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Abstract

This thesis presents a sequential and comprehensive development of high-dimensional panel data

models with a multilevel factor structure. The multilevel factors consist of unobserved global factors

that affect all individuals and unobserved local factors that affect individuals within specific blocks.

In Chapter 1, we develop a novel approach based on canonical correlation analysis to identify the

number of global factors in the multilevel factor model. We propose two consistent selection criteria:

the canonical correlation difference (CCD) and the modified canonical correlations (MCC). Monte

Carlo simulations show that CCD and MCC correctly select the number of global factors even

in small samples, and they are robust to correlated local factors. In an empirical application, we

investigate a multilevel asset pricing model for stock return data in 12 industries in the U.S. market.

Chapter 2 advances a unified econometric framework for the multilevel factor model based on

generalized canonical correlation (GCC) analysis. Our approach is valid even if some blocks share

common local factors. We establish the consistency of the estimated factors and loadings, as well

as their asymptotic normality under fairly standard conditions. As a by-product of estimation,

a new selection criterion is developed to estimate the number of global factors. Through Monte

Carlo simulations, we confirm the validity of our asymptotic theory and demonstrate its superior

performance over existing approaches. We apply the model to a large disaggregated panel data set

of house prices in England and Wales.

Chapter 3 considers a panel regression model with multilevel factors. We propose a multilevel

iterative principal component (MIPC) method that iteratively updates the slope coefficients and

factors. We also propose a model selection criterion based on eigenvalue ratios to determine the

number of factors. Given consistent factor estimates, we employ GCC to separately identify the

global and local factors. Under a finite number of blocks, we show the consistency of our estimates

and establish the asymptotic normality of the bias-corrected estimator for the slope coefficients.

Monte Carlo simulations demonstrate the good finite sample performance of MIPC. We apply our

method to an analysis of the energy consumption and economic growth nexus using a cross-country

panel data categorized by regions.
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Introduction

In the past two decades, panel data econometrics has experienced rapid development due to its

ability to account for unobserved heterogeneity among individuals. With the increasing availability

of large datasets containing a large number of cross-sectional units (N) and time periods (T ), factor

models have gained popularity as effective tools for dimension reduction to overcome the “curse of

dimensionality”. In factor models, the co-movement of variables is captured by a small number of

unobserved common factors, while individuals respond with heterogeneous loadings on these factors.

This is known as the “blessing of dimensionality”. Factor models find wide application in empirical

finance and macroeconomics, see e.g. Connor & Korajczyk (1988) and Stock & Watson (2002),

among others.

Recently, the multilevel factor model has gained increasing attention, where some factors are

pervasive (common to all individuals) and others are semi-pervasive (common to only a subset of

individuals). These factors are referred to as global and local factors, respectively, resulting in a

“block structure” in the data. The multilevel factor model allows researchers to uncover and explore

a richer interconnected structure among individuals. Kose et al. (2003) find that global factors and

certain country-specific factors account for a larger portion of business cycle variability. Del Negro

& Otrok (2007) document that local (regional) factors drive house price co-movement in the U.S.

more than the global (national) factors, suggesting that expansionary monetary policy has a limited

impact on housing bubbles. Andreou et al. (2019) discover sector-specific factors in the context of

mixed frequency data and demonstrate that the industrial production sector remains crucial for

economic growth in the U.S.

The multilevel factor model introduces challenges for estimation and inference, particularly when

the number of blocks is finite. Firstly, existing model selection methods become inapplicable in the

presence of local factors, as the weak cross-section correlation assumption is violated and/or the

clustering of non-zero eigenvalues is obscured by local factors (see Breitung & Eickmeier (2016)).

Consequently, some studies assume a known number of global factors as in Kose et al. (2003),

Breitung & Eickmeier (2016), and Choi et al. (2018). Secondly, the inferential theory for the

1
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multilevel factor model is not well established when the number of blocks is finite, unlike cases

where the number of blocks tends to infinity, e.g. Wang (2008) and Jin et al. (2023). Andreou

et al. (2019) develop asymptotic distributions for factor and loading estimates, but their theory

only applies to the special case with two blocks. Furthermore, it remains unclear how to conduct

inference. In the panel regression, the unobserved factor structure in the error components consists

of interactive fixed effects (see Pesaran (2006) and Bai (2009)). If they are not appropriately

controlled for, endogeneity issue arises, leading to inconsistent estimation and misleading inference.

The multilevel factor structure further requires new estimation techniques and asymptotic theory.

In this thesis, we contribute by addressing the aforementioned important issues in each of the three

chapters. As a result, this thesis offers a unified framework for the high-dimensional panel data

model with the multilevel factor structure.

Chapter 1

We propose two new selection criteria for estimating the number of global factors in the multilevel

factor model based on canonical correlation analysis (CCA), called the canonical correlations dif-

ference (CCD) and the modified canonical correlations (MCC). We employ principal component

(PC) estimation to extract factors from each block and calculate the average pairwise canonical

correlations. As all blocks share the same global factors, the corresponding canonical correlations

are equal to one, while the rest are strictly less than one. The CCD criterion selects the number

of global factors that maximizes the differences between consecutive canonical correlations while

the MCC criterion distinguishes between unit and non-unit canonical correlations using a data-

dependent threshold. We establish the consistency of CCD and MCC and demonstrate their

superior finite sample performance via Monte Carlo simulations. We apply them to the multilevel

asset pricing model using weekly stock returns from firms in 12 U.S. industries during the January

2015 - December 2016. Both CCD and MCC identify the presence of only one global factor, which

closely co-moves with the market factor, exhibiting a correlation of 0.95. On average, the market

factor explains 22.6% of the time series variation. We also identify one local (industry) factor in

Non-Durable, Energy, Health, and Money, and two industry (local) factors in Utilities. Notably,

for Energy and Utilities, the local factors are more important than the global factor. This suggests

that industry-specific risks are essential to avoid misallocation of assets in portfolio management.
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Chapter 2

We advance the generalised canonical correlation (GCC) estimation for the multilevel factor model.

To this end we collect the PC estimates from each block and construct a system-wide matrix. We

then obtain the linear combinations of the factor spaces from a singular value decomposition of

this matrix, that can simultaneously satisfy the pairwise unit canonical correlations between any

two blocks. Thus, the global factors can be consistently estimated by summarising these linearly

transformed factors.

The GCC approach has several advantages. It accommodates common local factors that impact

multiple blocks, in contrast to the orthogonality assumption imposed on local factors by Choi

et al. (2018) and Han (2021). Once the global factors are estimated consistently, the local factors

can be obtained by applying PC to each block separately after removing the global components.

This sequential approach is computationally efficient, as each step yields consistent estimates and

eliminates the need for iteration. Moreover, the number of global factors can be easily estimated

by evaluating the ratios of adjacent singular values of the system-wide matrix. With the finite

number of blocks, we establish the consistency of our estimators using matrix perturbation theory

and derive their asymptotic distributions under standard regularity conditions. However, to address

the issue that the covariance matrices are subject to non-estimable identities, we propose a hybrid

bootstrap procedure to construct valid confidence intervals, the validity of which is confirmed via

Monte Carlo simulations. We apply GCC to a large disaggregated panel data consisting of house

prices for 331 local authorities in England and Wales over the period 1996Q1 to 2021Q2. We find

one global (national) factor that displays a typical (global) boom-bust-recovery cycle. We also

identify one local factor in seven regions (NE, NW, YH, EE, LD, SE, and WA), but no local factor

in three regions (EM, WM, and SW). Notably, the local factors of EE, LD and SE (Area 1) comove

closely while those of NE, NW, YH and WA (Area 2) tend to cluster. Additional GCC estimation

confirms the existence of common local factors across these regions. Finally, we document a strong

co-movement between the growth rate of the (lagged) population gap and the gap in areal factor

components. This finding suggests that the growth of the population gap could play an important

role in driving the gap of regional house prices.

Chapter 3

This chapter focuses on the estimation of the panel data regression model with unobserved mul-

tilevel factors. We propose a multilevel iterative principal component (MIPC) estimation, which

extends the iterative principal component (IPC) method introduced by Bai (2009). The factors
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are updated using PC estimation applied to each block separately, given the slope coefficients.

Then, the slope coefficients are updated by the pooled OLS estimator after a linear projection of

the factors from the dependent variable. The estimation proceeds iteratively until convergence. We

establish the oracle
√
NT -consistency of the slope coefficients and derive their asymptotic normal

distribution. Unlike the case where the number of blocks tends to infinity as considered in Feng

et al. (2023), we establish that the (asymptotic) bias terms of the slope coefficients do not vanish.

Thus, we provide a bias-corrected estimator and employ a wild dependent bootstrap procedure for

inference. Our approach only requires knowledge of the total numbers of factors in each block,

without separately identifying the numbers of global and local factors. Furthermore, we propose a

consistent model selection criterion based on eigenvalue ratios. Via Monte Carlo simulations, we

confirm the consistency of the slope coefficients, factors, and the number of factors. We also doc-

ument that MIPC exhibits substantially smaller size distortion than an infeasible version of IPC

that ignores the block structure. The utility of our approach is demonstrated through an empirical

analysis of the relationship between energy consumption and economic growth using a cross-country

panel dataset consisting of 80 countries from 1972 to 2014. MIPC finds no global factors and one

local factor for Asia Pacific and Europe, two local factors for America, and four local factors for

Africa. Our finding suggests that the coefficient for energy consumption obtained from a two-way

fixed effects model is underestimated by half compared to the one estimated using MIPC.



Chapter 1

Canonical Correlation-based Model

Selection for the Multilevel Factors

Abstract We develop a novel approach based on the canonical correlation analysis to identify the

number of the global factors in the multilevel factor model. We propose the two consistent selec-

tion criteria, the canonical correlations difference (CCD) and the modified canonical correlations

(MCC). Via Monte Carlo simulations, we show that CCD and MCC select the number of global

factors correctly even in small samples, and they are robust to the presence of serially correlated

and weakly cross-sectionally correlated idiosyncratic errors as well as the correlated local factors.

Finally, we demonstrate the utility of our approach with an application to the multilevel asset

pricing model for the stock return data in 12 industries in the U.S. market.

Keywords: Multilevel Factor Models, Principal Components, Canonical Correlation Difference,

Modified Canonical Correlations, Multilevel Asset Pricing Models.

JEL Classification: C52, G12.
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1.1 Introduction

The factor models have been popular as an effective tool for the dimension reduction for the big

dataset with the large number of cross-section units (N) and time periods (T ) through extracting

the co-movement of the variables by a small number of common factors, e.g. Stock & Watson (2002)

and Bai (2003). Recently, the literature on the multilevel factor model, also referred to as the panel

data model with the block structure, has been growing rapidly. Here we have the global factors

that influence all the individuals as well as the local factors that only affect those within the specific

block. If the structure of the multilevel factors is ignored, the conventional (approximate) factor

approach would produce inconsistent and misleading results.

Different estimation methods have been developed: the Bayesian approach by Kose et al. (2003)

and Moench et al. (2013), the classical approach by Breitung & Eickmeier (2016) and Choi et al.

(2018), and the LASSO approach by Han (2021). Kose et al. (2003) analyse the relative contri-

bution of the global and regional factors to explain the business cycle whilst Moench et al. (2013)

demonstrate an important role played by the level factors in explaining the U.S. real activities.

Breitung & Eickmeier (2016) and Choi et al. (2018) propose a canonical correlation estimator for

the identification of global and local factors in the multilevel factor model. Futhermore, Bekaert

et al. (2009) examine the international stock co-movements, Ando & Bai (2014) find different factors

in A share and B share in the Chinese stock market, and Beck et al. (2016) investigate the source

of price changes in Europe.

A remaining yet challenging issue is how to identify the number of the global factors and the

number of local factors, simultaneously. It is well-established that the existing information criteria

mainly developed for the single level panel data, fail to consistently estimate the number of global

factors because the weak (error) cross-section correlation condition is violated in the presence of the

multilevel factors. In this regard, some studies assume that the number of global factors is known

a priori, and develop a sequential estimation approach. For example, assuming that the number of

global factors is 1, Choi et al. (2018) apply the information criteria to each block and estimate the

number of local factors.

Let r0 (ri) be the number of global (local) factors and R the number of blocks. A few studies have

attempted to deal with an important issue of consistently estimating r0 under the multilevel setting.

Wang (2008) proposes a sequential procedure by applying the existing information criteria to the

whole data and to the data in each block, consequently, and estimating r0 by the cardinal difference.

Chen (2012) and Dias et al. (2013) propose the modified information criteria by penalising ri more

heavily than r0. Andreou et al. (2019) apply the canonical correlation analysis to estimate global

and local factors in a two-group model and develop a novel inference on r0. Han (2021) proposes
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a shrinkage estimator that can estimate the global and local factors/loadings, and determine the

number of factors, jointly. As R rises, however, an implementation of these approaches would be

almost impractical or infeasible due to the heavy computational burdens as well as uncertainty of

the final outcomes.

In this paper, as the main contribution, we propose a novel approach based on the canonical

correlation analysis to identify the number of global factors which can be easily applied to the models

with a fixed number of blocks and with R → ∞. To this end, we first apply the principal component

(PC) estimation to the data in each block and obtain the rmax factors, which are consistent for the

factor space spanned by the global and local factors jointly, where rmax is the (common) maximum

number of factors allowed in each block (i = 1, · · · , R). Next, we evaluate the rmax canonical

correlations between estimated factors from any two blocks. Then, using R(R−1) pairwise canonical

correlations, we construct the cross-block average of the canonical correlations, denoted ξ(r).

We first develop the canonical correlation difference criterion, denoted CCD(r), which is con-

structed by the difference between the consecutive cross-block averages. Then, r0 can be estimated

consistently by maximising CCD(r) over r = 0, 1, ..., rmax. But, in the presence of correlated local

factors, we need to impose the upper bound condition on the largest average canonical correlation

between the local factors across R blocks, in order to ensure that CCD is maximised at r = r0. In

this regard we develop the alternative estimator, called the modified canonical correlation (MCC(r))

using the nondegenerate distribution of 1− ξ(r) for r ≤ r0, that can remain consistent without im-

posing the upper bound condition. Then, r0 can be estimated consistently by maximising r such

that 1− ξ(r) is below a certain threshold.

We derive asymptotic properties of pairwise canonical correlations and the cross-block average,

and show that CCD and MCC are consistent selection criteria for identifying r0. Next, via Monte

Carlo simulations, we investigate their finite sample properties together with two existing approaches

advanced by Chen (2012) and Andreou et al. (2019). Overall, we find that both CCD and MCC

select r0 even in small samples, outperforming the other approaches in the presence of serially

correlated and weakly cross-sectionally correlated idiosyncratic errors. Only if the correlations

among the local factors are deemed to be relatively weak on average (say, less than 1/2), we

recommend the use of CCD because it is very simple to implement without requiring any tuning

parameter. Given that the overall performances of CCD and MCC are qualitatively similar whilst

MCC does not need to meet the upper bound condition, in general, we prefer the use of MCC.

Once r0 is consistently estimated by CCD and MCC, we remove the global factors from the

data in each block, and apply the existing criteria, such as BIC3 by Bai & Ng (2002) and ER by

Ahn & Horenstein (2013), to consistently estimating the number of local factors.
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Our proposed approach possesses a number of advantages. First, it is simple to apply as it

involves the standard PC and CCA methods, unlike other approaches that require to assess many

tuning and control parameters, e.g. Han (2021). Second, even if the number of blocks is substantially

large, our approach is computationally feasible as it only evaluates the cross-block average of R(R−

1)/2 pairwise canonical correlations, unlike other approaches that will be computationally infeasible,

e.g. Chen (2012) and Andreou et al. (2019). More importantly, our approach is shown to be robust

to the presence of serially correlated and weakly cross-sectionally correlated idiosyncratic errors as

well as the correlated local factors.

We demonstrate the utility of our framework with an application to the multilevel asset pricing

model for the weekly stock return data for the twelve industries in the U.S. over the period, Jan.

2015 to Dec. 2016. First, both CCD and MCC find that there is only one global factor, which

co-moves closely with the market factor, with correlation of 0.95. Then, we apply BIC3 to the

defactored data in each group and find one local factor in NoDur, Enrgy, Hlth and Money, and

two local factors in Utils. On average, the global factor, local factors and idiosyncratic components

can explain 22.6%, 5.8% and 70.8% of the total variation, respectively. The global factor tends

to display a higher relative importance ratio for the cyclical industries, suggesting that the higher

within-correlations observed for these industries are likely to reflect the higher loadings to the global

factor. On the other hand, the influence of the local factors are more important than the global

factor for some industries such as Enrgy, Utils and Hlth. For these industries, the high within-

industry correlations are likely to reflect co-movements with local/industry factors, suggesting that

the local factors should be taken into account to avoid any misleading asset allocation in portfolio

management, e.g. Bekaert et al. (2009).

The rest of the paper is structured as follows. Section 1.2 provides an overview of the related

literature. Section 1.3 presents the multilevel factor model with the underlying assumptions. Section

1.4 develops CCD and MCC criteria for selecting the number of global factors and derives the

asymptotic theory. Section 1.5 presents Monte Carlo simulation evidence. Section 1.6 provides an

empirical application. Section 1.7 offers concluding remarks. The mathematical proofs, additional

simulation results, and theoretical derivations are relegated to Appendix A.

1.2 Related Literature

For the single-level panel data model with the approximate factor structure, there have been two

main approaches for identifying the number of unobserved common factors. The first is the infor-

mation criteria proposed by Bai & Ng (2002), which take a form: PC(r) = V
(
r, F̂

)
+ rg(N,T ),
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where V
(
r, F̂

)
is the sum of squared residuals, F̂ is a T × r matrix of factors estimated by the

principal components and g(N,T ) is a penalty function of the number of cross-section units, N and

the number of time periods, T .

Another popular approach attempts to make use of the fact that for the data with r0 latent

factors, the first r0 eigenvalues of the covariance matrix of the data diverge while the rest of the

eigenvalues are bounded and clustered. Onatski (2010) develops the edge distribution (ED) es-

timator based on the difference between the adjacent eigenvalues arranged in descending order

such that r̂0 = max1≤r≤rmax{r|µr − µr+1 ≥ δ}, where µr is the r-th largest eigenvalue and δ is a

threshold value, which is calibrated from the empirical distribution of the eigenvalues and rmax is

the maximum value of r. Ahn & Horenstein (2013) propose the eigenvalue ratio (ER) given by

r̂0 = argmax1≤r≤rmax{µr/µr+1}.

Choi & Jeong (2019) have conducted a comprehensive simulation study on approximate factor

models, and documented evidence that BIC3 by Bai & Ng (2002) and ER by Ahn & Horenstein

(2013) outperform other competing estimators. Interestingly, Breitung & Pigorsch (2013) propose

a canonical correlation-based selection procedure that consistently estimate the number of dynamic

factors using the static factor representation of the dynamic factor model. See also Hallin & Lǐska

(2007), Alessi et al. (2010) and Bailey et al. (2021).

In the presence of the multilevel factors, the existing selection criteria may fail to identify the

number of the global factors. If we apply existing approaches to the T × Mi data matrix, Yi in

each block i = 1, . . . , R, respectively, we can consistently estimate only the sum, r0 + ri, but not

r0 or ri, separately. Suppose that we apply the existing criteria to the whole data matrix, Y =

[Y1,Y2, . . . ,YR] by ignoring the multilevel structure. If R is fixed (and small), then the existing

selection criteria mainly developed for the single level panel data, fail to consistently estimate r0

because the weak (error) cross-section correlation condition is violated in the presence of the local

factors. As R → ∞, however, the impacts of the local factors would be asymptotically negligible.

In this case Han (2021) conjectures that the number of global factors can be consistently estimated

asymptotically by the existing selection criteria (see Remark 4).

In Section A.2 of Appendix A we examine the finite sample performance of the four criteria,

ICp2 and BIC3 by Bai & Ng (2002), ED by Onatski (2010) and ER by Ahn & Horenstein (2013),

through applying them directly to the whole data matrix. We find that these approaches tend to

produce unreliable inference. If R = 2, all of the four criteria select the total number of factors,

r0 +
∑R

i=1 ri, not r0. For sufficiently large R, they tend to select r0. However, for the moderate

value of R, e.g. R = 5 or 10, they select the intermediate value between r0 and r0 +
∑R

i=1 ri. Next,

their performances are all adversely affected in small samples by the presence of cross-sectionally
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and serially correlated errors. Finally and importantly, even for large R, they overestimate r0

significantly in the presence of even moderate correlations among the local factors.

A few studies have attempted to develop a consistent estimator of the number of global factors

under the multilevel setting. Wang (2008) proposes to determine the model specification based

on the principle of inclusion–exclusion for set cardinality.1 The above simulation evidence shows

that Wang’s sequential procedure is unreliable. For large R, it would significantly overestimate by

selecting r0 +
∑R

i=1 ri/R instead of r0. Further, Han (2021) provides the simulation evidence that

this can lead to even negative estimates of both r0 and ri in small samples for R = 3.

Chen (2012) and Dias et al. (2013) modify the information criteria advanced by Bai & Ng

(2002), and include the number of local factors as arguments in the PC(r) objective function. The

main modification is to penalise the global factors less than the local factors for their parsimonious

structure. As R rises, however, the computation will be almost infeasible since the number of

candidate models increases drastically.

Andreou et al. (2019) (AGGR) apply the canonical correlation analysis to estimate global and

local factors in a two-group factor model with mixed frequency data, and develop a novel inference

on r0 via canonical correlations. AGGR first apply the existing information criteria to each of two

groups and obtain the estimates, r̂0 + r1 and r̂0 + r2. They extract the T × rmin matrix of factors,

K̂i, from the data, Yi for i = 1, 2, where rmin = min
{
r̂0 + r1, r̂0 + r2

}
. They compute the sum

of the r largest canonical correlations between K̂1 and K̂2, and derive the scaled and centered test

statistic. Next, by imposing the strong assumption that idiosyncratic errors are neither serially nor

cross-sectionally correlated, AGGR can derive that the test follows the standard normal distribution

asymptotically under the null hypothesis, r = r0.
2 This procedure can be used for model selection

only if the critical value diverges at a certain rate, γ with 0 < γ < 1. A sequential test can be

performed for r = rmax, rmax − 1, . . . , 1 backwards, and r̂0 is the largest r when the null is not

rejected. Finally, they propose to estimate the number of local factors by r̂0 + ri − r̂0 for i = 1, 2.

However, it would be complicated to analytically extend their approach to cover the case with

R > 2.

Han (2021) proposes an adopted LASSO estimator that can consistently estimate the fac-

tors/loadings, and determine the number of factors, simultaneously. The number of global (local)

factors can be estimated by the number of non-zero columns in their respective factor loading ma-

1Using the two blocks, for example, one can apply the information criteria to the whole data and obtain
̂r0 + r1 + r2. Next, using the data for each block, one can estimate r̂0 + ri, i = 1, 2. Then, the number of global

factors can be estimated by the difference, r̂0 + r1 + r̂0 + r2 − ̂r0 + r1 + r2.
2Andreou et al. (2019) argue that their test would work in the presence of limited correlation among errors, but

also discuss how to relax this assumption.
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trices. But, this approach requires the selection of tuning parameters by imposing different penalty

terms for different blocks. Consequently, for large R, a large number of candidate tuning parameters

need to be selected coherently. Further, as the shrinkage estimation is not invariant to the order of

the blocks, we need to apply the additional information criteria to determine which block is ordered

first. Hence, an extension to the model with large R would be almost infeasible due to the heavy

computational burden as well as uncertainty of the final outcomes. More importantly, the shrinkage

estimator is shown to be consistent only if the local factors are mutually uncorrelated, though it is

challenging to develop a shrinkage estimator fully robust to the local factors correlations.3

In the next Section we propose a novel approach based on the canonical correlation analysis.

Our method differentiates from the existing approaches in two main aspects. First, our approach

can be easily applied to the models with a fixed number of blocks and with R → ∞. Next, our

approach will be shown to be valid in the presence of serially correlated and weakly cross-sectionally

correlated idiosyncratic errors as well as the correlated local factors.

1.3 The Model and Assumptions

Consider the multilevel factor model:

yijt = γ ′
ijGt + λ′

ijFit + eijt, i = 1, ..., R, j = 1, ...,Mi, t = 1, ..., T (1.3.1)

where Gt = [Gt1, ..., Gtr0 ]
′ comprises the r0 × 1 global factors, Fit = [Fit1, ..., Fitri ]

′ is the ri × 1

vector of local factors in the block i = 1, · · · , R, γij and γij are factor loadings and eijt is the

idiosyncratic error. Stacking (1.3.1) across individuals in block i, we have:

yit = ΓiGt +ΛiFit + eit, (1.3.2)

where Mi is the number of individuals in the block i,

yit
Mi×1

=


yi1t
...

yiMit

 , eit
Mi×1

=


ei1t
...

eiMit

 , Γi
Mi×r0

=


γ ′
i1

...

γ ′
iMi

 , Λi
Mi×ri

=


λ′
i1

...

λ′
iMi

 .

3From Table 5 in Han (2021), we find that the shrinkage estimator severely overestimates (underestimates) the
number of global (local) factors, even if the correlation between the local factors is as small as 0.1.
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The model can also be written as

Yt = γ+F+
t + et,

where

Yt
N×1

=


y1t

...

yRt

 , et
N×1

=


e1t
...

eRt

 , F+
t

r+×1

=


Gt

F1t

...

FRt

 , Λ+

N×r+
=


Γ1 Λ1 0 · · · 0

Γ2 0 Λ2 · · · 0
...

...
...

. . .
...

ΓR 0 0 · · · ΛR



with N =
∑R

i=1Mi and r+ = r0 +
∑R

i=1 ri. Further, the model is written in a matrix form:

Y = F+Λ+′ + e, (1.3.3)

where

Y
T×N

=


Y′

1

...

Y′
T

 , F+

T×r+
=


F+′
1

...

F+′
T

 and e
T×N

=


e′1
...

e′T

 .

Alternatively, stacking (1.3.1) over time, we can rewrite the model as

Yij = Gγij + Fiγij + eij , (1.3.4)

where

Yij
T×1

=


yij,1

...

yij,T

 , eij
T×1

=


eij,1
...

eij,T

 , G
T×r0

=


G′

1

...

G′
T

 , Fi
T×ri

=


F′
i1

...

F′
iT


For each block i, we then have

Yi = GΓ′
i + FiΛ

′
i + ei (1.3.5)

where Yi = [Yi1,Yi2, . . . ,YiMi ] and ei = [ei1, ei2, . . . , eiMi ].

Following Bai & Ng (2002) and Choi et al. (2018), we make the following assumptions. Let M

be a finite constant.

Assumption 1.A.
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1. E(eijt) = 0 and E(|eijt|8) ≤ M for all i, j and t.

2. Let E(N−1
∑R

i=1

∑Mi
j=1 eijseijt) = ωN (s, t). Then, |ωN (s, t)| < M for all s, and

1

T

T∑
s=1

T∑
t=1

|ωN (s, t)| ≤ M.

3. Let E(emjtehkt) = τ(mj),(hk),t, with |τ(mj),(hk),t| ≤ |τ(mj),(hk)| < M for all t. In addition,

1

N

R∑
m=1

R∑
h=1

Mm∑
j=1

Mh∑
k=1

|τ(mj),(hk)| ≤ M.

4. Let E(emjtehks) = τ(mj),(hk),(ts) with

1

NT

R∑
m=1

R∑
h=1

Mm∑
j=1

Mh∑
k=1

T∑
t=1

T∑
s=1

|τ(mj),(hk),(ts)| ≤ M.

5. For every t, s, i and j

E

∣∣∣∣∣∣ 1√
N

N∑
i=1

Mi∑
j=1

[eijseijt − E(eijseijt)]

∣∣∣∣∣∣
4 ≤ M.

Assumption 1.B.

1. Gt, F1t,. . . ,FRt are zero-mean, stationary processes that satisfy the conditions for the law

of large numbers and the central limit theorem, which can be applied to their self- and cross-

products.

2. E
(
∥Kit∥4

)
< ∞, where Kit = (G′

t,F
′
it)

′.
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3. T−1G′G
p−→ ΣG, where ΣG is a positive-definite matrix.

4. For every i, T−1F′
iFi

p−→ ΣFi where ΣFi is a positive-definite matrix.

5. For i, j and t,

E

 1

Mi

Mi∑
j=1

∥∥∥∥∥ 1√
T

T∑
t=1

Fiteijt

∥∥∥∥∥
2
 ≤ M; E

 1

N

R∑
i=1

Mi∑
j=1

∥∥∥∥∥ 1√
T

T∑
t=1

Gteijt

∥∥∥∥∥
2
 ≤ M.

Assumption 1.C.

1. ∥γij∥ ≤ γ̄ < ∞ and ∥λij∥ ≤ λ̄ < ∞ for all i and j, where γ̄ and λ̄ are constants.

2. N−1
∑R

i=1 Γ
′
iΓi −→ ΣΓ, where ΣΓ is a positive-definite matrix.

3. ΣΓΣG has distinct eigenvalues.

4. For every i = 1, · · · , R,

(a) rank ([Γi,Λi]) = r0 + ri.

(b) M−1
i

Γ′
iΓi Γ′

iΛi

Λ′
iΓi Λ′

iΛi

 −→

 ΣΓi ΣΓiΛi

Σ′
ΓiΛi

ΣΛi

 which is a positive-definite matrix.

(c) M−1
i Λ′

iΛi −→ ΣΛi, where ΣΛi is a positive-definite matrix

(d)

 ΣΓi ΣΓiΛi

Σ′
ΓiΛi

ΣΛi


ΣG 0

0 ΣFi

 has distinct eigenvalues.

(e) ΣΛiΣFi has distinct eigenvalues.

Assumption 1.D.

1. The global factors are orthogonal to the local factors; E (GtF
′
it) = 0 for all i and t.

2. The local factors, F1t,. . . ,FRt are mutually uncorrelated; that is, E (FmtF
′
ht) = 0 for all t and

m ̸= h.
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Assumption 1.A is an extended version of Assumption C in Bai & Ng (2002), which implies

that the idiosyncratic errors are allowed to be serially and (weakly) cross-sectionally correlated.

Assumptions 1.B.1–1.B.4 are standard in the literature. Assumption 1.B.5 allows weak correlation

between global/local factors and idiosyncratic errors. Assumption 1.C is also standard. Assumption

1.C.2 allows global factors to have non-trivial contributions to the variance of all the individuals

while Assumption 1.C.4(c) allows the local factors to have non-trivial contributions to the individual

variances within the corresponding block. Assumption 1.D.1 ensures that the global factors and

local factors can be separately identified. Initially, we make Assumption 1.D.2, but we will provide

an extension in Subsection 1.4.2 where we allow nonzero correlation between the local factors. We

focus on the practical case with a fixed number of blocks, R though our approach is still valid even

as R → ∞.

1.4 Canonical Correlation-based Model Selection

1.4.1 Estimation of the number of global factors

Using the model (1.3.5), we describe the estimation algorithms as follows: Let Ki = [G,Fi] for

i = 1, . . . , R. We first select a sufficiently large and common rmax, satisfying rmax ≥ max{r0 +

r1, . . . , r0 + rR}. As r0 and ri are finite for all i = 1, · · · , R, rmax is also finite and does not

necessarily grow with R. We then apply the PC estimation to (1.3.5) for any two blocks, m and h,

and obtain the estimates of Km and Kh, denoted K̂m and K̂h, where K̂m is
√
T times eigenvectors

corresponding to the rmax largest eigenvalues of the T × T matrix, YmY′
m, and similarly for K̂h.

Under Assumptions A–D, K̂m and K̂h contain the factor spaces spanned by [G,Fm] and [G,Fh],

respectively. See Lemma A.1.1 in Appendix A.

Next, we construct the sample variance/covariance matrices for K̂m and K̂h by Ŝab (a, b = m,h)

and the characteristic equation by

(
ŜmhŜ

−1
hh Ŝhm − ℓŜmm

)
v = 0. (1.4.6)

Let ℓmh,r be the r-th largest characteristic root of (1.4.6), which is the r-th largest sample squared

canonical correlation between K̂m and K̂h.

Lemma 1.1. Under Assumptions 1.A–1.D, as Mm,Mh, T → ∞, the sample squared canonical
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correlation, ℓmh,r converges in probability to the population counterpart:

ℓmh,r
p−→


1

0

for r = 1, . . . , r0

for r = r0 + 1, . . . , rmax

(1.4.7)

Since the blocks, m and h, share the r0 global factors, the r0 characteristic roots from (1.4.6)

are equal to one, and the remaining rmax − r0 roots are 0. Hence, ℓmh,r will be close to 1 if r ≤ r0,

and close to 0 otherwise. As this holds for every block-pair, we construct the cross-block average of

the sample squared canonical correlations as

ξ(r) =
2

R(R− 1)

R−1∑
m=1

R∑
h=m+1

ℓmh,r

and a canonical correlation difference (CCD) as

CCD(r) = ξ(r)− ξ(r + 1) for r = 0, 1, . . . , rmax.

We then propose to estimate the number of global factors consistently by

r̂0,CCD = argmax
0≤r≤rmax

CCD(r).

To cover the cases with zero global factor and zero local factor for all i = 1, . . . , R, we set two mock

squared canonical correlations, ℓmh,0 = 1 at the beginning and ℓmh,rmax+1 = 0 at the end.4

We present the asymptotic properties of ξ(r) and CCD in Lemmas 2 and 3.

4Ahn & Horenstein (2013) set a mock eigenvalue at the beginning to cover the possibility of zero factor in the
2D model. Hence, we set ℓmh,0 = 1 to cover the possibility of r0 = 0. Similarly, we may need to set ℓmh,rmax+1 = 0
to cover the special case where ri = 0 for all i = 1, ..., R. For instance, consider R = 2 with two global factors and
zero local factor for i = 1, 2. Then, we find ℓmh,0 = 1, ℓmh,1 = 1 and ℓmh,2 = 1 for m = 1 and h = 2. Following
the practical guideline of selecting the common maximum number of factors by r∗max = max{r̂0 + r1, . . . , ̂r0 + rR} as
described in Section 5, we select r∗max = 2 for i = 1, 2. Then, we only obtain: CCD(0) = CCD(1) = 0 but CCD(2) is
undefined such that r0 = 2 cannot be identified. Setting the zero mock canonical correlation at the end (ℓmh,3 = 0),
we obtain CCD(2) = 1 and select two global factors. This may not be a unique solution. In the special case where
we select the same number of factors for all i = 1, ..., R, we may employ r∗max + 1 instead of r∗max. But, it is simpler
to set ℓmh,r∗max+1 = 0 because the canonical correlation for any redundant factor is asymptotically zero. Of course,
we don’t need to set the zero mock canonical correlation at the end if we select the different number of factors for
i = 1, ..., R.
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Lemma 1.2. Under Assumptions 1.A–1.D, as M1, ...,MR, T → ∞, then

ξ(r)
p−→


1

0

for r = 0, ..., r0

for r = r0 + 1, ..., rmax

Lemma 1.2 shows under Assumptions 1.A–1.D that ξ(r) is equal to 1 for r ≤ r0 while ξ(r) is 0

for r > r0, asymptotically.

Lemma 1.3. Suppose that Assumptions 1.A–1.D hold.

(i) For r0 > 0, as M1, ...,MR, T → ∞, then

CCD(r)
p−→



0

1

0

for r = 0, ..., r0 − 1

for r = r0

for r = r0 + 1, ..., rmax

(ii) For r0 = 0, as M1, ...,MR, T → ∞, then

CCD(r)
p−→


1

0

for r = 0

for r > 0

The following theorem shows that r̂0,CCD is a consistent model selection criterion.

Theorem 1.1. Suppose that Assumptions 1.A–1.D hold. Then,

lim
M1,...,MR,T→∞

Pr(r̂0,CCD = r0) = 1.

It is intuitive to apply a canonical correlation-based approach to identify the number of global

factors. Our approach shares the similar idea with AGGR by developing the consistent selection

criteria through using the fact that the r0 canonical correlations are equal to one while the remaining

rmax − r0 ones are strictly less than 1. AGGR attempted to derive the asymptotic distribution of

the test statistic that is nonstandard due to a parameter being at the boundary and involves a

nontrivial bias correction. Only by re-centering and re-scaling of the statistic and by imposing the

strong assumption that idiosyncratic errors are neither serially nor cross-sectionally correlated, they
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can derive that the rescaled test statistic follows the standard normal distribution asymptotically

under the null hypothesis, r0 = r. AGGR’s approach is developed only for two blocks while our

approach easily extends to more than two blocks. Further, we share the similar idea with Onatski

(2010) by employing the difference between adjacent canonical correlations as the selection criterion.

But, CCD does not require calibrating any threshold because the r0 largest canonical correlations

are all bounded by unity.

1.4.2 Non-zero correlation between the local factors

Kose et al. (2003), Beck et al. (2016), Choi et al. (2018) and Han (2021) assume that the local

factors are all mutually uncorrelated. Wang (2008), Breitung & Eickmeier (2016) and Andreou

et al. (2019) do not rule out correlation between the local factors. Chen (2012) allows the local

factors to be arbitrarily correlated by assuming that both global and local factors are spanned by

an aggregate pervasive factor space.

We now allow the local factors to be mutually correlated. Let ρmh,r be the r-th population

canonical correlation between Km and Kh. By construction we have: 1 = ρmh,0 = ρmh,1 = · · · =

ρmh,r0 > ρmh,r0+1 ≥ · · · ≥ ρmh,r0+rm ≥ 0 = ρmh,r0+rm+1 = · · · = ρmh,rmax+1, where ρmh,r0+1 is the

largest population canonical correlation between local factors in group m and h. Define the block

average by ρ̄r =
2

R(R−1)

∑R−1
m=1

∑R
h=m+1 ρmh,r. Then, ρ̄r0+1 represents the largest average canonical

correlation between the local factors across R blocks.

We provide the following Lemmas, which are extensions of Lemmas 1.1–1.3 (see the proofs in

Section A.9 in Appendix A).

Lemma 1∗. Under Assumptions 1.A–1.D.1, as Mm,Mh, T → ∞, then the sample squared canonical

correlation, ℓmh,r, converges in probability to the population counterpart:

ℓmh,r
p−→


1

ρmh,r

for r = 0, 1, . . . , r0

for r = r0 + 1, . . . , rmax

Lemma 2∗. Under Assumptions 1.A–1.D.1, as M1, ...,MR, T → ∞, then

ξ(r)
p−→


1

ρ̄r

for r = 0, ..., r0

for r = r0 + 1, ..., rmax
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Lemma 3∗. Suppose that Assumptions 1.A–1.D.1 hold.

(i) For r0 > 0, as M1, ...,MR, T → ∞, then

CCD(r)
p−→



0

1− ρ̄r0+1

ρ̄r − ρ̄r+1

for r = 0, ..., r0 − 1

for r = r0

for r = r0 + 1, ..., rmax

(ii) For r0 = 0, as M1, ...,MR, T → ∞, then

CCD(r)
p−→


1− ρ̄1

ρ̄r − ρ̄r+1

for r = 0

for r > 0

.

From Lemma 1∗ we find that the largest population canonical correlation among local factors

should be bounded in order to ensure that CCD is maximised at r = r0. Thus, we need to impose

a condition, ρ̄r0+1 < η for the consistency of CCD, where η = 1− dmax(r) is the upper bound with

dmax(r) = maxr0+1≤r≤rmax(ρ̄r − ρ̄r+1). It still allows some pairs to have canonical correlation larger

than η, but the average across all pairs cannot exceed η.

Theorem 1.2. Suppose that Assumptions 1.A–1.D.1 hold. Further, we allow non-zero correlations

among the local factors and impose the upper bound on the largest average population correlation

among the local factors by ρ̄r0+1 < η where η = 1−dmax(r) with dmax(r) = maxr0+1≤r≤rmax(ρ̄r−ρ̄r+1).

Then, we have:

lim
M1,...,MR,T→∞

Pr(r̂0,CCD = r0) = 1.

Theorem 1.2 implies that if the largest block-average of canonical correlations among the local

factors is smaller than η, then CCD is still a consistent selection criterion. We may argue that the

correlations between the local factors should not be set too high, because such strong correlations

imply that the local factors in block m would directly influence the individuals in block h, and vice

versa. In such case it may be difficult to distinguish between the roles played by the global and local

factors in the multilevel factor model. Notice that the upper bound condition is trivially satisfied

if ρ̄r0+1 < 1/2.

CCD is very simple to implement without requiring any tuning parameters, but the cost may
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be the boundedness condition in the presence of nonzero local factors correlation. In this regard

we develop the alternative estimator that can remain consistent without imposing the upper bound

condition. Notice that ξ(r) ≤ 1 and 1− ξ(r) is monotonically increasing with r. From Lemma 2*,

it follows that

1− ξ(r)
p−→

 0 for r = 0, . . . , r0

1− ρ̄ (r) for r = r0 + 1, . . . , rmax

Let δ2MT denote the convergence rate of 1 − ξ(r) such that δ2MT (1 − ξ(r)) has a nondegenerate

distribution for r ≤ r0, where δMT = min
(√

M,
√
T
)

and M = min {M1,M2, . . . ,MR} (see the

proof of Lemma 1∗, where we show that δ2MT is the convergence rate of the canonical correlation).

Now, it is easily seen that

1− ξ(r) = Op

(
δ−2
M,T

)
for r ≤ r0.

and

Pr(1− ξ(r) > M) → 1 for r > r0 and for some constant M > 0.

On the basis of this finding, we propose to estimate r0 by the following modified canonical

correlation (MCC) criterion:

r̂0,MCC = max{0 ≤ r ≤ rmax : 1− ξ(r)− C × P (M,T ) < 0}

where P (M,T ) is a threshold determined by a function of M and T and C is a (data-dependent)

tuning constant. As long as P (M,T ) → 0 and δ2MTP (M,T ) → ∞, then r̂0 is consistent for r0. The

MCC estimator can be expressed equivalently as

r̂0,MCC = max{0 ≤ r ≤ rmax : δ2M,T (1− ξ(r))− C × δ2M,TP (M,T ) < 0}.

Then, it is easily seen that for r ≤ r0,

δ2M,T (1− ξ(r))− C × δ2M,TP (M,T )
p−→ Op(1)−∞ < 0.

Hence, for r ≤ r0, we expect that 1− ξ(r) vanishes faster than P (M,T ) with a slower rate towards

zero such that 1 − ξ(r) − CP (M,T ) remains negative. On the contrary, for r > r0, as N,T → ∞,

we still have Pr ((1− ξ(r))− C × P (M,T ) > M) = 1 because 1 − ξ(r)
p−→ 1 − ρ̄(r) > 0 and

P (M,T ) → 0. The positive value of 1 − ρ̄(r) dominates the vanishing penalising term, and this
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confirms the presence of local factors if 1− ξ(r)− CP (M,T ) becomes positive.

We now summarise these results in Theorem 1.3.

Theorem 1.3. Suppose that Assumptions A–D1 hold. Further, we allow non-zero correlations

among the local factors, and assume that the following conditions hold: (i) P (M,T ) → 0 and (ii)

δ2M,TP (M,T ) → ∞, where δMT = min(
√
M,

√
T ) and M = min{M1,M2, . . . ,MR}. Then,

lim
M,T→∞

Pr(r̂0,MCC = r0) = 1.

To implement the MCC criterion, we propose the use of the following penalty function:

P (M,T ) =
lnM + lnT√

MT
ln ln(MT ). (1.4.8)

that satisfies the condition that P (M,T ) → 0 and δ2MTP (M,T ) → ∞. In practice, the different

penalty functions may lead to the different performance, e.g. Bai & Ng (2002) and Breitung &

Pigorsch (2013). We may consider the popular penalty function in BIC3 given by

BIC3 =
M + T

MT
ln(MT ). (1.4.9)

In Section A.4 in Appendix A, we provide the simulation results for MCC using BIC3 in (1.4.9).

Overall, its performance is relatively satisfactory for most cases, but it is outperformed by MCC

using P (M,T ) in (1.4.8). Since BIC3 does not always guarantee consistency,5 we thus recommend

the use of P (M,T ).

Another important issue is that the estimation precision of canonical correlations is adversely

affected by the noise-to-signal ratio. If the data is noisier, then we need a larger threshold, especially

5Consider an extreme case with M = exp (T ). Then, BIC3
p−→ 1, and 1− ξ(r)−C ×BIC3 < 0 with probability

1 for r = 0, 1, . . . , rmax. This implies that we always overestimate r̂0 = rmax even if the sample size is large. By
contrast, P (M,T ) is not subject to this issue.
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in small samples. Hence, we propose the following data-dependent tuning constant:6

C = exp(σ̄2
e/σ̄

2
y)

where σ̄2
e/σ̄

2
y is the average noise-to-signal ratio,

σ̄2
e =

1

NT

R∑
i=1

Mi∑
j=1

T∑
t=1

(
yijt − θ̂′

ijK̂it

)2
, σ̄2

y =
1

NT

R∑
i=1

Mi∑
j=1

T∑
t=1

y2ijt,

N =
∑R

i=1Mi, K̂it are the estimated rmax factors and θ̂ij the corresponding factor loadings. As C

is bounded between 1 and e, it does not affect the asymptotic property of MCC.

1.4.3 Estimation of the number of local factors

Once the number of global factors is consistently estimated by r̂0, the global factors can be consis-

tently estimated by Ĝ = K̂mVr̂0
m , where Vr̂0

m is an rmax × r̂0 matrix consisting of the characteristic

vectors associated with the r̂0 largest characteristic roots of (1.4.6). Ĝ from any block-pair would

provide a consistent estimator for G, but, in practice, we suggest to use the block-pair that yields

the maximum value of ℓmh,1.

Next, we concentrate Ĝ out in each block by YĜ
i = MĜYi for i = 1, . . . , R where MĜ =

IT −Ĝ(Ĝ′Ĝ)Ĝ′. Then, we apply the existing approaches by Bai & Ng (2002) and Ahn & Horenstein

(2013) to YĜ
i , with the maximum number of factors set to ri,max = rmax − r̂0, and estimate the

number of the local factors consistently by r̂i.
7 We apply the PC estimation to YĜ

i and obtain F̂i

for i = 1, ..., R.

Finally, the factor loadings, γ̂ij and λ̂ij , can be estimated by the OLS regression of yijt on Ĝt

and F̂it.

6Following Hallin & Lǐska (2007) and Alessi et al. (2010), we have also implemented the subsampling approach
to selecting the tuning constant, C such that the selected model becomes a stable function of the second stability
interval. But, we have encountered the two crucial issues. First, the subsampling procedure takes a huge amount of
time because we need to run the subsampling (at least) 30 times for each candidate of C. For example, if there are 50
grids for C, then we have to evaluate MCC, 1500 times. Second and more importantly, this approach fails to provide
the second stability interval for the large samples though it works fine for the small samples. For example, if R = 10,
M = 100 and T = 100, we find that the variations of r̂0 from the subsamples become all flat at zeros, implying that
we cannot identify r0. We leave this issue for future research.

7Alternatively, we can estimate the number of local factors directly by r̂i = r̂0 + ri − r̂0. Via (unreported)
simulations, we find that our proposed approach outperforms this approach, because the smaller ri,max can be selected
in the sequential approach.
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1.4.4 Estimation of global and local factors and loadings

In Sections 1.4.1–1.4.3, we have obtained the consistent estimates, r̂0 and r̂i. Given the initial

estimates, Ĝ, Γ̂i, F̂i and Λ̂i for i = 1, ..., R, we follow a sequential approach by Choi et al. (2018)

and update the factors and loadings as follows:

First, construct YF̂ =
[
YF̂

1 , . . . ,Y
F̂
R

]
where YF̂

i = Yi − F̂iΛ̂
′
i for i = 1, ..., R. We then apply

the PC estimation to YF̂, and obtain G̃ as
√
T times the eigenvectors corresponding to the r̂0

largest eigenvalues of the T × T matrix, YF̂YF̂′. The global factor loadings are then estimated by

Γ̃′ = T−1G̃′YF̂.

Next, for each i, constructYG̃
i = Y−G̃Γ̃′

i where Γ̃i is the T×Mi submatrix of Γ̃ =
[
Γ̃1, . . . , Γ̃R

]
.

The local factors, F̃i are estimated by
√
T times the eigenvectors corresponding to the r̂i largest

eigenvalues of the T × T matrix, YG̃
i YG̃′

i . The local factor loadings are then estimated by Λ̃′
i =

T−1F̃′
iY

G̃
i .

1.5 Monte Carlo Simulation

We construct the multilevel factor model by the following data generating process (DGP):

yijt = γ ′
ijGt +

√
hi1λ

′
ijFit +

√
κhi2eijt

=

r0∑
z=1

γijzGtz +
√

hi1

ri∑
z=1

λijzFitz +
√
κhi2eijt

where we generate global factors/loadings, local factors/loadings and idiosyncratic errors by

Gt = ϕGGt−1 + vt, vt ∼ iidN(0, Ir0)

Fit = ϕFFi,t−1 +wt, wt ∼ iidN(0, Iri)

γijz ∼ iidN(0, 1) for z = 1, . . . , r0, λijz ∼ iidN(0, 1) for z = 1, . . . , ri

eijt = ϕeeij,t−1 + εijt + β
∑

1≤|h|≤8

εi,j−h,t, εijt ∼ iidN(0, 1)

We allow global and local factors to be serially correlated, and idiosyncratic errors to be serially

and cross-sectionally correlated.

We control the noise-to-signal ratio by κ. We first set κ = 1. Then, the variances associated
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with the global factors, local factors and idiosyncratic errors are respectively given by

Var
(
γ ′
ijGt

)
=

r0∑
z=1

Var(γijzGtz) =
r0

1− ϕ2
G

,

Var
(
γ ′
ijFit

)
=

ri∑
z=1

Var(λijzFitz) =
ri

1− ϕ2
F

and Var(eijt) =
1 + 16β2

1− ϕ2
e

.

Following Choi et al. (2018) and Han (2021), we make the variance contribution of each component

equalised. For r0 > 0, we set

hi1 =

(
r0

1− ϕ2
G

)(
ri

1− ϕ2
F

)
and hi2 =

(
r0

1− ϕ2
G

)/(
1 + 16β2

1− ϕ2
e

)
.

For r0 = 0, we set

hi1 = 1 and hi2 =

(
ri

1− ϕ2
G

)/(
1 + 16β2

1− ϕ2
e

)
.

We consider the following sample sizes: R ∈ {2, 5, 10}, M ∈ {20, 50, 100, 200} with M1 = · · · =

MR = M and T ∈ {50, 100, 200}. The number of replications for each simulation experiment is

set at 1,000. We focus on the estimation of r0, and report the results only for the cases with

ϕG = ϕF = 0.5 to save space (We obtain qualitatively similar results for ϕG = ϕF = 0).

For comparison, we consider the alternative selection criteria proposed by Chen (2012) and

Andreou et al. (2019), denoted by ICChen and AGGR, respectively.8 When implementing ICchen

and AGGR in the simulation, for simplicity, we assume that the true number of factors, r0 + ri is

known. This prevents us from selecting too many candidate models for ICchen. For AGGR, the

null hypothesis is sequentially tested from k = r0 + ri to 0 until rejected.

It is well-established that if the maximum number of factors is set too high, the redundant factors

are likely to be selected.9 Hence, we propose a practical selection guideline. We first apply BIC3

to the data Yi in each block with a sufficiently large rmax (by fixing rmax = 10), and obtain the

consistent estimate of r0+ri, denoted r̂0 + ri for i = 1, ..., R. Then, we select the common maximum

number of factors by r∗max = max{r̂0 + r1, . . . , ̂r0 + rR}. This procedure selects r∗max ≤ rmax, while

ensuring that Pr(r∗max ≥ r0+ri)
p−→ 1 for all i = 1, ..., R.10 In what follows, we report the simulation

8See Section A.8 in Appendix A for the detailed estimation algorithms. Unfortunately, we are unable to implement
Han (2021)’s algorithm because his code can only be run on Matlab R2013b and R2014a, but not on the later versions.

9Ahn & Horenstein (2013) show via simulations that both BIC3 and ED estimators are quite sensitive to the
choice of rmax in the single level factor model.

10In Section A.3 in Appendix A we report the simulation results for CCD and MCC using r∗max together with the
fixed rmax = 10. In particular, if idiosyncratic errors are serially correlated, then the impact of the large rmax on the
performance of CCD is non-negligible (overestimating r0 for small T . The performance of MCC is also adversely
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results for CCD and MCC obtained by applying the common r∗max for each block, i = 1, ..., R.

In the first experiment, we fix the number of factors as (r0, ri) = (2, 2) for i = 1, . . . , R. Panel

A of Table 1.1 reports the simulation results for the benchmark case with (β, ϕe, κ) = (0, 0, 1). The

average of r̂0 over 1,000 replications are reported together with the figures inside the parenthesis,

(O|U), indicating the percentage of overestimation and underestimation. For example, (0|0) implies

that r0 is perfectly correctly estimated. Both CCD and MCC perform very well for all the sample

sizes. ICChen performs reasonably well for R = 2, but underestimates by detecting only one global

factor for R = 5 and R = 10. AGGR overestimates r0 if M is small, but its performance improves

only for large M and T .

The second case is the same as the first one, except we allow serial correlation and cross-

section correlation in idiosyncratic errors by setting (β, ϕe, κ) = (0.1, 0.5, 1). The simulation results

presented in Panel B of Table 1.1 demonstrate that the performance of ICChen and AGGR deterio-

rates substantially as compared to the first case. In particular, AGGR produces imprecise estimates

because their approach is not valid in the case where idiosyncratic errors are serially and/or cross-

sectionally correlated (see Assumption A9 and Theorem 2 in AGGR). Both CCD and MCC select

r0 correctly in almost all cases while CCD slightly outperforms MCC if M and R are small. In

line with our theoretical prediction, the performances of CCD and MCC are mostly invariant to

the presence of serially and cross-sectionally correlated idiosyncratic errors.

The third case is a very noisy DGP with κ = 3 in which the variance share explained by the

global factors becomes only 20%, which matches closely with empirical evidence reported in Table

6. The other setups are the same as in the second case. From Panel C of Table 1.1, we find that all

approaches are adversely affected, especially if M is small. The performance of AGGR is unreliable

in all cases. The performance of ICChen improves with M or T only for R = 2, but it severely

underestimates r0 for R = 5 and R = 10 even in large samples. CCD underestimates r0 for small

M . MCC tends to overestimate r0 for small M and small T while underestimating r0 for small M

and large T . The performance of CCD and MCC improves sharply with M or T for all values of

R. Overall CCD slightly outperforms.

affected by the presence of both cross-sectional and serial correlation in errors if T is small. On the other hand, both
CCD and MCC with r∗max, select the number of global factors correctly even in small samples.
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Table 1.1: Average estimates of the number of global factors for Experiment 1 with (ϕG, ϕF ) = (0.5, 0.5), (r0, ri) = (2, 2)
and r∗max = max{r̂0 + r1, . . . , ̂r0 + rR}

CCD MCC ICchen AGGR CCD MCC ICchen CCD MCC ICchen
Panel A: (β, ϕe, κ) = (0, 0, 1)

M T R = 2 R = 5 R = 10
20 50 1.98(0.6|2.1) 1.98(0|1.8) 2.02(2.9|1.2) 2.83(65.3|2.3) 2(0|0.2) 2(0|0.1) 1(0|100) 2(0|0) 2(0|0) 1(0|100)
50 50 2(0.1|0) 2(0|0) 2(0.2|0) 1.98(0|2.2) 2(0|0) 2(0|0) 1.24(0|75.8) 2(0|0) 2(0|0) 1(0|100)
100 50 2(0|0) 2(0|0) 2(0|0) 2(0|0.4) 2(0|0) 2(0|0) 2(0|0.2) 2(0|0) 2(0|0) 1.02(0|97.6)
200 50 2(0|0) 2(0|0) 2(0|0) 2(0|0) 2(0|0) 2(0|0) 2(0|0) 2(0|0) 2(0|0) 2(0|0)
20 100 2(0|0.3) 1.97(0|2.7) 1.95(0.1|5.1) 2.56(53.5|4.7) 2(0|0) 2(0|0) 1(0|100) 2(0|0) 2(0|0) 1(0|100)
50 100 2(0|0) 2(0|0) 2(0|0) 2.29(29.5|0.3) 2(0|0) 2(0|0) 1(0|100) 2(0|0) 2(0|0) 1(0|100)
100 100 2(0|0) 2(0|0) 2(0|0) 2(0|0) 2(0|0) 2(0|0) 1.79(0|21.5) 2(0|0) 2(0|0) 1(0|100)
200 100 2(0|0) 2(0|0) 2(0|0) 2(0|0) 2(0|0) 2(0|0) 2(0|0) 2(0|0) 2(0|0) 1.29(0|71.3)
20 200 2(0|0) 1.95(0|5.5) 1.92(0|7.9) 2.39(45.9|7.1) 2(0|0) 1.99(0|1.3) 1(0|100) 2(0|0) 2(0|0.4) 1(0|100)
50 200 2(0|0) 2(0|0) 2(0|0) 2.2(19.9|0.4) 2(0|0) 2(0|0) 1(0|100) 2(0|0) 2(0|0) 1(0|100)
100 200 2(0|0) 2(0|0) 2(0|0) 2.09(9|0) 2(0|0) 2(0|0) 1(0|100) 2(0|0) 2(0|0) 1(0|100)
200 200 2(0|0) 2(0|0) 2(0|0) 2(0|0) 2(0|0) 2(0|0) 2(0|0.3) 2(0|0) 2(0|0) 1(0|100)

Panel B: (β, ϕe, κ) = (0.1, 0.5, 1)
M T R = 2 R = 5 R = 10
20 50 2.16(13.6|1.7) 2.24(22.9|0) 1.76(0.2|24) 2.61(65.2|16.5) 2(0.4|0.2) 2.2(19.6|0) 1(0|100) 2(0|0) 2.21(21|0) 1(0|100)
50 50 2.03(3|0) 2.01(0.9|0) 2(0.3|0.5) 1.62(0|35) 2(0|0) 2(0|0) 1.11(0|89.3) 2(0|0) 2(0|0) 1(0|100)
100 50 2.02(1.9|0) 2(0.3|0) 2(0|0) 1.88(0|11) 2(0|0) 2(0|0) 1.94(0|6.1) 2(0|0) 2(0|0) 1.01(0|99.4)
200 50 2(0.1|0) 2(0|0) 2(0|0) 1.95(0|4.7) 2(0|0) 2(0|0) 2(0|0) 2(0|0) 2(0|0) 1.93(0|6.7)
20 100 1.99(0|0.8) 1.99(0|1.5) 1.64(0|36.3) 2.26(53.6|25.4) 2(0|0) 2(0|0) 1(0|100) 2(0|0) 2(0|0) 1(0|100)
50 100 2(0|0) 2(0|0) 1.99(0|0.7) 2.18(31.1|11.7) 2(0|0) 2(0|0) 1(0|100) 2(0|0) 2(0|0) 1(0|100)
100 100 2(0|0) 2(0|0) 2(0|0) 1.92(0|8.1) 2(0|0) 2(0|0) 1.5(0|50.1) 2(0|0) 2(0|0) 1(0|100)
200 100 2(0|0) 2(0|0) 2(0|0) 1.98(0|2.3) 2(0|0) 2(0|0) 2(0|0) 2(0|0) 2(0|0) 1.18(0|81.9)
20 200 1.99(0|0.8) 1.86(0|13.5) 1.54(0|46) 2.01(43.9|32.3) 2(0|0) 1.97(0|3) 1(0|100) 2(0|0) 2(0|0.3) 1(0|100)
50 200 2(0|0) 2(0|0) 1.99(0|1.2) 2.02(43.9|16.1) 2(0|0) 2(0|0) 1(0|100) 2(0|0) 2(0|0) 1(0|100)
100 200 2(0|0) 2(0|0) 2(0|0) 2.02(8.2|6.3) 2(0|0) 2(0|0) 1(0|99.7) 2(0|0) 2(0|0) 1(0|100)
200 200 2(0|0) 2(0|0) 2(0|0) 2.02(0|1.9) 2(0|0) 2(0|0) 1.97(0|3.4) 2(0|0) 2(0|0) 1(0|100)

Panel C: (β, ϕe, κ) = (0.1, 0.5, 3)
M T R = 2 R = 5 R = 10
20 50 1.77(23.7|37.8) 2.18(23.3|5.8) 1.65(2.7|37.9) 3.12(96.2|1.5) 1.34(5.5|41.7) 2.22(22.4|0) 1(0|100) 1.33(0.5|37.8) 2.28(28.4|0) 1(0|100)
50 50 1.94(9.8|16.1) 1.89(2.3|13.3) 1.94(7.3|13.4) 0.66(0|95.5) 1.92(0.3|7.4) 1.97(0|2.9) 1(0|100) 1.95(0|4.5) 1.98(0.1|1.7) 1(0|100)
100 50 1.99(6.3|8) 1.92(0.5|8.4) 2.16(16.1|0.3) 0.95(0|84) 1.97(0|3.1) 1.93(0|6.7) 1.07(0|93.2) 1.99(0|1.2) 1.98(0|2.3) 1(0|100)
200 50 1.96(0.5|4.6) 1.95(0|5.4) 2.12(12.4|0) 1.21(0|69) 1.99(0|1.3) 1.98(0|2.2) 1.85(0|14.7) 1.99(0|0.8) 1.98(0|1.8) 1.01(0|99.4)
20 100 1.2(0|50.9) 1.22(0|71.9) 1.29(0.1|71.6) 2.89(92|3.6) 1.34(0|36.8) 1.26(0|26.2) 1(0|100) 1.46(0|28.8) 1.28(0|72) 1(0|100)
50 100 1.81(0.1|16.2) 1.6(0|39) 1.69(0|31.4) 2.21(60.2|25.6) 1.93(0|6.1) 1.67(0|33.1) 1(0|100) 1.96(0|4) 1.73(0|27.1) 1(0|100)
100 100 1.99(0|1.5) 1.93(0|6.6) 2(0|0.4) 1.12(0|75.4) 2(0|0.5) 1.97(3.4|0) 1(0|99.9) 2(0|0.1) 1.97(0|3.2) 1(0|100)
200 100 2(0|0) 2(0|0.1) 2(0|0) 1.55(0|42.8) 2(0|0) 2(0|0.1) 1.74(0|26.5) 2(0|0) 2(0|0) 1(0|100)
20 200 0.99(0|63.8) 0.63(0|97.8) 1.14(0|85.6) 2.78(87.2|6.7) 0.92(0|58.8) 0.7(0|99.7) 1(0|100) 0.96(0|54) 0.78(0|99.9) 1(0|100)
50 200 1.82(0|15.3) 1.21(0|70.9) 1.57(0|43.5) 1.79(44.2|40.4) 1.96(0|3.2) 1.25(0|74.6) 1(0|100) 1.99(0|0.8) 1.21(0|78.7) 1(0|100)
100 200 2(0|0.1) 1.95(0|5) 2(0|0.3) 1.42(21.7|55.5) 2(0|0) 1.99(0|1.4) 1(0|99.6) 2(0|0) 1.99(0|0.8) 1(0|100)
200 200 2(0|0) 2(0|0) 2(0|0) 1.75(0|23.9) 2(0|0) 2(0|0) 1.02(0|98.3) 2(0|0) 2(0|0) 1(0|100)

The average of r̂0 over 1,000 replications is reported together with the figures inside the parenthesis, (O|U), indicating the percentage of overestimation and underestimation. r0 and
ri are the true number of global factors and true number of local factors in group i. We set r1 = r2 = · · · = rR, where R is the number of groups. Mi is the number of individuals
in group i. In Experiments 1, 3 and 4, we set Mi = M for all i. T is the number of time periods. ϕG and ϕF are the AR coefficients for the global and local factors. β, ϕe and κ
control the cross-section correlation, serial correlation and noise-to-signal ratio. For ICchen and AGGR, we assume that the true number of factors, r0 + ri is known. We still allow
the estimation uncertainty in implementing CCD and MCC using the r∗max.
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In the second experiment we consider the model with uneven block sizes. To this end, we set

(M1 = 50,M2 = 100) for R = 2, (M1 = 20,M2 = 40,M3 = 60,M4 = 80,M5 = 100) for R = 5, and

(M1 = 20,M2 = 30,M3 = 40,M4 = 50,M5 = 60,M6 = 70,M7 = 80,M8 = 90,M9 = 100,M10 =

110) for R = 10, respectively. The results in Table 1.2 display that CCD performs satisfactory,

selecting r0 precisely in almost all cases. The performance of MCC is comparable to that of CCD,

except when the data become noisier. Especially for small T , MCC significantly overestimates r0

in the presence of cross-sectionally and serially correlated errors together with the higher noise-to-

signal ratio. On the other hand, ICChen underestimates r0 while AGGR overestimates r0 in almost

all cases.

Table 1.2: Average estimates of the number of global factors for Ex-
periment 2 with uneven block sizes, (ϕG, ϕF ) = (0.5, 0.5) and r∗max =
max{r̂0 + r1, . . . , ̂r0 + rR}

β ϕe κ T CCD MCC ICChen AGGR
Panel A: R = 2

0 0 1 50 2(0.2|0.5) 2(0|0) 1.01(0|99.1) 3.93(99.8|0)
0 0 1 100 2(0|0.2) 2(0|0) 1(0|100) 3.77(98.8|0)
0 0 1 200 2(0|0) 2(0|0) 1(0|100) 3.66(97|0)
0.1 0.5 1 50 2.15(11.8|0.2) 2.03(2.7|0) 1.02(0|98.4) 3.78(97.1|0)
0.1 0.5 1 100 2(0|0.1) 2(0|0) 1(0|100) 3.53(90.5|0.2)
0.1 0.5 1 200 2(0|0.3) 2(0|0) 1(0|100) 3.3(84.2|0.1)
0.1 0.5 3 50 2.21(25.9|15.3) 2(5.3|5.8) 1(0|99.9) 4(100|0)
0.1 0.5 3 100 1.7(0.2|25.6) 1.78(0|21.5) 1(0|100) 4(100|0)
0.1 0.5 3 200 1.6(0|33.7) 1.66(0|33.5) 1(0|100) 3.98(99.9|0)

Panel B: R = 5
0 0 1 50 2(0|0) 2(0|0) 1(0|100)
0 0 1 100 2(0|0) 2(0|0) 1(0|100)
0 0 1 200 2(0|0) 2(0|0) 1(0|100)
0.1 0.5 1 50 2(0|0) 2.36(35.6|0) 1(0|100)
0.1 0.5 1 100 2(0|0) 2(0|0) 1(0|100)
0.1 0.5 1 200 2(0|0) 2(0|0) 1(0|100)
0.1 0.5 3 50 2(3|3) 2.75(70.8|0) 1(0|100)
0.1 0.5 3 100 1.96(0|3.5) 1.97(0|3.1) 1(0|100)
0.1 0.5 3 200 1.94(0|4.8) 1.72(0|27.9) 1(0|100)

Panel C: R = 10
0 0 1 50 2(0|0) 2(0|0) 1(0|100)
0 0 1 100 2(0|0) 2(0|0) 1(0|100)
0 0 1 200 2(0|0) 2(0|0) 1(0|100)
0.1 0.5 1 50 2(0|0) 2.55(54.4|0) 1(0|100)
0.1 0.5 1 100 2(0|0) 2(0|0) 1(0|100)
0.1 0.5 1 200 2(0|0) 2(0|0) 1(0|100)
0.1 0.5 3 50 1.99(0|1) 3.1(98.2|0) 1(0|100)
0.1 0.5 3 100 2(0|0.5) 2(0|0) 1(0|100)
0.1 0.5 3 200 2(0|0.1) 2(0|0.5) 1(0|100)

We set (M1 = 50,M2 = 100) for R = 2, (M1 = 20,M2 = 40,M3 = 60,M4 = 80,M5 =
100) for R = 5, and (M1 = 20,M2 = 30,M3 = 40,M4 = 50,M5 = 60,M6 = 70,M7 =
80,M8 = 90,M9 = 100,M10 = 110) for R = 10. See also footnotes to Table 1.1.
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In the third experiment we allow the number of global factors to vary from 0 to 3 by setting

(r0, ri) ∈ {(0, 2), (1, 1), (3, 3)} for i = 1, ..., R and (β, ϕe, κ) = (0.1, 0.5, 1). First, the results for the

case with (r0, ri) = (0, 2), are reported in Panel A of Table 1.3. CCD, MCC and AGGR tend to

select zero global factor correctly, but CCD outperforms if both M and T are small. On the other

hand, ICchen always selects one factor incorrectly. Second, turning to the case with (r0, ri) = (1, 1)

in Panel B of Table 1.3, we find that CCD and ICchen estimate r0 = 1 correctly. If M and T

are small, MCC overestimates r0 while AGGR tends to underestimate r0. Finally, the results for

(r0, ri) = (3, 3) presented in Panel C, display that for R = 2 the performance of CCD, MCC and

ICchen is satisfactory and improves sharply with the sample sizes, but CCD slightly outperforms

for small M . By contrast, the performance of AGGR is unreliable unless both M and T are large.

Next, for R = 5 and 10, the performance of CCD and MCC remains satisfactory whereas ICchen

severely underestimates r0.

