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Abstract
In this thesis, data injection attacks (DIAs) to smart grid is studied from two perspectives:

centralized and decentralized systems.
The fundamental limits of the data injection attacks are characterized by the information

measures. Specifically, two metrics, mutual information and the Kullback-Leibler (KL) di-
vergence, quantifies the disruption caused by the attacks and the corresponding stealthiness,
respectively.

From the perspective of centralized system, a unique attacker constructs the attacks that
jointly minimize the mutual information acquired from the measurements about the state
variables and the KL divergence between the distribution of measurements with and without
attacks. One of the main contributions in the centralized attack construction is the sparsity
constraints. Two scenarios where the attacks between different locations are independent
and correlated are studied, respectively. In independent attacks, the challenge of the com-
binatorial character of identifying the support of the sparse attack vector is circumvented
by obtaining the closed-form solution to single measurement attack problem followed by a
greedy construction that leverages the insight distilled. In correlated attacks, the challenge
is tackled by incorporating an additional measurement that yields sequential sensor selection
problem. The sequential procedure allows the attacker to identify the additional sensor first
and character the corresponding covariances between the additional measurement and the
compromised measurements. Following the studies on sparse attacks, a novel metric that
describes the vulnerability of the measurements on smart grids to data integrity attacks is
proposed. The new metric, coined vulnerability index (VuIx), leverages information theo-
retic measures to assess the attack effect on the fundamental limits of the disruption and
detection tradeoff. The result of computing the VuIx of the measurements in the system
yields an ordering of the measurements vulnerability based on the level of the exposure to
data integrity attacks. The assessment on the measurements vulnerability of IEEE test sys-
tems observes that power injection measurements are overwhelmingly more vulnerable to
data integrity attacks than power flow measurements.

From the perspective of decentralized system, the attack constructions are determined
by a group of attackers in a cooperative manner. The interaction between the attackers is
formulated as a game with a normal form. The uniqueness of the Nash Equilibrium (NE) is
characterized in different games where the attackers have different objectives. Closed-form
expression for the best response of the attackers in different games are obtained and followed
by best response dynamics that leads to the NEs. The sparsity constraint is considered
in decentralized system where the attackers have limited access to sensors. The attack
construction with sparsity constraints in decentralized system is also formulated as a game
with a normal form. The uniqueness of the NE and the closed-form expression for the best
response are obtained.

Keywords: Data injection attacks, information theoretic security, sparsity, measure-
ment vulnerability, decentralized attacks
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Chapter 1

Introduction

1.1 Background and Motivation

Power system is a critical infrastructure for the functioning of both industry and daily activ-
ities. The traditional electricity grids have been upgraded into smart grids (SG) by monitor-
ing and control processes that are supported by Supervisory Control and Data Acquisition
(SCADA) systems and more recently by advanced communication and control technologies.

The increasing interconnectivity between communications, control systems, and smart
grids gives rise to numerous benefits. While the implementation of advanced communication
and control procedures improves system operation, this cyber layer exposes the systems to
malicious attacks that exploit the vulnerabilities of the sensing and communication infras-
tructure.

One of the main threats faced by smart grid is data injection attacks (DIAs) that alter
the state estimate of the system obtained from different estimation methods by compro-
mising the system measurements without triggering bad data detection mechanisms set by
the system operator [1–3]. State estimate is the key in the decision on optimal power flow
(OPF), frequency control (FC) and energy management system (EMS), etc. [4] Hence, com-
promised measurements fed to the state estimation (SE) damage efficient, scalable, and
secure operation of smart grids [5].

A large body of literature studies the case in which attack detection is performed by
a residual test (RT) [6] under the assumption that state estimation is deterministic both
in centralized and decentralized scenarios [7–10]. In this setting, attack construction that
requires access to a small set of measurements yields l0-norm minimization problems, which
are in general hard to solve. In [11], it is shown that the operator can secure a small fraction
of measurements to make undetectable attack constructions significantly harder.

The unprecedented data acquisition capabilities facilitate the efficient operation of the
smart grid but also increase the threats posed by DIAs given the fact that accurate stochastic
models of the system can be generated. This problem is cast in a Bayesian framework in [12].
In this Bayesian paradigm, the attack detection can be formulated as the likelihood ratio
test (LRT) [13]. Alternatively, machine learning methods [14] can be employed to learn the
geometry of the data generated by the systems. Data analytics are increasingly important
in the operation of smart grid and they are the central to advanced estimation, control,

1
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and management of the smart grid [15]. For this reason, it is essential to study attack
constructions in fundamental terms to understand the impact over a wide range of data
analysis paradigms.

Stealth data injection attacks within Bayesian framework were first introduced in [16] and
then generalized in [17]. In this research, the attack construction uses information theoretic
measures: (a) the mutual information between the state variables and the measurements
under attacks; and (b) Kullback-Leibler (KL) divergence between the distributions of mea-
surements with attacks and without attacks. The rationale of measuring the disruption of the
attack in terms of mutual information stems from the fact that it characterizes in fundamen-
tal terms the amount of information, understood as evidence, collected by the observations
about the state variables. That being the case, by minimizing the mutual information the
attacker limits the information that the measurements contain about the state variables,
and ultimately, disrupts the state estimation in a fundamental sense [18]. The rationale for
minimizing the KL divergence between the distributions as means to minimize the proba-
bility of attack detection stems from the Chernoff-Stein Lemma [19, Th. 11.8.3]. Within
this framework, the attack is constructed with probability distribution function that jointly
minimizes the the mutual information and KL divergence with a weighting parameter that
governs the tradeoff between these two objectives.

The state variables are assumed to follow a Gaussian distribution in [12,16,17,20]. From
a practical point of view, the adoption of Gaussian random vectors as the data injection
attack vectors is validated given the data shared by Electricity North West Limited [21,22].
However, both the stealth attacks constructed in [16] and [17] require that the attacker
tampers with all the measurements in the system, which is not feasible in most scenarios.
Information theoretic attack constructions that incorporate sparsity constraints and the
construction that effectively exploits the correlation between attack variables are still an
open problem that requires novel approaches.

Apart from the centralized attacks where there is only one attacker, in decentralized attacks
with multiple attackers operating over a larger number of processes poses the framework for
the exploration of game theoretic techniques [23]. A comprehensive description of existing
game theoretic applications in smart grids is given in [24]. From the perspective of DIAs,
in [25], centralized data injection attacks are studied in a game theoretic setting in which
the operator performs least square (LS) estimation. Decentralized attack construction with
interaction between several attackers is studied with a game formulation in a normal form
where the utility captures the main objectives in attack constructions. The game formulation
results in a potential game where the existence of a Nash Equilibrium (NE) is claimed and the
convergence of best response dynamics (BRD) to a NE. However, the case in which attackers
disrupt the state estimation process in an uncoordinated way is still not well understood.
Furthermore, the impact of making the statistical structure of the state variables available
to attackers in decentralized settings has not been studied either.

1.2 Contributions

The following are the main contributions of this thesis:
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(1) An information theoretic independent sparse attack constructions. The
attack constructions assume that the attack vector consists of independent entries, and
therefore, requires no communication between different attacked locations. This thesis pro-
posed a cost function that combines the mutual information and the KL divergence that is
amenable to sparse attack constructions. This thesis theoretically characterized the single
observation attack case by proving that the resulting cost function is convex and obtaining
the optimal attack construction for this case. This thesis distilled the insight obtained from
the single measurement attack case to propose a k-sparse attack via a greedy algorithm that
overcomes the combinatorial challenge posed by the sensor selection problem [20].

(2) An information theoretic correlated sparse attack constructions. The attack
constructions are formulated as the design of a multi-objective optimization problem that
aims to minimize the mutual information while limiting the Kullback-Leibler divergence. A
heuristic greedy algorithm for the correlated attack construction are proposed where corre-
lation between the attack vector entries results in larger disruption and smaller probability
of detection at the expense of coordination between different locations [26].

(3) A novel metric that describes the vulnerability of the measurements in
smart grid to data integrity attacks. The new metric, coined vulnerability index (VuIx),
leverages information theoretic measures to assess the attack effect on the fundamental
limits of the disruption and detection tradeoff. The result of computing the VuIx of the
measurements in the system yields an ordering of their vulnerability based on the level of
exposure to data integrity attacks. This new framework is used to assess the measurement
vulnerability of IEEE 9-bus and 30-bus test systems and it is observed that power injection
measurements are overwhelmingly more vulnerable to data integrity attacks than power flow
measurements. A detailed numerical evaluation of the VuIx values for IEEE test systems is
provided [27].

(4) Decentralized stealth attack constructions with coordination between the
attackers. The objectives of the attacks are to minimize the mutual information between
the state variables and measurements while constraining the Kullback-Leibler divergence
between the distribution of the measurements under attacks and the distribution of the
measurements without attacks. The attack constructions are formulated as random Gaus-
sian attacks. The proposed information metrics adopted measure the disruption and attack
detection both globally and locally. The decentralized attack constructions are formulated
in a framework of normal games. The global and local information metrics yield games with
global and local objectives in disruption and attack detection. This thesis proved the games
are potential games and the convexity of the potential functions followed by the uniqueness
and the achievability of the Nash Equilibrium, accordingly. This thesis proposed a best
response dynamics to achieve the Nash Equilibrium of the games. This thesis numerically
evaluates the performance of the proposed decentralized stealth random attacks on IEEE
test systems and show it is feasible to exploit coordination with game theoretic techniques
in decentralized attack constructions.

(5) Decentralized stealth attack constructions with coordination and spar-
sity constraints. Specifically, the attack constructions are formulated as random Gaussian
attacks that minimize the mutual information between the state variables and the measure-
ments while constraining KL divergence between the distribution of the measurements under
attacks and the distribution of the measurements without attacks. The sparsity constraints
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limit the number of measurements that are potentially compromised. This thesis assumes
each attacker has access to a set of measurements and the sets of measurements form a
partition of the set of measurements in the systems. The attackers minimize the information
theoretic cost of launching a random attack to one of the measurements that it has access
to in a coordinated fashion. The decentralized sparse attacks with partition is modelled in
a game form that yields a potential game. The uniqueness and achievability of the Nash
Equilibrium in the game are obtained. A best response dynamics is proposed to achieve the
NE.

1.3 Outline

This thesis is divided into five parts as follows:

• Part 1. These two chapters describe the system model of classical DIAs and attack
detection methods as well as DIAs that is mainly studied in this thesis. It also establishes
the difference between centralized and decentralized systems.

- Chapter 2. This chapter presents the mathematical formulation of the system
model and establishes the classical DIAs and attack detection methods. This chapter
also presents the system model of DIAs and the corresponding optimal attack detection.

- Chapter 3. This chapter presents main results on DIAs in the literature in cen-
tralized systems and decentralized systems.

•Part II. These three chapters present the main results on DIAs with sparsity constraints
and the analysis on measurement vulnerability in centralized systems.

- Chapter 4. This chapter presents the main results for independent sparse DIAs.

- Chapter 5. This chapter presents the main results for correlated sparse DIAs.

- Chapter 6. This chapter presents the main results for the analysis on measurement
vulnerability.

• Part III. These two chapters develop the interaction between multiple attackers with
a game framework in decentralized systems.

- Chapter 7. This chapter presents the main results for stealth DIAs in a decentral-
ized system.

- Chapter 8. This chapter presents the main results for stealth DIAs with sparsity
constraints in a decentralized system.

• Part IV.

- Chapter 9 summaries the conclusions and future work of this thesis.
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• Part V. The Appendix contains fundamental concepts on information theory that are
used along this thesis and the proofs of the main results from Chapter 4 to Chapter 8.

- Appendix A. This appendix contains the analytic expression of mutual information
between two random variables with Gaussian distributions.

- Appendix B. This appendix contains the analytical expression of KL divergence
between two random variables with Gaussian distributions.

- Appendix C. This appendix contains the analytical solution of optimal single
sensor attack construction.

- Appendix D. This appendix contains the analytical expression of the difference
between the information theoretic cost with different covariance matrix of the random
attack vector.

- Appendix E. This appendix contains the proof of the convexity of the equivalent
optimization problem with respect to the variance of a random attack variable in the
sequential sensor selection procedure.

- Appendix F. This appendix contains the analytical expression of the optimal
variance of a random attack variable in the sequential sensor selection procedure.

- Appendix G. This appendix contains the analytical expression of the mutual
information between a n-dimensional random vector with Gaussian distribution and a
one dimension random variable with Gaussian distribution.

- Appendix H. This appendix contains the analytical expression of the KL divergence
between two one dimensional random variables with Gaussian distributions.

- Appendix I. This appendix contains the proof of the convexity of the cost function
in game G3.

- Appendix J. This appendix contains the equivalent cost function for one attacker
in game G1.

- Appendix K. This appendix contains the equivalent cost function for one attacker
in game G2.

- Appendix L. This appendix contains the equivalent cost function for one attacker
in game G3.

- Appendix M. This appendix contains the analytical solution of the best response
for one attacker in game G1.
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- Appendix N. This appendix contains the analytical solution of the best response
for one attacker in game G2.

- Appendix O. This appendix contains the analytical solution of the best response
for one attacker in game G3.

1.4 Disseminated Results

The results from this research are disseminated in the following:

• Journals

- X. Ye, I. Esnaola, S. M. Perlaza, R. F. Harrison, “Stealth Data Injection Attacks
with Sparsity Constraints”. IEEE Transaction on Smart Grid(Early Access), 2023.

• Conferences

- X. Ye, I. Esnaola, S. M. Perlaza, R. F. Harrison, “Information theoretic data
injection attacks with sparsity constraints”, in Proc. 2020 IEEE International Con-
ference on Communications, Control, and Computing Technologies for Smart Grids
(SmartGridComm), virtual conference, Nov. 11 - 13, 2020, pp. 1-6.

• Preprints and drafts

- X. Ye, I. Esnaola, S. M. Perlaza, R. F. Harrison, “An information theoretic
vulnerability metric for data integrity attacks on smart grids”. This work has been
submitted to IET Smart Grid on Nov. 4, 2022.

- X. Ye, I. Esnaola, S. M. Perlaza, R. F. Harrison, “Decentralized Data Injection
Attacks on Cyber-physical systems”. To be submitted to IEEE Transactions on Infor-
mation Forensics and Security.

• INRIA Technical Reports

- X. Ye, I. Esnaola, S. M. Perlaza, R. F. Harrison, “Stealth Data Injection Attacks
with Sparsity Constraints”, Technical Report, Inria, Centre de Recherche de Sophia
Antipolis Méditérranée, Sophia Antipolis, Sep., 2022.

• Oral Presentation

- X. Ye, I. Esnaola, S. M. Perlaza, R. F. Harrison, “Information theoretic data
injection attacks with sparsity constraints”, in Proc. 2020 IEEE International Con-
ference on Communications, Control, and Computing Technologies for Smart Grids
(SmartGridComm), virtual conference, Nov., 2020.

- X. Ye, I. Esnaola, “Stealth Data Injection Attacks with Sparsity Constraints”, in
ACSE PGR Symp. (Departmental PhD Symp.), Sheffield, UK, Mar. 2021.

• Poster Presentation
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- X. Ye, I. Esnaola, S. M. Perlaza, R. F. Harrison, “Stealth Data Injection At-
tacks with Sparsity Constraints”, in ACSE PGR Symp. (Departmental PhD Symp.),
Sheffield, UK, Mar. 2021. Best Poster Award.



Chapter 2

Data Injection Attacks

This chapter introduces the system model and the data injection attacks (DIAs) in smart
grid. Section 2.1 introduces the mathematical formulation of a power system. Section 2.2
presents the classical DIAs and the attack detection procedures. The chapter concludes with
Section 2.3, which focuses on DIA constructions in a Bayesian framework.

2.1 Mathematical Formulation

2.1.1 Observation Model

Fig. 2.1 depicts a general two-port π-model for the branches in the considered IEEE test
systems. Note that gij + jbij is the admittance of the series branch connecting bus i and bus
j and gsi + jbsi is the admittance of the shunt branch connected at bus i, the measurements
of the power system in (2.3) can be expressed in terms of the vector of the state variables
in (2.4). Specifically, the active power injection and reactive power injection at bus i are

bus i

gij bij

bus j

gsi + jbsi gsj + jbsj

Figure 2.1: Two-port π-model of a network branch.

Pi =Vi
∑
j∈Ni

Vj(Gijcosθij +Bijsinθij), (2.1a)

Qi =Vi
∑
j∈Ni

Vj(Gijsinθij −Bijcosθij), (2.1b)

8
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respectively [4], where θij
∆
= θi−θj and Gij+jBij is the entry of the complex bus admittance

matrix in the i-th row and the j-th column. The active power flow and reactive power flow
from bus i to bus j are

Pij =V
2
i (gsi + gij)− ViVj(gijcosθij + bijsinθij), (2.2a)

Qij =−V 2
i (bsi + bij)− ViVj(gijsinθij − bijcosθij), (2.2b)

A standard topology of the IEEE test system is formed by general two-port branch networks
as in Fig. 2.1. Specifically, Figure. 2.2 depicts the standard topology of the IEEE 14 bus test
system where there are 14 buses in the system. Any two physically connected buses, e.g., bus
i and bus j, form a Two-port π-model of a network branch in Fig. 2.1. The measurements
from bus i are the active power injection Pi and reactive power injection Qi as in (2.1) as
well as the active power flow Pij and reactive power flow Qij from bus i to bus j as in (2.2).
The entries of the measurement vector of the system denoted as Y m are the active power

Figure 2.2: Topology of the IEEE 14 bus test system.

injection, reactive power injection, active power flow and reactive power flow from all the
buses. To specify the vector of the measurements Y m, consider the following definition.

Definition 1 (Vector of measurements). Consider a power system with N ∈ Z+ buses. Let
Ni be the set of buses that are physically connected to bus i and Y m ∈ Rm be the vector of
measurements in the system such that

Y m ∆
= [. . . , Pij, . . . , Qij, . . . , P1, P2, . . . , PN , Q1, Q2, . . . , QN ]

T, (2.3)

where Pi ∈ R and Qi ∈ R, with i ∈ {1, 2, . . . , N}, are the active power injection and reactive
power injection at bus i, respectively; and Pij and Qij, with i ∈ {1, 2, . . . , N} and j ∈ Ni,
are the active power flow and the reactive power flow from bus i to bus j, respectively.
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Note that Pi ∈ R+ and Qi ∈ R+ imply that bus i consumes active power and reactive
power from the main grid, respectively [4]. Note that Pi ∈ R− and Qi ∈ R− imply that
bus i injects active power and reactive power to the main grid, respectively [4]. Similarly,
Pij ∈ R+ and Qij ∈ R+ imply that bus i transfers active power and reactive power to bus j,
respectively [4]. Note that Pij ∈ R− and Qij ∈ R− imply that bus i takes active power and
reactive power from bus j, respectively [4]. The measurement vector Y m is transmitted to
estimate the state variables of the system denoted as x. To specify the vector of the state
variables of a power system, consider the following definition.

Definition 2 (Vector of state variables). Consider a power system with N ∈ Z+ buses and
assume bus 1 is chosen as the reference bus such that the phase angle of bus 1 is set to the
arbitrary value zero. Let x ∈ Rn be the vector of state variables of the system such that

x
∆
= [θ2, θ3, . . . , θN , V1, V2, . . . , VN ]

T, (2.4)

where θi ∈ [−π, π) and Vi ∈ R, with i ∈ {1, 2, . . . , N}, are the phase angle and voltage
magnitude of bus i, respectively.

Note that there are 2N − 1 state variables in a N bus system where N variables are bus
voltage magnitudes and N − 1 variables are phase angles.

In general, the observation model in which the operation state of a power system is de-
scribed by a state vector x ∈ Rn and observed through the acquisition function F : Rn → Rm

such that
Y m = F (x) + Zm, (2.5)

where Y m ∈ Rm is the random vector of measurements provided by the Supervisory Control
and Data Acquisition (SCADA) system and corrupted by additive white Gaussian noise
(AWGN) Zm ∈ Rm introduced by the sensors, c.f., [4, 5]. The noise is described by the

random vector Zm ∆
= (Z1, Z2, . . . , Zm)

T ∈ Rm in (2.5) such that [4, 5]

Zm ∼ N (0, σ2Im), (2.6)

where 0 = (0, 0, . . . , 0)T and σ2 ∈ R+ is the variance of the noise. For all i ∈ {1, 2, . . . ,m},
the random variable Zi that corresponds to the noise added to measurement i satisfies
Zi ∼ N (0, σ2).

2.1.2 Observation Model with Linearized Dynamics

The observation model Y m = F (x) + Zm in (2.5) denotes the relationship between the
measurements Y m given in (2.3) and the state variables of the system x in (2.4). Note that the
relationships between power and the state of the buses in the system given in (2.1) and (2.2)
are nonlinear. The case where the nonlinearity is considered results in Alternating Current
(AC) model as described in Section 2.1.1. This work linearizes the nonlinear observation
functions F : Rn → Rm at a valid operation point that leads to significantly simplified
linearized observation model. Let x̄ be one of the valid operation points. The Jacobian
matrix of the observation model denoted by H ∈ Rm×n at operation point x̄ ∈ Rn is

Hx=x̄
∆
=

∂

∂x
F (x)|x=x̄. (2.7)
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Specifically, for the vector of measurements Y m in (2.3) and the vector of the state variables
x in (2.4), the Jacobian matrix is given by

Hx=x̄ =



∂
∂x1

Pij
∂

∂x2
Pij . . . ∂

∂xn
Pij

. . . . . . . . . . . .
∂

∂x1
Qij

∂
∂x2

Qij . . . ∂
∂xn

Qij

. . . . . . . . . . . .
∂

∂x1
Pi

∂
∂x2

Pi . . . ∂
∂xn

Pi

. . . . . . . . . . . .
∂

∂x1
Qi

∂
∂x2

Qi . . . ∂
∂xn

Qi


|x=x̄

, (2.8)

where x̄
∆
= (x1,x2, . . . ,xn). Particularly, from (2.4), the Jacobian matrix at the operation

point x̄ is

Hx=x̄ =



∂
∂θc
Pij . . . . . . ∂

∂Vl
Pij

. . . . . . . . . . . .
∂
∂θc
Qij . . . . . . ∂

∂Vl
Qij

. . . . . . . . . . . .
∂
∂θc
Pi . . . . . . ∂

∂Vl
Pi

. . . . . . . . . . . .
∂
∂θc
Qi . . . . . . ∂

∂Vl
Qi


|x=x̄,

(2.9)

where c ∈ {2, 3, . . . , N} and l ∈ {1, 2, . . . , N}; and the entries corresponding to the measure-
ments of active power flow and reactive power flow are [4]

∂

∂θl
Pij =


ViVj(gijsinθij − bijcosθij), l = i

−ViVj(gijsinθij − bijcosθij), l = j

0, l ̸= i and l ̸= j

(2.10a)

∂

∂Vl
Pij =


−Vj(gijcosθij + bijsinθij) + 2(gij + gsi)Vi, l = i

−Vj(gijcosθij + bijsinθij), l = j

0, l ̸= i and l ̸= j

(2.10b)

and

∂

∂θl
Qij =


−ViVj(gijcosθij + bijsinθij), l = i

ViVj(gijcosθij + bijsinθij), l = j

0, l ̸= i and l ̸= j

(2.10c)

∂

∂Vl
Qij =


−Vj(gijsinθij − bijcosθij)− 2Vi(bij + bsi), l = i

−Vi(gijsinθij − bijcosθij), l = j

0, l ̸= i and l ̸= j,

(2.10d)
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respectively. The entries corresponding to the measurements of active power injection and
reactive power injection are [4]

∂

∂θl
Pi =


∑

j∈Ni
ViVj(−Gijsinθij +Bijcosθij)− V 2

i Bii, l = i

ViVj(Gijsinθij −Bijcosθij), l ∈ Ni

0, l ̸= i and l /∈ Ni

(2.11a)

∂

∂Vl
Pi =


∑

j∈Ni
Vj(Gijcosθij +Bijsinθij) + ViGii, l = i

Vi(Gijcosθij +Bijsinθij), l ∈ Ni

0, l ̸= i and l /∈ Ni

(2.11b)

and

∂

∂θl
Qi =


∑

j∈Ni
ViVj(Gijcosθij +Bijsinθij)− V 2

i Gii, l = i

ViVj(−Gijcosθij −Bijsinθij), l ∈ Ni

0, l ̸= i and l /∈ Ni

(2.11c)

∂

∂Vl
Qi =


∑

j∈Ni
Vj(Gijsinθij −Bijcosθij) + ViBii, l = i

Vi(Gijsinθij −Bijcosθij), l ∈ Ni

0, l ̸= i and l /∈ Ni,

(2.11d)

respectively. Therefore, the observation model with linearized dynamics at the operation
point x̄ is 

...
Pij
...
Qij
...
Pi
...
Qi
...


=



∂
∂θl
Pij . . . . . . ∂

∂Vl
Pij

. . . . . . . . . . . .
∂
∂θl
Qij . . . . . . ∂

∂Vl
Qij

. . . . . . . . . . . .
∂
∂θl
Pi . . . . . . ∂

∂Vl
Pi

. . . . . . . . . . . .
∂
∂θl
Qi . . . . . . ∂

∂Vl
Qi





...
θi
...
Vi
...

+ Zm. (2.12)

Note that the Jacobian matrix is a description of the topology and the physical parameters
of a system.

The linearized observation model in (2.12) is further simplified to Direct Current (DC)
model by putting in place the following assumptions:

(1) All the voltage magnitudes are 1 at all buses, that is

[V1, V2, . . . , VN ]
T = 1. (2.13)

(2) The shunt susceptances gsi + jbsi of bus i and the series resistances gij on the power
lines from bus i to bus j in Fig. 2.1 are assumed to be:

gsi + jbsi =0 (2.14a)

gij =0. (2.14b)
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(3) The phase angles θij, with i ̸= j, between bus i and j, with i ∈ {1, 2, . . . , n} and
j ∈ {1, 2, . . . , n}, satisfy

θij = 0. (2.15)

Hence, the measurements only contain the active power and the state variables only contain
the phase angles of the buses. The following definition characterizes the state variables for
the DC model.

Definition 3 (State variables for the DC model). Consider a power system with N ∈ Z+

buses and assume bus 1 is chosen as the reference bus such that the phase angle of bus 1 is
set to 0. Let x ∈ Rn be the vector of state variables of the system such that

x
∆
= [θ2, θ3, . . . , θN ]

T, (2.16)

where θi ∈ [−π, π), with i ∈ {2, 3, . . . , N}, is the phase angle of bus i in the system.

The following definition characterizes the measurements for the DC model.

Definition 4 (Measurements for the DC model). Consider a power system with N ∈ Z+

buses. Let Y m ∈ Rm be the vector of measurements in the system such that

Y m ∆
= [Pij, . . . , P1, P2, . . . , PN ]

T, (2.17)

where Pi ∈ R, with i ∈ {1, 2, . . . , N}, is the active power injection to bus i. Let Ni be
the set of buses that are physically connected to bus i. The active power Pij ∈ R, with
i ∈ {1, 2, . . . , N} and j ∈ Ni, is the power flow from bus i to bus j.

Under the assumption of DC model in (2.13), (2.14) and (2.15), it yields the vector of
state variables and vector of measurements in (2.16) and (2.17), respectively. Therefore, the
DC observation model is defined in the following.

Definition 5 (DC observation model). Consider a power system with N ∈ Z+ buses. Let
x ∈ Rn be the vector of state variables in (2.16) and Y m ∈ Rm be the vector of measurements
in (2.17). The DC observation model is

Y m ∆
= Hx+ Zm, (2.18)

where the Jacobian matrix H ∈ Rm×n for the DC observation model is

H =


∂
∂θl
Pij

. . .
∂
∂θl
Pi

 , (2.19)

where θl and Pij are in (2.16) and (2.17), respectively. The entries of H that correspond to
active power flow measurements, that is, ∂

∂θl
Pij in (2.10a) are simplified as

∂

∂θl
Pij =

{
ViVj(gijsinθij − bijcosθij) = −bij, l = i

−ViVj(gijsinθij − bijcosθij) = bij, l = j,
(2.20)
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and the entries that correspond to active power injection to bus i, that is, ∂
∂θi
Pi in (2.11a)

are simplified as

∂

∂θl
Pi =

{
∂
∂θi

∑
j∈Ni

Pij = −
∑

j∈Ni
bij, l = i

∂
∂θj

∑
j∈Ni

Pij =
∑

j∈Ni
bij, l ∈ Ni

. (2.21)

The noise vector Zm is as defined in (2.6).

2.2 Classical DIAs and Attack Detection

2.2.1 State Estimation

The measurements are collected via a SCADA system and processed by a state estimator at
the control center to analyze the current state of the operation. The result of state estimation
is used for the purpose of optimal power flow, frequency control, economic dispatch, etc. [4]

The aim of the state estimator is to obtain an estimate of the state variables that mini-
mizes the cost of the function c : Rn → R as follows:

c(x, x̂), (2.22)

where x̂ ∈ Rn is the estimate of x. Given a vector of the measurements y ∈ Rm, one of the
commonly used cost functions is given by

c(x, x̂)
∆
= ∥y − F (x̂)∥2ℓ2 , (2.23)

where F : Rn → Rm is introduced in (2.5); and ∥y − F (x̂)∥ℓ2 is the ℓ2 norm of y − F (x̂).
Minimizing the cost in (2.23) yields the least squares (LS) estimate as

x̂∗ ∆
= argmin

x̂

∥y − F (x̂)∥2ℓ2 . (2.24)

Iterative approaches such as Gauss-Newton method are adopted to obtain the LS estimate
above [28, 29]. However, nonlinear LS estimate is computationally expensive and does not
always converge to a solution.

The corollaries provide the LS estimate for the DC model in (2.18).

Corollary 0.1. For the DC observation model in (2.18), let z ∈ Rm be a realization of the
system noise and y ∈ Rm be a the vector of measurements such that y = Hx + z. The LS
estimate is given by

x̂∗ ∆
= argmin

x̂
∥y −Hx̂∥2ℓ2 = (HTH)−1HTy, (2.25)

where y ∈ Rm is a vector of the measurements and the matrix H ∈ Rm×n is described
in (2.19).

Specifically, for the case where the vector of noise Zm in (2.18) satisfies Zm ∼ N (0,ΣZZ),
with ΣZZ ∈ Sm

+ , the following corollary provides the weighted least squares (WLS) estimate.
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Corollary 0.2. For the DC observation model in (2.18), let z ∈ Rm be a realization of the
system noise and y ∈ Rm be a the vector of measurements such that y = Hx+ z. The WLS
estimate is given by

x̂∗ ∆
= argmin

x̂

∥y −Hx̂∥2ℓ2 = (HTΣ−1
ZZH)−1HTΣ−1

ZZy, (2.26)

where y ∈ Rm is a vector of the measurements; the matrix H ∈ Rm×n is given in (2.19);
and the matrix ΣZZ ∈ Sm

+ is the covariance matrix for the vector of noise in (2.18).

2.2.2 Deterministic DIAs

DIAs, first introduced by [1, 2], are one of the main cyber threats that target the measure-
ments. Specifically, consider a malicious attack vector a ∈ Rm to the DC observation model
described in Definition 5. The DC observation model that emerges when compromised by a
malicious attack vector a is defined below.

Definition 6 (DC observation model under attacks). Let a ∈ Rm be the malicious attack
vector. The DC observation model under attacks is

Y m
A

∆
= Hx+ Zm + a, (2.27)

where Y m
A ∈ Rm denotes the vector of compromised measurements, the vector of state vari-

ables x ∈ Rn is described in (2.16), the Jacobian matrix H ∈ Rm×n is described in (2.19);
and the noise Zm ∈ Rm is described in (2.6).

