 

and repair costs for track, cable and rolling stocks are included in the 

model. 
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Table 5. Variable Definition 

Variable Definition Unit Research 

Study 1 

Research 

Study 2 

Research 

Study 3 

CELM  

(Operating Cost)  

The sum of energy, labour, and material & repairs costs after 

accounting for inflation* 

Yen 

✓  ✓  ✓  

PE  

(Energy Price) 

Price per kWh of energy consumed for the specific year after 

accounting inflation* 

Yen 

✓  ✓   

PL  

(Labour Price) 

Salary per full-time equivalent employee for the specific year after 

accounting inflation* 

Yen 

✓  ✓   

PM  

(Material Price) 

Material and repair expenditure per rolling stock for the specific year 

after accounting inflation* 

Yen 

✓  ✓   

Q  

(Output) 

 

The total journey travelled by all rolling stocks for the specific year Car-km  

(thousand) 
✓  ✓  ✓  

N  Length of track in operation for the specific year Operating-km ✓  ✓  ✓  
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Variable Definition Unit Research 

Study 1 

Research 

Study 2 

Research 

Study 3 

(Network Length) 

Dt 

(Traffic Density) 

The journey travelled by all rolling stocks is divided by the length of the 

track in operation for the specific year. 

Car-km (thousand) per 

Operating-km 
✓  ✓  ✓  

DMOG  

(Over-Ground) 

Dummy variable for rail mode: over-ground (Omitted condition) Binary 

✓  ✓  ✓  

DMMR  

(Monorail)  

Dummy variable for rail mode: monorail Binary 

✓  ✓  ✓  

DMUG  

(Under-Ground) 

Dummy variable for rail mode: under-ground Binary  

✓  ✓  ✓  

DOB  

(Private Firms) 

Dummy variable for ownership: private firms 

 

Binary 

 ✓  ✓  
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Variable Definition Unit Research 

Study 1 

Research 

Study 2 

Research 

Study 3 

DOG  

(Other Firms) 

Dummy variable for ownership: quasi-public and public firms (Omitted 

condition) 

Binary 

 ✓  ✓  

T  

(Time) 

Time Year 

✓  ✓  ✓  

Dp  

(Population 

Density)  

Population density by serviced prefecture Person per 1km2 

  ✓  

* Inflation base year was set at 2015. 
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Table 6. Summary Statistics for Continuous Variables 

Variable Observation Firms Time Mean Std. Dev. Min Max 

CELM 552 46 12 29,000 Mil. 36,900 Mil. 1,270 Mil. 202,000 Mil. 

PE 552 46 12 14.66 3.99 5.70 30.63 

PL 552 46 12 8,678,468 1,908,650 2,714,543 21,400,000 

PM 552 46 12 24,800,000 11,800,000 7,026,819 87,100,000 

Q 552 46 12 72,610.26 89,953.25 2,327.00 425,417.00 

N 552 46 12 84.76 116.09 4.10 584.10 

Dt 552 46 12 32,202.57 25002.71 4059.54 106,371.30 

Dp  552 46 12 4,301.645 3,146.9 69 9,946 
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Table 7. A Snapshot of the Values of Key Variables 

ID CELM PE PL PM Q N Dt DMOG DMMR DMUG DOB DOG T DP 

1 98091179197 14.0223 9313059 19979583 297551 463.30 642.24 1 0 0 1 0 2004 1874 

2 58771628218 12.2267 10945419 14839288 173130 176.60 980.35 1 0 0 1 0 2004 3782 

3 34251184346 12.9305 10384908 22332019 92134 102.40 899.75 1 0 0 1 0 2004 3440 

4 48069726056 15.6679 13326554 21223510 114046 84.70 1346.47 1 0 0 1 0 2004 4665 

5 62297659114 12.3641 11449859 19217140 158354 120.50 1314.14 1 0 0 1 0 2004 4665 

6 76891453141 13.1326 11064293 37823016 161378 100.10 1612.17 1 0 0 1 0 2004 4665 

7 43097136972 12.3907 11271853 25696169 112632 87.00 1294.62 1 0 0 1 0 2004 4665 

8 17517447992 12.7889 10073882 11672927 47284 35.90 1317.10 1 0 0 1 0 2004 3623 

9 55966578785 12.5358 7664465 17153956 193627 480.80 402.72 1 0 0 1 0 2004 798 

Note: Refer to Table 5 on page 80 for variable definitions and the measurement used. ID number represents a specific firm. Refer to Table 37 on 
page 192 for more information on ID number and the firm it represents.  
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Energy is electricity utilised for running trains on the track, including 

relocation1. Energy price is energy expenditure (Yen) divided by 

energy consumed (kWh) for the specific year. Labour is full-time 

equivalent permanent and temporary employees, including those who 

work onboard, at the stations, and on any other premise relevant to 

the operation and general affairs. Labour price is the sum of all salaries 

(Yen) divided by the number of labour (persons) for the specific year. 

Material and repair are goods and services purchased to maintain 

trains, tracks, cables, and other operations and advertisement assets. 

Material & repair price is material and repair expenditure divided by 

the number of rolling stocks for the specific year.  

There is no perfect denominator for cost categories covering multiple 

factors, like trains and tracks. Without further details (i.e., specific 

expenditure on each factor), we choose the number of rolling stocks 

as the denominator for Material & repair price. The number of rolling 

stocks is a good proxy because (a) it is relevant for rolling stock 

maintenance, and (b) it is relevant for variable track maintenance 

driven by usage. We also find that number of rolling stocks is highly 

correlated with network length. Numerous papers use the number of 

rolling stocks as a denominator for material price. One example is 

Wheat and Smith (2015).  

Output is the summation of the journey travelled (km) by each rolling 

stock for the year. Network length is the track (km) used for providing 

train services in a particular year.  

There are three mode dummies: over-ground2, monorail, and under-

ground. Over-ground consists of those with the most over-ground 

routes — although part of their route is under-ground. Under-ground 

consists of those with most routes under-ground — although part of 

 

1 such as moving the cars (trains) to the garage, etc. 
2 mode dummy for the over-ground is omitted to avoid dummy variable trap 
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their route is over-ground. Monorail consists of monorail and 

Automated Guideway Transit (AGT) operators.  

There are two ownership dummies: private3 firms and other firms. 

Japan's Annual Report on Railway Statistics defines private, quasi-

public and public firms. We combined quasi-public firms with public 

firms under one category and named them as other firms. The reason 

is that quasi-public is typically operated by a private operator and 

financed by the government to preserve the services of mostly 

unprofitable lines (Saito, 2015; Shoji, 2001). Moreover, our motivation 

in Research Studies 2 and 3 is to evaluate the cost efficiency, service 

effectiveness and cost effectiveness of private firms relative to other 

firms. A dummy value of zero is set when an urban rail is public or 

quasi-public. A dummy value of unity is set when an urban rail is 

private. This dummy value assignment is similar to Kerstens (1996).   

For ownership, we further investigated two firms:  

• Tokyo Metro – Tokyo Metro Co., Ltd is a "special company" 

established by an Act. The company is considered to have a 

significant influence on public interest but desirable to be 

operated as a corporation rather than a public body. The 

company operates like a private firm since it will likely be 

privatised later. Tokyo Metro is a private firm in Japan's Annual 

Report on Railway Statistics. In our research study, we treated 

Tokyo Metro as a private firm. 

• Kita-Kyushu – Kita-Kyushu is not a "special company" like 

Tokyo Metro, even though Kitakyushu-shi owns all stocks. 

Kitakyushu is categorised as a private firm in Japan's Annual 

Report on Railway Statistics. Our research study treated Kita-

Kyushu as part of other firms (i.e., quasi-public and public). 

Population density is the number of persons per 1km2 in the 

prefecture(s) where a firm is serving (i.e., serviced prefecture). For 

 

3 Ownership dummy for private is omitted to address dummy variable trap. 
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example, the population density for Tōbu Railway will be those of 

Tokyo, Saitama, Chiba, Gunma, and Tochigi (see Table 37 on page 

192). We note that in some cases, a firm serves only certain parts of 

a prefecture. However, this is the best available data on population 

density that we can obtain. 

4.2 Correlation between Mode and Ownership 

Both mode and ownership dummies are included in Research Studies 

2 and 3 to explore whether there will be a significant performance4 

difference between private firms and other firms in Japan's urban rail 

services if we account for mode differences. Briefly, private ownership 

tends to be concentrated in the over-ground operation, quasi-public in 

the monorail and the under-ground operation, and public ownership in 

the under-ground operation. These are shown in the following table: 

Table 8. Mode and Ownership Tabulation 

 

Note: For mode, 1 = Over-Ground, 2 = Monorail, 3 = Under-Ground; and 
for ownership, 1 = Private, 2 = Quasi-Public, 3 = Public. 

 

4 Cost efficiency, service effectiveness and cost effectiveness. 

                100.00     100.00     100.00      100.00 

     Total          22         14         10          46 

                                                        

                  4.55      35.71      90.00       32.61 

         3           1          5          9          15 

                                                        

                  4.55      50.00      10.00       19.57 

         2           1          7          1           9 

                                                        

                 90.91      14.29       0.00       47.83 

         1          20          2          0          22 

                                                        

      MODE           1          2          3       Total

                           OWN

                     

  column percentage  

      frequency      

                     

  Key                
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Pearson Chi2 and Fisher's Exact tests indicated that Mode and 

Ownership are not independent. These are shown in the following 

table: 

Table 9. Mode and Ownership: Pearson Chi2 dan Fisher's Exact Tests 

 

Note: For mode, 1 = Over-Ground, 2 = Monorail, 3 = Under-Ground; and 
for ownership, 1 = Private, 2 = Quasi-Public, 3 = Public. 

If quasi-public firms are combined with public firms, the correlation 

between ownership and mode dummies will be found as in Table 10 

on page 88. In addition to the high correlation value between private 

firms and the over-ground mode, there is also a high correlation value 

between other firms (quasi-public and public firms) and the over-

ground mode. The values are the same, 0.8295, except that the latter 

is negative.  

Table 10. Correlation between the ownership and rail mode dummies (after 
quasi-public firms are combined with public firms) 

 Mode Private Firms Significance Other Firms Significance 

Over-Ground 0.8295 0.000 -0.8295 0.000 

Monorail -0.2957 0.000 0.2957 0.000 

Under-Ground -0.6337 0.000 0.6337 0.000 

Wooldridge (2013, p. 97) stated, "Regardless of how much correlation 

there is between x2 and x3. If β1 is the parameter of interest, we do not 

really care about the amount of correlation between x2 and x3." 

Therefore, if the main interest of the regression is to derive cost 

efficiency while accounting for the possible influential factor(s), the 

           Fisher's exact =                 0.000

          Pearson chi2(4) = 500.4221   Pr = 0.000

     Total         264        168        120         552 

                                                        

         3          12         60        108         180 

         2          12         84         12         108 

         1         240         24          0         264 

                                                        

      MODE           1          2          3       Total

                           OWN
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high correlation between the two variables is negligible. However, in 

Research Studies 2 and 3, we examined private firms' cost efficiency, 

service effectiveness, and cost effectiveness relative to other firms. 

When we discounted time (year) in the observation, the number of 

firms in each mode category is shown in the following table: 

Table 11. Number of Firms in Each Mode Category 

 

Note: For mode, 1 = Over-Ground, 2 = Monorail, 3 = Under-Ground; and 
for ownership, 1 = Private firms, 2 = Other firms. 

Private firms operate most over-ground services, while other firms 

operate most monorail and under-ground services. This situation was 

similarly observed by Mizutani (1994) when comparing the efficiency 

and costs of private and public urban railways in Japan. However, he 

mentioned that, in theory, "this should not cause bias in the 

coefficients" (Mizutani, 1994, p. 168).  

 

     Total          22         24          46 

                                             

         3           1         14          15 

         2           1          8           9 

         1          20          2          22 

                                             

      MODE           1          2       Total

                      OWN
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Chapter 5 Research Study 1: Understanding the Cost 

Structure of Urban Rail Modes 

5.1 Introduction 

In Chapter 2: Review of the Performance of Urban Rail Modes, we 

explained that stating and recognising mode differences has not been 

a standard practice. Not all authors considered mode differences in 

their studies. We also mentioned the benefits of knowing the cost 

structure1 of urban rail services when the mode difference is 

accounted for. There are three key benefits. First, by accounting the 

operating costs aspect of Cost Benefit Analysis (CBA), policymakers 

can make a better decision on which mode to construct when 

considering for a new urban rail project. Second, policymakers can 

specify an expected output2 level from an urban rail operator. Third, 

policymakers can execute a realistic network expansion project for 

urban rail service. If the CES varies between urban rail modes, the 

effect of increased traffic and network length on cost will also vary 

across urban rail modes. In this research study (Chapter 5), we are 

motivated to understand the cost structure of each urban rail mode3 in 

Japan and determine whether there is any significant difference 

between them.   

In Chapter 3: Methodology, we explained that a cost function 

regression was chosen because it can offer valuable insights into the 

cost structure of each rail mode for a given range of operation size — 

in terms of density and scale. Increasing either density or scale may 

result in one of these three circumstances: 

a. an increasing RTD or RTS in which the marginal cost is lower 

than the average cost, 

 

1 Consists of operating costs, cost elasticity w.r.t density, and cost elasticity 
w.r.t scale 

2 In this context, we specify output as car-km. 
3 Over-ground, monorail, and under-ground. 
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b. a constant RTD or RTS in which the marginal cost is the same 

as the average cost, or  

c. a decreasing RTD or RTS in which the marginal cost is higher 

than the average cost.  

We further chose the trans-log cost function over the Cobb-Douglas 

cost function because it is less restrictive – allowing the adoption of 

the U-shaped average cost curve. The trans-log cost function allows 

for more nuanced economic interpretations of the cost structure via 

dynamic cost elasticity. However, the trans-log is not necessarily 

simple to apply due to the many parameters that must be estimated. It 

requires selecting an appropriate functional form (Nash & Smith, 

2014). This process finds a good functional form for the model, 

chooses the variables, and adapts economic theories.  

We elaborated on this process in Appendix B: Specification of a 

Functional Form. In brief, we started with a Cobb-Douglas base cost 

function. Then, we imposed homogeneity of degree one in prices. After 

that, we added trans-log terms into the equation. We conducted the F-

test to see whether adding these trans-log terms would produce a 

statistically better model. We proceeded with trans-log model 

expansion when we found that the trans-log model was better. We did 

so by gradually adding mode dummy intercepts and interactions into 

the equation. We checked the F-test, AIC, and BIC results. We also 

checked how cost elasticity behaves w.r.t density and scale. These 

checks allowed us to identify a sensible model. We added time trend 

to the model and used different estimators: Ordinary Least Squares, 

Fixed Effects, and Random Effects. When we compared the results, 

we found a lot of similarities between estimators. This finding gave us 

confidence in the strength of our model. We then decided to use the 

results from Model 6 RE +Time (after purging), which utilised random 

effects, an estimator. The regression results from Model 6 RE +Time 

(after purging) can be found in Table 15 on page 112. 
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5.2 Research Aims and Objectives 

In this chapter, we aim to understand the cost structure of each urban 

rail mode in Japan and determine whether there is any significant 

difference between them. In doing so, we set the following objectives: 

a. to determine whether operating costs vary between modes and 

whether there is a significant difference between them, 

b. to determine whether economies of density characteristics vary 

between modes and whether there is a significant difference 

between them, and 

c. to determine whether economies of scale characteristics vary 

between modes and whether there is a significant difference 

between them. 

5.3 Results and Discussion 

This section first synthesises the results from simple ratios, which are 

non-econometric methods. After that, it will discuss the operating 

costs, RTD, and RTS based on Model 6 RE +Time (after purging) from 

the trans-log cost function, which is an econometric method. Then, it 

will discuss the differences between the results from simple ratios and 

the trans-log cost function.  

5.3.1 Simple Ratios 

We looked at two types of ratio statistics. One was the average cost 

per output (Yen per car-km), and another was the average cost per 

network length (Yen per operating km). Figure 9 on page 93 shows the 

rail mode average cost4 per output. There were observable differences 

between rail modes. Being one mode could increase or decrease the 

average cost per output compared to another mode. The under-

ground had the highest average cost per output, amounting to 

 

4 Rail mode average cost was obtained by summing up the yearly average 
individual cost and dividing it by the number of members within the rail 
mode.    
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¥504,467 (£2,728.165), followed by the monorail at ¥406,404 

(£2,197.83) and the over-ground at ¥355,413 (£1,922.07). 

 

Figure 9. Rail Mode Average Cost per Output 

 

Figure 10. Rail Mode Average Cost per Network Length 

The scenario was different when we looked at the average cost per 

network length. Figure 10 on page 93 shows the rail mode average 

cost per network length. Although there were still observable 

differences between rail modes, the order — in the context of which 

cost more — had changed. The under-ground remained the costliest 

to operate, with the average cost per network length amounting to 

¥577,017,568 (£3,120,511.01). This time, the over-ground had taken 

 

5 Converted using the average exchange rate for 2015, at 0.005408.  
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second place at ¥280,503,910 (£1,516,965.15). The monorail became 

the least costly at ¥219,663,386 (£1,187,939.59).  

Based on the average cost per network length, the gap between the 

under-ground and any of the other two rail modes was substantial (i.e., 

more than 100 per cent). However, based on the average cost per 

output, the gap between the under-ground and any other two rail 

modes was not relatively substantial (i.e., much less than 100 per cent) 

— see Figure 9 on page 93.   

As the average cost switched from per output to per network length 

basis, the over-ground switched from having the lowest average cost 

to having the second lowest. In turn, the monorail changed from having 

the second lowest average cost to having the lowest average cost. A 

question arises regarding which one has the lowest average cost — 

whether over-ground or the monorail. These different results could 

result in different rankings depending on cost per output or cost per 

network length — which invites a statistical model to get a clearer 

picture.  

5.3.2 Relative Operating Costs 

To get statistical validity to the findings, we gauged the differences in 

the operating costs between the rail modes. The over-ground was set 

as the reference mode. Therefore, differences will be measured based 

on the percentage deviation from the over-ground operating costs. We 

calculated the operating costs relative to the over-ground (CDMO) cost 

for the monorail and the under-ground as follows.  

𝐶𝐷𝑀𝑂𝐷𝑀𝑀
= 𝐸𝑥𝑝𝑜𝑛𝑒𝑛𝑡𝑖𝑎𝑙[𝛽𝐷𝑀𝑀

+ 𝛽𝐷𝑡𝐷𝑀𝑀
∗ 𝐷𝑡𝐷𝑀𝑀

+ 𝛽𝑁𝐷𝑀𝑀
∗

𝑁𝐷𝑀𝑀
]  

(12) 

𝐶𝐷𝑀𝑂𝐷𝑀𝑈
= 𝐸𝑥𝑝𝑜𝑛𝑒𝑛𝑡𝑖𝑎𝑙[𝛽𝐷𝑀𝑈

+ 𝛽𝐷𝑡𝐷𝑀𝑈
∗ 𝐷𝑡𝐷𝑀𝑈

+ 𝛽𝑁𝐷𝑀𝑈
∗

𝑁𝐷𝑀𝑈
]  

(13) 

Where 𝛽 is the respective coefficient value, 𝐷𝑡 is density (car-km per 

track-km), 𝑁 is network length (track-km), 𝐷𝑀𝑀 is mode dummy for the 
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monorail, and 𝐷𝑀𝑈 is the mode dummy for the under-ground. Table 12 

on page 95 is an excerpt of the regression results from Model 6 RE 

+Time (after purging). The excerpt shows the coefficients involved in 

calculating the differences. The complete regression results can be 

found on page 112. 

Table 12. The coefficients involved in calculating differences in the operating 
costs between the rail modes. 

Variable Names Definition Coefficient 

LnmcQpN_DMM or 𝜷𝑫𝒕𝑫𝑴𝑴
 Monorail's cost elasticity w.r.t traffic 

density compared to that of over-

ground. 

-0.2523734 

LnmcQpN_DMU or 𝜷𝑫𝒕𝑫𝑴𝑼
 Under-ground's cost elasticity w.r.t 

traffic density compared to that of 

over-ground. 

-0.290507 

LnmcN_DMM or 𝜷𝑵𝑫𝑴𝑴
 Monorail's CES compared to that of 

over-ground. 

-0.4184442 

LnmcN_DMU or 𝜷𝑵𝑫𝑴𝑼
 Under-ground's CES compared to that 

of over-ground. 

0.0251065 

DMM or 𝜷𝑫𝑴𝑴
 Monorail's cost elasticity compared to 

that of over-ground.  

- 0.9584722 

DMU or 𝜷𝑫𝑴𝑼
 Under-ground's cost elasticity 

compared to that of over-ground. 

0.1475098 

We calculated the operating costs relative to the over-ground cost 

(CDMO) for the monorail and the under-ground. The density and the 

network length were set at several mean values (i.e., the sample 

mean, the over-ground mean, the monorail mean, and the under-

ground mean). Setting these mean values allowed us to evaluate the 

cost differences from the perspective of the market, as well as from 

the perspective of each rail mode. Figure 11 on page 96 shows the 

CDMO for the monorail and the under-ground at various means. From 

every perspective, we found that the monorail's cost was lower than 
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the over-ground. On average, the former's cost was 49.23% lower than 

the latter. 

In comparison, the under-ground’s operating costs were higher than 

the over-ground’s. On average, the former's costs were 16.55% higher 

than the latter. We concluded that, in principle, the monorail has the 

lowest operating costs, followed by the over-ground and the under-

ground.   

Although this is similar to the ranking generated by the average cost 

per network length ratio (see Figure 10 on page 93), the cost gaps 

between rail modes were not the same. For example, based on the 

average cost per network length ratio, the cost gap between the under-

ground and the over-ground was more than 100 per cent. On the other 

hand, based on the trans-log cost function, the average cost gap 

between the two modes was only 17.55%.  

 

Figure 11. The operating costs relative to the cost of the over-ground 

(CDMO); holding density and network length at various means. 
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From our point of view, the results from the trans-log cost function, 

which is Model 6 RE +Time (after purging), should supersede the 

results from the simple ratios since the former, an econometric model, 

was much more robust — it had embedded microeconomic principles 

and account other factors constant. Unlike simple ratios, it also gives 

statistical validity and allows network length and traffic to be in the 

model together. This point might be trivial to the policymakers and 

regulators from the developed regions as the cost function studies on 

rail services were prevalent in the North American and European 

regions — see Catalano et al. (2019). However, this point might 

motivate those from other regions to actively carry out cost function 

studies on rail services – that is, further their analysis of simple ratios 

by developing an econometric cost function study6.  

5.3.3 Relative Operating Costs w.r.t Density 

We now elaborate on the three-dimensional results in the preceding 

section (see Figure 11 on page 96) and understand them in more 

depth — starting by looking at how the relative operating costs of 

different modes vary with density. To rephrase it, we analyse how 

density affects the relative operating costs. To make it easier, we 

turned the three-dimensional results into two-dimensional results. 

Network length was set at several mean values. We are now able to 

observe the relative7 cost behaviour w.r.t density at four network 

lengths: namely, the average market network length, the average 

over-ground network length, the average monorail network length, and 

the average under-ground network length.  

 

6 The cooperation from the regulatory body and the operators is essential for 
data identification and collection for a cost function study.  

7 Bear in mind that the over-ground is the reference mode. 
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Figure 12. The relative operating costs w.r.t density; holding network 

length at various means. 

Figure 12 on page 98 shows the relative operating costs w.r.t density 

for the monorail and the under-ground at various network length 

means (sample, over-ground, monorail, and under-ground means). 

There are four graphs altogether. They all show similar patterns 

regarding the relative operating costs for monorail and under-ground. 

At every network length mean, the relative operating costs for both 

monorail and under-ground will decrease as their density increases 

following an output increment. However, the monorail will always 

experience a lower cost than both over-ground and under-ground. At 

its average network length (542.93 track-km), the smallest of the four 

network lengths, the monorail will initially experience higher cost than 

the over-ground before reaching a density of 351.71 car-km per track-

km. On the other hand, under-ground will always experience higher 

cost than the over-ground before reaching the respective density 
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points — ranging from 1,316.72 to 1,587.03 car-km per track-km — at 

every network length mean.  

5.3.4 Relative Operating Costs w.r.t Network Length 

After looking at how density affected the relative operating costs when 

network length is set constant, we examined how the relative operating 

costs of different modes vary with network length when traffic density 

is set constant. In other words, we now analysed how network length 

affected the relative operating costs. Again, we turned the three-

dimensional results into two-dimensional ones to clarify them. This 

time, traffic density was set at several mean values. We were then able 

to observe the relative cost behaviour w.r.t network length at four 

density points: namely, the average market density, the average over-

ground density, the average monorail density, and the average under-

ground density. 

 

Figure 13. The relative operating costs w.r.t network length; holding 

density at various means. 
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Figure 13 on page 99 shows the relative operating costs w.r.t network 

length for the monorail and the under-ground at various density means 

(sample, over-ground, monorail, and under-ground means). There are 

four graphs altogether. They all show similar patterns regarding the 

relative operating costs for monorail and under-ground. At every 

density mean, the relative operating costs for the monorail would 

sharply decrease, whereas the relative operating costs for the under-

ground would gradually increase. Monorail will always experience 

lower costs than the over-ground and the under-ground — except 

when operating at its average density. At its average density (15.31 

car-km per track-km), the lowest among the four density points, the 

monorail will initially experience higher cost than over-ground before 

reaching a network length of 11.78 track-km. Based on this evidence, 

we projected that the monorail would continue to experience 

decreasing relative operating costs — going as low as 68.45% below 

the over-ground cost at the latter's average operating density. On the 

other hand, under-ground will always experience higher costs than 

over-ground and monorail. 

5.3.5 Relative Operating Costs w.r.t Density and Network 

Length Combinations 

We analysed how density and network length affected the relative 

operating costs. The over-ground was set as the reference mode. 

Density and network length were allowed to vary within the observed 

range for each rail mode. By doing so, we could observe the relative 

costs behaviour w.r.t density and network length combinations. Figure 

14 on page 101 shows the relative operating costs w.r.t density and 

network length combinations for the monorail and the under-ground.  
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Figure 14. The relative operating costs w.r.t density and network 

length combinations 

The relative operating costs differ at different density and network 

length combinations. At the minimum combined value of density and 

network length, the relative costs for monorail can be close to 60% 

higher than that of the over-ground. At the maximum combined value, 

Over-Ground Cost Equivalent 
Line for the Under-Ground 

Over-Ground Cost Equivalent 
Line for the Monorail 
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the relative costs for monorail can decrease to 40% lower than the 

over-ground. Likewise, at the minimum combined value, the relative 

costs for under-ground can be close to 60% higher than that of the 

over-ground. At the maximum combined value, the relative costs for 

under-ground can go down to about 20% lower than the over-ground.   

The over-ground cost equivalent line for monorail indicated that having 

a smaller network size would require a higher density (in particular, a 

higher output volume) — to match the costs of over-ground operation. 

Referring to Figure 13 on page 99, we found that the average cost of 

maintaining a smaller network was higher than that of maintaining a 

more extensive network. A relatively higher output volume (to increase 

density) was needed to justify the higher average cost.  

The over-ground cost equivalent line for under-ground indicated that 

having a more extensive network size would require a higher density 

(in particular, a higher output volume) — to match the costs of over-

ground operation. Referring to Figure 13 on page 99, we suspect that 

the average cost of maintaining a more extensive network was higher 

than that of maintaining a smaller network. A relatively higher output 

(to increase density) was needed to justify the higher average cost.  

There are complex issues around which systems to build in cities, but 

our work gives information on the operating costs that could be 

included in the Cost Benefit Analysis (CBA). Specifically, our work 

shows how the relative operating costs of modes depend on size and 

density. The answer as to which is best depends on the density and 

size of the operation desired. For example, under-ground is better than 

over-ground for 100 track-km of network length and 2000 car-km per 

track-km of density because of its lower operating costs. 

5.3.6 RTD and RTS 

Estimating RTD is a key strand of the literature, and this measure is 

essential. We evaluated whether RTD would differ by mode. Before 

that, we looked at the CED (see Figure 15 on page 103). We observed 

that increasing or decreasing the output volume — to change the 
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density — would trigger the cost to change at different rates for 

different rail modes. In other words, a different rail mode had different 

CED.  

 

Figure 15. CED by Rail Mode 

The CED could be converted to RTD. Table 13 on page 103 is an 

excerpt of the regression results from Model 6 RE +Time (after 

purging). The excerpt shows the coefficients involved in calculating the 

differences between rail modes in RTD. 

Table 13. Excerpt of the Regression Results from Model 6 RE +Time (after 
purging) 

Variables Coefficient 

LnmcQpN or 𝜷𝑫𝒕
 0.7490696 

LnmcQpN_DMM or 𝜷𝑫𝒕𝑫𝑴𝑴
 -0.2523734 

LnmcQpN_DMU or 𝜷𝑫𝒕𝑫𝑴𝑼
 -0.290507 

Where 𝜷𝑫𝒕
 is the coefficient for density (car-km per track-km), 𝑫𝑴𝑴 is 

mode dummy for the monorail, and 𝑫𝑴𝑼 is the mode dummy for the 

under-ground. We calculated RTD for each rail mode as follows: 



104 
 

 

 

𝑅𝑇𝐷𝐷𝑀𝑂
= [𝛽𝐷𝑡

]
−1

=
1

0.7490696
= 1.335 

(14) 

𝑅𝑇𝐷𝐷𝑀𝑀
= [𝛽𝐷𝑡

+  𝛽𝐷𝑡𝐷𝑀
]

−1
=

1

0.7490696 − 0.2523734

= 2.013 

(15) 

𝑅𝑇𝐷𝐷𝑀𝑈
= [𝛽𝐷𝑡

+  𝛽𝐷𝑡𝐷𝑀𝑈
]

−1
=

1

0.7490696 − 0.290507

= 2.181 

(16) 

Among the three, under-ground has the highest RTD (at 2.181), 

followed by monorail (at 2.013) and over-ground (at 1.335). However, 

there was no significant difference between the monorail and the 

under-ground. Note that the values of all RTDs were all above one. It 

means that a density increase would favour all the rail modes in terms 

of experiencing lower average cost as the output rises — albeit at 

different rates. 

We concluded that in Japan, the cost structures of all rail modes are 

conducive to density increase (i.e., increasing RTD). It means that 

subject to capacity constraints, the operators will experience a lesser 

average cost when they produce more outputs in the future while 

maintaining their current network size.  

Like RTD, we evaluated whether RTS would differ by mode. Before 

that, we looked at the CES (see Figure 16 on page 105). We observed 

that as the network size increased, the cost would change at different 

rates for different rail modes. In other words, a different rail mode had 

a different CES.  
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Figure 16. CES by Rail Mode 

The CES could be converted to RTS. Table 14 on page 105 is an 

excerpt of the regression results from Model 6 RE +Time (after 

purging). The excerpt shows the coefficients in calculating the 

differences between rail modes in RTS.  

Table 14. Excerpt of the Regression Results from Model 6 RE +Time (after 
purging) 

Variables Coefficient 

LnmcN or 𝜷𝑵 0.9430847 

LnmcN_DMM or 𝜷𝑵𝑫𝑴𝑴
 -0.4184442 

LnmcN_DMU or 𝜷𝑵𝑫𝑴𝑼
 0.0251065 

Where  𝛽𝑁 is the coefficient network length (track-km), 𝐷𝑀𝑀 is mode 

dummy for the monorail, and 𝐷𝑀𝑈 is the mode dummy for the under-

ground. We calculated RTS for each rail mode as follows: 
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𝑅𝑇𝑆𝐷𝑀𝑂
= [ 𝛽𝑁]−1 =

1

0.9430847
= 1.060 

(17) 

𝑅𝑇𝑆𝐷𝑀𝑀
= [ 𝛽𝑁 +  𝛽𝑁𝐷𝑀𝑀

]
−1

=
1

0.9430847 − 0.4184442
= 1.906 

(18) 

𝑅𝑇𝑆𝐷𝑀𝑈
= [ 𝛽𝑁 +  𝛽𝑁𝐷𝑀𝑈

]
−1

=
1

0.9430847 + 0.0251065

= 1.033 

(19) 

Among the three, the monorail has the highest RTS (at 1.906), 

followed by over-ground (at 1.060) and under-ground (at 1.033). 

However, there was no significant difference between over-ground 

and under-ground. Furthermore, at 95% confidence, we could not say 

that the RTS value — for each over-ground and under-ground — 

significantly differed from one (unity). Therefore, a scale increase 

would not necessarily favour over-ground or under-ground in terms of 

experiencing lower average cost. On the other hand, the RTS value 

for the monorail was significantly above one (unity). Therefore, a scale 

increase would favour the monorail experiencing lower average costs. 

In short, over-ground and under-ground show constant RTS, while 

monorail exhibits increasing RTS. 