,

Table 1.3: Average estimates of the number of global factors for Experiment 3 with (ϕG, ϕF ) = (0.5, 0.5), (β, ϕe, κ) =
(0.1, 0.5, 1) and r∗max = max{r̂0 + r1, . . . , ̂r0 + rR}

CCD MCC ICchen AGGR CCD MCC ICchen CCD MCC ICchen
Panel A: (r0, ri) = (0, 2)

M T R = 2 R = 5 R = 10
20 50 0.05(3.6|0) 0.9(74.6|0) 1(100|0) 0.33(32.1|0) 0(0|0) 1.04(95.8|0) 1(100|0) 0(0|0) 1.11(99.6|0) 1(100|0)
50 50 0.03(2.1|0) 0.09(9.1|0) 1(100|0) 0(0|0) 0(0|0) 0.02(1.7|0) 1(100|0) 0(0|0) 0.01(0.7|0) 1(100|0)
100 50 0.02(2.1|0) 0.01(0.9|0) 1(100|0) 0(0|0) 0(0|0) 0(0|0) 1(100|0) 0(0|0) 0(0|0) 1(100|0)
200 50 0.01(0.8|0) 0(0|0) 1(100|0) 0(0|0) 0(0|0) 0(0|0) 1(100|0) 0(0|0) 0(0|0) 1(100|0)
20 100 0(0|0) 0(0|0) 1(100|0) 0.25(24.6|0) 0(0|0) 0(0|0) 1(100|0) 0(0|0) 0(0|0) 1(100|0)
50 100 0(0|0) 0(0|0) 1(100|0) 0.15(15|0) 0(0|0) 0(0|0) 1(100|0) 0(0|0) 0(0|0) 1(100|0)
100 100 0(0|0) 0(0|0) 1(100|0) 0(0|0) 0(0|0) 0(0|0) 1(100|0) 0(0|0) 0(0|0) 1(100|0)
200 100 0(0|0) 0(0|0) 1(100|0) 0(0|0) 0(0|0) 0(0|0) 1(100|0) 0(0|0) 0(0|0) 1(100|0)
20 200 0(0|0) 0(0|0) 1(100|0) 0.19(19.2|0) 0(0|0) 0(0|0) 1(100|0) 0(0|0) 0(0|0) 1(100|0)
50 200 0(0|0) 0(0|0) 1(100|0) 0.08(8|0) 0(0|0) 0(0|0) 1(100|0) 0(0|0) 0(0|0) 1(100|0)
100 200 0(0|0) 0(0|0) 1(100|0) 0.03(2.5|0) 0(0|0) 0(0|0) 1(100|0) 0(0|0) 0(0|0) 1(100|0)
200 200 0(0|0) 0(0|0) 1(100|0) 0(0|0) 0(0|0) 0(0|0) 1(100|0) 0(0|0) 0(0|0) 1(100|0)

Panel B: (r0, ri) = (1, 1)
M T R = 2 R = 5 R = 10
20 50 1.09(7.2|0) 1.45(42|0) 1(0|0) 0.93(4.7|11.3) 1(0|0) 1.54(53.4|0) 1(0|0) 1(0|0) 1.66(66.2|0) 1(0|0)
50 50 1.03(2.4|0) 1.02(1.8|0) 1(0|0) 0.92(0|8.1) 1(0|0) 1(0|0) 1(0|0) 1(0|0) 1(0|0) 1(0|0)
100 50 1.02(2|0) 1(0.4|0) 1(0|0) 0.96(0|3.9) 1(0|0) 1(0|0) 1(0|0) 1(0|0) 1(0|0) 1(0|0)
200 50 1.01(0.6|0) 1(0|0) 1(0|0) 0.99(0|0.9) 1(0|0) 1(0|0) 1(0|0) 1(0|0) 1(0|0) 1(0|0)
20 100 1(0|0) 1(0|0) 1(0|0) 0.87(0.4|13.1) 1(0|0) 1(0|0) 1(0|0) 1(0|0) 1(0|0) 1(0|0)
50 100 1(0|0) 1(0|0) 1(0|0) 0.97(0.1|3.1) 1(0|0) 1(0|0) 1(0|0) 1(0|0) 1(0|0) 1(0|0)
100 100 1(0|0) 1(0|0) 1(0|0) 0.98(0|1.8) 1(0|0) 1(0|0) 1(0|0) 1(0|0) 1(0|0) 1(0|0)
200 100 1(0|0) 1(0|0) 1(0|0) 0.99(0|0.6) 1(0|0) 1(0|0) 1(0|0) 1(0|0) 1(0|0) 1(0|0)
20 200 1(0|0) 1(0|0) 1(0|0) 0.83(0.1|17.6) 1(0|0) 1(0|0) 1(0|0) 1(0|0) 1(0|0) 1(0|0)
50 200 1(0|0) 1(0|0) 1(0|0) 0.96(0|4.2) 1(0|0) 1(0|0) 1(0|0) 1(0|0) 1(0|0) 1(0|0)
100 200 1(0|0) 1(0|0) 1(0|0) 0.98(0|2.4) 1(0|0) 1(0|0) 1(0|0) 1(0|0) 1(0|0) 1(0|0)
200 200 1(0|0) 1(0|0) 1(0|0) 1(0|0.1) 1(0|0) 1(0|0) 1(0|0) 1(0|0) 1(0|0) 1(0|0)

Panel C: (r0, ri) = (3, 3)
M T R = 2 R = 5 R = 10
20 50 3.16(23.7|14.8) 3.02(9.7|8.2) 2.92(10.5|18.6) 4.9(88.1|7) 2.97(4.1|7.1) 3.03(3|0.5) 1(0|100) 2.99(0.1|1.5) 3.02(2.3|0.1) 1(0|100)
50 50 3.05(7.1|2.9) 2.98(0.7|3.2) 3.04(6.1|2.1) 2.1(0.6|74.1) 3(0.2|0.4) 2.99(0|0.7) 1.17(0|99.7) 3(0|0) 3(0|0.1) 1(0|100)
100 50 3.01(1.4|0.4) 2.99(0.2|0.9) 3.03(3.3|0) 2.58(0.7|40.7) 3(0|0.1) 3(0|0) 2.7(0|28.2) 3(0|0.1) 3(0|0.2) 1.01(0|100)
200 50 3(0.4|0.2) 3(0|0.2) 3.02(1.6|0) 2.82(0.4|18.7) 3(0|0) 3(0|0) 3(0|0.1) 3(0|0) 3(0|0) 2.64(0|32.3)
20 100 2.78(0.2|19) 2.38(0|57.7) 2.54(0.5|44.3) 4.25(76.9|13.9) 2.94(0|5.7) 2.45(0|55) 1(0|100) 2.98(0|1.5) 2.54(0|46) 1(0|100)
50 100 2.99(0|0.8) 2.93(0|7) 2.96(0|3.9) 3.72(55.6|20.7) 3(0|0) 2.98(0|1.6) 1(0|100) 3(0|0) 3(0|0.5) 1(0|100)
100 100 3(0|0) 3(0|0) 3(0|0) 2.66(0|30.9) 3(0|0) 3(0|0) 1.89(0|78) 3(0|0) 3(0|0) 1(0|100)
200 100 3(0|0) 3(0|0) 3(0|0) 2.91(0|8.8) 3(0|0) 3(0|0) 3(0|0) 3(0|0) 3(0|0) 1.21(0|98.3)
20 200 2.71(0|23.6) 1.78(0|91) 2.29(0|64.2) 3.88(69|20.3) 2.95(0|4.7) 1.98(0|96.8) 1(0|100) 2.99(0|1.1) 1.97(0.7|0) 1(0|100)
50 200 3(0|0.2) 2.81(0|19.2) 2.94(0|6.5) 3.29(40.1|27.6) 3(0|0) 2.91(0|8.6) 1(0|100) 3(0|0) 2.98(0|2.5) 1(0|100)
100 200 3(0|0) 3(0|0) 3(0|0) 3.21(22.6|14.1) 3(0|0) 3(0|0) 1.01(0|100) 3(0|0) 3(0|0) 1(0|100)
200 200 3(0|0) 3(0|0) 3(0|0) 2.95(0|4.9) 3(0|0) 3(0|0) 2.87(0|12.6) 3(0|0) 3(0|0) 1(0|100)

See footnotes to Table 1.1.
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In the fourth experiment we use the same DGP in the benchmark experiment but allow the

local factors to be mutually correlated. We generate the local factors by

Ft = ΦFFt−1 +wt, wt ∼ iidN(0,ΩF )

where Ft = [F′
1t, . . . ,F

′
Rt]

′, wt = [w′
1t, . . . ,w

′
Rt]

′ and ΦF is a diagonal matrix with the common

elements, 0.5. We set the common diagonal elements of ΩF at 1, and the common off-diagonal

elements (denoted ωF ) at 0.2, 0.4, 0.6 and 0.8, respectively. We report these results in Table

1.4.11 If the correlation among the local factors are relatively weak, i.e. ωF = (0.2, 0.4), then

the performance of CCD is satisfactory, and improves sharply with M and T . However, if the

local factors correlation becomes stronger, i.e. ωF = (0.6, 0.8), then CCD overestimates r0 even in

large samples. This is line with Theorem 1.2 that consistency of CCD requires the upper bound

condition, ρ̄r0+1 < η to be met. Next, we find that the performance of MCC is satisfactory for

ωF = (0.2, 0.4). Even if ωF = 0.6, its performance improves sharply with M and T . Only in the

presence of the stronger correlation among the local factors (ωF = 0.8), MCC tends to overestimate

r0 in most sample sizes, but it becomes consistent for substantially large M and T . This is line

with Theorem 1.3.12

11The performances of ICChen and AGGR are qualitatively similar to those in the first experiment. These results
are available upon request.

12In Section A.5 in Appendix A, we have conducted the additional simulations to examine the performance of
CCD and MCC under experiments with heterogeneous correlations among local factors and uneven block sizes. We
have obtained qualitatively similar results.



1.5 Monte Carlo Simulation 30

Table 1.4: Average estimates of the number of global factors for Experiment 4 with correlated local factors, (ϕG, ϕF ) = (0.5, 0.5),
(r0, ri) = (2, 2), (β, ϕe, κ) = (0, 0, 1) and r∗max = max{r̂0 + r1, . . . , ̂r0 + rR}

ωF = 0.2 ωF = 0.4 ωF = 0.6 ωF = 0.8
R M T CCD MCC CCD MCC CCD MCC CCD MCC
2 20 50 2.02(4.9|2.8) 2(0.9|1) 2.26(29.5|2.9) 2.1(10.9|0.6) 2.75(75.5|1) 2.57(56.8|0.1) 2.97(96.9|0.1) 2.93(93.4|0)
2 50 50 2.01(1.3|0.1) 2(0.1|0) 2.23(23.4|0) 2.04(4.3|0.1) 2.79(78.4|0) 2.45(44.8|0) 3(99.8|0) 2.97(97.1|0)
2 100 50 2.01(1|0) 2(0|0.1) 2.19(19.2|0) 2.01(1.3|0) 2.76(76.1|0.1) 2.25(25.2|0.1) 3(99.7|0) 2.93(92.7|0)
2 200 50 2(0.3|0) 2(0|0) 2.18(17.6|0) 2(0.3|0.1) 2.74(73.8|0) 2.11(10.5|0) 3(100|0) 2.79(78.9|0)
2 20 100 2(0|0.2) 1.98(0|1.7) 2.2(21.5|1) 1.99(0.2|1.1) 2.85(85.8|0.5) 2.17(17.8|0.4) 2.99(99.2|0) 2.88(87.9|0)
2 50 100 2(0|0) 2(0|0) 2.1(10.3|0) 2(0|0) 2.84(84.3|0) 2.1(10|0.1) 3(100|0) 2.94(94.1|0)
2 100 100 2(0|0) 2(0|0) 2.07(6.8|0) 2(0|0) 2.82(81.7|0) 2.02(1.5|0) 3(100|0) 2.85(84.5|0)
2 200 100 2(0|0) 2(0|0) 2.07(6.5|0) 2(0|0) 2.8(80.2|0) 2(0|0) 3(100|0) 2.58(58.2|0)
2 20 200 2(0|0.3) 1.96(0|4) 2.07(9.3|1.7) 1.93(0|7.3) 2.89(90.1|0.7) 1.93(0.1|6.6) 2.99(99.3|0) 2.58(58.9|0.7)
2 50 200 2(0|0) 2(0|0) 2.02(1.5|0) 2(0|0) 2.9(90.4|0) 2(0.1|0) 3(100|0) 2.79(79|0)
2 100 200 2(0|0) 2(0|0) 2.01(1.4|0) 2(0|0) 2.9(89.6|0) 2(0|0) 3(100|0) 2.44(43.5|0)
2 200 200 2(0|0) 2(0|0) 2.01(1.1|0) 2(0|0) 2.88(87.9|0) 2(0|0) 3(100|0) 2(0|0)
5 20 50 2(0.1|0.5) 2(0|0) 2.19(19.8|0.8) 2.02(2.2|0) 2.87(87|0.2) 2.58(57.8|0) 3(100|0) 2.98(98.2|0)
5 50 50 2(0|0) 2(0|0) 2.12(11.7|0) 2(0.4|0) 2.88(87.6|0) 2.39(39.3|0) 3(100|0) 2.99(99.4|0)
5 100 50 2(0|0) 2(0|0) 2.08(7.5|0) 2(0|0) 2.86(86.1|0) 2.17(16.6|0) 3(100|0) 2.97(97.4|0)
5 200 50 2(0|0) 2(0|0) 2.08(7.7|0) 2(0|0) 2.83(83.4|0) 2.02(1.9|0.1) 3(100|0) 2.9(89.6|0)
5 20 100 2(0|0) 2(0|0.2) 2.1(10.5|0.1) 2(0|0) 2.95(94.5|0) 2.08(8.1|0) 3(100|0) 2.96(96|0)
5 50 100 2(0|0) 2(0|0) 2.03(2.8|0) 2(0|0) 2.92(92.3|0) 2.02(1.7|0) 3(100|0) 2.98(98.1|0)
5 100 100 2(0|0) 2(0|0) 2.01(1|0) 2(0|0) 2.9(89.6|0) 2(0|0) 3(100|0) 2.93(93.1|0)
5 200 100 2(0|0) 2(0|0) 2.01(0.8|0) 2(0|0) 2.89(88.7|0) 2(0|0) 3(100|0) 2.57(56.6|0)
5 20 200 2(0|0) 1.99(0|0.8) 2.02(1.8|0) 1.99(0|0.8) 2.99(99|0) 1.99(0|0.8) 3(100|0) 2.62(37.8|0)
5 50 200 2(0|0) 2(0|0) 2(0|0) 0(0.2|100) 2.97(97.2|0) 2(0|0) 3(100|0) 2.83(82.6|0)
5 100 200 2(0|0) 2(0|0) 2(0.2|0) 2(0|0) 2.94(94.2|0) 2(0|0) 3(100|0) 2.44(43.6|0)
5 200 200 2(0|0) 2(0|0) 2(0|0) 2(0|0) 2.94(94.2|0) 2(0|0) 3(100|0) 2.03(2.6|0)
10 20 50 2(0|0.3) 2(0|0) 2.18(18.4|0.3) 2.01(1|0) 2.89(89.4|0) 2.6(60|0) 3(99.8|0) 2.99(99.1|0)
10 50 50 2(0|0) 2(0|0) 2.07(6.8|0) 2(0.2|0) 2.89(88.6|0) 2.38(38.1|0) 3(100|0) 3(99.7|0)
10 100 50 2(0|0) 2(0|0) 2.05(5.3|0) 2(0|0) 2.88(87.8|0) 2.1(10.1|0) 3(100|0) 2.99(98.5|0)
10 200 50 2(0|0) 2(0|0) 2.05(4.5|0) 2(0|0) 2.85(85.2|0) 2.01(1.3|0) 3(100|0) 2.89(89.3|0)
10 20 100 2(0|0) 2(0|0) 2.08(7.6|0) 2(0|0.1) 2.97(96.6|0) 2.05(5.3|0) 3(100|0) 2.99(98.7|0)
10 50 100 2(0|0) 2(0|0) 2.02(1.7|0) 2(0|0) 2.93(93.1|0) 2.01(0.8|0) 3(100|0) 2.99(98.6|0)
10 100 100 2(0|0) 2(0|0) 2(0.3|0) 2(0|0) 2.93(92.5|0) 2(0|0) 3(100|0) 2.95(94.8|0)
10 200 100 2(0|0) 2(0|0) 2.01(0.6|0) 2(0|0) 2.91(91.4|0) 2(0|0) 3(100|0) 2.59(59|0)
10 20 200 2(0|0) 2(0|0.2) 2.02(1.7|0) 2(0|0.5) 2.99(99.1|0) 2(0|0.2) 3(100|0) 2.67(67|0)
10 50 200 2(0|0) 2(0|0) 2(0|0) 2(0|0) 2.97(96.9|0) 2(0|0) 3(100|0) 2.86(85.5|0)
10 100 200 2(0|0) 2(0|0) 2(0|0) 2(0|0) 2.97(97.2|0) 2(0|0) 3(100|0) 2.4(40.2|0)
10 200 200 2(0|0) 2(0|0) 2(0|0) 2(0|0) 2.96(96.1|0) 2(0|0) 3(100|0) 2.01(1.2|0)

We generate the local factors by Ft = ΦFFt−1 + wt with wt ∼ iidN(0,ΩF ), where Ft = [F′
1t, . . . ,F

′
Rt]

′, wt = [w′
1t, . . . ,w

′
Rt]

′ and ΦF is a
diagonal matrix with the common elements, 0.5. We set the common diagonal elements of ΩF at 1, and the common off-diagonal elements (denoted
ωF ) at 0.2, 0.4, 0.6 and 0.8, respectively. See also footnotes to Table 1.1.
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In Section A.6 in Appendix A, we have conducted the additional simulations for estimating the

number of the local factors, after r0 is consistently estimated by CCD and MCC. Overall results

suggest that BIC3 by Bai & Ng (2002) and ER by Ahn & Horenstein (2013) outperform the other

existing approaches.

Finally, in Section A.7 in Appendix A, we follow the anonymous referee’s suggestion and split the

whole data with R > 2 groups into the two wide groups. This simple modification enables us to apply

the AGGR’s procedure for estimating the number of global factors even if R > 2. Furthermore, this

scheme may improve the finite sample performance of CCD and MCC estimators by increasing

the number of cross-section observations used in the estimation of the number of global factors, r0

and the global factors, G. We explore the performance of AGGR, CCD and MCC with the two

wide-group division, denoted respectively by AGGRw, CCDw and MCCw, via additional Monte

Carlo experiments. We consider the same DGP employed under Experiments 1 and 3, and draw

the three main conclusions. First, we can apply the AGGR approach to the multilevel panel with

R > 2, though its performance becomes satisfactory only if both M and T are substantially large.

But, its performance is unreliable, especially if T is small. Second, CCD and MCC still outperform

CCDw, MCCw and AGGRw in most cases. Third, there is a trade-off between the use of more

cross-section observations and a selection of the larger r∗max. We find that CCDw and MCCw can

significantly improve the estimation precision of r0 for the multilevel panel with R > 2, especially

if T is sufficiently large and M is much smaller than T . On the other hand, if T is small, then

CCDw and MCCw overestimate r0. Hence, we may recommend this 2-wide groups modification in

practice, only if T is sufficiently large and M is much smaller than T .

Overall, the simulation results demonstrate that CCD and MCC tend to select the number of

global factors correctly even in small samples while outperforming other existing methods even in

the presence of serially correlated and weakly cross-sectionally correlated idiosyncratic errors. Only

if the correlations among the local factors are deemed to be relatively weak on average (say, less

than 1/2), we recommend the use of CCD because it is very simple to implement without requiring

any tuning parameter and its performance is robust against noisier idiosyncratic errors. Given that

the overall performances of CCD and MCC are qualitatively similar but MCC does not need to

meet the upper bound condition, in general, we prefer the use of MCC.

1.6 Empirical Application

We demonstrate the utility of our approach in the context of the multilevel asset pricing model.

The standard literature on asset pricing models suggests a linear relation between stock returns
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and common factors, e.g. Sharpe (1964), Connor & Korajczyk (1988) and Fama & French (1993).

However, the studies investigating the role of industry factors explicitly in asset pricing model are

relatively few. Fama & French (1997) provide evidence that both CAPM and the three factor models

are unable to precisely estimate the cost of equity for industry portfolios. Lewellen et al. (2010)

demonstrate that the asset pricing models are rejected for industry portfolios. Chou et al. (2012)

find that the residuals of stocks from the same industry share a non-negligible correlation even after

controlling for the common factors. Moskowitz & Grinblatt (1999) find that industry momentum

contributes substantially to the momentum strategy such that the winners and the losers tend to

belong to the same industry. These studies reveal the fact that stocks in the same industry share

a strong co-movement, which cannot be explained by the common factors alone. In this regard, it

would be an important issue of investigating whether there is any industry-specific factor driving

the within-industry co-movement as well as how important they are relative to global factors and

idiosyncratic disturbances.

We collect the weekly return data of stocks listed on NYSE and NASDAQ from Jan. 2015

to Dec. 2016 from CRSP database. We follow Fama & French (1997) and use the SIC codes to

categorise the stocks into twelve industries, listed in the first column of Table 1.5.13 We consider

a balanced block panel data with unequal block sizes and include stocks that have the complete

return data during the sample period. Following Fama & French (1993) we require the stocks to be

listed on NYSE and NASDAQ for two years prior to Jan. 2015. We end up with twelve industries

(R = 12), 2618 firms (N = 2618) and 105 weeks (T = 105). The number of stocks in each industry

is reported in the second column of Table 1.5.

We first report the within correlations and between correlations. The former is evaluated as the

average pairwise correlation of individual stock returns within the same industry while the latter is

the average correlation between individual returns across two different industries. We visualise them

through a heat map in Figure 1.1, where the diagonal elements represent the within correlations and

the off-diagonal elements are the between correlations. Both correlations are positive and substantial

across all industries. Overall, the within correlation is higher than the between correlation for all

industries. For example, for Enrgy, Utils and Money, the within correlations are 0.36, 0.45 and

0.31, and the between correlations are 0.19, 0.11 and 0.21. Such differences imply that there may

be some local/industry factors, rendering the assets co-move within the same industry.

13These are Consumer Non-Durable, Consumer Durable, Manufacturing, Energy, Chemicals, Business Equipment,
Telecommunication, Utilities, Shops, Health, Money and Others. The definitions of the industries can be found on
Kenneth French’s website: http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html.

http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html
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Figure 1.1: Average pairwise correlations of returns

Next, we explore the correlation structure using the multilevel factor model. We standardise

the data following Bai & Ng (2002) and Ahn & Horenstein (2013). First, we follow the practical

guideline for r∗max as described in Section 1.5. In our application we only need to run BIC3 12

times using rmax = 10 for i = 1, ..., 12, and select r∗max = max{r̂0 + r1, . . . , ̂r0 + r12} = 3. We then

apply CCD and MCC with r∗max = 3. Both select only one global factor, which is in line with

Trzcinka (1986) and Bailey et al. (2021).14 Then, we apply BIC3 with r∗i,max = r∗max − r̂0 = 2 to

the defactored data in each block by concentrating out the global factor. We find that there is one

local factor in NoDur, Enrgy, Hlth and Money, two local factors in Utils, and zero factor in other

industries. Finally, we apply the estimation method described in Section 1.4.4, and report the full

estimation results in Table 1.5.

14For the robustness check, we have tried the different values of rmax = 5, 10, 20 directly applied to CCD and
MCC, finding that they always select one global factor.
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Table 1.5: The main empirical results

Mi r̂i RIG RIF RIE

NoDur 131 1 0.165 0.093 0.737

Durbl 63 0 0.328 0 0.672

Manuf 244 0 0.321 0 0.679

Enrgy 92 1 0.199 0.232 0.562

Chems 67 0 0.3 0 0.7

BusEq 368 0 0.222 0 0.778

Telcm 69 0 0.221 0 0.779

Utils 79 2 0.083 0.542 0.373

Shops 242 0 0.222 0 0.778

Hlth 240 1 0.105 0.096 0.776

Money 525 1 0.274 0.101 0.602

Other 498 0 0.214 0 0.786

Avg/Total 2618 0.226 0.058 0.708

Mi is the number of firms in each industry. r̂i

is the estimated number of local factors. RIG,

RIF and RIE stand for the relative importance

ratios for the global, local factors and idiosyn-

cratic components, respectively.



1.6 Empirical Application 35

We evaluate the relative importance ratios of the global factor, the local/industry factors and

idiosyncratic errors,15 that are summarised in columns 4 - 6 in Table 1.5. On average, the global

factor and local factors can explain 22.6% and 5.8% of the total variation whereas idiosyncratic

disturbance components still account for 70.6% of the total variation. The global factor tends to

display the higher relative importance ratios for the cyclical industries such as Durbl (32.8%), Manuf

(32.1%), Chems (30%) and Money (27.4%), suggesting that the higher within correlations observed

in these industries are likely to reflect the higher loadings to the global factor. On the other hand,

the influence of the global factor is below average for the non-cyclical industries such as NoDur

(16.5%), Utils (8.3%) and Hlth (10.5%). Interestingly, local factors are more important than the

global factor for Enrgy (23.2%) and Utils (54.2%). The variance share explained by the local factors

are also non-negligible for NoDur (9.3%), Hlth (9.6%) and Money (10.1%).

Next, we examine the within and between correlations after concentrating out the global and

local factors, respectively. Figure 1.2 displays the results constructed using the residuals from a

regression of the return data on the global factor only. In contrast to Figure 1.1, the between

correlations decline drastically for all industries, indicating that the market-wide co-movement of

the individual stock returns is well-captured by the global factor. Notice, however, that the within

correlations for NoDur, Enrgy, Utils, Hlth and Money are still non-negligible, which implies that such

co-movements may be captured by the local factors. We further project out the local factors such

that the resulting residuals would be purely idiosyncratic. Figure 1.3 shows that both correlations

are almost negligible, suggesting that the local/industry factors are an important driver behind the

higher within correlations for NoDur, Enrgy, Utils, Hlth and Money.

15The time series variance decomposition for the individual stock return is given by

Var(yijt) = Var
(
γ̂′
ijĜt

)
+Var

(
λ̂′

ijF̂it

)
+Var (êijt)

We construct the relative importance ratios for each industry by

IRGi = M−1
i

Mi∑
j=1

Var
(
γ̂′
ijĜt

)
Var(yijt)

, IRFi = M−1
i

Mi∑
j=1

Var
(
λ̂′

ijF̂it

)
Var(yijt)

and IREi = M−1
i

Mi∑
j=1

Var(êijt)

Var(yijt)
.

The average relative importance ratios across the market for these three components can be evaluated as

IRG = N−1
R∑

i=1

Mi∑
j=1

Var
(
γ̂′
ijĜt

)
Var(yijt)

, IRF = N−1
R∑

i=1

Mi∑
j=1

Var
(
λ̂′

ijF̂it

)
Var(yijt)

and IRE = N−1
R∑

i=1

Mi∑
j=1

Var(êijt)

Var(yijt)
.
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Figure 1.2: Average pairwise correlations of residuals after concentrating out Ĝ

Figure 1.3: Average pairwise correlations of residuals after concentrating out Ĝ and F̂i’s

Figure 1.4 displays that the estimated global factor co-moves closely with the market factor
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with correlation of 0.95,16 though the latter is slightly more volatile. This is a well-known result

since Brown (1989) that the market index plays a predominant role in the asset pricing model.

However, it is more challenging to find out which financial indicators measuring local economic and

financial conditions, can be connected closely to the local/industry factors. For example, we find

that the local factor in Enrgy is highly correlated with the changes in WTI (an oil price index) with

the correlation of 0.7. Further, we observe that the average (absolute) pairwise correlation among

the local/industry factors is 0.21, which may provide an empirical support for the upper bound

condition imposed in Theorem 1.2.

Figure 1.4: The global factor and market factor

Finally, in Figure 1.5, we plot the density of the factor loadings associated with one global

factor and with six local factors. As the estimated factors/loadings are subject to a rotation and

sign indeterminacy, we focus on whether the loadings have the same sign or not. The same sign

indicates that the returns co-move with the corresponding factors, and vice versa. First, almost all

individual stock returns are positively loaded on the global factor, suggesting that they co-move

with the global factor. Next, turning to the local factor loadings, we find that the majority of

the stock returns in NoDrl, Enrgy, Money, and Hlth are loaded wih the same sign. In Utils with

two local factors, the majority of the returns are negatively loaded on the first factor while they

are symmetric around 0 for the second factor. This confirms that the local/indistry factors are an

important source of the within-industry co-movement.

16We download the weekly data of the Fama-French three factors from the Kenneth French Website.
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Figure 1.5: Density plots of the global and local factor loadings

1.7 Conclusion

We have developed a novel procedure for identifying the number of the global factors and the number

of the local factors jointly in a multilevel factor model. We first apply the principal component

(PC) estimation to the data in each block and estimate the factors. We then evaluate the canonical

correlations between factors in any two blocks and develop the canonical correlations difference

(CCD) and the modified canonical correlations (MCC) criteria.

We show that both CCD and MCC are a consistent model selection criterion. Via Monte Carlo

simulations, we demonstrate that CCD and MCC consistently select the number of global factors

even in small samples. Further, they outperform other competing approaches even in the presence

of serially correlated and weakly cross-sectionally correlated errors as well as the correlated local

factors. We have also considered the simple modification by splitting the whole data with R > 2

groups into the two wide groups. We find that this modification can improve the estimation precision

of r0, especially if T is sufficiently large and the number of individuals in each group is much smaller

than T .

We demonstrate the utility of our approach with an application to the multilevel asset pricing

model for the weekly stock return data of twelve industries in the U.S. over the period, Jan. 2015

to Dec. 2016. By applying CCD and MCC, we find that there is only one global factor, which

co-moves closely with the market factor. Next, by applying BIC3, we find that the local factors

explain non-trivial proportions of the return variations in 5 out of 12 industries.
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We note in passing that the global factors can be common only to the blocks within a region,

say emerging or advanced markets, e.g. Hallin & Lǐska (2011) and Chen (2012), which may be

empirically more relevant. This factor structure can be regarded as the multilevel model with the

regional factors rather than the global factors. This is similar to the three-level or overlapping factor

models considered by Breitung & Eickmeier (2016) and Beck et al. (2016). Our approach can be

easily extended to these cases given that the block membership within different layers is known.

In principle, if the (unknown) group membership as well as the number of the groups are

(consistently) estimated using any exiting approaches (e.g. Su et al. (2016) and Ando & Bai (2017)),

then we can apply our proposed section criteria to consistently estimate the number of global factors

and the number of local factors in each group, jointly. Notice that there is a growing literature on

weak factor model that is closely related to the multilevel factor model. In the 2-dimensional model,

weak factors are harder to detect than strong factors. A number of recent papers have developed

some novel but complex techniques, e.g. Lettau & Pelger (2020), Bailey et al. (2021) and Uematsu

& Yamagata (2022). On the other hand, consistent estimation of both global and local factors

and their loadings can be easily achieved in the the multilevel factor model, using the canonical-

correlations-based approach as described in the paper. In this regard, we expect that the joint

analysis of our proposed approach and the unknown group membership will shed further lights on

enhancing our understanding of weak factor models, especially in relation to the recent asset pricing

models following the factor zoo criticism raised by Cochrane (2011), see also Bailey et al. (2021)

and Lettau & Pelger (2020).



Chapter 2

Generalised Canonical Correlation

Estimation of the Multilevel Factor

Model

Abstract We develop a novel approach based on the generalised canonical correlation (GCC)

analysis to analyse the high dimensional panel data model with the multilevel factor structure. Im-

portantly, our approach is shown to be valid even if some blocks share the common local/regional

factors. We establish the consistency of the estimated factors and loadings, and derive their asymp-

totic normal distributions under fairly standard conditions. We also propose a GCC selection

criterion for identifying the number of global factors. Via Monte Carlo simulations, we confirm

the validity of our asymptotic theory, and also demonstrate the superior performance of the GCC

selection criterion over existing approaches. Finally, we demonstrate its usefulness with an applica-

tion to the housing market in England and Wales using a large disaggregated panel data of the real

house price growth rates for the 331 local authorities over the period 1996Q1 to 2021Q2.

Keywords: Multilevel Factor Models, Principal Components, Generalised Canonical Correlation,

Housing Market Cycles.

JEL Classifications: C55, R31.
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2.1 Introduction

In a data-rich environment with large cross-section units and time periods, the factor model provides

a dimension reduction technique via a set of pervasive latent factors, e.g. Chamberlain & Rothschild

(1983), Stock & Watson (2002) and Bai & Ng (2002). Recently, the multilevel factor models have

gained increasing attention; some factors are pervasive (i.e. common to all individuals) whilst other

are semi-pervasive (i.e. common only to a subset of individuals), referred to as the global and

local factors, respectively. Kose et al. (2003) advance the multilevel factor model for characterising

the global business cycle, documenting evidence that the global factors play an important role

in explaining macroeconomic activities. Barrot & Serven (2018) find that the common factors

are the main driving force behind advanced-country capital flows whilst idiosyncratic components

dominate the emerging/developing country capital flows. Applying a two-block factor model to a

mixed-frequency data, Andreou et al. (2019) show that the industrial production is still the most

important workhorse in the US.

The principal component (PC) estimation, a popular method in the single-level factor model,

cannot be directly applied to the multilevel setting, because it can only estimate the whole factor

space consistently but fails to separately identify the global and local factors. This renders the the

multilevel factor modelling a challenging issue. Wang (2008) proposes a sequential PC approach by

updating the global and local factors iteratively, though this approach does not guarantee conver-

gence to the global minimum unless the initial estimate is consistent. Breitung & Eickmeier (2016)

and Choi et al. (2018) propose the use of the canonical correlation analysis (CCA) for obtaining

an initial consistent estimate of the global factors by employing CCA using any two blocks. Once

the (estimated) global factors are projected out, the local factors can be consistently estimated for

each block. The global and local factors are iteratively updated until convergence.

In this paper we broaden the scope to encompass more generals scenarios in which certain blocks

may share common regional factors, as analysed by Moench et al. (2013) and Beck et al. (2016).

Alternatively, blocks share pairwise common local factors, as explored by Hallin & Lǐska (2011)

and Rodŕıguez-Caballero & Caporin (2019). In such cases, the CCA approach fails to produce the

consistent estimation of global factors, as the common local/regional factors can be mistakenly iden-

tified as global. As the main contribution, we propose the generalised canonical correlation analysis

(GCC), which extends the standard CCA (using two blocks only) by conducting the simultaneous

analysis of the factor spaces of all blocks collected in a system-wide matrix, Φ. By jointly dealing

with the unit pairwise canonical correlation between any two blocks, GCC successfully addresses

the aforementioned issues with common local/regional factors. Furthermore, GCC offers the main

computational advantage, as it does not require any iterations, unlike many existing studies.
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We establish the consistency of the estimated factors and loadings using matrix perturbation

theory. Importantly, consistency can be achieved if the number of blocks, R is finite or tends to

infinity. In this article, we focus on a finite R, a more practical case empirically, and derive the

asymptotic normal distributions for the global and local factors and loadings under fairly standard

assumptions.1 To the best of our knowledge in the literature, only Andreou et al. (2019) has

developed an asymptotic theory for factors and loadings under finite R. However, their approach

is based on CCA and is confined to the case with two blocks (R = 2). Furthermore, their theory

is subject to a few limitations, e.g. the asymptotic distribution of the estimated global factors is

non-unique while the estimated local factors involve bias terms due to the sequential estimation.

This suggests that it is unclear how to conduct inference using their results. By contrast, our theory

is applicable for R ≥ 2 while the asymptotic distribution of the estimated global factors remains

unique.

The challenging issue is that the asymptotic covariance matrices of the estimated global factors

and loadings involve a rotation matrix, that cannot be estimated consistently, rendering infeasible

inference based on the asymptotic theory. Furthermore, if the number of blocks is finite, estimation

errors from the estimated global factors and loadings are of the same magnitude as the local factors

and loadings. To overcome these challenging issues, we propose a novel hybrid bootstrap method

that is able to produce valid confidence intervals for the estimated global (local) factors and loadings.

By resampling the global (local) factors toegether with the error terms, we can produce back-rotated

factors and loadings. This procedure ensures that the bootstrap estimates have the correct limiting

distributions across repetitions. It is worth mentioning that the GCC approach can be easily

extended to more general cases, such as the multilevel factor model with more than two layers of

classification considered by Ahn & Zhang (2023).

We also develop a GCC-based consistent selection criteria for identifying the number of the

global factors by evaluating the ratios of adjacent singular values of the matrix Φ. As shown by

Han (2021), the standard approaches for selecting the number of global factors (r0) in the single-

level factor literature (e.g. Bai & Ng (2002), Onatski (2010) and Ahn & Horenstein (2013)), fail

to generate reliable model selection in the multilevel case. Recently, a few approaches have been

proposed to consistently estimate r0 under the multilevel setting. Andreou et al. (2019) propose

a testing procedure by deriving the asymptotic distribution of the canonical correlation between

the factor spaces in a two-block model. Choi et al. (2021) develop consistent selection criteria for

1If R → ∞, the estimation proceeds in an iterative manner. Wang (2008) developed a sequential estimation
theory. Mao et al. (2021) provide an asymptotic theory for a bilateral trade flow model where both the number of
importers and exporters tend to infinity. Jin et al. (2023) consider a generalised three-dimensional factor model and
establish the asymptotic theory when the number of groups tends to infinity.
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determining the number of the global factors based on the average pairwise canonical correlation

among all blocks. Chen (2022) proposes a selection criterion based on the average residual sum of

square from a regression of (estimated) global factors on the factor spaces in each block. Unlike

most existing studies, our approach does not require either the orthogonality between the global

and local factors or the selection of any tuning parameters. This makes the GCC criterion more

robust and general.

Via Monte Carlo simulations, we first focus on the consistent estimation of the global factors and

the number of the global factors, finding that GCC outperforms the CCA approach by Andreou

et al. (2019) and the circular projection estimation developed by Chen (2022) under all experiments.

Next, we examine the performance of the hybrid bootstrap when evaluating confidence intervals for

the estimated factors and loadings as well as the factor components. We find that the hybrid

bootstrap can produce valid confidence intervals with correct coverage rates as the sample size

increases.

We apply the GCC approach to estimating the multilevel factor model and characterising the

national and regional housing market cycles in England and Wales, using a large disaggregated

panel data of the real house price growth rates for the 331 local authorities over the period 1996Q1

to 2021Q2. The main empirical findings are summarised as follows:

We first detect one global (national) factor, one local factor in the seven regions (NE, NW,

YH, EE, LD, SE and WA) but no local factor in the three regions (EM, WM and SW). Second,

the national factor explains a considerable portion of the house price inflation variation with a

mean of 46.6% while the regional factor contribution is much weaker with its average at 8.3% only.

This suggests that the house market in England and Wales appears to be more integrated than

the U.S. market (e.g. Del Negro & Otrok (2007)). Third, we can identify that the regional factor

components of EE, LD and SE (Area 1) co-move closely while those of NE, NW, YH and WA

(Area 2) tend to cluster, confirming that the regional factors are common across some regions.

Fourth, the national housing market cycle captured by the global factor components displays a

typical boom-bust-recovery behaviour, which is in line with the conventional view that the national

housing market cycle is pro-cyclical and closely related to economic fundamentals (e.g. Chodorow-

Reich et al. (2021)). By contrast, the regional housing market cycles captured by the areal factor

components display a heterogeneous but opposite pattern unrelated to fundamentals, demonstrating

a housing market segmentation in the North and the South. Finally, we document evidence that

the growth rate of the (lagged) population gap between areas strongly co-moves with the areal

components gap, suggesting that the population gap growth may be an important driver behind

the regional house price gap.
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The rest of the paper is structured as follows. Section 2.2 introduces the multilevel factor model

and provides a review of the related literature. Section 2.3 proposes the novel GCC approach and

presents the main estimation algorithms. Section 2.4 develops the asymptotic theory for the GCC

estimator, advances a new selection criterion for identifying the number of the global factors, and

proposes a hybrid bootstrap approach for constructing confidence intervals. Section 2.5 reports

Monte Carlo simulation results. Section 2.6 presents an empirical application to the house price

inflation data in England and Wales. Section 2.7 offers concluding remarks. The detailed bootstrap

algorithm, mathematical proofs, auxiliary lemmas, and additional simulation results are relegated

to Appendix B.

2.2 The Multilevel Factor Model

Consider the multilevel factor model:

yijt = γ ′
ijGt + λ′

ijFit + eijt, i = 1, ..., R, j = 1, ..., Ni, t = 1, ..., T (2.2.1)

where Gt =
[
G1

t , ..., G
r0
t

]′
is the r0 × 1 vector of the global factors, Fit =

[
F 1
it, ..., F

ri
it

]′
is the ri × 1

vector of the local factors in the block i, γij and λij are the corresponding heterogeneous factor

loadings, and eijt is the idiosyncratic error. Stacking (2.2.1) across the Ni individuals in block i, we

have:

Yit = ΓiGt +ΛiFit + eit, (2.2.2)

where Yit
Ni×1

= [yi1t, ..., yiNit]
′, eit

Ni×1
= [ei1t, ..., eiNit]

′, Γi
Ni×r0

= [γi1, ...,γiNi ]
′ and Λi

Ni×ri

= [λi1, ...,λiNi ]
′.

The model can also be written as

Yt = θ+K+
t + et, (2.2.3)

where

Yt
N×1

=


Y1t

...

YRt

 , et
N×1

=


e1t
...

eRt

 , K+
t

r+×1

=


Gt

F1t

...

FRt

 , Θ
N×r+

+ =


γ1 λ1 0 · · · 0

γ2 0 λ2 · · · 0
...

...
...

. . .
...

γR 0 0 · · · λR
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with N =
∑R

i=1Ni and r+ = r0 +
∑R

i=1 ri. Further, the model is written in a matrix form:

Y = K+Θ+′ + e, (2.2.4)

where Y
T×N

= [Y1, ...,YT ]
′, K+

T×r+
= [K1, ...,KT ]

′, and e
T×N

= [e1, ..., eT ]
′.

Alternatively, stacking (2.2.1) over time period t, we can rewrite the model as

Yij = Gγij + Fiλij + eij = Kiθij + eij (2.2.5)

where Yij
T×1

= [yij1, ..., yijT ]
′, eij

T×1

= [eij1, ..., eijT ]
′, G

T×r0
= [G1, ...,GT ]

′, Fi
T×ri

= [Fi1, ...,FiT ]
′, θij =[

γ ′
ij ,λ

′
ij

]′
and Ki = [G,Fi]. For each block i, we then have:

Yi = GΓ′
i + FiΛ

′
i + ei = KiΘ

′
i + ei (2.2.6)

where Yi = [Yi1,Yi2, . . . ,YiNi ], ei = [ei1, ei2, . . . , eiNi ] and Θi = [Γi,Λi].

The primary issue in the multilevel factor model is to identify the global and local factors,

separately. We now express the model (2.2.2) as

Yit = ΓiGt + ĕit, ĕit = ΛiFit + eit, (2.2.7)

where the local factors are treated as the part of the error components. The first r0 factors ex-

tracted from the PC estimation applied to the whole data Yt = [Y′
1t, . . . ,Y

′
Rt]

′, will be incon-

sistent estimates of Gt because the weak correlation condition among the error components in

ĕt = [ĕ′1t, . . . , ĕ
′
Rt]

′ is violated due to the presence of the local factors (see Breitung & Eickmeier

(2016)). Alternatively, if we apply the PC estimation to each block Yi in (2.2.6), the factor space

spanned by Ki = [G,Fi] can be consistently estimated up to rotation, though the global and local

factors cannot be separately identified.2

A number of alternative methods have been developed. Wang (2008) proposed an iterative

sequential approach. Given the estimated global factors and loadings, denoted Ĝ and Γ̂i, then the

2Moreover, the r+ factors extracted from Yt in (2.2.3) are not necessarily consistent estimates of K+. Lemma
2 in Freyaldenhoven (2021) establishes that the local factors can be consistently estimated only if the number of
individuals within that group is larger than

√
N .
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local factors and loadings for each block i can be estimated by applying the PC estimation to

Yi − ĜΓ̂′
i = FiΛ

′
i + ei (2.2.8)

Given the estimated local factors and loadings, denoted F̂i and Λ̂i, then the global factors and

loadings can be updated by applying the PC estimation to

[
Y1 − F̂1Λ̂

′
1, . . . ,YR − F̂RΛ̂

′
R

]
= G

[
Γ′
1, . . . ,Γ

′
R

]
+ e

This procedure will be repeated until convergence. However, this approach does not guarantee

consistency unless the initial estimates of the global factors and loadings are consistent, because the

least square objective function is not globally convex.

To get consistent (initial) estimates of the global factors, Breitung & Eickmeier (2016) and

Choi et al. (2018) propose the use of the canonical correlation analysis (CCA), where the canonical

correlation between K̂m and K̂h is estimated for any two blocks, m and h. For convenience assume

that r0, rm and rh are known and set r0 + rm = r0 + rh. Consider the following characteristic

equation: (
ŜmhŜ

−1
hh Ŝhm − ℓŜmm

)
vm = 0 or

(
ŜhmŜ−1

mmŜmh − ℓŜhh

)
vh = 0 (2.2.9)

where Ŝab (a, b = m,h) denotes the covariance matrix between K̂m and K̂h. We then obtain

the solution ℓ by the (squared) canonical correlations between K̂m and K̂h. Since they share the

factor space spanned by the global factors, the r0 largest canonical correlations will be equal to one

asymptotically. Therefore, we can consistently estimate the global factors by Ĝ = K̂mVr0
m or Ĝ =

K̂hV
r0
h , where Vr0

m and Vr0
h are the matrices consisting of the characteristic vectors corresponding

to the r0 largest characteristic roots. Next, after projecting Ĝ out, one can consistently estimate

the local factors and loadings. In practice, this estimation proceeds iteratively until convergence.

Breitung & Eickmeier (2016) and Choi et al. (2018) suggest choosing the block pair (m,h) that

yields the largest canonical correlation. Andreou et al. (2019) develop an asymptotic theory for

the estimated factors and loadings under rather stringent conditions, though their theory can be

applied to the case with the two blocks only. In a special case with R = 2, Andreou et al. (2019)

suggests using CCA to estimate the global factors based on CCA between K̂1 and K̂2 by solving

the characteristic equation (2.2.9) for (m,h) = (1, 2) or (m,h) = (2, 1). Namely, the global factors

can be estimated by Ĝ = K̂1V
r0
1 or Ĝ = K̂2V

r0
2 .

However, CCA does not always estimate the global factors consistently. Consider a three-block
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model (R = 3) with r0 = ri = 1 for i = 1, 2, 3. Suppose that the first and second blocks share

the same local factor. When we obtain the largest canonical correlation between K̂1 and K̂2, we

are no longer sure whether K̂1V
r0
1 yields the global or the common local factor. Furthermore, the

number of global factors tends to be overestimated. A few empirical studies show that some blocks,

that share the same geographic region, are subject to common local factors.3 Rodŕıguez-Caballero

& Caporin (2019) consider the pairwise-common local factors by employing two parallel country

classifications based on the Debt/GDP ratio and credit rating. In these cases, CCA fails to produce

consistent estimates. See also Moench et al. (2013) and Beck et al. (2016).

Recently, Chen (2022) propose a circular projection estimation (CPE) approach. The circular

projection matrix is a successive product of the factor spaces of Ki, given by the product inside the

bracket in

[(∏R
i=1 P (Ki)

)′ (∏R
i=1 P (Ki)

)]
ζ = πζ, where P(.) is the projection matrix, and π

and ζ are the eigenvalue and eigenvector. Only when π = 1 is ζ a global factor. Hence, the global

factors can be estimated as
√
T times the r0 eigenvectors corresponding to the unit eigenvalues

of the circular projection matrix by replacing Ki by K̂i. CPE does not suffer from the issue

related to the common local factors since it encompasses all blocks. Similarly, GCC incorporates

the information from all blocks simultaneously via a linear combination of the whole factor spaces

(see (2.3.19) below). However, our method yields a simpler asymptotic expansion of the global

factors, enabling us to directly derive the asymptotic normal distribution of the estimator of the

global factors whereas no such asymptotic theory is developed under CPE. Moreover, we show

that GCC outperforms CPE via simulations (see Section 2.5).

2.3 The Generalised Canonical Correlation Analysis

We begin with the standard CCA and describe our approach via comparison between CCA and

GCC. Select any two blocks, m and h and let Km and Kh be T × (r0 + rm) and T × (r0 + rh)

matrices consisting of the global and local factors. CCA aims to find the linear combinations vmj

and vhj such that

(vmj ,vhj) = argmax
vmj ,vhj

Corr (Kmvmj ,Khvhj) (2.3.10)

subject to the restrictions

V′
mK′

mKmVm = Irmin and V′
hK

′
hKhVh = Irmin (2.3.11)

3Hallin & Lǐska (2011) find one common local factor between France and Germany in a three-country model for
industrial production indices for France, Germany and Italy.
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where rmin = min{r0 + rm, r0 + rh}, Vm = [Vm1, . . . ,Vmrmin ] and Vh = [Vh1, . . . ,Vhrmin
]. If

Km and Kh share the r0 global factors, then there exists r0 linear combinations such that their

correlations are equal to one, or equivalently

KmVr0
m = KhV

r0
h (2.3.12)

where Vr0
m = [vm1, . . . ,vmr0 ] and Vr0

h = [vh1, . . . ,vhr0 ] are the matrices collecting such linear

combinations. We then solve the characteristic equation, (2.2.9) and obtain Vr0
m that consists of

characteristic vectors of V corresponding to the r0 largest characteristic roots.

However, CCA does not always identify the global factors in the presence of common local

factors as explained in Section 2.2. To address this important issue, we propose to construct the

T (R− 1)R/2×
∑R

l=1(r0 + rl) system-wide matrix as follows:

Φ =


K1 −K2 0 0 . . . 0 0

K1 0 −K3 0 . . . 0 0
...

0 0 0 0 . . . KR−1 −KR

 (2.3.13)

where Ki = [G,Fi] for i = 1, ..., R. We then find the kernel of Φ, i.e. a set of vectors collected by

the matrix Q = [Q′
1, . . . ,Q

′
R]

′ that satisfies:

ΦQ =


K1Q1 −K2Q2

K1Q1 −K3Q3

...

KR−1QR−1 −KRQR

 =


0

0
...

0

 .

To this end we consider the following singular value decomposition (SVD) of Φ:

Φ = P∆Q′ (2.3.14)

such that ΦQ = P∆, where P and Q are the TR(R − 1)/2 ×
∑R

l=1(r0 + rl) and
∑R

l=1(r0 + rl) ×∑R
l=1(r0 + rl) orthonormal matrices, and ∆ = diag

{
δ1, δ2, . . . , δ∑R

l=1(r0+rl)

}
is a

∑R
l=1(r0 + rl) ×∑R

l=1(r0 + rl) diagonal matrix consisting of the singular values in ascending order. If we can find a

set of vectors Q and the singular values δ = 0 such that Φq = δp = 0, then we obtain Q by the set
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of vectors, q.

We establish the existence of the r0 zero singular values and the corresponding eigenvectors,

denoted Qr0 in the following proposition.4 A direct example of Qr0 is such that each Qr0
i = [Ir0 ,0]

′

is a selection matrix. To rule out an infeasible case where the global factors can be expressed as

a linear combination of the local factors, we assume that Gα0 = F1α1 + · · · + FRαR if and only

if α0 = 0, α1 = 0, . . . ,αR = 0, which resembles the rank condition in Assumption A of Wang

(2008).

Proposition 2.1. There exists a
∑R

l=1(r0+ rl)× r0 matrix, Qr0 = [Qr0′
1 ,Qr0′

2 , . . . ,Qr0′
R ]′ containing

the right eigenvectors of Φ, such that ΦQr0 = 0 with the r0 zero singular values. Moreover, the

remaining singular values of Φ are larger than zero and of stochastic order Op

(√
T
)
.

From Proposition 2.1 we have:

K1Q
r0
1 = K2Q

r0
2 = · · · = KRQ

r0
R (2.3.15)

which shows that the pairwise canonical correlation in (2.3.12) is simultaneously satisfied for all

pairs of the blocks. Importantly, this demonstrates that all KiQ
r0
i for i = 1, ..., R, obtained by the

GCC approach, can provide valid representation of G even in presence of the common local factors.

Let Ψ = [K1Q
r0
1 , . . . ,KRQ

r0
R ] and consider the eigen-decomposition,

T−1ΨΨ′ = LΞL′, (2.3.16)

where Ξ is a diagonal matrix containing the eigenvalues of T−1ΨΨ′ in descending order.

Proposition 2.2. The first r0 columns of L, denoted Lr0, consists of the factor space spanned by

G.

Proposition 2.2 shows that the global factors can be identified by a linear combination of appro-

priately rotated block factor spaces. Importantly, the eigen-decomposition summarises the factor

4We note that the solution Qi’s are equivalent to

(Qr0
1 ,Qr0

2 , . . . ,Qr0
R ) = argmin

w1,w2,...,wR

R∑
i=1

∥G−Kiwi∥2 ,

which is more common in the GCC literature (see Yang et al. (2019)). Therefore, we name our approach after GCC
despite the slight difference in the problem formulation.
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spaces KiQ
r0
i , rendering us to develop a unique representation and asymptotic distribution of the

global factors, differing from Proposition D.5 of Andreou et al. (2019).

The estimation algorithm proceeds as follows.

Estimation of global factors and loadings We first obtain the PC estimate of Ki for each

block i, denoted K̂i, by
√
T times the rmax eigenvectors of YiY

′
i corresponding to the rmax largest

eigenvalues, where rmax ≥ maxi=1,...,R{r0+ ri} is a common positive integer. We then construct the

TR(R− 1)/2×Rrmax matrix, Φ̂ by replacing Ki with K̂i in (2.3.13), and evaluate the SDV of Φ̂

as

Φ̂ = P̂∆̂Q̂′, (2.3.17)

where P̂ and Q̂ are the TR(R− 1)/2×Rrmax and Rrmax ×Rrmax orthonormal matrices, and ∆̂ is

the Rrmax ×Rrmax diagonal matrix consisting of the singular values in ascending order.

Next, denote Q̂r0 =
[
Q̂r0′

1 , . . . , Q̂r0′
R

]′
as the first r0 columns of Q̂, and construct the T × Rr0

matrix, Ψ̂ =
[
K̂1Q̂

r0
1 , . . . , K̂RQ̂

r0
R

]
. We consider the eigen decomposition,

T−1Ψ̂Ψ̂′ = L̂Ξ̂L̂′ (2.3.18)

where L̂ is a T × Rr0 orthonormal matrix and Ξ̂ is a T × T diagonal matrix consisting of the

eigenvalues in descending order. From (2.3.18), we obtain the consistent estimator of the global

factors, denoted Ĝ, by the r0 vectors of L̂ corresponding to the r0 largest eigenvalues multiplied by
√
T ; namely,

Ĝ =
1√
T
Ψ̂Ψ̂′Ĵr0 =

1√
T

(
R∑
i=1

K̂iQ̂
r0
i Q̂r0′

i K̂′
i

)
Ĵr0 (2.3.19)

where Ĵr0 = L̂r0
(
Ξ̂r0
)−1

, L̂r0 collects the first r0 columns of L̂ and Ξ̂r0 is an r0 × r0 diagonal

matrix consisting of the r0 largest eigenvalues of T−1Ψ̂Ψ̂′ in descending order.

Finally, the global factor loadings can be estimated by Γ̂i = T−1Y′
iĜ.

Estimation of local factors and loadings For each block i = 1, ..., R, the local factors, denoted

F̂i, can be consistently estimated by
√
T times the ri eigenvectors of ŶiŶ

′
i corresponding to the

ri largest eigenvalues, where Ŷi = Yi − ĜΓ̂′
i. The local factor loadings can be estimated by

Λ̂i = T−1Ŷ′
iF̂i for each block i = 1, ..., R.
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2.4 Asymptotic Theory

Section 2.4.1 establishes the consistency of estimated factors and loadings based on the matrix

perturbation theory. Section 2.4.2 develops a consistent selection criteria for determining the number

of the global factors. In Section 2.4.3, we derive asymptotic normal distributions for the factors

and loadings estimates. Section 2.4.4 discusses a hybrid bootstrap method for constructing valid

confidence intervals.

2.4.1 Consistent estimation of factors and loadings

Let M be a finite constant. Following Bai & Ng (2002) and Choi et al. (2021), we assume:

Assumption 2.A.

1. E(eijt) = 0 and E
(
|eijt|8

)
≤ M for all i, j and t.

2. Let E
(
N−1

i

∑Ni
j=1 eijseijt

)
= ωi(s, t) for all i. Then, |ωi(s, s)| ≤ M and

T−1
∑T

s=1

∑T
t=1 |ωi(s, t)| ≤ M for all t.

3. Let E(eijteikt) = τi,(jk),t, with |τi,(jk),t| ≤ |τi,(jk)| < M for all i and t. In addition, for each i,

we have N−1
i

∑Ni
j=1

∑Ni
k=1

∣∣τi,(jk)∣∣ ≤ M.

4. Let E(eijteiks) = τi,(jk),(ts). For each i, we have

1

NiT

Ni∑
j=1

Ni∑
k=1

T∑
t=1

T∑
s=1

|τi,(jk),(ts)| ≤ M

5. For every i, t and s

E

∣∣∣∣∣∣ 1√
Ni

Ni∑
j=1

[eijseijt − E(eijseijt)]

∣∣∣∣∣∣
4 ≤ M

Assumption 2.B.
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1. Let Kit = [G′
t,F

′
it]

′. For every i and t, we have E (Kit) = 0, E
(
∥Kit∥4

)
< ∞ and T−1K′

iKi
p→

ΣKi where ΣKi is positive definite.

2. For each m, h and t,

E

 1

Nm

Nm∑
j=1

∥∥∥∥∥ 1√
T

T∑
t=1

Khtemjt

∥∥∥∥∥
2
 ≤ M

Assumption 2.C.

1. ∥γij∥ ≤ γ̄ < ∞ and ∥λij∥ ≤ λ̄ < ∞ for all i and j, where γ̄ and λ̄ are constants.

2. For every i = 1, · · · , R,

(a) rank (Θi) = r0 + ri where Θi = [Γi,Λi].

(b) N−1
i Θ′

iΘi = N−1
i

Γ′
iΓi Γ′

iΛi

Λ′
iΓi Λ′

iΛi

 −→ ΣΘi =

 ΣΓi ΣΓiΛi

Σ′
ΓiΛi

ΣΛi

 which is a positive-definite

matrix.

(c) ΣΘiΣKi has distinct eigenvalues.

(d) ΣΛiΣFi has distinct eigenvalues.

Assumption 2.D. The global factors are uncorrelated to the local factors; for every i, T−1K′
iKi =ΣG 0

0 ΣFi

+Op

(
T−1/2

)
where ΣG and ΣFi are r0 × r0 and ri × ri full rank matrices.

Assumption 2.A is an extended version of Assumption C in Bai & Ng (2002), which allows the

idiosyncratic errors to be serially and (weakly) cross-sectionally correlated within blocks. This is

less restrictive than the assumption in Choi et al. (2018). Assumptions 2.B and 2.C are standard.

Assumption 2.B.2 allows weak correlation between global/local factors and idiosyncratic errors.

Assumption 2.C requires the global (local) factors to have non-trivial contributions to the variance

of all individuals within the corresponding block. Assumption 2.D is standard in multilevel factor

models that ensures separate identification of global and local factors. Notice that we do not require

the orthogonality between global and local factors for consistently estimating the global factors and

their dimension, though we need Assumption 2.D for consistent estimation of γi, λi, Fi and ri.
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More importantly, in this paper, we allow the local factors to be correlated or even identical

across some blocks unlike many existing studies that require the orthogonality among local factors,

e.g. Choi et al. (2018) and Han (2021), and establish that the GCC estimator is valid even in the

presence of the common local/regional factors. We focus on the more practical case with a fixed

number of blocks R, although GCC is valid as R → ∞.5

Lemma 2.1. Under Assumptions 2.A–2.C, as Ni, T → ∞, we have:

1√
T

∥∥∥K̂i −KiĤi

∥∥∥ = Op

(
1

CNiT

)
, i = 1, ..., R,

where K̂i is the T × rmax matrix of the PC estimates given by
√
T times the rmax eigenvectors of

YiY
′
i corresponding to the rmax largest eigenvalues, Ki = [G,Fi] is the T × (r0 + ri) factors, Ĥi is

the (r0 + ri)× rmax rotation matrix, CNiT = min
{√

Ni,
√
T
}
, and

1√
T

∥∥∥Φ̂−ΦĤ
∥∥∥ = Op

(
1

CN,T

)

where Φ is the T (R−1)R/2×
∑R

l=1(r0+rl) matrix defined in (2.3.13), Φ̂ is the T (R−1)R/2×Rrmax

matrix by replacing Ki with K̂i, Ĥ = diag
{
Ĥ1, Ĥ2, . . . , ĤR

}
is a

∑R
l=1(r0 + rl) × Rrmax block-

diagonal rotation matrix and CN,T = min{
√
N,

√
T} with N = min{N1, N2, . . . , NR}.

Lemma 2.1 establishes that as Ni, T → ∞, K̂i converges to their population counterpart up to

a rotation. The rotation matrix, Ĥi is shown to exist in Bai & Ng (2002), but we do not need a

specific form since any full rank rotation matrix yields the observationally equivalent model.

Lemma 2.2. There exists an Rrmax × r0 matrix Q̄r0 such that ΦĤQ̄r0 = 0, where the r0 singular

values are zero. The remaining singular values of ΦĤ are larger than zero and of stochastic order

Op

(√
T
)
.

Lemma 2.2 extends Proposition 2.1 to the case under the rotation incurred by the PC estimation,

and enables us to apply Lemma 2.3 below to Φ̂ for deriving the convergence rate of the estimated

5If R → ∞, the identification of global factors is simplified because each block is asymptotically negligible, and
therefore, the PC estimation can be applied to the whole data matrix. See e.g. Wang (2008) and Jin et al. (2023).
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eigenvectors under rotation. It helps to estimate the number of global factors r0 by counting the

number of zero singular values of Φ̂ (see Section 2.4.2).

While the consistency of the estimated eigenvalues are well-established, there are the two main

issues when establishing the consistency of the estimated eigenvectors. First, it is acknowledged that

the convergence of the eigenvectors may not be well-behaved under eigenvalue-multiplicity. Second,

convergence rates of the eigenvectors associated with zero eigenvalues are unclear (see Theorem 3.4

of Stewart & Sun (1990)).

In Lemma 2.3 we state the perturbation theory developed by Yu et al. (2015), which is a variant

of the Davis-Kahan Theorem, and necessary for deriving our consistency results.

Lemma 2.3. Let Σ and Σ̂ be the p × p symmetric matrices with eigenvalues λ1 ≥ · · · ≥ λp

and λ̂1 ≥ · · · ≥ λ̂p, respectively. Fix 1 ≤ r ≤ s ≤ p and set d = s − r + 1. Assume that

min{λr−1 − λr, λs − λs+1} > 0, where λ0 = ∞ and λp+1 = −∞. Let the p × d matrices, V =

[vr, vr+1, . . . , vs] and V̂ = [v̂r, v̂r+1, . . . , v̂s], have orthogonal columns, satisfying ΣVj = λjVj and

Σ̂V̂j = λ̂jV̂j for j = r, r + 1, . . . , s. Then, there exists a d× d orthogonal matrix Ô such that

∥∥∥V̂Ô−V
∥∥∥ ≤

23/2
∥∥∥Σ̂−Σ

∥∥∥
min{λr−1 − λr, λs − λs+1}

.

The Davis-Kahan Theorem states that the eigenvectors converge to their population counter-

parts corresponding to non-zero eigenvalues up to rotation under eigenvalue-multiplicity for any

real symmetric matrices. However, the stochastic bound provided by the Davis-Kahan Theorem is

not applicable to our case where the eigenvalues of interest are zero. Lemma 2.3 establishes that

the convergence of the eigenvectors still holds up to an orthogonal rotation even if the population

eigenvalues are zero.

With Lemmas 2.1–2.3, we establish the consistency of the estimated global factors and loadings

(up to rotation) in Theorem 2.1.

Theorem 2.1. Consistency of the global factors and loadings.

1. Under Assumptions 2.A–2.C, as N1, N2, . . . , NR, T → ∞, we have:

1√
T

∥∥∥Ĝ−GH
∥∥∥ = Op

(
1

CNT

)
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2. Under Assumptions 2.A–2.D, as Ni, T → ∞ for each i = 1, . . . , R, we have:

1√
Ni

∥∥∥Γ̂′
i −H−1Γ′

i

∥∥∥ = Op

(
1

CNT

)

where H = T−1/2G′Jr0U is an r0 × r0 rotation matrix, Jr0 = Lr0(Ξr0)−1, Ξr0 is an r0 × r0

diagonal matrix consisting of the r0 non-zero eigenvalues of T−1GG′ in descending order, Lr0

is a T ×r0 matrix of the corresponding eigenvectors, U is an r0×r0 orthogonal matrix defined

in (B.1.3), and CNT = min{
√
N,

√
T} with N = min{N1, N2, . . . , NR}.

If the main focus is on the consistent estimation of the global factors (e.g. Del Negro & Otrok

(2007)), then an orthogonality between global and local factors in Assumption 2.D is not required,

unlike existing studies that impose an orthogonality, e.g. Wang (2008), Choi et al. (2018), Andreou

et al. (2019) and Han (2021). Moreover, we allow the local factors to be correlated or identical

across some blocks, unlike most studies that require orthogonality among the local factors, e.g.

Choi et al. (2018) and Han (2021). Thus, the GCC is more general and robust.

Given consistent estimates of the global factors and loadings, we next establish the consistency

of the estimated local factors and loadings in Theorem 2.2.

Theorem 2.2. Consistency of the local factors and loadings.

Under Assumptions A–D, as Ni, T → ∞ for each i = 1, . . . , R, we have:

1√
T

∥∥∥F̂i − FiĤi

∥∥∥ = Op

(
1

CNT

)

1√
Ni

∥∥∥Λ̂′
i − Ĥ −1

i Λ′
i

∥∥∥ = Op

(
1

CNT

)

where Ĥi = (Λ′
iΛi/Ni)

(
F′
iF̂i/T

)
Υ̂−1

i is an ri × ri rotation matrix, Υ̂i is an ri × ri diagonal

matrix consisting of the ri largest eigenvalues of 1
NiT

ŶiŶ
′
i in descending order, Ŷi = Yi − ĜΓ̂′

i,

and CN,T = min{
√
N,

√
T} with N = min{N1, N2, . . . , NR}.

We allow the local factors to be correlated or identical across some blocks, unlike many existing

studies that require orthogonality among the local factors, e.g. Choi et al. (2018) and Han (2021).
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Theorem 2.2 establishes that the GCC estimator is still consistent even in the presence of the

pairwise common local factors and the local/regional factors common across some blocks.

2.4.2 Determining the number of global factors

We now develop the GCC criterion for identifying the number of global factors. Consider the

diagonal matrix, ∆̂ from the SV D of Φ̂ defined in (2.3.17). Then, we evaluate the ratio of adjacent

(squared) singular values in a similar fashion as in Ahn & Horenstein (2013).

Let δ̂1, . . . , δ̂Rrmax be the diagonal elements of ∆̂ in ascending order. Then, we propose estimating

the number of global factors by

r̂0,GCC = argmax
k=0,...,rmax

δ̂2k+1

δ̂2k
(2.4.20)

The main idea is that the ratio sharply separates the zero singular values from the positive ones.

Using Lemma 2.2, we can show that δ̂k = Op

(√
T/CNT

)
for k = 1, . . . , r0 while δ̂k = Op

(√
T
)
for

k = r0 + 1, . . . , Rrmax, where CNT = min{N,T} and N = min{N1, N2, . . . , NR}. Hence, the ratio

is bounded for k = 0, . . . , r0 − 1, r0 + 1, . . . , rmax while it tends to infinity for k = r0.

To deal with the case with r0 = 0, we set the mock singular value as

δ̂20 =
1

CNTRrmax

Rrmax∑
k=1

δ̂2k

Since the average of squared singular values is of stochastic order Op

(√
T
)
, we have: δ̂0 =

Op

(√
T/CNT

)
, that has the same stochastic order as δ̂k for k = 1, . . . , r0. Hence, δ̂21/δ̂

2
0 = Op(1)

for r0 > 0 whilst δ̂21/δ̂
2
0

p→ ∞ for r0 = 0. This ensures that we do not overestimate r0, if r0 = 0.

Theorem 2.3. Under Assumptions 2.A–2.C, we have:

lim
N1,...,NR,T→∞

Pr (r̂0,GCC = r0) = 1

where r̂0,GCC = argmax
k=0,...,rmax

δ̂2k+1/δ̂
2
k, δ̂1 ≤ · · · ≤ δ̂rmax ≤ · · · ≤ δ̂Rrmax are the singular values of Φ̂ and

δ̂20 = (CNTRrmax)
−1
∑Rrmax

l=1 δ̂2l .

The justification behind Theorem 2.3 lies in the sense of the matrix perturbation theory that

the eigenvalues converge to their population counterparts under a small perturbation term (see

Stewart & Sun (1990)). Notice that if our main focus is on the consistent estimation of r0, then an
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orthogonality between global and local factors is not required. This makes the GCC criterion more

general than existing ones that require orthogonality, e.g. Andreou et al. (2019) and Han (2021).

Given r̂0, we can consistently estimate global factors and loadings, denoted Ĝ and Γ̂i. Then,

the number of local factors, ri can be consistently estimated by applying the existing approximate

factor model to Ŷi = Yi − ĜΓ̂′
i for i = 1, ..., R, e.g. Bai & Ng (2002), Onatski (2010) and Ahn &

Horenstein (2013). See Choi & Jeong (2019) for a comprehensive review.

Related literature Chen (2012) and Dias et al. (2013) develop the following information criteria

to determine the number of global and local factors:

(r̂0, r̂1, . . . , r̂i) = argmin
k0,k1,...,kR

R∑
i=1

∥∥∥Yi − Ĝk0Γ̂k0′
i − F̂ki

i Λ̂ki′
i

∥∥∥2 + penalty

As described in Choi et al. (2021), however, it has two shortcomings. First, it involves too many

combinations of k0 and ki even if R is mildly large. Second, it is nontrivial to construct a proper

penalty function that can discriminate the respective roles played by the global and local factors.