Let z ∈ Rm be a realization of the system noise. Consequently, the vector of compromised
measurements denoted by ya is given by

ya
∆
= Hx+ z+ a (2.28)

2.2.3 Residual-based Anomaly Detection

As part of the state estimation, the system operator launches bad data detection prior to
state estimation. The commonly used bad data detection method is residual test [4,30] given
by

r
∆
= ∥y −Hx̂∥2ℓ2 , (2.29)

where r is the residual. The attack detection is cast as the following hypothesis testing
problem

Ho: r < r0 there is no attack, (2.30a)

H1: r ≥ r0 measurements are compromised, (2.30b)

where Ho and H1 are the null hypothesis and alternative hypothesis, respectively; r0 is a
detection threshold set by the operator. At time step t ∈ Z+, the system operator acquires
a vector of measurements y and decides whether the vector of measurements is produced
following a no attack scenario as described in (2.18) or is the result of an attack.
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When the noise vector Zm is assumed to follow a zero mean multivariate Gaussian dis-
tribution, that is, Zm ∼ N (0,ΣZZ) where ΣZZ ∈ Sm

+ is a covariance matrix such that only
diagonal entries are nonzero, the residual test can be cast as normalized residual test as
follows

rn = (y −Hx̂)TΣ−1
ZZ(y −Hx̂), (2.31)

where the normalized residual denoted by rn follows a chi-squared distribution with m − n
degrees of freedom, that is,

rn ∼ X 2
m−n. (2.32)

Hence, it follows that the hypothesis testing problem in normalized residual test is given by

Ho: rn ∈ X 2
m−n(γ) there is no attack, (2.33a)

H1: rn /∈ X 2
m−n(γ) measurements are compromised, (2.33b)

where γ ∈ [0, 1] is the significant level chosen by the operator.
The following lemma provides an attack construction that does not change the residual

in (2.29).

Lemma 1. [2] The vector of compromised measurements ya in (2.28) does not change the
residual in (2.29) if a is a linear combination of the column vectors of H, that is,

a = Hc, (2.34)

where c ∈ Rn is an arbitrary nonzero vector.

Proof. Let x̂a be the vector of state estimate obtained from ya. From Corollary 0.2, the
following holds

x̂a =(HTH)−1HTya (2.35)

=(HTH)−1HT(y + a) (2.36)

=x̂+ (HTH)−1HTa. (2.37)

For a = Hc, let ra be the residual under attacks. The following holds

ra =∥ya −Hx̂a∥2ℓ2 (2.38)

=∥y + a−H
(
x̂+ (HTH)−1HTa

)
∥2ℓ2 (2.39)

=∥y −Hx̂+
(
a−H(HTH)−1HTHc

)
∥2ℓ2 (2.40)

=∥y −Hx̂+ (Hc−Hc) ∥2ℓ2 (2.41)

=∥y −Hx̂∥2ℓ2 (2.42)

=r (2.43)

Therefore, the vector of compromised measurements ya does not change the residual in (2.29).
This completes the proof.
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Note that the injected error to the vector of state variables is

x̂a − x̂ (2.44)

=x̂+ (HTH)−1HTa− x̂ (2.45)

=(HTH)−1HTHc, (2.46)

=c (2.47)

where (2.45) holds from taking (2.37) into (2.44).

2.3 DIAs within a Bayesian Framework

Consider the system model in Definition 5 within a Bayesian framework in which the state
variables are modelled as random variables, that is

Xn ∼ PXn , (2.48)

where Xn ∈ Rn is a random vector that describes the state variables with a given dis-
tribution. The rationale for modelling state variables as a random process is to capture
the complexity and dynamic nature of power systems. Moreover, with the unprecedented
data acquisition capabilities available to cyberphysical systems, the attackers can even learn
the statistical structure of the system and incorporate the underlying stochastic process to
launch the attacks [17,20]. From the perspective of the operator, the introduction of stochas-
tic descriptors opens the door to information theoretic quantifications of the measurement
vulnerability.

The definition of DC random observation model is provided below.

Definition 7 (DC random observation model). Let Y m ∈ Rm be the random vector of
measurements and Xn ∈ Rn be the random vector of state variables. The DC random
observation model is

Y m = HXn + Zm, (2.49)

where the Jacobian matrix H ∈ Rm×n is described in (2.19); and the random vector of noise
Zm is given in (2.6).

2.3.1 State Estimation

The aim of state estimator is to obtain an estimate X̂n of the vector Xn from the vector
of measurements Y m. A widely used cost function in state estimation within the Bayesian
framework is mean square error (MSE) given by

E[∥Xn − X̂n∥2ℓ2 ]. (2.50)

By adopting a linear estimate, the resulting state estimate is X̂n = LY m, where L ∈ Rn×m

is the linear estimation matrix. That being the case, the optimal estimator that achieves the
minimum mean squared error (MMSE) is given by

M = argmin
L∈Rn×m

E[
1

n
∥Xn − LY m∥2ℓ2 ], (2.51)

where the expectation is taken with respect to Xn and Y m.
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Lemma 2. Under the assumption that Xn ∼ N (0,ΣXX) and a vector of measurements y,
the MMSE estimate is given by

x̂∗
MMSE = My, (2.52)

where,
M = ΣXXH

T(HΣXXH
T + σ2Im)

−1, (2.53)

and σ2 ∈ R+ is the variance of the system noise.

2.3.2 Random Attack Construction

Consider an additive random attack vector denoted by Am ∈ Rm to DC random observation
model in Definition 7. Note that the attack is modelled as a random process. The following
definition provides the DC model when random attacks are present.

Definition 8 (DC model with random attacks). Let Y m
A ∈ Rm be the random vector of

measurements compromised by random attacks A ∈ Rm and Xn ∈ Rn be the random vector
of state variables. The DC random observation model with random attacks is

Y m
A = HXn + Zm + Am, (2.54)

where the Jacobian matrix H ∈ Rm×n is given by (2.19); the random vector of noise Zm is
described in (2.6); and Am ∼ PAm where PAm is determined by the attacker.

The independence of the random attack vector and state variables implies that the at-
tacker does not need to know the distribution of the state variables to construct the attacks.

In this setting, the goal of the attacker is to hinder the accuracy of state estimate without
being detected. Therefore, two objectives are involved in the attack constructions: (1) the
disruption caused to the state estimate; (2) the probability of detection. From the attacker’s
point of view, the goal is to maximize the disruption or minimize the probability of detection
under certain constraints.

Let a ∈ Rm denote an attack vector, it follows that

ya = Hx+ z+ a. (2.55)

The optimal MMSE state estimate without attacks is given in Lemma 2, that is,

x̂∗ = My, (2.56)

where M is described in (2.53). Similarly, the MMSE state estimate under attack is

x̂∗
a =Mya

=M(y + a)

=x̂+Ma.

(2.57)

In this setting, the deviation of the state estimate is Ma. On the other hand, the probability
distribution under attacks, PY m

A
, determines the probability of attack detection. Let PD be

the probability of attack detection. Hence, it yields that

PD
∆
=

∫
S
dPY m

A
= E[1{L(ya)≥τ}], (2.58)
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where the integration domain S only contains the realizations of Y m
a that yield a likelihood

ratio value larger than τ and 1{·} is the indicator function. Specifically, the integration
domain is

S ∆
= {ya ∈ Rm : L(ya) ≥ τ}, (2.59)

where L(ya)
∆
= f1(ya)

f0(ya)
, and fi, i ∈ {0, 1} is the probability density function of a probability

distribution.
Let ∥Ma∥2ℓ2 denote the disruption caused by the attacks. It follows in the case where the

attacker aims at maximizing the disruption with a constraint on the probability of detection,
the objective function is given by

max
a

∥Ma∥2ℓ2 (2.60)

s.t. PD ≤ τ1,

where τ1 is the detection threshold set by the operator. Alternatively, in the case where the
attacker aims at minimizing the probability of detection with a constraint on the disruption,
the objective function is given by

min
a

PD (2.61)

s.t. ∥Ma∥2ℓ2 ≥ τ2,

where τ2 is the induced distortion threshold set by the operator. In [12] and [31], the trade-
off between attack distortion and probability of detection is cast as an optimization problem
given by (2.60). The tradeoff is studied in [32] and [33] in a dynamic setting.

2.3.3 Optimal Attack Detection

As a part of a security strategy, the operator implements an attack detection procedure prior
to performing state estimation. Attack detection is cast as a hypothesis testing problem given
by

Ho: There is no attack, (2.62a)

H1: Measurements are compromised. (2.62b)

The system operator obtains a vector of measurements Ȳ m and decides whether it is pro-
duced following a no attack scenario as in (2.49) or whether the measurements have been
compromised. In a Bayesian setting, the hypothesis test can be recast in terms of the prob-
ability density functions (pdf) induced by the distribution of the measurements. Let P1 and
P0 be the distributions of the vector of measurements with attacks and without attacks,
respectively. Hence, it follows that the hypotheses in (2.62) are

Ho: Ȳ
m ∼ P0, (2.63a)

H1: Ȳ
m ∼ P1. (2.63b)

A test to determine what distribution generates the observation data is a deterministic test
T : Rm → {0, 1}. Given an observation vector ȳ, let T (ȳ) = 0 denote the case in which
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the test decides Ho upon the observation of ȳ; and T (ȳ) = 1 the case in which the test
decides H1. The performance of the test is assessed in terms of the Type-I error, denoted by

α
∆
= P

[
T
(
Ȳ m
)
= 1
]
, with Ȳ m ∼ P0; and the Type-II error, denoted by β

∆
= P

[
T
(
Ȳ m
)
= 0
]
,

with Ȳ m ∼ P1. Table 2.1 summarizes the Type-I and Type-II error in the binary hypothesis
testing. In a Neyman-Person, the decision rule aims to minimize the Type-II error β given

Table 2.1: Type-I error and Type-II error in binary hypothesis testing

Accept Ho Reject Ho

Ho is true ✓ Type-I error (false alarm)
H1 is true Type-II error (miss) ✓

the constraint that the Type-I error α satisfies α ≤ α′, with α′ ∈ [0, 1]. The following
lemma provides the optimality of the likelihood ratio test (LRT) for the hypothesis test
given in (2.63).

Lemma 3. [34, Proposition II.D.1: Neyman-Pearson Lemma] Given the hypothesis testing
problem in (2.63), among all the tests that achieve probability of Type-I error α such that
α ≤ α′, the LRT given by

T (ȳ) = 1{L(ȳ)⩾τ}, (2.64)

where T (ȳ) is the likelihood ratio, that is,

L(ȳ) =
f1(ȳ)

f0(ȳ)

H1

≷
H0

τ, (2.65)

achieves the minimum probability of Type-II error β, where τ is a decision threshold that
achieves Type-I error α = α′, and the functions f1 and f0 are the probability density function
(pdf) of P1 and P0, respectively.

Note that changing the value of τ results in changes to the tradeoff between Type-I and
Type-II errors.



Chapter 3

State of the Art

In this chapter, the research results on DIAs from the perspectives of centralized and de-
centralized scenarios are summaried. In a centralized system, there exists a unique con-
troller [35]. Specifically, in DIAs, the term centralized attacks refers to the case where DIAs
are determined by one attacker, that is, the unique attacker decides the attack vector a ∈ Rm.
On the other hand, the nature of the configuration of smart grid, e.g., microgrid integra-
tion [36], electric vehicle to grid (V2G) [37], yields a decentralized system in power flow
control (PFC), energy management system (EMS) [38], etc. [39] In decentralized scenario,
DIAs is referred to as decentralized attacks where several attackers determined the attack
vector jointly [13]. The main research on DIAs includes three aspects and the corresponding
challenges are listed in Table 3.1.

Table 3.1: Main Research on DIAs

Research on DIAs Aims Challenges

DIAs constructions
Construction of
attack vector

without being detected

Sparsity constraints [9, 20, 40–44]
Incomplete system information [45–51]

Falsified topology [52–55]
AC power flow Model [56]

Attacks within Bayesian framework [17,26]
Decentralized attacks [31]

The impacts of DIAs
Analysis of the impacts

on power system

Economic attacks [57–60]
Load redistribution attacks [61, 62]

Energy deceiving attacks [63]

Defense strategies
against DIAs

Defence strategies
for

system operators

Vulnerable measurements
protection [11,42,64]

PMU-based protection [65–67]
Other defence mechanism [68–73]

The main research results and contributions of this thesis are listed in Table 3. This
thesis proposed independent and correlated attacks in centralized systems as well as the
measurement vulnerability analysis. In decentralized systems, decentralized attacks where

21
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the attackers coordinate in a game formula are proposed. The sparsity constraints in decen-
tralized attacks are considered.

Table 3.2: Contributions of this thesis

One attacker Results Convergence

Centralized systems
Y

Independent attacks Y
Correlated attacks Y

Measurement vulnerability analysis N/A

Decentralized systems
N

Decentralized attacks Y
Decentralized attacks with sparsity Y

Consider the system model under attack vector a ∈ Rm in Definition 6, that is,

Y m
A = Hx+ Zm + a, (3.1)

where Y m
A ∈ Rm is the random vector of compromised measurements, the matrix H ∈ Rm×n

is the Jacobian matrix described in (2.19), the vector x ∈ Rn is the vector of state variables
and the noise Zm is introduced in (2.6).

This chapter introduces and reviews the main results on centralized attacks with the
challenges that include: sparsity constraints in Section 3.1, incomplete system information
in Section 3.2, falsified topology in Section 3.3, and AC power flow model in Section 3.4.
The scenario with multiple attackers is described in Section 3.6.

3.1 Sparse Attacks

The attack vector a ∈ Rm in (3.1) that relies on having access to all the measurements
satisfies

card (supp (a)) = m, (3.2)

where card (supp (a)) denotes the cardinality of the set supp(a); and supp(a) is the support
of the vector a defined as follows:

supp(a)
∆
= {i : P [ai = 0] = 0} . (3.3)

Given that the operator is likely to have access control policies in place [74], the assumption
that the attack construction has access to all the measurements in the system is costly and
limits the feasibility of the attack.

Attack constructions that have access to a subset of the measurements are referred to as
sparse attacks. Typically, the sparsity constraints are incorporated to the attack construc-
tion formulation by imposing additional constraints to the optimization problem describing
the attack construction. Specifically, attack constructions that require access to k < m
measurements on the system yields k-sparse attack constructions, that is,

card (supp (a)) = k < m. (3.4)
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In view of this, the attacker constructs a sparse attack vector that chooses k indices
frommmeasurements and puts nonzero mass on the indices selected for the attack. Lemma 1
states that the attack vector a that satisfies the constraint a = Hc is undetectable for all
c ∈ Rn by a residual-based detection. Let ∥a∥ℓ0 be the ℓ0 norm of the vector a, that is, total
number of nonzero entries of vector a. The k-sparse attack construction problem is cast as
follows [2]:

min
a∈Rm

∥a∥ℓ0 (3.5)

s.t. a = Hc, a ̸= 0,

ai = 0 for all i ∈ {1, 2, . . . ,m} \ C,

where ∥a∥ℓ0 is the ℓ0 norm of vector a and C is the set of measurements that the attacker
has access to. However, the optimization problem in (3.5) is NP-hard (Nondeterministic
Polynomial) [75, Th. 2]. A problem is NP-hard if the problem is not solvable in polynomial
time but can be verified in polynomial time [76]. As in subset sum problem [77] and travelling
salesman problem [78], the problem in (3.5) is a combinatorial optimization problem where a
nonzero vector c yields a configuration of combinatorial of the columns of Jacobian matrixH.

A brute force approach to the optimization problem in (3.5) is not practical due to the
fact that power systems often operate with high dimensional state variable descriptions that
limit the choice of practical computationally feasible approaches [79]. Indeed, the number
of support choices for the attack grows exponentially with the dimension of the system, and
therefore, the optimization domain quickly becomes intractable. Heuristic algorithms and
greedy algorithms such as matching pursuit [80] and orthogonal matching pursuit [81] are
widely used as a powerful tool to circumvent NP-hard problems and provide good perfor-
mance by trading off optimality for low complexity [82,83]. For instance, a heuristic approach
proposed in [2] performs column transformations to the matrix H to reduce the number of
nonzeros in the resulting transformed H until the sparsity constraint k < m is satisfied.
Essentially, this approach induces sparsity by finding a linear combination of the columns of
H to solve the minimization problem in (3.5). Given the fact that the Jacobian matrix H is
usually a sparse and rank deficient matrix in real power systems [4,5], the heuristic approach
is less time consuming. However, a successful attack construction is not guaranteed even
if the attack exists, nor does it guarantee the minimal support for the constructed attack
vector.

To manipulate a predetermined number of state variables s ∈ {1, 2, . . . , n}, the study
in [75] proposed a least effort attack model, i.e., the objective of the adversary is to identify
the minimum number of measurements that attacker has to compromise. The problem is
formulated as

min
c∈Rn

∥Hc∥ℓ0 (3.6)

s.t. ∥c∥ℓ0 = s.

The rationale for formulating the aim of manipulating s state variables according to the
constraint in (3.6) comes from (2.44). In (2.44), the vector c is the difference between the
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state estimate with attacks and without attacks. Hence, constraining the ℓ0 norm of c to s
yields that the number of state variables is s.

The following theorem characterizes the number of measurements to be compromised
given s state variables to manipulate.

Theorem 4. [75, Th. 1] Let Γ = {i1, i2, . . . , is} be the set of state variables to manipulate,
that is, cij ̸= 0, with j ∈ {1, 2, . . . , s}, and Ni be the set of buses that are physically connected
to bus i. For the attack vector a = Hc, the following holds

∥a∥ℓ0 = s+ 3
is∑

j=i1

card (Qj)−
is−1∑
j=i1

card (Ej)− card (W) , (3.7)

where ∥a∥ℓ0 is the ℓ0 norm of a; card (Qj) is the cardinality of Qj; Qj
∆
= {i : i ∈ Nj \ Γ},

Ej
∆
= {i : i ∈ Nj, i ∈ Np, p ∈ Γ, p > j} and W ∆

= {i : i ∈ Γ, card (Qi) = 0}.

Theorem 4 characterizes the number of the measurements that need to be compromised
in order to manipulate s state variables. The optimal set of measurements is identified by
a linear transformation-based approach in [75], but the calculation of the transformation is
heavy due to the possible column exchanges of H. Alternatively, a heuristic-based approach
for large systems is proposed.

In fact, a large body of literature in solving NP-hard problems focuses on heuristic algo-
rithms or greedy algorithms. A heuristic algorithm is proposed in [40] where an upper bound
on the number of the measurements that need to be compromised is given for a successful
sparse attack, that is, an upper bound on ∥a∥ℓ0 for the optimization problem in (3.5). The
minimal number of measurements need to be compromised is also studied in [41] and [42].
The necessary and sufficient condition on the matrix H for the attack vector to bypass under
residual detection is also provided therein. Meanwhile, in [42], the same insight is obtained
via a graph theoretic analysis.

Solving this problem is challenging in general owing to the combinatorial nature of sup-
port selection for the attack vector. In fact, minimizing ℓ0 norm in (3.5) is hard and no
algorithms are found yet to solve the ℓ0 norm minimization problem efficiently [84]. Alter-
natively, the ℓ0 norm minimization problem is relaxed to a convex ℓ1 minimization under
certain conditions in [82,85–87] and [88]. Specifically, the approach that relaxes the ℓ0 norm
to ℓl norm minimization problem in (3.5) is as follows:

min
a∈Rm

∥a∥ℓ1 (3.8)

s.t. a = Hc, a ̸= 0,

ai = 0 for all i ∈ {1, 2, . . . ,m} \ C,

where ∥a∥ℓ1 denotes the ℓ1 norm of a.
Generally, the ℓ1 norm minimization problem is not equivalent to the ℓ0 norm mini-

mization. However, under certain conditions, the ℓ1 relaxation can yield the same solution
as that of the ℓ0 minimization but determining when the equivalence holds is not trivial.
The main result in [43] shows that the ℓ1 relaxation approach achieves the exact solution
to the ℓ0 norm minimization under the assumption that no power injection to the buses is
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measured. The theorem is based on a polyhedral combinatorics argument rather than the
mutual coherence and restricted isometry property (RIP) given in [85]. This relaxation for
sparse attack constructions is also studied in [89] and [44]. In [44], the ℓ1 norm optimization
problem is formulated for both the centralized and distributed attack construction settings.
Specifically, the sparse attack is formulated as a standard compressed sensing (CS) problem
as follows:

min
c∈Rn

∥c∥ℓ1 (3.9)

s.t. a = Hc.

In [89], two security indices are proposed to identify the vulnerable measurements. The
k-sparse attack construction is studied via the convex optimization problem given by

min
c∈Rn

∥Hc∥ℓ1 (3.10)

s.t.
∑
i

Hj,ici = 1,

where Hj,i denotes the entry of the matrix H in the j-th row and the i-th column; and ci
denotes the i-th entry of the vector c. Note that to maintain the stealthiness of the attack,
that is, a = Hc, the cost in (3.10) is the same as in (3.5). The constraint in (3.10) guarantees
that a solution c∗ to (3.10) can be re-scaled to obtain an attack vector a∗ = akHc∗ such that
the malicious data injected into measurement k is ak where ak is the kth entry of vector a.
It follows that the vector of compromised measurements is ya = y + a∗.

There is a large body of ℓ1 relaxation approaches widely employed to propose strategic
protection schemes. In general, the research on attack constructions with sparsity constraints
gives the insight on the vulnerability of measurements. Given that the operator is likely to
have access control policies in place [74], research on sparse attack constructions helps the
operator evaluate the vulnerability of the measurements and allocate encryption devices on
the measurements sensibly.

The first study on measurement vulnerability to DIAs is presented in [89] where the
security indices help identifying the vulnerable measurements. The analysis of vulnerable
measurements gives an insight on securing a subset of corresponding sensors. Strategic
defensive and protection mechanisms against DIAs that choose and protect a subset of
measurements are proposed in [11], [12] and [90].

Sparsity is one of the main constraints in attack constructions. This is what the thesis
is primarily concerned with the study of sparsity constraints in the construction of attack
vectors.

3.2 Attack Constructions with Incomplete Information

Lemma 1 states that attack constructions that are undetectable by a residual test obey the
structure given by a = Hc, where c is the vector of difference between the state estimate
under attacks and without attacks as shown in (2.47). In this setting, it is assumed that the
attacker has perfect knowledge of the Jacobian matrix H ∈ Rm×n that is determined by the
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system topology, system parameters and the operation point. However, an important and
practical scenario is that the attacker has limited information or imperfect knowledge about
the Jacobian matrix, for example, the lack of real-time knowledge with respect to various
grid parameters and attributes such as the position of circuit breaker switches, transformer
tap changers, limited physical access to the facilities in the system, etc. The relaxation of
the perfect knowledge about the Jacobian matrix H yields attacks with incomplete infor-
mation, that is, the Jacobian matrix H̄ ∈ Rm×n that the attacker has access to during the
construction of the attack vector is

H̄ = H+∆H, (3.11)

where ∆H ∈ Rm×n is the Jacobian matrix modelling error that describes the model mismatch
due to imperfect knowledge or mismatched information.

The research on attack constructions with line admittance uncertainty is firstly studied
in [46]. The resulting attack construction denoted by ā ∈ Rm is as follows:

ā= H̄c (3.12)

= (H+∆H)c (3.13)

= Hc+∆Hc. (3.14)

Let x̄a ∈ Rn be the vector of state estimate obtained from the compromised measurements
with attack vector in (3.12). From Corollary 0.1, the LS estimate is

x̄a= x̂+ (HTH)−1HTā (3.15)

= x̂+ (HTH)−1HT(Hc+∆Hc) (3.16)

= x̂+ c+ (HTH)−1HT∆Hc (3.17)

= x̂+ c̄, (3.18)

where,

c̄
∆
= c+ (HTH)−1HT∆Hc (3.19)

is the actual injected error to the state variables. Let r̄a ∈ Rm be the residual vector under
attacks in (3.12). The following holds

r̄a= ȳa −Hx̄a (3.20)

= y + ā−H(x̂+ c̄) (3.21)

= y −Hx̂+ ā−Hc̄ (3.22)

= r+Hc+∆Hc−H(c+ (HTH)−1HT∆Hc) (3.23)

= r+∆Hc−H(HTH)−1HT∆Hc (3.24)

= r+ (Im −Θ)∆Hc, (3.25)

where the vector r
∆
= y−Hx̂ is the residual without attacks; and the matrix Θ is defined as

Θ
∆
= H(HTH)−1HT. From (3.25), the residual vector r̄a depends not only on the Jacobian

modelling error ∆H but also the actual Jacobian matrix H.
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From (2.29), the residual based bad data detection evaluates the following inequality

∥y −Hx∥2ℓ2 ≤ r0, (3.26)

where r0 is the residual threshold defined in (2.30) and set by the system operator. Similarly,
the attack detection for the attacks with incomplete information in (3.14) is to assess the
following inequality

∥ȳa −Hx̄a∥2ℓ2 = ∥y −Hx+ (Im −Θ)∆Hc∥2ℓ2 ≤ r0. (3.27)

Note that with ∆H = 0, that is, the attacker has access to the exact Jacobian matrix H,
the attack vector in (3.14) boils down to the case ā = Hc and the detection in (3.27) boils
down to the detection in (3.26) where the attack construction does not change the residual.
With ∆Hc = 0, the attacker can also launch an attack with inaccurate information about
H while not changing the residual. Furthermore, even with ∆Hc ̸= 0, there exist attack
constructions that do not change the residual, namely when (3.27) holds.

In [46, Th. 1], with ∆H ̸= 0, the attacker can still implement successful DIAs with com-
plete knowledge about the admittance when making at least one transmission between two
buses disconnected so that it can pass the attack detection, that is, the inequality in (3.27)
still holds. However, the error injected to the state estimate is limited as the injection vector
c cannot be arbitrary as in the general case and needs to satisfy the constraint ∆H = 0.
Besides, a measure of vulnerability of the system topology to DIAs is proposed to com-
pare different topologies and identify more robust topologies when incomplete information
is available to the attacker. Dropping the restriction of the knowledge studied in [46], a local
load redistribution attack is proposed in [47] where the attacker only needs to obtain the
information of the local attacking region to launch successful attacks. The result in [47] is
extended to an AC state estimation based on a few measurements in the attacking region as-
sociated with boundary buses without knowing the full topology and parameter information
in [48].

With the aim of minimizing the network information, an efficient strategy for determining
the optimal feasible attacking region is proposed in [49]. A subspace method for DIAs with
full and partial measurement models is proposed in [50]. Specifically, by exploiting the
information that the measurements contain, an estimated system subspace is obtained and
attack strategies that leverage this information are proposed accordingly. Conditions for the
existence of an unobservable subspace attack are obtained. The impact of the attacks with
incomplete information on the electricity market is also studied in [51] where the state of
the system is modelled with stochastic uncertainty.

DIAs with incomplete information relax the assumption that the attackers have full and
instantaneous access to grid topology and state. Unfortunately, incomplete information
available to the attackers does not make power systems immune to DIAs [46]. Studies on
attacks with incomplete information show that the attackers can launch valid attacks with
limited information about the system [47,48].

3.3 DIAs with Falsified Topology

Consistency and integrity of the information about system topology is a fundamental pre-
requisite for a safe and economic operation. In practice, the system topology can be changed



3.3. DIAS WITH FALSIFIED TOPOLOGY 28

for the purpose of transmission line maintenance or outages. An accurate description of
the system topology is obtained through the digital information of switches and breakers,
that is, the on-off states of switches and breakers. The state of the switches and breakers
is transmitted to the Network Topology Processor (NTP) that constructs the system topol-
ogy [91]. Cyber topology attacks compromise the observations on the switches and breakers
state which yields falsified topologies. Note that in cyber topology attacks, buses and trans-
mission lines are not physically attacked, that is, the physical connection of the system does
not change, but the digital information of switches and breakers is modified by the attacker.

In DIAs with falsified topology, to evade the topology error identification by the topology
error processing (TEP), the attacker needs to simultaneously compromise the measurements
and modify digital information about the switches and the breakers state. In other words, the
attacker needs to maintain the consistency of the measurements and the falsified topology.
For example, it is not possible that when a breaker of a power transmission line is off, the
power flow measurement in this line is to be nonzero.

Let d ∈ Z+ be the number of switches and line breakers. Specifically, the switches
and line breakers state are denoted by s ∈ {0, 1}d which indicates the on and off states of
various switches and line breakers. The switches and line breakers state s corresponds to

a graph T ∆
= (V ,B) where V is the set of buses and B is the set of connected buses pairs.

Consequently, from (2.5), the vector of measurements is

Y m = F̄ (x) + Zm, (3.28)

where the function F̄ is determined by the graph T and the system parameters; the system
noise Zm is as defined in (2.6).

The DIAs model with cyber topology attacks that modify the states of the switches and
line breakers is

s̄ = s+∆s (3.29a)

ya = y + ā, (3.29b)

where the vector ∆s represents the modifications of the switches and line breakers that yield

a modified topology T̄ ∆
= (V , B̄); the vector s̄ is the modified states; and the vector ya ∈ Rm̄

is the vector of compromised measurements with attacks ā ∈ Rm̄. Note that the modified
topology B̄ corresponds to an m̄-dimensional vector of measurements. Note that it holds
that m̄ ̸= m when the number of measurements is different after the topologies are falsified.

Let H̄ be the Jacobian matrix with the topology T̄ under the topology attacks ∆s. From
Corollary 0.1, the LS estimate with falsified topology in (3.29) is

x̂∗
a = argmin

x̂

∥ya − H̄x̂∥2ℓ2 = (H̄TH̄)−1H̄Tya, (3.30)

where ∥ya − H̄x̂∥ℓ2 is the ℓ2 norm of the vector ya − H̄x̂. Hence, the residual is

r = ∥ya − H̄x̂∗
a∥2ℓ2 , (3.31)

where r is the resulting residual.
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The first study on DIAs with falsified topology is in [52] with the aim of conveying falsified
topology information to the operator. An attack to modify T to T̄ with the attack vector a
is undetectable if

y + a ∈ Col(H̄), for all y ∈ Col(H), (3.32)

where H and H̄ are the Jacobian matrix for T and T̄ , respectively, and Col(H) is the
column space of H. The following theorem states the necessary and sufficient condition for
the existence of DIAs with falsified topology.

Theorem 5. [52, Th. 3.2] There exists an undetectable attack that modifies T and T̄ with
the subspace A of feasible attack vectors a if and only if Col(H) ⊂ Col(H̄,A), where Col(H)
is .

Note that the assumption for Theorem 5 is that the attacker can observe all measurements
and the state of all the switches and breakers. For an attacker with limited information, a
heuristic method of undetectable attack is proposed in [52]. A comprehensive coordinated
attack scenarios on cyber topology and DIAs that covers line-addition attack, line-removal
attack and line-switching attack are proposed in [53]. The economic impact of this coor-
dinated attack is studied in [54] and [92]. Research on the DIAs under the coordination
with physical attacks where the attackers physically disconnect a power line and launch a
topology-preserving attack using DIAs to mask the physical damage is referred as a state
and topology cyber-physical attack (STCPA) [93]. The STCPA can cause severe overload on
other power lines due to line outages [94, 95]. A bilevel model for analysing coordinated
cyber-physical attacks is proposed in [96] to study the most damaging and undetectable
physical attacks.

DIAs with falsified topology are typical coordinated attacks which can result in severe
disturbance on system operation. This coordinated attack affects the state estimate with
a falsified topology as well as the electricity market, for instance, via locational marginal
price (LMP) [55].

3.4 Attack Constructions under AC Power FlowModel

The AC power flow model is described in Section 2.1.1 where the state variables are observed
through the nonlinear function F : Rn → Rm, that yields the observation model

Y m = F (x) + Zm, (3.33)

where the vector of measurements Y m is corrupted by the noise vector Zm introduced in (2.6).
Due to the nonlinearity between the measurements and the state variables, it is much

more challenging to characterize analytically the formula of a successful attack vector. The
attack construction in Lemma 1, that is, a = Hc, is an attack construction for a linear
observation model where the system is assumed to be in an operation point under the
assumptions in (2.13), (2.14) and (2.15). In other words, the Jacobian matrix H ∈ Rm×n is
a fixed matrix that does not change over time. However, for the AC model, the relaxation
of the assumptions yields a dynamic Jacobian matrix that depends on the operation point
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where the system operates. Furthermore, for the AC model the LS state estimate in (2.24)
becomes

x̂∗ = argmin
x̂

∥y − F (x̂)∥2ℓ2 , (3.34)

which is usually solved by iterative normal equation methods [4]. It is shown in [56] that
the DIAs targeting the DC state estimator are easily detected when the operator actually
adopts nonlinear state estimator.