We concluded that in Japan, the cost structure of monorail is 

conducive to servicing more expansive geographical areas. In 

comparison, over-ground and under-ground cost structures are not 

necessarily conducive to servicing more expansive geographical 

areas. Subject to capacity constraints, monorail operators will 

experience lesser average costs when they operate on a broader 

network. Over-ground and under-ground operators will not necessarily 

experience lesser average costs when they operate on a broader 

network.  

Many authors, including Keeler (1974), Savage (1997), Mizutani 

(2004), Graham (2008) and Brage-Ardao et al. (2015) found rail 

services (including urban rails) exhibit increasing RTD but constant 
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RTS. Our findings are like theirs, with two exceptions. First, we 

discovered that each urban rail mode (i.e., over-ground, monorail, and 

under-ground) has its rate of increasing RTD. Under-ground has the 

highest RTD (at 2.181), followed by monorail (at 2.013) and over-

ground (at 1.335). However, there is no significant difference between 

monorail and under-ground. Second, we discovered that monorail 

shows increasing RTS while over-ground and under-ground show 

constant RTS. Monorail has the highest RTS (at 1.906), followed by 

over-ground (at 1.060) and under-ground (at 1.033). However, there 

is no significant difference between over-ground and under-ground. All 

in all, our findings suggest that urban rail modes are different regarding 

economies of density and scale characteristics in one way or another. 

5.4 Discussion 

Although the differences between urban rail modes were established 

as early as 1997, they were often not accounted for in the subsequent 

urban rail studies. In Japan, where there have been studies on the cost 

differences by ownership — such as the one conducted by Mizutani 

(2004), there has never been a study on the cost differences by urban 

rail mode. Our findings from this study indicated that urban rail modes 

in Japan differed in operating costs. These findings are in tandem with 

those of Savage (1997), who focused on the cost of operating urban 

rail modes in the United States. Considering the findings by Graham 

(2008), Ingvardson and Nielsen (2018), Min et al. (2017), and Tsai et 

al. (2015) — who found urban rail modes also differed in the aspect of 

production, we recommend stating and recognising mode difference 

in future urban rail studies.   

As an extension to the current literature, we have demonstrated how 

the operating costs would vary between urban rail modes under 

different traffic density and network length combinations. Under certain 

combinations, the cost of operating an urban rail mode could become 

lesser than another. This finding could be a helpful insight to the 

policymakers in making certain decisions such as the following.  



108 
 

 

 

Knowing the expected mixture of traffic density and network length for 

a new urban rail project helps policymakers decide which rail mode 

has the least operating costs. Also, projecting future network 

expansions for the urban rail services will allow policymakers to weigh 

which rail mode would eventually be the least costly. Together with the 

infrastructure cost, the projected demand, and other relevant details, 

the projection of the operating costs could be incorporated into the 

cost-benefit analysis8. This enhancement will help policymakers 

making better decisions on which rail mode to construct.  

Likewise, for any proposal of the current network expansion, the 

expected mixture of density and network length could indicate whether 

the cost of operating the expanded urban rail network will be more 

than, equal to, or less than another. Considering this aspect when 

exercising the cost-benefit analysis would allow the policy makers to 

determine whether it is worth proceeding with the desired network 

expansion. It would be helpful, especially when choosing between two 

network expansion proposals.   

Savage (1997) suggested comparing the marginal cost per passenger 

mile with the fare per passenger mile to observe whether a particular 

system can pass on the operating costs in prices. Although our study 

did not include such calculations, the variation in operating costs 

relative to various traffic density and network length combinations — 

demonstrated in our research — should indicate whether the pricing 

of a particular urban rail service is cost-wise reasonable compared to 

another urban rail service. We acknowledge that determining fares is 

not solely based on the operating costs. The passenger demand and 

 

8 Although there may be issues to incorporate the projection on operating 
costs into the cost-benefit analysis — such as how long the projection 
should be, we opine that taking this initiative is better than otherwise. 
Consider a scenario when one plans to buy a car. Not only will he 
evaluate the price of a car, but he will also assess the cost of maintaining 
the car.  
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the ‘political pressures’ may also come into play (Savage, 1997, p. 

472).  

In Japan, one of the significant reforms in 1997 was introducing the 

ceiling price system. It replaced the price cap regulation, which used 

the deflator of the consumer price index. The ceiling price used "each 

individual railway company's full cost level and must be approved by 

the regulator" (Mizutani & Uranishi, 2013, p. 8). The succeeding 

reform, which took place in 2000, introduced fare deregulation. The 

operators could set fares. Fare approval is only required when the 

ceiling price is exceeded. Our study provides a general picture to 

Japanese regulators of how the ceiling price could vary across urban 

rail modes while considering the relevant operator's full cost level. 

Also, as mentioned earlier, our approach of including the mode effect 

into the cost function model could make yardstick competition in Japan 

more accurate, allowing for a more comprehensive application9.   

In Japan, efforts have been made to introduce more urban rail players 

to liberalise the market. The permission system introduced in 2000 

encourages potential new entries — balancing the demand and supply 

was no longer considered, and the exit regulations were eased. 

Despite this, Mizutani and Uranishi (2013, p. 16) opined that 

"competition for entry into the rail market and competition within the 

market among rail operators is almost unheard of in Japan, where an 

indirect competition policy such as yardstick regulation is adopted 

instead". Although a few firms operate services on another company's 

track, they predominantly cooperate in providing more convenient rail 

services. There is competition between lines and firms on some of the 

most essential routes between cities (F. Mizutani, 1997). However, 

such competition is uncommon. For example, urban rail operations in 

Tokyo are considered regionally monopolistic (Kato, 2016). We 

believe the larger over-ground and under-ground systems could be 

divided into smaller scales to encourage competition. The constant 

 

9 Yardstick competition is currently being imposed on several rail operators. 
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RTS for the over-ground and the under-ground — found in our 

analyses — suggest that the cost disadvantage to breaking up the 

network span into smaller sizes would be negligible. Our findings on 

operating costs w.r.t density and network length could be useful if it 

was decided to use competitive tendering in which case a decision 

would be needed on what size the franchises would need to be.           

5.5 Conclusion 

We concluded that this study has met its aims and objectives. It has 

provided a deeper understanding of the cost structure of each urban 

rail mode in Japan and the differences between them. This study 

shows that operating costs vary between modes, with a significant 

difference. Our findings also suggest that urban rail modes differ 

regarding economies of density and scale characteristics in one way 

or another. To be precise, we found that over-ground, monorail, and 

under-ground have their rate of increasing RTD, although there is no 

significant difference between monorail and under-ground. We further 

discovered that monorail shows increasing RTS while over-ground 

and under-ground show constant RTS. Our findings add value to the 

current literature in which studies like Keeler (1974), Savage (1997), 

Mizutani (2004), Graham (2008) and Brage-Ardao et al. (2015) 

generally found rail services (including urban rails) exhibit increasing 

RTD but constant RTS. We further learnt that the operating costs vary 

with the combination of density and network length — and for each 

urban rail mode, the variation is not the same. Besides that, we found 

that the results from an econometric tool differed from those from the 

simple ratio statistics. We concluded that the results derived from an 

econometric tool are more reliable. 

Our findings on urban rail mode differences are consistent with those 

of Savage (1997), who examined the operational costs of urban rail 

modes in the United States. Given the findings of Graham (2008), 

Ingvardson and Nielsen (2018), Min et al. (2017), and Tsai et al. (2015) 

— all of which discovered that urban rail modes differed in terms of 



111 
 

 

 

production — we advocate mentioning and identifying mode difference 

in future urban rail studies.   

We have identified several policy implications. First, the expected 

operating costs could be included in the cost-benefit analysis with the 

infrastructure cost, projected demand, and other relevant details. This 

enhancement will aid in making a more informed decision on which rail 

mode to build. Second, our model and results can be referred to by 

transport authorities and firms for cost-forecasting purposes. Third, our 

study provides Japanese regulators with a broad view of how the 

ceiling price could vary between urban rail modes while accounting for 

the full cost level of the relevant operator. Fourth, since Japan's 

yardstick competition utilises the cost function, the mode effect could 

be integrated into the model for more accurate outcomes. Finally, our 

model can also help consider how to organise franchises if a 

competitive tendering technique is used, as it will reveal the best size 

of the franchise. 

We believe that policymakers, regulators, and stakeholders would be 

able to make more informed decisions on policies, regulations and 

future investments in urban rail services when equipped with a deeper 

understanding of the cost structures of urban rail modes. In the regions 

where cost function studies are rare — especially in the urban rail 

sector, we anticipate that more cooperation between regulators and 

industry players will be geared towards identifying and gathering the 

essential data.  

For a more conclusive understanding of cost differences between 

urban rail modes, we suggest that this empirical research be replicated 

in other regions where sufficient data is available. It would be 

interesting to know whether the findings would be similar. In addition, 

we hope to get more clarity on the RTD and the RTS of the urban rail 

modes from future empirical research. We foresee that the differences 

in urban rail mode definitions between regions will be challenging in 

summing up the current and future empirical findings.
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Table 15. Model 6 RE +Time Regression Results (after purging) 

 

Note: Refer to Table 51 on page 230 for Regression Term Descriptions. 

 

                                                                                        

                   rho    .92071368   (fraction of variance due to u_i)

               sigma_e    .04938309

               sigma_u    .16828347

                                                                                        

                 _cons     .0073412   .0434008     0.17   0.866    -.0777228    .0924053

                   DMU     .1475098   .0758003     1.95   0.052    -.0010561    .2960757

                   DMM    -.9584722   .2188037    -4.38   0.000     -1.38732   -.5296249

      LnmcNLnmcPMpmcPM            0  (omitted)

      LnmcNLnmcPLpmcPM     .1233431   .0149579     8.25   0.000     .0940262      .15266

      LnmcNLnmcPEpmcPM    -.0386899   .0123049    -3.14   0.002     -.062807   -.0145729

      halfLnmcPMpmcPM2            0  (omitted)

      halfLnmcPLpmcPM2    -.1243123   .0522893    -2.38   0.017    -.2267975   -.0218272

      halfLnmcPEpmcPM2    -.1945434    .050584    -3.85   0.000    -.2936861   -.0954007

LnmcPLpmcPMLnmcPMpmcPM            0  (omitted)

LnmcPEpmcPMLnmcPMpmcPM            0  (omitted)

LnmcPEpmcPMLnmcPLpmcPM     .2360141   .0463818     5.09   0.000     .1451076    .3269207

          LnmcQpNLnmcN     .1300572   .0354513     3.67   0.000     .0605739    .1995404

             LnmcN_DMU     .0251065   .0570915     0.44   0.660    -.0867907    .1370037

             LnmcN_DMM    -.4184442   .1186433    -3.53   0.000    -.6509807   -.1859076

                 LnmcN     .9430847   .0333984    28.24   0.000      .877625    1.008544

           LnmcPMpmcPM            0  (omitted)

           LnmcPLpmcPM     .4950746   .0255158    19.40   0.000     .4450645    .5450847

           LnmcPEpmcPM     .1612759   .0217122     7.43   0.000     .1187208    .2038311

           LnmcQpN_DMU     -.290507   .0832885    -3.49   0.000    -.4537494   -.1272646

           LnmcQpN_DMM    -.2523734   .1056724    -2.39   0.017    -.4594874   -.0452593

               LnmcQpN     .7490696    .056358    13.29   0.000       .63861    .8595292

                  Time    -.0064877   .0010459    -6.20   0.000    -.0085375   -.0044378

                                                                                        

         LnmcCELMpmcPM        Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval]

                                                                                        

corr(u_i, X)   = 0 (assumed)                    Prob > chi2       =     0.0000

                                                Wald chi2(17)     =    3493.55

     overall = 0.9728                                         max =         12

     between = 0.9742                                         avg =       12.0

     within  = 0.7413                                         min =         12

R-sq:                                           Obs per group:

Group variable: id                              Number of groups  =         46

Random-effects GLS regression                   Number of obs     =        552
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Chapter 6 Research Study 2: Exploring the Ownership 

Effect on Cost Efficiency 

6.1 Introduction 

In Chapter 2: The Performance of Private Firms section, we elaborated 

on how private firms are theoretically expected to perform in the urban 

rail market. Theoretically, private firms are expected to be more cost-

efficient, service-effective, and cost-effective than other firms (see 

Chapter 2: The Performance of Private Firms section). In this research 

study (Chapter 6), we are motivated to explore whether private firms 

in the Japanese urban rail sector are more cost-efficient than other 

firms (Figure 17 on page 113). The remaining aspects (service 

effectiveness and cost effectiveness) will be studied in Research 

Study 3. 

 

Figure 17. Theoretical Expectations on the Performance of Private 

Firms (Research Study 2) 

Additionally, in Chapter 2: Cost Efficiency section, we identified three 

gaps in the literature. First, although we have selected studies that are 

consistent in their efficiency definition (i.e. following the definition 

provided by Fielding et al. (1985)), we find these studies have different 
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output is limited, private firms 

maximise cost effectiveness by 

maximising cost efficiency and 

maximising service effectiveness. 

Therefore, private firms are 
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samples, periods, and efficiency types1. It might be why they produced 

different findings on the private firms’ performance in cost efficiency. 

Given the same sample in the same period, we are motivated to 

explore whether the ownership effect differs with different efficiency 

types (i.e., cost efficiency and technical efficiency). Second, the 

ownership effect on cost efficiency can also be measured using a 

DEA-Tobit regression besides a trans-log cost function. Given the 

same sample in the same period, we are motivated to explore whether 

the ownership effect on cost efficiency differs with different methods. 

Third, we are unaware of any study that accounts for the mode effect 

when assessing the ownership effect on efficiency in the urban rail 

sector. Therefore, we are also motivated to include the mode effect in 

the models when exploring the ownership effect on efficiency in the 

Japanese urban rail sector. 

We applied two methods in this study. One is the trans-log cost 

function, and another is the DEA-Tobit regression.  

For the trans-log cost function, we utilised the model from Research 

Study 1 and added the ownership variable. It served two purposes. 

First, we want to observe whether adding the ownership variable 

would significantly alter the results in Research Study 1. Doing so tests 

the robustness of our model. Second, we want to compare the results 

from a trans-log cost function model against those from a DEA-Tobit 

regression model.  

For DEA-Tobit regression, we first conducted DEA to produce cost 

efficiency scores and technical efficiency scores. We set the following 

specifications when running DEA: 

  

 

1 Cost efficiency and technical efficiency. 
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Type of score Input for DEA Output for DEA 

Cost efficiency CELM (Yen) Q (thousand car-km) 

Technical efficiency energy (kWh), labour 

(persons), rolling stock 

(unit) 

Q (thousand car-km) 

We applied input orientation DEA since we assumed firms are 

expected to provide reliable routine services, limiting their service 

output adjustment. Other authors who have used input orientation 

include Kerstens (1996) and Tsai et al. (2015). After obtaining DEA 

cost efficiency scores and DEA technical efficiency scores, we 

performed Tobit regression. We specified the efficiency scores as the 

dependent variable in two separate regressions (i.e., cost efficiency in 

one regression and technical efficiency in another). We then selected 

Dt (car-km/operating-km), N (operating-km), DMMR (dummy for 

monorail), DMUG (dummy for under-ground), DOB (dummy for private 

firms), and T (year) as the independent variables. 

Note that the network DEA method is different from the standard DEA 

method. Convexity constraint is not present in the network DEA 

method since the multiplier and envelopment models are not 

equivalent (or dual) under the network DEA (Chen et al., 2014; Zhang 

et al., 2021; Zhu, 2020). Therefore, we cannot measure efficiency 

using the network DEA2. 

6.2 Objectives 

We aim to explore the ownership effect on cost efficiency in the 

Japanese urban rail sector. In doing so, we set the following 

objectives:  

 

2 The network DEA method is relatively new and still undergoing 
development. We prefer to utilise the standard DEA method which has 
been established in the literature.    
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a. determine whether adding the ownership variable into 

Research Study 1’s trans-log cost function model does not 

materially change the coefficients elsewhere,  

b. explore whether different methods (i.e., trans-log cost function 

and DEA-Tobit regression) would yield similar results, and 

c. determine whether private firms are more cost-efficient than 

other firms. 

6.3 Results and Discussion 

This section is divided into three subsections. The first subsection 

compares and evaluates the results from the trans-log cost function 

model used in Research Study 1 against those from the trans-log cost 

function model used in Research Study 2. Both are parametric models. 

The difference is that we added the ownership variable into the latter 

to evaluate the ownership effect on efficiency. There could be some 

correlation between ownership and mode, and we want to inspect how 

adding ownership changes the other coefficients in the model. Thus, 

in addition to providing new information on the impact of ownership on 

costs and efficiency, we can study ownership and mode effects 

together and check the robustness of Research Study 1’s findings to 

the addition of ownership effects. 

The second subsection compares and evaluates the results from the 

DEA-Tobit regression model against those from the trans-log cost 

function model used in this study (Research Study 2). The former is 

semi-parametric, while the latter is parametric. They are two widely 

used methods for deriving performance, especially efficiency. The 

purpose is to evaluate whether there is any difference between the 

results. DEA-Tobit regression and trans-log cost function are two 

different approaches. Perry et al. (1988) mentioned that different 

analytical methods may cause inconsistent results. We will inspect 

how ownership, density, scale, mode, and time affect: 

a. operating costs in the trans-log cost function model,  

b. cost efficiency in the DEA-Tobit regression model, and  
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c. technical efficiency in the DEA-Tobit regression model.  

The third subsection will discuss private firms’ cost, cost efficiency and 

technical efficiency performance in the Japanese urban rail sector.  

6.3.1 Results Comparison between the Trans-log Cost 

Function Model in Research Study 1 and the Trans-

log Cost Function Model in Research Study 2 

We found that, in general, the results from the trans-log cost function 

model used in Research Study 1 (Chapter 5) were almost the same 

as the results from the trans-log cost function model used in Research 

Study 2 (this chapter) — except for the ownership variable that did not 

exist in the former. Table 16 on page 117 presents an excerpt from the 

trans-log cost function regression results (for Research Study 1 and 

Research Study 2).     

Table 16. Excerpt from Trans-log Cost Function Regression Results (for 
Research Study 1 and 2) 

Factor of interest 

  

Research 

Study 1 

Research 

Study 2 

CED O Coef. 0.749 0.754 

Sig. 0.000 0.000 

M Coef. 0.497 0.382 

Sig. 0.002 0.001 

U Coef. 0.459 0.388 

Sig. 0.000 0.000 

CES O Coef. 0.943 0.912 

Sig. 0.000 0.000 

M Coef. 0.525 0.480 

Sig. 0.000 0.000 
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Factor of interest 

  

Research 

Study 1 

Research 

Study 2 

U Coef. 0.968 0.936 

Sig. 0.000 0.000 

Cost Difference between 

Modes3 

M v O Diff. (0.617) (0.532) 

Sig. 0.000 0.001 

U v O Diff. 0.159 0.556 

Sig. 0.052 0.002 

U v M Diff. 2.022 2.325 

Sig. 0.000 0.000 

Time Effect Coef. (0.006) (0.006) 

Sig. 0.000 0.000 

Cost Difference between 

Ownership4 

Private 

v 

Others 

Diff.  0.429 

Sig. 0.013 

Note: O = over-ground; M = monorail; U = under-ground. Brackets 
represent a negative value. 

  

 

3 Cost difference between modes is derived by 𝑥 = 𝑒(𝛽𝐷𝑀) − 1. Multiplying x 
by 100, the interpretation for the trans-log cost function model will be 
“the operating costs for Mode A are x per cent more than the operating 
costs for over-ground (omitted variable)”. Brackets represent a negative 
value. In this case, the interpretation will be “the operating costs for 
Mode A are x per cent less than the operating costs for over-ground”. 

Cost difference between under-ground and monorail is derived by 𝑥 =

𝑒
(𝛽𝐷𝑀𝑈

−𝛽𝐷𝑀𝑀
)

− 1. 

4 Cost difference between ownerships is derived by 𝑥 = 𝑒(𝛽𝐷𝑂) − 1. 
Multiplying x by 100, the interpretation for the trans-log cost function 
model will be “the operating costs for private firms are x percent more 
than the operating costs for other firms (omitted variable)”. Brackets 
represent a negative value. In this case, the interpretation will be “the 
operating costs for private firms are x percent less than the operating 
costs for other firms”. 
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6.3.1.1 CED 

At 1% significance level, the CED for over-ground is 0.749 in Research 

Study 1 and 0.754 in Research Study 2. The CED for monorail is 0.497 

in Research Study 1 and 0.382 in Research Study 2. The CED for 

under-ground is 0.459 in Research Study 1 and 0.388 in Research 

Study 2.  

With 95% confidence, it can be said that the CED remains significant 

for each mode5. Each mode still experiences increasing RTD — albeit 

at an individual rate.  

6.3.1.2 CES 

At 1% significance level, the CES for over-ground is 0.943 in Research 

Study 1 and 0.912 in Research Study 2. The CES for monorail is 0.525 

in Research Study 1 and 0.480 in Research Study 2. The CES for 

under-ground is 0.968 in Research Study 1 and 0.936 in Research 

Study 2.  

With 99% confidence, it can be said that the CES remains significant 

for each mode6. Each mode still experiences increasing RTS — albeit 

at an individual rate. Note that over-ground and under-ground still have 

values below unity in Research Study 2, albeit a little smaller than 

before.  

6.3.1.3 Cost Difference between Modes 

At 1% significance level, the operating costs for the monorail are 

61.7% less than the operating costs for over-ground in Research 

Study 1. It is 53.2% less than the over-ground in Research Study 2. At 

6% significance level, the operating costs for under-ground are 15.9% 

more than those for over-ground in Research Study 1. It is 55.6% more 

than the operating costs for over-ground in Research Study 2. At 1% 

significance level, the operating costs for under-ground are 202.2% 

 

5 at the sample mean 
6 at the sample mean 
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more than the operating costs for the monorail in Research Study 1. It 

is 232.5% more than the operating costs for the monorail in Research 

Study 2.  

With 94% confidence, it can be said that the cost difference between 

modes remains significant. Monorail remains to have the least 

operating cost, consecutively followed by the over-ground and the 

under-ground.  

6.3.1.4 Time Effect 

At 1% significance level, operating costs will decrease by 0.006% from 

year to year in Research Studies 1 and 2. With 99% confidence, it can 

be said that the time effect remains significant. Time improves 

(reduces) operating costs by 0.006%. 

6.3.1.5 Cost Difference between Ownership 

At 2% significance level, the operating costs for private firms are 

42.9% more than those for other firms in Research Study 2. With 99% 

confidence, it can be said that the ownership effect is significant. There 

is a significant difference in operating costs between private firms and 

others — with private firms incurring more operating costs than others. 

6.3.1.6 Observation 

In general, we observed that adding the ownership variable does not 

materially change the coefficients elsewhere in the trans-log cost 

function model — except in the cost difference between under-ground 

and over-ground. Adding the ownership variable causes a larger cost 

difference between the two modes and a slightly better degree of 

significance. Overall, we concluded that the trans-log models used in 

Research Studies 1 and 2 are reliable, and the findings in the previous 

study still hold.  
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6.3.2 Results Comparison between the Trans-log Cost 

Function Model, DEA-Tobit Regression Cost 

Efficiency Model, and DEA-Tobit Regression 

Technical Efficiency Model (Research Study 2 

Models) 

We compared the DEA-Tobit regression model results with the trans-

log cost function model. There are five effects from the models we are 

interested in. They are ownership, density, scale, mode, and time 

effects. We referred to excerpts from the relevant regression results 

when discussing. For more detailed results, please refer to: 

• Table 22. Trans-log Cost Function Regression Results (Model 

for Research Study 1) on page 138, 

• Table 23. Trans-log Cost Function Regression Results (Model 

for Research Study 2) on page 139, 

• Table 24. DEA-Tobit Regression Results for Cost Efficiency 

(CRS) on page 140, 

• Table 25. DEA-Tobit Regression Results for Cost Efficiency 

(VRS) on page 141, 

• Table 26. DEA-Tobit Regression Results for Technical 

Efficiency (CRS) on page 142, and  

• Table 27. DEA-Tobit Regression Results for Technical 

Efficiency (VRS) on page 143. 

6.3.2.1 Ownership Effect 

Table 17 on page 122 presents the ownership effect generated by the 

Trans-log Cost Function (TLCF), DEA-Tobit Regression Cost 

Efficiency, and DEA-Tobit Regression Technical Efficiency Models. 

The TLCF model shows that at a 2% significance level, the operating 

costs for private firms are 42.9% less than those for other firms. The 

DEA-Tobit models show that: 

• at 3% significance level, the CRS cost efficiency for private 

firms is 43.4% less than the cost efficiency for other firms, 
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• at 11% significance level, the VRS cost efficiency for private 

firms is 24.4% less than the cost efficiency for other firms, 

• at 1% significance level, the CRS technical efficiency for private 

firms is 47.5% less than the technical efficiency for other firms, 

and  

• at 1% significance level, the VRS technical efficiency for private 

firms is 38.2% less than the technical efficiency for other firms. 

Table 17. Ownership Effect Generated by the Trans-log Cost Function, DEA-
Tobit Regression Cost Efficiency, and DEA-Tobit Regression Technical 
Efficiency Models 

 

MODEL 

Factor of interest TLCF DEA-Tobit 

Cost Efficiency 

DEA-Tobit 

Tech. Efficiency 

 

CRS VRS CRS VRS 

Ownership Effect7 

(Private v Others) 

Diff. 0.429 (0.434) (0.244) (0.475) (0.382) 

Sig. 0.013 0.022 0.105 0.000 0.000 

Note: TLCF = Trans-log Cost Function. Brackets represent a negative 
value. Other firms consist of public and quasi-public firms. 

The TLCF model shows the effect on cost, while the DEA-Tobit models 
show the effect on efficiency. A negative value on the TLCF model is 
equivalent to a positive value on the DEA-Tobit models. 

All models show that ownership significantly affects cost, cost 

efficiency, and technical efficiency. The DEA-Tobit model for VRS cost 

efficiency shows a strong confidence level (89%), while other models 

show much stronger confidence levels (at least 97%).  

Albeit at varying degrees (ranging from 24.4% to 43.4%), all models 

are consistent in showing that private ownership negatively affects 

 

7 Ownership effect is derived by 𝑥 = 𝑒(𝛽𝐷𝑂) − 1. Multiplying x by 100, the 
interpretation for the T C  model will be “the operating costs for private 
firms are x percent more than the operating costs for other firms (omitted 
variable)”. Brackets represent a negative value. In this case, the 
interpretation will be “the operating costs for private firms are x percent 
less than the operating costs for other firms”.  or the DE -Tobit model, 
the term ‘operating costs’ is replaced by ‘cost efficiency’ or ‘technical 
efficiency’ — whichever is applicable.  



123 

 

 

cost (increases cost), cost efficiency (decreases cost efficiency), and 

technical efficiency (decreases technical efficiency). The trans-log cost 

function model shows that private firms have higher operating costs 

than other firms — other things being equal (i.e., holding output 

constant). Correspondingly, the DEA-Tobit regression models show 

that private firms have a lower cost efficiency and technical efficiency 

than other firms. All models suggest that private firms are weaker than 

other firms concerning cost, cost efficiency, and technical efficiency.    

6.3.2.2 Density Effect 

Table 18 on page 124 shows the density effect generated by the 

Trans-log Cost Function, DEA-Tobit Regression Cost Efficiency, and 

DEA-Tobit Regression Technical Efficiency Models. The TLCF model 

shows that at 1% significance level, 

• the CED for over-ground is 0.754,  

• the CED for monorail is 0.382, and 

• the CED for under-ground is 0.388.  

The DEA-Tobit models show that at 1% significance level, 

• CRS cost efficiency will increase by 0.471% given a percentage 

increase in density, 

• VRS cost efficiency will increase by 0.453% given a percentage 

increase in density, 

• CRS technical efficiency will increase by 0.592%, given a 

percentage increase in density, and  

• VRS technical efficiency will increase by 0.627%, given a 

percentage increase in density. 
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Table 18. Density Effect Generated by the Trans-log Cost Function, DEA-
Tobit Regression Cost Efficiency, and DEA-Tobit Regression Technical 
Efficiency Models 

 

MODEL 

Factor of interest TLCF DEA-Tobit 

Cost Efficiency 

DEA-Tobit 

Tech. efficiency 

 

CRS VRS CRS VRS 

CED O Coef. 0.754  

Sig. 0.000 

M Coef. 0.382 

Sig. 0.001 

U Coef. 0.388 

Sig. 0.000 

Density Effect 

on Cost 

Efficiency 

Coef.  0.471 0.453  

Sig. 0.000 0.000 

Density Effect 

on Technical 

Efficiency 

Coef.  0.592 0.627 

Sig. 0.000 0.000 

Note: TLCF = Trans-log Cost Function (Research Study 2); O = over-
ground; M = monorail; U = under-ground.  

All models show that density significantly affects cost, cost efficiency, 

and technical efficiency. They show very strong confidence levels (at 

least 99%). Not only that, but they also consistently show how density 

affects cost, cost efficiency, and technical efficiency. The trans-log 

cost function model shows that the CED is between zero and unity for 

all rail modes: 0.754 for over-ground, 0.382 for the monorail, and 0.388 

for under-ground. These results suggest that operating costs are 

inelastic to a density increase for all rail modes. A percentage increase 

in density causes the operating costs to increase at a lesser 

percentage. This condition is also known as increasing RTD. 
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Correspondingly, the DEA-Tobit regression models show density 

improves cost efficiency and technical efficiency. All models suggest 

that a higher density brings cost, cost efficiency, and technical 

efficiency advantages. These findings on density are similar to those 

of Research Study 1 (Chapter 5). 

6.3.2.3 Scale Effect 

Table 19 on page 125 presents the scale effect generated by the 

Trans-log Cost Function, DEA-Tobit Regression Cost Efficiency, and 

DEA-Tobit Regression Technical Efficiency Models. The TLCF model 

shows that at 1% significance level, 

• the CES for over-ground is 0.912,  

• the CES for monorail is 0.480, and 

• the CES for under-ground is 0.936.  

The DEA-Tobit models show that at 2% significance level, 

• CRS cost efficiency will increase by 0.185%, given a 

percentage increase in scale, 

• VRS cost efficiency will increase by 0.239%, given a 

percentage increase in scale, 

• CRS technical efficiency will increase by 0.104%, given a 

percentage increase in scale, and  

• VRS technical efficiency will increase by 0.215%, given a 

percentage increase in scale. 

Table 19. Scale Effects Generated by the Trans-log Cost Function, DEA-
Tobit Regression Cost Efficiency, and DEA-Tobit Regression Technical 
Efficiency Models 

 

MODEL 

Factor of interest TLCF DEA-Tobit 

Cost Efficiency 

DEA-Tobit 

Tech. Efficiency 

 

CRS VRS CRS VRS 

CES O Coef. 0.912  
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MODEL 

Factor of interest TLCF DEA-Tobit 

Cost Efficiency 

DEA-Tobit 

Tech. Efficiency 

 

CRS VRS CRS VRS 

Sig. 0.000 

M Coef. 0.480 

Sig. 0.000 

U Coef. 0.936 

Sig. 0.000 

Scale Effect on Cost 

Efficiency 

Coef.  0.185 0.239  

Sig. 0.003 0.000 

Scale Effect on 

Technical Efficiency 

Coef.  0.104 0.215 

Sig. 0.017 0.000 

Note: TLCF = Trans-log Cost Function (Research Study 2); O = over-
ground; M = monorail; U = under-ground.  

All models show that scale significantly affects cost, cost efficiency, 

and technical efficiency. They show very strong confidence levels (at 

least 98%). Also, they consistently show how scale affects cost, cost 

efficiency, and technical efficiency. The trans-log cost function model 

shows that the CES is between zero and unity for all rail modes: 0.912 

for over-ground, 0.480 for the monorail, and 0.936 for under-ground. 

For over-ground and monorail, CES is less than unity (with 95% 

confidence). For under-ground, CES is less than unity (83.4% 

confidence). These results suggest that operating costs are inelastic 

to a scale increase for all rail modes. A percentage increase in scale 

causes the operating costs to increase at a lesser percentage. This 

condition is also known as increasing RTS. Correspondingly, the DEA-

Tobit regression models show scale improves cost efficiency and 

technical efficiency. All models suggest that a more extensive scale 
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brings cost, cost efficiency, and technical efficiency advantages. 

These findings on the scale are similar to those of Research Study 1 

(Chapter 5). 

6.3.2.4 Mode Effect 

Table 20 on page 128 presents mode effects generated by the Trans-

log Cost Function, DEA-Tobit Regression Cost Efficiency, and DEA-

Tobit Regression Technical Efficiency Models. The TLCF model 

shows that: 

• at 1% significance level, the operating costs for monorail are 

53.2% less than the operating costs for over-ground,  

• at 6% significance level, the operating costs for under-ground 

are 55.6% more than those for over-ground, and 

• at 1% significance level, the operating costs for the under-

ground are 232.5% more than the operating costs for the 

monorail. 

