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ABSTRACT

In this thesis, we study the applications of light–matter interactions in the context of

quantum information processing. We consider interactions at the single- or few-photon

level with semiconductor-based structures integrated within photonic setups. The work we

present here, therefore, fits in well within the wider field of optical quantum information

processing and technologies, whereby photons are utilised in the encoding, manipulation

and transmission of information, as well as solid-state quantum optics, where the spin plays

the role of the qubit. The work we present here is highly theoretical and we, therefore,

keep in mind experimental challenges.

We first present the mathematical foundations of quantum mechanics, then move on

to describe key concepts and formulations from the theory of quantum optics that we will

use in our work. We describe in detail the important quantum feature of entanglement,

which serves as a resource in various quantum technologies. This motivates us to study the

generation of entanglement between spectrally dissimilar solid-state emitters using readily

accessible optical states. The method we propose builds up the generated entanglement

in a cumulative manner and is heralded by the detection of photons. We also study the

effects of different sources of loss on the implementation of the scheme.

Next, we consider the use of the spin–photon interface to perform quantum error correc-

tion; specifically, syndrome extraction in quantum surface codes. Making use of quantum

dots within micropillar cavities, we show how a photonic implementation of the surface

code can make use of the resulting light–matter interaction in order to detect the presence

of errors. We show that the scheme is robust to errors in the frequency detuning by using

the confidence as a figure of merit. We also study the generation of entanglement between

spectrally dissimilar spin systems and consider the efficiency and fidelity of such a scheme.

Finally, we study the light-matter interaction within a semiconductor-based device in-

tended as a component within a wider quantum optical network. Using the input–output

formalism, we obtain the single- and two-photon scattering matrices that allow us to de-

scribe the transport properties of the proposed setup. We also discuss the presence of the

non-linearity in the interaction and the photon statistics of the transmitted field for a weak

coherent state as the input.
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CHAPTER

1

INTRODUCTION

1.1 History

The desire to understand the world around us has been present throughout human history,

with the level of depth increasing over time. The turn of the 20th century was charac-

terised by the development of several theories and hypotheses to explain phenomena that

could not be reconciled using classical physics: quantum mechanics, the study of nature at

atomic and subatomic scales, had emerged. Not only was quantum mechanics successful

in explaining, e.g., the photoelectric effect [1] and (the lack of) the so-called ultraviolet

catastrophe for black-body radiation [2], but it also predicted illogical and ‘unnatural’ be-

haviour. These included concepts such as quantum entanglement, whereby the state of a

system is dependent on the state of another irrespective of spatial separation, and wave-

particle duality, whereby matter may exhibit the properties of a wave whilst light behaves

similar to discrete particles.

The combination of these revolutionary ideas with humankind’s penchant for technology

brought about the first quantum revolution. It is marked by ideas that can only be explained

using the quantum theory framework, and includes the invention of the laser, the atomic

clock and, perhaps most significantly, the transistor1. Today we find ourselves in the midst

of the second quantum revolution [4], where we move from being passive witnesses of the

quantum realm to actively controlling and manipulating individual quantum systems. This

includes also the development of exotic engineered systems such as semiconductor quantum

dots—which play a central role in the work of this thesis—superconducting circuits, and

Majorana fermions. The aim behind this feat of quantum engineering is its ultimate use in

communication, sensing, cryptography and information processing, with the application of

1The transistor is regarded by many as one of the most important inventions of the 20th century [3] with

an estimated 13 sextillion (1021) having been manufactured since its invention in 1947 up until 2018.
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2 Chapter 1. Introduction

quantum phenomena to these fields allowing for better, faster and more accurate results.

Amongst the most exciting prospects is the development of a quantum computer, first

formally described by David Deutsch in 1985 [5]. This would have computing powers

surpassing classical computing resources for certain classes of problems, solving otherwise

intractable problems such as prime factorisation using Shor’s algorithm [6], finding the (near

to) exact solution of the electronic structures of higher order chemical compositions [7, 8]

and the faithful preparation of Gibbs states of a quantum many-body system [9].

1.2 Current developments in quantum technologies

The development of quantum technologies holds exciting possibilities, as is evident from

the vast amount of investment into various research projects, both on a governmental

and private level. The underlying principle behind quantum information processing is the

encoding of information onto qubits, the quantum counterpart of a bit, (or qud its when

considering d-dimensional systems), whilst processing them in a way that maintains their

quantum properties and retains the fidelity of the encoded information. The conditions

for successfully constructing a quantum computer have been well-defined. These were first

established for the circuit model in 2000 and are known as the DiVincenzo’s criteria [10],

and include the requirement of scalability, a universal set of quantum gates and specific

measurement capabilities. This was followed by a more formal operational definition of a

quantum computer that is quantum computing model agnostic [11]. However, today there

is still a clear lag in the physical realisation of these theoretical schemes. This is due to

the difficulty in engineering systems that are sufficiently isolated from their environment

so as to retain their quantum characteristics whilst still having control and manipulation

capabilities.

There exist several architectures serving as qubit candidates that are being actively

researched and developed. Some of the more promising ones include the photonic plat-

form [12], with the information encoded in, say, the polarisation or spatial mode; the spin

in semiconductor quantum dots [13] or nitrogen-vacancy centers in diamond [14]; super-

conducting electronic circuits [15]; and trapped ion qubits [16]. However, it is likely that

the direction for future development will rely on the integration of different platforms.

This is because none of the proposed schemes are inherently free of some form of draw-

back. For example, superconducting qubits require operation at cryogenic temperatures

and have relatively short decoherence times, resulting in short-lived memories. Similarly,

trapped ion setups are challenging to scale and have significantly low gate speeds. The

photonic platform has proven to be one of the most promising for quantum information

processing [17,18]. Photons have relatively long coherence times which makes them ideal as

flying qubits, transmitting information over long distances. Knill, Laflamme and Milburn

proposed a scheme for quantum computation comprising of linear optical elements, single-

photon sources and photon detectors [19]. Although the scheme is formally efficient, with

the computation scaling polynomially in the input size, the constant overheads are very

large and result in scalability difficulties. This is because the implementation of quantum

gates is never deterministic, with the probability of success increased by repeating the series



1.2. Current developments in quantum technologies 3

Figure 1.1: A dark field TEM image of InGaAs-capped InAs/GaAs quantum dots. Image

courtesy of Edmund Clarke, EPSRC National Epitaxy Facility, University of Sheffield.

of operations.

However, optical quantum computing can be made more efficient and gates rendered

deterministic by introducing non-linearities. This leads us to a drawback when relying

solely on photons as information carriers: photons do not readily interact with each other

and, therefore, require some mediator to generate non-linearities at the few-photon level.

On the other hand, photons are capable of coupling strongly to atoms, molecules and other

kinds of nanostructures, with the interactions showing interesting behaviour. This has

motivated the research of light–matter interactions and the development of optical setups

with integrated nanostructures. The interaction at the few-photon level with these solid-

state emitters, commonly referred to in the literature as the spin–photon interface, has been

adopted in numerous applications, ranging from transistors [20], photon-photon gates [21],

generation of cluster states [22] and entanglement generation [23].

The work in this thesis is motivated by the development of quantum technologies and

their physical realisation on some form of photonic platform. In fact, an overarching objec-

tive within the nanophotonics community is the integration of the aforementioned elements

(i.e. photon sources, photonic gates, non-linear elements, detectors) into a single on-chip

optical circuit [24–26]. This would offer the advantage of minimising coupling losses [27,28]

whilst improving scalability due to the possibility of high component density [29]. The

cornerstone of this project has been light–matter interactions at the few-photon level with

solid-state emitters; specifically, we consider semiconductor quantum dots. The interest in

the development of this kind of nanostructures has been rising, mostly due to its utility in

generating [30,31] and manipulating photonic states.

Quantum dots are structures with dimensions on the scale of just a few nanometers and

may be produced using one of several methods. The most common way of fabricating is

by self-assembly, whereby a layer of one type of semiconductor is placed on a substrate of

another, resulting in a mismatch of the lattice-constants. In order to minimise the strain

energy, one of the semiconductor layers will undergo a transition and self-assemble into small

islands dispersed across the sample, as shown in Fig. 1.1. This tight spatial confinement

of the electrons in all three dimensions leads to the discretisation of the allowed energy
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levels, similar to the rudimentary model of a particle in a box. In fact, quantum dots

are sometimes referred to as artificial atoms due to their discrete energy levels and bound

electron transitions. Additionally, the spin of the charge carrier, be it either an electron

or an electron hole, may be configured using magnetic and electric fields and, therefore,

may also serve as a spin qubit. Given their solid state, quantum dots integrate well with

various photonic structures [32, 33]. The strength of the light interaction can be enhanced

by placing the emitter inside a cavity, such as a photonic crystal cavity [34] or a micropillar

structure [35]. This occurs due to the Purcell effect [36]: the small mode volume of the

photonic structure and the resulting increase in the local density of photonic states enhances

the transition rate by Fermi’s golden rule.

1.3 Thesis outline

In the previous sections, we have argued for the importance of quantum technologies with

a special focus on photonic architectures. In this thesis, we are motivated to analyse some

applications of the spin–photon interface in the context of quantum information processing.

In particular, we take into account the interaction at the few-photon level with quantum

dot-based structures. We study concepts that are purely quantum, such as entanglement

generation and quantum error detection, and apply these to physical systems that are

already being used in experimental settings.

This thesis is structured as follows. In Chapter 2, we introduce the key ideas of quantum

mechanics and background theory on quantum information. This will serve as a foundation

for the theoretical framework that future chapters build upon. In Chapter 3, we present

a detailed view of some of the fundamental theory in quantum optics and the tools that

we have used, whilst building on key concepts of quantum mechanics from the previous

chapter. In particular, we introduce the basic form of the Hamiltonian describing light–

matter interactions and show how this translates into the dynamics of a single photon

interacting with some two-level system. We also give a detailed explanation of the input-

output formalism and the scattering matrix used in quantum optical systems.

In Chapter 4, we present an entanglement generation scheme that overcomes the limita-

tions posed by spectral inhomogeneity across fabricated quantum dots. The scheme makes

use of a readily-available photonic source and allows for the deterministic entanglement of

spin states, regardless of the spectral mismatch. We then look into how well the scheme

performs given different sources of losses and degradation. Next, in Chapter 5, we demon-

strate the possibility of using micropillar-based quantum dots for quantum error detection.

Encoding the data into the polarisation of the photons, we can extract the syndrome by

performing a quantum nondemolition measurement on the spin. We also analyse the effect

of imperfections on the scheme. Finally, in Chapter 6, we seek to characterise a quantum

dot-cavity device. We present the Hamiltonian for this setup and analyse the light–matter

interaction at the single- and two-photon level. We also consider the photon statistics of

the output and determine its use as a potential single-photon source. We conclude the

thesis with a summary of the work done and the main results, as well as a discussion on

potential future work and outlook in Chapter 7.



CHAPTER

2

QUANTUM MECHANICS

In this chapter, we start by introducing the postulates that underpin quantum mechanics

and explain how these serve as the foundation to describe any system in terms of its state,

physical observables and dynamics. We then delve into the density matrix formalism and

dynamical representations of a given state, before moving to explain the quantisation of the

electromagnetic field and the use of mode operators to mathematically represent different

photonic states. Next, we give a detailed view of entanglement and motivate the use of a

measure to properly characterise the degree of entanglement in different systems. Finally,

we give an introduction to quantum error correction as a guide for the work presented later

on in this thesis. This chapter is also meant to serve as a foundation for the quantum optics

theory explained in Chapter 3.

2.1 Fundamentals in quantum mechanics

The need for a formal theory of quantum mechanics resulted from the observation of phe-

nomena that could not be reconciled using, what would later be referred to as, classical

physics. Examples that demonstrate the need for quantum physics include the Stern–

Gerlach experiment [37], which shows that the intrinsic angular momentum of an electron

is quantized, as well as photon antibunching, successfully first demonstrated by Kimble et

al. [38] and proving that light requires a quantum treatment in order to be fully described.

However, up until 1925, this new theory was still being defined within the confines of clas-

sical physics by using its mathematical structures. At this point, things started to rapidly

evolve due to the groundbreaking contributions of prominent physicists1 in the development

1Erwin Schrödinger, Werner Heisenberg, Max Born, Pascual Jordan, John von Neumann, Hermann

Weyl, Paul Dirac.

5



6 Chapter 2. Quantum mechanics

of novel mathematical foundations. We now give a summary of the axioms that serve as the

mathematical framework for quantum mechanics, broken down into the main constituents

of any physical system: states, observables and dynamics.

The first postulate in quantum mechanics states that any quantum mechanical system

at a time t can be fully described by its time-dependent wavefunction, |Ψ (t)⟩. This wave-

function is a ray in the N -dimensional Hilbert space of the system, H, which is a complex

inner product space. Here we note that by using the term ray, rather than vector, we

stipulate that all vectors equivalent up to some overall phase exp (iϕ) describe the same

state, where such an overall phase is not physically observable. Furthermore, the wave-

function represents the probability amplitude distribution of the quantum system and may

be expressed using any basis {|ψi⟩} of the system’s Hilbert space:

|Ψ (t)⟩ =
∑
i

ci (t) |ψi⟩ , (2.1)

with ci (t) ∈ C for all i. Here we consider that the wavefunction is properly normalised

such that ⟨Ψ (t) |Ψ (t)⟩ =
∑

i | ci (t) |2 = 1, where | ci (t) |2 is the probability of measuring

the system in state |ψi⟩.
The second postulate asserts that any observable of the system can be mathematically

represented by a Hermitian operator, A,2 acting on the state |Ψ⟩ (we have dropped time

dependence for notational convenience). The eigenvectors of the observable form a basis

of H and, therefore, measuring the physical observable corresponding to A results in one

of operator’s eigenvalues. The probability of obtaining some measurement represented by

the eigenvalue a is given by the Born rule in quantum mechanics. In the case of a discrete

spectrum, the probability is given by

P (a) = | ⟨ψa|Ψ⟩ |2, (2.2)

where |ψa⟩ is the corresponding eigenvector.3 For a continuous spectrum, where the prob-

ability amplitudes are expressed in terms of some density function, the probability of mea-

suring some value between (a, a+ da) is given by

P (a, a+ da) = | ⟨ψa|Ψ⟩ |2da. (2.3)

The act of measuring the system in H results in the collapse of the wavefunction: the

state |Ψ⟩ is projected onto the eigensubspace of the corresponding measurement outcome.

Hence, when obtaining a measurement outcome a, we have

|Ψ⟩ Measurement−−−−−−−−→ Πa |Ψ⟩√
⟨Ψ|Πa|Ψ⟩

, (2.4)

where Πa = |ψa⟩ ⟨ψa| (=
∑

i |ψ
(i)
a ⟩ ⟨ψ(i)

a | in the case of a degenerate spectrum) satisfies the

conditions of a projection operator. Given this collapse of the wavefunction resulting from

2It is common practice in quantum field theory to drop the use of “ˆ”, otherwise used to denote operators,

as its implication is otherwise understood from the context. We also choose to drop its use in this thesis to

ease the notation.
3Although, strictly speaking, the definition here is applicable to a non-degenerate discrete spectrum, this

can be trivially generalised for the case of a degenerate spectrum.
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the action of a measurement, a second immediate measurement of the same observable A

would then necessarily result in the same outcome.

The third postulate relates to the evolution of the system with time. The dynamics

of a closed, or perfectly isolated, quantum system can be obtained by applying a unitary

transformation to the wavefunction, which evolves it from some initial time t0 to some later

time t:

|ψ (t0)⟩ → |ψ (t)⟩ = U (t, t0) |ψ (t0)⟩ , (2.5)

where U †U = 1 by definition of a unitary operator.

We note here that having a transformation operator that is unitary is sufficient for the

quantum mechanical system to be considered as closed. In fact, assuming a normalised

wavefunction at some initial time t0, we then obtain for any time t

⟨ψ (t) |ψ (t)⟩ = ⟨ψ (t0) |U † (t, t0)U (t, t0) |ψ (t0)⟩ = ⟨ψ (t0) |ψ (t0)⟩ = 1. (2.6)

The wavefunction represents a complex-valued probability amplitude distribution. Taking

the inner product of the (initially normalised) wavefunction is mathematically equivalent to

finding the total probability of the quantum system occupying a state in the defined Hilbert

space, and therefore having the inner product be constantly equal to unity means that the

state can be fully described by the given Hilbert space at any given time. We will see further

on that quantum systems may couple to the environment due to dissipation, necessitating

the use of density matrices to properly characterise the system and its dynamics.

Any unitary operator may be written in the form of exp (iA) where A is some Hermitian

operator called the generator. Let us then consider the unitary transformation generated

by the Hamiltonian of the system, H, such that

U (t+ ∆t, t) = exp

(
−i
H∆t

ℏ

)
, (2.7)

where ℏ is the reduced Planck constant, introduced to keep the generator dimensionless.

The choice of our operator H here is analogous to the use of the Hamiltonian in classical

mechanics, also representing the total energy of the system, to generate time evolution [39].

Applying this to our wavefunction in order to obtain |ψ (t+ dt)⟩

|ψ (t+ dt)⟩ = U (t+ dt, t) |ψ (t)⟩

=

(
1− i

Hdt

ℏ
+ . . .

)
|ψ (t)⟩ ,

(2.8)

where

|ψ (t+ dt)⟩ = |ψ (t)⟩ + dt
d

dt
|ψ (t)⟩ + . . . . (2.9)

Taking the infinitesimal limit such that dt → 0, we can ignore higher order terms in dt,

giving us the Schrödinger equation:

iℏ ∂t |ψ (t)⟩ = H |ψ (t)⟩ . (2.10)

Given a set of initial conditions, one may use this equation to mathematically map out the

trajectory of the system as it evolves over time.
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2.2 Density matrices

At this stage we introduce the density matrix formalism [40]. The state of an isolated

quantum system may be denoted in matrix form by taking the outer product of its wave-

function:

ρ = |Ψ⟩ ⟨Ψ| =
∑
i,j

cic
∗
j |ψi⟩ ⟨ψj | , (2.11)

where the diagonal entry ρii = |ci|2 is the probability of finding the system in state |ψi⟩,
and therefore referred to as the population of the state. For a normalised state, we have∑

i ρii = 1. The off-diagonal entries of the density matrix denote the interference between

two orthogonal eigenstates and are a signature of the state’s quantum superposition and

coherence.

A quantum system may exist in a coherent superposition of different possible states.

An attempt at measuring the state of the system (in the appropriate basis) results in

a random outcome, the probability of which is determined by the probability amplitude

distribution of the system. It therefore makes sense to assign an expectation value for a

given observable, A. We define this as

⟨A⟩ = ⟨Ψ|A|Ψ⟩ =
∑
i,j

c∗i cj ⟨ψi|A|ψj⟩ =
∑
i,j

ρji ⟨ψi|A|ψj⟩ = Tr [ρA] , (2.12)

where we have used the notation for the density matrix elements given by ρij = ⟨ψi|ρ|ψj⟩,
the completeness of the eigenbasis such that

∑
i |ψi⟩ ⟨ψi| = 1, and the definition of the trace

given by Tr [A] =
∑

i ⟨ψi|A|ψi⟩. Formally, the density matrix needs to satisfy the following

properties:

1. ρ† = ρ (Hermiticity),

2. Tr [ρ] = 1 (normalisation),

3. ⟨Ψ|ρ|Ψ⟩ ≥ 0 for all |Ψ⟩ (positivity).

(2.13)

The density matrix formalism therefore provides a convenient way to express the expec-

tation value of an observable. At this stage we note the equivalence between an observable

being Hermitian, as stipulated in the second postulate, and an expectation value that is

real:

⟨A⟩ = ⟨A⟩ ⇐⇒ ⟨Ψ|A|Ψ⟩ = ⟨Ψ|A|Ψ⟩ = ⟨Ψ|A†|Ψ⟩ ⇐⇒ A = A†. (2.14)

The usefulness of the density matrix description lies in its ability to also account for

systems that are no longer in a pure state, i.e., they can not be expressed in the form of a

vector of the system’s Hilbert space as in Eq. (2.1). This is the case for systems that exist

in some statistical mixture of different quantum states [41]. It is also a convenient way of

describing open systems that have the same Hilbert space as a closed one but, due to the

interaction with their environment, undergo different dynamics. This may happen in the

event of some perturbation occurring to the system, coupling to the environment resulting

in decoherence or making some measurement and obtaining only partial information about

the full system. In such cases, we say the system exists in a mixed state.
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1

|0〉

z
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y

|1〉

φ

θ |ψ〉

|+〉
|+i〉

Figure 2.1: The Bloch sphere is a geometrical representation of all possible states of a

qubit. The orthonormal basis vectors are |0⟩ and |1⟩. Points on the surface represent pure

states, with |+⟩ = (|0⟩ + |1⟩) /
√

2 and |+i⟩ = (|0⟩ + i |1⟩) /
√

2, whilst mixed states are all

located within the sphere.

Consider a system that is in an ensemble, or statistical mixture, of the pure states {|Ψi⟩},

which are not necessarily orthogonal to each other. We make an important distinction here

between a statistical ensemble and a quantum superposition: the latter is a system that

coherently exists in multiple states at a given time, whilst the former is considered to be

a statistical mixture only due to lack of information on the observer’s part and there are

no quantum interference effects between two eigenstates belonging to different pure states.

The density matrix of such a mixed state then takes the form of

ρ =
∑
i

pi |Ψi⟩ ⟨Ψi| . (2.15)

We incorporate here classical probability in the form of pi, which is the probability of the

system occupying the state |Ψi⟩ and where
∑

i pi = 1. In order to distinguish between

pure and mixed states, we may consider the purity of the density matrix. This is given

by Tr
[
ρ2
]
≤ 1 and the inequality is saturated if and only if it describes a pure state.

Furthermore, the expression for the expectation value defined in (2.12) also holds for mixed

states.

The simplest nontrivial quantum system one may consider is a two-level system, ubiq-

uitously referred to as a qubit. The Bloch sphere, shown in Fig. 2.1, is a geometric repre-

sentation of all possible states of a qubit and provides a convenient intuition for the two

types of density matrices. A qubit can be expressed as

|ψ⟩ = cos
θ

2
|0⟩ + eiϕ sin

θ

2
|1⟩ , (2.16)
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where |0⟩ , |1⟩ are the orthonormal basis vectors of the qubit’s two-dimensional Hilbert

space, C2. Its density matrix can be expressed as a linear combination of the identity and

Pauli matrices:

ρ =
1

2
(1 + rxσx + ryσy + rzσz) , (2.17)

where the Pauli matrices are of the form

σx =

(
0 1

1 0

)
, σy =

(
0 −i

i 0

)
, σz =

(
1 0

0 −1

)
. (2.18)

Defining r = (rx, ry, rz), we can use the property that density matrices are positive semi-

definite to conclude that |r|2 ≤ 1. Furthermore, since pure states have unit purity, such

that Tr
[
ρ2
]

=
(
1 + |r|2

)
/2 = 1, then we must conclude that pure states only occupy points

on the surface of the sphere such that |r| = 1. The interior would then correspond to only

mixed states.

2.3 Dynamical pictures

So far we have assumed that the time dependence of our quantum system is captured and

described by the state’s wavefunction |Ψ (t)⟩. The evolution of the system is then given by

Schrödinger’s equation and the operators associated with the system remain constant in

time. This is known as the Schrödinger picture. Alternatively, one may choose to represent

the system within the Heisenberg picture, whereby the time dependence is described by the

operators and the states do not change in time. The two pictures are equivalent and give

the same results, and the choice of one description over the other is usually a matter of

convenience.

We start by considering the expectation value of an observable A as given by Eq. (2.12)

⟨A⟩ = Tr [|Ψ (t)⟩ ⟨Ψ (t)|AS]

= Tr
[
U (t, t0) |Ψ (t0)⟩ ⟨Ψ (t0)|U † (t, t0)AS

]
= Tr

[
|Ψ (t0)⟩ ⟨Ψ (t0)|U † (t, t0)AS U (t, t0)

]
= Tr [|Ψ (t0)⟩ ⟨Ψ (t0)|AH (t)] ,

(2.19)

where we have used the cyclic property of the trace and the subscript ‘S’ and ‘H’ denotes

operators in the Schrödinger and Heisenberg picture, respectively. We can therefore define

the time-dependent operators in the Heisenberg picture by AH (t) = U † (t, t0)AS U (t, t0),

with the state of the system, |ΨH⟩ = |Ψ (t0)⟩, being constant in time.

We now wish to understand the time evolution of the operator AH (t), similarly to how

we described the dynamics of the state using the Schrödinger equation in Eq. (2.10). Recall

first that

U (t, t0) = exp

(
−i
Ht

ℏ

)
=⇒ d

dt
U (t, t0) = −i

H

ℏ
U (t, t0) . (2.20)
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Then by differentiating the operator with respect to time, we find

d

dt
AH (t) =

d

dt
U † (t, t0)AS U (t, t0)

= U̇ † (t, t0)AS U (t, t0) + U † (t, t0) ȦS U (t, t0) + U † (t, t0)AS U̇ (t, t0)

=
i

ℏ
HAH (t) + ∂tAH (t) − i

ℏ
AH (t)H

= − i

ℏ
[AH (t) , H] + ∂tAH (t) ,

(2.21)

where we denote the commutator by [A,B] = AB −BA. This is known as the Heisenberg

equation. Here, the partial derivative with respect to time takes into account only the

explicit time-dependence of the operator in the Schrödinger picture. This applies in the

case of, say, dependence on some external time-varying electric field. However generally

this operator is independent of time.

In the study of physically interesting systems, we quickly find that relying on just one of

the aforementioned representations is not the most convenient choice. It is therefore more

useful to take a hybrid approach in the form of the interaction (or Dirac) picture, where

the time dependence of the observables is captured by both the operators and the state

vectors. This is commonly used when the system evolves due to some interaction. Here,

the tractable part of the evolution is prescribed to the operators whilst any complications

are confined to the dynamics of the state. This is done by taking the Hamiltonian of the

system in the Schrödinger picture and splitting it up into a free, H0, and interaction part,

Hint, such that H = H0+Hint. Although the choice of partition is arbitrary, it is preferable

to set H0 such that it is easy to solve exactly and to have no explicit time-dependence,

whilst attributing more complex perturbations to Hint. Moreover, it is typical to choose

the free and interaction parts to be such that the interaction strength is much weaker than

the energy associated with the free parts.

We may define the state vectors and operators in the interaction picture by keeping

in mind the requirement of the invariance of the expectation values across the different

representations:

⟨A (t)⟩ = Tr [ρ (t)A (t)] , (2.22)

where ρ andA both describe the same picture. This then motivates the following definitions:

|ΨI (t)⟩ = U †
0 (t, t0) |ΨS (t)⟩

= U †
0 (t, t0)U (t, t0) |Ψ (t0)⟩ ,

(2.23a)

AI (t) = U †
0 (t, t0)AS (t)U0 (t, t0) , (2.23b)

where U0 (t, t0) = exp (−iH0t/ℏ) and subscript ‘I’ denotes the interaction representation.

Note the operator A (t) normally does not have an explicit time-dependence, in which case

we may denote it as simply AS.
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The Schrödinger equation in the interaction picture can then be expressed by means of

the time derivative of the state, giving

iℏ
d

dt
|ΨI (t)⟩ = −U †

0 (t, t0)H0 |ΨS (t)⟩ + U †
0 (t, t0) iℏ

d

dt
|ΨS (t)⟩

= Hint,I |ΨI (t)⟩ ,
(2.24)

where we have defined the interaction part of the Hamiltonian in the interaction picture as

Hint,I (t) = U †
0 (t, t0)HintU0 (t, t0) . (2.25)

The free part of the Hamiltonian is similarly defined. However, given that H0 commutes

with itself, the operator in the interaction picture is left unchanged. It is then clear from

Eq. (2.25) that the state does not evolve should Hint be set to zero and the interaction

part of the Hamiltonian, and any complex perturbations attributed to it, is reflected in the

evolution of the state, not the operators. Finally, we may express the time evolution of

operators in the interaction picture by

d

dt
AI (t) = − i

ℏ
[AI (t) , H0] + ∂tAI (t) . (2.26)

2.4 Quantisation of the electromagnetic field

We now move on to consider the quantised electromagnetic field, composed of discrete

and indivisible energy packets in the form of photons. Consequently, we can describe the

field in terms of so-called ladder operators which are derived from the coefficients of the

expansion of the field in terms of its basis functions. This technique is often referred to

as second quantisation for historical reasons. However, in the context of quantum field

theory, it is more apt to refer to canonical quantisation. There exist a few approaches to

the quantisation of the electromagnetic field [42–44]. However, we choose to describe this

in the context of a cavity [45].

