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Abstract

This thesis develops a new theory of tuning filters based on the time-domain re-
sponse of the filter. These methods are shown to work very well for all-pole coupled-
resonator filters in particular, and may be applied to automated tuning of filters.

Numerous filter-tuning methods are reviewed, and the attributes and limitations of
each are discussed. Key results about transfer functions, filter theory and Laplace
transform theory are reviewed as applied to all-pole filters. The Fourier Transform
theory is reviewed and a new, detailed analysis of the Vector Network Analyzer (VNA)
time-domain transform, including gating and windowing is presented, including new
work in area of the compensation for the masking effects of time-domain gating.

A complete description of the time-domain tuning method is presented, which in-
cludes experimental and empirical results from simulations and measurements on fil-
ters. The theoretical underpinning supporting the novel method of time-domain tuning
is developed, along with a rigorous mathematical relationship between VNA time-
domain response of a simple filter, and the analytic impulse response. The time-
domain results observed in experiments are shown to be directly correlated to the filter
transfer functions and the specific effects that differentiate the VNNA time-domain trans-
form from the analytically derived impulse response.

This thesis includes previously unpublished work that is the basis for two U.S. pat-
ents, as well as the development of a commercial filter tuning software program. An
improved method for filter tuning, which uses time-domain gating on the S response
of the filter is introduced, and shown to be a key improvement for developing auto-
mated tuning techniques.

The details of a software application for filter tuning are presented, along with meth-
ods for determining and compensating the interactions from other resonators. A case
study of applying the FTS method to a complex duplex filter is described.

Areas for extension into other filter types are discussed. General guidelines for the
successful application of the new tuning method to various filter types are presented,

along with other conclusions of this thesis.
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List of symbols

The following list of symbols is arranged in their order of appearance.
DSP - Digital signal processor
SAW — Surface acoustic wave
IF — Intermediate frequency
RF - Radio frequency
RX - Receiver
TX — Transmitter
LCX - Lossless network including constant reactance
ANA — Automatic network analyzer
RLC — Resistor-inductor-capacitor
Q — quality factor, relates to loss in a resonator
S11 — Input reflection coefficient
Sy1 — Forward transmission coefficient
VNA —Vector network analyzer
CPU - Central processing unit
DFT - Discrete Fourier transform
FFT - Fast Fourier transform

X (w,0)— Arbitrary input signal as a function of radian frequency and input angle

@ — Radian frequency

@ — Input angle

Y(w,8) — Arbitrary output signal as a function of radian frequency and angle
H (+)- Transfer response (in frequency domain)

a(t) — Arbitrary signal as a function of time

J — Square-root of minus one

s — Complex frequency used with Laplace transforms

o — Real part on complex frequency representing a loss term

x(¢) — Arbitrary input signal as a function of time

y(t) — Arbitrary output signal as a function of time

ft) — Time response of a function

L( f(t))— Laplace transform of f)

h(t) — Transfer function as a function of time
O (1) — Unit impulse function

VSWR - Voltage standing wave ratio
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F(f(t)) — Fourier transform of f{z)

F(w) — Frequency response of a function

F~'(H(w)) - Inverse Fourier transform of H(w)

LHP — Left half plane (in reference to poles in the complex plane)
RHP - Right half plane (in reference to poles in the complex plane)
S — Low-pass prototype complex frequency

¥ — Low-pass to band-pass frequency scaling factor

@, — Center (radian) frequency of a band-pass filter

@, — Lower corner frequency of a band-pass filter

w, — Upper corner frequency of a band-pass filter

L, —The n™ inductive element in a filter

C, - The n™ capacitive element in a filter

L.z — The n™ inductive element in a band-pass filter
C,sp — The n™ capacitive element in a band-pass filter

Z,, — Input impedance of a network

Y,

in

— Input admittance of a network
H \, (+)— Normalized transfer function

Zo — Reference impedance

0 — Reflection coefficient

R(w) — Real part of a Sy

X (w) - Imaginary part of S1

S, — Reverse transmission coefficient

S,, — Output reflection coefficient

Lr — Resonator inductance

Cr — Resonator capacitance

Cc — Coupling capacitance

R;, — Source impedance where the impedance is real
R, — Load impedance where the impedance is real
Zg — Resonator impedance

Lxc — Cross-coupling inductance

IFT — Inverse Fourier transform

E (w)- An even function
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O (w) - An odd function
F *(+)— Complex conjugate of a function

Aw - A small shift in frequency, or step in frequency
Hpp — Band-pass transfer function
Hp — Low-pass transfer function
hgp — Band-pass time response
hrp — Low-pass time response
f ()- Discrete time function
7 — Discrete time value
F(v) — Discrete frequency function
v — Discrete frequency in cycles per sample
IFFT - Inverse fast Fourier transform

IDFT - Inverse discrete Fourier transform

CZT - Chirp Z transform
HII(w) - Frequency sampling function

Fs (w) — Frequency response of a sampled function

fs()— Time response of a sampled function
1I(t) — Time sampling function
sinc — Sinc function (sinx/x)
W(n) — Windowing function,
I,(+) — Modified Bessel function of the first kind

B — Kaiser-Bessel windowing factor

fsw — Time response for a sampled, windowed function
Wy — Window normalization factor
Sfuna(2) — The VNA time-domain response
f1p(t)— The low-pass time-domain impulse response
TDR — Time-domain Reflectometer
U(t) — Unit-step response

fstep (£)— The low-pass time-domain step response

7,(0)— Group delay of a filter as frequency approaches DC

x,(t) — A ramp input signal as a function of time

£(s) — Difference between a two signal responses
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@, — Center frequency, typically of a band-pass filter

fsp (2) — The band-pass time-domain impulse response
Fgp — Band-pass frequency response
FLp — Low-pass frequency response-

Jimp (1) — Analytic impulse response of a filter
F, (w)— Time-gated frequency response

I" — Reflection coefficient

T - Transmission coefficient

~

I"— Apparent reflection coefficient

S1;— Reflection response relative to the line impedance

Z.5— Effective impedance after normalizing for change in line impedance

Ziine — Line impedance

S11(¢y — Effective reflection response after normalizing for change in line impedance

V* — Forward voltage wave

V™ —Reverse voltage wave

BW — Bandwidth

T (jw)— Transfer response

D(s) — Denominator of transfer function
R — Resistance

C - Capacitance

DUT - Device-under-test

FTS - Filter tuning software

RN — The N™ resonator in a filter

Cwym — Coefficients of the resonator interaction matrix between resonators N and M

Af, - Difference between the actual and the target frequency of the n™ resonator

Afn* — Difference between the apparent and the target frequency of the n™ resonator

CN - The N*® coupling element

GSM - Global Systeme Mobile; European cellular phone standard

ANT — Antenna

dB — decibel, 20 times the common log of a voltage ratio (10 times for power ratios)
RXN - The N RX resonator

TXN — The N TX resonator

LNA - Low noise amplifier
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Chapter 1 Introduction

1.1 Introduction

Electric wave filters have one of the longest histories of any modern electronic com-
ponent. Despite this longevity, the importance of their role in modern systems remains
undiminished. For many lower frequency applications, the form that these filters take
is increasingly turning toward digital techniques. However, in the area of wireless
communications, the nature and form of filters used today, especially those used for
higher power applications, would be quite familiar to engineers of a half a century ago.
One key change is that with increasing usage of the wireless spectrum, the filtering re-
quirements are becoming ever more stringent, with less margin for error, and system

and regulatory requirements are pushing filter requirements ever closer to the theoreti-

cal performance limits.

1.1.1 Analog and digital filters

Today, filters can be broadly divided into two general classes: digital filters and ana-
log filters. With the advent of high speed Digital Signal Processors (DSP), low fre-
quency filtering has been largely replaced with DSP techniques. However, for many
wireless, high frequency and high power applications, analog filters remain the only
practical implementation. Analog filters can be separated into several classes [1], such
as passive filters with lumped components, active filters, and passive filters with dis-
tributed components. In large part, filters with lumped component design have been
replaced with DSP technology, due to the fact that DSP speeds have increased past the
point where elements can be considered lumped. Higher speed amplifiers have also
allowed active filter designs to be used at intermediate frequencies, and Surface Acous-
tic Wave (SAW) filters are increasingly used at intermediate frequency (IF) and even

low radio frequency (RF) ranges, when power loss and power handling are not an issue.

1.1.2 Applications of coupled-resonator filters

For high power or high frequency applications, passive distributed filters are used
- almost exclusively. Most of these filters can be sub-classified as coupled-resonator fil-
ters. Unlike low frequency filters, these filters are almost always doubly terminated in
the system impedance. That is, these filters are designed and tuned to match the system
impedance in the pass band. In a coupled-resonator filter, the center frequency of each

resonator must be precisely tuned. The center frequency of the filter is set entirely by
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the resonator tuning. The filter shape, such as bandwidth and return loss, is set entirely
by the coupling. The couplings between resonators must also be precisely set to achieve

the proper pass band response, low return loss (reflection), and small pass band ripple.

1.1.3 Filters used in wireless transmissions

A key application of coupled-resonator filters is for receiver (RX) and transmitter
(TX) signal separation. The TX filter must have low reflection, to avoid damaging the
TX drive stage, and low loss to avoid excessive heating and loss of signal strength.
The TX filter must have rejection in the RX portion of the band sufficient to avoid spu-
rious signals from overpowering the desired RX signal. The RX filter must have high
rejection of the TX signal to avoid saturation of the RX front-end. Both TX and RX
paths must have good amplitude, phase and delay flatness to avoid distortion in modu-
lated signals. This is increasingly important in wide-band di gitally modulated signals.

Precise filter shapes can be determined which optimize tradeoffs between filter com-
plexity, cost, and performance [2]. For the coupled resonator filters, much of the diffi-
culty is ensuring that the final filter construction and tuning matches the designed filter
attributes. A new approach to solve the problem of tuning and verifying that the filter

has been manufactured to the proper design values is a key contribution of this thesis.

1.1.4 Filters used in frequency converters and multi-carrier power amplifiers

For filters used in communications systems, the filter characteristics of importance
may go beyond insertion loss and isolation. For example, in frequency converters,
where filters are used to remove mixer image products, it may very important to have a
flat delay response to avoid dispersion in the channel. Filters of these types typically
follow some minimal phase or delay distortion characteristic, such as Bessel or Gaus-
sian type [3], and require more stringent adherence to some pass band shape, with an
accompanying increase in the difficulty of tuning.

For multi-carrier power amplifiers, the filter delay and absolute phase may need to
be set to a particular value for use in feed forward or delay compensation networks.
Current tuning techniques are a key bottleneck to achieving these exacting filter per-
formance criteria while maintaining the high throughput needed in the growing wireless

marketplace.
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1.1.5 Filters using distributed elements

High frequency designs often use low cost printed circuit board (PCB) elements, in-
cluding distributed filters such as coupled-line filters. Even though in general the ele-
ments cannot be real-time adjusted, the performance of these filters is often limited by
mistuning of the resonant elements and coupling values in these filters. Therefore, tun-
ing methods that determine these values may be useful as an analysis technique in

modifying the design of PCB filters for improved performance.

1.1.6 The need for filter tuning

Limitations in manufacturing of these filters lead to the requirement that elements of
these filters must be tuned or adjusted to create the desired transfer function. This tun-
ing process is often the longest and most expensive step in the manufacture of filters,
and typically requires very skilled technicians to accomplish the tuning. This thesis
looks at filter characteristics in a new way with respect to aspects of their frequency
and time relationship to lay a framework for a novel tuning technique. Several filter-
tuning methods are presented and the attributes of each are discussed. This chapter
provides a survey of published work in the area of filter tuning, automated filter tuning,
and determining filter characteristics derived from measured responses. The methods
used in each paper are outlined, and placed into context with other papers, and with the

work presented in this thesis.

1.2 Current tuning methods for coupled resonator filters

Coupled resonator filters require tuning due to mechanical tolerances in the manu-
facturing of the resonators and coupling. Tuning is required to achieve the proper pass
band shape and center frequency. For filters with adjustable resonators, and fixed cou-
pling, only the center frequency of the filter may be changed. The optimum, or tuned
response of the filter is fixed by the coupling (for example, the pass band ripple). For
filters with adjustable coupling, the filter shape and center frequency may be adjusted.

Resonator construction may limit the amount of tuning range available. Addition-
ally, the construction will also determine if the resonators can be shorted, or if the cou-
pling can be shorted. This in turn can affect the tuning method used. For example,
some tuning methods require shorting one resonator while tuning another. Some reso-
nator structures cannot be shorted, and do not have sufficient tuning range to allow mis-
tuning the resonator far enough off frequency to consider it shorted. For filters of this

type, tuning methods based on short-circuiting a resonator will not be successful. Re-
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viewed below are various tuning methods for coupled resonator filters. These are tabu-

lated concisely in table 1-1.