The DEA-Tobit models show that: 

• at 60% significance level, the CRS cost efficiency for monorail 

is 12.1% less than the cost efficiency for over-ground, 

• at 40% significance level, the VRS cost efficiency for monorail 

is 18.5% more than the cost efficiency for over-ground, 

• at 57% significance level, the CRS technical efficiency for 

monorail is 8.4% less than the technical efficiency for over-

ground, 

• at 36% significance level, the VRS technical efficiency for 

monorail is 12.7% more than the technical efficiency for over-

ground, 

• at 1% significance level, the CRS cost efficiency for under-

ground is 49.2% less than the cost efficiency for over-ground, 

• at 1% significance level, the VRS cost efficiency for under-

ground is 42.5% less than the cost efficiency for over-ground, 
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• at 1% significance level, the CRS technical efficiency for under-

ground is 38.7% less than the technical efficiency for over-

ground, 

• at 1% significance level, the VRS technical efficiency for under-

ground is 33.6% less than the technical efficiency for over-

ground, 

• at 1% significance level, the CRS cost efficiency for under-

ground is 42.2% less than the cost efficiency for the monorail, 

• at 1% significance level, the VRS cost efficiency for under-

ground is 51.4% less than the cost efficiency for the monorail, 

• at 1% significance level, the CRS technical efficiency for under-

ground is 33.1% less than the technical efficiency for the 

monorail, and 

• at 1% significance level, the VRS technical efficiency for under-

ground is 41.1% less than for monorail. 

Table 20. Mode Effects Generated by the Trans-log Cost Function, DEA-
Tobit Regression Cost Efficiency, and DEA-Tobit Regression Technical 
Efficiency Models 

 

MODEL 

Factor of interest TLCF DEA-Tobit 

Cost Efficiency 

DEA-Tobit 

Tech. Efficiency 

  

CRS VRS CRS VRS 

Mode 

Effect8 

M v O Diff. (0.532) (0.121) 0.185 (0.084) 0.127 

Sig. 0.001 0.595 0.398 0.570 0.354 

 

8 Mode effect (or mode difference) is derived by 𝑥 = 𝑒(𝛽𝐷𝑀) − 1. Multiplying x 
by 100, the interpretation for the T C  model will be “the operating costs 
for Mode A are x percent more than the operating costs for over-ground 
(omitted variable)”. Brackets represent a negative value. In this case, the 
interpretation will be “the operating costs for Mode A are x percent less 
than the operating costs for over-ground”. Mode difference between 

under-ground and monorail is derived by 𝑥 = 𝑒
(𝛽𝐷𝑀𝑈

−𝛽𝐷𝑀𝑀
)

− 1. For the 
DEA-Tobit model, the term ‘operating costs’ is replaced by ‘cost 
efficiency’ or ‘technical efficiency’ — whichever is applicable. 
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MODEL 

Factor of interest TLCF DEA-Tobit 

Cost Efficiency 

DEA-Tobit 

Tech. Efficiency 

  

CRS VRS CRS VRS 

U v O Diff. 0.556 (0.492) (0.425) (0.387) (0.336) 

Sig. 0.002 0.005 0.001 0.000 0.000 

U v M Diff. 2.325 (0.422) (0.514) (0.331) (0.411) 

Sig. 0.000 0.004 0.000 0.005 0.000 

Note: TLCF = Trans-log Cost Function (Research Study 2); O = over-
ground; M = monorail; U = under-ground. Brackets represent a negative 
value. 

The TLCF model shows the effect on cost, while the DEA-Tobit models 
show the effect on efficiency. A negative value on the TLCF model is 
equivalent to a positive value on the DEA-Tobit models.  

All models show a significant difference in cost, cost efficiency, and 

technical efficiency between rail modes (at least 99% confidence level) 

— except between monorail and over-ground. While there is a 

significant difference (with 99% confidence level) in cost between 

monorail and over-ground (as shown by the Cost Function model), 

there are insignificant differences in cost efficiency and technical 

efficiency between them (as demonstrated by the DEA-Tobit 

regression models). 

Albeit at varying degrees, all models consistently show that under-

ground has a weaker performance than over-ground and monorail in 

cost, cost efficiency, and technical efficiency. The trans-log cost 

function model shows that under-ground has higher operating costs 

than over-ground and monorail. Correspondingly, the DEA-Tobit 

regression models show that under-ground has a lower cost efficiency 

and technical efficiency than over-ground and monorail.  

Even though the models are inconsistent in showing how performance 

differs between monorail and over-ground, there is a similarity 

between the DEA-Tobit regression models and the trans-log cost 
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function model when VRS results of the DEA-Tobit regression models 

are considered. The DEA-Tobit regression models suggest that 

monorail has a better cost and technical efficiency than over-ground 

— although with a confidence level of 60% and 64%, respectively. 

Correspondingly, the trans-log cost function suggests that monorail 

has lower operating costs than over-ground (with 99% confidence). It 

is worth noting that VRS is prevalent in the study of the rail industry 

(Lan & Lin, 2003; Merkert et al., 2017; Tsai et al., 2015).  

All models agree that under-ground has the weakest performance in 

cost, cost efficiency, and technical efficiency. Suppose VRS results of 

the DEA-Tobit regression models are considered. In this case, the 

DEA-Tobit regression and the trans-log cost function models agree 

that the monorail has the best performance in cost, cost efficiency, and 

technical efficiency. 

6.3.2.5 Time Effect 

Table 21 on page 131 presents the time effect generated by the Trans-

log Cost Function, DEA-Tobit Regression Cost Efficiency, and DEA-

Tobit Regression Technical Efficiency Models. The TLCF model 

shows that at 1% significance level, operating costs will decrease by 

0.006% from one year to another. The DEA-Tobit models show that at 

2% significance level,  

• CRS cost efficiency will increase by 0.017% from one year to 

another, 

• VRS cost efficiency will increase by 0.005% from one year to 

another, 

• CRS technical efficiency will increase by 0.003% from one year 

to another, and  

• VRS technical efficiency will decrease by 0.002% from one year 

to another.   
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Table 21. Ownership Effect and Time Effect Generated by the Trans-log Cost 
Function, DEA-Tobit Regression Cost Efficiency, and DEA-Tobit 
Regression Technical Efficiency Models 

 

MODEL 

Factor of interest TLCF DEA-Tobit 

Cost Efficiency 

DEA-Tobit 

Tech. Efficiency 

 

CRS VRS CRS VRS 

Time Effect Coef. (0.006) 0.017 0.005 0.003 (0.002) 

Sig. 0.000 0.000 0.000 0.000 0.015 

Note: TLCF = Trans-log Cost Function. Brackets represent a negative 
value. Other firms consist of public and quasi-public firms. 

The TLCF model shows the effect on cost, while the DEA-Tobit models 
show the effect on efficiency. A negative value on the TLCF model is 
equivalent to a positive value on the DEA-Tobit models. 

All models show that time significantly affects cost, cost efficiency, and 

technical efficiency (with at least 98% confidence level). Except for the 

DEA-Tobit regression technical efficiency (VRS) model, they 

consistently show that time improves cost, cost efficiency, and 

technical efficiency. The trans-log cost function model shows that 

operating costs reduce with time. Correspondingly, the DEA-Tobit 

regression models show that cost efficiency improves with time. The 

DEA-Tobit regression technical efficiency (CRS) model also indicates 

that technical efficiency improves with time. However, the DEA-Tobit 

regression technical efficiency (VRS) model shows technical efficiency 

declines with time.  

6.3.2.6 Observation 

We observed that results from the trans-log cost function, the DEA-

Tobit Cost Efficiency, and the DEA-Tobit Technical Efficiency models 

are similar, although not the same.  
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We also observed that the DEA-Tobit regression cost efficiency 

models produce more similar results to those of the trans-log cost 

function model than the DEA-Tobit regression technical efficiency 

models. In particular, the time effect is identical between the DEA-

Tobit regression cost efficiency models and the trans-log cost function 

model. However, the time effect is only identical between the DEA-

Tobit regression technical efficiency (CRS) model and the trans-log 

cost function model, but not the DEA-Tobit regression technical 

efficiency (VRS) model.  

We further observed that the DEA-Tobit regression cost efficiency 

(VRS) model produces more similar results to those of the trans-log 

cost function model than the DEA-Tobit regression cost efficiency 

(CRS) model. In particular, the performance difference between 

monorail and over-ground is similar between the DEA-Tobit regression 

cost efficiency (VRS) model and the trans-log cost function model, but 

not the DEA-Tobit regression cost efficiency (CRS) model. It is 

expected since the trans-log cost function also supports VRS. 

We concluded that the DEA-Tobit regression cost efficiency (VRS) 

model produces the most similar results to the trans-log cost function 

model among the DEA-Tobit regression models.  

6.3.3 Discussion 

From the models, we are at least 95% confident9 that private firms 

performed weaker than other firms in cost, cost efficiency, and 

technical efficiency – when we hold other factors constant at the 

sample mean. It is unexpected if we refer to the theoretical explanation 

in Chapter 2, which expects private firms to perform better than others.  

The literature findings are mixed, especially regarding rail and urban 

rail services. For example, Filippini and Maggi (1993) found that 

ownership does not affect efficiency in Switzerland, Lan and Lin (2003) 

 

9 Except for the DEA-Tobit model for VRS cost efficiency, in which we are at 
least 86% confident. 
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found that ownership does not affect efficiency from their worldwide 

study, and Canavan (2015) found that private firms are less efficient 

than public firms from his worldwide study. It is potentially due to 

differences in the sample, period, and efficiency type (i.e., cost 

efficiency and technical efficiency). Perry et al. (1988) stated, “The 

variety of organisational samples, periods and analytical methods 

have made comparison of research results difficult.” We attempted to 

address this issue by assessing private firms’ performance in cost, 

cost, efficiency, and technical efficiency using the same sample and 

period, and we found similar results in cost, cost efficiency, and 

technical efficiency — that is, private firms performed weaker than 

other firms. 

In this study, we have segregated the mode effect from the ownership 

effect by including both in our model. We observed no significant 

changes in the coefficients when we added the ownership variable to 

the model used in Research Study 1, which contains the mode 

variable10 — despite finding a degree of correlation between mode and 

ownership (see Chapter 4). Mizutani (1994, p. 168) found a similar 

correlation when assessing the cost effectiveness of urban rail 

services in Japan and noted that this correlation “should not cause 

bias in the coefficients.”  

Our finding on the ownership effect on efficiency in the Japanese 

urban rail sector differs from Mizutani (2004), who concluded that 

efficiency does not vary much between private and public firms in the 

same sector above. Nonetheless, we found two explanations by 

Mizutani (2004) relevant. Firstly, smaller private firms are regional 

monopolies, and fare regulation protects them. It makes them have 

less incentive to minimise service inputs. Secondly, public firms are 

relatively new, and new technology saves operating costs. 

Another possible reason is the diversification strategy adopted by 

private firms. Under this strategy, private firms develop residential 

 

10 To recall, we also found that the mode effect on cost to be significant. 
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areas and leisure facilities near their rail service areas (Shoji, 2005). 

As much as rail operations internalise externalities from these property 

developments, the latter internalise externalities from rail operations. 

We believe that with this interdependency, private firms may have 

invested in improving their service quality — such as better customer 

service — for rail and non-rail activities. In doing so, they compromise 

on cost efficiency, a function of cost and output (car-km).   

Other additional factors may have also contributed to this finding. The 

first one is government intervention when private firms cannot sustain 

losses. This results in the establishment of quasi-public firms to 

preserve the unprofitable lines (Saito, 2015; Shoji, 2001). We believe 

that these precedents tend to alter the behaviour of other private firm 

managers. They become complacent because they see a safety net 

that saves them from losing their job when the firm incurs losses. The 

second one is the behaviour of the quasi-public firms, which faced 

unprofitable services. Sekiguchi et al. (2010, p. 1286) stated that many 

of these firms “have found that demand is far less than pro ected” and 

are “doing everything in their power to improve their bottom lines”. 

These firms have implemented cost-cutting measures to minimise 

losses. The third one is the network infrastructure, which is limited for 

competition since there can only be one train at one route stop at one 

time. Almost all private rail operators in the Tokyo Metropolitan Area 

that operated trains in 2015 had their rail network and infrastructure, 

according to Kato (2016). While some firms may offer services on a 

track owned by another company, their primary focus is on 

collaborating to enhance the accessibility of rail services. Competition 

among lines and firms exists on crucial intercity routes, as noted by F. 

Mizutani (1997). Nevertheless, the prevalence of such competition is 

limited. According to Kato (2016), the urban rail operations in Tokyo 

are regarded as having a regional monopoly. 

In an urban rail market, perfect competition and near-perfect 

competition are almost implausible. Policymakers could not always 

expect private firms to have better cost efficiency than public firms. 

Private firms are profit maximising entities, not cost-efficiency 
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maximisers. As illustrated, they would compromise cost efficiency to 

pursue maximum profit. One example is the urban rail market in Japan 

— where the eco-system is more complex than the theoretical settings. 

Private firms are allowed to develop lands that can spur ridership, 

ensuring the sustainability of their operation.  

As much as rail operations internalise externalities from these property 

developments, the latter internalise externalities from rail operations. 

We believe that with this interdependency, private firms may have 

invested in improving their service quality — such as better customer 

service — for rail and non-rail activities. It raises operating costs, and 

private firms may have lower cost efficiency11 than public firms.    

6.4 Conclusion 

We concluded that this study has met its aims and objectives. The 

consistent results of adding the ownership effect into the trans-log cost 

function model used in the previous chapter reaffirm our findings from 

Research Study 1. In addition, we found that results from the trans-log 

cost function, the DEA-Tobit Cost Efficiency, and the DEA-Tobit 

Technical Efficiency models are similar, although not the same. 

Among the DEA-Tobit regression models (i.e., DEA-Tobit Cost 

Efficiency CRS, DEA-Tobit Cost Efficiency VRS, DEA-Tobit Technical 

Efficiency CRS, and DEA-Tobit Technical Efficiency VRS), the DEA-

Tobit Cost Efficiency VRS model produced the most similar results to 

the trans-log cost function model. It is expected since the trans-log 

cost function also supports VRS. 

Furthermore, this study gave us a better grasp of the ownership effect 

on cost efficiency in the Japanese urban rail sector. We can infer from 

this study that private firms performed weaker than other firms in cost, 

cost efficiency, and technical efficiency — when we hold other factors 

constant at the sample mean. We also know this is true under two 

 

11 which is a function of cost and output (car-km). 
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widely used methods for deriving efficiency (i.e., the trans-log cost 

function and the DEA-Tobit regression).  

Considering the theoretical explanation in Chapter 2, which assumes 

that private firms will outperform the rest, this is unexpected. There are 

several explanations to our findings. First, smaller private firms are 

regional monopolies, and fare regulation protects them (Mizutani, 

2004). It makes them have less incentive to minimise service inputs. 

Second, public firms are relatively new, and new technology saves 

operating costs (Mizutani, 2004). Third, private firms developed 

residential areas and leisure facilities near their rail service areas 

under the diversification strategy (Shoji, 2005). It created 

interdependency between rail and non-rail services. As much as rail 

operations internalise externalities from these property developments, 

the latter internalise externalities from rail operations. We believe that 

with this interdependency, private firms may have invested in 

improving their service quality — such as better customer service — 

for rail and non-rail activities. Doing so raises operating costs, and 

private firms may have lower cost efficiency12 than public firms. Fourth, 

the government intervened in the market when private firms could not 

sustain losses. Quasi-public firms were established To preserve the 

unprofitable lines (Saito, 2015; Shoji, 2001). We believe that this 

intervention might have altered the behaviour of other private firm 

managers. Since they know there is a safety net whenever their firm 

cannot sustain losses, they become complacent and do not work as 

hard as expected. Fifth, quasi-public firms, which conducted 

unprofitable services, implemented cost-cutting measures to minimise 

losses. They “have found that demand is far less than pro ected” and 

are “doing everything in their power to improve their bottom lines” 

(Sekiguchi et al., 2010, p. 1286). Last, the network infrastructure is 

limited for competition since there can only be one train at one route 

stop at one time. While competition among lines and firms exists on 

 

12 which is a function of cost and output (car-km). 
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crucial intercity routes, the prevalence of such competition is limited 

(F. Mizutani, 1997). The urban rail operations in Tokyo are regarded 

as having a regional monopoly (Kato, 2016),  

Policymakers must answer what they want to achieve from privatising 

and liberalising the urban rail market. Do they want to see better cost 

efficiency? According to the property rights theory of the firm, public 

firms should be less efficient and profitable than private ones 

(Boardman & Vining, 1989, p. 1). Vining and Boardman (1992) went 

on to demonstrate that ownership is both theoretically and empirically 

significant. Yet, we see some studies on rail services that show 

different results, such as Filippini and Maggi (1993), Lan and Lin 

(2003), and Canavan (2015). We have addressed the differences 

between these studies (i.e., different samples, different periods, and 

different types of efficiency13) that are believed to have caused 

differing results. Our findings suggested that private firms performed 

weaker than other firms in cost efficiency.  

In this study, we have empirically demonstrated that better cost 

efficiency is not a definite outcome of having private urban rail firms. 

Private firms are profit-maximising entities, not necessarily cost-

efficiency maximisers. We will explore and discuss the ownership 

effect on service effectiveness and cost effectiveness in the next 

chapter.  

 

13 Cost efficiency and technical efficiency. 
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Table 22. Trans-log Cost Function Regression Results (Model for Research 
Study 1) 

 

Note: Refer to Table 51 on page 230 for Regression Term Descriptions. 

                                                                                        

                   rho    .92071368   (fraction of variance due to u_i)

               sigma_e    .04938309

               sigma_u    .16828347

                                                                                        

                 _cons     .0073412   .0434008     0.17   0.866    -.0777228    .0924053

                  Time    -.0064877   .0010459    -6.20   0.000    -.0085375   -.0044378

                   DMU     .1475098   .0758003     1.95   0.052    -.0010561    .2960757

                   DMM    -.9584722   .2188037    -4.38   0.000     -1.38732   -.5296249

      LnmcNLnmcPMpmcPM            0  (omitted)

      LnmcNLnmcPLpmcPM     .1233431   .0149579     8.25   0.000     .0940262      .15266

      LnmcNLnmcPEpmcPM    -.0386899   .0123049    -3.14   0.002     -.062807   -.0145729

      halfLnmcPMpmcPM2            0  (omitted)

      halfLnmcPLpmcPM2    -.1243123   .0522893    -2.38   0.017    -.2267975   -.0218272

      halfLnmcPEpmcPM2    -.1945434    .050584    -3.85   0.000    -.2936861   -.0954007

LnmcPLpmcPMLnmcPMpmcPM            0  (omitted)

LnmcPEpmcPMLnmcPMpmcPM            0  (omitted)

LnmcPEpmcPMLnmcPLpmcPM     .2360141   .0463818     5.09   0.000     .1451076    .3269207

          LnmcQpNLnmcN     .1300572   .0354513     3.67   0.000     .0605739    .1995404

             LnmcN_DMU     .0251065   .0570915     0.44   0.660    -.0867907    .1370037

             LnmcN_DMM    -.4184442   .1186433    -3.53   0.000    -.6509807   -.1859076

                 LnmcN     .9430847   .0333984    28.24   0.000      .877625    1.008544

           LnmcPMpmcPM            0  (omitted)

           LnmcPLpmcPM     .4950746   .0255158    19.40   0.000     .4450645    .5450847

           LnmcPEpmcPM     .1612759   .0217122     7.43   0.000     .1187208    .2038311

           LnmcQpN_DMU     -.290507   .0832885    -3.49   0.000    -.4537494   -.1272646

           LnmcQpN_DMM    -.2523734   .1056724    -2.39   0.017    -.4594874   -.0452593

               LnmcQpN     .7490696    .056358    13.29   0.000       .63861    .8595292

                                                                                        

         LnmcCELMpmcPM        Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval]

                                                                                        

corr(u_i, X)   = 0 (assumed)                    Prob > chi2       =     0.0000

                                                Wald chi2(17)     =    3493.55

     overall = 0.9728                                         max =         12

     between = 0.9742                                         avg =       12.0

     within  = 0.7413                                         min =         12

R-sq:                                           Obs per group:

Group variable: id                              Number of groups  =         46

Random-effects GLS regression                   Number of obs     =        552
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Table 23. Trans-log Cost Function Regression Results (Model for Research 
Study 2) 

 

Note: Refer to Table 51 on page 230 for Regression Term Descriptions. 

                                                                                        

                   rho    .92234717   (fraction of variance due to u_i)

               sigma_e    .04938309

               sigma_u    .17019503

                                                                                        

                 _cons    -.3433646   .1477262    -2.32   0.020    -.6329026   -.0538265

                  Time    -.0063016   .0010421    -6.05   0.000    -.0083441    -.004259

                   DMU      .442213   .1418147     3.12   0.002     .1642613    .7201647

                   DMM    -.7593095   .2331047    -3.26   0.001    -1.216186   -.3024326

      LnmcNLnmcPMpmcPM            0  (omitted)

      LnmcNLnmcPLpmcPM     .1216113   .0148871     8.17   0.000     .0924332    .1507894

      LnmcNLnmcPEpmcPM    -.0385216   .0122303    -3.15   0.002    -.0624925   -.0145507

      halfLnmcPMpmcPM2            0  (omitted)

      halfLnmcPLpmcPM2    -.1202947   .0519888    -2.31   0.021    -.2221908   -.0183986

      halfLnmcPEpmcPM2    -.1904776   .0503014    -3.79   0.000    -.2890665   -.0918887

LnmcPLpmcPMLnmcPMpmcPM            0  (omitted)

LnmcPEpmcPMLnmcPMpmcPM            0  (omitted)

LnmcPEpmcPMLnmcPLpmcPM      .230124   .0461529     4.99   0.000     .1396661     .320582

          LnmcQpNLnmcN     .0898697    .039038     2.30   0.021     .0133566    .1663829

             LnmcN_DMU     .0237281   .0571792     0.41   0.678    -.0883411    .1357973

             LnmcN_DMM    -.4323876   .1184456    -3.65   0.000    -.6645367   -.2002385

                 LnmcN     .9119681   .0356205    25.60   0.000     .8421532    .9817829

           LnmcPMpmcPM            0  (omitted)

           LnmcPLpmcPM     .4962735   .0253728    19.56   0.000     .4465437    .5460033

           LnmcPEpmcPM     .1626403   .0215875     7.53   0.000     .1203296    .2049511

           LnmcQpN_DMU    -.3664888   .0886342    -4.13   0.000    -.5402086    -.192769

           LnmcQpN_DMM    -.3722932   .1160786    -3.21   0.001    -.5998031   -.1447833

               LnmcQpN      .754136   .0563978    13.37   0.000     .6435983    .8646737

                   DOB     .3572549   .1439311     2.48   0.013     .0751551    .6393546

                                                                                        

         LnmcCELMpmcPM        Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval]

                                                                                        

corr(u_i, X)   = 0 (assumed)                    Prob > chi2       =     0.0000

                                                Wald chi2(18)     =    3494.05

     overall = 0.9723                                         max =         12

     between = 0.9736                                         avg =       12.0

     within  = 0.7454                                         min =         12

R-sq:                                           Obs per group:

Group variable: id                              Number of groups  =         46

Random-effects GLS regression                   Number of obs     =        552
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Table 24. DEA-Tobit Regression Results for Cost Efficiency (CRS) 

 LR test of sigma_u=0: chibar2(01) = 1248.78            Prob >= chibar2 = 0.000

                                                                              

         rho     .9620761   .0112748                      .9341575    .9794796

                                                                              

    /sigma_e     .0736807   .0024251    30.38   0.000     .0689276    .0784338

    /sigma_u     .3711093   .0538985     6.89   0.000     .2654702    .4767484

                                                                              

       _cons    -4.169647   .5620863    -7.42   0.000    -5.271315   -3.067978

        Time     .0171437   .0009627    17.81   0.000     .0152567    .0190306

         DMU    -.6766212   .2437205    -2.78   0.005    -1.154305   -.1989378

         DMM    -.1285073   .2419646    -0.53   0.595    -.6027492    .3457346

         LnN     .1852953   .0628368     2.95   0.003     .0621375    .3084531

LnTrafficDen     .4705514   .0614942     7.65   0.000      .350025    .5910778

         DOB    -.5697635   .2478792    -2.30   0.022    -1.055598   -.0839291

                                                                              

     LnIOCEc        Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval]

                                                                              

Log likelihood  =  511.42984                    Prob > chi2       =     0.0000

                                                Wald chi2(6)      =     482.69

Integration method: mvaghermite                 Integration pts.  =         12

                                                              max =         12

                                                              avg =       12.0

                                                              min =         12

Random effects u_i ~ Gaussian                   Obs per group:

Group variable: id                              Number of groups  =         46

        upper = 0                                  Right-censored =         12

Limits: lower = -inf                               Left-censored  =          0

                                                   Uncensored     =        540

Random-effects tobit regression                 Number of obs     =        552
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Table 25. DEA-Tobit Regression Results for Cost Efficiency (VRS) 

 LR test of sigma_u=0: chibar2(01) = 1218.18            Prob >= chibar2 = 0.000

                                                                              

         rho     .9553643   .0104375                      .9308317    .9723488

                                                                              

    /sigma_e      .083779    .002861    29.28   0.000     .0781715    .0893865

    /sigma_u     .3875952   .0453371     8.55   0.000      .298736    .4764544

                                                                              

       _cons    -4.090092   .3565292   -11.47   0.000    -4.788876   -3.391307

        Time     .0050183    .001103     4.55   0.000     .0028565    .0071801

         DMU     -.552749   .1606873    -3.44   0.001    -.8676904   -.2378076

         DMM     .1693574    .200241     0.85   0.398    -.2231076    .5618225

         LnN     .2385299   .0352573     6.77   0.000     .1694268    .3076329

LnTrafficDen     .4526867   .0525966     8.61   0.000     .3495991    .5557742

         DOB    -.2792163   .1721097    -1.62   0.105    -.6165451    .0581125

                                                                              

     LnIOCEv        Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval]

                                                                              

Log likelihood  =  364.78784                    Prob > chi2       =     0.0000

                                                Wald chi2(6)      =     158.08

Integration method: mvaghermite                 Integration pts.  =         12

                                                              max =         12

                                                              avg =       12.0

                                                              min =         12

Random effects u_i ~ Gaussian                   Obs per group:

Group variable: id                              Number of groups  =         46

        upper = 0                                  Right-censored =         76

Limits: lower = -inf                               Left-censored  =          0

                                                   Uncensored     =        476

Random-effects tobit regression                 Number of obs     =        552
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Table 26. DEA-Tobit Regression Results for Technical Efficiency (CRS) 

 

 

LR test of sigma_u=0: chibar2(01) = 1308.18            Prob >= chibar2 = 0.000

                                                                              

         rho     .9612472   .0099787                      .9372956    .9771542

                                                                              

    /sigma_e     .0626192   .0020995    29.83   0.000     .0585043    .0667341

    /sigma_u     .3118699   .0394551     7.90   0.000     .2345394    .3892004

                                                                              

       _cons    -4.410947   .4236695   -10.41   0.000    -5.241323    -3.58057

        Time     .0031825    .000831     3.83   0.000     .0015538    .0048113

         DMU    -.4891544   .1387333    -3.53   0.000    -.7610666   -.2172423

         DMM    -.0877058   .1542836    -0.57   0.570    -.3900961    .2146845

         LnN     .1042905   .0438042     2.38   0.017     .0184359    .1901451

LnTrafficDen     .5923135   .0489834    12.09   0.000     .4963078    .6883191

         DOB    -.6437194   .1545848    -4.16   0.000    -.9467001   -.3407388

                                                                              

     LnIOTEc        Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval]

                                                                              

Log likelihood  =  548.63452                    Prob > chi2       =     0.0000

                                                Wald chi2(6)      =     241.13

Integration method: mvaghermite                 Integration pts.  =         12

                                                              max =         12

                                                              avg =       12.0

                                                              min =         12

Random effects u_i ~ Gaussian                   Obs per group:

Group variable: id                              Number of groups  =         46

        upper = 0                                  Right-censored =         44

Limits: lower = -inf                               Left-censored  =          0

                                                   Uncensored     =        508

Random-effects tobit regression                 Number of obs     =        552
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Table 27. DEA-Tobit Regression Results for Technical Efficiency (VRS) 

 

 

LR test of sigma_u=0: chibar2(01) = 1155.36            Prob >= chibar2 = 0.000

                                                                              

         rho     .9690476    .007566                      .9509978    .9812073

                                                                              

    /sigma_e     .0655052   .0024701    26.52   0.000     .0606638    .0703465

    /sigma_u     .3665229   .0439735     8.34   0.000     .2803365    .4527094

                                                                              

       _cons    -4.796026    .241155   -19.89   0.000    -5.268681   -4.323371

        Time    -.0022195   .0009106    -2.44   0.015    -.0040042   -.0004347

         DMU    -.4093112   .1081488    -3.78   0.000    -.6212789   -.1973435

         DMM     .1197971   .1293111     0.93   0.354     -.133648    .3732423

         LnN     .2153935   .0230238     9.36   0.000     .1702677    .2605193

LnTrafficDen     .6273311   .0376504    16.66   0.000     .5535377    .7011245

         DOB    -.4816006   .1151809    -4.18   0.000     -.707351   -.2558501

                                                                              

     LnIOTEv        Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval]

                                                                              

Log likelihood  =   360.2867                    Prob > chi2       =     0.0000

                                                Wald chi2(6)      =     543.96

Integration method: mvaghermite                 Integration pts.  =         12

                                                              max =         12

                                                              avg =       12.0

                                                              min =         12

Random effects u_i ~ Gaussian                   Obs per group:

Group variable: id                              Number of groups  =         46

        upper = 0                                  Right-censored =        151

Limits: lower = -inf                               Left-censored  =          0

                                                   Uncensored     =        401

Random-effects tobit regression                 Number of obs     =        552
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Chapter 7 Research Study 3:  Exploring the Ownership 

and Other Effects on Cost Efficiency, Service 

Effectiveness, and Cost Effectiveness 

7.1 Introduction 

In Research Study 2 (Chapter 6), we found private firms less cost-

efficient than other firms (i.e., quasi-public and public firms) in the 

Japanese urban rail sector. We explained some possible reasons for 

the finding. Yet, private firms are theoretically expected to be more 

service- and cost-effective than other firms (see Chapter 2: The 

Performance of Private Firms section). In this research study (Chapter 

7), we are motivated to explore whether private firms in the Japanese 

urban rail sector have better service effectiveness and cost 

effectiveness than other firms (as depicted in Figure 18 on page 144). 

 

Figure 18. Theoretical Expectations on Private Firms' Performance (for 

Research Study 3) 

In Chapter 2: Service effectiveness and Cost effectiveness sections, 

we highlighted several studies on private firms’ service effectiveness 

and cost effectiveness in the land transport sector, such as Currie and 

De Gruyter (2016), Merkert et al. (2017) and Costa et al. (2021). Note 

that even though we have expanded our scope of literature from the 
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rail sector to the land transport sector for cost efficiency, service 

effectiveness, and cost effectiveness, we found that the studies on 

private firms' service effectiveness and cost effectiveness are not as 

many as those on private firms' cost efficiency. However, we decided 

not to include the air and maritime transport sectors because of their 

market uniqueness. 

We also highlighted authors that used the term 'efficiency' in their 

studies but measured the relationship between service inputs and 

service consumption, which equals cost effectiveness. One example 

is Costa et al. (2021). If there is a difference in how a factor affects 

cost efficiency and cost effectiveness, using these terms inaccurately 

may give a partial picture of the overall performance. Henceforth, we 

are further motivated to evaluate and compare how ownership, traffic 

density, scale, mode, time, and population density1 affect cost 

efficiency2, service effectiveness, and cost effectiveness. 

We decided to adopt one method in this study: the DEA-Tobit 

regression. We utilised the results from Research Study 2 (Chapter 6) 

for private firms' cost efficiency. We first conducted DEA to produce 

the relevant scores for private firms' service effectiveness and cost 

effectiveness. We set the following specifications when running DEA: 

Type of score Input for DEA Output for DEA 

Service effectiveness Q (thousand car-km) Y (thousand passenger-km) 

Cost effectiveness CELM (Yen) Y (thousand passenger-km) 

We used VRS scores since the scale is prevalent in the rail industry 

(Lan & Lin, 2003; Merkert et al., 2017; Tsai et al., 2015). 

 

1 For service effectiveness and cost effectiveness since these performance 
dimensions involve a demand related measure (i.e., service 
consumption). 