Note that in this section we will adopt the convention of using the hat, or “ .̂ ”, to

distinguish operators from classical variables. We start off from the classical description of

the electromagnetic field, whereby we can use Maxwell’s equations to obtain the following

wave equation for the electric field E(r, t) inside a cavity with perfectly conducting walls

(and in the absence of free charges and currents)

∇2E(r, t) =
1

c2
∂2E(r, t)

∂t2
, (2.27)

where c is the speed of light. The magnetic field B(r, t) is related to the electric field by

∇×E(r, t) = −∂B(r, t)

∂t
. (2.28)

The classical Hamiltonian of the field is given by [46]

H =
1

2

∫
V

d3r

(
ϵ0|E(r, t)|2 +

1

µ0
|B(r, t)|2

)
, (2.29)
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where ϵ0 and µ0 are the free space permittivity and permeability, respectively, with ϵ0µ0 =

c−2, and the integral is taken over the volume, V , of the cavity.

Let us assume that our cavity supports only a single field mode with frequency ω and

mode amplitude q(t). The Hamiltonian can then be expressed in the more convenient form

of [47]

H =
1

2

(
ω2q2 + p2

)
, (2.30)

where p = q̇ is the canonical momentum of q and the expression is, therefore, formally

equivalent to a harmonic oscillator.

Suppose we have a cavity that can support multiple modes, j = 1, 2, 3, . . ., none of

which interact with each other. We now proceed to quantise the electromagnetic field by

transforming the canonical coordinates to operators, such that qj → q̂j and pj → p̂j =

−iℏ∇, and imposing the commutation relations

[q̂j , p̂k] = iℏδjk, (2.31a)

[q̂j , q̂k] = [p̂j , p̂k] = 0, (2.31b)

where δjk is the Kronecker delta. The first expression is due to the commutation relation

between the canonical position and momentum operators in quantum mechanics, and is

necessary to endow quantisation to the field.

In this procedure we have restricted ourselves to one spatial dimension, yet care should

be taken in the three-dimensional case. Here, we need to remember that the fields need to

be orthogonal to the propagation direction due to Gauss’ law, ∇ · E = 0, assuming zero

charges. Then, in generalising Eq. (2.31a) to the three-dimensional case we would need to

modify the delta function on the right-hand side of the equation to ensure consistency with

Gauss’ law. We will not delve deeper in the treatment of this, however a more detailed

account is given in, e.g., Ref. [48].

We next make a canonical transformation by defining the non-Hermitian operators âj
and â†j as

âj =
1√

2ℏωj
(ωj q̂j + ip̂j) (2.32a)

â†j =
1√

2ℏωj
(ωj q̂j − ip̂j) , (2.32b)

with [âj , â
†
k] = δjk and [âj , âk] = [â†j , â

†
k] = 0 by the commutation relations imposed on the

original canonical operators.

This allows us to express the quantised Hamiltonian as

Ĥ = ℏ
∑
j

ωj

(
â†j âj +

1

2

)
. (2.33)

where the eigenvalues, or energy levels, are given by E(n1, n2, . . .) = ℏ
∑

j ωj(nj + 1
2),

where nj = n1, n2, . . . are non-negative integers. This is the Hamiltonian for the quantum

harmonic oscillator with the fundamental frequency of the jth mode given by ωj . We can
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therefore interpret the quantised electromagnetic field as being composed of an infinite

sum of harmonic oscillators (assuming no sources) with the total energy being equal to the

sum of the energies of the individual components, or modes. The operators âj and â†j are

referred to as ladder operators and we will discuss their roles as mode operators in more

detail in the next section.

2.5 Quantum states of the electromagnetic field

In the previous section we gave a quantised description of the electromagnetic field and its

Hamiltonian in terms of the ladder, or mode, operators. We will now describe the quantum

states pertaining to this field and resume the omission of the use of “ ˆ ” for notational

convenience.

2.5.1 Fock states

We first introduce the operator n = a†a, which we refer to as the number operator and

satisfies the eigenvalue problem given by

n̂ |n⟩ = n |n⟩ , (2.34)

where |n⟩ are eigenstates of n̂, and consequently of Ĥ as given in Eq. (2.33), and n is an

integer. These are referred to as Fock, or number, states. Without loss of generality, let us

consider the Hamiltonian for a single mode and apply the ladder operator such that

Ha† |n⟩ = ℏω
(
a†a+

1

2

)
a† |n⟩

= ℏω
[
a†
(
a†a+ 1

)
+
a†

2

]
|n⟩

= (En + ℏω) a† |n⟩ ,

(2.35)

where En is the energy of state |n⟩. The action of a† is therefore to increase the energy of

the system by a quantum of energy, ∆E = ℏω; physically, this represents the addition of a

single photon to the field. Similarly, we find that Ha |n⟩ = (En − ℏω) a |n⟩, with the energy

decreasing by the same amount as a consequence of the application of a. The operators a†

and a are then aptly referred to as the creation and annihilation operators, respectively,

and are analogous to the raising and lowering operators of the quantum harmonic oscillator

ladder.

Using the number operator, we can probe a bit deeper the effect of the ladder operators

on Fock states. We first operate on the state |n⟩ with a† and find its norm, obtaining the

following

|| a† |n⟩ ||2 = ⟨n|aa†|n⟩ = ⟨n|
(
a†a+ 1

)
|n⟩ = n+ 1. (2.36)

From the normalisation condition, we can conclude that a† |n⟩ =
√
n+ 1 |n+ 1⟩ and, simi-

larly, a |n⟩ =
√
n |n− 1⟩. Any Fock state can be expressed in terms of the creation operators
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as

|n⟩ =

(
a†
)n

√
n!

|0⟩ . (2.37)

Moreover, it is clear from these equations that the number of photons cannot be negative.

2.5.2 Coherent states

The coherent state is a state of the quantised electromagnetic field that serves as a conve-

nient basis for various fields and whose behaviour very closely resembles that of a classical

harmonic oscillator [49]. The description of light in classical optics considers states with

very large, and highly uncertain, photon numbers. This has motivated the introduction

and wide use of coherent states in quantum optics. It is also used as an idealised description

of laser light due to its properties.

We define the coherent state |α⟩ to be the unique eigenstate of the annihilation operator

a, such that a |α⟩ = α |α⟩. This can be expressed in terms of Fock states, with |α⟩ =∑
n cn |n⟩. Taking the inner product with ⟨n|, we obtain

⟨n|a|α⟩ = ⟨n|α|α⟩ =⇒
√
n+ 1 ⟨n+ 1|α⟩ = α ⟨n|α⟩ , (2.38)

giving us the recursion relation of cn = c0α
n/

√
n!. Taking the state to be normalised, such

that ⟨α|α⟩ = 1, we obtain the expression for the coherent state given by

|α⟩ = e−|α|2/2∑
n

αn√
n!

|n⟩ . (2.39)

Here, α represents the amplitude of the state, which can be seen when taking the photon

number expectation value given by ⟨n⟩ = ⟨α|a†a|α⟩ = |α|2. Furthermore, the standard

deviation of the state is given by ∆n = |α| and since this scales as the square root of

the photon number, the statistics for high intensity fields with α → ∞ resemble that of a

classical stable wave. Finally, we also consider the photon statistics of our coherent state.

The probability of measuring n photons, P (n), can be obtained by considering the inner

product with ⟨n|, which gives

⟨n|α⟩ = e−|α|2/2∑
m

αm√
m!

⟨n|m⟩

= e−|α|2/2 α
n

√
n!
.

(2.40)

We then find that

P (n) = | ⟨n|α⟩ |2 = e−|α|2 |α|2n
n!

= e−n̄
n̄n

n!
, (2.41)

where n̄ is the mean, or expectation value, of the number of photons. The coherent state

therefore exhibits a Poissonian distribution.

We may also consider a photon wavepacket, i.e., an electromagnetic wave ‘envelope’

localised in space, with a single photon made up of a superposition of modes differing
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in frequency, b† |0⟩ =
∫

dω f (ω) a† (ω) |0⟩. The wavefunction describing the probability

amplitude density is normalised such that
∫

dω|f (ω) |2 = 1. Using the Heisenberg equation

of motion, we find that a single creation operator evolves with time as

a† (ω, t) = a† (ω) eiωt. (2.42)

The time-evolution of the single photon wavepacket can be expressed by setting f (ω) →
f (ω) eiωt and, therefore, a state that is coherent at some initial time would maintain this

property as it evolves.

2.6 Entanglement

2.6.1 Entanglement as a resource

An essential element of the work in this thesis has been the generation of entanglement as

a resource in quantum information processing. Consider a system composed of two sub-

systems, described by the tensor product of the respective Hilbert spaces H = H1 ⊗ H2.

Then any state of the composite system may be described as

|Ψ⟩ =
∑
i,j

cij |i⟩1 ⊗ |j⟩2 , (2.43)

where {|i⟩1} and {|j⟩2} are some basis for H1 and H2, respectively. We call the state of

the system separable if it can be expressed in the form |Ψ⟩ = |ψ⟩1 ⊗ |ϕ⟩2, i.e., it can be

factorised as a product of state vectors of the individual sub-systems. However, if there

does not exist any decomposition of the state in this product form, we say that the system

is entangled and the state of one sub-system fundamentally depends on that of the other.

The presence of entanglement can be seen clearly by considering the density matrix

formalism when describing the two sub-systems. Let us assume a two-qubit system that

has been prepared in the state |Ψ⟩ = (|01⟩ + |10⟩) /
√

2 and that Alice and Bob each hold

one of the qubits. It is evident that the state of the qubits are correlated, since the state

of Alice’s qubit depends on that of Bob and vice versa. The density matrix for this state

is then

ρ =
1

2
(|01⟩ ⟨01| + |01⟩ ⟨10| + |10⟩ ⟨01| + |10⟩ ⟨10|) . (2.44)

If we wish to now describe only Alice or Bob’s systems, we may do so by considering the

respective reduced density matrix. To do so, we take the partial trace with respect to the

other sub-system and effectively trace it out. For Alice, we find

ρA = TrB [ρ] =
∑
i=0,1

⟨i|ρ|i⟩ =
1

2
(|1⟩ ⟨1| + |0⟩ ⟨0|) , (2.45)

and similarly for Bob,

ρB = TrA [ρ] =
1

2
(|0⟩ ⟨0| + |1⟩ ⟨1|) . (2.46)
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One might argue that this is similar to the classical correlation that would result, say, if

Alice and Bob each had to choose a marble from a container holding one black and one

white marble, which can be represented as the mixed state

ρ =
1

2
(|01⟩ ⟨01| + |10⟩ ⟨10|) . (2.47)

However, the difference becomes clear when we try to reconstruct the original density

matrix from the reduced ones:

ρA ⊗ ρB =
1

4
(|00⟩ ⟨00| + |01⟩ ⟨01| + |10⟩ ⟨10| + |11⟩ ⟨11|) . (2.48)

This is no longer equal to the original density matrix as given in Eq. (2.44), from which

we can conclude that there is information about the composite system that cannot be

obtained by considering just each sub-system on its own. We call this quantum correlation

entanglement. Indeed, the action of tracing out one of the participants reduced the density

matrix from a pure to a mixed state. In general, a pure state of a bipartite system is

entangled if and only if the reduced density matrices are mixed. This signifies the loss of

information and the introduction of classical uncertainty.

Another important aspect that distinguishes entanglement from classical correlations

can be seen by rotating the basis of the states by

|0⟩ =
|+⟩ + |−⟩√

2
and |1⟩ =

|+⟩ − |−⟩√
2

. (2.49)

We see that the original entangled state becomes |Ψ⟩ = (|++⟩ − |−−⟩) /
√

2 and therefore

remains entangled. However, the mixed state exhibiting perfect classical correlations in

Eq. (2.47) would transform to

ρ =
1

4

(
|++⟩ ⟨++| + |+−⟩ ⟨+−| + |−+⟩ ⟨−+| + |−−⟩ ⟨−−|

− |++⟩ ⟨−−| − |−−⟩ ⟨++| − |+−⟩ ⟨−+| − |−+⟩ ⟨+−|
)
,

(2.50)

which exhibits zero correlations. We can therefore conclude that entanglement shows cor-

relations stronger than correlations in purely classical systems.

One of the most prominent examples of entanglement as a resource is its application

in quantum teleportation [50]. Suppose Alice holds a qubit prepared in some unknown

state |ψ⟩1 = α |0⟩1 + β |1⟩1 and wishes to transfer this state to a qubit held by Bob. By

the no-cloning theorem [51], it is impossible to reproduce a copy of Alice’s qubit faithfully

without prior knowledge of the state. Instead, we have to make use of Bell states, which

are maximally entangled and given by

|Φ±⟩ =
|00⟩ ± |11⟩√

2
and |Ψ±⟩ =

|01⟩ ± |10⟩√
2

. (2.51)

Alice and Bob will now share the Bell state |Φ+⟩ between them (the choice of which Bell

state is arbitrary) and the total system is given by

|Ψ⟩123 = |ψ⟩1 ⊗ |Φ+⟩23 =
1√
2

(α |000⟩ + α |011⟩ + β |100⟩ + β |111⟩) , (2.52)
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where Alice holds the first 2 qubits and Bob holds the third. Let us express the state of

qubits 1 and 2 in the Bell basis:

|Ψ⟩123 =
1

2

[
|Φ+⟩ (α |0⟩ + β |1⟩) + |Φ−⟩ (α |0⟩ − β |1⟩)

+ |Ψ+⟩ (β |0⟩ + α |1⟩) + |Ψ−⟩ (−β |0⟩ + α |1⟩)
]
.

(2.53)

This means that Alice may transfer the state of qubit 1 up to some correction, without

physical transmission of any matter, to qubit 3 held by Bob by performing a Bell mea-

surement on her two qubits. Alice may then (classically) communicate her measurement

outcome to Bob in order to determine the necessary corrections to faithfully obtain |ψ⟩.
This protocol shows just how advantageous quantum entanglement can prove to be

when combined with local operations and classical communication (LOCC). We note that

we do not violate the no-cloning theorem at any stage: indeed, Alice’s original qubit seizes

to exist in the original state once it is transferred to Bob’s qubit by means of measure-

ment. We also do not violate the no-signalling principle, i.e., the transfer of information is

always subluminal: although the projection of Bob’s qubit is immediate as a result of the

measurement of the entangled state, information about the measurement outcome needs

to be conveyed by Alice to Bob in order to determine the exact state of the qubit, and this

cannot exceed the speed of light.

2.6.2 Entanglement measures

Until now we have given examples of states that are maximally entangled, however not

all states that are entangled are equally valuable resource-wise. For example, it is rather

intuitive to see that the state |ψ⟩ ∝ |00⟩+ 0.1 |11⟩ is not separable, and hence is entangled,

but is not “as entangled” as |Φ+⟩. In the context of quantum teleportation, say, the use of

such a state would result in unfaithful transmission of the qubit state from Alice to Bob.

Furthermore, determining whether or not a state is separable in some basis is not always

trivial, especially when one considers a mixed state. It therefore makes sense to assign

some measure to the amount of entanglement within a system.

There exist several entanglement measures, often applicable for bipartite systems, which

necessarily satisfy the following conditions: the measure must be 1) a non-negative real

function that is zero for a separable state and maximum for maximally entangled states,

and 2) is invariant under LOCC. Some entanglement measures are tied to the operational

task the entanglement is being used for, such as distillable entanglement and entanglement

cost. Otherwise, one could characterise the amount of entanglement within a system by

making use of more abstractly defined measures, which is what we will consider here.

In the previous section, we discussed how reduced density matrices of entangled pure

states are mixed. This naturally leads us to the most commonly used entanglement measure,

namely the von Neumann entanglement entropy [52] which is given by the expression

S (ρA) = −Tr [ρA log2 ρA] = −
∑
i

λi log2 λi, (2.54)

where ρA is the reduced density matrix of subsystem A and λi are its eigenvalues, and

where S (ρA) = S (ρB). We can see that this concept and expression is parallel to the
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use of entropy in thermodynamics, statistical mechanics and information theory. In the

classical setting, entropy may be used as a measure of the lack of information associated

with a system’s macrostate given some probability distribution for the occupation of its

various microstates. For a macrostate comprising of just one microstate, the uncertainty

(and, hence, entropy) would be zero. On the other hand, the entropy of a macrostate is

at its maximum when all possible microstates are occupied with an equal probability. In

the quantum setting, the entropy would signify the uncertainty associated with the state

of one subsystem resulting from the tracing out of the other. Furthermore, we can extend

this measure to mixed states by defining [53]

S (ρ) = min
∑
i

piS (ρi) , (2.55)

where ρ =
∑

i piρi is the density matrix of the mixed state under consideration and the

minimisation is done over all possible decompositions of ρ.

In this work, we will make use of concurrence [54, 55] as our measure of entanglement

generated between the two spin states. The advantage of this measure is that it is well-

defined for all systems comprising of a pair of qubits, including those that are in a mixed

state. Given a state ρ describing the bipartite system, the concurrence is defined as

C (ρ) = max(0, λ1 − λ2 − λ3 − λ4), (2.56)

where C (ρ) ∈ [0, 1] and λ1, . . . , λ4 are the eigenvalues, in decreasing order, of

R =
√√

ρ (σy ⊗ σy) ρ∗ (σy ⊗ σy)
√
ρ, (2.57)

where σy is the Pauli Y matrix. The concurrence is bounded from below by zero with

entangled states resulting in a strictly positive value that increases monotonically with the

amount of entanglement, whilst separable states have concurrence values of zero.

For a pure two-qubit state |ψ⟩ =
∑

i,j cij |i⟩ ⊗ |j⟩, the concurrence simplifies to

C (|ψ⟩) = | ⟨ψ|σy ⊗ σy|ψ∗⟩ | = 2|c00c11 − c01c10|, (2.58)

where |ψ∗⟩ = |ψ⟩∗ is the complex conjugate. This effectively gives a measure of how much

the probability amplitudes of |ψ⟩ differ from those of a fully separable state: it is clear from

the expression that the concurrence is zero if and only if the state is separable, whilst all

maximally entangled states, given by the four Bell states in Eq. (2.51), give a concurrence

value of unity. When the state is mixed, C(ρ) gives the average concurrence of the pure

state decomposition of ρ, minimised over all possible decompositions [55].

2.7 Quantum error correction

In Chapter 5, we investigate how quantum error correction may be performed using light–

matter interfaces. Therefore, we will now give a brief description of the principles under-

pinning this type of error correction, first proposed by Peter Shor [56]. We first consider
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the classical treatment, where error correction relies on the introduction of redundancy in

the number of bits used to encode a single bit of information. A simple example is the

three-bit repetition code, which maps 0 → 000 and 1 → 111. Should a single bit-flip error

occur, e.g., 000 → 100, this can easily be detected by considering a majority vote, provided

that the error probability is less than 1/2. However, our rudimentary example would not

be tolerant to two- or three-bit errors. Therefore, the type and complexity of the code

needs to cater for the error probability of the computing hardware.

Moving from bits to qubits, however, is not trivial due to the quantum nature of the

encoded information. Given that a qubit can be generally expressed as |ψ⟩ = cos θ/2 |0⟩ +

eiϕ sin θ/2 |1⟩ using the Bloch sphere representation, it is now subject to an infinite range of

errors due to various physical processes. We restrict ourselves to coherent errors that simply

rotate the state vector along the surface of the Bloch sphere. This can be mathematically

described by means of a unitary operator U (δθ, δϕ) evolving the qubit as

U (δθ, δϕ) |ψ⟩ = cos
θ + δθ

2
|0⟩ + ei(ϕ+δϕ) sin

θ + δθ

2
|1⟩ . (2.59)

This can be expressed using the Pauli basis, giving

U (δθ, δϕ) |ψ⟩ = c11 |ψ⟩ + cXX |ψ⟩ + cY Y |ψ⟩ + cZZ |ψ⟩
= c11 |ψ⟩ + cXX |ψ⟩ + cXZXZ |ψ⟩ + cZZ |ψ⟩ ,

(2.60)

where c1, cX , cY and cZ are complex coefficients and the phase difference is absorbed by

the coefficient cXZ . Moreover, the Pauli matrices are given in Eq. (2.18) with XZ = −iY .

Therefore, we see that we can digitise the error process and any coherent error may be

decomposed into Pauli X-type and Pauli Z-type errors. The action of X on a qubit is a

bit-flip (X |0⟩ = |1⟩ and X |1⟩ = |0⟩) whilst Z |ψ⟩ = α |0⟩ − β |1⟩ and the resulting error is,

therefore, referred to as a phase-flip error.

We may now, analogously to the classical case, consider redundancy in the code by

expanding the Hilbert space into which the information is encoded. Keeping to the three-

bit example above, the single logical qubits are given by the physical three-qubit states:

|0l⟩ = |000⟩ and |1l⟩ = |111⟩. However, given that the logical qubit is generally in some

superposition, we may no longer simply perform a direct measurement of the physical qubits

to detect error, as doing so would destroy some of the encoded information. Furthermore,

by virtue of the no-cloning theorem, we may not create exact replicas of our physical qubits

that would allow us to determine any errors. Instead, we can apply projective measurements

that would protect the state. In our example, the state α |0l⟩+ β |1l⟩ = α |000⟩+ β |111⟩ is

preserved when a projective measurement of the form Z⊗Z⊗1 and 1⊗Z⊗Z is performed,

and the corresponding eigenvalue is +1. In the presence of a bit-flip error, we see that the

eigenvalue of either of the two measurements is changed (we simplify the notation by using
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A⊗B = AB):

ZZ1 (α |100⟩ + β |011⟩) = − (α |100⟩ + β |011⟩) ,
1ZZ (α |100⟩ + β |011⟩) = + (α |100⟩ + β |011⟩) ,
ZZ1 (α |010⟩ + β |101⟩) = − (α |010⟩ + β |101⟩) ,
1ZZ (α |010⟩ + β |101⟩) = − (α |010⟩ + β |101⟩) ,
ZZ1 (α |001⟩ + β |110⟩) = + (α |001⟩ + β |110⟩) ,
1ZZ (α |001⟩ + β |110⟩) = − (α |001⟩ + β |110⟩) .

(2.61)

The string of eigenvalues resulting from the measurement process corresponds to the syn-

drome of the error and each error case has its own unique syndrome [57]. Given the

extracted syndrome, we can therefore determine which qubit would need to be corrected

by means of an X operation. In order to be able to detect phase-flip errors, we would need

to increase the dimension of the Hilbert space further, with the procedure remaining the

same. In fact, the code proposed by Shor makes use of nine physical qubits to ensure the

detection of any arbitrary single-qubit error. The Steane code [58] is another model which

similarly detects any error by encoding a logical qubit into seven physical qubits.

We can also define the above as a stabiliser code, where an operator S is said to be

a stabiliser of some state |ψ⟩ if S |ψ⟩ = |ψ⟩. A given state may have a whole group

of stabilisers, the size of which grows with the dimension of the state’s Hilbert space.

We define the stabiliser generator to be the group’s minimal subset from which we can

retrieve all other elements of the group by product operations. Therefore, {ZZ1,1ZZ}
is a generator4 of our three-qubit bit-flip code and these elements suffice to define the

subspace of the total Hilbert space where correct codes without single bit-flip errors exist.

Removing an element from the generator would introduce a qubit degree of freedom and the

stabilised subspace would now also include erroneous qubits. This shows just how powerful

the stabiliser formalism is in quantum error correction [59].

4This need not be unique for a given stabiliser group.
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CHAPTER

3

LIGHT–MATTER INTERACTION

In this chapter we provide a detailed description of the mathematical formulation of the

theory of quantum optics that is used in the work of this thesis. We first give an account

of the Hamiltonian that will be commonly used throughout, and adapt it for a continuum

of electromagnetic field modes in order to properly describe a one-dimensional photonic

waveguide. We then look at different mathematical approaches to describing the interaction

between light and matter at the few-photon level, deriving the equations that will be used

in future chapters. Finally, we give a description of the semiconductor quantum dot and

how it may provide functionality as a spin-based qubit within a quantum optical setup.

3.1 Light–matter Hamiltonian

In this section, we will seek to formally describe the interaction between an applied electro-

magnetic field and matter in the quantum picture, following the treatment of the quantised

field in Sec. 2.4. We start off by introducing the full system Hamiltonian [60],

H = Hfield +Hmatter +Hint. (3.1)

The first two terms on the right-hand side make up the free Hamiltonian, H0, and are

relatively simple in form. The first is obtained as a result of the quantisation of the field,

discussed in Sec. 2.4, whilst the second is given by Ee |e⟩ ⟨e|+Eg |g⟩ ⟨g|, where Ee−Eg = ℏω0.

We can arbitrarily change the zero energy of both Hamiltonians without influencing the

dynamics and, restricting ourselves for now to a cavity setup, we obtain

Hfree = ℏωaa†a+
ℏω0σz

2
, (3.2)

where ωa is the resonance frequency of the cavity mode and σz = 2σ+σ− − 1.

23
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The interaction Hamiltonian, Hint, introduces complexities when it comes to the study

of the interaction dynamics. Therefore, we make certain assumptions and approximations

to the Hamiltonian in order for the interaction to be tractable. We introduce these simpli-

fications in what follows. The interaction between an atom and applied electric field can

be described semiclassically1 by

Hint = −d.E, (3.3)

where d is the dipole moment operator of the atom, and the electric field has frequency ωL
and is given by E (t) = E0e

−iωLt + E∗
0e

iωLt. The above expression is based on the dipole

approximation, where we assume that the external field can be considered constant across

the system due to the wavelength of the field being much larger than the system under

consideration. This is an apt assumption when considering that optical wavelengths range

in the few hundreds of nanometers, whilst the spatial dimension tends to be in the range

of a few Ångströms for atoms [43] and a few nanometers for quantum dots [61].

The transition dipole moment is the electric dipole moment that results from the tran-

sition between two states; in this case, the transition of the electron between two energy

levels. The diagonal entries of the operator are zero (transitions that preserve the state of

the electron are not allowed) and we can therefore express the operator solely in terms of

its off-diagonal elements: d = de,g |e⟩ ⟨g| + d∗
e,g |g⟩ ⟨e|. We then obtain

Hint = −ℏ
(

Ωe−iωLt + Ω̃eiωLt
)
σ+ − ℏ

(
Ω∗eiωLt + Ω̃∗e−iωLt

)
σ−, (3.4)

where Ω = de,g.E0/ℏ is the so-called Rabi frequency and Ω̃ = de,g.E
∗
0/ℏ is referred to

as the counter-rotating frequency. The operators σ+ and σ− are the raising and lowering

operators of the two-level system, respectively, and are defined as

σ+ = |e⟩ ⟨g| , and σ− = |g⟩ ⟨e| . (3.5)

Next, we change the Hamiltonian into the interaction representation with respect to

the free Hamiltonian of the atom; here, the unitary operator is U = exp (iω0t |e⟩ ⟨e|). This

gives us

Hint,I = UHint,SU
†

= −ℏ
(

Ωe−i(ωL−ω0)t + Ω̃ei(ωL+ω0)t
)
σ+ − ℏ

(
Ω∗ei(ωL−ω0)t + Ω̃∗e−i(ωL+ω0)t

)
σ−,

(3.6)

where subscripts I and S indicate the interaction and Schrödinger representations, re-

spectively. We assume that the field is near resonance to the atomic transition such that

ωL − ω0 ≪ ωL + ω0. Therefore, the exponential factors multiplying the counter-rotating

frequencies rapidly oscillate with respect to time and average out to zero over substan-

tial time scales. At this stage we can make the rotating-wave approximation and assume

that we can eliminate these terms. Transforming the modified Hamiltonian back to the

Schrödinger picture, we obtain

HRWA,S = U †HRWA,IU = −ℏΩe−iωLtσ+ − ℏΩ∗eiωLtσ−. (3.7)

1Semiclassical theory describes one part of a system classically, whilst treating the other part as quantum.
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We can obtain the Hamiltonian for the Jaynes–Cummings model [62] by considering a

fully quantum mechanical representation of our setup and taking the field to be quantised.