Andreou et al. (2019) derive the canonical correlation based test statistic given by ξ̂(r)−r where

ξ̂(r) =
∑r

k=1

√
ℓ̂k and ℓ̂k is the k-th largest characteristic root of (2.2.9). Let ξ̃(r) be the de-biased

and re-scaled version of ξ̂(r)−r. Then, it is shown that ξ̃(r)
d→ N(0, 1) for r = 1, . . . , r0. A sequence

of tests can be conducted from r = rmax to r = 1 such that r0 can be estimated by

r̂0,AGGR = max
{
r : 1 ≤ r ≤ rmax, ξ̃(r) ≥ zαNT

}

where zαNT is a threshold value depending on (N,T ) and some tuning parameters. However, their

approach suffers from a few limitations. First, it can be applied to the model with only two blocks,

suggesting that CCA does not guarantee a valid identification between the global and local factors

under a multi-block setting. Second, their method requires orthogonality condition between the

global and local factors, and rules out error correlation and heteroskedasticity in both cross-section

and time.6 Third, Choi et al. (2021) demonstrated via simulations that large sample sizes are

required for the sequential test to work. On the other hand, the GCC criterion works for R ≥ 2 even

when the error terms are serially correlated and weakly cross-sectionally correlated. Furthermore,

r̂0,GCC remains consistent even when the global factors are correlated with local factors, and in the

6Andreou et al. (2019) claim that the strong assumption for the error terms (Assumption A.9) is made for
simplifying the derivation of the feasible asymptotic distribution of the test statistic, and discuss how one can relax
this assumption by using HAC-type estimators.
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presence of common local factors (see Section 2.5 for simulation evidence).

Choi et al. (2021) develop consistent selection criteria based on the average canonical cor-

relations among all block pairs. Let ℓ̂mh,r be the r-th largest characteristic root of (2.2.9) be-

tween a block pair m and h, and construct the average (squared) canonical correlation by ŝ(r) =

2
R(R−1)

∑R−1
m=1

∑R
h=m+1 ℓ̂mh,r. The two selection criteria, CCD and MCC, are proposed:

r̂0,CCD = argmax
r=0,...,rmax+1

ŝ(r)− ŝ(r + 1)

r̂0,MCC = max {0 ≤ r ≤ rmax : 1− ŝ(r)− C × penalty < 0}

where C is a data dependent tuning parameter. CCD is consistent while imposing a slightly strong

condition that the average canonical correlation has an upper bound. MCC does not require this

condition but 1− ŝ(r) needs to be modified by the product of a data dependent tuning parameter

and a penalty term. We conjecture that CCD and MCC can be consistent in the presence of

multi-block common local factors while they become inconsistent in the presence of the pairwise

common local factors.7

Chen (2022) proposes a selection criteron based on the average residual sum of square (ARSS)

from a regression of ζ̂r on K̂i given by ARSSr = 1
R

∑R
i=1 ζ̂

′
r

(
IT − P

(
K̂i

))
ζ̂r, where P(.) is

the projection matrix and ζ̂r is the eigenvector corresponding to the r-th largest eigenvalue of the

circular projection matrix, ( R∏
i=1

P
(
K̂i

))′( R∏
i=1

P
(
K̂i

)) .

Chen suggests estimating r0 by

r̂0,ARSS = argmax
r=1,...,rmax

Logistic(log log(N)×ARSSr+1)− Logistic(log log(N)×ARSSr)

where the logistic function, Logistic(x) = P1/[1 + A exp(−τx)] polarises ARSSr to 0 or 1 with

A = P1/P0−1, P0 = 10−3, P1 = 1 and τ = 14. ARSS can allow non-zero correlations between local

factors, but it does not cover the case with a zero global factor, implying that the ARSS estimator

always overestimates r0 when r0 = 0 (see the simulation evidence in Section 2.5).

7For instance, if the two blocks share the pairwise common local factors, then the r0 +1 largest canonical correla-
tions between such a block pair is equal to one, in which case CCD and MCC tend to select the r0 +1 global factors
instead of r0. We also observe that CCD and MCC are sensitive to the excessively large rmax when the errors are
serially correlated. By contrast, in (unreported) simulations, we find that GCC is robust to the coice of rmax.
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2.4.3 Asymptotic distributions of the estimated factors and loadings

Following Bai (2003), we make the additional assumptions, which are slightly stronger than those

required for consistency in Section 2.4.1.

Assumption 2.E. For each i, we have limNi,N→∞N/Ni = αi ≤ M

Assumption 2.F.

1.
∑T

s=1 |ωi,Ni(s, t)| < M for all i and t.

2. Let τ(mh),(kj),t = E(emktehjt). For every t, we have |τ(mh),(kj),t| ≤ |τ(mh),(kj)| ≤ M. Moreover,

for every m,h, k, j, we have
∑Nm

k=1 |τ(mh),(kj)| ≤ M.

Assumption 2.G.

1. For each m, h and t,

E

∥∥∥∥∥ 1√
NhT

T∑
s=1

Nh∑
k=1

Kms [ehksehkt − E(ehksehkt)]

∥∥∥∥∥
2
 ≤ M

2. For each m, h and t,

E

∥∥∥∥∥∥ 1√
NhT

T∑
t=1

Nh∑
j=1

Kmtθ
′
hjehjt

∥∥∥∥∥∥
2 ≤ M

3. For each t, as N1, . . . , NR → ∞, we have

Et =



E1t

E2t

...

ERt


=



1√
N1

∑N1
j=1 θ1je1jt

1√
N2

∑N2
j=1 θ2je2jt

...

1√
NR

∑NR
j=1 θRjeRjt


d−→ N

(
0,D(1)

t

)
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where

D(1)
t =



D(1)
11,t D(1)

12,t . . . D(1)
1R,t

D(1)
21,t D(1)

22,t . . . D(1)
2R,t

...

D(1)
R1,t D(1)

R2,t . . . D(1)
RR,t


is the finite covariance matrix with

D(1)
mh,t = plim

Nm,Nh→∞
(NmNh)

−1/2
Nm∑
j=1

Nh∑
k=1

θmjθ
′
hkE(emjtehkt).

4. For each i and j, as T → ∞, we have:

1√
T

T∑
t=1

Gt

(
λ′
ijFit + eijt

) d−→ N
(
0,D(2)

ij

)

1√
T

T∑
t=1

Fiteijt
d−→ N

(
0,D(3)

ij

)

where D(2)
ij = plimT→∞ T−1

∑T
s=1

∑T
t=1E

[
Gs

(
λ′
ijFis + eijs

)(
λ′
ijFit + eijt

)
G′

t

]
and

D(3)
ij = plimT→∞ T−1

∑T
s=1

∑T
t=1 E (FitF

′
iseijseijt).

Assumption 2.E imposes that Ni is of the same order of magnitude as N for all i = 1, ..., R,

similarly to Choi et al. (2018). Assumptions 2.F and 2.G, corresponding to Assumptions E and F

in Bai (2003), are standard in the literature. Assumption 2.F restricts the cross-sectional and serial

dependence of the errors. Notice that Assumption 2.F.2 imposes limited cross-block dependence,

which is not required in Assumption 2.A. Assumptions 2.G.1 and 2.G.2 are technical conditions for

controlling the stochastic order of the bias terms in the asymptotic expansions, though they are not

too restrictive since they are sums of zero mean random variables. Assumptions 2.G.3 and 2.G.4

are the central limit theorems that can be applied to several mixing processes.

With Assumptions 2.F and 2.G, Lemma B.1.3 establishes that some parts in the asymptotic

expansion of K̂it achieve a convergence rate faster than Op

(
C−1
NiT

)
, as shown in Lemma 2.1. This

allows us to refine the convergence rates of Q̂r0 and L̂r0 in Lemma B.1.4 so that they are now
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Op

(
C−2
NT

)
instead of Op

(
C−1
NT

)
as in the proof of Theorem 2.1. By applying these results, we are

able to derive the asymptotic normal distributions of the estimated factors and loadings in Theorems

2.4 and 2.5.

Theorem 2.4. Asymptotic distributions of the global factors and loadings.

1. Under Assumptions 2.A–2.C and 2.E–2.G, as N1, . . . , NR, T → ∞ and
√
N/T → 0, we have

for each t:

√
N
[(
H′ + B′)−1

Ĝt −Gt

]
=

1

R
I ′CEt + op(1)

d−→ N

(
0,

1

R2
I ′C0D(1)

t C0′I
)

where H is an r0×r0 rotation matrix defined in Theorem 2.1, I = [Ir0 , . . . , Ir0 ]
′ is an Rr0×r0

matrix, C = diag (C1, . . . ,CR) is an Rr0 ×
∑R

i=1 (r0 + ri) block diagonal matrix with diagonal

elements being

Ci =

√
N

Ni
I′i
(
Θ′

iΘi

Ni

)−1

and Ii = [Ir0 ,0]
′ being an (r0 + ri) × r0 matrix, C0 = plimN1,...,NR,T→∞C, Et and D(1)

t are

defined in Assumption 2.G.3, and B is an r0 × r0 matrix given by

B =
1

R

R∑
i=1

√
1

Ni
I′i
(
Θ′

iΘi

Ni

)−1 Θ′
ie

′
i√

NiT
Jr0U = Op

(
1√
N

)

where Jr0 is defined in Theorem 2.1 and U is an r0 × r0 unknown orthonormal matrix.

2. Under Assumptions 2.A–2.G, as N1, N2, . . . , NR, T → ∞ and
√
T/N → 0, we have for each i

and j:

√
T [(H+ B) γ̂ij − γij ] = HH′ 1√

T

T∑
t=1

Gt

(
λ′
ijFit + eijt

)
+ op(1)

d−→ N
(
0,Σ−1

G D(2)
ij Σ−1

G

)

where D(2)
ij is defined in Assumption 2.G.4 and ΣG is defined in Assumption 2.D.
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Corollary 2.1. Under Assumptions 2.A–2.G, we have:

CNT

(
γ̂ ′
ijĜt − γ ′

ijGt

)
d−→ N

(
0,

1

R2

C2
NT

N
γ ′
ijI ′
C

0
D

(1)
t C

0′Iγij +
C2
NT

T
G′

tΣ
−1
G D

(2)
ij Σ−1

G Gt

)
.

Theorem 2.4 establishes that the estimates of the global factors and loadings follow the asymp-

totic normal distributions. Unlike in Theorem 2.1, the rotation matrix has an additional term, B

of order Op

(
N−1/2

)
, which does not affect the asymptotic variance matrix. To the best of our

knowledge, the asymptotic distributions of the factors and loadings under finite R, have not been

established in the literature. One exception is Andreou et al. (2019), but their theory applies only

for R = 2. We note in passing that we derive our asymptotic theories under weaker conditions

than those imposed by Andreou et al. (2019); namely, we do not assume that the global factors

are uncorrelated to each other, and the local factors are uncorrelated within blocks. Corollary 2.1

establishes the asymptotic normality of the global and local components in a similar fashion to

Theorem 3 of Bai (2003).

Theorem 2.5. Asymptotic distributions of the local factors and loadings.

1. Under Assumptions 2.A–2.G, as N1, N2, . . . , NR, T → ∞, and if
√
Ni/T → 0 and Ni/T < ∞,

then

√
Ni

(
F̂it − Ĥ ′

i Fit

)
= Υ̂−1

i

(
1

T

T∑
s=1

F̂isF
′
is

)
1√
Ni

Ni∑
j=1

λij

(
eijt + Ŝijt

)
+ op(1)

d−→ N
(
0,Υ−1

i WiD
(4)
ii,tW

′
iΥ

−1
i

)

where D(4)
ii,t = plim

N1,...,NR,T→∞

1
Ni

∑Ni
j=1

∑Ni
k=1 λijλ

′
ik

(
eijt + Ŝijt

)(
eikt + Ŝikt

)
, Υ̂i is a diagonal

matrix consisting of the ri largest eigenvalues of (NiT )
−1ŶiŶ

′
i in descending order with Ŷi =

Yi − ĜΓ̂′
i, Υi is a diagonal matrix consisting of the eigenvalues of ΣΛiΣFi in descending

order, Wi = plimNi,T→∞ T−1F̂′
iFi, and Ŝijt is the (t, j) element of Ŝi = GΓ′

i − ĜΓ̂′
i.

2. Under Assumptions 2.A–2.G, as N1, N2, . . . , NR, T → ∞, and if
√
T/Ni → 0, then for each i
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and j:

√
T
(
λ̂ij − Ĥ −1

i λij

)
= Ĥ ′

i

1√
T

T∑
t=1

Fiteijt + op(1)
d−→ N

(
0,
(
W−1

i

)′D(3)
ij W−1

i

)

for j = 1, . . . , Ni where D
(3)
ij is define in Assumption 2.G.4.

Corollary 2.2. Under the Assumptions of Theorem 2.5, we have:

CNiT

(
λ̂′
ijF̂it − λ′

ijFit

)
d−→ N

(
0,

C2
NiT

Ni
F′
itΣ

−1
Fi
D

(3)
ij Σ−1

Fi
Fit +

C2
NiT

T
λ′
ijΣ

−1
Λi
D

(4)
ii,tΣ

−1
Λi

λij

)
.

Theorem 2.5 establishes the asymptotic normal distributions of the local factor and loading

estimates. In particular, Theorem 2.5.1 shows that the estimated local factors are well centered,

whilst the local factors in Andreou et al. (2019) have a bias term that does not vanish if 0 < Ni/T <

∞ (see their Proposition D.5). We find that the estimation error incurred from the global factors

and loadings contributes only to the variance of the local factors, since the cross-section average

N−1
i

∑Ni
j=1 λij

√
NiŜijt has zero mean and a non-degenerate distribution as a result of Corollary 2.1

if Ni/T < ∞. In contrast, Theorem 2.5.2 does not require the condition Ni/T < ∞ because the

time average T−1
∑T

t=1Fit

√
T Ŝijt converges to zero due to Assumption 2.D and 2.G.2.

Theorem 2.5 establishes the asymptotic normal distributions of the local factor and loading

estimates. Theorem Theorem 2.5.1 shows that the estimated local factors are well centered. On the

contrary, the local factors estimated by Andreou et al. (2019) involve a bias term that does not vanish

even if 0 < Ni/T < ∞ (see their Proposition D.5). We find that the estimation errors stemming from

the global factors and loadings contribute only to the variance of the estimated local factors, since

the cross-section average, N−1
i

∑Ni
j=1 λij

√
NiŜijt has zero mean and a non-degenerate distribution

as a result of Corollary 2.1 if Ni and T are of comparable magnitude. But, Theorem 2.5.2 does not

require the condition, Ni/T = O(1) because the time average, T−1
∑T

t=1Fit

√
T Ŝijt converges to

zero under Assumption 2.D and 2.G.2. We also derive the asymptotic normal distribution for the

estimated local components in Corollary 2.2.

2.4.4 Bootstrap-based confidence intervals

Although Theorem 2.4 and 2.5 establish the asymptotic distributions of the factor and loading

estimates, they are not readily applicable in practice. The reasons are threefold. First, the sample

analogue of the asymptotic covariance matrices in Theorem 2.4 are subject to the rotation matrix,
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which is unknown and cannot be estimated. For instance, for block i in Theorem 2.4.1, we have

ĈiÊit = I′i

(
Θ̂′

iΘ̂i

Ni

)−1
1√
Ni

Ni∑
j=1

θ̂ij êijt
p−→ I′i

H′ 0

0 H ′
i

(Θ′
iΘi

Ni

)−1 1√
Ni

Ni∑
j=1

θijeijt ̸= CiEit

where Θ̂i =
[
Γ̂i, Λ̂i

]
with Γ̂i = T−1Y′

iĜ and Λ̂i = T−1
(
Yi − ĜΓ̂′

i

)′
F̂i. Consequently, the matrix

H′ prevents us from getting correct covariance estimates using sample analogues. Second, the

bootstrapped factors and loadings will have different limiting distributions because the rotation

matrices H∗(b) and Ĥ
∗(b)
i vary in each bootstrap repetition b. Therefore, Ĝ

∗(b)
t and F̂

∗(b)
it do not

necessarily align to Ĝt and F̂it and the rotation matrices should be dealt with. Third, the covariance

matrices of γ̂ij , F̂it, γ̂
′
ijĜt, and λ̂′

ijF̂it are subject to the correlation between the global and local

factors and their autocorrelations, which cannot be accounted for by a standard bootstrap. For

example, let e
∗(b)
ijt be the re-sampled error term and it follows that

1√
T

T∑
t=1

Ĝt

(
λ̂′
ijF̂it + e

∗(b)
ijt

)
=

1√
T

T∑
t=1

Ĝte
∗(b)
ijt

d∗↛ N
(
0,D

(2)∗
ij

)

where D
(2)∗
ij is the asymptotic covariance matrix such that D

(2)∗
ij

p∗→ H′D
(2)∗
ij H, because Ĝ and F̂i are

strictly orthogonal under the sequential estimation. Hence, a standard bootstrap cannot correctly

recover the dependence in the limiting distributions.

Due to the aforementioned issues, it is necessary to advance a new hybrid bootstrap procedure

to construct valid confidence intervals for the estimated factors, loadings and factor components.

For convenience we assume that the error terms are cross-sectionally and serially independent.8 We

show that, in the bootstrap world, the rotation matrices can be consistently estimated since Ĝt and

F̂it are treated as known. Therefore, we use the estimated rotation matrices, Ĥ∗(b) and H̃
∗(b)
i , to

back-rotate Ĝ
∗(b)
t and F̂

∗(b)
it as follows:

√
N

[(
Ĥ∗(b)′

)−1
Ĝ

∗(b)
t − Ĝt

]
and

√
Ni

[(
H̃

∗(b)′
i

)−1
F̂
∗(b)
it − F̂it

]
.

As a result, the above statistics remain aligned to the ones in Theorem 2.4 and 2.5 across each

bootstrap repetition (see also Gonçalves & Perron (2014)). To ensure that γ̂
∗(b)
ij and F̂

∗(b)
it have

correct asymptotic variances, we apply the dependent bootstrap by Shao (2010) and obtain a re-

8If the error terms are serially correlated or weakly cross-sectionally correlated, the dependent bootstrap can be
adopted (e.g. Shao (2010) and Conley et al. (2023)). We maintain this assumption for computational tractability.
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sampled global factors G̃∗(b) or local factors F
∗(b)
i such that

1√
T

T∑
t=1

Ĝt

(
λ̂′
ijF

∗(b)
it + e

∗(b)
ijt

)
d∗−→ N

(
0,D

(2)∗
ij

)
or

1√
T

T∑
t=1

G̃
∗(b)
t

(
λ̂′
ijF̂

(b)
it + e

∗(b)
ijt

)
d∗−→ N

(
0,D

(2)∗
ij

)
.

in order to preserve the dependent structure of the factors. Then, it follows that D(2)∗
ij

p∗→ H′D(2)
ij H,

suggesting that γ̂
∗(b)
ij and F̂

∗(b)
it will have correct asymptotic distributions which remain the same

across each bootstrap repetition. We describe three detailed algorithms in Online Appendix B.2 for

implementation.

Finally, the covariance matrix of λ̂ij , namely
(
W−1

i

)′D(3)
ij W−1

i , can be estimated directly by the

Newey-West HAC covariance estimator based on F̂itêijt.
9

We note in passing that Andreou et al. (2023) also propose a bootstrap procedure in a two-block

setting. They only consider bootstrapping the canonical correlations between K̂1 and K̂2 (in our

notation), which is invariant to any full rank rotation matrix. The rotation matrix in their covariance

estimators of their bootstrap is offset by the trace operator. In such a case, the back-rotation and

factor resampling is not required.

2.5 Monte Carlo Simulation

Following Choi et al. (2021) and Han (2021), we generate the multilevel factor data as follows:

yijt = γ ′
ijGt +

√
hi1λ

′
ijFit +

√
κhi2eijt =

r0∑
z=1

γzijG
z
t +

√
hi1

ri∑
z=1

λz
ijF

z
it +

√
κhi2eijt (2.5.21)

for i = 1, ..., R, j = 1, ..., Ni, and t = 1, ..., T , where the superscript z denote the z-th factor and

loading. We generate the global factors/loadings, the local factors/loadings and idiosyncratic errors

by

Gt = ϕGGt−1 +wG
t , w

G
t ∼ i.i.d. N(0, Ir0)

Fit = ϕFFi,t−1 +wit, w
F
it ∼ i.i.d. N(0, Iri) for i = 1, . . . , R,

γzij ∼ i.i.d. N(0, 1) for z = 1, . . . , r0; λ
z
ij ∼ i.i.d. N(0, 1) for z = 1, . . . , ri

9From Theorem 2.5.1 and Lemma B.1.8, it follows that T−1/2 ∑T
t=1 F̂itêijt

p→ Ĥ ′
i T

−1/2 ∑T
t=1 Fiteijt, which has

asymptotic variance
(
W−1

i

)
D(3)

ij W−1
i . Therefore, the HAC estimator based on F̂itêijt is consistent. See also Section

5 of Bai (2003). In unreported simulations, we find that the bootstrap CI for λij performs slightly worse than the
asymptotic CI.
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eijt = ϕeeij,t−1 + εijt + β
∑

1≤|h|≤8

εi,j−h,t, εijt ∼ i.i.d. N(0, 1)

We allow global and local factors to be serially correlated, but also idiosyncratic errors to be serially

and cross-sectionally correlated.

We control the noise-to-signal ratio by κ. When κ = 1, the variances associated with the global

factors, local factors and idiosyncratic errors are respectively given by

Var(γ ′
ijGt) =

r0∑
z=1

Var(γzijG
z
t ) =

r0
1− ϕ2

G

,

Var(λ′
ijFit) =

ri∑
z=1

Var(λz
ijF

z
it) =

ri
1− ϕ2

F

and Var(eijt) =
1 + 16β2

1− ϕ2
e

.

We then make the variance contribution of each component equalised for κ = 1. For r0 > 0, we set:

hi1 =

(
r0

1− ϕ2
G

)(
ri

1− ϕ2
F

)
and hi2 =

(
r0

1− ϕ2
G

)/(
1 + 16β2

1− ϕ2
e

)
.

while for r0 = 0 we set:

hi1 = 1 and hi2 =

(
ri

1− ϕ2
G

)/(
1 + 16β2

1− ϕ2
e

)
.

We consider five DGPs for the following combinations of sample sizes: R ∈ {3, 10}, Ni ∈

{20, 50, 100, 200} with N1 = · · · = NR and T ∈ {50, 100, 200}. We fix (r0, ri) = (2, 2) for i =

1, . . . , R, ϕG = ϕF = 0.5 and (β, ϕe, κ) = (0.1, 0.5, 1) under DGP1, which serves as the benchmark

case. DGP2 is the same as DGP1 except that we allow the local factors to be identical for some

blocks. To generate the pairwise common local factors for R = 3, we set F 1
1t = F 1

2t, F
2
1t = F 2

3t

and F 2
2t = F 2

3t. For R = 10, we set F 1
1t = · · · = F 1

5t and F 1
6t = · · · = F 1

10t to allow the presence

of multi-block common local factors. DGP3 considers the noisy data with κ = 3 while the other

configurations remain the same as in DGP1. DGP4 and DGP5 replicate DGP1 but allow the local

factors to be correlated. Specifically, we generate the local factors by

Ft = 0.5Ft−1 +wF
t , w

F
t ∼ i.i.d. N (0,ΩF )

where Ft = [F′
1t, . . . ,F

′
Rt]

′ and wF
t =

[
wF ′

1t , . . . ,w
F ′
Rt

]′
. We set the diagonal elements of ΩF at 1,

and the off-diagonal elements (denoted ωF ) at 0.4 and 0.8 in DGP4 and DGP5, respectively. The
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number of replications of each experiment is set at 1,000.

We focus on the estimation of the global factors Ĝ and the number of the global factors r̂0.
10

Without loss of generality we assume that the number of the global factors and local factors are

known with rmax = r0 + ri for all i. To evaluate the precision of the estimated global factors, we

report the trace ratio defined as

TR
(
Ĝ
)
=

tr

{
G′Ĝ

(
Ĝ′Ĝ

)−1
Ĝ′G

}
tr {G′G}

where tr{.} is the trace of a matrix. The more precise the estimated factors are, the higher the trace

ratio is. If the global factors are perfectly estimated, then TR
(
Ĝ
)
= 1. For comparison, we also

report the results generated by the CCA by Andreou et al. (2019) and the CPE by Chen (2022).

Since the precision of F̂i and r̂i depend mainly on the precision of Ĝ and r̂0 due to the sequential

estimation, and their properties are extensively studied by existing literature, we only focus on the

performance of GCC estimates for Ĝ and r̂0.

Table 2.1 shows the average trace ratios over 1000 repetitions. For DGP1, all three approaches

can produce precise estimates of global factors. While GCC and CPE estimates are quite close

to each other, GCC substantially outperforms, especially when Ni and T are small. Under DGP2

where we allow the common local factors across some blocks, CCA is shown to be inconsistent since

the largest canonical correlation between the two blocks does not necessarily indicate the presence

of the global factors. On the other hand, CPE and GCC do not suffer from this issue, and they

continue to be consistent while GCC still outperforms CPE in all sample sizes. For DGP3, all three

approaches are negatively affected by the noisy data, but the performance of GCC improves faster

as the sample size increases than CCA and CPE. We obtain qualitatively similar results under

DGP4 and DGP5. Notice also that the performance of GCC improves as the number of blocks, R

increases while CPE does not display this property.11 Overall, we find that GCC dominates CCA

and CPE in all cases we consider.

Next, we turn to the estimation of r0 by GCC together with CCD and MCC advanced by

Choi et al. (2021) and ARSS by Chen (2022).12 Table 2.2 reports the average of r̂0 over 1,000

10The accuracy of F̂i and r̂i are contingent upon the accuracy of Ĝ and r̂0 (see Appendix A of Chapter 1). As
the latter estimates become more precise, the local factors and r̂i also become more precise. Therefore, we omit the
results for the local factors in order to save space.

11For example, under DGP3 with Ni = 20 and T = 50, the trace ratios for CPE and GCC are 0.59 and 0.755 for
R = 3 while they become 0.59 and 0.919 for R = 10.

12When implementing these alternative selection criteria, we follow the practical guidelines by Choi et al. (2021)
and use r̂max = max{r̂0 + r1, . . . , ̂r0 + rR}.
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replications and the percentages of over- and under-estimation, denoted (O|U). For DGP1, all the

four selection criteria perform satisfactory unless the sample size is too small. Under DGP2, CCD

and MCC are shown to overestimate r0 due to the presence of the pairwise common local factors

in which case the canonical correlation between the common local factors from such two blocks is

expected to be equal to one. While the performance of ARSS is adversely affected, it improves for

large Ni and T . We still find that GCC outperforms ARSS. For R = 10, CCD becomes the most

vulnerable to the common regional factors. While MCC and ARSS can produce relatively precise

estimates, GCC outperforms especially in a small T . Under DGP3, we obtain mixed results. CCD

and MCC perform better than ARSS and GCC for a small T whilst ARSS and GCC produce

more precise estimates than CCD and MCC for a small Ni. All the four selection methods can

correctly select r0 when Ni and T beome large. For DGP4, CCD can produce reliable estimates

under the mild correlation between local factors while MCC estimates remain precise unless Ni

and T are small. ARSS underperforms when Ni or T is small. GCC has a similar performance

to MCC but its performance is much better in small samples. Under DGP5 where the correlation

between the local factors is extremely strong, CCD fails completely since the upper bound condition

is violated whilst ARSS does not show any sign of improvement. MCC can select r0 precisely in

large samples, but GCC still dominates with a faster convergence. Overall, we find that MCC,

ARSS and GCC can be reliable selection criteria, although ARSS tends to over-estimate r0 when

there is no global factor in the data. Given that GCC does not rely upon the penalty function and

any tuning parameters, we conclude that GCC is the most robust and reliable criterion.

As a robust check we repeat the simulation experiments for (r0, ri) = (1, 1) and (r0, ri) = (3, 3),

and present the results in Table 2.3 to 2.6. The results are qualitative similar to those with (r0, ri) =

(2, 2). As the number of factors in the data increases, we find that the accuracy of the estimates

becomes slightly lower.

We also propose a bootstrap approach to produce the valid confidence intervals for the estimated

factors and loadings as well as the factor components. In Appendix B.2, we conduct a simulation

study using the hybrid bootstrap approach, and find that the coverage rates of the bootstrap CIs

are getting close to the nominal 95% as the sample size increases.
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Table 2.1: Average trace ratios of the global factor estimates with (ϕG, ϕF ) = (0.5, 0.5), (r0, ri) = (2, 2)

CCA CPE GCC CCA CPE GCC CCA CPE GCC CCA CPE GCC CCA CPE GCC
DGP1 DGP2 DGP3 DGP4 DGP5

(β, ϕe, κ) = (0.1, 0.5, 1) (β, ϕe, κ) = (0.1, 0.5, 1) (β, ϕe, κ) = (0.1, 0.5, 3) (β, ϕe, κ) = (0.1, 0.5, 1) (β, ϕe, κ) = (0.1, 0.5, 1)
R Ni T benchmark common local factors noisy data ωF = 0.4 ωF = 0.8
3 20 50 0.82 0.827 0.926 0.637 0.809 0.885 0.595 0.59 0.755 0.794 0.813 0.902 0.69 0.725 0.774
3 50 50 0.93 0.942 0.977 0.661 0.941 0.971 0.727 0.744 0.861 0.911 0.94 0.974 0.784 0.894 0.926
3 100 50 0.956 0.974 0.989 0.655 0.973 0.988 0.838 0.863 0.929 0.936 0.974 0.989 0.824 0.963 0.98
3 200 50 0.969 0.987 0.994 0.658 0.987 0.993 0.904 0.931 0.962 0.955 0.987 0.994 0.844 0.984 0.991
3 20 100 0.843 0.834 0.938 0.626 0.818 0.9 0.606 0.585 0.789 0.82 0.814 0.912 0.716 0.72 0.776
3 50 100 0.949 0.95 0.982 0.654 0.949 0.98 0.772 0.761 0.898 0.944 0.949 0.98 0.87 0.925 0.957
3 100 100 0.973 0.977 0.991 0.663 0.977 0.991 0.904 0.906 0.961 0.969 0.976 0.991 0.923 0.973 0.988
3 200 100 0.985 0.989 0.996 0.666 0.988 0.995 0.953 0.957 0.982 0.982 0.989 0.996 0.939 0.987 0.995
3 20 200 0.848 0.836 0.941 0.617 0.82 0.909 0.614 0.586 0.812 0.834 0.825 0.924 0.731 0.72 0.786
3 50 200 0.954 0.952 0.983 0.649 0.951 0.982 0.8 0.785 0.916 0.952 0.952 0.982 0.921 0.939 0.971
3 100 200 0.978 0.978 0.992 0.659 0.978 0.992 0.921 0.918 0.97 0.977 0.978 0.992 0.961 0.976 0.991
3 200 200 0.989 0.989 0.996 0.664 0.989 0.996 0.963 0.963 0.986 0.988 0.989 0.996 0.976 0.989 0.996
10 20 50 0.843 0.834 0.98 0.677 0.758 0.97 0.632 0.59 0.919 0.819 0.823 0.969 0.709 0.73 0.821
10 50 50 0.933 0.944 0.992 0.709 0.932 0.991 0.751 0.744 0.948 0.914 0.945 0.991 0.793 0.917 0.963
10 100 50 0.958 0.974 0.996 0.722 0.973 0.996 0.851 0.862 0.967 0.944 0.974 0.995 0.836 0.969 0.99
10 200 50 0.971 0.987 0.997 0.721 0.986 0.997 0.911 0.932 0.979 0.956 0.987 0.997 0.845 0.986 0.996
10 20 100 0.862 0.836 0.984 0.671 0.759 0.978 0.654 0.589 0.943 0.851 0.829 0.978 0.737 0.735 0.836
10 50 100 0.954 0.949 0.994 0.715 0.947 0.994 0.798 0.765 0.969 0.949 0.949 0.994 0.875 0.94 0.983
10 100 100 0.976 0.977 0.997 0.728 0.976 0.997 0.912 0.903 0.986 0.972 0.976 0.997 0.92 0.975 0.995
10 200 100 0.986 0.989 0.998 0.731 0.989 0.998 0.956 0.957 0.992 0.983 0.989 0.998 0.939 0.988 0.998
10 20 200 0.868 0.836 0.984 0.663 0.767 0.981 0.653 0.588 0.95 0.854 0.832 0.982 0.76 0.758 0.864
10 50 200 0.958 0.951 0.995 0.716 0.95 0.995 0.823 0.784 0.976 0.956 0.951 0.995 0.924 0.947 0.99
10 100 200 0.979 0.978 0.998 0.734 0.977 0.998 0.929 0.919 0.99 0.978 0.978 0.998 0.963 0.977 0.997
10 200 200 0.989 0.989 0.999 0.736 0.989 0.999 0.966 0.963 0.995 0.989 0.989 0.999 0.977 0.989 0.999

Each entry is the average of trace ratios over 1,000 replications. r0 and ri are the true number of global factors and true number of local factors in
group i. We set r1 = · · · = rR, and N1 = · · · = NR where Ni is the number of individuals in block i. T is the number of time periods. ϕG and ϕF

are AR coefficients for the global and local factors. β, ϕe and κ control the cross-section correlation, serial correlation and noise-to-signal ratio.
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Table 2.3: Average trace ratios of the global factor estimates with (ϕG, ϕF ) = (0.5, 0.5), (r0, ri) = (1, 1)

CCA CPE GCC CCA CPE GCC CCA CPE GCC CCA CPE GCC CCA CPE GCC
DGP1 DGP2 DGP3 DGP4 DGP5

(β, ϕe, κ) = (0.1, 0.5, 1) (β, ϕe, κ) = (0.1, 0.5, 1) (β, ϕe, κ) = (0.1, 0.5, 3) (β, ϕe, κ) = (0.1, 0.5, 1) (β, ϕe, κ) = (0.1, 0.5, 1)
R Ni T common local factors ωF = 0.4 ωF = 0.8
3 20 50 0.936 0.927 0.973 0.623 0.927 0.97 0.771 0.697 0.864 0.933 0.925 0.972 0.882 0.903 0.949
3 50 50 0.971 0.976 0.991 0.639 0.975 0.991 0.907 0.899 0.958 0.967 0.975 0.991 0.916 0.972 0.988
3 100 50 0.982 0.988 0.995 0.655 0.988 0.995 0.95 0.952 0.98 0.978 0.988 0.995 0.926 0.987 0.995
3 200 50 0.986 0.994 0.998 0.658 0.994 0.998 0.97 0.976 0.989 0.984 0.994 0.998 0.939 0.993 0.997
3 20 100 0.947 0.933 0.976 0.612 0.933 0.975 0.804 0.719 0.893 0.946 0.932 0.976 0.924 0.922 0.964
3 50 100 0.977 0.977 0.992 0.617 0.977 0.992 0.927 0.915 0.968 0.977 0.976 0.992 0.963 0.975 0.991
3 100 100 0.988 0.989 0.996 0.648 0.989 0.996 0.964 0.962 0.986 0.988 0.989 0.996 0.973 0.989 0.996
3 200 100 0.993 0.995 0.998 0.656 0.995 0.998 0.98 0.982 0.993 0.992 0.994 0.998 0.978 0.994 0.998
3 20 200 0.95 0.937 0.978 0.612 0.936 0.977 0.811 0.725 0.897 0.949 0.934 0.977 0.941 0.927 0.969
3 50 200 0.98 0.978 0.992 0.636 0.978 0.992 0.935 0.925 0.973 0.98 0.978 0.992 0.976 0.977 0.992
3 100 200 0.99 0.989 0.996 0.639 0.989 0.996 0.968 0.965 0.988 0.99 0.989 0.996 0.987 0.989 0.996
3 200 200 0.995 0.995 0.998 0.624 0.995 0.998 0.984 0.983 0.994 0.994 0.995 0.998 0.991 0.995 0.998
10 20 50 0.956 0.929 0.992 0.536 0.91 0.991 0.864 0.704 0.962 0.951 0.929 0.992 0.91 0.914 0.98
10 50 50 0.977 0.975 0.997 0.547 0.975 0.997 0.931 0.896 0.985 0.972 0.975 0.997 0.93 0.975 0.996
10 100 50 0.984 0.988 0.998 0.547 0.988 0.998 0.958 0.954 0.991 0.98 0.988 0.998 0.939 0.988 0.998
10 200 50 0.986 0.994 0.999 0.57 0.994 0.999 0.972 0.976 0.994 0.983 0.994 0.999 0.942 0.994 0.999
10 20 100 0.963 0.935 0.993 0.543 0.928 0.993 0.881 0.707 0.969 0.962 0.934 0.993 0.948 0.928 0.988
10 50 100 0.983 0.977 0.998 0.537 0.977 0.997 0.947 0.915 0.99 0.981 0.977 0.997 0.966 0.977 0.997
10 100 100 0.99 0.989 0.999 0.523 0.989 0.999 0.97 0.962 0.995 0.989 0.989 0.999 0.976 0.989 0.999
10 200 100 0.994 0.995 0.999 0.544 0.994 0.999 0.983 0.981 0.997 0.993 0.994 0.999 0.977 0.994 0.999
10 20 200 0.984 0.977 0.998 0.531 0.932 0.993 0.888 0.742 0.972 0.965 0.937 0.993 0.96 0.933 0.991
10 50 200 0.984 0.977 0.998 0.562 0.978 0.998 0.951 0.924 0.992 0.984 0.978 0.998 0.98 0.978 0.997
10 100 200 0.991 0.989 0.999 0.535 0.989 0.999 0.974 0.965 0.996 0.991 0.989 0.999 0.988 0.989 0.999
10 200 200 0.995 0.995 0.999 0.548 0.995 0.999 0.986 0.983 0.998 0.995 0.995 0.999 0.992 0.995 0.999

Each entry is the average of trace ratios over 1,000 replications. r0 and ri are the true numbers of the global factors and local factors in group i.
We set r1 = · · · = rR and N1 = · · · = NR where Ni is the number of individuals in block i. ϕG and ϕF are AR coefficients for the global and local
factors. β, ϕe and κ control the cross-section correlation, serial correlation and noise-to-signal ratio.
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Table 2.5: Average trace ratios of the global factor estimates with (ϕG, ϕF ) = (0.5, 0.5), (r0, ri) = (3, 3)

CCA CPE GCC CCA CPE GCC CCA CPE GCC CCA CPE GCC CCA CPE GCC
DGP1 DGP2 DGP3 DGP4 DGP5

(β, ϕe, κ) = (0.1, 0.5, 1) (β, ϕe, κ) = (0.1, 0.5, 1) (β, ϕe, κ) = (0.1, 0.5, 3) (β, ϕe, κ) = (0.1, 0.5, 1) (β, ϕe, κ) = (0.1, 0.5, 1)
R Ni T common local factors ωF = 0.4 ωF = 0.8
3 20 50 0.741 0.768 0.881 0.56 0.743 0.826 0.531 0.547 0.69 0.707 0.735 0.825 0.666 0.696 0.753
3 50 50 0.867 0.903 0.955 0.611 0.894 0.938 0.611 0.894 0.938 0.83 0.889 0.936 0.731 0.803 0.835
3 100 50 0.921 0.955 0.979 0.624 0.953 0.975 0.725 0.778 0.858 0.881 0.952 0.976 0.773 0.9 0.923
3 200 50 0.943 0.978 0.989 0.642 0.977 0.988 0.803 0.863 0.913 0.915 0.977 0.988 0.794 0.962 0.974
3 20 100 0.762 0.762 0.901 0.537 0.747 0.841 0.545 0.54 0.74 0.726 0.723 0.833 0.66 0.656 0.722
3 50 100 0.909 0.912 0.966 0.579 0.911 0.96 0.672 0.671 0.83 0.895 0.907 0.959 0.766 0.801 0.839
3 100 100 0.958 0.963 0.986 0.603 0.962 0.984 0.812 0.817 0.915 0.95 0.961 0.984 0.837 0.933 0.955
3 200 100 0.975 0.982 0.993 0.612 0.982 0.992 0.912 0.92 0.963 0.969 0.982 0.993 0.876 0.977 0.988
3 20 200 0.767 0.758 0.909 0.518 0.748 0.85 0.55 0.54 0.771 0.729 0.716 0.838 0.649 0.628 0.693
3 50 200 0.92 0.919 0.97 0.549 0.917 0.967 0.677 0.668 0.852 0.915 0.916 0.968 0.784 0.8 0.841
3 100 200 0.964 0.965 0.987 0.59 0.965 0.987 0.85 0.848 0.94 0.962 0.964 0.987 0.908 0.951 0.975
3 200 200 0.982 0.983 0.994 0.611 0.983 0.994 0.938 0.939 0.976 0.981 0.983 0.994 0.947 0.981 0.992
10 20 50 0.752 0.77 0.968 0.544 0.636 0.922 0.562 0.54 0.876 0.728 0.749 0.921 0.67 0.691 0.793
10 50 50 0.872 0.901 0.984 0.569 0.824 0.972 0.657 0.683 0.91 0.833 0.895 0.974 0.741 0.82 0.87
10 100 50 0.925 0.956 0.991 0.569 0.934 0.989 0.736 0.787 0.932 0.888 0.954 0.99 0.775 0.919 0.949
10 200 50 0.943 0.977 0.994 0.578 0.973 0.994 0.807 0.866 0.949 0.917 0.978 0.994 0.802 0.969 0.985
10 20 100 0.779 0.768 0.975 0.513 0.594 0.946 0.577 0.536 0.922 0.747 0.74 0.939 0.674 0.654 0.757
10 50 100 0.915 0.913 0.99 0.542 0.87 0.986 0.685 0.67 0.946 0.896 0.912 0.987 0.765 0.815 0.87
10 100 100 0.959 0.963 0.995 0.556 0.958 0.995 0.821 0.819 0.969 0.95 0.962 0.995 0.849 0.947 0.979
10 200 100 0.977 0.982 0.997 0.563 0.981 0.997 0.917 0.92 0.983 0.97 0.982 0.997 0.886 0.98 0.995
10 20 200 0.78 0.764 0.977 0.497 0.576 0.959 0.582 0.54 0.936 0.747 0.739 0.951 0.659 0.625 0.726
10 50 200 0.924 0.918 0.991 0.532 0.9 0.99 0.694 0.665 0.959 0.919 0.918 0.99 0.792 0.834 0.896
10 100 200 0.966 0.965 0.996 0.534 0.963 0.996 0.859 0.848 0.981 0.964 0.965 0.996 0.912 0.959 0.99
10 200 200 0.983 0.983 0.998 0.532 0.983 0.998 0.942 0.939 0.991 0.981 0.983 0.998 0.949 0.982 0.997

Each entry is the average of trace ratio over 1,000 replications. r0 and ri are the true numbers of the global factors and local factors in group i.
We set r1 = · · · = rR and N1 = · · · = NR where Ni is the number of individuals in block i. T is the number of time periods. ϕG and ϕF are AR
coefficients for the global and local factors. β, ϕe and κ control the cross-section correlation, serial correlation and noise-to-signal ratio.
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2.6 Empirical Application

Using the multilevel factor model we apply the GCC approach to studying the national and regional

housing market cycles in England and Wales. Residential houses are the most valuable properties

of the households while house price fluctuations can put the financial system at a greater risk of

default during a recession. As the housing sector is directly related to employment, investment and

consumption, it also plays a central role in the business cycle (e.g. Leamer (2007)). While house

prices are subject to nation-wide shocks, such as the business cycle and credit liquidity, they are

also determined by regional characteristics such as local amenities and the land supply. Hence, the

housing market cycle is likely to exist at both national and regional levels.

From the website of Office of National Statistics HPSSA Dataset 14, we download the quarterly

(mean) house prices of four different types of properties, (detached, semi-detached, terraced and

flats/maisonettes) for 331 local authorities over the period 1996Q1 to 2021Q2. The local authorities

belong to ten regions: North East (NE), North West (NW), Yorkshire and the Humber (YH), East

Midlands (EM), West Midlands (WM), East of England (EE), London (LD), South East (SE),

South West (SW) and Wales (WA). Each “block” in the multilevel factor model is referred to as a

region.

We construct the real house price growth in the jth local authority of the region i through

deflating the nominal house price by CPI and log-differencing it as follows:

πijt = 100× log

(
PRICEijt

CPIt

)
− 100× log

(
PRICEij,t−1

CPIt−1

)

By removing the series with missing observations, we end up with a balanced panel with R = 10,

N =
∑10

i=1Ni = 1300 and T = 102.

Table 2.7 displays the number of local authorities for each region as well as the mean and

standard deviation of πijt. We observe that the average growth rates for NE, NW, YH and WA

are lower than the overall mean, those for EE, LD and SE higher than the overall mean, and those

for EM, WM and SW close to the mean. Notice that LD displays the highest mean growth and

standard deviation.
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Table 2.7: Main Empirical Results over 1996Q1–2021Q2

Region Ni Mean Std r̂i RIG RIF

North East 48 0.692 3.238 1 0.445 0.114

North West 153 0.823 3.429 1 0.436 0.082

Yorkshire and The Humber 84 0.848 3.2 1 0.501 0.073

East Midlands 136 0.969 3.75 0 0.507 0.000

West Midlands 119 0.912 2.817 0 0.527 0.000

East of England 180 1.163 2.8 1 0.501 0.092

London 122 1.45 4.362 1 0.296 0.226

South East 256 1.138 2.518 1 0.456 0.151

South West 116 1.072 2.843 0 0.551 0.000

Wales 86 0.875 3.829 1 0.437 0.094

Summary/Average 1300 1.037 3.237 0.466 0.083

Ni is the number of local authorities in each region. Mean and Std

represent the mean and standard deviation of πijt from each region j.

r̂i is the number of local factors estimated by BIC3 after projecting

out one global factor selected by GCC. RIGi and RIFi are the rel-

ative importance ratios of global and local factors for block i, which

are calculated as RIGi = N−1
i

∑Ni
j=1

(
γ̂ ′
ijγ̂ij/T

−1π̃′
ijπ̃ij

)
and RIFi =

N−1
i

∑Ni
j=1

(
λ̂′
ijλ̂ij/T

−1π̃′
ijπ̃ij

)
.

We apply the GCC approach to estimating the multilevel factor model for the standardised

series, denoted π̃ijt, with 10 regions, which is referred to as the national-regional model. By setting

rmax = 5 and applying the GCC criterion in (2.4.20), we detect one global (national) factor.13 Next,

by applying BIC3 to each region,14 we find that there is one local factor for NE, NW, YH, EE,

LD, SE and WA whereas no local factor is detected for EM, WM and SW (see Table 2.7). The

existence of both global and local factors clearly suggests that there are housing market cycles at

both national and regional levels.

To measure the strength of the factors relative to idiosyncratic errors, we evaluate the relative

13CCD and MCC by Choi et al. (2021) also select one global factor. This result is robust to the different values
of rmax.

14We have also applied alternative selection criteria, ICp2 by Bai & Ng (2002), ER by Ahn & Horenstein (2013)
and ED by Onatski (2010). First, ER surprisingly reports zero local factors for all regions whilst ICp2 and ED tend
to produce more factors but the additional factors explain very small portions of variance. Second, BIC3 is shown to
have good finite sample performance, see Choi & Jeong (2019) and Choi et al. (2021).
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importance ratios of the national and regional factors for region i by

RIGi = N−1
i

Ni∑
j=1

(
γ̂ ′
ijγ̂ij/

(
T−1π̃′

ijπ̃ij

))
and RIFi = N−1

i

Ni∑
j=1

(
λ̂′
ijλ̂ij/

(
T−1π̃′

ijπ̃ij

))

where π̃ij is the T × 1 vector of the (standardised) real house price growth rates in the j-th local

authority of the region i. The results reported in Table 2.7 show that the global factor explains a

considerable proportion of the variation, ranging between 29.6% (London) and 55.1% (South West)

with a mean of 46.6%. The large variance share explained by the national factor suggests that the

house market in England and Wales appears to be more integrated than the U.S. market where

the national factor is dominated by the regional factors (see Del Negro & Otrok (2007)). RIGs of

YH, EM, WM, EE and SW are above average, exhibiting that these regions are more responsive

to national shocks. Interestingly, London is the least sensitive region to the national factor. On

the other hand, the regional contribution is much weaker as its average relative importance ratio is

only 8.3%. Still, the regional factor explains substantially larger time variations of the house price

inflation for London and South East respectively at 22.6% and 15.1%.

To avoid the issue that the estimated global and local factors are subject to rotation/sign

indeterminacy, we report the time-varying behaviour of the average global (national) and local

(regional) factor-components for each region i at time t that are constructed by Ĝit = ¯̂γ
′
iĜt and

F̂it =
¯̂
λ
′
iF̂it, where ¯̂γi = N−1

i

∑Ni
j=1 γ̂ij and

¯̂
λi = N−1

i

∑Ni
j=1 λ̂ij .

15 The trajectories of Ĝit plotted in

Figure 2.1, are highly persistent but exhibit a typical “boom-bust-recovery” pattern of the (recent)

housing market cycle.16 The national factor-components initially displayed an upward trend until

2003Q3, followed by a long-term downturn until 2009Q2. It then made a quick recovery and became

relatively stable from 2012 till 2020 when the COVID19 pandemic erupted. We also observe a surge

in the national factor-components during the COVID19 period, which was mainly prompted by a

tax relief policy introduced by the UK government to boost the economy and improve liquidity.17

15As the (uniquely identified) factor-components are just scaled factors, they carry qualitatively the same informa-
tion.

16The boom-bust pattern is consistent with the economic theory suggesting that agents are over-optimistic about
the fundamentals during a boom, rendering the growth continues to accelerate, whilst as the economy deteriorates
following the negative shock, their expectations of capital return are reversed, resulting in the house market collapse,
which is further worsened by foreclosures, see Kaplan et al. (2020) and Chodorow-Reich et al. (2021).

17The residential property buyers in the U.K. pay Stamp Duty Land Tax (SDLT). The first stage of the policy
started from July 2020 and ended at June 2021. The tax reduction is effectively raising the nil rate threshold of the
property value from £125,000 to £500,000. See https://www.gov.uk/guidance/stamp-duty-land-tax-temporary

-reduced-rates. As the housing demand was stimulated by the policy, the price was pushed up with the inelastic
housing supply.

https://www.gov.uk/guidance/stamp-duty-land-tax-temporary-reduced-rates
https://www.gov.uk/guidance/stamp-duty-land-tax-temporary-reduced-rates
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Figure 2.1: Estimated national components

The first two figures in Figure 2.2 display the time-varying patterns of the regional factor-

components F̂it, from which we can identify that the regional components of EE, LD and SE (solid

lines) co-move closely (the upper panel) while those of NE, NW, YH and WA (dotted lines) tend

to cluster together (the lower panel). These clustering patterns are corroborated by the correlation

matrix among the estimated regional components in Table 2.8, showing that the first and second

off-diagonal elements are close to one, but the other off-diagonal ones are considerably smaller.

Furthermore, we observe transparent discrepancies between these two groups (referred to as Area

1 and Area 2). The regional factor-components in Area 1 appear to have an earlier turning point

around 2000 than the global components during the boom, but declined sharply during the financial

crisis, Brexit and COVID19 period. On the other hand, the regional components in Area 2 tend to

move in an opposite direction, but remained remarkably stable since 2008.
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Table 2.8: Correlation matrix among the regional factor compo-
nents

NE NW YH W EE LD SE

NE 1 0.859 0.885 0.827 -0.59 -0.383 -0.512

NW 0.859 1 0.911 0.946 -0.659 -0.471 -0.585

YH 0.885 0.911 1 0.884 -0.672 -0.531 -0.628

W 0.827 0.946 0.884 1 -0.628 -0.456 -0.559

EE -0.59 -0.659 -0.672 -0.628 1 0.859 0.948

LD -0.383 -0.471 -0.531 -0.456 0.859 1 0.927

SE -0.512 -0.585 -0.628 -0.559 0.948 0.927 1

Figure 2.2: Estimated regional components

Next, we formally investigate an issue of whether there are areal factors common to some regions.

We first project the estimated global factors out from the data and obtain the residuals containing

only the local factors and errors, which form the new areal data. Then, we apply the GCC and

MCC criterion to these areal data consisting of the different combinations of regions. For example,

if the local factors of NE, NW, YH, and WA are common, then the number of common (areal)

factors should be one, and zero otherwise. Alternatively, we may consider a two-block model with

Area 1 and Area 2 as blocks. If the two areal factors are identical, then there should be one common
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factor. Otherwise, the number of common factor is zero. The results in Table 2.9 confirm that the

local factors are common within each area, but the two areal factors are different. Thus, we can

identify three areas, Area 1 (LD, EE and SW) with one areal factor, Area 2 (NE, NW, YH and

WA) with one areal factor, and Area 3 (EM, WM and SW) with zero areal factor. Interestingly,

these areas are adjacent geographically (see Figure 2.3). Notice that the existence of an areal factor

around London is not in line with the notion that the “London factor” is pervasive nationally,18

because the main impact of London is more likely to be confined to its neighbouring regions. In this

regard, this finding may provide a support to the notion of “convergence club” that the house prices

in regions, that are closer and more distant to London, tend to converge separately, e.g. Holmes &

Grimes (2008) and Montagnoli & Nagayasu (2015).

Figure 2.3: Map of regions in England and Wales

18Holly et al. (2011) propose a spatio-temporal model with the London price set as a common factor for all regions.
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Table 2.9: Test of the number
of common local factors from new
blocks after Ĝ being projected out

New Blocks r̂MCC r̂GCC

NE, NW, YH, W 1 1

EE, LD, SE 1 1

Area 1, Area 2 0 0

Table 2.10: Relative impor-
tance ratios from the Nation-
Area model

Area r̂i RIG RIF

Area 1 1 0.447 0.132

Area 2 1 0.429 0.104

Area 3 0 0.525 0.000

Avg 0.467 0.079

Next, we estimate a national-areal model with 3 areas, and compare its estimation results

with those obtained from the national-regional model with 10 regions. It is remarkable that the

correlation between the global factors estimated from these two models is 0.996. Further, the local

(areal) factor from Area 1 has correlations of 0.924, 0.974 and 0.977 with the local (regional) factors

from EE, LD and SE, whereas the areal factor from Area 2 has correlations of 0.917, 0.978, 0.941

and 0.955 with the regional factors from NE, NW, YH, and W. This confirms the presence of the

common local factors among some regions in which case the standard CCA-based estimates of the

global and local factors may be inconsistent. The third panel in Figure 2.2 displays the areal factor

components constructed by F̂at =
(
N−1

a

∑Na
j=1 λ̂

′
aj

)
F̂at for a = 1, 2. These areal components follow

the quite similar time-varying patterns to the clustered regional components as shown in the first

two figures in Figure 2.2.

To assess the information contents of the global/local factor components, we present the cor-

relations between the national/areal factor components and a list of macroeconomic and financial

variables in Table 2.11. The national components are positively correlated with the GDP growth,

the number of buildings started and the New York house price growth rate, demonstrating the

pro-cyclicality and possibly strong connection to the international housing market. Moreover, the

national component is negatively correlated with the unemployment rate (the demand side), whilst
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they are negatively correlated with the labour force in the construction sector (the supply side).

The credit market condition also plays an important role, as the national components are nega-

tively correlated with the mortgage rate and the 20-year government bond yields while positively

correlated with residential lending approvals. These results are in line with the conventional view

that the national housing market cycle is pro-cyclical and closely related to economic fundamentals

(see Chodorow-Reich et al. (2021)).

By contrast, the areal housing market cycles captured by the areal components display a het-

erogeneous and opposition pattern, as shown in the last plot of Figure 2.2. Although the areal

component in Area 2 is still negatively and positively correlated with the unemployment rate and

the residential credit supply respectively, it is positively correlated with the construction labour.

Interestingly, the areal component in Area 1 shows that even tight financial market/economy con-

ditions do not seem to suppress the housing market cycle surrounding Area 1. The opposite sign of

the correlations reflect that the two areas react differently to changes of financial market/economy

conditions. We may therefore conclude that the existence of such distinctive areal factors clearly

indicates a housing market segmentation subject to a geographical gradient.
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Table 2.11: The correlations between factor components and macro variables

Obs National Area 1 Area 2

GDP (Growth Rate) 102 0.135 0.055 0.006

IP (Growth Rate) 102 0.106 0.031 −0.047

CPI (Growth Rate) 102 −0.39∗∗ −0.156 0.003

Employment 102 0.198 −0.34 0.146

Unemployment 102 −0.439∗∗∗ 0.321 −0.241

Construction Labour (Log) 98 −0.304 −0.387∗∗ 0.492∗∗∗

Building Started (Log) 97 0.532∗∗∗ −0.028 0.298

Residential Investment (Log) 98 −0.269 −0.428∗∗∗ 0.272

New York House Price (Growth Rate) 102 0.655∗∗∗ −0.176 0.21

M1 (Growth Rate) 102 0.228 0.166 0.103

M3 (Growth Rate) 102 0.062 0.028 0.15

Residential Lending Approvals (Log) 102 0.238 −0.434∗∗∗ 0.467∗∗∗

Mortgage Rate 58 −0.343 0.354 0.135

Inter Bank Lending Rate Overnight 98 0.371∗ 0.303 0.048

Inter Bank Lending Rate 3 Months 87 0.287 0.163 0.085

Government Zero Coupon Bond Yields 5 Years 102 0.064 0.074 0.078

Government Zero Coupon Bond Yields 10 Years 102 −0.257 0.019 0.04

Government Zero Coupon Bond Yields 20 Years 100 −0.575∗∗∗ −0.083 0.008

∗∗∗, ∗∗ and ∗ indicate 1%, 5% and 10% significance level respectively. The data of macro variables from GDP

to Unemployment rate are downloaded from the website of Office for National Statistics: https://www.ons.gov.uk/.

The financial variables from M1 to zero coupon bond yield are downloaded from the website of Bank of Endland:

https://www.bankofengland.co.uk/statistics/research-datasets.

Finally, we investigate another important issue called the South-North house price gap, which

has been a long-standing political concern. We collect the annual regional population data from

Nomis and construct the areal population by the average of the regional population.19 We also

aggregate the areal factor components into the annual ones. The first two figures in Figure 2.4

display the areal factor components and the (lagged) population growth rate of in Area 1 and Area

2, respectively. We observe that they co-move closely with correlations of 0.304 and 0.44 respectively

for Area 1 and Area 2. Next, we construct the population gap between the two areas, calculated as

the population in Area 1 minus the population in Area 2. We then compare its growth rate with

the difference (gap) between their areal components. From the third panel in Figure 2.4, we observe

19The regional population data can be found in https://www.nomisweb.co.uk.

https://www.ons.gov.uk/
https://www.bankofengland.co.uk/statistics/research-datasets
https://www.nomisweb.co.uk
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that the growth rate of the (lagged) population gap strongly co-moves with the areal components

gap with the remarkably high correlation (0.8). This suggests that the growth rate of the previous

population gap can become a strong predictor for the areal components gap.20

Figure 2.4: Areal components and population

2.7 Conclusion

We have developed a novel approach based on the generalised canonical correlation (GCC) analysis

for consistently estimating the global/local factors and loadings in a multilevel factor model. We

also introduce a new selection criteria for the number of global factors. The Monte Carlo simulation

shows dominating performance of our approach. Our methodology is applied to analysing the house

market in England and Wales using a large disaggregated panel data of the real house price growth

rates for the 331 local authorities over the period 1996Q1 to 2021Q. We find that the national

factor explains about half of the time series variation while the regional factors are less important

but non-negligible. Moreover, we show that the regional factors are common to some regions and

hence suggesting a national-areal model rather than a national-regional model.

Although we focus on the global-local specification, our approach can be extended to cover the

20Howard & Liebersohn (2020) show that the expected income inequality may drive the divergence of the house
prices through the channel of rent expectation. Our results suggest that the widening population gap also contribute
to the house price gap.
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multilevel factor model that has a more complicated grouping scheme. For example, the model

in which the individuals can be classified to more than two layers. See the parallel grouping in

Breitung & Eickmeier (2016) and the hierarchical grouping in Moench et al. (2013). Furthermore, if

the block membership is unknown, it is possible to estimate the block memberships using methods

developed by Ando & Bai (2017), Coroneo et al. (2020) and Uematsu & Yamagata (2022) and apply

GCC thereafter.



Chapter 3

Estimation and Inference for a

Multi-dimensional Panel Data Model

with Multilevel Factors

Abstract This paper considers a multi-dimensional panel data model with multilevel factors when

the numbers of cross-sections and time observations are large. We develop a multilevel iterative

principal component (MIPC) method for estimation by iteratively updating between the slope

coefficients and factors, given one another. Under a finite number of blocks, our approach is able

to produce consistent estimates of the slope coefficients, factors, and loadings. We also propose a

model selection criteria based on the eigenvalue ratios to determine the numbers of factors. Given

consistent factor estimates from each block, we apply the generalised canonical correlation (GCC)

estimation to separately identifying the global and local factors. We show the consistency of our

estimates and establish the asymptotic normality of the bias-corrected estimator for the slope co-

efficients. The Monte Carlo simulation demonstrates good finite sample performance of MIPC

compared to IPC in the presence of multilevel factor structure. In an empirical application, our

model is applied to an analysis of the energy consumption and economic growth nexus using a

cross-country panel data categorised by regions.

Keywords: Panel Data, Principal Components, Interactive Effects, Multilevel Factors.

JEL codes: C14, C23, C51.
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3.1 Introduction

Panel data regression is an important tool for empirical studies as it can provide more efficient

estimations than cross-sectional and time-series regressions. Moreover, it can also account for un-

observed heterogeneity that may cause endogeneity when such variables are correlated with the

regressors. However, when the additive effects of individual and time variables fail to capture the

cross-sectional correlation properly, inconsistent estimations and invalid inferences can occur. To

address this issue, interactive fixed effects (IFE) can be used, which are multiplicative terms of

the individual and time effects. The iterative principal components (IPC) approach, which was

pioneered by Bai (2009), has become a popular way to estimate such models, especially for large N

and T . Another approach for IFE is the common correlated effects (CCE) approach developed by

Pesaran (2006), where the interactive fixed effects are referred to as “factor structure”.

However, in practice, researchers often encounter multi-dimensional panel data where individuals

can be grouped into different categories (blocks). In such cases, local factors may be required in

addition to the global factors to capture cross-sectional correlations within blocks. The use of local

factors in combination with global factors can handle the heterogeneity across different blocks.

Ando & Bai (2014) and Ando & Bai (2017) develop panel regression models with global and local

factors by combining shrinkage estimation and PC. Rodŕıguez-Caballero (2022) extended the CCE

approach to a three-dimensional setup with a hierarchical factor structure. Kapetanios et al. (2021)

studied the three-dimensional CCE in a panel with origin-destination heterogeneity. Feng et al.

(2023) extend Bai’s approach to incorporate hierarchical multilevel factors when the number of

blocks tends to infinity.

This article studies a panel regression model with unobserved global and local factors using

a modified IPC estimation based on Bai (2009). The focus is on a finite number of blocks R,

which is often the case in practice. We propose an estimation procedure that produces consistent

slope parameters and the multilevel factors, and employ a wild dependent bootstrap, following Shao

(2010) and Feng et al. (2023), for inference. Our approach is thereby called the multilevel IPC

(MIPC). In addition, we propose a consistent selection criteria for estimating the numbers of global

factors r0 and local factors ri for each block i. When R tends to infinity, Jin et al. (2023) show that

the consistent estimation of r0 and ri can be achieved in a sequential manner because each block is

asymptotically negligible. By contrast, when R is finite, consistent estimation of r0 and ri is difficult

because the eigenvalues generated by the global and local factors are not well separated (see Han

(2021)). While the information criteria in Ando & Bai (2014) and Ando & Bai (2017) are available

for finite R, they can be computationally infeasible even when R is only mildly large, as pointed

out by Choi et al. (2021). Our approach provides consistency and valid inference by requiring only

the consistent estimation of r0 + ri for each i, which can be easily done block-by-block.

We focus primarily on homogeneous slope coefficients instead of heterogeneous ones, which are

considered in Ando & Bai (2014) and Ando & Bai (2017). In the heterogeneous case, the individual

slope estimates are
√
T -consistent without bias terms.1 By contrast, the optimal convergence rate√

NT can be achieved in our homogeneous model but comes with biased terms in the asymptotic

1We extend MIPC to a heterogeneous model; see Appendix C.2 for details.
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distribution. We develop consistent estimators of these bias terms and propose a bias-corrected

estimator. These are new results in the literature. In the appendix, we show that MIPC can be

generalised to the heterogeneous coefficient model.

In the final step, we apply the generalized canonical correlation (GCC) estimation developed

by Lin & Shin (2022) to disentangle the global and local factors, given consistent slope coefficients.

Therefore, the results in Lin & Shin (2022) are directly applicable. This is useful in empirical

studies when the global and local factors themselves are of interest rather than treated as nuisance

parameters.

Via Monte Carlo simulation, we show the consistency of the estimated slope coefficients as well

as the global and local factors. More importantly, MIPC with the estimated numbers of factors has

smaller size distortions than the infeasible version of IPC with the known total number of factors.

This demonstrates the superiority of our approach.

The rest of the paper is organized as follows. We introduce the panel data model with multilevel

factors and propose the MIPC in Section 3.2. In Section 3.3, we analyze the asymptotic properties

of the slope coefficients, factors, loadings, as well as the estimates of the numbers of factors. Section

3.4 provides a detailed algorithm for the implementation of MIPC. In Section 3.5, we demonstrate

the finite sample performance of our approach using Monte Carlo simulations. We apply our ap-

proach to analysing the nexus between energy consumption and economic growth in Section 3.6

using cross-country multi-dimensional panel data. Section 3.7 is the concluding remarks. All the

proofs are relegated to the Appendix.

3.2 The Model

Consider the following panel regression model with multilevel factors:

yijt = X′
ijtβ + uijt, i = 1, ..., R, j = 1, ..., Ni, t = 1, ..., T

uijt = γ ′
ijGt + λ′

ijFit + eijt
(3.2.1)

where Xijt =
[
x1ijt, . . . , x

p
ijt

]′
is the p × 1 regressors and β =

[
β1, . . . , βp

]′
is the corresponding

slope parameters. The error term uijt consists of the global, local and idiosyncratic components.

Gt =
[
G1

t , ..., G
r0
t

]′
is the r0×1 unobserved global factors, Fit =

[
F 1
it, ..., F

ri
it

]′
is the ri×1 unobserved

local factors in the block i, γij and λij are the corresponding factor loadings, and eijt is the

idiosyncratic error. We assume that the number of blocks R, as well as the numbers of factors

r0, r1, . . . , rR are fixed, whilst the numbers of individuals in each block N1, . . . , NR and the time

observations T tend to infinity. Let N = min{N1, . . . , NR} and N =
∑R

i=1Ni, we assume that

N → ∞ through out this paper. We also assume that the group membership is known a priori. In

vector notation, the above model can be written as

Yij = Xijβ + uij with uij = Gγij + Fiλij + eij = Kiθij + eij (3.2.2)

where Yij , Xij , G, Fi, uij and eij are formed by stacking the corresponding identities across t and

Ki = [G,Fi] and θij =
[
γ ′
ij ,λ

′
ij

]′
. Let di = r0 + ri for all i. For convenience, we express the error
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components using the following matrix notation:

ui = GΓ′
i + FiΛ

′
i + ei = KiΘ

′
i + ei

where ui = [ui1, . . . ,uiNi ], Γi = [γi1, . . . ,γiNi ]
′, Λi = [λi1, . . . ,λiNi ]

′, and Θi = [Γi,Λi].

As pointed out by Bai (2009) and Feng et al. (2023), the specification in (3.2.2) incorporates

various widely applied fixed effect models as special cases, such as individual fixed effects and

time effects. Moreover, the regressors are allowed to be arbitrarily correlated with the factors and

loadings. Our model extends the interactive fixed effects by allowing the factors to be block specific

(semi-pervasive) rather than pervasive. For example, yijt is the house price (or growth rate) for city

j that belongs to region i and Xijt is the income and population. The house prices across different

regions are subject to the national business cycle captured by Gt. In addition, the regional economic

shocks, captured by the local factors Fit, can also be an important source of the local house price

co-movement. The omission of such local factors may lead to inconsistent estimation of the slope

parameters if the regressors are correlated with the local components. It may also invalidate the

inference due to the strong cross-section correlation induced by the local factors.

It is important to note that model (3.2.1) can be written as a two dimensional model as in Bai

(2009). Consider the factor structure in uijt. Let ui.t = [ui1t, . . . , uiNit]
′. The factor structure in

the error component can be written as

ut = Θ+K+
t + et, (3.2.3)

where

ut
N×1

=


u1.t

...

uR.t

 , et
N×1

=


e1.t
...

eR.t

 , K+
t

r+×1

=


Gt

F1t

...

FRt

 , Θ+

N×r+
=


γ1 λ1 0 · · · 0

γ2 0 λ2 · · · 0
...

...
...

. . .
...

γR 0 0 · · · λR

 .

Then, the model (3.2.1) can be written as

Yt = Xtβ +Θ+K+
t + et (3.2.4)

where Yt = [y11t, . . . , y1N1t, . . . , yR1t, . . . , yRNRt]
′ and Xt = [X11t, . . . ,X1N1t, . . . ,XR1t, . . . ,XRNRt]

′.

IPC can be valid when the total number of the factors r+ is finite and known. However, it is well

known that the determination of r+ will be difficult as the local factors become too “weak” to be

detected as the R increases. Additionally, the global and local factors cannot be separately identified

by IPC. Feng et al. (2023) consider the multilevel model as in (3.2.1) in a setting that the number

of blocks goes infinity. In such a case, the identification of the global and local factors from (3.2.3)

can be done sequentially. Let uijt = γ ′
ijGt + u∗ijt where u∗ijt = λ′

ijFit + eijt. When R → ∞, each

block is asymptotically negligible so the local components λ′
ijFit only introduce weak correlations

among the error terms u∗ijt. As a result, the PC estimation applied to ut can consistently estimate

Gt and then Fit (as well as their dimension) in a sequential manner. However, if R is fixed, the local

components λ′
ijFit violates the weak cross-section correlation assumption of u∗ijt so PC is no longer
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applicable, as pointed out by Breitung & Eickmeier (2016). In many applications, R is finite rather

than tends to infinity. Therefore, it is worth highlighting that the multilevel factor structure with

finite R brings new challenges in estimation as well as model selection. In this article, we establish

an estimation procedure that works under fixed R, providing valid model selection and inferential

theory for the estimates.

We define MA = I−PA and PA = A (A′A)−1A′ for any matrix A that has full column rank.