2  rivate firms’ performance in cost efficiency from Research Study 2 is used 
to compare and evaluate against service effectiveness and cost 
effectiveness. 
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We used output orientation for service effectiveness scores since we 

assumed firms are expected to provide reliable routine services, 

limiting their service output3 (car-km) adjustment. Service output 

denotes supply availability to consumers, and in local transport, 

providing service output is considered a service obligation (Cowie, 

1999; Walter, 2011). We applied input orientation for cost 

effectiveness scores since demand-related factors partly influence 

service consumption, and firms have more control over service input 

(Fitzová et al., 2018). 

After obtaining DEA cost efficiency scores and DEA technical-

efficiency scores, we performed Tobit regression. We specified the 

effectiveness scores (i.e., service effectiveness in one regression and 

cost effectiveness in another) as the dependent variable. We then 

selected Dt (car-km/operating-km), N (operating-km), DMMR (dummy 

for monorail), DMUG (dummy for under-ground), DOB (dummy for 

private firms), PD (population density), and T (year) as the 

independent variables. We included DOB to determine whether private 

firms are more service-effective or cost-effective than other firms. We 

included Dt, N, DMMR, and DMUG to evaluate how traffic density, scale, 

and mode affect cost efficiency (measured in Research Study 2), 

service effectiveness, and cost effectiveness. Doing so will help us 

understand more about these performance dimensions' differences. 

We included PD since population density positively influences service 

consumption (Ingvardson & Nielsen, 2018; Lobo & Couto, 2016).  

Note that the network DEA method is different from the standard DEA 

method. In addition to the absence of convexity constraint in the 

network DEA method, this method is relatively new and still 

undergoing development. We prefer to utilise the standard DEA 

method, which has been established in the literature. 

  

 

3 Service output (car-km) is used as the input for DEA in calculating service 
effectiveness. 
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7.2 Objectives 

We aimed to explore further the ownership effect on each performance 

dimension (i.e., cost efficiency, service effectiveness, and cost 

effectiveness) in the Japanese urban rail sector and investigate the 

density, scale, and mode effects on each performance dimension. In 

doing so, we set the following objectives: 

a. determine whether private firms are more service effective than 

other firms, 

b. determine whether private firms are more cost-effective than 

other firms, 

c. compare and evaluate private firms' performance in cost 

efficiency, service effectiveness, and cost effectiveness, and 

d. compare and evaluate how density, scale, and mode affect cost 

efficiency, service effectiveness, and cost effectiveness.  

In this study, private firms' cost efficiency from Research Study 2 is 

used to compare and evaluate private firms' service effectiveness and 

cost effectiveness. 

7.3 Results and Discussion 

This section is divided into two subsections. The first subsection 

compares the regression results for all performance dimensions: cost 

efficiency, service effectiveness, and cost effectiveness. The purpose 

is to evaluate whether there is any difference between the results. 

Karlaftis and Tsamboulas (2012) found that the performance of a 

system in one dimension (such as efficiency) is not indicative of how 

well it will perform in another dimension (such as effectiveness). We 

will inspect how ownership, traffic density, scale, mode, time, and 

population density affect: 

a. cost efficiency, 

b. service effectiveness, and  

c. cost effectiveness. 

Cost efficiency refers to the relationship between service input and 

service output. Service effectiveness refers to the relationship 
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between service output and service consumption. Cost effectiveness 

refers to the relationship between service input and service 

consumption. We employed regression equations in this study. 

Because our regression equation is in the natural log, holding all other 

variables constant and exponentiating the equation will yield the 

relevant ratio variables. The second subsection focuses on the 

Japanese private urban rail firms' performance in cost efficiency, 

service effectiveness, and cost effectiveness.  

7.3.1 Results Comparison 

We compared the DEA-Tobit regression results for all performance 

dimensions: cost efficiency4, service effectiveness, and cost 

effectiveness. We are interested in six effects: ownership, traffic 

density, scale, mode, time, and population density effects. Population 

density is a new variable compared to the previous chapters. We 

included this variable since population density positively influences 

service consumption (Ingvardson & Nielsen, 2018; Lobo & Couto, 

2016). The definitions of these variables are stated in Chapter 2: Data 

and Variables section. More information is provided in Chapter 3: 

Methodology. When discussing, we referred to excerpts from the 

relevant regression results. For more detailed results, please refer to: 

• Table 34. DEA-Tobit Regression Results for Cost efficiency 

(VRS) on page 163,  

• Table 35. DEA-Tobit Regression Results for Service 

effectiveness (VRS) on page 164, and 

• Table 36. DEA-Tobit Regression Results for Cost effectiveness 

(VRS) on page 165.  

We observed that different factors affect performance dimensions 

differently — except for population density. Ownership, traffic density, 

 

4 For private firms’ cost efficiency, we utilised the results from Research 
Study 2 (Chapter 6). 
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scale, mode, and time affect cost efficiency, service effectiveness, and 

cost effectiveness differently.  

7.3.1.1 Ownership Effect 

Table 28 on page 149 presents the ownership effect on cost efficiency, 

service effectiveness, and cost effectiveness. The results show that 

ownership affects all performance dimensions. At 11% significance 

level, private firms are 24.4% less cost-efficient than other firms. At 1% 

significance level, private firms are 117% more service effective than 

other firms. At 20% significance level, private firms are 25.7% more 

cost-effective than other firms. 

Table 28. Ownership Effect on Different Performance Dimensions 

Factor of interest Performance Dimension 

Cost 

efficiency 

Service 

effectiveness 

Cost 

effectiveness 

Ownership 

Effect5 

Private 

vs 

Others 

Diff. (0.244) 1.170 0.257 

Sig. 0.105 0.000 0.194 

Note: Brackets represent a negative value. Other firms consist of public 
and quasi-public firms. 

We further observed that ownership affects different performance 

dimensions in different ways. While private ownership negatively 

affects cost efficiency (24.4% less cost-efficient than others), it 

positively affects service effectiveness (117% more service effective 

than others) and cost effectiveness (25.7% more cost-effective than 

others). The results indicate that private firms perform differently in 

cost efficiency, service effectiveness, and cost effectiveness.  

 

5 Ownership effect is derived by 𝑥 = 𝑒(𝛽𝐷𝑂) − 1. Multiplying x by 100, the 
interpretation will be “private firms is x percent more cost efficient/service 
effective/cost effective than other firms (omitted variable)”. Brackets 
represent a negative value. In this case, the interpretation will be “private 
firms are x percent less cost efficient/service effective/cost effective than 
other firms”.  
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Although private firms are less cost-efficient than other firms, they are 

more service-effective and cost-effective than the latter. It may indicate 

that private firms prioritise profit maximisation. In doing so, they seek 

high service consumption, yielding high service effectiveness. Private 

firms do not mind incurring higher operating costs as long as they gain 

enough additional service consumption that could maximise their 

profit. For instance, they would spend more on improving service 

quality to gain ridership. As a result, their cost efficiency6 may be 

compromised. We will discuss private firms' performance more in the 

discussion section in para 7.3.2 on page 158.  

7.3.1.2 Traffic Density Effect 

Table 29 on page 150 presents the traffic density effect on cost 

efficiency, service effectiveness, and cost effectiveness. The results 

show that traffic density significantly affects cost efficiency and service 

effectiveness, but not so pertaining to cost effectiveness. At 1% 

significance level, cost efficiency will increase by 0.453% given a 

percentage increase in traffic density. At 1% significance level, service 

effectiveness will decrease by 0.332% given a percentage increase in 

traffic density. At 66% significance level, cost effectiveness will reduce 

by 0.026%, given a percentage increase in traffic density. 

Table 29. Traffic Density Effect on Different Performance Dimensions 

Factor of interest Performance Dimension 

Cost 

efficiency 

Service 

effectiveness 

Cost 

effectiveness 

Traffic Density Effect Coef. 0.453 (0.332) (0.026) 

Sig. 0.000 0.000 0.654 

Note: Brackets represent a negative value. 

 

6 which is a relation between service input (like operating costs) and service 
output (like car-km).  
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It can be said that traffic density affects different performance 

dimensions in different ways. Even though a higher traffic density may 

likely result in better cost efficiency, it may likely lead to lower service 

effectiveness and may unlikely improve cost effectiveness. The results 

indicate that traffic density affects cost efficiency, service 

effectiveness, and cost effectiveness differently.  

Although it increases cost efficiency, a higher traffic density will 

unlikely generate enough additional service consumption7. It is 

indicated by the negative coefficient on service effectiveness and an 

insignificant coefficient on cost effectiveness. Increasing traffic density 

on the existing track will unlikely improve cost effectiveness 

(specifically, service consumption). In this situation, if a firm aims for 

profit maximisation (which includes maximising service consumption), 

it will not increase the traffic density unless it needs to meet the 

expected minimum service levels.  

  

 

7 There might be an increase in service consumption, but the increase is not 
enough to maintain or improve service effectiveness and cost 
effectiveness. 
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7.3.1.3 Scale Effect 

Table 30 on page 152 presents the scale effect on cost efficiency, 

service effectiveness, and cost effectiveness. At 1% significance level, 

cost efficiency will increase by 0.239% given a percentage increase in 

scale. At 8% significance level, service effectiveness will decrease by 

0.143% given a percentage increase in scale. At 15% significance 

level, cost effectiveness will reduce by 0.056% given a percentage 

increase in scale.  

Table 30. Scale Effect on Different Performance Dimensions 

Factor of interest Performance Dimension 

Cost 

efficiency 

Service 

effectiveness 

Cost 

effectiveness 

Scale Effect Coef. 0.239 (0.143) (0.056) 

Sig. 0.000 0.071 0.142 

Note: Brackets represent a negative value. 

The results show that scale affects cost efficiency and service 

effectiveness with very strong confidence levels (at least 92%) and 

affects cost effectiveness with a slightly lower confidence level (85%).  

It can be said that scale affects different performance dimensions in 

different ways. Even though a more extensive scale may likely result 

in better cost efficiency, it may lead to lower service effectiveness and 

decreased cost effectiveness. The results indicate that scale affects 

cost efficiency, service effectiveness, and cost effectiveness 

differently.  

Although it increases cost efficiency, a larger scale will unlikely 

generate enough additional service consumption8. The negative 

coefficients on service effectiveness and cost effectiveness indicate 

this. Indeed, the increasing scale will likely decrease cost 

 

8 There might be an increase in service consumption, but the increase is not 
enough to maintain or improve service effectiveness and cost 
effectiveness. 
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effectiveness. Based on the results, we anticipate that private firms 

(which aim for profit maximisation) do not have any tendency to 

increase their scale or expand their network size. 

7.3.1.4 Mode Effect 

Table 31 on page 154 presents the mode effect on cost efficiency, 

service effectiveness, and cost effectiveness. It can be seen that: 

• at 40% significance level, the monorail is 18.5% more cost-

efficient than over-ground,  

• at 93% significance level, the monorail is 2% more service 

effective than over-ground,  

• at 88% significance level, the monorail is 2.7% less cost-

effective than over-ground, 

• at 1% significance level, under-ground is 42.5% less cost-

efficient than over-ground,  

• at 1% significance level, under-ground is 80.2% more service 

effective than over-ground,  

• at 37% significance level, under-ground is 15% less cost-

effective than over-ground, 

• at 1% significance level, under-ground is 51.4% less cost-

efficient than monorail,  

• at 2% significance level, under-ground is 76.7% more service-

effective than monorail, and  

• at 31% significance level, under-ground is 12.6% less cost-

effective than the monorail. 
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Table 31. Mode Effect on Different Performance Dimensions 

Factor of interest Performance Dimension 

Cost 

efficiency 

Service 

effectiveness 

Cost 

effectiveness 

Mode 

Effect9 

M vs O Diff. 0.185 0.020 (0.027) 

Sig. 0.398 0.929 0.874 

U vs O Diff. (0.425) 0.802 (0.150) 

Sig. 0.001 0.008 0.360 

U vs M Diff. (0.514) 0.767 (0.126) 

Sig. 0.000 0.012 0.303 

Note: Brackets represent a negative value.  

The results show that mode affects cost efficiency, service 

effectiveness, and cost effectiveness to some extent. There are 

significant differences in cost efficiency and service effectiveness 

between rail modes (at least 98% confidence level) — except between 

monorail and over-ground. There are also differences in cost 

effectiveness between rail modes, although with a much lower 

confidence level (at least 63%) — except between monorail and over-

ground. The difference between monorail and over-ground is not 

substantial in cost efficiency (60% confidence level) and negligible in 

service effectiveness (7% confidence level) and cost effectiveness 

(12% confidence level).   

Mode variable affects different performance dimensions in different 

ways. The difference between under-ground and other rail modes in 

 

9 Mode effect (or mode difference) is derived by 𝑥 = 𝑒(𝛽𝐷𝑀) − 1. Multiplying x 
by 100, the interpretation will be “Mode   is x percent more cost 
efficient/service effective/cost effective than over-ground (omitted 
variable)”. Brackets represent a negative value. In this case, the 
interpretation will be “Mode   is x percent less cost efficient/service 
effective/cost effective than over-ground”. Mode difference between 

under-ground and monorail is derived by 𝑥 = 𝑒
(𝛽𝐷𝑀𝑈

−𝛽𝐷𝑀𝑀
)

− 1. 
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every performance dimension is relatively significant (ranging from 

63% to 99% confidence levels). However, monorail and over-ground 

differences in every performance dimension are relatively insignificant 

(ranging from 7% to 60% confidence levels). Under-ground has the 

weakest cost efficiency and cost effectiveness despite having the most 

substantial service effectiveness. The results indicate that, to some 

extent, the mode variable has a different effect on cost efficiency, 

service effectiveness, and cost effectiveness. 

Mode differences are significant between under-ground and over-

ground, and between under-ground and monorail. The differences are 

significant in cost efficiency and service effectiveness but weak in cost 

effectiveness. However, they are generally insignificant between the 

monorail and over-ground across all performance dimensions. 

Under-ground has the weakest cost efficiency but the most substantial 

service effectiveness. The strength offsets the weakness, making 

under-ground's cost effectiveness performance not far below the other 

modes. We believe that different technological characteristics such as 

train size, capacity and length may require additional maintenance 

amounts but simultaneously offer different levels of benefit.  

The importance of our findings on mode effect in this chapter is 

twofold. Firstly, they reaffirm that mode is an important variable to 

consider when evaluating the performance of urban rail services. 

Research Study 1 (Chapter 5) found that the mode effect is significant 

in cost efficiency. In this chapter, we discovered that the mode variable 

significantly affects service effectiveness. Secondly, they suggest that 

cost efficiency, service effectiveness, and cost effectiveness are 

different performance measurements and are not interchangeable. 

Therefore, one should know which to measure when conducting a 

performance study on urban rail services. Our findings support what 

Perry et al. (1988) stated, that using different analyses could lead to 

varying outcomes.    
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7.3.1.5 Time Effect 

Table 32 on page 156 presents the time effect on cost efficiency, 

service effectiveness, and cost effectiveness. It can be seen that at 

1% significance level,  

• cost efficiency will increase by 0.005% from one year to 

another, 

• service effectiveness will decrease by 0.007% from one year to 

another, and 

• cost effectiveness will reduce by 0.006% from one year to 

another. 

Table 32. Time Effect on Different Performance Dimensions 

Factor of interest Performance Dimension 

Cost 

efficiency 

Service 

effectiveness 

Cost 

effectiveness 

Time Coef. 0.005 (0.007) (0.006) 

Sig. 0.000 0.000 0.000 

Note: Brackets represent a negative value.  

The results show that time significantly affects all performance 

dimensions (with 99% confidence level). However, time affects 

different performance dimensions in different ways. While time 

positively affects cost efficiency, it negatively affects service 

effectiveness and cost effectiveness. The results indicate that time 

affects cost efficiency, service effectiveness, and cost effectiveness 

differently. 

The improvement in cost efficiency with time may suggest that urban 

rail firms experience productivity improvements. Despite that, they 

face difficulty in generating enough additional service consumption10. 

The negative coefficients on service effectiveness and cost 

 

10 There might be an increase in service consumption, but the increase is not 
enough to maintain or improve service effectiveness and cost 
effectiveness. 
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effectiveness indicate this. According to Jitsuzumi and Nakamura 

(2010), modal shifts and an ageing population have negatively 

affected service consumption.  

7.3.1.6 Population Density Effect 

Table 33 on page 157 presents the population density effect on service 

effectiveness and cost effectiveness. At 1% significance level, service 

effectiveness will increase by 0.192% given a percentage increase in 

population density. At 4% significance level, cost effectiveness will 

increase by 0.081% given a percentage increase in population density.  

Table 33. Population Density Effect on Different Performance Dimensions 

Factor of interest Performance Dimension 

Service effectiveness Cost effectiveness 

Population Density Coef. 0.192 0.081 

Sig. 0.009 0.039 

The results show that population density significantly affects these 

performance dimensions (at least 96% confidence level). A higher 

population density may highly likely result in better service 

effectiveness and cost effectiveness. The results are consistent in 

showing that population density improves service effectiveness and 

cost effectiveness. They are in tandem with Lobo and Couto (2016) 

and Ingvardson and Nielsen (2018), who found that population density 

positively influenced service consumption, a component of service 

effectiveness and cost effectiveness.  

A positive effect of population density on service effectiveness and 

cost effectiveness suggests that people prefer urban rail services as 

an area becomes more densely populated. In a densely populated 

area, using urban rails offers more convenience than using private 

vehicles concerning time and cost since private vehicles are subject to 

traffic congestion and limited parking availability, which can be very 

expensive.  
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7.3.2 Discussion  

All in all, we observed that the effect of one factor is different in every 

performance dimension. This finding is consistent with Karlaftis and 

Tsamboulas (2012), who found that the performance of a system in 

one dimension is not indicative of its performance in the other 

dimension, and Kerstens (1996), who noted that the performance of 

transit systems varies significantly depending on the output 

specification used. We opine that assessing all the performance 

dimensions — and subsequently interpreting their results with each 

other — offers a comprehensive understanding of urban rail 

performance. 

Research Study 2 (Chapter 6) found that private firms are 24.4% less 

cost-efficient than other firms — with an 89% confidence level. In this 

research study (Chapter 7), private firms are 117% more service 

effective and 25.7% more cost-effective than other firms — with 99% 

and 80% confidence levels, respectively. Although the Japanese 

private urban rail firms do not perform as theoretically expected in cost 

efficiency, they perform so in service effectiveness and cost 

effectiveness.  

One possible reason the Japanese private urban rail firms are more 

service-effective is their business diversification strategy. Under this 

strategy, private firms develop residential areas and leisure facilities 

near their rail service areas (Shoji, 2005). With the interdependency 

between these property developments and rail operations, we believe 

private firms may have provided better service quality — such as better 

customer service — for rail and non-rail activities. In doing so, they 

strengthened and stabilised their urban rail service consumption, 

producing better service effectiveness than other firms.   

Another possible reason for the Japanese private urban rail firms 

being more service effective is that other firms, especially quasi-public 

firms, may run their services at the minimum expected service level, 

albeit at low service consumption. Sekiguchi et al. (2010, p. 1286) 

stated that many of these firms "have found that demand is far less 
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than projected". These urban rail operations are not attractive to 

private firms. Indeed, some of these unattractive urban rail operations 

are inherited from private firms. Quasi-public firms were established to 

preserve the operation of these services (Saito, 2015; Shoji, 2001).  

One reason for the Japanese private urban rail firms being more cost-

effective was offered by Mizutani (1994). In many ways, private firms 

are superior. They travelled faster, charged lower fares, experienced 

higher labour productivity, and benefited from a lower average 

employee wage compared to other firms, all while requiring fewer 

subsidies. 

Perhaps the most compelling reason the Japanese private urban rail 

firms are more cost-effective is that they are profit-maximising entities. 

They are better positioned than other firms in profitability. It might be 

why our finding on the Japanese private urban rail firms' cost 

effectiveness performance is very much similar to that of Mizutani 

(1994), even though our studies are more than a decade apart. 

As theoretically explained in Literature Review: The Performance of 

Private Firms section (Chapter 2), private owners' goal of gaining 

benefits11 from their investment puts firm managers under constant 

pressure to perform well. Private owners may change the firm's 

management if poor performance affects profitability. Hence, private 

firms will strive to maximise profit in such an environment. Japan's 

Railway Accounting Regulations, which clearly distinguish between 

rail lines and non-rail businesses in financial reporting, might have 

helped private owners to monitor their firm's profit performance. 

Prioritising social welfare, other firms might not have strived as hard 

as private firms to maximise profit. Canavan (2015) addressed the 

contrasts between private and public incentives when he discovered 

private firms are less efficient than public firms in his worldwide 

 

11 Such as dividends and higher share prices. 
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efficiency study on 27 metros from 2004 to 2012. Private metros may 

be more prone to forgo services in order to increase profits. 

The principal-agent problem, which is less severe in the private firms' 

environment, might have also helped the Japanese private urban rail 

firms to be more cost-effective than other firms (quasi-public and 

public).   

7.4 Conclusion 

We concluded that this study has met its aims and objectives. It has 

offered a deeper understanding of how ownership affects service 

effectiveness and cost effectiveness in the Japanese urban rail sector. 

It has also provided a greater comprehension of how ownership, 

density, scale, and mode affect cost efficiency, service effectiveness, 

and cost effectiveness.  

Research Study 2 (Chapter 6) indicated that private firms exhibit 

weaker cost efficiency than other firms. In this research study, 

however, our findings suggested that private firms demonstrate 

superior service effectiveness and cost effectiveness compared to 

their counterparts. Although private urban rail firms in Japan do not 

perform as well as theoretically expected in terms of cost efficiency 

(refer to Research Study 2 in Chapter 6), they performed as expected 

regarding service effectiveness and cost effectiveness.  

Private firms' superior performance in service effectiveness may be 

attributed to their business diversification strategy. This approach has 

strengthened and stabilised their urban rail service consumption, 

leading to better service effectiveness than other firms. An additional 

factor contributing to the superior service effectiveness of Japanese 

private urban rail firms may be the tendency of other firms, particularly 

quasi-public entities, to operate their services at the bare minimum 

level of expected service, despite low service consumption. According 

to Sekiguchi et al. (2010, p. 1286), it has been observed that a 

significant number of these firms have encountered a situation where 
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the demand for services is considerably lower than what was initially 

anticipated.  

Mizutani (1994) explained the greater cost effectiveness of Japanese 

private urban rail firms. Private firms exhibited superior performance 

in various aspects, such as faster travel, lower fares, higher labour 

productivity, and lower average employee wage than their 

counterparts.  

One persuasive argument in favour of the private urban rail firms in 

Japan being more cost-effective is the fact that these firms are profit-

maximising entities. It may explain why our findings regarding the cost 

effectiveness performance of Japanese private urban rail firms are so 

similar to those of Mizutani (1994) despite our studies being conducted 

more than a decade apart. As we have theorised in the Literature 

Review: The Performance of Private Firms section (Chapter 2), the 

goal of private owners to obtain a return on their investment places 

constant pressure on firm managers to perform well. The Railway 

Accounting Regulations of Japan, which differentiate between rail lines 

and non-rail businesses in financial reporting, could have assisted 

private owners in monitoring the profit performance of their firms. 

Moreover, quasi-public and public firms that place a high value on 

social welfare might not have exerted the same effort as private firms 

in pursuing profit maximisation. Canavan (2015) observed that private 

firms demonstrated inferior efficiency levels compared to their public 

counterparts. He mentioned that private metro systems may exhibit a 

higher inclination towards prioritising the maximisation of profits as 

opposed to the provision of services. 

The principal-agent problem, which is comparatively less pronounced 

in the private sector, may have also contributed to the superior cost 

effectiveness of Japanese private urban rail firms compared to quasi-

public and public firms.   

We found that different factors, except for population density, affect 

performance dimensions differently. Ownership, traffic density, scale, 

mode, and time influence cost efficiency, service effectiveness, and 
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cost effectiveness in different ways. These findings align with the 

research conducted by Karlaftis and Tsamboulas (2012), which 

similarly concluded that the performance of a system in a particular 

aspect, such as cost efficiency, does not necessarily reflect its 

performance in another aspect, such as service effectiveness. These 

findings also agree with Kerstens (1996), who found that the 

performance of public transportation systems varied significantly 

depending on the output specification used. We believe that a 

thorough understanding of urban rail performance can be attained by 

first evaluating all of the performance dimensions and then interpreting 

the findings with each other.   
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Table 34. DEA-Tobit Regression Results for Cost efficiency (VRS) 

 

 

 

LR test of sigma_u=0: chibar2(01) = 1218.18            Prob >= chibar2 = 0.000

                                                                              

         rho     .9553643   .0104375                      .9308317    .9723488

                                                                              

    /sigma_e      .083779    .002861    29.28   0.000     .0781715    .0893865

    /sigma_u     .3875952   .0453371     8.55   0.000      .298736    .4764544

                                                                              

       _cons    -4.090092   .3565292   -11.47   0.000    -4.788876   -3.391307

        Time     .0050183    .001103     4.55   0.000     .0028565    .0071801

         DMU     -.552749   .1606873    -3.44   0.001    -.8676904   -.2378076

         DMM     .1693574    .200241     0.85   0.398    -.2231076    .5618225

         LnN     .2385299   .0352573     6.77   0.000     .1694268    .3076329

LnTrafficDen     .4526867   .0525966     8.61   0.000     .3495991    .5557742

         DOB    -.2792163   .1721097    -1.62   0.105    -.6165451    .0581125

                                                                              

     LnIOCEv        Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval]

                                                                              

Log likelihood  =  364.78784                    Prob > chi2       =     0.0000

                                                Wald chi2(6)      =     158.08

Integration method: mvaghermite                 Integration pts.  =         12

                                                              max =         12

                                                              avg =       12.0

                                                              min =         12

Random effects u_i ~ Gaussian                   Obs per group:

Group variable: id                              Number of groups  =         46

        upper = 0                                  Right-censored =         76

Limits: lower = -inf                               Left-censored  =          0

                                                   Uncensored     =        476

Random-effects tobit regression                 Number of obs     =        552
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Table 35. DEA-Tobit Regression Results for Service effectiveness (VRS) 

 

 

LR test of sigma_u=0: chibar2(01) = 1223.27            Prob >= chibar2 = 0.000

                                                                              

         rho     .9593466   .0118395                      .9302147     .977727

                                                                              

    /sigma_e     .0994571   .0033266    29.90   0.000     .0929371    .1059771

    /sigma_u     .4831424   .0692013     6.98   0.000     .3475104    .6187744

                                                                              

       _cons     .0754957   .6833331     0.11   0.912    -1.263812    1.414804

 LnPopDen_SP      .191516   .0729122     2.63   0.009     .0486107    .3344212

        Time    -.0072088   .0013186    -5.47   0.000    -.0097933   -.0046243

         DMU     .5886295   .2211631     2.66   0.008     .1551578    1.022101

         DMM      .019414   .2172013     0.09   0.929    -.4062927    .4451206

         LnN    -.1427295   .0791374    -1.80   0.071    -.2978359    .0123769

LnTrafficDen     -.331525   .0818838    -4.05   0.000    -.4920143   -.1710356

         DOB     .7747114   .2087903     3.71   0.000     .3654898    1.183933

                                                                              

    LnOOSFXv        Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval]

                                                                              

Log likelihood  =  331.04252                    Prob > chi2       =     0.0000

                                                Wald chi2(7)      =      75.20

Integration method: mvaghermite                 Integration pts.  =         12

                                                              max =         12

                                                              avg =       12.0

                                                              min =         12

Random effects u_i ~ Gaussian                   Obs per group:

Group variable: id                              Number of groups  =         46

        upper = 0                                  Right-censored =         37

Limits: lower = -inf                               Left-censored  =          0

                                                   Uncensored     =        515

Random-effects tobit regression                 Number of obs     =        552
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Table 36. DEA-Tobit Regression Results for Cost effectiveness (VRS) 

 

 

LR test of sigma_u=0: chibar2(01) = 918.02             Prob >= chibar2 = 0.000

                                                                              

         rho     .8804751   .0241185                      .8264922    .9213685

                                                                              

    /sigma_e     .0933775   .0030574    30.54   0.000     .0873852    .0993699

    /sigma_u      .253438   .0279735     9.06   0.000      .198611     .308265

                                                                              

       _cons    -.7458221   .4438925    -1.68   0.093    -1.615835    .1241913

 LnPopDen_SP     .0805119   .0389653     2.07   0.039     .0041413    .1568825

        Time    -.0055342    .001202    -4.60   0.000    -.0078901   -.0031784

         DMU    -.1623504   .1774332    -0.91   0.360    -.5101132    .1854124

         DMM    -.0278647   .1750282    -0.16   0.874    -.3709138    .3151843

         LnN    -.0562397   .0382659    -1.47   0.142    -.1312394      .01876

LnTrafficDen    -.0263114   .0586132    -0.45   0.654    -.1411911    .0885683

         DOB     .2283842   .1756703     1.30   0.194    -.1159233    .5726918

                                                                              

    LnIOCFXv        Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval]

                                                                              

Log likelihood  =  370.53005                    Prob > chi2       =     0.0000

                                                Wald chi2(7)      =      50.71

Integration method: mvaghermite                 Integration pts.  =         12

                                                              max =         12

                                                              avg =       12.0

                                                              min =         12

Random effects u_i ~ Gaussian                   Obs per group:

Group variable: id                              Number of groups  =         46

        upper = 0                                  Right-censored =         43

Limits: lower = -inf                               Left-censored  =          0

                                                   Uncensored     =        509

Random-effects tobit regression                 Number of obs     =        552
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Chapter 8 Conclusion 

In Chapter 2, we reviewed the previous studies on the performance of 

urban rail modes and the performance of private firms in the land 

transport sector1. In addition, we discussed the benefits of 

understanding the cost structure and touched on the theoretical 

assumptions for the performance of private firms. We discovered gaps 

along the way, which prompted us to perform three research studies. 

This chapter is divided into five sections. The first three sections 

conclude the findings from the three research studies. The fourth 

section emphasises main research contributions. The final section 

discusses research limitations and suggests areas for future research. 

8.1 Research Study 1 

In Research Study 1 (Chapter 5), we aimed to understand the cost 

structure of each urban rail mode in Japan and determine whether 

there is any significant difference between them. To achieve these 

research aims, we set the following research objectives: 

a. to determine whether operating costs vary between modes and 

whether there is a significant difference between them, 

b. to determine whether economies of density characteristics vary 

between modes and whether there is a significant difference 

between them, and 

c. to determine whether economies of scale characteristics vary 

between modes and whether there is a significant difference 

between them. 

We concluded that the study's aims and objectives were met. It has 

given us a better grasp of the costs associated with over-ground, 

 

1 We expanded our scope of literature from rail sector to land transport sector 
since we found the studies on private firms’ cost efficiency, service 
effectiveness and cost effectiveness were limited. However, we decided 
not to include air and maritime transport sectors because of their market 
uniqueness. 
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monorail, and under-ground rail modes in Japan and how they differ. 

This study has shown significant differences in operational costs 

across the different modes. Our findings in the study also imply several 

ways in which economies of density and scale vary amongst urban 

train systems. These findings contribute to the current literature, in 

which studies such as Keeler (1974), Savage (1997), Mizutani (2004), 

Graham (2008) and Brage-Ardao et al. (2015) discovered that rail 

services (including urban railways) exhibit growing RTD but steady 

RTS. To be more exact, we found that over-ground, monorail, and 

under-ground all have their rates of RTD growth, even though there is 

no significant distinction between the monorail and under-ground. We 

also determined that monorail has increasing RTS, whereas over-

ground and under-ground rail have constant RTS. Furthermore, we 

discovered that the operating costs differ for each urban rail mode 

depending on the traffic density and network length.  

While doing the analyses in Research Study 1, we discovered that the 

results obtained using an econometric tool were different from those 

obtained using simple ratio statistics, leading us to conclude that the 

results obtained using an econometric tool are more accurate. 

Our findings on the differences among urban rail modes align with 

those of Savage (1997), who looked at the operating costs of urban 

rail modes in the United States of America. Given the findings of 

Graham (2008), Ingvardson and Nielsen (2018), Min et al. (2017), and 

Tsai et al. (2015), which all discovered that urban rail modes differed 

in terms of production, we suggest addressing and recognising mode 

difference in future urban rail research.   

Several policy implications have been identified. First, there is a 

possibility to incorporate the anticipated operating costs into the cost-

benefit analysis alongside the infrastructure costs, the expected level 

of demand, and any other pertinent information. This incorporation will 

facilitate making more informed decisions about which rail mode to 

build. Second, transit authorities and businesses can use our model 

and its results as a resource for estimating future costs. Third, our 
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research gives Japan's authorities a comprehensive picture of how the 

ceiling price could vary amongst urban rail modes while accounting for 

the full cost level of the relevant operator. Fourth, given that the cost 

function is used in Japan's yardstick competition, the mode effect 

might be incorporated into the model to produce more accurate 

results. Five, our approach can help determine how to organise 

franchises if a competitive tendering approach is utilised, as it will show 

the ideal size of the franchise. 