Replacing the amplitude terms in Eq. (3.7) by mode operators, the interaction part of the

Hamiltonian changes to

Hint = ℏgaσ+ + ℏg∗a†σ−, (3.8)

where a is the mode operator of the field. The coupling constant of the light–matter

interaction, g, describes how strongly the applied field and matter couple to each other and

is given by

g =

√
2π

ℏω
Ωde,g.e, (3.9)

where de,g is the dipole moment and e is the unit polarisation vector of the field. Although

we have assumed a single mode interacting with the dipole, we see that the above can be

easily generalised to a multi-mode field, resulting in

Hint = ℏ
∑
j

(
gjajσ+ + g∗ja

†
jσ−

)
. (3.10)

One point to observe at this stage is the fact that this simplification has resulted in an

expression that preserves the number of excitations: an annihilation (creation) operator

is coupled only to an excitation (de-excitation) operator. There exist regimes, however,

where the rotating-wave approximation is no longer valid, such as the ultra-strong coupling

regime where the separation of relevant timescales is greatly reduced [63].

3.2 Coupling to a waveguide

In our analysis of the light–matter Hamiltonian in Sec. 3.1, we consider a cavity setup.

Although the generalisation from a single cavity mode to multiple ones is trivial, we will

also need to work with two-level systems coupled to a continuum of modes in the form of

fields propagating within optical waveguides. We will formally define the Hamiltonian for

such cases in this section.

We start by considering the quantised electromagnetic field in Sec. 2.4. Here, we have

ignored the wavevector dependence of the field mode operators for notational convenience.

However, this is a consequence of the position dependence of the electromagnetic field

and the mode operator being a function of the conjugate variable, i.e., the wavevector k.

We make the transformation from a discrete sum to a continuous one [64, 65], and the

Hamiltonian then becomes

H = ℏ
∫

dk ω (k) a† (k) a (k) +
ℏω0σz

2
+ ℏ

∫
dk
[
Ṽ (k) a (k)σ+ + H.c.

]
, (3.11)

where H.c. is the Hermitian conjugate and the integration is performed over the whole

reciprocal space.
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3.2.1 Frequency basis

We may wish to work in the frequency basis and, therefore, need to consider the dispersion

relation of our optical setup. We may assume that the bandwidth of the propagating field

under study is narrow enough that we may apply a linear dispersion relation around some

wavenumber k0 such that ωk = vg (k − k0)+ωk0 , where vg = ∂kω|k=k0 is the group velocity

at k0 and assuming that the waveguide supports only right-moving fields. The Hamiltonian

becomes

H = ℏ
∫

dk [vg (k − k0) + ωk0 ] a† (k) a (k) +
ℏω0σz

2
+ ℏ

∫
dk
[
Ṽ (k) a (k)σ+ + H.c.

]
→ ℏ

∫
dk vg (k − k0) a

† (k) a (k) +
ℏΩσz

2
+ ℏ

∫
dk
[
Ṽ (k) a (k)σ+ + H.c.

]
,

(3.12)

where we define Ω ≡ ω0 − ωk0 . In the second line, we have shifted the zero energy of

the free part by ℏωk0 . This is done by changing into the interaction picture such that

we work in a frame rotating with with frequency ωk0 , by applying the transformation

H → U †HU + iℏ∂tU †U with U = exp
[
−iωk0t

(
σz/2 +

∫
dk a† (k) a (k)

)]
.

Finally, we perform a change of variables and defining the mode operators as a (ω) =

a (k + k0) /
√
vg and setting ω ≡ vgk, we obtain

H = ℏ
∫

dω ω a† (ω) a (ω) +
ℏΩσz

2
+ ℏ

∫
dω [V a (ω)σ+ + H.c.] , (3.13)

where we assume that the coupling strength V ≡ Ṽ (k) /
√
vg is constant over the photonic

bandwidth. The treatment of left-moving fields follows similarly.

3.2.2 Position basis

We may also choose to express the system’s Hamiltonian in real space, following a procedure

similar to one set out in Ref. [66, 67]. We start by defining the Fourier transforms

a (k) =
1√
2π

∫ +∞

−∞
dx a (x) e−ikx and a† (k) =

1√
2π

∫ +∞

−∞
dx a† (x) eikx, (3.14)

where a (x) (a† (x)) annihilates (creates) a photon at position x moving towards the right.

Although the operators used here are obtained by defining a Fourier transform of the recip-

rocal space operators, we note here recent work on the formulation of a local quantised field

description by taking into account positive and negative frequency solutions to Maxwell’s

equations [68–70] which motivates strongly the use of such operators.

The field Hamiltonian given by the first term in Eq. (3.12) then transforms to

Hfield =
ℏ

2π

∫
dk dx dx′ vgk a† (x) a

(
x′
)
e−i(x−x′)k

= ℏ
∫

dx dx′ a† (x) a
(
x′
)

(−ivg∂x) δ
(
x− x′

)
= ℏ

∫
dx a† (x) (−ivg∂x) a (x) .

(3.15)
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Figure 3.1: Modelling interaction losses by means of a reservoir coupled to the two-level

system with a coupling rate γ. The coupling rate of the two-level system to the waveguide-

supported modes is given by κ = 2πg2.

The interaction part of the Hamiltonian evolves in the same manner (assuming once again

that the coupling strength is independent of frequency), giving

Hint = ℏ
∫

dx
√

2πV δ (x) [a (x)σ+ + H.c.] . (3.16)

3.2.3 Loss

Unless a physical system is perfectly isolated from its environment, it will likely undergo

losses during its interaction. One way of modelling for the loss is by modelling the loss-

inducing environment as a reservoir, given by the mode operator r and supporting modes

of all frequencies, as shown in Fig. 3.1. The two-level system would couple to the reservoir

with some rate γ that depends on the rate of loss due to the interaction. In the frequency

basis, the Hamiltonian of the system given by (3.13) then changes by H → H +Hres [71],

where

Hres = ℏ
∫

dω ωr† (ω) r (ω) + ℏ
∫

dω

[√
γ

2π
r (ω)σ+ + H.c

]
. (3.17)

Alternatively, one may employ the so-called quantum jump method, first used in de-

scribing open quantum systems [72, 73]. Here, losses are described by the addition of

non-Hermitian terms to the atomic part of the free Hamiltonian:

Hatom =
ℏω0σz

2
→ ℏ

2

(
ω0 −

iγ

2

)
σz. (3.18)

The system now evolves according to this newly defined pseudo-Hamiltonian where, at each

time step, a discontinuous change, or jump, takes place with some probability.

The two approaches are invariant in the dynamics that may be derived from them. The

first offers a more intuitive representation for the occurrence of loss, whilst the second does

not require the expansion of the Hilbert space as all possible lossy modes are effectively

traced out.
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3.3 Wavefunction approach to scattering

We may explore the evolution of a photonic state as it interacts with the two-level system

by means of coherent, or elastic, scattering. We use the two terms here interchangeably.

However, they apply to slightly different contexts: elastic scattering refers to the conserva-

tion of kinetic energy of the scattering particle, whilst coherence relates to the preservation

of a strict relationship between the phases of the initial and final states. We work under

the assumption that both conditions are satisfied.

3.3.1 Waveguide-coupled two-level system

In this section we will show how the evolution of a single photon can be described with

respect to time, as has been detailed in Refs [74, 75]. We first remind the reader that the

Hamiltonian for the system is rendered excitation number preserving by the application

of the rotating wave approximation. This means that we can safely work in the single-

excitation manifold, without needing to consider states of higher order excitations as these

would not result from the dynamics described by the Hamiltonian. The time-dependent

wavefunction, assuming zero loss, can then be expressed as a linear combination of all

waveguide modes and the excited state of the two-level system:

|Ψ (t)⟩ =

∫
dk α (k, t) a† (k) |0⟩ ⊗ |g⟩ + β (t) |0⟩ ⊗ σ+ |g⟩ , (3.19)

where |0⟩ is the vacuum state, with zero photons within the waveguide, and |g⟩ is the ground

state of the two-level system. The wavefunction is normalised such that
∫

dk |α (k, t) |2 +

|β (t) |2 = 1 at all times t. The evolution of this state is described by the Schrödinger

equation, iℏ∂t |Ψ (t)⟩ = H |Ψ (t)⟩. We choose to use a Hamiltonian derived from Eq. (3.11),

where we now set the zero energy at the ground state of the two-level system and transform

to a frame rotating with the transition frequency ω0:

H = ℏ
∫

dk [ω (k) − ω0] a
† (k) a (k) + ℏ

∫
dk
[
Ṽ (k) a (k)σ+ + H.c.

]
. (3.20)

We obtain a set of coupled differential equations by considering the projection of the re-

sulting equation onto the orthogonal states a† (k) |0⟩ ⊗ |g⟩ and |0⟩ ⊗ σ+ |g⟩:

∂tα (k, t) = i [ω (k) − ω0]α (k, t) − iṼ ∗β (t) (3.21a)

∂tβ (t) = i

∫
dk Ṽ α (k, t)

= i

∫
dk Ṽ α (k, t0) e

−i[ω(k)−ω0](t−t0) −
∫

dk dt′ |Ṽ |2β
(
t′
)
e−i[ω(k)−ω0](t−t′),

(3.21b)

where the last line of the second equation is obtained by formally integrating the first

equation with respect to time from some initial time t0 to t and making a substitution.

We next apply the Wigner–Weisskopf approximation used in the theory for spontaneous

emission [76], by which we may assume that the function β (t) varies slowly compared to
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Input
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Transmitted

Figure 3.2: The temporal pulse profile of a single photon propagating towards the right and

scattering off a two-level emitter, the position of which is indicated by the vertical red line.

The incoming photon is assumed to have a Gaussian waveshape with linewidth σ = vgΓ.

We show the pulse shapes of the input (blue), reflected (green) and transmitted (orange)

photons at different times t in units of emitter lifetime, Γ−1.

the exponential term. This implies that the second term in the last line essentially has no

memory of the past, or is Markovian, and can be expressed in a simpler form:∫ +∞

−∞
dk

∫ t

−∞
dt′ |Ṽ |2β

(
t′
)
e−i[ω(k)−ω0](t−t′) Wigner–Weisskopf−−−−−−−−−−−−→

approximation

Γ

2
β (t) , (3.22)

Here, Γ is the total spontaneous emission decay rate, which under the assumption of a

narrow bandwidth photonic state is related to the coupling strength by Ṽ ≈ Ṽ (k0) =√
Γvg/ (4π).

Next, we define our wavefunction at initial time, t0, where we assume that the two-level

system is in the ground state, i.e., β (t0) = 0 and an input photon of the Gaussian form:

α (k, t0) =
1

(πσ′2)1/4
exp

[
−(k − k0)

2

2σ′2
− ix0 (k − k0)

]
, (3.23)

where the pulse is centered around k0 = ω0/vg and x0 is the peak’s position at initial

time t0. The linewidth at full width-half maximum is taken to be σ = vgΓ, where Γ is

the linewidth of the two-level emitter, and σ′ = σ/
(

2
√

ln 2
)

. We can therefore obtain

an analytical expression for α (k, t) (see Ref. [74]) and find the probability for detecting a
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1

a b

gjωe cj, ωjVa,j Vb,j

j ∈ {χ, ψ}

γe
γj

Figure 3.3: A schematic of the model consisting of a two-level system in a photonic crystal

cavity. The cavity supports two orthogonal modes, cj , with mode resonance frequency

ωj and coupling to the two-level system with coupling strength gj , where j = χ, ψ. The

cavity further couples to two semi-infinite waveguides, denoted by a and b, with coupling

strength Va,j and Vb,j , respectively. Losses from non-resonant decay and from the cavity to

non-guided modes are characterised by γe and γj , respectively.

photon at position x at any time t by applying the photon number operator to the state:

P (x, t) = ⟨Ψ (t) |a† (x) a (x) |Ψ (t)⟩ =
1

2π

∣∣∣∣∫ dk α (k, t) eikx
∣∣∣∣2 . (3.24)

We reproduce the results of the waveguide excitation density in Fig. 3.2, showing clearly

how the finite temporal length and, hence, non-zero bandwidth of the wavepacket results in

simultaneous transmission and reflection of the photon. Furthermore, the scattering event

leads to a modification in the spatial shape of the photon scattering in either direction.

3.3.2 Numerical approach

In the previous section, we have described a setup that allows us to obtain analytical

solutions to describe the scattering interaction. However, if we wish to study a more

general case, we might need to make use of a numerical approach to obtain the desired

results, as outlined in [75]. In this section, we will consider a setup that does not allow an

easily tractable analytical solution and discuss the numerical implementation of its solution.

This work has been done with Mateusz Duda, who has performed the calculations and the

numerical simulations.

We consider a Hamiltonian of the form

H = ℏ
∫

dω ω
[
a† (ω) a (ω) + b† (ω) b (ω)

]
+

ℏω0σz
2

+ ℏ
∑
j

ωjc
†
jcj

+ ℏ
∑
j

{
gjcjσ+ +

∫
dω

[
Va,ja (ω) + Vb,jb (ω)

]
c†j

}
+ H.c.,

(3.25)
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which may describe a two-level system, with transition frequency ω0, coupled to a two-mode

cavity, denoted by modes cj and resonant frequency ωj with j = 1, 2, with coupling strength

gj . Furthermore, each cavity mode couples to an infinite waveguide supporting both right-

and left-moving modes, given by a and b respectively, with some coupling strength V .2 In

Fig. 3.3, we give a schematic diagram of the setup.

The first line of the equation gives the free part of the Hamiltonian, whilst the interaction

part is described in the second line. It becomes quickly clear that attempting to solve this

analytically is non trivial due to the indirect coupling between the fields in the waveguide

and the two-level system. Instead, we may obtain the system of differential equations by

using iℏ∂t |Ψ (t)⟩ = H |Ψ (t)⟩ where, once again, we may assume that the wavefunction will

be a state in the single-excitation manifold at all times t and is given by

|Ψ (t)⟩ =

∫
dω
[
αa (ω, t) a† (ω) + αb (ω, t) b† (ω)

]
|0⟩

+
∑
j

βj (t) c†j |0⟩ + γ (t)σ+ |0⟩ .
(3.26)

The form is similar to that given by Eq. (3.19), with the waveguide modes represented

in frequency space instead of reciprocal space. However, we also need to account for the

excitation probability amplitudes for the two cavity modes, represented by βj (t). We

obtain the following set of coupled differential equations by projecting onto the orthogonal

basis states,
{
a† (ω) |0⟩ , b† (ω) |0⟩ , c†j |0⟩ , σ+ |0⟩

}
:

i∂tαa (ω, t) = ωαa (ω, t) +
∑
j

V ∗
a,jβj (t) , (3.27a)

i∂tαb (ω, t) = ωαb (ω, t) +
∑
j

V ∗
b,jβj (t) , (3.27b)

i∂tβj (t) =

∫
dω [Va,jαa (ω, t) + Vb,jαb (ω, t)] + ωjβj (t) + g∗j γ (t) , (3.27c)

i∂tγ (t) =
ω0γ (t)

2
+
∑
j

gjβj (t) . (3.27d)

At this stage, we may discretise the set of equations in both time and frequency, with

∂t → ∆t and dω → ∆ω. This allows us to express the problem as a system of linear

equations in matrix form and is easily solved. We show the dynamics of the system as a

function of time in units of the emitter lifetime τ in Fig. 3.4, assuming an initial photon

propagating towards the right and all other modes occupying their respective ground states.

We also include the effect of dissipation, both from losses mediated by the two-level emitter

as well as cavity losses to the environment, by applying the quantum jump formalism to the

Hamiltonian, as outlined in Sec. 3.2.3. From the figure, we can see how we can effectively

map out the interaction in terms of the probability of the photon occupying one of the

2We will not delve deeper into the form of the Hamiltonian here, as it is outside the scope of this section.

It will be properly discussed in Chapter 6.
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Figure 3.4: The occupation probability of a single excitation as a function of time in units

of emitter lifetime τ : we show left- (a) and right-moving modes (b) in the waveguide, cavity

modes 1 (c) and 2 (d), and occupation of the excited state of the emitter (e). We assume

ω0 = ω1 = ω2, g1 = g2/2 = 0.1ω0 and V1,i = V2,i/2 =
√
ω0 for i = a, b. The dissipation

rates for losses are given by γ0 = γj/3 = 0.1ω0 for j = 1, 2. Figures generated in [77].

modes and the excitation of the two-level system. The photon couples first to the two

cavity modes which then results in an oscillatory behaviour as the excitation oscillates

between the cavity, two-level system and waveguides. The system reaches a steady state

after some time, as the photon fully exits the cavity and is transmitted into either waveguide

with some probability.

To conclude, we note two things: first is that generalising this analysis to two or more

photons quickly increases the computational complexity, especially due to the induced non-

linear effects in the form of four-wave mixing [78]. Second, we can see from the figure that,
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(a) One-sided optical cavity.

a

γ1(ω) γ2(ω)

bin

bout

cin

cout

(b) Two-sided optical cavity.

Figure 3.5: (a) A one-sided optical cavity supporting mode a and coupled to a bosonic

bath of a continuum of modes b (ω) with rate γ (ω). (b) A two-sided optical cavity coupling

to two bosonic baths, b (ω) and c (ω), with respective rate γ1 (ω) and γ2 (ω) by means of

partially reflecting sides.

after some time, the system reaches a steady state that depends on the system parameters.

These observations motivate our use of a different formalism to describe the interaction in

the asymptotic time limit and will be the subject of future sections.

3.4 Input–output formalism

In this section we will describe the input–output formalism widely used in quantum op-

tics. It was first introduced by Gardiner and Collett [79] as a way to formally describe

the response of a finite system coupled to some driving field, without providing an exact

formulation of the dynamics occurring within the system. It may therefore be used to

model, say, a coherent optical field interacting with a cavity.

We follow the approach set out by Gardiner and Collett, as well as Walls and Milburn

[80], by starting off with a single-sided cavity comprised of a fully reflective side and a

partially transmissive one, as shown in Fig. 3.5. The cavity supports a single mode a that

couples with some rate γ (ω) to a bosonic bath, i.e., a continuum of harmonic oscillators,

denoted by b (ω). The system Hamiltonian is given by

H = Hcavity +Hbath +Hint

= ℏω0a
†a+ ℏ

∫
dω ω b† (ω) b (ω) + iℏ

∫
dω

√
γ (ω)

2π

[
b (ω) a† − b† (ω) a

]
,

(3.28)

where we assume that the detuning between the resonant frequency of the cavity, ω0, and

the frequencies within the bandwidth of occupied bosonic modes is sufficiently small for the

rotating-wave approximation to be valid and to allow us to extend the limits of integration

over the infinite range of frequencies.

Next, we define the Heisenberg equations of motion for our mode operators, given by

∂t• = −i [•, H] /ℏ:

∂tb (ω) = −iωb (ω) −
√
γ (ω)

2π
a, (3.29a)
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∂ta = −iω0a+

∫
dω ω

√
γ (ω)

2π
b (ω) . (3.29b)

Formally integrating Eq. (3.29a) from some initial time t0 to t, we obtain

b (ω) = e−iω(t−t0)b0 (ω) −
√
γ (ω)

2π

∫ t

t0

dt′ e−iω(t−t′)a, (3.30)

where b0 (ω) ≡ b (ω, t = t0) is the mode operator at initial time t0.
3 Substituting the above

equation into Eq. (3.29b), we get

∂ta = −iω0a−
γ

2
a+

√
γ

2π

∫
dω e−iω(t−t0)b0 (ω) , (3.31)

where we have applied the first Markov approximation such that the coupling rate may be

considered to be independent of frequency. Once again, this is justified if we consider the

bandwidth of populated bosonic modes to be sufficiently narrow in relation to the cavity

linewidth. The first two terms of the above equation are representative of a harmonic

oscillator with characteristic frequency ω0 undergoing damping with rate γ. The last term

of the equation is used to define the input operator, which drives the oscillatory cavity

mode:

bin (t) =
1√
2π

∫
dω e−iω(t−t0)b0 (ω) (3.32)

with
[
bin (t) , b†in (t′)

]
= δ (t− t′). Similarly, we may choose to integrate from t to some final

time t1 to obtain a similar definition for the output operator, from which we then obtain

bout (t) = bin (t) +
√
γa (t) . (3.33)

This may be interpreted as a boundary condition relating the different modes. The defini-

tion of the input and output operators also induces the following causality relations:[
a (t) , bin

(
t′
)]

= 0 for t′ > t and
[
a (t) , bout

(
t′
)]

= 0 for t′ < t. (3.34)

These stem from the fact that the cavity mode a (t) will not depend on the input operator

bin (t′) if enacted at an earlier time, t < t′, and similarly for the output case.

The derived expressions may be generalised to a two-sided cavity coupling to two sep-

arate bosonic baths, b (ω) and c (ω), as shown in Fig. 3.5. The relation between the input

and output operators is then obtained from

∂ta = −iω0a−
(γ1

2
+
γ2
2

)
a+

√
γ1bin +

√
γ2cin. (3.35)

Finally, we note that this formalism generalises to any system that couples linearly in the

bosonic mode operators and requires only a substitution of Hcavity → Hsystem.

3Although the operators are in the Heisenberg picture, we will not notate the time-dependence explicitly

for notational convenience, except when the time argument is no longer t.
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3.5 Scattering matrix

In this section we will describe the scattering matrix, also commonly referred to as the

S-matrix, which is ubiquitous in the work of this thesis. It is used to describe scattering

phenomena, occurring on relatively short timescales, in quantum mechanics and quantum

field theory by relating initial and final states of the physical system. It is also widely

employed in the context of photonic-based quantum information processing: the interaction

between a photonic ‘flying’ qubit and a stationary qubit physically realised by a two-level

system is of the scattering form.

We follow the approach presented in Ref. [81], where Fan et al. extend the input–output

formalism, discussed in Sec. 3.4 to derive the S-matrix for the scattering of one and two

photons off a two-level system within an optical waveguide. We start from the Hamiltonian

in the frequency basis, given by Eq. (3.13)

H = ℏ
∫

dω ωa† (ω) a (ω)︸ ︷︷ ︸
H0

+
ℏΩσz

2
+ ℏ

∫
dω [V a (ω)σ+ + H.c.]︸ ︷︷ ︸

Hint

, (3.36)

with the operator split into the free and interaction parts as shown. We work in the

interaction representation and define the initial and final states to be free states occurring

long before, or after, the interaction. The elements of the scattering matrix S are the

probability amplitudes relating these two states and are therefore given by the inner product

of the final state with the initial state evolved in the interaction picture:

Sfinal,initial = ⟨Ψfinal|S|Ψinitial⟩ , (3.37)

where S is given by the evolution operator in the long time limit

S = lim
t0→−∞
t1→+∞

Uint (t1, t0) = lim
t0→−∞
t1→+∞

eiH0t1/ℏe−iH(t1−t0)/ℏe−iH0t0/ℏ. (3.38)

The initial and final states may be expressed in terms of appropriately defined input and

output operators:4

ain,S (ω) = eiHt0/ℏe−iH0t0/ℏa (ω) eiH0t0/ℏe−iHt0/ℏ

and aout,S (ω) = eiHt1/ℏe−iH0t1/ℏa (ω) eiH0t1/ℏe−iHt1/ℏ,
(3.39)

where the limits of t0,1 → ∓∞ still apply and are dropped for notational convenience, and

a†in (ω) |0⟩ ≡ |ω+⟩ and a†out (ω) |0⟩ ≡ |ω−⟩ are scattering eigenstates.

Fan et al. show that these operators coincide with the field operators ain (t) and aout (t)

obtained by means of the input–output formalism discussed in Sec. 3.4. The relationship

between the two operators is given by

ain (t) =
1√
2π

∫
dω ain,S (ω) e−iωt and aout (t) =

1√
2π

∫
dω aout,S (ω) e−iωt.

(3.40)

4These operators are related to the so-called Møller wave operators, Ω±, that define the relation between

scattered and free states.
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Therefore, the two types of input and output operators are simply Fourier transforms of

each other in the limit of t0,1 → ∓∞ and we therefore choose to drop the subscript S. This

connection is key in deriving the analytical form of the S-matrix elements. The problem

then reduces to solving

⟨ω−
1 |ω+

0 ⟩ = ⟨0|aout (ω1) |ω+
0 ⟩ =

1√
2π

∫
dt ⟨0|aout (t) |ω+

0 ⟩ eiω1t. (3.41)

This can be done by considering the input–output equation and Heisenberg equations of

motion for the system operators, given by

aout = ain − i

√
2

τ
σ−, (3.42a)

d

dt
N = −i

√
2

τ
(σ+ain − H.c.) − 2

τ
N, (3.42b)

d

dt
σ− = i

√
2

τ
σzain −

1

τ
σ− − iΩσ−, (3.42c)

where τ is the lifetime of the two-level system, with τ = (πvgV
2)−1 and N = σ+σ− projects

onto the emitter’s excited state. We apply the above equations to ⟨0| • |ω+
0 ⟩ and solve the

resulting system of equations by means of Fourier transforms and using the commutation

relation [ain (ω) , a†in (ω′)] = δ (ω − ω′). The S-matrix for the single-photon scattering event

is then defined to be

⟨ω−
1 |ω+

0 ⟩ =
(ω0 − Ω) − i/τ

(ω0 − Ω) + i/τ
δ (ω1 − ω0) ≡ t (ω0) δ (ω1 − ω0) , (3.43)

where the Dirac delta function ensures conservation of energy and t (ω0) is the transmission

coefficient.

The procedure can be generalised to a waveguide supporting both right- and left-moving

photons, in which case the transmission and reflection coefficients are given by

t (ω0) =
ω0 − Ω

(ω0 − Ω) + 2i/τ
and r (ω0) =

−2i/τ

(ω0 − Ω) + 2i/τ
, (3.44)

where we have effectively made the substitution τ → τ/2 due to the coupling of the emitter

in both the forwards and backwards direction.

We will now go briefly over the two-photon scattering case. Following a similar proce-

dure as defined above, the S-matrix elements are found using

⟨ω3 ω
−
4 |ω1 ω

+
2 ⟩ =

∫
dω ⟨0|aout (ω3) |ω+⟩ ⟨ω+|aout (ω4) a

†
in (ω1) a

†
in (ω2) |0⟩ , (3.45)

where we use the identity operator
∫

dω |ω+⟩ ⟨ω+| = 1. This simplifies by means of Fourier

transforms and may be expressed in terms of the transmission coefficient in Eq. (3.43),

giving

⟨ω3 ω
−
4 |ω1 ω

+
2 ⟩ = t (ω3) t (ω4) [δ (ω3 − ω1) δ (ω4 − ω2) + δ (ω3 − ω2) δ (ω4 − ω1)]

+
i

π

√
2

τ
sω3sω4 (sω1 + sω2) δ (ω1 + ω2 − ω3 − ω4) ,

(3.46)
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where

s (ω) =

√
2/τ

(ω − Ω) + i/τ
. (3.47)

We see that this expression has a linear contribution, given by the first two terms on the

right-hand side and a non-linear term, where the energies of the individual photons is not

necessarily conserved, describing the four-wave mixing that results from the interaction

with the two-level system.

3.6 Semiconductor quantum dots

Throughout this work, we assume that the matter qubit is implemented by means of a

semiconductor quantum dot. In this section we aim to give a sufficient description of these

nanostructures as it pertains to the work in this thesis. We will therefore first discuss

their energy level structure before moving on to describe the directional emission of these

emitters when coupled to photonic waveguides.