However, attack constructions for which it holds that

a = F (xa)− F (x) (3.35)

do not change the residual. The residual under attack in (3.35) is

∥ra∥2ℓ2 =∥ya − F (x̂a)∥2ℓ2 (3.36)

=∥ya − F (x̂a) + F (x)− F (x)∥2ℓ2 (3.37)

=∥y + a− F (x̂a) + F (x)− F (x)∥2ℓ2 (3.38)

=∥y − F (x) + a− F (x̂a) + F (x)∥2ℓ2 (3.39)

=∥r+ a− F (x̂a) + F (x)∥2ℓ2 (3.40)

=r ≤ r0. (3.41)

Therefore, the attack in (3.35) can pass the residual based bad data detection. However,
the nonlinear state estimate is often obtained via a gradient descent methods for which con-
vergence is not guaranteed, and therefore, the exact operation point cannot be analytically
characterized.

3.5 Random Attacks within a Bayesian Framework

As discussed in Section 2.3, unprecedented data acquisition capabilities help to generate
stochastic models for the system. Moreover, data analysis on the system depend on the reli-
ability of the observations that are used with a variety of estimation, statistics, and machine
learning tools that provide the operator with different insight about the system. However,
the cybersecurity threats to the smart grid are not well understood yet. Therefore, practical
insight needs to come forth combining technologies from information theory, statistics, and
machine learning [14], etc. In view of this, it is essential to assess attacks in fundamental
terms to understand the impact over a wide range of data analysis paradigms.

In the context of stealth attack, information theoretic attacks are first introduced in [16]
and then generalized in [17]. Information loss caused by the attacks, that is, attack dis-
ruption is measured by mutual information (MI) that is denoted by I(Xn;Y m

A ) and de-
scribes how much information the measurements Y m

A contain about the state variables
Xn [97]. The probability of detection is measured in terms of Kullback-Leibler (KL) di-
vergence between the distributions of the measurements with attacks and without attacks
denoted by D(PY m

A
∥PY m). Note that D(PY m

A
∥PY m) is relevant to probability of detection as

PD ≈ 1 − exp{−D(PY m
A
∥PY m)} [97]. Hence, this information theoretic formulation yields
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the following attack construction:

min
Pm
A

I(Xn;Y m
A )

s.t. D(PY m
A
∥PY m) ≤ δ,

(3.42)

where δ is the constraint for D(PY m
A
||PY m) set by the attacker; and Pm

A is the distribution of
the attack vector Am.

The tradeoff between mutual information and KL divergence is summed up as an opti-
mization problem [16], [98] given by

min
Pm
A

I(Xn;Y m
A ) +D(PY m

A
∥PY m). (3.43)

The Lagrangian L associated with (3.42) is given by

L(Pm
A , λ) = I(Xn;Y m

A ) + λ(D(PY m
A
∥PY m)− δ). (3.44)

It follows that

∂L(Pm
A , λ)

∂Pm
A

=
∂

∂Pm
A

(I(Xn;Y m
A ) + λ(D(PY m

A
∥PY m)− δ))

=
∂

∂Pm
A

(I(Xn;Y m
A ) + λD(PY m

A
∥PY m)).

(3.45)

The saddle point of the Lagrangian is the same as that of I(Xn;Y m
A ) + λD(PY m

A
||PY m).

Thus, instead of summing the two measures up directly, the optimization problem in (3.42)
is equivalent to [17]

min
Pm
A

I(Xn;Y m
A ) + λD(PY m

A
∥PY m), (3.46)

where the optimization domain is the set of all possible m-dimensional Gaussian probability
distributions; and λ ≥ 1 is a weighting parameter that prioritizes remaining undetected over
minimizing the amount of information obtained by the system measurements. By increasing
the value of λ the attacker decreases the probability of detection at the expense of increasing
the amount of information obtained by the system operator via the measurements. The
generalized cost function in (3.46) with weighting parameter achieves an arbitrarily low
probability of detection for the attacker.

The vector of random state variablesXn in Definition 7 is assumed to follow a multivariate
Gaussian distribution with a null mean vector given by [17]

Xn ∼ N (0,ΣXX), (3.47)

where ΣXX ∈ Sn
+ is a covariance matrix. Assume the vector of random state variables Am

in the random attack model (2.54) is a multivariate Gaussian distribution that satisfies

Am ∼ N (0,ΣAA), (3.48)

where 0 = (0, 0, . . . , 0)T and ΣAA ∈ Sm
+ are the mean vector and the covariance matrix of

the random vector Am. Narrowing down the distribution of state variables and the random
attacks to a Gaussian distribution yields the optimization problem in (3.46) as follows [17]

min
ΣAA∈Sm

+

(1− λ) log |ΣYY +ΣAA| − log |σ2Im +ΣAA|+ λtr(Σ−1
YYΣAA), (3.49)
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where the optimization domain Sm
+ is a convex set. The following proposition characterizes

the convexity of the optimization problem in (3.49).

Proposition 1. [17] Let λ ≥ 1. The optimization problem in (3.49) is convex.

The following theorem characterizes the solution to (3.49).

Theorem 6. [17] Let λ ≥ 1. The solution to the optimal Gaussian attack is given by

P̄Am ∼ N (0, Σ̄), (3.50)

with
Σ∗

AA = λ−1/2HΣXXH
T. (3.51)

Remark 1. The construction of the stealth attack vector in Theorem 6 is not sparse, indeed
all the entries of the realizations of the random attack vector are nonzero with probability
one, that is, P [card (supp (Am)) = m] = 1. Note that this thesis defines the support of the
attack vector Am in (3.3).

The attack detection based on LRT in (2.64) yields the probability of detection given by

PD
∆
= E

[
1{L(YAm )≥τ}

]
. (3.52)

The following lemma particularizes the above expression to the optimal attack construction
in (3.51).

Lemma 7. [17, Lemma 1] The probability of detection of LRT in (2.64) with threshold τ
for the attack construction in (3.51) is given by

PD(λ) = P
[
(Up)T∆Up ≥ λ

(
2logτ + log

∣∣Ip + λ−1∆
∣∣)] , (3.53)

where p = rank(HΣXXH
T), Up ∈ Rp is a vector of random vaiables with distribution

N (0, I ), and ∆ ∈ Rp×p is a diagonal matrix with entries given by (∆)ii = λi(HΣXXH
T)λi(Σ

−1
YY )

where λi(A) with i ∈ {1, 2, . . . , p} denotes the i-th eigenvalue of the matrix A in descending
order.

The following theorem provides a sufficient condition for λ to achieve a desired probability
of attack detection.

Theorem 8. Let τ > 1 be the decision threshold of the LRT. For any t > 0 and λ ≥
max(λ∗(t), 1), the probability of attack detection satisfies

PD(λ) ≤ e−t, (3.54)

where λ∗(t) is the only positive solution of λ satisfying

2logτ − 1

2λ
tr(∆2)− 2

√
tr(∆2)t− 2∥∆∥∞t = 0, (3.55)

where ∥∆∥∞ is the infinity norm of ∆.
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Note that in [16, 17], the construction of the stealth attack requires that the attacker
has access to all the measurements, indeed all the components of the attack realizations are
nonzero with probability one, that is, P [card (supp (Am)) = m] = 1. Incorporating sparsity
constraints with information theoretic attacks is still an open problem that requires novel
approaches.

Apart from stealth attack constructions, information theoretic tools are adopted in sensor
placement and smart sensor privacy, etc. In [99], a sensor placement strategy that considers
the amount of information acquired by the sensors is discussed. Information theoretic privacy
guarantees for smart meter users are studied for general random processes in [100].

3.6 Decentralized Attacks

In a decentralized system, a central controller does not exist. The DIAs are constructed by
several attackers that have access to the measurements in the power system. This scenario
is referred to as decentralized attacks. In this scenario, the attackers decide the attack vector
a ∈ Rm jointly. The aim of each attacker is to individually construct the attack vector that
maximizes the damage they inflict to the system, e.g., distortion to the state estimate, while
staying undetected. All the attackers have the same interest, which reveals an alignment of
actions among the attackers in decentralized attacks.

Let K = {1, 2, . . . K} be the set of attackers and Ci ∈ {1, 2, . . . ,m} be the set of measure-
ments that the attacker i ∈ K can compromise. Let also the vector ai ∈ Ai be the attack
vector by attacker i such that

Ai = {ai ∈ Rm : (ai)j = 0 for all j /∈ Ci}. (3.56)

The overall attack vector injected to the system is formed by the attack vectors of all the
attackers. The system model for the case with decentralized attacks is, in general, the same
as in the centralized case described in Section 2.2 and Section 2.3, respectively. The main
differences are:

• Each attacker has access to different sets of measurements, that is, C1, C2, . . . , CK are

proper sets and form a partition of the set M ∆
= {1, 2, . . . ,m}.

• The attack vector is determined by all the attackers, that is,

a =
∑
i∈K

ai. (3.57)

Decentralized attacks are proposed in distributed systems [101], blockchain-based de-
centralized finance attacks [102], etc. In [31], the decentralized attack constructions are
developed in a game framework. This is of particular interest of this thesis since this thesis
explores both the sparsity and coordination constraints in data injection attacks. In a game
setting, both the sparsity and coordination constraints can be adopted naturally. Therefore,
in this section, the following results are particularly visited. The cooperative interaction
among the attackers in the system is modelled by a game in a normal form in [103]:

G = (K, {Ai}i∈K, Φ), (3.58)
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where K is the set of players, the set Ai is the set of vectors that attacker i can take and ui
is the utility for attacker i.

A function Φ(a) is chosen as the utility function in the game in [31] considering that
an attack is said to be successful if it induces a nonzero distortion and it is not detectable.
Specifically, the utility is

Φ(a) = PND(a)x
T
axa, (3.59)

where PND(a) is the probability of non-detection given an attack vector a, the vector xa is
the excess distortion induced by the attack a. Under the assumption that Xn ∼ N (0,ΣXX),
from Lemma 2, the excess distortion xa is

xa = ΣXXH
T(HΣXXH

T + σ2Im)
−1a, (3.60)

where the matrix H is in (2.49) and the real σ is the variance of the system noise.
The following proposition presents the analytical expression of the probability of non-

detection PND(a).

Proposition 2. [31] For all a ∈ A, it holds that

PND(a) =
1

2
erfc

 1
2
aTΣ−1

YY a+ log τ√
2aTΣ−1

YY a

 , (3.61)

where ΣYY
∆
= HΣXXH

T + σ2Im and τ is the threshold for the LRT in (2.64) in Lemma 3.

The benefit Φ(a) obtained by attacker i ∈ K does not only depend on its own attack vector
ai but also on the attack vectors by all the other attackers as shown in (3.57). Therefore,
given the attack vector by all the other attackers except attacker i results in

a−i =
∑

j∈K,j ̸=i

aj, (3.62)

the attacker i aims to construct an attack vector ai to maximize the benefit Φ(a), that is,

ai ∈ BRi(a−i), (3.63)

where BRi is the best response correspondence such that

BRi(a−i) = argmax
ai∈Ai

Φ (ai + a−i) . (3.64)

A game solution that is particularly relevant for this analysis is theNash Equilibrium [103].

Definition 9 (Nash Equilibrium). The attack vector a is an NE of the game if and only if
it is a solution of the fixed point equation

a = BR (a) , (3.65)

with BR as the global best response correspondence, that is,

BR (a) = BR1 (a−1) + BR2 (a−2) + . . .+ BRK (a−K) . (3.66)
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The following propositions highlight the properties of the game [31].

Proposition 3. The game in (3.58) with utility function in (3.59) is a potential game.

Proposition 4. The game in (3.58) with utility function in (3.59) possesses at least one
NE.

The following lemma characterizes the achievability of NE attacks [31, Lemma 1].

Lemma 9. Any best response dynamic (BRD) in the game converges to an attack vector
that is an NE.

The following theorem bounds the number of NEs in the game [31, Th. 1].

Theorem 10. Let ANE be the set of all the DIAs that form NEs. The cardinality of the set
ANE of NE of the game satisfies

2 ≥ card (ANE) ≤ C · rank(H), (3.67)

where C <∞ is a constant that depends on τ and H is in (2.49).

The results in [31] provide the maximum distortion MMSE attacks. However, the decen-
tralized methods are proposed in multiple research perspectives such as resilient secondary
control again DIAs [104], dynamic estimator [105], attack detection [106], control for neural
networks subject to cyber attacks [107], etc.

3.7 Summary

DIAs are the main threats faced by modern power system with the unprecedented data
acquisition and transition capabilities, more generally, faced by Cyber-physical systems. In-
stead of studying the defense strategies and the impacts of DIAs, the research on DIAs
constructions with constraints give the insights on the sensor vulnerability and the protec-
tion strategies in the first place. Sparsity constraints are one of the main constraints in
DIAs. Sparse attack constructions can be developed in a decentralized scenario where the
coordination between attackers can be explored. This is the focus of this research.



Chapter 4

Independent Sparse Stealth Attacks

This chapter presents the main results on the independent sparse stealth attacks in cen-
tralized systems. Specifically, this chapter has developed independent random attack con-
structions with sparsity constraints that operate on a Bayesian framework. The attacker
minimizes the mutual information between the state variables and the compromised mea-
surements to disrupt procedure that uses measurements. Simultaneously, the KL divergence
between the distributions of measurements with attacks and without attacks is minimized
to guarantee the stealthiness of the data injection events. The attack construction is cast
as an optimization problem that jointly minimizes the weighted sum of mutual information
and KL divergence. A closed form expression of the optimal measurement to be targeted
by the attacker when a single measurement is compromised is obtained. Following this re-
sult, a general k-sparse attack construction that leverages the insight distilled in the single
measurement attack case is proposed. The k-sparse attack construction is based on a greedy
procedure that sequentially selects the measurements to attack by minimizing the cost in
terms of the optimal decision at each step. This chapter has numerically assessed the per-
formance of the proposed independent attack constructions on the IEEE test systems and
observed that mutual information decreases linearly while the probability of attack detection
exhibits a threshold effect when a critical number of measurements are compromised.

4.1 Bayesian Framework for State Estimation

4.1.1 State Variables and Attack Model

The observation model with linearized dynamics within Bayesian framework is given by
Definition 7, that is,

Y m = HXn + Zm, (4.1)

where the Jacobian matrix H ∈ Rm×n is defined in (2.19) that is determined by the system
components and the topology; the vector Xn ∈ Rn is the vector of random state variables
that describe the phase angle of the buses as defined in (2.16); the vector Y m ∈ Rm is
the vector of random measurements defined in (2.49) that are corrupted by Additive White
Gaussian Noise (AWGN) introduced by the sensors [4, 5]. Such noise is modelled by the

36
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random vector Zm ∈ Rm that follows a multivariate Gaussian distribution, that is,

Zm ∼ N (0, σ2Im), (4.2)

where σ2 is the noise variance.
In a Bayesian framework, the state variables are described by a random vector Xn with

a given distribution. The choice of the distribution has been studied in the literature. It is
shown in [22] that the bus voltages of a low voltage system in the Northwest of England are
well described by a multivariate Gaussian distribution from the voltage data provided by
Electricity North West Limited (ENWL). In [108], the measurements from real power grids
follow a joint Gaussian distribution. Therefore, in this study, the vector of state variables
Xn is assumed to follow a multivariate Gaussian distribution with a null mean vector and a
covariance matrix ΣXX , that is,

Xn ∼ N (0,ΣXX), (4.3)

where ΣXX is the covariance matrix such that ΣXX ∈ Sn
+ where Sn

+ is the set of positive
semi-definite matrices of dimension n× n.

Hence, the vector of random measurements Y m in (4.1) follows a multivariate Gaussian
distribution with a null mean vector and a covariance matrix ΣYY , that is,

Y m ∼ N (0,ΣYY ), (4.4)

where
ΣYY ≜ HΣXXH

T + σ2Im. (4.5)

The resulting measurements are corrupted by a vector of malicious random attack Am ∈ Rm

with distribution PAm , that is, Am ∼ PAm . Consequently, the observation model under
attacks is given in definition 8, that is,

Y m
A = HXn + Zm + Am. (4.6)

In this study, the attack construction aims at minimizing the mutual information between
the random state variables Xn and the compromised random measurements denoted by Y m

A ,
that is,

min
PAm

I(Xn;Y m
A ). (4.7)

Hence, it is assumed that
Am ∼ N (µA,ΣAA), (4.8)

where µA ∈ Rm is the mean vector of the random attack vector Am.
The choice in (4.8) is justified by the fact that when Zm+Am in (4.6) follows a Gaussian

distribution, the mutual information between the state variables Xn and the compromised
measurements Y m

A in (4.7) is minimized [109]. Hence, from the Lévy-Cramér decomposition
theorem [110,111], it holds that for the sum Zm+Am to be Gaussian, given that Zm satisfies
(4.2), then, Am must also be Gaussian distributed.

Remark 2. The fact that the Gaussian distribution achieves the minimum in (4.7) holds
for any PXn. The assumption in (4.8) implies that the attack construction does not require
access to the realizations of the state variables, but rather to the mean and second order
statistics.
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From (4.4), (4.6) and (4.8), the compromised random measurements Y m
A satisfies that

Y m
A ∼ N (µA,ΣYAYA

), (4.9)

where
ΣYAYA

∆
= HΣXXH

T + σ2Im +ΣAA. (4.10)

4.1.2 Attack Detection

As described in Section 2.3.3, the attack detection with Bayesian framework is cast as a
hypothesis testing problem. Specifically, given the distributions of the measurements without
and with attacks in (4.4) and (4.9), respectively, the hypotheses are

H0: Ȳ
m ∼ N (0,ΣYY ), (4.11)

H1: Ȳ
m ∼ N (µA,ΣYAYA

). (4.12)

From Lemma 3, the optimal detection method is likelihood ratio test (LRT), that is,

T (ȳ) = 1{L(ȳ)⩾τ}, (4.13)

where T (ȳ) is the likelihood ratio given by

L(ȳ) =
fY m

A
(ȳ)

fY m(ȳ)

H1

≷
H0

τ, (4.14)

where the functions fY m
A

and fY m are the pdf of N (µA,ΣYAYA
) in (4.9) and the pdf of

N (0,ΣYY ) in (4.4), respectively, the parameter τ is the decision threshold set by the operator
that meets the false alarm constraint.

4.2 Information Theoretic Metrics

The aim of the attacker is twofold. First, it aims to inflict a data integrity attack that
disrupts all processes that use the measurements of the system, and secondly, it aims to
guarantee the stealth of the attack. Hence, instead of assuming a particular state estimation
procedure, this chapter adopts the methodology in [17] to construct stealth attacks that
minimize the amount of information acquired by the measurements about the state variables.
In doing so, the attacker targets a universal utility metric consisting of a weighted sum of two
terms [19]: (a) the mutual information between the state variables and the measurements;
and (b) the Kullback Leibler (KL) divergence between the probability distribution functions
of the measurements with and without attacks. By minimizing this metric, the attacker
guarantees a stealthy attack that impinges upon any procedure using the measurements.

4.2.1 Disruption Measure

The central purpose of DIAs is to disrupt the procedure where the measurements are used.
DIAs within Bayesian Framework do not assume any particular state estimation procedure.
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Instead, the state variables and the attacks are modelled as random variables. Mutual
information is a measure of the amount of information between two random variables. The
random attack construction within Bayesian framework in (4.6) allows the attacker to choose
the distribution of the attack vector Am. For that reason, the disruption of the attack is
characterized by the mutual information in fundamental terms by characterizing the amount
of information between the state variables and the compromised measurements. Therefore,
the attacker chooses the distribution of the random attack vector such that

min
PAm

I(Xn;Y m
A ), (4.15)

whereXn is in (4.3) and Y m
A is in (4.9). In fact, the motivation to use information measures is

to provide general performance metrics that apply to a wide range of estimation, control, and
analysis procedures. Any reduction on mutual information necessarily implies a degradation
of performance in any process that uses the measurements. For instance, the performance of
the MMSE estimator in (2.51) can be linked to the mutual information via I-MMSE results
that bridge the classical estimation paradigm to the information theoretic one [18].

The following proposition presents the analytical expression of mutual information with
Xn in (4.3) and Y m

A in (4.9).

Proposition 5. The mutual information between the random variable Xn ∼ N (0,ΣXX)
and Y m

A ∼ N (µA,ΣYAYA
) is

I(Xn;Y m
A ) =

1

2
log

|ΣXX ||ΣYAYA
|

|Σ|
, (4.16)

where ΣXX is in (4.3); ΣYAYA
is in (4.10) and Σ is the covariance matrix of the joint

distribution of Xn and Y m
A , that is, (Xn;Y m

A ) ∼ N (0,Σ) with

Σ
∆
=

(
ΣXX ΣXXH

T

HΣXX HΣXXH
T + σ2Im +ΣAA

)
. (4.17)

Proof. The proof is presented in Appendix A.

Corollary 10.1. The mutual information between the vector of random variables Xn ∼
N (0,ΣXX) and YAm ∼ N (0,ΣYAYA

)

I(Xn;Y m
A ) =

1

2
log

|ΣXX ||ΣYAYA
|

|Σ|
, (4.18)

where ΣXX is in (4.3); ΣYAYA
is in (4.10) and Σ is in (4.17).

4.2.2 Detection Metric

Apart from the disruption that is captured by mutual information, the stealthiness of the
attacks is guaranteed by minimizing the Kullback-Leibler (KL) divergence. The KL diver-
gence between two probability distributions is a measure of the statistical difference between
the distributions. The rationale for minimizing the KL divergence between the distributions
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as means to minimize the probability of attack detection stems from the Chernoff-Stein
Lemma [19, Th. 11.8.3]. That is, for the LRT in (4.13) in Lemma 3, for any probability of
Type I error α < 1

2
, the logarithm of the averaged minimum value of probability of Type II

error β asymptotically converges to the inverse of the KL divergence between the distribu-
tions of the two hypothesis. Therefore, minimizing the asymptotic detection probability is
equivalent to maximizing the probability of Type II error that is achieved by

min
PAm

D(PY m
A
∥PY m), (4.19)

where PY m
A

and PY m are the distribution of Y m
A in (4.9) and the distribution of Y m in (4.4),

respectively.
The following proposition presents the analytical expression of the KL divergence.

Proposition 6. The KL divergence between Y m
A ∼ N (µA,ΣYAYA

) and Y m ∼ N (0,ΣYY ) is

D(PY m
A
∥PY m) =

1

2

(
log

|ΣYY |
|ΣYAYA

|
−m+ tr

(
Σ−1

YYΣYAYA

)
+ tr

(
Σ−1

YYµAµ
T
A

))
, (4.20)

where the mean vector µA and the matrix ΣYAYA
are in (4.9), the matrix ΣYY is in (4.4).

Proof. The proof of Proposition 6 is presented in Appendix B.

Corollary 10.2. The KL divergence between m-dimensional multivariate Gaussian distri-
butions YAm ∼ N (0,ΣYAYA

) and Y m ∼ N (0,ΣYY ) is given by

D(PY m
A
∥PY m) =

1

2

(
log

|ΣYY |
|ΣYAYA

|
−m+ tr(Σ−1

YYΣYAYA
)

)
, (4.21)

where the matrices ΣYY and ΣYAYA
are in (4.4) and (4.9), respectively.

The following lemma shows that the optimal Gaussian attack construction is with a null
mean vector.

Lemma 11. The optimal Gaussian attack construction is with a null mean vector, that is,

Am ∼ N (0,ΣAA), (4.22)

where ΣAA ∈ Sm
+ .

Proof. From Proposition 5, the mutual information in (4.16) is not a function of the mean
vector µA, that is, the mean vector is arbitrary. From Proposition 6, the following holds

D(PY m
A
∥PY m) =

1

2

(
log

|ΣYY |
|ΣYAYA

|
−m+ tr

(
Σ−1

YYΣYAYA

)
+ tr

(
Σ−1

YYµAµ
T
A

))
(4.23)

=
1

2

(
log

|ΣYY |
|ΣYAYA

|
−m+ tr

(
Σ−1

YYΣYAYA

)
+ µT

AΣ
−1
YYµA

)
(4.24)

≥1

2

(
log

|ΣYY |
|ΣYAYA

|
−m+ tr

(
Σ−1

YYΣYAYA

))
, (4.25)
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where (4.24) follows from the fact that

tr
(
Σ−1

YYµAµ
T
A

)
=tr

(
µT

AΣ
−1
YYµA

)
(4.26)

=µT
AΣ

−1
YYµA, (4.27)

and (4.25) follows from Σ−1
YY ∈ Sm

+ . Note that the equality in (4.25) holds when µA = 0.
Therefore, for all ΣAA ∈ Sm

+ , the optimal mean is µA = 0. This completes the proof.

Remark 3. The assumption in (4.22) boils down the attack construction to simply charac-
terize the covariance matrix ΣAA.

The Gaussian attack construction Am ∼ N (0,ΣAA) incorporates mutual information
in (4.18) and the KL divergence in (4.21) which results in the construction of stealth at-
tacks [17]. Specifically, the construction is given by the solution to the following optimization
problem:

min
PAm

I(Xn;Y m
A ) + λD(PY m

A
∥PY m), (4.28)

where λ ≥ 1 is the weighting parameter that determines the tradeoff between attack dis-
ruption and probability of detection. Note that the optimization in (4.28) searches for the
distribution of the random attack vector over the set of Gaussian multivariate distributions
of m dimensions. Equivalently, for Lemma 11, it chooses the optimal covariance matrix for
the distribution of the attack. It is shown in Theorem 6 that the optimal Gaussian attack is
given by P̄Am = N (0, Σ̄) where

Σ̄ = λ−
1
2HΣXXH

T. (4.29)

From remark 1, the attack construction in (4.29) is such that

P [card (supp (Am)) = m] = 1, (4.30)

where supp (Am) is the support of vector Am defined in (3.3). This implies that the attacker
has to compromise all the measurements, which is costly and unrealistic. In the next section,
the attack constructions with sparsity constraint are proposed.

4.3 Sparse Stealth Attack Formulation

4.3.1 Attack Construction with Sparsity Constraints

The attack implementation requires access to the sensing infrastructure of the industrial
control system (ICS) operating the power system. DIAs usually exploit the vulnerabilities
existing in the field zone by comprising remote terminal units or local secondary level control
systems, or alternatively, by getting access to the SCADA system coordinating the control
zone of the ICS. For that reason, attack constructions that are required to intrude the least
amount of monitoring and data acquisition infrastructure are of particular interest from a
security standpoint. In view of this, this chapter studies sparse attacks that require access to
a limited number of sensors, that is, the attack construction problem is posed with sparsity
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constraints by setting the domain as the set of distributions over the attack vector that put
non-zero mass on at most k ≤ m attack vector entries, that is,

P̃k
∆
= {PAm : card (supp(Am)) = k} . (4.31)

The same information theoretic metrics as in (4.28) are considered. The resulting k-sparse
stealth attack construction is therefore posed as the optimization problem:

min
PAm∈P̃k

I(Xn;Y m
A ) + λD(PY m

A
∥PY m). (4.32)

Solving this problem is hard in general owing to the combinatorial nature of the attack vector
support selection.

4.3.2 Gaussian Sparse Stealth Attack Construction

The optimization domain including the sparsity constraint in (4.32) implies an additional
difficulty in the construction of stealth attacks with respect to the construction proposed
in (4.28) [17]. This additional difficulty lies on the combinatorial problem arising from the
selection of at most k out of m dimensions of the attack vector to form the support of Am,
that is, an additional optimization constraint of the form card (supp(Am)) = k, with k ⩽ m.
To tackle this difficulty, this chapter exploits the structure that the Gaussian attack embeds
into the sparse attack problem formulation to propose novel attack construction algorithms
with verifiable performance guarantees. From Lemma 11 it follows that the optimal Gaussian
distribution is a null mean vector. Hence, the attacker chooses the distribution over the set
of multivariate Gaussian distributions given by

Pk
∆
=
{
PAm ∼ N (0, Σ̄) : card (supp(Am)) = k

}
, (4.33)

where Σ̄ ∈ Sm
+ is the covariance matrix of the multivariate Gaussian distribution. The

resulting k-sparse stealth Gaussian attack construction is therefore posed as the optimization
problem:

min
PAm∈Pk

I(Xn;Y m
A ) + λD(PY m

A
∥PY m). (4.34)

Hence, writing the objectives of the optimization problem in (4.34), that is, mutual
information I(Xn;Y m

A ) in 4.18 and the KL divergence D(PY m
A
∥PY m) in 4.21 in terms of the

covariance matrix of the attack random vector Am in (4.22), that is, Am ∼ N (0,ΣAA) leads
to observing that, up to a constant additive term, it is equivalent to the expression

J(ΣAA)
∆
=(1− λ) log |ΣYY +ΣAA| − log |σ2Im +ΣAA|+ λtr(Σ−1

YYΣAA), (4.35)

where λ ≥ 1 is introduced in (4.34), the matrix ΣYY is in (4.4), the real σ ∈ R+ is in (4.2).
Hence, the optimization problem in (4.34) is equivalent to the following optimization

problem:
min

ΣAA∈Sm
+

J(ΣAA). (4.36)

However, the sparsity constraint in (4.34) is not specified in (4.36). In order to write
the optimization domain of the problem in (4.34) in terms of the covariance matrix of the
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random attack vector, it suffices to observe that the sparsity constraint denoted in (4.33)
translates into a constraint on the number of nonzero entries in the diagonal of the covariance
matrix of the attack vector. More specifically, the optimization domain becomes:

Sk
∆
=
{
S ∈ Sm

+ : ∥diag(S)∥0 = k
}
, (4.37)

where diag(S) denotes the vector formed by the diagonal entries of S.
The following lemma presents the equivalent expression of the optimization problem

in (4.34).

Lemma 12. The optimization problem in (4.34) is equivalent to

min
ΣAA∈Sk

J(ΣAA), (4.38)

where the optimization domain Sk is in (4.37) and the cost function J : Sk → R+ is in (4.35).

Proof. The proof follows by noting that in the Gaussian setting, the optimization problem
in (4.34) is equivalent to (4.36) up to a constant additive term and the optimization domain
is specified by (4.37).

4.4 Independent Sparse Stealth Attacks

This section tackles the case in which the entries of the attack vector Am are independent.
More specifically, the focus is on product probability measures of the form

PAm =
m∏
i=1

PAi
, (4.39)

where Ai denotes the i-th entry of the vector Am; for all i ∈ {1, 2, . . . ,m}, the probability
density function of Ai denoted by PAi

is Gaussian with zero mean and variance vi, that is,
Ai ∼ N (0, vi).

The assumption of independence relaxes the correlation requirements between the entries
of the attack vector. As a result, the set of covariance matrices given by (4.37), with k ⩽ m,
that arises from considering Gaussian attacks becomes the following set

S̃k
∆
=
⋃
K

{
S ∈ Sm

+ : S =
∑
i∈K

vieie
T
i with vi ∈ R+

}
, (4.40)

where the union is over all subsets K ⊆ {1, 2, . . . ,m} with card (K) = k ≤ m. Note that it
holds that S̃k ⊆ Sk.

Corollary 12.1. Under the independence assumption, the optimization problem in (4.38)
boils down to the following optimization problem:

min
ΣAA∈S̃k

J(ΣAA), (4.41)

where the optimization domain S̃k is in (4.40) and the cost function J : S̃k → R+ is in (4.35).



4.4. INDEPENDENT SPARSE STEALTH ATTACKS 44

The optimization problem in (4.41) is hard to solve due to the combinatorial character
of identifying the support of the sparse random attack vector. For that reason, we first
tackle the case in which the attacker only comprises one measurement, that is, k = 1 in
Section 4.4.1 and propose two different greedy constructions that sequentially update the set
supp(Am), with Am in (4.6), and determines the corresponding entry in the diagonal of the
matrix ΣAA in (4.22) in Section 4.4.2 and Section 4.4.3, respectively.

4.4.1 Optimal Single Measurement Attack Construction

Despite having narrowed it down to Gaussian distributions, the optimization problem in (4.41)
is still challenging due to its combinatorial character. For that reason, this section tackles
the case in which the attacker only comprises one measurement, that is, k = 1. The rationale
for this is that it is expected to leverage the insight developed for the single sensor case in
the construction of the general k-sparse case. The following theorem provides the optimal
solution for the case in which the attacker corrupts a single measurement.