Assuming that di’s are known a priori, we minimise the objective function defined as follows:

Q (b,K1, . . . ,KR) =
R∑
i=1

Ni∑
j=1

(Yij −Xijb)
′MKi (Yij −Xijb) (3.2.5)

where Ki is a T × di matrix for all i. The estimators are given by(
β̂, K̂1, . . . , K̂R

)
= argmin

(b,K1,...,KR)∈D
Q (b,K1, . . . ,KR)

where D = Rp × KR and K =
{
K|T−1K′K = Idi

}
. The factors and loadings are subject to

rotational indeterminacy, i.e. KiΘ
′
i is observationally equivalent to KiAA−1Θ′

i for any invertible

matrix A. Therefore, we impose K̂′
iK̂i/T = Idi and that Θ̂′

iΘ̂i is diagonal for each block i as

identification restrictions. The above objective function implies that the solutions
(
β̂, K̂1, . . . , K̂R

)
are the following

β̂ =

 R∑
i=1

Ni∑
j=1

X′
ijMK̂i

Xij

−1 R∑
i=1

Ni∑
j=1

X′
ijMK̂i

Yij

 (3.2.6)

K̂iV̂i =

 1

NiT

Ni∑
j=1

(
Yij −Xijβ̂

)(
Yij −Xijβ̂

)′ K̂i for each i (3.2.7)

where V̂i is a diagonal matrix consisting of the di = r0 + ri largest eigenvalues of the term in the

square bracket of (3.2.7).

Following Bai’s IPC,
(
β̂, K̂1, . . . , K̂R

)
are obtained in an iterative manner. Given β̂, K̂i is

updated block by block as in (3.2.7). Given K̂i for each i, β̂ is updated using (3.2.6). We thus

call this approach multilevel IPC (MIPC). The solutions (3.2.6) and (3.2.7) are the same as

in Feng et al. (2023). However, it is important to note that, under finite R, the bias terms in

β̂ do not vanish as is the case when R → ∞. Our theory suggests that the consistency of β̂ only

requires the consistency of K̂i’s without separate identification of G and Fi’s, which is different from

the approach developed by Ando & Bai (2014). The advantages of MIPC are twofold. From a

theoretical perspective, the sequential projection of global and local factors in the
√
NT -consistency

framework introduces asymptotic bias terms. However, these bias terms are significantly simplified

by employing the MIPC method. On the practical side, the estimation of di’s is substantially

easier than the joint estimation of r0 and ri’s, as we explained earlier. In the next section, we shall

demonstrate the large sample properties of our estimators and propose a bias corrected estimator

for the slope coefficients.
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3.3 Asymptotic Analysis

3.3.1 Consistency and asymptotic distribution

In this section, we assume for the moment that the numbers of the factors di are known for each

block i. The consistent estimation of the numbers of factors will be developed in Section 3.3.2. We

make the following assumptions for the consistency of our estimators.

Let M be a finite constant.

Assumption 3.A. E
(
∥Xijt∥4

)
≤ M for all i, j, and t. Furthermore, we have

inf
K1,...,KR∈KR

D (K1, . . . ,KR) > 0.

where D (K1, . . . ,KR) is a p× p matrix such that

D (K1, . . . ,KR) =
1

NT

R∑
i=1

Ni∑
j=1

X′
ij

(
MKiXij −

1

Ni

Ni∑
k=1

ai,kjMKiXik

)

with ai,kj = θ′
ik (Θ

′
iΘi/Ni)

−1 θij.

Assumption 3.B.

1. E
(
∥Kit∥4

)
≤ M and T−1K′

iKi
p→ ΣKi for each i as T → ∞ where ΣKi is an di × di positive

definite matrix.

2. E
(
∥θij∥4

)
≤ M and N−1

i Θ′
iΘi

p→ ΣΘi for each i as Ni → ∞ where ΣΘi is an di× di positive

definite matrix.

Assumption 3.C.

1. For all i, j and t, E(eijt) = 0 and E
(
|eijt|8

)
≤ M.

2. For all i, E(eijteiks) = σi,(jk),(ts), |σi,(jk),(ts)| ≤ σi,(jk) for all (t, s) and |σi,(jk),(ts)| ≤ τi,(ts) for

all (j, k) such that

1

Ni

Ni∑
j=1

Ni∑
k=1

σi,(jk) ≤ M,
1

T

T∑
t=1

T∑
s=1

τi,(ts) ≤ M,
1

NiT

Ni∑
j=1

Ni∑
k=1

T∑
t=1

T∑
s=1

|σi,(jk),(ts)| ≤ M.

3. For all i, t and s

E

∣∣∣∣∣∣ 1√
Ni

Ni∑
j=1

[eijseijt − E(eijseijt)]

∣∣∣∣∣∣
4 ≤ M

4. For all i, we have

1

NiT 2

T∑
t=1

T∑
s=1

T∑
u=1

T∑
v=1

Ni∑
j=1

Ni∑
k=1

|Cov(eijteijs, eikueikv)| ≤ M
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1

N2
i T

T∑
t=1

T∑
s=1

Ni∑
j=1

Ni∑
k=1

Ni∑
c=1

Ni∑
d=1

|Cov(eijteikt, eicseids)| ≤ M

Assumption 3.D. emjt is independent of Xhks, θhk and Khs for all m, h, j, k, t, and s.

Assumption 3.A plays an important role as an identification condition. This assumption rules

out common regressors that do not vary across individuals and also time-invariant regressors that

do not vary across time. Moreover, it is straightforward to show that the following equation holds

D (K1, . . . ,KR) =
1

NT

R∑
i=1

Ni∑
j=1

Z′
ijZij .

where Zij a T × p matrix such that

Zij = MKiXij −
1

Ni

Ni∑
k=1

ai,kjMKiXik.

Assumption 3.B ensures the existence of the factors in each block i. Assumption 3.C allows cross-

sectional and serial correlation in the error terms, but they are restricted by Assumption 3.C.2-3.C.4.

Assumptions 3.A-3.D extend Assumptions A–D in Bai (2009) by requiring those conditions to be

met in each block i. These assumptions are standard in the literature.

Lemma 3.1. Let
(
β̂, K̂1, . . . , K̂R

)
be the estimators from minimising (3.2.5). Under Assumption

3.A-3.D, as N1, . . . , NR, T → ∞, the following statements holds:

1. β̂ − β
p−→ 0.

2. For each i, the matrix K′
iK̂i/T is invertible and

∥∥∥PK̂i
−PKi

∥∥∥ p−→ 0.

Assumption 3.E. For each i, we have limNi,N→∞N/Ni = αi ≤ M.

Lemma 3.2. Under Assumption 3.A-3.E, as N1, . . . , NR, T → ∞ and T/Ni → ρi > 0 for all i,

then
√
NT

(
β̂ − β

)
= Op(1).

Lemma 3.1 establishes the consistency of the slope coefficients and the factor spaces for each

block i based on the extreme estimation. At this stage, we are only able to claim consistency in

Lemma 3.1.2 because the number of parameters grows with T . The consistency of K̂i up to rotation

is established by Lemma C.1.2 in the Appendix. Lemma 3.2 shows that β̂ achieves a convergence

rate of
√
NT assuming that all Ni’s are of the same order of magnitude and each Ni is comparable

with T . Assumption 3.E is standard in the multilevel factor literature, see Ando & Bai (2014) and

Andreou et al. (2019) for examples.

Assumption 3.F. For some nonrandom positive definite matrix DZ , as N,T → ∞, we have

1√
NT

R∑
i=1

Ni∑
j=1

Z′
ijeij

d−→ N (0,DZ)
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where

DZ = plim
1

NT

R∑
m=1

R∑
h=1

T∑
t=1

T∑
s=1

σ(mh),(jk),(ts)ZmjtZ
′
hks.

Theorem 3.1. Under Assumption 3.A-3.F, as N1, . . . , NR, T → ∞ and T/Ni → ρi > 0 for all i,

then
√
NT

(
β̂ − β

)
d−→ N

(
R∑
i=1

(
α
−1/2
i ρ

1/2
i B

0
i + α

−1/2
i ρ

−1/2
i C

0
i

)
,D−1

0 DZD
−1
0

)
where B0

i = plimBi and C
0
i = plimCi with

Bi = −D (K1, . . . ,KR)
−1 1

Ni

Ni∑
j=1

Ni∑
k=1

[
(Xij −Wij)

′Ki

T

]
Piθik

(
1

T

T∑
t=1

σi,(jk),(tt)

)
,

Ci = −D (K1, . . . ,KR)
−1 1

NiT

Ni∑
j=1

X′
ijMKi

[
1

Ni

Ni∑
k=1

E
(
eike

′
ik

)]
KiPiθij ,

Wij =
1

Ni

Ni∑
k=1

ai,jkXik, and Pi =

(
K′

iKi

T

)−1(Θ′
iΘi

Ni

)−1

.

In addition, D0 = plimN1,...,NR,T→∞D (K1, . . . ,KR) = plimN1,...,NR,T→∞ (NT )−1∑R
i=1

∑Ni
j=1 Z

′
ijZij

and DZ is defined in Assumption 3.F.

Theorem 3.1 shows that the asymptotic distribution of β̂ is not centered. The bias term Bi

evolves due to the heteroskedasticity and cross-section correlation between contemporaneous error

terms and Ci is a consequence of correlation and heteroskedasticity in the time dimension. If it is

assumed that the error terms are i.i.d, we have Bi = 0 and Ci = 0 for all i so there is no bias.

Furthermore, the i.i.d assumption leads toDZ = D0 and hence we have
√
NT

(
β̂ − β

)
d→ N (0,D0).

However, if the error terms are not i.i.d, then a bias correction is required.

Let B̂i and Ĉi be the estimators of Bi and Ci, respectively, such that

B̂i = −D
(
K̂1, . . . , K̂R

)−1 1

Ni

Ni∑
j=1

Ni∑
k=1


(
Xij − Ŵij

)′
K̂i

T

(Θ̂′
iΘ̂i

Ni

)−1

θ̂ikσ̂i,(jk)

with θ̂ik = T−1K̂′
i

(
Yik −Xikβ̂

)
, Θ̂i =

[
θ̂i1, . . . , θ̂iNi

]′
, σ̂i,(jk) = T−1ê′ij êik, êij = Yij − Xijβ̂ −

K̂iθ̂ij , êik = Yik −Xikβ̂ − K̂iθ̂ik, and

Ĉi = −D
(
K̂1, . . . , K̂R

)−1 1

NiT

Ni∑
j=1

X′
ijMK̂i

ŜiK̂i

(
Θ̂′

iΘ̂i

Ni

)−1

θ̂ij ,

where Ŝi is an estimator of Si whose (t, s)-th element is Ŝi,(ts) = N−1
i

∑Ni
k=1 êiktêiks. Assuming

E(emjtehkt) = σ(mh),(jk) for all m, h, j, k, and t, it can be shown that
√

T/Ni

(
B̂i −Bi

)
= op(1)
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and
√

Ni/T
(
Ĉi −Ci

)
= op(1) (see Lemma C.1.7). Then, the bias-corrected estimator is given by

β̂bc = β̂ −
R∑
i=1

(
1

N
B̂i +

Ni

NT
Ĉi

)
.

Theorem 3.2. Under Assumptions 3.A-3.F, and E(emjtehkt) = σ(mh),(jk) for all m, h, j, k, and

t, as N1, . . . , NR, T → ∞, T/N2 → 0, and N/T 2 → 0, then

√
NT

(
β̂bc − β

)
d−→ N

(
0,D−1

0 DZD
−1
0

)
.

Under the presence of weak cross-section correlation and serial correlation in the error term,

the consistent estimation of the covariance matrix D−1
0 DZD

−1
0 is infeasible in practice. Therefore,

following Feng et al. (2023), we adopt a dependent wild bootstrap advanced by Shao (2010) to

construct a valid confidence interval for β̂bc. The detailed algorithm for implementation is provided

in Section 3.4.2

3.3.2 Determining the numbers of factors

So far we have assumed that the numbers of factors di’s are known. In this section we develop a

consistent selection criterion. We set a finite integer that is common to all blocks, dmax, such that

dmax ≥ maxi{di}. We consider the objective function defined as follows:

Q (b,K 1, . . . ,K R) =
R∑
i=1

Ni∑
j=1

(Yij −Xijb)
′MKi

(Yij −Xijb) (3.3.8)

where Ki is a T × dmax matrix for all i. The initial estimators are given by(
β̃, K̃1, . . . , K̃R

)
= argmin

(β,K 1,...,K R)∈D
Q (b,K 1, . . . ,K R)

where D = Rp × K̃R and K̃ =
{
K|T−1K′K = Idmax

}
. Again, the above objective function implies

the following solutions:

β̃ =

 R∑
i=1

Ni∑
j=1

X′
ijMK̃i

Xij

−1 R∑
i=1

Ni∑
j=1

X′
ijMK̃i

Yij

 (3.3.9)

K̃iṼi =

 1

NiT

Ni∑
j=1

(
Yij −Xijβ̃

)(
Yij −Xijβ̃

)′ K̃i for each i. (3.3.10)

Under Assumption 3.A-3.E, it can be shown that β̃ and K̃i’s are consistent estimators. Define

2We validate the bootstrap procedure using simulations in Section 3.5 and the formal proof is beyond the scope
of this paper.
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the covariance matrix for each block i:

Σ̃i =
1

NiT

Ni∑
j=1

(
Yij −Xijβ̃

)(
Yij −Xijβ̃

)′
. (3.3.11)

Let ṽi,k be the k-th largest eigenvalue of Σ̃i. It can be shown that for k = 1, . . . , di, ṽi,k converges

to its population counterpart vi,k, which is larger than zero. On the contrary, ṽi,k is asymptotically

zero for k = di+1, . . . , dmax. Therefore, we follow Lam & Yao (2012) and Ahn & Horenstein (2013)

and develop estimators for di based on the ratios of the adjacent eigenvalues as follows:

d̂i = argmax
k=0,...,dmax−1

ṽi,k
ṽi,k+1

for i = 1, . . . , R

where ṽi,0 =
∑C2

NiT

ℓ=1 ṽi,ℓ/ log
(
C2
NiT

)
is a mock eigenvalue allowing the case where di = 0. Using the

results of Lemma C.1.9, for each i, it is straightforward that for k = 1, . . . , di−1, di+1, . . . , dmax−1,

ṽi,k/ṽi,k+1 = Op(1), whilst for k = di we have ṽi,k/ṽi,k+1 →p ∞. Therefore, the ratio of the

eigenvalues falls sharply at k = di. The mock eigenvalue ṽi,0 is smaller in magnitude than the

largest di eigenvalues but larger than the rest, which allows the case di = 0. The consistency of d̂i’s

is summarised in the following proposition:

Proposition 3.1. Under Assumptions 3.A–3.E, we have

lim
Ni,T→∞

Pr
(
d̂i = r0 + ri

)
= 1.

Alternatively, one may obtain d̂i by implementing the selection criteria proposed by Bai & Ng

(2002) to Ỹi =
[
Ỹi1, . . . , ỸiNi

]
for each i separately where Ỹij = Yij −Xijβ̃. In the supplement

appendix of Bai (2009), it is argued without rigorous proof that the estimated slope coefficients β̃i

are
√
NiT consistent even when dmax > di factors are estimated. Moon & Weidner (2015) studies

the asymptotic property of β̃ using a different set of assumptions other than Bai (2009).

3.3.3 Disentangling the global and local factors

While the estimation and inference do not necessarily require separate identification of global and

local factors, practitioners may, in some instances, wish to estimate G and Fi individually, each

with its economic interpretation. As a result, it becomes necessary to estimate the multilevel factor

model as follows, after obtaining β̂bc:

Yij −Xijβ̂bc = Kiθij + eij = Gγij + Fiλij + eij

Different techniques have been devised to disentangle global and local factors. In a special case

where R = 2, Andreou et al. (2019) propose using CCA to estimate the global factors based on the

canonical correlation between K̂1 and K̂2 by solving the characteristic equations:(
Ŝ12Ŝ

−1
22 Ŝ21 − ℓŜ11

)
V1 = 0 or

(
Ŝ21Ŝ

−1
11 Ŝ12 − ℓŜ22

)
V2 = 0.
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where Ŝab (a, b = 1, 2) represents the covariance matrix between K̂1 and K̂2. The global factors

can be estimated as Ĝ = K̂1Vr0
1 or Ĝ = K̂2Vr0

2 , where Vr0
m and Vr0

h are matrices comprising

the characteristic vectors corresponding to the r0 largest characteristic roots. Subsequently, by

projecting out Ĝ, one can obtain F̂i’s by applying PC to each block separately. In the case where

R ≥ 2, Breitung & Eickmeier (2016) and Choi et al. (2018) use the global factors generated by CCA

as initial estimates and propose iterative estimation procedures where the global and local factors

are sequentially updated given each other. However, as highlighted by Lin & Shin (2022), CCA

may not always correctly identify the global factors when common local factors are present, as they

might be misidentified as global factors. In such a scenario, CCA may lead to overestimation of

the number of global factors and inconsistent factor estimates. Instead, Lin & Shin (2022) propose

the generalised canonical correlation analysis (GCC), which extends the standard CCA by jointly

dealing with the pairwise canonical correlation between any two blocks. They show that GCC

outperforms existing approaches via simulation. In addition, GCC offers computational advantage

as it does not involve iterations by achieving consistency in one sequential estimation. Therefore,

in this article, we follow Lin & Shin (2022) to estimate the global and local factors using GCC.

Given the consistent estimates K̂i’s from the minimisation of (3.2.5), we follow the generalised

canonical correlation (GCC) estimation developed by Lin & Shin (2022) for the global and local

factors respectively. Specifically, we construct the following T (R− 1)R/2× d̂∗ system-wide matrix:

Φ̂ =


K̂1 −K̂2 0 0 . . . 0 0

K̂1 0 −K̂3 0 . . . 0 0
...

0 0 0 0 . . . K̂R−1 −K̂R

 (3.3.12)

where d̂∗ =
∑R

l=1 d̂l and perform a singular value decomposition (SVD) to Φ̂ as Φ̂ = P̂∆̂Q̂′. Let

δ̂1, . . . , δ̂d̂∗ be the diagonal elements of ∆̂ in ascending order. Then, the number of global factors r0

can be obtained by

r̂0 = argmax
k=0,...,d̂min

δ̂2k+1

δ̂2k
, d̂min = min

{
d̂1, . . . , d̂R

}
. (3.3.13)

To deal with the case of r0 = 0, we set the mock singular value as

δ̂20 =
1

CNT d̂∗

d̂∗∑
k=1

δ̂2k.

The number of local factors can be simply obtained by r̂i = d̂i− r̂0 for each block i. The consistency

of r̂0 and r̂i’s are summarised in the following proposition:

Proposition 3.2. Under Assumptions 3.A–3.E, we have:

lim
N1,...,NR,T→∞

Pr (r̂0 = r0) = 1 and lim
N1,...,NR,T→∞

Pr (r̂i = ri) = 1

Let Q̂r̂0 =
[
Q̂r̂0′

1 , . . . , Q̂r̂0′
R

]′
as the first r̂0 columns of Q̂ from the above SVD, and construct the
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T ×Rr̂0 matrix, Ψ̂ =
[
K̂1Q̂

r̂0
1 , . . . , K̂RQ̂

r̂0
R

]
. We perform the eigen decomposition,

T−1Ψ̂Ψ̂′ = L̂Ξ̂L̂′ (3.3.14)

where L̂ is a T × Rr̂0 orthonormal matrix and Ξ̂ is a T × T diagonal matrix consisting of the

eigenvalues in descending order. Then, from (3.3.14), we obtain the consistent estimator of the global

factors, denoted Ĝ, by the r̂0 vectors of L̂ corresponding to the r̂0 largest eigenvalues multiplied by√
T . Let Ŷij = Yij −Xijβ̂ and Ŷi =

[
Ŷi1, . . . , ŶiNi

]
. The global factor loadings can be estimated

by Γ̂i = T−1Ŷ′
iĜ. Finally, let ŶG

ij = Yij − Xijβ̂ − Ĝγ̂ij , the local factors and loadings can be

obtained by applying PC to each block ŶG
i =

[
ŶG

i1, . . . , Ŷ
G
iNi

]
. F̂i is

√
T multiply the r̂i eigenvectors

of ŶG
i Ŷ

G′
i corresponding to the r̂i largest eigenvalues. The local factor loadings can be obtained by

Λ̂i = T−1ŶG′
i F̂i.

To guarantee the consistency of Γ̂i, Λ̂i and F̂i, we need the asymptotic orthogonality assumption

stated as follows:

Assumption 3.G. For every i, T−1K ′
iKi =

[
ΣG 0

0 ΣFi

]
+ Op

(
T−1/2

)
where ΣG and ΣFi are

r0 × r0 and ri × ri full rank matrices.

Proposition 3.3.

Under Assumptions 3.A–3.E and 3.G, as N1, N2, . . . , NR, T → ∞, we have:

1√
T

∥∥∥Ĝ−GH
∥∥∥ = Op

(
1

CNT

)
1√
Ni

∥∥∥Γ̂′
i −H−1Γ′

i

∥∥∥ = Op

(
1

CNT

)
1√
T

∥∥∥F̂i − FiĤi

∥∥∥ = Op

(
1

CNT

)
1√
Ni

∥∥∥Λ̂′
i − Ĥ −1

i Λ′
i

∥∥∥ = Op

(
1

CNT

)
where H = T−1/2G′Jr0U is an r0 × r0 rotation matrix, Jr0 = Lr0(Ξr0)−1, Ξr0 is an r0 × r0

diagonal matrix consisting of the r0 non-zero eigenvalues of T−1GG′ in descending order, Lr0

is a T × r0 matrix of the corresponding eigenvectors, and U is an r0 × r0 orthogonal matrix.

Ĥi = (Λ′
iΛi/Ni)

(
F̂′
iFi/T

)
Υ̂−1

i is an ri × ri rotation matrix, Υ̂i is an ri × ri diagonal matrix

consisting of the ri largest eigenvalues of (NiT )
−1 ŶiŶ

′
i in descending order, Ŷi = Yi − ĜΓ̂′

i.

Moreover, CN,T = min{
√
N,

√
T} with N = min{N1, N2, . . . , NR}.

3.4 Estimation Algorithm

In this section, we outline the detailed algorithm for estimation:

Estimating the number of factors di:



3.4 Estimation Algorithm 98

Step A1. Obtain the OLS estimates of β ignoring the factors, denoted β̃(0). Fix a sufficiently

large integer dmax such that dmax ≥ maxi{di}. For each i, obtain the factors K̂
(0)
i as

√
T multiplied

by the dmax eigenvectors of

1

NiT

Ni∑
j=1

(
Yij −Xijβ̃

(0)
)(

Yij −Xijβ̃
(0)
)′

.

β̃(0) and K̃
(0)
i ’s are the initial estimates.

Step A2. Given K̃
(ℓ−1)
i for all i from the (ℓ− 1)-th step, update the slope coefficients as

β̃(ℓ) =

 R∑
i=1

Ni∑
j=1

X′
ijMK̃

(ℓ−1)
i

Xij

−1 R∑
i=1

Ni∑
j=1

X′
ijMK̃

(ℓ−1)
i

Yij

 .

Step A3. Given β̃(ℓ), update K̃
(ℓ)
i for each i as

√
T multiplied by the dmax eigenvectors of

1

NiT

Ni∑
j=1

(
Yij −Xijβ̃

(ℓ)
)(

Yij −Xijβ̃
(ℓ)
)′

.

corresponding to the dmax largest eigenvalues in descending order.

Step A4. Repeat Step A2–A3 until convergence, and obtain the resulting β̃ and K̃i for each i.

Step A5. Construct the covariance matrix for each i as

Σ̃i =
1

NiT

Ni∑
j=1

(
Yij −Xijβ̃

)(
Yij −Xijβ̃

)′
and obtain its dmax largest eigenvalues, denoted ṽi,1, . . . , ṽi,dmax . For each i, estimate d̂i as

d̂i = argmax
k=0,...,dmax−1

ṽi,k
ṽi,k+1

where ṽi,0 =
∑C2

NiT

ℓ=1 ṽi,ℓ/ log
(
C2
NiT

)
is the mock eigenvalue.

Estimating the slope coefficients and factors:

Step B1. Let β̂(0) = β̃ and K̂
(0)
i = K̃i for all i.

Step B2. Given K̂
(ℓ−1)
i for all i from the (ℓ− 1)-th step, update the slope coefficients as

β̂(ℓ) =

 R∑
i=1

Ni∑
j=1

X′
ijMK̂

(ℓ−1)
i

Xij

−1 R∑
i=1

Ni∑
j=1

X′
ijMK̂

(ℓ−1)
i

Yij

 .

Step B3. Given β̂(ℓ), update K̂
(ℓ)
i for each i as

√
T multiplied by the d̂i eigenvectors of

1

NiT

Ni∑
j=1

(
Yij −Xijβ̂

(ℓ)
)(

Yij −Xijβ̂
(ℓ)
)′

.
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corresponding to the d̂i largest eigenvalues in descending order.

Step B4. Repeat Step 2–3 until convergence, and obtain the resulting β̂ and K̂i for each i. The

bias-corrected estimator β̂bc can be obtained following Theorem 3.2.

Step B5. (Optional) Apply GCC estimation following Section 3.3.3 with r0 + ri replaced by d̂i

and obtain the global/local factors and loadings.

A bootstrap confidence interval:

The superscript ∗(b) denotes the b-th realisation among B bootstrap repetitions. Following Feng

et al. (2023), the bootstrap procedure proceeds as follows:

Step C1. Construct a random variable ε
(b)
t =

[
ε
(b)
1 , . . . , ε

(b)
T

]′
from a zero mean normal distribution

with covariance

Cov
(
ε(b)τ , ε(b)s

)
= Bartlett

(
τ − s

lT

)
for τ, s = 1, . . . , T

where lT is a bandwidth parameter3, and Bartlett(x) = 1 − |x| if |x| ≤ 1 or Bartlett(x) = 0

otherwise, is the Bartlett kernel function.

Step C2. For each i, j, and t, construct e
∗(b)
ijt = êijtε

(b)
t and y

∗(b)
ijt = Ẑ′

ijtβ̂bc + θ̂′
ijK̂it + e

∗(b)
ijt where

Ẑijt is the t-th row vector of Ẑij = M
K̂i
Xij −N−1

i

∑Ni
k=1 ai,kjMK̂i

Xik.

Step C3. Obtain the bootstrap estimator of the slope parameters by

β̂∗(b) =

 R∑
i=1

Ni∑
j=1

Ẑ′
ijMK̂i

Ẑij

−1 R∑
i=1

Ni∑
j=1

Ẑ′
ijMK̂i

Y
∗(b)
ij

 .

Step C4. Repeat Step C1-C3 B times. Construct the empirical distribution function for the k-th

slope coefficient

D̂βk(τ) =
1

B

B∑
b=1

1

(√
NT

(
β̂k,∗(b) − β̂k

)
≤ τ

)
for k = 1, . . . , p.

Then, the 1− α CI is given by[
β̂k − 1√

NT
D̂−1

βk

(α
2

)
, β̂k − 1√

NT
D̂−1

βk

(
1− α

2

)]
(3.4.15)

where D̂−1
βk (α/2) and D̂−1

βk (1− α/2) are the inverse functions of D̂βk evaluated at α/2 and 1− α/2.

3.5 Monte Carlo Simulation

In this section, we conduct simulation studies to analyse the finite sample performance of the

proposed estimators. The data is generated by

yijt = X′
ijtβ + uijt, uijt = γ ′

ijGt + λ′
ijFit + eijt.

3We set lT = ⌈T 1/3⌉ at the order of T 1/3 following Feng et al. (2023) in our simulation and application.
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The idiosyncratic errors are cross-sectionally and serially correlated as

et = 0.2et−1 +we
t , w

e
t ∼ i.i.d.N(0,Ωe)

where et = [e11t, . . . , e1N1t, . . . , eR1t, . . . , eRNRt]
′ and the (m,n) elements of Ωe are 0.2|m−n|. The

factors follow AR(1) processes

Gt = 0.5Gt−1 +wG
t , w

G
t ∼ i.i.dN(0, Ir0)

Fit = 0.5Fi,t−1 +wF
i,t, w

F
i,t ∼ i.i.dN(0, Iri)

and the factor loadings are drawn from i.i.d. standard normal distribution as γij ∼ i.i.d.N(0, Ir0)

and λij ∼ i.i.d. N(0, Iri). We consider p = 2 and allow the regressors to be correlated with the

factor structure as

x1ijt = γ ′
x,ijGt + λ′

x,ijFit + χ1
ijt, γx,ij ∼ i.i.d.N(0, Ir0), λx,ij ∼ i.i.d.N(0, Iri)

and

x2ijt =
∣∣γ ′

ijGt + λ′
ijFit

∣∣+ χ2
ijt

where χk
ijt’s are cross-sectionally correlated such that χk

t =
[
χk
11t, . . . , χ

k
1N1t

, . . . , χk
R1t, . . . , χ

k
RNRt

]′
is generated by

χk
t = 0.5ιN + 0.5χk

t−1 + ϵkt , ϵ
k
t ∼ i.i.d.N(0,Ωχ) for k = 1, 2.

with covariance matrix Ωχ whose (m,n) elements are 0.3|m−n|. We fix β = [1, 1]′, R = 4 and

r0 = ri = 2 for all i. We set N1 = · · · = NR for convenience and consider the sample sizes

Ni ∈ {30, 60, 90, 120, 150} and T ∈ {40, 80, 120, 160, 200}. Each simulation experiment is repeated

over 500 times.

We report the average bias for the bias-corrected estimators provided by MIPC, namely∥∥∥β̂bc − β
∥∥∥, and the size of the t-tests, namely the rejection rate ofH0 : β̂

k
bc = βk againstH1 : β̂

k
bc ̸= βk

for k = 1, 2 under 0.05 significance level. The precision of the estimated factors is evaluated by the

trace ratio defined as

TR
(
Â
)
=

tr

{
A′Â

(
Â′Â

)−1
Â′A

}
tr {A′A}

(3.5.16)

where Â is the estimates of A and tr{.} is the trace of a matrix. Apart from the global and

local factors, we evaluate the precision of the estimated combined factors K̂+ =
[
Ĝ, F̂1, . . . , F̂R

]
associated with the true factors K+ =

[
K+

1 , . . . ,K
+
T

]′
where K+

t is defined in (3.2.3). The closer

the trace ratios are to one, the more precise the factors are estimated. For the estimated numbers

of factors, we report the average r̂0 and r̂i that are estimated by GCC and r̂i = d̂i− r̂0 respectively,

where d̂i is determined by our approach in Section 3.3.2 with dmax = 10. To assess the overall

selection precision, we also report the average estimated total number of factors r̂+ = r̂0 +
∑R

l=1 r̂l.
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For comparison, we examine two different versions of IPC based on Bai (2009).4 The first

version is the bias-corrected IPC that is applied to the entire data. In this version, r̂+ is selected

by BIC3 with the maximum number of factors set at 15. We also consider an infeasible version

of IPC, denoted by IPC∗, which is the same as IPC except that we enforce the true number of

factors r+ = r0+
∑R

l=1 rl in the estimation. We assess the bias of the slope coefficients and the size

of the t-tests. Since these approaches cannot separately identify the global and local factors, the

precision of the estimated combined factors K̂+ is evaluated.

The first panel of Table 3.1 shows the average bias of the slope coefficients. It is evident

that MIPC and IPC∗ exhibit comparable performance, while IPC demonstrates a larger bias,

particularly when Ni or T is small. IPC is only comparable with MIPC and IPC∗ when both

Ni and T are sufficiently large. The second and third panels of Table 3.1 present the t-test sizes

given by these approaches. IPC is severely oversized even when both Ni and T become large.

Although IPC∗ has a small bias, it demonstrates considerable size distortion. On the contrary,

MIPC achieves a smaller size distortion in general, as the sample size increases. Take β̂1 as an

example, when Ni = 90, the sizes of IPC∗ are 13%, 27.8%, 20.2%, and 16.2%, and 13.8% for

T = 40, 80, 120, 160, 200 respectively, whilst the corresponding figures for MIPC are 13.2%, 9.2%,

8%, 7%, and 6.8%. This clearly shows that MIPC is superior to IPC and IPC∗ in the presence

of multilevel factors.

We now focus on the estimation of the factor structure. In the first panel of Table 3.2, we present

the trace ratios of the estimated global and local factors and their corresponding dimensions. The

results reveal that the global factors are accurately estimated. The trace ratio of the global factors is

not very high when Ni = 30 and T = 40. This is due to the underestimation of r0 in small samples.

As expected, the convergence of the local factors is slower than that of the global factors, but the

trace ratio increases rapidly as the sample size increases. We also observe a similar pattern for the

estimated dimensions of r̂0 and r̂i. This indicates that by combining MIPC with GCC, we are able

to successfully identify both global and local factors. In the second panel of Table 3.2, we report the

estimated total number of factors obtained from the MIPC, and IPC with BIC3. Our approach

precisely estimates the true r+, whereas IPC with BIC3 fails, as discussed in Section 3.2. It tends

to underestimate the true number of factors, unless both Ni and T are very large, leading to higher

bias and size distortion, which we have demonstrated in Table 3.1. Finally, the third part of Table

3.2 presents the trace ratios of the estimated combined factors. It is observed that IPC performs

poorly, as the dimension is always smaller. The precision of the estimated factors generated by

MIPC and IPC∗ are comparable. This suggests that the performance of MIPC and GCC in

terms of estimating the combined factor space is reasonably good, and the slower convergence of

the local factors does not impact the precision of the estimated combined factor space.

It is important to note that, IPC∗ is implemented with the known number of factors, which is

barely the case in practice. Nevertheless, in terms of inference, MIPC performs better than IPC∗

despite the uncertainty that arises from the estimation of the number of factors.

4We use the R package “phtt” for IPC estimation. See Bada & Liebl (2014) and https://CRAN.R-project.org

/package=phtt.

https://CRAN.R-project.org/package=phtt
https://CRAN.R-project.org/package=phtt
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Table 3.1: Simulation results for the slope coefficients (R = 4, r0 = ri = 2 for
all i, β = [1, 1]′)

Ni T MIPC IPC IPC∗ MIPC IPC IPC∗ MIPC IPC IPC∗

Bias
∥∥∥β̂ − β

∥∥∥× 100 Size of β̂1 ×100% Size of β̂2 ×100%

30 40 1.796 3.777 1.878 13.2 33.8 17 14.6 21.6 23.4

30 80 1.159 1.68 1.225 8.8 26 16 9.4 16.4 11

30 120 0.968 1.066 0.989 10.4 16.8 12.4 8.4 29.6 31

30 160 0.804 0.837 0.799 9.4 14.8 12.8 11.6 22 21.8

30 200 0.804 0.837 0.799 7.4 14.8 13.4 7.4 19.4 19.2

60 40 1.17 2.613 1.298 12.2 31.6 18 12.8 20.6 11.4

60 80 0.77 0.866 0.797 7.6 9.2 7 9.2 26.8 25.4

60 120 0.635 0.653 0.653 7.8 27 26.8 8.6 17.8 18

60 160 0.556 0.563 0.563 7.4 24.6 24.6 8.8 17.8 17.8

60 200 0.484 0.456 0.455 8 20.2 20.2 7.4 11.2 11.2

90 40 0.939 2.191 1.04 13.2 33.4 13 14.4 21.8 25.8

90 80 0.64 0.697 0.652 9.2 27.6 27.8 9.8 21.4 21

90 120 0.501 0.501 0.501 8 20.2 20.2 8.8 17.6 17.6

90 160 0.435 0.379 0.379 7 16.2 16.2 8 9.6 9.6

90 200 0.389 0.329 0.328 6.8 13.8 13.8 7.4 12.4 12.4

120 40 0.777 1.98 0.887 10 36.8 10.2 12.6 22.2 27.4

120 80 0.534 0.553 0.536 10 20.6 21 10 18.6 16.4

120 120 0.434 0.394 0.395 6.6 17.4 17.6 7.4 11.2 11.2

120 160 0.396 0.354 0.354 9.4 18.2 18.2 10.2 14.6 14.6

120 200 0.33 0.257 0.257 6.4 9.8 9.8 7 7.6 7.6

150 40 0.704 1.967 0.803 13.6 37.2 24.4 13.2 38.2 24.2

150 80 0.487 0.498 0.48 9.4 21.2 21.2 9.6 16.2 14.8

150 120 0.384 0.336 0.338 9.4 16.6 16.8 9.8 10 10

150 160 0.327 0.26 0.26 6.4 10.2 10.2 8.4 6.6 6.6

150 200 0.314 0.236 0.236 8.6 10.6 10.6 8 10.6 10.6

r0 is the true number of global factors. ri is the true number of local factors in block i,

di = r0 + ri, and r+ = r0 +
∑R

l=1 rl is the total number of factors in the model where R is

the number of blocks. MIPC is the result based on the numbers of factors estimated by our

approach. IPC is Bai (2009)’s approach applied to the whole data with r̂+ selected by BIC3

and IPC∗ is IPC with the true number of factors r+. The results of bias and size are obtained

from the bias-corrected estimators for these three approaches. We set N1 = · · · = NR as the

number of individuals in each block.
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Table 3.2: Simulation results for the factors (R = 4, r0 = ri = 2 for all i, β = [1, 1]′)

Ni T r̂0 r̂i TR
(
Ĝ
)

TR
(
F̂i

)
r̂+ TR

(
K̂+

)
MIPC MIPC IPC MIPC IPC IPC∗

30 40 1.886(0|10.8) 2.071(10.6|2.2) 0.95 0.888 10.17(10|2.2) 3.018(0|99.8) 0.888 0.461 0.98

30 80 1.992(0|0.8) 2.006(0.8|0.2) 0.989 0.931 10.014(0.8|0.2) 7.998(0|80.2) 0.979 0.86 0.978

30 120 1.996(0|0.4) 2.003(0.4|0.2) 0.99 0.944 10.006(0.4|0.2) 9.642(0|28.2) 0.977 0.956 0.977

30 160 1.998(0|0.2) 2.001(0.2|0.2) 0.991 0.95 10(0.2|0.2) 9.886(0|10.4) 0.975 0.97 0.977

30 200 2(0|0) 2(0|0) 0.992 0.955 10(0|0) 9.948(0|5) 0.977 0.973 0.977

60 40 1.998(0|0.2) 2.002(0.2|0) 0.995 0.909 10.004(0.2|0) 3.142(0|100) 0.991 0.482 0.99

60 80 2(0|0) 2(0|0) 0.996 0.946 10(0|0) 9.45(0|42.8) 0.99 0.965 0.989

60 120 2(0|0) 2(0|0) 0.996 0.96 10(0|0) 9.992(0|0.8) 0.989 0.989 0.989

60 160 2(0|0) 2(0|0) 0.996 0.966 10(0|0) 10(0|0) 0.989 0.989 0.989

60 200 2(0|0) 2(0|0) 0.996 0.97 10(0|0) 10(0|0) 0.989 0.989 0.989

90 40 2(0|0) 2(0|0.2) 0.997 0.912 9.998(0|0.2) 3.112(0|100) 0.994 0.481 0.993

90 80 2(0|0) 2(0|0) 0.998 0.951 10(0|0) 9.696(0|25.6) 0.993 0.981 0.993

90 120 2(0|0) 2(0|0) 0.998 0.964 10(0|0) 10(0|0) 0.993 0.993 0.993

90 160 2(0|0) 2(0|0) 0.998 0.97 10(0|0) 10(0|0) 0.993 0.993 0.993

90 200 2(0|0) 2(0|0) 0.998 0.975 10(0|0) 10(0|0) 0.993 0.993 0.993

120 40 2(0|0) 2(0|0) 0.998 0.914 10(0|0) 2.862(0|100) 0.996 0.447 0.995

120 80 2(0|0) 2(0|0) 0.998 0.951 10(0|0) 9.774(0|19.6) 0.995 0.986 0.995

120 120 2(0|0) 2(0|0) 0.998 0.966 10(0|0) 9.998(0|0.2) 0.995 0.995 0.995

120 160 2(0|0) 2(0|0) 0.998 0.973 10(0|0) 10(0|0) 0.995 0.995 0.995

120 200 2(0|0) 2(0|0) 0.998 0.977 10(0|0) 10(0|0) 0.995 0.995 0.995

150 40 1.998(0|0.2) 2.002(0.2|0) 0.998 0.914 10.004(0.2|0) 2.696(0|100) 0.997 0.43 0.996

150 80 2(0|0) 2(0|0) 0.999 0.953 10(0|0) 9.816(0|16.8) 0.996 0.989 0.996

150 120 2(0|0) 2(0|0) 0.999 0.967 10(0|0) 10(0|0) 0.996 0.996 0.996

150 160 2(0|0) 2(0|0) 0.999 0.973 10(0|0) 10(0|0) 0.996 0.996 0.996

150 200 2(0|0) 2(0|0) 0.999 0.978 10(0|0) 10(0|0) 0.996 0.996 0.996

The average r̂0, r̂i, and r̂+ over 1000 replications are reported with the figures inside the parenthesis, (O|U), indicating the

percentage of overestimation and underestimation. r0 is the true number of global factors. ri is the true number of local factors in

block i, di = r0 + ri, and r+ = r0 +
∑R

l=1 rl is the total number of factors in the model. r̂0 is estimated by GCC and r̂i = d̂i − r̂0

where d̂i is determined by our approach. For MIPC, r̂+ = r̂0 +
∑R

l=1 r̂l. IPC is Bai (2009)’s approach applied to the whole data

with r̂+ selected by BIC3 and IPC∗ is IPC with true number of factors r+ =
∑R

l=0 rl. We set r1 = · · · = rR where R is the

number of blocks. We set N1 = · · · = NR as the number of individuals in each block. TR(.) is the trace ratio defined in (3.5.16).

The closer the trace ratio is to one, the more precise the estimated factors are. K̂+ is the estimated version of the combined factors

K+ =
[
K+

1 , . . . ,K
+
T

]′
where K+

t is defined in (3.2.3).

3.6 Empirical Application

The literature has long debated the connection between energy use and economic expansion. For

example, urbanisation and industrialisation are two economic processes that heavily rely on energy

use. As a result, energy economists argue that classic growth theories neglect energy as an important

economic driver and that energy should be incorporated into the production function. Meanwhile,

the externality of energy use has grown to be a significant global concern. How much limiting energy

use will have on economic growth may be of importance to policymakers. Therefore, assessing their

relationship has significant policy-making ramifications.
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Previous studies have employed techniques including cointegration analysis and the Granger

Causality test to both time series and panel data. See Ozturk (2010) for a comprehensive review.

Not until recently, the cross-section correlation between the error terms has drawn the attention of

the researchers. In the panel ARDL context, a CD (cross-section dependence) test is often rejected,

suggesting that the inference may be invalid for the panel data models if it is not appropriately

dealt with (e.g. Damette & Seghir (2013) and Jalil (2014)). Numerous studies find that global

and local business synchronisations have led to such cross-country correlation. Rodŕıguez-Caballero

(2022) proposes a panel regression model with a multilevel factor structure to address this concern.

Following his empirical specification, we estimate the following model:

∆ lnGDP ijt = β1∆ lnECijt + β2∆ lnKijt + γ ′
ijGt + λ′

ijFit + eijt (3.6.17)

where GDP is the per capita GDP (current US$), K is the capital formation (current US$), and
EC is the energy consumption (kWh per capita). All the variables are log-differenced to achieve

stationarity. Since the fixed effects and time effects are absorbed in the multilevel factors, practi-

tioners do not have to choose which one should be used. The indices i = 1, 2, 3, 4 represents the four

regions, namely Asia and Pacific, Europe, Africa, and The Americas, j represents the countries in

the corresponding regions, and t is the time index covering the years from 1972 to 2014. We end

up with a balanced panel data where R = 4, {Ni}Ri=1 = {21, 19, 18, 22}, N = 80, and T = 43.5 As

opposed to Rodŕıguez-Caballero (2022), we use a differenced version of the regression to circumvent

the potential non-stationarity in the variables. However, the interpretation of the slope coefficients

is the same in that β1 and β2 are the partial elasticity of the production on energy consumption and

capital. For comparison, we also report the estimation results from a fixed effect model, a twoway

fixed effect model, Bai’s IPC estimation, and our (bias-corrected) MIPC estimation.

The results of the estimation are presented in Table 3.3, where the first panel displays the esti-

mated slope coefficients, and the second panel shows the number of factors. Initially, we performed

a regression (3.6.17) using IPC with the number of factors determined by BIC3, as displayed in

the third column of Table 3.3. However, no factor was detected so IPC reduces to OLS. Therefore,

we proceeded to estimate a fixed effect model and a two-way fixed effect model, as shown in the

first two columns. The inclusion of fixed effects resulted in a reduction of the partial elasticity of

energy consumption from 0.209 to 0.121, and a slight decrease in the partial elasticity of capital.

Furthermore, the coefficients became even smaller after adding time effects compared to the fixed

effect model. We then moved on to MIPC estimation. No global factor is detected. Meanwhile,

{r̂i}Ri=1 = {1, 1, 4, 2} regional factors are selected for Asia Pacific, Europe, Africa, and The Americas

respectively, as shown in Column four. The coefficient for energy consumption is 0.172, which is

notably higher than that reported by the additive effect models, while the coefficient for capital

formation is 0.392. To provide a comparison, column five displays the IPC estimates using the same

total number of factors r̂+ = 8, and the slope coefficients are similar to those generated by MIPC.

5Our data sources from the World Bank: https://databank.worldbank.org/source/world-development-ind

icators#. We keep all the countries with less than 10 missing observations from 1971 to 2014. The missing values
are imputed by the EM algorithm applied to each variable in the same region. We use the R package “mvdalab” to
implement the EM algorithm.

https://databank.worldbank.org/source/world-development-indicators#
https://databank.worldbank.org/source/world-development-indicators#
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Based on the above findings, it can be concluded that the energy effect is underestimated by FE

models compared to the IFE models.

Table 3.3: Empirical results for the energy consumption and economic growth
regression

FE Twoway FE IPC MIPC IPC

Slope coefficients

d lnEC 0.121 0.094 0.209 0.172 0.151

(0.023) (0.022) (0.034) (0.033) (0.021)

d lnK 0.451 0.399 0.474 0.392 0.370

(0.008) (0.008) (0.019) (0.012) (0.012)

Number of factors

Global 0

Asia Pacific 1

Europe 1

Africa 4

The Americas 2

Total 0 8 8

Method BIC3 MIPC&GCC fixed

The table shows the estimation results from the regression in (3.6.17). Each

entry of the first panel shows the estimated coefficient with standard error

in the parenthesis. The second panel shows the number of factors in each

model and the corresponding selection criteria. For IPC, the total number

of factors is either estimated by BIC3 or fixed. For MIPC, d̂i is estimated

by our approach with dmax = 5 and r̂0 is estimated by GCC. The number of

local factors r̂i is obtained by r̂i = d̂i − r̂0.
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3.7 Conclusion

In this article, we consider a multi-dimensional panel data model with multilevel factors in the

context of large numbers of cross-sections and time observations. The multilevel factor components

capture the interactive fixed effects induced by the global factors that are pervasive across all

individuals as well as the interactive fixed effects due to the local factors that are block-specific.

We develop a multilevel iterative principal component (MIPC) method for estimation by itera-

tively updating between the slope coefficients and factors, given one another. Under a finite number

of blocks, our approach is able to produce consistent estimates of the slope coefficients, factors, and

loadings. To determine the numbers of factors, we propose a model selection criteria based on the

eigenvalue ratios. In addition, given consistent factor estimates from each block, we apply the gener-

alised canonical correlation estimation developed by Lin & Shin (2022) to the to separately identify

the global and local factors. In the asymptotic analysis, we show the consistency of our estimates

and establish the asymptotic normality of the bias-corrected estimator for the slope coefficients.

A dependent wild bootstrap is employed for inference which accounts for the cross-sectional and

serial correlation in the idiosyncratic errors. The Monte Carlo simulation demonstrates good finite

sample performance of MIPC compared to Bai (2009)’s IPC in the presence of multilevel factor

structure. We apply our model to study the energy consumption and economic growth nexus using

a cross-country panel data categorised by regions.

There are several possible extensions. First, it would be interesting to incorporate spatial effects

in the model. Such a model features both strong local dependence caused by local factors and

weak local dependence evolving from spatial diffusion. Second, it is possible to extend the least

squares estimation advanced by Moon & Weidner (2017) to our multilevel factor case which enables

low-rank regressors such as time-invariant regressors and observed common factors.regressors such

as time-invariant regressors and observed common factors.



Conclusions

This thesis aims to make contributions to modelling a high-dimensional panel data with a multilevel

factor structure. In Chapter 1, we have developed two new selection criteria, namely the canonical

correlation difference (CCD) and modified canonical correlation (MCC) to consitently estimate

the number of global factors. In Chapter 2, we have advanced the generalized canonical correlation

(GCC) estimation and established inferential theory for the multilevel factor model. Chapter 3

considers a panel regression model with an unobserved multilevel factor structure and proposes the

bias corrected multilevel iterative principal component (MIPC) estimator and inferential theory.

Monte Carlo experiments have demonstrated the good finite performance of the proposed methods.

We have further showcased the utility of our approaches by applying them to several macroeconomics

and finance applications. Thus, this thesis offers a comprehensive framework for theoretical and

empirical analysis of the high-dimensional panel data with a multilevel factor structure.

In particular, we aim to apply/modify our approaches to address several important empirical

research topics. One area of interest is asset pricing, where the ever-expanding “factor zoo” has

sparked concerns about the presence of spurious pricing factors (Feng et al. (2020)). To tackle this

issue, we can develop a formal test based on the GCC to examine whether a set of new factors spans

the same space as the existing observable/unobserved factors. Additionally, another interesting

application is to investigate the commonality among different groups of observable factors (Harvey

et al. (2016)).

Furthermore, there are several prospect for methodological extensions. Firstly, the GCC ap-

proach can be readily applied to more complicated factor structures, such as block structures with

multiple layers of classification. Secondly, one could consider non-stationary multilevel factors, al-

though this would bring forth new challenges in terms of identification and inference. Lastly, it would

be intriguing to combine spatial effects with multilevel factors, allowing for a joint consideration of

both strong and weak local dependence.
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Appendix A

Appendix to Chapter 1

A.1 Lemmas and Proofs

Lemma A.1.1. Let K̂i = (MiT )
−1YiY

′
iK̂i. Under Assumption A–D, as Mi, T → ∞, we have:

1√
T

∥∥∥K̂i −KiHi

∥∥∥ = Op

(
1

δMiT

)
, i = 1, ..., R,

where Hi is the rmax × (r0 + ri) rotation matrix, δMiT = min
{√

Mi,
√
T
}

and Mi is the number of

individuals in block i.

Proof. Since Assumptions A–D in Bai & Ng (2002) are satisfied, the stated result follows directly

from Theorem 1 of Bai & Ng (2002).

Q.E.D

For any two blocks m and h, we apply the PC estimator to (1.3.5), and obtain consistent

estimators of Km = [G,Fm] and Kh = [G,Fh], denoted K̂m and K̂h. Let ℓmh,r be the r-th largest

squared canonical correlation between K̂m and K̂h, which is given by the rth largest characteristic

root of (
ŜmhŜ

−1
hh Ŝhm − ℓŜmm

)
v = 0,

where Ŝab (a, b = m,h) denotes the sample variance/covariance matrices for K̂m and K̂h. Since

(1/
√
T )K̂m is the eigenvector matrix corresponding to the rmax largest eigenvalues of YmY

′
m, we

have:
1

MmT
YmY

′
m

1√
T
K̂m =

1√
T
K̂mVm

where Vm is an rmax × rmax diagonal matrix consisting of the rmax largest eigenvalues of YmY
′
m

in descending order divided by MmT . This implies that K̂mVm = K̃m. Similarly, we obtain

K̂hVh = K̃h for block h. Since rmax < min {Mm, T} (rmax < min {Mh, T}), the diagonal elements

of Vm (Vh) are non-zero. This implies that Vm (Vh) is of full rank, though some diagonal elements

108



A.1 Lemmas and Proofs 109

may be very small. The canonical correlations between K̂m and K̂h are equal to those between

K̃m and K̃h, because the canonical correlations between two sets of variables are invariant to full

rank transformations, see Theorem 12.2.2 in Anderson (2003). Therefore, we will study the limiting

behaviour of the canonical correlations between K̃m and K̃h instead of those between K̂m and K̂h.

This enables us to employ Lemma A.1.1 subsequently.

Proof of Lemma 1.1. For any two blocks m and h, the population covariance between Kmt and

Kht can be expressed as

V ar

(
Kmt

Kht

)
=

[
Σmm Σmh

Σhm Σhh

]
=


ΣG 0 ΣG 0

0 ΣFm 0 0

ΣG 0 ΣG 0

0 0 0 ΣFh

 (A.1.1)

where ΣG, ΣFm and ΣFh
are defined in Assumption C. Without loss of generality, we assume

rm ≤ rh. Using (A.1.1), we can rewrite the characteristic equation,

(
ΣmhΣ

−1
hhΣhm − ρΣmm

)
v = 0 (A.1.2)

as [
ΣG − ρΣG 0

0 −ρΣFm

]
v = 0,

where ρmh,r is the r-th largest squared canonical correlation between Km and Kh. It is clear

that ρmh,1 = · · · = ρmh,r0 = 1 are the characteristic roots with multiplicity r0, while ρmh,r0+1 =

· · · = ρmh,rm = 0 are the characteristic roots with multiplicity, rm. Since this holds for all m

and h, we simply let ρr = ρmh,r. The characteristic vector corresponding to the rth eigenvalue is

vr = [0, . . . , 0, 1, 0, . . . , 0], which is the unit vector with the rth element being 1 and 0 otherwise.

Since rmax ≥ r0 + ri for all i by construction, Hm and Hh are not of full column rank. This

renders the variance-covariance matrices for the rotated factors H′
mKmt and H′

hKht, becoming

singular as follows:

Var

([
H′

mKmt

H′
hKht

])
=

[
H′

mΣmmHm H′
mΣmhHh

H′
hΣhmHm H′

hΣhhHh

]
(A.1.3)

where both H′
mΣmmHm and H′

hΣhhHh are the singular matrices. Consider the characteristic

equation between the rotated factors as

[
H′

mΣmhHh

(
H′

hΣhhHh

)−
H′

hΣhmHm − ρH′
mΣmmHm

]
u = 0 (A.1.4)

where (H′
hΣhhHh)

− is the Moore-Penrose inverse of H′
hΣhhHh. Using the property of Moore-
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Penrose inverse, we have:1

Hh

(
H′

hΣhhHh

)−
H′

h = Σ−1
hh

which holds if Hh has full row rank. Then, (A.1.4) becomes:

H′
m

(
ΣmhΣ

−1
hhΣhm − ρΣmm

)
Hmu = 0. (A.1.5)

Using (A.1.1), we rewrite (A.1.5) as

H′
m

[
ΣG − ρΣG 0

0 −ρΣFm

]
Hmu = 0

which shows that both (A.1.2) and (A.1.4) will produce the same non-zero eigenvalues.

We now consider the following spectral decompositions:

H′
mΣmmHm = P∆mP′ and H′

hΣhhHh = Q∆hQ
′

where ∆m(∆h) is a diagonal matrix of eignevalues of H′
mΣmmHm(H′

hΣhhHh), P(Q) is an orthog-

onal matrix whose columns are standardized eigenvectors associated with the diagonal entries of

∆m(∆h). As the rank of H′
mΣmmHm(H′

hΣhhHh) is r0+rm ≤ rmax(r0+rh ≤ rmax) asymptotically,

we rewrite the above equation as

H′
mΣmmHm =

[
P1 P2

] [∆2
1 0

0 0

] [
P1 P2

]′
H′

hΣhhHh =
[
Q1 Q2

] [∆2
2 0

0 0

] [
Q1 Q2

]′ (A.1.6)

where P1 and P2 are rmax×(r0+rm) and rmax×[rmax−(r0+rm)] orthogonal matrices, and similarly

for Q1 and Q2. Now, consider the (r0+rm)× (r0+rh) matrix, ∆−1
1 P′

1 (H
′
mΣmhHh)Q1∆

−1
2 , whose

singular value decomposition is given by (see Rao (1981))

∆−1
1 P′

1

(
H′

mΣmhHh

)
Q1∆

−1
2 = W

[
R1/2 0

]
D′ (A.1.7)

whereW is an (r0+rm)×(r0+rm) orthonormal matrix, D an (r0+rh)×(r0+rh) orthonormal matrix

and R the (r0 + rm)× (r0 + rm) diagonal matrix given by R = diag(ρ1, ..., ρr0 , ρr0+1, ..., ρr0+rm) =

diag(1, ..., 1, 0, ..., 0).2

1We use two properties of the Moore-Penrose inverse. (1) Let A ∈ Rm×n and B ∈ Rn×p. If A has full column
rank and B has full row rank, then (AB)− = B−A−. (2) If A has full column rank, then A−A = I. If A has full row
rank, then AA− = I.

2Notice that R contains the same non-zero roots as in (A.1.4), see Rao (1981).
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Define the full rank matrices,

A =
[
P1∆

−1
1 W,P2

]
and B =

[
Q1∆

−1
2 D,Q2

]
(A.1.8)

Combining (A.1.6), (A.1.7) and (A.1.8), it is straightforward to show that

Var

([
A′H′

mKmt

B′H′
hKht

])
=


Ir0+rm 0 R1/2 0 0

0 0 0 0 0

R1/2 0 Ir0+rm 0 0

0 0 0 Irh−rm 0

0 0 0 0 0

 (A.1.9)

From (A.1.9), we obtain the characteristic equation between A′H′
mKmt and B′H′

hKht by[
A′H′

mΣmhHhB
(
B′H′

hΣhhHhB
)−

B′H′
hΣhmHmA− ρA′H′

mΣmmHmA
]
u = 0

which can be simplified as[R1/2 0 0

0 0 0

]Ir0+rm 0 0

0 Irh−rm 0

0 0 0


R

1/2 0

0 0

0 0

− ρ

[
Ir0+rm 0

0 0

]u = 0

Hence, ([
R 0

0 0

]
− ρ

[
Ir0+rm 0

0 0

])
u = 0 (A.1.10)

Obviously, (A.1.10) has the same characteristic roots from (A.1.4) and the same non-zero charac-

teristic roots from (A.1.2), consequently.

Now, we consider the sample covariance matrix for K̃m and K̃h given by

V ar

(
K̃m

K̃h

)
=

1

T

[
K̃

′
mK̃m K̃

′
mK̃h

K̃
′
hK̃m K̃

′
hK̃h

]
=

[
S̃mm S̃mh

S̃hm S̃hh

]

Consider the full rank transformation K̃mA and K̃hB, where A and B are defined in (A.1.8).

The canonical correlations between them are equivalent to those between K̃m and K̃h. By Lemma

A.1.1, we obtain: A′S̃mmA
p−→ A′H′

mΣmmHmA, B′S̃hhB
p−→ B′H′

hΣhhHhB and A′S̃mhB
p−→

A′H′
mΣmhHhB. LetM = min{Mm,Mh} and δMT = min{

√
M,

√
T}. Applying (A.1.9) and Lemma

A.1.1, we can rewrite these transformed variance/covariance matrices as

A′S̃mmA =

Ir0+rm +Op

(
δ−2
MT

)
Op

(
δ−2
MT

)
Op

(
δ−2
MT

)
Op

(
δ−2
MT

)
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B′S̃hhB =


Ir0+rm +Op

(
δ−2
MT

)
Op

(
δ−2
MT

)
Op

(
δ−2
MT

)
Op

(
δ−2
MT

)
Irh−rm +Op

(
δ−2
MT

)
Op

(
δ−2
MT

)
Op

(
δ−2
MT

)
Op

(
δ−2
MT

)
Op

(
δ−2
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and
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Notice that the Moore-Penrose inverse of the lower [rmax − (r0 + rm)]× [rmax − (r0 + rm)] block of

B′S̃hhB does not converge to

[
Irh−rm 0

0 0

]
, because

rank
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(
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(
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)
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(
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) ̸= rank

([
Irh−rm 0

0 0
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Similarly,
(
B′S̃hhB

)−
does not converge to

Ir0+rm 0 0

0 Irh−rm 0

0 0 0

. See Theorem 1 in Karabiyik

et al. (2017). But, the Moore-Penrose inverse follows the Banachiewicz-Schur form.3 Thus,Irh−rm +Op

(
δ−2
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)
Op

(
δ−2
MT

)
Op

(
δ−2
MT

)
Op
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)
−Op(1)

−Op(1) Op
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)
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Also,
(
B′S̃hhB

)−
follows the Banachiewicz-Schur form, from which we obtain:

(
B′S̃hhB

)−
=

Ir0+rm +Op

(
δ−2
MT

)
−Op(1)

−Op(1) Op

(
δ2MT

) . (A.1.12)

Using the above results, we obtain:

A′S̃mhB
(
B′S̃hhB

)−
B′S̃hmA =
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R+Op

(
δ−2
MT

)
Op

(
δ−2
MT

)
Op

(
δ−2
MT

)
Op

(
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3Let M =

[
A B
C D

]
. Under some conditions, the MP inverse of M is given as M− =[

A− +A−CS−BA− −A−CS−

−S−BA− S−

]
, where S = D − BA−C. We check that the required conditions hold in our case.

See Tian & Takane (2009) and Castro-González et al. (2015)
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Therefore, the characteristic equation between K̃mA and K̃hB,[
A′S̃mhB

(
B′S̃hhB

)−
B′S̃hmA− ℓA′S̃mmA

]
ξ = 0

can be rewritten as ([
R 0

0 0

]
− ℓ

[
Ir0+rm 0

0 0

]
+Op

(
δ−2
MT

))
ξ = 0

which is analogous to (A.1.10) with a small perturbation term.

Finally, by the continuity of the characteristic roots, we have ℓmh,r
p−→ 1 for r = 1, . . . , r0 and

ℓmh,r
p−→ 0 for r = r0 + 1, . . . , rmax as T,Mm,Mh → ∞.

Q.E.D

Proof of Lemma 1.2 Using Lemma 1.1, it is straightforward to show that ξ(r)
p−→ 1 for 0 ≤ r ≤ r0

and ξ(r)
p−→ 0 otherwise.

Q.E.D

Proof of Lemma 1.3. By applying Lemma 1 to the definition of CCD(r), it is straightforward to

derive the main results in Lemmas 1.3.

Q.E.D

Proof of Theorem 1.1. We need to show that

Pr(CCD(r) < CCD(r0)) −→ 1 as M1, . . . ,MR, T −→ ∞

for r ̸= r0 and r ≤ rmax. By Lemma 1.3, it is easily seen that for r0 < r ≤ rmax we have:

CCD(r)− CCD(r0)
p−→ −1 < 0

while for 0 ≤ r < r0:

CCD(r)− CCD(r0)
p−→ −1 < 0.

Next, consider the case with r0 = 0. Then, for r0 < r ≤ rmax, it is straightforward to show that

CCD(r)− CCD(r0)
p−→ −1 < 0.

Q.E.D

A.2 The Performance of Existing 2D Model Selection Criteria

We investigate the finite sample performance of the existing 2D model selection criteria when we

apply them directly to the whole data matrix, YY′ by ignoring the multilevel factors structure.
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Let r0 (ri) be the number of global (local) factors and R be the number of groups. In the case

where the number of blocks, R is finite, it is well-established that the existing information criteria

mainly developed for the single level panel data, fail to consistently estimate the number of global

factors r0 because the weak cross-section correlation condition is violated in the presence of the

local factors. But, as R → ∞, the impacts of the local factors would be asymptotically negligible.

In this case, we may rewrite the multilevel factor model as the single level counterpart:

yijt = γ ′
ijGt + uijt

where

uijt = λ′
ijFit + eijt

First, we assume that the local factors are orthogonal to each other. Then, the errors uijt would

satisfy the weak cross-sectional correlation condition in the sense of Assumption A3. In this case,

Han (2021) conjectures that the number of global factors can be consistently estimated asymptot-

ically by the existing selection criteria (see Remark 4). Next, in the general case where the local

factors are mutually correlated, Assumption 1.A.3 may be violated because uijt’s share stronger

cross-section correlations. In this situation we show via simulations that the existing criteria will

be inconsistent.

To conduct additional Monte Carlo simulations we consider the same benchmark design as used

in Section 1.5.4 We fix r0 = 2 and ri = 2 for all i = 1, ..., R and set T ∈ {50, 100}. We set rmax = 10

for the four criteria, ICp2, BIC3 by Bai & Ng (2002), ER by Ahn & Horenstein (2013) and ED by

Onatski (2010) whilst we apply our practical guide in selecting r∗max for CCD (see Section II).

Table A.1 shows the simulation results for T = 100. Panel A of Table A.1 reports the results

for the case with (β, ϕe, κ) = (0, 0, 1) and ωF = 0 in which uijt’s are iid and the local factors are

mutually uncorrelated. For R = 2, all of the existing criteria fail to distinguish between the global

and local factors, and tend to select the total number of factors, r0 +
∑R

i=1 ri = 6, not r0. For

sufficiently large R, all of the four existing criteria tend to select the number of global factors as

M and T increase. If the value of R is moderate, e.g. R = 5 or 10, then they tend to select

the intermediate value between r0 and r0 +
∑R

i=1 ri, suggesting that these approaches are rather

unreliable in practice.5 Notice, however, that CCD selects the true number of global factors in all

cases, regardless of whether R is small or large.

4We have also conducted more simulations by using the different numbers for r0 and ri together with the different
sample sizes. These simulation results, available upon request, are qualitatively similar.

5Their performance is also very sensitive to the values of rmax. For instance, for R = 5, the average estimates of
r0 by ER and ED are 1.96 and 1.99 if rmax = 10 while they become 8.96 and 12.0 if rmax = 15. In principle, it is
unclear how to set the value of rmax sufficiently large for large R.
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Panel B presents the results for the case with (β, ϕe, κ) = (0.1, 0.5, 1) and ωF = 0 in which we

allow uijt’s to be cross-sectionally and serially correlated. The performances of the four existing

criteria are all adversely affected in small samples. Except for ICp2, they can select r0 only if

R > 30. Still for the moderate value of R, they tend to select the intermediate value between r0

and r0 +
∑R

i=1 ri. CCD remains insensitive to the presence of the cross-sectionally and serially

correlated errors, and selects the number of global factors correctly in all cases.

Panels C and D display the results for the case with (β, ϕe, κ) = (0, 0, 1) and ωF = {0.2, 0.4} in

which we allow the local factors to be mutually correlated. The performances of the four existing

criteria are all unreliable when R is relatively small. Even for large R, say R = 50, they tend to

overestimate the number of global factors significantly. By contrast, CCD still selects r0 precisely

as M rises.

To further examine the impact of the small T , we repeat the above experiments with T = 50,

and report the results in Table A.2. Though the performance of all selection criteria are slightly

adversely affected by the small T , overall patterns are qualitatively similar to those reported in

Table A.1. Still remarkably, only CCD selects the number of global factors correctly in almost all

cases.

In sum we demonstrate that the existing selection criteria will produce unreliable inference in

finite samples by ignoring the multilevel structure. This result also implies that the sequential

procedure proposed by Wang (2008) and applied by Hallin & Lǐska (2011) will be quite unreliable.

In particular, for large R, it will severely overestimate by selecting r0 +
∑R

i=1 ri/R instead of r0.