3.6.1 Energy levels

A quantum dot is strongly confined in all three dimensions, with the dimensions being in

the order of a few nanometers. This results in the discretisation of its energy levels, similar

to what is observed in an atom, and is therefore also commonly referred to as an artificial

atom. We only consider the energy levels adjacent to the band gap, which is the gap that

exists between the valence and conduction bands and in which no electron states may exist.

Here, an optical transition would excite an electron to the s-shell in the conduction band

and leave a heavy hole in the valence band, whilst we neglect higher energy states due to

their relative isolation. This allows us to model the quantum dot as a two-level system.5

The lowest energy level can be occupied by up to two electrons or holes. The optical

excitation of the quantum dot may induce a transition of an electron to a higher energy

level, leaving behind a hole. Given the polarity in their respective charges, the two particles

are attracted to each other by the Coulomb force and form an exciton, X0 [82]. Given that

the exciton is neutral in charge, it is not easy to detect directly. However its decay is

signalled by the emission of a photon as the electron relaxes back to the valence band.

Another quasiparticle of interest is the charged exciton, or trion. This is comprised of

three particles that depend on the charge of the trion: a negatively charged trion X− is

made up of two electrons and a hole and relaxes radiatively to an electron e−, whilst a

positively charged trion X+ has two holes and one electron and transitions to a hole h+.6

In Fig. 3.6, we show level diagrams of the different quasiparticles.

A quantum dot can serve as a qubit given that it can be initialised to a given state and

measured post-interaction, and the information is encoded in the spin degree of freedom.

However all excitons we have mentioned are degenerate in their spin unless under the

5In reality, the quantum dot may also be used as a three- or four-level system, however these are not

relevant to the work we present here.
6There also exists the biexciton, X2, however we do not consider this in our work.
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Figure 3.6: Level diagrams showing the optical transitions for an exciton, X0, and

negatively- and positively-charged trions, X− and X+, respectively, with magnetic field

B ̸= 0. The transitions show electrons (orange) and holes (yellow) present in the three dif-

ferent quasiparticles and how they couple to left- (σ+) and right-circularly polarised (σ−)

photons.
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influence of some external magnetic field that induces Zeeman splitting [83, 84]. Upon the

lifting of this degeneracy by means of a field applied in the so-called Faraday geometry, the

optical transitions become circularly polarised, where the polarisations of the two possible

transitions are mutually orthogonal and depend on the spin state.

3.6.2 Directional emission

In our theoretical formulations we have considered an emitter that couples solely in the

forward direction; this is also a requisite in quantum optical networks if we wish determin-

istic directional transmission of the photonic qubits post-interaction. However, a quantum

dot placed within an optical waveguide will not necessarily show directional emission as it

may couple to all of the waveguide-supported modes. This has led to the development of

chiral quantum optics [85], where light-matter interaction and propagation direction are

mutually dependent, with the types of nanostructures under study going beyond what we

consider in this thesis.

In our work, we will be referring to so-called c-points within photonic waveguides.

These arise from the transversal confinement of the electric field which results in the cir-

cular polarisation of the field at certain locations [86]. These locations carry spin angular

momentum, with the rotational handedness depending on the propagation direction of the

field mode [87]. Suppose we place a quantum dot with a circularly polarised transition

dipole moment at such a point and optically excite one of the spin states. Upon the radia-

tive emission of a photon we would observe spin-momentum locking as the photon couples

solely to the direction that preserves its spin angular momentum. The direction of emission

can be changed by choosing to excite the orthogonal spin state. As a final remark, we note

that although the term ‘chiral’ is used, this is a slight abuse of terminology. Although

chirality implies handedness,7 the symmetry of the waveguide geometry and the structure

of the quantum dot is preserved. (This may also hold for other setups used in this field of

quantum optics.) However, the term is used given that it helps convey the idea of unidi-

rectional emission that would otherwise, under typical circumstances, be omnidirectional.

7The object cannot be superimposed on its mirror image.
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CHAPTER

4

CUMULATIVE GENERATION OF ENTANGLEMENT

In this chapter, we will be studying the creation of entanglement between spectrally different

quantum solid-state emitters by means of the light-matter interaction that arises from the

scattering of photons off these emitters. Specifically, we will be considering squeezed light,

chosen due to the relative ease with which it can be sourced using current technology,

and repeated photon scattering in order to build up the amount of entanglement between

the two quantum emitters. Next, we will consider the effect of scattering losses as well

as detector inefficiencies on the entanglement generation protocol. Finally, we will briefly

address the limitations of experimental implementation. Work in this chapter is based on

Callus and Kok [88].

4.1 Background

Entanglement is a linchpin of quantum computing and information processing [89, 90].

The entanglement of multipartite systems is a necessary requirement for efficient quantum

computing, without which it would not be sufficient to gain computational advantage over

classical computing methods [91,92]. The phenomenon is also an important resource in the

development of quantum technologies in fields such as metrology, imaging and cryptography,

with examples that include secure quantum key distribution [93], quantum teleportation

[50] and entanglement-assisted classical communication, allowing for an improvement in

the classical capacity of noisy quantum channels [94].

There exist many different proposals for the physical implementation of quantum com-

puters. These include superconducting circuits [95–97], trapped ion systems [98, 99] and

photonic architectures [19, 100, 101]. Here, we will consider the qubit encoded in the spin

state of an electron in a solid-state emitter [30]. This can be physically realised, for ex-

ample, by using a charged semiconductor quantum dot with the excess electron (or hole)

41
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transitioning to a negative (positive) trion upon excitation [102, 103]. Furthermore, the

generation of entanglement is key in ensuring the scalability of quantum information pro-

cessors. This has been well-addressed theoretically in the case of solid-state emitters,

and various schemes relating to entanglement generation have been established [104–114].

These protocols utilise single- or few-photon interactions, require a relatively simple optical

setup with few components, and are based on either controllable emitter interactions or

interference effects resulting in the erasure of “which-path” information.

The success of these schemes depends on the optical interference effects that result in

the coherent erasure of which-path information, and therefore it is assumed that emitters

need to be spectrally identical. However, one drawback of the solid-state emitter is that

its intricate mesoscopic environment results in spectral inhomogeneity across and within

fabricated samples [30, 115]. Furthermore, methods to tune the emitter frequencies, such

as diameter tuning [116], strain tuning [117] and utilising Raman transitions tuned into

resonance [118], add further technical complexity to the setup and may be used only in the

case of sufficiently close emitter pairings. These factors make scaling of the entanglement

generation process very expensive in terms of resources.

Taking these practical limitations into consideration, Hurst et al. [119] show how the

variation in central energies and linewidths between emitter pairings is not as detrimental to

the entanglement generation process as previously thought. Indeed, near perfect entangle-

ment is deterministically possible for certain emitter combinations by optimising the input

optical state and tuning the photonic frequency. However, there are two disadvantages to

this proposal. First, it calls for the use of two-mode Fock states, |n,m⟩, which are difficult

to source with current state of the art. Second, only certain areas of the parameter space

may be near-perfectly entangled for a given Fock state, with some combinations necessitat-

ing the use of increasingly difficult to produce higher-order Fock states. In this work, we try

to overcome these difficulties by considering instead squeezed light and by showing how we

can deterministically generate perfect entanglement regardless of the chosen combination

of emitters. Moreover, unlike the proposal by Hurst et al., our scheme always makes use of

the same type of optical input state and fully entangles the two spin states, independent

of the spectral properties of the chosen emitters. Finally, other schemes consider a single

interaction event, which do not cater for spectral variations, and therefore the novelty in

our work lies in the cumulative process of repeated scattering events to build up perfect

entanglement.

4.2 Setup

The setup consists of two emitters embedded in a Mach–Zehnder interferometer, one fixed

in each arm, as shown in Fig. 4.1. Each emitter is of the L-type configuration, with only

one of the two low-lying spin states, |↑⟩ and |↓⟩, coupling to an excited state |e⟩, and where

the transition is circularly polarized. The positioning of the emitters occurs at so-called
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1

Figure 4.1: (a) A schematic representation of the setup: some photonic input state (dotted

box) enters the Mach-Zehnder interferometer, after which the photons scatter off the two

solid-state emitters characterised by energies and line-widths Ei and Γi, where i = 1, 2,

followed by photon measurement at output modes a and b using detectors D1 and D2;

below, on the left we show the input state a† |0⟩ for the ideal case, i.e., using identical

emitters, and on the right, our scheme makes use of biphoton pairs generated by a χ(2)

nonlinear crystal driven with a continuous-wave laser. (b) The emitters have an L-type

configuration for their level structure, with the state |↑⟩ coupled to the excited state |e⟩
with transition energy Ei = ℏωi, with i = 1, 2.

c-points1 [85, 87]. These are points where the photon emission from circularly polarized

dipoles is highly directional, resulting from the lateral confinement of the electromagnetic

field within the waveguide, and leads to photons scattering off the emitters solely in the

forward direction.

Let us first consider the ideal case with two identical emitters, as discussed in, e.g.,

Ref. [120]. The spins of both emitters are initialised in the state |+⟩ = (|↑⟩ + |↓⟩) /
√

2 and

the input state is comprised of a single monochromatic photon into the interferometer arm

given by mode a, and a vacuum state input for mode b. The state of the total system is

then described by

|Ψ⟩ =
1

2
(|↑⟩ + |↓⟩) ⊗ (|↑⟩ + |↓⟩) ⊗ a† |0⟩ . (4.1)

Next, the optical state passes through the first beam splitter, resulting in a transformation

given by a → (a+ b) /
√

2 and b → (a− b) /
√

2. This is then followed by interactions with

either emitter, characterised by the transmission coefficient as discussed in Sec. 3.5. We

assume that the photon is on resonance with the emitters and therefore the interaction

imparts a π-phase shift on the spin-photon state. The total system after the scattering

1We note here that although the name and concept elicits the notion of chirality, the waveguide geometry

is perfectly symmetric and the material is non-chiral.
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process is

|Ψ⟩ =
1

2
√

2

[
(− |↑⟩ + |↓⟩) ⊗ (|↑⟩ + |↓⟩) ⊗ a† + (|↑⟩ + |↓⟩) ⊗ (− |↑⟩ + |↓⟩) ⊗ b†

]
|0⟩ . (4.2)

The optical state is transformed again by the second beam splitter, resulting in the state

|Ψ⟩ =
1

2

[
(− |↑↑⟩ + |↓↓⟩) ⊗ a† + (− |↑↓⟩ + |↓↑⟩) ⊗ b†

]
|0⟩

=
1√
2

(
− |Φ−⟩ ⊗ a† − |Ψ−⟩ ⊗ b†

)
|0⟩ ,

(4.3)

where we adopt the use of |i⟩⊗ |j⟩ = |ij⟩ for notational convenience. It is then evident that

by performing a projective measurement by means of photon detectors at either output arm

of the interferometer, the state of the spins collapses with equal probability onto either |Φ−⟩
or |Ψ−⟩, which are two of the four Bell states and maximally entangled. The generation of

entanglement here occurs by means of which-path information erasure at the second beam

splitter, as one cannot obtain information about which emitter the photon has interacted

with at the detection stage. Furthermore, the success of this scheme is contingent on the

π phase shift. Therefore, we have described a protocol where, in the case of no dissipation

losses and perfect photon scattering in the forward direction, one can create a maximally

entangled bipartite state in a deterministic way.

4.3 Introducing Spectral Variation

We now introduce the (highly likely) possibility of spectral variation between the two

emitters, both in terms of central energy as well as line-width. The phase-shift imparted

by the interaction of a photon with frequency ω with a two-level system can be obtained

from the single-photon S-matrix and, in the case of perfectly unidirectional scattering, is

given by the following transmission coefficient [81,121]:

t (ω) =
ℏω − E − iℏ (Γ − γ) /2

ℏω − E + iℏ (Γ + γ) /2
, (4.4)

where E is the emitter central energy, and Γ and γ represent the coupling of the emitter to

the waveguide and the non-guided (or dissipation channel) modes, respectively. We assume

for now that the emitter is perfectly coupled to the guided mode, such that there are no

photon losses and γ = 0. In this case, the transmission coefficient describes a pure phase

shift with |t (ω) | = 1, and is equal to π only when ℏω = E.

Given that it is impossible to tune the input photon frequency such that the detuning

ℏω − Ei is equal to zero for both emitters simultaneously, the phase shift imparted at

the scattering stage will deviate from π. As a result, there could be residual which-path

information left as the photon interferes with itself at the second beam splitter, and the

process no longer necessarily entangles the spin states in a deterministic manner.
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4.4 Protocol

We now turn to the proposed setup, where the two-mode squeezed vacuum serves as the

input into the interferometer. This type of state is routinely produced by means of spon-

taneous parametric down-conversion (SPDC), whereby a crystal with a χ(2) non-linearity

is pumped using a continuous-wave laser [122, 123]. Although most of the pump photons

pass through the crystal unaltered, every now and then the non-linearity causes a single

photon to be annihilated and so-called signal and idler photons are created in its stead.

By conservation of energy, the frequency of the pump photon, ωp, needs to be equal to the

sum of that of the signal and idler photons, ωs and ωi. We will consider the degenerate

SPDC process, that is, where the signal and idler photons are of the same frequency.

The output of the SPDC process, i.e., the two-mode squeezed state, is given by [124]

|ξ⟩ =
1

cosh r

∞∑
n=0

(−eiϕ tanh r)n
(a†b†)n

n!
|0⟩ , (4.5)

where a, b are the two input mode operators, and ξ = reiϕ depends on the crystal properties

and the laser power. We may ignore the vacuum contribution as this does not affect or alter

the state of the system in any way. Furthermore, we will be working under the assumption

that the pump power is low such that r is small and we may neglect higher order photon

pair contributions given by n ≥ 2. In fact, for typical experimental values, the ratio of

generated multi-pair states to single bi-photons is of the order of 10−8 per Watt of pump

power [125]. Therefore, this limits the power with which the crystal may be pumped before

one would need to account for changes to the proposed scheme.

As was done in the ideal case, both spins are initialised in the |+⟩ state. Once a photon

pair is created, it is transformed by the first beam splitter as

a†b† |0⟩ → 1

2

[
(a†)2 − (b†)2

]
|0⟩ , (4.6)

where we observe the Hong-Ou-Mandel effect [126] as a result of the degeneracy between

the two photonic frequencies. We will therefore need to consider the interaction between a

two-level emitter and two photons.

The post-scattering two-photon wavefunction in the general case is given by [71]

β̃(ω1, ω2) =
t(ω1)t(ω2)

2
[β(ω1, ω2) + β(ω2, ω1)]

+

√
Γ

π
S(ω1, ω2)

∫
dk {[s(k) + s(ω1 + ω2 − k)]β(k, ω1 + ω2 − k)} ,

(4.7)

where β(ω1, ω2) is the initial wavefunction and the second line describes the nonlinear

contribution of the light–matter interaction. We require the optical state to be quasi-

monochromatic, which can be achieved either by using a monochromatic laser pump or by

frequency filtering post-SPDC. In the case of quasi-monochromatic photons, the nonlinear

part of the interaction tends towards zero and the process becomes linear, with the total

phase shift imparted on the photons being equal to the sum of the individual accumulated
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phase shifts. Moreover, it may be more desirable to avoid the use of broader linewidth

photons as their shorter temporal length is more likely to excite the two-level system and

cause unwanted spontaneous emission [127].

Taking the two photons to be monochromatic with frequency ω, the resulting state of

the joint optical and spin system post emitter interaction is

|Ψ⟩ =
1

4

[
t21 (ω) |↑↑⟩ + t21 (ω) |↑↓⟩ + |↓↑⟩ + |↓↓⟩

]
⊗
(
a†
)2

|0⟩

+
1

4

[
t22 (ω) |↑↑⟩ + |↑↓⟩ + t22 (ω) |↓↑⟩ + |↓↓⟩

]
⊗
(
b†
)2

|0⟩ ,
(4.8)

where ti (ω) is the transmission coefficient due to emitter i, where i = 1, 2. This state

evolves at the second beam splitter to

|Ψ⟩ =
1

8

[
(t21(ω) − t22(ω)) |↑↑⟩ + (t21(ω) − 1) |↑↓⟩ + (1 − t22(ω)) |↓↑⟩ + 0 |↓↓⟩

]
⊗
[(
a†
)2

+
(
b†
)2]

|0⟩

+
1

4

[
(t21(ω) + t22(ω)) |↑↑⟩ + (t21(ω) + 1) |↑↓⟩ + (1 + t22(ω)) |↓↑⟩ + 2 |↓↓⟩

]
⊗ a†b† |0⟩ .

(4.9)

The final step of a single round of entanglement accumulation involves the detection

of photons in order to project the spins onto a more entangled state. The measurement

process is expressed mathematically by means of projective operators acting on the state,

defined by

Πna,nb =
1

na!nb!

(
a†
)na (

b†
)nb |0⟩ ⟨0| anabnb , (4.10)

where na and nb are the number of photons detected in detectors a and b, respectively.

The post-measurement state for the outcome (na, nb) is then obtained as

|Ψ⟩ Measurement−−−−−−−−→ |ψna,nb⟩ =
Trfield [Πna,nb |Ψ⟩]√

⟨Ψ|Πna,nb |Ψ⟩
, (4.11)

where we take the partial trace over the optical modes and where the probability of ob-

taining the measurement outcome is given by

P (na, nb) = ⟨Ψ|Πna,nb |Ψ⟩ . (4.12)

We note at this stage that in the case of zero photon losses and perfectly efficient detectors

the only possible photon measurement outcomes are: (i) a coincidence detection (where

na = nb = 1), and (ii) both photons arriving at one of the detectors (either na or nb equal to

two). This means that we would not need to employ detectors that are capable of resolving

in the number of photons in order to project the spins onto a pure state. We will see that

this is no longer the case when imperfections are introduced.

A photon measurement heralds one of the following states:

|ψ2,0⟩ = |ψ0,2⟩ =
(t21(ω) − t22(ω)) |↑↑⟩ + (t21(ω) − 1) |↑↓⟩ + (1 − t22(ω)) |↓↑⟩ + 0 |↓↓⟩√[

|t21(ω) − t22(ω)|2 + |t21(ω) − 1|2 + |1 − t22(ω)|2
] (4.13a)
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or |ψ1,1⟩ =
(t21(ω) + t22(ω)) |↑↑⟩ + (t21(ω) + 1) |↑↓⟩ + (1 + t22(ω)) |↓↑⟩ + 2 |↓↓⟩√[

|t21(ω) + t22(ω)|2 + |t21(ω) + 1|2 + |1 + t22(ω)|2 + 4
] . (4.13b)

Let us now consider what happens to our system when we repeat the optical probing process

without re-initialising the spin state, each time performing a photon measurement at the

end of a cycle. Let N = m + n be the total number of photon measurements performed,

where m is the number of coincidence detection events and n is the number of occurrences

where both photons arrive at the same detector. The state of the total system after (N+1)

scattering events and immediately before the subsequent measurement is expressed as

|ψm,n⟩ =
1

4cm,n

[
(t21(ω) + t22(ω))m(t21(ω) − t22(ω))n+1 |↑↑⟩ + (1 + t21(ω))m(t21(ω) − 1)n+1 |↑↓⟩

+ (1 + t22(ω))m(1 − t22(ω))n+1 |↓↑⟩
]
⊗
[(
a†
)2

+
(
b†
)2]

|0⟩

+
1

2cm,n

[
(t21(ω) + t22(ω))m+1(t21(ω) − t22(ω))n |↑↑⟩ + (1 + t21(ω))m+1(t21(ω) − 1)n |↑↓⟩

+ (1 + t22(ω))m+1(1 − t22(ω))n |↓↑⟩ + 2m+10n |↓↓⟩
]
⊗ a†b† |0⟩ ,

(4.14)

where cm,n is the normalization constant given by

cm,n =

[ ∣∣(t21(ω) + t22(ω))m(t21(ω) − t22(ω))n
∣∣2 +

∣∣(1 + t21(ω))m(t21(ω) − 1)n
∣∣2

+
∣∣(1 + t22(ω))m(1 − t22(ω))n

∣∣2 + |2m0n|2
]1/2

.

(4.15)

We set the photonic frequency ω such that t21 (ω) = t22 (ω) ≡ t2 (ω), satisfied by either

ℏω =
1

2

[
E1 + E2 ±

√
(E1 − E2)

2 − ℏ2Γ1Γ2

]
(4.16a)

or

ℏω =
E2Γ1 − E1Γ2

Γ1 − Γ2
. (4.16b)

This simplifies Eq. (4.14) to

|ψm,n⟩ =
1

4cm,n

[
(1 + t2(ω))m(t2(ω) − 1)n+1 |↑↓⟩ + (1 + t2(ω))m(1 − t2(ω))n+1 |↓↑⟩

]
⊗
[(
a†
)2

+
(
b†
)2]

|0⟩

+
1

2cm,n

[
(t2(ω) + t2(ω))m+10n |↑↑⟩ + (1 + t2(ω))m+1(t2(ω) − 1)n |↑↓⟩

+ (1 + t2(ω))m+1(1 − t2(ω))n |↓↑⟩ + 2m+10n |↓↓⟩
]
⊗ a†b† |0⟩ .

(4.17)

We show in Fig. 4.2 typical concurrence trajectories for combinations of spectrally

different emitters as we repeatedly send through photon pairs and track the resulting photon
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Figure 4.2: Typical concurrence trajectories given a sequence of photon detection events

(horizontal axis) for different emitter pairings, in the case of zero losses (γ = 0). Γ1 and Γ2

are the emitter linewidths, and the energy detuning between emitter combinations is given

by δ = E2 − E1.

detection signature. By using this iterative method, the concurrence reaches unity, thereby

signalling perfect entanglement, within O
(
101
)

steps. Moreover, the protocol is successful

regardless of the measurement outcomes, eliminating the need to reject samples on the basis

of certain detection signatures. Irrespective of the value of N , if both photons arrive at

the same detector during a measurement stage, the spins are projected onto a maximally

entangled Bell state |Ψ−⟩ = (|↑↓⟩ − |↓↑⟩)/
√

2 (up to some global phase). This can be

seen in the figure when the concurrence trajectory suddenly jumps to unity. Furthermore,

continuing the probing process would not destroy any of the generated entanglement, but

may possibly toggle the system between two Bell states: after n single-detector clicks,

the state is given by |Ψ±⟩ = (|↑↓⟩ + (−1)n |↓↑⟩)/
√

2. Otherwise, a series of coincidence

measurements (m ≥ 1, n = 0) would herald the approach towards the maximally entangled

state exp (iϕ) |↑↑⟩+ |↓↓⟩ as the contribution to the other two states goes to zero. Here, the

relative phase ϕ may be obtained by considering the number of iterations required to reach

the state in the case of only coincident detection events (n = 0): after M iterations we

have that exp (iϕ) = t2M (ω). Therefore, the protocol does not destroy any of the previously

generated entanglement.

Interestingly, in certain cases it may be preferable to pair emitters with larger differences
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in linewidth as a way to increase the rate with which entanglement is built up in the case of

n = 0. The reason is that an increase in the linewidth results in a larger range of frequencies

over which the scattering phase shift is substantial, and therefore increasing the linewidth

of just one emitter for a given energy detuning improves on the interaction strength. This

results in a greater reduction in the probability amplitudes of |↑↓⟩ and |↓↑⟩, and generates

the entangled state exp (iϕ) |↑↑⟩ + |↓↓⟩ faster. Although this dissimilarity is not sufficient

for all regimes of δ/Γ1 and Γ2/Γ1, the parameter space over which entanglement can be

efficiently generated is much larger than when limited to perfectly identical emitters.

4.5 Losses

Until now we have assumed an ideal setup without factoring in any losses. Realistically, an

experimental implementation of this protocol would be susceptible to such imperfections,

which end up negatively impacting the entanglement process. We will now consider the

two main sources of loss: scattering losses and detector inefficiencies.

4.5.1 Scattering losses

We introduce first the β-factor, given by β = Γ/ (Γ + γ) and defined to be the coupling

of the emitter to the guided modes as a fraction of the total coupling of the emitter. In

our treatment of the light–matter interaction until now, we have assumed that the emitter

scatters all of the field perfectly to the waveguide mode in the forward direction, i.e., β = 1.

Current best experimental values show β-factors that exceed 98% [128–130], with perfect

coupling still proving to be elusive.

One way of overcoming this imperfection is by considering photon number resolving

detectors and rejecting cases where photon losses have occurred. The detector would only

be required to discriminate between a single photon and two or more photons. Given that

such detectors are still in development [131–133], we will assume non-number resolving

detectors. The trajectories are generated in the same manner as when β = 1. However we

will have to make use of density matrices as the qubits will project onto a mixed state after

the first photon measurement is made.

Given that γ ̸= 0, the transmission coefficient defined in Eq. (4.4) no longer has an

absolute value of unity, and therefore a photon coupling to the guided mode undergoes a

phase shift as well as a change in its probability amplitude. The coefficient associated with

the photon that is lost to the environment is given by [71]

te (ω) =
−iℏ

√
Γγ

ℏω − E + iℏ (Γ + γ) /2
. (4.18)

For a given emitter pairing, we will choose a frequency ω that satisfies any of the conditions

in Eq. (4.16). However t21 (ω) = t22 (ω) no longer necessarily holds since γ is no longer equal

to zero. Furthermore, the trajectories resulting from the possible frequencies for a given

emitter combination may behave very differently due to the potential variation in the

resulting scattering amplitudes.
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In order to obtain the general expression for the evolution of the two qubits, we start

with the tensor product of an arbitrary density matrix ρemitters and a photon-pair input:

ρ1 = ρemitters ⊗
[
a†b† |0⟩ ⟨0| a b

]
, (4.19)

with the qubits initialised in the state

ρemitters =
1

4
[(|↑⟩ + |↓⟩) ⊗ (|↑⟩ + |↓⟩)] [h.c.] , (4.20)

where h.c. is the Hermitian conjugate.

The state evolves at the first beam splitter to

ρ2 = ρemitters ⊗
1

4

[(
a†
)2

−
(
b†
)2 ]

|0⟩ ⟨0|
[
a2 − b2

]
, (4.21)

and post-scattering to

ρ3 =
1

4

∑
i,j=1,2,3

{
ρ(Mi,Mj) ⊗

[
Mi |0⟩ ⟨0|Mj

]
+ ρ(Ni, Nj) ⊗

[
Ni |0⟩ ⟨0|Nj

]
− ρ(Mi, Nj) ⊗

[
Mi |0⟩ ⟨0|Nj

]
+ ρ(Ni,Mj) ⊗

[
Ni |0⟩ ⟨0|Mj

]}
,

(4.22)

where

M =
[
a2 a r1 r21

]T
and N =

[
b2 b r2 r22

]T
. (4.23)

Here ri is the photon annihilation operator associated with the scattering loss around emit-

ter i. Furthermore, ρ(m,n) is the density matrix of the qubits associated with the scattered

optical state m† |0⟩ ⟨0|n and is obtained using the following field-dependent transforma-

tions: 
|↑↑⟩
|↑↓⟩
|↓↑⟩
|↓↓⟩

⊗
(
a†
)2

→


t21 |↑↑⟩
t21 |↑↓⟩
|↓↑⟩
|↓↓⟩

⊗
(
a†
)2

+


2t1te,1 |↑↑⟩
2t1te,1 |↑↓⟩

0

0

⊗ a†r†1 +


t2e,1 |↑↑⟩
t2e,1 |↑↓⟩

0

0

⊗
(
r†1
)2
,

and


|↑↑⟩
|↑↓⟩
|↓↑⟩
|↓↓⟩

⊗
(
b†
)2

→


t22 |↑↑⟩
|↑↓⟩
t22 |↓↑⟩
|↓↓⟩

⊗
(
b†
)2

+


2t2te,2 |↑↑⟩

0

2t2te,2 |↓↑⟩
0

⊗ b†r†2 +


t2e,1 |↑↑⟩

0

t2e,2 |↓↑⟩
0

⊗
(
r†2
)2
,

(4.24)

where once again we suppress the notation te,i (ω) → te,i for the probability amplitude

associated with a photon lost at emitter i.