Theorem 13. The solution to the sparse stealth attack construction problem in (4.41) for
the case k = 1 is given by

Σ̄AA = veie
T
i , (4.42)

where

i= argmin
j∈{1,2,...,m}

{(
Σ−1

YY

)
jj

}
, (4.43a)

v= −σ
2

2
+

1

2

(
σ4 − 4(wσ2 − 1)

λw2

) 1
2

, (4.43b)

with w
∆
= (Σ−1

YY )ii.

Proof. The proof of Theorem 13 is presented in Appendix C.

Remark 4. Knowledge of the second order moments of the measurements ΣYY and the
variance of the AWGN introduced by the sensors σ2 suffice to construct the optimal single
measurement attack.

4.4.2 Greedy Constructions with Jacobian Updated

The extension to the k-sparse case of the solution proposed in Section 4.4.1 does not get
around the combinatorial optimization in (4.41). For that reason, in the following a greedy
construction that leverages the insight distilled in the k = 1 case to select the set of k attacked
measurements is proposed. The construction is based on a classical greedy procedure that
sequentially selects a measurement to attack by minimizing the cost in terms of the decision
at each step.

Let us denote by K the set of measurement indices that are attacked, that is, K ∆
=

supp(Am). The greedy algorithm operates by sequentially updating the elements in K by
adding a new index in each step until k indices are selected. For that reason, the resulting



4.4. INDEPENDENT SPARSE STEALTH ATTACKS 45

entries of the attack vector are independent, and therefore, the covariance matrix of the
attack vector obtained via the proposed greedy approach is in the set in (4.40). The proposed
greedy construction is described in Algorithm 1. Let Hj be the Jacobian matrix at iteration
j, with j ∈ {1, 2, . . . , k}. The algorithm updates the Jacobian matrix at iteration j by
removing all the rows that correspond to the compromised measurements in Kj−1 from the
original Jacobian matrix H in (4.1). In the other words, the Jacobian matrix Hj is the
observation matrix formed by the measurements in Kc

j−1 that have not been compromised.

The resulting Jacobian matrix is denoted asHKc
j−1

∈ Rcard(Kc
j−1)×n in step 3 in the Algorithm.

Therefore, the complexity of Algorithm 1 is m!.

Algorithm 1 k-sparse stealth attack construction with Jacobian updated

Input: the Jacobian matrix H ∈ Rm×n in (4.1),
the variance of the noise σ2 ∈ R+ in (4.2),
the covariance matrix ΣXX ∈ Sn

+ in (4.3),
the weighting parameter λ ≥ 1 in (4.34);
and the sparse constraint k ≤ m.

Output: the covariance matrix of the attack vector Σ̄AA in (4.22), and the set of indices of
attacked measurements K.

1: Set K0 = {∅}
2: for j = 1 to k do
3: Set Hj = HKc

j−1

4: Compute Wj =
(
HjΣXXH

T
j + σ2Icard(Kc

j−1)

)−1

5: Set αj = argmini {(Wj)ii},
6: Set wj

∆
= (Wj)αjαj

7: Set vαj
= −σ2

2
+ 1

2

(
σ4 − 4(wjσ

2−1)

λw2
j

) 1
2

8: Set Kj = Kj−1 ∪ {αj}
9: end for
10: Set K = Kk

11: Set Σ̄AA =
∑

i∈K vieie
T
i

Remark 5. The k-sparse stealth attack construction in Algorithm 1 requires the knowledge
of the second order moments of the state variables ΣXX , the Jacobian matrix H and the
variance of the AWGN introduced by the sensors σ2.

4.4.3 Greedy Constructions with Optimal Single-Step Sequential
Procedure

The proposed construction hinges on the idea that approaching the sensor selection problem
in a sequential fashion resembles the single sensor selection problem discussed in Section 4.4.1.
This enables us to leverage the single sensor selection construction to analytically characterize
the cost difference induced by the addition of a new element to the set supp(Am), with Am

in (4.6), and determines the corresponding entry in the diagonal of the matrix ΣAA in (4.22).
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More specifically, given the sparsity constraint in (4.37), for some k ⩽ m, the construction
can be divided into k epochs. At each epoch a new element is added to supp(Am). At epoch i,
let Σi ∈ Sm

+ be the covariance matrix of the attack vector. Let the set Ki be the set of indices
corresponding to the entries of the vector diag(Σi) that are nonzero, that is,

Ki = {j ∈ {1, 2, . . . ,m} : (Σi)jj > 0}. (4.44)

For all i ∈ {1, 2, . . . , k}, it is imposed that Ki ⊆ {1, 2, . . . ,m} and card (Ki) = i. This implies
that K1 ⊂ K2 ⊂ . . . ⊂ Kk ⊂ {1, 2, . . . ,m}. Hence, the following holds

Σi = Σi−1 + veje
T
j , (4.45)

where, for i = 1, Σ0 is a matrix of zeros, the integer j ∈ {1, 2, . . . ,m} \ Ki−1 is the index
of the new entry at epoch i, and v ∈ R+ is the value of such entry that corresponds to the
variance of the attack variable added to Am. For ease of presentation, this section denotes
the set of indices available to the attacker to choose at epoch i, that is, the entries of the
vector diag(Σi−1) that are zero, as

Kc
i−1

∆
= {1, 2, . . . ,m} \ Ki−1. (4.46)

Our proposition to choose both j ∈ Kc
i−1 and v ∈ R+ at epoch i as described in (4.45) is

based on the following optimization problem

min
(j,v)∈Kc

i−1×R+

J(Σi−1 + veje
T
j ). (4.47)

The following lemma sheds light on the solution to the problem (4.47).

Lemma 14. Let Σi ∈ Sm
+ and Σi−1 ∈ Sm

+ be two matrices in epoch i and epoch i − 1 that
satisfy Σi = Σi−1 + veje

T
j with Ki−1 in (4.44), j ∈ Kc

i−1 and v ∈ R+. The cost function J
in (4.35) satisfies that

J(Σi) = J(Σi−1) + f(Σi−1, veje
T
j ), (4.48)

where the function f : Rm×m ×Rm×m → R is such that

f(Σi−1, veje
T
j )

∆
=(1− λ) log

∣∣Im + (ΣYY +Σi−1)
−1 veje

T
j

∣∣ (4.49)

− log
∣∣∣Im +

(
σ2Im +Σi−1

)−1
veje

T
j

∣∣∣+ λtr
(
Σ−1

YY veje
T
j

)
,

where λ ≥ 1 is introduced in (4.34), the matrix ΣYY is in (4.5).

Proof. The proof of Lemma 14 is presented in Appendix D.

The relevance of Lemma 14 is that it enables the selection of both j ∈ Kc
i−1 and v ∈ R+

at epoch i based on a simpler optimization problem than that in (4.47). Indeed, the selection
problem results in

min
(j,v)∈Kc

i−1×R+

f(Σi−1, veje
T
j ), (4.50)

where the function f is defined in (4.49).
The following lemma characterizes the convexity of the cost function in (4.50) with respect

to v.
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Proposition 7. Let λ ≥ 1. Then the optimization problem in (4.50) is convex with respect
to v.

Proof. The proof of Proposition 7 is presented in Appendix E.

The following theorem provides the solution to the optimization problem in (4.50).

Theorem 15. Let k satisfy 0 < k ⩽ m, and for all i ∈ {1, 2, . . . , k}, denote by (j⋆, v⋆) ∈
Kc

i−1 ×R+ the solution to the optimization problem in (4.47). Then, the following holds

j⋆ =argmin
j∈Kc

i−1

J(Σi−1 + vjeje
T
j ) and (4.51)

v⋆ =vj⋆ , (4.52)

where, for all j ∈ Kc
i−1,

vj∗ =

(
βj − αj + βjαjσ

2

2βjαj

)
√√√√√

1−
4βjαj

(
βjσ

2 − αjσ
2 − αjσ

2 + 1

λ

)
(βj − αj + βjαjσ2)2

− 1

 , (4.53)

with

αj
∆
=tr

(
(ΣYY +Σi−1)

−1 ej∗e
T
j∗

)
, (4.54)

βj
∆
=tr

(
Σ−1

YY ej∗e
T
j∗

)
, (4.55)

and the real σ > 0 in (4.53) is introduced in (4.2).

Proof. The proof of Theorem 15 is presented in Appendix F.

The proposed greedy construction with optimal sequential procedure is described in Al-
gorithm 2.

Remark 6. The k-sparse stealth attack construction in Algorithm 2 requires the knowledge
of the second order moments of the measurements ΣYY and the variance of the AWGN
introduced by the sensors σ2. This implies that the second order statistics of the measurements
and variance of the noise introduced by the sensors suffice to construct the attacks.

4.5 Numerical Results

This section numerically evaluates the performance of the proposed attack construction
algorithms on a direct current (DC) state estimation setting for the IEEE 9-bus, IEEE 14-
bus and IEEE 30-bus test systems [112]. The voltage magnitudes are set to 1.0 per unit,
which implies that the state estimation is based on the measurements of active power flow
injections to all the buses and the active power flow between physically connected buses
as described in Section 2.1.2. The Jacobian matrix H is determined by the reactance of
the branches and the topology of the corresponding systems. The MATPOWER [113] is
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Algorithm 2 k-sparse independent attack construction

Input: the variance of the noise σ2 ∈ R+ in (4.2),
the covariance matrix ΣYY ∈ Sm

+ in (4.5),
the weighting parameter λ ≥ 1 in (4.34);
and the sparse constraint k ≤ m in (4.44).

Output: the covariance matrix of the attack vector Σ̄AA in (4.22),
and the set of indices of attacked measurements K.

1: Set K0 = {∅}
2: Set Σ0 = 0
3: for j = 1 to k do
4: for ℓ ∈ Kc

i−1 do
5: Compute vℓ in (4.53)
6: end for
7: Compute j⋆ in (4.51)
8: Compute v⋆ in (4.52)
9: Set Kj = Kj−1 ∪ {j⋆}
10: Set Σj =

∑
i∈Kj

vieie
T
i

11: end for
12: Σ̄AA =

∑
i∈Kk

vieie
T
i

adopted to generate H for each test system. The attack constructions in Theorem 13 and
Theorem 15 show that the variance of the random attacks is a function of the covariance
matrix of the measurements. To obtain the covariance matrix of measurements, this section
first captures the statistical dependence between the state variables by a Toeplitz model for
the covariance matrix ΣXX ∈ Sn

+ that arises in a wide range of practical settings, such as
autoregressive stationary processes [13, 17, 114]. Specifically, the correlation between state
variables Xi and Xj is modelled with the exponential decay parameter ρ ∈ R+ that defines
the entries of the covariance matrix of the state variables as (ΣXX)ij = ρabs(i−j), with (i, j) ∈
{1, 2, . . . , n} × {1, 2, . . . , n}. That is

ΣXX =


1 ρ ρ2 . . . ρn−2 ρn−1

ρ 1 ρ . . . ρn−3 ρn−2

...
...

...
. . .

...
...

ρn−2 ρn−3 ρn−4 . . . 1 ρ
ρn−1 ρn−2 ρn−3 . . . ρ 1

 . (4.56)

From (4.56), the parameter ρ characterizes the correlation strength between state variables
Xi and Xj, with (i, j) ∈ {1, 2, . . . , n}×{1, 2, . . . , n}, that is, the correlation strength between
the phase angle of the voltage in the buses. In this setting, the performance of the proposed
sparse stealth attack is not only a function of the attack constructions but also the correlation
parameter ρ, the noise variance σ2, and the topology of the system described by H. In the
simulations, the observation model noise regime is set to be the signal to noise ratio (SNR)
defined as

SNR
∆
= 10 log10

(
tr(HΣXXH

T)

mσ2

)
. (4.57)
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Figure 4.1: Performance of the sparse attack in terms of mutual information, probability of
detection for different values of λ when SNR = 30 dB, ρ = 0.1, τ = 2 on the IEEE 30-bus
test system.

The results in this section are obtained by averaging 2× 104 realizations of the measure-
ments as described in (4.6).

4.5.1 Performance of Attack Construction with Jacobian Updated

The probability of detection in this section is obtained by LRT in (4.14), that is,

L(ȳ) =
fY m

A
(ȳ)

fY m(ȳ)

H1

≷
H0

τ, (4.58)

where the functions fY m
A

and fY m are the pdf of N (0,ΣYAYA
) obtained from Algorithm 1 and

the pdf of N (0,ΣYY ) in (4.4), respectively, and τ is the decision threshold set by the system
operator to meet the false alarm constraint. The results are obtained by averaging 2× 104

realizations of the measurements as described in (4.6).
Fig. 4.1 depicts the mutual information and the probability of detection that the attack

constructed by Algorithm 1 induces for different values of the number of compromised mea-
surements and the weighting parameter λ. As expected, the mutual information decreases
monotonically, approximately linearly with the number of compromised measurements, while
the probability of detection increases. Interestingly, the probability of detection exhibits an
abrupt increase that suggests a threshold effect when a critical number of compromised mea-
surements is reached. The weighting parameter λ governs the minimum achievable probabil-
ity of detection, e.g. a probability of detection of 10−2 is not attainable when λ = 2. Indeed,
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Figure 4.2: Variance of the attack vector entries, probability of detection, and probability
of false alarm of the sparse attack when λ = 2, SNR = 30 dB, ρ = 0.1, τ = 2 on the IEEE
30-bus test system.
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Figure 4.3: Variance of the attack vector entries, probability of detection, and probability
of false alarm of the sparse attack when λ = 30, SNR = 30 dB, ρ = 0.1, τ = 2 on the IEEE
30-bus test system.
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increasing the value of λ to 30 yields a smaller probability of detection for small values of k
but the threshold effect takes place for the same number of compromised measurements, for
both values of λ. This suggests that the topology of the system governs the position of the
threshold.

The variance of the random attack variables used to compromise each sensor, the proba-
bility of detection, and the probability of false alarm as a function of the number of compro-
mised measurements are illustrated in Fig. 4.2 and Fig. 4.3 for λ = 2 and λ = 30, respectively.
As shown in Theorem 13, λ is a scaling factor on the variances of the attack vector, and
therefore, the values of the variance for the case λ = 2 are simply scaled in the case λ = 30.
There are two distinguishable attack regimes depending on the variance of the attack vector
entries. Algorithm 1 does not yield a monotonically decreasing profile of variances. In-
stead the variance of the entries selected by the algorithm switches between small and large
values as the number of compromised measurements increases. This suggests, that certain
measurement entries are significantly more sensitive to additive attacks than others and the
existence of more vulnerable sensors that are determined by the topology of the system, as
shown in (4.43b). For both cases, the probability of false alarm exhibits a non-monotonic
behaviour with the number of compromised measurements, and interestingly, the change in
monotonicity coincides with the threshold.

4.5.2 Performance of Attack Construction with Optimal Sequen-
tial Procedure

The simulation of the linearized AC power flow model is carried out to verify the performance
of the proposed attacks. Let x0 be the state variables of the nominal operation point when
the system is operating under optimal power flow. The MATPOWER [113] is adopted to
obtain the optimal power flow where the nominal operation point lies on. The corresponding
Jacobian matrix is

H0 =
∂

∂x
h(x)|x=x0 ,

where h(x) ∈ Rm denotes the vector of random variables induced by the nonlinear relation
between the state variables and the measurements and H0 is the corresponding Jacobian
matrix in linearized AC model when system is operating under optimal power flow with the
vector of state variables x0.

Performance in terms of information theoretic cost

Let Σind
k be the output of the k-sparse attack construction of Algorithm 2. This section

evaluates the attack performance in terms of the sparsity penalty defined as

η
∆
=
J(Σind

k )− J(Σind
m )

J(Σind
m )

, (4.59)

where J is the cost defined in (4.35). Note that J(Σind
m ) denotes the cost induced by the

construction when all the sensors are attacked. In that sense, this metric captures the
performance loss of the attack when only k measurements are attacked.
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Fig. 4.4 depicts the performance of the independent sparse stealth attack constructions
obtained with Algorithm 2 in DC model on different IEEE test systems as a function of
the proportion of compromised sensors, that is k/m, for correlation parameter ρ = 0.9
and λ = 8. As expected, the sparsity penalty decreases monotonically with the proportion
of compromised sensors. In the independent sparse attack case, the sparsity penalty does
not change significantly in terms of the proportion of compromised sensors. Note that the
exponential decrease slope is approximately constant, which indicates that the advantage of
adding more sensors to the attack construction decreases exponentially at an approximately
constant rate. Remarkably, this exponential decrease is observed for all system sizes and
SNR regimes. Interestingly, the size of the network does not determine the performance the
attack. Specifically, the IEEE 14-bus system is the most vulnerable to attacks. This suggests
that the topology of the system fundamentally changes the performance of the attack.

Fig. 4.5 depicts the performance of the independent sparse stealth attack construction
obtained with Algorithm 2 in linearized AC model on different IEEE test systems with the
same setting as in Fig. 4.4. As expected, the sparsity penalty decreases monotonically with
the proportion of compromised measurements.

Performance in terms of the tradeoff between mutual information and KL diver-
gence

Fig. 4.6 and Fig. 4.7 depict the multiobjective performance of the Algorithm 2 attack con-
struction in DC model in terms of the tradeoff between mutual information and KL diver-
gence for different values of the proportion of compromised sensors when SNR = 30 dB and
ρ = 0.9 on the IEEE 9-bus and the IEEE 14-bus systems, respectively. As expected, larger
values of the parameter λ yield smaller values of KL divergence, that is, the probability of
detection is prioritized in the construction over the mutual information decrease for all the
scenarios. Moreover, smaller values of k yield smaller reductions of the mutual information,
which indicates that remaining stealthy in a sparse setting necessarily implies reducing the
amount of disruption of the attack. On the other hand, larger values of k enable the attacker
to more effectively tradeoff disruption for stealth.

Fig. 4.8 and Fig. 4.9 depict the multiobjective performance of the Algorithm 2 attack
constructions in linearized AC model in terms of the tradeoff between mutual information
and KL divergence for different values of the proportion of compromised measurements when
SNR = 30 dB and ρ = 0.9 on the IEEE 9-bus and the IEEE 14-bus systems, respectively.

Performance in terms of state estimate degradation and probability of detection

Fig. 4.10 depicts the deviation of the LS estimate caused by one realization of the independent
attack constructions via Algorithm 2 on the IEEE 9-bus test system with different values of
k when λ = 2, SNR = 30 dB and ρ = 0.9. Note that the magnitude of the state estimate
is in per unit where the base quantity is the actual value of state variables accordingly. The
LS state estimate denoted by black dots serves as a benchmark for the state estimate after
attacks. The LS estimate for all the state variables under independent attacks derivates from
the LS estimate without attacks in both small and large values of k. The attack constructions
successfully deviate the LS estimates for all state variables, albeit with different deviation
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Figure 4.4: Performance of independent attack constructions in DC model on different IEEE
test systems with ρ = 0.9 and λ = 8.
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Figure 4.5: Performance of independent attack constructions in linearized AC model on
different IEEE test systems with ρ = 0.9 and λ = 8.
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Figure 4.6: Performance of independent sparse attack construction in DC model in terms
of mutual information and KL divergence for different values of λ on the IEEE 9-bus test
system with SNR = 30 dB and ρ = 0.9.
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Figure 4.7: Performance of independent sparse attack construction in DC model in terms
of mutual information and KL divergence for different values of λ on the IEEE 14-bus test
system with SNR = 30 dB and ρ = 0.9.
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Figure 4.8: Performance of independent sparse attack construction in linearized AC model
in terms of mutual information and KL divergence for different values of λ on the IEEE
9-bus test system with SNR = 30 dB and ρ = 0.9.
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Figure 4.9: Performance of independent sparse attack construction in linearized AC model
in terms of mutual information and KL divergence for different values of λ on the IEEE
14-bus test system with SNR = 30 dB and ρ = 0.9.
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Figure 4.10: Performance of independent attack construction in terms of state estimate with
and without attacks on the IEEE 9-bus test system with one realization when λ = 2,
ρ = 0.9, SNR = 30 dB.
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Figure 4.11: Performance of independent attack construction in terms of the average abso-
lute deviation of the state estimate on the IEEE 9-bus test system with 20000 realizations
when λ = 2, ρ = 0.9, SNR = 30 dB.
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Figure 4.12: Performance of independent attack construction in terms of probability of
detection and probability of false alarm in LRT, LNRT and RT on the IEEE 9-bus test
system when λ = 2, ρ = 0.9, SNR = 30 dB.
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Figure 4.13: Performance of independent attack construction in terms of state estimate with
and without attacks on the IEEE 9-bus test system with one realization when k = 15,
ρ = 0.9, SNR = 30 dB.
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Figure 4.14: Performance of independent attack construction in terms of the average absolute
deviation of the state estimate on the IEEE 9-bus test system with 20000 realizations when
k = 15, ρ = 0.9, SNR = 30 dB.
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Figure 4.15: Performance of independent attack construction in terms of probability of
detection and probability of false alarm in LRT, LNRT and RT on the IEEE 9-bus test
system when k = 15, ρ = 0.9, SNR = 30 dB.
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strengths. In the worst case, for example the first state variable, the deviation is around
0.02 per unit. Fig. 4.11 depicts the absolute value of the deviation of the LS estimate caused
by averaging 2× 104 realizations of the attack constructions via Algorithm 2 on the IEEE
9-bus test system with different values of k when λ = 2, SNR = 30 dB and ρ = 0.9. As
expected, the attack constructions with larger k yield larger deviation of estimate in all
the state variables. Surprisingly, state variables i, i ∈ {1, 2, 5, 6, 7} deviates more than state
variable j, j ∈ {3, 4, 8} both when k = 5 and k = 15. This indicates that some state variables
are more sensitive to the random attacks.

The tradeoff between probability of detection and probability of false alarm for the attack
construction via Algorithm 2 on the IEEE 9-bus test system with LRT, largest normalized
residual test (LNRT) and residual test (RT) is depicted in Fig. 4.12 for different k when
λ = 2, ρ = 0.9, SNR = 30 dB. As expected, the LRT outperforms other detection method
and smaller value of k yields smaller probability of detection in every detection method.

Fig. 4.13 depicts the deviation of the LS estimate caused by one realization of the inde-
pendent attack constructions via Algorithm 2 on the IEEE 9-bus test system with different
values of λ when k = 15, SNR = 30 dB and ρ = 0.9. The LS estimate under independent
attacks for all the state variables deviates from the LS estimate without attacks in both small
and large values of λ. The attack constructions successfully deviate the LS estimates for all
state variables, albeit with different deviation strengths. Fig. 4.14 depicts the absolute value
of the deviation of the LS estimate caused by averaging 2× 104 realizations of the attack
construction via Algorithm 2 on the IEEE 9-bus test system with different values of λ when
k = 15, SNR = 30 dB and ρ = 0.9. As expected, the attack construction with smaller
λ yields larger deviation of estimate in all the state variables at the cost of stealthiness.
Fig. 4.15 depicts the tradeoff between probability of detection and probability of false alarm
for the attack construction via Algorithm 2 on the IEEE 9-bus test system with LRT, LNRT
and RT for different λ when k = 15, ρ = 0.9, SNR = 30 dB. As expected that smaller values
of λ yields larger probability of detection in all detection methods.

4.6 Summary

This chapter proposed a novel independent stealth attack construction with sparsity con-
straints. The proposed attack constructions minimize the mutual information between the
state variables and the measurements obtained by the operator while minimizing the prob-
ability of detection. To that end, this chapter proposed a cost function that combines the
mutual information and the KL divergence that is amenable to sparse attack constructions.
This chapter has theoretically characterized the optimal single measurement attack case
by proving that the resulting cost function is convex and obtaining the optimal attack con-
struction for this case. This chapter distils the insight obtained from the single measurement
attack case to propose a sparse attack construction via the greedy algorithm described in Al-
gorithm 1 that overcomes the combinatorial challenge by sequentially removing the attacked
sensors and update the Jacobian matrix of the system. This chapter has numerically assessed
the performance of the proposed attack on the IEEE 30-bus system and observed that the
probability of detection exhibits a threshold effect when a critical number of measurements
are compromised.
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In addition to the greedy attack constructions in Algorithm 1, the insight obtained from
minimizing the cost difference induced by incorporating an additional sensor to the attack is
distilled to construct heuristic greedy constructions presented in Algorithm 2. This chapter
shows that the greedy step results in a convex optimization problem which can be solved
efficiently and yields a low complexity attack update rule. This chapter has numerically
evaluated the attack performance in several IEEE test systems and shown that it is feasible
to implement disruptive attacks that have access to small number of measurements. Fur-
thermore, it is observed that the topology and the SNR regime govern the performance of
the attacks.



Chapter 5

Correlated Sparse Stealth Attacks

In this chapter, the stealth sparse attacks introduced in Chapter 4 are generalized by drop-
ping the assumption of independence and considering correlation between attack vector
entries. This chapter tackles the challenge of the combinatorial character of identifying the
support of the sparse attack vector by incorporating an additional sensor that yields a sequen-
tial sensor selection problem. The convexity of the resulting optimization problem is proved
and the insight obtained from incorporating an additional sensor has been distilled to pro-
pose an heuristic greedy algorithm. This chapter has numerically assessed the performance
of the proposed correlated attack constructions on the IEEE test systems and observed that
the performance of the correlated attacks outperform independent attacks at the expense of
requiring coordination, i.e., communication, between different attack locations.

5.1 Correlated Sparse Stealth Attack

5.1.1 Sparse Stealth Attack Formulation

The observation model with linearized dynamics given in (4.1) is presented here again for
convenience. Recall that

Y m = HXn + Zm, (5.1)

where the matrix H ∈ Rm×n is the Jacobian matrix defined in (2.9) at a given operating
point and is determined by the system components and the topology of the network, the
vector Xn ∈ Rn is the vector of random state variables such that Xn ∼ N (0,ΣXX), the
vector of random variables Y m ∈ Rm is the vector of measurements that are corrupted by
AWGN that is described by the random noise vector Zm ∈ Rm such that

Zm ∼ N (0, σ2Im). (5.2)

Therefore, it follows that
Y m ∼ N (0,ΣYY ), (5.3)

where ΣYY = HΣXXH
T + σ2Im.

The measurements Y m are corrupted by a random attack vector Am ∼ PAm . This yields
the observation model under attacks given by

Y m
A = HXn + Zm + Am. (5.4)

61
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The sparsity constraint is modelled as

card (supp(Am)) = k, (5.5)

where k ≤ m. In view of this, the domain of the k-sparse attack construction is the set of
distributions over the attack vector that has at most k ≤ m nonzero entries given by (4.31),
that is,

P̃k
∆
= {PAm : card (supp(Am)) = k} . (5.6)

The objectives of the attackers are disruption and detection that are captured by mutual
information and KL divergence as discussed in Section 4.2. Therefore, the k-sparse attack
construction problem that jointly minimizes the mutual information and the KL divergence
is cast as an optimization problem given by

min
P̃k

I(Xn;Y m
A ) + λD(PY m

A
∥PY m) (5.7)

5.1.2 Gaussian Sparse Attack Construction

From Lemma 11, the optimal Gaussian attack construction is with a null mean vector, that
is

Am ∼ N (0,ΣAA), (5.8)

where ΣAA ∈ Sm
+ . From (5.4) and (5.8), the compromised measurements denoted by Y m

A

satisfies that
Y m
A ∼ N (0,ΣYAYA

), (5.9)

where ΣYAYA
= HΣXXH

T + σ2Im +ΣAA. In this section, the assumption of independence in
(4.39) is dropped. Instead, the following case is considered:

PAm ̸=
m∏
i=1

PAi
. (5.10)

This case boils down to the attack construction given in (4.38), that is

min
ΣAA∈Sk

J(ΣAA), (5.11)

where Sk and the cost function J are defined in (4.37) and (4.35), respectively. Recall that

Sk =
{
S ∈ Sm

+ : ∥diag(S)∥0 = k
}
, (5.12)

J(ΣAA) =(1− λ) log |ΣYY +ΣAA| − log |σ2Im +ΣAA|+ λtr(Σ−1
YYΣAA), (5.13)

where k ≤ m and the weighting parameter λ ≥ 1 is introduced in (5.7), the real σ ∈ R is
in (5.2) and the matrix ΣYY is in (5.3). The optimization domain given by (5.12) is the set of
covariance matrices with k nonzero entries in the diagonal. In next section, the correlation
between the attack vector entries that is captured by the nonzero entries of the covariance
matrix ΣAA is incorporated.
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5.2 Correlated Sparse Stealth Attacks

5.2.1 Correlation Structure

The optimization in (5.11) is carried over the set of covariance matrices with nonzero off-
diagonal entries that account for the correlation between different attack entries. As a result,
in addition to the set in (5.12) that incorporates the general sparsity constraints, the following
set that takes into account the correlation between the attack vector entries is defined:

S̆k
∆
=
⋃
K

{
S ∈ Sm

+ : i ∈ K, (S)ii > 0 and (i, j) ∈ K ×K, (S)ij ̸= 0
}
, (5.14)

where (S)ij denotes the entry of the matrix S in the i-th row and j-th column, the union is

over all subsets K ⊆ {1, 2, . . . ,m} with card (K) = k ≤ m. Note that it holds that S̆k ⊆ Sk.
Consequently, the optimization problem resulting from the construction of correlated k-
sparse attacks is

min
ΣAA∈S̆k

J(ΣAA), (5.15)

The optimization problem in (5.15) is hard to solve due to the combinatorial character of
identifying the support of the sparse random attack vector. To circumvent this problem, this
section proposes a structure that firstly sequentially updates the set of measurements being
attacked and determines the corresponding entry in the diagonal of the matrix ΣAA. Then
the nonzero off-diagonal entries that accounts for the correlation between the new index and
the attacked measurements introduced are determined.

Specifically, given the sparsity constraint in the optimization domain in (5.15), for all
k < m, the construction can be divided into k epochs. At each epoch a new element is
added to diag(ΣAA). At epoch i, let Σi ∈ Sm

+ be the covariance matrix of the vector attack.
Let the set Ki be the set of indices corresponding to the entries of the vector diag(Σi) that
are nonzero, that is,

Ki = {j ∈ {1, 2, . . . ,m} : (Σi)jj > 0}. (5.16)

In operational terms, the set Ki is the set of attacked measurements. For all i ∈ {1, 2, . . . , k},
it is imposed that Ki ⊆ {1, 2, . . . ,m} and card (Ki) = i. This implies that K1 ⊂ K2 ⊂ . . . ⊂
Kk ⊂ {1, 2, . . . ,m}. Hence,

Σi = Σi−1 +∆i, (5.17)

where ∆i ∈ Di with

Di
∆
=
⋃

s∈Rm

{
D ∈ Rm×m : D = sT⊗ ei + s⊗ eTi , i ∈ Kc

i−1

}
. (5.18)

Note that the vector s determines the second order moments describing the covariance
between attacked measurements As in the independent attack construction, characterizing
the difference enables to formulate the optimization problem that yields the minimum cost
increase introduced by a new index in the attack support. Let Σi−1 ∈ Si−1 be the covariance
matrix of the attack vector over i− 1 measurements. Then the sensor selection problem at
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step i is given by the optimization problem:

min
j,∆

J (Σi−1 +∆) (5.19)

s.t. j ∈ Kc
i−1,

∆ ∈ Dj,

Σi−1 +∆ ∈ Sm
+ .

The following lemma sheds light on the solution to the problem in (5.19).

Lemma 16. Let Σi ∈ Sm
+ and Σi−1 ∈ Sm

+ be two matrices in epoch i and i− 1, respectively,
that satisfy Σi = Σi−1 +∆ with Ki−1 in (5.16), j ∈ Kc

i−1 and ∆ ∈ Di. The cost function J
in (5.13) satisfies that

J(Σi) = J(Σi−1) + fcor(Σi−1,∆), (5.20)

where the function f : Rm×m ×Rm×m → R is such that

fcor(Σi−1,∆)
∆
=(1− λ) log

∣∣Im + (ΣYY +Σi−1)
−1∆

∣∣− log
∣∣∣Im +

(
σ2Im +Σi−1

)−1
∆
∣∣∣

+λtr
(
Σ−1

YY∆
)
, (5.21)

where λ ≥ 1 is introduced in (5.7) and the matrix ΣYY is defined in (5.3).