1.3 Tuning methods based on frequency response

1.3.1 Tuning based on amplitude response

Possibly the first deterministic tuning method, a tuning based on amplitude response,
was developed by Dishal [4]. This method requires that all resonators be de-tuned, or
shorted, and that tuning be applied in a specific order. This method relies on a detector
lightly coupled to the first resonator of a filter, and the realization that odd resonators
present a high impedance to the input terminal (thus giving a large signal in the detec-
tor) and even resonators present a low impedance to the input (thus giving a small sig-
nal to the detector). Also, this method does not account for “pushing” of one resonator
by tuning another. The effect of this pushing may be due to resonator coupling, or due
to the physical implementation of the tuning mechanism. As part of the development
of this thesis, a new methodology for dealing with frequency pushing is introduced in

chapter 6. Dishal’s method does not allow for tuning of coupling factors.

1.3.2 Tuning based on phase response

Williams et al present a paper [5] on calculating the inter-cavity coupling by looking
at the phase response of the filter; This describes tuning the first resonator for a sym-
metric response, then using the phase response to determine the inter-cavity coupling.
It is based on the short circuit response of the filter. It counts upon tuning the resona-
tors for symmetric response, then looking at the phase response to determine inter-
cavity coupling factors. This is an evaluation method for inter-resonator coupling,
which does not directly suggest a tuning method if the evaluated parameters are not the

desired ones.

1.3.2.1 Short-circuit tuning

For filters that are singly terminated, Chen [6] proposes a tuning method that relies
on the phase of a short-circuited filter reflection response. This work extends that of
Williams, and applies it to waveguide filters. A significant contribution is handling the
error introduced by the offset of the input aperture from the waveguide input. This
method centers the phase of each resonator (tuning in ascending order) at the filter cen-

ter frequency, and sets the phase angle of bandwidth of the filter by adjusting the cou-
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pling between resonators. Thus, for each resonator, the phase increases by 180 degrees.
This method can be related to Dishal’s method by recognizing that Dishal’s method
relies on the resonators input impedance changing from high (open) to low (short) and
realizing that it must also correspond to the reflection phase going from 0 to 180 de-
gIecs, as resonators are tuned in ascending order.

Atia presents a method [7] that extends his earlier work to create a tuning
method based on the short circuit phase response of a network. This paper may be the
most definitive paper on short circuit phase tuning of filters, and relies on the deriving
the singularities of an all-pole function based on the phase response of the filter. This
response configuration is based on the short circuit response of a filter, so some modifi-
cation will be required to apply this to the case of a filter terminated in a matched im-

pedance.

1.3.3 Tuning based on delay response

Recently, Ness proposed a new idea in filter tuning [8]. This method makes use of
the group delay of the input reflection coefficient to determine the proper tuning of a
coupled resonator filter. In this paper, the values for the group delay of the Sy; are de-
termined for a low-pass prototype. These values are then used to tune a band-pass filter
having the same characteristics as the low-pass filter. The calculations are done for an
low-pass prototype, and a band-pass consisting of alternating series and shunt resona-
tors, and an inverter coupled resonator filter. The basis for this appears to be tuning the
resonators for symmetric responses across the pass band, and then tuning the coupling
for a specific value of group delay to set the coupling factor.

This tuning method appears to be closely related to Chen’s method, if one recog-
nizes that the phase bandwidth (the bandwidth or frequency separation between +90
and -90 degree phase points on the input reflection of a filter) is related to the group
delay of the filter. That is, the phase difference (180 degrees) divided by the bandwidth
is the same calculation as group delay. This method would seem easier than Chen’s in
that the 7L 90 degree points do not need to be found, but only the group delay at the
center frequency. Tuning for group delay essentially tunes the coupling factor. Ness’s
method for tuning resonators is essentially the same as Dishal’s.

This method appears to require tuning resonators in a specific ascending order.
Chapter 4 describes a time-domain method for tuning filters, and there may be an inter-
esting correlation between the group delay response presented by Ness and the time-

domain response.
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1.3.4 Tuning resonators singly

Accatino presents a method [9] of tuning a coupled resonator filter by accessing
resonators individually, and looking at the short circuit response of each in the context
of what he calls an LCX network (lossless network including constant reactance). This
method requires a filter structure in which resonators can be put in a “stand-alone” con-
figuration.

The key measurement is extending the work of Williams and Atia [5], [10] which
determined the singularities of a short-circuited network based on the phase response.
This method is not suitable for a filter without a method for individually accessing
resonators. This paper does address the case of a multi-pole filter where individual
resonators are not accessible, for example, it does address the issue of multiply coupled
filters for the 6 pole case presented. But the tuning is done individually, and may only
be applicable in filters such as waveguide filters where they resonators may be rea-
sonably disassembled. At the 4-pole stage of assembly, a “pattern search optimization”
is noted as being used to set the de-tunings of each resonator, but no further informa-

tion is given on the pattern search methods.

1.4 Model matching and optimization methods

The methods above rely on knowledge of the input response of a filter, and correlate
a measurement (amplitude, phase or delay) to some aspect of the input response (high
and low impedance points, for example). Other methods of tuning rely on optimization
techniques to provide a fit between a measured response of a filter, and a simulation
model of the filter, or even more generally, create an error function, and a mathematical
formulation that generates a relationship between tuner settings and an error function.

Some of these methods are described below.

1.4.1 Optimization based on models

One of the earliest papers on using optimization of models is from Thal [11] which
describes using an Automatic Network Analyzer (ANA) to make measurements on fil-
ters, transferring the data to a computer program, then fitting the best circuit-model re-
sponse to the measured parameters. There are no details on the fitting methods, and the
model for the circuit responses is a simple resistor-inductor-capacitor (RLC) model
with mutual coupling between and across resonators. Examples are given for a 6-pole
and 4-pole filter. Information is provided on calculating sensitivity of tuning element

changes. This is not a real-time procedure (limited by computing power available and
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measurement instrument speed) but does provide an early example of using computer
techniques to address the filter tuning process.

Ishizaki, et al, presented a paper [12] describing an optimization procedure for tun-
ing resonators of cellular band filters. In this paper, an error function was derived from
the difference between S, and S;; modeled and measured results. The paper appears to
assume the resonators have identical Q, and the coupling between resonators is fixed.
There is some discussion of calculating the Q and coupling based on a single resonator
measurement, and determining the correct reference plane for calculating something he
refers to as admittance slope. His method appears to make several calculations with
different coupling capacitances. For each capacitance, the reference plane is varied
(presumably using port extensions in the network analyzer) and a curve is drawn. By
overlaying the curves, he finds one position of reference plane where all curves cross.
He refers to a paper by Kajfez [13], which provides the extraction of Q factor and cou-
pling based on the admittance slope.

The tuning is achieved by optimizing a model to minimize the error function, and
then reading the resonant frequency of the resonators based on the model. This is com-
pared to the desired resonator frequency, and displayed as a normalized frequency. The
filter resonators are then trimmed according this estimated frequency, and the process is
repeated. This process does not appear to handle the cases of adjustable coupling, nor
does it handle cross-coupled resonators. Also, it relies on a good model of the filter. It
is not real-time (as the optimization process is the limiting factor). However, its chief
advantages are it does not require any prescribed tuning order, the filter can be properly
terminated, and it can start with a filter that is partially tuned. This is not the case with

the previous methods discussed.

1.4.2 Other optimization based tuning

Kahrizi, et al recently presented a paper [14] that describes using a filter modeling
approach, which uses model-based parameter extraction to locate the zeros of Sy and
S,;. These values are used in a multi-level modeling approach to generate element val-
ues for a model of the filter under test. A mapping of the determined values with the
desired valued is obtained.

What is interesting here is in the determination of loop equations of matrix form that
relate the offset from center frequency of each resonator, and the coupling between de-
sired resonators, which may be a useful representation for evaluating filter tuning. This

paper assumes defects of the filter tuning in the form of noise effects and coupling per-
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turbations. Unfortunately, no results were shown for real filters, only mathematical
models of filters. The paper did not discuss the real world effects such as multiple un-
desired coupling, and resonator detuning due to coupling tuning. Neither these effects,

nor the their consequences on the tuning method are discussed.

1.4.3  Sensitivity based tuning

Marshall and Tissi present an algorithm [15] developed for a sensitivity analysis of
the network response with respect to the adjustable elements, and does not require
knowledge of the network model. They point out that a fault of model-based algo-
rithms is the limit of being able to derive a network model in which all adjustable ele-
ments are accurately represented. This refers to the fact that particular tuning elements
may affect several parameters at once. A good example of this is a metallic coupling
screw, which is used to short-circuit electric field coupling in a coupled resonator filter,
that can also affect the shunt capacitance of the adjacent resonators, thus affecting the
resonator tuning. The method presented uses a sensitivity analysis of the measured
network to adjustable elements in terms of a defined error function. The key aspect of
this method is in casting the problem as an optimization problem, where one portion of
the solution is determining the sensitivity responses of individual tuning elements. This
method has been demonstrated on several filters, but only in the case where they are
partially aligned. Also, one step requires the adjustment of each element over a range
of settings to determine a sensitivity function, which would not be practical for many
filter implementations, such as ceramic or dielectric resonator filters. This work ap-
pears to be very general, and does not require complex test equipment (for example,
they use a scalar network analyzer).

Yu er al present a paper [16] that describes different optimization algorithms and
their effectiveness in obtaining a solution, with the focus on a technique called Simu-
lated Annealing. This paper relied on computer modeling instead of experimental tests,
and essentially compared different search algorithms. They cited using an in-circuit
element measurement or other parameter identification techniques to determine actual
parameter values, but gave no details. It was assumed that filters were constructed of
fixed capacitors and tunable inductors. The problem to be solved was tuning the induc-
tors to get a desired response given a spread of 2% in the capacitor values. Thus, in
some ways, this was a synthesis problem and not a tuning problem (synthesize a set of
inductors which with the given capacitors, provides the desired frequency response).

This paper does not address the problem presented by microwave filters of not knowing



21

the effective values of the elements, but rather, assuming that the element values are
knowable, presents an optimization technique to generate proposed tuning values to
satisfy a prescribe tuning result. This might be more applicable to a design phase of a
microwave filter.

In a recent paper by Harscher and Vahldieck [17], a technique using both optimiza-
tion and sensitivity analysis of tuning elements versus an model was presented. In this
paper a tuning procedure is described which consists of pre-tuning a filter to a basis po-
sition, and measuring the filter response. From this response element values are ex-
tracted, using optimization to match to a model. Next sensitivity of each element in the
model determined for each tuning screw by measuring the response and extracting the
values as each tuning screw is singly adjusted. This allows interactions such as cou-
pling screws affecting resonator tuning to be captured. The tuning screw positions are
adjusted and values are again extracted to allow an analysis of the tuning screw posi-
tion to model element correspondence. Finally, the tuning screw positions for proper
tuning are calculated and the screws adjusted. If this does not yield a sufficiently good
result, the process is repeated. This method has the distinct advantage of accounting
for actual interactions between tuning screws and each filter element. However, the
experimental results were provided only for a 3-pole coupled resonator filter. While
the results showed the filter could be tuned, one might question the extraction and
model-matching optimization process efficacy for higher order filters or filters with
cross-coupling. Tuning times quoted for a 3-pole filter were 5 minutes, but there is no
suggestion of how one might extrapolate tuning times to more complex filters.

In a follow-up paper, Harscher, Vahldieck and Amari [18] provided additional ex-
perimental examples for 4 and 6-pole filters with cross coupling, but without the details

of tuning time or accuracy when compared to the desired prototype response.

1.4.4 Tuning methods using fuzzy logic

Recently, a new technique for tuning filters employing fuzzy logic has been pre-
sented by Miraftab and Mansour [19]. Fuzzy techniques differ from normal optimiza-
tion techniques in that they do not need to compare circuit model characteristics di-
rectly to measured results, but rather, can have an inference system that maps input
fuzzy sets to output fuzzy sets. The input sets come from a fuzzifier that maps the crisp
input numbers into fuzzy sets. Combinations of these inputs are passed through the in-
ference system, which produces output results based on logical rules set for combining

the fuzzy inputs. The inputs are measured results and the desired output is a coupling
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matrix in the form described by Atia [2]. Comparing this to the desired matrix will
yield a tuning method that identifies mistuned elements. The results described give ap-
proximately (within 5%) correct values for the matrix elements, but from the results
presented, it does not appear that this method would be successful for final tuning of
filters, as the errors in extracted elements would not enable sufficient accuracy in tun-
ing filters. Also, this paper uses only simulated results, so the errors associated with
spurious cross-couplings and system noise are not accounted for. Still, it might be an
interesting technique when combined with other techniques, including using the time-

domain response as one of the inputs to create the fuzzy sets.