The field then passes through the second beam splitter, leaving the state of the emitters

unchanged whilst transforming the optical state:

ρ4 =
1

4

∑
i,j

{
ρ(Mi,1,Mj,1) ⊗

[
Mi,2 |0⟩ ⟨0|Mj,2

]
+ ρ(Ni,1, Nj,1) ⊗

[
Ni,2 |0⟩ ⟨0|Nj,2

]
− ρ(Mi,1, Nj,1) ⊗

[
Mi,2 |0⟩ ⟨0|Nj,2

]
+ ρ(Ni,1,Mj,1) ⊗

[
Ni,2 |0⟩ ⟨0|Mj,2

]}
,

(4.25)
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where M and N now become

M =

 a
2 1

2(a2 + 2ab+ b2)

ar1
1√
2
(a+ b)r1

r21 r21

 and N =

 b
2 1

2(a2 − 2ab+ b2)

br2
1√
2
(a− b)r2

r22 r22

 . (4.26)

We have therefore described the transformation of the total system, for an arbitrary state

of two qubits, during one round of probing and before performing a photon measurement.

4.5.2 Detector inefficiencies

The development of ideal photon detectors is an active area of research, with perfect ef-

ficiency still proving to be elusive. Superconducting nanowire single-photon detectors are

the current leaders amongst this family of instruments, having been used for detection ef-

ficiencies of > 95% [134–137]. We will therefore factor this as a source of imperfection in

our protocol.

This inefficiency can be modelled by assuming a beam splitter with a transmission

coefficient η placed before the detector [80], described by the following transformations:

a→ √
η a+

√
1 − η r3 and b→ √

η b+
√

1 − η r4. (4.27)

Here r3 and r4 are the mode operators of the loss channels before the detectors at either

output arm of the interferometer, and are distinct from the interaction-based loss channels

at the emitters, r1 and r2. The state given by Eq. (4.25) then remains unchanged, such

that ρ5 = ρ4, except for M and N that transform to

M =


a2

1
2

[
(
√
η a+

√
1 − η r3)

2 + (
√
η b+

√
1 − η r4)

2

+2(
√
η a+

√
1 − η r3)(

√
η b+

√
1 − η r4)

]
ar1

1√
2
(
√
η a+

√
η b+

√
1 − η r3 +

√
1 − η r4)r1

r21 r21



and N =


b2

1
2

[
(
√
η a+

√
1 − η r3)

2 + (
√
η b+

√
1 − η r4)

2

−2(
√
η a+

√
1 − η r3)(

√
η b+

√
1 − η r4)

]
br2

1√
2
(
√
η a−√

η b+
√

1 − η r3 −
√

1 − η r4)r2

r22 r22

 .
(4.28)

4.5.3 Measurement

The last step at each iteration is the measurement process. However, in the presence of

losses and absence of photon-number resolution, this step will project the emitter state

onto a mixed one. This is because the observer does not gain any information on whether

or not a loss has occurred and, if so, at what stage.

A single click by the detector at output arm a is possible either in the event of a

concurrent arrival of both photons, or a single photon arriving while the other is lost at

some point. In order to obtain the corresponding projective operator for this detection
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signature, we need to modify Eq. (4.10) to

Π1,0 =
1

2

∑
i,j=a,r1,r2,r3,r4

i†j† |0⟩ ⟨0| i j. (4.29)

The corresponding reduced density matrix of the qubits post-measurement is then

ρ(1,0) =
1

P (1, 0)
Trfield [Π1,0 ρ5 Π1,0]

=
1

P (1, 0)

{
η2

16

[
ρ
(
a2, a2

)
+ ρ

(
b2, b2

)
− ρ

(
a2, b2

)
− ρ

(
b2, a2

)]
+
η(1 − η)

2

[
ρ
(
a2, a2

)
+ ρ

(
b2, b2

)]
+
η

8
[ρ(a r1, a r1) + ρ(b r2, b r2)]

}
,

(4.30)

where ρ (m,m) is the state of the emitters associated with the scattered optical state

m† |0⟩ ⟨0|m, as given in Eq. (4.22), and the probability of obtaining this measurement

outcome is

P (1, 0) = Tr [Π1,0 ρ5 Π1,0] . (4.31)

Here, we see clearly how the sources of imperfection herald a density matrix of the mixed

form, that is, decomposed into a sum of pure state density matrices with probability dis-

tribution that depends on the rate of losses.

The measurement outcome corresponding to a single click at the detector at output

arm b is similarly defined, with the projective operator instead modified to

Π0,1 =
1

2

∑
i,j=b,r1,r2,r3,r4

i†j† |0⟩ ⟨0| i j, (4.32)

and the resulting qubit state and associated probability defined as in Eqs (4.30) and (4.31),

respectively.

In the event of a coincidence measurement, where each detector measures a photon, we

maintain a pure state as we can rule out the possibility of loss, and the post-measurement

state is similar to the one defined in the ideal case:

ρ(1,1) =
1

P (1, 1)
Trfield [Π(ab)ρ4Π(ab)]

=
η2

4P (1, 1)

[
ρ(a2, a2) + ρ(b2, b2) + ρ(a2, b2) + ρ(b2, a2)

]
,

(4.33)

with

P (1, 1) = Tr [Π(ab)ρ4Π(ab)] . (4.34)

Finally, we also account for the loss of both photons at some stage of the probing

process, characterised by the projective operator

Π0,0 =
1

2

∑
i,j=1,2,3,4

r†i r
†
j |0⟩ ⟨0| ri rj , (4.35)
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Figure 4.3: Typical concurrence trajectories for various β-factors and detector efficiencies,

η. Γ1 and Γ2 are the emitter line widths and the central energy detuning between the two is

given by δ = E2 −E1. We factor in both successful detection events as well as zero-photon

outcomes.

with the resultant density matrix and probability obtained as outlined before.

The process is then repeated from Eq. (4.19), where we replace ρemitters with the ob-

tained density matrix, in an attempt to understand how well entanglement can be generated

by accumulation in this manner. We show some results for such trajectories in Fig. 4.3,

where we also include the possibility of zero-photon detection outcomes. For emitter com-

binations that are entangled rapidly in the lossless case and β ∼ 0.9, concurrence of > 0.99

is possible within a few repetitions of the probing cycle; for the configurations shown in the

figure, the likelihood of such near perfect entanglement is 10 – 50%. Furthermore, there is

no qualitative difference when accounting for small variations between the β-factors of the

two emitters.

In order to maximise the amount of concurrence attained, we perform a bit flip in the
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computational basis on both qubits after every measurement event:

ρ
bit flip−−−−→ σx ⊗ σx ρ σx ⊗ σx, (4.36)

where σx = |↑⟩ ⟨↓| + |↓⟩ ⟨↑| is the Pauli X matrix. The reason behind this stems from

the fact that γ ̸= 0. This leads to scattering events that result in an accumulation of

probability amplitudes on |↑↑⟩ and |↓↓⟩, and |↑↓⟩ and |↓↑⟩ that is skewed. This unevenness

is detrimental to the amount of entanglement, and can be partially addressed by introducing

the bit flip operations that balance out the contributions to the qubit states.

4.6 Practical implementation

We now turn to practical considerations and challenges when it comes to the physical

implementation of the protocol. We have already addressed the deterioration of the entan-

glement process as a result of photon loss and detector inefficiencies. One also needs to

consider possible deviation of the optical frequency away from the optimum. In Fig. 4.4

we show how a shift in the frequency affects the maximum amount of concurrence that

may be attained in the lossless case, averaging over many trajectories. For a non-optimal

frequency, the scattering events at either emitter would no longer be identical, as the con-

dition in Eq. (4.16) is no longer satisfied, which in turn influences the coherent interference

that occurs at the second beam splitter and the resulting erasure of which-path informa-

tion. This affects the buildup of concurrence in a negative way, with the degree of impact

depending on the choice of emitter combination. Furthermore, we see an asymmetry in the

resulting plots that stems from the fact that the rate of change of the phase shift is not

symmetric about frequencies away from resonance.

Another practical limitation that needs to be kept in consideration is the finite coherence

time of solid-state emitters, affected by processes such as the spin-orbit and nuclear-spin

interactions [138–140]. Current experimental values for the lifetime in semiconductor quan-

tum dots range between >100 ns and several microseconds [141–143], whilst for nitrogen-

vacancy centres in diamond, this value may reach the millisecond range [144–146] and can

be enhanced to more than half a second by means of decoupling pulsing [147]. Increasing

the pump power of the SPDC source is one way of overcoming this limitation as this would

increase the generation rate of biphotons. However this will also increase the likelihood of

higher order pairs, and we would need to account for scattering and measurement of larger

photon number states. We account for the possibility of |2, 2⟩ state production and show its

effect on the entanglement generation scheme, whilst assuming photon-number resolving

detectors, in Fig. 4.5. By assuming such resolution, we observe that such multi-photon

pairs do not impact the scheme in a disruptive way. In fact, the concurrence trajectories

here are bounded from below by the lowest possible trajectory when assuming solely |1, 1⟩
probing states whilst exhibiting the possibility of enhancement of the scheme in terms of

speed.



4.7. Summary 55

 
 
 
 
  

𝒞 
 

 
ℏ"ωopt − 𝜔&

Γ$
 

Figure 4.4: The maximum possible concurrence during a single trajectory, averaged over 300

trajectories, as a function of the difference between the optimal and actual input frequency,

ωopt − ω. Here, Γ2/Γ1 is set to 1 (purple), 3 (green) and 5 (yellow), and δ/Γ1 is set to 3

(solid) and 5 (dotted).

4.7 Summary

In conclusion, we have introduced a protocol that allows us to entangle two solid-state

emitters up to near-perfect concurrence, by considering a cumulative process that overcomes

the limitations posed by the inhomogeneity resulting from the fabrication process. This

eases the very restrictive requirement of spectrally identical emitters. Our scheme makes use

of a relatively simple optical setup and experimentally accessible photonic states. It is also

advantageous in that it does not require us to discard any samples on the basis of certain

measurement outcomes, and therefore entanglement is generated in a deterministic way.

Furthermore, it provides more flexibility when it comes to combining different emitters, with

larger energy detunings and linewidth ratios offering the possibility of faster generation of

concurrence.

Secondly, we accounted for photon losses at the scattering stage as well as detector

inefficiencies, both of which degrade the scheme up to some extent. Nonetheless, near

perfect entanglement is still possible for certain regions of the parameter space within a

few number of detection events. Our results are promising, especially when considering

the development in the field of photon-number resolving detectors, which would allow for
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Figure 4.5: Typical concurrence trajectories for the lossless case (γ = 0) when probing

with |1, 1⟩ and |2, 2⟩ states, with the latter being generated ∼ 15% of the time. Here,

Γ2/Γ1 is equal to 1, whilst δ/Γ1 is equal to 3 (a) and 5 (b), and we assume the use of

photon-number resolving detectors. The shaded region represents the area under the curve

in Fig. 4.2, showing that the generation of higher order photon pairs is not detrimental to

our scheme.

the discarding of samples in the event of photon loss. We do note however that this would

naturally lead to a lower success probability, the rate of which would depend on the amount

of scattering loss.

Finally, we have also considered practical limitations to our scheme, including the finite

coherence time of solid-state emitters and multiphoton pairs. The generation of higher

order pairs as a result of an increase in the SPDC pump power, which would otherwise

reduce the time to reach perfect entanglement, might actually enhance our protocol when

paired with photon-number resolution.



CHAPTER

5

SPIN-AUGMENTED QUANTUM INFORMATION PROCESSING

In this chapter, we will be considering the spin-photon interface in the form of a micropillar

cavity coupled to a quantum dot. The interaction occurs selectively due to cavity quantum

electrodynamics and resulting selection rules for optical transitions. By using this property,

we are able to augment the performance of protocols that utilise linear optics alone. We will

consider how, in the context of quantum error correction, this setup can be used for photonic

syndrome extraction by means of quantum non-demolition measurement, and show the

confidence in the read-out as a function of detuning errors. Furthermore, we will also

study the generation of entanglement between spin systems with dissimilar characteristic

energies. Work in this chapter is based on Callus and Kok [148].

5.1 Background

The spin–photon interface has proved to be highly suitable when it comes to applications in

quantum information technologies [149,150]. The photon, with its relatively long coherence

time, acts as a flying qubit between stationary nodes, physically implemented by means of

solid-state emitters, transmitting information over large distances. The photon also readily

interacts with the solid-state emitters, which therefore has the potential to overcome the

restriction caused by weak photon–photon interactions [101]. This area of research has

attracted a lot of interest, and different architectures falling under this category have been

studied with various applications in mind. Some examples include the development of

photonic quantum gates [100, 151] and application of optical non-linearities [21, 152], as

well as the entanglement of remote spin states [153–155], photon polarisation [156] and

spin–photon states [157].

The physical system that we shall be considering in this work exhibits the property of

circular birefringence, whereby the plane of polarisation for a linearly polarised photon is

57
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Figure 5.1: A schematic of the two-dimensional surface code made up of data (hollow

circles) and measure (filled circles) qubits. An example of plaquette, Zp, and star, Xs,

operators are shown in blue (dotted outline) and orange (solid outline), respectively.

rotated by some amount. This phenomenon has been used in schemes for, e.g., quantum

teleportation [158], quantum non-demolition measurements [159] and entanglement beam

splitters [160]. This property has also been adopted in the design of a complete and

deterministic Bell-state analyzer [158, 161], where information about the qubit parity is

obtained using the spin–photon system whilst a linear optical setup measures the symmetry

of the state. This overcomes the inherent limitation posed by the use of linear optics

alone [162]: here, the setup based on the use of various beam splitters can correctly identify

only two of the four Bell states. In our work, we show that we can employ a similar

spin–photon interface to perform projective stabiliser measurements used in quantum error

detection.

5.2 Surface codes

We will be considering the application of the spin–photon interface in the carrying out of

efficient photonic syndrome, or stabilizer, measurements on the surface code. The surface

code is a family of stabilizer codes implemented on a two-dimensional lattice of physical

qubits. It is designed for the implementation of quantum computing in a fault-tolerant

way by means of quantum error detection and correction [56, 163]. The first proposal for

this type of code was in the form of the toric code [164,165], with its boundary conditions

allowing it to be mapped onto a torus, and later generalised to different planar codes with

variations in the boundary conditions [166–168].

In Fig. 5.1, we show a schematic of the surface code: it is comprised of data and measure

qubits in a structured arrangement. The single logical qubit is encoded into the multiple

(physical) data qubits, with error correction making use of the redundancy resulting from

the encoding of information in an expanded Hilbert space. The surface code is stabilized

by the complete set of so-called star, Xs, and plaquette, Zp, operators; given a surface
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code with state |Ψ⟩, we have that Xs |Ψ⟩ = Zp |Ψ⟩ = |Ψ⟩ for all s and p. Here, a star s

is a set of data qubits adjacent to a vertex on the lattice, whilst a plaquette p is a set of

qubits adjacent to a face, as represented in the figure. The star and plaquette operators,

or stabilizers, are defined as

Xs =
∏

j∈star(s)
σx,j and Zp =

∏
j∈plaq(p)

σz,j , (5.1)

where σx,j = |0⟩j ⟨1| + |1⟩j ⟨0| and σz,j = |0⟩j ⟨0| − |1⟩j ⟨1| are the Pauli X and Pauli Z

matrices, respectively, acting on physical qubit j.

Given that the eigenstates of σz are denoted by |0⟩ and |1⟩, the +1 and −1-eigenspaces

of Zp are generated by the following sets of eigenstates:

+1 :

⊗j∈plaq(p) |ij⟩ :
∑
j

ij mod 2 = 0

 = {|0000⟩ , |0011⟩ , . . . , |1111⟩} ,

−1 :

⊗j∈plaq(p) |ij⟩ :
∑
j

ij mod 2 = 1

 = {|0001⟩ , |0010⟩ , . . . , |1110⟩} ,

(5.2)

respectively. The eigenspaces of Xs are similarly defined, albeit with |0⟩ → |+⟩ and

|1⟩ → |−⟩, where |±⟩ = (|0⟩ ± |1⟩) /
√

2. We therefore see that an eigenvalue of +1 (−1)

corresponds to an even (odd) parity state.

Since the surface code is stabilized by the stabilizer, the state of each star and plaquette

must therefore be in some superposition of the +1-eigenstates (whilst also entangled with

the rest of the data qubits to some extent). However, in the case of errors, be it either a

bit-flip or a phase-flip on some physical qubit(s), some measurement operators will return

an eigenvalue of −1, and the surface code is no longer stabilized by all the operators.

Therefore, the presence and location of errors may be obtained from the eigenvalues of the

operators in a process referred to as the extraction of the syndrome. The conventional

method for syndrome extraction involves the operation of CNOT gates to each data qubit,

with the measure qubit being the target. Our proposal overcomes this requirement, as we

introduce the spin–photon interaction in its stead, which can be integrated in an otherwise

purely photonic implementation of the surface code.

5.3 Physical system

We now present the physical system that will serve as the spin–photon interface. The

setup is shown in Fig. 5.2 and is comprised of a single-sided micropillar cavity with two

distributed Bragg reflectors at either end, with one side being fully reflective and the other

being partially transmissive. The micropillar holds a charged quantum dot, where the

excess electron or hole spin couples selectively to the cavity mode. This selective coupling

is a consequence of cavity QED and the optical selection rules that arise from the Pauli

exclusion principle, rendering the interaction between a photon and the two-level system

dependent on both the photonic polarisation and the spin state [169], as mentioned in
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Figure 5.2: (a) A single-sided micropillar cavity with mode frequency ωc coupled to a

quantum dot with coupling strength g. The cavity mode within the micropillar couples to

the output mode and leakage modes with rates κ and κs, respectively. (b) The energy level

structure of the quantum dot showing photon polarisation- and spin-dependent selection

rules. The trion transition frequency and its decay rate are given by ωX− and γ, respectively.

Sec. 3.6.1. Considering a negatively charged quantum dot with a single excess electron,

the spin state |↑⟩ (|↓⟩) transitions to the negative trion state X−, given by |↑↓,⇑⟩ (|↑↓,⇓⟩),
when optically excited by a left-handed (right-handed) circularly polarised photon |L⟩ (|R⟩).
Here, |↑↓,⇑⟩ denotes a state with two electrons in a singlet in the conduction band and the

heavy-hole spin state |⇑⟩ in the valence band that results from the dipole transition, and

similarly for |↑↓,⇓⟩.
Let us consider first the case when a photon enters the single-sided cavity, interacts with

the quantum dot and then couples back to the output mode outside the cavity. Here, the

cavity may be referred to as a ‘hot’ cavity due to the occurrence of an optical transition.

The reflection coefficient arising from this interaction may be obtained by employing the

input–output formalism as described in Sec. 3.4 and is given by [158,170]

rh (ω) =

[
i (ωX− − ω) + γ

2

] [
i (ωc − ω) − κ

2 + κs
2

]
+ g2[

i (ωX− − ω) + γ
2

] [
i (ωc − ω) + κ

2 + κs
2

]
+ g2

, (5.3)

where ω, ωX− and ωc are the photon, the trion transition and the cavity mode frequencies,

respectively; γ is the decay rate of the trion dipole; κ and κs are the cavity coupling rates to

the output mode and leakage modes, respectively; and g is the coupling strength between

the quantum dot and the cavity field.

In the event of a ‘cold’ cavity, i.e., when a photon exits back to the output mode without

having coupled to the quantum dot, the only contribution to the reflection coefficient comes

from the empty cavity interaction. This occurs when the selection rules prohibit the optical

transition. We can characterise this by setting g = 0 in Eq. (5.3) and obtaining [158,170]

r0(ω) =
i (ωc − ω) − κ

2 + κs
2

i (ωc − ω) + κ
2 + κs

2

. (5.4)

We will consider the resonant interaction case, where ωc = ωX− , and allow for the

relative detuning of the photonic frequency ω, with the detuning given by δ = ωc − ω =
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ωX− −ω. We will also consider cavity losses, given by κs, to be small enough such that we

can assume |r0 (ω) | ≃ 1 for all values of δ. Moreover, we assume the system to be in the

strong-coupling regime, with g > (κ+ κs) /4 and g >> κ, γ, resulting in |rh (ω) | ≃ 1 for all

δ except around ±g [171], which we may ignore since we will be working near resonance with

|δ| << g. The frequency detuning δ is adjusted such that the difference in the phase shifts

imparted by the hot and the cold cavities is of ±π/2, i.e., by defining ϕi (ω) = arg [ri (ω)]

for i = h, 0, we obtain ϕ̃ (ω) ≡ ϕh (ω) − ϕ0 (ω) = ±π/2. The transformation matrix for

this spin–photon interaction in the basis {|L ↑⟩ , |L ↓⟩ , |R ↑⟩ , |R ↓⟩}, with |ij⟩ ≡ |i⟩ ⊗ |j⟩,
is therefore

U =


rh (ω) 0 0 0

0 r0 (ω) 0 0

0 0 r0 (ω) 0

0 0 0 rh (ω)

 ϕ̃=±π/2−−−−−→ eiϕ0


±i 0 0 0

0 1 0 0

0 0 1 0

0 0 0 ±i

 = Uϕ̃=±π/2. (5.5)

Hereafter we choose to drop the frequency dependence for ease of notation.

Theoretical modelling shows that this non-linear phase shift can be experimentally

achieved up to π [172–174]. Experimentally, these phase shifts are now being observed,

with results improving over time from only a few micro-degrees fifteen years ago up to ∼ π

in the last couple of years [175–180], demonstrating the viability of using photonic quantum

dot interactions for quantum information processing.

5.4 Syndrome measurement procedure

We now introduce the syndrome measurement procedure, shown schematically in Fig. 5.3.

The photons serve as the data qubits with the computational basis states encoded in the

polarisation: |0⟩ → |L⟩ and |1⟩ → |R⟩; the spin state of the quantum dot acts as the

measure qubit and is initialised to |+⟩S = (|↑⟩ + |↓⟩) /
√

2, where we use subscript S to

denote the spin subsystem. We let the four photons belonging to a star or plaquette set

interact with the spin system sequentially in time. In the case of a star measurement Xs,

we also apply a Hadamard transformation, H, pre- and post-interaction defined by

H =
1√
2

[
1 1

1 −1

]
. (5.6)

The application of this gate effectively rotates the σx eigenstates around the Bloch sphere

such that |+⟩ ↔ |0⟩ and |−⟩ ↔ |1⟩, and is necessary for the spin–photon interaction to

occur in such a way as to impart information about the syndrome onto the spin state as

given in Eq. (5.5).

The evolution of a photonic star or plaquette eigenstate and the spin state can then be
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Figure 5.3: Schematic of the syndrome extraction setup using a single quantum dot. The

optical states |ψ⟩1 , . . . , |ψ⟩4 interact with the spin state successively in time, and Hadamard

gates, HX , are applied pre- and post-interaction solely in the case of a star measurement,

Xs. A spin read-out, M, in the X-basis is performed in order to retrieve the syndrome.

expressed as[
⊗ j∈star(s)

or plaq(p)

|ij⟩
]
⊗ |+⟩S → 1√

2

⊗
j

exp (iϕj,↑) |ij⟩

⊗ |↑⟩ +
1√
2

⊗
j

exp (iϕj,↓) |ij⟩

⊗ |↓⟩

=

⊗
j

exp (iϕj,↑) |ij⟩

⊗

|↑⟩ +
∏
j

exp [−i (ϕj,↑ − ϕj,↓)] |↓⟩

 /√2

=
e4iϕ0√

2

⊗
j

exp
(

iϕ̃δijL

)
|ij⟩

⊗

|↑⟩ +
∏
j

exp [−i (ϕj,↑ − ϕj,↓)] |↓⟩

 ,
(5.7)

where |ij⟩ ∈ {|L⟩ , |R⟩}, j indexes the photonic qubits belonging to the star or plaquette

set, δijL is the Kronecker delta with δijL = [ij = L], and ϕj,∗ is the phase shift resulting

from the interaction between photon |ij⟩ and spin |∗⟩ ∈ {|↑⟩ , |↓⟩}. Given that the frequency

detuning, δ, is set so that ϕ̃ = ±π/2, we obtain (ϕj,↑ − ϕj,↓) = ±π/2 (∓π/2) for a left(right)-

handed circularly polarised photon. We see from Eq. (5.7) that this relative phase shift

between the two spins accumulates with each photon interaction: the total phase shift

imparted in the case of two identically polarised photons is ±π whilst in the case of two

photons of orthogonal polarisation, the relative phase shift is effectively zero. Given the

nature of the eigenstates defined in Eq. (5.2), the spin state then must evolve to either |+S⟩
or |−S⟩, depending on whether the parity of the photonic state is even or odd, respectively,

which then maps to the eigenvalue of the measurement operator. Therefore, by performing

a quantum non-demolition measurement by means of a spin read-out in the X-basis, we

can reveal the syndrome of the photonic data qubits.

In a surface code, the data qubits may be initialised by performing one cycle of all

stabilizer operators in order to project the code to a simultaneous eigenstate of the star

and plaquette operators, also referred to as the quiescent state [168]. The set of states that

satisfy this condition grows exponentially with the number of data qubits, and the quiescent

state that is generated by the concurrent measurement of all stabilizers is randomly selected

from this space. In order to preserve the quiescent state post-measurement, including any

errors that the syndrome extraction is meant to detect, we need to resolve any of the
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Figure 5.4: A schematic of the boundaries, indicated by bold lines, of a two-dimensional

surface code. The plaquette, Zp, and star, Xs, operators of weight three acting on the

boundaries are shown in blue (dotted outline) and orange (solid outline), respectively.

differences in the phase shifts imparted on the photonic eigenstates by the spin–photon

interaction. The phase shift acquired by the photonic states is seen clearly in the last line

of Eq. (5.7), and has two contributions. First, there is the factor of exp (4iϕ0) that occurs

for all syndrome measurements, regardless of the type of eigenstate. This renders it a global

phase of the quiescent state and can therefore be ignored. The second contribution is of

the form
∏
j exp

(
iϕ̃δijL

)
, which introduces possible errors to the surface code in the form

of phase-flips on some of the eigenstates. This is easily rectified by applying a polarisation-

dependent phase shift acting solely on the right-hand circularly polarised photon, such that

|R⟩ → exp
(

iϕ̃
)
|R⟩. By performing this rotation, we revert the state back to its original

pre-measurement state.

Surface codes may vary in terms of their boundary conditions, resulting in modifications

to the operators that would be applied to the data qubits at these boundaries. We consider

here boundaries that call for operators comprised of a tensor product of three Pauli matrices,

as shown in Fig. 5.4. We can make use of the same setup and the same frequency detuning

δ as in the case of weight four operators, with the photonic and spin states evolving now

as ⊗
j

|ij⟩

⊗ |+⟩S

→ e3iϕ0√
2

⊗
j

exp
(

iϕ̃δijL

)
|ij⟩

⊗

|↑⟩ +
∏
j

exp [−i (ϕj,↑ − ϕj,↓)] |↓⟩

 ,
(5.8)

where j indexes over the three qubits in the star or plaquette set, and all other variables

are as previously defined. Here, the spin state evolves to either |L⟩S = (|↑⟩ + i |↓⟩) /
√

2 or

|R⟩S = (|↑⟩ − i |↓⟩) /
√

2, mapping to an eigenstate of +1 and −1, respectively. We therefore

extract the syndrome by adjusting the spin read-out to measure the state in the Y -basis.

Finally, any corrections that need to be made to phases imparted on the photonic state are

performed in the same way as before.