Proof. The proof consists in showing that the difference between J(Σi) and J(Σi−1) yields

J(Σi)− J(Σi−1) (5.22)

=(1− λ) log
∣∣Im + (ΣYY +Σi−1)

−1∆
∣∣− log

∣∣∣Im +
(
σ2Im +Σi−1

)−1
∆
∣∣∣+ λtr

(
Σ−1

YY∆
)
.

This completes the proof.

The relevance of Lemma 16 is that it enables the selection of both j ∈ Kc
i−1 and ∆ ∈ Dj

at epoch i based on a simpler optimization problem than that in (5.19). Indeed, from
Lemma 16, the selection problem in (5.19) is equivalent to

min
(j,v)∈Kc

i−1×R+

fcor(Σi−1,∆), (5.23)

where the function fcor is defined in (5.21).
In the following, it is shown that when the choice of the index selected for attacks in an

epoch is fixed, the optimization in (5.19) is convex in the matrix ∆.

Theorem 17. Let Σi−1 ∈ S̆i−1 and j ∈ Kc
i−1. Then the optimization problem given by

min
∆

J (Σi−1 +∆)

s.t. ∆ ∈ Dj,

Σi−1 +∆ ∈ Sm
+ ,

(5.24)

is convex in ∆.
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Proof. From Lemma 16, the following holds for the optimization problem in (5.24).

J(Σi−1 +∆) = J(Σi−1) + fcor(Σi−1,∆), (5.25)

where the function fcor is in (5.21). Hence, the optimization problem in (5.24) is equivalent
to

min
∆

fcor(Σi−1,∆) (5.26)

s.t. ∆ ∈ Dj,

Σi−1 +∆ ∈ Sm
+ ,

that is,

min
∆

(1− λ) log
∣∣Im + (ΣYY +Σi−1)

−1∆
∣∣− log

∣∣∣Im +
(
σ2Im +Σi−1

)−1
∆
∣∣∣ (5.27)

+λtr
(
Σ−1

YY∆
)

s.t. ∆ ∈ Dj,

Σi−1 +∆ ∈ Sm
+ ,

which is equivalent to

min
∆

(1− λ) log
∣∣Im + (ΣYY +Σi−1)

−1∆
∣∣− log

∣∣∣Im +
(
σ2Im +Σi−1

)−1
∆
∣∣∣ (5.28)

+λtr
(
Σ−1

YY∆
)
+ (1− λ) log |ΣYY +Σi−1| − log

∣∣σ2Im +Σi−1

∣∣
s.t. ∆ ∈ Dj,

Σi−1 +∆ ∈ Sm
+ .

= min
∆

(1− λ) log |ΣYY +Σi−1 +∆| − log
∣∣σ2Im +Σi−1 +∆

∣∣+ λtr
(
Σ−1

YY∆
)

(5.29)

s.t. ∆ ∈ Dj,

Σi−1 +∆ ∈ Sm
+ .

Noting that in (5.29), the sets Dj are convex for all j ∈ Kc
i−1, that the logarithm terms

are convex [115] for λ ≥ 1, and that the trace term is linear, yields that the optimization
problem in (5.29) is convex. Therefore, the optimization problem (5.24) is convex in ∆.
This completes the proof.

5.2.2 Greedy Construction

The proposed greedy construction for correlated attack case is described in Algorithm 3.
Note that the matrix obtained in the optimization problem in Theorem 17 is constrained by
projecting the sum of the update and the previous covariance matrix in the positive semidef-
inite cone to guarantee that the resulting covariance matrix is indeed positive semidefinite.
This is reflected in the last step of Algorithm 3 where the resulting matrix construction is
projected by minimizing the Frobenius distance to the positive semidefinite cone. The com-
putation complexity of Algorithm 3 comes from computing the matrix ∆ that describes the
variance of the new compromised measurement and the covariances with the compromised
ones. As provided in Theorem 17, the optimization problem is convex. Hence, the algorithm
converges and the computation complexity is O(m(m− k)).
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Algorithm 3 k-sparse correlated attack construction

Input: H in (5.1);
σ2 in (5.1);
ΣXX in (5.1);
k in (5.6) and λ in (5.7).

Output: ΣAA in (5.15).
1: Set K0 = {∅}
2: Set Σ0 = 0
3: for j = 1 to k do
4: for ℓ ∈ Kc

j−1 do
5: Compute ∆ℓ = argmin∆∈Dℓ

J(Σj−1 +∆)
6: end for
7: Compute j⋆ = argminℓ∈Ac

j−1
J(Σj−1 +∆ℓ)

8: Set Kj = Kj−1 ∪ {j⋆}
9: Set Σj = Σj−1 +∆j⋆

10: end for
11: Compute ΣAA = argminS∈Sm

+
∥Σk − S∥F.

5.3 Numerical Results

5.3.1 Performance in terms of Information Theoretic Cost

Let Σcor
k be the output of the k-sparse attack construction of Algorithm 3. This section

evaluates the attack performance in terms of the sparsity penalty defined as

η
∆
=
J(Σcor

k )− J(Σcor
m )

J(Σcor
m )

, (5.30)

where J is in (5.13). Note that J(Σcor
m ) denotes the cost induced by the construction when

all the sensors are attacked. In that sense, this metric captures the performance loss of the
attack when only k sensors are attacked.

Fig. 5.1 depicts the performance of the correlated sparse stealth attack construction
obtained with Algorithm 3 in different IEEE test systems as a function of the proportion of
compromised sensors, that is, k/m, for ρ = 0.9 and λ = 8. As expected, the sparsity penalty
decreases monotonically with the proportion of compromised sensors. The sparsity penalty
decreases exponentially in the number of compromised sensors. Note that the exponential
decrease slope is approximately constant, which indicates that the advantage of adding more
sensors to the attack construction decreases exponentially at an approximately constant rate.
Remarkably, this exponential decrease is observed for all system sizes and SNR regimes.

It is worth noting that for most systems, operating with larger SNR yields a lower mutual
information for the same KL divergence. However, in Fig. 5.1 for the IEEE 30-bus test system
the 10 dB and 30 dB performance curves cross, which indicates that the lower SNR regime
benefits the attacker when the number of comprised sensors grows. Interestingly, the size of
the network does not determine the performance the attack. From Fig. 5.1, 14-bus system
is the most vulnerable system to the attacks. This statement only holds for high SNR
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regime. In lower SNR regime, 30-bus system is the most vulnerable system. This suggests
that the topology of the network fundamentally changes the performance of the attack but
the specific mechanisms are left for future study. Fig. 5.2, depict the performance of the
correlated attacks from Algorithm 3 in terms of the sparsity penalty in linearized AC model.
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Figure 5.1: Performance of correlated attack constructions in DC model on different IEEE
test systems with ρ = 0.9 and λ = 8.

5.3.2 Performance in terms of the Tradeoff between Mutual In-
formation and KL Divergence

Fig. 5.3 and Fig. 5.4 depict the multiobjective performance of the correlated attack construc-
tion via Algorithm 3 in terms of the tradeoff between mutual information and KL divergence
for different values of the proportion of compromised sensors when SNR = 30 dB and ρ = 0.9.
As expected, larger values of the parameter λ yield smaller values of KL divergence, i.e. the
probability of detection is prioritized in the construction over the mutual information de-
crease for all the scenarios. Moreover, smaller values of k yield smaller reductions of the
mutual information, which indicates that remaining stealthy in a sparse setting necessarily
implies reducing the disruption induced by the attacks in the state variables. On the other
hand, larger values of k enable the attacker to more effectively tradeoff disruption for stealth,
which reinforces the previous observation regarding the value of coordination between attack
variables to achieve stealth.

Fig. 5.5 and Fig. 5.6 depict the multiobjective performance of the correlated attack case
in linearized AC model via Algorithm 3 for the IEEE 9-bus and the IEEE 14-bus systems,



5.3. NUMERICAL RESULTS 68

0 0.25 0.5 0.75 1

Proportion of compromised sensors, k/m

10-4

10-3

10-2

10-1

100

lo
g
 

9-bus, 30dB

9-bus, 40dB

14-bus, 30dB

14-bus, 40dB

30-bus, 30dB

30-bus, 40dB

Figure 5.2: Performance of correlated attack constructions in linearized AC model on differ-
ent IEEE test systems with ρ = 0.9 and λ = 8.

respectively, with SNR = 30 dB and ρ = 0.9.

5.3.3 Performance in terms of Disruption to State Estimation

Fig. 5.7 depicts the deviation of the LS estimate caused by one realization of the correlated
attack constructions via Algorithm 3 on the IEEE 9-bus test system with different values of
k when λ = 2, SNR = 30 dB and ρ = 0.9. With correlated attacks, both small and large
values of k deviate the LS estimate for all state variables. The attack construction results in
deviation of the LS estimate for all state variables to different extent. In the worst case, the
deviation can cause 2 percent deviation. Fig. 5.8 depicts the absolute value of the deviation
of the LS estimate caused by averaging 2× 104 realizations of the attack construction via
Algorithm 3 on the IEEE 9-bus test system with different values of k when λ = 2, SNR = 30
dB and ρ = 0.9. As expected, the attack construction with larger k yields larger deviation
of the estimates for all the state variables.

The tradeoff between probability of detection and probability of false alarm for the attack
construction via Algorithm 3 on the IEEE 9-bus test system with LRT, LNRT and RT is
depicted in Fig. 5.9 for different k when λ = 2, ρ = 0.9, SNR = 30 dB. It is expected that
LRT outperforms other detection method and smaller value of k yields smaller probability
of detection in all every detection methods.

Fig. 5.10 depicts the deviation of the LS estimate caused by one realization of the cor-
related attack constructions via Algorithm 3 on the IEEE 9-bus test system with different
values of λ when k = 15, SNR = 30 dB and ρ = 0.9. With correlated attacks, both small
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Figure 5.3: Performance of correlated sparse attack construction in DC model in terms of
mutual information and KL divergence for different values of λ on the IEEE 9-bus system
with SNR = 30 dB and ρ = 0.9.
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Figure 5.4: Performance of correlated sparse attack construction in DC model in terms of
mutual information and KL divergence for different values of λ on the IEEE 14-bus system
with SNR = 30 dB and ρ = 0.9.
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Figure 5.5: Performance of correlated sparse attack construction in linearized AC model in
terms of mutual information and KL divergence for different values of λ on the IEEE 9-bus
system with SNR = 30 dB and ρ = 0.9.
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Figure 5.6: Performance of correlated sparse attack construction in linearized AC model in
terms of mutual information and KL divergence for different values of λ on the IEEE 14-bus
system with SNR = 30 dB and ρ = 0.9.
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Figure 5.7: Performance of correlated attack construction in terms of WLS state estimate
with and without attacks on the IEEE 9-bus test system with one realization when λ = 2.
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Figure 5.8: Performance of correlated attack construction in terms of the average absolute
deviation of WLS state estimate on the IEEE 9-bus test system with 2× 104 realizations
when λ = 2.
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Figure 5.9: Performance of correlated attack construction in terms of probability of detection
and probability of false alarm in LRT, LNRT and RT on the IEEE 9-bus test system when
λ = 2.
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Figure 5.10: Performance of correlated attack construction in terms of WLS state estimate
with and without attacks on the IEEE 9-bus test system with one realization when k = 15.
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Figure 5.11: Performance of correlated attack construction in terms of the average absolute
deviation of WLS state estimate on the IEEE 9-bus test system with 2× 104 realizations
when k = 15.

and large values of λ yield deviation of the LS estimate for all state variables. The attacks
induce a deviation of the LS estimate for all state variables with differences in the extent of
the disruption depending on the state variable index. Fig. 5.11 depicts the absolute value
of the deviation of the LS estimate caused by averaging 2× 104 realizations of the attack
constructions via Algorithm 3 on the IEEE 9-bus test system with different values of λ when
k = 15, SNR = 30 dB and ρ = 0.9. As expected, the attack construction with smaller
λ yields larger deviation of estimate in all the state variables at the cost of stealthiness.
Fig.5.12 depicts the tradeoff between probability of detection and probability of false alarm
for the attack construction via Algorithm 3 on the IEEE 9-bus test system with LRT, LNRT
and RT for different λ when k = 15, ρ = 0.9, SNR = 30 dB. As expected smaller value of λ
yields larger probability of detection in all detection methods.

5.3.4 Performance in terms of Mutual Information and Probabil-
ity of Attack Detection

Fig. 5.13 and Fig. 5.14 depict the performance of the attack construction for different values
of λ and sparse constraint k with SNR = 30 dB, ρ = 0.9 and τ = 2 for the IEEE 9-bus and the
IEEE 14-bus test systems, respectively. As expected, larger values of the parameter λ yield
smaller values of the probability of attack detection while increasing the mutual information
between the vector of state variables and the vector of observations in the systems. Note
that the probability of attack detection decreases approximately linearly with respect to
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Figure 5.12: Performance of correlated attack construction in terms of probability of detec-
tion and probability of false alarm in LRT, LNRT and RT on the IEEE 9-bus test system
when k = 15.

log λ for small values of λ. Simultaneously for this range of λ, mutual information increases
approximately linearly with respect to log λ. For moderate values of λ, it is observed that
there is a significant decrease in the probability of detection with respect to log λ with a
smaller rate of increase in mutual information. The comparison between independent and
correlated attack constructions, shows that for the same sparsity constraint, the correlated
attack construction successfully exploits the coordination between different locations to yield
a smaller probability of detection and a smaller mutual information.

In order to numerically evaluate the performance correlated attacks via Algorithm 3 in
comparison with independent attacks construction via Algorithm 2 in Chapter 4, Fig. 5.15
depicts the average absolute deviation of the state estimate of independent attacks and
correlated attacks when λ = 1 and k = 15 on the IEEE 9-bus test system. The deviation
for correlated attacks is in general larger than for independent attacks, which implies larger
disruption in state estimate. Fig. 5.16 depicts the corresponding probability of detection
and probability of false alarm in independent attacks and correlated attacks when λ = 1 and
k = 15 on the IEEE 9-bus test system. For the same probability of false alarm, correlated
attacks achieves a lower probability of detection in comparison with independent attacks.
Overall, correlated attacks yield larger disruption but obtain lower probability of detection.
Therefore, correlated attacks outperform independent attacks at the expense of coordination
between different locations.
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Figure 5.13: Performance of attack constructions on the IEEE 9-bus test system with ρ = 0.9,
SNR = 30 dB and τ = 2.
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5.4 Summary

This chapter has proposed novel stealth attack construction with sparsity constraints. The
insight obtained from the problem of incorporating an additional sensor to the attack has
been distilled to construct heuristic greedy constructions for the correlated attack cases. It
is shown that the greedy step results in a convex optimization problem which can be solved
efficiently and yields a low complexity attack update rule. The simulation has numerically
evaluated the attack performance in several IEEE test systems and shown that it is feasible
to implement disruptive attacks that have access to a small number of measurements. The
increase of KL divergence and decrease of mutual information quantitatively with different
sparsity constraints are depicted in Fig. 5.3 to Fig. 5.6 in DC and AC systems. The disruption
to state estimation quantitatively and the probability of detection under different detection
methods are presented in Fig. 5.7 to Fig. 5.16. Furthermore, it is observed that the topology
and the SNR regime govern the performance of the attack and numerically characterized the
dependence.



Chapter 6

Measurement Vulnerability Analysis

This chapter proposed a fundamental metric to assess the vulnerability of measurements on
the smart grid to data integrity attacks. The new metric, coined vulnerability index (VuIx),
leverages information theoretic measures to assess the attack effect on the fundamental
limits of the disruption and detection tradeoff. As in the previous chapters, an information
theoretic framework is adopted to characterize the fundamental information loss induced
by data integrity attacks. The result of computing the VuIx of the measurements in the
system yields an ordering of the measurements vulnerability based on the level of exposure
to data integrity attacks. This new framework is used to assess the vulnerability of the
measurements of the IEEE test systems and it is observed that power injection measurements
are overwhelmingly more vulnerable to data integrity attacks than power flow measurements.
A detailed numerical evaluation of the VuIx metric for the IEEE test systems is provided.

6.1 Information Theoretic Attacks Modelling

The observation model with linearized dynamics within Bayesian framework is given in
definition 7, that is

Y m = HXn + Zm, (6.1)

where the Jacobian matrix H ∈ Rm×n is defined in (2.9), the vector Xn ∈ Rn is the vector
of random state variables such that

Xn ∼ N (0,ΣXX), (6.2)

the vector Y m ∈ Rm is the vector of measurements that are corrupted by AWGN that is
described by the random noise vector Zm ∈ Rm such that

Zm ∼ N (0, σ2Im). (6.3)

Therefore, it follows that
Y m ∼ N (0,ΣYY ), (6.4)

where
ΣYY = HΣXXH

T + σ2Im. (6.5)

78
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The measurements Y m are corrupted by a random attack vector Am ∼ PAm . This yields
the observation model under attacks as follows

Y m
A = HXn + Zm + Am. (6.6)

From Lemma 11, the optimal Gaussian attack construction is with a null mean vector,
that is

Am ∼ N (0,ΣAA), (6.7)

where ΣAA ∈ Sm
+ . From (6.6) and (6.7), the compromised measurements denoted by Y m

A

satisfies that
Y m
A ∼ N (0,ΣYAYA

), (6.8)

where ΣYAYA
= HΣXXH

T + σ2Im +ΣAA.

6.2 Attack Structure with Sequential Sensor Selection

To assess the impact of the attacks to different measurements, the entries of the attack vector
with independency are modelled as

PAm =
m∏
i=1

PAi
, (6.9)

where for all i ∈ {1, 2, . . . ,m}, the distribution PAi
is Gaussian with zero mean and variance

v ∈ R+. Consider that k sensors have been compromised with k ∈ {1, 2, . . . ,m− 1} and let
the covariance matrix of the corresponding attack vector Am in (6.6) be

Σ ∈ Sk, (6.10)

where Sk is the set of m-dimensional positive semidefinite matrix with k nonzero entries in
the diagonal, that is,

Sk
∆
= {S ∈ Sm

+ : ∥diag(S)∥0 = k}. (6.11)

Let the set of sensors that have not been compromised be

Ko ={i ∈ {1, 2, . . . ,m} : (Σ)ii = 0}. (6.12)

The sequential sensor selection imposes the following structure in the covariance matrix of
the attack vector:

ΣAA = Σ+ veie
T
i , (6.13)

where i ∈ Ko and v ∈ R+. The cost function f : Sk × R+ × R+ × Ko → R+ defined by
adding (4.18) and (4.21) is as follows:

f(Σ, λ, v, i)
∆
=I(Xn;Y m

A ) + λD(PY m
A
∥PY m) (6.14)

=
1

2
(1− λ)log

∣∣ΣYY +Σ+ veie
T
i

∣∣− 1

2
log
∣∣Σ+ veie

T
i + σ2Im

∣∣ (6.15)

+
1

2
λ
(
tr
(
Σ−1

YY

(
Σ+ veie

T
i

))
+ log |ΣYY |

)
.
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6.3 Information Theoretic Vulnerability of A Measure-

ment

This section proposes a notion of vulnerability that is linked to the information theoretic
cost function proposed in [17] to characterize the disruption and detection tradeoff incurred
by the attacks. Taking the state of the system with k compromised measurements as the
baseline, this section quantifies the vulnerability of each measurement in terms of the cost
decrease induced by attacking a sensor i with i ∈ Ko. In the following, the vulnerability of
a measurement is defined.

Definition 10. The function ∆ : Sm
+ ×R+ ×R+ ×Ko → R+, where Ko is in (6.12), defines

the vulnerability of measurement i in the following form:

∆(Σ, λ, v, i)
∆
= f(Σ, λ, v, i)− f(Σ, λ, 0, i), (6.16)

where the function f is defined in (6.14).

Note that the attacker aims to minimize (6.14) by choosing an index i and a variance v,
and therefore, the definition above implies that given that k sensors in {1, 2, . . . ,m}\Ko are
already attacked in the system, the most vulnerable measurement is obtained by solving the
following optimization problem

min
i∈Ko

∆(Σ, λ, v, i), (6.17)

where Ko is defined in (6.12).

6.3.1 Vulnerability Analysis of Uncompromised Systems

This section first consideres the case in which no sensors are under attack, that is, k = 0, and
the attacker selects a single sensor and corrupts the corresponding measurement with a given
budget v ≤ v0. The vulnerability of measurement i is quantified in terms of ∆(Σ, λ, v, i).

For the uncompromised system case, the optimization problem in (6.17) can be solved in
closed form expression. The following theorem provides the solution.

Theorem 18. The solution to the problem in (6.17), with Ko = {1, 2, . . . ,m}, is

i = argmin
j∈{1,2,...,m}

{(
Σ−1

YY

)
jj

}
, (6.18)

where ΣYY is in (6.5).

Proof. Note that in (6.15), f(0, λ, 0, i) is a constant with respect to i. Hence, optimization
problem in (6.17) is equivalent to

min
i∈{1,2,...,m}

f(0, λ, v, i). (6.19)

Let λ ∈ R+ and v ∈ R+. The resulting problem in (6.19) is equivalent to the following
optimization problem:

min
i∈{1,2,...,m}

(1−λ)log
(
1+vtr

(
Σ−1

YY eie
T
i

))
+λvtr

(
Σ−1

YY eie
T
i

)
. (6.20)



6.4. NUMERICAL RESULTS 81

The proof concludes by noting that the cost function in (6.20) is monotonically increasing
with respect to tr

(
Σ−1

YY eie
T
i

)
.

From Theorem 18, it follows that the identification of the most vulnerable measurement
is independent of λ in (6.14) and the variance v. That is, it exclusively depends on the
system topology denoted by ΣYY in (6.5). This result coincides with Theorem 13 in the
sense that in the attack construction for k = 1 in (4.41), the most vulnerable measurement
is in (4.43a), which is independent of the value of λ.

The following corollary characterizes the vulnerability ordering in uncompromised sys-
tems.

Corollary 18.1. Let the parameters Σ = 0, v ∈ R+, λ ∈ R+ and i ∈ {1, 2, . . . ,m}. The
measurements vulnerability ascending ordering for an uncompromised system is given by the
ascending ordering of tr

(
Σ−1

YY eie
T
i

)
.

6.3.2 Information Theoretic Vulnerability Index (VuIx)

The vulnerability analysis of uncompromised systems in Section 6.3.1 is constrained to k = 0.
To generalize the vulnerability analysis to compromised systems when k > 0, in the following,
a novel metric, coined vulnerability index, for all i ∈ Ko is proposed.

Definition 11. For k ∈ {1, 2, . . . ,m − 1} and Sk in (6.11), consider the parameters Σ ∈
Sk, v ∈ R+, λ ∈ R+. Consider also the set {(i,∆) : i ∈ Ko}, with Ko in (6.12) and

∆i
∆
= ∆(Σ, λ, v, i). Let the vulnerability ranking r = (r1, r2, . . . , rcard(Ko)) be such that for all

i ∈ {1, 2, . . . , card (Ko)}, ri ∈ Ko and moreover,

∆r1 ≤ ∆r2 ≤ . . . ≤ ∆rcard(Ko)
. (6.21)

The vulnerability index (VuIx) of measurement rj ∈ Ko is j, that is, VuIx(rj) = j.

Note that the measurement with the smallest VuIx is the most vulnerable measurement
that corresponds the solution to the optimization problem in (6.17). The proposed VuIx for
i ∈ Ko is obtained from Algorithm 4.

6.4 Numerical Results

This section numerically evaluates the VuIx of the measurements on a DC model for the IEEE
test systems [112]. The voltage magnitudes are set to 1.0 per unit, that is, the measurements
of the systems are active power flow between the buses that are physically connected and
active power injection to all the buses. The Jacobian matrix H in (6.1) determined by
the topology of the system and the physical parameter of the branches is generated by
MATPOWER [113]. A Toeplitz model is adopted for the covariance matrix ΣXX defined
in (6.2). In this setting, the VuIx of the measurements is also a function of the correlation
parameter ρ, the noise variance σ2, and the Jacobian matrix H. The noise regime in the
observation model is characterized by SNR defined in (4.57). As discussed in Theorem 18,
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Algorithm 4 Computation of Vulnerability Index (VuIx)

Input: H in (6.1);
ΣXX in (6.2);
σ2 in (6.3);
Σ ∈ Sk in (6.10);
λ ∈ R+ and v ∈ R+.

Output: the VuIx for all i ∈ Ko.
1: Set Ko in (6.12)
2: for i ∈ Ko do
3: Compute ∆(Σ, λ, v, i) in (6.16)
4: end for
5: Sort ∆(Σ, λ, v, i) in ascending order
6: Set r = (r1, r2, . . . , rcard(Ko))
7: Set the VuIx of measurement rj ∈ Ko as j.

the solution to the optimization problem is unique and analytical. The algorithm converges
and the computation complexity of Algorithm 4 is O(m).

For all λ ∈ R+ and v ∈ R+, this section generates a realization of k attacked indices
Ka ⊆ {1, 2, . . . ,m} that is uniformly sampled from the set of attack k-tuples given by

K̃ = {A ⊆ {1, 2, . . . ,m} : card (A) = k} . (6.22)

Then, a random covariance matrix is constructed to describe the existing attacks on the
system as

Σ̃ =
∑
i∈Ka

eie
T
i , (6.23)

with Ka ∈ K̃. In the numerical simulation, the vulnerability of measurement i is obtained
by computing

∆(Σ̃, λ, 1, i), (6.24)

where i ∈ Ko is in (6.12) and ∆ is defined in (6.16).

6.4.1 Assessment of Vulnerability Index (VuIx)

Fig. 6.1 and Fig. 6.2 depict the mean and variance of the VuIx obtained from Algorithm 4
for all the measurements with SNR = 10 dB, λ = 2 and ρ = 0.1 on the IEEE 9-bus system
when k = 1 and k = 2, respectively. It is observed that power injection measurements yield
higher priority vulnerability indices, which indicates that power injection measurements are
more vulnerable to data integrity attacks. Most power injection measurements correspond to
higher ranked vulnerability indices but there are instances of power flow measurements with
a higher ranked VuIx than that of some power injection measurements. Interestingly, the
power injection measurements with lower vulnerability indices correspond to the buses that
are isolated in the system, that is, the buses with a lower number of connections. On the
other hand, the power flow measurements with higher ranked vulnerability indices correspond
to the branches with higher admittance. The VuIx for k = 0 obtained in Corollary 18.1 is
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Figure 6.1: Vulnerability index (VuIx) when
k = 1, SNR = 10 dB, λ = 2 and ρ = 0.1 on
the IEEE 9-bus system.
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Figure 6.2: Vulnerability index (VuIx) when
k = 2, SNR = 10 dB, λ = 2 and ρ = 0.1 on
the IEEE 9-bus system.
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Figure 6.3: Vulnerability index (VuIx) when
k = 1, SNR = 30 dB, λ = 2 and ρ = 0.1 on
the IEEE 9-bus system.
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Figure 6.4: Vulnerability index (VuIx) when
k = 2, SNR = 30 dB, λ = 2 and ρ = 0.1 on
the IEEE 9-bus system.

depicted for the purpose of serving as a reference to assess the deviation when k > 0.
Interestingly, the VuIx of most measurements does not change significantly for different
values of k, which suggests that the VuIx is insensitive to the state of the system.

Fig. 6.3 and Fig. 6.4 depict the mean and variance of the VuIx from Algorithm 4 for
all the measurements with SNR = 30 dB, λ = 2 and ρ = 0.1 on the IEEE 9-bus system
when k = 1 and k = 2, respectively. Interestingly, the mean of the VuIx for most of the
measurements does not deviate significantly from the case when k = 0. Instead, most of
the variances deviate significantly in comparison with the cases in Fig. 6.1 and Fig. 6.2 with
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Figure 6.5: Vulnerability index (VuIx) when
k = 1, SNR = 10 dB, λ = 2 and ρ = 0.1 on
the IEEE 30-bus system.
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Figure 6.6: Vulnerability index (VuIx) when
k = 2, SNR = 10 dB, λ = 2 and ρ = 0.1 on
the IEEE 30-bus system.
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Figure 6.7: Vulnerability index (VuIx) when
k = 1, SNR = 30 dB, λ = 2 and ρ = 0.1 on
the IEEE 30-bus system.
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Figure 6.8: Vulnerability index (VuIx) when
k = 2, SNR = 30 dB, λ = 2 and ρ = 0.1 on
the IEEE 30-bus system.

SNR = 10 dB. Fig. 6.5 and Fig. 6.6 depict the results on the IEEE 30-bus systems with the
same setting as in Fig. 6.1 and Fig. 6.2, respectively. Fig. 6.7 and Fig. 6.8 depict the results
on the IEEE 30-bus systems with the same setting as in Fig. 6.3 and Fig. 6.4, respectively.
Surprisingly, the mean of the VuIx in larger systems coincides with that obtained for the case
k = 0, which shows that the VuIx is a robust security metric for large systems. Interestingly,
the power injection measurements corresponding to the least connected buses decrease in
the VuIx when SNR = 10 dB.
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6.4.2 Comparative Vulnerability Assessment of Power Flow and
Power Injection Measurements

Figure 6.9: Probability of Vulnerability index (VuIx) corresponds to power injection mea-
surements and power flow measurements when λ = 2, k = 2, SNR = 30 dB and ρ = 0.1 on
the IEEE 9-bus and 30-bus systems.

In Section 6.4.1, it is established that power injection measurements and power flow
measurements are qualitatively different in terms of the VuIx. To provide a quantita-
tive description of this difference, Fig. 6.9 depicts the probability of a given VuIx i ∈
{1, 2, . . . ,m− card (Ka)} being taken by a power injection measurement or by a power flow
measurement for the IEEE 9-bus and 30-bus systems when λ = 2, k = 2, SNR = 30 dB and
ρ = 0.1. Specifically, Fig. 6.9 depicts the probability of the following events:

Flowi : VuIx i corresponds to a power flow measurement,

Inji : VuIx i corresponds to a power injection measurement.

It is observed that in both systems, small VuIx values are more likely to correspond to
power injection measurements than to power flow measurements, that is, P[Inji] > P[Flowi]
for small values of i. Conversely, it holds that P[Inji] < P[Flowi] for large values of i. In
fact, small VuIx values corresponding to power injection measurements is with probability
one, which shows that the most vulnerable measurements in the system are always power
injection measurements. Similarly, larger VuIx values corresponding to power flow measure-
ments is with probability one, which indicates that the least vulnerable measurements are
always power flow measurements. Interestingly, there is a clear demarcation for each system
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Figure 6.10: Distributions of Vulnerability index (VuIx) for power injection measurements
and power flow measurements when λ = 2, k = 2, SNR = 30 dB and ρ = 0.1 on the IEEE
9-bus and 30-bus systems.

for which P[Inji] and P[Flowi] change rapidly with the VuIx value, which suggests a phase
transition type phenomenon for measurement vulnerability.

Fig. 6.10 depicts the probability mass function (pmf) of the VuIx i ∈ {1, 2, . . . ,m− card (Ka)}
for power injection measurements or power flow measurements on the IEEE 9-bus and 30-bus
systems when λ = 2, k = 2, SNR = 30 dB and ρ = 0.1. Specifically, in Fig. 6.10, P[VuIx(Inj)]
and P[VuIx(Flow)] depict the pmf of the VuIx for power injection measurements and power
flow measurements, respectively, on the IEEE 9-bus and 30-bus systems when λ = 2, k = 2,
SNR = 30 dB and ρ = 0.1. The probability mass for power injection measurements con-
centrates on the vulnerability indices with higher priority. Whereas, the probability mass
for power flow measurements concentrates on the low ranked vulnerability indices. The pmf
with high and low vulnerability indices are evenly distributed. Interestingly, in 30-bus sys-
tem, the probability of lowest ranked VuIx for power flow measurements experiences a sharp
increase.