1.4.5 Rational-polynomial-function fitting techniques

A recent improvement in optimization techniques was presented by Ibbetson [20]
where measured data was fitted to rational-polynomial functions. Band-pass filter data
is translated to a low-pass prototype response, and matched to rational-polynomial
functions that are allowed to have complex coefficients to account for non-hermitian
low-pass functions. This technique has advantages of being over-determined in the so-
lutions for the polynomial coefficients, based on the frequency response data taken.
Thus, effects of noise are reduced in the process of least-squares-fit calculation of the
polynomial coefficients. More recently, Ibbetson presented newer results [21] where
the order of the polynomial functions is increased by one for both numerator and de-
nominator, allowing a much closer fit to the measured data. The resulting pole-zero
diagrams show one pole-zero pair that are quite close together, and typically far away
from the filter center frequency, but allow for a better fitting to occur. This technique
appears to be well suited to the problem of cascaded triplet filter configurations used by
Ibbetson’s company, Filtronic PLC. This technique has some limitations which include
the fact that the polynomial function is only an approximation for distributed filters
found at microwave frequencies, measurement error and noise can lead to difficulty in
extracting coefficients, and limitations of the filter manufacturing can mean that it is
not possible for a given filter to match the desired rational-polynomial function due to

the inability to tune some elements, such as the input and output coupling elements.

1.4.6 Fully robotic tuning

The goal of providing a fully automatic robotic tuning application was demonstrated
by Wu at a recent conference [22] showing a tuning process for a duplex filter. The

techniques used for tuning were not revealed, but stated to include combinations of



23

coupling matrix extraction, time-domain cloning, and phase cloning. The results
showed an average tuning time of about 30 minutes for an 8-pole filter with two cross-
couplings. This can be compared with the results of this thesis in the case study of
chapter 7. Interesting aspects of this paper include the details on tuning screw selection

and locking, as a part of a practical manufacturing tuning system.

1.4.7 Performance criteria for filter tuning

Since various tuning methods have been described for tuning coupled resonator fil-
ters, it is natural to compare the various methods. Jervis presents a paper [23] that
compared some optimization techniques, and provides criteria for comparisons. How-
ever, this paper was written with respect to low frequency filters, and does not account
for a range of difficulties presented with microwave filters, some of which are de-
scribed below.

The criteria for evaluating filter-tuning methods will depend upon the structure of
the tuning element, and how the tuning is accomplished. For manual (human) tuning,
the response of any tuning indicators must be updated with sufficient rapidity such that
the tuner will not overcompensate while waiting for an update. Experience, and discus-
sions with manufacturing managers of several well known filter companies, indicate
that about 0.25 seconds is the maximum acceptable cycle time for human tuning. For
machine (automated) tuning, the cycle time is not important, but longer cycle times can
limit the speed benefit of machine tuning. A major difficulty to overcome in machine
tuning is hysteresis effects in the tuning elements. These tuning elements, typically
screws, can have backlash, and the grounding point of the screw can change. This
causes discrete discontinuities in the tuning response of these screws, and the nonlinear
behavior can cause machine-tuning programs to fail. For example, when turning a
screw in, the grounding is on the bottom of the thread, but when turning the screw out,
the grounding can be on the top. Thus there can be a discrete change in the resonator
tuning with no change in the screw position. Humans can account for this without dif-
ficulty, but machines must be programmed to look for such discontinuous responses. A
tuning criteria that assumes perfect tuning elements is not a realistic criteria for deter-

mining the best algorithms to use on a manufacturing floor.

The table presented below summarizes the various tuning methods described above:
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Table 1-1: Summary of Filter Tuning Methods

Filter Tuning Method

Ref. | Date | Author Notes

Amplitude Response | 4 1955 | Dishal Prescribed tuning order, interac-
tions not accounted for, requires
additional probe port.

Phase Response 5 1983 | Williams | Good for inter-cavity coupling

Phase I_Response_ - 6 1977 | Chen Requires short circuit, prescribed

Short circuit tuning tuning order, interactions not ac-
counted for

Phase I_Response - 7 2000 | Atia Requires short circuit at output, no

extracting pole/zeros tuning order needed, cross coupling
solution not shown, commented on

Delay Response 8 1998 | Ness Prescribed tuning order, similar to
Dishal’s, does not account for inter-
action, cross coupling

Optimization 9 1986 | Accatino | Optimizes a model to match a re-
sponse

Optimization 11 1978 | Thal Optimization to extract model ele-
ment values

Optimization 12 1990 | Ishizaki Applied to a small number of reso-
nators, no coupling tuning.

Rational Function 14 2000 | Karizi Optimizes a pole/zero model to
match a response

Optimization- 15 1991 | Marshall | Optimizes on performance goal,

Sensitivity based model independent, treats tuners as
unknown inputs to the optimizer

Optimization 16 1996 | Yu Synthesis technique to account for

/Synthesis Simulated component difference; new set of L

Annealing values for given variations on C

Optimization/ 17 2001 | Harscher | Using optimization and sensitivity

Sensitivity to match models to tuning position

Sensitivity 18 2001 | Harscher | Same as above, extended to cross-
coupled filters

Fuzzy Logic 19 2002 | Miraftab | Uses Fuzzy logic to extract coupling
matrix values

Rational Function 20 2000 | Ibbetson | Optimize coefficients of rational
functions to fit measured data

Rational Function 21 2002 | Ibbetson | Extend above by increasing the or-
der of rational functions used

Multiple/ 22 2003 | Tang Use multiple methods in a commer-

Robotic Tuning

cial robotic tuner
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1.5 Limitations of current tuning methods

Each of the previously described methods suffers from limitations that render them
less than optimal for filter tuning applications. Some require a specified order of tuning
filter elements, or require extensive computation (in the form of optimization) to de-
termine the status of tuning elements. The interactive nature of coupled-resonator fil-
ters makes it difficult to determine which resonator or coupling element needs to be
tuned. While most of the tuning methods described above can achieve approximately
correct filter responses, final tuning often requires the seemingly random adjustment of
each element until the final desired filter shape is obtained.

The solution to these difficulties would be a tuning method that is simple, flexible
and deterministic, where the individual adjustment goals for each tuning element would
not depend upon the other elements in the filter. The response to each tuning and cou-
pling screw would be immediately seen and accounted for. Ideally, each tuning screw
would only need one adjustment. This thesis details a solution approaching that ideal,

and provides a theoretical justification for the results demonstrated.

1.6 New contributions to filter tuning

An entirely new tuning technique, using the vector network analyzer (VNA) time-
domain response of a filter, is the core topic of this thesis. In 1999 the author presented
a novel filter tuning method [24], [25], [26] based on the time-domain response of a
filter. References [25] and [26] are included at the end of this thesis as published pa-
pers 1 and 2, respectively. The technique, which was empirically developed, describes
a method of tuning coupled-resonator filters by looking only at the time-domain re-
sponse using the built-in time-domain function of a VNA

The first filter for which the time-domain response was documented was a 5-cavity
all-pole filter. The filter was being tuned in the frequency domain on one channel of a
VNA while the time-domain was active on another channel, for the purpose of evaluat-
ing the effect of enhanced CPU speed on overall tuning response. Activating the time-
domain function, which requires significant CPU time, posed a good challenge to the
new CPU. During this testing, the author noted that turning a tuning screw on the filter
caused a change in just one portion of the time-domain trace, and turning a different
screw caused a change at a different point. It appeared that the time-domain trace could

separate the effects of the tuning screws, whereas the frequency response showed no
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Figure 1-1: Frequency response (S21 and S11) of a 5 pole filter (upper plot) and
time-domain response of S11 (lower plot).
such direct cause-and-effect relationship. An example is shown in figure 1-1, with the
frequency response of S;; and S;; in the upper plot, and the time-domain (band-pass
mode) shown in the lower plot. Note the characteristic dips in the time-domain plot, as
indicated by the markers.

This effect is illustrated in figure 1-2, where only the tuning screws associated with
second and third resonators have been individually adjusted. The upper plot shows the
frequency response of the filter with only resonator 2 mistuned (in the blue), and only
resonator 3 mistuned (in the green). The original response is shown in light red for ref-
erence. The lower plot shows the time-domain response, for the same conditions. Note
that in the case of mistuning only the second resonator, leaving all other resonators un-
touched, the time-domain response is nearly unchanged near marker 1, but the null in
the time-domain response near marker 2 is very distinctly changed. The nulls past

marker 2 are affected as well, but to a somewhat lesser amount.
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Figure 1-2: Frequency (upper) and time-domain (lower) response with resona-
tor 2 (blue) and resonator 3 (green) individually mistuned respectively

For the case of mistuning only resonator 3, note that the time-domain trace is not
changed near marker 1 or marker 2. Only the null near marker 3 shows a distinct
change. Thus, it appeared that the tuning screw adjustment was in some way linked to
the associated nulls in the time-domain. Finally, if the mistuned resonator was adjusted
while monitoring the associated null, and tuned until the null was deep, the filter fre-
quency response would show that a properly tuned filter results.

Further investigation demonstrated that coupling screws also had a distinguishable
effect on the time-domain response, resulting in a complete tuning method for all-pole
filters using the time-domain response. What is remarkable and unexpected about this
new technique is that for these filter types, the filters may be optimally and determinis-
tically tuned looking at only the time-domain response.

Much investigation and extensions beyond the previously published work has been
undertaken, resulting in even newer techniques that takes advantage of aspects of time-

domain gating, and two U.S. patents have been granted for this new tuning method, fi-
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nally resulting in a commercial filter tuning software program that has been created
based on the techniques developed for this research and presented in this thesis. This
thesis documents the investigation into the time-domain response of filters, and the

steps taken to build a theoretical basis to explain the reported time-domain effects.

1.7 OQutline of the present work

In the discussion of filter tuning and filter response verification, it is helpful to col-
lect the important and appropriate results from the vast amount of work on filter theory
and transform theory to support the proposed new ideas. Chapter 2 and chapter 3 con-
tain these results, organized in such a way as to provide a sufficient background for the

material in the chapters that follow. The following outlines the flow of this thesis.

Chapter 2 develops the results from transfer functions, filter theory and Laplace
transform theory, as applied to all-pole filters. In particular, the frequency response
and time response are defined for use later. The results presented represent a small but
key fraction of the concepts of filtering, which will be referenced in the chapters that
follow. This chapter also provides the reference for applying the filter theory results to
the case of microwave filters, and introduces some of the special details that are impor-
tant in measuring and tuning microwave filters. Those skilled in the art of filter design

and network theory will find the material in chapter 2 is substantially review.

Chapter 3 departs from filter theory to introduce Fourier transform theory and the re-
lationships between the DFT, FFT, and data sampling, as well as introducing the Chirp-
7 transform. It provides for the first time a detailed analysis of the Vector Network
Analyzer (VNA) time-domain low-pass and band-pass transforms, including gating and
windowing. A key point to note is that the VNA time-domain transform differs signifi-
cantly from the analytically derived impulse (time) response of a filter. Importantly,
this difference is shown in later chapters be the key factor which makes time-domain
filter tuning work. New work is presented in area of the effects of time-domain gating
and masking, and compensation for these effects, as well as uncertainty estimates.

Time-domain gating will be cited in chapters 6 as an important enhancement to the

time-domain tuning method

Chapter 4 presents a complete description of the time-domain tuning method briefly

outlined earlier in this chapter. This description includes experimental and empirical
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results from simulations and measurements on filters. The empirically derived tech-
niques are applied to all-pole filters with some extensions to filters with cross-coupled
resonators as well. The tuning method described here is done entirely by looking at the
time-domain response (with the exception of setting the transmission zeros of cross-
coupled filters). The examples shown in this chapter include real filters as well as the
response from simulated filters. Practical considerations, including the effects of loss,
are included in the discussion. Some of this material was first introduced in a peer-

reviewed conference paper [25] written by the author.

Chapter 5 presents the results of work to determine a theoretical underpinning sup-
porting the novel idea of tuning filters in the time-domain. This chapter provides a
rigorous mathematical relationship between VNA time-domain response of a simple
filter, and the analytic impulse (time) response. A mathematical argument is presented
which shows that the time-domain results observed in experiments can be directly cor-
related to the filter transfer functions and the specific effects that differentiate the VNA
time-domain transform from the analytically derived time-impulse response, as out-

lined in Chapter 3.