64 Chapter 5. Spin-augmented quantum information processing

5.5 Inherent symmetry in the interaction

The spin–photon interaction is inherently symmetric, as can be seen from the transfor-

mation in Eq. (5.5). Therefore, it is also possible to implement the scheme by swapping

around the assignment of the data and measure qubits: the physical qubit is encoded in the

spin of the quantum dot, with |0⟩ → |↑⟩ and |1⟩ → |↓⟩, and the photonic state “initialised”

with horizontal polarisation, |H⟩ = (|L⟩ + |R⟩) /
√

2. The photon, serving as the measure

qubit, is allowed to interact consecutively with each data (spin) qubit, and the total system

evolves as⊗
j

|ij⟩

⊗ |H⟩

→ e4iϕ0√
2

⊗
j

exp
(

iϕ̃δij↑
)
|ij⟩

⊗

|L⟩ +
∏
j

exp [−i (ϕj,L − ϕj,R)] |R⟩

 ,
(5.9)

where now |ij⟩ ∈ {|↑⟩ , |↓⟩}. Given the symmetry of the interaction, the relative phase

between the two photon polarisations accumulates in the same manner as for the spins,

and the photon either remains in the horizontal polarisation or evolves to the vertical one,

with |V ⟩ = −i (|L⟩ − |R⟩) /
√

2. Therefore, the syndrome can be extracted by performing a

photon measurement in the linear polarisation basis.

We see from Eq. (5.9) that we get possible phase-flip errors on the data qubits due to the

arising spin-dependent phase shifts, similar to what occurs in the photonic implementation.

Correcting these errors can be done by simply allowing a single |R⟩ photon to interact with

each data qubit. Taking the post-measurement spin state in Eq. (5.9), the interaction yields

e4iϕ0

⊗
j

exp
(

iϕ̃δij↑
)
|ij⟩

⊗ |R⟩

→e4iϕ0

⊗
j

exp
[
i
(
ϕ̃δij↑ + ϕ0δij↑ + ϕhδij↓

)]
|ij⟩

⊗ |R⟩ = e4i(ϕ0+ϕh)

⊗
j

|ij⟩

⊗ |R⟩ ,

(5.10)

since ϕ̃+ϕ0 = ϕh and the phase resulting from a hot cavity, ϕh, is the same for either spin

state. The interaction results in an overall phase that is independent of the spin states,

rendering an overall global phase that can be ignored.

5.6 Confidence

We will now study how robust the proposed scheme is against possible variations in the

frequency detuning δ from the optimal. The difference in the phase shifts resulting from the

hot and cold cavity interaction, ϕ̃, is equal to ±π/2 only at specific values of δ. Therefore,

deviations in the detuning of the system from these values could impact the protocol by

affecting the reliability of the spin measurement as an indicator of the syndrome. Let us
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assume that ϕ̃ is not necessarily equal to ±π/2. Therefore, the relative phase between

the two spins in Eq. (5.7), given by
∏
j exp [−i (ϕj,↑ − ϕj,↓)], may deviate from 0,±π post-

interaction. The state of the spin subsystem post-interaction and pre-measurement is given

by

1√
2

[
|↑⟩ +

∏
j

exp [−i (ϕj,↑ − ϕj,↓)] |↓⟩
]

=
1

2

[
1 +

∏
j

exp [−i (ϕj,↑ − ϕj,↓)]
]
|+⟩S +

1

2

[
1 −

∏
j

exp [−i (ϕj,↑ − ϕj,↓)]
]
|−⟩S ,

(5.11)

where both |+⟩S and |−⟩S may now have a non-zero probability amplitude associated to

them. In this case, one can clearly see that there is a non-zero probability that the spin

measurement in the X-basis does not correspond to the actual value of the syndrome. We

will use the confidence [181] in the spin read-out as our figure of merit, giving us a measure

for how well the extracted syndrome corresponds to the true value.

We start from the surface code which, for our work, we consider to be the ground state

of the planar code. This is defined to be [17]

|Ψ0⟩ ∝
∏
s

(1 + Xs) |0⟩⊗n , (5.12)

where 1 is the identity operator acting on the data qubits, n is the number of physical

data qubits in the code encoding a single logical qubit and the matrix multiplication is

performed over all star sets, s. The latter ensures that the resulting ground state is a

simultaneous eigenstate of all possible star and plaquette operators. The code is assumed

to be susceptible to coherent errors that can be described by means of a Pauli channel,

given by

E (ρ) = (1 − p) ρ+ xσxρσx + yσyρσy + zσzρσz, (5.13)

acting on each individual data qubit. Here, ρ is the density matrix of the physical qubit; σi
is the Pauli i matrix corresponding to the type of error, with i = x, y, z and iσy = σzσx =

−σxσz; x, y, z are the respective probabilities of each type of error per single physical qubit;

and p = x+ y + z is the total physical qubit error rate.

We first analyse plaquette operators, which detect bit-flip, or X-type, errors. We note

at this point that it is not possible to detect phase-flip, or Z-type, errors when performing

plaquette measurements using the spin–photon interface. In fact, let us assume that data

qubit k belonging to the measured plaquette set has undergone an erroneous phase-flip

such that ⊗
j∈plaq(p)

|ij⟩ phase-flip on qubit k−−−−−−−−−−−−→ σz,k
⊗
j

|ij⟩ =
⊗
j

(−1)δik1 |ij⟩ , (5.14)

where δik1 = [ik = 1] is the Kronecker delta denoting the phase-flip. It can then be seen

that the plaquette measurement procedure in Eq. (5.7) is agnostic to any Z-type errors, as

no information about the presence of the phase-flip is imparted onto the spin state.
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In the ideal case where the condition ϕ̃ = ±π/2 is satisfied, the spin–photon interaction

followed by the syndrome measurement of a plaquette set with possible errors yields the

following: ⊗
j∈plaq

E (ρj)

⊗ |+⟩S ⟨+| interaction−−−−−−→ p+ρ+ ⊗ |+⟩S ⟨+| + p−ρ− ⊗ |−⟩S ⟨−| , (5.15)

where ρ+, ρ− are the density matrices of the data qubits in the absence and presence of

X-type errors, respectively,1 and p+, p− are the corresponding probabilities. Therefore, a

measurement of the spin in the X-basis projects the state of the qubits onto the density

matrix that corresponds to the obtained syndrome value. The post-measurement state is

obtained by means of the POVM corresponding to the spin read-out, where we define the

POVMs to be

Π± = 1⊗ |±⟩S ⟨±| , (5.16)

and the post-measurement state given by

ρ± =
TrS [Π±ρpost-int.]
Tr [Π±ρpost-int.]

. (5.17)

Here, TrS [.] denotes the partial trace over the spin subsystem.

When the condition of ϕ̃ = ±π/2 is not perfectly satisfied, the state of the qubits

may evolve such that there is a non-zero probability for a spin read-out to not match the

projected qubit state, as shown in Eq. (5.11). We formally define the confidence in a spin

measurement of |±S⟩ to be

Confidence± =
Tr
[
(P± ⊗ |±⟩S ⟨±|)

(
U E (ρ) ⊗ |+⟩S ⟨+| U †)]

Tr [Π± (U E (ρ) ⊗ |+⟩S ⟨+| U †)]
, (5.18)

where E (ρ) ≡ ⊗jE (ρj), which we have contracted for notational convenience; U is the

transformation arising from the spin–photon interaction as given in Eq. (5.5); and P± is

the projection operator for the ±1-eigenstates, with

P+ = |0000⟩ ⟨0000| + |0011⟩ ⟨0011| + |0110⟩ ⟨0110| + . . .+ |1111⟩ ⟨1111| ,
P− = |0001⟩ ⟨0001| + |0010⟩ ⟨0010| + |0100⟩ ⟨0100| + . . .+ |1110⟩ ⟨1110| .

(5.19)

The numerator in Eq. (5.18) gives the probability of measuring a given spin and, conse-

quently, projecting the data qubits onto the subspace that corresponds to its syndrome.

The confidence is then normalised by dividing by the total probability of measuring the

same spin, without accounting for data qubits whose syndrome might not be in agreement

to the spin readout. Therefore, we obtain the probability that the spin measurement her-

alds the correct syndrome value of the projected qubits. The same analysis applies to star

operators, given their equivalence to plaquette operators up to a Hadamard gate before

and after interaction.
1Strictly speaking, this is not fully accurate since theoretically there are certain X-type errors that

cannot be detected by one subset of the operators but may be discerned by another subset belonging to the

same family. However, we use this simplification in our notation as it has no bearing on our analysis.
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Figure 5.5: Confidence in the |+S⟩ (solid) and |−S⟩ (dashed) spin read-outs as a function

of the frequency detuning δ = ωc − ω = ωX− − ω for different coupling strengths, g. The

single physical qubit error probability for either the X- or Z-type is denoted by p∗. The

normalised linewidth, γ/κ, is set to 0.1.

In Fig. 5.5, we show the confidence in the spin measurements as a function of the

frequency detuning, δ, for different coupling strengths, g, and single physical qubit error

probabilities of either X- or Z- type, denoted by p∗. Here, we take p∗ = x+ y (p∗ = y+ z)

for X(Z)-type errors. Furthermore, we consider the strong coupling regime, the feasibility

of which is substantiated by experimental values for g/κ reaching up to ∼ 2.7 [182, 183].

First, we note that the distance of the code, which relates to the number of physical qubits

in an array used to encode a logical qubit, has no effect on the confidence value, and that

the plaquette and star operators show identical behaviour due to their equivalence up to a

Hadamard gate.

5.7 Entanglement

The setup proposed in Fig. 5.2 may be modified to optimise for the type of physical resources

required, as well as to accommodate for potential spectral inhomogeneity amongst the

physical data qubits. Given the linear nature of the transformation, with the total phase

shift imparted on a spin state after a sequence of interactions being equal to the sum of

the phase shifts due to the individual interactions, we can choose to employ two or four

measure qubits for a syndrome measurement.
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Figure 5.6: Schematic of the modified setup making use of multiple entangled quantum

dots, with the optical states interacting with the spin states in parallel and Hadamard

gate, HX , applied pre- and post-interaction in the case of a star measurement, Xs. A spin

measurement, M, in the X-basis is performed on each spin state.

The modified setup is shown in Fig. 5.6 and is made up of measure qubits that are

entangled in a general GHZ-state [184] up to any Pauli operation, where

|GHZ⟩ =
|↑⟩⊗M + |↓⟩⊗M√

2
, (5.20)

and M is the size of the register. The data qubits interact in parallel with the spin states,

with each photon interacting with only one spin (or two photons interacting with each spin

in the case of a two-qubit register). Let us assume, without loss of generality, a four-qubit

register with the spins initialised in the state given by Eq. (5.20). The total system will

then transform in a manner similar to Eq. (5.7), with the spin sub-system evolving instead

to

interaction−−−−−−→ 1√
2

(
|↑⟩⊗4 + eiΦ |↓⟩⊗4

)
∝ (|+⟩S + |−⟩S)⊗4 + eiΦ (|+⟩S − |−⟩S)⊗4

= |+ + ++⟩S + |+ + +−⟩S + |+ + −+⟩S + . . .+ |− − −−⟩S
+ eiΦ (|+ + ++⟩S − |+ + +−⟩S − |+ + −+⟩S + . . .+ |− − −−⟩S)

∝
{
|+ + ++⟩S + |+ + −−⟩S + |+ − +−⟩S + . . .+ |− − −−⟩S if Φ = 0, 2π

|+ + +−⟩S + |+ + −+⟩S + |+ − ++⟩S + . . .+ |− − −+⟩S if Φ = ±π
.

(5.21)

Here we define eiΦ =
∏
j exp [−i (ϕj,↑ − ϕj,↓)] for notational convenience. Therefore, the

syndrome of the data qubits can be obtained by measuring the spin states in the X-basis,

with the value determined by the parity of spin measurement. In the example given here, a

syndrome of +1 (−1) is associated with Φ = 0, 2π (Φ = ±π) and, therefore, an even (odd)

parity spin read-out.

The modification of the setup as outlined above calls for the generation of entanglement

between the data qubits. One way of entangling the spin states of two quantum dots located
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in single-sided cavities is by means of a linearly polarised photon interacting sequentially

with each quantum dot [154, 170]. Let us first consider the ideal case with two identical

quantum dots, with the spin states set to (|↑⟩ + |↓⟩) /
√

2, and, say, a horizontally polarised

photon. Then the initial state of the system is given by

|Ψ⟩ =
1

2
|H⟩ ⊗ (|↑⟩ + |↓⟩) ⊗ (|↑⟩ + |↓⟩)

=
1

√
2
3 (|L⟩ + |R⟩) ⊗ (|↑⟩ + |↓⟩) ⊗ (|↑⟩ + |↓⟩) .

(5.22)

The interaction then evolves the state to

|Ψ⟩ =
eiϕ0
√

2
3

[
|L⟩ ⊗

(
e2iϕ̃ |↑↑⟩ + eiϕ̃ |↑↓⟩ + eiϕ̃ |↓↑⟩ + |↓↓⟩

)
+ |R⟩ ⊗

(
|↑↑⟩ + eiϕ̃ |↑↓⟩ + eiϕ̃ |↓↑⟩ + e2iϕ̃ |↓↓⟩

)]
=
eiϕ0

2

[
± i |H⟩ ⊗ (|↑↓⟩ + |↓↑⟩) − i |V ⟩ ⊗ (|↑↑⟩ − |↓↓⟩)

]
,

(5.23)

where |H⟩ = (|L⟩ + |R⟩) /
√

2 and |V ⟩ = −i (|L⟩ − |R⟩) /
√

2, and we assume ϕ̃ = ±π/2.

Here, we see clearly how the cavity-based interaction results in the so-called Faraday rota-

tion, whereby the plane of polarisation undergoes a rotation, conditioned on the spin states.

The spins are then entangled by means of a polarisation measurement of the photon, which

projects the former onto a maximally entangled state.

We will now consider the case of entangling spectrally different spins, in order to accom-

modate for potentially distinct photonic qubits whilst satisfying the condition of ϕ̃ = ±π/2
necessary for syndrome extraction. In this case, we may still make use of the entangling

procedure outlined above, albeit with a possible reduction in the efficiency and fidelity. In

non-identical systems, the amount of Faraday rotation may not be sufficient to result in

perfect destructive interference, which is the underlying mechanism of this entanglement

generation protocol.

We may generalise the expression in Eq. (5.23) for any two non-identical quantum dots,

yielding the post-interaction state

|Ψ⟩ = |H⟩ ⊗
[

(rh1rh2 + r01r02) (|↑↑⟩ + |↓↓⟩) + (rh1r02 + r01rh2) (|↑↓⟩ + |↓↑⟩)
]
/4

+ i |V ⟩ ⊗
[

(rh1rh2 − r01r02) (|↑↑⟩ − |↓↓⟩) + (rh1r02 − r01rh2) (|↑↓⟩ − |↓↑⟩)
]
/4,

(5.24)

where rhi and r0i are the reflection coefficients for the hot and cold cavity interactions

for system i, respectively. Let us consider the use of a photon with frequency ω such

that ϕ̃1 = −ϕ̃2, where ϕ̃i = arg (rhi/r0i) is the difference in the phase shifts for spin

system i, and assume |rhi | = |r0i | = 1 for now. Therefore, we see that the detection of

an orthogonally polarised photon, in this case |V ⟩, would maximally entangle the spins by

projecting them onto the state (|↑↓⟩ − |↓↑⟩) /
√

2. Similarly, one may choose to tune the
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Figure 5.7: The heralded efficiency, η, of the entanglement generation scheme as a function

of ∆/κ, where ∆ = ωX−
1
− ωX−

2
is the characteristic energy detuning. We consider here

different linewidth ratios, γ2/γ1, as well as various coupling strengths, g/κ, with γ1/κ = 0.1

throughout. The shaded region indicates the maximum possible efficiency in the ideal case,

i.e., when considering spectrally identical emitters.

photonic frequency such that ϕ̃1 = ϕ̃2, in order to probabilistically generate the entangled

state (|↑↑⟩ − |↓↓⟩) /
√

2.

Given that the success of this protocol is now probabilistic, we define the efficiency η

of this entangling procedure to be the probability of measuring an orthogonally polarised

photon, which consequently heralds the entanglement between the spin systems. We will

limit our analysis to the case of ϕ̃1 = −ϕ̃2. This is because for quantum dot systems

exhibiting typical spectral variations, this condition would result in ϕ̃i approaching more

closely ±π/2, resulting in a stronger Faraday rotation and therefore maximising the prob-

ability of measuring an orthogonally polarised photon. The expression for the efficiency is

then given by

η = Tr [(|V ⟩ ⟨V | ⊗ 1) ρ] =
|rh1rh2 − r01r02 |2 + |rh1r02 − r01rh2 |2

23
, (5.25)

where ρ is the post-interaction state as defined in Eq. (5.24) and 1 is the identity operator

acting on the two-spin sub-system.

We note at this point that we no longer make the assumption that |rhi | → 1 in our

calculations: we are now considering ranges for the detuning of the photonic frequency,
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Figure 5.8: The fidelity, F , of the entanglement generation scheme as a function of ∆/κtotal,

where ∆ = ωX−
1
− ωX−

2
is the central energy detuning and κtotal = κ + κs. The linewidth

ratio, γ2/γ1, is set to 0.3 (blue), 1.0 (orange) and 1.5 (purple); the cavity loss rate, κs/κ is

set to 0.0 (solid), 0.2 (dashed) and 0.5 (dash-dotted); γ1/κtotal = 0.1 throughout.

δ, where reflection off the hot cavity is no longer necessarily perfect due to potentially

destructive interference effects and |rhi | < 1 for δ ≈ g. We must therefore also consider

the effect of these losses, together with potential leakage losses κs, on the fidelity of the

heralded entangled state. We define the fidelity to be

F = | ⟨ψideal|ψ⟩ |2 =
|rh1r02 − r01rh2 |2

|rh1rh2 − r01r02 |2 + |rh1r02 − r01rh2 |2
, (5.26)

where |ψideal⟩ = (|↑↓⟩ − |↓↑⟩) /
√

2 is the maximally entangled state that we wish to prepare,

whilst |ψ⟩ is the actual state heralded by the detection of photon |V ⟩.
In Figs 5.7 and 5.8 we show the efficiency η and fidelity F , respectively, of the entangling

procedure as a function of the characteristic energy detuning, ∆ = ωX−
1
−ωX−

2
. We consider

here various coupling strengths g, and show that the adapted scheme may be employed both

in the weak and the strong coupling regime. The efficiency η increases with increasing ∆

until peaking at around 40–50% of the efficiency in the ideal case. Indeed, in the non-ideal

case, ϕ̃ approaches close to ±π/2 once the two spin systems are sufficiently dissimilar,

maximising the probability of heralding an entangled spin system. We also consider the
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effect of variations in the linewidths between the two quantum dots, which may marginally

enhance the efficiency for small enough values of g. The fidelity of the resulting state goes to

unity for large ∆. This is because, for sufficiently detuned systems, we find that |rhi | ≈ |r0i |
both in the lossless and lossy cases. This effectively cancels out the contributions of the

|↑↑⟩ and |↓↓⟩ states and results in a high fidelity projected state.

We add a final comment on the decoherence time of the spin, T2, as a source of limitation

when it comes to the physical implementation of the syndrome extraction protocol. The

coherent superposition of the spin states decays over time primarily due to nuclear spin

interactions, with current experimental values for T2 ranging from several ns [185–187]

to around 100 ns [188]. The probability of measuring the spin state in its initial state

decays by a factor of exp (−t/T2), resulting in a reduction in the fidelity by a factor of

(1 + exp [−t/T2]) /2. In the case of a scheme making use of a single quantum dot, t would be

the total time for the four photons to interact with the spin system. Current experimental

demonstrations of exciton photons in micropillars show lifetime values of a few hundred

ps [189–191], depending on the emitter–cavity detuning. Increasing the qubit register to n

spin systems results in a reduction in fidelity by a factor of (1 + exp [−nt/T2]) /2. Therefore,

the reduction in fidelity remains the same as the register size is changed as n is inversely

proportional to the total interaction time t.

5.8 Summary

In conclusion, we have shown that the spin–photon interface can be employed in quan-

tum error correction to perform syndrome extraction and works well when considering

less-than-ideal conditions. We consider a physical setup consisting of a micropillar cavity

coupled to a quantum dot, and make use of the resulting optical circular birefringence and

Faraday rotation in order to perform stabilizer measurement on the photonic data qubits.

Working on the edge of the strong-coupling regime, we also show viability of the scheme by

demonstrating the robustness over the detuning δ for coupling strengths g routinely reached

experimentally. This gives evidence to the scheme working well even when accounting for

possible imperfections, which are likely to occur during the physical implementation.

Furthermore, we consider the possibility of utilising entangled spin qubits, since in-

creasing the register of the measure qubits might prove to be more useful in terms of

resources, accommodates for spectral differences amongst data qubits, and allows for flex-

ibility in the connectivity of the code [192, 193]. This setup may also prove to be more

resource efficient when it comes to physical implementation of surface codes tailored for

biased noise [194–196]: here, Hadamard transformations are applied to some of the Pauli

matrices constituting the stabilizer operators. Finally, we show how entanglement genera-

tion is possible for spin systems with different characteristic energies both in the weak- and

strong-coupling regimes, with high fidelity levels albeit with lower generation efficiency.



CHAPTER

6

TUNING THE PHOTONIC OUTPUT FROM A NANOCAVITY DEVICE

In this chapter, we will be studying the photon transmission and statistics resulting from

the interaction of the field with a two-level system, or quantum emitter, embedded in

a waveguide-based structure. The quantum emitter is positioned within a cavity that

supports two orthogonal modes that in turn couple to waveguides. We will apply the input-

output formalism to derive the single- and two-photon scattering matrices. This allows us

to study the transport properties of the photons due to the light–matter interaction and the

nonlinearity that arises from two-photon scattering. Furthermore, we will be considering

its potential as a single-photon source by studying the photon statistics as a function of

the frequency detuning for a weak coherent state.

6.1 Background and motivation

The objective behind the development of photonic-based nanostructures is to integrate

these individual components within more extensive quantum optical networks. Elements

necessary for the physical implementation of nanophotonic quantum technologies include

chiral spin–photon interfaces, single-photon sources and optical nonlinearities to medi-

ate photon–photon interactions. Waveguide-based architectures are advantageous in their

scalability, robustness and capability to support tunable light-matter interaction. The de-

vice we study in this chapter is designed with the intent of serving as a chiral1 interface,

whereby the field transmission is unidirectional, whilst enhancing the interaction with an

embedded quantum emitter [197]. This enhancement may be expressed in terms of the

Purcell factor [36], which is defined to be the factor increase (or decrease) in the quantum

1We remind the reader that the use of the word “chiral” in this context is not meant to imply any

true chirality within the physical structure of the setup, as discussed in Sec. 3.6.2. Here, the unidirectional

behaviour stems purely from interference effects.

73
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Figure 6.1: A SEM image of the device being modelled, comprising of an H1 photonic crystal

cavity adjacent to two W1 waveguides. Image courtesy of Low Dimensional Structures and

Devices, University of Sheffield.

system’s spontaneous emission rate due to modifications in its environment. This may

be improved by increasing the local density of states [61] via, e.g., engineering slow-light

photonic modes [198, 199]. High Purcell factors are also desirable due to the resulting

improvement in coupling efficiency [200]. Furthermore, this setup may serve as a switch,

comparable to a transistor, with the transmission of a photon modulated by the presence,

or absence, of a suitable control photon.

The physical system we shall be studying is comprised of a two-level system (TLS),

physically realised by a quantum emitter, positioned within a photonic crystal cavity, with

the latter coupled to two semi-infinite waveguides, as shown schematically in Fig. 3.3. We

also show an SEM image of the fabricated device in Fig. 6.1. Advantages of using photonic

crystal cavities include the possibility of achieving high Purcell factors, as demonstrated ex-

perimentally [201,202], and efficient coupling to waveguides [203–205]. The cavity supports

two orthogonal modes [206], χ and ψ, and the degeneracy is slightly lifted by the presence

of the waveguides,2 retaining some overlap between the linewidths of the two cavity modes.

Furthermore, each cavity mode couples independently to the waveguides. We first consider

the individual excitation of the cavity modes, in the absence of a quantum emitter. In

this case, the x and y components of the two fields away from the cavity center will be

either symmetric or anti-symmetric, as shown in Fig. 6.2. This results in fields that are in

antiphase and would destructively interfere in one of the waveguides; the cavity, therefore,

2In practice, the fabricated cavity possesses some imperfections and asymmetries that lead to non-

degeneracy between the modes even in the absence of the waveguides.
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Figure 6.2: On the left, we show the decomposition of the χ (yellow) and ψ (pink) cavity

modes in the absence of a quantum emitter. We denote the x and y components of the

electric field by Ex (solid curves) and Ey (dotted curves), respectively. Here, the fields are

all in phase in the left waveguide and in antiphase in the right waveguide. On the right,

the cavity effectively transmits in one direction only due to the arising interference effects.

would effectively transmit in only one direction, as is required from a component within a

chiral optical setup.

Next, suppose we wish to make use of the quantum emitter’s optical transition in order

to excite the two resonant modes concurrently. Making use of the dipole approximation, we

may assume that the quantum emitter can be modelled as a superposition of dipoles with

varying orientations [206]. Here we assume a circularly polarised dipole transition which

can be described by a superposition of two orthogonally oriented dipoles with a relative

phase of ±π/2, depending on the handedness. Furthermore, each dipole excites only one

of the cavity modes upon emission. In this case, emission from a circularly polarised

dipole would lead to a phase difference of ±π/2 between the field components of the χ

and ψ modes within the waveguides. Therefore, the presence of an emitter hinders perfect

destructive interference. However, we can make use of additional phase differences resulting

from the interaction between the emitter and the non-degenerate cavity modes in order to

re-establish unidirectional transmission [197].

6.2 Physical system

We start by defining the Hamiltonian for the system: specifically, we consider first the

terms relating to the two semi-infinite waveguides. Setting ℏ = 1 and assuming a single

cavity mode, the Hamiltonian for a cavity directly coupled to two semi-infinite waveguides

may be expressed in the real-space basis by [66]

H =

∫
dx
[
a† (x) (−ivg∂x) a (x) + b† (x) (ivg∂x) b (x)

]
+

∫
dx δ (x)

[
Ṽaa (x) + Ṽbb (x)

]
c†eiϕθ(x) + H.c.

+Hcavity.

(6.1)
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Here, vg is the group velocity, assuming a linear dispersion relation around the central

wavenumber;3 c is the cavity mode operator; Ṽi is the coupling strength between the cavity

and waveguide mode i (i = a, b); and Hcavity is the Hamiltonian of the cavity system. In

the case of a single infinite waveguide, the operator a (x) [a† (x)] annihilates (creates) a

right-moving photon at position x, and the operator b (x) corresponds similarly to a left-

moving photon [207]. Here, the waveguiding paths have been “folded over” as a result

of modifying the operators by means of a canonical transformation such that a (x) [b (x)]

annihilates a photon in the left (right) waveguide, with x < 0 for an incoming photon and

x > 0 for an outgoing one. The phase shift gained by the photon upon reflection off the

cavity is given by ϕ and θ(x) is the switch-on function, such that limx→−∞ θ(x) = 0 and

limx→+∞ θ(x) = 1 within a short spatial range. We will adopt the Heaviside step function,

but the specific form of the function has no bearing on the derivation.

We wish to study the transport properties of the system in frequency space, and we

therefore need to transform the Hamiltonian in Eq. (6.1). We first apply the following

Fourier transforms on the bosonic operators

a (x) =
1√
2π

∫ +∞

−∞
dk a (k) eikx and a† (x) =

1√
2π

∫ +∞

−∞
dk a† (k) e−ikx, (6.2)

and similarly for b (x) and b† (x). We then change from a momentum basis to a frequency

basis by assuming a linear dispersion relation with ω = vgk (ω = −vgk) for the left (right)

waveguides and defining the mode operators by a (ω) = a (k) /
√
vg and b (ω) = b (k) /

√
vg

[81].