6.4.3 Comparative Vulnerability Assessment of Selected Power
Flow and Power Injection Measurements

In Section 6.4.2, the VuIx of power injection measurements and power flow measurements
are quantitatively assessed. To provide a quantitative description of typical power injection
measurements and power flow measurements, this section presents the pmf of selected power
injection measurements or power flow measurements. Specifically, Fig. 6.11 depicts the
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Figure 6.11: The pdf of Vulnerability index (VuIx) for power injection measurements and
power flow measurements when λ = 2, k = 2, SNR = 30 dB and ρ = 0.1 on the IEEE 9-bus
and 30-bus systems.

distributions of the following events:

VuIX(Inj,M) = i : VuIx i corresponds to the most connected power injection measurement,

VuIX(Inj, L) = i : VuIx i corresponds to the least connected power injection measurement,

VuIX(Flow,H) = i : VuIx i corresponds to power flow measurement with the highest admittance,

VuIX(Flow, L) = i : VuIx i corresponds to power flow measurement with the lowest admittance.

It is observed that in both systems, there is a significant difference in the pmf for these
four selected measurements. The most connected power injection measurements have high
probability mass in VuIx for small values of i. Specifically, in the 30-bus system, the
VuIx of the most connected power injection measurement is 1 is with probability 1, that
is P[VuIx(Inj,M) = 1] = 1, which indicates the most connected power injection measurement
is always the most vulnerable measurement in the system. Conversely, the power flow mea-
surements with the lowest admittance have high probability mass in VuIx for small values of
i. Specifically, in 9-bus system, for large values of i, it holds that P[VuIx(Flow, L) = i] is large,
which indicates that the power flow measurement with lowest admittance is likely to be the
most not vulnerable measurement in the system. This coincides with the results on optimal
single measurement attack case in Theorem 13 in Chapter 4. For the least connected power
injection measurement and the power flow measurement with the highest admittance, the
pmf takes nonzero values for medium i. Interestingly, in 9-bus system, for medium i, it holds
that P[VuIx(Inj, L) = i] ̸= 0 and P[VuIx(Flow,M) = i] ̸= 0, which indicates these two selected
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measurements can have the same VuIx. However, in 30-bus system, the least connected
power injection measurement always has smaller VuIx than the power flow measurement
with highest admittance.

6.5 Summary

This chapter has designed a novel security metric referred to as VuIx that characterizes
vulnerability of power system measurements to data integrity attacks from a fundamental
perspective. This is achieved by embedding information theoretic measures into the metric
definition. The resulting VuIx framework evaluates the vulnerability of all the measurements
in the systems and enables the operator to identify those that are more exposed to data
integrity threats. The simulations have tested the framework for the IEEE test systems and
concluded that power injection measurements are more vulnerable to data integrity attacks
than power flow measurements.



Chapter 7

Decentralized Stealth Attacks

This chapter presents the main results on decentralized stealth attacks with coordination.
Specifically, the interaction between the attackers is modelled as a game in a normal form.
Considering the information theoretic metrics, the cost functions for the attackers to launch
a random attack cooperatively is with different objectives inspired by mutual information
and KL divergence both globally and locally. It is proved that the games are potential
games with corresponding potential functions. The uniqueness and achievability of the Nash
Equilibriums (NEs) in the games are obtained. The best response in each game is charac-
terized. This chapter also proposed best response dynamics to evaluate the performance of
the decentralized stealth attacks and achieve the NEs in the games.

7.1 System Model

In a decentralized system, the observation model is as described in Section 3.6, that is,

Y m ∼ PY m = N (0,ΣYY ), (7.1)

with
ΣYY

∆
= HΣXXH

T + σ2Im. (7.2)

Note that for all i ∈ {1, 2, . . . ,m}, the probability distribution of the i-th entry of the random
vector Y m is denoted by PYi

, that is,

Yi ∼ PYi
= N (0, eTi ΣYY ei). (7.3)

The attacker manipulates the measurements in (6.1) at physically protected locations
that yields additive FDIAs [2]. In (7.1), given the stochastic nature of the measurements,
the attacker pursues a random attack construction strategy. A random malicious attack,
denoted by a random vector Am, compromises the vector of measurements, which yields the
vector of compromised measurements as follows:

Y m
A = HXn + Zm + Am, (7.4)

where Am ∼ PAm and PAm is the distribution of the random attack vector Am. In this study,
PAm is assumed to be a multivariate Gaussian distribution that satisfies

Am ∼ PAm = N (0,ΣAA), (7.5)

89
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where ΣAA ∈ Sm
+ is a covariance matrix.

7.1.1 Decentralized Data Injection Attacks

In [17], the stealth attacks is studied where there is a unique attacker referred to as centralized
attacks. In a decentralized system, DIAs are constructed by several attackers that have access
to the measurements referred to as decentralized attacks [13]. In this scenario, the attackers
decide the attack vector A ∈ Rm cooperatively. The aim of one attacker is to autonomously
decide its attack vector to maximize the damage to the system, e.g. distortion to the state
estimate, while staying undetected. All the attackers have the same interests, which reveals
a cooperative manner among the attackers in decentralized attacks.

Therefore, the random attack Am in (7.5) in decentralized attacks is modelled with the
independence of the entries of attack vector, that is,

Am ∆
= (A1, A2, . . . , Am)

T, (7.6)

such that

PAm =
m∏
i=1

PAi
(7.7)

where, for all i ∈ {1, 2, . . . ,m}, the probability density function of PAi
is Gaussian with zero

mean and variance vi ∈ [0,+∞), that is,

Ai ∼ N (0, vi). (7.8)

The independence between the random attacks in (7.7) implies that decentralized attacks
does not require the communication between different attack locations. That being the
case, the attack construction by attackers in different locations is much more practical and
particularly interesting. Note that with the independence, the covariance matrix in (7.5) is

ΣAA =
m∑
i=1

vieie
T
i . (7.9)

Consequently, the vector of compromised measurements Y m
A under the random attacks fol-

lows a multivariate Gaussian distribution PY m
A
, that is,

Y m
A ∼ PY m

A
= N (0,ΣYAYA

) (7.10)

with
ΣYAYA

∆
= HΣXXH

T + σ2Im +ΣAA. (7.11)

From (7.3) and (7.8), for all i ∈ {1, 2, . . . ,m}, the i-th entry of the random vector Y m
A

denoted by YA,i is such that

YAi
∼ PYA,i

= N (0, eTi ΣYY ei + vi), (7.12)

where ΣYY is defined in (7.2) and vi is introduced in (7.8).
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The independence assumption of the entries of random attack vector in (7.7) allows the

attackers to launch attacks independently. Let M ∆
= {1, 2, . . . ,m} be the set of measurement

indices in the system and

K ∆
= {1, 2, . . . ,m} (7.13)

be the set of attack indices. Assume that measurement i, with i ∈ M, is the only measure-
ment that attacker i can compromise. Let Am

i ∈ Rm be the random attack vector produced
by attacker i and Ai be the set of random attack vectors that can be injected into the system
by attacker i, with i ∈ K, that is,

Ai = {Am
i ∈ Rm : (Am

i )j = 0 for all j ̸= i}. (7.14)

Hence, from (7.6) and (7.14), for all i ∈ K, the following holds

Am
i = Ai ⊗ ei, (7.15)

where Ai ⊗ ei is the Kronecker product of Ai and ei. Let the Minkowski sum of Ai and
Aj be denoted by Ai ⊕ Aj. For all Am ∈ Ai ⊕ Aj, there exists a pair of random vectors
(Am

i , A
m
j ) ∈ Ai × Aj such that Am = Am

i + Am
j . Let the set of all possible random attack

vectors be
A ∆

= A1 ⊕A2 ⊕ . . .⊕Am, (7.16)

and the set of complementary random attack vectors with respect to the attacker i be

A−i
∆
= A1 ⊕A2 ⊕ . . .Ai−1 ⊕Ai+1 . . .⊕Am−1 ⊕Am. (7.17)

Denote the random attack vector constructed by the attacker i by Am
i ∈ Ai. Hence, the

resulting random attack vector is Am ∈ Rm in (7.4) and satisfies

Am =
∑
i∈K

Am
i ∈ A. (7.18)

Denote also the complementary random attack vector of Am
i as follows:

Am
−i

∆
=

∑
j∈K\{i}

Am
j ∈ A−i. (7.19)

Given the actions by all the other attackers Am
−i, the aim of attacker i is to corrupt

the measurements by injecting its random attack vector Am
i ∈ Ai to compromise the data

integrity while guaranteeing a low probability of attack detection. For modelling this be-
haviour, attacker i, with i ∈ K, adopts the cost function ϕi: R

m → R to determine whether
a random attack vector Am

i ∈ Ai is more beneficial than another attack vector Bm
i ∈ Ai. In

this context, the attack vector Am
i is preferred to Bm

i if ϕi(A
m
i + Am

−i) < ϕi(B
m
i + Am

−i).

7.2 Information Theoretic Metrics

The aim of attacker i is to corrupt the measurements by injecting a random attack vector
Am

i ∈ Ai that maximizes the disruption to state estimate while stays undetectable. For
modelling the disruption and the stealthness of the attacks, information theoretic metrics
both globally and locally are adopted.
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7.2.1 Disruption Metrics

Precisely, the disruption is captured by the mutual information. The following proposition
provides the global mutual information.

Proposition 8. The mutual information between the random vector of state variables Xn ∼
N (0,ΣXX) and the random vector of compromised measurements Y m

A ∼ N (0,ΣYAYA
) is [17]

I(Xn;Y m
A ) =

1

2
log

|ΣXX ||ΣYAYA
|

|Σ|
, (7.20)

where ΣXX is in (4.3), the matrix ΣYAYA
is in (4.10) and Σ is the covariance matrix of the

joint distribution of (Xn, Y m
A ) in (4.17).

The following proposition provides the local mutual information between the state vari-

ables Xn and the i-th compromised measurement YA,i
∆
= Yi + Ai in (7.12).

Proposition 9. The mutual information between the vector of random state variables Xn ∼
N (0,ΣXX) and the random variable YA,i is

I(Xn;YA,i) =
1

2
log

(
1 +

tr
(
HΣXXH

Teie
T
i

)
σ2 + vi

)
. (7.21)

Proof. The proof of Proposition 9 is presented in Appendix G.

7.2.2 Detection Metrics

As a part of security strategies, the system operator implements an attack detection proce-
dure prior to performing state estimation. The detection is cast as a hypothesis test with
hypotheses

H0: There is no attack, (7.22a)

H1: Measurements are compromised. (7.22b)

Global Detection

In global detection, the operator decides if the vector of measurements is produced under
attacks. This is described in Section 4.1.2. The global detection is captured by the global
KL divergence in the following proposition.

Proposition 10. The KL divergence between the probability distribution functions of the
measurements with attacks and without attacks, i.e., PY m

A
and PY m, respectively, is [17]

D(PY m
A
∥PY m) =

1

2

(
log

|ΣYY |
|ΣYAYA

|
−m+ tr(Σ−1

YYΣYAYA
)

)
, (7.23)

where ΣY Y is in (4.4) and the matrix ΣYAYA
is in (4.10).
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Local Detection

Similarly, in local detection, the operator decides if measurement i, with i ∈ M, is produced
under attacks. Specifically, the operator acquires measurement i denoted by Ȳi and decides
whether it is produced under attack. The hypothesis test problem becomes

H0: Ȳi ∼ N (0, eTi ΣYY ei), (7.24a)

H1: Ȳi ∼ N (0, eTi ΣYY ei + vi). (7.24b)

A deterministic test TID : R → {0, 1} is adopted to determine which distribution generates
the measurements. Given measurement i denoted by ȳi, let TID(ȳi) = j denote the case in
which the test decides for Hj upon ȳi, with j ∈ {0, 1}. Therefore, the deterministic test TID
is

H0: TID(ȳi) = 0, (7.25a)

H1: TID(ȳi) = 1. (7.25b)

In this setting, the LRT is given by

TID(ȳi) = 1{LID(ȳi)⩾τ}, (7.26)

with τ ∈ R+ the decision threshold and the likelihood ratio LID(ȳi) given by

LID(ȳi) =
fYA,i

(ȳi)

fYA,i
(ȳi)

, (7.27)

where the functions fYA,i
and fYi

are the probability density function of YA,i in (7.12) and Yi
in (7.3), respectively.

The following proposition provides the local KL divergence.

Proposition 11. The KL divergence between two one-dimensional Gaussian distributions
PYA,i

and PYi
is given by

D(PYA,i
∥PYi

) =
1

2

(
vi

tr
(
HΣXXHTeieTi

)
+ σ2

+ log
tr
(
HΣXXH

Teie
T
i

)
+ σ2

tr
(
HΣXXHTeieTi

)
+ σ2 + vi

)
. (7.28)

Proof. The proof of Proposition 11 is presented in Appendix H.

7.3 Game Formulation

The cost for the attacker i to launch a random attack not only depends on its own attack
vector Am

i but also on the random attacks Am
−i of all the other attackers. This is implied

from the overall resulting random attack vector in (7.18). Particularly, in Gaussian attack
construction, given the action profile v = (v1, v2, . . . , vm)

T, the cost function of the attacker
i does not only depend on its own variance vi that is added in the i-th sensor in the network,
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but also the variance by all the other attackers vj, j ̸= i. Therefore, the interaction of all the
attackers in the network can be described by a game in normal form

Gp = (K, {Vi}i∈K, {ϕp
i }i∈K) , (7.29)

where p ∈ Z+ yields different aims of the attackers, i.e., different games, when considering
global metrics in (7.20) and (7.23) and local metrics in (7.21) and (7.28) in Proposition 9
and Proposition 11, respectively. The set of attacker K is the set of all the players. The
set of all possible action of player i is denoted by Vi and ϕ

p
i is the cost function when the

attacker chooses different information theoretic metrics.

7.3.1 Game Objectives

Global Disruption and Global Detection

When the attacker i considers global mutual information in (7.20), i.e., mutual informa-
tion between the vector of measurements and the vector of state variables, and global KL
divergence in (7.23), i.e., the KL divergence between the distributions of the vector of mea-
surements with and without attacks. This yields the attack construction for attacker i as
the following optimization problem:

min
vi∈R+

I(Xn;Y m
A ) + λD(PY m

A
∥PY m). (7.30)

Local Disruption and Global Detection

When the attacker i considers local mutual information in (7.21) in Proposition 9, i.e., mutual
information between the random vector of state variables and the i-th measurement with
attacks in the system, and global KL divergence in (7.23), i.e., the KL divergence between
the distributions of the random vector of measurements with and without attacks. This
yields the attack construction for attacker i as the following optimization problem:

min
vi∈R+

I(Xn;YA,i) + λD(PY m
A
∥PY m). (7.31)

Global Disruption and Local Detection

When the attacker considers global mutual information in (7.20), i.e., mutual information
between the random vector of measurements and the random vector of state variables, and
local KL divergence in (7.28) in Proposition 11, that is, the KL divergence between the
distributions of the i-th measurement with attacks and the i-th measurement without attacks.
This yields the attack construction for attacker i as the following optimization problem:

min
vi∈R+

I(Xn;Y m
A ) + λD(PYA,i

∥PYi
). (7.32)
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7.3.2 Costs of the Games

Global Disruption and Global Detection

When considering global mutual information and global KL divergence in (7.30), the game
formulation in (7.29) is particularized as

G1 =
(
K, {Vi}i∈K, {ϕ1

i }i∈K
)
, (7.33)

where K is the set of players, Vi is the set of all possible actions by the i-th player, ϕ1
i is the

utility function of the attacker i in G1.
The following proposition provides the analytical expression of the cost function for at-

tacker i.

Proposition 12. Given the action profile v = (v1, v2, . . . , vm)
T, the cost function for attacker

i in G1 is ϕ1
i : R

m
+ → R+ such that

ϕ1
i (v1, v2, . . . , vm) (7.34)

∆
=I(Xn;Y m

A ) + λD(PY m
A
∥PY m) (7.35)

=
1

2
(1− λ)log

∣∣∣∣∣∣ΣYY + vieie
T
i +

∑
j∈K\{i}

vjeje
T
j

∣∣∣∣∣∣− 1

2
log

∣∣∣∣∣∣σ2Im + vieie
T
i +

∑
j∈K\{i}

vjeje
T
j

∣∣∣∣∣∣
+

1

2
λtr

Σ−1
YY

vieieTi +
∑

j∈K\{i}

vjeje
T
j

 . (7.36)

Proof. Note that ΣAA =
∑m

i=1 vieie
T
i . The proof follows by taking (7.20) and (7.23) into the

cost in (7.30).

The following lemma proposes an equivalent expression for the optimization problem
in (7.30).

Lemma 19. For all i ∈ {1, 2, . . . ,m}, the optimization problem in (7.30) is equivalent to

min
v∈R+

(1− λ)log

∣∣∣∣∣∣ΣYY + veie
T
i +

∑
j∈K\{i}

vjeje
T
j

∣∣∣∣∣∣− log(σ2 + v) + λvtr
(
Σ−1

YY eie
T
i

)
(7.37)

Proof. The proof of Lemma 19 is presented in Appendix J.

The following proposition characterizes the convexity of the cost function ϕ1
i in (7.34).

Proposition 13. Let λ ≥ 1. Then the cost function of attacker i ϕ1
i : R

m
+ → R+ in (7.34)

is convex in v.

Proof. Note that in (7.37), it holds that ΣYY +
∑m

i=1 vieie
T
i ∈ Sm

++. Therefore, the term
log
∣∣ΣY Y +

∑m
i=1 vieie

T
i

∣∣ is concave [115]. It yields that (1 − λ)log
∣∣ΣY Y +

∑m
i=1 vieie

T
i

∣∣ is
convex. The trace is a linear operation. It follows that the optimization problem in (7.37) is
convex. Therefore, from Lemma 19, the optimization problem in (7.30) convex in v. From
Proposition 12, the cost function ϕ1

i is convex in v.
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Local Disruption and Global Detection

When considering local mutual information and global KL divergence in (7.31), the game
formulation in (7.29) is particularized as

G2 =
(
K, {Vi}i∈K, {ϕ2

i }i∈K
)
, (7.38)

where K is the set of players, Vi is the set of all possible actions by the i-th player, ϕ2
i is the

utility function of the attacker i in G2.
The following proposition provides the analytical expression of the cost function for at-

tacker i.

Proposition 14. Given the action profile v = (v1, v2, . . . , vm)
T, the cost function for attacker

i in G2 is ϕ2
i : R

m
+ → R+ such that

ϕ2
i (v1, v2, . . . , vm) (7.39)

∆
=I(Xn;YA,i) + λD(PY m

A
∥PY m) (7.40)

=
1

2
log

(
1 +

tr
(
HΣXXH

Teie
T
i

)
σ2 + vi

)
(7.41)

+
1

2
λ

log
|ΣYY |

|ΣYY + vieieTi +
∑

j∈K\{i} vjeje
T
j |

+ tr

Σ−1
YY

vieieTi +
∑

j∈K\{i}

vjeje
T
j

 .

Proof. Note that ΣAA =
∑m

i=1 vieie
T
i . The proof follows by taking (7.21) and (7.23) into the

cost in (7.31).

The following lemma proposes an equivalent expression for the optimization problem
in (7.31).

Lemma 20. For all i ∈ {1, 2, . . . ,m}, the optimization problem in (7.31) is equivalent to

min
v∈R+

log

(
1 +

tr
(
HΣXXH

Teie
T
i

)
σ2 + v

)
− λlog

∣∣∣∣∣∣ΣYY + veie
T
i +

∑
j∈K\{i}

vjeje
T
j

∣∣∣∣∣∣+ λvtr
(
Σ−1

YY eie
T
i

)
(7.42)

Proof. The proof of Lemma 20 is presented in Appendix K.

The following proposition characterizes the convexity of the cost function ϕ2
i in (7.39).

Proposition 15. Let λ ≥ 0. Then the cost function of attacker i ϕ2
i : R

m
+ → R in (7.39) is

convex in v.

Proof. Note that in (7.42), it holds that ΣY Y + veie
T
i +

∑
j∈K\{i} vjeje

T
j ∈ Sm

++. Therefore,

the logarithm term log
∣∣∣ΣY Y + veie

T
i +

∑
j∈K\{i} vjeje

T
j

∣∣∣ is concave [115]. The term

log

(
1 +

tr
(
HΣXXH

Teie
T
i

)
σ2 + v

)
(7.43)

is convex in v and the trace is a linear operation. This completes the proof.
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Global Disruption and Local Detection

When considering global mutual information and local KL divergence in (7.32), the game
formulation in (7.29) is particularized as

G3 =
(
K, {Vi}i∈K, {ϕ3

i }i∈K
)
, (7.44)

where K is the set of players, Vi is the set of all possible actions by the i-th player, ϕ3
i is the

utility function of the attacker i in G3.
The following proposition provides the analytical expression of the cost function for at-

tacker i.

Proposition 16. Given the action profile v = (v1, v2, . . . , vm)
T, the cost function for at-

tacker i in G3 is ϕ3
i : R

m
+ → R+ such that

ϕ3
i (v1, v2, . . . , vm) (7.45)

∆
=I(Xn;Y m

A ) + λD(PYA,i
∥PYi

) (7.46)

=
1

2
log

|ΣYY + vieie
T
i +

∑
j∈K\{i} vjeje

T
j |

|σ2Im + vieieTi +
∑

j∈K\{i} vjeje
T
j |

(7.47)

+
1

2

(
vi

tr
(
HΣXXHTeieTi

)
+ σ2

+ log
tr
(
HΣXXH

Teie
T
i

)
+ σ2

tr
(
HΣXXHTeieTi

)
+ σ2 + vi

)
.

Proof. Noth that ΣAA =
∑m

i=1 vieie
T
i . The proof follows by taking (7.20) and (7.28) into the

cost in (7.32).

The following lemma proposes an equivalent expression for the optimization problem
in (7.32).

Lemma 21. For all i ∈ {1, 2, . . . ,m}, the optimization problem in (7.32) is equivalent to

min
v∈R+

log

∣∣∣∣∣∣ 1

σ2 + v
HΣXXH

Teie
T
i +HΣXXH

T
∑

j∈K\{i}

1

σ2 + vj
eje

T
j + Im

∣∣∣∣∣∣
+

λ

tr
(
HΣXXHTeieTi

)
+ σ2

v − λlog
(
tr
(
HΣXXH

Teie
T
i

)
+ σ2 + v

) (7.48)

Proof. The proof of Lemma 21 is presented in Appendix L.

The following proposition characterizes the convexity of the cost function ϕ3
i in (7.45).

Proposition 17. Let λ ≥ 0. Then the cost function of attacker i ϕ3
i : R

m
+ → R+ is convex

in v.

Proof. The proof of Proposition 17 is presented in Appendix I.
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7.3.3 Best Response

Each attacker is a player in the game Gp, p ∈ {1, 2, 3} and it is identified by an index from
the set K. The action that player i adopts is the variance of the random variable Ai added
to measurement i of the system, i.e., vi. The underlying assumption in the following of this
section is that, given a sequence of actions by all the other players, player i adopts an action
such that the cost of launching the attack ϕp

i (v1, v2, ..., vm) is minimized. That is,

vi ∈ BRp
i (v1, v2, ..., vi−1, vi+1, ..., vm−1, vm) , (7.49)

where the correspondence BRp
i : R

m−1
+ → R+ is the best response correspondence, i.e.,

BRp
i (v1, v2, ..., vi−1, vi+1, ..., vm−1, vm) = argmin

vi∈R+

ϕp
i (v1, v2, ..., vm) . (7.50)

Best Response in G1

In G1, The best response v∗i of player i in the game G1 in (7.33) is

v∗i ∈ BR1
i (v1, v2, ..., vi−1, vi+1, ..., vm−1, vm) (7.51)

= argmin
v∈R+

I(Xn;Y m
A ) + λD(PY m

A
∥PY m) (7.52)

= argmin
v∈R+

(1− λ)log

∣∣∣∣∣∣ΣYY + veie
T
i +

∑
j∈K\{i}

vjeje
T
j

∣∣∣∣∣∣− log(σ2 + v) + λvtr
(
Σ−1

YY eie
T
i

)
, (7.53)

where (7.53) follows from Lemma 19.
The following theorem provides the analytical solution for the best response of player i

in G1.

Theorem 22. Given the action profile v = (v1, v2, . . . , vm)
T, for all i ∈ {1, 2, . . . ,m}, the

best response for the player i in G1 is

v∗i =
−(βi + αiσ

2βi − αi) +

√
(βi + αiσ2βi − αi)2 − 4βiαi(βiσ2 − αiσ2 +

αiσ
2 − 1

λ
)

2βiαi

,

(7.54)

where αi = tr

((
ΣY Y +

∑
j∈K\{i} vjeje

T
j

)−1

eie
T
i

)
, βi = tr

(
Σ−1

Y Y eie
T
i

)
.

Proof. The proof of Theorem 22 is presented in Appendix M.



7.3. GAME FORMULATION 99

Best Response in G2

In G2, the best response v∗i of player i of the game G2 in (7.38) is

v∗i ∈ BR2
i (v1, v2, ..., vi−1, vi+1, ..., vm−1, vm) (7.55)

=argmin
v∈R+

I(Xn;YA,i) + λD(PY m
A
∥PY m) (7.56)

=argmin
v∈R+

log

(
1 +

tr
(
HΣXXH

Teie
T
i

)
σ2 + v

)
− λlog

∣∣∣∣∣∣ΣYY + veie
T
i +

∑
j∈K\{i}

vjeje
T
j

∣∣∣∣∣∣
+λvtr

(
Σ−1

YY eie
T
i

)
, (7.57)

where (7.57) follows from Lemma 20.
The following theorem provides the analytical solution for the best response of player i

in G2.

Theorem 23. Given the action profile v = (v1, v2, . . . , vm)
T, for all i ∈ {1, 2, . . . ,m}, the

best response for player i in G2 is v such that

−tr
(
HΣXXH

Teie
T
i

)
(σ2 + v)

(
σ2 + v + tr

(
HΣXXHTeieTi

)) − λ
αi

1 + vαi

+ λβi = 0, (7.58)

where αi = tr

((
ΣY Y +

∑
j∈K\{i} vjeje

T
j

)−1

eie
T
i

)
and βi = tr

(
Σ−1

YY eie
T
i

)
.

Proof. The proof of Theorem 23 is presented in Appendix N.

Best Response in G3

In G3, The best response v∗i of the i-th player of the game in (7.44) is

v∗i ∈ BR3
i (v1, v2, ..., vi−1, vi+1, ..., vm−1, vm)

= argmin
v∈R+

I(Xn;Y m
A ) + λD(PYA,i

∥PYi
)

= argmin
v∈R+

log

∣∣∣∣∣∣ 1

σ2 + v
HΣXXH

Teie
T
i +HΣXXH

T
∑

j∈K\{i}

1

σ2 + vj
eje

T
j + Im

∣∣∣∣∣∣
+

λ

tr
(
HΣXXHTeieTi

)
+ σ2

v − λlog
(
tr
(
HΣXXH

Teie
T
i

)
+ σ2 + v

)
.

(7.59)

The following theorem provides the analytical solution for the best response of player i
in G3.

Theorem 24. Given the action profile v = (v1, v2, . . . , vm)
T, for all i ∈ {1, 2, . . . ,m}, the

best response for player i in G3 is v such that

− γi
(σ2 + v) (σ2 + v + αi)

+ λ
v(

tr
(
HΣXXHTeieTi

)
+ σ2 + v

) (
tr
(
HΣXXHTeieTi

)
+ σ2

) ,
(7.60)

where γi
∆
= tr

((
HΣXXH

T
∑

j∈K\{i}
1

σ2 + vj
eje

T
j + Im

)−1

HΣXXH
Teie

T
i

)
.
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Proof. The proof of Theorem 24 is presented in Appendix O.

7.4 Potential Games

7.4.1 Potential functions

Potential function of G1

The following proposition highlights an important property of the game G1 in (7.33).

Proposition 18. The game G1 in (7.33) is a potential game.

Proof. Let us define a function P1: R
m
+ → R:

P1(v1, v2, ..., vm) (7.61)

∆
=I(Xn;Y m

A ) + λD(Y m
A ∥Y m) (7.62)

=(1− λ)log

∣∣∣∣∣ΣYY +
m∑
i=1

vieie
T
i

∣∣∣∣∣−
m∑
i=1

log(σ2 + vi) + λ
m∑
i=1

vitr
(
Σ−1

YY eie
T
i

)
(7.63)

where (7.63) holds from plugging (7.35) and (7.36) into (7.62). For every attacker i, i ∈
{1, 2, ...,m}, and for every (v1, v2, ..., vi−1, vi+1, ..., vm)

T ∈ Rm−1
+ , it satisfies that for all vi ∈

R+, xi ∈ R+,

ϕ1
i (v1, ..., vi−1, vi, vi+1, ..., vm)− ϕ1

i (v1, ..., vi−1, xi, vi+1, ..., vm) < 0 (7.64)

holds if and only if

P1(v1, ..., vi−1, vi, vi+1, ..., vm)− P1(v1, ..., vi−1, xi, vi+1, ..., vm) < 0 (7.65)

holds. Therefore, G1 is an potential game. This completes the proof.

The following lemma presents the potential function of the game G1 in (7.33).

Lemma 25. The potential function of G1 in (7.33) is given by

P1(v1, v2, ..., vm) (7.66)

=(1− λ)log

∣∣∣∣∣∣ΣYY + vieie
T
i +

∑
j∈K\{i}

vjeje
T
j

∣∣∣∣∣∣−
m∑
i=1

log(σ2 + vi) + λ
m∑
i=1

vitr
(
Σ−1

YY eie
T
i

)
Proof. For every attacker i ∈ {1, 2, ...,m}, and for every (v1, v2, ..., vi−1, vi+1, ..., vm)

T ∈
Rm−1

+ , for all vi ∈ R+, xi ∈ R+, the following holds

ϕ1
i (v1, ..., vi−1, vi, vi+1, ..., vm)− ϕ1

i (v1, ..., vi−1, xi, vi+1, ..., vm) (7.67)

=P1(v1, ..., vi−1, vi, vi+1, ..., vm)− P1(v1, ..., vi−1, xi, vi+1, ..., vm).

Therefore, P1 is a potential function of game G1. This completes the proof.
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Potential function of G2

The following proposition highlights an important property of the game G2 in (7.38).

Proposition 19. The game G2 in (7.38) is a potential game.

Proof. Let us define a function P2: R
m
+ → R:

P2(v1, v2, ..., vm)
∆
=λD(Y m

A ∥Y m) +
m∑
i=1

I(Xn;YA,i) (7.68)

=
1

2
λ

(
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|ΣYY |
|ΣYY +

∑m
i=1 vieie

T
i |

+ tr

(
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YY

(
m∑
i=1

vieie
T
i

)))

+
1

2

m∑
i=1

log

(
1 +

tr
(
HΣXXH

Teie
T
i

)
σ2 + vi

)
, (7.69)

where (7.69) holds from plugging (7.40) and (7.41) into (7.68). For every attacker i, i ∈
{1, 2, ...,m}, and for every (v1, v2, ..., vi−1, vi+1, ..., vm)

T ∈ Rm−1
+ , for all vi ∈ R+, xi ∈ R+, it

satisfies that

ϕ2
i (v1, ..., vi−1, vi, vi+1, ..., vm)− ϕ2

i (v1, ..., vi−1, xi, vi+1, ..., vm) < 0 (7.70)

holds if and only if

P2(v1, ..., vi−1, vi, vi+1, ..., vm)− P2(v1, ..., vi−1, xi, vi+1, ..., vm) < 0 (7.71)

holds. Therefore, G2 is an potential game. This completes the proof.

The following lemma presents the potential function of the game G2 in (7.38).

Lemma 26. The potential function of G2 in (7.38) is given by

P2(v1, v2, ..., vm) =
1

2
λ

(
log

|ΣYY |
|ΣYY +

∑m
i=1 vieie

T
i |

+ tr

(
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YY

(
m∑
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vieie
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i

)))

+
1

2
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log

(
1 +

tr
(
HΣXXH

Teie
T
i

)
σ2 + vi

)
. (7.72)

Proof. For every attacker i ∈ {1, 2, ...,m}, and for every (v1, v2, ..., vi−1, vi+1, ..., vm)
T ∈ Rm−1

+ ,
for all vi ∈ R+, xi ∈ R+, the following holds

ϕ2
i (v1, ..., vi−1, vi, vi+1, ..., vm)− ϕ2

i (v1, ..., vi−1, xi, vi+1, ..., vm) (7.73)

=P2(v1, ..., vi−1, vi, vi+1, ..., vm)− P2(v1, ..., vi−1, xi, vi+1, ..., vm).