Furthermore, Han (2021) provides the simulation evidence that this approach can lead to even

negative estimates of both the number of global factors and the number of local factors in small

samples, for R = 3.
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Table A.1: The performance of 2D criteria applied to 3D data (r0 = 2, ri = 2,
rmax = 10, T = 100)

R M T CCD ICp2 BIC3 ER ED

Panel A: (β, ϕe, κ) = (0, 0, 1), ωF = 0

2 20 100 2(0|0.1) 5.81(100|0) 5.02(100|0) 5.45(91.2|4.8) 5.99(99.9|0)
2 100 100 2(0|0) 6(100|0) 5.97(100|0) 6(100|0) 6(100|0)
5 20 100 2(0|0) 6.35(99.8|0) 4.15(99.5|0) 1.89(2.9|16.9) 1.92(8|13.4)
5 100 100 2(0|0) 10(100|0) 5.1(100|0) 1.96(0.6|4.6) 1.99(1.2|1.6)
10 20 100 2(0|0) 4.07(92.3|0) 2.11(11.1|0) 1.99(0|1.4) 2.08(6.4|0)
10 100 100 2(0|0) 8.73(100|0) 2.02(2|0) 2(0|0.3) 2.06(4.4|0)
30 20 100 2(0|0) 2.01(1.4|0) 2(0|0) 2(0|0) 2.06(3.8|0)
30 100 100 2(0|0) 2.01(1|0) 2(0|0) 2(0|0) 2.04(2.7|0)
50 20 100 2(0|0) 2(0|0) 2(0|0) 2(0|0) 2.03(2|0)
50 100 100 2(0|0) 2(0|0) 2(0|0) 2(0|0) 2.02(2|0)

Panel B: (β, ϕe, κ) = (0.1, 0.5, 1), ωF = 0

2 20 100 2(0|0.4) 8.03(100|0) 6.27(100|0) 4.21(66.8|17.5) 2.37(32.5|58.7)
2 100 100 2(0|0) 6.54(100|0) 6(100|0) 5.97(99.4|0.2) 6.01(100|0)
5 20 100 2(0|0) 9.02(100|0) 5.34(100|0) 1.88(4|17.9) 1.93(9.6|13.9)
5 100 100 2(0|0) 10(100|0) 6.32(100|0) 1.94(0.5|6.3) 2.01(3.9|2.9)
10 20 100 2(0|0) 7.98(100|0) 2.77(66.4|0) 1.97(0|2.9) 2.1(6.9|0)
10 100 100 2(0|0) 10(100|0) 2.43(40.4|0) 2(0|0.2) 2.06(4.7|0)
30 20 100 2(0|0) 2.83(58.1|0) 2(0|0) 2(0|0.1) 2.04(2.6|0)
30 100 100 2(0|0) 3.55(82|0) 2(0|0) 2(0|0) 2.02(1.7|0)
50 20 100 2(0|0) 2.06(5.4|0) 2(0|0) 2(0|0) 2.02(1.6|0)
50 100 100 2(0|0) 2.05(4.8|0) 2(0|0) 2(0|0) 2.02(1.5|0)

Panel C: (β, ϕe, κ) = (0, 0, 1), ωF = 0.2

2 20 100 2(0.2|0.4) 5.69(100|0) 4.76(100|0) 5.13(88.9|6.1) 5.96(99.9|0)
2 100 100 2(0|0) 6(100|0) 5.87(100|0) 6(100|0) 6(100|0)
5 20 100 2(0|0) 5.45(100|0) 3.8(100|0) 2.44(53.4|13.5) 2.53(68.4|14.2)
5 100 100 2(0|0) 9.89(100|0) 4.4(100|0) 2.61(66|5.1) 2.77(84.5|4.7)
10 20 100 2(0|0) 3.9(100|0) 2.99(99.2|0) 2.64(68|4.3) 3.02(95.7|0.3)
10 100 100 2(0|0) 6.65(100|0) 3(99.9|0) 2.78(78.4|0.8) 3.03(99.6|0)
30 20 100 2(0|0) 3(100|0) 2.95(94.6|0) 2.9(89.6|0) 3.04(100|0)
30 100 100 2(0|0) 3(100|0) 2.92(91.8|0) 2.93(93.3|0) 3.02(100|0)
50 20 100 2(0|0) 3(100|0) 2.92(91.5|0) 2.96(95.9|0) 3.02(100|0)
50 100 100 2(0|0) 3(100|0) 2.95(94.6|0) 2.9(89.6|0) 3.04(100|0)

Panel D: (β, ϕe, κ) = (0, 0, 1), ωF = 0.4

2 20 100 2.18(19.3|0.8) 5.25(100|0) 4.19(100|0) 4.03(83.7|8.7) 5.87(99.5|0.3)
2 100 100 2.09(8.6|0) 6(100|0) 5.25(100|0) 5.97(100|0) 6.01(100|0)
5 20 100 2.1(9.6|0) 3.92(100|0) 3.19(100|0) 2.96(96.4|0.9) 3.13(98.9|0.3)
5 100 100 2.02(1.7|0) 8.29(100|0) 3.28(100|0) 3(99.6|0.1) 3.02(100|0)
10 20 100 2.06(6.4|0) 3.2(100|0) 3(100|0) 3(100|0) 3.07(100|0)
10 100 100 2.01(0.5|0) 4.12(100|0) 3(100|0) 3(100|0) 3.03(100|0)
30 20 100 2.06(5.8|0.1) 3(100|0) 3(100|0) 3(100|0) 3.04(100|0)
30 100 100 2.01(0.6|0) 3(100|0) 3(100|0) 3(100|0) 3.02(100|0)
50 20 100 2.05(5.4|0) 3(100|0) 3(100|0) 3(100|0) 3.03(100|0)
50 100 100 2(0|0) 3(100|0) 3(100|0) 3(100|0) 3.02(100|0)

The average of r̂0 over 1,000 replications is reported together with the figures inside the parenthesis,

(O|U), indicating the percentage of overestimation and underestimation. r0 and ri are the true

number of global factors and true number of local factors in group i. We set r1 = · · · = rR, where

R is the number of groups. Mi is the number of individuals in group i. We set Mi = M for all i. T

is the number of time periods. β, ϕe and κ control the cross-section correlation, serial correlation

and noise-to-signal ratio.
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Table A.2: The performance of 2D criteria applied to 3D data (r0 = 2, ri = 2, rmax =
10, T = 50)

R M T CCD ICp2 BIC3 ER ED

Panel A: (β, ϕe, κ) = (0, 0, 1), ωF = 0

2 20 50 1.98(0.3|2.6) 5.06(99.5|0) 4.96(100|0) 3.96(66.7|19.8) 5.35(91.5|6.5)
2 100 50 2(0|0) 5.99(100|0) 5.1(100|0) 5.96(99.5|0.4) 6(100|0)
5 20 50 2(0|0) 4.6(96.7|0) 3.63(96.8|0) 1.77(6.7|30.7) 1.9(14.4|27.9)
5 100 50 2(0|0) 7.58(100|0) 3.25(90.1|0) 1.78(2.9|25.5) 1.87(9.5|19.3)
10 20 50 2(0|0) 2.93(66.5|0) 2.09(9.2|0.2) 1.84(0.8|15.8) 2.1(10.9|4)
10 100 50 2(0|0) 3.85(91|0) 2(0.1|0.1) 1.9(0.2|9.8) 2.13(8.3|1)
30 20 50 2(0|0) 2.01(0.6|0) 1.98(0|1.9) 1.97(0|3.1) 2.11(6.9|0)
30 100 50 2(0|0) 2(0.4|0) 1.97(0|2.9) 1.98(0|1.8) 2.07(5|0)
50 20 50 2(0|0.1) 2(0|0) 1.98(0|2.1) 1.98(0|2.4) 2.05(3.9|0)
50 100 50 2(0|0) 2(0|0) 1.92(0|7.8) 1.99(0|1) 2.04(3.1|0)

Panel B: (β, ϕe, κ) = (0.1, 0.5, 1), ωF = 0

2 20 50 2.17(14.7|1.6) 7.31(100|0) 6.73(100|0) 3.36(54.3|26.5) 2.11(30.2|57.7)
2 100 50 2.02(1.5|0) 7.49(100|0) 5.9(100|0) 4.9(81.9|9.8) 4.98(82.9|14.8)
5 20 50 2(0.2|0.1) 8.69(100|0) 5.49(100|0) 1.79(8.3|35.3) 1.66(10.7|37)
5 100 50 2(0|0) 9.97(100|0) 4.85(100|0) 1.78(3.5|27.3) 1.75(6.2|24.5)
10 20 50 2(0|0) 7.65(100|0) 3.33(93|0) 1.8(1.1|20.3) 2.02(8.6|8)
10 100 50 2(0|0) 9.64(100|0) 2.48(45|0) 1.85(0.3|14.8) 2.06(6.2|3.1)
30 20 50 2(0|0) 3.95(80.2|0) 2(0|0) 1.92(0|8.3) 2.04(2.3|0.2)
30 100 50 2(0|0) 4.77(89.1|0) 2(0|0.1) 1.95(0|4.6) 2.02(1.9|0)
50 20 50 2(0|0) 2.75(46.4|0) 2(0|0) 1.95(0|5.4) 2.02(1.2|0)
50 100 50 2(0|0) 2.77(45.4|0) 2(0|0.4) 1.96(0|4.3) 2.01(0.9|0)

Panel C: (β, ϕe, κ) = (0, 0, 1), ωF = 0.2

2 20 50 2.01(3.6|2.7) 4.82(99.9|0) 4.77(100|0) 3.65(65|18.1) 5.01(87.3|9.1)
2 100 50 2.01(0.8|0) 5.97(100|0) 4.78(100|0) 5.9(98.9|1) 6(100|0)
5 20 50 2(0.1|0.6) 4.31(99.7|0) 3.54(99.4|0) 2.16(38.3|27.6) 2.27(47.8|28.5)
5 100 50 2(0|0) 6.48(100|0) 3.22(98.4|0) 2.23(41.6|20.6) 2.29(53.3|21)
10 20 50 2(0|0.4) 3.37(99.2|0) 2.85(84.7|0) 2.26(43.4|18) 2.78(74.8|5.3)
10 100 50 2(0|0) 3.77(99.9|0) 2.72(72|0) 2.4(52.1|11.7) 2.87(82.9|2.1)
30 20 50 2(0|0.1) 2.99(98.8|0) 2.37(37.1|0.2) 2.57(61.3|4.8) 3.01(98|0)
30 100 50 2(0|0) 2.99(99.2|0) 2.14(14.6|0.9) 2.63(67|4.2) 3.04(98.8|0)
50 20 50 2(0|0) 2.99(98.6|0) 2.19(20.1|1.2) 2.65(68.1|3.6) 3.03(99.9|0)
50 100 50 2(0|0) 2.99(99.1|0) 2.06(7.9|1.6) 2.69(72.2|3.2) 3.02(99.7|0)

Panel D: (β, ϕe, κ) = (0, 0, 1), ωF = 0.4

2 20 50 2.27(30.8|3.9) 4.26(99.5|0.1) 4.34(100|0) 2.94(59.7|20.5) 4.52(85.5|9.7)
2 100 50 2.21(21.4|0) 5.76(100|0) 4.14(100|0) 5.2(94.8|2.4) 6(100|0)
5 20 50 2.23(23.1|0.6) 3.55(100|0) 3.14(99.9|0) 2.68(77.2|10.5) 3.12(90.5|5)
5 100 50 2.09(8.9|0) 4.74(100|0) 3.01(99.9|0) 2.9(91.9|2.4) 3.09(97.8|1.3)
10 20 50 2.17(16.8|0.1) 3.09(99.9|0) 2.99(99.3|0) 2.9(92.7|2.4) 3.1(99.4|0.2)
10 100 50 2.05(4.6|0) 3.14(100|0) 2.99(98.7|0) 2.96(96.3|0.8) 3.12(99.9|0)
30 20 50 2.15(14.8|0) 3(100|0) 2.96(96.1|0) 2.99(99.2|0) 3.08(100|0)
30 100 50 2.04(4.1|0) 3(100|0) 2.9(89.9|0) 2.99(99.4|0.1) 3.05(100|0)
50 20 50 2.12(12.4|0) 3(100|0) 2.93(93.3|0) 2.99(99.3|0) 3.03(100|0)
50 100 50 2.05(5|0) 3(100|0) 2.82(81.7|0.1) 2.99(99.6|0.2) 3.03(100|0)

See footnotes to Table A.1.
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A.3 Practical Guidelines for Selecting the Maximum Number of

Factors

It is well-established in the literature that if the maximum number of factors is set too high, the

redundant factors are likely to be selected, see Ahn & Horenstein (2013). Hence, we propose a

practical selection guideline. We first apply BIC3 to the data Yi in each block with a sufficiently

large rmax, and obtain the consistent estimate of r0 + ri, denoted r̂0 + ri for i = 1, ..., R. Then,

we select the common maximum number of factors by r∗max = max
{
r̂0 + r1, . . . , ̂r0 + rR

}
. This

procedure selects r∗max ≤ rmax, while ensuring that Pr(r∗max ≥ r0 + ri)
p−→ 1 for all i = 1, ..., R.

We generate the data following the similar simulation design used in Section 1.5, but fix

(ϕG, ϕF ) = (0.5, 0.5), (r0, ri) = (2, 2) and κ = 1. We consider the four cases with (β, ϕe) ∈

{(0, 0), (0.1, 0), (0, 0.5), (0.1, 0.5)}.

In Tables A.3 and A.4 we report the simulation results for CCD and MCC using r∗max together

with the fixed rmax = 10.6 In particular, if idiosyncratic errors are serially correlated, then CCD

with the large rmax tends to overestimate r0 for small T whereas its performance seems to be intact

in the presence of the cross-sectional correlations. The performance of MCC is adversely affected

by the presence of both cross-section and serial correlation in the errors, especially if T is small. On

the other hand, we find that both CCD and MCC with r∗max, select the number of global factors

correctly even in small samples. These results confirm our claim that the practical guide outlined

in Section 1.5 improves the selection precision of CCD and MCC in finite samples.

6Here, we run BIC3 R times using rmax = 10 for all i = 1, ..., R, and then obtain the common maximum number

of factors by r∗max = max
{
r̂0 + r1, . . . , ̂r0 + rR

}
.
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Table A.3: Average CCD estimates of the number of global factors for experiments with rmax = 10 and r∗max =

max
{
r̂0 + r1, . . . , ̂r0 + rR

}
(β, ϕe, κ) = (0, 0, 1) (β, ϕe, κ) = (0.1, 0, 1) (β, ϕe, κ) = (0, 0.5, 1) (β, ϕe, κ) = (0.1, 0.5, 1)

R M T rmax r∗max rmax r∗max rmax r∗max rmax r∗max

2 20 50 2.07(9.9|5.4) 1.98(0.6|2.4) 2.05(6.7|2) 1.99(0.7|1.5) 3(44.5|2.1) 2.18(16.2|2.2) 2.71(35.3|0.8) 2.01(5|4.3)
2 50 50 2.02(2|0) 2(0.2|0) 2.02(1.5|0) 2(0|0) 4.51(70.5|0) 2(0.2|0) 2.98(36.6|0) 2(0.5|0.4)
2 100 50 2.01(1.3|0) 2(0|0) 2(0.3|0) 2(0.1|0) 6.36(97.4|0) 2(0.1|0) 3.8(54.4|0) 2(0|0)
2 200 50 2.01(1|0) 2(0|0) 2.01(0.8|0) 2(0|0) 7.01(100|0) 2(0|0) 5.94(92|0) 2(0|0.2)
2 20 100 2(0.1|0.4) 2(0|0.5) 2(0|0) 1.98(0|1.6) 2(1.5|1.4) 2(0|0.3) 2(0.4|0.3) 2(0|0.4)
2 50 100 2(0|0) 2(0|0) 2(0|0) 2(0|0) 2.01(1.1|0) 2(0|0) 2(0.1|0) 2(0|0)
2 100 100 2(0|0) 2(0|0) 2(0|0) 2(0|0) 2.03(1.9|0) 2(0|0) 2.04(2.5|0) 2(0|0)
2 200 100 2(0|0) 2(0|0) 2(0|0) 2(0|0) 2.3(12.8|0) 2(0|0) 2(0.3|0) 2(0|0)
2 20 200 2(0|0) 1.99(0|0.5) 2(0|0) 2(0|0.5) 2(0|0) 2(0|0.3) 2(0|0.1) 2(0|0.9)
2 50 200 2(0|0) 2(0|0) 2(0|0) 2(0|0) 2(0|0) 2(0|0) 2(0|0) 2(0|0)
2 100 200 2(0|0) 2(0|0) 2(0|0) 2(0|0) 2(0|0) 2(0|0) 2(0|0) 2(0|0)
2 200 200 2(0|0) 2(0|0) 2(0|0) 2(0|0) 2(0|0) 2(0|0) 2(0|0) 2(0|0)
5 20 50 2(0|0.4) 2(0|0.1) 2(0|0) 2(0|0.2) 2.15(8.6|0.2) 2.01(0.9|0.1) 2.14(8.3|0.1) 2(0|0.4)
5 50 50 2(0|0) 2(0|0) 2(0|0) 2(0|0) 2.87(23.1|0) 2(0|0) 2.88(23|0) 2(0|0)
5 100 50 2(0|0) 2(0|0) 2(0|0) 2(0|0) 6.49(97.8|0) 2(0|0) 2.09(2.2|0) 2(0|0)
5 200 50 2(0|0) 2(0|0) 2(0|0) 2(0|0) 7.13(100|0) 2(0|0) 5.61(80.4|0) 2(0|0)
5 20 100 2(0|0) 2(0|0) 2(0|0) 2(0|0) 2(0|0) 2(0|0) 2(0|0) 1.98(0|2.3)
5 50 100 2(0|0) 2(0|0) 2(0|0) 2(0|0) 2(0|0) 2(0|0) 2(0|0) 2(0|0)
5 100 100 2(0|0) 2(0|0) 2(0|0) 2(0|0) 2(0|0) 2(0|0) 2(0|0) 2(0|0)
5 200 100 2(0|0) 2(0|0) 2(0|0) 2(0|0) 2(0|0) 2(0|0) 2(0|0) 2(0|0)
5 20 200 2(0|0) 2(0|0) 2(0|0) 2(0|0) 2(0|0) 2(0|0) 2(0|0) 2(0|0)
5 50 200 2(0|0) 2(0|0) 2(0|0) 2(0|0) 2(0|0) 2(0|0) 2(0|0) 2(0|0)
5 100 200 2(0|0) 2(0|0) 2(0|0) 2(0|0) 2(0|0) 2(0|0) 2(0|0) 2(0|0)
5 200 200 2(0|0) 2(0|0) 2(0|0) 2(0|0) 2(0|0) 2(0|0) 2(0|0) 2(0|0)
10 20 50 2(0|0) 2(0|0) 2(0|0.1) 2(0|0) 2(0.5|0.2) 2(0|0.1) 2(0.1|0.1) 2(0|0)
10 50 50 2(0|0) 2(0|0) 2(0|0) 2(0|0) 2.12(3|0) 2(0|0) 2.13(3.2|0) 2(0|0)
10 100 50 2(0|0) 2(0|0) 2(0|0) 2(0|0) 6.67(99.8|0) 2(0|0) 6.62(99.6|0) 2(0|0)
10 200 50 2(0|0) 2(0|0) 2(0|0) 2(0|0) 7.14(100|0) 2(0|0) 5.38(74|0) 2(0|0)
10 20 100 2(0|0) 2(0|0) 2(0|0) 2(0|0) 2(0|0) 2(0|0) 2(0|0) 2(0|0.5)
10 50 100 2(0|0) 2(0|0) 2(0|0) 2(0|0) 2(0|0) 2(0|0) 2(0|0) 2(0|0)
10 100 100 2(0|0) 2(0|0) 2(0|0) 2(0|0) 2(0|0) 2(0|0) 2(0|0) 2(0|0)
10 200 100 2(0|0) 2(0|0) 2(0|0) 2(0|0) 2(0|0) 2(0|0) 2(0|0) 2(0|0)
10 20 200 2(0|0) 2(0|0) 2(0|0) 2(0|0) 2(0|0) 2(0|0) 2(0|0) 2(0|0)
10 50 200 2(0|0) 2(0|0) 2(0|0) 2(0|0) 2(0|0) 2(0|0) 2(0|0) 2(0|0)
10 100 200 2(0|0) 2(0|0) 2(0|0) 2(0|0) 2(0|0) 2(0|0) 2(0|0) 2(0|0)
10 200 200 2(0|0) 2(0|0) 2(0|0) 2(0|0) 2(0|0) 2(0|0) 2(0|0) 2(0|0)

The average of r̂0 over 1,000 replications are reported together with the figures inside the parenthesis, (O|U), indicating the percentage of

overestimation and underestimation, respectively. For example, (0|0) implies that r0 is perfectly correctly estimated. β, ϕe and κ control the

cross-section correlation, serial correlation and noise to signal ratio, respectively.
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Table A.4: Average MCC estimates of the number of global factors for experiments with rmax = 10 and r∗max =
max{r̂0 + r1, . . . , ̂r0 + rR}

(β, ϕe, κ) = (0, 0, 1) (β, ϕe, κ) = (0.1, 0, 1) (β, ϕe, κ) = (0, 0.5, 1) (β, ϕe, κ) = (0.1, 0.5, 1)

R M T rmax r∗max rmax r∗max rmax r∗max rmax r∗max

2 20 50 2.18(18.3|0.2) 1.99(0|1.3) 2.15(15.1|0) 1.99(0.1|0.7) 2.16(16.1|0) 1.99(0.1|0.8) 3.23(91.7|0) 2.26(25.1|0)
2 50 50 2.04(3.8|0) 2(0|0.1) 2.02(2.3|0) 2(0|0.2) 2.04(3.5|0) 2(0|0.1) 3.13(88.9|0) 2.01(1|0)
2 100 50 2.01(1.1|0) 2(0|0) 2(0.3|0) 2(0|0) 2.01(0.9|0) 2(0|0) 3.14(89.1|0) 2(0.2|0)
2 200 50 2(0|0) 2(0|0) 2(0.1|0) 2(0|0) 2(0|0) 2(0|0) 3.43(96.8|0) 2(0.1|0)
2 20 100 1.98(0|1.7) 1.98(0|2.4) 1.99(0|0.6) 1.96(0|3.7) 2(0|0) 1.97(0|2.8) 2(0|0.4) 1.98(0.1|2.2)
2 50 100 2(0|0) 2(0|0) 2(0|0) 2(0|0.1) 2(0|0) 2(0|0) 2(0|0) 2(0|0)
2 100 100 2(0|0) 2(0|0) 2(0|0) 2(0|0) 2(0|0) 2(0|0) 2(0|0) 2(0|0)
2 200 100 2(0|0) 2(0|0) 2(0|0) 2(0|0) 2(0|0) 2(0|0) 2(0|0) 2(0|0)
2 20 200 1.92(0|8.4) 1.94(0|5.7) 1.97(0|2.9) 1.86(0|13.7) 1.97(0|3.3) 1.9(0|10.5) 1.97(0|2.8) 1.88(0|12.2)
2 50 200 2(0|0) 2(0|0) 2(0|0) 2(0|0) 2(0|0) 2(0|0) 2(0|0) 2(0|0)
2 100 200 2(0|0) 2(0|0) 2(0|0) 2(0|0) 2(0|0) 2(0|0) 2(0|0) 2(0|0)
2 200 200 2(0|0) 2(0|0) 2(0|0) 2(0|0) 2(0|0) 2(0|0) 2(0|0) 2(0|0)
5 20 50 2.01(0.7|0) 2(0|0.2) 2(0.1|0) 2(0|0) 2(0.1|0) 2(0|0.2) 3.07(100|0) 2.2(20.4|0)
5 50 50 2(0|0) 2(0|0) 2(0|0) 2(0|0) 2(0|0) 2(0|0) 3.03(99.9|0) 2(0|0)
5 100 50 2(0|0) 2(0|0) 2(0|0) 2(0|0) 2(0|0) 2(0|0) 3.03(99.8|0) 2(0|0)
5 200 50 2(0|0) 2(0|0) 2(0|0) 2(0|0) 2(0|0) 2(0|0) 3.36(100|0) 2(0|0)
5 20 100 2(0|0.1) 2(0|0.2) 2(0|0) 2(0|0.3) 2(0|0) 2(0|0.3) 2(0|0) 2(0|0)
5 50 100 2(0|0) 2(0|0) 2(0|0) 2(0|0) 2(0|0) 2(0|0) 2(0|0) 2(0|0)
5 100 100 2(0|0) 2(0|0) 2(0|0) 2(0|0) 2(0|0) 2(0|0) 2(0|0) 2(0|0)
5 200 100 2(0|0) 2(0|0) 2(0|0) 2(0|0) 2(0|0) 2(0|0) 2(0|0) 2(0|0)
5 20 200 1.97(0|2.9) 1.99(0|0.8) 2(0|0.4) 1.93(0|7.2) 2(0|0.3) 1.94(0|6.5) 2(0|0.3) 1.96(0|4.3)
5 50 200 2(0|0) 2(0|0) 2(0|0) 2(0|0) 2(0|0) 2(0|0) 2(0|0) 2(0|0)
5 100 200 2(0|0) 2(0|0) 2(0|0) 2(0|0) 2(0|0) 2(0|0) 2(0|0) 2(0|0)
5 200 200 2(0|0) 2(0|0) 2(0|0) 2(0|0) 2(0|0) 2(0|0) 2(0|0) 2(0|0)
10 20 50 2(0|0) 2(0|0) 2(0|0) 2(0|0) 2(0|0) 2(0|0) 3(100|0) 2.19(18.5|0)
10 50 50 2(0|0) 2(0|0) 2(0|0) 2(0|0) 2(0|0) 2(0|0) 3(100|0) 2(0|0)
10 100 50 2(0|0) 2(0|0) 2(0|0) 2(0|0) 2(0|0) 2(0|0) 3(100|0) 2(0|0)
10 200 50 2(0|0) 2(0|0) 2(0|0) 2(0|0) 2(0|0) 2(0|0) 3.29(100|0) 2(0|0)
10 20 100 2(0|0) 2(0|0) 1.98(0|0) 1.98(0|0) 2(0|0) 2(0|0) 2(0|0) 2(0|0)
10 50 100 2(0|0) 2(0|0) 2(0|0) 2(0|0) 2(0|0) 2(0|0) 2(0|0) 2(0|0)
10 100 100 2(0|0) 2(0|0) 2(0|0) 2(0|0) 2(0|0) 2(0|0) 2(0|0) 2(0|0)
10 200 100 2(0|0) 2(0|0) 2(0|0) 2(0|0) 2(0|0) 2(0|0) 2(0|0) 2(0|0)
10 20 200 1.99(0|0.8) 2(0|0.1) 2(0|0) 1.97(0|3) 2(0|0.1) 1.97(0|2.8) 2(0|0) 1.99(0|1.1)
10 50 200 2(0|0) 2(0|0) 2(0|0) 2(0|0) 2(0|0) 2(0|0) 2(0|0) 2(0|0)
10 100 200 2(0|0) 2(0|0) 2(0|0) 2(0|0) 2(0|0) 2(0|0) 2(0|0) 2(0|0)
10 200 200 2(0|0) 2(0|0) 2(0|0) 2(0|0) 2(0|0) 2(0|0) 2(0|0) 2(0|0)

See footnotes to Table A.3.
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A.4 The Performance of MCC with BIC3

In the main text, we propose using the following penalty function in MCC:

P (M,T ) =
lnM + lnT√

MT
ln ln(MT )

Since the different penalty functions may lead to the different performance (e.g. Bai & Ng (2002)),

we also consider the popular penalty function in BIC3:

BIC3 =
M + T

MT
ln(MT )

We find that P (M,T ) and BIC3 produce values close to each other under the normal panel sizes.

For example, for M̄ = 50 and T = 100, BIC3 = 0.23 and P (M,T ) = 0.21. Notice, however, that

BIC3 does not always guarantee consistency. For example, if M = exp(T ), then BIC3 → 1. On

the other hand, P (M,T ) is not subject to this issue.

Table A.5 reports the relative performance of MCC with BIC3 and P (M,T ). When cross-

sectional and serial correlation are absent in the error terms, both approaches are able to produce

precise estimates. Under the presence of cross-sectional and serial correlation, MCC with BIC3

tends to severely overestimate r0 in small samples. For the noisier data with κ = 3, we have the

mixed results. Overall, we may conclude that MCC using P (M,T ) outperforms.
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Table A.5: Average estimates of the number of global factors by BIC3 and P (M,T ) for experiments

with (ϕG, ϕF ) = (0.5, 0.5), (r0, ri) = (2, 2) and r∗max = max
{
r̂0 + r1, . . . , ̂r0 + rR

}
(β, ϕe, κ) = (0, 0, 1) (β, ϕe, κ) = (0.1, 0.5, 1) (β, ϕe, κ) = (0.1, 0.5, 3)

R M T BIC3 P (M,T ) BIC3 P (M,T ) BIC3 P (M,T )

2 20 50 2(0.1|0.3) 1.98(0|1.8) 2.53(46.8|2.8) 2.24(22.9|0) 2.57(52.7|1.6) 2.18(23.3|5.8)
2 50 50 2(0|0) 2(0|0) 2.01(0.8|0) 2.01(0.9|0) 1.88(1.9|13.8) 1.89(2.3|13.3)
2 100 50 2(0|0) 2(0|0) 2(0|0) 2(0.3|0) 1.91(0.5|9.7) 1.92(0.5|8.4)
2 200 50 2(0|0.1) 2(0|0) 2(0|0) 2(0|0) 1.96(0|4.3) 1.95(0|5.4)
2 20 100 2(0|0.3) 1.97(0|2.7) 2(0|0.1) 1.99(0|1.5) 1.71(0|28.9) 1.22(0|71.9)
2 50 100 2(0|0) 2(0|0) 2(0|0) 2(0|0) 1.57(0|42.3) 1.6(0|39)
2 100 100 2(0|0) 2(0|0) 2(0|0) 2(0|0) 1.88(0|12.5) 1.93(0|6.6)
2 200 100 2(0|0) 2(0|0) 2(0|0) 2(0|0) 2(0|0.1) 2(0|0.1)
2 20 200 2(0|0.4) 1.95(0|5.5) 1.99(0|0.7) 1.86(0|13.5) 1.47(0|50.3) 0.63(0|97.8)
2 50 200 2(0|0) 2(0|0) 2(0|0) 2(0|0) 1.36(0|61.6) 1.21(0|70.9)
2 100 200 2(0|0) 2(0|0) 2(0|0) 2(0|0) 1.92(0|8.1) 1.95(0|5)
2 200 200 2(0|0) 2(0|0) 2(0|0) 2(0|0) 2(0|0) 2(0|0)
5 20 50 2(0|0) 2(0|0.1) 2.69(68.2|0) 2.2(19.6|0) 2.7(69.6|0) 2.22(22.4|0)
5 50 50 2(0|0) 2(0|0) 2(0|0) 2(0|0) 1.95(0|5.1) 1.97(0|2.9)
5 100 50 2(0|0) 2(0|0) 2(0|0) 2(0|0) 1.95(0|5.2) 1.93(0|6.7)
5 200 50 2(0|0) 2(0|0) 2(0|0) 2(0|0) 1.99(0|1.5) 1.98(0|2.2)
5 20 100 2(0|0) 2(0|0) 2(0|0) 2(0|0) 1.85(0|15.1) 1.26(0|26.2)
5 50 100 2(0|0) 2(0|0) 2(0|0) 2(0|0) 1.66(0|34.3) 1.67(0|33.1)
5 100 100 2(0|0) 2(0|0) 2(0|0) 2(0|0) 1.93(0|7.4) 1.97(3.4|0)
5 200 100 2(0|0) 2(0|0) 2(0|0) 2(0|0) 2(0|0) 2(0|0.1)
5 20 200 2(0|0) 1.99(0|1.3) 2(0|0) 1.97(0|3) 1.56(0|43.7) 0.7(0|99.7)
5 50 200 2(0|0) 2(0|0) 2(0|0) 2(0|0) 1.43(0|56.7) 1.25(0|74.6)
5 100 200 2(0|0) 2(0|0) 2(0|0) 2(0|0) 1.97(0|2.9) 1.99(0|1.4)
5 200 200 2(0|0) 2(0|0) 2(0|0) 2(0|0) 2(0|0) 2(0|0)
10 20 50 2(0|0) 2(0|0) 2.88(87.4|0) 2.21(21|0) 2.86(84.9|0) 2.28(28.4|0)
10 50 50 2(0|0) 2(0|0) 2(0|0) 2(0|0) 1.98(0|1.9) 1.98(0.1|1.7)
10 100 50 2(0|0) 2(0|0) 2(0|0) 2(0|0) 1.97(0|3.2) 1.98(0|2.3)
10 200 50 2(0|0) 2(0|0) 2(0|0) 2(0|0) 1.99(0|1.4) 1.98(0|1.8)
10 20 100 2(0|0) 2(0|0) 2(0|0) 2(0|0) 1.95(0|4.9) 1.28(0|72)
10 50 100 2(0|0) 2(0|0) 2(0|0) 2(0|0) 1.71(0|29.5) 1.73(0|27.1)
10 100 100 2(0|0) 2(0|0) 2(0|0) 2(0|0) 1.95(0|4.8) 1.97(0|3.2)
10 200 100 2(0|0) 2(0|0) 2(0|0) 2(0|0) 2(0|0) 2(0|0)
10 20 200 2(0|0) 2(0|0.4) 2(0|0) 2(0|0.3) 1.61(0|38.6) 0.78(0|99.9)
10 50 200 2(0|0) 2(0|0) 2(0|0) 2(0|0) 1.44(0|56.4) 1.21(0|78.7)
10 100 200 2(0|0) 2(0|0) 2(0|0) 2(0|0) 1.98(0|2.1) 1.99(0|0.8)
10 200 200 2(0|0) 2(0|0) 2(0|0) 2(0|0) 2(0|0) 2(0|0)

See footnotes to Table A.3.
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A.5 Uneven Block Sizes and Heterogeneous Correlations among

Local Factors

We investigate the performance of CCD and MCC with uneven block sizes and correlated local

factors. We use the similar DGP in Section 1.5, but generate the local factors by

Fit = ΦFFi,t−1 +wt, wt ∼ iidN(0,ΩF )

where Ft = [F′
1t, . . . ,F

′
Rt]

′ andΦF is a diagonal matrix with the common elements, 0.5. We fixR = 4

and (r0, ri) = (2, 1) for all i = 1, ..., 4. We set (M1,M2,M3,M4) ∈ {(20, 50, 70, 100), (50, 70, 100, 150),

(100, 150, 200, 250)}. We allow the correlations among local factors to be heterogeneous. We con-

sider the three different covariance matrices of ΩF . The first covariance matrix is simply set at

ΩF = I4 such that the local factors are uncorrelated. We also consider the following covariance

matrices:

ΩF = Ω
(1)
F =


1 0.8 0.4 0.2

0.8 1 0.6 0.3

0.4 0.6 1 0.5

0.2 0.3 0.5 1

 and ΩF = Ω
(2)
F =


1 0.9 0.8 0.8

0.9 1 0.7 0.8

0.8 0.7 1 0.4

0.8 0.8 0.4 1


The average off-diagonal elements of Ω

(1)
F and Ω

(2)
F are 0.47 and 0.73 respectively, which represent

a moderate and high level of correlation among the local factors.

The results for uncorrelated local factors reported in Panel A of Table A.6 show that CCD

performs well whilst MCC is less satisfactory when the block sizes are small and T = 50 but its

performance improves sharply as block sizes increase. Panel B shows the results for ΩF = Ω
(1)
F .

Now that the upper bound condition for CCD is not violated, we find that the performance of both

CCD and MCC are satisfactory and qualitatively similar to that in Panel A. In Panel C, we present

the results for ΩF = Ω
(2)
F , where the local factors are strongly correlated. CCD now overestimates

r0 significantly mainly due to the violation of the upper bound condition. The performance of MCC

remains satisfactory unless T is too small. When the data is noisier, we find that its performance

improves sharply with the large block sizes.
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Table A.6: Average estimates of the number of global factors with uneven block sizes and heterogeneous

local correlations, R = 4, (ϕG, ϕF ) = (0.5, 0.5) and r∗max = max
{
r̂0 + r1, . . . , ̂r0 + rR

}
Mi = (20, 50, 70, 100) Mi = (50, 70, 100, 150) Mi = (100, 150, 200, 250)

Panel A: ΩF = I4

β ϕe κ T CCD MCC CCD MCC CCD MCC

0 0 1 50 2(0|0) 2(0|0) 2(0|0) 2(0|0) 2(0|0) 2(0|0)
0 0 1 100 2(0|0) 2(0|0) 2(0|0) 2(0|0) 2(0|0) 2(0|0)
0 0 1 200 2(0|0) 2(0|0) 2(0|0) 2(0|0) 2(0|0) 2(0|0)
0.1 0.5 1 50 2.01(3|0) 2.45(44.2|0) 2(0|0) 2(0.1|0) 2(0|0) 2(0|0)
0.1 0.5 1 100 2(0|0) 2(0|0) 2(0|0) 2(0|0) 2(0|0) 2(0|0)
0.1 0.5 1 200 2(0|0) 2(0|0.2) 2(0|0) 2(0|0) 2(0|0) 2(0|0)
0.1 0.5 3 50 2.03(7.2|5) 2.98(88.1|0) 1.96(0.9|4.5) 2.05(5.4|0.2) 2(0|0) 2(0|0)
0.1 0.5 3 100 1.95(0|5.2) 1.99(0|0.6) 1.99(1|0) 1.99(0|0.8) 2(0|0) 2(0|0)
0.1 0.5 3 200 1.92(0|6.7) 1.9(0|9.6) 1.99(0|0.8) 1.96(0|3.9) 2(0|0) 2(0|0)

Panel B: ΩF = Ω
(1)
F

0 0 1 50 2.02(2.1|0) 2.01(1|0) 2.01(0.7|0) 2(0|0) 2.01(0.6|0) 2(0|0)
0 0 1 100 2(0.1|0) 2(0|0) 2(0|0) 2(0|0) 2(0|0) 2(0|0)
0 0 1 200 2(0|0) 2(0|0) 2(0|0) 2(0|0) 2(0|0) 2(0|0)
0.1 0.5 1 50 2.05(4.8|0) 2.78(75.9|0) 2.03(3.3|0) 2.03(2.6|0) 2.02(2|0) 2(0|0)
0.1 0.5 1 100 2(0|0) 2(0|0) 2(0.1|0) 2(0|0) 2(0|0) 2(0|0)
0.1 0.5 1 200 2(0|0) 2(0|0.1) 2(0|0) 2(0|0) 2(0|0) 2(0|0)
0.1 0.5 3 50 2.27(23.2|3) 2.97(10|0) 2.12(13.9|2) 2.1(10.4|0.3) 2.05(5.8|0.5) 2(0.2|0.5)
0.1 0.5 3 100 1.98(2.5|3.5) 1.99(0|0.8) 2(0.5|0.3) 1.97(0|2.9) 2(0.1|0) 2(0|0)
0.1 0.5 3 200 1.96(0.1|4.1) 1.85(14.7|0) 2(0.1|0.3) 1.93(0|7) 2(0|0) 2(0|0)

Panel C: ΩF = Ω
(2)
F

0 0 1 50 2.85(84.9|0) 2.85(84.9|0) 2.83(82.5|0) 2.42(41.9|0) 2.79(78.5|0) 2.11(11.2|0)
0 0 1 100 2.91(91.2|0) 2.44(43.7|0) 2.9(89.5|0) 2.03(2.5|0) 2.9(89.5|0) 2(0.1|0)
0 0 1 200 2.98(97.5|0) 2(0.3|0) 2.97(96.7|0) 2(0|0) 2.96(95.8|0) 2(0|0)
0.1 0.5 1 50 2.87(81.2|0) 3.08(99.5|0) 2.85(84.6|0) 2.81(80.5|0) 2.86(85.9|0) 2.23(22.6|0)
0.1 0.5 1 100 2.92(92|0) 2.52(52.1|0) 2.93(92.7|0) 2.05(4.8|0) 2.89(88.5|0) 2(0|0)
0.1 0.5 1 200 2.98(97.8|0) 2.01(0.5|0) 2.97(96.9|0) 2(0|0) 2.95(94.8|0) 2(0|0)
0.1 0.5 3 50 2.94(79.5|0.3) 3.19(99.3|0) 2.88(85.2|0.3) 2.77(76.6|0) 2.87(86.4|0) 2.42(41.7|0)
0.1 0.5 3 100 2.8(80.5|0.2) 2.46(45.9|0) 2.91(90.7|0) 2.09(8.6|0) 2.93(93.3|0) 2.01(1.4|0)
0.1 0.5 3 200 2.76(76.3|0) 2.01(1.4|0.9) 2.95(95.3|0) 1.99(0|0.6) 2.98(97.9|0) 2(0|0)

ωF is the common off-diagonal element of ΩF that is the covariance matrix of the innovations in the local factors. See

footnotes to Table A.3.
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A.6 Estimating the Number of Local Factors

In this section we provide the additional simulation results for the estimation of local factors. We

apply the estimation procedure suggested in Section 1.4.2 to the same experiments conducted in

Section 1.5. We consider the four estimators, ICp2, BIC3 by Bai & Ng (2002), ER by Ahn &

Horenstein (2013) and ED by Onatski (2010). Before applying these estimators to the data within

each block (i = 1, · · · , R), we need to concentrate out the T × r̂0 matrix of estimated global factors,

Ĝ, where r̂0 is estimated by CCD or MCC.

We iterate each simulation experiment 1000 times, yielding R× 1000 r̂i in total. The maximum

number of local factors, r∗i,max is set to r∗max− r̂0. We report the average estimates together with the

percentage of overestimates and underestimates inside the parenthesis as (O|U) in Table A.7-A.12.

Table A.7 presents the simulation results for the benchmark case with (r0, ri) = (2, 2) and

(β, ϕe, κ) = (0, 0, 1). The four approaches can produce accurate estimates of r̂i, unless M is too

small. If the idiosyncratic errors are cross-sectionally and serially correlated, ICp2 always overes-

timates ri. BIC3 and ER perform slightly better than ED, see Table A.8. Qualitatively similar

patterns can be observed in Table A.9 and Table A.10.

The results for (r0, ri) = (3, 3) reported in Table A.11, show that it is more difficult to precisely

estimate ri in small sample, although the number of global factors is still accurately estimated. As

M and T become large, BIC3 and ER can provide precise estimates. When working with the very

noisy data with (β, ϕe, κ) = (0.1, 0.5, 3), we find that all the estimators perform poorly, see Table

A.12. This is a small sample issue as the biases will vanish as M and T increases.

Combining these results with the main simulation results in Section 1.5, we may conclude that

the sequential procedure using BIC or ER in conjunction with CCD or MCC will provide reli-

able inference for jointly selecting the number of global factors and the number of local factors in

multilevel factor model.
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Table A.7: Average estimates of the number of local factors for
experiments with (ϕG, ϕF ) = (0.5, 0.5), (r0, ri) = (2, 2), (β, ϕe, κ) =
(0, 0, 1) and r∗i,max = r∗max − r̂0

R M T ICp2 BIC3 ER ED

2 20 50 2.02(5|3) 1.59(0|40) 1.75(2|27) 2.13(17|3)
2 50 50 2(0|0) 1.9(0|10) 1.97(0|3) 2.06(6|0)
2 100 50 2(0|0) 1.98(0|2) 2(0|0) 2.03(3|0)
2 200 50 2(0|0) 2(0|0) 2(0|0) 2.02(2|0)
2 20 100 2.06(6|0) 1.63(0|36) 1.88(1|13) 2.19(19|1)
2 50 100 2(0|0) 1.99(0|1) 2(0|0) 2.1(10|0)
2 100 100 2(0|0) 2(0|0) 2(0|0) 2.04(4|0)
2 200 100 2(0|0) 2(0|0) 2(0|0) 2.02(2|0)
2 20 200 2.07(7|0) 1.62(0|37) 1.93(1|9) 2.25(25|0)
2 50 200 2(0|0) 2(0|0) 2(0|0) 2.17(17|0)
2 100 200 2(0|0) 2(0|0) 2(0|0) 2.08(8|0)
2 200 200 2(0|0) 2(0|0) 2(0|0) 2.04(4|0)
5 20 50 2.05(9|4) 1.52(0|46) 1.73(2|29) 2.13(18|5)
5 50 50 2(0|0) 1.9(0|10) 1.97(0|3) 2.06(6|0)
5 100 50 2(0|0) 1.98(0|2) 2(0|0) 2.03(3|0)
5 200 50 2(0|0) 1.99(0|1) 2(0|0) 2.02(2|0)
5 20 100 2.09(10|1) 1.58(0|41) 1.85(2|17) 2.28(29|1)
5 50 100 2(0|0) 1.99(0|1) 2(0|0) 2.15(15|0)
5 100 100 2(0|0) 2(0|0) 2(0|0) 2.05(5|0)
5 200 100 2(0|0) 2(0|0) 2(0|0) 2.02(2|0)
5 20 200 2.11(11|0) 1.56(0|43) 1.89(2|12) 2.38(39|1)
5 50 200 2(0|0) 2(0|0) 2(0|0) 2.26(26|0)
5 100 200 2(0|0) 2(0|0) 2(0|0) 2.12(12|0)
5 200 200 2(0|0) 2(0|0) 2(0|0) 2.04(4|0)
10 20 50 2.06(10|4) 1.49(0|49) 1.72(2|30) 2.14(19|5)
10 50 50 2(0|0) 1.9(0|10) 1.96(0|4) 2.07(7|0)
10 100 50 2(0|0) 1.98(0|2) 2(0|0) 2.03(3|0)
10 200 50 2(0|0) 1.99(0|1) 2(0|0) 2.02(2|0)
10 20 100 2.1(11|1) 1.55(0|44) 1.84(2|18) 2.29(30|1)
10 50 100 2(0|0) 1.99(0|1) 2(0|0) 2.15(15|0)
10 100 100 2(0|0) 2(0|0) 2(0|0) 2.05(5|0)
10 200 100 2(0|0) 2(0|0) 2(0|0) 2.02(2|0)
10 20 200 2.12(12|0) 1.53(0|45) 1.89(2|13) 2.41(42|1)
10 50 200 2(0|0) 2(0|0) 2(0|0) 2.29(29|0)
10 100 200 2(0|0) 2(0|0) 2(0|0) 2.14(14|0)
10 200 200 2(0|0) 2(0|0) 2(0|0) 2.04(4|0)

The average of r̂i across R blocks over 1,000 replications are reported

together with the figures inside the parenthesis, (O|U), indicating the

percentage of overestimation and underestimation, respectively. ϕG

and ϕF are the AR coefficients of the global and local factors respec-

tively. β, ϕe and κ control the cross-section correlation, serial corre-

lation and noise to signal ratio, respectively. r̂0 is estimated by CCD

with r∗max = max
{
r̂0 + r1, . . . , ̂r0 + rR

}
.
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Table A.8: Average estimates of the number of local factors for experi-
ments with (ϕG, ϕF ) = (0.5, 0.5), (r0, ri) = (2, 2), (β, ϕe, κ) = (0.1, 0.5, 1)
and r∗i,max = r∗max − r̂0

R M T ICp2 BIC3 ER ED

2 20 50 2.95(92|0) 2.06(17|11) 1.77(5|28) 2.23(46|18)
2 50 50 2.81(81|0) 1.99(1|3) 1.88(2|14) 2.12(18|5)
2 100 50 2.81(81|0) 1.99(0|1) 1.94(0|6) 2.09(10|1)
2 200 50 2.58(60|2) 1.96(0|4) 1.95(0|5) 2.01(5|3)
2 20 100 2.99(99|0) 1.99(9|10) 1.82(2|20) 2.33(55|16)
2 50 100 2.99(99|0) 2(0|0) 1.96(0|4) 2.07(8|1)
2 100 100 2.74(74|0) 2(0|0) 2(0|0) 2.04(4|0)
2 200 100 2.45(45|0) 2(0|0) 2(0|0) 2.04(4|0)
2 20 200 3(100|0) 1.91(3|12) 1.87(2|15) 2.4(58|13)
2 50 200 3(100|0) 2(0|0) 1.99(0|1) 2.02(2|0)
2 100 200 2.98(98|0) 2(0|0) 2(0|0) 2.02(2|0)
2 200 200 2.26(26|0) 2(0|0) 2(0|0) 2.02(2|0)
5 20 50 2.96(96|0) 1.97(11|13) 1.75(6|31) 2.02(37|25)
5 50 50 2.84(84|0) 1.99(1|2) 1.88(1|14) 2.08(15|6)
5 100 50 2.84(84|0) 2(0|0) 1.95(0|5) 2.08(8|0)
5 200 50 2.73(73|0) 2(0|0) 1.99(0|1) 2.05(5|0)
5 20 100 2.99(99|0) 1.9(5|15) 1.81(4|23) 2.13(43|22)
5 50 100 2.98(98|0) 2(0|0) 1.96(0|4) 2.06(7|2)
5 100 100 2.71(71|0) 2(0|0) 2(0|0) 2.04(4|0)
5 200 100 2.44(44|0) 2(0|0) 2(0|0) 2.04(4|0)
5 20 200 3(100|0) 1.83(2|18) 1.85(3|18) 2.19(46|20)
5 50 200 3(100|0) 2(0|0) 1.99(0|1) 2.01(1|0)
5 100 200 2.98(98|0) 2(0|0) 2(0|0) 2.02(2|0)
5 200 200 2.24(24|0) 2(0|0) 2(0|0) 2.03(3|0)
10 20 50 2.96(96|0) 1.93(8|15) 1.73(6|33) 1.95(33|28)
10 50 50 2.82(82|0) 1.99(1|2) 1.88(1|13) 2.07(14|5)
10 100 50 2.82(82|0) 2(0|0) 1.96(0|5) 2.07(7|0)
10 200 50 2.72(72|0) 2(0|0) 1.99(0|1) 2.05(5|0)
10 20 100 2.99(99|0) 1.87(4|17) 1.8(4|24) 2.09(41|23)
10 50 100 2.98(98|0) 2(0|0) 1.96(0|4) 2.05(7|1)
10 100 100 2.7(70|0) 2(0|0) 2(0|0) 2.05(5|0)
10 200 100 2.43(43|0) 2(0|0) 2(0|0) 2.04(4|0)
10 20 200 3(100|0) 1.81(1|20) 1.84(3|19) 2.1(42|22)
10 50 200 3(100|0) 2(0|0) 1.99(0|1) 2.01(1|0)
10 100 200 2.98(98|0) 2(0|0) 2(0|0) 2.02(2|0)
10 200 200 2.26(24|0) 2(0|0) 2(0|0) 2.03(2|0)

See footnotes to Table A.7.
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Table A.9: Average estimates of the number of local factors for experi-
ments with (ϕG, ϕF ) = (0.5, 0.5), (r0, ri) = (0, 2), (β, ϕe, κ) = (0.1, 0.5, 1)
and r∗i,max = r∗max − r̂0

R M T ICp2 BIC3 ER ED

2 20 50 3.83(98|0) 2.77(74|0) 1.77(4|27) 2.74(63|12)
2 50 50 3.46(85|0) 2.25(25|0) 1.89(1|13) 2.35(24|4)
2 100 50 3.44(82|0) 2(1|1) 1.94(0|6) 2.12(10|1)
2 200 50 2.82(57|4) 1.93(0|7) 1.91(0|8) 2.01(6|4)
2 20 100 3.79(100|0) 2.57(57|0) 1.84(3|19) 3.33(85|3)
2 50 100 4.35(100|0) 2.12(12|0) 1.97(0|4) 2.49(22|1)
2 100 100 3.13(74|0) 2(0|0) 2(0|0) 2.06(4|0)
2 200 100 2.49(42|0) 2(0|0) 2(0|0) 2.05(4|0)
2 20 200 3.86(100|0) 2.38(38|0) 1.86(3|17) 3.83(98|0)
2 50 200 3.86(100|0) 2.38(39|1) 1.88(4|16) 3.82(98|0)
2 100 200 4.44(99|0) 2(0|0) 2(0|0) 2.02(1|0)
2 200 200 2.26(24|0) 2(0|0) 2(0|0) 2.02(1|0)
5 20 50 3.84(97|0) 2.76(73|0) 1.78(4|26) 2.72(61|11)
5 50 50 3.48(85|0) 2.27(26|0) 1.88(1|13) 2.36(25|4)
5 100 50 3.55(85|0) 2.01(1|0) 1.95(0|5) 2.13(10|0)
5 200 50 3.12(70|0) 2(0|0) 1.99(0|1) 2.06(4|0)
5 20 100 3.79(100|0) 2.58(58|0) 1.85(3|19) 3.35(86|3)
5 50 100 4.32(99|0) 2.12(12|0) 1.96(0|4) 2.48(22|1)
5 100 100 3.08(72|0) 2(0|0) 2(0|0) 2.07(5|0)
5 200 100 2.5(42|0) 2(0|0) 2(0|0) 2.04(3|0)
5 20 200 3.86(100|0) 2.38(39|1) 1.89(3|14) 3.83(98|0)
5 50 200 4.82(100|0) 2.03(3|0) 1.98(0|2) 2.38(14|0)
5 100 200 4.46(99|0) 2(0|0) 2(0|0) 2.02(1|0)
5 200 200 2.26(24|0) 2(0|0) 2(0|0) 2.02(2|0)
10 20 50 3.85(98|0) 2.77(74|0) 1.76(4|28) 2.72(61|11)
10 50 50 3.48(86|0) 2.26(26|0) 1.89(1|13) 2.38(26|4)
10 100 50 3.54(84|0) 2.01(1|0) 1.95(0|5) 2.14(10|0)
10 200 50 3.16(71|0) 2(0|0) 1.99(0|1) 2.07(5|0)
10 20 100 3.79(100|0) 2.58(58|0) 1.84(3|19) 3.33(85|3)
10 50 100 4.33(99|0) 2.12(12|0) 1.97(0|4) 2.48(22|1)
10 100 100 3.1(74|0) 2(0|0) 2(0|0) 2.07(5|0)
10 200 100 2.5(42|0) 2(0|0) 2(0|0) 2.05(3|0)
10 20 200 3.86(100|0) 2.38(39|1) 1.89(3|14) 3.83(98|0)
10 50 200 4.83(100|0) 2.03(3|0) 1.99(0|1) 2.37(14|0)
10 100 200 4.46(99|0) 2(0|0) 2(0|0) 2.01(1|0)
10 200 200 2.26(24|0) 2(0|0) 2(0|0) 2.02(2|0)

See footnotes to Table A.7.
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Table A.10: Average estimates of the number of local factors for
experiments with (ϕG, ϕF ) = (0.5, 0.5), (r0, ri) = (1, 1), (β, ϕe, κ) =
(0.1, 0.5, 1) and r∗i,max = r∗max − r̂0

R M T ICp2 BIC3 ER ED

2 20 50 2.93(99|0) 1.82(78|0) 1.01(1|0) 2.11(75|0)
2 50 50 2.58(88|0) 1.26(26|0) 1(0|0) 1.6(34|0)
2 100 50 2.52(85|0) 1.01(1|0) 1(0|0) 1.2(14|0)
2 200 50 1.86(59|2) 0.97(0|3) 0.98(0|2) 1.1(9|1)
2 20 100 2.88(100|0) 1.66(66|0) 1(0|0) 2.51(90|0)
2 50 100 3.34(99|0) 1.11(11|0) 1(0|0) 1.62(27|0)
2 100 100 2.09(73|0) 1(0|0) 1(0|0) 1.11(7|0)
2 200 100 1.53(45|0) 1(0|0) 1(0|0) 1.07(5|0)
2 20 200 2.94(100|0) 1.47(47|0) 1(0|0) 2.93(98|0)
2 50 200 3.83(100|0) 1.02(2|0) 1(0|0) 1.44(17|0)
2 100 200 3.48(99|0) 1(0|0) 1(0|0) 1.02(2|0)
2 200 200 1.27(25|0) 1(0|0) 1(0|0) 1.04(3|0)
5 20 50 2.93(98|0) 1.78(75|0) 1.01(1|0) 2.04(70|0)
5 50 50 2.5(87|0) 1.23(23|0) 1(0|0) 1.53(31|0)
5 100 50 2.55(85|0) 1.01(1|0) 1(0|0) 1.2(14|0)
5 200 50 2.11(69|0) 1(0|0) 1(0|0) 1.09(6|0)
5 20 100 2.89(100|0) 1.61(61|0) 1(0|0) 2.47(88|0)
5 50 100 3.33(99|0) 1.1(10|0) 1(0|0) 1.59(27|0)
5 100 100 2.08(72|0) 1(0|0) 1(0|0) 1.1(7|0)
5 200 100 1.48(40|0) 1(0|0) 1(0|0) 1.07(5|0)
5 20 200 2.95(100|0) 1.41(41|0) 1(0|0) 2.9(97|0)
5 50 200 3.81(100|0) 1.02(2|0) 1(0|0) 1.46(17|0)
5 100 200 3.4(99|0) 1(0|0) 1(0|0) 1.03(2|0)
5 200 200 1.26(25|0) 1(0|0) 1(0|0) 1.04(3|0)
10 20 50 2.91(98|0) 1.78(75|0) 1(0|0) 2.03(70|0)
10 50 50 2.47(86|0) 1.23(22|0) 1(0|0) 1.51(31|0)
10 100 50 2.54(85|0) 1.01(1|0) 1(0|0) 1.19(13|0)
10 200 50 2.12(70|0) 1(0|0) 1(0|0) 1.09(6|0)
10 20 100 2.91(100|0) 1.59(59|0) 1(0|0) 2.45(86|0)
10 50 100 3.31(99|0) 1.09(9|0) 1(0|0) 1.58(26|0)
10 100 100 2.05(71|0) 1(0|0) 1(0|0) 1.1(7|0)
10 200 100 1.49(41|0) 1(0|0) 1(0|0) 1.07(5|0)
10 20 200 2.97(100|0) 1.39(39|0) 1(0|0) 2.9(96|0)
10 50 200 3.81(100|0) 1.02(2|0) 1(0|0) 1.42(16|0)
10 100 200 3.4(98|0) 1(0|0) 1(0|0) 1.02(1|0)
10 200 200 1.25(23|0) 1(0|0) 1(0|0) 1.04(3|0)

See footnotes to Table A.7.
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Table A.11: Average estimates of the number of local factors for exper-
iments with (ϕG, ϕF ) = (0.5, 0.5), (r0, ri) = (3, 3), (β, ϕe, κ) = (0.1, 0.5, 1)
and r∗i,max = r∗max − r̂0

R M T ICp2 BIC3 ER ED

2 20 50 4.41(82|4) 3.11(36|24) 2.18(11|63) 2.4(31|50)
2 50 50 4.19(80|2) 2.9(9|17) 2.47(8|43) 2.39(20|42)
2 100 50 4.17(77|4) 2.84(0|15) 2.65(1|25) 2.87(9|15)
2 200 50 3.67(57|12) 2.72(0|24) 2.68(0|23) 2.79(5|15)
2 20 100 4.89(99|0) 3.13(28|16) 2.48(13|45) 3.01(53|35)
2 50 100 4.84(99|0) 3.02(5|3) 2.78(4|19) 2.57(13|28)
2 100 100 4.12(76|0) 3(0|0) 2.98(0|2) 3.05(4|0)
2 200 100 3.65(52|0) 3(0|0) 3(0|0) 3.05(4|0)
2 20 200 4.89(99|0) 3.14(30|16) 2.48(13|46) 2.93(51|37)
2 50 200 4.99(100|0) 3.01(1|1) 2.9(2|9) 2.58(4|21)
2 100 200 4.86(98|0) 3(0|0) 3(0|0) 3.02(1|0)
2 200 200 3.33(30|0) 3(0|0) 3(0|0) 3.01(1|0)
5 20 50 4.69(95|1) 3.15(30|17) 2.24(13|60) 2.11(27|58)
5 50 50 4.28(83|0) 2.97(7|10) 2.5(7|40) 2.34(16|43)
5 100 50 4.38(86|0) 2.94(0|6) 2.72(1|21) 2.91(8|11)
5 200 50 4.21(79|0) 2.95(0|5) 2.88(0|9) 3.03(4|1)
5 20 100 4.81(98|0) 2.87(14|27) 2.36(11|51) 2.42(37|49)
5 50 100 4.79(98|0) 2.99(2|4) 2.78(3|19) 2.53(11|28)
5 100 100 4.01(73|0) 3(0|0) 2.97(0|2) 3.04(4|0)
5 200 100 3.57(47|0) 3(0|0) 3(0|0) 3.04(3|0)
5 20 200 4.86(99|0) 2.65(8|41) 2.46(11|45) 2.68(46|43)
5 50 200 4.98(100|0) 2.99(0|1) 2.91(1|8) 2.63(4|18)
5 100 200 4.81(98|0) 3(0|0) 3(0|0) 3.01(1|0)
5 200 200 3.28(25|0) 3(0|0) 3(0|0) 3.02(2|0)
10 20 50 4.7(94|1) 3.09(25|16) 2.2(12|61) 1.95(23|62)
10 50 50 4.23(81|0) 2.94(6|12) 2.48(6|41) 2.29(14|43)
10 100 50 4.37(86|0) 2.94(0|6) 2.72(1|21) 2.9(8|11)
10 200 50 4.21(79|0) 2.96(0|4) 2.9(0|8) 3.04(4|1)
10 20 100 4.8(98|0) 2.8(10|30) 2.32(10|53) 2.22(32|54)
10 50 100 4.78(98|0) 2.97(2|4) 2.78(3|19) 2.53(10|28)
10 100 100 3.97(71|0) 3(0|0) 2.97(0|2) 3.04(4|0)
10 200 100 3.54(45|0) 3(0|0) 3(0|0) 3.04(3|0)
10 20 200 4.86(99|0) 2.57(4|44) 2.44(10|46) 2.36(39|50)
10 50 200 4.98(100|0) 2.99(0|2) 2.9(1|9) 2.64(4|18)
10 100 200 4.79(97|0) 3(0|0) 3(0|0) 3.01(1|0)
10 200 200 3.26(24|0) 3(0|0) 3(0|0) 3.02(1|0)

See footnotes to Table A.7.
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Table A.12: Average estimates of the number of local factors for Exper-
iments with (ϕG, ϕF ) = (0.5, 0.5), (r0, ri) = (2, 2), (β, ϕe, κ) = (0.1, 0.5, 3)
and r∗i,max = r∗max − r̂0

R M T ICp2 BIC3 ER ED

2 20 50 3.13(76|5) 1.51(12|51) 1.56(17|55) 1.34(23|57)
2 50 50 2.58(62|7) 1.02(0|80) 1.5(11|53) 1.02(12|68)
2 100 50 2.6(65|5) 1.03(0|81) 1.4(4|50) 1.34(8|49)
2 200 50 2.4(50|9) 1.02(0|81) 1.47(0|42) 1.7(3|25)
2 20 100 3.4(94|0) 1.25(5|66) 1.53(16|52) 1.45(32|56)
2 50 100 3.01(97|0) 1.13(0|76) 1.47(9|48) 0.78(7|75)
2 100 100 2.68(68|0) 1.57(0|42) 1.79(1|20) 1.79(5|18)
2 200 100 2.44(44|0) 1.88(0|12) 1.96(0|4) 2.04(4|0)
2 20 200 3.29(96|0) 0.91(1|82) 1.48(16|52) 1.45(35|55)
2 50 200 3.02(100|0) 1.16(0|75) 1.47(6|43) 0.6(2|80)
2 100 200 2.98(98|0) 1.88(0|12) 1.93(0|6) 1.98(2|3)
2 200 200 2.26(26|0) 2(0|0) 2(0|0) 2.03(3|0)
5 20 50 3.29(84|3) 1.54(15|52) 1.59(18|54) 1.14(19|66)
5 50 50 2.62(65|6) 0.99(0|84) 1.48(12|55) 0.87(9|74)
5 100 50 2.77(77|1) 1.07(0|81) 1.41(3|49) 1.35(8|48)
5 200 50 2.67(67|0) 1.12(0|79) 1.56(0|35) 1.82(4|17)
5 20 100 3.36(92|1) 1.11(5|72) 1.42(16|59) 1.17(22|65)
5 50 100 2.96(95|0) 1.05(0|81) 1.42(9|51) 0.76(6|76)
5 100 100 2.66(66|0) 1.53(0|45) 1.76(1|22) 1.76(5|19)
5 200 100 2.43(43|0) 1.85(0|15) 1.96(0|4) 2.04(4|0)
5 20 200 3.14(95|0) 0.68(1|90) 1.34(15|60) 1.14(24|64)
5 50 200 3(100|0) 1.08(0|79) 1.38(5|47) 0.61(2|79)
5 100 200 2.97(97|0) 1.87(0|13) 1.92(0|7) 1.98(2|3)
5 200 200 2.23(23|0) 2(0|0) 2(0|0) 2.02(2|0)
10 20 50 3.24(84|3) 1.48(14|56) 1.54(18|56) 1.12(18|67)
10 50 50 2.62(66|6) 0.97(0|84) 1.46(12|55) 0.86(9|74)
10 100 50 2.76(76|1) 1.05(0|82) 1.39(3|50) 1.33(7|49)
10 200 50 2.67(67|0) 1.13(0|78) 1.57(0|35) 1.81(5|17)
10 20 100 3.27(91|1) 1.04(4|76) 1.38(15|60) 1.09(20|67)
10 50 100 2.96(96|0) 1.01(0|83) 1.38(8|53) 0.71(5|78)
10 100 100 2.65(65|0) 1.53(0|46) 1.77(1|21) 1.78(4|18)
10 200 100 2.4(40|0) 1.85(0|15) 1.95(0|4) 2.04(4|0)
10 20 200 3.06(95|0) 0.58(0|94) 1.25(13|62) 0.98(20|69)
10 50 200 3(100|0) 1.05(0|82) 1.32(5|50) 0.6(2|80)
10 100 200 2.97(97|0) 1.86(0|14) 1.92(0|7) 1.98(2|3)
10 200 200 2.22(22|0) 2(0|0) 2(0|0) 2.02(2|0)

See footnotes to Table A.7.

A.7 Alternative Selection Criteria under Two Wide-groups Divi-

sion when R > 2

In this Section we follow the anonymous referee’s suggestion and split the whole data with R >

2 groups into the two wide groups. This simple modification enables us to apply the AGGR’s

procedure for estimating the number of global factors even if R > 2, without developing complex
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analytic counterparts. Furthermore, this scheme may improve the finite sample performance of

CCD and MCC estimators by increasing the number of cross-section observations used in the

estimation of the number of global factors, r0 and the global factors, G. This implementation

requires to calculate only one pair of sample squared canonical correlations, though we need to

adjust rmax when estimating the two wide-group specific factors.

Let ⌊R/2⌋ be the integer part of R/2. Without loss of generality, we suppose that the first

(the second) “w” group contains the blocks, i = 1, . . . , ⌊R/2⌋ (i = ⌊R/2⌋ + 1, . . . , R). We use the

superscript, w to denote the data constructed by this strategy. The numbers of cross-sectional

observations in each “w” group are Mw
1 = M1 + · · · + M⌊R/2⌋ and Mw

2 = M⌊R/2⌋+1 + · · · + MR,

respectively. Denote the corresponding T ×Mw
1 and T ×Mw

2 data matrices by Yw
1 and Yw

2 . The

first “w” group contains rw1 = r0 + r1 + · · · + r⌊R/2⌋ factors, denoted by Kw
1 while the second “w”

group contains rw2 = r0 + r⌊R/2⌋+1 + · · · + rR factors, denoted by Kw
2 . Then, we can estimate r0

through evaluating the canonical correlations between Kw
1 and Kw

2 .

We explore the performance of AGGR, CCD and MCC with the two wide-group division,

denoted respectively by AGGRw, CCDw and MCCw,7 via additional Monte Carlo experiments.

We consider the same DGP employed under Experiments 1 and 3 as in Section 1.5.

To consistenly estimate factors and canonical correlations by CCDw and MCCw, we need to

select a sufficiently large rmax ≥ max{rw1 , rw2 }. Following a practical selection guideline described in

Section 1.5, we select the common r∗max for the two-wide groups by r∗max = max{r̂w1 , r̂w2 }, where r̂w1

and r̂w2 are the number of factors estimated by BIC3. Here we set rmax = r0 + ri × ⌈R/2⌉ + 5 for

each w-groups when applying BIC3, where ⌈R/2⌉ is the smallest integer that is larger than or equal

to R/2. For example, if (r0, ri) = (2, 2), then rmax = 9, 13, 17 for R = 2, 5, 10. This ensures the

consistency of BIC3. When implementing AGGRw, we assume that the true numbers of factors,

rw1 and rw2 , are known, and set rmax = max{rw1 , rw2 }. But, we still allow the estimation uncertainty

in implementing CCDw and MCCw.

Table A.13 shows the simulation results for Experiment 1. For R = 2, the performances of

CCDw, MCCw and AGGRw are qualitatively similar to those in Table 1. As R increases, however,

all three criteria tend to overestimate r0 if T is small (T = 50). In particular, the performance of

AGGRw becomes satisfactory only if M and T are sufficiently large. Overall, we find that CCDw

and MCCw appear to be outperformed by CCD and MCC. First, we need to set r∗max larger as

R grows. This may adversely affect the precision of canonical correlations. Second, if Mi ≥ T , the

two wide-group division does not yield more precise factor estimates. By Lemma 4, the convergence

7We do not report the results fo the IC approach by Chen (2012), since it is computationally too burdensome and
its performance is dominated by CCD and MCC as reported in the main text.
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rate of K̂w
1 is Op(1/δMw

1 T ) where δMw
1 T = min

{√
Mw

1 ,
√
T
}

=
√
T . In this case the use of more

cross-section observations does not necessarily result in a faster convergence rate.

However, if T > Mi, then the larger Mw
1 and Mw

2 will improve the precision of factor estimates

by CCDw and MCCw. If T is also sufficiently large (T ≥ 100) with Mi << T , then the advantage

of using the larger Mw
1 and Mw

2 can outweigh the disadvantage caused by assigning the larger r∗max.

This gain is more noticeable when the data is noisier. For example, in Panel C of Table A.13, the

average estimates of CCDw and MCCw with (M,T ) = (20, 200) are 1.68 and 1.21 (2 and 1.93) for

R = 5 (R = 10) whilst the corresponding figures for CCD and MCC are only 0.92 and 0.7 (0.96

and 0.78) for R = 5 (R = 10) (see Table 1.1).

Next, Table A.14 shows the simulation results for Experiment 3. We allow the number of

global factors to vary from 0 to 3 by setting (r0, ri) ∈ {(0, 2), (1, 1), (3, 3)} for i = 1, ..., R and

(β, ϕe, κ) = (0.1, 0.5, 1). First, the results for the case with (r0, ri) = (0, 2), are reported in Panel

A. CCDw tends to select zero global factor correctly for R = 2, 5. But, if R = 10, CCDw slightly

overestimate r0 if T is small, mainly due to the adverse effect of the larger r∗wmax. Such overestimation

becomes more severe for MCCw and AGGRw. Second, turning to the case with (r0, ri) = (1, 1)

in Panel B, we find that CCDw and MCCw estimate r0 = 1 correctly in most cases. AGGRw

overestimates r0 when M or T is small. Finally, the results for (r0, ri) = (3, 3) presented in Panel

C, display that CCDw, MCCw and AGGRw are all subject to severe overestimation biases if

T is small. The performance of CCDw and MCCw improves sharply with T . By contrast, the

performance of AGGR becomes satisfactory only if both M and T are large. Overall, CCD and

MCC still outperform CCDw, MCCw and AGGRw in most cases.