We think that when decision-makers, regulators, and stakeholders 

have a more precise grasp of the cost structures of urban rail modes, 

they will be better able to decide on policies, regulations, and future 

investments relevant to urban rail services. We believe that more 

cooperation between regulators and industry players will be directed 

towards finding and acquiring the necessary data in regions where 

cost function studies are rare, particularly in the urban rail sector. 

We recommend replicating this empirical research in other regions 

where sufficient data is available for a more conclusive comprehension 

of the cost differences between urban rail modes. It would be 

interesting to see if the results are the same. Furthermore, we hope 

that future empirical research will clarify the RTD and RTS of urban 

rail modes. We anticipate that the disparities in regional definitions of 

urban rail mode will make synthesising the current and future empirical 

findings difficult. 

8.2 Research Study 2 

Research Study 2 (Chapter 6) explored the ownership effect on cost 

efficiency in the Japanese urban rail sector. To achieve these research 

aims, we set the following research objectives: 

a. to determine whether adding the ownership variable into 

Research Study 1's trans-log cost function model does not 

materially change the coefficients elsewhere,  
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b. to explore whether different methods (i.e., trans-log cost 

function and DEA-Tobit regression) would yield similar results, 

and 

c. to determine whether private firms are more cost-efficient than 

other firms.  

The study has successfully achieved its intended aims and objectives. 

The findings from Research Study 1 were reaffirmed by the consistent 

results of incorporating the ownership effect into the trans-log cost 

function model utilised in the preceding chapter (Research Study 1). 

Also, it was observed that outcomes obtained from the trans-log cost 

function, the DEA-Tobit Cost Efficiency, and the DEA-Tobit Technical 

Efficiency models exhibit resemblance, albeit not identical. This study 

compared the results from four DEA-Tobit regression models against 

those of the trans-log cost function model. These models are DEA-

Tobit Cost Efficiency CRS, DEA-Tobit Cost Efficiency VRS, DEA-Tobit 

Technical Efficiency CRS, and DEA-Tobit Technical Efficiency VRS. It 

was found that the DEA-Tobit Cost Efficiency VRS model yielded 

results that were most comparable to those of the trans-log cost 

function model. This outcome is anticipated, given that the trans-log 

cost function is also conducive to VRS.  

This research study has also provided us with an enhanced 

understanding of the impact of ownership on cost efficiency within the 

urban rail industry in Japan. This study suggests that private firms 

exhibited low cost, cost efficiency, and technical efficiency compared 

to other firms while controlling for other variables at the sample mean. 

It is also established that this assertion remains valid when using two 

commonly employed approaches for determining efficiency: the trans-

log cost function and the DEA-Tobit regression. 

Our finding on private firms' cost efficiency is counterintuitive 

considering Chapter 2's theoretical rationale, which anticipates 

superior performance from private firms. This finding could be due to 

several different factors. First, according to Mizutani (2004), smaller 

private firms often function as regional monopolies, and their 

protection is ensured through fare regulation. Therefore, they will have 
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fewer reasons to try and cut costs. Second, public firms are relatively 

new; new technology reduces operating costs (Mizutani, 2004). Three, 

as part of the diversification strategy, private firms build residential 

neighbourhoods and recreational amenities close to the areas where 

they provide rail service (Shoji, 2005). Because of this, rail services 

and other types of services became interdependent on one another. 

Rail operations and property developments mutually internalise 

externalities, with the former absorbing externalities from the latter and 

the latter absorbing externalities from the former. We believe that 

because of this interdependency, private firms may have invested in 

increasing the quality of their services by providing better customer 

service. It raises operating costs; therefore, we may find that private 

firms have weaker cost efficiency than public firms. Fourth, the 

government stepped into the market when private firms could no 

longer afford to absorb losses. Quasi-public firms were established To 

preserve the unprofitable lines (Saito, 2015; Shoji, 2001). We believe 

this intervention may have altered the behaviour of managers at 

private firms. Because they know that there is a safety net in place if 

their company cannot sustain losses, they become complacent and do 

not put in as much effort as expected. Fifth, quasi-public firms 

implemented cost-cutting measures to reduce their overall financial 

losses. They "have found that demand is far less than projected," and 

as a result, they are "doing everything in their power to improve their 

bottom lines" (Sekiguchi et al., 2010, p. 1286). Lastly, the network 

infrastructure is not conducive to competition because there can be 

only one train at a given route halt at any given time. While competition 

among lines and firms exists on critical intercity routes, its prevalence 

is limited (F. Mizutani, 1997). Tokyo's urban rail operations are 

considered a regional monopoly (Kato, 2016). 

Policymakers must clarify the objectives of privatisation and 

liberalisation of the urban rail market. Do they seek improved cost 

effectiveness? According to the firm's property rights theory, public 

firms should be less efficient and profitable than private ones 

(Boardman & Vining, 1989, p. 1). Vining and Boardman (1992) went 
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on to demonstrate that ownership is significant both theoretically and 

empirically. However, many studies on rail services, such as those by 

Filippini and Maggi (1993), Lan and Lin (2003), and Canavan (2015), 

show conflicting findings. We have addressed the differences between 

these studies (i.e., different samples, different periods, and different 

kinds of efficiency) that are believed to have resulted in divergent 

findings. Our findings indicate that private firms performed less well 

than other firms in terms of cost efficiency. 

We have empirically demonstrated in this study that private urban rail 

firms do not necessarily result in greater cost efficiency. Private firms 

primarily emphasise maximising profits rather than improving cost 

efficiency.  

8.3 Research Study 3 

In Research Study 3 (Chapter 7), we aimed to explore further the 

ownership effect on each performance dimension (i.e., cost efficiency, 

service effectiveness and cost effectiveness) in the Japanese urban 

rail sector and investigate the density, scale, and mode effects on each 

performance dimension. To achieve these research aims, we set the 

following research objectives: 

a. determine whether private firms are more service effective than 

other firms, 

b. determine whether private firms are more cost-effective than 

other firms, 

c. compare and evaluate private firms' performance in cost 

efficiency, service effectiveness, and cost effectiveness, and 

d. compare and evaluate how density, scale, and mode affect cost 

efficiency, service effectiveness, and cost effectiveness.  

In this study, private firms' cost efficiency from Research Study 2 is 

used to compare and evaluate private firms' service effectiveness and 

cost effectiveness. 

We concluded that the aims and objectives of this study were met. It 

has provided a more in-depth understanding of how ownership 
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influences service effectiveness and cost effectiveness in Japan's 

urban rail sector. It has also provided greater insight into how 

ownership, density, scale, and mode affect cost efficiency, service 

effectiveness, and cost effectiveness.  

According to the findings obtained in Research Study 2 (Chapter 6), 

private firms display lower cost efficiency levels than other types of 

firms (quasi-public and public). However, in this research study, we 

discovered that private firms outperformed their counterparts 

regarding service effectiveness and cost effectiveness.  

Private firms' higher levels of service effectiveness can be ascribed to 

their business diversification strategy. Because of this strategy, they 

have increased and maintained the consumption of urban rail service, 

which has resulted in improved service effectiveness compared to that 

of other firms. Another factor that may have contributed to Japanese 

private urban rail firms' greater service effectiveness is the tendency 

of other firms, particularly quasi-public firms, to operate their services 

at the bare minimum level of expected service, notwithstanding low 

service consumption. Many of these firms have confronted a situation 

in which the demand for services is far lower than anticipated 

(Sekiguchi et al., 2010, p. 1286). 

Mizutani (1994) explained why private Japanese urban rail firms were 

more cost-effective. Private firms outperformed other firms in various 

areas, including faster travel, lower fares, higher labour productivity, 

and a lower average employee wage.  

One convincing argument favouring private urban rail firms in Japan 

being more cost-effective is that these firms are profit-maximising 

entities. It may explain why our findings on the cost effectiveness 

performance of Japanese private urban rail firms are comparable to 

those of Mizutani (1994), even though our research was done more 

than a decade apart. 

The aim of private owners to gain a return on their investment creates 

ongoing pressure on business managers to perform effectively, as we 

theorised in the Literature Review: The Performance of Private Firms 



173 

 

 

section (Chapter 2). Private owners might have benefited from Japan's 

Railway Accounting Regulations, which differentiate between rail lines 

and non-rail businesses in financial reporting. Furthermore, quasi-

public and public firms that place a high value on social welfare may 

not have put forth the same effort as private firms in pursuing profit 

maximisation.  

The principal-agent problem, which is relatively less severe in the 

private sector, may have also contributed to the superior cost 

effectiveness of Japanese private urban rail firms compared to quasi-

public and public firms.   

Our study also revealed that, except for population density, different 

factors have varying degrees of influence on each performance 

dimension. Ownership, traffic density, scale, mode, and time affect 

cost efficiency, service effectiveness, and cost effectiveness 

differently. Our findings are consistent with the study carried out by 

Karlaftis and Tsamboulas (2012), which arrived at a similar conclusion 

that the performance of a system in a particular area, such as cost 

efficiency, does not necessarily indicate its success in another area, 

such as service effectiveness. These findings are also consistent with 

Kerstens (1996), who discovered that the performance of public transit 

systems varied greatly depending on the output specification utilised. 

We believe that a complete understanding of urban rail performance 

can be reached by first analysing all performance aspects (i.e., cost 

efficiency, service effectiveness and cost effectiveness) and then 

interpreting the results of these evaluations concerning one another. 

8.4 Main Research Contributions  

We believe our studies have given some valuable insights into 

measuring the performance of urban rail services. We want to highlight 

five main research contributions.  

First, traffic density and scale affect different performance dimensions 

(i.e., cost efficiency, service effectiveness and cost effectiveness) in 

different ways. Traffic density and scale are significant factors for 
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measuring urban rail performance in cost efficiency and service 

effectiveness but are less significant when measuring cost 

effectiveness. In Japan, even though a higher traffic density may result 

in better cost efficiency, it may lead to lower service effectiveness and 

not improve cost effectiveness. The same applies to scale. The fact 

that cost efficiency has improved over time could mean that urban rail 

firms are getting better at what they do. 

Nonetheless, they have difficulty generating sufficient additional 

service consumption. Modal shifts and an ageing population have hurt 

service consumption, according to Jitsuzumi and Nakamura (2010). 

Apart from ours, we have never encountered a study that evaluates 

traffic density and scale on all performance dimensions (cost 

efficiency, service effectiveness and cost effectiveness). Therefore, 

we look forward to seeing more findings in this area. 

Second, mode affects different performance dimensions in different 

ways. We found that mode difference is a significant factor for 

measuring the urban rail performance in cost efficiency and service 

effectiveness but less significant when measuring cost effectiveness. 

From another angle, the mode difference is significant between under-

ground and over-ground, and between under-ground and monorail. 

However, it is less significant between the monorail and over-ground 

across all performance dimensions. Additionally, we found that just 

because one mode performs best in one performance dimension does 

not mean it serves best in another. For example, under-ground has the 

weakest cost efficiency but the most substantial service effectiveness. 

We believe that different technological characteristics such as train 

size, capacity and length may require additional maintenance amounts 

but simultaneously offer different levels of benefit. We have discussed 

several policy implications in Research Study 1. Our findings concur 

with those of Savage (1997), who concentrated on the operating costs 

of urban rail modes in the United States. Considering the findings by 

Graham (2008), Ingvardson and Nielsen (2018), Min et al. (2017), and 

Tsai et al. (2015) — who discovered that urban rail modes differed in 
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terms of production — we recommend stating and recognising mode 

difference in future urban rail studies. 

Third, RTD and RTS vary between over-ground, monorail, and under-

ground. Many authors such as Keeler (1974), Savage (1997), Mizutani 

(2004), Graham (2008) and Brage-Ardao et al. (2015) found that rail 

services (including urban rails) exhibit increasing RTD but constant 

RTS for cost efficiency. Our findings offer more insights. We 

discovered that over-ground, monorail, and under-ground all have 

different rates of increase for RTD, although there is no significant 

difference between monorail and under-ground. We further discovered 

that over-ground and under-ground show constant RTS, although 

there is no significant difference between the two. Monorail, on the 

other hand, shows increasing RTS.  

Fourth, private firms are profit-maximising entities but not necessarily 

cost-efficiency maximisers. Our finding on the cost effectiveness of the 

Japanese private urban rail firms is very similar to that of Mizutani 

(1994), who also found that Japanese private urban rail firms are more 

cost-effective than other firms. Despite being more than a decade 

apart, these consistent empirical findings reaffirm the economic 

theories on private firms' profit maximisation behaviour that we 

explained in the Literature Review: The Performance of Private Firms 

section (Chapter 2). On the other hand, our finding on the Japanese 

private urban rail firms' cost efficiency suggests that private urban rail 

firms are not necessarily cost efficiency maximisers2. This perspective 

is supported by Canavan (2015), who talked about the differences 

between private and public incentives when he found that private firms 

are less efficient than public firms. Private firms may be more likely to 

cut back on services to make the most money.  

Fifth, measuring all the performance dimensions and interpreting the 

results relative to each other is essential. It will give a comprehensive 

 

2 We have identified several possible reasons why Japanese private urban 
rail firms are less cost-efficient than the others in Research Study 2. 
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understanding of the performance of the urban rail service under 

evaluation. Research Study 3 has shown that ownership, traffic 

density, scale, mode, and time affect cost efficiency, service 

effectiveness, and cost effectiveness differently. We want to reiterate 

that using only one performance dimension in one's research may 

show a partial picture of the overall performance. Also, the goals 

policymakers hope to accomplish through engaging private firms in the 

urban rail market should be articulated clearly. Do they want to achieve 

self-sufficiency, improve cost efficiency, improve service 

effectiveness, or improve cost effectiveness? This thesis has 

demonstrated empirically that improved cost effectiveness is 

achievable, but improved cost efficiency is not guaranteed by having 

private firms operating in the urban rail market. 

8.5 Research Limitations and Suggestions for Future 

Research 

We have identified several limitations that should be taken into 

consideration when interpreting the results. These limitations highlight 

areas where further research is needed to enhance the validity and 

generalisability of our findings. Additionally, we have formulated some 

suggestions based on these limitations, which aim to address the 

identified shortcomings and provide potential avenues for future 

research. They are discussed as follows: 

The Interpretation of Mode and Ownership Roles in Performance 

In Research Studies 2 and 3, both mode and ownership variables were 

included to investigate the performance differences between private 

firms and other firms in Japan's urban rail services, considering mode 

differences. Private firms primarily focused on over-ground operations, 

while other firms concentrated on monorail and underground 

operations (see Table 10 on page 88). Mizutani (1994, p. 168) also 

found a similar correlation when assessing the cost effectiveness of 

urban rail services in Japan, stating that this correlation "should not 

cause bias in the coefficients". Additionally, when the ownership 
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variable was added to the model used in Research Study 1, which 

already contained the mode variable, no significant changes in the 

coefficients were observed.  

Although coefficient bias is not a concern, the interpretation of the 

findings is not straightforward and may require further research. This 

is because only one private firm represented each monorail and 

underground operation, which could lead to interpreting the findings as 

individual firm performance relative to other firms. This highlights the 

challenge of conducting empirical studies when the market 

composition may not be ideal statistically. Despite the sample 

limitations, we still were able — to some extent — to disentangle the 

various factors in the regression (i.e., adding the ownership variable 

did not greatly change the mode effects). To gain a deeper 

understanding of the performance of private firms in monorail and 

underground operations, we propose conducting more detailed 

research, such as a case study on the firms involved. 

Mode Separation3 as An Alternative to Mode Recognition4 

Perhaps one alternative in addressing mode and ownership 

correlation is to conduct separate analysis for each rail mode. The 

separation approach involves dividing the heterogeneous data sample 

into homogeneous subsamples and conducting separate analyses for 

each subsample (Holý, 2022). Here, ownership variable is included in 

the model while mode variable is excluded from the model. However, 

separating the analysis reduces the sample size for each model. As 

stated by Holý (2022), this approach is simple and easy to interpret but 

may reduce the sample size significantly, limiting its applicability in 

some studies. Specifically, a cost or production function necessitates 

a substantial dataset in order to obtain reliable outcomes, preferably 

utilizing panel data to account for unobserved variations (Karlaftis & 

Tsamboulas, 2012). Our research involved trans-log cost function and 

 

3 Separating rail modes before evaluating operators 
4 Addressing mode difference through the use of variables such as dummies 
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DEA-Tobit regression models, which require a large sample size for 

reliable results. With this in mind, we recommend a comparative study 

on both approaches (mode separation and mode recognition) to 

evaluate differences in the results.  

On another note, we believe that applying the separation approach will 

not address the challenge in interpreting the performance of private 

firms in the Japanese monorail and under-ground operations since the 

number of private firms in the respective rail mode categories remains 

the same. 

More Granular Data for Population Density, and Inclusion of Other 

Potential Variables 

We treated population density as the number of persons per 1km2 in 

the prefecture(s) where a firm is serving. We note that in some cases, 

a firm serves only certain parts of their serviced prefecture(s). This is 

a challenge we faced when obtaining data on population density. 

Although we believe it may not change the coefficient sign, we 

recommend future research uses population density data at the 

municipal level for more accurate results.  

In addition to that, incorporating additional potential factors such as the 

quantity of stations, service quality and car ownership (at the municipal 

level) can enhance the accuracy of the findings.  Considering the 

number of stations can provide insights into the accessibility and 

availability of urban rail services. Similarly, a higher level of service 

quality may encourage more individuals to choose urban rail services. 

Car ownership at the municipal level can indicate the reliance on 

private vehicles and potentially influence the demand for urban rail 

services. We suggest considering these potential factors when data 

accessibility is not a constraint. 

DEA-Tobit regression and trans-log cost function limitations 

The DEA-Tobit regression and the trans-log Cost Function 

approaches possess certain advantages in assessing efficiency and 

identifying key factors. However, it is important to recognise their 
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limitations. The DEA-Tobit regression approach requires a large 

sample size to obtain reliable efficiency estimates. When dealing with 

small sample numbers, efficiency evaluations may be unstable and 

prone to being influenced by extreme values (Anang, 2022). The trans-

log cost function assumes that coefficients are constant over time. This 

assumption may not be true since the cost function coefficients can 

vary across different time periods (Kuroda, 1995). To overcome this 

limitation, scholars have included time-varying factors in the trans-log 

cost function. However, this methodology requires significant data 

collection for precise estimation. Furthermore, trans-log cost function 

relies on a predetermined functional form, such as the Cobb-Douglas 

production function, as discussed by W. Thuo and M. Ndagara (2021). 

Nevertheless, it is important to note that any particular functional form 

may not accurately represent the intricacies of the production process 

across various sectors or industries. Different divergent industries may 

have unique production functions, and implementing a standard set 

functional structure could lead to biased cost predictions.  



180 

 

 

List of References 

Anang, B. T. (2022). Two-Stage Dea Estimation of Technical 
Efficiency: Comparison of Different Estimators. Review of 
Agricultural and Applied Economics, 25(1). 
https://doi.org/10.15414/raae.2022.25.01.65-72  

Anupriya, Graham, D. J., Carbo, J. M., Anderson, R. J., & Bansal, P. 
(2020). Understanding the costs of urban rail transport 
operations. Transportation Research Part B: Methodological, 
138, 292-316. 
https://doi.org/https://doi.org/10.1016/j.trb.2020.05.019  

Babalik-Sutcliffe, E. (2002). Urban rail systems: Analysis of the factors 
behind success. Transport Reviews, 22(4), 415-447. 
https://doi.org/10.1080/01441640210124875  

Banker, R. D., & Natarajan, R. (2008). Evaluating contextual variables 
affecting productivity using data envelopment analysis. 
Operations research, 56(1), 48-58.  

Battese, G. E., & Coelli, T. (1995). A Model for Technical Inefficiency 
Effects in a Stochastic Frontier Production Function for Panel 
Data. Empirical Economics. 
https://doi.org/10.1007/bf01205442  

Blank, J. L., & Valdmanis, V. G. (2010). Environmental factors and 
productivity on Dutch hospitals: a semi-parametric approach. 
Health Care Manag Sci, 13(1), 27-34. 
https://doi.org/10.1007/s10729-009-9104-0  

Boardman, A. E., & Vining, A. R. (1989). Ownership and Performance 
in Competitive Environments: A Comparison of the 
Performance of Private, Mixed, and State-Owned Enterprises. 
The Journal of Law & Economics, 32(1), 1-33. 
http://www.jstor.org/stable/725378  

Bortolotti, B., Fantini, M., & Siniscalco, D. (2004). Privatisation around 
the world: evidence from panel data. Journal of Public 
Economics, 88(1-2), 305-332. https://doi.org/10.1016/s0047-
2727(02)00161-5  

Brage-Ardao, R., Graham, D. J., & Anderson, R. J. (2015). 
Determinants of Train Service Costs in Metro Operations. 
Transportation Research Record: Journal of the Transportation 
Research Board, 2534(1), 31-37. https://doi.org/10.3141/2534-
05  

Canavan, S. (2015). Performance modelling of urban metro rail 
systems: an application of frontiers, regression, and causal 
inference techniques Imperial College London].  

https://doi.org/10.15414/raae.2022.25.01.65-72
https://doi.org/https:/doi.org/10.1016/j.trb.2020.05.019
https://doi.org/10.1080/01441640210124875
https://doi.org/10.1007/bf01205442
https://doi.org/10.1007/s10729-009-9104-0
http://www.jstor.org/stable/725378
https://doi.org/10.1016/s0047-2727(02)00161-5
https://doi.org/10.1016/s0047-2727(02)00161-5
https://doi.org/10.3141/2534-05
https://doi.org/10.3141/2534-05


181 

 

 

Catalano, G., Daraio, C., Diana, M., Gregori, M., & Matteucci, G. 
(2019). Efficiency, effectiveness, and impacts assessment in 
the rail transport sector: a state-of-the-art critical analysis of 
current research. International Transactions in Operational 
Research, 26(1), 5-40. https://doi.org/10.1111/itor.12551  

Caves, D. W., & Christensen, L. R. (1980). The relative efficiency of 
public and private firms in a competitive environment: the case 
of Canadian railroads. Journal of political Economy, 88(5), 958-
976.  

Chen, Y., Cook, W. D., Kao, C., & Zhu, J. (2014). Network DEA pitfalls: 
Divisional efficiency and frontier projection. In Data 
envelopment analysis (pp. 31-54). Springer.  

Coelli, T. (1996). A guide to DEAP version 2.1: a data envelopment 
analysis (computer) program. Centre for Efficiency and 
Productivity Analysis, University of New England, Australia, 
96(08), 1-49.  

Coelli, T. J., Rao, D. S. P., O'Donnell, C. J., & Battese, G. E. (2005). 
An introduction to efficiency and productivity analysis. springer 
science & business media.  

Costa, Á., Cruz, C. O., Sarmento, J. M., & Sousa, V. F. (2021). 
Empirical Analysis of the Effects of Ownership Model (Public 
vs. Private) on the Efficiency of Urban Rail Firms. Sustainability, 
13(23), 13346. https://doi.org/10.3390/su132313346  

Couto, A., & Graham, D. J. (2008). The contributions of technical and 
allocative efficiency to the economic performance of European 
railways. Portuguese Economic Journal, 7(2), 125-153. 
https://doi.org/10.1007/s10258-008-0030-8  

Cowie, J. (1999). The Technical Efficiency of Public and Private 
Ownership in the Rail Industry: The Case of Swiss Private 
Railways. Journal of Transport Economics and Policy, 33(3), 
241-251. http://www.jstor.org/stable/20053814  

Cubbin, J., & Tzanidakis, G. (1998). Regression versus data 
envelopment analysis for efficiency measurement: an 
application to the England and Wales regulated water industry. 
Utilities Policy, 7(2), 75-85. 
https://doi.org/https://doi.org/10.1016/S0957-1787(98)00007-1  

Currie, G., Ahern, A., & Delbosc, A. (2011). Exploring the drivers of 
light rail ridership: an empirical route level analysis of selected 
Australian, North American and European systems. 
Transportation, 38(3), 545-560. 
https://doi.org/10.1007/s11116-010-9314-9  

https://doi.org/10.1111/itor.12551
https://doi.org/10.3390/su132313346
https://doi.org/10.1007/s10258-008-0030-8
http://www.jstor.org/stable/20053814
https://doi.org/https:/doi.org/10.1016/S0957-1787(98)00007-1
https://doi.org/10.1007/s11116-010-9314-9


182 

 

 

Currie, G., & De Gruyter, C. (2016). Exploring performance outcomes 
and regulatory contexts of Light Rail in Australia and the US. 
Research in Transportation Economics, 59, 297-303.  

Dalei, N. N., & Joshi, J. M. (2020). Estimating technical efficiency of 
petroleum refineries using DEA and tobit model: An India 
perspective. Computers & Chemical Engineering, 142, 107047. 
https://doi.org/10.1016/j.compchemeng.2020.107047  

Dar, Q. F., Ahn, Y.-H., & Dar, G. F. (2021). The Impact of International 
Trade on Central Bank Efficiency: An Application of DEA and 
Tobit Regression Analysis. Statistics, Optimization & 
Information Computing, 9(1), 223-240. 
https://doi.org/10.19139/soic-2310-5070-1077  

Fielding, G. J., Babitsky, T. T., & Brenner, M. E. (1985). Performance 
evaluation for bus transit. Transportation Research Part A: 
General, 19(1), 73-82. https://doi.org/10.1016/0191-
2607(85)90009-3  

Filippini, M., & Maggi, R. (1993). Efficiency and Regulation in the case 
of the Swiss Private Railways. Journal of Regulatory 
Economics, 5(2), 199-216.  

Fitzová, H., & Matulová, M. (2020). Comparison of urban public 
transport systems in the Czech Republic and Slovakia: Factors 
underpinning efficiency. Research in Transportation 
Economics, 81, 100824. 
https://doi.org/10.1016/j.retrec.2020.100824  

 itzová, H., Matulová, M., & Tomeš, Z. (2018). Determinants of urban 
public transport efficiency: case study of the Czech Republic. 
European Transport Research Review, 10(2). 
https://doi.org/10.1186/s12544-018-0311-y  

Foster, G., & Kalenkoski, C. M. (2013). Tobit or OLS? An empirical 
evaluation under different diary window lengths. Applied 
Economics, 45(20), 2994-3010. 
https://doi.org/10.1080/00036846.2012.690852  

Fumitoshi, M., Andrew, S., Chris, N., & Shuji, U. (2015). Comparing 
the Costs of Vertical Separation, Integration, and Intermediate 
Organisational Structures in European and East Asian 
Railways. Journal of Transport Economics and Policy, 49(3), 
496-515. https://www.jstor.org/stable/jtranseconpoli.49.3.0496  

Graham, D. J. (2008). Productivity and efficiency in urban railways: 
Parametric and non-parametric estimates. Transportation 
Research Part E: Logistics and Transportation Review, 44(1), 
84-99. https://doi.org/10.1016/j.tre.2006.04.001  

https://doi.org/10.1016/j.compchemeng.2020.107047
https://doi.org/10.19139/soic-2310-5070-1077
https://doi.org/10.1016/0191-2607(85)90009-3
https://doi.org/10.1016/0191-2607(85)90009-3
https://doi.org/10.1016/j.retrec.2020.100824
https://doi.org/10.1186/s12544-018-0311-y
https://doi.org/10.1080/00036846.2012.690852
https://www.jstor.org/stable/jtranseconpoli.49.3.0496
https://doi.org/10.1016/j.tre.2006.04.001


183 

 

 

Greene, W. (2005). Fixed and Random Effects in Stochastic Frontier 
Models. Journal of Productivity Analysis, 23(1), 7-32. 
https://doi.org/10.1007/s11123-004-8545-1  

Greene, W. H. (2008). The econometric approach to efficiency 
analysis. The measurement of productive efficiency and 
productivity growth, 1(1), 92-250.  

Hoff, A. (2007). Second stage DEA: Comparison of approaches for 
modelling the DEA score. European Journal of Operational 
Research, 181(1), 425-435. 
https://doi.org/https://doi.org/10.1016/j.ejor.2006.05.019  

Holý, V. (2022). The impact of operating environment on efficiency of 
public libraries. Central European Journal of Operations 
Research, 30(1), 395-414. https://doi.org/10.1007/s10100-020-
00696-4  

Ingvardson, J. B., & Nielsen, O. A. (2018). How urban density, network 
topology and socio-economy influence public transport 
ridership: Empirical evidence from 48 European metropolitan 
areas. Journal of Transport Geography, 72, 50-63. 
https://doi.org/10.1016/j.jtrangeo.2018.07.002  

Jain, P., Cullinane, S., & Cullinane, K. (2008). The impact of 
governance development models on urban rail efficiency. 
Transportation Research Part A: Policy and Practice, 42(9), 
1238-1250. https://doi.org/10.1016/j.tra.2008.03.012  

Jitsuzumi, T., & Nakamura, A. (2010). Causes of inefficiency in 
Japanese railways: Application of DEA for managers and 
policymakers. Socio-Economic Planning Sciences, 44(3), 161-
173. https://doi.org/10.1016/j.seps.2009.12.002  

Jørgensen, F., Pedersen, P. A., & Volden, R. (1997). Estimating the 
inefficiency in the Norwegian bus industry from stochastic cost 
frontier models. Transportation, 24(4), 421-433.  

Kamaruddin, R. S. (2012). Evaluating the Efficiency of KTMB (A 
Malaysian Railway Operator): An International Benchmarking 
Exercise Using Data Envelopment Analysis (DEA) 
[Unpublished master's thesis] City, University of London.  

Karlaftis, M. G. (2004). A DEA approach for evaluating the efficiency 
and effectiveness of urban transit systems. European Journal 
of Operational Research, 152(2), 354-364. 
https://doi.org/10.1016/s0377-2217(03)00029-8  

Karlaftis, M. G. (2008). Privatisation, Regulation and Competition: A 
Thirty-year Retrospective on Transit Efficiency. 
https://doi.org/doi:https://doi.org/10.1787/9789282102008-5-
en  

https://doi.org/10.1007/s11123-004-8545-1
https://doi.org/https:/doi.org/10.1016/j.ejor.2006.05.019
https://doi.org/10.1007/s10100-020-00696-4
https://doi.org/10.1007/s10100-020-00696-4
https://doi.org/10.1016/j.jtrangeo.2018.07.002
https://doi.org/10.1016/j.tra.2008.03.012
https://doi.org/10.1016/j.seps.2009.12.002
https://doi.org/10.1016/s0377-2217(03)00029-8
https://doi.org/doi:https:/doi.org/10.1787/9789282102008-5-en
https://doi.org/doi:https:/doi.org/10.1787/9789282102008-5-en


184 

 

 

Karlaftis, M. G., & Tsamboulas, D. (2012). Efficiency measurement in 
public transport: Are findings specification sensitive? 
Transportation Research Part A: Policy and Practice, 46(2), 
392-402. https://doi.org/10.1016/j.tra.2011.10.005  

Kato, H. (2016). Challenges in Better Co-ordinating Tokyo’s Urban 
Rail Services. 
https://doi.org/doi:https://doi.org/10.1787/64260e61-en  

Keeler, T. E. (1974). Railroad Costs, Returns to Scale, and Excess 
Capacity. The Review of Economics and Statistics, 56(2), 201-
208. https://doi.org/10.2307/1924440  

Kerstens, K. (1996). Technical efficiency measurement and 
explanation of French urban transit companies. Transportation 
Research Part A: Policy and Practice, 30(6), 431-452. 
https://doi.org/10.1016/0965-8564(96)00006-7  

Kleinová, E. (2016). Does liberalization of the railway industry lead to 
higher technical effectiveness? Journal of Rail Transport 
Planning & Management, 6(1), 67-76. 
https://doi.org/10.1016/j.jrtpm.2016.04.002  

Kunz, M., & Shiel, M. (1988). Comparative analysis of the effect of rail 
ownership on performance. Forum Papers, 1, 13th Australasian 
Transport Research Forum, Christchurch, July 1988,  

Kuroda, Y. (1995). Labor productivity measurement in Japanese 
agriculture, 1956–90. Agricultural Economics, 12(1), 55-68. 
https://doi.org/10.1111/j.1574-0862.1995.tb00350.x  

Lan, L. W., & Lin, E. T. J. (2003). Technical efficiency and service 
effectiveness for railways industry: DEA approaches. Journal of 
the Eastern Asia Society for Transportation Studies, 5(1), 2932-
2947.  

Lan, L. W., & Lin, E. T. J. (2006). Performance measurement for 
railway transport: stochastic distance functions with inefficiency 
and ineffectiveness effects. Journal of Transport Economics 
and Policy (JTEP), 40(3), 383-408.  