Chapter 6 of the thesis includes previously unpublished work that is the basis for
two U.S. patents, as well as the key technology used in the development of a commer-
cial filter tuning software program. This chapter uses the new material on time-domain
gating and masking developed in Chapter 3, to show that the masking effect is a key
source of the apparent interactions that make filter tuning so difficult. A superior
method for filter tuning, which using time-domain gating on the Sy, response of the fil-
ter is introduced, and shown to be a key improvement for developing automated tuning

techniques.

Chapter 7 describes the details of a software application for filter tuning utilizing the
work of chapters 4, 5 and 6. Many practical aspects of filter tuning and human inter-
face issues are discussed. A new method for determining and compensating the inter-
actions between resonators is presented, and detailed examples showing improvements
from resonator compensation are presented. One example demonstrates nearly ideal
deterministic tuning of an 8-resonator all-pole filter utilizing this software. The time
required to tune this filter, which has adjustable couplings and resonators and which

experienced tuners could adjust in 15 minutes, is reduced to less than 3 minutes using
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the filter tuning software. Limitations or difficulties in applying the time-gated tuning
are discussed, and a method using phase pre-tuning is presented to overcome these dif-
ficulties. Important user-interface aspects of the filter-tuning program that affect tuning
time are also presented. A case study of applying the filter tuning software method to a

complex filter type, a duplex filter with 8-poles and two cross-coupling on each side, is

described.

Chapter 8 concludes by describing areas for extension into other filter types (such as
filters with strong cross-coupling and closely spaced duplex filters). Limitations of the
new tuning method are discussed for several filter types. From this general guidelines
for the successful application of the new tuning method to various filter types are pre-

sented, along with other conclusions of this thesis.
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Chapter 2 Filter Fundamentals

2.1 Transfer functions and Laplace transforms

The new work presented in this thesis relies on previously unknown relationships
between the frequency response and time-domain response of filters, under certain
conditions. As described in the introduction, a primary purpose of a filter is to pass
signals from the input to the output, applying a desired change to the signals. For con-
venience the response can be described as the collection of changes that occur to any
particular single-frequency sinusoidal signal, where the change is different for different
frequencies of input signals. This is the well know frequency response of a filter, and
can be determined experimentally by applying a sinusoidal signal to the filter input, and
measuring the response of the output, comparing the magnitudes and phase of each, and
is repeated for as many frequencies as desired.

The most common filtering function is to pass some signals with little or no attenua-
tion over a defined pass band, and to attenuate signals over a defined stop band. A
transfer function is the function that describes the relationship between the input and
output signals. Plotting the magnitude of the transfer function on a log/log scale yields
the familiar Bode Plot. If the input signal is represented by

X (w,0) = X |cos(wt+6) (2.1)

and the output signal is represented as

Y(w,0) =Y |cos(wt +¢(0)) (2.2)

then the transfer response of the filter is defined as

Y(w,0)=H(X(w,0)) (2.3)

For linear, causal, time invariant networks (the response of which depends only
on the frequency of the applied signal), the output signal is linearly related to the input
signal, and time shifting the input signal causes a similar time shift in the output signal

[27]. Mathematically, we can write this as:

Y(w)=H(®) X(w) (2.4)

and it follows that the frequency response can be defined in terms of the input an output

signals as
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H(w =M

X () (2.5)

Note that the input and output signals may be defined to be voltages, currents, powers
or other signal attributes that are desired. This definition of a transfer function is par-
ticularly useful in that the frequency response of a network may be determined by
measurements of output response signal and the input stimulus signal, and many meas-
urement instruments, such a Vector Network Analyzers (VNAs) provide such signals
and measurements. The definition of the particular signal attribute determines the par-
ticular transfer function. For example, input impedance is the transfer function of the
current measured at the input in response to the voltage applied at the input. An alter-
native transfer function, the reflection coefficient, is related to the power reflected from
the filter as a function of the power incident to the filter. For filters such as waveguide
filters, this transfer function is more useful than the input impedance, where voltage
and current may be ambiguously defined.

The above provides a quantitative result in describing a filter response based on
measurements of the responses of sinusoidal signals. We will see below that the theo-
retical analysis of filters is made more convenient using sinusoidal analysis as well, and
the frequency response function described by measurements above is exactly analogous
to the transfer function derived by mathematically analyzing the network, as described

below.

2.1.1 Frequency response of a network expressed as a transfer function

The use of sinusoids to define a measurement of a filter can be traced to the wide
range of analyses that have been applied to the field of electric circuits and networks.
Introductory circuit theory [28] provides the basic nomenclature and symbols for repre-
senting signals and transfer functions. Sinusoids are represented by complex notation
as follows:
ja)t]

a(t) =5 A|cos(wt +6) =Re[Ae ) (2.6)

where A=| A| e 9, and jw is sinusoidal frequency

. : Wt o
For convenient computation, signals are represented by Ael?? | and it is understood

that only the real parts of this signal are to be considered.
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A transfer response function defined as equation (2.5), and with input and output

signals of the form in equation (2.6), will have the form [29]
H(jw) = H(jw)|/#@) @.7)

with an amplitude response that depends upon frequency, and a phase response that

also depends upon frequency. Together these comprise the frequency response of the

network.

In filter analysis, the frequency response is often represented by the more general
transfer response, H(s) with s representing the complex frequency s=0+ jw, and
where the special case of s= jo (o =0) represents the frequency response, as de-
scribed by the Laplace transform below.

The Laplace transform provides a useful representation of the transfer function. If
the input signal is of the form x(¢), and the output signal is y(t), then the input signal
can be represented by X (s)in the complex frequency domain, and the output signal by
Y(s), where X (s) and Y(s) are the Laplace transforms of x(¢) and y(z), respectively.

The Laplace transform [30] is defined as

L(f®)= [f@yedr (2.8)

and is the two-sided Laplace transform. For functions which are causal, the one sided
Laplace transform is used, where the lower limit of integration is replace by a 0. Look-
ing at the previous definition of the transfer function, rewritten now as
Y(s)=H(s)-X(s), we can see that if X(s) is identically 1, then Y(s) is identical to
the transfer function H(s). X(s)=1 is equivalent to applying all frequencies to the
input of the filter, with uniform amplitude and zero phase. The resulting output signal
determines the transfer function. This is in fact what a vector network analyzer at-
tempts to do in characterizing RF filters.

The Laplace transform is valid for a large variety of signals, both sinusoidal and
transient. Additionally, the Laplace transform provides a convenient method for solv-

ing problems involving transient input signals x(t). If H(s) is known, then the output

signal for any input signal can be computed by simply taking the Laplace transform of

x(t), multiplying by H(s), and taking the inverse Laplace transform of the resulting

Y(s5).
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An alternative definition of the transfer function to that represented by the frequency
domain in equation (2.7) can be derived. If h(r) is defined as the inverse Laplace

transform of H(s), then if follows that [31]
t
y@&)= [h(z) x(t -7)dz (2.9)
0

or
y(@)=h(t)-conv-x(t) (2.10)

For the case of a stimulus X (s) =1, x(¢) is the unit impulse function 8(t) [32]. The re-
sponse y(f)can be determined from the definition of convolution, with the result
y(@) =h(t); thus h(t) is called the impulse response or time-domain response of the
network.

For RF filters there are two important transfer functions: input response, and trans-
mission response. The input response may be viewed as the input impedance, reflec-
tion coefficient, VSWR, etc. depending upon the definition of the input and output sig-
nals. Likewise, the transmission response may be the voltage transfer function, the cur-
rent transfer function, power transfer function, etc. These functions may be derived
mathematically, if the network construction is known, from the network equations that
describe the response of the network to sinusoidal responses. This is the analytically

calculated transfer response or frequency response.

2.1.2 Relationship between Fourier transform and Laplace transform

The Fourier transform, defined as [33]

F(fO)=F@)= [ f@e /" d @.11)

is a special case of the Laplace transform, with s = jw, provided that the jw axis is 1n

the region of convergence of the Laplace transform [34]. There are some limits on the

functions that are Fourier transformable, but in general these are functions for which
[lr@]di<e 2.12)

Even functions for which this integral does not exist may be transformable in the

limit, with some very useful functions among these, such a sine, cosine and U(t) [35].

This limitation is in general not applied to the Laplace transform, which has the extra
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xponential portion e ', and which makes Laplace transformable those functions

which are of exponential order [36]. The inverse Fourier transform can be defined (see

equation (3.2)) , and represents the time-domain response of that signal. If H(jw)is

the frequency response of filter, then h(z) =F'(H(w)). The time-domain impulse re-
sponse calculated from the inverse Fourier transform is identical to the impulse re-
sponse described above for the inverse Laplace transform of H(s).

Thus, to describe a filter function, it is sufficient to describe the frequency re-
sponse H (jw) . However, it is often more convenient to use the transfer function
H (s). While either the transfer function or the frequency response of a network can be
calculated directly from the network equations, synthesis techniques that are used to
create a network with a specified frequency response are more readily adapted to the
transfer response H (s)[37]. The relationship between the Fourier transform of a net-

work, and the VNA time-domain transform will be discussed at length in Chapter 3.

2.1.3 Transfer functions viewed as pole-zero responses

Transfer functions H(s) for a network may be represented in the form

_c(s—sD(s—s3)(s—s5):

- (2.13)
(s—52)(s —54)(s —56)---

H(s)

where ¢ is a real constant and s is the complex frequency variable s=0+ jo. Cir-
cuits constructed of lumped elements will have a finite number of poles and zeros. Cir-
cuits constructed of distributed elements require an infinite product of poles or zeros to
represent the associated transcendental functions [38]. This thesis will be limited to the
case of lumped or quasi-lumped element analysis. As such, all derived transfer func-
tions will be of the form in equation (2.13).

The magnitude of the frequency response |H (jw)| may be obtained from the trans-

fer response by

|H(jw)| = H(s)-H(=s)| (2.14)

s=jw

Alternatively, the transfer function may be obtained from the frequency response by

replacing w® with —s?, factoring the numerator and denominator, and identifying the

left half plane (LHP) poles with H(s) [39].
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2.1.4 Hurwitz Functions

Finding H(s) from |H(jw)| does give some degree of freedom in choosing H (s).
Choosing zeros in the LHP ensures a minimum-phase function [40]. For a filter to be
realizable, the transmission response poles must be in the LHP or lie on the Jw axis.

Additionally, if H(s) is a rational function in the form of equation (2.13) , it is pos-
sible to use partial fraction expansion to put H(s) in the form of

A B

H(s)= ..
(5) (s—s2)+ (s—s4)+

(2.15)

which is more easily transformed into the time-domain through the inverse Laplace
transform. A special class of filters, called all-pole filters, are described by functions in
the form of (2.13) where the numerator contains only a constant, that is, where the
function has no zeros except as s — 0. While the transfer function can be of arbitrary
complexity, many very important filtering functions can be achieved while limiting the

transfer function to all-pole functions.

2.2 Low-pass transfer functions

2.2.1 All pole networks

All-pole networks can be synthesized using lumped elements through the transfer
function by using standard techniques [41]. These networks will lead to Low-pass
transfer functions. For all-pole responses, it is sufficient to study low-pass functions, as
additional transformations can be applied to the networks to generate band-pass func-
tions [42]. Additionally, though these low-pass networks are normalized, they may be
scaled to any frequency and input impedance.

An interesting point [43] is that more than one set of element values can realize the
same transfer function, based on the fact that reflection coefficient zeros are not unique.
All pole networks result from having one reactive element in each arm of a ladder net-
work. Low-pass all-pole networks have inductive series elements and capacitive shunt
elements. The all-pole design can place reflection zeroes in either the LHP or RHP,
yielding different filter elements that realize the same transfer function. Choice of the
element configuration (series first element or shunt first element) determines the con-
figuration. The low-pass filter in figure 2-1 has a shunt first element, and as such will
have an impedance with tends to 0 as w — . A filter with a series (inductive) first

element creates an input impedance that tends to +eo as @ — oo . Both filters will have
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the same V,./Vix transfer function. However, when these low-pass prototypes are
transformed into a specific configuration of band-pass filter, such as the coupled-
resonator filter using capacitive coupling, this degree of freedom will be constrained.
The filter transfer function is controlled by the element values. For a given filter
bandwidth, many filter factors may be traded off. Among these are filter flatness (in
some sense), cut-off, return loss, phase response and group delay response. Some

common filter functions with the attributes that are optimized are listed below.

2.2.1.1 Butterworth

Butterworth, also known as maximally flat response, optimizes the filter response in
the sense that n'™ order derivatives at @ = 0 are zero, where n is the number of elements
in the filter. The values can be found by using a Taylor approximation of transfer re-
sponse and making n™ order terms of the Taylor error function expanded about w =0

go to zero [44].