Therefore, P2 is a potential function of game G2. This completes the proof.
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Potential function of G3

The following proposition highlights an important property of the game G3 in (7.44).

Proposition 20. The game G3 in (7.44) is a potential game.

Proof. Let us define a function P3: R
m
+ → R:

P3(v1, v2, ..., vm) (7.74)

∆
=I(Xn;Y m

A ) + λ
m∑
i=1

D(YA,i∥Yi) (7.75)

=
1

2
log
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∑m

i=1 vieie
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i |

|σ2Im +
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i=1 vieie
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i |

(7.76)

+
1

2
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m∑
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(
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tr
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HΣXXHTeieTi

)
+ σ2

+ log
tr
(
HΣXXH

Teie
T
i

)
+ σ2

tr
(
HΣXXHTeieTi

)
+ σ2 + vi

)
,

where (7.76) holds from plugging (7.46) and (7.47) into (7.75). For all attacker i, i ∈
{1, 2, ...,m} and for all (v1, v2, ..., vi−1, vi+1, ..., vm)

T ∈ Rm−1
+ , it satisfies that for all vi ∈

R+, xi ∈ R+,

ϕ3
i (v1, ..., vi−1, vi, vi+1, ..., vm)− ϕ3

i (v1, ..., vi−1, xi, vi+1, ..., vm) > 0 (7.77)

holds if and only if

P3(v1, ..., vi−1, vi, vi+1, ..., vm)− P3(v1, ..., vi−1, xi, vi+1, ..., vm) > 0 (7.78)

holds. Therefore, G3 is an potential game. This completes the proof.

The following lemma presents the potential function of the game G3 in (7.44).

Lemma 27. The potential function of G3 in (7.44) is given by

P3(v1, v2, ..., vm) =
1

2
log
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i=1 vieie
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|σ2Im +
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+ log
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HΣXXHTeieTi
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Proof. From all attacker i, i ∈ {1, 2, ...,m} and for all (v1, v2, ..., vi−1, vi+1, ..., vm)
T ∈ Rm−1

+ ,
for all vi ∈ R+, xi ∈ R+, the following holds

ϕ3
i (v1, ..., vi−1, vi, vi+1, ..., vm)− ϕ3

i (v1, ..., vi−1, xi, vi+1, ..., vm)

=P3(v1, ..., vi−1, vi, vi+1, ..., vm)− P3(v1, ..., vi−1, xi, vi+1, ..., vm). (7.80)

Therefore, P3 is a potential function of game G3. This completes the proof.
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7.4.2 Nash Equilibriums (NEs)

From the best response described in the last section, a game solution that is particularly
relevant for this analysis is the Nash Equilibrium.

Definition 12. The action profile formed by all the attackers (v1, v2, ..., vm)
T is an NE of

the game Gp if and only if it is a solution of the fix point equation

m∑
i=1

vieie
T
i = BRp (v1, v2, ...vm) , (7.81)

with BRp: Rm
+ → Rm

+ being the global best response correspondence, i.e.,

BRp (v1, v2, ...vm)

=BRp
1 (v2, v3, ..., vm) e1e

T
1 + BRp

2 (v1, v3, ..., vm) e2e
T
2 + · · ·+ BRp

m (v1, v2, ..., vm−1) eme
T
m.
(7.82)

Essentially, at an NE, attackers achieve the minimal cost given the actions adopted by
all the other attackers. This implies that an NE is an operating point where any deviation
from the action at NE does not lead to a smaller cost.

7.4.3 Existence of the NE

The following proposition highlights an important property of the game G1 in (7.33).

Proposition 21. The game G1 in (7.33) possesses only one NE.

Proof. Note that P1 in (7.66) is continuous over the set of all possible actions vi ∈ R+, i ∈
{1, 2, . . . ,m} andR+ is a convex set, therefore, there always exists a minimum of the potential
function P1 in R+. From Proposition 13, the potential function is convex, i.e., there is only
one minimum of the potential function. From Lemma 4.3 in [103], it follows that such a
minimum corresponds to an NE. Therefore, the game possesses only one NE.

The following proposition highlights an important property of the game G2 in (7.38).

Proposition 22. The game G2 in (7.38) possesses only one NE.

Proof. Note that P2 in (7.72) is continuous over the set of all possible actions vi ∈ R+, i ∈
{1, 2, . . . ,m} andR+ is a convex set, therefore, there always exists a minimum of the potential
function P2 in R+. From Proposition 15, the potential function is convex, i.e., there is only
one minimum of the potential function. From Lemma 4.3 in [103], it follows that such a
minimum corresponds to an NE. Therefore, the game possesses only one NE.

The following proposition highlights an important property of the game G3 in (7.44).

Proposition 23. The game G3 in (7.44) possesses only one NE.

Proof. Note that P3 in (7.79) is continuous over the set of all possible actions vi ∈ R+, i ∈
{1, 2, . . . ,m} andR+ is a convex set, therefore, there always exists a minimum of the potential
function P3 in R+. From Proposition 17, the potential function is convex, i.e., there is only
one minimum of the potential function. From Lemma 4.3 in [103], it follows that such a
minimum corresponds to an NE. Therefore, the game possesses only one NE.
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7.4.4 Achievability of the NE

The attackers are said to play a sequential best response dynamic (BRD) if the attackers
can sequentially decide their own variance from their sets of best responses following a
round-robin (increasing) order. Let us denote the choice of attacker i during round t ∈ N
and assume that attackers are able to observa all the other attackers’ decision. Under this
assumption, the BRD is defined as follows.

Definition 13. (Best Response Dynamics). The players of the game Gp are said to play a
best response dynamics if there exists an round-robin order of the elements of K in which at
each round t ∈ N, the following holds

v∗i (t) =BRi

(
v∗1(t), v

∗
2(t), ..., v

∗
i−1(t), v

∗
i+1(t− 1), ..., v∗m−1(t− 1), v∗m(t− 1)

)
. (7.83)

From the properties of potential games in [103, Lemma 4.2], the following Lemma follows.

Lemma 28. (Achievability of NE attacks). Any BRD in the game Gp converges to a Gaus-
sian attack construction that is the only NE in this game.

The relevance of Lemma 28 is that it establishes that if attackers can play the game for at
least a round-robin, they are always able to attack the network that minimizes the potential.

The proposed BRD in game G1, G2 and G3 are described in Algorithm 5, Algorithm 6 and
Algorithm 7, respectively. As discussed in Theorem 22, Theorem 23 and Theorem 24, the op-
timal solution is unique and the achievability is discussed in Section 7.4.4. The computation
complexity of all three Algorithms is O(mtmax).

Algorithm 5 Best Response Dynamics for G1

Input: the observation matrix H, the covariance matrix of the state variables ΣXX , the
variance of the noise σ2, and the weighting parameter λ.

Output: the action profile in the NE (v1, v2, . . . , vm)
T.

Initialize the actions by all the players vi(t0), i ∈ {1, 2, ...,m};
for 0 < t < tmax do,

for 1 ≤ i ≤ m do,
Get v∗i (t) in Theorem 22, that is,

−(βi + αiσ
2βi − αi) +

√
(βi + αiσ2βi − αi)2 − 4βiαi(βiσ2 − αiσ2 + αiσ2−1

λ
)

2βiαi

,

where αi = tr

((
ΣY Y +

∑
j∈K,j<i vj(t)eje

T
j +

∑
j∈K,j>i vj(t− 1)eje

T
j

)−1

eie
T
i

)
and

βi = tr
(
Σ−1

Y Y eie
T
i

)
.

end for
t = t+ 1

end for
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Algorithm 6 Best Response Dynamics for G2

Input: the observation matrix H, the covariance matrix of the state variables ΣXX , the
variance of the noise σ2, and the weighting parameter λ.

Output: the action profile in the NE (v1, v2, . . . , vm)
T.

Initialize the actions by all the players vi(t0), i ∈ {1, 2, ...,m};
for 0 < t < tmax do,

for 1 ≤ i ≤ m do,
Get vi(t) in Theorem 23 such that

−tr
(
HΣXXH

Teie
T
i

)
(σ2 + vi(t))

(
σ2 + vi(t) + tr

(
HΣXXHTeieTi

)) − λ
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1 + vi(t)αi

+ λβi = 0,
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)−1

eie
T
i

)
and

βi = tr
(
Σ−1

YY eie
T
i

)
.

end for
t = t+ 1

end for

Algorithm 7 Best Response Dynamics for G3

Input: the observation matrix H, the covariance matrix of the state variables ΣXX , the
variance of the noise σ2, and the weighting parameter λ.

Output: the action profile in the NE (v1, v2, . . . , vm)
T.

Initialize the actions by all the players vi(t0), i ∈ {1, 2, ...,m};
for 0 < t < tmax do,

for 1 ≤ i ≤ m do,
Get vi(t) in Theorem 24 such that

− γi
(σ2 + v) (σ2 + v + αi)

+ λ
v(

tr
(
HΣXXHTeieTi

)
+ σ2 + v

) (
tr
(
HΣXXHTeieTi

)
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) ,
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γi=tr

(HΣXXH
T
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eje

T
j +HΣXXH
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j∈K,j>i

1
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.
end for
t = t+ 1

end for
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7.5 Numerical Results

The performance of the decentralized attack constructions in this section are verified on
IEEE test systems. It is assumed that all the attackers can observe the actions taken by the
other attacks. There are m attackers and m measurements in the system and each attacker
has access to one unique measurement.

7.5.1 Game Convergence in terms of Potential Function

Fig. 7.1 depicts convergence of the potential function of G1 given by (7.66) in terms of round
robin for different λ when ρ = 0.9, SNR = 30 dB in the IEEE 9-bus test system. The NEs
with different λ are numerically evaluated and presented by red squares. In G1, the potential
function in (7.66) is the same as the cost function of attacker i, with i ∈ {1, 2, . . . ,m},
in (7.34). From t = 0 to t = 1, all the attackers inject attacks following the best response
in Theorem 22, that is, the variance of the random attack vi = 0, i ∈ {1, 2, . . . ,m} by
attacker i would be modified to vi > 0. The potential function from t = 0 to t = 1 decreases
monotonically, which implies that all attackers benefit from the attacks launched by the
other attackers in this round robin. Note that after all the attacker have injected an attack,
that is, t = 1, and potential function is convex shown in Proposition 13. Hence, from t = 1,
each attacker adjust its attacks that yields a decrease in the potential function until the NE
in this game is achieved.

Similarly, Fig. 7.2 and Fig. 7.3 depict the potential function of G2 given by (7.72) and the
potential function of G3 given by (7.79), respectively, in terms of round robin for different
λ when ρ = 0.9, SNR = 30 dB in the IEEE 9-bus test system. Following the same round
robin process as in G1, the attackers in G2 and G3 start to inject the attacks in the first round
robin from t = 0 to t = 1 that yields the decrease in potential functions monotonically.
The attackers adjust the variance of the attacks after t = 1 based on the best response
in Theorem 23 and Theorem 24, respectively. With different objectives in G1, G2 and G3,
the potential functions decrease differently but the monotonicity is guaranteed in all three
games. Note that with larger λ, the value of the potential functions are larger in all three
games. This implies that mutual information has a larger impact on the potential functions
as λ is the weighting parameter between mutual information and KL divergence. The next
section shows the game convergence in terms of the tradeoff between mutual information
and KL divergence.

7.5.2 The Tradeoff between Mutual Information and KL Diver-
gence

Fig. 7.4 depicts the tradeoff between mutual information and KL divergence in G1 for different
λ when ρ = 0.9, SNR = 30 dB on the IEEE 9-bus system. As expected, from t = 0 to t = 1,
the attackers start to compromise the measurements, which yields the decrease in mutual
information and increase in KL divergence. From t = 1 to t = 2, the attackers adjust the
variance of its attacks based on the best response in Theorem 22. Interestingly, at t = 1,
the attackers achieve a smaller mutual information and larger KL divergence in comparison
with in the following round robin. Hence, from t = 1 to t = 2, the attackers modify the
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Figure 7.1: The convergence in G1 in terms of the potential function P1 on the IEEE 9-bus
test system when ρ = 0.9, SNR = 30 dB and the NEs with different λ.
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Figure 7.2: The convergence in G2 in terms of the potential function P2 on the IEEE 9-bus
test system when ρ = 0.9, SNR = 30 dB and the NEs with different λ.
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Figure 7.3: The convergence in G3 in terms of the potential function P3 on the IEEE 9-bus
test system when ρ = 0.9, SNR = 30 dB and the NEs with different λ.
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Figure 7.4: The tradeoff between mutual information and KL divergence in G1 on the IEEE
9-bus test system when ρ = 0.9, SNR = 30 dB.
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attacks to constrain KL divergence. This is because in the first round robin from t = 0 to
t = 1, the attack decisions were made when there were limited attackers that attacked the
system. Therefore, the decisions from best response in Theorem 22 are more aggressive but
still within the constraints of KL divergence. However, from t = 1 to t = 2, all the attackers
have launched attacks, the result from best response in Theorem 22 limits the variance of
the attacks which yields a decrease in KL divergence. After several round robins, the best
response dynamics lead to the NE that is on the Pareto curve.

Fig. 7.5 and Fig. 7.6 depict the tradeoff between mutual information and KL divergence
in G2 and G3 for different λ when ρ = 0.9, SNR = 30 dB on the IEEE 9-bus system,
respectively. It is observed the same phenomenon as in G1 that in the end of the first round
robin when t = 1, the attackers achieved lower mutual information at the expense of a large
KL divergence. Hence, from t = 1 to t = 2 the best response dynamics yield to a decrease
in KL divergence. Note that in G1 and G2, the convergence from t = 0 to t = 1 is linear that
indicates the decrease of mutual information is at the expense of KL divergence linearly.
Interestingly, in G3, it is observed that there is a significant decrease in mutual information
in the end of the first round robin from t = 0 to t = 1. It is worth noting that the significant
decrease comes from the attacking power injection measurements. This coincides with the
results in chapter 6 that the power injection measurements are more vulnerable to data
integrity attacks than power flow measurements [27].
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Figure 7.5: The tradeoff between mutual information and KL divergence in G2 on the IEEE
9-bus test system when ρ = 0.9, SNR = 30 dB.
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Figure 7.6: The tradeoff between mutual information and KL divergence in G3 on the IEEE
9-bus test system when ρ = 0.9, SNR = 30 dB.

7.6 Summary

This chapter has proposed a novel decentralized stealth attack constructions where game the-
oretic techniques are adopted in this framework. The objectives of the attack constructions
are the disruption and detection both globally and locally that are measured by information
theoretic metrics. The interaction between the attackers is utilized to formulate games in
attack constructions that are motived by different information metrics. It is proved that
the games are potential games as well as the existence and convexity of the potential func-
tions. This chapter also characterizes the best response for the attackers and best response
dynamics are proposed to achieve the NEs of the games, accordingly. The simulations have
numerically evaluated the performance of the decentralized attacks on the IEEE test systems
and shown the interaction between the attackers converge to the NEs on the Pareto curve.



Chapter 8

Decentralized Sparse Stealth Attacks

This chapter presents the main results on decentralized stealth attacks with sparsity con-
straints. The decentralized model and the game analysis are described in Section 3.6. Specif-
ically, the sets of measurements that each attacker has access to form a partition of the set
of measurements in the system. Every attacker minimizes the information theoretic cost of
launching a random attack to one of the measurements that it has access to in a coordinated
fashion. The decentralized sparse attacks with partition is modelled in a game form, which
yields a potential game. characterized the potential function in this game and obtained
the uniqueness and achievability of the Nash Equilibrium in this game. The best response
dynamics is proposed to achieve the unique NE in the game. The performance of the decen-
tralized sparse attack constructions is evaluated on IEEE test systems. It is observed that
the game achieves better performance with smaller λ and larger k.

8.1 System Model

Let M ∆
= {1, 2, . . . ,m} be the set of measurements on the power system and the set

K ∆
= {1, 2, . . . , k}, (8.1)

where k < m be the set of attackers that can perform a random data injection attacks to
the system.

For all j ∈ K, the set of sensors that the attacker j has access to is Mj,Mj ⊆ M. The
sets M1,M2, . . . ,Mk form a partition of M, that is,

M =
k⋃

j=1

Mj, (8.2)

and for all (i, j) ∈ K, with i ̸= j,
Mi ∩Mj = ∅. (8.3)

This chapter assumes that each attacker only compromises one sensor. For all j ∈ K, the
index of the measurement that the attacker j compromises is denoted by sj. That is, for all

111
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j ∈ K, sj ∈ Mj with Mj in (8.2). The data injection attacks of the attacker j is a random
variable that follows a Gaussian distribution with zero mean, that is,

Asj ∼ N (0, vj), (8.4)

with vj ∈ R+. In this setting, the action of the attacker j is to choose an index sj ∈ Mj

in (8.2) and vj in (8.4). The action of the attacker j is given by

(sj, vj) ∈ Aj, (8.5)

where
Aj

∆
= Mj ×R+. (8.6)

The tuple (
(s1, v1) , (s2, v2) , ..., (sk, vk)

)
∈ A1 ×A2 × ...×Ak (8.7)

is referred to as an action profile where for all j ∈ K, sj ∈ Mj and vj ∈ R+.
Note that the action profile forms the covariance matrix of the random attack vector

denoted by ΣAA in (4.8), that is,

ΣAA =
∑
j∈K

vjesje
T
sj
. (8.8)

8.2 Game Formulation

The cost for the attacker j to launch an attack does not only depend on its own sensor
index sj and variance vj that is added in the corresponding sensor, but also the indices and
variances by all the other attackers. Therefore, the interaction of all attackers in the system
is described by a game in normal form

G = (K, {Aj}j∈K, {ψj}j∈K), (8.9)

where the set K is in (8.1), the set Aj is in (8.6), for all j ∈ K the function ψj is the cost
function for attacker j that is defined in the following.

Definition 14. Given the action profile

(
(s1, v1) , (s2, v2) , ..., (sk, vk)

)
∈ A1×A2× ...×Ak,

the cost function of the attacker j denoted by ψj : A1 × A2 × ... × Ak → R+ defined by
adding (4.18) and (4.21) is

ψj

(
(s1, v1) , (s2, v2) , ..., (sk, vk)

)
(8.10)

∆
=I(Xn;Y m

A ) + λD(PY m
A
∥PY m) (8.11)

=
1

2
(1− λ)log

∣∣∣∣∣ΣYY +
∑
j∈K

vjesje
T
sj

∣∣∣∣∣− 1

2
log

∣∣∣∣∣∑
j∈K

vjesje
T
sj
+ σ2Im

∣∣∣∣∣
+

1

2
λ

(
tr

(
Σ−1

YY

(∑
j∈K

vjesje
T
sj

))
+ log |ΣYY |

)
. (8.12)
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8.2.1 Best Response

The cost of the attacks ψj

(
(s1, v1) , (s2, v2) , ..., (sk, vk)

)
for attacker j not only depends on

its own action (sj, vj), but also on the actions by all the other attackers. For all j ∈ K,

given the actions by all the other attackers

(
(s1, v1) , (s2, v2) , ..., (sk, vk)

)
\ (sj, vj), the best

response for attacher j is given by(
s∗j , v

∗
j

)
∈ BRj ((s1, v1) , (s2, v2) , ..., (sj−1, vj−1) , (sj+1, vj+1) , . . . , (sk−1, vk−1) , (sk, vk)) ,

(8.13)

where the correspondence BRj : A1 × A2, . . .Aj−1 × Aj+1 . . .Ak−1 × Ak → R+ is the best
response correspondence, that is,

BRj ((s1, v1) , (s2, v2) , ..., (sj−1, vj−1) , (sj+1, vj+1) , . . . , (sk−1, vk−1) , (sk, vk)) (8.14)

= argmin
(sj ,vj)∈Aj

ψj

(
(s1, v1) , (s2, v2) , ..., (sk, vk)

)
(8.15)

The following lemma presents the equivalent optimization problem to minimize the cost
for attacker j in (8.10).

Lemma 29. For attacker j, j ∈ K, minimizing the cost function ψj in (8.10) is equivalent
to

argmin
(sj ,vj)∈Aj

(1− λ)log

∣∣∣∣∣ΣYY +
∑
j∈K

vjesje
T
sj

∣∣∣∣∣− log

∣∣∣∣∣∑
j∈K

vjesje
T
sj
+ σ2Im

∣∣∣∣∣+ λvjtr
(
Σ−1

YY esje
T
sj

)
.

(8.16)

Proof. The proof follows by removing the constants that is not a function of (sj, vj).

The following proposition provides the convexity of the cost function in (8.16).

Proposition 24. The cost function in (8.16) is convex.

Proof. From [115, Sec. 3.1.5] and the fact thatΣYY+
∑

j∈K vjesje
T
sj
∈ Sm

++ and
∑

j∈K vjesje
T
sj
+

σ2Im ∈ Sm
++, the terms log

∣∣∣ΣYY +
∑

j∈K vjesje
T
sj

∣∣∣ and log
∣∣∣∑j∈K vjesje

T
sj
+ σ2Im

∣∣∣ are con-

cave. Therefore, the terms

(1− λ) log

∣∣∣∣∣ΣYY +
∑
j∈K

vjesje
T
sj

∣∣∣∣∣ , (8.17)

and −log
∣∣∣∑j∈K vjesje

T
sj
+ σ2Im

∣∣∣ are convex. Given that the trace is a linear operator, the

term tr
(
Σ−1

YY esje
T
sj

)
is linear with respect to vj. From [115, Sec. 3.2.1], the non-negative

weighted sums of convex functions is convex, that is, the cost function in (8.16) is convex.
This completes the proof.



8.2. GAME FORMULATION 114

The following theorem proposes the analytical expression of the best response.

Theorem 30. Let λ ≥ 1. In the game G = (K, {Aj}j∈K, {ψj}j∈K) in (8.9), for all j ∈ K
and sj ∈ Mj, given a action profile by all the attackers except attacker j, that is,(

(i1, v1) , (i2, v2) , ..., (ij−1, vj−1) , (ij+1, vj+1) , ..., (sk−1, vk−1) , (sk, vk)

)
(8.18)

∈ A1 ×A2 × ...×Aj−1 ×Aj+1 × ...×Ak−1 ×Ak,

the following holds

s∗j =argmin
q∈Mj

(1− λ)log

∣∣∣∣∣∣ΣY Y + v∗qeqe
T
q +

∑
p∈K\{j}

vpespe
T
sp

∣∣∣∣∣∣− log
(
σ2 + v∗q

)
+ λv∗q tr

(
Σ−1

Y Y eqe
T
q

)
(8.19)

v∗q =
−(β + ασ2β − α) +

√
(β + ασ2β − α)2 − 4βα(βσ2 − ασ2 +

ασ2 − 1

λ
)

2βα
, (8.20)

where α
∆
= tr

((
ΣY Y +

∑
p∈K\{j} vpespe

T
sp

)−1

eqe
T
q

)
, β

∆
= tr

(
Σ−1

Y Y eqe
T
q

)
, q ∈ Mj.

Proof. From Lemma 29, given the action by all the other players in (8.18), for all j ∈ K, the
best response is given by

(sj, vj) = argmin
(i,v)∈Aj

(1− λ)log

∣∣∣∣∣∣ΣYY + veie
T
i +

∑
p∈K\{j}

vpespe
T
sp

∣∣∣∣∣∣− log
(
σ2 + v

)
+ λvtr

(
Σ−1

Y Y eie
T
i

)
.

(8.21)

The optimization problem in (8.21) is brokendown as follows:

min
i∈Mj

min
v∈R+

(1− λ)log

∣∣∣∣∣∣ΣY Y + veie
T
i +

∑
p∈K\{j}

vpespe
T
sp

∣∣∣∣∣∣− log
(
σ2 + v

)
+ λvtr

(
Σ−1

Y Y eie
T
i

)
.

(8.22)

The inner optimization problem is convex. Therefore, the best response of v given a fixed
index i is

v∗i =
−(β + ασ2β − α) +

√
(β + ασ2β − α)2 − 4βα(βσ2 − ασ2 +

ασ2 − 1

λ
)

2βα
, (8.23)

where α
∆
= tr

((
ΣY Y +

∑
p∈K\{j} vpespe

T
sp

)−1

eie
T
i

)
, β

∆
= tr

(
Σ−1

Y Y eie
T
i

)
. Then, the outer

optimization problem in (8.22) is equivalent to the following:

s∗j =argmin
i∈Mj

(1− λ)log

∣∣∣∣∣∣ΣY Y + v∗i eie
T
i +

∑
p∈K\{j}

vpespe
T
sp

∣∣∣∣∣∣− log
(
σ2 + v∗i

)
+ λv∗i tr

(
Σ−1

Y Y eie
T
i

)
,

(8.24)
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where v∗i is given by (8.23). i∗ is obtained by searching the index over Mj, which completes
the proof.

8.2.2 Potential Game

The following proposition highlights an important property of the game G in (8.9).

Proposition 25. The game G in (8.9) is an ordinal potential game.

Proof. Let us define a function P : A1 ×A2 × ...×Ak → R+:

P

(
(s1, v1) , (s2, v2) , ..., (sk, vk)

)
(8.25)

=
1

2
(1− λ)log

∣∣∣∣∣ΣYY +
∑
j∈K

vjesje
T
sj

∣∣∣∣∣− 1

2
log

∣∣∣∣∣∑
j∈K

vjesje
T
sj
+ σ2Im

∣∣∣∣∣
+

1

2
λ

(
tr

(
Σ−1

YY

(∑
j∈K

vjesje
T
sj

))
+ log |ΣYY |

)
. (8.26)

For every attacker j, j ∈ K, and for every action profile by all the attackers except attacker
j, that is,(

(i1, v1) , (i2, v2) , ..., (ij−1, vj−1) , (ij+1, vj+1) , ..., (sk−1, vk−1) , (sk, vk)

)
(8.27)

∈ A1 ×A2 × ...×Aj−1 ×Aj+1 × ...×Ak−1 ×Ak,

for all (sj, vj) ∈ Aj and (x, y) ∈ Aj, the following inequation holds

ψj

(
(s1, v1) , ..., (sj−1, vj−1) , (sj, vj) , (sj+1, vj+1) , ..., (sk, vk)

)
(8.28)

− ψj

(
(s1, v1) , ..., (sj−1, vj−1) , (x, y) , (sj+1, vj+1) , ..., (sk, vk)

)
< 0

if and only if

P

(
(s1, v1) , ..., (sj−1, vj−1) , (sj, vj) , (sj+1, vj+1) , ..., (sk, vk)

)
(8.29)

− P

(
(s1, v1) , ..., (sj−1, vj−1) , (x, y) , (sj+1, vj+1) , ..., (sk, vk)

)
< 0

holds, where ψj is the cost function of the attacker j defined in (8.10). This completes the
proof.

The following lemma presents the potential function of the game G in (8.9).
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Proposition 26. The potential function of G in (8.9) is given by

P

(
(s1, v1) , (s2, v2) , ..., (sk, vk)

)
(8.30)

=
1

2
(1− λ)log

∣∣∣∣∣ΣYY +
∑
j∈K

vjesje
T
sj

∣∣∣∣∣− 1

2
log

∣∣∣∣∣∑
j∈K

vjesje
T
sj
+ σ2Im

∣∣∣∣∣
+

1

2
λ

(
tr

(
Σ−1

YY

(∑
j∈K

vjesje
T
sj

))
+ log |ΣYY |

)
, (8.31)

where

(
(s1, v1) , (s2, v2) , ..., (sk, vk)

)
∈ A1 ×A2 × ...×Ak in (8.7).

Proof. For every attacker j, j ∈ K, and for every action profile by all the attackers except
attacker j, that is,(

(i1, v1) , (i2, v2) , ..., (ij−1, vj−1) , (ij+1, vj+1) , ..., (sk−1, vk−1) , (sk, vk)

)
(8.32)

∈ A1 ×A2 × ...×Aj−1 ×Aj+1 × ...×Ak−1 ×Ak,

for all (sj, vj) ∈ Aj and (x, y) ∈ Aj, the following holds

ψj

(
(s1, v1) , ..., (sj−1, vj−1) , (sj, vj) , (sj+1, vj+1) , ..., (sk, vk)

)
(8.33)

− ψj

(
(s1, v1) , ..., (sj−1, vj−1) , (x, y) , (sj+1, vj+1) , ..., (sk, vk)

)
=P

(
(s1, v1) , ..., (sj−1, vj−1) , (sj, vj) , (sj+1, vj+1) , ..., (sk, vk)

)
(8.34)

− P

(
(s1, v1) , ..., (sj−1, vj−1) , (x, y) , (sj+1, vj+1) , ..., (sk, vk)

)
,

where ψj is the cost function of the attacker j defined in (8.10). This completes the proof.

8.2.3 Existence and Achievability of the NE

The following lemma provides the existence of Nash Equilibrium.

Lemma 31. The game G in (7.33) has always at least one NE in pure strategies.

Proof. The Lemma holds from Propostion 25, that is, every finite ordinal potential game
possesses a pure-strategy equilibrium [103, Cor. 2.2].

The attacker are said to play a sequential best response dynamic (BRD) if the attackers
can sequentially decide their own variance from their sets of best responses following a
round-robin (increasing) order. Let us denote the choice of attacker j during round t ∈ N
and assume that attackers are able to observe all the other attackers’ decision. Under this
assumption, the BRD is defined as follows.
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Definition 15. (Best Response Dynamics). The players of the game G are said to play a
best response dynamics if there exists an round-robin order of the elements of K in which at
each round t ∈ N, the following holds(
s∗j(t), v

∗
j (t)
)
= BRj

(
(s∗1(t), v

∗
1(t)) , (s

∗
2(t), v

∗
2(t)) , ...,

(
s∗j−1(t), v

∗
j−1(t)

)
,
(
s∗j+1(t− 1), v∗j+1(t− 1)

)
,

. . . ,
(
s∗k−1(t− 1), v∗k−1(t− 1)

)
, (s∗k(t− 1), v∗k(t− 1))

)
(8.35)

From the properties of potential games in [103, Lemma 4.2], the following lemma follows.

Lemma 32. (Achievability of NE attacks). Any BRD in the game G converges to a Gaussian
attack construction that is the NE.

The proposed BRD in game G to achieve the NE is described in Algorithm 8. As in
Theorem 30, the optimization problem is brokendown as a convex problem. The algorithm
converges quickly and the computation complexity is O(tmaxk).

Algorithm 8 Best Response Dynamics for G
Input: the observation matrix H, the covariance matrix of the state variables ΣXX , the
variance of the noise σ2, and the weighting parameter λ.

Output: the action profile in the NE (v1, v2, . . . , vm)
T.

Initialize the actions by all the players vi(t0), i ∈ {1, 2, ..., k};
for 0 < t < tmax do,

for 1 ≤ i ≤ k do,
Get the sensor selection s∗j and variance v∗q in Theorem 30, that is,

s∗j =argmin
q∈Mj

(1− λ)log

∣∣∣∣∣∣ΣY Y + v∗qeqe
T
q +

∑
p∈K\{j}

vpespe
T
sp

∣∣∣∣∣∣
− log

(
σ2 + v∗q

)
+ λv∗q tr

(
Σ−1

Y Y eqe
T
q

)
,

v∗q =
−(β + ασ2β − α) +

√
(β + ασ2β − α)2 − 4βα(βσ2 − ασ2 +

ασ2 − 1

λ
)

2βα
,

where α
∆
= tr

((
ΣY Y +

∑
p∈K\{j} vpespe

T
sp

)−1

eqe
T
q

)
, β

∆
= tr

(
Σ−1

Y Y eqe
T
q

)
, q ∈ Mj.

end for
t = t+ 1

end for

8.3 Numerical Results

The numerical results of decentralized attack constructions with sparsity constraints in this
section are obtained where the sets of the measurements that attackers have access to form
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a proper partition of the set of the measurements in the system. Each attacker compromises
one measurement that is accessible. The simulations assume that all the attackers can see
the actions taken by the other attacks.

8.3.1 Game Convergence with Different Weighting Parameter λ

Fig. 8.1 to Fig. 8.4 depict the performance of decentralized attack constructions by Algo-
rithm 8 with different λ when k = 2, ρ = 0.9 and SNR = 30 dB on the IEEE 9-bus test
system. With k = 2, there are two attackers in this game. The simulations in this section
assume attacker 1 has access to the set of power flow measurement with indices from 1 to
22 and attacker 2 has access to the set of power injection measurement with indices from 23
to m. These two sets form a proper partition of the set of the measurements on the system.