Lobo, A., & Couto, A. (2016). Technical Efficiency of European Metro 
Systems: The Effects of Operational Management and 
Socioeconomic Environment. Networks and Spatial 
Economics, 16(3), 723-742. https://doi.org/10.1007/s11067-
015-9295-5  

Martins, A. I. (2018). Efficiency determinants in Portuguese banking 
industry: an application through fractional regression models. 
Tourism & Management Studies, 14(2), 63-71. 
https://doi.org/10.18089/tms.2018.14207  

https://doi.org/10.1016/j.tra.2011.10.005
https://doi.org/doi:https:/doi.org/10.1787/64260e61-en
https://doi.org/10.2307/1924440
https://doi.org/10.1016/0965-8564(96)00006-7
https://doi.org/10.1016/j.jrtpm.2016.04.002
https://doi.org/10.1111/j.1574-0862.1995.tb00350.x
https://doi.org/10.1007/s11067-015-9295-5
https://doi.org/10.1007/s11067-015-9295-5
https://doi.org/10.18089/tms.2018.14207


185 

 

 

Megginson, W. L., & Netter, J. M. (2001). From State to Market: A 
Survey of Empirical Studies on Privatization. Journal of 
Economic Literature, 39(2), 321-389. 
https://doi.org/10.1257/jel.39.2.321  

Merkert, R., Mulley, C., & Hakim, M. M. (2017). Determinants of bus 
rapid transit (BRT) system revenue and effectiveness – A global 
benchmarking exercise. Transportation Research Part A: Policy 
and Practice, 106, 75-88. 
https://doi.org/10.1016/j.tra.2017.09.010  

Metcalfe, P. (2012). Quantitative Techniques for Competition and 
Regulation: Lecture 8: Cost Benchmarking (2) – Data 
Envelopment Analysis. In. United Kingdom: City, University of 
London. 

Min, H., Ahn, Y.-H., & Lambert, T. (2017). Benchmarking and 
improving mass transit systems in the United States based on 
best-in class practices. The International Journal of Logistics 
Management, 28(1), 172-193. https://doi.org/10.1108/IJLM-01-
2015-0031  

Mizutani, F. (1994). Japanese Urban Railways: A Private-public 
Comparison. Avebury. 
https://books.google.co.uk/books?id=QreZAAAAIAAJ  

Mizutani, F. (1997). EMPIRICAL ANALYSIS OF YARDSTICK 
COMPETITION IN THE JAPANESE RAILWAY INDUSTRY. 
International Journal of Transport Economics / Rivista 
internazionale di economia dei trasporti, 24(3), 367-392. 
http://www.jstor.org/stable/42747980  

Mizutani, F. (1997). Empirical analysis of yardstick competition in the 
Japanese railway industry. International Journal of Transport 
Economics/Rivista internazionale di economia dei trasporti, 
367-392.  

Mizutani,  . (2004).  rivately Owned Railways’ Cost  unction, 
Organization Size and Ownership. Journal of Regulatory 
Economics, 25(3), 297-322. 
https://doi.org/10.1023/b:Rege.0000017751.07079.75  

Mizutani, F. (2005). Regulation and deregulation in the Japanese rail 
industry. CESifo DICE Report, 3(4), 10-15.  

Mizutani, F. (2014). Looking Beyond Europe with a Special Focus on 
Japan. In: Kobe University, Graduate School of Business 
Administration. 

Mizutani, F., Kozumi, H., & Matsushima, N. (2009). Does yardstick 
regulation really work? Empirical evidence from Japan’s rail 

https://doi.org/10.1257/jel.39.2.321
https://doi.org/10.1016/j.tra.2017.09.010
https://doi.org/10.1108/IJLM-01-2015-0031
https://doi.org/10.1108/IJLM-01-2015-0031
https://books.google.co.uk/books?id=QreZAAAAIAAJ
http://www.jstor.org/stable/42747980
https://doi.org/10.1023/b:Rege.0000017751.07079.75


186 

 

 

industry. Journal of Regulatory Economics, 36(3), 308-323. 
https://doi.org/10.1007/s11149-009-9097-0  

Mizutani, F., & Shoji, K. (2004). Rail operation–infrastructure 
separation: the case of Kobe rapid transit railway. Transport 
Policy, 11(3), 251-263. 
https://doi.org/10.1016/j.tranpol.2003.11.004  

Mizutani, F., & Urakami, T. (2003). A PRIVATE-PUBLIC 
COMPARISON OF BUS SERVICE OPERATORS. 
International Journal of Transport Economics / Rivista 
internazionale di economia dei trasporti, 30(2), 167-185. 
http://www.jstor.org/stable/42747656  

Mizutani, F., & Uranishi, S. (2013). Does vertical separation reduce 
cost? An empirical analysis of the rail industry in European and 
East Asian OECD Countries. Journal of Regulatory Economics, 
43(1), 31-59. https://doi.org/10.1007/s11149-012-9193-4  

Mizutani, J., & Usami, M. (2016). Yardstick regulation and the 
operators' productivity of railway industry in Japan. Research in 
Transportation Economics, 59, 86-93. 
https://doi.org/10.1016/j.retrec.2016.09.001  

Nash, C., & Smith, A. (2021). Regulation and Competition in Railways. 
In R. Vickerman (Ed.), International Encyclopedia of 
Transportation (pp. 409-413). Elsevier. 
https://doi.org/https://doi.org/10.1016/B978-0-08-102671-
7.10078-8  

Nash, C., & Smith, A. S. (2014). Rail efficiency: Cost research and its 
implications for policy. International Transport Forum 
Discussion Paper, Paris,  

Novaes, A. G. N. (2001). Rapid-transit efficiency analysis with the 
assurance-region DEA method. Pesquisa Operacional, 21(2), 
179-197.  

Okabe, M. (2004). New passenger railway fares. Japan Railway and 
Transport Review, 37, 4-15.  

Ottoz, E., Fornengo, G., & Di Giacomo, M. (2009). The impact of 
ownership on the cost of bus service provision: an example 
from Italy. Applied Economics, 41(3), 337-349. 
https://doi.org/10.1080/00036840601007260  

Oum, T. H., & Yu, C. (1994). Economic efficiency of railways and 
implications for public policy: a comparative study of the OECD 
countries' railways. Journal of Transport Economics and Policy, 
121-138.  

https://doi.org/10.1007/s11149-009-9097-0
https://doi.org/10.1016/j.tranpol.2003.11.004
http://www.jstor.org/stable/42747656
https://doi.org/10.1007/s11149-012-9193-4
https://doi.org/10.1016/j.retrec.2016.09.001
https://doi.org/https:/doi.org/10.1016/B978-0-08-102671-7.10078-8
https://doi.org/https:/doi.org/10.1016/B978-0-08-102671-7.10078-8
https://doi.org/10.1080/00036840601007260


187 

 

 

Parks, J., Ryus, P., Coffel, K., Gan, A., Perk, V., Cherrington, L., Arndt, 
J., & Nakanishi, Y. (2010). A Methodology for Performance 
Measurement and Peer Comparison in the Public 
Transportation Industry. https://doi.org/10.17226/14402  

Perry, J. L., Babitsky, T., & Gregersen, H. (1988). Organizational form 
and performance in urban mass transit. Transport Reviews, 
8(2), 125-143. https://doi.org/10.1080/01441648808716680  

Pollitt, M. G., & Smith, A. S. J. (2002). The Restructuring and 
Privatisation of British Rail: Was It Really That Bad? Fiscal 
Studies, 23(4), 463-502. http://www.jstor.org/stable/24438307  

Rees, R. (1985). THE THEORY OF PRINCIPAL AND AGENT PART 
I. Bulletin of Economic Research, 37(1), 3-26. 
https://doi.org/10.1111/j.1467-8586.1985.tb00179.x  

Reinhard, S., Knox Lovell, C. A., & Thijssen, G. J. (2000). 
Environmental efficiency with multiple environmentally 
detrimental variables; estimated with SFA and DEA. European 
Journal of Operational Research, 121(2), 287-303. 
https://doi.org/10.1016/s0377-2217(99)00218-0  

Reynès, F. (2011). The Cobb-Douglas function as an approximation 
of other functions. . OFCE Working Paper 2011-21. 
https://www.ofce.sciences-po.fr/pdf/dtravail/WP2011-21.pdf 

Roy, W., & Yvrande-Billon, A. (2007). Ownership, contractual 
practices and technical efficiency: The case of urban public 
transport in France. Journal of Transport Economics and Policy 
(JTEP), 41(2), 257-282.  

Saito, T. (2015). Overcoming difficulties faced by local railway 
transport and role of Basic Act on Transport Policy. Japan 
Railway & Transport Review.  

Savage, I. (1997). Scale economies in United States rail transit 
systems. Transportation Research Part A: Policy and Practice, 
31(6), 459-473. https://doi.org/10.1016/s0965-8564(97)00003-
7  

Scheffler, R., Hartwig, K.-H., & Malina, R. (2013). The Effects of 
Ownership Structure, Competition, and Cross-Subsidisation on 
the Efficiency of Public Bus Transport: Empirical Evidence from 
Germany. Journal of Transport Economics and Policy (JTEP), 
47(3), 371-386. 
https://www.ingentaconnect.com/content/lse/jtep/2013/000000
47/00000003/art00004  

Sekiguchi, Y., Terada, K., & Terada, H. (2010). A Study on the Third-
Sector Urban Railway Efficiency in Japan. Journal of the 
Eastern Asia Society for Transportation Studies, 8, 1275-1287.  

https://doi.org/10.17226/14402
https://doi.org/10.1080/01441648808716680
http://www.jstor.org/stable/24438307
https://doi.org/10.1111/j.1467-8586.1985.tb00179.x
https://doi.org/10.1016/s0377-2217(99)00218-0
https://www.ofce.sciences-po.fr/pdf/dtravail/WP2011-21.pdf
https://doi.org/10.1016/s0965-8564(97)00003-7
https://doi.org/10.1016/s0965-8564(97)00003-7
https://www.ingentaconnect.com/content/lse/jtep/2013/00000047/00000003/art00004
https://www.ingentaconnect.com/content/lse/jtep/2013/00000047/00000003/art00004


188 

 

 

Shoji, K. (2001). Lessons from Japanese experiences of roles of public 
and private sectors in urban transport. Japan Railway & 
Transport Review, 29, 12-18.  

Shoji, K. (2005). Japanese Experiences With Public And Private 
Sectors In Urban Railways  http://hdl.handle.net/2123/6178 

Sigaroudi, S. (2016). Data Envelopment Analysis models for a mixture 
of non-ratio and ratio variables. University of Toronto (Canada).  

Simar, L., & Wilson, P. W. (1998). Sensitivity Analysis of Efficiency 
Scores: How to Bootstrap in Nonparametric Frontier Models. 
Management Science, 44(1), 49-61. 
http://www.jstor.org/stable/2634426  

Simar, L., & Wilson, P. W. (2007). Estimation and inference in two-
stage, semi-parametric models of production processes. 
Journal of Econometrics, 136(1), 31-64. 
https://doi.org/10.1016/j.jeconom.2005.07.009  

Simar, L., & Wilson, P. W. (2011a). Performance of the Bootstrap for 
DEA Estimators and Iterating the Principle. 
https://doi.org/10.1007/978-1-4419-6151-8_10  

Simar, L., & Wilson, P. W. (2011b). Two-stage DEA: caveat emptor. 
Journal of Productivity Analysis, 36(2), 205-218. 
https://doi.org/10.1007/s11123-011-0230-6  

Simon, H. A. (1955). A Behavioral Model of Rational Choice. The 
Quarterly Journal of Economics, 69(1), 99. 
https://doi.org/10.2307/1884852  

Smith, A., Iwnicki, S., Kaushal, A., Odolinski, K., & Wheat, P. (2017). 
Estimating the relative cost of track damage mechanisms: 
combining economic and engineering approaches. 
Proceedings of the Institution of Mechanical Engineers, Part F: 
Journal of Rail and Rapid Transit, 231(5), 620-636. 
https://doi.org/10.1177/0954409717698850  

Smith, A. S. J., Benedetto, V., & Nash, C. (2018). The Impact of 
Economic Regulation on the Efficiency of European Railway 
Systems. Journal of Transport Economics and Policy (JTEP), 
52(2), 113-136. 
https://www.ingentaconnect.com/content/lse/jtep/2018/000000
52/00000002/art00003  

Song, Y.-J., & Shoji, K. (2016). Effects of diversification strategies on 
investment in railway business: The case of private railway 
companies in Japan. Research in Transportation Economics, 
59, 388-396. https://doi.org/10.1016/j.retrec.2016.07.022  

http://hdl.handle.net/2123/6178
http://www.jstor.org/stable/2634426
https://doi.org/10.1016/j.jeconom.2005.07.009
https://doi.org/10.1007/978-1-4419-6151-8_10
https://doi.org/10.1007/s11123-011-0230-6
https://doi.org/10.2307/1884852
https://doi.org/10.1177/0954409717698850
https://www.ingentaconnect.com/content/lse/jtep/2018/00000052/00000002/art00003
https://www.ingentaconnect.com/content/lse/jtep/2018/00000052/00000002/art00003
https://doi.org/10.1016/j.retrec.2016.07.022


189 

 

 

Street, A. (2003). How much confidence should we place in efficiency 
estimates? Health Econ, 12(11), 895-907. 
https://doi.org/10.1002/hec.773  

Titus, M.  ., &  usser, B. (2011). States’  otential Enrollment of  dult 
Students: A Stochastic Frontier Analysis. Research in Higher 
Education, 52(6), 555-571. https://doi.org/10.1007/s11162-
010-9211-2  

Tsai, C.-H. P., Mulley, C., & Merkert, R. (2015). Measuring the cost 
efficiency of urban rail systems an international comparison 
using DEA and tobit models. Journal of Transport Economics 
and Policy (JTEP), 49(1), 17-34.  

Tsamboulas, D. A. (2006). Assessing performance under regulatory 
evolution: A European transit system perspective. Journal of 
urban planning and development, 132(4), 226-234.  

Tziogkidis, P. (2012a). Bootstrap DEA and Hypothesis Testing Cardiff 
Economics Working Paper Series,  
https://www.econstor.eu/handle/10419/65746 

Tziogkidis,  . (2012b). The Simar and Wilson’s bootstrap DE  
approach: a critique. In: Cardiff University, Cardiff Business 
School, Economics Section. 

UCLA. (2017). TOBIT ANALYSIS: Stata data analysis examples. 
https://stats.idre.ucla.edu/stata/dae/tobit-analysis/ 

Vining, A. R., & Boardman, A. E. (1992). Ownership versus 
Competition: Efficiency in Public Enterprise. Public Choice, 
73(2), 205-239. http://www.jstor.org/stable/30025543  

W. Thuo, M., & M. Ndagara, M. (2021). Translog Cost Function 
Analysis for Manufacturing Sector in Kenya International 
Journal of Social Science and Economic Research, 6(2), 420-
429. https://doi.org/10.46609/IJSSER.2021.v06i02.003  

Walter, M. (2011). Some determinants of cost efficiency in German 
public transport. Journal of Transport Economics and Policy 
(JTEP), 45(1), 1-20.  

Wheat, P., & Smith, A. S. J. (2015). Do the usual results of railway 
returns to scale and density hold in the case of heterogeneity in 
outputs? A hedonic cost function approach. Journal of 
Transport Economics and Policy (JTEP), 49(1), 35-57.  

Wooldridge, J. M. (2013). Introductory Econometrics: A Modern 
Approach. Cengage Learning. 
https://books.google.co.uk/books?id=GHoJzgEACAAJ  

https://doi.org/10.1002/hec.773
https://doi.org/10.1007/s11162-010-9211-2
https://doi.org/10.1007/s11162-010-9211-2
https://www.econstor.eu/handle/10419/65746
https://stats.idre.ucla.edu/stata/dae/tobit-analysis/
http://www.jstor.org/stable/30025543
https://doi.org/10.46609/IJSSER.2021.v06i02.003
https://books.google.co.uk/books?id=GHoJzgEACAAJ


190 

 

 

Xiaoqiang, W. (2020). Intelligent urban rail transit systems for the 
modern world. Retrieved 10/05/2023 from 
https://www.globalrailwayreview.com/article/104484/huawei-
solutions-intelligent-urban-rail-transit-systems/ 

Yahia,  . B., & Essid, H. (2019). Determinants of Tunisian Schools’ 
efficiency: a DEA-Tobit approach. Journal of Applied 
Management and Investments, 8(1), 44-56.  

Yang, H., & Pollitt, M. (2009). Incorporating both undesirable outputs 
and uncontrollable variables into DEA: The performance of 
Chinese coal-fired power plants. European Journal of 
Operational Research, 197(3), 1095-1105. 
https://doi.org/10.1016/j.ejor.2007.12.052  

Young, P. (1987). Privatization around the World. Proceedings of the 
Academy of Political Science, 36(3), 190. 
https://doi.org/10.2307/1174108  

Yu, M.-M., & Lin, E. T. J. (2008). Efficiency and effectiveness in railway 
performance using a multi-activity network DEA model. Omega, 
36(6), 1005-1017. 
https://doi.org/10.1016/j.omega.2007.06.003  

Zhang, Q., Koutmos, D., Chen, K., & Zhu, J. (2021). Using Operational 
and Stock Analytics to Measure Airline Performance: A Network 
DEA Approach. Decision Sciences, 52(3), 720-748. 
https://doi.org/10.1111/deci.12363  

Zhu, J. (2020). DEA under big data: data enabled analytics and 
network data envelopment analysis. Annals of Operations 
Research. https://doi.org/10.1007/s10479-020-03668-8  

 

https://www.globalrailwayreview.com/article/104484/huawei-solutions-intelligent-urban-rail-transit-systems/
https://www.globalrailwayreview.com/article/104484/huawei-solutions-intelligent-urban-rail-transit-systems/
https://doi.org/10.1016/j.ejor.2007.12.052
https://doi.org/10.2307/1174108
https://doi.org/10.1016/j.omega.2007.06.003
https://doi.org/10.1111/deci.12363
https://doi.org/10.1007/s10479-020-03668-8


191 

 

 

Appendix A: Further Details on Japan Urban Rail 

Environment and Data 

 

Figure 19. Major Metropolitan Areas in Japan 
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Table 37. Japan Urban Rail Firms and Their Service Locations 

ID Name Metropolitan Area Metropolitan Prefectures1 Serviced Prefectures2 

1 Tobu (Tōbu Railway) Tokyo (Kantō) Tokyo, Kanagawa, Saitama, Chiba, Ibaraki, 

Tochigi, Gunma, Yamanashi 

Tokyo, Saitama, Chiba, 

Gunma, Tochigi 

2 Seibu (Seibu Railway) Tokyo (Kantō) Tokyo, Kanagawa, Saitama, Chiba, Ibaraki, 

Tochigi, Gunma, Yamanashi 

Tokyo, Saitama 

3 Keisei (Keisei Electric Railway) Tokyo (Kantō) Tokyo, Kanagawa, Saitama, Chiba, Ibaraki, 

Tochigi, Gunma, Yamanashi 

Tokyo, Chiba 

4 Keio (Keiō Corporation) Tokyo (Kantō) Tokyo, Kanagawa, Saitama, Chiba, Ibaraki, 

Tochigi, Gunma, Yamanashi 

Tokyo, Kanagawa 

5 Odakyu (Odakyū Electric Railway) Tokyo (Kantō) Tokyo, Kanagawa, Saitama, Chiba, Ibaraki, 

Tochigi, Gunma, Yamanashi 

Tokyo, Kanagawa 

 

1 Metropolitan prefectures are the prefectures located in the said metropolitan area. 
2 Serviced prefectures are the prefectures in which the said urban rail firm runs its services. 



193 

 

 

ID Name Metropolitan Area Metropolitan Prefectures1 Serviced Prefectures2 

6 Tokyu (Tōkyū Corporation) Tokyo (Kantō) Tokyo, Kanagawa, Saitama, Chiba, Ibaraki, 

Tochigi, Gunma, Yamanashi 

Tokyo, Kanagawa 

7 Keikyu (Keihin Electric Express 

Railway) 

Tokyo (Kantō) Tokyo, Kanagawa, Saitama, Chiba, Ibaraki, 

Tochigi, Gunma, Yamanashi 

Tokyo, Kanagawa 

8 Soutetsu (Sagami Railway 

(Sōtetsu)) 

Tokyo (Kantō) Tokyo, Kanagawa, Saitama, Chiba, Ibaraki, 

Tochigi, Gunma, Yamanashi 

Kanagawa 

9 Meitetsu (Nagoya Railroad) Nagoya (Chūkyō) Aichi, Gifu, Mie Aichi, Gifu 

10 Kintetsu (Kintetsu Railway) Nagoya (Chūkyō) Aichi, Gifu, Mie Osaka, Nara, Kyoto, Aichi, Mie 

11 Nankai (Nankai Electric Railway) Keihanshin Osaka, Kyoto, Hyōgo, Nara, Shiga, 

Wakayama 

Osaka, Wakayama 

12 Keihan (Keihan Electric Railway) Keihanshin Osaka, Kyoto, Hyōgo, Nara, Shiga, 

Wakayama 

Osaka, Kyoto, Shiga 
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ID Name Metropolitan Area Metropolitan Prefectures1 Serviced Prefectures2 

13 Hankyu (Hankyū Corporation) Keihanshin Osaka, Kyoto, Hyōgo, Nara, Shiga, 

Wakayama 

Kyoto, Osaka, Hyōgo 

14 Hanshin (Hanshin Electric Railway) Keihanshin Osaka, Kyoto, Hyōgo, Nara, Shiga, 

Wakayama 

Osaka, Hyōgo 

15 Nishitetsu (Nishi-Nippon Railroad) Fukuoka–Kitakyushu Fukuoka Fukuoka 

16 Tokyo Metro (Tokyo Metro) Tokyo (Kantō) Tokyo, Kanagawa, Saitama, Chiba, Ibaraki, 

Tochigi, Gunma, Yamanashi 

Tokyo, Chiba, Saitama 

17 Shinkeisei (Shin-Keisei Electric 

Railway) 

Tokyo (Kantō) Tokyo, Kanagawa, Saitama, Chiba, Ibaraki, 

Tochigi, Gunma, Yamanashi 

Chiba 

18 Tokyo monorail (Tokyo monorail) Tokyo (Kantō) Tokyo, Kanagawa, Saitama, Chiba, Ibaraki, 

Tochigi, Gunma, Yamanashi 

Tokyo 

19 Senboku (Semboku Rapid Railway) Keihanshin Osaka, Kyoto, Hyōgo, Nara, Shiga, 

Wakayama 

Osaka 
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ID Name Metropolitan Area Metropolitan Prefectures1 Serviced Prefectures2 

20 Kobe (Kōbe Electric Railway) Keihanshin Osaka, Kyoto, Hyōgo, Nara, Shiga, 

Wakayama 

Hyōgo 

21 Sanyo (Sanyo Electric Railway) Keihanshin Osaka, Kyoto, Hyōgo, Nara, Shiga, 

Wakayama 

Hyōgo 

22 Nose (Nose Electric Railway) Keihanshin Osaka, Kyoto, Hyōgo, Nara, Shiga, 

Wakayama 

Hyōgo, Osaka 

23 Hokushin (Hokushin Kyūkō Electric 

Railway) 

Keihanshin Osaka, Kyoto, Hyōgo, Nara, Shiga, 

Wakayama 

Hyōgo 

24 Kita Kyushu (Kitakyushu Monorail) Fukuoka–Kitakyushu Fukuoka Fukuoka 

25 Saitama new transit (Saitama New 

Urban Transit) 

Tokyo (Kantō) Tokyo, Kanagawa, Saitama, Chiba, Ibaraki, 

Tochigi, Gunma, Yamanashi 

Saitama 

26 Saitama Rapid (Saitama Railway) Tokyo (Kantō) Tokyo, Kanagawa, Saitama, Chiba, Ibaraki, 

Tochigi, Gunma, Yamanashi 

Saitama, Tokyo 



196 

 

 

ID Name Metropolitan Area Metropolitan Prefectures1 Serviced Prefectures2 

27 Hokuso (Hokusō Railway) Tokyo (Kantō) Tokyo, Kanagawa, Saitama, Chiba, Ibaraki, 

Tochigi, Gunma, Yamanashi 

Tokyo, Chiba 

28 Chiba monorail (Chiba Urban 

Monorail) 

Tokyo (Kantō) Tokyo, Kanagawa, Saitama, Chiba, Ibaraki, 

Tochigi, Gunma, Yamanashi 

Chiba 

29 Yokohama seaside (Yokohama 

New Transit) 

Tokyo (Kantō) Tokyo, Kanagawa, Saitama, Chiba, Ibaraki, 

Tochigi, Gunma, Yamanashi 

Kanagawa 

30 Yurikamome (Yurikamome) Tokyo (Kantō) Tokyo, Kanagawa, Saitama, Chiba, Ibaraki, 

Tochigi, Gunma, Yamanashi 

Tokyo 

31 Tokyo rinkai (Tokyo Waterfront 

Area Rapid Transit) 

Tokyo (Kantō) Tokyo, Kanagawa, Saitama, Chiba, Ibaraki, 

Tochigi, Gunma, Yamanashi 

Tokyo 

32 Toyo rapid (Tōyō Rapid Railway) Tokyo (Kantō) Tokyo, Kanagawa, Saitama, Chiba, Ibaraki, 

Tochigi, Gunma, Yamanashi 

Chiba 

33 Tama monorail (Tama Toshi 

Monorail) 

Tokyo (Kantō) Tokyo, Kanagawa, Saitama, Chiba, Ibaraki, 

Tochigi, Gunma, Yamanashi 

Tokyo 
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ID Name Metropolitan Area Metropolitan Prefectures1 Serviced Prefectures2 

34 Yokohama rapid (Yokohama 

Minatomirai Railway) 

Tokyo (Kantō) Tokyo, Kanagawa, Saitama, Chiba, Ibaraki, 

Tochigi, Gunma, Yamanashi 

Kanagawa 

35 Kita Osaka (Kita-Osaka Kyūkō 

Railway) 

Keihanshin Osaka, Kyoto, Hyōgo, Nara, Shiga, 

Wakayama 

Osaka 

36 Kobe new transit (Kobe new transit) Keihanshin Osaka, Kyoto, Hyōgo, Nara, Shiga, 

Wakayama 

Hyōgo 

37 Osaka monorail (Osaka monorail) Keihanshin Osaka, Kyoto, Hyōgo, Nara, Shiga, 

Wakayama 

Osaka 

38 Sapporo (Sapporo City 

Transportation Bureau) 

Sapporo Ishikari Subprefecture in Hokkaidō Hokkaido 

39 Sendai (Sendai Subway) Sendai Miyagi Miyagi 

40 Tokyo subway (Toei Subway) Tokyo (Kantō) Tokyo, Kanagawa, Saitama, Chiba, Ibaraki, 

Tochigi, Gunma, Yamanashi 

Tokyo, Chiba 
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ID Name Metropolitan Area Metropolitan Prefectures1 Serviced Prefectures2 

41 Yokohama sub (Yokohama 

Municipal Subway) 

Tokyo (Kantō) Tokyo, Kanagawa, Saitama, Chiba, Ibaraki, 

Tochigi, Gunma, Yamanashi 

Kanagawa 

42 Nagoya sub (Nagoya Municipal 

Subway) 

Nagoya (Chūkyō) Aichi, Gifu, Mie Aichi 

43 Kyoto sub (Kyoto Municipal 

Subway) 

Keihanshin Osaka, Kyoto, Hyōgo, Nara, Shiga, 

Wakayama 

Kyoto 

44 Osaka sub (Osaka Metro) Keihanshin Osaka, Kyoto, Hyōgo, Nara, Shiga, 

Wakayama 

Osaka 

45 Kobe sub (Kobe Municipal Subway) Keihanshin Osaka, Kyoto, Hyōgo, Nara, Shiga, 

Wakayama 

Hyōgo 

46 Fukuoka (Fukuoka City Subway) Fukuoka–Kitakyushu Fukuoka Fukuoka 
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Appendix B: Specification of a Functional Form 

1. Background 

A cost function regression can shed light on the cost structure of each 

rail mode, providing insight into density and scale. Chapter 3 

discusses two main functional forms in the literature when estimating 

cost functions: Cobb Douglas and trans-log. These polynomial cost 

functions can accommodate microeconomic theories (Reynès, 2011). 

As discussed earlier, the trans-log model is typically favoured over the 

Cobb-Douglas model when it comes to estimating a cost function 

since the former allows for more variations on the explanatory side 

(Smith et al., 2017). It enables the cost elasticity to be dynamic, 

allowing for more accurate economic interpretations of the cost 

structure. 

However, the trans-log cost function requires a functional form to be 

specified (Nash & Smith, 2014). This procedure determines a suitable 

functional form for the model, selects the variables to be incorporated, 

and adapts economic theories. The demanding task makes 

implementing the trans-log cost function more challenging than the 

DEA-Tobit regression1.  

To focus the discussion on the key results of Research Study 1 

(Chapter 5), this appendix first deals with the extensive work to select 

the preferred model. The reason for devoting significant space to this 

aspect is that selection is not a simple binary choice between a Cobb-

Douglas or trans-log, given the mode dummies we included in the 

model, as explained below. We aim to produce a trans-log cost 

function model through a robust model selection process. The results 

from this model will be utilised in Research Study 1 (Chapter 5) and 

Research Study 2 (Chapter 6).  

  

 

1 We will compare the results from DEA-Tobit regression model to those of 
Trans-log Cost Function model in Research Study 2. 
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2. Imposing Homogeneity of Degree One in Prices 

We assumed firms could respond to any change in input price by 

adjusting their input mix (i.e., the slope iso-cost line is the same as the 

slope of the iso-quant curve). It means that if all input prices double, 

costs should double2. It is a theoretical requirement of a cost function. 

This practice is common for the cost function models (Coelli et al., 

2005). Other authors who imposed the same condition include Savage 

(1997), Mizutani (2004), Couto and Graham (2008), Wheat and Smith 

(2015), and Anupriya et al. (2020). Therefore, we imposed 

homogeneity of degree one in prices by dividing the operating costs 

and the input prices by one of the input prices as follows:    

𝐿𝑛 (
𝐶𝐸𝐿𝑀

𝑃𝑀
) = 𝛽𝑃𝐸

𝐿𝑛 (
𝑃𝐸

𝑃𝑀
) × 𝛽𝑃𝐿

𝐿𝑛 (
𝑃𝐿

𝑃𝑀
) × 𝛽𝑃𝑀

𝐿𝑛 (
𝑃𝑀

𝑃𝑀
)  

Note that the above equation illustrates the homogeneity of degree 

one in prices. Output and other variables are also in the cost function. 

i. Comparing the Trans-log Model over the Cobb-Douglas 

model 

We assessed whether or not the trans-log model was statistically 

better than the Cobb-Douglas model. We added the trans-log terms to 

the Cobb-Douglas model to do so. The trans-log terms consist of the 

squared and interaction terms for every base variable (i.e., traffic 

density, energy price, labour price, maintenance price, and network 

length). Then, we conducted an F-test on the squared and interaction 

term coefficients (see Table 38 on page 201). With 95% confidence, 

we found that the inclusion of the trans-log terms to the Cobb-Douglas 

model would produce a statistically better model. Thus, we proceeded 

with the trans-log model.  

 

2 since the required output is held fixed and the optimal input mix will not 
change (as all inputs have increased by the same proportion). 
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Table 38. F-test on the Trans-log terms 

No. H0 Prob>F α Remark 

1 𝛽𝐷𝑡𝐷𝑡
=  𝛽𝐷𝑡𝑃𝐸

=

𝛽𝐷𝑡𝑃𝐿
= 𝛽𝐷𝑡𝑃𝑀

=

𝛽𝐷𝑡𝑁 = 0  

0.000 5% Including squared and 

interaction terms for traffic 

density offers a better 

explanation.  

2  𝛽𝐷𝑡𝑃𝐸
= 𝛽𝑃𝐸𝑃𝐸

=

 𝛽𝑃𝐸𝑃𝐿
= 𝛽𝑃𝐸𝑃𝑀

=

𝛽𝑃𝐸𝑁 = 0  

0.000 5% Including squared and 

interaction terms for energy 

price offers a better 

explanation. 

3 𝛽𝐷𝑡𝑃𝐿
= 𝛽𝑃𝐸𝑃𝐿

=

𝛽𝑃𝐿𝑃𝐿
=  𝛽𝑃𝐿𝑃𝑀

=

𝛽𝑃𝐿𝑁 = 0  

0.000 5% Including squared and 

interaction terms for labour 

price offers a better 

explanation. 

4 𝛽𝐷𝑡𝑃𝑀
= 𝛽𝑃𝐸𝑃𝑀

=

 𝛽𝑃𝐿𝑃𝑀
= 𝛽𝑃𝑀𝑃𝑀

=

𝛽𝑃𝑀𝑁 = 0  

N/A N/A These terms were eventually 

excluded since the material 

price is treated as the 

denominator for linear 

homogeneity. 