2.2.1.2 Chebyshev

The Chebyshev response is also known as the equal ripple response. This response
minimizes the deviation of a function over some interval. The Chebyshev polynomials
possess the equal ripple property, and coefficients for these may be found using a re-
cursive formula [45]. The Chebyshev filters trade off maximum flatness for steeper
stop-band slope. Many filters designed for RF work are based on an equal ripple re-

sponse.

2.2.1.3 Bessel

The Bessel response generates maximally flat group delay response. This is flat in

the sense that the first 2n—1 derivatives of the filter delay are zero at @ =0 [46]. This

R1 L2 LN
Y'Y Y\ - -
vin C1 S C3
v v

Figure 2-1: Low-pass Filter with a series first element
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filter is commonly used in the design of RF amplifiers where feed-forward or other
techniques are used to create better non-linear response. In these cases, it is important

that the delay of the filter be constant over some specified bandwidth.

2.2.2 Networks with poles and zeros

Though the focus of this thesis is on all-pole networks, equation (2.13) indicates that
the transfer response can have zeros as well as poles. Properly placing these zeros in
the stop band of the filter can result in steep filter skirts without much compromising
the pass band results, or zeros can be used for delay compensation [47]. Examples of
these filter types are the elliptic or Cauer filters, that have equal ripple pass band re-
sponses and equal ripple stop band responses. For low-pass filters, this means that
resonant structures are needed in either the series or shunt arms of a ladder network.
The synthesis of the zeros to achieve desired pass band or stop band responses has par-

ticular application to microwave filters, and their structures as described in section 2.5.

2.2.3 Determining filter structure from Transfer Function

The transfer function of a ladder network is determined using nodal or mesh analy-
sis, and the result can be equated with the set of coefficients for a particular desired
transfer function. Other techniques can be used to more directly determine the element
values, in particular, looking at the input impedance as a continued fraction, and deter-

mining the values of the elements from inspection of the expansion [41].

2.2.4 Input impedance of an all pole network

For a simple ladder network, the input impedance may be derived as continued frac-
tion starting at the output Z. This will generate the input impedance transfer function,
which can be used to calculate the input reflection coefficient. Transfer functions re-
lated to the input impedance are used extensively in many filter tuning methods, as de-

scribed in Chapter 1, and is used in the new tuning method described in Chapter 4.

2.3 Low-pass to band-pass response

All the tuning methods described in this thesis relate to band-pass filters. All-pole
band-pass filter designs are usually based on low-pass prototype filters. Thus, one may
say that a band-pass filter is optimally tuned when its band-pass characteristics are
identical to those of the low-pass prototype. Band-pass filters can be derived from low-

pass filters using well know transformations:



where § is the low-pass prototype complex frequency, s is the band-pass complex fre-

quency and

_(0,-0,)

Y= " where w , is the filter center frequency (2.17)
0

and @, , @, are the upper and lower cut-off frequencies, respectively. This transforma-

tion allows easy manipulation of the low-pass network to create a band-pass network.
In general, the transfer response is not a perfect translation and scaling of the low-pass
response, but results in distortion of the frequency skirts, and pass band response. The
distortion is inversely proportional to the bandwidth, and is quite good for narrow band
filters.

This transformation is demonstrated in figure 2-2. Each series inductive element is
replaced with a series resonant circuit. Each capacitive shunt element is replaced with
a parallel resonant circuit. If a low-pass network has elements L, and C,, the transfor-
mations on the network elements are as follows: replace the S in SL, with equation
(2.16) to find that the normalized inductor is replaced with a series resonant circuit

L, 1

}’wo)+ %
S\ Ty,

with series inductance and capacitance given by the bracketed quantities in equation

(2.18)

Zin =S°(

(2.18). Replace the S in 1/SC, by equation (2.16) to yield a parallel resonance circuit

e ! 2.19
y,.,,_s(mo)+ — (2.19)
' Cho

with shunt capacitance and shunt inductance given by the bracketed quantities in equa-
tion (2.19). Figure 2-2 shows the result of transformations of (2.18) and (2.19) on the
network from figure 2-1. These transforms in general give unrealizable element values;
therefore the network must be transformed again to a network that is more conducive to
RF realization [48].

For RF filters, the band-pass response may be achieved by using coupled resonators.
One example for transformation from low-pass to band-pass, which also results in the

coupled resonator configuration, for all pole networks is presented in [49] for example.
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Figure 2-2: Band-pass filter derived from a low-pass prototypes using trans-
formation

2.4 Time-domain response of band-pass filters

The time response of band-pass filters can be found by solving the network equa-
tions using differential equations in time, but this becomes difficult for any complex
networks. To simplify calculations, the impulse response may be calculated by apply-
ing an inverse transform to the band-pass transfer-function or frequency response after
it is derived from the low-pass prototype. However, the band-pass transfer functions
will be of 2n order for an n order low-pass prototype, again yielding a more difficult
computational problem. An alternative method for generating a band-pass impulse
(time) response can be achieved by recognizing that the band-pass frequency response
can be viewed as translation and scaling of the low-pass frequency response; the effect
of these operations can be applied to the time-domain response of the low-pass network

to yield the band-pass time response, as described in section 3.1.3.

2.5 Microwave characterization of filters

A common set of transfer functions and filter configurations have been developed to
apply basic filter theory for filters used in RF and microwave applications. The tradi-
tional voltage and impedance transfer functions are not typically used due to the diffi-
culty of comparing design objectives to measured results. New measurements are in-
troduced, which take into account the difficulties of operating at high frequencies, as

discussed below.

2.5.1 S-parameters

The characterization of RF filters is almost always done in terms of the S-parameter

response. This response was developed from a wave-based analysis of a network, but
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is easily applied to lumped element analysis [50]. This resulting S-parameter matrix is
defined in terms of power delivered to a matched load vs. power available to a matched
load, where the matched load is defined by a reference impedance Zy. These parame-
ters can be related to the more common voltage transfer function and input impedance.

One result of this formulation is that for a loss-less network, it can be shown that
2 2
1Sx|" +[Sy| =1 (2.20)

which follows from power conservation, where power must either be transmitted to the

load or reflected back to the source [51].

2.5.2 Transmission Response and Reflection Response

The transmission response may be related to Sz by S,,(jw)=2 H(jw) where
H(jw) is defined for an impedance matched, doubly terminated network. H(jw) is

sometimes taken as normalized to the DC loss,

_H(jo)
H(0)

Hy (jw) (2.21)

which makes H y(jw)=3S,,(jw).

The reflection response, Sy1, may be related to the input impedance through the well-
known formula
Z, -7,

— 1
Sl 1 — Z" Z
in T 40

(2.22)

where Z;, is the input impedance and Zy is the reference impedance, provided that the

network is terminated in the reference impedance [51]. This is the same as the reflec-

tion coefficient, o(s) or p(jw) .

2.5.3 Phase Response

The phase response of the S-parameters of a filter can be readily determined from its
response polynomial. The phase response can be applied to any of the S-parameters of

a filter. The phase of the Sy of afilter is
_ -l X (@)
Phase(S,,(w)) = tan R(0) (2.23)
where Re(S;,(w)) = R(w) and Im(S,,(®)) = X (@)

For input impedance in the form of equation (2.13), the poles and zeros of the input

impedance produce S11 phase values of 0 degrees and 180 degrees respectively [10].
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2.54 Delay Response

The group delay response of a network is defined as —-d¢/dw, and can be cal-

culated from the transfer response by taking the derivative of the phase response. This
can be applied to any of the S-parameters. The delay response of S,; of a filter is a
common figure of merit in measuring and tuning filters. Typically, the absolute group
delay is not as important as its deviation over the pass band. For some applications,
such as feed forward networks, the absolute delay response is important. The delay re-

sponse of S, of a filter is used by Ness in his development of a tuning method (see sec-
tion 1.3.3).

2.6 Microwave filters design considerations

The design of filters for RF and microwave applications must deal with the high fre-
quency effects of distributed elements and parasitic effects. While low frequency band-
pass filters can utilize a variety of network configurations, for the most part RF and mi-
crowave band-pass filters follow two main configurations: coupled resonator design
and distributed transmission line design. For narrow band filters, coupled resonator

designs are most commonly used.

2.6.1 Loss vs. Match and Isolation

For filters described by polynomial transfer functions, larger isolation (stop band at-
tenuation) is achieved by increasing the number of poles. The filter return-loss is de-
termined by the given bandwidth, and number of poles of a filter, and shape of the stop
band skirts. There exists a relationship between the filter ripple and return loss, for
loss-less filters, and can be expressed in S-parameters by equation (2.20). Descrip-
tively, any power reflected which appears as non-zero S11, is removed from transmis-
sion and decreases Sy. The ripple of a filter is directly related to the minimum and
maximum S;;. Assuming the filter is sufficiently matched to give zero reflection at
some frequency in the pass band, the maximum S,; sets the ripple in Sa;.

For an all-pole filter response, the cutoff or isolation of the filter is similarly linked
to the return loss of the filter. For example, in the Chebyshev transfer function there is
trade off between filter ripple and the cutoff steepness. Since this filter ripple is di-

rectly related to return loss, there is a similar relationship between cutoff and filter re-

turn loss.
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Loss in filters can be represented as a resistive element in the resonator, or equiva-
lently, as a non-infinite Q in the resonator where Q is defined as [13]

oo R
WLy

(2.24)

In a loss-less filter, equation (2.20) holds true, but with loss in the resonators, the equa-

tion becomes an inequality. It is still true that S,;=S;,, but |S11| may no longer equal

IS22], due to loss effects.

2.6.2 Power Handling

Filters used for the transmit path in communications systems must handle high
power, up to 200 watts typically for cellular applications. The loss in these filters must
be quite small, typically less than 0.8 dB. The “re-entrant” cavity configuration pro-
vides for very low loss when high Q elements are used [52,53]. In general, the larger
the volume of the resonator, the higher the Q and smaller the loss. Often, the tuning
mechanism, such as a screw coming close to a post, is the limiting factor on power
handling, as it provides a high field area where breakdown can occur. For this reason,
these filters are designed to be very near the desired frequency and tuning is made quite
small, allowing the gap in tuning elements to be larger.

For receive filters, low loss is necessary as the loss directly affects the noise figure
of the communications receiver. The same attributes that give good power handling
also give low loss. In many cases, the isolation requirements of receive filters are much
higher than for transmit filters, in order to reject the transmit signal during duplex op-

eration.

2.7 Coupled-resonator filters

For most low-loss, narrow-band applications, coupled-resonator designs are used.
Occasionally the resonators may be stripline or microstrip structures, but they are more
commonly structures such as coaxial cavities or dielectric resonators in the case of RF
filters, and waveguide cavities in the case of microwave filters. Planar transmission
line structures are typically much more lossy than cavity type structures, and exhibit

large spurious pass bands at multiples of the desired pass band.

2.7.1 Coupled resonator filter design

A design process for an all-pole coupled-resonator filter proceeds by choosing a

low-pass prototype with the desired attributes, then transforming it to the band-pass
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form as shown in figure 2-2. From this form, there are two main transformation forms
that yield coupled resonator structures [54, 55] . The transformation method consists of
recognizing that a series-resonant circuit can be transformed to a shunt-resonant circuit
by adding admittance inverters at the input and the output, and shunt-resonant circuits
can be transformed to series-resonant circuits using impedance inverters. Thus, either
the series or the shunt resonators in figure 2-2 can be replaced with its dual. Impedance
or admittance inverters can be implemented in a variety of ways [56]. A common rep-
resentation to use in narrow-band cases is the three capacitor version of as an admit-
tance inverter to replace the series-resonant structures in figure 2-2 with shunt-resonant
structures, and absorb the negative capacitance into the capacitor portion of the shunt
resonator, as shown in figure 2-3. For capacitively coupled filters, the frequency dis-
tortion tends to make the lower skirt steeper than the upper skirt, as the coupling zero

occurs at @ = 0 on the lower side, and as @ — = on the upper side.

Rin C.! C Il C:N
|C |C
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| Ly Il Le Ly N

Figure 2-3: A representation of a coupled-resonator filter in the form of
capacitively-coupled shunt resonators.

If the input is directly coupled to the resonator, the resonator impedance, defined as

%= \/FC_ (2.23)

is set to the desired system impedance. In other cases, where the resonator has an im-
pedance other than the system impedance, the input and output connections are com-
monly modeled with transformers magnetically coupled to the input and output resona-
tors, with the transformer ratio providing the impedance match to the resonator. It is
also possible to add a series capacitive input coupling which can be chosen to provide
the desired impedance at the input from any resonator impedance [54].