We may draw three conclusions from these findings. First, we are able to apply the AGGR

approach to the multilevel panel with R > 2 by forming the two wide-groups, though its performance

becomes satisfactory only if both M and T are substantially large. Its performance becomes rather

unreliable, especially if T is small. Second, CCD and MCC still outperform CCDw, MCCw and

AGGRw in most cases. Third, there is a trade-off between a selection of the larger r∗max and the

use of more cross-section observations. CCDw and MCCw significantly improves the estimation

precision of r0 for the multilevel panel with R > 2, if T is sufficiently large and M is much smaller

than T . On the other hand, if T is small, then the performance of CCDw and MCCw appears to be

unreliable, and MCCw tends to overestimate r0. Hence, we may recommend to apply this 2-wide

groups modification in practice, only when T is sufficiently large and M is much smaller than T .
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Table A.13: Average estimates of the number of global factors for w−groups for Experiment 1. (ϕG, ϕF ) = (0.5, 0.5),
(r0, ri) = (2, 2), (β, ϕe, κ) ∈ {(0, 0, 1), (0.1, 0.5, 1), (0.1, 0.5, 3)}

CCDw MCCw AGGRw CCDw MCCw AGGRw CCDw MCCw AGGRw

Panel A: (β, ϕe, κ) = (0, 0, 1)

M T R = 2 R = 5 R = 10

20 50 1.95(0.3|4.5) 1.96(0|4.2) 2.82(65.9|3.3) 1.99(0.9|1.5) 1.99(0.2|1.1) 7.55(98.7|0) 2.02(2.1|0) 2.01(0.8|0) 5.5(45.5|0.1)
50 50 1.98(0|1.7) 1.98(0|1.8) 1.98(0|2) 2(0.6|0.4) 2(0|0.4) 2.28(6.4|0.3) 2.01(1.4|0) 2(0|0) 5.25(38.7|0)
100 50 1.99(0|0.6) 1.99(0|0.7) 1.99(0|0.7) 2(0.3|0.1) 1.99(0|1) 2.3(7.4|0) 2.01(0.7|0) 2(0|0.1) 5.04(36.5|0)
200 50 2(0|0.4) 2(0|0.5) 2(0|0.3) 2(0.2|0.3) 1.98(0|1.6) 2.21(5.7|0.1) 2.01(0.6|0) 2(0|0.3) 5.09(37.3|0)
20 100 1.92(0|6.3) 1.91(0|8.3) 2.54(52.3|4.2) 2(0|0.5) 1.99(0|1.3) 8(100|0) 2(0|0) 2(0|0) 2.13(1.7|0.3)
50 100 2(0|0.1) 2(0|0.1) 2.28(28.1|0) 2(0|0) 2(0|0) 2(0.1|0.1) 2(0|0) 2(0|0) 2.14(1.8|0)
100 100 2(0|0.1) 2(0|0.1) 2(0|0) 2(0|0) 2(0|0) 2.01(0.3|0) 2(0|0) 2(0|0) 2.1(1.3|0)
200 100 2(0|0) 2(0|0) 2(0|0) 2(0|0) 2(0|0) 2(0.2|0) 2(0|0) 2(0|0) 2.05(0.6|0)
20 200 1.83(0|13.1) 1.78(0|18.9) 2.37(46.5|8.6) 2(0|0.3) 1.99(0|1.3) 8(100|0) 2(0|0) 2(0|0) 11.95(99.9|0)
50 200 2(0|0) 2(0|0) 2.19(20.1|0.6) 2(0|0) 2(0|0) 2(0|0) 2(0|0) 2(0|0) 2(0|0)
100 200 2(0|0) 2(0|0) 2.11(11.2|0) 2(0|0) 2(0|0) 2(0|0) 2(0|0) 2(0|0) 2(0|0)
200 200 2(0|0) 2(0|0) 2(0|0) 2(0|0) 2(0|0) 2(0|0) 2(0|0) 2(0|0) 2(0|0)

Panel B: (β, ϕe, κ) = (0.1, 0.5, 1)

M T R = 2 R = 5 R = 10

20 50 2.06(6.8|2.4) 2.05(5.9|0.6) 2.56(61.6|16.8) 2.24(14|0) 2.45(41.7|0) 5.69(88.5|0.5) 3.42(42.1|0) 3.06(81.9|0) 9.4(87.7|0.1)
50 50 2.02(2|0.2) 2(0.1|0.2) 1.66(0|31.4) 2.07(5.7|0) 2.04(4.4|0) 2.52(11.7|2) 2.67(24.3|0) 2.19(18.5|0) 9.47(84.6|0)
100 50 2(0.2|0) 2(0|0.1) 1.86(0|13.2) 2.1(7.5|0) 2.01(1|0) 2.56(12.6|0.4) 2.43(17.8|0) 2.02(1.8|0) 9.4(83.5|0)
200 50 2(0|0) 2(0|0) 1.94(0|5.6) 2.07(5|0) 2(0.1|0) 2.64(14.5|0.2) 2.26(13.1|0) 2(0.1|0) 8.81(77.7|0.3)
20 100 1.99(0|1.5) 1.95(0|5.2) 2.26(52|24.7) 2(0|0) 2(0|0) 5.62(86.8|1.5) 2(0|0) 2(0|0) 2.27(3.8|4.1)
50 100 2(0|0) 2(0|0.1) 2.18(30.8|11.4) 2(0|0) 2(0|0) 1.99(0.2|2.3) 2(0|0) 2(0|0) 2.31(3.7|0)
100 100 2(0|0) 2(0|0) 1.91(0|8.7) 2(0|0) 2(0|0) 2(0.1|0.6) 2(0|0) 2(0|0) 2.29(3.4|0)
200 100 2(0|0) 2(0|0) 1.98(0|1.6) 2(0|0) 2(0|0) 2.01(0.5|0.1) 2(0.1|0) 2(0|0) 2.24(2.9|0)
20 200 1.96(0|3.6) 1.8(0|19.8) 2.04(45.2|31.6) 2(0|0) 2(0|0) 4.58(69.7|6.4) 2(0|0) 2(0|0) 11.63(99.8|0)
50 200 2(0|0) 2(0|0.2) 1.98(17.8|17) 2(0|0) 2(0|0) 4.64(80|1.1) 2(0|0) 2(0|0) 1.99(0|0.6)
100 200 2(0|0) 2(0|0) 2.06(11.1|4.8) 2(0|0) 2(0|0) 2(0|0.4) 2(0|0) 2(0|0) 2(0|0)
200 200 2(0|0) 2(0|0) 1.99(0|1.5) 2(0|0) 2(0|0) 2(0|0) 2(0|0) 2(0|0) 2(0|0)

Panel C: (β, ϕe, κ) = (0.1, 0.5, 3)

20 50 1.38(9.8|48.3) 1.79(5.5|26.1) 3.08(96.2|1.1) 2.31(29.7|12.3) 2.3(31.5|2.2) 5.41(80|5.4) 3.99(68.6|0.9) 3.03(78.4|0) 10.34(99.5|0)
50 50 1.67(4.7|31.8) 1.69(1|31.2) 0.7(0|93.6) 2.18(18|4.5) 2.02(6.1|4.7) 2.88(22|14.5) 3.03(52.4|0) 2.27(26.4|0.4) 10.69(99|0.1)
100 50 1.83(1.8|17.6) 1.77(0.1|23.1) 0.96(0|83.8) 2.02(7.3|5.9) 1.92(0.2|8.5) 3.13(26.3|12.4) 2.62(39.9|0.1) 2.04(4.4|0.1) 10.59(97.6|0)
200 50 1.78(0.3|22.2) 1.71(0|28.4) 1.22(0|69.4) 1.98(3.8|5.8) 1.82(0|17.5) 3.43(32.2|13.2) 2.3(22.7|0.1) 1.98(0.2|1.8) 10.53(95.9|0.1)
20 100 0.93(0|67.9) 1.02(0|83) 2.88(91.8|4) 1.76(0|19.2) 1.68(0|31.6) 5.05(74.4|14.9) 2(0.3|0.3) 1.98(0|2.5) 2.4(6.2|10.7)
50 100 1.59(0|32.6) 1.38(0|58.6) 2.2(60.8|26.7) 1.96(0|4.3) 1.86(0|14) 1.61(0.3|37.3) 2(0.1|0.1) 2(0|0.5) 3.09(12.9|3.1)
100 100 1.95(0|4.8) 1.89(0|11) 1.1(0|74.7) 1.98(0|2.5) 1.9(0|10.4) 1.8(0.1|19.5) 2(0|0) 2(0|0.2) 3.72(19.8|1)
200 100 1.96(0|3.5) 1.96(0|4.2) 1.55(0|41.5) 1.99(0|1.3) 1.9(0|9.9) 1.93(0.1|7.1) 2(0|0) 2(0|0.2) 3.99(23.1|1.1)
20 200 0.55(0|86.4) 0.44(0|98.8) 2.72(85.4|8.4) 1.68(0|22.3) 1.21(0|72) 4.35(65|25.2) 2(0|0) 1.93(0|6.6) 7.75(87|7)
50 200 1.62(0|30.7) 1.06(0|81.4) 1.76(43.4|42) 1.99(0|1.3) 1.86(0|13.6) 4.02(58.3|21.7) 2(0|0) 2(0|0) 1.9(0|10.1)
100 200 1.99(0|1.1) 1.95(0|5.3) 1.4(19.7|55.8) 2(0|0.1) 1.98(0|2) 1.87(0|12.5) 2(0|0) 2(0|0) 1.99(0|0.8)
200 200 2(0|0) 2(0|0) 1.73(0|26.6) 2(0|0) 2(0|0.4) 1.98(0|2.3) 2(0|0) 2(0|0) 2(0|0)

The average of r̂0 over 1,000 replications is reported together with the figures inside the parenthesis, (O|U), indicating the percentage of overestimation and underestimation.

ϕG and ϕF are the AR coefficients for the global and local factors. β, ϕe and κ control the cross-section correlation, serial correlation and noise-to-signal ratio. For AGGR,

we assume that the true number of factors, r0 + ri is known whereas we allow the estimation uncertainty in implementing CCDw and MCCw . We select the common r∗max

for the two-wide groups by r∗max = max{r̂w1 , r̂w2 }, where r̂w1 and r̂w2 are the number of factors estimated by BIC3 with rmax = r0 + ri × ⌈R/2⌉ + 5 for each of w-groups,

where ⌈R/2⌉ is the smallest integer that is larger than or equal to R/2.



A.7 Alternative Selection Criteria under Two Wide-groups Division when R > 2 135

Table A.14: Average estimates of the number of global factors for w−groups for Experiment 3. (ϕG, ϕF ) = (0.5, 0.5),
(β, ϕe, κ) = (0.1, 0.5, 1) , (r0, ri) ∈ {(0, 2), (1, 1), (3, 3)}

CCDw MCCw AGGRw CCDw MCCw AGGRw CCDw MCCw AGGRw

Panel A: (r0, ri) = (0, 2)

M T R = 2 R = 5 R = 10

20 50 0.02(1.9|0) 0.3(28.7|0) 1.39(65.4|0) 0.13(6.9|0) 1.08(83.3|0) 7.62(99.9|0) 0.57(18|0) 1.28(89.6|0) 3.51(51.5|0)
50 50 0(0.2|0) 0.01(1|0) 0(0|0) 0.1(6.6|0) 0.25(24.2|0) 0.62(11.8|0) 0.3(13|0) 0.31(29.6|0) 3.44(39.9|0)
100 50 0(0.3|0) 0(0.2|0) 0(0|0) 0.06(4.7|0) 0.03(3.2|0) 0.64(10.8|0) 0.24(12|0) 0.04(4.1|0) 3.46(39.7|0)
200 50 0(0|0) 0(0|0) 0(0|0) 0.11(7.7|0) 0.01(0.8|0) 0.78(12.8|0) 0.34(14.3|0) 0(0.4|0) 8.58(79.9|0)
20 100 0(0|0) 0(0|0) 0.74(41.7|0) 0(0|0) 0(0|0) 0.68(40|0) 0(0|0) 0(0|0) 0.13(1.2|0)
50 100 0(0|0) 0(0|0) 0.44(30.8|0) 0(0|0) 0(0|0) 0(0|0) 0(0|0) 0(0|0) 0.02(0.2|0)
100 100 0(0|0) 0(0|0) 0(0|0) 0(0|0) 0(0|0) 0(0|0) 0(0|0) 0(0|0) 0(0|0)
200 100 0(0|0) 0(0|0) 0(0|0) 0(0|0) 0(0|0) 0.02(0.3|0) 0(0|0) 0(0|0) 0.01(0.1|0)
20 200 0(0|0) 0(0|0) 0.43(24.5|0) 0(0|0) 0(0|0) 7.66(99.9|0) 0(0|0) 0(0|0) 7.87(98|0)
50 200 0(0|0) 0(0|0) 0.08(8.3|0) 0(0|0) 0(0|0) 6.19(100|0) 0(0|0) 0(0|0) 0(0|0)
100 200 0(0|0) 0(0|0) 1.33(69.6|0) 0(0|0) 0(0|0) 0(0|0) 0(0|0) 0(0|0) 0(0|0)
200 200 0(0|0) 0(0|0) 0(0|0) 0(0|0) 0(0|0) 0(0|0) 0(0|0) 0(0|0) 0(0|0)

Panel B: (r0, ri) = (1, 1)

M T R = 2 R = 5 R = 10

20 50 1(0.2|0) 1(0.4|0) 0.93(4.2|11.2) 1.01(1|0) 1.01(1.4|0) 1.96(56.8|1) 1.04(3.1|0) 1.02(1.7|0) 1.1(2.9|0.7)
50 50 1(0.3|0) 1(0.2|0) 0.92(0|7.8) 1(0.4|0) 1(0|0) 0.98(0|1.6) 1.02(1.8|0) 1(0|0) 1.06(1.7|0.2)
100 50 1(0.2|0) 1(0|0) 0.97(0|3) 1.01(0.7|0) 1(0|0) 0.99(0|0.6) 1.01(1.3|0) 1(0|0) 1.06(1.5|0.1)
200 50 1(0|0) 1(0|0) 0.98(0|1.6) 1.01(1|0) 1(0|0) 1(0|0.4) 1.01(0.9|0) 1(0|0) 1.02(0.8|0.1)
20 100 1(0|0) 1(0|0) 0.88(1.3|13.6) 1(0|0) 1(0|0) 2.15(64.8|1.8) 1(0|0) 1(0|0) 0.98(0|1.6)
50 100 1(0|0) 1(0|0) 0.97(0|3.5) 1(0|0) 1(0|0) 0.99(0|1.3) 1(0|0) 1(0|0) 1(0|0)
100 100 1(0|0) 1(0|0) 0.98(0|2.2) 1(0|0) 1(0|0) 1(0|0.5) 1(0|0) 1(0|0) 1(0|0)
200 100 1(0|0) 1(0|0) 0.99(0|0.9) 1(0|0) 1(0|0) 1(0|0) 1(0|0) 1(0|0) 1(0|0)
20 200 1(0|0) 1(0|0) 0.84(0.4|16.4) 1(0|0) 1(0|0) 1.83(53.6|4.4) 1(0|0) 1(0|0) 3.47(76|0.5)
50 200 1(0|0) 1(0|0) 0.94(0|5.9) 1(0|0) 1(0|0) 2(70.9|0.5) 1(0|0) 1(0|0) 1(0|0)
100 200 1(0|0) 1(0|0) 0.99(0|1.3) 1(0|0) 1(0|0) 1(0|0.1) 1(0|0) 1(0|0) 1(0|0)
200 200 1(0|0) 1(0|0) 1(0|0.4) 1(0|0) 1(0|0) 1(0|0) 1(0|0) 1(0|0) 1(0|0)

Panel C: (r0, ri) = (3, 3)

20 50 3.33(31.8|12.9) 3.24(26.9|4.1) 4.93(88.7|7.1) 5.17(64.2|0.5) 4.72(96.9|0) 11.7(100|0) 10.87(99|0) 7.08(100|0) 17(100|0)
50 50 3.07(8.7|2.5) 3(1.9|2.4) 2.1(0.2|73.9) 3.88(36.5|0.2) 3.52(47.9|0) 8.9(77.5|0.2) 9.01(95.8|0) 5.09(98.6|0) 17(100|0)
100 50 3.02(2.1|0.2) 2.99(0.1|0.7) 2.55(0.3|42.5) 3.48(22.2|0) 3.13(12.4|0) 9.08(78.4|0.1) 7.85(89.7|0) 4(79.3|0) 17(100|0)
200 50 3(0.3|0.1) 3(0|0.4) 2.8(0|19.4) 3.26(15.6|0) 3.01(1.3|0) 9.01(77.5|0.2) 6.88(80.3|0) 3.27(26.8|0) 17(100|0)
20 100 2.81(0.4|16.8) 2.47(0|49.7) 4.21(76.6|16.2) 3(0.4|0.5) 2.99(0.1|1) 10.91(98.5|0.5) 3.01(0.6|0) 3(0|0) 9.56(49.7|2.2)
50 100 2.99(0|1) 2.93(0|7.2) 3.79(59.5|19.5) 3(0|0) 3(0|0) 3.15(3.2|6) 3(0.2|0) 3(0|0) 10.51(55.5|0.1)
100 100 3(0|0) 3(0|0) 2.67(0|30.3) 3(0|0) 3(0|0) 3.23(3.3|0.3) 3(0.2|0) 3(0|0) 10.43(55.5|0)
200 100 3(0|0) 3(0|0) 2.91(0|9.1) 3(0|0) 3(0|0) 3.22(3.3|0.2) 3(0|0) 3(0|0) 9.71(50.5|0)
20 200 2.72(0|22.2) 1.85(0|87.9) 3.94(71.7|19.5) 3(0|0.1) 2.86(0|13.8) 8.78(89.2|5.1) 3(0|0) 3(0|0.1) 18(100|0)
50 200 3(0|0.1) 2.85(0|15.3) 3.39(44.1|26.3) 3(0|0) 3(0|0) 8.02(86.3|1.4) 3(0|0) 3(0|0) 3(0.1|0.9)
100 200 3(0|0) 3(0|0) 3.24(23.8|11.9) 3(0|0) 3(0|0) 2.98(0|1.6) 3(0|0) 3(0|0) 3.07(0.5|0)
200 200 3(0|0) 3(0|0) 2.95(0|5.1) 3(0|0) 3(0|0) 3(0|0.3) 3(0|0) 3(0|0) 3.01(0.1|0)

See footnotes to Table A.13.
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A.8 Alternative Selection Criteria for the Number of Global Fac-

tors

A few studies have attempted to develop consistent selection criteria for the number of global factors

under the multilevel setting. Here we provide the detailed estimation algorithms for the alternative

approaches proposed by Chen (2012), Andreou et al. (2019) and Han (2021).

First, Chen (2012) proposes the modified information criteria as follows:

ICChen(k0, k1, . . . , kR) =
R∑
i=1

Mi

N
Vi

(
Ĝk0 , F̂ki

i , k0, ki

)
+ σ̂

(
R∑
i=1

ki/R+ h̄+ ᾱk0

)
g(N,T )

(r̂0, r̂1, . . . , r̂R) = argmin
0≤k0,k1,...,kR≤rmax

ICChen(k0, k1, . . . , kR)

where Mi is the number of the individuals in each block i, Vi is the sum of squared residuals for

each block i for i = 1, . . . , R, Ĝk0 are the k0 estimated global factors, F̂ki
i are the ki estimated

local factors, σ̂ is the average variance of the idiosyncratic errors, h̄ and ᾱ < 1 are fixed scaling

parameters given by8

h̄ =

R∑
i=1

h(αi), h(αi) =
αig(N,T )

αg(N,T )
, αi =

Mi

N
and α = min{α1, . . . , αR}.

and g(N,T ) is a penalty function given by

g(N,T ) =
N + T

NT
ln

NT

N + T

When implementing ICchen in the simulations, we simply assume that the true number of factors

r0 + ri is known in order to avoid estimating too many candidate models.9

Next, Andreou et al. (2019) (AGGR) apply the canonical correlation analysis to estimate global

and local factors in a two-group factor model with mixed frequency data. They then develop a novel

inference on the numbers of global and group-specific factors. AGGR apply the existing information

criteria to the data in each block and obtain r̂0 + ri for i = 1, 2. Set rmax = min
{
r̂0 + r1, r̂0 + r2

}
and M = min{M1,M2}. Then, we extract the rmax PCs from the data matrix Yi, that is denoted

K̂i for i = 1, 2. Let V̂ab = K̂′
aK̂b/T be the covariance matrix between K̂1 and K̂2 for a, b = 1, 2.

Construct R̂ = V̂−1
11 V̂12V̂

−1
22 V̂21 and R̂∗ = V̂−1

22 V̂21V̂
−1
11 V̂12. Evaluate the rmax × k matrix Ŵ1

(resp. Ŵ2) which collects the eigenvectors corresponding to k largest eigenvalues of R̂ in descending

8Chen (2012) uses this criterion to jointly determine the (unknown) block memberships. Then, h̄ is a function of
Mi, N and T controlling the dispersion of blocks. If the membership is known, h̄ is a fixed constant.

9For example, in the case where (r0, ri) = (2, 2), the candidate models are restricted to
{(0, 4), (1, 3), (2, 2), (3, 1), (4, 0)}.
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order (resp. R̂∗). Define the rmax × (rmax − k) matrix Ŵ−
1 (resp. Ŵ−

2 ), which collects the

rmax − k eigenvectors corresponding to the remaining eigenvalues of R̂ (resp. R̂∗) in descending

order. The global factors can be estimated by Ĝ = K̂1Ŵ1 or Ĝ = K̂2Ŵ2. The local factors

can be estimated by F̂1 = K̂1Ŵ
−
1 and F̂2 = K̂2Ŵ

−
2 . The factor loadings can be estimated by

Γ̂i = Y′
iĜ/T and Λ̂i = Y′

iF̂i/T for i = 1, 2. Let D̂i = Ê′
iÊi/T and Θ̂i =

[
Γ̂i, Λ̂i

]
for i = 1, 2,

where Êi = Yi − ĜΓ̂′
i − F̂iΛ̂

′
i. Define

Σ̂u,i =

(
Θ̂′

iΘ̂i

Mi

)−1(
Θ̂′

iĈiΘ̂i

Mi

)(
Θ̂′

iΘ̂i

Mi

)−1

, i = 1, 2

where Ĉi is an Mi ×Mi diagonal matrix with diagonal elements equal to those in D̂i.

Then, they construct the following (feasible) scaled and centered test statistic:

ξ̃(k) = M
√
T

(
1

2
tr
{
Σ̂2

U

})−1/2 [
ξ̂(k)− k +

1

2M
tr
{
Σ̂2

U

}]

where ξ̂(k) is the sum of the k largest eigenvalues of R̂ and Σ̂U = (M2/M1)Σ̂
(kk)
u,1 + Σ̂

(kk)
u,2 with

(kk) indicating the upper-left (k, k) blocks of the matrix. By imposing the strong assumption that

idiosyncratic errors have neither serial nor cross-sectional correlations, AGGR can derive that ξ̃(r)

follows the standard normal distribution asymptotically under the null hypothesis, r0 = r.

The number of global factors can be estimated by applying the ξ̃(r) test sequentially for r =

rmax, rmax − 1, . . . , 1 backwards:

r̂0 = max
{
r : 1 ≤ r ≤ rmax : ξ̃(r) > zαMT

}
where αMT is a sequence of real scalars defined in the interval (0, 1) such that αMT → 0 and(
M

√
T
)−1

zαMT → 0 as M,T → ∞. zαMT is a threshold value given by zαMT = −c
(
M

√
T
)γ

for

c > 0 and 0 < γ < 1.

The above procedure can be used for model selection if the critical value diverges at a certain

rate, γ. Following AGGR (see Footnote 7 on p.1277), we set c = 0.95 and γ = 0.1 in simulations.

We also assume that the number of factors r0 + ri is known. If we use the estimates of r0 + ri, then

we find that the finite sample performance of AGGR becomes worse.

Han (2021) proposes an alternative method to identify the spaces spanned by global and local

factors separately, and develops a shrinkage estimator that can consistently estimate the factor

loadings and determine the number of factors, simultaneously. We describe Han’s algorithms in

details.

1. Let F̃ be
√
T times the eigenvectors corresponding to the k̄ largest eigenvalues of the T × T
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matrix YY′ in descending order. Compute Λ̃ = Y′F̃/T . Let Λ̃i (Mi × k̄) be the i-th block of

Λ̃. Let S̃1 = Λ̃′
1Λ̃1/M1 and then compute the spectral decomposition:

S̃1 = Ã1Ṽ1Ã
′
1 (A.8.13)

where Ṽ1 is a diagonal matrix consisting of the eigenvalues of S̃1 in descending order and Ã1

denotes the corresponding eigenvectors. Let F̆ = F̃Ã1 and Λ̆ = Λ̃Ã1.

2. The estimate of Λ̆1, denoted Λ̂1, can be obtained by minimising the LASSO function:

Q1(Λ1) =
1

M1T

T∑
t=1

∥∥∥Y1t −Λ1f̆t

∥∥∥2 + γ1
δ2NT

k̄∑
k=1

w1j∥Λ1k∥ (A.8.14)

where f̆t is the transpose of the t-th row of F̆, Λ1k is an M1 × 1 vector of the k-th column of

Λ1k, δ
2
NT = min{N,T}, γ1,NT is a positive tuning parameter depending on N and T , and w1k

is an adaptive weight. Let k̂1 be the number of nonzero columns in Λ̂1.

3. Partition Λ̆ as
[
Λ̆′

1, . . . , Λ̆
′
R

]′
where Λ̆′

i is an Mi × k̄ loading matrix of the i-th block for

i = 1, . . . , R. Let Λ̆i,1:k̂1
and Λ̆i,k̂1+1:k̄ be the first k̂1 columns and the last k̄ − k̂1 columns of

Λ̆i, respectively. Define

S̆0 = (N −M1)
−1

R∑
i=2

Λ̆′
i,1:k̂1

Λ̆i,1:k̂1

S̃i =
1

Mi
Λ̆′

i,k̂1+1:k̄
Λ̆i,k̂1+1:k̄, i = 2, . . . , R.

Evaluate the spectral decompositions, S̆0 = Ă0V̆0S̆
′
0 and S̃i = ÃiṼiÃ

′
i for i = 2, . . . , R. Let

Ĝ = F̆1:k̂Ă0 and F̂i = F̆k̂1+1:k̄Ãi for i = 2, . . . , R.

4. Let Λ(−1) = [Λ′
2, . . . ,Λ

′
R]

′. This factor loading matrix can be estimated by minimising:

Q
(
Λ(−1)

)
=

1

(N −M1)T

R∑
i=2

T∑
t=1

∥∥∥Yit −Λi,1:k̂1
Ĝt −Λi,k̂1+1:k̄F̂it

∥∥∥2
+

γ0
δ2NT

k̂1∑
k=1

w0k

∥∥∥Λ(−1)
k

∥∥∥+ 1

δ2NT

R∑
i=2

γi

k̄∑
k=k̂+1

wik∥Λik∥

(A.8.15)

where Ĝt and F̂it denote the transpose of the t-th rows of Ĝ and F̂, Λ
(−1)
k is the k-th column

of Λ(−1), Λik is the k-th column of the Mi × k̂ matrix Λi for i = 2, . . . , R, γ0,NT and γi,NT

are positive tuning parameters, and w0k and wik are adaptive weights.

Let Λ̂(−1) = [Λ̂′
2, . . . , Λ̂

′
R]

′, where Λ̂i denotes the estimate of the Mi × k̄ loadings for the i-th

block (i = 2, . . . , R). Then, we can estimate the number of global factors by the number of nonzero
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columns in Λ
(−1)

1:k̂1
, denoted r̂0. Similarly, we estimate the number of local factors by the number of

nonzero columns in Λ̂i,k̂+1:k̄, denoted r̂i, for i = 2, . . . , R. Finally, we obtain r̂1 = k̂1 − r̂0.

Notice that the above shrinkage estimator requires us to select tuning parameters by some

information criteria. The tuning parameter for the first block, γ1 can be selected by minimising the

following information criterion:

T1(γ1) = ln

(
1

M1T

T∑
t=1

∥∥∥Y1t − Λ̂1f̆t

∥∥∥2)+ k̂1(γ1)
M1 + T

M1T
ln

(
M1T

M1 + T

)
· ln[ln(M1)].

Let γ∗1 be the selected tuning parameter and denote the estimate of k1 based on γ∗1 by k̂1(γ
∗
1). To

select the tuning parameters for rest of the blocks, Han proposes the following information criterion:

T2(γ0, γ2, . . . , γR) = ln

(
1

(N −M1)T

R∑
i=2

T∑
t=1

∥∥∥Yit − Λ̂i,1:k̂1
Ĝt − Λ̂i,k̂1+1:k̄F̂it

∥∥∥2)

+

(
r̂0(γ0, γi, γ

∗
1) +

R∑
i=2

γ̂i(γ0, γi, γ
∗
1)

)(
N̄ + T

N̄T

)
ln

(
N̄T

N̄ + T

)
ln[ln(N̄)].

Han’s approach imposes different penalty terms for different blocks. Consequently, even when the

number of blocks, R is (mildly) large, there will be a large number of candidate tuning parameters

to be selected coherently.

Moreover, the shrinkage estimation results are not invariant to the order of the blocks. Hence,

the selection of the appropriate first group is crucially important in practice (see the empirical

applications in Han (2021)). To deal with this issue, he proposes an additional information criteria

to determine which block is ordered first as follows:

IC(s) = ln(SSRs) +

(
r̂0 +

R∑
i=1

r̂i

)(
N̄ + T

N̄T

)
ln

(
N̄T

N̄ + T

)
ln(ln(N̄)), for s = 1, . . . , R

where SSRs is the sum of squared residual when the s-th block is ordered first and N̄ =
∑

iMi/R.

This further increases the computational burden.

In the simulation study, Han only considers the sample sizes by combining R ∈ {2, 3, 4, 5},

M ∈ {50, 100, 150, 200} and T ∈ {100, 200}. However, if R is sufficiently large,10 there are too

many candidate models to be estimated along with too many combinations of the tuning parameters

selection, which is computationally too heavy.

More importantly, to derive the consistency of the shrinkage estimator in Theorem 2, he has

to assume that the local factors are mutually uncorrelated,11 though idiosyncratic errors are still

10Indeed, Han (2021) focus the model with a fixed number of groups.
11He acknowledges that it is challenging to develop a shrinkage estimator fully robust to between-group correlations

among group-specific factors.
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allowed to be cross sectionally and serially correlated. He addressed this issue by conducting the

additional simulations (see Table 5), from which we find that his approach severely overestimates

(underestimates) the number of global (local) factors, if the correlation between the local factors is

as small as 0.1.

A.9 Proofs of Lemmas 1∗–3∗

Proof of Lemma 1∗. For any two groups m and h, the population covariance between Kmt and

Kht can be expressed as

V ar

(
Kmt

Kht

)
=

[
Σmm Σmh

Σhm Σhh

]
=


ΣG 0 ΣG 0

0 ΣFm 0 ΣFmh

ΣG 0 ΣG 0

0 ΣFhm
0 ΣFh

 (A.9.16)

where ΣG, ΣFm and ΣFh
are defined in Assumption C, ΣFmh

= E
(
FmtF

′
ht

)
and ΣFhm

= Σ
′
Fmh

.

We assume rm ≤ rh. Using (A.9.16), we can express the characteristic equation,

(
ΣmhΣ

−1
hhΣhm − ρΣmm

)
v = 0 (A.9.17)

as [
ΣG − ρΣG 0

0 ΣFmh
Σ−1

Fh
ΣFhm

− ρΣFm

]
v = 0,

where ρmh,r is the r-th largest squared canonical correlation between Km and Kh. Here, ρmh,1 =

· · · = ρmh,r0 = 1 are the characteristic roots with multiplicity r0. From the lower block,

ΣFmh
Σ−1

Fh
ΣFhm

− ρΣFm ,

we obtain 1 > ρmh,r0+1 ≥ ... ≥ ρmh,r0+rm ≥ 0. The characteristic vector corresponding to the r0

largest eigenvalue is vr = [0, . . . , 0, 1, 0, . . . , 0], which is the unit vector with the rth element being

1 and zeros otherwise.

In practice, we should deal with the rotation matrix and the selection of rmax in the PC es-

timation. As rmax ≥ r0 + ri for all i by construction, the rotation matrices, Hm and Hh, makes

the standard CCA inapplicable to the rotated factors, H′
mKmt and H′

hKht, because their vari-

ance/covariance matrices will be singular. The variance-covariance matrix for the rotated factors

H′
mKmt and H′

hKht, becomes:

Var

([
H′

mKmt

H′
hKht

])
=

[
H′

mΣmmHm H′
mΣmhHh

H′
hΣhmHm H′

hΣhhHh

]
(A.9.18)
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where both H′
mΣmmHm and H′

hΣhhHh are singular. Consider the characteristic equation between

the rotated factors as

[
H′

mΣmhHh

(
H′

hΣhhHh

)−
H′

hΣhmHm − ρH′
mΣmmHm

]
u = 0 (A.9.19)

where (H′
hΣhhHh)

− is the Moore-Penrose inverse of H′
hΣhhHh. Using the property of Moore-

Penrose inverse, we have:

Hh

(
H′

hΣhhHh

)−
H′

h = Σ−1
hh

which holds if Hh has full row rank. Then (A.9.19) becomes

H′
m

(
ΣmhΣ

−1
hhΣhm − ρΣmm

)
Hmu = 0. (A.9.20)

Using (A.9.16), we rewrite (A.9.20) as

H′
m

[
ΣG − ρΣG 0

0 ΣFmh
Σ−1

Fh
ΣFhm

− ρΣFm

]
Hmu = 0

which shows that both (A.9.17) and (A.9.19) will produce the same non-zero eigenvalues. This

implies that the rotation matrices do not alter the non-zero canonical correlation.

We now consider the following spectral decompositions:

H′
mΣmmHm = P∆mP′ and H′

hΣhhHh = Q∆hQ
′

where ∆m(∆h) is a diagonal matrix of eignevalues of H′
mΣmmHm(H′

hΣhhHh), P(Q) is an orthog-

onal matrix whose columns are standardized eigenvectors associated with the diagonal entries of

∆m(∆h). As the rank of H′
mΣmmHm(H′

hΣhhHh) is r0+rm ≤ rmax(r0+rh ≤ rmax) asymptotically,

we rewrite the above equation as:

H′
mΣmmHm =

[
P1 P2

] [∆2
1 0

0 0

] [
P1 P2

]′
H′

hΣhhHh =
[
Q1 Q2

] [∆2
2 0

0 0

] [
Q1 Q2

]′ (A.9.21)

where P1 and P2 are rmax × (r0 + rm) and rmax × [rmax − (r0 + rm)] orthogonal matrices, and

similarly for Q1 and Q2. Consider the (r0 + rm)× (r0 + rh) matrix, ∆−1
1 P′

1 (H
′
mΣmhHh)Q1∆

−1
2 ,

whose singular value decomposition is given by (see Rao (1981))

∆−1
1 P′

1

(
H′

mΣmhHh

)
Q1∆

−1
2 = W

[
R1/2 0

]
D′ (A.9.22)

whereW is an (r0+rm)×(r0+rm) orthonormal matrix, D an (r0+rh)×(r0+rh) orthonormal matrix
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and R the (r0 + rm)× (r0 + rm) diagonal matrix given by R = diag(ρ1, ..., ρr0 , ρr0+1, ..., ρr0+rm) =

diag(1, ..., 1, ρmh,r0+1, ..., ρmh,r0+rm).
12

Define the full rank matrices,

A =
[
P1∆

−1
1 W,P2

]
and B =

[
Q1∆

−1
2 D,Q2

]
(A.9.23)

Combining (A.9.21), (A.9.22) and (A.9.23), it is straightforward to show that

Var

([
A′H′

mKmt

B′H′
hKht

])
=


Ir0+rm 0 R1/2 0 0

0 0 0 0 0

R1/2 0 Ir0+rm 0 0

0 0 0 Irh−rm 0

0 0 0 0 0

 (A.9.24)

From (A.9.24), the characteristic equation between A′H′
mKmt and B′H′

hKht is[
A′H′

mΣmhHhB
(
B′H′

hΣhhHhB
)−

B′H′
hΣhmHmA− ρA′H′

mΣmmHmA
]
u = 0

which can be simplified as[R1/2 0 0

0 0 0

]Ir0+rm 0 0

0 Irh−rm 0

0 0 0


R

1/2 0

0 0

0 0

− ρ

[
Ir0+rm 0

0 0

]u = 0

Hence, ([
R 0

0 0

]
− ρ

[
Ir0+rm 0

0 0

])
u = 0 (A.9.25)

Obviously, (A.9.25) has the same characteristic roots as (A.9.19) and the same non-zero character-

istic roots in (A.9.17) consequently.

Now, we consider the sample covariance matrix for K̃m and K̃h given by

Var

(
K̃m

K̃h

)
=

1

T

[
K̃

′
mK̃m K̃

′
mK̃h

K̃
′
hK̃m K̃

′
hK̃h

]
=

[
S̃mm S̃mh

S̃hm S̃hh

]

Consider the full rank transformation K̃mA and K̃hB, where A and B are defined in (A.9.23). The

canonical correlations between them are equivalent to those between K̃m and K̃h. From Lemma

5, we obtain: A′S̃mmA
p−→ A′H′

mΣmmHmA, B′S̃hhB
p−→ B′H′

hΣhhHhB and A′S̃mhB
p−→

A′H′
mΣmhHhB. Let M be min{Mm,Mh}. Applying (A.9.24) and Lemma 5, we can rewrite these

12Notice that R contains the same non-zero roots as in (A.9.19), see Rao (1981).
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transformed variance/covariance matrices as:

A′S̃mmA =

Ir0+rm +Op

(
δ−2
MT

)
Op

(
δ−2
MT

)
Op

(
δ−2
MT

)
Op

(
δ−2
MT

)

B′S̃hhB =


Ir0+rm +Op

(
δ−2
MT

)
Op

(
δ−2
MT

)
Op

(
δ−2
MT

)
Op

(
δ−2
MT

)
Irh−rm +Op(δ

−2
MT ) Op

(
δ−2
MT

)
Op

(
δ−2
MT

)
Op

(
δ−2
MT

)
Op

(
δ−2
MT

)


and

A′S̃mhB =

R1/2 +Op

(
δ−2
MT

)
Op

(
δ−2
MT

)
Op

(
δ−2
MT

)
Op

(
δ−2
MT

)
Notice that the Moore-Penrose inverse of the lower [rmax − (r0 + rm)]× [rmax − (r0 + rm)] block of

B′S̃hhB does not converge to

[
Irh−rm 0

0 0

]
as a result of

rank

Irh−rm +Op

(
δ−2
MT

)
Op

(
δ−2
MT

)
Op

(
δ−2
MT

)
Op

(
δ−2
MT

) ̸= rank

([
Irh−rm 0

0 0

])

For the same reason,
(
B′S̃hhB

)−
do not converge to

Ir0+rm 0 0

0 Irh−rm 0

0 0 0

. See Theorem 1 in

Karabiyik et al. (2017). But, the Moore-Penrose inverse follows the Banachiewicz-Schur form and

thus we haveIrh−rm +Op

(
δ−2
MT

)
Op

(
δ−2
MT

)
Op

(
δ−2
MT

)
Op

(
δ−2
MT

)−

=

Irh−rm +Op

(
δ−2
MT

)
−Op(1)

−Op(1) Op

(
δ2MT

) = Op

(
δ2MT

)
(A.9.26)

as shown in Tian & Takane (2009) and Castro-González et al. (2015). Again,
(
B′S̃hhB

)−
also

follows the Banachiewicz-Schur form which leads to

(
B′S̃hhB

)−
=

Ir0+rm +Op

(
δ−2
MT

)
−Op(1)

−Op(1) Op

(
δ2MT

) . (A.9.27)

Using the above results, we obtain:

A′S̃mhB
(
B′S̃hhB

)−
B′S̃hmA =

[
R1/2 +Op

(
δ−2
MT

)
Op

(
δ−2
MT

)
Op

(
δ−2
MT

)
Op

(
δ−2
MT

)] [Ir0+rm +Op

(
δ−2
MT

)
−Op(1)

−Op(1) Op

(
δ2MT

)] [R1/2 +Op

(
δ−2
MT

)
Op

(
δ−2
MT

)
Op

(
δ−2
MT

)
Op

(
δ−2
MT

)]
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=

R+Op

(
δ−2
MT

)
Op(δ

−2
MT )

Op

(
δ−2
MT

)
Op

(
δ−2
MT

)
Therefore, the characteristic equation between K̃mA and K̃hB[

A′S̃mhB
(
B′S̃hhB

)−
B′S̃hmA− ℓA′S̃mmA

]
ξ = 0

can be rewritten as ([
R 0

0 0

]
− ℓ

[
Ir0+rm 0

0 0

]
+Op

(
δ−2
MT

))
ξ = 0

which is analogous to (A.9.25) with a small perturbation term. Finally, by the continuity of the

characteristic roots, we have ℓmh,r
p−→ 1 for r = 1, . . . , r0, ℓmh,r

p−→ ρmh,r for r = r0+1, . . . , r0+rm

and ℓmh,r
p−→ 0 for r = r0 + rm + 1, . . . , rmax as T,Mm,Mh → ∞.

Q.E.D

Proof of Lemma 2∗. This lemma follows directly by Lemma 1∗ and the definition of ξ(r) and ρ̄r.

Q.E.D

Proof of Lemma 3∗. This lemma follows directly from Lemma 2∗ and the definition of CCD(r).

Q.E.D



Appendix B

Appendix to Chapter 2

B.1 Lemmas and Proofs

In Section B.1.1, we state some auxiliary lemmas and show the proofs of the results established in

Section 2.4. Section B.1.2 presents the proofs of the auxiliary lemmas. We use the following facts

throughout the proofs. By Assumption 2.B.1, we have:
∥∥T−1/2G

∥∥ = Op(1) and
∥∥T−1/2Fi

∥∥ = Op(1)

for all i = 1, ..., R. By Assumptions 2.C.1, we have:
∥∥∥N−1/2

i Γi

∥∥∥ = Op(1) and
∥∥∥N−1/2

i Λi

∥∥∥ = Op(1)

for all i = 1, ..., R. The eigenvectors of a real n × n matrix Σ is scale invariant since aΣV = aλV

where V is the eigenvector associated with the eigenvalue λ and a is a non-zero real number.

B.1.1 Proofs of the main results

Proof of Proposition 2.1.

Using Ki = [G,Fi] for i = 1, ..., R, we can be express the matrix Φ in (2.3.13) as

Φ =


G F1 −G −F2 0 0 . . . 0 0 0 0

G F1 0 0 −G −F3 . . . 0 0 0 0
...

0 0 0 0 0 0 . . . G FR−1 −G −FR


Let

Qr0
i

(r0+ri)×r0

=

[
1√
R
A

0

]
and Qr0∑R

l=1(r0+rl)×r0

=
[
Qr0′

1 ,Qr0′
2 , . . . ,Qr0′

R

]′
where

(
1/

√
R
)
A is any r0 × r0 orthogonal matrix. For each i, it is easily see that

KiQ
r0
i = [G,Fi]

[
1√
R
A

0

]
= GB (B.1.1)

145
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where B =
(
1/
√
R
)
A. This shows that ΦQr0 = 0. Since Qr0′Qr0 = Ir0 , Q

r0 can serve as the right

eigenvectors in the SVD of Φ. Consequently, we obtain

ΦQr0 = Pr0


δ1

δ2
. . .

δr0

 = 0

where Pr0 is the corresponding left eigenvectors. As Pr0 is non-zero, it follows that δ1 = · · · = δr0 =

0. This establishes that the first r0 smallest singular values are zero.

Next, we show that the rest of the singular values are larger than zero by contradiction. Suppose

that there exists an eigenvector Q⊥ =
[
Q⊥′

1 , . . . ,Q⊥′
R

]′
, satisfying ΦQ⊥ = 0, Qr0′Q⊥ = 0 and

Q⊥′Q⊥ = 1, where Q⊥
i =

[
QG⊥′

i ,QF⊥′
i

]′
. Noting ΦQ⊥ = 0, we have:

GQG⊥
m + FmQF⊥

m = GQG⊥
h + FhQ

F⊥
h for any h and m.

It follows that

R
(
GQG⊥

m + FmQF⊥
m

)
=

R∑
i=1

(
GQG⊥

i + FiQ
F⊥
i

)
=

R∑
i=1

FiQ
F⊥
i .

where the second equality holds as a result of Qr0′Q⊥ = B′∑R
i=1Q

G⊥
i = 0. Consequently, we have

G

(
1

R
QG⊥

m

)
= Fm

(
1− 1

R

)
QF⊥

m +
∑
h̸=m

FhQ
F⊥
h .

By construction, we must have QG⊥
m = QF⊥

1 = · · · = QF⊥
R = 0 for all m. Hence, Q⊥ = 0. This

contradicts the definition of an eigenvector. Since the singular values are non-negative, the remaining

singular values of Φ are larger than zero. By Assumption 2.B.1, we have T−1/2Ki = Op(1) for all i

such that Φ = Op

(√
T
)
. Using ΦQ = δP and the fact that the eigenvectors P and Q are bounded,

we have: δr0+j = Op

(√
T
)
for j = 1, ..., Rrmax − r0.

Q.E.D

Proof of Proposition 2.2.

Using (B.1.1) we obtain:

1√
T
Ψ =

1√
T

[
K1Q

r0
1 , . . . ,KRQ

r0
R

]
=

1√
T
[GB, . . . ,GB] (B.1.2)

which yields
ΨΨ′

T
=

GG′

T
= LΞL′

where Ξ is a diagonal matrix with the first r0 non-zero elements and the remaining zero elements.
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Finally, it follows that

Lr0 =
1√
T
G

(
G′Lr0(Ξr0)−1

√
T

)
where Ξr0 is the diagonal matrix consisting of r0 non-zero diagonal elements of Ξ. The full rank

matrix inside the bracket is a rotation matrix.

Q.E.D

Proof of Lemma 2.1.

Since Assumptions A–D in Bai & Ng (2002) are now satisfied, the stated result follows from Theorem

1 of Bai & Ng (2002).

Q.E.D

Proof of Lemma 2.2.

Let Q̄r0
i

rmax×r0

= Ĥ−
i Q

r0
i where Ĥ−

i is the Moore-Penrose inverse of Ĥi. Since r0 + ri ≤ rmax for all

i, by the property of the Moore-Penrose inverse, it follows that ĤiĤ
−
i = Ir0+ri . Let Q̄r0

Rrmax×r0

=[
Q̄r0′

1 , . . . , Q̄r0′
R

]′
. Then, we obtain

ΦĤQ̄r0 = ΦQr0 = Pr0∆r0

where Ĥ = diag
{
Ĥ1, Ĥ2, . . . , ĤR

}
. Along the same arguments in Proof of Proposition 2.1, we

obtain the desired result.

Q.E.D

Proof of Lemma 2.3.

See the proof of Theorem 2 in Yu et al. (2015).

Q.E.D

Lemma B.1.1. Under Assumption 2.A–2.C, as N1, N2, . . . , NR, T −→ ∞, we have:

1. For every m and h,

1

T
√
Nh

∥∥∥∥(K̂m −KmĤm

)′
eh

∥∥∥∥ = Op

(
1

CNT

)

2. For each i,
1

T
√
Ni

∥∥∥Ĝ′ei

∥∥∥ = Op

(
1

CNT

)
where CN,T = min

{√
N,

√
T
}

with N = min{N1, N2, . . . , NR}.

Proof of Theorem 2.1.
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By Lemma 2.1, we have:
1

T

∥∥∥Φ̂′Φ̂− Ĥ′Φ′ΦĤ
∥∥∥ = Op

(
1

CNT

)
Furthermore, by Lemma 2.2 and Lemma 2.3, we obtain:

∥∥∥Q̂r0 − Q̄r0D
∥∥∥ ≤ Op(1)×

1

T

∥∥∥Φ̂′Φ̂− Ĥ′Φ′ΦĤ
∥∥∥ = Op

(
1

CNT

)

where D is an r0 × r0 orthogonal matrix. Then, using the definition Q̄r0 = Ĥ−
i Q

r0 and (B.1.1), it

follows for each i that

1√
T

∥∥∥K̂iQ̂
r0
i −KiĤiQ̄

r0
i D

∥∥∥ =
1√
T

∥∥∥K̂iQ̂
r0
i −GBD

∥∥∥
≤ 1√

T

∥∥∥K̂iQ̂
r0
i −KiĤiQ̂

r0
i +KiĤiQ̂

r0
i −KiĤiQ̄

r0
i D

∥∥∥
≤ 1√

T

∥∥∥K̂i −KiĤi

∥∥∥∥∥∥Q̂r0
i

∥∥∥+ 1√
T

∥∥∥KiĤi

∥∥∥∥∥∥Q̂r0
i − Q̄r0

i D
∥∥∥ = Op

(
1

CNT

)
where the inequalities hold due to the Cauchy-Schwarz inequality, and the last equality follows from

Lemma 2.1 and the fact that
∥∥∥Q̂r0

i

∥∥∥ = Op(1) and
∥∥∥Ĥi

∥∥∥ = Op(1). Using this convergence rate, we

obtain:∥∥∥∥∥Ψ̂Ψ̂′

T
− ΨΨ′

T

∥∥∥∥∥ =

∥∥∥∥∥ 1T
R∑
i=1

K̂iQ̂
r0
i Q̂r0′

i K̂′
i −

R

T
GBDD′B′G′

∥∥∥∥∥
≤

R∑
i=1

∥∥∥∥ 1T K̂iQ̂
r0
i Q̂r0′

i K̂′
i −

1

T
GG′

∥∥∥∥ = Op

(
1

CNT

)

where the inequality follows from the Cauchy-Schwarz inequality. Applying Lemma 2.3 to the above

equation, we obtain: ∥∥∥L̂r0 − Lr0U
∥∥∥ = Op

(
1

CNT

)
(B.1.3)

where U is an r0 × r0 orthogonal matrix.1 Finally, by definition of Ĝ and Proposition 2.2, we

conclude:
1√
T

∥∥∥Ĝ−GH
∥∥∥ = Op

(
1

CNT

)
(B.1.4)

where H = T−1/2G′Lr0(Ξr0)−1U is a rotation matrix.

For the global factor loadings in block i, we have:

Γ̂′
i =

1

T
Ĝ′Yi =

1

T
Ĝ′ (GΓ′

i + FiΛ
′
i + ei

)
=

1

T
Ĝ′
[(

G− ĜH−1 + ĜH−1
)
Γ′
i + FiΛ

′
i + ei

]

1If the r0 largest eigenvalues of GG′/T are distinct, each column of L̂r0 converges to its population counterpart
in Lr0 up to sign. In such a case, U is an r0 × r0 diagonal matrix whose diagonal elements are either 1 or −1.
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Multiplying both sides of the above equation by 1/
√
Ni and rearranging the results, we have:

1√
Ni

(
Γ̂′
i −H−1Γ′

i

)
=

1

T
√
Ni

Ĝ′
(
G− ĜH−1

)
Γ′
i +

1

T
√
Ni

Ĝ′FiΛ
′
i +

1

T
√
Ni

Ĝ′ei (B.1.5)

The first term of RHS is bounded by Op(C
−1
NT ) due to (B.1.4). The second term is bounded as

∥∥∥∥ 1

T
√
Ni

Ĝ′FiΛ
′
i

∥∥∥∥ =

∥∥∥∥ 1

T
√
Ni

(
Ĝ′ −GH+GH

)′
FiΛ

′
i

∥∥∥∥
≤
∥∥∥∥ 1

T
√
Ni

(
Ĝ′ −GH

)′
FiΛ

′
i

∥∥∥∥+ ∥∥∥∥ 1

T
√
Ni

H′G′FiΛ
′
i

∥∥∥∥
= Op

(
1

CNT

)
+Op

(
1√
T

)
= Op

(
1

CNT

)
(B.1.6)

where the inequality follows from the Cauchy-Schwarz inequality and the second to last equalities

use Lemma 2.1 and Assumptioin 2.D. The last term of (B.1.5) is bounded by Op

(
C−1
NT

)
due to

Lemma B.1.1.2. Then,
1√
Ni

∥∥∥Γ̂′
i −H−1Γ′

i

∥∥∥ = Op

(
1

CNT

)
Q.E.D

Lemma B.1.2. Under Assumptions 2.A–2.C, as N1, N2, . . . , NR, T −→ ∞, we have for each i =

1, . . . , R:

1. ∥∥∥∥ 1√
NiT

Γ′
ie

′
i

∥∥∥∥ = Op(1)

2. ∥∥∥∥ 1√
NiT

Λ′
ie

′
i

∥∥∥∥ = Op(1)

3. ∥∥∥∥ 1

Ni

√
T

(
Γ̂′
i −H−1Γ′

i

)
e′i

∥∥∥∥ = Op

(
1

CNT

√
Ni

)
+Op

(
1√
Ni

)
+Op

(
1√
T

)

Proof of Theorem 2.2.
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By construction, we have the following relation for each i:

F̂iΥ̂i =
1

NiT

(
Yi − ĜΓ̂′

i

)(
Yi − ĜΓ̂′

i

)′
F̂i

Replacing Yi with Yi = GΓ′
i + FiΛ

′
i + ei, we obtain:

F̂iΥ̂i =
1

NiT

(
Ŝi + FiΛ

′
i + ei

)(
Ŝi + FiΛ

′
i + ei

)′
F̂i

where Ŝi = GΓ′
i−ĜΓ̂′

i. Multiplying both sides by
(
F′
iF̂i/T

)−1
(Γ′

iΓi/Ni)
−1 and rearranging terms:

1√
T

(
F̂iĤ

−1
i − Fi

)
=

1√
T

1

NiT

(
FiΛ

′
iei + eiΛiF

′
i + eie

′
i

)
F̂i

(
F′
iF̂i

T

)−1(
Λ′

iΛi

Ni

)−1

+
1√
T

1

NiT

(
ŜiŜ

′
i + ŜiΛiF

′
i + Ŝie

′
i + F′

iλ
′Ŝ′

i + eiŜ
′
i

)
F̂i

(
F′
iF̂i

T

)−1(
Λ′

iΛi

Ni

)−1

.

The stochastic bound of the first term is Op(C
−1
NT ) by Theorem 1 of Bai & Ng (2002) and the fact

that
(
F′
iF̂i/T

)
and (Γ′

iΓi/Ni) are bounded and invertible (see Proposition 1 of Bai (2003)).

Next, we study the second term of the above equation. Using the relation that

Ŝi = GΓ′
i − ĜΓ̂′

i = GΓ′
i −
(
Ĝ−GH+GH

)(
Γ̂′
i −H−1Γ′

i +H−1Γ′
i

)
= −

(
Ĝ−GH

)(
Γ̂′
i −H−1Γ′

i

)
−
(
Ĝ−GH

)
H−1Γ′

i −GH
(
Γ̂′
i −H−1Γ′

i

)
, (B.1.7)

we obtain:

1√
T

1

NiT
ŜiŜ

′
iF̂i = − 1√

T

1

NiT

(
Ĝ−GH

)(
Γ̂′
i −H−1Γ′

i

)
F̂i

− 1√
T

1

NiT

(
Ĝ−GH

)
H−1Γ′

iF̂i −
1√
T

1

NiT
GH

(
Γ̂′
i −H−1Γ′

i

)
F̂i

By Theorem 2.1, it follows that∥∥∥∥ 1√
T

1

NiT
ŜiŜ

′
iF̂i

∥∥∥∥ = Op

(
1

C2
NT

√
NiT

)
+Op

(
1

CNT

√
NiT

)
+Op

(
1

CNT

√
NiT

)
= Op

(
1

CNT

√
NiT

)

Using (B.1.7), it follows that

1√
T

1

NiT
ŜiΛiF

′
iF̂i = − 1√

T

1

NiT

(
Ĝ−GH

)(
Γ̂′
i −H−1Γ′

i

)
ΛiF

′
iF̂i

− 1√
T

1

NiT

(
Ĝ−GH

)
H−1Γ′

iΛiF
′
iF̂i −

1√
T

1

NiT
GH

(
Γ̂′
i −H−1Γ′

i

)
ΛiF

′
iF̂i
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Therefore, by Theorem 2.1,∥∥∥∥ 1√
T

1

NiT
ŜiΛiF

′
iF̂i

∥∥∥∥ = Op

(
1

C2
NT

)
+Op

(
1

CNT

)
+Op

(
1

CNT

)
= Op

(
1

CNT

)

From (B.1.7) we obtain:

1√
T

1

NiT
Ŝie

′
iF̂i = − 1√

T

1

NiT

(
Ĝ−GH

)(
Γ̂′
i −H−1Γ′

i

)
e′iF̂i

− 1√
T

1

NiT

(
Ĝ−GH

)
H−1Γ′

ie
′
iF̂i −

1√
T

1

NiT
GH

(
Γ̂′
i −H−1Γ′

i

)
e′iF̂i

The first term is bounded byOp

(
C−1
NT

) [
Op

(
N

−1/2
i

)
+Op

(
T−1/2

)]
due to Theorem 2.1 and Lemma

3. The second term is bounded by N
−1/2
i Op

(
C−1
NT

)
due to Theorem 2.1 and Lemma 1. The last

term is bounded by Op

(
N

−1/2
i

)
+Op

(
T−1/2

)
. Consequently, we have:

1√
T

1

NiT

∥∥∥Ŝie
′
iF̂i

∥∥∥ = Op

(
1

CNT

)

It is straightforward to show that 1√
T

1
NiT

∥∥∥eiŜ′
iF̂i

∥∥∥ has the same stochastic order. Again using

(B.1.7):

1√
T

1

NiT
F′
iΛ

′
iŜ

′
iF̂i = − 1√

T

1

NiT
F′
iΛ

′
i

(
Γ̂′
i −H−1Γ′

i

)′ (
Ĝ−GH

)′
F̂i

− 1√
T

1

NiT
F′
iΛ

′
iΓi

(
H−1

)′ (
Ĝ−GH

)′
F̂i −

1√
T

1

NiT
F′
iΛ

′
i

(
Γ̂′
i −H−1Γ′

i

)′
H′G′F̂i

Using Theorem 2.1, we obtain:

1√
T

1

NiT

∥∥∥F′
iΛ

′
iŜ

′
iF̂i

∥∥∥ = Op

(
1

C2
NT

)
+Op

(
1

CNT

)
+Op

(
1

CNT

)
= Op

(
1

CNT

)
Combining all the results, we conclude that

1√
T

∥∥∥F̂i − FiĤi

∥∥∥ = Op

(
1

CNT

)
. (B.1.8)

Next, for each i, the estimated factor loadings are:

Λ̂′
i =

1

T
F̂′
i

(
Yi − Ĝγ̂ ′

)
Plugging Yi = GΓ′

i +FiΛ
′
i + ei, Fi = Fi − F̂iĤ

−1
i + F̂iĤ

−1
i and (B.1.7) into the above equation,

we obtain:

1√
Ni

(
Λ̂′

i − Ĥ −1
i Λ′

i

)
= − 1

T
√
Ni

F̂′
i

(
Ĝ−GH

)(
Γ̂′
i −H−1Γ′

i

)
− 1

T
√
Ni

F̂′
i

(
Ĝ−GH

)
H−1Γ′

i
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− 1

T
√
Ni

F̂′
iGH

(
Γ̂′
i −H−1Γ′

i

)
+

1

T
√
Ni

F̂′
i

(
Fi − F̂iĤ

−1
i

)
Λ′

i +
1

T
√
Ni

F̂′
iei

The first three terms are bounded by Op

(
C−2
NT

)
, Op

(
C−1
NT

)
and Op

(
C−1
NT

)
by Theorem 2.1. The

fourth term is bounded by Op

(
C−1
NT

)
from (B.1.8). The last term can be written as

1

T
√
Ni

F̂′
iei =

1

T
√
Ni

(
F̂i − FiĤi

)′
ei +

1

T
√
Ni

Ĥ ′
i F

′
iei

The first term of the above equation is bounded by Op

(
C−2
NT

)
that follows from Lemma B1 of Bai

(2003) with a slight modification. The second term is bounded by Op

(
T−1/2

)
using the fact that

(NiT )
−1/2 ∥Fiei∥ = Op(1) under Assumption 2.B.2. Collecting all the results, we conclude that

1√
Ni

(
Λ̂′

i − Ĥ −1
i Λ′

i

)
= Op

(
1

CNT

)
Q.E.D

Proof of Theorem 2.3.

By Lemmas 2.1 and 2.2 and using the continuity of the singular values, we have:

δ̂k =


√
TOp(C

−1
NT ) for k = 1, . . . , r0

Op

(√
T
)

for k = r0 + 1, . . . , Rrmax

C−1
NTOp

(√
T
)

for k = 0

First, if r0 > 0, we have:

lim
N1,...,NR,T→∞

δ̂k+1

δ̂k
=


Op(CNT ) for k = r0

Op(1) for k = r0 + 1, . . . , Rrmax

Op(1) for k = 0, 1, . . . , r0 − 1

Next, if r0 = 0, we have:

lim
N1,...,NR,T→∞

δ̂k+1

δ̂k
=

{
Op(1) for k = 1, . . . , Rrmax

Op(CNT ) for k = 0

As CNT → ∞, we have the desired result that the ratio δ̂k+1/δ̂k attains maximum at k = r0.

Q.E.D

Lemma B.1.3. Let CNi,T = min{
√
Ni,

√
T}. Under Assumptions 2.A-2.C and 2.F–2.G, we have:

1. For each i and t, as Ni, T → ∞, we have:

K̂it − Ĥ′
iKit = V̂−1

i

(
1

T

T∑
s=1

K̂isωi(s, t) +
1

T

T∑
s=1

K̂isζi,st +
1

T

T∑
s=1

K̂isηi,st +
1

T

T∑
s=1

K̂isµi,st

)
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where Ĥi = (Θ′
iΘi/Ni)

(
K′

iK̂i/T
)
V̂−1

i is an (r0 + ri) × (r0 + ri) matrix with V̂i being the

diagonal matrix consisting of the first r0+ri eigenvalues of (NiT )
−1YiY

′
i in descending order.

Furthermore,

(a) T−1
∑T

s=1 K̂isωi(s, t) = Op

(
T−1/2C−1

NiT

)
where ωi(s, t) = E

(
N−1

i

∑Ni
j=1 eijseijt

)
.

(b) T−1
∑T

s=1 K̂isζi,st = Op

(
N

−1/2
i C−1

NiT

)
where ζi,st = N−1

i e′i.sei.t − ωi(s, t).

(c) T−1
∑T

s=1 K̂isηi,st = Op

(
N

−1/2
i

)
where ηi,st = N−1

i K′
isΘ

′
iei.t.

(d) T−1
∑T

s=1 K̂isµi,st = Op

(
N

−1/2
i C−1

NiT

)
where µi,st = N−1

i K′
itΘ

′
iei.s,

where ei.t = (ei1t, ei2t..., eiNit)
′.

2. Let R̂i = T−1/2
(
K̂i −KiĤi

)
. For each i, as Ni, T → ∞, we have:

∥∥∥R̂i

∥∥∥ = Op

(
1√

TCNiT

)
+Op

(
1√
Ni

)

3. As Nm, T → ∞, for each m and h, we have: T−1/2R̂
′
mKh = Op

(
C−2
NmT

)
.

4. As Nm, Nh, T → ∞, for each m and h, we have: T−1/2R̂
′
mK̂h = Op

(
C−2
NmT

)
.

5. As Nm, T → ∞, for each m, h and j, we have: T−1/2R̂
′
mehj = Op

(
C−2
NmT

)
.

Lemma B.1.4. Under Assumptions 2.A–2.C and 2.E–2.G, as N1, . . . , NR, T → ∞, we have:

1.
1

T

∥∥∥Φ̂′Φ̂− Ĥ′Φ′ΦĤ
∥∥∥ = Op

(
1

C2
N,T

)
and Q̂r0

i − Q̄r0
i D = Op

(
1

C2
NT

)

2.
1

T

∥∥∥Ψ̂′Ψ̂−Ψ′Ψ
∥∥∥ = Op

(
1

C2
N,T

)
and

∥∥∥L̂r0 − Lr0U
∥∥∥ = Op

(
1

C2
NT

)

where D is an r0 × r0 orthogonal matrix, U is an r0 × r0 orthogonal matrix defined in (B.1.3), and

CN,T = min
{√

N,
√
T
}

with N = min{N1, N2, . . . , NR}.

Lemma B.1.5. Under Assumptions 2.A–2.C and 2.F–2.G, as Ni, T → ∞, we have for each i:
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1.
1

T
K̂′

i

(
1

NiT
YiY

′
i

)
K̂i = V̂i

p−→ Vi

where Vi is a diagonal matrix consisting of the eigenvalues of ΣΘiΣKi.

2.
K̂′

iKi

T

(
Θ′

iΘi

Ni

)
K′

iK̂i

T

p−→ Vi

3.

plimNi,T→∞
K̂′

iKi

T
= Qi

The (r0 + ri)× (r0 + ri) matrix Qi is given by Qi = V
1/2
i P ′

iΣ
−1/2
Θi

and invertible, where Vi is

the diagonal matrix consisting of the eigenvalues of Σ
1/2
Θi

ΣKiΣ
1/2
Θi

and P i is the corresponding

eigenvector matrix such that P ′
iP i/T = Ir0+ri.

4.

plim
Ni,T→∞

Ĥi = Hi

where Hi = ΣΘiQ′
iV

−1
i .

Proof of Theorem 2.4.

1. From (2.3.19), we have for each t:

Ĝt =
1√
T
(Ξ̂r0)−1L̂r0′

(
R∑
i=1

K̂iQ̂
r0
i Q̂r0′

i K̂it

)

Using the asymptotic expansions in Lemma B.1.4.1 and Lemma B.1.4.2:

L̂r0 = Lr0U+Op

(
1

C2
NT

)
, Q̂r0

i = Ĥ−1
i Qr0

i D+Op

(
1

C2
NT

)

and keeping the term up to order Op

(
C−2
NT

)
, we have:

Ĝt =
1√
T
U(Ξr0)−1Lr0′

[
R∑
i=1

K̂iĤ
−1
i Qr0

i Qr0′
i

(
Ĥ−1

i

)′
K̂it

]
+Op

(
1

C2
NT

)

where we use that (Ξr0)−1U′ = U(Ξr0)−1 becauseΞ is diagonal. Replacing T−1/2K̂i with T−1/2KiĤi+
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R̂i, the above equation can be written as

Ĝt = H′ 1

R

R∑
i=1

I′i
(
Ĥ−1

i

)′
K̂it +U(Ξr0)−1Lr0′

[
R∑
i=1

R̂iĤ
−1
i Qr0

i Qr0′
i

(
Ĥ−1

i

)′
K̂it

]
+Op

(
1

C2
NT

)
(B.1.9)

where we use KiQ
r0
i = GB, B = R−1/2A, Qr0

i =
[
R−1/2A′,0

]′
, BQr0

i = R−1 [Ir0 ,0] = R−1I′i
and A is an orthogonal matrix. From the asymptotic expansion in Lemma 1, it follows that

T−1
∑T

s=1 K̂isηi,st and (NiT )
−1eiΘiK

′
iK̂iV̂

−1
i are dominant terms in K̂it − Ĥ′

iKit and R̂i, respec-

tively. So we have:

K̂it = Ĥ′
iKit + V̂−1

i

1

NiT

T∑
s=1

K̂isK
′
isΘ

′
iei.t +Op

(
1

C2
NiT

)

and

R̂i =
1√
T

1

NiT
eiΘiK

′
iK̂iV̂

−1
i +Op

(
1

C2
NiT

)

Plugging these expressions into (B.1.9) and multiplying both sides by
√
N , we can show that

√
N
(
Ĝt −H′Gt

)
= H′ 1

R

R∑
i=1

I′i
(
Ĥ−1

i

)′
V̂−1

i

√
N

Ni

(
1

T

T∑
s=1

K̂isK
′
is

)
1√
Ni

Ni∑
j=1

θijeijt

+U(Ξr0)−1Lr0′
√

N

Ni

1

R

R∑
i=1

1√
NiT

eiΘi

(
K′

iK̂i

T

)
V̂−1

i Ĥ−1
i IiGt +Op

(√
N

C2
NT

)

Using Ĥi = (Θ′
iΘi/Ni)

(
K′

iK̂i/T
)
V̂−1

i from Lemma B.1.3.1 and rearranging terms, the above

equation can be reduced to

√
N
(
Ĝt −

(
H′ + B′)Gt

)
= H′ 1

R

R∑
i=1

I′i

√
N

Ni

(
Θ′

iΘi

Ni

)−1 1√
Ni

Ni∑
j=1

θijeijt + op(1).

where

B =
1

R

R∑
i=1

√
1

Ni
I′i
(
Θ′

iΘi

Ni

)−1 Θ′
ie

′
i√

NiT
Jr0U.

By Lemmas B.1.2 and B.1.5, it is easily seen that B = Op

(
N−1/2

)
.

Finally, we achieve the desired result that

√
N
((

H′ + B′)−1
Ĝt −Gt

)
=

1

R
I ′CEt + op(1)
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where I = [Ir0 , . . . , Ir0 ]
′ is an Rr0 × r0 matrix, C is a Rr0 ×Rr0 block diagonal matrix given by

C =


√

N
N1

I′1
(
Θ′

1Θ1

N1

)−1

. . . √
N
N1

I′R
(
Θ′

RΘR

NR

)−1

 ,

and Et is an Rr0 × 1 vector given by

Et =


E1t

E2t

...

ERt

 =


1√
N1

∑N1
j=1 θ1je1jt

1√
N2

∑N2
j=1 θ2je2jt
...

1√
NR

∑NR
j=1 θRjeRjt

 d−→ N
(
0,D(1)

t

)

Using Assumptions 2.C.2b and 2.E, we have:

C p−→ C0 =


α
1/2
1 I′1ΣΘ1

. . .

α
1/2
R I′RΣΘR


Therefore,

√
N
[(
H′ + B′)−1

Ĝt −Gt

]
d−→ N

(
0,

1

R2
I ′C0DtC0′I

)
.

2. For each i and j, we have γ̂ij = T−1Ĝ′Yij . Using (2.2.5) and G = G − Ĝ (H+ B)−1 +

Ĝ (H+ B)−1, we have

γ̂ij − (H+ B)−1 γij =
1

T
Ĝ′
[
G− Ĝ (H+ B)−1

]
γij +

1

T
Ĝ′Fiλij +

1

T
Ĝ′eij

Using Ĝ = Ĝ−G (H+ B) +G (H+ B), the above equation can be written as

γ̂ij − (H+ B)−1 γij =
1

T

[
Ĝ−G (H+ B)

]′ [
G− Ĝ (H+ B)−1

]
γij

+
1

T
(H+ B)′G′

[
G− Ĝ (H+ B)−1

]
γij +

1

T

[
Ĝ−G (H+ B)

]′
Fiλij

+
1

T

[
Ĝ−G (H+ B)

]′
eij +

1

T
(H+ B)′G′Fiλij +

1

T
(H+ B)′G′eij

The first term is bounded by Op

(
N−1

)
by Theorem 2.4.1. The second to fourth terms are Op

(
C−2
NT

)
by Lemma B.1.6. Then, we obtain:

γ̂ij − (H+ B)−1 γij =
1

T
(H+ B)′G′ (Fiλij + eij) +Op

(
1

C2
NT

)

Next, consider the eigen-decomposition, T−1G′G = XΞr0X′. Let ξk and Xk be the k-th eigen-

value and eigenvector pair of the matrix T−1G′G. Pre-multiplying G by T−1G′GXk = ξkXk
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yields T−1GG′ (GXk) = ξk (GXk), which shows that GXk is the (non-normalised) eigenvector of

T−1GG′ for k = 1, . . . , r0, where T−1G′G and T−1GG′ have the same nonzero eigenvalues. More-

over, the normalised eigenvector becomes (X′
kG

′GXk)
−1/2GXk = (ξkT )

−1/2GXk. By definition

Lr0 is the normalised eigenvectors of T−1GG′, and it is easily seen that Lr0 = T−1/2GX (Ξr0)−1/2.