Specifically, Fig. 8.1 depicts the convergence of the potential function of G given by (8.31)
in terms of round robin with different λ when k = 2, ρ = 0.9 and SNR = 30 dB on the IEEE
9-bus test system. From t = 0 to t = 1, attackers launched the attacks obtained from the
best response in Theorem 30, that is, attackers determined the variance of the attacks for
all the measurements from (8.20) and obtained the best sensor selection according to (8.19).
Hence, from t = 0 to t = 1, the potential function P decreases monotonically, which implies
that all attackers benefit from the attacks launched by the other attackers. Note that after
all the attackers have injected an attack, from t = 1 to t = 2, each attacker modifies its
attacks based on the best response in Theorem 30 after observing the attacks by the other
attackers. The best response yields a decrease in the value of the potential function until the
NE in this game is achieved. Note that in Fig. 8.1, the game with smaller λ achieve a lower
value of potential function. This implies emphasizing on the mutual information benefit the
potential function of the game.

Fig. 8.2 depicts the tradeoff between mutual information and KL divergence in terms of
round robin with different λ when k = 2, ρ = 0.9 and SNR = 30 dB on the IEEE 9-bus test
system. Similarly, the game starts when t = 0 where there are no attacks to the system.
Hence, the KL divergence is 0. As expected, from t = 0 to t = 1, the attackers inject attacks
to the system which yields a decrease in mutual information and increase in KL divergence
and the game with larger λ results in smaller KL divergence and larger mutual information.
However, with larger λ, attackers reduce KL divergence at a higher expense of increasing
mutual information. Therefore, the game with smaller λ achieves a lower cost overall. This
coincides with the value of potential functions in NEs in Fig. 8.1.

Fig. 8.3 and Fig. 8.4 depict the sensor selection and the corresponding variances in terms
of round robin when k = 2, ρ = 0.9 and SNR = 30 dB on the IEEE 9-bus test system with
λ = 2 and λ = 5, respectively. Attacker 1 has access to the sensors with indices 1 to 22 and
attacker 2 has access to the sensors with indices 23 to m. Interestingly, in both Fig. 8.3 and
Fig. 8.4, attacker 1 selects different sensors in different round robin and chooses one sensor as
the game convergences while the variances are similar. However, in both Fig. 8.3 and Fig. 8.4,
attacker 2 chooses the same sensor from the first round robin until the game convergences
even though the variances in different round robin are slightly different. From the topology
of IEEE 9-bus system, the sensor selected by attacker 2 has the most physical connections
with the other buses. This coincides with the sensor vulnerability analysis in Chapter 6
where the measurement that has more connection to the others is the most vulnerable one.
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Figure 8.1: The convergence of the potential function P in G with different λ when ρ = 0.9,
SNR = 30 dB, k = 2 on the IEEE 9-bus test system.
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Figure 8.2: The tradeoff between mutual information and KL divergence in G with different
λ when ρ = 0.9, SNR = 30 dB and k = 2 on the IEEE 9-bus test system.
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Figure 8.3: The sensor selection and the corresponding variances in different the round robin
when ρ = 0.9, SNR = 30 dB, λ = 2 and k = 2 on the IEEE 9-bus test system.
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Figure 8.4: The sensor selection and the corresponding variances in different round robin
when ρ = 0.9, SNR = 30 dB, λ = 5 and k = 2 on the IEEE 9-bus test system.
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8.3.2 Game Convergence with Sparsity Constraints k

Fig. 8.5 depicts the convergence of the potential function P in G with different sparsity
constraints k when ρ = 0.9, SNR = 30 dB, λ = 2 on the IEEE 9-bus test system. The
number of the attackers in the game is constrained by k. The sets of measurements that the
attackers have access to form a proper partition of the set of the measurements in the system.
Note that there are different number of attackers in Fig. 8.5. One marker denotes the start
of the next round robin or an end of the previous round robin. As expected, when there
are more attackers, i.e., larger k achieves a lower value of potential function. In fact, given
there are more attackers and one attacker compromises one measurement, it is expected the
game with larger k achieves better performance in the NE. In other words, the relaxation of
sparsity constraints leads to a better performance.

Fig. 8.6 depicts tradeoff between mutual information and KL divergence in G with differ-
ent sparsity constraints k when ρ = 0.9, SNR = 30 dB, λ = 2 on the IEEE 9-bus test system.
Larger sparsity constraints k indicate a better achievable performance of the attacks. As
expected, the game with k = 8 achieves much lower mutual information at the expense of a
small increase in KL divergence. Interestingly, in all the cases with different k, in the end of
the first round robin when t = 1, the attacks obtain smaller mutual information and larger
KL divergence in comparison with in the NE. Hence, from t = 1 to t = 2, the attackers
modify the attacks to constrain KL divergence. This is because in the first round robin
from t = 0 to t = 1, the attack decisions were made when there were limited attackers that
attacked the system. Therefore, the decisions from best response in Theorem 30 are more
aggressive. However, from t = 1 to t = 2, all the attackers have launched attacks, the result
from best response in Theorem 30 limits the variance of the attacks which yields a decrease
in KL divergence.

8.4 Summary

This chapter has proposed a novel decentralized stealth attack constructions with coordina-
tion and sparsity constraints. The sets of measurements that different attackers have access
to form a proper partition of the set of the measurements in the systems. The objectives
of the attack constructions are the disruption and detection that are measured by mutual
information and KL divergence. The interaction between the attackers is modelled in a game
framework. It is proved the game is a potential game as well as the existence of the potential
function. The best response for the attackers is characterized and best response dynamics
are proposed to achieve the NE of the game. The simulations have numerically evaluated
the performance of the decentralized attacks with coordination and sparsity constraints on
the IEEE test systems and shown the game achieves better performance with smaller λ and
larger k in the NE.
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Figure 8.5: The convergence of the potential function P in G with different sparsity con-
straints k when ρ = 0.9, SNR = 30 dB, λ = 2 on the IEEE 9-bus test system.
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Chapter 9

Conclusions and Future Work

9.1 Conclusions

In this thesis, the information theoretic data injection attack (DIA) constructions with spar-
sity and coordination constraints are studied. Information theoretic metrics are considered as
the objectives of the attack constructions which poses the attack constructions. The attack
constructions aim at the disruption to the state estimate and the probability of detection.
The disruption and detection are captured by mutual information and KL divergence, re-
spectively.

Particularly, in Chapter 4 and Chapter 5, the information theoretic attacks are proposed
with sparsity constraints. A novel stealth attack constructions with sparsity constraints are
proposed. The proposed attack constructions minimize the mutual information between the
state variables and the compromised measurements obtained by the operator while minimiz-
ing KL divergence between the distributions of measurements under attacks and without
attacks. The optimal single measurement attack case is analytically characterized. To over-
come the combinatorial challenge of identifying the measurements to be attacked, the insight
on optimal single measurement attack case is distilled to construct greedy algorithms are
proposed to minimize the additional cost of compromising one more measurement and se-
quentially update the set of compromised measurements. In Chapter 4, the attacks on
different measurements are assumed to be independent. In Chapter 5, the correlation be-
tween different random attacks are considered. It is shown that the greedy step results in
a convex optimization problems which can be solved efficiently and yields a low complexity
attack update rule. The performance of the proposed independent attacks and correlated
attacks are numerically assessed on the IEEE test systems. A better attack performance is
achieved in correlated attack constructions at the expense of the communication between
different attack locations.

In attack constructions with sparsity constraints in Chapter 4 and Chapter 5, it is ob-
served from Fig. 4.1 to Fig. 4.3 that the probability of detection exhibits a threshold effect
when a critical number of measurements are compromised. This observation leads to the
analysis on the measurement vulnerability in Chapter 6. In this research, a novel security
metric that referred to as VuIx is designed. The VuIx characterizes vulnerability of power
system measurements to data integrity attacks from a fundamental perspective. This is
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achieved by embedding information theoretic measures into the metric definition. The VuIx
serves as an metric to assess the measurement vulnerability and gives the insight on the
measurements that are more exposed to data integrity attacks. The simulations have tested
the framework for the IEEE test systems and concluded that power injection measurements
are more vulnerable to data integrity attacks than power flow measurements.

In Chapter 7, it is assumed that there are multiple attackers that construct the attacks
in a coordinated fashion in a decentralized system. In decentralized systems, central decision
maker does not exist. There are multiple attackers aim to disrupt the state estimate while
limiting the probability of detection. From the disruption perspective, as an individual,
one attacker is interested in the disruption to the state estimate that results from its own
attack or the disruption that results from overall attacks. This research proposes the mutual
information between the state variables and the measurement that one attacker has access to
as the metric to capture the disruption that results from one attacker’s own attack. This is
referred to as local mutual information. The mutual information between the state variables
and the measurements in the system is referred to as global mutual information which
describes the disruption results from overall attacks. From the detection perspective, as
an individual, one attacker is interested in the probability of detection under joint detection
on the vector of measurements and local detection on the one measurement it has access to.
Hence, the global KL divergence between the distributions of the measurements under attacks
and without attacks is proposed to capture the probability of joint detection. Similarly, local
KL divergence between the distributions of one measurement under attacks and without
attacks is proposed to capture the probability of local detection. This research has developed
these metrics into objectives in different attack constructions as games in Chapter 7. The
games are proved to be potential games with potential functions accordingly. It is proved
the convexity of the potential functions followed by the existence and the uniqueness of
the Nash Equilibrium in each game. Best response has been analytically characterized and
best response dynamics are proposed to achieve the unique Nash Equilibrium in each game,
accordingly.

This thesis has also proposed a decentralized attacks with sparsity constraints where the
set of measurements that the attackers have access to form a proper partition. The objectives
of the decentralized attack constructions with sparsity constraints are the disruption and
detection that are captured by the global mutual information and global KL divergence as in
Chapter 7. The decentralized attacks with sparsity constraints are developed to form a game
in Chapter 8. It is shown that the game is a potential game and the corresponding potential
function is characterized. This chapter has also proved the existence and achievability of the
Nash Equilibrium. The simulations in Chapter 7 have numerically evaluated the performance
of the decentralized attacks and the performance of the decentralized attacks with sparsity
constraints on the IEEE test systems. It is shown that the coordination in decentralized
attacks can be developed to games with different objectives and the games converge to the
NEs.
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9.2 Future Work

9.2.1 Sensitivity Analysis of the Measurement Vulnerability

In Chapter 4 and Chapter 5, it is observed that some measurements are more vulnerable to
others. The attackers in sparse attack constructions are more likely to attack power injection
measurements which can be numerically verified by the vulnerability analysis in Chapter 6.
Meanwhile, note that the optimal single measurement attack construction in Theorem 13
suggests that the measurements that have more connections to other buses are more likely to
be compromised. Generally, power injection measurements have more connection to the other
buses than power flow measurements. However, these are numerical observations. Further
sensitivity analysis is needed to give the insights on the the measurement vulnerability.

9.2.2 Analysis on the Topology

In attack constructions with sparsity constraints, sparsity penalty suggests that the topology
of the system fundamentally changes the performance of the attack but the specific mech-
anisms are left for future study. For example, in Fig. 4.1, there is a threshold over which
the probability of detection increases significantly. The threshold effect happens for different
cases with both small and large values of λ that is a weighting parameter of the disruption
and detection. This suggests that the topology of the system governs the position of the
threshold. It is also observed that in Fig. 4.11 and Fig. 5.8, some state estimate deviate
more than the others both in independent attacks and correlated attacks. This suggests
that different state variables suffer from DIAs differently and the topology of the system has
an impact on the deviation of the state estimate under attacks.

9.2.3 Decentralized DIAs with Sparsity Constraints

This thesis has proposed the decentralized DIAs with sparsity constraints that the set of
measurements that the attackers have access to form a proper partition of the set of the
measurements on the systems. However, this thesis does not explored the general sparsity
constraints on the decentralized attack constructions. The general sparsity constraints do
not assume the set of measurements that the attackers have access to form a proper partition
which may result in the collision in sensor selection when different attackers choose the same
measurement to attack.
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A Proof of Proposition 5

Proof. Let W n+m ∆
= (Xn, Y m
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respectively, the function fWn+m in (4) is the pdf of W n+m and fXn,Y m
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= fWn+m . It follows
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This completes the proof.

B Proof of Proposition 6
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C Proof of Theorem 13

Proof. The proof starts by noting that for k = 1 the set of attack covariance matrices S̃k is
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The covariance matrices in set S̃1 are matrices with a single positive real element in the
diagonal. The non-zero entry i denotes the index of the measurement that is compromised.
Let i ∈ {1, 2, ...,m} be the index of the non-zero entry of the covariance matrix Σ̄AA. The
non-zero entry denoted by vi is the variance of the random variable used to attack the
measurement i.

Let λ ≥ 1, W = Σ−1
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This completes the proof.
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D Proof of Lemma 14

Proof. The proof follows by showing that the difference between J(Σi) and J(Σi−1), that is,

J(Σi)− J(Σi−1) (34)

=(1− λ) log |ΣYY +Σi| − log |σ2Im +Σi|+ λtr(Σ−1
YYΣi)

−
(
(1− λ) log |ΣYY +Σi−1| − log |σ2Im +Σi−1|+ λtr(Σ−1

YYΣi−1)
)

(35)

=(1− λ) log

∣∣ΣYY +Σi−1 + veje
T
j

∣∣
|ΣYY +Σi−1|

− log

∣∣σ2Im +Σi−1 + veje
T
j

∣∣
|σ2Im +Σi−1|

(36)

+λtr
(
Σ−1

YY (Σi −Σi−1)
)

=(1− λ) log
∣∣Im + (ΣYY +Σi−1)

−1 veje
T
j

∣∣− log
∣∣∣Im +

(
σ2Im +Σi−1

)−1
veje

T
j

∣∣∣ (37)

+λtr
(
Σ−1

YY veje
T
j

)
,

where (35) follows from taking Σi−1 and Σi into (3.49), (36) follows from replacing Σi

with Σi−1 + veje
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completes the proof.

E Proof of Proposition 7

Proof. From Lemma 14, the optimization problem in (4.50) is
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F Proof of Theorem 15

Proof. It follows from Lemma 14 the optimization problem in (4.47) is equivalent to the
optimization problem in (4.50) which is convex for λ ≥ 1 from Proposition 7. After some
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algebraic manipulation, it follows that the optimization problem in (4.50) is
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Note that (44) is quadratic with two solutions. The result follows from choosing the solution
such that v ∈ R+. This completes the proof.

G Proof of Proposition 9

Proof. Note that Yi ∼ N
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where hi is the i-th row of H. Hence, the following holds
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where (51) holds from taking the probability density functions ofW n+1, YA,i andX
n to (50); (53)

follows from taking the constants out of expectation. The following holds

|Σ| =|ΣXX ||eTi ΣYY ei + vi − hiΣXXΣ
−1
XXΣXXh

T
i | (56)

=|ΣXX ||eTi HΣXXH
Tei + σ2 + vi − hiΣXXh

T
i | (57)

=|ΣXX |(σ2 + vi), (58)

where (56) holds from [116, 14.17(a)]; (57) follows from ΣYY = HΣXXH
T+σ2Im; (58) follows

from hi = eTi H and hT
i = HTei. Therefore, from (55), it yields that

I(Xn;Yi + Ai) =
1

2
log

|ΣXX |(eTi ΣYY ei + vi)

|Σ|

=
1

2
log

|ΣXX |(eTi ΣYY ei + vi)

|ΣXX |(σ2 + vi)

=
1

2
log

eTi ΣYY ei + vi
σ2 + vi

=
1

2
log

(
1 +

eTi HΣXXH
Tei

σ2 + vi

)
(59)

This completes the proof.
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H Proof of Proposition 11

The proof of Proposition 11 is obtained by applying the definition of KL divergence between
two one dimensional Gaussian distributions.

Proof. Let fPYA,i
and fPYi

denote the probability density function of PYA,i
and PYi

, respec-

tively. Note that
Yi ∼ N

(
0, tr

(
HΣXXH

Teie
T
i

)
+ σ2

)
, (60)

and
YA,i ∼ N

(
0, tr

(
HΣXXH

Teie
T
i

)
+ σ2 + vi

)
. (61)

The KL divergence between PYA,i
and PYi

is given by

D(PYA,i
∥PYi

) (62)

∆
=EPYA,i

[
log

fYA,i

fYi

]
(63)

=EPYA,i

log
1√

tr
(
HΣXXHTeieTi

)
+ σ2 + vi

√
2π

exp

[
−x2

2(tr
(
HΣXXHTeieTi

)
+ σ2 + vi)

]

1√
tr
(
HΣXXHTeieTi

)
+ σ2

√
2π

exp

[
−x2

2tr
(
HΣXXHTeieTi

)
+ σ2

]
(64)

=
1

2
EPYA,i

[
−x2

tr
(
HΣXXHTeieTi

)
+ σ2 + vi

− −x2

tr
(
HΣXXHTeieTi

)
+ σ2

]
(65)

+
1

2
log

tr
(
HΣXXH

Teie
T
i

)
+ σ2

tr
(
HΣXXHTeieTi

)
+ σ2 + vi

=
1

2

vi(
tr
(
HΣXXHTeieTi

)
+ σ2

) ((
tr
(
HΣXXHTeieTi

)
+ σ2 + vi

))EPYA,i

[
x2
]

(66)

+
1

2
log

tr
(
HΣXXH

Teie
T
i

)
+ σ2

tr
(
HΣXXHTeieTi

)
+ σ2 + vi

=
1

2

vi(
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(
HΣXXHTeieTi

)
+ σ2

) (
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(
HΣXXHTeieTi

)
+ σ2 + vi

)(tr (HΣXXH
Teie

T
i

)
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+
1

2
log

tr
(
HΣXXH

Teie
T
i

)
+ σ2

tr
(
HΣXXHTeieTi

)
+ σ2 + vi

(67)

=
1

2

(
vi
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(
HΣXXHTeieTi

)
+ σ2

+ log
tr
(
HΣXXH

Teie
T
i

)
+ σ2

tr
(
HΣXXHTeieTi

)
+ σ2 + vi

)
, (68)

where (64) follows from taking the density function of PYA,i
and PYi

; (67) follows from the

fact that the expectation of the random variable x2 such that x ∼ N (0, tr
(
HΣXXH

Teie
T
i

)
+

σ2 + vi) is tr
(
HΣXXH

Teie
T
i

)
+ σ2 + vi. This completes the proof.
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I Proof of Proposition 17

The proof of Proposition 17 is obtained by characterizing the three terms in (7.48) are convex
in vi. Specifically, the first derivative of the first term is negative and the second derivative
is positive, which yields the convexity of the first term.

Proof. Let us defineA
∆
= HΣXXH

T
∑

j∈K\{i}
1

σ2 + vj
eje

T
j +Im and αi

∆
= tr

(
A−1HΣXXH

Teie
T
i

)
.

The derivative of the first term with respect of vi in (7.48) is

∂

∂vi
log

∣∣∣∣ 1

σ2 + vi
HΣXXH

Teie
T
i +A

∣∣∣∣ (69)

=− 1

(σ2 + vi)2
tr

((
1

σ2 + vi
HΣXXH

Teie
T
i +A

)−1

HΣXXH
Teie

T
i

)
(70)

=− 1

(σ2 + vi)2
(71)

·tr


A−1−

1

σ2 + vi

1 +
1

σ2 + vi
eTi A

−1HΣXXHTei

A−1HΣXXH
Teie

T
i A

−1

HΣXXH
Teie

T
i

(72)
=− 1

(σ2 + vi)2
tr
(
A−1HΣXXH

Teie
T
i

)
(73)

+
1

(σ2 + vi)2

1

σ2 + vi

1 +
1

σ2 + vi
eTi A

−1HΣXXHTei

tr
(
A−1HΣXXH

Teie
T
i A

−1HΣXXH
Teie

T
i

)
(74)

=− 1

(σ2 + vi)2
αi +

1

(σ2 + vi)2

1

σ2 + vi

1 +
1

σ2 + vi
αi

α2
i (75)

=− αi

(σ2 + vi) (σ2 + vi + αi)
, (76)

where (70) follows from taking the derivative of log

∣∣∣∣ 1

σ2 + vi
HΣXXH

Teie
T
i +A

∣∣∣∣ with respect

of vi [116, Statement 17.18(a)] and taking − 1

(σ2 + vi)2
out of the trace, (72) follows from

Sherman-Morrison Formula in [116, 15.2(b)]. Note that αi > 0 and vi > 0. It follows that

− αi

(σ2 + vi) (σ2 + vi + αi)
< 0. The proof now proceeds to exam the second derivative of

log

∣∣∣∣ 1

σ2 + vi
HΣXXH

Teie
T
i +A

∣∣∣∣, that is,
∂

∂vi

(
− αi

(σ2 + vi) (σ2 + vi + αi)

)
=

αi (2(σ
2 + vi) + αi)

(σ2 + vi)2 (σ2 + vi + αi)
2 . (77)
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Note that αi > 0 and vi > 0. It follows that
αi (2(σ

2 + vi) + αi)

(σ2 + vi)2 (σ2 + vi + αi)
2 > 0, which yields that

the first term log

∣∣∣∣ 1

σ2 + vi
HΣXXH

Teie
T
i +HΣXXH

T
∑

j∈K\{i}
1

σ2 + vj
eje

T
j + Im

∣∣∣∣ in (7.48) is

convex. The second term is linear in vi and the third term is convex in vi. Therefore, the
utility function of the i-th attacker in (7.48) is convex. This completes the proof.
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J Proof of Lemma 19

Proof. From (7.30) and Proposition 12, it follows that

min
v∈R+

I(Xn;Y m
A ) + λD(PY m

A
∥PY m) (78)

=min
v∈R+

ϕ1
i (v1, . . . , vi−1, v, vi+1, . . . , vm) (79)

=
1

2
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|ΣXX |
∣∣∣ΣYY + vieie

T
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∑
j∈K\{i} vjeje

T
j

∣∣∣
|Σ|

(80)

+
1

2
λ

(
log

|ΣYY |
|ΣYY + vieieTi +

∑
j∈K\{i} vjeje

T
j |

−m

)

+
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2
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Σ−1
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T
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∑
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vjeje
T
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
=
1− λ

2
log

∣∣∣∣∣∣ΣYY + vieie
T
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vjeje
T
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∣∣∣∣∣∣− 1

2
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T
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vjeje
T
j

∣∣∣∣∣∣
+vi

λ

2
tr
(
Σ−1

YY eie
T
i

)
+ c (81)
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v∈R+

1

2
(1− λ)log

∣∣∣∣∣∣ΣYY + veie
T
i +

∑
j∈K\{i}

vjeje
T
j

∣∣∣∣∣∣− 1

2
log

∣∣∣∣∣∣σ2Im + veie
T
i +

∑
j∈K\{i}

vjeje
T
j

∣∣∣∣∣∣
+
1

2
λtr

Σ−1
YY

veieTi +
∑

j∈K\{i}

vjeje
T
j

 (82)

=min
v∈R+

1− λ

2
log

∣∣∣∣∣∣ΣYY + veie
T
i +

∑
j∈K\{i}

vjeje
T
j

∣∣∣∣∣∣− 1

2
log(σ2 + v)− 1

2

∑
j∈K\{i}

log(σ2 + vj)

+v
λ

2
tr
(
Σ−1

YY eie
T
i

)
+
λ

2
tr

Σ−1
YY

 ∑
j∈K\{i}

vjeje
T
j

 (83)

⇔min
v∈R+

1− λ

2
log

∣∣∣∣∣∣ΣYY + veie
T
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∑
j∈K\{i}

vjeje
T
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2
log(σ2 + v) + v

λ

2
tr
(
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YY eie
T
i

)
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∣∣∣∣∣∣ΣYY + veie
T
i +

∑
j∈K\{i}

vjeje
T
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∣∣∣∣∣∣− log(σ2 + v) + vλtr
(
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YY eie
T
i

)
(85)

where (82) follows from Proposition 12, (83) follows from noting that the matrix σ2Im +
vieie

T
i +
∑

j∈K\{i} vjeje
T
j is a diagonal matrix and therefore |σ2Im+vieie

T
i +
∑

j∈K\{i} vjeje
T
j | =∏m

i=1(σ
2 + vi), (84) follows from combining all the terms that are not a function of v and

denote it as c. This completes proof.
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K Proof of Lemma 20

Proof. From (7.31) and Proposition 14, it follows that

min
v∈R+

I(Xn;YA,i) + λD(PY m
A
∥PY m) (86)

= min
v∈R+
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2
log
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T
i
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)
+
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log
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T
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+
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+
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)
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log

(
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(
HΣXXH
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T
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− λlog
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(
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YY eie
T
i

)
where (87) follows from Proposition 14, (88) follows from combining the constant term that
is not a function of v and denote it as c.
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L Proof of Lemma 21

Proof. From (7.32) and Proposition 16, it follows that

min
v∈R+
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+ c
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(
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where (92) follows from eliminating the term
∣∣∣σ2Im + veie

T
i +

∑
j∈K\{i} vjeje

T
j

∣∣∣ in the term

log
|ΣYY +veie

T
i +

∑
j∈K\{i} vjeje

T
j |

|σ2Im+veieTi +
∑

j∈K\{i} vjejeTj |
and denoting the term that is not a function of v as c. This

completes the proof.

M Proof of Theorem 22

The proof of Theorem 22 is obtained by noting that the utility function of G1 is convex.

Proof. According to Proposition 13, the utility function of G1 is convex. Therefore, the
solution for the minimization problem in (7.37) is obtained in the first critical point. That
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is

∂ϕ1
i

∂v
=

∂

∂v
(1− λ)log
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T
j

∣∣∣∣∣∣− log(σ2 + v) + λvtr
(
Σ−1

YY eie
T
i

)

=(1− λ)tr
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T
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(96)

Consider the first term (1 − λ)tr
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T
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T
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)
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T
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T
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T
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)
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(
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=(1− λ)
αi

1 + vαi
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Hence, the first derivative of the utility in (96) is

∂ϕ1
i

∂v
(1− λ)log
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T
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∑
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T
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T
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(103)

where βi
∆
= tr

(
Σ−1

Y Y eie
T
i

)
. Let the first derivative in (96) equals to 0. The following holds

βiαiv
2 + (βi + αiσ

2βi − αi)v + βiσ
2 − αiσ

2 +
αiσ

2 − 1

λ
= 0 (104)

Note that (104) is a quadratic form with two solutions as follows:

v1 =
−(βi + αiσ

2βi − αi) +

√
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λ
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v2 =
−(βi + αiσ
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√
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Note that the utility function is convex in v and v ∈ R+. The only critical point is positive,
i.e. the solution in (105). Therefore, the best response for the i-th player i is

v∗ =
−(βi + αiσ

2βi − αi) +

√
(βi + αiσ2βi − αi)2 − 4βiαi(βiσ2 − αiσ2 +

αiσ
2 − 1

λ
)

2βiαi

.(107)

This competes the proof.

N Proof of Theorem 23

The proof of Theorem 23 is obtained by noting that the utility function of G2 is convex.

Proof. According to Proposition 15, the utility function of G2 is convex. Therefore, the
solution for the optimization problem in (7.55) is obtained in the first critical point. That is

∂

∂v
ϕ2
i

=
∂

∂v
log

(
1 +

tr
(
HΣXXH

Teie
T
i

)
σ2 + v

)
− λlog
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∣∣∣∣∣∣+ λvtr
(
Σ−1

YY eie
T
i

)

=
−tr

(
HΣXXH

Teie
T
i

)
(σ2 + v)

(
σ2 + v + tr

(
HΣXXHTeieTi

)) − λtr

ΣYY + veie
T
i +

∑
j∈K\{i}

vjeje
T
j

−1

eie
T
i


+ λtr

(
Σ−1

YY eie
T
i

)
.

Consider the second term tr
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T
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)
. From (98)

to (102), it follows that
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where αi = tr
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∑
j∈K\{i} vjeje

T
j
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eie
T
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)
. Let βi

∆
= tr

(
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YY eie
T
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. Therefore, the

first critical point is obtained from the following equation:

−tr
(
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)
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(
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This competes the proof.
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Proof. From Proposition 17, the utility function of G3 in (7.48) is convex. The best response

is obtained by taking the derivative of the utility function. Let hi
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and
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The only solution of
∂ϕ3

i

∂v
= 0 such that vi ∈ R+ is given by

v∗ = −αi + 2σ2

3
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where

αi
∆
=tr

HΣXXH
T
∑

j∈K\{i}

1

σ2 + vj
eje

T
j + Im

−1

HΣXXH
Teie

T
i


σyi

∆
=tr

(
HΣXXH

Teie
T
i

)
ξ

∆
=

(
θ +

√
4(−3αiσyiλ− α2

iλ
2 − αiσ2λ2 − σ4λ2)3 + θ2

)1/3

θ
∆
=−9α2

iσyiλ
2 − 18αiσ

2σyiλ
2 + 27αiσ

2
yi
λ2 − 2α3

iλ
3 − 3α2

iσ
2λ3 + 3αiσ

4λ3 + 2σ8λ3.

This completes the proof.
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[6] O. Vuković, K. C. Sou, G. Dán, and H. Sandberg, “Network-layer protection schemes
against stealth attacks on state estimators in power systems,” in Proc. IEEE Int. Conf.
on Smart Grid Comm., Brussels, Belgium, Oct. 2011, pp. 184–189.

[7] A. Tajer, S. Kar, H. V. Poor, and S. Cui, “Distributed joint cyber attack detection
and state recovery in smart grids,” in Proc. IEEE Int. Conf. on Smart Grid Comm.,
Brussels, Belgium, Oct. 2011, pp. 202–207.

[8] S. Cui, Z. Han, S. Kar, T. T. Kim, H. V. Poor, and A. Tajer, “Coordinated data-
injection attack and detection in the smart grid: A detailed look at enriching detection
solutions,” IEEE Signal Process. Mag, vol. 29, no. 5, pp. 106–115, Aug. 2012.

[9] M. Ozay, I. Esnaola, F. T. Y. Vural, S. R. Kulkarni, and H. V. Poor, “Sparse at-
tack construction and state estimation in the smart grid: Centralized and distributed
models,” IEEE J. Sel. Areas Commun., vol. 31, no. 7, pp. 1306–1318, Jul. 2013.

[10] I. Esnaola, S. M. Perlaza, and H. V. Poor, “Equilibria in data injection attacks,” in
Proc. IEEE Global Conference on Signal and Information Processing, Atlanta, GA,
USA, Dec. 2014, pp. 779–783.

[11] T. T. Kim and H. V. Poor, “Strategic protection against data injection attacks on
power grids,” IEEE Trans. Smart Grid, vol. 2, no. 2, pp. 326–333, Jun. 2011.

142



BIBLIOGRAPHY 143

[12] O. Kosut, L. Jia, R. J. Thomas, and L. Tong, “Malicious data attacks on the smart
grid,” IEEE Trans. Smart Grid, vol. 2, no. 4, pp. 645–658, Dec. 2011.

[13] I. Esnaola, S. M. Perlaza, H. V. Poor, and O. Kosut, “Maximum distortion attacks in
electricity grids,” IEEE Trans. Smart Grid, vol. 7, no. 4, pp. 2007–2015, Jul. 2016.

[14] M. Ozay, I. Esnaola, F. T. Yarman Vural, S. R. Kulkarni, and H. V. Poor, “Machine
learning methods for attack detection in the smart grid,” IEEE Trans. Neural Netw.
Learn. Syst., vol. 27, no. 8, pp. 1773–1786, Aug. 2016.

[15] A. Tajer, S. M. Perlaza, and H. V. Poor, Advanced Data Analytics for Power Systems.
Cambridge University Press, 2021.

[16] K. Sun, I. Esnaola, S. M. Perlaza, and H. V. Poor, “Information-theoretic attacks in
the smart grid,” in Proc. IEEE Int. Conf. on Smart Grid Comm., Dresden, Germany,
Oct. 2017, pp. 455–460.

[17] ——, “Stealth attacks on the smart grid,” IEEE Trans. Smart Grid, vol. 11, no. 2, pp.
1276–1285, Aug. 2019.
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