As a result of these re-configurations, the value of the capacitance in each resonator
is reduced by the value of the coupling capacitors connected to the same node. Since
each coupling capacitance may be different, this configuration gives the appearance

that the resonators are tuned to different frequencies. This is a consequence of absorb-
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ing the negative capacitance of the admittance inverter. As far as the design process is

concerned, each resonator is designed be exactly on the desired center frequency of the
filter.

2.7.2 Cavity filter realizations

For applications where low loss is required, the resonators are often re-entrant coax-
ial cavities. These consist of short lengths of transmission line created by forming an
outer conductor from a shield, and an inner conductor by a post. The center frequency
of this type of filter is set by the equivalent effective impedance of the transmission line
(typically inductive) in parallel with a shunting capacitance from the top shield of the
filter structure. This shunting capacitance is often created by a screw in the top shield,
and can be adjusted by bringing the screw closer to the center post. For even more ad-
justment range, the center post is made hollow, and the tuning screw is allowed to go
down inside the center post, creating a capacitance proportional to the length of the
screw in the center post.

These filters have coupling between elements by creating a gap in the wall between
adjacent elements. The coupling is both magnetic and electric, with the magnetic cou-
pling being predominant. The electric coupling is out of phase with the magnetic, and
is easily adjusted by “shorting out” the coupling gap from the ungrounded side of the
center post, through the use of a “coupling” adjustment screw. As the screw is lowered
into the gap, the electric field coupling is reduced, increasing the effect of the magnetic
field coupling. In general, the magnetic field coupling is increased if the center posts
are closer, or if the gap in the shield between posts is wider. One difficulty with tuning
these types of structures is for strongly coupled filters, which are required for wider
bandwidths, the shunt capacitance from the coupling screws can add significantly to the
resonator center post, causing a change in center frequency as the coupling is changed.

Thus, the coupling tuning interacts with the resonator tuning.

2.8 Filters with cross coupling

Coupled resonator filters with coupling only between adjacent resonators produce
all-pole frequency responses. If, however, coupling occurs between non-adjacent reso-

nators, then transmission zeros will occur in the transfer response [57]. An example

schematic is shown in figure 2-4.
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While the tuning method described in this thesis focuses on all-pole filters, the effect

of transmission zeros on the response will be illustrated as well, and modifications to

the tuning methods to account for these effects will be described.
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Figure 2-4: An example of a schematic of a filter with cross coupling (Lxcl), in
this case from resonator 1 to 3.
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Chapter 3 Fourier Transform Study

3.1 The Fourier analysis of filters

While a filter network is mathematically characterized by its transfer function, the
frequency response of a network provides the physically measurable response of a net-
work, utilizing sinusoidal signals as the stimulus, and measuring the response as magni-
tude and phase changes in the stimulus signals. Fourier analysis is ideally suited to rep-
resent the physical response, and can provide for useful analysis of a filter network.
However, measurement systems are limited to measuring finite frequency points over
specified bandwidths, so any interpretation of the measurements must include these
limitations. A somewhat unexpected result of these limitations is described in chapter
4 of this thesis, which provides very useful information on the nature of the filter being
measured. This chapter provides some important details of Fourier analysis as applied
to filter measurements using vector network analyzers (VNAs). Since the data is
measured in the frequency domain, the transformation we are most interested in is the
Inverse Fourier Transform (IFT), generating the time-domain response from the fre-
quency domain data. Most statements about the IFT have corollaries in the forward

transform.

3.1.1 The continuous Fourier transform

As cited in chapter 2, the Fourier transform can be interpreted as a Laplace trans-

form with the special case of s= j@. Many of the significant theorems of the Fourier

transform are quite similar to their Laplace counterparts, and those that are particularly
useful in the study filter networks are presented here. When data is measured in the
frequency domain, an inverse Fourier transform is used to determine the time-domain
response of the filter. If the data represents the frequency response of the filter, then
the inverse transform represents the impulse response of the filter. Since the Fourier
Transform plays such a key role in the VNA time-domain transform, it is appropriate to
review some of its details, as well as standardize the nomenclature. The Fourier trans-

form pair (forward and inverse) are defined as

F(f@)=F@)= [ f0e I d (3.1)
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F'(F)= f(1) =$- j F(w) el ?! 4y (3.2)

applied to analytic functions f(¢) and F () over all time and all frequency, respec-
tively [58], [59]. The careful reader wil] note that nomenclature used in the forward

transform by electrical engineers differs sli ghtly from the commonly defined transform

[59], where here (3.1) and (3.2) use w=2xs.

3.1.2 Even and odd functions and the Fourier transform

Functions are even if F(w) = F(~w), and are odd if F (w) =—F(-w). All functions

can be represented as a sum of an even function and an odd function. Evenness, odd-
ness, and other types of symmetry can simplify calculating transforms, and is often as-

sumed for cases of some transforms. A function f@)=e(@)+o0() has the Fourier

transform

F(w)= Z?e(t)-cos (wt)dt-2j Io (t)-sin(wt)dt (3.3).
-0 -0

From this result many Fourier transform relationships can be deduced. For modeling

physical functions, a key relationship is that for a pure-real time function, then
F[f()]=E@)+jO ) 34

that is, the Fourier transform of a pure real time function has an even real part and an

odd imaginary part [59].

3.1.2.1 Hermitian functions

Functions such as those described in equation (3.4), which have a transform with an
even real part, and an odd imaginary part are called hermitian. This can also be written
as F(w)=F*(-w). Time functions which are real and symmetric (even) have pure
real transforms. Time functions that are real and non-symmetric have hermitian trans-
forms. Note that all physically realizable networks have non-symmetric real impulse

responses, due to causality, and thus must have hermitian Fourier transforms.
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3.1.3 Modulation (shift) theorem

Many filter derivations are based on low-pass to band-pass transformations. This
represents a shift in frequency. The shift or modulation theorem can be derived from

the definition of Fourier transform:

if F™' (F(w))=f (¢), then F™! (F(o+Aw))=f(r)e 2" 3.5)

Note that this is in general a complex function, so pure shift in frequency is not
physically realizable. To transform a low-pass prototype to a realizable band-pass fil-
ter, one must replicate a positive shifted response and a negative shifted response.

Thus, if H;p(w)is a low-pass filter’s frequency response, then

Hyp(0)=H p(0+0))+ H,p (0- ) (3.6)

is the band-pass filter frequency response and the inverse transform of this is

hgp (1) = hyp(t) e + by, (2) e /2 (3.7)

expanding the complex exponential we find that
hgp () = hyp(t) cos(w,t) — jW+ hy p(t) cos(wyt) + jW (3.8)

with the result

hgp(£) = 2R, (£) cos(@ o) (3.9)

The sum of these two shifts results in the imaginary terms canceling. The real por-
tions add and the result is than if 4,,(z) is the low-pass prototype time (or impulse) re-
sponse, the impulse response of the band-pass filter will be a cosine wave at the center
frequency of the band-pass, with an envelope of two times the low-pass prototype’s
impulse response. This band-pass time response is not the same as the response ob-
tained from the band-pass mode of a network analyzer time-domain transform. The

differences are key to applying transforms to the time-domain tuning of filters.

3.2 The discrete Fourier transform

Since measured frequency response of networks consists of discrete data, it is ap-
propriate to discuss the discrete version of the inverse Fourier transform to determine
the associated time response. The inverse discrete Fourier transform, which is defined
only at discrete time points, for a discrete frequency data set, is

fo= EIF (V) e/ (3.10)

n=0
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where (v/ N)is analogous to frequency in samples per cycle, 7 is the discrete time in-
crement, and F(v) is the discrete frequency data set [60]. The inverse Fast Fourier
transform (IFFT) is a very efficient way to compute f(7)over the entire discrete time

set. It might appear that the conversion of VNA frequency domain data to the time-
domain can be simply accomplished with an IFFT for computational efficiency. How-
ever, the IFFT limitations on the flexibility of the data (time) output can hide important
effects that occur between calculated time samples, as described below. Further, much

more conditioning is done in the VNA transform to enhance its applicability to practi-

cal problems.

3.2.1 FFT (Fast Fourier Transform) and IFFT (Inverse Fast Fourier Transform)

The FFT and IFFT are well-known algorithms for calculating the Fourier transform
pair of a discrete data set as described in (3.10). If the discrete data set is generated
from a sampled data set of a frequency response, and the data is sufficiently sampled as
describe below, then the IFFT generates the time response of the network associated
with the sampled data. FFTs and IFFTs have the attribute of greatly reducing the num-
bers of computations needed to compute a Fourier transform, but are limited in the data
that is used and presented. One common limitation on FFT/IFFT transforms is that the
number of points in the transformed domain must be equal to the number of data sam-

ple points. Some transforms also require that the number be points be in the form of

2",

3.2.1.1 Fine structure response

If an IFFT is applied to a frequency response, the resulting time response must have
the same number of points, and the time intervals must evenly span the time period. A
consequence of this is that fine grain time response is not necessarily evident in the
IFFT data. The IFFT is equivalent to the analytic inverse Fourier transform (IFT) sam-
pled evenly over a time period with the number of sample points equaling the number
of frequency response points. Thus, any time-domain response information that is pre-
sent between these points is not evident in the IFFT data. This is also true of the FFT
of a time-sampled signal.

It is illustrative to use a familiar example to demonstrate this fact. Take a time func-
tion consisting of a cosine signal of known frequency (8.5 Hz), as shown in figure 3-1
(left). If several cycles of the time signal are sampled at higher than the twice the high-

est frequency, it is sufficiently sampled to avoid aliasing. One might naively assume
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that the FFT of this time signal should return the original frequency of the time wave-

form. However, if the frequency of the signal is not synchronous with the sampling,

the FFT does not have an output at the frequency of the cosine, and the FFT appears to

have two main output signals as the spectrum of the sampled time waveform shows in

figure 3-1 (middle), neither of which is the correct amplitude of 0.5 based on the time

function. Thus the fine grain nature of the signal is not revealed by the FFT. A Fourier

transform can be performed at discrete frequencies over the range of the two largest

FFT outputs, using the same time data set, from which the correct magnitude of the

original frequency of the signal is revealed, figure 3-1 (right). In fact, since the time

data 1s a finite set of discrete sampled points, the frequency response must be a periodic

and continuous function with an infinite response to represent the transitions at the start

and end of the data set. The FFT is exactly a sampled version of this continuous fre-

quency function. The non-zero values of the FFT for all the other frequencies is a con-

sequence of the taking the time data over a finite time. Reducing this effect is a key

attribute of the VNA time-domain transform.

In order to get faster computation speeds, FFTs are often used instead of direct cal-

culations of the DFT. However many commercially available signal analysis tools take

further short cuts in calculating the FFT. One common short cut is to assume that the

time response is real. From this the frequency response must be hermitian, and there-

fore only half the FFT need be calculated to obtain the full frequency response. With

an IFFT, it is common to assume a hermitian frequency response input, and only calcu-

late the real portion of the output time signal. Thus, the IFFT is simply 2 times the
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Figure 3-1 (left) Cosine of frequency 8.5 Hz, (middle) FFT of the waveform in the
left plot, (right) Fourier transform of the waveform around the frequency 8.5 Hz

IFFT of the positive half of the real part of the input frequency

response, plus the DC

term. However, chapter 5 shows several cases where it is useful to consider frequency

responses that are not hermitian, and in these cases, care must be used in considering

the shortcuts that are permissible when calculating [FFTs.
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3.2.2 Calculating the DFT

3.2.2.1 Direct calculation

The fine structure of a time response can be determined if an inverse discrete Fourier
transform (IDFT) is used, in which the time axis can be arbitrarily small. If this same
time spacing were used for the FFT, an extremely large number of frequency points
would have to be used as the input, greatly slowing measurement time to generate the
frequency response terms. However, the DFT takes considerably longer to calculate
than the FFT, and therefore is also not satisfactory where real time transformation is
needed. Fortunately, if the transform is needed over a relatively small portion of the

time response, the Chirp-Z transform is an attractive alternative for high speed, and

high-resolution transformation [61].

3.2.3 Chirp Z transform

The Chirp-Z transform (CZT) makes use of the relationship between convolution
and transformation to create a transform that is nearly the speed of an IFFT, but has the
arbitrarily small resolution of an IDFT. If the IDFT is performed over a time span with
a uniform time spacing, the IDFT can be re-written as a convolution of two equal
length inputs, with the inputs and outputs multiplied by scaling factors. Convolution
can be accomplished by transforming the inputs, multiplying them together, then trans-
forming the output. Since each input is equal length, FFTs may be used for the trans-
formation, and an IFFT used for the transformation back. Thus an N-point IDFT can

be computed with 3 N-point FFTs, with a dramatic reduction in computation time.