The above can be easily generalised to two cavity modes. Furthermore, we do not need

to consider the Hamiltonian of the cavity system in real space as it would not be affected

by the transformation of the bosonic mode operators. The total Hamiltonian of the system

in frequency space may therefore be expressed as

H =

∫
dω ω

[
a† (ω) a (ω) + b† (ω) b (ω)

]
+
ωeσz

2
+
∑
j

ωjc
†
jcj

+
∑
j

{
gjcjσ+ +

∫
dω

[
Va,ja (ω) + Vb,jb (ω)

]
c†j

}
+ H.c.,

(6.3)

where a (ω) and b (ω) are the mode operators for the left and right waveguides with fre-

quency ω, respectively; ωe is the transition frequency of the TLS with raising operator

σ+ = |e⟩ ⟨g| = σ†− and σz = 2σ+σ− − 1; and cj is the cavity mode operator with resonance

frequency ωj (j = χ, ψ). The second line of the equation describes the interaction part of

the Hamiltonian, with the TLS coupling to cavity mode j with strength gj , and waveguide

modes a and b coupling to cavity mode j with rates Va,j and Vb,j , respectively. Note that

we have absorbed the phase factor resulting from the reflection off the cavity in the real

space description into the coupling strength, such that Vje
iϕ/2 → Vj . The actual value of

ϕ has no effect on the photon transport properties.

3This is valid for photons with sufficiently narrow bandwidths.
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Parameter Value Notes

Mode resonant wavelength
λχ = 922.9 nm

ω = 2πc/λλψ = 921.9 nm

Quantum emitter wavelength λe = 924.5 nm

Quality factor
Qχ = 1600

V =
√
κ/2π =

√
ω/2Q
2πQψ = 700

Coupling strength
gχ = 2π · 10 GHz Within the typical range of values

found in the literature, e.g. [208]gψ = 2πi · 10 GHz

Table 6.1: Parameters used in Fig. 6.3. The cavity mode resonances and the quality factors

have been obtained from FDTD (finite-difference time-domain) simulations [197].

6.3 Single-photon scattering

We start off by considering the scattering matrix elements for the scattering of a single

photon. We derive this by making use of the Heisenberg equations of motion and the

input-output formalism, as discussed in Sec. 3.4. This gives us the following set of input-

output relations:

aout (t) = ain (t) −
√

2πi
∑
j

V ∗
a,jcj (t) ,

bout (t) = bin (t) −
√

2πi
∑
j

V ∗
b,jcj (t) ,

(6.4)

where
[
µin (t) , ν†in (t′)

]
= δµνδ (t− t′) for µ, ν = a, b. We also obtain the following system

of coupled partial differential equations:

∂tcj (t) = −iωjcj (t) − ig∗jσ− (t) − i
∑
µ=a,b

Vµ,j

√2πµin (t) − πi
∑
k=χ,ψ

V ∗
µ,kck (t)

 ,
∂tσ− (t) = −iωeσ− (t) + i

∑
j

gjcjσz (t) .

(6.5)

The single-photon scattering matrix Sµ,ν (p, k) = ⟨p−µ |k+ν ⟩ is the probability amplitude

associated with a single incoming photon with frequency k in waveguide ν ∈ {a, b} scat-

tering into waveguide µ ∈ {a, b} and obtaining the frequency p [81]. By making use of the

input-output relations and solving the system of differential equations defined above by

means of Fourier transformations, we obtain the expression

⟨p−µ |k+ν ⟩ ≡ ⟨0|µout (p) ν†in (k) |0⟩

=

δµν −
∑

i,j=χ,ψ
i ̸=j

V ∗
µ,i

Ai (p)Aj (p) −Bi (p)Bj (p)
[Vν,iAj (p) + Vν,jBj (p)]

 δ (p− k)

≡ tµ,ν (p) δ (p− k) ,

(6.6)
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where p, k are the frequencies of the outgoing and incoming photons, respectively, and

where we define

Aj (p) = −i (p− ωj) +
i|gj |2
p− ωe

+ π
(
|Va,j |2 + |Vb,j |2

)
(6.7a)

and

Bj (p) =
−ig∗i gj
p− ωe

− π
(
Va,iV

∗
a,j + Vb,iV

∗
b,j

)
with i ̸= j. (6.7b)

The expression obtained in Eq. (6.6) consists of two parts. The first term comprises the

Kronecker delta δµν and represents the contribution to the scattering due to reflection off

the cavity, whilst neglecting any coupling to the cavity modes. The second term represents

the contribution to the final state |p−µ ⟩ from the coupling of the input photon in the initial

waveguide to the cavity modes as well as the two-level system. The scattering amplitude

also contains a Dirac delta function which imposes conservation of energy such that the

frequencies of the incoming and outgoing photons are equal.

In Fig. 6.3 we show the transmission for a single photon incoming from the left waveguide

and exiting through the right, making use of the parameters defined in Table 6.1. The

theoretical result is in very strong agreement with numerical simulations obtained by means

of FDTD simulations, with the former being advantageous due to its convenient analytical

form and offering deeper insight into the interference mechanism. We note here that a

phase of π is added to the value of Va,χ in order to model the relative phases observed in

the field as it couples from the cavity to either waveguide. Similarly, the relative phase

of π/2 between the two values of the coupling strength, gχ and gψ, is attributed to the

manner in which a circularly polarised dipole couples to a phase delayed superposition of

the two cavity modes.

6.4 Two-photon scattering

In this section we will be considering the resulting scattering event for two co-propagating

photons as they are transmitted through this setup. The TLS induces optical non-linearities

at the few photon level due to its rapid saturation at very low incident powers [78,209]. By

extending the analysis in the previous section to two photons, we can observe the emergence

of this behaviour.

We start by considering the corresponding scattering matrix, given by

Sµ1,µ2,ν1,ν2 (p1, p2, k1, k2)

= ⟨p1,µ1p −
2,µ2

|k1,ν1k +
2,ν2

⟩
= ⟨p −

1,µ1
|µ2,in (p2) |k1,ν1k +

2,ν2
⟩ −

√
2πi

∑
j=χ,ψ

V ∗
µ2,j ⟨p −

1,µ1
|cj (p2) |k1,ν1k +

2,ν2
⟩ ,

(6.8)

with |k +
i,νi

⟩ = ν†i,in (ki) |0⟩, with i = 1, 2, and |p −
1,µ1

⟩ = µ†1,out (p1) |0⟩, as was similarly defined

in the single-photon case. We can solve the expression by considering the single-photon
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Figure 6.3: Single-photon transmission through the waveguide-cavity system as a function

of the photonic wavelength, λ, with the field incoming from the left and outgoing to the

right. We make use of the parameters defined in Table 6.1.

scattering matrix and the set of coupled differential equations, giving us the following:

Sµ1,µ2,ν1,ν2 (p1, p2, k1, k2)

=Sµ1,ν1 (p1, k1)Sµ2,ν2 (p2, k2) + Sµ1,ν2 (p1, k2)Sµ2,ν1 (p2, k1)

+Bµ1,µ2,ν1,ν2 (p1, p2, k1, k2) δ (p1 + p2 − k1 − k2) .

(6.9)

The first two terms on the right-hand side of the equation represent the linear contribution

of the interaction, whereby the individual frequencies of either photon is maintained post-

scattering, and are simply the product of two single-photon scattering events. The last

term is the so-called bound state term4 [210–212]: this describes the non-linear part of

the interaction as well as spectral and directional correlations between the two photons.

The nature of these correlations depends on the initial spectral wavepacket of the photonic

input state.

We assume an initial optical state with two photons co-propagating in the left waveguide

towards the right, given by

|Ψ⟩ =
1√
2

∫
dk1 dk2 ξGaus (k1) ξGaus (k2) a

†
in (k1) a

†
in (k2) |0⟩ , (6.10)

with the wavepacket normalised such that
∫

dk1 dk2 |ξGaus (k1) ξGaus (k2) |2 = 1 and with a

Gaussian distribution given by

ξGaus (k) =
1

(πσ′2)1/4
exp

[
− (k − k0)

2

2σ′2

]
, (6.11)

4Here we omit the explicit expression for the bound state term due to its convoluted form for this

particular system. We give a more detailed explanation for this in App. B.
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where k0 is the central frequency of the wavepacket, σ′ = σ/
(

2
√

ln 2
)

where σ is the

spectral full width at half maximum, and the two photons have identical central frequencies

and spectral widths, such that ξ (k1, k2) = ξ (k2, k1). The two photons are assumed to be

uncorrelated as their wavepacket factorizes into the product of two single photons. However,

this need not necessarily be the case. For example, one could consider a biphoton state

produced by parametric down conversion, resulting in two photons that are correlated in

their frequencies and wavevectors [213].

Given the definition of the scattering matrix and the symmetric wavefunction, the

optical state post-scattering is given by

|Ψ⟩ =
1

2
√

2

∑
µ1,µ2=a,b

∫
dk1 dk2 ξ̃µ1,µ2 (k1, k2)µ1,out (k1)µ2,out (k2) |0⟩ , (6.12)

where ξ̃µ1,µ2 (k1, k2) is the post-scattering wavefunction given by

ξ̃µ1,µ2 (k1, k2) = 2 tµ1,a (k1) tµ2,a (k2) ξ (k1, k2)

+

∫
dpBµ1,µ2,ν1,ν2 (k1, k2, p, k1 + k2 − p) ξ (p, k1 + k2 − p) .

(6.13)

We can therefore determine the directional probability densities of the scattered photons

as a function of the photonic frequencies from the resulting wavefunctions.

Here, the probability density for two photons scattering into the same waveguide is

|ξ̃µ,µ (k1, k2) |2/4, with µ = (a, b), and that for each photon scattering into a different

waveguide is |ξ̃a,b (k1, k2) |2/2. In Fig. 6.4 we show the spectra of the outgoing field for

an initial Gaussian wavefunction with various linewidths. Here, we show the probability

distribution for the transmission of both photons into the left or right waveguide as well as

the probability of just one photon being scattered in the forwards direction. Moreover, we

also show the effect of the non-linear term of the scattering interaction by setting the term

to zero and then calculating the resulting probability densities for the counter-propagating

output. We see that the linewidth of the incoming photonic wavefunction has an effect on

the strength of the bound state term. This allows us to tune the amount of, say, directional

entanglement of the scattered photons where mere linear effects would not be sufficient.

Additionally, the cavity mode frequencies may be moderately tuned and, hence, provide

additional degrees of freedom.

6.5 Second-order correlation function

The implementation of optics-based quantum technologies relies on the sourcing of non-

classical light [214–216], including single-photon states [217,218]. This has generated keen

interest in the development of such sources, with particular focus on the use of classical

coherent light as the input followed by some form of modification of its statistics. Methods

of manipulation rely on interference effects, such as photon blockade [219–222] and the

Fano effect [223]. Hence, we will now describe the photon statistics for the transmitted

field in this device.
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Figure 6.4: Probability densities for both photons exiting into the left waveguide (top

row), counter-propagating photons (second row) and both photons exiting into the right

waveguide (third row) as a function of frequency detuning for an initial Gaussian two-

photon input state. We also show the effect of the bound state term on the transmission

statistics of the counter-propagating photons by setting this to zero for the scattering

interaction (bottom row). We vary the linewidth of the initial wavefunction, σ, across the

columns (as labelled). We make use of the parameters defined in Table 6.1.
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We use the normalised second-order correlation function to analyse the field transmitted

into the right waveguide. This is an intensity correlation function showing the normalised

probability of detecting a photon at time (t+ τ) given a photon detected at time t, and is

given by [224]

g(2) (τ) = lim
t→∞

⟨b†out (t) b†out (t+ τ) bout (t+ τ) bout (t)⟩
⟨b†out (t) bout (t)⟩⟨b†out (t+ τ) bout (t+ τ)⟩

, (6.14)

where t → ∞ indicates that the operators are taken to act in the asymptotic limit with

the optical field having reached the steady state post-interaction. We take the expectation

values to be those for a coherent state input in the left waveguide with

|α+
k ⟩ = e−|αk|2/2

∞∑
n=0

[
αka

†
in (k)

]n
n!

|0⟩ , (6.15)

where |αk|2 is the mean photon number and k is the frequency.

There exist a few methods to calculate the expression for g(2), including use of the

quantum regression theorem [80, 225] and establishing coupled differential equations in

terms of various expectation classes for the excitation operator [223, 226]. However, due

to the indirect coupling between the waveguides and the TLS, the calculations are not

tractable with these methods. Instead, we make the assumption of a weak coherent state

[221,227], with αk → 0, which can be experimentally realised by a highly attenuated laser.

From Eq. (6.14) we obtain

lim
αk→0

g(2) (τ) =
⟨kak+a |b†out (t) b†out (t+ τ) bout (t+ τ) bout (t) |kak+a ⟩

4 ⟨k+a |b†out (t) bout (t) |k+a ⟩ ⟨k+a |b†out (t+ τ) bout (t+ τ) |k+a ⟩
, (6.16)

where |k+a ⟩ = a†in (k) |0⟩ and |kak+a ⟩ = [a†in (k)]2 |0⟩.
We can simplify further by taking the Fourier transform of the output operators and

obtaining an expression in terms of the single- and two-photon scattering matrices:

lim
αk→0

g(2) (τ) =
|
∫

dp1 dp2 Sb,b,a,a (p1, p2, k, k) e−ip2τ |2
4|tb,a (k) |4

=
|2 t2b,a (k) e−ikτ +

∫
dpBb,b,a,a (p, 2k − p, k, k) e−i(2k−p)τ |2

4|tb,a (k) |4

= 1 +
|
∫

dpBb,b,a,a (p, 2k − p, k, k) e−i(2k−p)τ |2
4|tb,a (k) |4

+ 2 Re

(∫
dpBb,b,a,a (p, 2k − p, k, k) e−i(k−p)τ

t2b,a (k)

)
.

(6.17)

Setting the time delay to zero, τ = 0, we can determine the degree of bunching

(g(2) (0) > 1) or antibunching (g(2) (0) < 1) experienced by the outgoing field. Furthermore,

given the form of Eq. (6.17), we can discern between the contributions to the correlation

function from the bound state of the light–matter interaction and the interference effects



6.5. Second-order correlation function 83

°4 °3 °2 °1 0 1 2 3 4

±

0.0

0.5

1.0

1.5

2.0

2.5

3.0
g
(2

)
(0

)

°2.0

°1.5

°1.0

°0.5

0.0

0.5

1.0

In
te

rf
er

en
ce

te
rm

s

Bound state

Interference

°4 °3 °2 °1 0 1 2 3 4

±

0.0

0.5

1.0

1.5

2.0

2.5

3.0

g
(2

)
(0

)

°2.0

°1.5

°1.0

°0.5

0.0

0.5

1.0

In
te

rf
er

en
ce

te
rm

s

Bound state

Interference

|g | = 0.5 |Vχ |2

|g | = |Vχ |2

Figure 6.5: On the left axis, we show the second-order correlation function, g(2) (0), as a

function of the normalised detuning, δ. Here, δ = (k − ωe) /|g|, where |g| is the absolute

value of the coupling strength between the cavity modes and TLS. On the right axis,

we show how the contributions from the bound state and interference terms affect the

magnitude of the g(2) (0) and how antibunching is a result of the interference effects arising

from the coupling within the device. We make use of the parameters defined in Table 6.1,

and set (a) |g| = |Vχ|2 and (b) |g| = 0.5|Vχ|2.
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that arise due to the relative phase between the various coupling terms [223]. These are

given by the last two terms of the equation, respectively.

In Fig. 6.5 we show the correlation function at zero time delay, together with the contri-

butions from the two effects, as a function of the normalised frequency detuning, δ, between

the coherent source and the TLS transition frequency. Here, we set δ = (k − ωe) /|g|, with

|g| being the absolute value of the coupling strength between either cavity mode and the

TLS, and use the values specified in Table 6.1. We see that by tuning the detuning we may

modify the statistics of the output field to vary between antibunched and bunched. Give

that the bound state term is always positive, due to its form in Eq. (6.14), we can see how

the effect of antibunching requires the destructive two-photon interference contribution.

From the figures, one can observe how antibunching occurs at the points where the bound

state term is small whilst the interference values are greater in magnitude and opposite

in sign. These destructive effect in turn suppresses two-photon state transmission to the

output in relation to the single-photon state, resulting in sub-Poissonian statistics of the

outgoing optical state.

6.6 Summary

In conclusion, we have characterised the proposed setup by considering the scattering inter-

action at the few-photon level. Specifically, we first expressed the Hamiltonian for the sys-

tem by considering the waveguide mode operators in the position basis. We also explained

how the mechanism underlying the idea of chiral transport translates to the coupling terms

within the Hamiltonian. Next, we derived the scattering matrix elements for a single- and

two-photon input state by making use of the input-output formalism, which allows us to

express the asymptotic output states resulting from the interaction. We showed the spectra

of the scattered two-photon states that would result in this setup, and considered also the

effect of the non-linear part of the interaction. In particular, we showed how the linewidth

of initial photons determines the strength of this type of interaction. Finally, we consid-

ered the photon statistics for the transmitted field in the context of possible single-photon

sources. By taking into account a weak coherent state, we expressed the second-order cor-

relation function and showed how the relative detuning between the field and the emitter

may be adjusted so as to cause antibunching effects at the output.



CHAPTER

7

CONCLUSION AND FUTURE WORK

7.1 Conclusion

This thesis has centred around the study and application of light–matter interactions in the

context of quantum information processes. We particularly focus on systems consisting of

photonic nanostructures and semiconductor quantum dots. This is motivated by the fact

that the structures are well-suited as integral components in different types of photonic

quantum technologies, as evidenced by the research and development in these fields. We

will now summarise the work and results presented in this thesis.

We start by presenting an introduction to this thesis and providing context for how this

work fits within the wider research field in Chapter 1. Next, in Chapter 2, we present the

foundations of quantum mechanics, which underpins the theory used throughout, and dis-

cuss the mathematical description of the quantised electromagnetic field and some emergent

photonic states. Finally, we discuss the concept of entanglement and how it is a resource

in quantum technology, as well as quantum error correction in surface codes.

In Chapter 3, we give a detailed account of the theory of quantum optics and light–

matter interaction that is used in our work. We start from the fundamentals by deriving

the rudimentary Hamiltonian describing the interaction between an optical field and the

charge of a two-level system, widely known as the Jaynes–Cummings model, and apply the

rotating-wave approximation to allow for easier solutions. We generalise this Hamiltonian

to a continuum of modes, as would be the case in a photonic waveguide, and consider its

form in different bases and the inclusion of loss. We then present different approaches to the

study of photon interaction: a wavefunction approach for a single photon and the scattering

matrix technique, based on the input–output formalism, to describe the post-interaction

state of multi-photon scattering.

We start by presenting original work and research in Chapter 4, where we study how

85
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spectrally distinct solid-state emitters, specifically quantum dots, can be fully entangled

by means of photon scattering. Fabricated quantum dots naturally show variations in

their central energies and linewidths, making the process of deterministic entanglement a

difficult one. However, we show how we can do this for two non-identical quantum dots by

repeatedly scattering off photons at an optimal frequency. This builds up the amount of

entanglement between them and is heralded by the measurement of the photons. We also

consider how the scheme performs when introducing losses and deviation in the frequency

away from the optimal. Most of the work assumes a single biphoton state as the input,

and we hence account for the possibility of higher order photon states and show how the

scheme remains successful when using photon-number resolving detectors.

In Chapter 5 we study how the spin–photon interface can be used to perform syndrome

extraction for quantum error correction in surface codes. Specifically, we consider a quan-

tum dot coupled to a micropillar cavity and use the arising property of birefringence to

extract the syndrome of a set of qubits, which would give information about the location

of possible errors. We consider a photonic implementation of the scheme and study how

robust the confidence in the spin readout is to deviations of the relative frequency detuning

from the optimal. The scheme may also be performed using entangled spin states in order

to optimise for resource requirements. We therefore also study the generation of entan-

glement between spectrally dissimilar spin systems, providing the efficiency and fidelity as

figures of merit.

Finally, in Chapter 6, we present work done on characterising and modelling an ex-

perimental device designed to be a component integrated within a wider quantum optical

network, serving as a unidirectional emitter of light. We first start by describing the model

and the derivation of its Hamiltonian, before making use of the input–output formalism

and scattering matrix theory to describe the single- and two-photon scattering events. We

study the strength of the arising non-linearity and its effects on the directionality of the

photonic transmission. Finally, we consider the photon statistics for the proposed device.

Assuming a weak coherent state in the form of a strongly attenuated laser, we show how the

setup may induce anti-bunching of the transmitted photon at certain frequency detunings

and approximates a possible single-photon source.

In conclusion, we have presented theoretical work that fits within the overarching theme

of quantum information theory and light–matter interactions. We have considered physical

systems (semiconductor quantum dots, photonic waveguides and cavities) that are actively

researched by the experimental community and demonstrated their potential applications

in quantum technology.

7.2 Future work

Naturally, the work we have studied and presented here is not fully exhaustive and there

are several directions in which to take the work further. In this section we will outline a

few possible ways of building on the research presented in the three work chapters.

For Chapter 4, it would be interesting to investigate further the entanglement of dis-

similar quantum dots by considering, say, three or more such emitters embedded within
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a generalised Mach-Zehnder interferometer. One may consider an optical input state that

undergoes some unitary transformation before and after scattering, all of which can be

physically implemented using only a combination of linear optical elements [228]. An obvi-

ous starting point is the quantum Fourier transform, which would give a photon distribution

that is equal in magnitude across all output modes. The increase in the dimension of the

spin Hilbert space allows for the generation of more useful and exotic entangled states,

such as GHZ states. Given that the concurrence is applicable only for mixed states of two

qubits, one would need to make use of alternative entanglement measures, e.g., concentrat-

able entanglement [229,230].

With regards to the work done in Chapter 5, one possible direction for future work

is to consider the application of the micropillar cavity system to perform other families of

measurements used in quantum error correction. These include, for example, lattice surgery

used for the entangling of logical qubits [231,232] as well as the generation and measurement

of cluster states for one-way, or measurement-based, quantum computing [233–235]. The

physical setup considered in this work has also been proposed for Bell state analysis [158],

and it would be interesting to see whether or not this could be generalised to measure

amongst a broader class of two-qubit states and how well state teleportation could be

performed starting with a less entangled state. Finally, another possible avenue is the study

of its potential application in quantum entanglement purification schemes [53], especially

for physical systems that differ in their spectral properties.

A clear direction for the work in Chapter 6 is to experimentally realise the variation

in the photon number statistics of the transmitted field. The sufficiency of the theoret-

ical model can be evaluated from the comparison to the experimental results, and any

sources of error could be incorporated into the model. These might include short dephas-

ing times, spectral wandering and broadening of the emitter linewidth. One could also

study its potential application as a controlled-phase gate, where the phase shift induced

by the interaction can be measured by means of homodyne detection. Finally, it would

be interesting to consider how entanglement between various degrees of freedom may be

generated using this device [236,237]. One might consider using optical states at the input

that are easily sourced in the lab or else expand the Hilbert space of the total system by

increasing the number of emitters and cavity modes.
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APPENDIX

A

CONCURRENCE TRAJECTORIES

Here, we present the Python code used to generate the concurrence trajectories of the

two-spin state, generalised to account for the possibility of obtaining a mixed state.

from qutip import *

import numpy as np

import pylab as plt

import matplotlib.pyplot as plt

import math

a = basis(2, 0)

b = basis(2, 1)

c = basis(2, 0).dag()

d = basis(2, 1).dag()

# defining variables

Ea = 1.0

Eb = 4.0

Gammaa = 1.0 # typical range (0 ,2.5)\nu eV

ddelta = 2.0 # detuning between the two linewidths , Gammab=Gammaa+

ddelta

Gammab = Gammaa + ddelta

# hw=((Eb*Gammaa)-(Ea*Gammab))/(Gammaa -Gammab)

hw = 0.5 * (Ea + Eb - math.sqrt((Ea - Eb) ** 2 - (Gammaa * Gammab)))

Delta1 = hw - Ea # Delta1 =(hbar*w1)-Ea in \nu eV

Delta2 = hw - Eb # Delta2 =(hbar*w2)-Eb in \nu eV

delta = Delta2 - Delta1

# to get equal frequencies , Delta1 -Delta2+delta =0

beta = 1.0

gammaa =( Gammaa *(1.0- beta))/beta
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gammab =( Gammab *(1.0- beta))/beta

# defining transmission coefficients

ta1 = (Delta1 - (1j * 0.5 * (Gammaa - gammaa))) / (Delta1 + (1j * (

Gammaa + gammaa) * 0.5))

ta2 = (Delta2 - delta - (1j * 0.5 * (Gammaa - gammaa))) / (Delta2 -

delta + (1j * (Gammaa + gammaa) * 0.5))

tb1 = (Delta1 + delta - (1j * 0.5 * (Gammab - gammab))) / (Delta1 +

delta + (1j * 0.5 * (Gammab + gammab)))

tb2 = (Delta2 - (1j * 0.5 * (Gammab - gammab))) / (Delta2 + (1j *

0.5 * (Gammab + gammab)))

# def tar(eea):

tar = (-1j * (Gammaa * gammaa) ** 0.5) / (Delta1 + (1j * 0.5 * (

Gammaa + gammaa) ** 0.5))

# return tar

# def tbr(eeb):

tbr = (-1j * (Gammab * gammab) ** 0.5) / (Delta2 + (1j * 0.5 * (

Gammab + gammab) ** 0.5))

# return tbr

# defining probability amplitudes post first interaction

# P20

a1 = (ta1 * ta2) + (ta2 * tb1) - (ta1 * tb2) - (tb1 * tb2)

a2 = (ta1 * ta2) + ta2 - ta1 - 1

a3 = 1 + tb1 - tb2 - (tb1 * tb2)

a4 = 0

# P02

a5 = (ta1 * ta2) - (ta2 * tb1) + (ta1 * tb2) - (tb1 * tb2)

a6 = (ta1 * ta2) - ta2 + ta1 - 1

a7 = 1 - tb1 + tb2 - (tb1 * tb2)

a8 = 0

# P11

a9 = (ta1 * ta2) - (ta2 * tb1) - (ta1 * tb2) + (tb1 * tb2)

a10 = (ta1 * ta2) - ta2 - ta1 + 1

a11 = 1 - tb1 - tb2 + (tb1 * tb2)

a12 = 0

a13 = (ta1 * ta2) + (ta2 * tb1) + (ta1 * tb2) + (tb1 * tb2)

a14 = (ta1 * ta2) + ta2 + ta1 + 1

a15 = 1 + tb1 + tb2 + (tb1 * tb2)

a16 = 4

#P10 & P01

a17 = ta1 * tar

a18 = tb1 * tbr
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#P00

a19 = tar ** 2

a20 = tbr ** 2

# counters

x = 0

y = 0

i = 0

k = 0

plt.clf()

for x in range (40): # no of trajectories

# setting up initial density matrix

phi = 0.5 * tensor(a + b, a + b)

rhoq = phi * phi.dag()

rho = rhoq.full() # converting from Qobj() to array

concurrences = np.array ([])

outcomes = np.array ([])

probabilities = np.array ([])

for y in range (30): # no of iterations for a single trajectory

# defining probabilities of 3 different detection events

P20 = (rho[0, 0] * abs(a1) ** 2) + (rho[1, 1] * abs(a2) **

2) + (rho[2, 2] * abs(a3) ** 2)

P02 = (rho[0, 0] * abs(a5) ** 2) + (rho[1, 1] * abs(a6) **

2) + (rho[2, 2] * abs(a7) ** 2)

P11 = (rho[0, 0] * abs(a9 + a13) ** 2) + (rho[1, 1] * abs(

a10 + a14) ** 2) + (

rho[2, 2] * abs(a11 + a15) ** 2) + (rho[3, 3] * abs(

a12 + a16) ** 2)

P10 = 8 * ((rho[0, 0] * abs(a17) ** 2) + (rho[1, 1] * abs(

a17) ** 2) + (rho[0, 0] * abs(a18) ** 2) + (

rho[2, 2] * abs(a18) ** 2))

P01 = 8 * ((rho[0, 0] * abs(a17) ** 2) + (rho[1, 1] * abs(

a17) ** 2) + (rho[0, 0] * abs(a18) ** 2) + (

rho[2, 2] * abs(a18) ** 2))

P00 = 8 * ((rho[0, 0] * abs(a19) ** 2) + (rho[1, 1] * abs(

a19) ** 2) + (rho[0, 0] * abs(a20) ** 2) + (

rho[2, 2] * abs(a20) ** 2))