5 𝛽𝐷𝑡𝑁 = 𝛽𝑃𝐸𝑁 = 𝛽𝑃𝐿𝑁 =

𝛽𝑃𝑀𝑁 = 𝛽𝑁𝑁 = 0  

0.000 5% Including squared and 

interaction terms for network 

length offers a better 

explanation. 

6 All terms tested 

together 

0.000 5% Including all squared and 

interaction terms for all 

variables offers a better 

explanation. 

ii. Expanding the Trans-log Model  

We then gradually included the mode dummy intercepts and 

interactions in the base model. The inclusion of these additional terms 

served several purposes. First, the mode dummy intercepts were 

included to observe the general cost differences between modes. 

Second, the mode dummy interactions with traffic density and network 

length were included to produce dedicated cost elasticity for each rail 
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mode. Each rail mode would have its cost elasticity lines w.r.t density 

and w.r.t scale. Third, the mode dummies interactions with the squared 

terms for traffic density and network length were included to allow the 

variation in the cost elasticity w.r.t those variables to differ by rail mode. 

It means that the cost elasticity lines w.r.t density and w.r.t scale may 

have different curvatures for each rail mode. Last, the mode dummy 

interactions with the remaining variables in the equation were included 

to observe whether the model could gain more explanatory power.  

Table 39 on page 203 shows the model progression — from the base 

to the rich model (with full-mode dummy intercepts and interactions). 

As the model progressed, we conducted the F-test, AIC, and BIC to 

check the model strength (see Table 40 on page 205). 

The RTD and RTS could then be derived by solving the inverse of the 

Cost Elasticity w.r.t Density (CED) and the Cost Elasticity w.r.t Scale 

(CES). With this information, we would be able to evaluate the cost 

structure of each rail mode. 

3. Selecting A Model  

The F-test, AIC, and BIC results suggested that the model improved 

as more terms were added. All of these measures produced the same 

conclusion regarding model selection. Model 12 (the rich model), 

which contained full dummy intercepts and interactions, was the best. 

Our initial preference was Model 12 because even the BIC, 

supposedly the most cautious3 among the three in recommending 

additional parameters, presented its lowest number. Table 40 on page 

205 shows the results of the fitness tests, and Table 48 on page 227 

shows the regression results for Model 12.  

 

 

3 The term 𝑘 ∗ ln(𝑛) in BIC generates a greater positive number compared 
to the term 2𝑘 in AIC as the k (number of parameters) increases. 
Therefore, BIC has less tendency to recommend models with many 
terms or interactions than the AIC does. The F-test works differently and 
does not have such a term but does require statistical significance.   
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Table 39. Trans-log Progression 

TERMS Base   -------------------------------------------------->   Rich 

Model Number 

1 2 3 4 5 6 7 8 9 10 11 12 

Homogeneity of Degree One             

Mode dummy intercepts             

Mode dummy-traffic density interactions             

Mode dummy-network length interactions             

Mode dummy-traffic density squared interactions             

Mode dummy-network length squared interactions             

Mode dummy-traffic density-network length interactions             

Mode dummy-input price interactions              



204 

 

 

TERMS Base   -------------------------------------------------->   Rich 

Model Number 

1 2 3 4 5 6 7 8 9 10 11 12 

Mode dummy-input price squared interactions             

Mode dummy-input price a-input price b interactions             

Mode dummy-traffic density-input price interactions             

Mode dummy-network length-input price interactions             

Note: Base = Trans-log without mode dummy intercepts and interactions; Rich = Trans-log with full mode dummy intercepts and interactions. Terms 
are added as the model progresses from 1 to 12. For example, Model 8 contains all the terms in Model 7, plus the mode dummy-input price 
interactions. Model 12 contains all the terms listed. 
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Table 40. Model Fit Diagnostics 

Test Model 

 

1 2 3 4 5 6 7 8 9 10 11 12 

R2 0.981 0.984 0.985 0.987 0.988 0.989 0.989 0.990 0.991 0.991 0.992 0.992 

F 

 

0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

AIC -244.9 -327.5 -379.3 -443.5 -491.5 -520.7 -533.3 -559.7 -595.7 -616.9 -656.3 -680.5 

BIC -180.2 -254.2 -297.3 -353.0 -392.3 -412.9 -416.9 -426.0 -444.7 -457.3 -479.5 -486.4 
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Nevertheless, statistical testing is not the sole factor to be considered. 

The model selection process entails evaluating the goodness of fit 

measures and ensuring that the selected model is conceptually sound, 

particularly regarding the elasticities in this case. The trans-log model 

is widely recognised for its potential to involve many parameters for 

estimation. This issue is further compounded in this case due to the 

inclusion of mode dummies and potential interactions. A complex 

trans-logarithmic model may yield outcomes that are challenging to 

comprehend or seemingly unrealistic. Therefore, a drive exists to seek 

a parsimonious and sensible model in terms of elasticities, as Wheat 

and Smith (2015) discussed. 

We further looked into the CED and the CES, as these were the two 

elements of interest in the study. We evaluated whether Model 12 

produced intuitive CED and CES curves for each rail mode.  

i. CED 

Figure 20 on page 207 shows a scatter plot of CED, which did not hold 

other variables at their mean values. It can be observed that there is a 

considerable number of over-ground’s CED values that sat over the 

unitary line at lower density values95. It means the percentage cost 

increase was more than the percentage density increase for that 

portion of the sample. Hence, the average cost curve would not be the 

typical U-shape. Rather, it would be an inverse U-shape. One concern 

with Model 12 (the rich model) was that the curve of CED for the over-

ground mode was not intuitive from the economics perspective (see 

Figure 21 on page 207). It was downward sloping and started at a 

value of more than 1 (unitary).  

 

95 We were not concerned with the under-ground’s cost elasticity w.r.t density 
that sat below zero because they disappeared when we plotted the cost 
elasticity w.r.t density while holding other variables at their mean values. 
This meant that the negative values might have been influenced by 
variables or factors other than density. 
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Figure 20. CED by Rail Mode 

(without holding other 

variables at their mean 

values) from Model 12 

 

Figure 21. CED by Rail Mode 

(holding other variables at 

their mean values) from 

Model 12 

For illustration, we set ¥1 Million as the initial operating costs for each 

rail mode. Applying the aforementioned CED for each rail mode, we 

would get the average cost curves w.r.t density, as shown in Figure 22 

on page 207. The average cost curve for the over-ground could be 

seen as an inverse U. On the other hand, the average cost curves for 

the monorail and the under-ground could be seen as a part of U.  

 

Figure 22. An Illustration on Average Costs per Density by Rail Mode 

Table 41 on page 208 shows the significance of the second-order 

density term for each rail mode from Model 12. This term determined 

the variation of CED and the shape of the average cost curve for each 
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rail mode. From this table, we can see that Model 12 suggested that 

the semi-U shape curve for the monorail was significant, but the semi-

U shape curve for the under-ground was insignificant96. The inverse U 

shape curve for the over-ground's average cost curve was significant. 

We found that the suggested significance for the inverse U shape 

average cost curve was not intuitive from the economics perspective.  

Table 41. The Significance of the Second Order Density Term by Rail Mode 
from Model 12 

Mode Coefficient of the 2nd 

Order Term relative to 

the equation 

Prob > F Remark 

Over-ground 

(omitted 

condition) 

𝛽𝐷𝑡𝐷𝑡
=   −0.3903217  0.0000 Significant at 0.05 

level 

Monorail 

 

𝛽𝐷𝑡𝐷𝑡
+ 𝛽𝐷𝑡𝐷𝑡𝐷𝑀𝑀

=

 − 0.3903217 +

 0.5081545 =  0.1178328  

0.0292 Significant at 0.05 

level 

Under-ground 

 

𝛽𝐷𝑡𝐷𝑡
+ 𝛽𝐷𝑡𝐷𝑡𝐷𝑀𝑈

=

 − 0.3903217 +

0.6806861 =  0.2903644  

0.0966 Insignificant at 0.05 

level 

ii. CES 

Figure 23 on page 209 shows a scatter plot of CES, which did not hold 

other variables at their mean values for Model 12. This time, the over-

ground's CES sat over the unitary line at lower scale values. It means 

the percentage cost increase was more than the percentage scale 

increase. The curve of CES for the over-ground mode was also not 

intuitive from the economics perspective (see Figure 24 on page 209). 

The average cost curve would not be the typical U shape but an 

inverse U shape.  

 

96 At 0.05 significance level.  
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Figure 23. CES by Rail Mode 

(without holding other 

variables at their mean 

values) from Model 12 

 

Figure 24. CES by Rail Mode 

(holding other variables at 

their mean values) from 

Model 12 

Table 42. The Significance of the Second Order Scale Term by Rail Mode 
from Model 12 

Mode Coefficient of the 2nd 

Order Term relative to 

the equation 

Prob > F Remark 

Over-ground  

(omitted 

condition) 

𝛽𝑁𝑁 =   − 0.0379035 0.0111 Significant at 0.05 

level 

Monorail 𝛽𝑁𝑁 + 𝛽𝑁𝑁𝐷𝑀𝑀
=

 − 0.0379035 +

 0.1162777 =  0.0783742  

0.6075 Insignificant at 0.05 

level 

Under-ground 𝛽𝑁𝑁 + 𝛽𝑁𝑁𝐷𝑀𝑈
=

 − 0.0379035 +

0.3189083 =  0.2810048  

0.0010 Significant at of 0.05 

level 

Table 42 on page 209 shows the significance of the second-order 

scale term for each rail mode from Model 12. This term determined the 

variation of CES and hence, the shape of the curve for each rail mode. 
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This table shows that Model 12 suggested that the convexity97 for the 

over-ground curve is significant. To sum up, not only did Model 12 

suggest counter-intuitive average cost curves w.r.t density and scale 

for the over-ground, but the model also suggested a counter-intuitive 

significance for the said curves. 

4. Towards A Plausible Model 

We took a few steps back and looked at Model 6. This model included 

the mode dummy intercepts and mode dummy interactions without 

being overly specified. The mode dummies interacted with the first and 

second-order terms for the traffic density and the network length 

variables — enough for us to derive variations in the Returns to 

Density (RTD) and the Returns to Scale (RTS). There were no further 

mode dummy interactions, which were indeed unnecessary. It placed 

Model 6 close to parsimony. The terms included in Model 6 can be 

found in Table 39 on page 203. 

Like Model 12, Model 6 had the same downward-sloping CED curve 

for the over-ground (see Figure 25 on page 211). But unlike Model 12, 

Model 6 had this curve start at 0.9992713, less than 1 (unitary). We 

could imagine that the average cost curves for the over-ground would 

be a part of inverse U (if, for example, the over-ground elasticity curve 

was extrapolated, the elasticity could start above unity and then falls). 

However, Model 6 suggested that the downward movement of the 

CED for the over-ground was insignificant (as opposed to being 

significant in Model 12). 

 

97 As illustrated earlier, this convexity produced an inverse U-shaped 
average cost curve which was not intuitive from the economics 
perspective. 
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Figure 25. CED by Rail Mode from Model 6 

Table 43 on page 212 shows the significance of the second-order 

density term for each rail mode from Model 6. From this table, we could 

translate that the shape98 of the CED curve for the over-ground was 

insignificant99. In other words, we could say that although Model 6 

generated a counter-intuitive shape (if extrapolated) for the over-

ground's average cost curve, the model suggested this shape was not 

of concern. It was sensical from the economics point of view. 

Considering this and its closeness to parsimony, we opined that Model 

6 would be the most suitable model to implement. The regression 

results for Model 6 can be found in Table 49 on page 228. 

In the later section, we purged all the insignificant dummy interactions, 

followed by the insignificant density and scale variables (i.e., Density, 

Density2, Network, Network2). By doing so, we managed to get CED 

and CES graphs which were easier to explain. We then purged some 

other insignificant variables to make the shortlisted models more 

efficient.  

 

98 The shape of the curve was determined by the second order terms, which 
allowed variation in the cost elasticity. 

99 At 0.05 significance level. We could also see that the same applied to the 
monorail. Yet in the case of monorail rail, the insignificance simply meant 
the well-behaved curve was not an important influence on the costs. 
Therefore, the finding on the monorail’s curve was not counter-intuitive 
from the economics perspective. 
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Table 43. The Significance of the Second Order Density Term by Rail Mode 
from Model 6 

Mode Coefficient of the 2nd 

Order Term relative to 

the equation 

Prob > F Remark 

Over-ground 

(omitted 

condition) 

𝛽𝐷𝑡𝐷𝑡
=   −0.0968506  0.1095 Insignificant at 0.05 

level 

Monorail 

 

𝛽𝐷𝑡𝐷𝑡
+ 𝛽𝐷𝑡𝐷𝑡𝐷𝑀𝑀

=

 −0.0968506 +

 0.1952834 =  0.0984328  

0.1437 Insignificant at 0.05 

level 

Under-ground 

 

𝛽𝐷𝑡𝐷𝑡
+ 𝛽𝐷𝑡𝐷𝑡𝐷𝑀𝑈

=

−0.0968506 +

0.0866719 = −0.0101787  

0.9465 Insignificant at 0.05 

level 

i. Selecting the Estimator 

We conducted three types of tests to identify the most suitable 

estimator among the Ordinary Least Squares (OLS), Fixed Effects 

(FE), and Random Effects (RE). The tests were: 

• F-test (to see whether the FE was better than the OLS), 

• Breusch Pagan LaGrange Multiplier test (to see whether the RE 

was better than the OLS), and  

• Hausman test (to see whether the FE was better than the RE).  

The results are summarised in Table 44 on page 213. The F-test found 

that the Individual specific effects were not zero and recommended the 

FE over the OLS estimator. The Breusch Pagan LaGrange Multiplier 

test found that panel effects were not zero and recommended the RE 

over the OLS. The Hausman Test found that the coefficient difference 

was not zero and recommended the FE over the RE. Based on these 
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results, we concluded that the best estimator for Model 6 was the FE, 

consecutively followed by the RE and the OLS.100  

Table 44. Tests on the Method of Estimation 

Test Result α Conclusion 

F-test for the Fixed 

Effects 

Individual-specific 

effects were not zero 

0.05 The FE was 

recommended over the 

OLS. 

Breusch Pagan 

Lagrangian Multiplier 

test 

Panel effects were 

not zero 

0.05 The RE was 

recommended over the 

OLS. 

Hausman test The difference in 

coefficients was not 

zero 

0.05 The FE was 

recommended over the 

RE. 

However, one limitation of the FE was that it did not allow any inclusion 

of time-invariant variables. The time-invariant mode dummies were 

needed in Model 6 to assess whether the overall costs would differ 

between rail modes. Moreover, we found that the FE did not produce 

intuitive results (see Refining the Model). For this reason, we opined 

that the RE was the most suitable estimator among the three. It 

allowed the use of time-invariant variables and was better than the 

OLS.  

ii. Refining the Model 

We introduced a time trend to the model to observe whether time 

affected the cost. We also introduced the second-order term for time, 

 

100 For the purpose of control, we took Model 12 (which contained full dummy 
intercepts and interactions) and applied the same procedures. We found 
that all models did not produce intuitive results. We also found that all 
tests on the method of estimation for Model 12 produced the same 
results and recommendations as they did for Model 6. We derived two 
conclusions from this control procedure. One, Model 6 was the preferred 
model over Model 12 because of its intuitive results. Two, the tests we 
used provided consistent recommendations. 
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Time2, for the same reason101. After that, for comparison, we 

regressed using three methods of estimation: the Ordinary Least 

Squares (OLS), the Fixed Effects (FE), and the Random Effects (RE). 

All and all, we had nine Model 6 variants as follows: 

• Model 6 OLS 

• Model 6 OLS +Time  

• Model 6 OLS +Time +Time2 

• Model 6 FE 

• Model 6 FE +Time  

• Model 6 FE +Time +Time2 

• Model 6 RE 

• Model 6 RE +Time  

• Model 6 RE +Time +Time2 

These models produced different CED and different CES (CES) 

graphs. They also assigned different levels of significance102 to the 

coefficients. The results from these models were tabulated in Table 52 

on page 234. The table also contained our observations. In general, 

we found that some models produced intuitive103 results on both CED 

and CES, others produced intuitive results only on one dimension 

(either CED or CES), and some did not produce any intuitive results 

on both CED and CES curves.  

Under the FE estimation, we could see that Model 6 (with and without 

the time variable) did not generate intuitive CED and CES graphs. For 

example, the curvature of the CED line for the under-ground (DMU) — 

which contained many negatives — was significant. It violated the 

monotonicity condition that required the costs to be non-decreasing in 

 

101 After adding Time and Time2 variables, we had three models: Model 6, 
Model 6 +Time, and Model 6 +Time +Time2. 

102 For the purpose of standardisation across assessments, we set the 
significance level at 0.05. 

103 In accordance with microeconomics theory. In general, a cost elasticity 
curve should be concave, positive in values, and starting with values 
below unitary line. 
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output. Another example is the curvature of the CES line for the under-

ground (DMU) — which made the line concave up — which was 

deemed significant. It produced an abnormal average cost curve that 

would be concave down or inverse 'u'. 

Under the OLS estimation, we could see that Model 6 (with and without 

the time variable) generated intuitive CED and CES graphs. The 

curvature of CED lines for the over-ground (DMO) and the under-

ground (DMU), which made the lines concave up, was insignificant.  

Under the RE estimation, we could see that Model 6 (with time 

variable) also generated intuitive CED and CES graphs. The curvature 

of CED and CES lines for the over-ground (DMO) made the lines start 

at a point above unitary and concave up. It would have produced 

abnormal average cost curves (concave down or inverse U shape). 

However, this situation was ruled out by the insignificant status of the 

curvature. Without the time variable, the curvature of the CED line 

became significant and would produce an abnormal average cost 

curve. Therefore, we decided that Model 6 OLS and Model 6 RE 

+Time104 would be the most sensical for further refinement as they 

produced intuitive CED and CES graphs.   

Considering we have a panel data set, we regenerated the nine Model 

6 variants (as previously listed) by incorporating robust cluster 

standard errors. The results from these models were tabulated in 

Table 53 on page 243. Again, we found that Model 6 OLS and Model 

6 RE +Time were the most plausible models.  

At this stage, we identified the four most plausible models. We retained 

the Time variable to standardise the models105. The models were as 

follows: 

 

104 Note that Model 6 RE +Time +Time2 had the same amount of insignificant 
variables of interest. However, if Time2 which was insignificant was 
removed, this model would become Model 6 RE +Time and produce the 
same results as the latter. 

105 As we initially believed that Time might have an influence on the costs. 
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• Model 6 OLS +Time 

• Model 6 OLS VCE CL +Time (with robust cluster standard errors) 

• Model 6 RE +Time  

• Model 6 RE VCE CL +Time (with robust cluster standard errors) 

Model 6 OLS +Time did not account for the panel structure. So, we set 

this model aside. Model 6 OLS VCE CL +Time also did not account for 

the panel structure, but the standard error issue was dealt with by 

making them cluster robust. Plus, being OLS, it had many desirable 

properties. Therefore, we kept this model for results comparison. 

Model 6 RE +Time recognised the panel structure and made specific 

assumptions about the error term to reflect the structure. We kept this 

model for results comparison.  

Model 6 RE VCE CL +Time recognised the panel structure and applied 

robust cluster standard errors. There is debate on whether applying 

robust cluster standard errors on a model that had already recognised 

the panel structure was necessary or appropriate. Having made a 

specific assumption about the error term, it seems odd to try to correct 

the standard errors for some other form of autocorrelation/ 

heteroscedasticity. The counterargument would be that the random 

effects model partly deals with structure in the errors. However, there 

still could be some remaining heteroscedasticity or autocorrelation in 

the residuals that need to be addressed. As this debate has no clear 

outcome, we kept this model for results comparison.  

5. The final step in the preferred model selection  

We assessed the results generated by Model 6 OLS VCE CL +Time, 

Model 6 RE +Time, and Model 6 RE VCE CL +Time — particularly, 

the costs, CED, and CES by rail mode. From this, we would get a 

general idea of the similarities and differences in the models' results. 

We purged all the insignificant dummy interactions, followed by the 

insignificant density and scale variables (i.e., Density, Density2, 

Network, Network2). By doing so, we managed to get CED and CES 
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graphs which were easier to explain. We then purged some other 

insignificant variables to make the four models more efficient. 

i. Costs 

Table 45 on page 217 shows the differences in costs between the 

over-ground, monorail, and under-ground after the purging process. 

The first column shows the model's name, and the second column 

shows whether the differences between rail modes mattered. We set 

the level of significance at 0.05. 

Table 45. Differences in costs by rail mode (after the purging process) 

Model Cost Differences between Modes 

Model 6 OLS 

VCE CL  

+Time 

H0: DMO=DMM (0.0104) 

H0: DMO=DMU (0.0000) 

H0: DMM=DMU (0.0001) 

Model 6 RE 

+Time 

H0: DMO=DMM (0.0000) 

H0: DMO=DMU (0.0517) 

H0: DMM=DMU (0.0000) 

Model 6 RE 

VCE CL 

+Time 

H0: DMO=DMM (0.0000) 

H0: DMO=DMU (0.3635) 

H0: DMM=DMU (0.0000) 

Note: Significance value in parenthesis; DMO = Over-Ground; DMM = 
Monorail; DMU = Under-Ground; OLS = Ordinary Least Squared; RE = 
Random Effects; VCE CL = Robust Cluster 

Holding other factors constant, all three models agreed that the over-

ground and the monorail were different in terms of how much the two 

affected the costs. The models also agreed that the monorail and the 

under-ground differed in how much the two affected the costs. Except 

for Model 6 OLS VCE CL +Time, they suggested that the over-ground 

and the under-ground were not different regarding how much the two 

affected the costs. However, the significance value from Model 6 RE 

+Time was 0.0517. It means there is weaker evidence to support that 

the over-ground and the under-ground were different. At 94% 



218 
 

 

 

confidence level, Model 6 RE +Time suggested that there was indeed 

a significant difference between the over-ground and the under-ground 

in terms of how much they affected the costs. We concluded that all 

models produced similar results on the operating costs of urban rail 

modes. 

ii. CED 

The CED graphs generated by the three models were tabulated in 

Table 46 on page 219. The first column shows the model's name. The 

second and third columns show the CED before and after purging. The 

fourth column shows whether the differences between rail modes 

mattered. We set the level of significance at 0.05. 

Holding other factors constant, all three models suggested that cost 

elasticity did not vary with Density for each rail mode. The models also 

suggested that for each rail mode, the costs were inelastic to density 

— resting between 0 and 1. The cost increment would be less than 

one per cent given a one per cent density increment.  

All three models showed that the under-ground had the lowest CED, 

followed by the monorail and the over-ground. It means that the under-

ground had the least cost sensitivity towards Density, followed by the 

monorail and the over-ground. However, there was no significant 

difference between the monorail and the under-ground.  

Model 6 RE VCE CL +Time suggested no significant difference (at 

0.05 significance level) between the monorail and the over-ground. 

Even so, the significance value was 0.0651. It means there is weaker 

evidence to support that the over-ground and the under-ground were 

different. We concluded that all models produced similar results on the 

CED of urban rail modes. 
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Table 46. CED generated by the four Model 6 Variants (before and after the purging process) 

Model CED - Before Purging CED - After Purging Differences 

between Modes 

Model 6 OLS 

VCE CL 

+Time 

 

Density2 

DMO (0.5764) 

DMM (0.2947) 

DMU (0.9865) 

 

 

H0: DMO=DMM 

(0.0328) 

H0: DMO=DMU 

(0.0239) 

H0: DMM=DMU 

(0.3858) 
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Model CED - Before Purging CED - After Purging Differences 

between Modes 

Model 6 RE 

+Time 

 

Density2 

DMO (0.0598) 

DMM (0.4879) 

DMU (0.6585) 

 

 

H0: DMO=DMM 

(0.0169) 

H0: DMO=DMU 

(0.0005) 

H0: DMM=DMU 

(0.6965) 
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Model CED - Before Purging CED - After Purging Differences 

between Modes 

Model 6 RE 

VCE CL 

+Time 

 

Density2 

DMO (0.1143) 

DMM (0.5899) 

DMU (0.8253) 

 

 

H0: DMO=DMM 

(0.0651) 

H0: DMO=DMU 

(0.0148) 

H0: DMM=DMU 

(0.9261) 

Note: ✓ = significant at 0.05;  = insignificant at 0.05; significance value in parenthesis; DMO = Over-Ground;  

DMM = Monorail; DMU = Under-Ground; OLS = Ordinary Least Squared; RE = Random Effects; VCE CL = Robust Cluster.
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iii. CES 

The CES graphs generated by the three models were tabulated in 

Table 47 on page 223. The first column shows the model's name. The 

second and third columns show the CES before and after purging. The 

fourth column shows whether the differences between rail modes 

mattered. We set the level of significance at 0.05. 

Holding other factors constant, all three models suggested that the 

cost elasticity did not vary with Scale for each rail mode. The models 

also showed that the monorail had the lowest CES, followed by the 

over-ground and the under-ground. It means that the monorail had the 

least cost sensitivity towards Scale, followed by the over-ground and 

the under-ground. However, they106 suggested that the over-ground 

and the under-ground were not different. 

According to the models, it was difficult to determine whether the CES 

of the under-ground sat below, above or at the unitary line. Likewise, 

it was difficult to determine whether the CES of the over-ground107 sat 

below, above or at the unitary line. We concluded that all models 

produced similar results on the CES of urban rail modes. 

 

 

106 The significance value from Model 6 OLS VCE CL +Time was 0.0665. 
This means that there is weaker evidence to support that the over-
ground and the under-ground were different. 

107 The significance value from Model 6 OLS VCE CL +Time was 0.0846, 
and the significance value from Model 6 RE +Time was 0.0884. This 
means there were weaker evidence to support that the CES of the over-
ground sat below the unitary line. 
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Table 47. CES generated by the four Model 6 Variants (before and after the purging process) 

Model CES - Before Purging CES - After Purging CES Differences 

between Modes 

Model 6 

OLS 

VCE CL 

+Time 

 

Network2 

DMO (0.8583) 

DMM (0.7109) 

DMU (0.0613) 

 

 

H0: DMO=DM 

(0.0219) 

H0: DMO=DMU 

(0.0665) 

H0: DMM=DMU 

(0.0077) 

H0: DMO=1 

(0.0846) 

H0: DMU=1 

(0.2481) 
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Model CES - Before Purging CES - After Purging CES Differences 

between Modes 

Model 6 

RE 

+Time 

 

Network2 

DMO (0.0819) 

DMM (0.0588) 

DMU (0.4394) 

 

 

H0: DMO=DMM 

(0.0004) 

H0: DMO=DMU 

(0.6601) 

H0: DMM=DMU 

(0.0004) 

H0: DMO=1 

(0.0884) 

H0: DMU=1 

(0.4776) 
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Model CES - Before Purging CES - After Purging CES Differences 

between Modes 

Model 6 

RE 

VCE CL 

+Time 

 

Network2 

DMO (0.2523) 

DMM (0.0242) 

DMU (0.5213) 

 

 

H0: DMO=DMM 

(0.0009) 

H0: DMO=DMU 

(0.931) 

H0: DMM=DMU 

(0.0081) 

H0: DMO=1 

(0.1892) 

H0: DMU=1 

(0.6212) 

Note: ✓ = significant at 0.05;  = insignificant at 0.05; significance value in parenthesis; DMO = Over-Ground;  

DMM = Monorail; DMU = Under-Ground; OLS = Ordinary Least Squared; RE = Random Effects; VCE CL = Robust Cluster. 
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6. The Preferred Model 

After assessing the results, we concluded that there were a lot of 

similarities between the three models (i.e., Model 6 OLS VCE CL 

+Time, Model 6 RE +Time, and Model 6 RE VCE CL +Time) 

concerning the costs, CED, and CES by rail mode. We prefer Model 6 

RE +Time based on these rationales: 

a. Although Model 6 OLS VCE CL +Time has dealt with the issue 

around the standard errors by making them cluster robust, an 

OLS initially did not account for the panel structure, and  

b. There is debate on whether applying robust cluster standard 

errors on a model that had already recognised the panel 

structure was necessary or appropriate. In our case, it is Model 

6 RE VCE CL +Time. 

The regression results from Model 6 RE +Time (after purging) can be 

found in Table 49 on page 228. This model had the following 

insignificant variables removed for the same reasons we mentioned 

earlier — to get CED and CES graphs which were easier to explain 

and to make the model more efficient: 

• mode dummy interactions with Density2 (i.e., LnmcQpN2_DMM, 

LnmcQpN2_DMU), 

• mode dummy interactions with Network2 (i.e., LnmcN2_DMM, 

LnmcN2_DMU), 

• Density2 (i.e., LnmcQpN2), 

• Network2 (i.e., LnmcN2), 

• the interaction between Density and Energy Price, and 

• the interaction between Density and Labour Price.   

This model has mode-specific intercepts, which allowed us to evaluate 

whether there is a difference in operating costs between modes. It also 

has mode interaction terms with density and scale, allowing us to 

evaluate whether elasticities vary by mode.  
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Table 48. Rich Model (Model 12) Regression Results 

 

Note: Refer to Table 51 on page 230 for Regression Term Descriptions.  

                                                                                           

                    _cons     .0382716    .018366     2.08   0.038     .0021887    .0743545

                      DMU     .1030802   .0333156     3.09   0.002     .0376266    .1685338

                      DMM    -.8019417   .2181529    -3.68   0.000    -1.230537   -.3733467

     LnmcNLnmcPMpmcPM_DMU            0  (omitted)

     LnmcNLnmcPMpmcPM_DMM            0  (omitted)

         LnmcNLnmcPMpmcPM            0  (omitted)

     LnmcNLnmcPLpmcPM_DMU     .2472222   .0776517     3.18   0.002     .0946635     .399781

     LnmcNLnmcPLpmcPM_DMM     .4638742   .2470062     1.88   0.061    -.0214074    .9491559

         LnmcNLnmcPLpmcPM     .1342877   .0538261     2.49   0.013     .0285379    .2400374

     LnmcNLnmcPEpmcPM_DMU     .0901063    .080791     1.12   0.265    -.0686201    .2488327

     LnmcNLnmcPEpmcPM_DMM     .2569492   .1709594     1.50   0.133    -.0789269    .5928253

         LnmcNLnmcPEpmcPM    -.1984942    .052118    -3.81   0.000     -.300888   -.0961004

     halfLnmcPMpmcPM2_DMU            0  (omitted)

     halfLnmcPMpmcPM2_DMM            0  (omitted)

         halfLnmcPMpmcPM2            0  (omitted)

     halfLnmcPLpmcPM2_DMU    -.4087443   .4051334    -1.01   0.313    -1.204691    .3872026

     halfLnmcPLpmcPM2_DMM     1.164523   .3303412     3.53   0.000     .5155165    1.813529

         halfLnmcPLpmcPM2    -.9289805   .3078603    -3.02   0.003     -1.53382   -.3241415

     halfLnmcPEpmcPM2_DMU     1.139359   .3379774     3.37   0.001     .4753508    1.803368

     halfLnmcPEpmcPM2_DMM     .9586583   .3364032     2.85   0.005     .2977423    1.619574

         halfLnmcPEpmcPM2    -1.366104   .3009921    -4.54   0.000     -1.95745   -.7747589

LnmcPLpmcPMLnmcPMpmcPM_~U            0  (omitted)

LnmcPLpmcPMLnmcPMpmcPM_~M            0  (omitted)

   LnmcPLpmcPMLnmcPMpmcPM            0  (omitted)

LnmcPEpmcPMLnmcPMpmcPM_~U            0  (omitted)

LnmcPEpmcPMLnmcPMpmcPM_~M            0  (omitted)

   LnmcPEpmcPMLnmcPMpmcPM            0  (omitted)

LnmcPEpmcPMLnmcPLpmcPM_~U    -.7512665   .3599294    -2.09   0.037    -1.458403   -.0441297

LnmcPEpmcPMLnmcPLpmcPM_~M    -1.136497   .3130307    -3.63   0.000    -1.751494   -.5215003

   LnmcPEpmcPMLnmcPLpmcPM     1.345903   .2987936     4.50   0.000     .7588773     1.93293

         LnmcQpNLnmcN_DMU     .4157494   .2203618     1.89   0.060    -.0171853    .8486841

         LnmcQpNLnmcN_DMM     .2351482   .2178923     1.08   0.281    -.1929348    .6632311

             LnmcQpNLnmcN    -.1529072   .2171818    -0.70   0.482    -.5795943      .27378

   LnmcQpNLnmcPMpmcPM_DMU            0  (omitted)

   LnmcQpNLnmcPMpmcPM_DMM            0  (omitted)

       LnmcQpNLnmcPMpmcPM            0  (omitted)

   LnmcQpNLnmcPLpmcPM_DMU    -.5485846    .125344    -4.38   0.000    -.7948422   -.3023271

   LnmcQpNLnmcPLpmcPM_DMM    -.1503834   .1214983    -1.24   0.216    -.3890856    .0883187

       LnmcQpNLnmcPLpmcPM     .1153414   .0884571     1.30   0.193    -.0584462    .2891291

   LnmcQpNLnmcPEpmcPM_DMU     .6723351   .1434172     4.69   0.000       .39057    .9541002

   LnmcQpNLnmcPEpmcPM_DMM     .3578783   .1210049     2.96   0.003     .1201454    .5956111

       LnmcQpNLnmcPEpmcPM    -.3746172   .1029367    -3.64   0.000    -.5768522   -.1723822

           halfLnmcN2_DMU     .3189083   .0863441     3.69   0.000      .149272    .4885447

           halfLnmcN2_DMM     .1162777   .1531928     0.76   0.448    -.1846932    .4172485

               halfLnmcN2    -.0379035   .0148741    -2.55   0.011    -.0671259   -.0086811

         halfLnmcQpN2_DMU     .6806861   .1856934     3.67   0.000     .3158629    1.045509

         halfLnmcQpN2_DMM     .5081545   .0834349     6.09   0.000     .3442338    .6720752

             halfLnmcQpN2    -.3903217   .0637067    -6.13   0.000    -.5154835     -.26516

                LnmcN_DMU      .251056    .054238     4.63   0.000      .144497     .357615

                LnmcN_DMM     -.405528   .1891383    -2.14   0.033    -.7771193   -.0339367

                    LnmcN     .9979434   .0207715    48.04   0.000     .9571346    1.038752

          LnmcPMpmcPM_DMU            0  (omitted)

          LnmcPMpmcPM_DMM            0  (omitted)

              LnmcPMpmcPM            0  (omitted)

          LnmcPLpmcPM_DMU     .5022302   .1010878     4.97   0.000     .3036275    .7008328

          LnmcPLpmcPM_DMM     .8727431   .3819692     2.28   0.023     .1223056     1.62318

              LnmcPLpmcPM     .5590998   .0537577    10.40   0.000     .4534844    .6647151

          LnmcPEpmcPM_DMU    -.1389436   .0706914    -1.97   0.050    -.2778278   -.0000594

          LnmcPEpmcPM_DMM     .0112513   .2631861     0.04   0.966    -.5058184    .5283209

              LnmcPEpmcPM     .1749749   .0507289     3.45   0.001     .0753101    .2746397

              LnmcQpN_DMU    -.5209305   .0676858    -7.70   0.000    -.6539096   -.3879514

              LnmcQpN_DMM    -.5295453   .3514693    -1.51   0.133    -1.220061    .1609703

                  LnmcQpN     .8679517   .0276823    31.35   0.000     .8135655    .9223379

                                                                                           

            LnmcCELMpmcPM        Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval]

                                          Robust

                                                                                           

                                                Root MSE          =     .12563

                                                R-squared         =     0.9923

                                                Prob > F          =     0.0000

                                                F(44, 507)        =    4057.33

Linear regression                               Number of obs     =        552
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Table 49. Model 6 RE +Time Regression Results (after purging) 

 

Note: Refer to Table 51 on page 230 for Regression Term Descriptions. 