3.2.3.1 Fixed point transforms

The standard CZT or ICZT uses a fixed size input array and a fixed size output
array. The input is complex and the output is complex as well. In configuring the
ICZT, the input array consists of the frequency response to be inverse transformed, plus
the start time and stop time of the inverse array. The time spacing will be the time span
divided by the number of points minus one. However, there are no restrictions on the
start or stop times. If the start and stop times are chosen to be

t =0andt., =1/Aw,thenthe ICZT will return the same values as the IFFT.

start stop
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3.2.3.2 Flexible transforms

Inspection of the derivation of the CZT shows that the restriction of similar size in-
puts and outputs is not absolute. It is possible to configure the CZT or its inverse to
create an output array of a size either larger or smaller than the input array. One might
want a larger output if finer resolution is desired over the same time span. However,

repeating the CZT over two time spans may yield similar computation times [61].

3.3 Fourier transform (analytic) vs. VNA time-domain transform

The limitations of the IFFT as applied to microwave measurements required
other techniques for analyzing these networks. The time-domain transform of vector
network analyzer measurements was first introduced in 1974 [62] and has been widely
used since its real-time commercial introduction with the HP 8510A (1984), which al-
lowed increased accuracy and real-time gating [63,64]. This VNA provided the capa-
bility to calculate the time-domain response of the frequency domain data, using a form
of the inverse Fourier transform. However, there were several modifications that are
important to note, which causes the time-domain response of the VNA to be different
than the actual inverse Fourier transform of the frequency response of a network, that
is, different from the impulse response of the network being measured. These differ-
ences come from the mode of the VNA transform (Low-pass Step, Low-pass Impulse
or Band-pass Impulse), data windowing and truncation, window re-normalization, and
data gating. For much of this time, the principal use was in low-pass-impulse mode for
fault location, and much has been written about the interpretation of the low-pass step-
mode time-domain response [64]. Recently, the time-domain response has been ap-
plied to solving the problem of filter tuning, using the band-pass mode [25,65].

A rigorous analysis comparing this time-domain mode to the analytically derived
impulse response may be obtained by applying appropriate functions to the analytical
frequency response until the inverse Fourier transform of this modified response €x-
actly matches the VNA time-domain response. Each of these functions applied to the
frequency response can be evaluated in the time-domain, and their associated time-
domain effects can be individually determined. This approach differs from [62] in that
Hines and Stinehelfer develop the time-domain response from assuming a periodic time
function, the Fourier transform of which reproduces the measured frequency response.
Here, a continuous analytic frequency response is assumed, and modifications are ap-

plied to account for discrete frequency sampling and windowing to directly obtain the
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VNA time-domain transform in terms of the original frequency response and these

modifications.

3.3.1 Defining the Fourier Transform

The IFT in equation (3.2) of a function provides directly the impulse response of
that network and is the same result, in time, as driving the network with an impulse,

4(t), and determining the time response. Figure 3-2 shows the analytically derived

transform of a 3-pole Butterworth filter (meaning the reflection frequency response is
calculated using standard network theory, and the inverse Fourier transform from (3.2)
is calculated to get the time response), along with a VNA time-domain transform of the
same function. Clearly they are not the same. The differences will be reconciled in the
following sections by describing the way in which each aspect of the VNA measure-
ment must be accounted for with the appropriate mathematical transformation to

achieve the same result as the IFT.

3.3.2 Effects of discrete sampling

The Fourier transform operates on continuous functions, while the VNA time-
domain transform must operate on measured (discrete) data. One approach is to assume
the measured data is a sampled version of a continuous analytic frequency response.

Since the data applied to the time-domain transform is discrete, the time-domain trans-

20 ;
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] Transform
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| VNA
-20 1 ~Transform:
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Figure 3-2 Analytically derived impulse reflection response vs. VNA time-
domain response for a 3 pole Butterworth filter
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form must differ from the analytically calculated IFT of the network, but an equivalent
discrete representation of an analytic function can be obtained by a mathematical repre-
sentation of the sampling process. Note that such a time function would be identical to
one determined in [62] but this approach is more readily applicable to the problem of
comparing the VNA time-domain transform to the analytic impulse response of a net-
work.

A frequency sampling function can be represented as III(w), which is defined as

[66],

Hl(w)=Aw- OZO o(w—-nAw) (3.11)

n=—co
and can be visualized as a collection of delta functions with A@ spacing. The effect of
discrete data in the measured frequency response can be analyzed by forming a sam-
pled function composed of the analytic frequency response multiplied by the sampling
function, such that its value is zero between measured points, and the scaling factor of
the delta function at each frequency is the measured value of the frequency response.

The IFT of the sampled function, fg (), can now be represented analytically by multi-

plying the original frequency response function by a sampling function:

fo(t)= F‘I(FS (®)) = —ZIE-EF(w)-Aa)-n; S(w-nAw)-e™'dw (3.12)

or, through the operation of the integral on the delta function:

fS(t)=F“(Fs(a))):—21—- > F(nAw)-Aw-e’"*" (3.13)
T n=—oo
This operation can also be understood by noting that multiplication of two functions
in the frequency domain is the same as convolving the inverse transforms of functions
in the time-domain. Convolving a function by a delta function returns the original
function, at the origin of the delta function. Thus, the inverse transform of the sam-
pling function returns another sampling function,
1 < 1
BRI PR (3.14)
1 (6) =—— ;,, (t=n-—
Sampling in the frequency domain is the same as convolving the original time-

domain response by the sampling function III(l/Aw). Therefore the transform of an

analytic function can be related to the transform of the discrete sampled version by con-
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volving the inverse impulse response of the original function with the sampling func-
tion of (3.14). The effect of discrete data sampling can be seen to create images of the
original function (sometimes called aliases) spaced at the inverse of the sampling spac-
ing. The time range of t£1/2Aw 1is referred to as the alias-free range of the inverse
transform for sampled data. Many commercial products display a maximum range of
*1/Aw. If the impulse response of the original function does not tend to zero by
+1/2Aw, then the appearance of the inverse of the sampled function in the alias-free

range will be distorted by effects from previous and subsequent images. Figure 3-3 up-
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Figure 3-3: Sinc squared frequency response continuous and sampled (upper),
time-domain response continuous and sampled (lower)
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per shows a frequency plot of the sinc? function, along with the sampled data points.
The lower plot shows the IFT of the continuous function, and also the IFT of the sam-
pled function.

The inverse transform of a sampled frequency response must have an infinitely re-
petitive (periodic) time response. Even if the frequency response is discrete, the time
response may still be continuous. Only if the frequency response is discrete and peri-
odic will the time response be discrete. Since any real sampled frequency response
must be sampled over a finite frequency span, the time response associated with any

measured frequency response will be continuous and periodic [67].

3.3.3 Effects of truncated frequency

Another consequence of taking a transform of measured data is that the frequency
response must be truncated, rather than extend to plus and minus infinity. For trans-
mission responses, this does not present much of a problem, as the response of most
filters gets arbitrarily small at high frequencies, and its contribution to the inverse Fou-
rier integral is negligible. However, for reflection responses, the value of the response
remains large at high frequencies. In fact, these responses are not strictly Fourier trans-

formable, as they do not satisfy equation (2.12). However, most reflection functions

can be represented with the help of the generalized function, B(t). But, if the response

is truncated, and the response data is finite, then the Fourier transform of the data
strictly exists.

Truncation of the frequency response data of a network is mathematically equivalent
to multiplying the data by a rectangular window. In the time-domain, this can be repre-
sented as convolving the impulse response of the network with the inverse transform of
the rectangular window, which is a sinx/x function. In this way, the inverse trans-
form of truncated data will always have a response with “side-lobes” if the original data
does not go to and remain zero sometime before truncation occurs. These side-lobes
can be so large as to obscure the impulse response, and much work has been done to
reduce this effect. For the most part, side-lobes, or ringing as it is sometimes called,
can be controlled through the appropriate use of windowing. In chapter 5, truncation
will be shown to be of primary importance when explaining the time-domain response
of band-pass filters. Taking the IFT of the product of the original function and a rec-
tangular window can represent the effect of truncated data in the VNA time-domain
transform. Referring to equation (3.12), this truncation is equivalent to redefining the

limits of the integral to be the endpoints of the measured data. Figure 3-4 shows an ex-
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ample of a 1-pole filter response with the analytic function F(s)=1/(s+1), or
F(w)=1/(1+ jw) where s = jo, figure 3-4 (upper, grey trace) along with its truncated
frequency response, figure 3-4 (upper, black trace). Figure 3-4 (middle) shows the time
domain response of the truncation function, which is IFT of a rectangular window,

which is a sinx/x function . The filter response has an analytic time response of
f@®)=e’-Ut) (whereU (t)1s the unit step function) as shown in Figure 3-4 (lower,

grey trace). The truncation effect on the analytic time response can be obtained by
convolving the IFT of the original function with the sinx/x function, and is shown in
figure 3-4 (lower, black trace). For a sampled data set, over the range of
w=—-NAw to +NAw , the IFT becomes
£.(1) =2—7“[’-:N F(nAw)-e/"™* (3.15)
Equation (3.15) might be called the sampled inverse Fourier transform. Note the
similarity to the inverse discrete Fourier transform of equation (3.10). The sampled
inverse Fourier Transform of equation (3.15) can calculate the inverse transform for
any time, but for a given series of time values, the computation of f (¢) is quite ineffi-
cient using equation (3.15) directly. However, for a given set of equally spaced time
samples with arbitrary start, stop and time spacing, equation (3.15) can be very effi-

ciently computed using the Chirp-Z transform [68].
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Figure 3-4 (upper) 1-pole filter frequency response with and without truncation,
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3.3.4 Windowing to reduce effects of truncation

Data truncation is shown above to have the effect of convolving the ori ginal trans-
form with a sinx/x function. The side-lobes of this function are quite high, and con-
tinue for a substantial extent, often obscuring the desired response of the original func-
tion. The effects of truncation are minimized if the original function tends to zero at
the frequency endpoints. A windowing function may be applied that gradually reduces
the frequency response, thus controlling the side-lobes created during the truncation
process.

However, the windowing process tends to reduce the sharpness of the original re-
sponse, spreading pulses and stretching out slopes, thereby reducing the resolution of
the transform, and distorting the transitions of the original function. This makes it diffi-
cult to assess the true nature of the transformed function. Thus, there is a trade off be-
tween side-lobe height and resolution when determining the windowing function.
Window functions have been extensively described [69]; a window function used com-

monly in commercial products is the Kaiser-Bessel function, defined as

L| 8- 1‘(&‘))

W = (3.16)
" 1vB)

where 1,(+) is the modified Bessel function of the first kind, [ is a constant that con-
trols the amount of roll-off of the window function [70], and the window is centered on
the data at n=0, taken from n=-N to N. Higher values of / will increase the endpoint
roll-off of the original function, thereby reducing the height of the side-lobes. Figure 3-
5 (upper) shows various window factors, figure 3-5 (middle) shows these applied to a
1-pole filter response. Figure 3-5 (lower) shows the time response of windowed func-
tions for B =0 and 6, along with the analytic impulse response.

In order reconcile the analytic impulse response with the VNA time-domain trans-
form, the effects of finite frequency, sampling and windowing on the analytic IFT can
be mathematically represented below as f,y (for sampled, windowed)

Fow (1) =‘;—‘”- 3 F(nAw)-W (nAw)- ™" (3.17)

n=—N

where W(w) is the windowing function, and the function is sampled over

@ =—NAw to +NAw . This response includes the all the obvious changes to the ana-
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lytic function but there is one final modification that must be included such to com-

pletely match the VNA time-domain transform, as described below.

3.3.5 Scaling and re-normalization

The value of the time-domain transform has to be re-normalized such that it retains
its physical meaning. For example, the frequency response of the S;; of an ideal open
circuit, with no delay, has a value of 1 for all frequencys; its inverse transform is a delta
function. However, when the data is sampled and windowed, the time-domain trans-
form of the response of an open circuit will be spread by the windowing function and
does not return an impulse of unity height. It would be preferable if the time-domain
response of the open circuit had a value of unity at time ¢=0. Taking the sum of the

windowing factors provides the correct scaling factor for subsequent transforms:

A

w N
Wo="— D W(nAw) (3.18)
T n=—N

and the re-normalized transform becomes

N .
fona() = 'vf/;'—27 ZN F(nAw)-W (nAw)-e™ (3.19)

Note that this scales the transform to always return 0 dB for a unit frequency input,
regardless of windowing factor. If the data that is being transformed already tends to
zero at the band edges, the windowed response will appear higher after this normaliza-
tion, when compared to an analytic time response. Since the window scaling always
maintains a unity peak amplitude, regardless of how wide the window has made the
response, it is in effect amplifying the DC and low frequency responses. For some
data, such as a low-pass filter response, this can result in a windowed response that is

higher in amplitude than the corresponding analytic impulse response.