# probabilities , normalized probabilities set as array

# prob=np.array ([P20 ,P02 ,P11 ,P10 ,P01 ,P00])

# prob=np.array ([P20+P10 ,P02+P01 ,P11 ,P00])

prob = np.array([P20 + P10 , P02 + P01 , P11 , P00 ,

(P20 + P10 + P02 + P01 + P11 + P00) * 0.05

/ 0.95]) # for 2,2 detection events

probn = np.array ([(( P20 + P10) / sum(prob)).real , ((P02 +

P01) / sum(prob)).real , (P11 / sum(prob)).real ,

(P00 / sum(prob)).real ,
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((( P20 + P10 + P02 + P01 + P11 + P00) *

0.05 / 0.95) / sum(prob)).real])

# probn=np.array ([0,0,1,0,0])

# weighted random choice of outcome

outcomes = np.append(outcomes , np.random.choice(5, 1, p=

probn)) # 0=P20+P10 1=P02+P01 2=P11 4=P00

if y == 50: # to test effect of multiphoton state

j = 10

else:

j = int(outcomes [-1]) # set j as last outcome

probabilities = np.append(probabilities , probn[j])

# obtain new density matrix

if j == 4:

rho10 = (((rho[0, 0] * (b3) * (b3).conjugate () * tensor(

a, a) * tensor(c, c)) + (rho[0, 1] * (b3) * (b4).

conjugate () * tensor(a, a) * tensor(c, d)) + (rho[0,

2] * (b3) * (b5).conjugate () * tensor(a, a) * tensor(

d, c)) + (rho[0, 3] * (b3) * (b6).conjugate () *

tensor(a, a) * tensor(d, d)) + (rho[1, 0] * (b4) * (

b3).conjugate () * tensor(a, b) * tensor(c, c)) + (rho

[1, 1] * (b4) * (b4).conjugate () * tensor(a, b) *

tensor(c, d)) + (rho[1, 2] * (b4) * (b5).conjugate ()

* tensor(a, b) * tensor(d, c)) + (rho[1, 3] * (b4) *

(b6).conjugate () * tensor(a, b) * tensor(d, d)) + (

rho[2, 0] * (b5) * (b3).conjugate () * tensor(b, a) *

tensor(c, c)) + (rho[2, 1] * (b5) * (b4).conjugate ()

* tensor(b, a) * tensor(c, d)) + (rho[2, 2] * (b5) *

(b5).conjugate () * tensor(b, a) * tensor(d, c)) + (

rho[2, 3] * (b5) * (b6).conjugate () * tensor(b, a) *

tensor(d, d)) + (rho[3, 0] * (b6) * (b3).conjugate ()

* tensor(b, b) * tensor(c, c)) + (rho[3, 1] * (b6) *

(b4).conjugate () * tensor(b, b) * tensor(c, d)) + (

rho[3, 2] * (b6) * (b5).conjugate () * tensor(b, b) *

tensor(d, c)) + (rho[3, 3] * (b6) * (b6).conjugate ()

* tensor(b, b) * tensor(d, d)))) + (2 * (((rho[1, 1]

* (b1) * (b1).conjugate () * tensor(a, b) * tensor(c,

d)) + (rho[1, 2] * (b1) * (b2).conjugate () * tensor(a

, b) * tensor(d, c)) + (rho[2, 1] * (b2) * (b1).

conjugate () * tensor(b, a) * tensor(c, d)) + (rho[2,

2] * (b2) * (b2).conjugate () * tensor(b, a) * tensor(

d, c)))))

rhoq = rho10.unit()

rho = rhoq.full()

del rho10

if j == 0:

rho1 = (1 / (P20 + P10)) * ((P20 * ((rho[0, 0] * a1 * a1

.conjugate () * tensor(a, a) * tensor(c, c)) + (rho[0,

1] * a1 * a2.conjugate () * tensor(a, a) * tensor(c,
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d)) + (rho[0, 2] * a1 * a3.conjugate () * tensor(a, a)

* tensor(d, c)) + (rho[0, 3] * a1 * a4.conjugate () *

tensor(a, a) * tensor(d, d)) + (rho[1, 0] * a2 * a1.

conjugate () * tensor(a, b) * tensor(c, c)) + (rho[1,

1] * a2 * a2.conjugate () * tensor(a, b) * tensor(c, d

)) + (rho[1, 2] * a2 * a3.conjugate () * tensor(a, b)

* tensor(d, c)) + (rho[1, 3] * a2 * a4.conjugate () *

tensor(a, b) * tensor(d, d)) + (rho[2, 0] * a3 * a1.

conjugate () * tensor(b, a) * tensor(c, c)) + (rho[2,

1] * a3 * a2.conjugate () * tensor(b, a) * tensor(c, d

)) + (rho[2, 2] * a3 * a3.conjugate () * tensor(b, a)

* tensor(d, c)) + (rho[2, 3] * a3 * a4.conjugate () *

tensor(b, a) * tensor(d, d)) + (rho[3, 0] * a4 * a1.

conjugate () * tensor(b, b) * tensor(c, c)) + (rho[3,

1] * a4 * a2.conjugate () * tensor(b, b) * tensor(c, d

)) + (rho[3, 2] * a4 * a3.conjugate () * tensor(b, b)

* tensor(d, c)) + (rho[3, 3] * a4 * a4.conjugate () *

tensor(b, b) * tensor(d, d)))) + (P10 * ((rho[0, 0] *

((a17 * a17.conjugate ()) + (a18 * a18.conjugate ()))

* tensor(a, a) * tensor(c, c)) + (rho[0, 1] * a17 *

a17.conjugate () * tensor(a, a) * tensor(c, d)) + (rho

[0, 2] * a18 * a18.conjugate () * tensor(a, a) *

tensor(d, c)) + (rho[1, 0] * a17 * a17.conjugate () *

tensor(a, b) * tensor(c, c)) + (rho[1, 1] * a17 * a17

.conjugate () * tensor(a, b) * tensor(c, d)) + (rho[2,

0] * a18 * a18.conjugate () * tensor(b, a) * tensor(c

, c)) + (rho[2, 2] * a18 * a18.conjugate () * tensor(b

, a) * tensor(d, c)))))

rhoq = rho1.unit()

rhoq = tensor(sigmax (), sigmax ()) * rhoq * tensor(sigmax

(), sigmax ())

rho = rhoq.full()

del rho1

if j == 1:

rho2 = (1 / (P02 + P01)) * ((P02 * ((rho[0, 0] * a5 * a5

.conjugate () * tensor(a, a) * tensor(c, c)) + (rho[0,

1] * a5 * a6.conjugate () * tensor(a, a) * tensor(c,

d)) + (rho[0, 2] * a5 * a7.conjugate () * tensor(a, a)

* tensor(d, c)) + (rho[0, 3] * a5 * a8.conjugate () *

tensor(a, a) * tensor(d, d)) + (rho[1, 0] * a6 * a5.

conjugate () * tensor(a, b) * tensor(c, c)) + (rho[1,

1] * a6 * a6.conjugate () * tensor(a, b) * tensor(c, d

)) + (rho[1, 2] * a6 * a7.conjugate () * tensor(a, b)

* tensor(d, c)) + (rho[1, 3] * a6 * a8.conjugate () *

tensor(a, b) * tensor(d, d)) + (rho[2, 0] * a7 * a5.

conjugate () * tensor(b, a) * tensor(c, c)) + (rho[2,

1] * a7 * a6.conjugate () * tensor(b, a) * tensor(c, d

)) + (rho[2, 2] * a7 * a7.conjugate () * tensor(b, a)
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* tensor(d, c)) + (rho[2, 3] * a7 * a8.conjugate () *

tensor(b, a) * tensor(d, d)) + (rho[3, 0] * a8 * a5.

conjugate () * tensor(b, b) * tensor(c, c)) + (rho[3,

1] * a8 * a6.conjugate () * tensor(b, b) * tensor(c, d

)) + (rho[3, 2] * a8 * a7.conjugate () * tensor(b, b)

* tensor(d, c)) + (rho[3, 3] * a8 * a8.conjugate () *

tensor(b, b) * tensor(d, d)))) + (P01 * ((rho[0, 0] *

((a17 * a17.conjugate ()) + (a18 * a18.conjugate ()))

* tensor(a, a) * tensor(c, c)) + (rho[0, 1] * a17 *

a17.conjugate () * tensor(a, a) * tensor(c, d)) + (rho

[0, 2] * a18 * a18.conjugate () * tensor(a, a) *

tensor(d, c)) + (rho[1, 0] * a17 * a17.conjugate () *

tensor(a, b) * tensor(c, c)) + (rho[1, 1] * a17 * a17

.conjugate () * tensor(a, b) * tensor(c, d)) + (rho[2,

0] * a18 * a18.conjugate () * tensor(b, a) * tensor(c

, c)) + (rho[2, 2] * a18 * a18.conjugate () * tensor(b

, a) * tensor(d, c)))))

rhoq = rho2.unit()

rhoq = tensor(sigmax (), sigmax ()) * rhoq * tensor(sigmax

(), sigmax ())

rho = rhoq.full()

del rho2

if j == 2:

rho3 = (1 / prob[j]) * ((( rho[0, 0] * (a9 + a13) * (a9 +

a13).conjugate () * tensor(a, a) * tensor(c, c)) + (

rho[0, 1] * (a9 + a13) * (a10 + a14).conjugate () *

tensor(a, a) * tensor(c, d)) + (rho[0, 2] * (a9 + a13

) * (a11 + a15).conjugate () * tensor(a, a) * tensor(d

,c)) + (rho[0, 3] * (a9 + a13) * (a12 + a16).

conjugate () * tensor(a, a) * tensor(d,d)) + (rho[1,

0] * (a10 + a14) * (a9 + a13).conjugate () * tensor(a,

b) * tensor(c,c)) + (rho[1, 1] * (a10 + a14) * (a10

+ a14).conjugate () * tensor(a, b) * tensor(c,d)) + (

rho[1, 2] * (a10 + a14) * (a11 + a15).conjugate () *

tensor(a, b) * tensor(d,c)) + (rho[1, 3] * (a10 + a14

) * (a12 + a16).conjugate () * tensor(a, b) * tensor(d

,d)) + (rho[2, 0] * (a11 + a15) * (a9 + a13).

conjugate () * tensor(b, a) * tensor(c,c)) + (rho[2,

1] * (a11 + a15) * (a10 + a14).conjugate () * tensor(b

, a) * tensor(c,d)) + (rho[2, 2] * (a11 + a15) * (a11

+ a15).conjugate () * tensor(b, a) * tensor(d,c)) + (

rho[2, 3] * (a11 + a15) * (a12 + a16).conjugate () *

tensor(b, a) * tensor(d,d)) + (rho[3, 0] * (a12 + a16

) * (a9 + a13).conjugate () * tensor(b, b) * tensor(c,

c)) + (rho[3, 1] * (a12 + a16) * (a10 + a14).

conjugate () * tensor(b, b) * tensor(c,d)) + (rho[3,

2] * (a12 + a16) * (a11 + a15).conjugate () * tensor(b

, b) * tensor(d,c)) + (rho[3, 3] * (a12 + a16) * (a12
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+ a16).conjugate () * tensor(b, b) * tensor(d,d))))

rhoq = rho3.unit()

rhoq = tensor(sigmax (), sigmax ()) * rhoq * tensor(sigmax

(), sigmax ())

rho = rhoq.full()

del rho3

if j == 5:

rho4 = (1 / prob[j]) * ((rho[0, 0] * abs(a19) ** 2 *

tensor(a, a) * tensor(c, c)) + (rho[0, 1] * abs(a19)

** 2 * tensor(a, a) * tensor(c, d)) + (rho[1, 0] *

abs(a19) ** 2 * tensor(a, b) * tensor(c, c)) + (rho

[1, 1] * abs(a19) ** 2 * tensor(a, b) * tensor(c, d))

+ (rho[0, 0] * abs(a20) ** 2 * tensor(a, a) * tensor

(c, c)) + (rho[0, 2] * abs(a20) ** 2 * tensor(a, a) *

tensor(d, c)) + (rho[2, 0] * abs(a20) ** 2 * tensor(

b, a) * tensor(c, c)) + (rho[2, 2] * abs(a20) ** 2 *

tensor(b, a) * tensor(d, c)))

rhoq = rho4.unit()

rhoq=tensor(sigmax (),sigmax ())*rhoq*tensor(sigmax (),

sigmax ())

rho = rhoq.full()

del rho4

del j, P20 , P02 , P11 , P10 , P01 , P00

concurrences = np.append(concurrences , concurrence(rhoq))
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APPENDIX

B

TWO-PHOTON SCATTERING MATRIX

In this appendix we give the solution to the two-photon scattering matrix elements for the

setup proposed in Chapter 6, following a similar treatment to that described in Refs [227,

238]. We start from the formal definition of the two-photon scattering matrix element as

given in Eq. (6.8):

Sµ1,µ2,ν1,ν2 (p1, p2, k1, k2)

= ⟨p1,µ1p −
2,µ2

|k1,ν1k +
2,ν2

⟩
= ⟨p −

1,µ1
|µ2,in (p2) |k1,ν1k +

2,ν2
⟩ −

√
2πi

∑
j=χ,ψ

V ∗
µ2,j ⟨p −

1,µ1
|cj (p2) |k1,ν1k +

2,ν2
⟩ ,

(B.1)

where |k +
i,νi

⟩ = ν†i,in (ki) |0⟩ with i ∈ {1, 2}, and |p −
1,µ1

⟩ = µ†1,out (p1) |0⟩. The first term in

the last line can be evaluated by using the commutation relations of the field operators,

[µin(k), ν†in(p)] = δµνδ(k − p). This gives

⟨p −
1,µ1

|µ2,in (p2) |k1,ν1k +
2,ν2

⟩ = Sµ1,ν1 (p1, k1)Sµ2,ν2 (p2, k2) + Sµ1,ν2 (p1, k2)Sµ2,ν1 (p2, k1) .

(B.2)

In order to solve the second term, we make use of the Heisenberg equations of motion

for the operators cj (t) and σ− (t), which results in a set of coupled differential equations.

Pre- and post-multiplying by ⟨p −
1,µ1

| and |k1,ν1k +
2,ν2

⟩, respectively, and taking the Fourier

transform, we obtain

−ip ⟨p −
1,µ1

|cj (p) |k1,ν1k +
2,ν2

⟩ = − iωj ⟨p −
1,µ1

|cj (p) |k1,ν1k +
2,ν2

⟩ − ig∗j ⟨p −
1,µ1

|σ− (p) |k1,ν1k +
2,ν2

⟩
− i
∑
µ

Vµ,j
√

2π ⟨p −
1,µ1

|µin (p) |k1,ν1k +
2,ν2

⟩

− π
∑
µ,k

Vµ,jV
∗
µ,k ⟨p −

1,µ1
|ck (p) |k1,ν1k +

2,ν2
⟩ ,

(B.3a)
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−ip ⟨p −
1,µ1

|σ− (p) |k1,ν1k +
2,ν2

⟩ = −iωe ⟨p −
1,µ1

|σ− (p) |k1,ν1k +
2,ν2

⟩ + i
∑
j

gj ⟨p −
1,µ1

|cjσz (p) |k1,ν1k +
2,ν2

⟩

= −iωe ⟨p −
1,µ1

|σ− (p) |k1,ν1k +
2,ν2

⟩

+ 2i
∑
j

gj√
2π

∫
dp′ ⟨p −

1,µ1
|σ+

(
p′
)
σ−cj

(
p+ p′

)
|k1,ν1k +

2,ν2
⟩

− i
∑
j

gj ⟨p −
1,µ1

|cj (p) |k1,ν1k +
2,ν2

⟩ ,

(B.3b)

where µ ∈ {a, b} and k ∈ {χ, ψ}, and where we have made use of the convolution property

of the Fourier transform. In order to solve the above set of equations, we need to obtain

an expression for

⟨p −
1,µ1

|σ+
(
p′
)
σ−cj

(
p+ p′

)
|k1,ν1k +

2,ν2
⟩ = ⟨p −

1,µ1
|σ+

(
p′
)
|0⟩ ⟨0|σ−cj

(
p+ p′

)
|k1,ν1k +

2,ν2
⟩ ,
(B.4)

where multiplying by the identity gives a non-zero contribution only for the zero excitation

outer product. The first inner product in Eq. (B.4) can be solved by

⟨p −
1,µ1

|σ+
(
p′
)
|0⟩ =

∑
µ′

∫
dk ⟨p −

1,µ1
|k +
µ′ ⟩ ⟨k +

µ′ |σ+
(
p′
)
|0⟩

=
∑
µ′

Sµ1,µ′
(
p1, p

′)∑
j ̸=k

g∗k
(ωe − p′)

[
−∗
µ′,j

√
2πB∗

j (p′) −∗
µ′,k

√
2πA∗

j (p′)

A∗
j (p′)A∗

k (p′) −B∗
j (p′)B∗

k (p′)

]
,

(B.5)

where A∗
j (p′) and B∗

j (p′) are the complex conjugate of the functions defined in Eq. (6.7).

In order to solve the second inner product in Eq. (B.4), we need to find ∂tσ−cj (t) and

∂tcjck (t) using the Heisenberg equation of motion. Similarly, we pre- and post-multiply by

⟨0| and |k1,ν1k +
2,ν2

⟩ and take the Fourier transform to obtain

−ip ⟨0|σ−cj (p) |k1,ν1k +
2,ν2

⟩
= − i (ωe + ωj) ⟨0|σ−cj (p) |k1,ν1k +

2,ν2
⟩ − i

∑
k

gk ⟨0|cjck (p) |k1,ν1k +
2,ν2

⟩

− i
∑
µ

Vµ,j
√

2π ⟨0|µinσ− (p) |k1,ν1k +
2,ν2

⟩ − π
∑
µ,k

Vµ,jV
∗
µ,k ⟨0|σ−ck (p) |k1,ν1k +

2,ν2
⟩

(B.6a)

and − ip ⟨0|cjck (p) |k1,ν1k +
2,ν2

⟩
= − i (ωj + ωk) ⟨0|cjck (p) |k1,ν1k +

2,ν2
⟩

− i
∑
µ

√
2π ⟨0| [Vµ,k µincj (p) + Vµ,j µinck (p)] |k1,ν1k +

2,ν2
⟩

− π
∑
µ,l

⟨0|
[
Vµ,jV

∗
µ,l ckcl (p) + Vµ,kV

∗
µ,l cjcl (p)

]
|k1,ν1k +

2,ν2
⟩

− i ⟨0|
[
g∗j ckσ− (p) + g∗k cjσ− (p)

]
|k1,ν1k +

2,ν2
⟩ .

(B.6b)
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We solve this by setting the above equations into matrix form, with −ipx = Ax + B, and

solving x = − (ip1 + A)−1B, where we define

x = ⟨0|


σ−cχ (p)

σ−cψ (p)

cχcχ (p)

cχcψ (p)

cψcψ (p)

 |k1,ν1k +
2,ν2

⟩ , (B.7a)

A =


−i (ωe + ωχ) − π

∑
µ |Vµ,χ|2 −π∑µ Vµ,χV

∗
µ,ψ −igχ

−π∑µ Vµ,ψV
∗
µ,χ −i (ωe + ωψ) − π

∑
µ |Vµ,ψ|2 0

−2ig∗χ 0 −2iωχ − 2π
∑

µ |Vµ,χ|2
−ig∗ψ −ig∗χ −π∑∗

µ,χVµ,ψ

0 −2ig∗ψ 0

−igψ 0

−igχ −igψ
2π
∑

µ Vµ,χV
∗
µ,ψ 0

−i (ωχ + ωψ) − π
∑

µ

(
|Vµ,χ|2 + |Vµ,ψ|2

)
−π∑∗

µ,ψVµ,χ

−2π
∑

µ V
∗
µ,χVµ,ψ −2iωψ − 2π

∑
µ |Vµ,ψ|2

 ,
(B.7b)

B = −
√

2πi ⟨0|



∑
µ Vµ,χ µinσ− (p)∑
µ Vµ,ψ µinσ− (p)

2
∑

µ Vµ,χ µincχ (p)∑
µ [Vµ,ψ µincχ (p) + Vµ,χ µincψ (p)]

2
∑

µ Vµ,ψ µincψ (p)

 |k1,ν1k +
2,ν2

⟩ , (B.7c)

where [cχ (p) , cψ (p)] = 0.
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C. Papon, T. Pregnolato, S. Stobbe, L. Midolo, T. Schröder, A. D. Wieck, A. Ludwig,
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[50] C. H. Bennett, G. Brassard, Crépeau, R. Jozsa, A. Peres, and W. K. Wootters,

“Teleporting an unknown quantum state via dual classical and einstein-podolsky-

rosen channels,” Physical Review Letters, vol. 70, no. 13, pp. 1895–1899, 1993.

[51] W. K. Wootters and W. H. Zurek, “A single quantum cannot be cloned,” Nature,

vol. 299, pp. 802–803, Oct. 1982.

[52] C. H. Bennett, H. J. Bernstein, S. Popescu, and B. Schumacher, “Concentrating

partial entanglement by local operations,” Physical Review A, vol. 53, pp. 2046–2052,

Apr. 1996.

[53] C. H. Bennett, D. P. DiVincenzo, J. A. Smolin, and W. K. Wootters, “Mixed-state

entanglement and quantum error correction,” Physical Review A, vol. 54, pp. 3824–

3851, Nov. 1996.

[54] S. Hill and W. K. Wootters, “Entanglement of a pair of quantum bits,” Physical

Review Letters, vol. 78, pp. 5022–5025, June 1997.

[55] W. K. Wootters, “Entanglement of Formation of an Arbitrary State of Two Qubits,”

Physical Review Letters, vol. 80, no. 10, pp. 2245–2248, 1998.

[56] P. W. Shor, “Scheme for reducing decoherence in quantum computer memory,” Phys-

ical Review A, vol. 52, pp. R2493–R2496, Oct. 1995.

[57] S. M. Barnett, Quantum Information. Oxford Master Series in Physics, London,

England: Oxford University Press, May 2009.

[58] A. M. Steane, “Error correcting codes in quantum theory,” Physical Review Letters,

vol. 77, pp. 793–797, July 1996.

[59] D. Gottesman, Stabilizer Codes and Quantum Error Correction. PhD thesis, Califor-

nia Institute of Technology, 1997.

[60] G. S. Agarwal, Quantum Optics. Cambridge University Press, Nov. 2012.

[61] M. Fox, Quantum Optics: An Introduction. Oxford University Press, 2006.

[62] E. Jaynes and F. Cummings, “Comparison of quantum and semiclassical radiation

theories with application to the beam maser,” Proceedings of the IEEE, vol. 51, no. 1,

pp. 89–109, 1963.

[63] J. Braumüller, M. Marthaler, A. Schneider, A. Stehli, H. Rotzinger, M. Weides, and

A. V. Ustinov, “Analog quantum simulation of the Rabi model in the ultra-strong

coupling regime,” Nature Communications, vol. 8, p. 779, Oct. 2017.



106 Bibliography

[64] K. J. Blow, R. Loudon, S. J. D. Phoenix, and T. J. Shepherd, “Continuum fields in

quantum optics,” Physical Review A, vol. 42, pp. 4102–4114, Oct. 1990.

[65] R. Loudon, The quantum theory of light. London, England: Oxford University Press,

3 ed., Sept. 2000.

[66] J.-T. Shen and S. Fan, “Theory of single-photon transport in a single-mode waveg-

uide. I. coupling to a cavity containing a two-level atom,” Physical Review A, vol. 79,

p. 023837, Feb. 2009.

[67] H. Zheng, Interacting Photons in Waveguide-QED and Applications in Quantum In-

formation Processing. PhD thesis, Duke University, 2013.

[68] J. Southall, D. Hodgson, R. Purdy, and A. Beige, “Locally acting mirror Hamiltoni-

ans,” Journal of Modern Optics, vol. 68, pp. 647–660, June 2021.

[69] B. Dawson, N. Furtak-Wells, T. Mann, G. Jose, and A. Beige, “The quantum optics

of asymmetric mirrors with coherent light absorption,” Frontiers in Photonics, vol. 2,

p. 700737, July 2021.

[70] D. Hodgson, J. Southall, R. Purdy, and A. Beige, “Local photons,” Frontiers in

Photonics, vol. 3, p. 978855, Sept. 2022.

[71] E. Rephaeli and S. Fan, “Dissipation in few-photon waveguide transport [Invited],”

Photonics Research, vol. 1, no. 3, p. 110, 2013.

[72] K. Mølmer, Y. Castin, and J. Dalibard, “Monte Carlo wave-function method in quan-

tum optics,” Journal of the Optical Society of America B, vol. 10, p. 524, Mar. 1993.

[73] H. J. Carmichael, “Quantum trajectory theory for cascaded open systems,” Physical

Review Letters, vol. 70, pp. 2273–2276, Apr. 1993.

[74] Y. Chen, M. Wubs, J. Mørk, and A. F. Koenderink, “Coherent single-photon absorp-

tion by single emitters coupled to one-dimensional nanophotonic waveguides,” New

Journal of Physics, vol. 13, p. 103010, Oct. 2011.

[75] A. Nysteen, Few-photon Non-linearities in Nanophotonic Devices for Quantum In-

formation Technology. PhD thesis, Technical University of Denmark, 2015.

[76] V. Weisskopf and E. Wigner, “Berechnung der natürlichen linienbreite auf grund der

diracschen lichttheorie,” Zeitschrift für Physik, vol. 63, pp. 54–73, Jan. 1930.

[77] M. Duda. Private Communications, Aug 2022.

[78] A. Nysteen, D. P. S. McCutcheon, and J. Mørk, “Strong nonlinearity-induced corre-

lations for counterpropagating photons scattering on a two-level emitter,” Physical

Review A, vol. 91, p. 063823, June 2015.



Bibliography 107

[79] C. W. Gardiner and M. J. Collett, “Input and output in damped quantum systems:

Quantum stochastic differential equations and the master equation,” Physical Review

A, vol. 31, pp. 3761–3774, June 1985.

[80] D. F. Walls and G. J. Milburn, Quantum Optics. Heidelberg: Springer Berlin, 2008.
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E. Bielejec, H. Park, M. Lončar, and M. D. Lukin, “An integrated diamond nanopho-

tonics platform for quantum-optical networks,” Science, vol. 354, pp. 847–850, Oct.

2016.

[119] D. L. Hurst, K. B. Joanesarson, J. Iles-Smith, J. Mork, and P. Kok, “Generating

Maximal Entanglement between Spectrally Distinct Solid-State Emitters,” Physical

Review Letters, vol. 123, no. 2, p. 023603, 2019.

[120] S. Mahmoodian, P. Lodahl, and A. S. Sørensen, “Quantum networks with chiral-

light–matter interaction in waveguides,” Physical Review Letters, vol. 117, p. 240501,

Dec. 2016.

[121] J.-T. Shen and S. Fan, “Strongly correlated multiparticle transport in one dimension

through a quantum impurity,” Physical Review A, vol. 76, no. 6, p. 062709, 2007.

[122] D. N. Klyshko, Photons and Nonlinear Optics. New York: Gordon and Breach, 1988.

[123] C. Couteau, “Spontaneous parametric down-conversion,” Contemporary Physics,

vol. 59, no. 3, pp. 291–304, 2018.

[124] P. Kok and B. Lovett, Introduction to Optical Quantum Information. Cambridge

University Press, 2010.

[125] J. Schneeloch, S. H. Knarr, D. F. Bogorin, M. L. Levangie, C. C. Tison, R. Frank,

G. A. Howland, M. L. Fanto, and P. M. Alsing, “Introduction to the absolute bright-

ness and number statistics in spontaneous parametric down-conversion,” Journal of

Optics, vol. 21, no. 4, p. 043501, 2019.

[126] C. K. Hong, Z. Y. Ou, and L. Mandel, “Measurement of subpicosecond time intervals

between two photons by interference,” Physical Review Letters, vol. 59, pp. 2044–

2046, Nov. 1987.

[127] S. Xu, E. Rephaeli, and S. Fan, “Analytic properties of two-photon scattering matrix

in integrated quantum systems determined by the cluster decomposition principle,”

Physical Review Letters, vol. 111, p. 223602, Nov. 2013.
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