  

                                                                                        

                   rho    .92071368   (fraction of variance due to u_i)

               sigma_e    .04938309

               sigma_u    .16828347

                                                                                        

                 _cons     .0073412   .0434008     0.17   0.866    -.0777228    .0924053

                   DMU     .1475098   .0758003     1.95   0.052    -.0010561    .2960757

                   DMM    -.9584722   .2188037    -4.38   0.000     -1.38732   -.5296249

      LnmcNLnmcPMpmcPM            0  (omitted)

      LnmcNLnmcPLpmcPM     .1233431   .0149579     8.25   0.000     .0940262      .15266

      LnmcNLnmcPEpmcPM    -.0386899   .0123049    -3.14   0.002     -.062807   -.0145729

      halfLnmcPMpmcPM2            0  (omitted)

      halfLnmcPLpmcPM2    -.1243123   .0522893    -2.38   0.017    -.2267975   -.0218272

      halfLnmcPEpmcPM2    -.1945434    .050584    -3.85   0.000    -.2936861   -.0954007

LnmcPLpmcPMLnmcPMpmcPM            0  (omitted)

LnmcPEpmcPMLnmcPMpmcPM            0  (omitted)

LnmcPEpmcPMLnmcPLpmcPM     .2360141   .0463818     5.09   0.000     .1451076    .3269207

          LnmcQpNLnmcN     .1300572   .0354513     3.67   0.000     .0605739    .1995404

             LnmcN_DMU     .0251065   .0570915     0.44   0.660    -.0867907    .1370037

             LnmcN_DMM    -.4184442   .1186433    -3.53   0.000    -.6509807   -.1859076

                 LnmcN     .9430847   .0333984    28.24   0.000      .877625    1.008544

           LnmcPMpmcPM            0  (omitted)

           LnmcPLpmcPM     .4950746   .0255158    19.40   0.000     .4450645    .5450847

           LnmcPEpmcPM     .1612759   .0217122     7.43   0.000     .1187208    .2038311

           LnmcQpN_DMU     -.290507   .0832885    -3.49   0.000    -.4537494   -.1272646

           LnmcQpN_DMM    -.2523734   .1056724    -2.39   0.017    -.4594874   -.0452593

               LnmcQpN     .7490696    .056358    13.29   0.000       .63861    .8595292

                  Time    -.0064877   .0010459    -6.20   0.000    -.0085375   -.0044378

                                                                                        

         LnmcCELMpmcPM        Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval]

                                                                                        

corr(u_i, X)   = 0 (assumed)                    Prob > chi2       =     0.0000

                                                Wald chi2(17)     =    3493.55

     overall = 0.9728                                         max =         12

     between = 0.9742                                         avg =       12.0

     within  = 0.7413                                         min =         12

R-sq:                                           Obs per group:

Group variable: id                              Number of groups  =         46

Random-effects GLS regression                   Number of obs     =        552
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Table 50. Model 6 Regression Results 

 

Note: Refer to Table 51 on page 230 for Regression Term Descriptions. 

 

  

                                                                                        

                 _cons    -.0121786   .0177136    -0.69   0.492    -.0469767    .0226194

                   DMU     .2186959     .02183    10.02   0.000     .1758114    .2615804

                   DMM    -.0946823   .2371826    -0.40   0.690    -.5606217    .3712572

      LnmcNLnmcPMpmcPM            0  (omitted)

      LnmcNLnmcPLpmcPM      .119271   .0305815     3.90   0.000     .0591944    .1793476

      LnmcNLnmcPEpmcPM     .0146542   .0250037     0.59   0.558    -.0344649    .0637733

      halfLnmcPMpmcPM2            0  (omitted)

      halfLnmcPLpmcPM2    -.4794991   .1187498    -4.04   0.000    -.7127802   -.2462181

      halfLnmcPEpmcPM2    -.1785228   .0647755    -2.76   0.006    -.3057726    -.051273

LnmcPLpmcPMLnmcPMpmcPM            0  (omitted)

LnmcPEpmcPMLnmcPMpmcPM            0  (omitted)

LnmcPEpmcPMLnmcPLpmcPM     .1861573     .09764     1.91   0.057     -.005654    .3779687

          LnmcQpNLnmcN     .1374142    .014393     9.55   0.000     .1091396    .1656888

    LnmcQpNLnmcPMpmcPM            0  (omitted)

    LnmcQpNLnmcPLpmcPM    -.2021377   .0509691    -3.97   0.000    -.3022652   -.1020101

    LnmcQpNLnmcPEpmcPM     .1031442   .0411747     2.51   0.013     .0222575    .1840309

        halfLnmcN2_DMU     .4006415   .0798579     5.02   0.000     .2437627    .5575203

        halfLnmcN2_DMM     .1252692   .1652301     0.76   0.449    -.1993212    .4498597

            halfLnmcN2     .0097808   .0158279     0.62   0.537    -.0213127    .0408744

      halfLnmcQpN2_DMU     .0866719   .1638975     0.53   0.597    -.2353008    .4086445

      halfLnmcQpN2_DMM     .1952834   .0929878     2.10   0.036      .012611    .3779557

          halfLnmcQpN2    -.0968506   .0604202    -1.60   0.110    -.2155447    .0218434

             LnmcN_DMU     .4641166   .0486684     9.54   0.000     .3685088    .5597244

             LnmcN_DMM     .0819879   .2792852     0.29   0.769    -.4666611    .6306369

                 LnmcN     .9473041   .0161512    58.65   0.000     .9155754    .9790328

           LnmcPMpmcPM            0  (omitted)

           LnmcPLpmcPM     .7673988   .0478156    16.05   0.000     .6734662    .8613314

           LnmcPEpmcPM     .1261999   .0313899     4.02   0.000     .0645352    .1878647

           LnmcQpN_DMU     -.709582   .0603205   -11.76   0.000    -.8280802   -.5910838

           LnmcQpN_DMM    -.1010176   .0606048    -1.67   0.096    -.2200742     .018039

               LnmcQpN     .8677457   .0320383    27.08   0.000     .8048072    .9306841

                                                                                        

         LnmcCELMpmcPM        Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval]

                                       Robust

                                                                                        

                                                Root MSE          =     .14768

                                                R-squared         =     0.9889

                                                Prob > F          =     0.0000

                                                F(24, 527)        =    4270.81

Linear regression                               Number of obs     =        552
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Table 51. Regression Term Descriptions 

Term Description 

LnmcCELMpmcPM Operating Costs 

Time Period 

LnmcQpN Traffic Density 

LnmcQpN_DMM Monorail-Traffic Density Interaction 

LnmcQpN_DMU Underground-Traffic Density Interaction 

LnmcPEpmcPM Energy Price 

LnmcPEpmcPM_DMM Monorail-Energy Price Interaction 

LnmcPEpmcPM_DMU Underground-Energy Price Interaction 

LnmcPLpmcPM Labour Price 

LnmcPLpmcPM_DMM Monorail-Labour Price Interaction 

LnmcPLpmcPM_DMU Underground-Labour Price Interaction 

LnmcPMpmcPM Material Price 

LnmcPMpmcPM_DMM Monorail-Material Price Interaction 

LnmcPMpmcPM_DMU Underground-Material Price Interaction 

LnmcN Network Length 

LnmcN_DMM Monorail-Network Length Interaction 

LnmcN_DMU Underground-Network Length Interaction 

halfLnmcQpN2 Traffic Density Squared 

halfLnmcQpN2_DMM Monorail-Traffic Density Squared Interaction 

halfLnmcQpN2_DMU Underground-Traffic Density Squared 

Interaction 

halfLnmcN2 Network Length Squared 
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Term Description 

halfLnmcN2_DMM Monorail-Network Length Squared Interaction 

halfLnmcN2_DMU Underground-Network Length Squared 

Interaction 

LnmcQpNLnmcPEpmcPM Traffic Density-Energy Price Interaction 

LnmcQpNLnmcPEpmcPM_DMM Monorail-Traffic Density-Energy Price 

Interaction 

LnmcQpNLnmcPEpmcPM_DMU Underground-Traffic Density-Energy Price 

Interaction 

LnmcQpNLnmcPLpmcPM Traffic Density-Labour Price Interaction 

LnmcQpNLnmcPLpmcPM_DMM Monorail-Traffic Density-Labour Price 

Interaction 

LnmcQpNLnmcPLpmcPM_DMU Underground-Traffic Density-Labour Price 

Interaction 

LnmcQpNLnmcPMpmcPM Traffic Density-Material Price Interaction 

LnmcQpNLnmcPMpmcPM_DMM Monorail-Traffic Density-Material Price 

Interaction 

LnmcQpNLnmcPMpmcPM_DMU Underground-Traffic Density-Material Price 

Interaction 

LnmcQpNLnmcN Traffic Density-Network Length Interaction 

LnmcQpNLnmcN_DMM Monorail-Traffic Density-Network Length 

Interaction 

LnmcQpNLnmcN_DMU Underground-Traffic Density-Network Length 

Interaction 

LnmcPEpmcPMLnmcPLpmcPM Energy Price-Labour Price Interaction 

LnmcPEpmcPMLnmcPLpmcPM_

DMM 

Monorail-Energy Price-Labour Price Interaction 
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Term Description 

LnmcPEpmcPMLnmcPLpmcPM_

DMU 

Underground-Energy Price-Labour Price 

Interaction 

LnmcPEpmcPMLnmcPMpmcPM Energy Price-Material Price Interaction 

LnmcPEpmcPMLnmcPMpmcPM

_DMM 

Monorail-Energy Price-Material Price 

Interaction 

LnmcPEpmcPMLnmcPMpmcPM

_DMU 

Underground-Energy Price-Material Price 

Interaction 

LnmcPLpmcPMLnmcPMpmcPM Labour Price-Material Price Interaction 

LnmcPLpmcPMLnmcPMpmcPM

_DMM 

Monorail-Labour Price-Material Price 

Interaction 

LnmcPLpmcPMLnmcPMpmcPM

_DMU 

Underground-Labour Price-Material Price 

Interaction 

halfLnmcPEpmcPM2 Energy Price Squared 

halfLnmcPEpmcPM2_DMM Monorail-Energy Price Squared Interaction 

halfLnmcPEpmcPM2_DMU Underground-Energy Price Squared Interaction 

halfLnmcPLpmcPM2 Labour Price Squared 

halfLnmcPLpmcPM2_DMM Monorail-Labour Price Squared Interaction 

halfLnmcPLpmcPM2_DMU Underground-Labour Price Squared Interaction 

halfLnmcPMpmcPM2 Material Price Squared 

halfLnmcPMpmcPM2_DMM Monorail-Material Price Squared Interaction 

halfLnmcPMpmcPM2_DMU Underground-Material Price Squared 

Interaction 

LnmcNLnmcPEpmcPM Network Length-Energy Price Interaction 

LnmcNLnmcPEpmcPM_DMM Monorail-Network Length-Energy Price 

Interaction 
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Term Description 

LnmcNLnmcPEpmcPM_DMU Underground-Network Length-Energy Price 

Interaction 

LnmcNLnmcPLpmcPM Network Length-Labour Price Interaction 

LnmcNLnmcPLpmcPM_DMM Monorail-Network Length-Labour Price 

Interaction 

LnmcNLnmcPLpmcPM_DMU Underground-Network Length-Labour Price 

Interaction 

LnmcNLnmcPMpmcPM Network Length-Material Price Interaction 

LnmcNLnmcPMpmcPM_DMM Monorail-Network Length-Material Price 

Interaction 

LnmcNLnmcPMpmcPM_DMU Underground-Network Length-Material Price 

Interaction 

DMM Monorail Mode 

DMU Underground Mode 

Note: Refer to Chapter 4 for more details on the variables. 
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Table 52. CED and CES generated by several Model 6 variants. 

Model CED CES Time Variable 

Graph Significance Graph Significance Significance 

Model 6 

OLS 

 

Intuitive findings on CED (convexity in 

DMO and DMU was insignificant) 

Density 

DMO✓ 

DMM✓ 

DMU✓ 

Density2 

DMO 

DMM 

DMU 

 

Intuitive findings on CES 

Network 

DMO✓ 

DMM✓ 

DMU✓ 

Network2 

DMO 

DMM 

DMU✓ 

Not Applicable 
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Model CED CES Time Variable 

Graph Significance Graph Significance Significance 

Model 6 

OLS 

+Time 

 

Intuitive findings on CED 

(convexity in DMO and DMU was 

insignificant) 

Density 

DMO✓ 

DMM✓ 

DMU✓ 

Density2 

DMO 

DMM 

DMU 

 

Intuitive findings on CES 

 

Network 

DMO✓ 

DMM✓ 

DMU✓ 

Network2 

DMO 

DMM 

DMU✓ 

Time 
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Model CED CES Time Variable 

Graph Significance Graph Significance Significance 

Model 6 

OLS 

+Time 

+Time2 

 

Intuitive findings on CED 

(convexity in DMO and DMU was 

insignificant) 

Density 

DMO✓ 

DMM✓ 

DMU✓ 

Density2 

DMO 

DMM 

DMU 

 

Intuitive findings on CES 

Network 

DMO✓ 

DMM✓ 

DMU✓ 

Network2 

DMO 

DMM 

DMU✓ 

Time 

Time2
 
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Model CED CES Time Variable 

Graph Significance Graph Significance Significance 

Model 6 FE 

 

Non-Intuitive findings on CED (convexity 

in DMO was significant; curvature for 

DMU, which had some negative values, 

was significant) 

Density 

DMO✓ 

DMM 

DMU 

Density2 

DMO✓ 

DMM 

DMU✓ 

 

Non-Intuitive findings on CES (convexity in 

DMU was significant; curvature for all 

modes which had significant negative 

values were significant) 

Network 

DMO✓ 

DMM✓ 

DMU 

Network2 

DMO✓ 

DMM✓ 

DMU✓ 

Not Applicable 
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Model CED CES Time Variable 

Graph Significance Graph Significance Significance 

Model 6 FE 

+Time 

 

Non-Intuitive findings on CED (curvature 

for DMU, which had some negative values, 

was significant) 

Density 

DMO✓ 

DMM 

DMU 

Density2 

DMO 

DMM 

DMU✓ 

 

Non-Intuitive findings on CES (convexity 

in DMU was significant; curvature for DMM 

and DMU, which had significant negative 

values, were significant) 

Network 

DMO✓ 

DMM✓ 

DMU 

Network2 

DMO 

DMM✓ 

DMU✓ 

Time✓ 
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Model CED CES Time Variable 

Graph Significance Graph Significance Significance 

Model 6 FE 

+Time 

+Time2 

 

Non-Intuitive findings on CED (curvature 

for DMU, which had some negative values, 

was significant) 

Density 

DMO✓ 

DMM 

DMU 

Density2 

DMO 

DMM 

DMU✓ 

 

Non-Intuitive findings on CES (convexity 

in DMU was significant; curvature for DMM 

and DMU, which had significant negative 

values, were significant) 

Network 

DMO✓ 

DMM✓ 

DMU 

Network2 

DMO 

DMM✓ 

DMU✓ 

Time 

Time2
 
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Model CED CES Time Variable 

Graph Significance Graph Significance Significance 

Model 6 RE 

 

Non-Intuitive findings on CED (convexity 

in DMO was significant; curvature for 

DMO, which started with values above 

unitary, was significant) 

Density 

DMO✓ 

DMM✓ 

DMU✓ 

Density2 

DMO✓ 

DMM 

DMU 

 

Intuitive findings on CES (curvature for all 

modes — one of which started with values 

above unitary — was insignificant) 

Network 

DMO✓ 

DMM✓ 

DMU✓ 

Network2 

DMO 

DMM✓ 

DMU 

Not Applicable 
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Model CED CES Time Variable 

Graph Significance Graph Significance Significance 

Model 6 RE 

+Time 

 

Intuitive findings on CED (convexity in 

DMO was insignificant; curvature for DMO, 

which started with values above unitary, 

was insignificant) 

Density 

DMO✓ 

DMM✓ 

DMU✓ 

Density2 

DMO 

DMM 

DMU 

 

Intuitive findings on CES (curvature for all 

modes — one of which started with values 

above unitary — was insignificant)  

Network 

DMO✓ 

DMM✓ 

DMU✓ 

Network2 

DMO 

DMM 

DMU 

Time✓ 
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Model CED CES Time Variable 

Graph Significance Graph Significance Significance 

Model 6 RE 

+Time 

+Time2 

 

Intuitive findings on CED (convexity in 

DMO was insignificant; curvature for DMO, 

which started with values above unitary, 

was insignificant) 

Density 

DMO✓ 

DMM✓ 

DMU✓ 

Density2 

DMO 

DMM 

DMU 

 

Intuitive findings on CES (curvature for all 

modes — one of which started with values 

above unitary — was insignificant)  

Network 

DMO✓ 

DMM✓ 

DMU✓ 

Network2 

DMO 

DMM✓ 

DMU 

Time✓ 

Time2
 

Note:  ✓  Significant at 0.05 level    Insignificant at 0.05 level 
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Table 53. CED and CES generated by several Model 6 variants (incorporating the robust cluster standard errors) 

Model CED CES Time Variable 

Graph Significance Graph Significance Significance 

Model 6 

OLS 

 

Intuitive findings on CED 

(convexity in DMO and DMU was 

insignificant) 

Density 

DMO✓ 

DMM✓ 

DMU 

Density2 

DMO 

DMM 

DMU 

 

Intuitive findings on CES 

Network 

DMO✓ 

DMM 

DMU✓ 

Network2 

DMO 

DMM 

DMU 

Not Applicable 
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Model CED CES Time Variable 

Graph Significance Graph Significance Significance 

Model 6 

OLS 

+Time 

 

Intuitive findings on CED 

(convexity in DMO and DMU was 

insignificant) 

Density 

DMO✓ 

DMM✓ 

DMU 

Density2 

DMO 

DMM 

DMU 

 

Intuitive findings on CES 

Network 

DMO✓ 

DMM 

DMU✓ 

Network2 

DMO 

DMM 

DMU 

Time 

 



245 
 

 

 

Model CED CES Time Variable 

Graph Significance Graph Significance Significance 

Model 6 

OLS 

+Time 

+Time2 

 

Intuitive findings on CED 

(convexity in DMO and DMU was 

insignificant) 

Density 

DMO✓ 

DMM✓ 

DMU 

Density2 

DMO 

DMM 

DMU 

 

Intuitive findings on CES 

Network 

DMO✓ 

DMM 

DMU✓ 

Network2 

DMO 

DMM 

DMU 

Time 

Time2
 
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Model CED CES Time Variable 

Graph Significance Graph Significance Significance 

Model 6 

FE 

 

Non-Intuitive findings on CED (curvature 

for DMU, which had some negative values, 

was significant) 

Density 

DMO✓ 

DMM 

DMU 

Density2 

DMO 

DMM 

DMU✓ 

 

Non-Intuitive findings on CES (convexity in 

DMU was significant; curvature for DMM 

and DMU, which had significant negative 

values, were significant) 

Network 

DMO✓ 

DMM✓ 

DMU 

Network2 

DMO 

DMM✓ 

DMU✓ 

Not Applicable 
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Model CED CES Time Variable 

Graph Significance Graph Significance Significance 

Model 6 

FE 

+Time 

 

Non-Intuitive findings on CED (curvature 

for DMU, which had some negative values, 

was significant) 

Density 

DMO✓ 

DMM 

DMU 

Density2 

DMO 

DMM 

DMU✓ 

 

 

Non-Intuitive findings on CES (convexity in 

DMU was significant; curvature for DMM 

and DMU, which had significant negative 

values, were significant) 

Network 

DMO✓ 

DMM✓ 

DMU 

Network2 

DMO 

DMM✓ 

DMU✓ 

 

Time 
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Model CED CES Time Variable 

Graph Significance Graph Significance Significance 

Model 6 

FE 

+Time 

+Time2 

 

Non-Intuitive findings on CED (curvature 

for DMU, which had some negative values, 

was significant) 

Density 

DMO✓ 

DMM 

DMU 

Density2 

DMO 

DMM 

DMU✓ 

 

Non-Intuitive findings on CES (convexity in 

DMU was significant; curvature for DMM 

and DMU, which had significant negative 

values, were significant) 

Network 

DMO✓ 

DMM✓ 

DMU 

Network2 

DMO 

DMM✓ 

DMU✓ 

Time 

Time2
 
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Model CED CES Time Variable 

Graph Significance Graph Significance Significance 

Model 6 

RE 

 

Intuitive findings on CED (convexity in 

DMO was insignificant; curvature for DMO, 

which started with values above unitary, 

was insignificant) 

Density 

DMO✓ 

DMM 

DMU✓ 

Density2 

DMO 

DMM 

DMU 

 

Intuitive findings on CES (curvature for all 

modes — one of which started with values 

above unitary — was insignificant) 

Network 

DMO✓ 

DMM✓ 

DMU✓ 

Network2 

DMO 

DMM✓ 

DMU 

Not Applicable 
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Model CED CES Time Variable 

Graph Significance Graph Significance Significance 

Model 6 

RE 

+Time 

 

Intuitive findings on CED (convexity in 

DMO was insignificant; curvature for DMO, 

which started with values above unitary, 

was insignificant) 

Density 

DMO✓ 

DMM✓ 

DMU✓ 

Density2 

DMO 

DMM 

DMU 

 

Intuitive findings on CES (curvature for 

DMU, which also started with values above 

unitary was insignificant; curvature for DMM 

became significant)  

Network 

DMO✓ 

DMM✓ 

DMU✓ 

Network2 

DMO 

DMM✓ 

DMU 

Time✓ 
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Model CED CES Time Variable 

Graph Significance Graph Significance Significance 

Model 6 

RE 

+Time 

+Time2 

 

Intuitive findings on CED (convexity in 

DMO was insignificant; curvature for DMO, 

which started with values above unitary, 

was insignificant) 

Density 

DMO✓ 

DMM✓ 

DMU✓ 

Density2 

DMO 

DMM 

DMU 

 

Intuitive findings on CES (curvature for all 

modes — one of which started with values 

above unitary — was insignificant)  

 

Network 

DMO✓ 

DMM✓ 

DMU✓ 

Network2 

DMO 

DMM✓ 

DMU 

Time✓ 

Time2
 

Note: ✓ = Significant at 0.05 level,  = Insignificant at 0.05 level, ✓ or  = change after the application of robust cluster errors 
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Table 54. CED and CES generated by several Model 12 variants. 

Model CED CES Time Variable 

Graph Significance Graph Significance Significance 

Model 12 

 

Non-Intuitive findings on CED (convexity 

and starting values above the unitary line 

for DMO were significant) 

Density 

DMO✓ 

DMM 

DMU✓ 

Density2 

DMO✓ 

DMM✓ 

DMU 

 

Non-Intuitive findings on CES (convexity 

and starting values above the unitary line 

for DMO were significant) 

Network 

DMO✓ 

DMM✓ 

DMU✓ 

Network2 

DMO✓ 

DMM 

DMU✓ 

Not Applicable 
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Model CED CES Time Variable 

Graph Significance Graph Significance Significance 

Model 12 

+Time 

 

Non-Intuitive findings on CED (convexity 

and starting values above the unitary line 

for DMO were significant) 

Density 

DMO✓ 

DMM 

DMU✓ 

Density2 

DMO✓ 

DMM✓ 

DMU 

 

Non-Intuitive findings on CES (convexity 

and starting values above the unitary line 

for DMO were significant) 

Network 

DMO✓ 

DMM✓ 

DMU✓ 

Network2 

DMO✓ 

DMM 

DMU✓ 

Time 
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Model CED CES Time Variable 

Graph Significance Graph Significance Significance 

Model 12 

+Time 

+Time2 

 

Non-Intuitive findings on CED (convexity 

and starting values above the unitary line 

for DMO were significant) 

Density 

DMO✓ 

DMM 

DMU✓ 

Density2 

DMO✓ 

DMM✓ 

DMU 

 

Non-Intuitive findings on CES (convexity 

and starting values above the unitary line 

for DMO were significant) 

Network 

DMO✓ 

DMM✓ 

DMU✓ 

Network2 

DMO✓ 

DMM 

DMU✓ 

Time 

Time2
 
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Model CED CES Time Variable 

Graph Significance Graph Significance Significance 

Model 12 FE 

 

Non-Intuitive findings on CED (convexity 

and starting values above the unitary line 

for DMO were significant) 

Density 

DMO✓ 

DMM 

DMU 

Density2 

DMO✓ 

DMM 

DMU 

 

Non-Intuitive findings on CES (convexity 

and many values below zero for DMU 

were significant) 

Network 

DMO✓ 

DMM✓ 

DMU✓ 

Network2 

DMO 

DMM✓ 

DMU✓ 

Not Applicable 
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Model CED CES Time Variable 

Graph Significance Graph Significance Significance 

Model 12 FE 

+Time 

 

Non-Intuitive findings on CED (convexity 

and starting values above the unitary line 

for DMO were significant) 

Density 

DMO✓ 

DMM 

DMU 

Density2 

DMO✓ 

DMM 

DMU 

 

Non-Intuitive findings on CES (convexity 

and many values below zero for DMU 

were significant) 

Network 

DMO✓ 

DMM✓ 

DMU 

Network2 

DMO 

DMM✓ 

DMU✓ 

Time✓ 
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Model CED CES Time Variable 

Graph Significance Graph Significance Significance 

Model 12 FE 

+Time 

+Time2 

 

Non-Intuitive findings on CED (convexity 

for DMO was significant) 

 

Density 

DMO✓ 

DMM 

DMU 

Density2 

DMO✓ 

DMM 

DMU 

 

Non-Intuitive findings on CES (convexity 

and many values below zero for DMU 

were significant) 

Network 

DMO✓ 

DMM✓ 

DMU 

Network2 

DMO 

DMM✓ 

DMU✓ 

Time 

Time2
 
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Model CED CES Time Variable 

Graph Significance Graph Significance Significance 

Model 12 RE 

 

Non-Intuitive findings on CED (convexity 

and starting values above the unitary line 

for DMO were significant) 

Density 

DMO✓ 

DMM 

DMU✓ 

Density2 

DMO✓ 

DMM 

DMU 

 

Non-Intuitive findings on CES (convexity 

and starting values above the unitary line 

for DMO were significant) 

Network 

DMO✓ 

DMM 

DMU✓ 

Network2 

DMO✓ 

DMM 

DMU 

Not Applicable 
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Model CED CES Time Variable 

Graph Significance Graph Significance Significance 

Model 12 RE 

+Time 

 

Non-Intuitive findings on CED (convexity 

and starting values above the unitary line 

for DMO were significant) 

Density 

DMO✓ 

DMM 

DMU✓ 

Density2 

DMO✓ 

DMM 

DMU 

 

Non-Intuitive findings on CES (convexity 

and starting values above the unitary line 

for DMO were significant) 

Network 

DMO✓ 

DMM 

DMU✓ 

Network2 

DMO✓ 

DMM 

DMU 

Time✓ 
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Model CED CES Time Variable 

Graph Significance Graph Significance Significance 

Model 12 RE 

+Time 

+Time2 

 

Non-Intuitive findings on CED (convexity 

and starting values above the unitary line 

for DMO were significant) 

Density 

DMO✓ 

DMM 

DMU✓ 

Density2 

DMO✓ 

DMM 

DMU 

 

Non-Intuitive findings on CES (convexity 

and starting values above the unitary line 

for DMO were significant) 

Network 

DMO✓ 

DMM 

DMU✓ 

Network2 

DMO✓ 

DMM 

DMU 

Time✓ 

Time2
 

Note:  ✓  Significant at 0.05 level    Insignificant at 0.05 level 

  



261 
 

 

 

Table 55. CED and CES generated by several Model 6 RE +Time Reductions 

Model CED CES Time Variable 

Graph Significance Graph Significance Significance 

Model 6 RE 

+Time 

 

Intuitive findings on CED (convexity in 

DMO was insignificant; curvature for 

DMO, which started with values above 

unitary, was insignificant) 

Density 

DMO✓ 

DMM✓ 

DMU✓ 

Density2 

DMO 

DMM 

DMU 

 

Intuitive findings on CES (curvature for 

all modes — one of which started with 

values above unitary — was insignificant)  

Network 

DMO✓ 

DMM✓ 

DMU✓ 

Network2 

DMO 

DMM 

DMU 

Time✓ 
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Model CED CES Time Variable 

Graph Significance Graph Significance Significance 

Model 6z RE 

+Time 

(Model 6 plus 

the removal of 

mode dummy 

interactions with 

Density2 and 

Network2) 

 

Intuitive findings on CED (convexity in 

DMO, DMM and DMU was insignificant) 

Density 

DMO✓ 

DMM✓ 

DMU✓ 

Density2
 

 

Intuitive findings on CES (convexity for 

DMO and DMU was insignificant; 

curvature for DMO and DMU, which 

started with values above unitary, was 

insignificant) 

Network 

DMO✓ 

DMM✓ 

DMU✓ 

Network2
 

 

Time✓ 
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Model CED CES Time Variable 

Graph Significance Graph Significance Significance 

Model 6y RE 

+Time 

(Model 6z plus 

the removal of 

Density2 and 

Network2) 

 

Intuitive findings on CED 

Density 

DMO✓ 

DMM✓ 

DMU✓ 

 

Intuitive findings on CES 

Network 

DMO✓ 

DMM✓ 

DMU✓ 

Time✓ 
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Model CED CES Time Variable 

Graph Significance Graph Significance Significance 

Model 6x RE 

+Time 

(Model 6y plus 

the removal of 

interaction 

between 

Density and 

Prices) 

 

Intuitive findings on CED 

Density 

DMO✓ 

DMM✓ 

DMU✓ 

 

Intuitive findings on CES 

Network 

DMO✓ 

DMM✓ 

DMU✓ 

 

Time✓ 

Note:  ✓  Significant at 0.05 level    Insignificant at 0.05 level 
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