Thus, we have:

HH
′ = T−1G′Lr0 (Ξr0)−1 (Ξr0)−1 Lr0′G.

Plugging the expression of Lr0 into the above equation, we obtain: HH′ =
(
T−1G′G

)−1
. Since

T−1G′G
p→ ΣG, we have HH′ p→ Σ−1

G .

Therefore, under Assumption 2.G.4, we have:

√
T [(H+ B) γ̂ij − γij ] = HH′ 1√

T

T∑
t=1

Gt

(
λ′
ijFit + eijt

)
+ op(1)

d−→ N
(
0,
(
Σ−1

G

)′D(2)
ij Σ−1

G

)

where we use the fact that B = Op

(
N−1/2

)
.

Q.E.D

Proof of Corollary 2.1.

Using Theorem 2.4, Ĝt = Ĝt−(H+ B)′Gt+(H+ B)′Gt and γ̂ij = γ̂ij−(H+ B)−1 γij+(H+ B)−1 γij ,

we have:

CNT

(
γ̂ ′
ijĜt − γ ′

ijGt

)
=

CNT√
N

1

R
γ ′
ijI ′
CEt +

CNT√
T

G′
tHH

′ 1√
T

T∑
s=1

Gs

(
λ′
ijFis + eijs

)
+ op(1).

(B.1.10)

where we use the fact that B = op(1) from Theorem 2.4. Using the same arguments in the proof

of Theorem 3 in Bai (2003), the leading terms in (B.1.10) are asymptotically independent. Under

Assumption 2.G.3 and 2.G.4, we finally obtain the desired result.

Q.E.D

Lemma B.1.6. Under Assumptions 2.A–2.G, as N1, . . . , NR, T → ∞, we have:

1. For each i, we have T−1
[
Ĝ−G (H+ B)

]′
Ki = Op

(
C−2
NT

)
.

2. For each i and j, we have T−1
[
Ĝ−G (H+ B)

]′
eij = Op

(
C−2
NT

)
.

Lemma B.1.7. Under Assumptions 2.A–2.G, as Ni, T → ∞, we have for each i, j and t:

Ŝijt = −
[
γ̂ij − (H+ B)−1 γij

]′ (
Ĝt −

(
H′ + B′)Gt

)
− γ ′

ij

[
(H+ B)−1

]′ (
Ĝt −

(
H′ + B′)Gt

)
−G′

t (H+ B)
[
γ̂ij − (H+ B)−1 γij

]
= Op

(
1√
N

)
+Op

(
1√
T

)
where Ŝijt is the (t, j) element of Ŝi = GΓ′

i − ĜΓ̂′
i.



B.1 Lemmas and Proofs 158

Lemma B.1.8. Under Assumptions 2.A–2.G, for each i, as Ni, T → ∞, we have:

1.
1

T
F̂′
i

(
1

NiT
ŶiŶ

′
i

)
F̂i = Υ̂i

p−→ Υi

where Ŷi = Yi − ĜΓ̂′
i and Υi is a diagonal matrix consisting of the eigenvalues of ΣΛiΣFi.

2.
F̂′
iFi

T

(
Λ′

iΛi

Ni

)
F′
iF̂i

T

p−→ Υi

3.

plim
Ni,T→∞

F̂′
iFi

T
= Wi

The ri×ri matrix Wi is given by Wi = Υ
1/2
i L′

iΣ
−1/2
Λi

and invertible, where Υi is also an ri×ri

diagonal matrix consisting of the eigenvalues of Σ
1/2
Λi

ΣFiΣ
1/2
Λi

, and Li is the corresponding

eigenvector matrix such that L′
iLi = Iri.

4.

plim
Ni,T→∞

Ĥi = Hi

where Hi = ΣΛiW′
iΥ

−1
i = W−1

i .

Lemma B.1.9. Under the assumptions of Theorem 2.5.1, we have for each i and j:

1.
1

T

(
F̂i − FiĤi

)′
Fi = Op

(
1

C2
NT

)

2.
1

T

(
F̂i − FiĤi

)′
eij = Op

(
1

C2
NT

)

3.
1

T

(
F̂i − FiĤi

)′
Ŝij = Op

(
1

C2
NT

)

where Ŝij = Gγij − Ĝγ̂ij.
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Proof of Theorem 2.5.

1. To analyse the first term in (B.1.12), we let:

1

NiT

(
T∑

s=1

F̂isŜ
′
i.sŜi.t +

T∑
s=1

F̂isŜ
′
i.sΛ̂iFit +

T∑
s=1

F̂isŜ
′
i.sei.t +

T∑
s=1

F̂isF
′
isΛ

′
iŜi.t +

T∑
s=1

F̂ise
′
i.sŜi.t

)
=

X 1 + X 2 + X 3 + X 4 + X 5.

Using F̂is = F̂is − Ĥ ′
i Fis + Ĥ ′

i Fis and by Theorem 2.1.2, we obtain:

X 1 =
1

NiT

T∑
s=1

Ni∑
j=1

(
F̂is − Ĥ ′

i Fis

)
ŜijsŜijt + Ĥ ′

i

1

NiT

T∑
s=1

Ni∑
j=1

FisŜijsŜijt = Op

(
1

C2
NT

)

Similarly,

X 2 =
1

NiT

T∑
s=1

Ni∑
j=1

(
F̂is − Ĥ ′

i Fis

)
Ŝijsλ

′
ijFit + Ĥ ′

i

1

NiT

T∑
s=1

Ni∑
j=1

FisŜijsλ
′
ijFit

The first term is Op

(
C−2
NT

)
by Theorem 2.2 and Lemma B.1.7. Using Lemma B.1.7, we can express

the second term as

Ĥ ′
i

1

NiT

T∑
s=1

Ni∑
j=1

FisŜijsλ
′
ijFit =

− Ĥ ′
i

1

Ni

Ni∑
j=1

1

T

T∑
s=1

Fis

(
Ĝs −

(
H′ + B′)Gs

)′ [
γ̂ij − (H+ B)−1 γij

]
λ′
ijFit

− Ĥ ′
i

1

Ni

Ni∑
j=1

1

T

T∑
s=1

Fis

(
Ĝs −

(
H′ + B′)Gs

)′
(H+ B)−1 γijλ

′
ijFit

− Ĥ ′
i

1

Ni

Ni∑
j=1

1

T

T∑
s=1

FisG
′
s (H+ B)′

[
γ̂ij − (H+ B)−1 γij

]
λ′
ijFit

The first term of the above expression is Op

(
C−2
NT

) [
Op

(
T−1/2

)
+Op

(
N−1

)]
by Lemma B.1.6.1

and Theorem 2.5. The second term is Op

(
C−2
NT

)
by Lemma B.1.6.1 while the last term is

Op

(
T−1/2

) [
Op

(
T−1/2

)
+Op

(
N−1

)]
by Assumption 2.D. Therefore, we obtain: X 2 = Op

(
C−2
NT

)
. Using F̂is = F̂is − Ĥ ′

i Fis + Ĥ ′
i Fis,

we have:

X 3 =
1

NiT

T∑
s=1

Ni∑
j=1

(
F̂is − Ĥ ′

i Fis

)
Ŝijseijt + Ĥ ′

i

1

NiT

T∑
s=1

Ni∑
j=1

FisŜijseijt
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The first term is bounded by Op

(
C−2
NT

)
by Theorem 2.2 and Lemma B.1.7. The second term is

written as

Ĥ ′
i

1

NiT

T∑
s=1

Ni∑
j=1

FisŜijseijt =

− Ĥ ′
i

1

Ni

Ni∑
j=1

1

T

T∑
s=1

Fis

(
Ĝs −

(
H′ + B′)Gs

)′ [
γ̂ij − (H+ B)−1 γij

]
eijt

− Ĥ ′
i

1

Ni

Ni∑
j=1

1

T

T∑
s=1

Fis

(
Ĝs −

(
H′ + B′)Gs

)′
(H+ B)−1 γijeijt

− Ĥ ′
i

1

Ni

Ni∑
j=1

1

T

T∑
s=1

FisG
′
s (H+ B)′

[
γ̂ij − (H+ B)−1 γij

]
eijt

The first term of the above equation is Op

(
C−2
NT

) [
Op

(
T−1/2

)
+Op

(
N−1

)]
by Lemma B.1.6.1 and

Theorem 2.5. The second term is Op

(
C−2
NT

)
by Lemma B.1.6.1 and the last term is

Op

(
T−1/2

) [
Op

(
T−1/2

)
+Op

(
N−1

)]
by Assumption 2.D. Combining these results, we have: X 3 = Op

(
C−2
NT

)
.

Next, consider

X 5 =
1

NiT

T∑
s=1

Ni∑
j=1

(
F̂is − Ĥ ′

i Fis

)
eijsŜijt + Ĥ ′

i

1

NiT

T∑
s=1

Ni∑
j=1

FiseijsŜijt

The first term of the above equation is of order Op

(
C−2
NT

)
by Theorem 2.2 and Lemma B.1.7.

Therefore, we have:

∥X 5∥ ≤ Op

(
1

C2
NT

)
+
∥∥∥Ĥi

∥∥∥ 1√
T

 1

Ni

Ni∑
j=1

∥∥∥∥∥ 1√
T

T∑
s=1

Fiseijs

∥∥∥∥∥
2
1/2 1

Ni

Ni∑
j=1

∣∣∣Ŝijt

∣∣∣2
1/2

= Op

(
1√

TCNT

)

where the last equality follows from Assumption 2.B.2 and Lemma B.1.7.

Collecting the results above, (B.1.12) becomes

F̂it − Ĥ ′
i Fit = Υ̂−1

i

1

NiT

T∑
s=1

F̂isF
′
isΛ

′
iŜi.t

+ Υ̂−1
i

(
1

T

T∑
s=1

F̂isωi(s, t) +
1

T

T∑
s=1

F̂isζi,st +
1

T

T∑
s=1

F̂isη
∗
i,st +

1

T

T∑
s=1

F̂isµ
∗
i,st

)
+Op

(
1

C2
NT

)
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It then follows that

F̂it − Ĥ ′
i Fit = Υ̂−1

i

(
F̂′
iFi

T

)
1

Ni

Ni∑
j=1

λijŜijt + Υ̂−1
i

(
F̂′
iFi

T

)
1

Ni

Ni∑
j=1

λijeijt +Op

(
1

C2
NT

)

Under Assumption 2.G.3, we have

Υ̂−1
i

(
1

T

T∑
s=1

F̂isF
′
is

)
1√
Ni

Ni∑
j=1

λijeijt
d−→ N

(
0,Υ−1

i WiD
(1)(ri,ri)
ii,t W′

iΥ
−1
i

)
where

D(1)(ri,ri)
ii,t = plim

Ni→∞
N−1

i

Ni∑
j=1

Ni∑
k=1

λijλ
′
ikE(eijteikt)

is a lower-right ri × ri matrix of D(1)
ii,t. As a result, it follows that

√
Ni

(
F̂it − Ĥ ′

i Fit

)
= Υ̂−1

i

(
F̂′
iFi

T

)
1

Ni

Ni∑
j=1

λij

√
NiŜijt + Υ̂−1

i

(
F̂′
iFi

T

)
1√
Ni

Ni∑
j=1

λijeijt + op(1)

= Υ̂−1
i

(
F̂′
iFi

T

)
1√
Ni

Ni∑
j=1

λij

(
eijt + Ŝijt

)
+ op(1)

d−→ N
(
0,Υ−1

i WiD
(4)
ii,tW

′
iΥ

−1
i

)
.

since the first leading term also have a non-degenerate distribution by Corollary 2.1.

2. Using Λ̂i = T−1F̂′
iŶij , Ŷij = Ŝij + Fiλij + eij and Fi = Fi − F̂iĤ

−1
i + F̂iĤ

−1
i , we obtain:

λ̂ij − Ĥ −1
i λij =

1

T
F̂′
i

(
Fi − F̂iĤ

−1
i

)
λij +

1

T
F̂′
ieij +

1

T
F̂′
iŜij

Replacing F̂i by F̂i − FiĤi + FiĤi, we get:

λ̂ij − Ĥ −1
i λij =

1

T

(
F̂i − FiĤi

)′ (
Fi − F̂iĤ

−1
i

)
λij + Ĥ ′

i

1

T
F′
i

(
Fi − F̂iĤ

−1
i

)
λij

+
1

T

(
F̂i − FiĤi

)′
eij +

1

T

(
F̂i − FiĤi

)′
Ŝij + Ĥ ′

i

1

T
F′
iŜij + Ĥ ′

i

1

T
F′
ieij

Notice that, using Corollary 2.1, we obtain

Ĥ ′
i

1

T
F′
iŜij = Ĥ ′

i

1

T

T∑
t=1

FitŜijt

= Ĥ ′
i

1

T

T∑
t=1

Fit

(
1√
N

1

R
γ ′
ijI ′
CEt +

1√
T
G′

t

(
G′G

T

)−1 1√
T

T∑
s=1

Gs

(
λ′
ijFis + eijs

)
+ op

(
1

CNT

))

=
1√
N

Ĥ ′
i

1

T

T∑
t=1

Fit
1

R
γ ′
ijI ′
CEt+

1√
T

Ĥ ′
i

(
F′
iG

T

)(
G′G

T

)−1 1√
T

T∑
s=1

Gs

(
λ′
ijFis + eijs

)
+op

(
1

CNT

)
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=
1√
N

Ĥ ′
i

1

T

T∑
t=1

Fit
1

R
γ ′
ijI ′
CEt +Op

(
1

T

)
+ op

(
1

CNT

)

where the last equality is due to Assumption 2.D and 2.G.4. The first term of the RHS in the above

equation is bounded by

1√
N

Ĥ ′
i

1

T

T∑
t=1

Fit
1

R
γ ′
ijI ′
CEt

=
1√
N

Ĥ ′
i

1

T

T∑
t=1

Fit
1

R
γ ′
ij

R∑
m=1

√
N

Nm
I
′
m

(
Θ′

mΘm

Nm

)−1 1√
Nm

Nm∑
k=1

θmkemkt

=
1√
TNm

Ĥ ′
i

1

R

R∑
m=1

√
1

TNm

Nm∑
k=1

T∑
t=1

Fitθ
′
mkemkt

(
Θ′

mΘm

Nm

)−1

Imγij = Op

(
1√
TNm

)

where the last equality follows from Assumption 2.G.2. Then, by the above development, part 1 of

this theorem, Lemma B.1.9, and Assumption 2.D, it follows that

λ̂ij − Ĥ −1
i λij = Ĥ ′

i

1

T

T∑
t=1

Fiteijt +Op

(
1

C2
NT

)
.

By Assumption 2.G.4, we have

√
T
(
λ̂ij − Ĥ −1

i λij

)
= Ĥ ′

i

1√
T

T∑
t=1

Fiteijt + op(1)
d−→ N

(
0,
(
W−1

i

)′D(3)
ij W−1

i

)
since the leading terms have non-degenerate distributions.

Q.E.D

B.1.2 Proofs of the auxiliary lemmas

Proof of Lemma B.1.1.

1. Using the Cauchy-Schwarz inequality, we obtain:

1

T
√
Nh

∥∥∥∥(K̂m −KmĤm

)′
eh

∥∥∥∥ ≤
∥∥∥∥ 1√

T

(
K̂m −KmĤm

)∥∥∥∥∥∥∥∥ 1√
NhT

eh

∥∥∥∥
The first term is of stochastic order Op

(
C−1
NmT

)
by Lemma 2.1. For the second term, we have:

∥∥∥∥ 1√
NhT

eh

∥∥∥∥ =

√
1

NhT
tr
{
e′heh

}
=

√√√√ 1

NhT

Nh∑
j=1

T∑
t=1

e2hjt

Since E(e2hjt) = O(1), the above term is Op(1). Combining these, we obtain the required result.

2. Using equation (2.3.19) and K̂m = K̂m −KmĤm +KmĤm, we have:
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1

T
√
Ni

∥∥∥Ĝ′ei

∥∥∥ =
1

T
√
NiT

∥∥∥∥∥
R∑

m=1

{
Ĵr0′

(
K̂m −KmĤm

)
Q̃r0

m

(
K̂m −KmĤm

)′
ei

+ Ĵr0′
(
K̂m −KmĤm

)
Q̃r0

mĤ′
mK′

mei + Ĵr0′KmĤmQ̃r0
m

(
K̂m −KmĤm

)′
ei

+Ĵr0′KmĤmQ̃r0
mĤ′

mK′
mei

}∥∥∥
where Q̃r0

i = Q̂r0
i Q̂r0′

i . We note that
∥∥∥Ĵr0

∥∥∥ = Op(1) since L̂r0′L̂r0 = Ir0 and T−1/2Ψ̂ = Op(1). The

first term of RHS is bounded by Op

(
C−1
NT

)
× Op

(
C−1
NT

)
by Lemma B.1.1.1 and Lemma 1. The

second term is bounded by Op

(
T−1/2C−1

NT

)
by Lemma 2.1 and the fact that (NmT )−1/2∥K′

mei∥ =

Op(1) under Assumption 2.B.2. The third term is bounded by Op

(
C−1
NT

)
by Lemma 1. The last

term is bounded by Op(T
−1/2) since (NmT )−1/2∥K′

mei∥ = Op(1) under Assumption 2.B.2. The

proof completes by combining all these results.

Q.E.D

Proof of Lemma B.1.2.

1.

∥∥∥∥ 1√
NiT

Γ′
ie

′
i

∥∥∥∥ =
1√
NiT

tr


Ni∑
j=1

eijγ
′
ij

Ni∑
k=1

γike
′
ik


 1

2

=

 1

NiT

Ni∑
j=1

Ni∑
k=1

γ ′
ijγik

T∑
t=1

eikteijt

 1
2

Taking expectations of the term inside the bracket, by Assumption 2.A.3 and 2.C.1, we have:

E

 1

NiT

Ni∑
j=1

Ni∑
k=1

γ ′
ijγik

T∑
t=1

eikteijt

 ≤ 1

NiT

Ni∑
j=1

Ni∑
k=1

γ ′
ijγik

T∑
t=1

τi,(jk) = O(1)

2. The proof is similar to part 1 and thus omitted.

3. From (B.1.5) we have:

1

Ni

√
T

(
Γ̂′
i −H−1Γ′

i

)
e′i =

1

NiT
√
T
Ĝ′
(
G− ĜH−1

)
Γ′
ie

′
i +

1

NiT
√
T
Ĝ′FiΛ

′
ie

′
i +

1

NiT
√
T
Ĝ′eie

′
i

The first term is bounded by Op

(
C−1
NTN

−1/2
i

)
by Theorem 2.1 and Lemma 1. The second term is

bounded by Op

(
C−1
NTN

−1/2
i

)
due to (B.1.6) and Lemma 2. Using (2.3.19), the third term can be

written as

1

NiT
√
T
Ĝ′eie

′
i =

1

NiT
L̂r0′eie

′
i =

1

NiT
Ĵr0′ 1

T

(
R∑

m=1

K̂mQ̂r0
mQ̂r0′

m K̂′
m

)
eie

′
i

Following the proof of Theorem 1 in Bai & Ng (2002), we have for each m:

1

NiT
√
T

∥∥∥K̂′
meie

′
i

∥∥∥ = Op

(
1√
Ni

)
+Op

(
1√
T

)
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Therefore, it follows that

1

NiT
√
T

∥∥∥Ĝ′eie
′
i

∥∥∥ = Op

(
1√
Ni

)
+Op

(
1√
T

)
The proof completes by combining the above results.

Q.E.D

Proof of Lemma B.1.3.

1. For each i, by definition, we have: K̂iV̂i = (NiT )
−1YiY

′
iK̂i. By plugging (2.2.6) into this

equation, we obtain:

K̂i −KiĤi =

(
1

NiT
eiΘiK

′
iK̂i +

1

NiT
KiΘ

′
ie

′
iK̂i +

1

NiT
eie

′
iK̂i

)
V̂−1

i (B.1.11)

Let K̂it−ĤiKit be the t−th row vector of K̂i−KiĤi. Then, the proof follows directly from Lemma

A.2 in Bai (2003).

2. For each i, we have:

∥∥∥∥ 1√
T

(
K̂i −KiĤi

)∥∥∥∥2 = tr

{
1

T

(
K̂i −KiĤi

)′ (
K̂i −KiĤi

)}
=

tr

{
1

T

T∑
t=1

(
K̂it − Ĥ′

iKit

)(
K̂it − Ĥ′

iKit

)′}
=

1

T

T∑
t=1

∥∥∥K̂it − Ĥ′
iKit

∥∥∥2
Combining (a)-(d) in Lemma B.1.3.1, the result follows.

3. Consider the term,

1√
T
R̂′

mKh = V̂−1
m

(
1

T 2

T∑
t=1

T∑
s=1

K̂msωm(s, t)K′
ht +

1

T 2

T∑
t=1

T∑
s=1

K̂msζm,stK
′
ht

+
1

T 2

T∑
t=1

T∑
s=1

K̂msηm,stK
′
ht +

1

T 2

T∑
t=1

T∑
s=1

K̂msµm,stK
′
ht

)

where
∥∥∥V̂−1

m

∥∥∥ = Op(1) by Lemma B.1.5. Let T−1/2R̂′
mKh = V̂−1

m (X1 +X2 +X3 +X4).

First, X1 can be written as

1

T 2

T∑
t=1

T∑
s=1

(
K̂ms − Ĥ′

mKms

)
ωm(s, t)K′

ht + Ĥ′
m

1

T 2

T∑
t=1

T∑
s=1

Kmsωm(s, t)K′
ht = X1.1 +X1.2

By the Cauchy-Schwarz inequality, we have:

∥X1.1∥ ≤ 1√
T

(
1

T

T∑
t=1

1

T

T∑
s=1

∥∥∥K̂ms − Ĥ′
mKms

∥∥∥2)1/2(
1

T

T∑
t=1

T∑
s=1

|ωm(s, t)|2 ∥Kht∥2
)1/2

=

[
Op

(
1√
Nm

)
+Op

(
1√

TCNmT

)]
1√
T

= Op

(
1√
NmT

)
+Op

(
1

TCNmT

)
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where we use Lemma 1, Assumption 2.B.1 and the fact that T−1
∑T

t=1

∑T
s=1 |ωm(s, t)|2 = O(1) (see

Lemma 1.(i) in Bai & Ng (2002)). The expected value of X1.2 without Ĥ′
m, is bounded by

1

T 2

T∑
t=1

T∑
s=1

|ωm(s, t)|E
(
∥Kms∥2

)1/2
E
(
∥Kht∥2

)1/2
≤ M 1

T

(
1

T

T∑
t=1

T∑
s=1

|ωm(s, t)|

)
= O

(
1

T

)

under Assumption 2.B.1 and Assumption 2.A.2. Therefore, we obtain: ∥X1∥ = Op

(
C−2
NmT

)
.

By the Cauchy-Schwarz inequality, X2 is bounded by

∥X2∥ ≤

 1

NmT 2

T∑
t=1

∥∥∥∥∥∥ 1√
NmT

T∑
s=1

Nm∑
j=1

Kms [emjsemjt − E(emjsemjt)]

∥∥∥∥∥∥
21/2(

1

T

T∑
t=1

∥Kht∥2
)1/2

= Op

(
1√
NmT

)
under Assumptions 2.B.1 and 2.G.1.

Next, X3 can be expressed as

X3 =
1

T 2

T∑
t=1

T∑
s=1

(
K̂ms − Ĥ′

mKms

)
ηm,stK

′
ht + Ĥ′

m

1

T 2

T∑
t=1

T∑
s=1

Kmsηm,stK
′
ht = X3.1 +X3.2.

Applying the Cauchy-Schwarz inequality to X3.1, we obtain:

∥X3.1∥ ≤

(
1

T

T∑
s=1

∥∥∥K̂ms − Ĥ′
mKms

∥∥∥2)1/2
 1

T

T∑
s=1

∥∥∥∥∥ 1T
T∑
t=1

Khtηm,st

∥∥∥∥∥
2
1/2

.

The second term can be expressed as

 1

T

T∑
s=1

∥∥∥∥∥ 1T
T∑
t=1

Khtηm,st

∥∥∥∥∥
2
1/2

=

 1

T

T∑
s=1

∥∥∥∥∥ 1

NmT

T∑
t=1

KhtK
′
msθmjemjt

∥∥∥∥∥
2
1/2

≤

 1

T

T∑
s=1

∥Kms∥2
∥∥∥∥∥∥ 1

NmT

T∑
t=1

Nm∑
j=1

K′
htθmjemjt

∥∥∥∥∥∥
21/2

= Op

(
1√
NmT

)

under Assumptions 2.B.1 and 2.G.2. Hence, ∥X3.1∥ = Op

(
C−1
NmT

)
Op

(
N

−1/2
m T−1/2

)
. For X3.2, we

have:

X3.2 =
1

T

T∑
s=1

KmsK
′
ms

1

NmT

T∑
t=1

Nm∑
j=1

K′
htθmjemjt = Op

(
1√
NmT

)

by Assumption 2.G.2. Therefore, ∥X3∥ = Op

(
N

−1/2
m T−1/2

)
.

Following similar steps, we also obtain: X4 = Op

(
N

−1/2
m T−1/2

)
. Collecting all these results,

we have: T−1/2R̂
′
mKh = Op

(
C−2
NmT

)
.
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4.
1√
T
R̂mK̂h =

1√
T
R̂m

(
K̂h −KhĤh

)
+

1√
T
R̂mKhĤh

By Lemmas B.1.3.2 and B.1.3.3, it follows that T−1/2R̂
′
mK̂h = Op

(
C−2
NmT

)
.

5. Consider

1√
T
R̂

′
mehj = V̂−1

m

(
1

T 2

T∑
t=1

T∑
s=1

K̂msωm(s, t)ehjt +
1

T 2

T∑
t=1

T∑
s=1

K̂msζm,stehjt

+
1

T 2

T∑
t=1

T∑
s=1

K̂msηm,stehjt +
1

T 2

T∑
t=1

T∑
s=1

K̂msµm,stehjt

)

where
∥∥∥V̂−1

m

∥∥∥ = Op(1) by Lemma B.1.5. Let T−1/2R̂
′
mehj = V̂−1

m (X1 + X2 + X3 + X4).

As X1 is of order Op

(
C−2
NmT

)
, the proof is the same as that of X1 in Lemma B.1.3. Next,

X2 =
1

T 2

T∑
t=1

T∑
s=1

(
K̂ms − Ĥ′

mKms

)
ζm,stehjt + Ĥ′

m

1

T 2

T∑
t=1

T∑
s=1

Kmsζm,stehjt = X2.1 + X2.2.

Using the Cauchy-Schwarz inequality, we have:

∥X2.1∥ ≤

(
1

T

T∑
s=1

∥∥∥K̂ms − Ĥ′
mKms

∥∥∥2)1/2
 1

T

T∑
s=1

(
1

T

T∑
t=1

ζm,stehjt

)2
1/2

.

Notice that by Assumption 2.A.5,

1

T

T∑
t=1

ζm,stehjt =
1

T

T∑
t=1

1√
Nm

(
1√
Nm

Nm∑
k=1

[emksemkt − E(emksemkt)]

)
ehjt = Op

(
1√
Nm

)
.

Using Lemma B.1.3.2, we show that

∥X2.1∥ = Op

(
1√

NmTCNmT

)
+Op

(
1

Nm

)
By Assumption 2.G.1,

X2.2 = Ĥ′
m

1√
NmT

1

T

T∑
t=1

(
1√
NmT

T∑
s=1

Nm∑
k=1

Kms [emksemkt − E(emksemkt)]

)
ehjt = Op

(
1√
NmT

)
.

Combining these two terms, we have X2 = Op(C
−2
NmT ).

Next, we can write X3 as

X3 =
1

T 2

T∑
t=1

T∑
s=1

(
K̂ms − Ĥ′

mKms

)
ηm,stehjt + Ĥ′

m

1

T 2

T∑
t=1

T∑
s=1

Kmsηm,stehjt = X3.1 + X3.2.
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By the Cauchy-Schwarz inequality, we have:

∥X3.1∥ ≤

(
1

T

T∑
s=1

∥∥∥K̂ms − Ĥ′
mKms

∥∥∥2)1/2
 1

T

T∑
s=1

(
1

T

T∑
t=1

ηm,stehjt

)2
1/2

Notice that

1

T

T∑
t=1

ηm,stehjt =
1√
Nm

Kms
1

T

T∑
t=1

(
1√
Nm

Nm∑
k=1

θmkemkt

)
ehjt = Op

(
1√
Nm

)

Using Lemma B.1.3.2, we have:

∥X3.1∥ = Op

(
1√

NmTCNmT

)
+Op

(
1

Nm

)
.

By Assumption 2.F.2, we have:

X3.2 = Ĥ′
m

(
1

T

T∑
s=1

KmsK
′
ms

)
1

NmT

T∑
t=1

Nm∑
k=1

θmkemktehjt = Op

(
1

Nm

)
.

Combining these two terms, we obtain X3 = Op

(
C−2
NmT

)
. The proof for X4 is similar to that for

X3. Finally, we conclude that T−1/2R̂
′
mehj = Op

(
C−2
NmT

)
.

Q.E.D

Proof of Lemma B.1.4.

1. By definition of Φ̂, we have:

1

T
Φ̂′Φ̂ =

1

T


(R− 1)K̂′

1K̂1 −K̂′
1K̂2 . . . −K̂′

1K̂R

−K̂′
2K̂1 (R− 1)K̂′

2K̂2 . . . −K̂′
RK̂R

...

−K̂′
RK̂1 −K̂′

RK̂1 . . . (R− 1)K̂′
RK̂R


Using (B.1.11) and the definition of R̂i in Lemma B.1.3.2, we obtain:

1

T
Φ̂′Φ̂ =

1

T
Ĥ′Φ′ΦĤ+ Â1 + Â2 + Â3

where

Â1 = Â′
2 =

1√
T


(R− 1)R̂

′
1K1Ĥ1 −R̂

′
1K2Ĥ2 . . . −R̂

′
1KRĤR

−R̂
′
2K1Ĥ1 (R− 1)R̂

′
2K2Ĥ2 . . . −R̂

′
2KRĤR

...

−R̂
′
RK1Ĥ1 −R̂

′
RK2Ĥ2 . . . (R− 1)R̂

′
RKRĤR
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and

Â3 =


(R− 1)R̂

′
1R̂1 −R̂1R̂

′
2 . . . −R̂

′
1R̂R

−R̂
′
2R̂1 (R− 1)R̂

′
2R̂2 . . . −R̂

′
2R̂R

...

−R̂
′
RR̂1 −R̂RR̂

′
2 . . . (R− 1)R̂

′
RR̂R


Using Lemma B.1.3.3 and the fact that Ĥi is Op(1), we have Â1 = Â′

2 = Op

(
C−2
NT

)
. Furthermore,

by Lemma B.1.3.2, we have Â3 = Op

(
C−2
NT

)
.

2. By definition of Ψ̂ and Ψ, we have:

∥∥∥∥ 1T Ψ̂′Ψ̂− 1

T
Ψ′Ψ

∥∥∥∥ ≤
R∑
i=1

∥∥∥∥ 1T K̂iQ̂
r0
i Q̂r0′

i K̂′
i −

1

T
GG′

∥∥∥∥
Using K̂i = K̂i −KiĤi +KiĤi, we have:

1

T
K̂iQ̂

r0
i Q̂r0′

i K̂′
i −

1

T
GG′ =

1

T
Q̂′

i

(
K̂i −KiĤi

)′
K̂iQ̂i +

1

T
Q̂′

iĤ
′
iK̂

′
i

(
K̂i −KiĤi

)
Q̂i

+
1

T
Q̂′

iĤ
′
iK

′
iKiĤiQ̂i −

1

T
GG′

The first two terms are bounded by Op

(
C−2
NiT

)
by Lemmas B.1.3.3 and B.1.3.4. Using Q̂i =

Ĥ−1
i QiD+Op

(
C−2
NiT

)
, the last two terms can be expressed as

D′B′G
′G

T
BD+Op

(
1

C2
NiT

)
− G′G

T

Notice that ∥∥∥∥D′B′G
′G

T
BD− G′G

T

∥∥∥∥ = 0

since D and B are orthogonal matrices. Therefore,∥∥∥∥ 1T Ψ̂′Ψ̂− 1

T
Ψ′Ψ

∥∥∥∥ = Op

(
1

C2
NT

)

By Lemma 2.3 and Assumption 2.B.1, we have:
∥∥∥L̂r0 − Lr0U

∥∥∥ = Op

(
C−2
NT

)
where U is an r0 × r0

orthogonal matrix defined in (B.1.3).

Q.E.D

Proof of Lemma B.1.5.

The proof follows the same lines from Proposition 1 and Lemma A.3 in Bai (2003) and is thus

omitted.

Q.E.D

Proof of Lemma B.1.6.
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Using K̂it = K̂it − Ĥ′
iKit + Ĥ′

iKit, we can write (B.1.9) as

Ĝt −
(
H′ + B′)Gt = H′ 1

R

R∑
i=1

I′i
(
Ĥ−1

i

)′ (
K̂it − Ĥ′

iKit

)
+U (Ξr0)−1 Lr0′

R∑
i=1

R̂iĤ
−1
i Qr0

i Qr0′
i

(
Ĥ−1

i

)′ (
K̂it − Ĥ′

iKit

)
+Op

(
1

C2
NT

)
.

Then, we have:

1

T

T∑
t=1

[
Ĝt −

(
H′ + B′)Gt

]
K′

it = H′ 1

R

R∑
m=1

I′m
(
Ĥ−1

m

)′ 1
T

T∑
t=1

(
K̂mt − Ĥ′

mKmt

)
K′

it

+U (Ξr0)−1 Lr0′
R∑

m=1

R̂mĤ−1
m Qr0

mQr0′
m

(
Ĥ−1

m

)′ 1
T

T∑
t=1

(
K̂mt − Ĥ′

mKmt

)
K′

it +Op

(
1

C2
NT

)
.

By Lemma B.1.3.4, T−1
∑T

t=1

(
K̂mt − Ĥ′

mKmt

)
K′

it = Op

(
C−2
NmT

)
. Then, the required result fol-

lows.

We can also prove Lemma B.1.6.2 along similar arguments using Lemma B.1.3.4.

Q.E.D

Proof of Lemma B.1.7.

Using the expansions, Ĝ = Ĝ−G (H+ B)+G (H+ B) and Γ̂′
i = Γ̂′

i− (H+ B)−1 Γ′
i+(H+ B)−1 Γ′

i,

the result follows from Theorems 2.4.

Q.E.D

Proof of Lemma B.1.8.

As Ŝijt = op(1), the proof follows directly from Proposition 1 and Lemma A.3 in Bai (2003) with

slight modification.

Q.E.D

Proof of Lemma B.1.9.

1. By construction we have:

F̂i =
1

NiT

(
ŜiŜ

′
i + FiΛ

′
iŜ

′
i + eiŜ

′
i + ŜiΛiF

′
i + FiΛ

′
iΛiF

′
i + eiΛiF

′
i + Ŝie

′
i + FiΛ

′
ie

′
i + eie

′
i

)
F̂iΥ̂

−1

where Ŝi = GΓ′
i − ĜΓ̂′

i. Therefore, we have:

F̂it − Ĥ ′
i Fit =

Υ̂−1
i

1

NiT

(
T∑

s=1

F̂isŜ
′
i.sŜi.t +

T∑
s=1

F̂isŜ
′
i.sΛiFit +

T∑
s=1

F̂isŜ
′
i.sei.t +

T∑
s=1

F̂isF
′
isΛ

′
iŜi.t +

T∑
s=1

F̂ise
′
i.sŜi.t

)

+ Υ̂−1
i

(
1

T

T∑
s=1

F̂isωi(s, t) +
1

T

T∑
s=1

F̂isζi,st +
1

T

T∑
s=1

F̂isη
∗
i,st +

1

T

T∑
s=1

F̂isµ
∗
i,st

)
(B.1.12)



B.2 Bootstrap Confidence Intervals 170

where Ĥi = (Λ′
iΛi/Ni) (F

′
iFi/T ) Υ̂

−1
i , Ŝi.t is the Ni × 1 vector of Ŝi (the t-th row vector), η∗i,st =

N−1
i F′

isΛ
′
iei.t and µ∗

i,st = N−1
i F′

itΛ
′
iei.s. ωi(s, t) and ζi,st are defined in Lemma B.1.3.1.

It then follows that:

1

T

(
F̂i − FiĤi

)′
Fi =

1

T

T∑
t=1

(
F̂it − Ĥ ′

i Fit

)
F′
it =

Υ̂−1
i

1

NiT 2

(
T∑

s=1

T∑
t=1

F̂isŜ
′
i.sŜi.tF

′
it +

T∑
s=1

T∑
t=1

F̂isŜ
′
i.sΛiFitF

′
it

+
T∑

s=1

T∑
t=1

F̂isŜ
′
i.sei.tF

′
it +

T∑
s=1

T∑
t=1

F̂isF
′
isΛ

′
iŜi.tF

′
it +

T∑
s=1

T∑
t=1

F̂ise
′
i.sŜi.tF

′
it

)

+ Υ̂−1
i

(
1

T 2

T∑
s=1

T∑
t=1

F̂isωi(s, t)F
′
it +

1

T 2

T∑
s=1

T∑
t=1

F̂isζi,stF
′
it +

1

T 2

T∑
s=1

T∑
t=1

F̂isη
∗
i,stF

′
it

+
1

T 2

T∑
s=1

T∑
t=1

F̂isµ
∗
i,stF

′
it

)

By Lemma B.1.8, we have Υ̂i = Op(1). It is straightforward to show that the second term is of

order Op

(
C−2
NT

)
using the similar lines in the proof of Lemma B.1.3.3.

We now focus on the first term, which is written as Υ̂−1
i (Q1 +Q2 +Q3 +Q4 +Q5). By Lemma

B.1.7, Q1 = Op

(
C−2
NT

)
. Next, using F̂is = F̂is − Ĥ ′

i Fis + Ĥ ′
i Fis, we have:

Q2 =
1

NiT

Ni∑
j=1

T∑
s=1

(
F̂is − Ĥ ′

i Fis

)
Ŝijsλ

′
ij

(
F′
iFi

T

)
+ Ĥ ′

i

1

NiT

Ni∑
j=1

T∑
s=1

FisŜijsλ
′
ij

(
F′
iFi

T

)

Notice that F′
iFi/T = Op(1) under Assumption 2.B.1. Combining Lemmas B.1.6 and B.1.7, Theo-

rems 2.4 and Assumption 2.D, we have: T−1
∑T

s=1FisŜijs = Op

(
C−2
NT

)
such that the second term

of the above equation is Op

(
C−2
NT

)
. Hence, Q2 =

(
C−2
NT

)
. Along similar arguments, it is easily

seen that Q3 to Q5 have stochastic order Op

(
C−2
NT

)
.

2. The proof is similar to part 1 of Lemma B.1.9 and thus omitted.

3. The result follows from Theorem 2.2 and Lemma B.1.7.

Q.E.D

B.2 Bootstrap Confidence Intervals

In this section, we outline the bootstrap procedure for estimating the confidence intervals for

(H+B)′Gt, (H+B)−1 γij , γ
′
ijGt, Ĥ ′

i Fit, and λ′
ijFit, respectively. For computational tractabil-

ity, we assume that the error terms are cross-sectionally and serially uncorrelated. If the error

terms are serially correlated or weakly cross-sectionally correlated, the dependent bootstrap can be

adopted (e.g. Shao (2010) and Conley et al. (2023)). The validity of the bootstrap is corroborated
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by simulations whilst the formal proof is beyond the scope of this paper.

We introduce some notations in line with the bootstrap literature. The superscript ∗(b) denotes

the b-th realisation among B bootstrap repetitions. Let Pr∗ be the bootstrap probability measure

conditional on the original sample. Though Pr∗ depends on the sample size (N,T ) and the realisation

(b), we omit them for notational simplicity. For a bootstrapped sequence X
∗(b)
n for b = 1, .., B, we

denote X
∗(b)
n = op∗(1) if limn→∞ Pr∗

(∣∣∣X∗(b)
n

∣∣∣ > ϵ
)
= op(1) for all ϵ > 0. Furthermore, X

∗(b)
n

d∗→ D if

X
∗(b)
n weakly converges in distribution to D conditional on the original sample. Bartlett(x) = 1−|x|

if |x| ≤ 1 and Bartlett(x) = 0 if |x| > 0 is the Bartlett kernel function, see Andrews (1991). Finally,

let ιz = [0, . . . , 1, . . . , 0]′ be an r0 × 1 vector such that the z-th element is one and zeros elsewhere

and ιi,z be an ri × 1 vector defined similarly for i = 1, . . . , R.

We provide three algorithms to generate the confidence intervals.

Algorithm 1: Bootstrap the global factors

Step 1.1 For each i, j and s, construct e
∗(b)
ijs = êijsε

∗(b)
ijs where êijs = yijs − γ̂ ′

ijĜs − λ̂′
ijF̂is and

ε
∗(b)
ijs ∼ i.i.d. N(0, 1), i = 1, ..., R, j = 1, ..., Nm and s = 1, ..., T .

Step 1.2 Re-sample the data by y
∗(b)
ijs = γ̂ ′

ijĜs + λ̂′
ijF̂is + e

∗(b)
ijs .

Step 1.3 Apply the estimation procedure developed in Section 2.3 to the re-sampled data, and obtain

the bootstrap estimates of global factors, denoted Ĝ∗(b). We then construct the rotation matrix by

Ĥ∗(b) = T−1Ĝ′Ĝ∗(b).

Step 1.4 Repeat Steps 1.1–1.3 B times, and construct the empirical distribution function as

D̂Gz
t
(τ) =

1

B

B∑
b=1

1

(√
N

[
ι′z

(
Ĥ∗(b)′

)−1
Ĝ

∗(b)
t − Ĝz

t

]
≤ τ

)
for z = 1, . . . , r0

where 1 is the indicator function. The 1− α CI for the z-th (rotated) global factor is given by[
Ĝz

t −
1√
N

D̂−1
Gz

t

(α
2

)
, Ĝz

t −
1√
N

D̂−1
Gz

t

(
1− α

2

)]
(B.2.13)

where D̂−1
Gz

t
(α/2) and D̂−1

Gz
t
(1− α/2) are the inverse function of D̂Gz

t
evaluated at α/2 and 1− α/2,

respectively.

The consistency and asymptotic normality of the GCC estimator can be achieved for the re-

sampled data since the validity of Assumptions 2.A–2.G is still maintained in Step 1.1. Hence, for

each b = 1, . . . , B, we have:

√
N

[(
H∗(b)′ + B∗(b)′

)−1
Ĝ

∗(b)
t − Ĝt

]
=

1

R
I ′ĈE∗(b)

t + op∗(1)
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where H∗(b) = T−1/2Ĝ′L̂r0U∗(b) and B∗(b) = 1
R

∑R
i=1

√
1
Ni

I′i

(
Θ̂′

iΘ̂i

Ni

)−1
Θ̂′

iê
′
i√

NiT
Ĵr0U∗(b) with U∗(b)

being an orthonormal matrix induced by Lemma 2.3, Θ̂i =
[
Γ̂i, Λ̂i

]
,

Ĉ = diag

√ N

N1
I′1

(
Θ̂′

1Θ̂1

N1

)−1

, ...,

√
N

NR
I′R

(
Θ̂′

RΘ̂R

NR

)−1
 ,

and

E∗(b)
t =


E∗(b)
1t

E∗(b)
2t
...

E∗(b)
Rt

 =


1√
N1

∑N1
j=1 θ̂1je

∗(b)
1jt

1√
N2

∑N2
j=1 θ̂2je

∗(b)
2jt

...
1√
NR

∑NR
j=1 θ̂Rje

∗(b)
Rjt

 .

Notice that H∗(b) + B∗(b) can be evaluated directly under the bootstrap world. By applying

Theorem 2.4, we have [
Ĝ∗(b) − Ĝ

(
H∗(b) + B∗(b)

)]
=

1

R
√
N

E∗(b)Ĉ′I

where E∗(b) =
[
E∗(b)
1 , . . . ,E∗(b)

T

]′
. Pre-multiplying the above equation by T−1Ĝ′ and using the fact

that T−1Ĝ′Ĝ = Ir0 , we obtain:(
Ĝ′Ĝ∗(b)

T

)
−
(
H∗(b) + B∗(b)

)
=

1

RT
√
N

Ĝ′E∗(b)Ĉ′I = op∗(1)

which implies that
(
H∗(b) + B∗(b)) can be consistently estimated by Ĥ∗(b) = T−1Ĝ′Ĝ∗(b). As a

result, we have

√
N

[(
Ĥ∗(b)′

)−1
Ĝ

∗(b)
t − Ĝt

]
=

1

R
I ′ĈE∗(b)

t + op∗(1)
d∗−→ N

(
0,

1

R2
I ′Ĉ

(
D(1)∗
t

)
Ĉ

′I
)

(B.2.14)

where D(1)∗
t is the (conditional) asymptotic covariance matrix of E∗(b)

t . Under the assumptions of

Theorem 2.4.1, it follows that

sup
x∈R

∣∣∣∣Pr∗(√N

[
ι′z

(
Ĥ∗(b)′

)−1
Ĝ

∗(b)
t − Ĝz

t

]
≤ x

)
− Pr

(√
N
[
Ĝz

t − ι′z (H+ B)′Gt

]
≤ x

)∣∣∣∣ p−→ 0,

suggesting that the confidence interval (B.2.13) has correct coverage rate for ι′z (H+ B)′Gt, namely

the z-th (rotated) global factor.

Algorithm 2: Bootstrap the global factor loadings and global component

Step 2.1 For each m, k and s, let e
∗(b)
mks = êmksε

∗(b)
mks where êmks = ymks − γ̂ ′

mkĜs − λ̂′
mkF̂ms and

ε
∗(b)
mks ∼ i.i.d. N(0, 1), m = 1, ..., R, k = 1, ..., Nm and s = 1, ..., T .

Step 2.2 Apply the dependent wild bootstrap by Shao (2010) and re-sample the local factors for
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block i as

F
z,∗(b)
is = F̂ z

is · ω
z,∗(b)
is for z = 1, . . . , ri, s = 1, . . . , T,

where ω
z,∗(b)
is is drawn from a zero mean normal distribution independent across i and z with co-

variance,

Cov
(
ω
z,∗(b)
ic , ω

z,∗(b)
id

)
= Bartlett

(
c− d

lzi

)
for c, d = 1, . . . , T

where lzi is a bandwidth parameter.2

Step 2.3 Re-sample the data for the i-th block as y
∗(b)
iks = γ̂ ′

ikĜs + λ̂′
ikF

∗(b)
is + e

∗(b)
iks , while y

∗(b)
mks =

γ̂ ′
mkĜs + λ̂′

mkF̂ms + e
∗(b)
mks for other blocks.

Step 2.4 Apply the procedure developed in Section 2.3 to the re-sampled data, and obtain the boot-

strap estimates of global factors and loadings, denoted Ĝ∗(b) and Γ̂
∗(b)
i = T−1Y

∗(b)′
i Ĝ∗(b). Construct

the estimated rotation matrix Ĥ∗(b) = T−1Ĝ′Ĝ∗(b).

Step 2.5 Repeat Steps 2.1–2.4 for B times. Construct the empirical distribution functions

D̂γz
ij
(τ) =

1

B

B∑
b=1

1

(√
T
[
ι′zĤ∗(b)γ̂

∗(b)
ij − γ̂zij

]
≤ τ

)
for z = 1, . . . , r0

and

D̂γ′
ijGt

(τ) =
1

B

B∑
b=1

1

(
CNT

(
γ̂
∗(b)′
ij Ĝ

∗(b)
t − γ̂ ′

ijĜt

)
≤ τ

)
.

Then, the 1− α CI for the z-th (rotated) global factor loading is given by[
γ̂ij −

1√
T
D̂−1

γz
ij

(α
2

)
, γ̂ij −

1√
T
D̂−1

γz
ij

(
1− α

2

)]
(B.2.15)

where D̂−1
γz
ij
(α/2) and D̂−1

γz
ij
(1− α/2) are the inverse functions of D̂γz

ij
evaluated at α/2 and 1− α/2,

respectively. The 1− α CI for the global component is given by[
γ̂ ′
ijĜt −

1

CNT
D̂−1

γ′
ijGt

(α
2

)
, γ̂ ′

ijĜt −
1

CNT
D̂−1

γ′
ijGt

(
1− α

2

)]
(B.2.16)

where D̂−1
γ′
ijGt

(α/2) and D̂−1
γ′
ijGt

(1 − α/2) are the inverse function of D̂γ′
ijGt

evaluated at α/2 and

1− α/2.

For each b = 1, . . . , B, by Theorem 2.4.2 we have:

√
T
[(

H∗(b) + B∗(b)
)
γ̂
∗(b)
ij − γ̂ij

]
=

1√
T

T∑
t=1

Ĝt

(
λ̂′
ijF

∗(b)
it + e

∗(b)
ijt

)
+ op∗(1)

p∗−→ N
(
0,D(2)∗

ij

)
.

2The bandwidth parameter can be chosen following the data dependent approach developed by Andrews (1991).
In simulation, we use the R package “cointReg” to perform the bandwidth selection. See https://cran.rstudio.c

om/web/packages/cointReg/index.html.

https://cran.rstudio.com/web/packages/cointReg/index.html
https://cran.rstudio.com/web/packages/cointReg/index.html
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In Step 2.2 we follow the dependent wild bootstrap by Shao (2010), which accounts for times series

dependence of the local factors. This ensures that the covariance matrix of
(
H∗(b) + B∗(b)) γ̂∗(b)

ij

matches that of γ̂ij , i.e. D
(2)∗
ij

p∗→ H′D(2)
ij H. If we do not resample F̂i, then it is easily seen that

1√
T

T∑
t=1

Ĝt

(
λ̂′
ijF̂it + e

∗(b)
ijt

)
+ op∗(1) =

1√
T

T∑
t=1

Ĝte
∗(b)
ijt + op∗(1)

d∗↛ N
(
0,D(2)∗

ij

)
.

because Ĝ and F̂i are orthogonal. Consequently, the covariance matrix will be incorrect.

Under the assumptions of Theorem 2.4, it follows that

sup
x∈R

∣∣∣Pr∗ (√T
[
ι′zĤ∗(b)γ̂

∗(b)
ij − γ̂zij

]
≤ x

)
− Pr

(√
T
[
γ̂z
ij − ι′z (H+ B)−1 γij

]
≤ x

)∣∣∣ p−→ 0

and

sup
x∈R

∣∣∣Pr∗ (CNT

[
γ̂
∗(b)′
ij Ĝ

∗(b)
t − γ̂ ′

ijĜt

]
≤ x

)
− Pr

(
CNT

[
γ̂ ′
ijĜt − γ ′

ijGt

]
≤ x

)∣∣∣ p−→ 0

suggesting that the confidence intervals (B.2.15) and (B.2.16) have correct coverage rates for the

z-th (rotated) global factor loading ι′z (H+ B)−1 γij and γ ′
ijGt, respectively.

Algorithm 3: Bootstrap the local factors and local components

Step 3.1 For each m, k and s, let e
∗(b)
mks = êmksε

∗(b)
mks where êmks = ymks − γ̂ ′

mkĜs − λ̂′
mkF̂ms and

ε
∗(b)
mks ∼ i.i.d. N(0, 1), m = 1, ..., R, k = 1, ..., Nm and s = 1, ..., T .

Step 3.2 Apply the dependent wild bootstrap and re-sample the global factors as

G̃z,∗(b)
s = Ĝz

s · ωz,∗(b)
s for z = 1, . . . , r0, s = 1, . . . , T,

where ω
z,∗(b)
s is drawn from a zero mean normal distribution independent across z with covariance

Cov
(
ωz,∗(b)
c , ω

z,∗(b)
d

)
= Bartlett

(
c− d

lz

)
for c, d = 1, . . . , T

where lz is a bandwidth parameter.

Step 3.3 Re-sample the data as y
∗(b)
mks = γ̂ ′

mkG̃
∗(b)
s +λ̂′

mkF̂ms+e
∗(b)
mks where G̃

∗(b)
s = (G̃

1,∗(b)
s , . . . , G̃

r0,∗(b)
s )′.

Step 3.4 Apply the procedure in Section 2.3 to the re-sampled data, and obtain the bootstrap es-

timates, denoted Ĝ∗(b), Γ̂
∗(b)
i = T−1Y

∗(b)′
i Ĝ∗(b), F̂

∗(b)
i , and Λ̂

∗(b)
i = T−1Ỹ

∗(b)′
i F̂

∗(b)
i where Ỹ

∗(b)
i =

Y
∗(b)
i −Ĝ∗(b)Γ̂

∗(b)
i . Following Gonçalves & Perron (2014) we construct the estimated rotation matrix

H̃
∗(b)
i = diag(±1) where the signs are determined by the signs of the diagonal elements of F̂

∗(b)′
i F̂i.
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Step 3.5 Repeat Steps 3.1–3.4 for B times. Construct the empirical distribution functions as

D̂F z
it
(τ) =

1

B

B∑
b=1

1

(√
Ni

[
ι′i,z

(
H̃

∗(b)′
i

)−1
F̂
∗(b)
it − F̂ z

it

]
≤ τ

)
for z = 1, . . . , ri

and

D̂λ′
ijFit

(τ) =
1

B

B∑
b=1

1

(
CNiT

(
λ̂
∗(b)′
ij F̂

∗(b)
it − λ̂′

ijF̂it

)
≤ τ

)
.

The 1− α CI for the z-th (rotated) local factor is given by[
F̂ z
it −

1√
Ni

D̂−1
F z
it

(α
2

)
, F̂ z

it −
1√
Ni

D̂−1
F z
it

(
1− α

2

)]
(B.2.17)

where D̂−1
F z
it
(α/2) and D̂−1

F z
it
(1− α/2) are the inverse function of D̂Fit evaluated at α/2 and 1− α/2,

respectively. The 1− α CI for the local component is given by[
λ̂′
ijF̂it −

1

CNiT
D̂−1

λ′
ijFit

(α
2

)
, λ̂′

ijF̂it −
1

CNiT
D̂−1

λ′
ijFit

(
1− α

2

)]
(B.2.18)

where D̂−1
λ′
ijFit

(α/2) and D̂−1
λ′
ijFit

(1 − α/2) are the inverse function of D̂λ′
ijFit

evaluated at α/2 and

1− α/2.

Using Theorem 2.5.1, we have

√
Ni

[(
Ĥ

∗(b)′
i

)−1
F̂
∗(b)
it − F̂it

]
d∗−→ N

(
0,D

(4)∗
ii,t

)
(B.2.19)

where

D(4)∗
ii,t = plim

N1,...,NR,T→∞

1

Ni

Ni∑
j=1

Ni∑
k=1

λ̂ijλ̂
′
ik

(
e
∗(b)
ijt + Ŝ

∗(b)
ijt

)(
e
∗(b)
ikt + Ŝ

∗(b)
ikt

)
with Ŝ

∗(b)
ikt being the (t, k) element of Ŝ

∗(b)
i = ĜΓ̂′

i − Ĝ∗(b)Γ̂
∗(b)′
i . From Lemma B.1.8 and the

normalisation T−1F̂′
iF̂i = Iri , it can be easily seen that Ĥ

∗(b)
i = diag(±1) + op∗(1). Therefore, we

can replace Ĥ
∗(b)
i by H̃

∗(b)
i which is a diagonal matrix with all elements equal to ±1 and the signs

are determined by the signs of the diagonal elements of F̂
∗(b)′
i F̂i.

Under the assumptions of Theorem 2.5, it follows that

sup
x∈R

∣∣∣∣Pr∗(√Ni

[
ι′i,z

(
H̃

∗(b)
i

)−1
F̂
∗(b)
it − F̂ z

it

]
≤ x

)
− Pr

(√
Ni

[
F̂ z
it − ι′i,zĤ

′
i Fit

]
≤ x

)∣∣∣∣ p−→ 0

and

sup
x∈R

∣∣∣Pr∗ (CNiT

[
λ̂
∗(b)′
ij F̂

∗(b)
it − λ̂′

ijF̂it

]
≤ x

)
− Pr

(
CNiT

[
λ̂′
ijF̂it − λ′

ijFit

]
≤ x

)∣∣∣ p−→ 0
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suggesting that the confidence intervals (B.2.17) and (B.2.18) have correct coverage rates for the

z-th (rotated) local factor, namely ι′i,zĤ
′
i Fit, and the local component λ′

ijFit, for block i.

A simulation is conducted to examine the validity of the hybrid bootstrap procedure. We

use the same DGP as in Section 2.5. We fix R = 3, (r0, ri) = (2, 2), (ϕG, ϕF ) = (0.5, 0.5), and

(β, ϕe, κ) = (0, 0, 1). The sample size varies as Ni ∈ {20, 50, 100, 200, 300} with N1 = · · · = NR

and T ∈ {50, 100, 200, 300}. We focus on the CIs for the first element of the global and local

factors as well as their loadings since the corresponding second elements have the same statistical

properties. We also investigate the CIs for the global and local components. The bootstrap CIs for

(H+B)′Gt, (H+B)−1 γij , γ
′
ijGt, Ĥ ′

i Fit, and λ′
ijFit are generated by the by (B.2.13), (B.2.15),

(B.2.16), (B.2.17), and (B.2.18) respectively. The CI for Ĥ −1
i λij is constructed using the estimated

covariance matrix. For comparison, the CIs generated by theoretical (infeasible) variances of are also

reported. All the CIs are We set the number of bootstrap repetition B = 599 and the significance

level α = 0.05 throughout the study.

Each entry of Table B.1 is the coverage rate calculated as the ratios of CIs that contain the true

values over 1000 repetitions. The top panel of Table B.1 shows that the infeasible CIs for the global

factors and loadings have coverage rates around 0.95 whilst the coverage rates of the bootstrapped

CIs tend to the nominal value as either Ni or T increases. Moreover, the infeasible CI for the global

component is always larger than 0.95, whereas the bootstrap CI approach to 0.95 as the sample size

increases. The bottom panel of Table B.1 presents the results for the local factor, factor loading,

and local component. On one hand, the coverage rates of infeasible and bootstrap CIs for the

local factors converge to the nominal value as sample size becomes large. On the other hand, the

coverage rates of infeasible and asymptotic CIs for the local factor loadings exhibit a slower speed

of convergence, but they tend to 0.95 quickly unless T is small. Additionally, the infeasible CI for

the local component converges very slowly, whilst the bootstrap counterpart tends to 0.95 for large

samples. To conclude, the above results confirm the validity of our hybrid bootstrap procedure.
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Table B.1: Coverage rates for the CIs with R = 3, (r0, ri) = (2, 2),
(ϕG, ϕF ) = (0.5, 0.5), and (β, ϕe, κ) = (0, 0, 1)

Ĝt γ̂ij γ̂′
ijĜt

Ni T Infeasible Bootstrap Infeasible Bootstrap Infeasible Bootstrap

20 50 0.942 0.820 0.962 0.909 0.960 0.905

50 50 0.950 0.914 0.945 0.884 0.968 0.909

100 50 0.934 0.911 0.956 0.880 0.971 0.917

200 50 0.927 0.914 0.955 0.895 0.981 0.901

300 50 0.938 0.918 0.963 0.897 0.975 0.909

20 100 0.971 0.917 0.928 0.900 0.962 0.908

50 100 0.939 0.918 0.953 0.924 0.983 0.921

100 100 0.951 0.936 0.939 0.906 0.984 0.936

200 100 0.938 0.928 0.942 0.914 0.983 0.925

300 100 0.949 0.945 0.943 0.902 0.984 0.933

20 200 0.955 0.912 0.927 0.907 0.973 0.922

50 200 0.946 0.916 0.940 0.927 0.971 0.946

100 200 0.947 0.930 0.937 0.923 0.981 0.940

200 200 0.953 0.942 0.944 0.933 0.986 0.946

300 200 0.953 0.952 0.955 0.932 0.982 0.931

20 300 0.959 0.902 0.934 0.928 0.961 0.911

50 300 0.944 0.918 0.932 0.923 0.976 0.938

100 300 0.953 0.941 0.957 0.941 0.974 0.936

200 300 0.945 0.943 0.948 0.938 0.980 0.931

300 300 0.953 0.948 0.941 0.925 0.983 0.935

F̂it λ̂ij λ̂′
ijF̂it

Ni T Infeasible Bootstrap Infeasible Asymptotic Infeasible Bootstrap

20 50 0.910 0.893 0.839 0.745 0.895 0.895

50 50 0.928 0.924 0.920 0.865 0.904 0.908

100 50 0.930 0.920 0.954 0.889 0.880 0.909

200 50 0.926 0.924 0.958 0.890 0.858 0.908

300 50 0.918 0.905 0.952 0.893 0.834 0.893

20 100 0.938 0.886 0.786 0.751 0.877 0.903

50 100 0.926 0.918 0.904 0.853 0.901 0.927

100 100 0.944 0.929 0.945 0.901 0.875 0.916

200 100 0.949 0.944 0.945 0.902 0.843 0.916

300 100 0.953 0.945 0.962 0.914 0.840 0.922

20 200 0.930 0.873 0.780 0.762 0.867 0.902

50 200 0.945 0.929 0.897 0.881 0.871 0.924

100 200 0.947 0.930 0.921 0.906 0.890 0.929

200 200 0.954 0.934 0.949 0.924 0.877 0.937

300 200 0.948 0.928 0.953 0.931 0.882 0.935

20 300 0.933 0.868 0.721 0.693 0.837 0.892

50 300 0.947 0.919 0.879 0.865 0.880 0.932

100 300 0.944 0.932 0.929 0.917 0.881 0.940

200 300 0.969 0.941 0.938 0.924 0.887 0.933

300 300 0.950 0.931 0.949 0.934 0.872 0.946

Each entry shows the coverage rate calculated as the ratios of CIs that contains the true

factors or loadings over 1000 repetitions. We set the bootstrap repetition as B = 599. The

infeasible CIs are generated by the theoretical asymptotic distributions in Theorem 2.4 or

2.5, and the bootstrap CIs for (H+B)′ Gt, (H+B)−1 γij , γ
′
ijGt, Ĥ ′

i Fit, and λ′
ijFit are

generated by the by (B.2.13), (B.2.15), (B.2.16), (B.2.17), and (B.2.18) respectively. The CI

forĤ −1
i λij is generated by the estimated covariance matrix. We report the CIs evaluated at

t = T/2 and i = 1, j = Ni/2 respectively. r0 and ri are the true number of global factors and

true number of local factors in group i. We set r1 = · · · = rR and N1 = · · · = NR where Ni is

the number of individuals in block i. T is the number of time periods. ϕG and ϕF are the AR

coefficients for the global and local factors. β, ϕe and κ control the cross-section correlation,

serial correlation and noise-to-signal ratio.
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Appendix to Chapter 3

C.1 Lemmas and Proofs

In Section C.1.1, we establish some useful auxiliary lemmas. Based on these lemmas, Section C.1.2

presents the proofs of the main theoretical results in Section 3.3. Finally, the proofs of the auxiliary

lemmas are provided in Section C.1.3. We use the following facts throughout: T−1 ∥Xij∥2 =

T−1
∑T

t=1 ∥Xijt∥2 = Op(1) due to Assumption 3.A. Therefore, (NiT )
−1 ∥Xij∥2 = Op(1). We also

have T−1/2 ∥Ki∥ = Op(1) by Assumption 3.B.1 and T−1/2
∥∥∥K̂i

∥∥∥ = Op(1) due to the normalisation

T−1K̂′
iK̂i = Ir0+ri .

C.1.1 Auxiliary lemmas

Lemma C.1.1. Under Assumptions 3.A–3.E, we have:

sup
K1,...,KR∈KR

∥∥∥∥∥∥ 1

NT

R∑
i=1

Ni∑
j=1

X′
ijMKieij

∥∥∥∥∥∥ = op(1)

sup
K1,...,KR∈KR

∥∥∥∥∥∥ 1

NT

R∑
i=1

Ni∑
j=1

θ′
ijK

′
iMKieij

∥∥∥∥∥∥ = op(1)

sup
K1,...,KR∈KR

∥∥∥∥∥∥ 1

NT

R∑
i=1

Ni∑
j=1

e′ijPKieij

∥∥∥∥∥∥ = op(1)

where K =
{
K|T−1K′K = Ir0+ri

}
.

Lemma C.1.2. Let Ĥi = (Θ′
iΘi/Ni)

(
K′

iK̂i/T
)
V̂−1

i . Under Assumptions 3.A–3.E, for all i, Ĥi

is an (r0 + ri) × (r0 + ri) invertible matrix, V̂i
p→ Vi where Vi is a (r0 + ri) × (r0 + ri) diagonal

matrix consisting of the eigenvalues of ΣKiΣΘi which are defined in Assumption 3.B, and

1√
T

∥∥∥K̂i −KiĤi

∥∥∥ = Op

(∥∥∥β̂ − β
∥∥∥)+Op

(
1

CNiT

)
.
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Lemma C.1.3. Under Assumptions 3.A–3.E, for all i and j, we have

1. T−1K′
i

(
K̂i −KiĤi

)
= Op

(∥∥∥β̂ − β
∥∥∥)+Op

(
C−2
NiT

)
.

2. T−1K̂′
i

(
K̂i −KiĤi

)
= Op

(∥∥∥β̂ − β
∥∥∥)+Op

(
C−2
NiT

)
.

3. T−1X′
ij

(
K̂i −KiĤi

)
= Op

(∥∥∥β̂ − β
∥∥∥)+Op

(
C−2
NiT

)
.

4. (NiT )
−1∑Ni

j=1X
′
ijMK̂i

(
K̂i −KiĤi

)
= Op

(∥∥∥β̂ − β
∥∥∥)+Op

(
C−2
NiT

)
.

5. T−1e′ij

(
K̂i −KiĤi

)
= Op

(∥∥∥β̂ − β
∥∥∥)+Op

(
C−2
NiT

)
.

6.
(√

NiT
)−1∑Ni

j=1 e
′
ij

(
K̂i −KiĤi

)
= T−1/2Op

(∥∥∥β̂ − β
∥∥∥)+N

−1/2
i Op

(∥∥∥β̂ − β
∥∥∥)+Op

(
N

−1/2
i

)
+Op

(
C−2
NiT

)
.

7. (NiT )
−1∑Ni

j=1 θ
′
ij

(
K̂iĤ

−1
i −Ki

)′
eij =

(
NiT

−1
)
Op

(∥∥∥β̂ − β
∥∥∥)+Op

(
N−1

i

)
+Op

(
C−2
NiT

)
.

8. (NiT )
−1∑Ni

j=1

(
X′

ijKi/T
)
(K′

iKi/T )
(
K̂iĤ

−1
i −Ki

)′
eij = N−2

i

∑Ni
j=1

∑Ni
K=1

(
X′

ijKi/T
)
×

(K′
iKi/T ) (Θ

′
iΘi/Ni)

−1 θij

(
T−1

∑T
t=1 eijteikt

)
+
(
NiT

−1
)
Op

(∥∥∥β̂ − β
∥∥∥)+N

−1/2
i Op

(
C−2
NiT

)
.

9. (NiT )
−2∑Ni

j=1

∑Ni
k=1X

′
ijMK̂i

(eike
′
ik −Ωik) K̂iΠiθij = Op

(
T−1N−1

i

)
+ (NiT )

−1/2 ×[
Op

(
β̂ − β

)
+Op

(
C−1
NiT

)]
+N

−1/2
i Op

(
∥β̂ − β∥2

)
+N

−1/2
i Op

(
C−2
NiT

)
where Ωik = E (eike

′
ik)

and Πi =
(
K′

iK̂i/T
)−1

(Θ′
iΘi/Ni)

−1.

10. ĤiĤ
′
i = (K′

iKi/T )
−1 +Op

(
∥β̂ − β∥

)
+Op

(
C−2
NiT

)
.

11.
∥∥∥PK̂i

−PKi

∥∥∥2 = Op

(
∥β̂ − β∥

)
+Op

(
C−2
NiT

)
.

12. N−1
i

∥∥∥Θ̂′
i − Ĥ−1

i Θ′
i

∥∥∥2 = Op

(∥∥∥β̂ − β
∥∥∥2)+Op

(
C−2
NiT

)
.

13. N−1
i

(
Θ̂′

i − Ĥ−1
i Θ′

i

)
Θi = Op

(∥∥∥β̂ − β
∥∥∥)+Op

(
C−2
NiT

)
.

14. Θ̂′
iΘ̂i/Ni − Ĥ−1

i (Θ′
iΘi/Ni) Ĥ

′−1
i = Op

(∥∥∥β̂ − β
∥∥∥)+Op

(
C−2
NiT

)
.

15.
(
Θ̂′

iΘ̂i/Ni

)−1
− Ĥi (Θ

′
iΘi/Ni)

−1 Ĥ′
i = Op

(∥∥∥β̂ − β
∥∥∥)+Op

(
C−2
NiT

)
.

16. N−1
i

∑Ni
j=1

∥∥∥θ̂ij − Ĥ−1
i θij

∥∥∥ = Op

(∥∥∥β̂ − β
∥∥∥)+Op

(
C−1
NiT

)
.

17. N−1
i

∑Ni
j=1

∥∥T−1/2Xij

∥∥∥∥∥θ̂ij − Ĥ−1
i θij

∥∥∥ = Op

(∥∥∥β̂ − β
∥∥∥)+Op

(
C−1
NiT

)
.

Lemma C.1.4. Under Assumptions 3.A–3.E, if T/N2
i → 0, then

√
NT

(
β̂ − β

)
= D

(
K̂1, . . . , K̂R

)−1 1√
NT

R∑
i=1

Ni∑
j=1

(
X′

ijMK̂i
− 1

Ni

Ni∑
k=1

ai,kjX
′
ikMK̂i

)
eij
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+

R∑
i=1

Ni√
NT

ζi + op(1)

where ai,jk = θ′
ij (Θ

′
iΘi/Ni)θik and

ζi = −D
(
K̂1, . . . , K̂R

)−1 1

NiT

R∑
j=1

X′
ijMK̂i

[
1

Ni

Ni∑
k=1

E
(
eike

′
ik

)]
K̂iΠiθij = Op(1)

with Πi =
(
K′

iK̂i/T
)−1

(Θ′
iΘi/Ni)

−1.

Lemma C.1.5. Under Assumptions 3.A-3.E, we have

1√
NT

R∑
i=1

Ni∑
j=1

(
X′

ijMK̂i
− 1

Ni

Ni∑
k=1

ai,jkX
′
ikMK̂i

)
eij

=
1√
NT

R∑
i=1

Ni∑
j=1

(
X′

ijMKi −
1

Ni

Ni∑
k=1

ai,jkX
′
ikMKi

)
eij

+

R∑
i=1

−√Ni

N

√
NiT

Ni

1

Ni

Ni∑
j=1

Ni∑
k=1

(Xij −Wij)
′Ki

T
Πiθik

(
1

T

T∑
t=1

eijteikt

)

+Op

(∥∥∥β̂ − β
∥∥∥)+√

TOp

(
1

C2
NiT

)
+

√
Ni

N

√
TOp

(∥∥∥β̂ − β
∥∥∥2)] (C.1.1)

where Wij = N−1
i

∑Ni
k=1 ai,jkXik and therefore,

√
NT

(
β̂ − β

)
in Lemma C.1.4 can be expressed as

√
NT

(
β̂ − β

)
= D

(
K̂1, . . . , K̂R

)−1 1√
NT

R∑
i=1

Ni∑
j=1

(
X′

ijMKi −
1

Ni

Ni∑
k=1

ai,kjX
′
ikMKi

)
eij

+
R∑
i=1

√
Ni

N

√
Ni

T
ζi +

R∑
i=1

√
Ni

N

√
T

Ni
ξi + op(1) (C.1.2)

where

ξi = −D
(
K̂1, . . . , K̂R

)−1 1

Ni

Ni∑
j=1

Ni∑
k=1

(Xij −Wij)
′Ki

T
Πiθik

(
1

T

T∑
t=1

eijteikt

)
= Op(1).

Lemma C.1.6. Under Assumptions 3.A–3.E, we have

1. D
(
K̂1, . . . , K̂R

)−1
−D (K1, . . . ,KR)

−1 = op(1).

2.
√
T/N

[
D
(
K̂1, . . . , K̂R

)−1
−D (K1, . . . ,KR)

−1

]
= op(1) if T/N

2 → 0.

3.
√
N/T

[
D
(
K̂1, . . . , K̂R

)−1
−D (K1, . . . ,KR)

−1

]
= op(1) if N/T 2 → 0.
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4. For each i, it holds that
√

T/Ni (ξi −Bi) = op(1) if T/N
2
i → 0 where

Bi = −D (K1, . . . ,KR)
−1 1

Ni

Ni∑
j=1

Ni∑
k=1

(Xij −Wij)
′Ki

T
Piθik

(
1

T

T∑
t=1

σi,(jk),(tt)

)
.

5. For each i, it holds that
√
Ni/T (ζi −Ci) = op(1) if Ni/T

2 where

Ci = −D (K1, . . . ,KR)
−1 1

NiT

Ni∑
j=1

X′
ijMKi

[
1

Ni

Ni∑
k=1

E
(
eike

′
ik

)]
KiPiθij .

Lemma C.1.7. Under Assumptions 3.A-3.E and E(emjtehkt) = σ(mh),(jk) for all m, h, j, k, and

t, if T/N2 → 0 and N/T 2 → 0, then for each block i we have:

1.
√
T/Ni

(
B̂i −Bi

)
= op(1) where

B̂i = D
(
K̂1, . . . , K̂R

)−1 1

Ni

Ni∑
j=1

Ni∑
k=1


(
Xij − Ŵij

)′
K̂i

T

(Θ̂′
iΘ̂i

Ni

)−1

θ̂ikσ̂i,(jk)

and σ̂i,(jk) = T−1ê′ij êik with êij = Yij −Xijβ̂ − K̂iθ̂ij and êik = Yik −Xikβ̂ − K̂iθ̂ik.

2.
√
Ni/T

(
Ĉi −Ci

)
= op(1) where

Ĉi = −D
(
K̂1, . . . , K̂R

)−1 1

NiT

Ni∑
j=1

X′
ijMK̂i

ŜiK̂i

(
Θ̂′

iΘ̂i

Ni

)−1

θ̂ij

with Ŝi being the estimator of Si whose (t, s)-th element is Ŝi,(ts) = N−1
i

∑Ni
k=1 êiktêiks.

Lemma C.1.8. Suppose A and A+E are n×n symmetric matrices and that Q = [Q1,Q2], where

Q1 has size n × r and Q2 has size n × (n − r), is an orthogonal matrix such that span (Q1) is an

invariant subspace for A. that is, A × span (Q1) ⊂ span (A). Partition the matrices Q′AQ and

Q′EQ as follows:

Q′AQ =

[
D1 0

0 D2

]
and Q′EQ =

[
E11 E′

12

E12 E22

]
.

If sep (D1,D2) = minλ∈λ(D1),µ∈λ(D2) |λ− µ| > 0, where λ (M) denotes the set of eigenvalues of the

matrix M, and ∥E∥2 ≤ sep (D1,D2) /5 where ∥.∥2 is the spectral norm of a matrix, then there exists

a matrix P ∈ R(n−r)×r with

∥P∥2 ≤
4

sep (D1,D2)
∥E12∥2

such that the columns of Q̂1 = (Q1 +Q2P) (I+P′P)−1/2 define an orthonormal basis for a subspace

that is invariant for A+E.
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Lemma C.1.9. Let
(
β̃, K̃1, . . . , K̃R

)
be the estimators from minimising (3.3.8). For each i, let

vi,k be the k-th largest eigenvalue of (K′
iKi/T ) (Θ

′
iΘi/Ni) and ṽi,k be the k-th largest eigenvalue of

Σ̃i defined in (3.3.11). Under Assumption 3.A-3.D, as N1, . . . , NR, T → ∞, we have

1.
∥∥∥β̃ − β

∥∥∥ =
∑R

i=1
Ni
N Op

(
C

−1/2
NiT

)
.

2. For each i, |ṽi,k − vi,k| = Op

(∥∥∥β̃ − β
∥∥∥)+ C−1

NiT
for k = 1, . . . , di.

3. For each i, |ṽi,k| = Op

(∥∥∥β̃ − β
∥∥∥2)+ C−2

NiT
for k = di + 1, . . . , dmax.

C.1.2 Proofs of the main results

Proof of Lemma 3.1.

Consider the difference of the objective functions:

1

NT
Q (b,K1, . . . ,KR)−

1

NT
Q (β,K1, . . . ,KR) =

1

NT

R∑
i=1

Ni∑
j=1

(β − b)′X′
ijMKiXij (β − b)

+
1

NT

R∑
i=1

Ni∑
j=1

θ′
ijK

′
iMKiKiθij +

1

NT

R∑
i=1

Ni∑
j=1

e′ijMKieij +
2

NT

R∑
i=1

Ni∑
j=1

(β − b)′X′
ijMKiKiθij

+
2

NT

R∑
i=1

Ni∑
j=1

(β − b)′X′
ijMKieij +

2

NT

R∑
i=1

Ni∑
j=1

θ′
ijK

′
iMKieij −

1

NT

R∑
i=1

Ni∑
j=1

e′ijMKieij

By Lemma C.1.1, the fifth and sixth terms are op(1). We also have

1

NT

R∑
i=1

Ni∑
j=1

e′ijMKieij −
1

NT

R∑
i=1

Ni∑
j=1

e′ijMKieij =
1

NT

R∑
i=1

Ni∑
j=1

e′ijeij −
1

NT

R∑
i=1

Ni∑
j=1

e′ijPKieij

− 1

NT

R∑
i=1

Ni∑
j=1

e′ijeij+
1

NT

R∑
i=1

Ni∑
j=1

e′ijPKieij =
1

NT

R∑
i=1

Ni∑
j=1

e′ijPKieij+
1

NT

R∑
i=1

Ni∑
j=1

e′ijPKieij = op(1)

by Lemma C.1.1. We thus obtain

1

NT
Q (b,K1, . . . ,KR)−

1

NT
Q (β,K1, . . . ,KR) =

1

NT

R∑
i=1

Ni∑
j=1

(β − b)′X′
ijMKiXij (β − b)

+
1

NT

R∑
i=1

Ni∑
j=1

θ′
ijK

′
iMKiKiθij +

2

NT

R∑
i=1

Ni∑
j=1

(β − b)′X′
ijMKiKiθij + op(1)

Since the terms on the RHS are all scalars, we can write them as

1

NT
Q (b,K1, . . . ,KR)−

1

NT
Q (β,K1, . . . ,KR)

= (β − b)′
(

1

NT

R∑
i=1

Ai,1

)
(β − b) +

1

NT

R∑
i=1

η′
iAi,2ηi + 2 (β − b)′

(
1

NT

R∑
i=1

Ai,3

)
ηi + op(1).
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where ηi = vec {MKiKi}, Ai,1 =
∑Ni

j=1X
′
ijMKiXij , Ai,2 = (Θ′

iΘi) ⊗ IT , and Ai,3 =
∑Ni

j=1 θ
′
ij ⊗

X′
ijMKi . Completing the squares, we obtain

1

NT
Q (b,K1, . . . ,KR)−

1

NT
Q (β,K1, . . . ,KR)

= (β − b)′
[

1

NT

R∑
i=1

(
Ai,1 −Ai,3A−1

i,2A
′
i,3

)]
(β − b)

+
1

NT

R∑
i=1

[
η′
i + (β − b)′Ai,3A−1

i,2

]
Ai,2

[
ηi +A−1

i,2A
′
i,3 (β − b)

]
+ op(1).

Let

Q̃ (b,K1, . . . ,KR) = (β − b)′
[

R∑
i=1

(
Ai,1 −Ai,3A−1

i,2A
′
i,3

)]
(β − b)

+
R∑
i=1

[
η′
i + (β − b)′Ai,3A−1

i,2

]
Ai,2

[
ηi +A−1

i,2A
′
i,3 (β − b)

]
.

Using the fact that

D (K1, . . . ,KR) =
1

NT

R∑
i=1

(
Ai,1 −Ai,3A−1

i,2A
′
i,3

)
is positive definite by Assumption 3.A and Ai,2 is positive definite by Assumption 3.B.2, we have

Q̃ (b,K1, . . . ,KR) ≥ 0

and it attains its minimum uniquely at (β,K1H1, . . . ,KRHR) where Hi is any invertible matrix.

Since

1

NT
Q (b,K1, . . . ,KR)−

1

NT
Q (β,K1, . . . ,KR) =

1

NT
Q̃ (b,K1, . . . ,KR) + op(1),

and
(
β̂, K̂1, . . . , K̂R

)
is the minimiser of 1

NT Q (b,K1, . . . ,KR), it must hold that

1

NT
Q
(
β̂, K̂1, . . . , K̂R

)
− 1

NT
Q (β,K1, . . . ,KR) =

1

NT
Q̃
(
β̂, K̂1, . . . , K̂R

)
+ op(1) ≤ 0

Let η̂i = M
K̂i
K̂i. If either

∥∥∥β̂ − β
∥∥∥ ≥ M > 0 or

∑R
i=1 η̂

′
iAi,2η̂i ≥ M > 0 holds, we will have

(NT )−1Q̃
(
β̂, K̂1, . . . , K̂R

)
= Op(1), which leads to the RHS of the above equation larger than

zero, resulting in a contradiction. Therefore, we have

∥∥∥β̂ − β
∥∥∥ = op(1) and

R∑
i=1

Ni

N
tr

{
K′

iMK̂i
Ki

T

Θ′
iΘi

Ni

}
= op(1).
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Since N−1
i Θ′

iΘi is positive definite for each i, it follows that

∥∥∥PK̂i
−PKi

∥∥∥2 = tr

{(
P

K̂i
−PKi

)2}
= 2 tr

{
Ir0+ri −

K̂′
iPKiK̂i

T

}
= op(1).

Finally, we have

K′
iMK̂i

Ki

T
=

K′
iKi

T
− K′

iK̂i

T

(
K′

iK̂i

T

)−1

= op(1) for each i.

Due to Assumption 3.B.1, T−1K′
iKi is invertible, so T−1K′

iK̂i is also invertible.

Q.E.D

Proof of Lemma 3.2. The proof follows from (C.1.2) in Lamma C.1.5. The first term is Op(1)

implied by Lemma C.1.1. The second and third terms are Op(1) because Ni/N , Ni/T , and T/Ni

are O(1) by our assumption for each i.

Q.E.D

Proof of Theorem 3.1. Combining Lemma C.1.5, Lemma C.1.6, and Assumption 3.F, the asymp-

totic normality of
√
NT

(
β̂ − β

)
holds.

Q.E.D

Proof of Theorem 3.2. The asymptotic distribution can be achieved by combining (C.1.2),

Lemma C.1.7, and Assumption 3.F. The consistency of D̂0 and D̂bc follow from Proposition 2 in

Bai (2009) with minor changes so the details are omitted.

Q.E.D

Proof of Proposition 3.1.

The result for k = 1, . . . , dmax − 1 follows from Lemma C.1.9. We note that, using Lemma 1, the

sum of the eigenvalues is

C2
NiT∑
ℓ=1

ṽi,ℓ = Op(1) +

C2
NiT∑

k=di+1

ṽi,k = Op(1) +

C2
NiT∑

k=di+1

R∑
i=1

(
Ni

N

)2

Op

(
1

CNiT

)
.

Recall that ṽi,0 =
∑CNiT

ℓ=1 ṽi,ℓ/ log
(
C2
NiT

)
. We consider two cases, di > 0 and di = 0. When di > 0,

ṽi,0/ṽi,1 = op(1), which does not affect the selection of di. When di = 0, we have

ṽi,0
ṽi,1

=

∑C2
NiT

k=1

∑R
i=1 (Ni/N)2Op

(
C−1
NiT

)
log
(
C2
NiT

)∑R
i=1 (Ni/N)2Op

(
C−1
NiT

) =
C2
NiT

∑R
i=1 (Ni/N)2Op

(
C−1
NiT

)
log
(
C2
NiT

)∑R
i=1 (Ni/N)2Op

(
C−1
NiT

) p−→ ∞,

which completes the proof.

Q.E.D

Proof of Proposition 3.2 and 3.3.
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From Lemma 3.2 and C.1.2, we deduce that T−1/2
∥∥∥K̂i −KiĤi

∥∥∥ = Op

(
C−1
NiT

)
since the slope

parameters are
√
NT -consistent. Therefore, Lemma 1 of Lin & Shin (2022) is satisfied and the

results follow from their Theorem 1–2 without any changes.

Q.E.D

C.1.3 Proofs of the auxiliary lemmas

Proof of Lemma C.1.1.

We show the first equation of the above lemma. Using MKi = IT − T−1KiK′
i, the first equation

becomes

sup
K1,...,KR∈KR

∥∥∥∥∥∥ 1

NT

R∑
i=1

Ni∑
j=1

X′
ijMKieij

∥∥∥∥∥∥ ≤

∥∥∥∥∥∥ 1

NT

R∑
i=1

Ni∑
j=1

X′
ijeij

∥∥∥∥∥∥+ sup
K1,...,KR∈KR

∥∥∥∥∥∥ 1

N

R∑
i=1

Ni∑
j=1

X′
ijKi

T

K′
ieij
T

∥∥∥∥∥∥
We consider the first term of the RHS of the above equation

∥∥∥∥∥∥ 1

NT

R∑
i=1

Ni∑
j=1

X′
ijeij

∥∥∥∥∥∥
2

=

∥∥∥∥∥∥
R∑
i=1

Ni

N

1

NiT

Ni∑
j=1

T∑
t=1

Xijteijt

∥∥∥∥∥∥
2

≤
R∑
i=1

Ni

N

∥∥∥∥∥∥ 1

NiT

Ni∑
j=1

T∑
t=1

Xijteijt

∥∥∥∥∥∥
2

=
R∑
i=1

Ni

N

 1

N2
i T

2

Ni∑
j=1

Ni∑
k=1

T∑
t=1

T∑
s=1

X′
ijtXikseijteiks


where the inequality follows from the Cauchy-Schwarz inequality. Taking the expectation, we obtain

E


R∑
i=1

Ni

N

 1

N2
i T

2

Ni∑
j=1

Ni∑
k=1

T∑
t=1

T∑
s=1

X′
ijtXikseijteiks


≤

R∑
i=1

Ni

N

 1

N2
i T

2

Ni∑
j=1

Ni∑
k=1

T∑
t=1

T∑
s=1

√
E
(
∥Xijt∥4

)√
E
(
∥Xiks∥4

)
σi,(jk),(ts)

 =
R∑
i=1

Ni

N
Op

(
1

NiT

)

where the inequality is due to Cauchy-Schwarz inequality and the equality is a result of Assumptions

3.A, 3.C.2, 3.D, and 3.E. Therefore, we obtain∥∥∥∥∥∥ 1

NT

R∑
i=1

Ni∑
j=1

X′
ijeij

∥∥∥∥∥∥ =

R∑
i=1

√
Ni

N
Op

(
1√
NiT

)
= op(1).

Next, we consider the second term using Cauchy-Schwarz inequality:∥∥∥∥∥∥ 1

N

R∑
i=1

Ni∑
j=1

X′
ijKi

T

K′
ieij
T

∥∥∥∥∥∥ ≤
R∑
i=1

Ni

N

 1

Ni

Ni∑
j=1

∥∥∥∥ 1TX′
ijKi

∥∥∥∥2
1/2 1

Ni

Ni∑
j=1

∥∥∥∥ 1T K′
ieij

∥∥∥∥2
1/2

Obviously, N−1
i

∑Ni
j=1

∥∥∥T−1X′
ijKi

∥∥∥2 = Op(1) and therefore, it suffices to show that the last term is
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small. We then have

1

Ni

Ni∑
j=1

∥∥∥∥ 1T K′
ieij

∥∥∥∥2 = 1

Ni

Ni∑
j=1

∥∥∥∥∥ 1T
T∑
t=1

Kiteijt

∥∥∥∥∥
2

=
1

T 2

T∑
t=1

T∑
s=1

K′
itKis

1

Ni

Ni∑
j=1

eijteijs

=
1

T 2

T∑
t=1

T∑
s=1

K′
itKis

1

Ni

Ni∑
j=1

(
eijteijs − σi,(jj),(ts)

)
+

1

T 2

T∑
t=1

T∑
s=1

K′
itKis

1

Ni

Ni∑
j=1

σi,(jj),(ts)

Applying Cauchy-Schwarz inequality to the first term, we obtain

1

T 2

T∑
t=1

T∑
s=1

K′
itKis

1

Ni

Ni∑
j=1

(
eijteijs − σi,(jj),(ts)

)

≤

(
1

T

T∑
t=1

∥Kit∥2
1

T

T∑
s=1

∥Kis∥2
)1/2

 1

T 2

T∑
t=1

T∑
s=1

∣∣∣∣∣∣ 1Ni

Ni∑
j=1

(
eijteijs − σi,(jj),(ts)

)∣∣∣∣∣∣
21/2

=

(
1

T

T∑
t=1

∥Kit∥2
1

T

T∑
s=1

∥Kis∥2
)1/2

 1

T 2

T∑
t=1

T∑
s=1

∣∣∣∣∣∣ 1√
Ni

Ni∑
j=1

(
eijteijs − σi,(jj),(ts)

)∣∣∣∣∣∣
21/2

1√
Ni

The first part of the above expression is simply Op(1) and the second part is also Op(1) by Assump-

tion 3.C.3.

Moreover, since
∣∣∣N−1

i

∑Ni
j=1 σi,(jj),(ts)

∣∣∣ ≤ τi,(ts) by Assumption 3.C.2, we have

1

T 2

T∑
t=1

T∑
s=1

K′
itKis

1

Ni

Ni∑
j=1

σi,(jj),(ts) ≤
1

T 2

T∑
t=1

T∑
s=1

K′
itKisτi,(ts)

≤

(
1

T 2

T∑
t=1

T∑
s=1

∥∥K′
itKis

∥∥2)1/2(
1

T 2

T∑
t=1

T∑
s=1

τ2i,(ts)

)1/2

= Op(1)×O

(
1√
T

)
,

where the second inequality is a result of Cauchy-Schwarz inequality. Consequently, we have

sup
K1,...,KR∈KR

∥∥∥∥∥∥ 1

NT

R∑
i=1

Ni∑
j=1

X′
ijKi

T

K′
ieij
T

∥∥∥∥∥∥ = op(1).

Combining these results, it can be concluded that

sup
K1,...,KR∈KR

∥∥∥∥∥∥ 1

NT

R∑
i=1

Ni∑
j=1

X′
ijMKieij

∥∥∥∥∥∥ =
R∑
i=1

Ni

N
Op

(
1

C
1/2
NiT

)
= op(1).

The rest parts of the lemma can be proved in a similar fashion and hence are not shown.

Q.E.D

Proof of Lemma C.1.2.
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By plugging Yij = Xijβ +Kiθij + eij in (3.2.7), we obtain

K̂iV̂i −Ki

(
Θ′

iΘi

Ni

)(
K′

iK̂i

T

)
=

1

NiT

Ni∑
j=1

Xij

(
β − β̂

)(
β − β̂

)′
X′

ijK̂i

+
1

NiT

Ni∑
j=1

Xij

(
β − β̂

)
θ′
ijK

′
iK̂i +

1

NiT

Ni∑
j=1

Kiθij

(
β − β̂

)′
X′

ijK̂i +
1

NiT

Ni∑
j=1

Xij

(
β − β̂

)
e′ijK̂i

+
1

NiT

Ni∑
j=1

eij

(
β − β̂

)′
X′

ijK̂i +
1

NiT

Ni∑
j=1

Kiθije
′
ijK̂i +

1

NiT

Ni∑
j=1

eijθ
′
ijK

′
iK̂i +

1

NiT

Ni∑
j=1

eije
′
ijK̂i

= Ji,1 + · · ·+ Ji,8

It then follows that

K̂iV̂i

(
K′

iK̂i

T

)−1(
Θ′

iΘi

Ni

)−1

−Ki = (Ji,1 + · · ·+ Ji,8)

(
K′

iK̂i

T

)−1(
Θ′

iΘi

Ni

)−1

and (
K′

iK̂i

T

)
V̂i −

(
K′

iKi

T

)(
Θ′

iΘi

Ni

)(
K′

iK̂i

T

)
=

1

T
K′

i (Ji,1 + · · ·+ Ji,8) .

The first term Ji,1 is bounded by

1√
T
∥Ji,1∥ ≤ 1

Ni

Ni∑
j=1

(
1

T
∥Xij∥2

)∥∥∥β − β̂
∥∥∥2 ∥∥∥∥ 1√

T
K̂i

∥∥∥∥ = Op

(∥∥∥β − β̂
∥∥∥2) = op

(∥∥∥β − β̂
∥∥∥)

The same argument applies for the terms from Ji,2 to Ji,5 and each of these has stochastic order

Op

(∥∥∥β − β̂
∥∥∥). The last three terms are the same as those in Theorem 1 of Bai & Ng (2002) and

each of these is Op(C
−1
NiT

).

Therefore, we deduce that(
K′

iK̂i

T

)
V̂i −

(
K′

iKi

T

)(
Θ′

iΘi

Ni

)(
K′

iK̂i

T

)
= op(1).

This implies that
(
K′

iK̂i/T
)
are the non-normalised eigenvectors of (K′

iKi/T ) (Θ
′
iΘi/Ni) in the

limit. Therefore, we conclude that V̂i
p→ Vi. Furthermore, combining the stochastic orders for

Ji,1, . . . ,Ji,8, we also have

1√
T

∥∥∥K̂i −KiĤi

∥∥∥ = Op

(∥∥∥β̂ − β
∥∥∥)+Op

(
1

CNiT

)
.

Q.E.D

Proof of Lemma C.1.3.

Since the equations in this lemma are with respect to each block i and do not involve summation
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across blocks, the proof follows directly from Bai (2009). Lemmas C.1.3.1–C.1.3.9 correspond to

their Lemmas A.3–A.5. Lemma C.1.3.10–C.1.3.11 correspond to their Lemmas A.6–A.7. The rest

of the statements correspond to their Lemma A.10. We omit the details thereby.

Q.E.D

Proof of Lemma C.1.4.

From (3.2.6), we obtain 1

NT

R∑
i=1

Ni∑
j=1

X′
ijMK̂i

Xij

(β̂ − β
)
=

1

NT

R∑
i=1

Ni∑
j=1

X′
ijMK̂i

Kiθij +
1

NT

R∑
i=1

Ni∑
j=1

X′
ijMK̂i

eij .

(C.1.3)

Using M
K̂i
Ki = M

K̂i

(
Ki − K̂iĤ

−1
i

)
and Lemma C.1.2, the first term of the RHS of the above

equation can be expressed as

1

NT

R∑
i=1

Ni∑
j=1

X′
ijMK̂i

Kiθij =
1

NT

R∑
i=1

Ni∑
j=1

X′
ijMK̂i

(Ji,1 + · · ·+ Ji,8)Πiθij

=

R∑
i=1

Ni

N

1

NiT

Ni∑
j=1

X′
ijMK̂i

(Ji,1 + · · ·+ Ji,8)Πiθij =

R∑
i=1

Ni

N
(Ji,1 + · · ·+ Ji,8)

Each of Ji,1, . . . ,Ji,8 is the same as the corresponding terms in Proposition A.2 of Bai (2009), so

they have the same stochastic orders except thatN is replaced byNi. Given Lemma C.1.3.1–C.1.3.9,

following the same argument of Proposition A.2 in Bai (2009), we have

1

NT

R∑
i=1

Ni∑
j=1

X′
ijMK̂i

Kiθij =

R∑
i=1

Ni

N

Ji,2 + Ji,7 −
1

NiT 2

Ni∑
j=1

X′
ijMK̂i

[
1

Ni

Ni∑
k=1

E
(
eike

′
ik

)]
K̂iΠiθij

+op

(
∥β − β̂∥

)
+Op

(
1

T
√
Ni

)
+

1√
Ni

Op

(
1

C2
NiT

))
.

Plugging the above equation in (C.1.3) and using the fact that

R∑
i=1

Ni

N

1

NiT

Ni∑
j=1

X′
ijMK̂i

Xij −
R∑
i=1

Ni

N
Ji,2 = D

(
K̂1, . . . , K̂R

)
,

we obtain

[
D
(
K̂1, . . . , K̂R

)
+ op(1)

]√
NT

(
β̂ − β

)
=

1√
NT

R∑
i=1

Ni∑
j=1

(
X′

ijMK̂i
− 1

Ni

Ni∑
k=1

ai,jkX
′
ijMK̂i

)
eij

−
R∑
i=1

Ni√
NT

ζi +

R∑
i=1

Ni

√
T√

N

[
Op

( √
Ni√
NT

)
+

√
NiT√
N

Op

(
1

C2
NiT

)]
.

Since Ni/N = O(1) for each i by Assumption 3.E, if T/N2
i → 0 for each i, the last term is simply
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op(1). It is shown by Lemma A.6 of Bai (2009) that ζi = Op(1). Pre-multiplying D
(
K̂1, . . . , K̂R

)−1

on both sides of the above equation yields the expression in Lemma C.1.4.

Q.E.D

Proof of Lemma C.1.5.

Consider

1√
NT

R∑
i=1

Ni∑
j=1

X′
ij

(
MKi −M

K̂i

)
eij =

R∑
i=1

√
Ni

N

1√
NiT

Ni∑
j=1

X′
ij

(
MKi −M

K̂i

)
eij .

For each i, it is shown by Lemma A.8 of Bai (2009) that

1√
NiT

Ni∑
j=1

X′
ij

(
MKi −M

K̂i

)
eij = −

√
NiT

Ni

1

Ni

Ni∑
j=1

Ni∑
k=1

X′
ijKi

T
Πiθik

(
1

T

T∑
t=1

eijteikt

)

+
√
TOp

(∥∥∥β̂ − β
∥∥∥2)+Op

(∥∥∥β̂ − β
∥∥∥)+√

TOp

(
1

C2
NiT

)
.

Obviously, replacing Xij with Wij in the RHS of the above equation does not change the stochastic

orders, so we also have

1√
NiT

Ni∑
j=1

W′
ij

(
MKi −M

K̂i

)
eij = −

√
NiT

Ni

1

Ni

Ni∑
j=1

Ni∑
k=1

W′
ijKi

T
Πiθik

(
1

T

T∑
t=1

eijteikt

)

+
√
TOp

(∥∥∥β̂ − β
∥∥∥2)+Op

(∥∥∥β̂ − β
∥∥∥)+√

TOp

(
1

C2
NiT

)
.

Combining these results gives (C.1.1), which can be plugged into the expression given in Lemma

C.1.4, then (C.1.2) of Lemma C.1.5 follows.

Q.E.D

Proof of Lemma C.1.6.

The proof of statements 1–3 is identical to Lemma A.9(i)–(iii) in Bai (2009). Since statements

4 and 5 are with respect to each block i and do not involve summation across blocks, their proof

follow from Lemma A.9(iv)–(v) without any changes.

Q.E.D

Proof of Lemma C.1.7. Again, since these results do not involve summation across i, they can

be shown in the same fashion as in Lemmas A.11 and A.12 of Bai (2009) using Lemmas C.1.3.10–

C.1.3.17 above.

Q.E.D

Lemma C.1.8 is a useful result from Theorem 8.1.10 of Golub & Van Loan (2013) so we omit

the proof. In what follows, we use a similar strategy as in Lam et al. (2011) to show the consistency
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of d̂i for each i.

Proof of Lemma C.1.9.

The asymptotic results of Lemma C.1.1, C.1.2, and 3.1 are unchanged by replacing M
K̂i
’s with

M
K̃i
’s for all i, except that now

(
K′

iK̃i/T
)
is non-invertible. Consequently, from the establishment

of Lemma C.1.1, the first part of this lemma follows.

For convenience, we use A(a:b) to denote the matrix containing from a to b-th columns of a

matrix A and A(a) stands for the a-th column vector of A. From Lemma C.1.2, we have

1√
T

∥∥∥K̃(1:di)
i −KiH̃

(1:di)
i

∥∥∥ = Op

(∥∥∥β̃ − β
∥∥∥)+Op

(
1

CNiT

)

where H̃i = (Θ′
iΘi/Ni)

(
K′

iK̃i/T
)
Ṽ−1

i .

Let Σi = T−1Ki (Θ
′
iΘi/Ni)K

′
i. By the development of Lemma C.1.2, it is straightforward that

∥∥∥Σ̃i −Σi

∥∥∥ = Op

(∥∥∥β̃ − β
∥∥∥)+Op

(
1

CNiT

)
and (

K′
iK̃

(1:di)
i

T

)
Ṽ

(1:di)
i −

(
K′

iKi

T

)(
Θ′

iΘi

Ni

)(
K′

iK̃
(1:di)
i

T

)
= Op

(∥∥∥β̃ − β
∥∥∥)+Op

(
1

CNiT

)
.

By continuity of the eigenvalues, the first equation suggests that the non-zero eigenvalues of Σ̃i

converges to the non-zero eigenvalues of Σi. Notice that (K′
iKi/T ) (Θ

′
iΘi/Ni) has the same eigen-

values as Σi, so the second equation implies the convergence rate of the first di largest eigenvalues

of Σ̃i. This completes the proof of the second statement.

For each i, let K⊥
i be a T × (T − di) matrix such that

1

T

[
K⊥

i ,KiHi

]′ [
K⊥

i ,KiHi

]
= IT

where Hi = (K′
iKi/T )

−1/2. The existence of such K⊥
i can be easily verified since KiHi is full rank.

Moreover, because Hi is non-zero, the above equation implies that K⊥′
i Ki = 0. We apply Lemma

C.1.8 by replacing Q1, Q2, A, and E with T−1/2K⊥
i , T

−1/2KiHi, Σi, and Σ̃i − Σi. Then, it is

straightforward that Q′AQ in Lemma C.1.8 becomes

1√
T

[
K⊥

i ,KiHi

]′
Σi

1√
T

[
K⊥

i ,KiHi

]
=

1√
T

[
K⊥

i ,KiHi

]′ 1√
T
Ki

(
Θ′

iΘi

Ni

)
1√
T
K′

i

1√
T

[
K⊥

i ,KiHi

]
=

[
0 0

0 H′
i

(
K′

iKi

T

)(
Θ′

iΘi

Ni

)(
K′

iKi

T

)
Hi

]
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so D1 in Lemma C.1.8 becomes 0 and, D2 is now the lower block-diagonal element of the above

matrix, which has the same eigenvalues as Σi. Additionally, we also have an orthonormal basis for

a subspace that is invariant of Σ̃i such that

K̃⊥
i =

1√
T

(
K⊥

i +KiHiPi

) (
IT−di +P′

iPi

)−1/2
.

By Lemma C.1.8, we have

∥Pi∥ ≤ di × ∥Pi∥2 ≤
4di

sep (0,Σi)

∥∥∥Σ̃i −Σi

∥∥∥
2
≤ Op(1)×

∥∥∥Σ̃i −Σi

∥∥∥ = Op

(∥∥∥β̃ − β
∥∥∥)+Op

(
1

CNiT

)
where the first and last inequality follows from the property of the spectral norm. Moreover, we

have

∥∥∥∥K̃⊥
i − 1√

T
K⊥

i

∥∥∥∥ =
1√
T

∥∥∥[(K⊥
i +KiHiPi

)
−K⊥

i

(
IT−di +P′

iPi

)1/2] (
IT−di +P′

iPi

)−1/2
∥∥∥

≤ 1√
T

∥∥∥K⊥
i

[
IT−di −

(
IT−di +P′

iPi

)1/2] (
IT−di +P′

iPi

)−1/2
∥∥∥+ ∥∥∥Pi

(
IT−di +P′

iPi

)−1/2
∥∥∥

≤ Op(1)
∥∥∥IT−di −

(
IT−di +P′

iPi

)−1/2
∥∥∥+Op(1) ∥Pi∥ = Op

(∥∥∥β̃ − β
∥∥∥)+Op

(
1

CNiT

)
where the inequalities follow from the Cauchy-Schwarz inequality. Finally, we can obtain ṽi,di+ℓ by

ṽi,di+ℓ = K̃
⊥(ℓ)
i Σ̃′

iK̃
⊥(ℓ)
i

=

(
K̃

⊥(ℓ)
i − 1√

T
K⊥

i +
1√
T
K⊥

i

)′ (
Σ̃′

i −Σi +Σi

)(
K̃

⊥(ℓ)
i − 1√

T
K⊥

i +
1√
T
K⊥

i

)
≤
∥∥∥∥K̃⊥(ℓ)

i − 1√
T
K⊥

i

∥∥∥∥2 ∥∥∥Σ̃′
i −Σi

∥∥∥+ 2

∥∥∥∥K̃⊥(ℓ)
i − 1√

T
K⊥

i

∥∥∥∥∥∥∥Σ̃′
i −Σi

∥∥∥∥∥∥∥ 1√
T
K⊥

i

∥∥∥∥
+

∥∥∥∥K̃⊥(ℓ)
i − 1√

T
K⊥

i

∥∥∥∥2 ∥Σi∥ = Op

(∥∥∥β̃ − β
∥∥∥2)+Op

(
1

C2
NiT

)

where the inequality follows from Cauchy-Schwarz inequality and the fact that the other summands

are simply zeros by construction. This completes the proof of the third statement.

Q.E.D

C.2 Extension to the Heterogeneous Coefficient Model

In this section, we extend the model (3.2.1) to a heterogeneous coefficient model. The model and

estimators are presented in Section C.2.1. Sections C.2.2–C.2.4 provide the mains asymptotic results

for the estimators. Section C.2.5 outlines the auxiliary lemmas that are useful for the proofs of the

main results in Section C.2.6. The proofs of the auxiliary lemmas can be found in Section C.2.7.
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C.2.1 The model

The heterogeneous coefficient model is specified as follows:

yijt = X′
ijtβij + uijt, i = 1, ..., R, j = 1, ..., Ni, t = 1, ..., T

uijt = γ ′
ijGt + λ′

ijFit + eijt

(C.2.4)

where βij =
[
β1
ij , . . . , β

p
ij

]′
is now individually specific while the other model setups remain the same

as in (3.2.1). Let {bij}j=1,...,Ni

i=1,...,R be the set of slope coefficients for all the individuals. The above

heterogeneous coefficient model extends the ones considered by Pesaran (2006), Song (2013), and

Li et al. (2020) among others.

We define the objective function as:

S
(
{bij}j=1,...,Ni

i=1,...,R ,K1, . . . ,KR

)
=

R∑
i=1

Ni∑
j=1

(Yij −Xijbij)
′MKi (Yij −Xijbij) (C.2.5)

where Ki is a T × di matrix for all i. The estimators are given by({
β̂†
ij

}j=1,...,Ni

i=1,...,R
, K̂†

1, . . . , K̂
†
R

)
= argmin(

{βij}
j=1,...,Ni
i=1,...,R ,K1,...,KR

)
∈D†

S
(
{bij}j=1,...,Ni

i=1,...,R ,K1, . . . ,KR

)

where D† = Rp×· · ·×Rp×KR and K =
{
K|T−1K′K = Idi

}
. The above objective function implies

that the solutions are the following

β̂†
ij =

(
X′

ijMK̂†
i
Xij

)−1
X′

ijMK̂†
i
Yij for each i and j (C.2.6)

K̂†
iV̂

†
i =

 1

NiT

Ni∑
j=1

(
Yij −Xijβ̂

†
ij

)(
Yij −Xijβ̂

†
ij

)′ K̂†
i for each i (C.2.7)

where V̂†
i is a diagonal matrix consisting of the di = r0 + ri largest eigenvalues of the term in

the square bracket of the above term. Similar to the homogeneous model in (3.2.1), the estimates{
β̂†
ij

}j=1,...,Ni

i=1,...,R
and

(
K̂†

1, . . . , K̂
†
R

)
are obtained iteratively.

C.2.2 Consistency and asymptotic distribution

To ensure consistency of the slope coefficients and factor estimates, we make the following assump-

tion for identification similar to Assumption 3.A:

Assumption C.A.
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1. For all i, j, and t , we have E
(
∥Xijt∥4

)
≤ M. Furthermore, for all i and j, we have

inf
Ki∈K

1

T
X′

ijMKiXij > 0 and
1

T
X′

ijMKiXij
p−→ Ωij > 0.

2. For all i, we have:

inf
Ki∈K

Di (Ki) > 0

where

Di (Ki) =
1

Ni

Ni∑
j=1

(
Aij,1 −Aij,3A−1

ij,2A
′
ij,3

)
with Aij,1 = T−1X′

ijMKiXij, Aij,2 =
(
θijθ

′
ij

)
⊗ T−1IT , and Aij,3 = θ′

ij ⊗
(
T−1X′

ijMKi

)
.

Assumption C.A.1 resembles Assumption 5 of Pesaran (2006), which guarantees the identifi-

cation of each βij . Assumption C.A.1 rules out time-invariant regressors and the case that Xij is

perfectly collinear with the true factors Ki. Assumption C.A.2 extends Assumption 3.A and ensures

the consistency of β̂ij ’s and K̂i’s. Similar assumptions can be found in Song (2013) and Ando & Bai

(2014). It is shown by Lemma C.2.1 that the consistent estimation of βij ’s and Ki’s for all i and j

does not require separate identification of G and Fi’s. Therefore, minimising (C.2.5) is equivalent

to implementing IPC in Song (2013) block by block. To derive the asymptotic distribution of β̂†
ij ,

we make the following assumption:

Assumption C.B. For each i and j, we have

1.

1

N2
i T

Ni∑
k=1

Ni∑
ℓ=1

X′
ikMKiE

(
eike

′
iℓ

)
MKiXiℓ = op(1).

2.
1√
T
X′

ijMKieij
d−→ N (0,Dij)

where

Dij = plim
1

T
X′

ijMKiE
(
eije

′
ij

)
MKiXij

is a non-random positive definite matrix.

Assumption C.B.1 follows from Assumption G of Ando & Bai (2014) which restricts the cross-

section correlation. It is less restrictive than the cross-section independence assumed in Song (2013)
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as it still allows weak cross-section and serial correlation among the error terms. Assumption C.B.2

is the central limit theorem for deriving the asymptotic distribution of β̂†
ij ’s.

The asymptotic normality is summarised in the following theorem:

Theorem C.2.1. Under Assumptions 3.B–3.E and C.A–C.B, as N1, . . . , NR, T → ∞, and T/N2
i →

0 for all i, it follows that

√
T
(
β̂†
ij − βij

)
d−→ N

(
0,Ω−1

ij DijΩ
−1
ij

)
where

Ωij = plim
X′

ijMKiXij

T
and Dij = plim

1

T
X′

ijMKiE
(
eije

′
ij

)
MKiXij .

C.2.3 Determining the numbers of factors

So far, we have assumed that the number of factors di’s are know. Lemma C.2.1 together with (C.2.7)

offers a consistent model selection alternative to the information criterion proposed by Ando & Bai

(2014). Following Section 3.3.2, we set a finite integer that is common to all blocks, dmax, such

that dmax ≤ maxi{di}. The initial estimates β̃†
ij ’s can be obtained consistently via minimising the

objective function defined as follows:

S
(
{bij}j=1,...,Ni

i=1,...,R ,K 1, . . . ,K R

)
=

R∑
i=1

Ni∑
j=1

(Yij −Xijbij)
′MKi

(Yij −Xijbij) (C.2.8)

where K i is a T × dmax matrix for all i. The estimators are given by({
β̃†
ij

}j=1,...,Ni

i=1,...,R
, K̃†

1, . . . , K̃
†
R

)
= argmin(

{βij}
j=1,...,Ni
i=1,...,R ,K 1,...,K R

)
∈D†

S
(
{bij}j=1,...,Ni

i=1,...,R ,K 1, . . . ,K R

)

where D† = Rp × · · · × Rp × K̃R and K̃ =
{
K|T−1K′K = Idmax

}
. The above objective function

implies that the solutions are the following

β̃†
ij =

(
X′

ijMK̃†
i
Xij

)−1
X′

ijMK̃†
i
Yij for each i and j

K̃†
iṼ

†
i =

 1

NiT

Ni∑
j=1

(
Yij −Xijβ̃

†
ij

)(
Yij −Xijβ̃

†
ij

)′ K̃†
i for each i

where Ṽ†
i is a diagonal matrix consisting of the di = r0 + ri largest eigenvalues of the term in the

square bracket of the above term. Define the covariance matrix for each block i:

Σ̃†
i =

1

NiT

Ni∑
j=1

(
Yij −Xijβ̃

†
ij

)(
Yij −Xijβ̃

†
ij

)′
. (C.2.9)
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Let ṽ†i,k be the k-th largest eigenvalue of Σ̃†
i . It can be shown that for k = 1, . . . , di, ṽ

†
i,k converges

to its population counterpart vi,k, which is larger than zero. On the contrary, ṽ†i,k is asymptotically

zero for k = di + 1, . . . , dmax. di can be estimated as:

d̂†i = argmax
k=0,...,dmax−1

ṽ†i,k

ṽ†i,k+1

for i = 1, . . . , R

where ṽ†i,0 =
∑C2

NiT

ℓ=1 ṽ†i,ℓ/ log
(
C2
NiT

)
is a mock eigenvalue allowing the case where di = 0. It can be

shown that, for each i, it is straightforward that for k = 1, . . . , di−1, di+1, . . . , dmax−1, ṽ†i,k/ṽ
†
i,k+1 =

Op(1), whilst for k = di we have ṽ
†
i,k/ṽ

†
i,k+1 → ∞. Therefore, the ratio of the eigenvalues falls sharply

at k = di. The mock eigenvalue ṽ†i,0 is smaller in magnitude than the largest di eigenvalues but

larger than the rest, which allows the case di = 0. The consistency of d̂†i ’s is summarised in the

following proposition:

Proposition C.2.1. Under Assumptions 3.B–3.E and C.A–C.B, we have

lim
Ni,T→∞

Pr
(
d̂†i = r0 + ri

)
= 1.

C.2.4 Disentangling the global and local factors

Given the consistent estimates d̂†i ’s and K̂†
i ’s, we construct the following T (R− 1)R/2× d̂∗ system-

wide matrix where d̂†∗ =
∑R

l=1 d̂
†
l :

Φ̂† =


K̂†

1 −K̂†
2 0 0 . . . 0 0

K̂†
1 0 −K̂†

3 0 . . . 0 0
...

0 0 0 0 . . . K̂†
R−1 −K̂†

R

 (C.2.10)

and perform an SVD to Φ̂† as Φ̂† = P̂†∆̂†Q̂†′. Let δ̂†1, . . . , δ̂
†
d̂∗

be the diagonal elements of ∆̂† in

ascending order. Then, the number of global factors r0 can be obtained by

r̂†0 = argmax
k=0,...,d̂†min

δ̂†2k+1

δ̂†2k
, d̂†min = min

{
d̂†1, . . . , d̂

†
R

}
.

To deal with the case of r0 = 0, we set the mock singular value as

δ̂†20 =
1

CNT d̂†∗

d̂∗∑
k=1

δ̂†2k .

The number of local factors can be simply obtained by r̂†i = d̂†i − r̂†0 for each block i. The consistency

of r̂†0 and r̂†i ’s are summarised in the following proposition:
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Proposition C.2.2. Under Assumptions 3.B–3.E, 3.G, and C.A–C.B, we have:

lim
N1,...,NR,T→∞

Pr
(
r̂†0 = r0

)
= 1 and lim

N1,...,NR,T→∞
Pr
(
r̂†i = ri

)
= 1

Let Q̂†r̂†0 =

[
Q̂

†r̂†0′
1 , . . . , Q̂

†r̂†0′
R

]′
as the first r̂†0 columns of Q̂† from the above SVD, and construct

the T ×Rr̂†0 matrix, Ψ̂† =

[
K̂†

1Q̂
†r̂†0
1 , . . . , K̂†

RQ̂
†r̂†0
R

]
. We perform the eigen decomposition,

T−1Ψ̂†Ψ̂†′ = L̂†Ξ̂†L̂†′

where L̂† is a T × Rr̂†0 orthonormal matrix and Ξ̂† is a T × T diagonal matrix consisting of the

eigenvalues in descending order. The consistent estimator of the global factors, denoted Ĝ†, by the

r̂0 vectors of L̂
† corresponding to the r0 largest eigenvalues multiplied by

√
T . Let Ŷ†

ij = Yij−Xijβ̂
†
ij

and Ŷ†
i =

[
Ŷ†

i1, . . . , Ŷ
†
iNi

]
. The global factor loadings can be estimated by Γ̂†

i = T−1Ŷ†′
i Ĝ

†. Finally,

let Ŷ†G
ij = Yij−Xijβ̂

†
ij−Ĝ†γ̂†

ij , the local factors and loadings can be obtained by applying PC to each

block Ŷ†G
i =

[
Ŷ†G

i1 , . . . , Ŷ†G
iNi

]
. F̂†

i is
√
T multiply the r̂†i eigenvectors of Ŷ†G

i Ŷ†G′
i corresponding

to the ri largest eigenvalues. The local factor loadings can be obtained by Λ̂†
i = T−1Ŷ†G′

i F̂†
i . The

consistency of the GCC estimates are summarised by the following proposition:

Proposition C.2.3.

Under Assumptions 3.B–3.E, 3.G, and C.A, as N1, N2, . . . , NR, T → ∞, we have:

1√
T

∥∥∥Ĝ† −GH
∥∥∥ = Op

(
1

CNT

)
1√
Ni

∥∥∥Γ̂†′
i −H−1Γ′

i

∥∥∥ = Op

(
1

CNT

)
1√
T

∥∥∥F̂†
i − FiĤ

†
i

∥∥∥ = Op

(
1

CNT

)
1√
Ni

∥∥∥Λ̂†′
i − Ĥ †−1

i Λ′
i

∥∥∥ = Op

(
1

CNT

)
where H = T−1/2G′Jr0U is an r0 × r0 rotation matrix, Jr0 = Lr0(Ξr0)−1, Ξr0 is an r0 × r0

diagonal matrix consisting of the r0 non-zero eigenvalues of T−1GG′ in descending order, Lr0

is a T × r0 matrix of the corresponding eigenvectors, and U is an r0 × r0 orthogonal matrix.

Ĥ †
i = (Λ′

iΛi/Ni)
(
F̂†′
i F/T

)
Υ̂†−1

i is an ri × ri rotation matrix, Υ̂†
i is an ri × ri diagonal matrix

consisting of the ri largest eigenvalues of (NiT )
−1 Ŷ†

i Ŷ
†′
i in descending order, Ŷ†

i = Yi − Ĝ†Γ̂†′
i .

Moreover, CN,T = min{
√
N,

√
T} with N = min{N1, N2, . . . , NR}.
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C.2.5 Auxiliary lemmas

To facilitate the proofs of the main result in Sections C.2.2–C.2.4, we outline some useful auxiliary

lemmas in this section. The proofs of these lemmas can be found in Section C.2.7.

Lemma C.2.1. Let

({
β̂†
ij

}j=1,...,Ni

i=1,...,R
, K̂†

1, . . . , K̂
†
R

)
be the estimators from minimising (C.2.5). Un-

der Assumption 3.B-3.E and C.A, as N1, . . . , NR, T → ∞, the following statements holds:

1. β̂†
ij − βij

p−→ 0 for all i and j.

2.
∥∥∥PK̂†

i
−PKi

∥∥∥ p−→ 0 for all i.

Lemma C.2.2. Let Ĥ†
i = (Θ′

iΘi/Ni)
(
K†′

i K̂i/T
)
V̂†−1

i . Under Assumptions 3.B–3.E and C.A–

C.B, Ĥ†
i is an (r0 + ri) × (r0 + ri) invertible matrix, V̂†

i

p→ Vi where Vi is a (r0 + ri) × (r0 + ri)

diagonal matrix consisting of the eigenvalues of ΣKiΣΘi which are defined in Assumption 3.B, and

1√
T

∥∥∥K̂†
i −KiĤ

†
i

∥∥∥ = Op (Bi,NiT ) +Op

(
1

CNiT

)
.

where Bi,NiT = maxj

{∥∥∥β̂†
ij − βij

∥∥∥} for all i.

Lemma C.2.3. Under Assumptions 3.B–3.E and C.A–C.B, we have

1. T−1K′
i

(
K̂i −KiĤi

)
= Op (Bi,NiT ) +Op

(
C−2
NiT

)
.

2. T−1K̂′
i

(
K̂i −KiĤi

)
= Op (Bi,NiT ) +Op

(
C−2
NiT

)
.

3. T−1X′
ij

(
K̂†

i −KiĤ
†
i

)
= Op (Bi,NiT ) +Op

(
C−2
NiT

)
.

4. T−1e′ij

(
K̂†

i −KiĤ
†
i

)
= Op (Bi,NiT ) +Op

(
C−2
NiT

)
.

5. Ĥ†
iĤ

†′
i = (K′

iKi/T )
−1 +Op (Bi,NiT ) +Op

(
C−2
NiT

)
.

Lemma C.2.4. Let

({
β̃†
ij

}j=1,...,Ni

i=1,...,R
, K̃†

1, . . . , K̃
†
R

)
be the estimators from minimising (C.2.8). For

each i, let vi,k be the k-th largest eigenvalue of (K′
iKi/T ) (Θ

′
iΘi/Ni) and ṽ†i,k be the k-th largest

eigenvalue of Σ̃†
i defined in (C.2.9). Under Assumption 3.B–3.E and C.A–C.B, as N1, . . . , NR, T →

∞, we have

1.
∥∥∥β̃†

ij − βij

∥∥∥ = Op

(
C

−1/2
NiT

)
.

2. For each i, |ṽi,k − vi,k| = Op (Bi,NiT ) + C−1
NiT

for k = 1, . . . , di.

3. For each i, |ṽi,k| = Op

(
B2

i,NiT

)
+ C−2

NiT
for k = di + 1, . . . , dmax.
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C.2.6 Proofs of the main results

Proof of Theorem C.2.1.

Using (C.2.7) and Yij = Xijβij +Kiθij + eij , we obtain:(
1

T
X′

ijMK̂†
i
Xij

)(
β̂†
ij − βij

)
=

1

T
X′

ijMK̂†
i
Kiθij +

1

T
X′

ijMK̂†
i
eij .

Plugging in Ki = Ki − K̂†
iĤ

†
i + K̂†

iĤ
†
i and (C.2.15), the above equation becomes(

1

T
X′

ijMK̂†
i
Xij

)(
β̂†
ij − βij

)
=

1

T
X′

ijMK̂†
i
eij −

1

T
X′

ijMK̂†
i

(
J †
i,1 + · · ·+ J †

i,8

)
Π†

iθij . (C.2.11)

We consider the first term of (C.2.11):

1√
T
X′

ij

(
M

K̂†
i
−MKi

)
eij =

1

T
X′

ijKi

(
K′

iKi

T

)−1 1√
T
K′

ieij −
1√
T
X′

ij

1

T
K̂†

iK̂
†′
i eij

Using K̂†
i = K̂†

i −KiĤ
†
i +KiĤ

†
i , the above equation becomes

1√
T
X′

ij

(
M

K̂†
i
−MKi

)
eij =

1

T
X′

ijKi

(
K′

iKi

T

)−1 1√
T
K′

ieij −
1√
T
X′

ij

1

T
KiĤ

†
iĤ

†′
i K

′
ieij

− 1√
T
X′

ij

1

T

(
K̂†

i −KiĤ
†
i

)(
K̂†

i −KiĤ
†
i

)′
eij −

1√
T
X′

ij

1

T

(
K̂†

i −KiĤ
†
i

)
Ĥ†′

i K
′
ieij

− 1

T
X′

ijKiĤ
†
i

1√
T

(
K̂†

i −KiĤ
†
i

)′
eij

Using Lemma C.2.3, we obtain

1√
T
X′

ijMK̂†
i
eij =

1√
T
X′

ijMKieij +Op

(√
TBi,NiT

)
+Op

( √
T

C2
NiT

)
.

Using the same arguments, we also have

1

T
X′

ijMK̂†
i
Xij =

1

T
X′

ijMKiXij +Op (Bi,NiT ) +Op

(
1

C2
NiT

)
.

We now analysis each term in the second part (C.2.11). For the first term, we have

∥∥∥∥ 1TX′
ijMK̂†

i
J †
i,1Π

†
iθij

∥∥∥∥ =

∥∥∥∥∥ 1

Ni

Ni∑
k=1

X′
ijMK̂†

i
Xik

T

(
βik − β̂†

ik

)(
βik − β̂†

ik

)′ X′
ikK̂

†
i

T
Π†

iθij

∥∥∥∥∥
≤ 1

Ni

Ni∑
k=1

∥∥∥∥∥X
′
ijMK̂†

i
Xik

T

∥∥∥∥∥∥∥∥βik − β̂†
ik

∥∥∥2 ∥∥∥∥∥X′
ikK̂

†
i

T

∥∥∥∥∥∥∥∥Π†
i

∥∥∥ ∥θij∥ = Op

(
B2

i,NiT

)
= op(Bi,NiT ).

The second term has the same stochastic order as the LHS of (C.2.11), so we keep this term and

deal with it later. The third term is bounded by
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∥∥∥∥ 1TX′
ijMK̂†

i
J †
i,3Π

†
iθij

∥∥∥∥ =

∥∥∥∥∥ 1TX′
ijMK̂†

i

(
Ki − K̂†

iĤ
†−1
i

) 1

Ni

Ni∑
k=1

θik

(
βik − β̂†

ik

)′(X′
ijK̂i

T

)
Πiθij

∥∥∥∥∥
≤
∥∥∥∥ 1TX′

ijMK̂†
i

(
Ki − K̂†

iĤ
†−1
i

)∥∥∥∥
∥∥∥∥∥ 1

Ni

Ni∑
k=1

θik

(
βik − β̂†

ik

)′(X′
ijK̂i

T

)
Πiθij

∥∥∥∥∥

Using M
K̂†

i
= IT − T−1K̂†

iK̂
′†
i , Lemma 2, and Lemma 3, the first part of the above expression is

bounded by Op(Bi,NiT ) +Op

(
C−2
NiT

)
. Therefore, it follows that

∥∥∥∥ 1TX′
ijMK̂†

i
J †
i,3Π

†
iθij

∥∥∥∥ =
[
Op(Bi,NiT ) +Op

(
C−2
NiT

)]
Op(Bi,NiT ) = op(Bi,NiT ).

Using similar arguments, it can be shown that∥∥∥∥ 1TX′
ijMK̂†

i
J †
i,6Π

†
iθij

∥∥∥∥ = op(Bi,NiT ).

Next, consider the fourth term

∥∥∥∥ 1TX′
ijMK̂†

i
J †
i,4Π

†
iθij

∥∥∥∥ =

∥∥∥∥∥ 1

Ni

Ni∑
k=1

(
X′

ijMK̂†
i
Xik

T

)(
βik − β̂†

ik

)′(e′ikK̂i

T

)
Πiθij

∥∥∥∥∥ = op(Bi,NiT )

where the last equality follows from the fact that
∥∥∥T−1e′ikK̂i

∥∥∥ = op(1) established in the proof of

Lemma C.1.1. Similarly, one can show that∥∥∥∥ 1TX′
ijMK̂†

i
J †
i,5Π

†
iθij

∥∥∥∥ = op(Bi,NiT ).

Consider

1

T
X′

ijMK̂†
i
J †
i,7Π

†
iθij =

1

T
X′

ijMK̂†
i

(
1

NiT

Ni∑
k=1

eikθ
′
ikK

′
iK̂

†
i

)
Π†

iθij =
1

NiT

Ni∑
k=1

X′
ijMK̂i

eikai,kj

=
1

NiT

Ni∑
k=1

X′
ijeikai,kj +

(
X′

ijK̂
†
i

T

)
1

NiT

Ni∑
k=1

K̂†′
i eikai,kj

where ai,kj = θ′
ik (Θ

′
iΘi/Ni)

−1 θij . It is straightforward that the first term of the above equation is

Op

(
N

−1/2
i T−1/2

)
and we focus on the second term.

∥∥∥∥∥ 1

NiT

Ni∑
k=1

K̂†′
i eikai,kj

∥∥∥∥∥
2

=

∥∥∥∥∥ 1

Ni

Ni∑
k=1

ai,kj
1

T

T∑
t=1

K̂†
iteikt

∥∥∥∥∥
2

≤ 1

N2
i

Ni∑
k=1

∥∥∥∥∥ai,kj 1T
T∑
t=1

K̂†
iteikt

∥∥∥∥∥
2

≤ O(1)
1

N2
i

Ni∑
k=1

∥∥∥∥∥ 1T
T∑
t=1

K̂†
iteikt

∥∥∥∥∥
2

=
1

Ni
Op

(
1

CNiT

)
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where the last equality follows from N−1
i

∑Ni
k=1

∥∥∥T−1
∑T

t=1 K̂
†
iteikt

∥∥∥2 = Op

(
C−1
NiT

)
established in

the proof of Lemma C.1.1. Consequently, we obtain∥∥∥∥ 1TX′
ijMK̂†

i
J †
i,7Π

†
iθij

∥∥∥∥ =
1√
Ni

Op

(
C

−1/2
NiT

)
.

Finally, we consider

∥∥∥∥ 1TX′
ijMK̂†

i
J †
i,8Π

†
iθij

∥∥∥∥ =

∥∥∥∥∥ 1TX′
ijMK̂†

i

(
1

NiT

Ni∑
k=1

eike
′
ikK̂

†
i

)
Π†

iθij

∥∥∥∥∥
≤
∥∥∥∥ 1√

T
X′

ijMK̂†
i

∥∥∥∥
∥∥∥∥∥ 1

NiT

Ni∑
k=1

eike
′
ik

∥∥∥∥∥
∥∥∥∥ 1√

T
K̂†

i

∥∥∥∥∥∥∥Π†
i

∥∥∥ ∥θij∥
Notice that ∥∥∥∥∥ 1

NiT

Ni∑
k=1

eike
′
ik

∥∥∥∥∥ = Op

(
1

C2
NiT

)
is implied by Assumption 3.C.4. Therefore, we obtain∥∥∥∥ 1TX′

ijMK̂†
i
J †
i,8Π

†
iθij

∥∥∥∥ = Op

(
1

C2
NiT

)
.

Combining these results, we obtain

(
1

T
X′

ijMKiXij

)(
β̂†
ij − βij

)
=

1

T
X′

ijMKieij −
1

Ni

Ni∑
k=1

(
1

T
X′

ijMKiXik

)(
βik − β̂†

ik

)
ai,jk

+Op(Bi,NiT ) +Op

(
1

C2
NiT

)
+ op(Bi,NiT ) +Op

(
1√

NiCNiT

)

which leads to

√
T
(
β̂†
ij − βij

)
=

(
X′

ijMKiXij

T

)−1
1√
T
X′

ijMKieij

−
(
X′

ijMKiXij

T

)−1
1

Ni

Ni∑
k=1

(
1

T
X′

ijMKiXik

)√
T
(
βik − β̂†

ik

)
ai,jk + op(1) (C.2.12)

if T/N2
i → 0.

To derive the individual asymptotic distribution of
√
T
(
β̂†
ij − βij

)
, we define the following

matrices:

Ai =



(
X′

i1MKi
Xi1

T

)−1 (
X′

i2MKi
Xi2

T

)−1

. . . (
X′

iNi
MKi

XiNi

T

)−1


,
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Xi =


X′

i1MKi
Xi1

T

X′
i1MKi

Xi2

T . . .
X′

i1MKi
XiNi

T
X′

i2MKi
Xi1

T

X′
i2MKi

Xi2

T . . .
X′

i2MKi
XiNi

T
...

X′
iNi

MKi
Xi1

T

X′
iNi

MKi
Xi2

T . . .
X′

iNi
MKi

XiNi

T

 ,

ςi =


1√
T
X′

i1MKiei1
...

1√
T
X′

iNi
MKieiNi

 , and α =


β̂†
i1 − βi1

...

β̂†
iNi

− βiNi

 .

Then, stacking (C.2.12) across j, we obtain

√
Tα = Aiςi +

1

Ni
AiXi

√
Tα+ op(1),

which leads to
√
Tα =

(
INi −

1

Ni
AiXi

)−1

Aiςi + op(1).

Using Taylor expansion, we have(
INi −

1

Ni
AiXi

)−1

= INi +
1

Ni
AiXi + op(1).

Therefore, it follows that
√
Tα = Aiςi +Ai

1

Ni
XiAiςi + op(1)

whose j-th element is

√
T
(
β̂†
ij − βij

)
=

(
X′

ijMKiXij

T

)−1
1√
T
X′

ijMKieij

+

(
X′

ijMKiXij

T

)−1
1

Ni

Ni∑
k=1

(
X′

ijMKiXik

T

)(
X′

ijMKiXij

T

)−1
1√
T
X′

ikMKieik + op(1).

The second term of the above equation is op(1) due to Assumption C.B.1. Finally, we obtain the

stated result
√
T
(
β̂†
ij − βij

)
d−→ N

(
0,Ω−1

ij DijΩ
−1
ij

)
by Assumption C.B.2.

Q.E.D

Proof of Propositions C.2.1–C.2.3.

Using Lemma C.2.4, we can show that Propositions C.2.1–C.2.3 following the same strategy as

in the proof of Propositions 3.1–3.3. The details are omitted.

Q.E.D
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C.2.7 Proofs of the auxiliary lemmas

Proof of Lemma C.2.1.

Consider the difference of the objective functions:

1

NT
S
(
{bij}j=1,...,Ni

i=1,...,R ,K1, . . . ,KR

)
− 1

NT
S
(
{βij}j=1,...,Ni

i=1,...,R ,K1, . . . ,KR

)
=

1

NT

R∑
i=1

Ni∑
j=1

(βij − bij)
′X′

ijMKiXij (βij − bij)+
1

NT

R∑
i=1

Ni∑
j=1

θ′
ijK

′
iMKiKiθij+

1

NT

R∑
i=1

Ni∑
j=1

e′ijMKieij

+
2

NT

R∑
i=1

Ni∑
j=1

(βij − bij)
′X′

ijMKiKiθij +
2

NT

R∑
i=1

Ni∑
j=1

(βij − bij)
′X′

ijMKieij

+
2

NT

R∑
i=1

Ni∑
j=1

θ′
ijK

′
iMKieij −

1

NT

R∑
i=1

Ni∑
j=1

e′ijMKieij

By Lemma C.1.1, the fifth and sixth terms are op(1). Using the same arguments in the proof of

Proposition 3.1, we also have

1

NT

R∑
i=1

Ni∑
j=1

e′ijMKieij −
1

NT

R∑
i=1

Ni∑
j=1

e′ijMKieij = op(1).

We thus obtain

1

NT
S
(
{bij}j=1,...,Ni

i=1,...,R ,K1, . . . ,KR

)
− 1

NT
S
(
{βij}j=1,...,Ni

i=1,...,R ,K1, . . . ,KR

)
=

1

NT

R∑
i=1

Ni∑
j=1

(βij − bij)
′X′

ijMKiXij (βij − bij)

+
1

NT

R∑
i=1

Ni∑
j=1

θ′
ijK

′
iMKiKiθij +

2

NT

R∑
i=1

Ni∑
j=1

(βij − bij)
′X′

ijMKiKiθij + op(1)

The above equation can be rewritten as

1

NT
S
(
{bij}j=1,...,Ni

i=1,...,R ,K1, . . . ,KR

)
− 1

NT
S
(
{βij}j=1,...,Ni

i=1,...,R ,K1, . . . ,KR

)
=

1

NT

R∑
i=1

Ni∑
j=1

(βij − bij)
′Aij,1 (βij − bij) +

1

NT

R∑
i=1

Ni∑
j=1

η′
iAij,2ηi

+
1

NT

R∑
i=1

Ni∑
j=1

2 (βij − bij)
′Aij,3ηi + op(1).

where ηi = vec {MKiKi}, Aij,1 = X′
ijMKiXij , Aij,2 =

(
θijθ

′
ij

)
⊗ IT , and Aij,3 = θ′

ij ⊗X′
ijMKi .

Completing the squares, we obtain
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1

NT
S
(
{bij}j=1,...,Ni

i=1,...,R ,K1, . . . ,KR

)
− 1

NT
S
(
{βij}j=1,...,Ni

i=1,...,R ,K1, . . . ,KR

)
=

1

NT

R∑
i=1

Ni∑
j=1

η′
i

(
Aij,1 −Aij,3A−1

ij,2A
′
ij,3

)
ηi
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1
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i=1

Ni∑
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η′
i + (βij − bij)

′Aij,3A−1
ij,2

]
Aij,2

[
ηi +A−1

ij,2A
′
ij,3 (βij − bij)

]
+ op(1).

Using the positive definiteness by Assumption 3.B.2 and C.A.2, the first two terms of the above

equation are non-negative and attain their minimum uniquely at

(
{bij}j=1,...,Ni

i=1,...,R ,K1, . . . ,KR

)
=
(
{βij}j=1,...,Ni

i=1,...,R ,K1H1, . . . ,KRHR

)
where Hi is any invertible matrix for all i. Moreover,

1
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S
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β̂†
ij

}j=1,...,Ni
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, K̂†

1, . . . , K̂
†
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)
− 1

NT
S
(
{βij}j=1,...,Ni

i=1,...,R ,K1, . . . ,KR

)
≤ 0

since

({
β̂†
ij

}j=1,...,Ni

i=1,...,R
, K̂†

1, . . . , K̂
†
R

)
is the minimiser of S. This implies that

1

NT

R∑
i=1

Ni∑
j=1

η̂†′
i

(
Aij,1 −Aij,3A−1

ij,2A
′
ij,3

)
η̂†
i = op(1) (C.2.13)

and

1

NT

R∑
i=1

Ni∑
j=1

[
η̂†′
i +

(
βij − β̂†

ij

)′
Aij,3A−1

ij,2

]
Aij,2

[
η̂†
i +A−1

ij,2A
′
ij,3

(
βij − β̂†

ij

)]
= op(1). (C.2.14)

Combining (C.2.13) and Assumption C.A.2, it follows that T−1
∥∥∥MK̂†

i
Ki

∥∥∥ = op(1) which implies∥∥∥PK̂†
i
−PKi

∥∥∥ = op(1) for all i.

(C.2.14) suggests an average consistency of β̂†
ij rather than the consistency of β̂†

ij for all i and

j individually. To show individual consistency, we consider an infeasible estimator:

b̂ij = argmin
bij

(Yij −Xijbij)
′MKi (Yij −Xijbij) .

Obviously, for all i and j, we have b̂ij − bij = op(1). Notice that each β̂†
ij satisfies

β̂†
ij = argmin

bij

(Yij −Xijbij)
′M

K̂†
i
(Yij −Xijbij)

Therefore, using T−1
∥∥∥MK̂†

i
Ki

∥∥∥ = op(1), it is straightforward that β̂†
ij − b̂ij = op(1). Finally, we

achieve the desired result that β̂†
ij − bij = op(1) for all i and j.

Q.E.D
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Proof of Lemma C.2.2.

Using Yij = Xijβij +Kiθij + eij , (C.2.7) can be expanded as
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eije
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It then follows that

K̂†
iĤ

†−1
i −Ki =

(
J †
i,1 + · · ·+ J †

i,8

)
Π†

i (C.2.15)

where Π†
i =

(
K†′

i K̂i/T
)−1

(Θ′
iΘi/Ni)

−1. The rest of the proof follows from Lemma C.1.2 with

slight modification by replacing Op

(∥∥∥β̂ − β
∥∥∥) terms with Op (Bi,NiT ). The details are omitted.

Q.E.D

Proof of Lemma C.2.3.

Using the result from Lemma C.2.2, these results can be shown in a similar way as the ones

of Lemma C.1.3 with slight modification by replacing Op

(∥∥∥β̂ − β
∥∥∥) terms with Op (Bi,NiT ). The

details are omitted.

Q.E.D
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