3.4 Low-pass transforms and band-pass transforms

Since measured data has a finite frequency sampling, some assumptions are made
about the behavior of the sampled function. Vector network analyzers offer alternative
assumptions, which yield two different modes of transformation: low-pass mode and

band-pass mode.
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3.4.1 Low-pass impulse mode

The assumption for low-pass-impulse mode is that the underlying frequency re-
sponse is that of a real network. As such, the frequency response is hermitian [59] and
the time-domain response is pure real. Also, it is assumed that the network response
becomes asymptotic at low frequencies and that the frequency response beyond the
measured frequency range contains no important information about the network. In
other words, everything of interest occurs over the frequency of measurement. The
data points must be linearly spaced over the range of @ =nAw from n=1 to N. Thus,
the frequencies must be harmonically related. For this transform, the windowing func-
tion is centered at @ =0, and extends to the max frequency w=N-Aw. From this, it

follows that the complex sum in (3.19) becomes [59]

fu (=52 F@ XD, A“’zm{

N
~ AT ZF(nAa))'W(nAa))-ej"A“’"} (3.20)
0 0

n=1

Given a hermitian function, the imaginary parts of the negative and positive trans-
form cancel, and the real parts double. Further, it is clear that a value must be deter-
mined for F(0), which is done with DC extrapolation. From equation (3.20), it can be
seen that the time-domain transform consists of sums of sines and cosines, and that the
highest frequency measurement point determines the highest frequency element. Thus,
the rise time is determined by the maximum slope of the highest frequency measured.
The transform will repeat itself at intervals determined by the frequency step value,

which is the same as the lowest frequency point.

3.4.2 DC extrapolation

In addition to being limited in upper frequency response, measurement equipment is
limited to its minimum frequency response. However, the Fourier transform includes
effects of the DC value on the frequency response. Since VNAs do not commonly
measure the DC response, DC extrapolation is used. DC extrapolation requires the as-
sumption that the network response approaches DC asymptotically. If the function has
linear phase, and the phase shift is small, the DC extrapolation can be simply the real
value of the first measured point. As the phase shift between points gets large, choos-
ing a good algorithm is not trivial. The DC response can be extrapolated by assuming
the first two frequency points lie on a circle with a center on the real axis, that cuts the
real axis at DC. The original algorithm in the HP8510A, used this method, but gave

unexpected results for negative delay, or for very long delay. This would result in
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traces with a ramp in the DC base line, or a jumping trace from sweep to sweep. Nega-
tive delays can occur with errors in calibration, or un-calibrated measurements, or when
the delay exceeds the alias free range as described above. Newer algorithms generate
better values for DC terms given large, or even negative delay in the device being
measured, by using the phase shift between the first two pairs of points to determine the
sign of the delay. Problems may still exist if the first three data points lie exactly 120

degrees apart, but in that case a positive delay is assumed. Alternatively, the reference

plane can be extended to ensure a positive delay.

3.4.3 Low-pass Step Mode:

The step response of a network can be useful in directly determining the network
characteristics, particularly in the case of concatenated transmission lines, and evokes
the normal mode of operation of a Time-Domain Reflectometer (TDR). The step re-

sponse U () is defined as

O0fort<O
U(t)=4% fort=0 (3.21)
1forz>0

and from this its Fourier transform may be determined [71] as

FlU@®)]=7nd(w)— j% (3.22)

The time step-response may be found by multiplying the Fourier transform of the

step response by the frequency response, F(w), of a network and taking the inverse

transform:

FO)_J (F@) jorgy (3.23)
2 2t @

1 ¥ 1 jwt —
fStep(t):a;_Z[F((())’(ﬂ'(S(a))—];je] dw =

Taking the derivative of the step response in (3.23) yields the desired impulse response
of the network.

The low-pass mode of the VNA time-domain transform has two forms: low-pass
impulse, which is defined by equation (3.20), and the low-pass step, which is essen-
tially the integral of the low-pass impulse response, with respect to time and with some
particular choice for the constant of integration. The step response of the VNA should
retain the property that its derivative is the VNA time-domain impulse response, and
since the sampling function creates a periodic time-domain, with a period of 1/A®, the

step response should retain this aspect of the periodicity.
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Figure 3-6 shows the step-response stimulus (labeled “VNA Unit Step Response”)
that meets the properties of having a periodic impulse response for its derivative. This
response differs from the square-wave response described by Hines and Stinehelfer,
and from the plot, it is obvious that this function cannot have a Fourier transform.
However, it may be written as the sum of two functions, the first one being periodic

(labeled “Periodic Portion” in fi gure 3-6) and the second being a ramp function (labeled

“Ramp Portion in figure 3-6).
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Figure 3-6:VNA Unit Step response comprised of a periodic portion (which is

Fourier transformable) and a ramp portion

The time step-response can be determined from the network function and the unit
step stimulus by applying the appropriate Fourier transform to the periodic portion, and
some appropriate Laplace transform to the ramp portion. From equations (3.20) and
(3.23) the step response for a sampled, truncated, windowed function can be proposed

to be

F(O) Aw N F(nAw) W(nAw®)  imno: F(0 ,_AE.HC (3.24)
fStep(t)z{——;—)—+E;.2.Re[Z nho el j|}+ 0) .

n=1
Differentiation of equation (3.24) clearly results in equation (3.20), except for the
window normalization factor of W, which is not used in the step response. For the

case of F(w)=1, W(w)=1, C =0, the equation (3.24) produces the unit-step stimulus.
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The portion in the braces pertains to the periodic portion, while what remains is the re-
sponse to the ramp function, with C being a constant associated with the ramp function

response, and is determined from the DC group delay, 7,(0), of the network as
Aw
C=-F0)-—-7,(0
0 o 2(0) (3.25)

An argument for this choice of constant is can be developed from an argument on the
response of the network to a ramp input signal of the form x,(¢) =k -¢, as shown in fig-

ure 3-6. The Laplace transform of the output signal obtained by applying a ramp to a

network with a response of H(s) is in the form of

Y(s) = Ii (s) (3.26)

The output time signal is assumed to be in the form of y (¢) = k- H(0) -t + C; the differ-

ence between the transform of this assumption and equation (3.26) can be stated as

k-H©O) C _k-H()

S2 s S2

E(s)= (3.27)

and the final, steady-state value of the difference can be found by applying the final
value theory [72] to equation (3.27) as

1ims-s(s)=1im(k'H(0)"k'H(s))+c (3.28)

s—0 s—0 Ky

which, after applying L’Hospital’s rule, becomes

lims-&(s) = 1‘ng(—k-H (s))+C (3.29)

s—0 K3

and making this final value difference zero finds

C=k-H'0) (3.30)
To evaluate H '(0) it is assumed that the amplitude response of H (s)is nearly constant
near DC, such that

H(s) =|H(©0)|e/*, so H'(s)|,=H(0)- j-'(5) (3.31)

near DC
Recognizing that j -¢'(s)|0 =d¢/ da)|0 =-7,(0), where 7,(0) is the group delay near
DC, we find

Aw
C =—k-H(0)-7,(0), where k= P (3.32)

from ramp driving function in equation (3.24).
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Thus the step response can be obtained by taking the inverse Fourier transform of
the frequency response divided by j times the step frequency, and adding to this a linear

time ramp. The time-domain step response is only available in the low-pass mode.

3.44 Band-pass mode

The band-pass mode provides an alternative method of time-domain transform that
may be used when the low-pass mode assumption of harmonically related frequencies
cannot be met. This might occur, for example, in the measurement of a network that is
band-pass or high-pass filtered. The output of a VNA measurement is typically an odd-

numbered set of points, linearly spaced in the form of @ =w, +nAw from n= -N/2 to
N/2, and w, is the center frequency of the data. The inverse Fourier transform is calcu-

lated only on the data points measured, rather than taking the negative frequency re-
sponse to be the conjugate of the measured data. Windowing is applied, where the cen-
ter for the windowing function is the center frequency of the data set. (In contrast, the
center of the windowing function in low-pass mode is centered on the DC term, or the

first point of the data set). The inverse band-pass transform is defined by

1 Aw N2 (@, +nAw) t
for()=———"Y Fpp(@c+ndo)-W(nAw)-e"* (3.33)
WO 2r n=—N/2

This is an important difference between the VNA band-pass mode and that de-
scribed by Hines and Stinehelfer [62] which results in a pure real time-domain re-
sponse. In contrast, the VNA band-pass response is complex, and this choice of trans-
form is key to the results described in chapter 5, and in earlier papers [25,65]. To illus-
trate the band-pass transform mode, consider the frequency function of a band-pass fil-
ter. The frequency response tends to zero away from the center frequency, so the win-

dowing function will have little effect on the transform. If the frequency response Fgp
represents a band-pass version of a low-pass prototype response [73], such that

Fyp (@)= F,p(@— ;) and thus Fpp(@¢)= F,7(0), the relationship between the time-

domain band-pass transform of band-pass filter and the low-pass prototype’s frequency

response can be established as

i) NI2 o
eW _g_a) > FLP(nAw)-W(nAa))-e’( Ao (3.34)
0 <% p=—nNI2

Jep(1) =

or in terms of the low-pass time-domain response
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for(D)=€'%" (1) (3.35)

From this it follows that the band-pass time-domain mode always returns a complex
time-domain response. This effect is due removing the assumption that the frequency

response is hermitian. The magnitude response of the band-pass transform is the same

as the low-pass prototype
| far (D] =] f1p @) (3.36)

Thus, the band-pass mode response of the time-domain transform is quite different
from the analytic impulse response of the network. Consider a network, such as a fil-
ter, that has a low-pass response f;,(z). If this filter is used as a prototype for a band-

pass filter, and is shifted to create a band-pass response [74], the band-pass filter will

have an analytic impulse response of

Jimp @) =2f1p(t)-cos(w 1) (3.37)

which is pure real as would be expected of an analytic transform of a real network. So,
the band-pass mode transform has, in addition to the windowing, sampling and fre-
quency truncation effects, an effect due to the data being taken as though the network
has a single-sided (positive frequency only) response. Also, since the windowing func-
tion is centered on the center-frequency of the transform, it forces the function to zero
at the lowest as well as highest frequency; there is no point in extrapolating the DC
term.

One consequence of the band-pass transform is that the resolution is half that of the
low-pass transform. This can be seen from equation (3.33), which shows the maxi-
mum frequency in the complex exponential is one-half of the frequency span (since the
data ranges from n= -N/2 to N/2). The alias-free range for this transform remains the
same as the range of the low-pass transform.

With this introduction to the time-domain transformations used in VNAs, the

concept of time-gated measurements can be better understood.

3.5 Time-domain gating

Time-domain gating refers to the process of selecting a region of interest in a portion
of the time-domain, removing unwanted responses, and displaying the result in the fre-
quency domain. Gating can be thought of as multiplying the time-domain response by
a mathematical function with a value of one over the region of interest, and zero out-

side this region. The gated time-domain function can then be forward transformed to
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display the frequency response without the effect of the other responses in time. The
gating effects, however, are somewhat subtle in their response and there are conse-
quences of the gating function that are not readily apparent.

In practice, the gating is not a “brick-wall” function. This is because a sharp transi-
tion in the gate function causes a similar sharp transition in the gated time function. As
such, the frequency response will have ringing associated with the sharp transition (as
the frequency response is limited to the measured data region). Because of this, the
gating function is windowed in the frequency domain before being transformed to the
time-domain. For a rectangular time gating function centered at =0, the Fourier
transform can be calculated analytically, with the result that the gate frequency re-

sponse will have a sin(w)/@ or sinc(w) function. The width of the sinc main-lobe is

inversely proportional to the width of the time gate. If the center of the gate time is not

at ¢t =0, the resulting Fourier transform produces a response that corresponds to the
sinc function multiplied by a complex exponential factor, namely sinc (w)- e’ . This

is windowed in the frequency domain by a Kaiser-Bessel window that sets the maxi-
mum gate transition slope in the time-domain. The gate function is then transformed to
the time-domain and multiplied by the time-domain response, before being transformed
back to the frequency domain. Alternatively, the time-gated frequency response may
be determined by convolving the gate frequency response by the measured frequency
response, and this view of the gating allows a more intuitive understanding of one of
the subtle gating effects, described below.

A curious effect of the gating function occurs at the endpoints of the time-gated fre-
quency-domain response: these endpoint regions are lower by 6 dB. The 6 dB offset
can be understood by comparing the center point and last point of a gated frequency

response of a unit function F(w)=1. The time-domain response will approach a delta
function, f(t)=J(). In the convolution of the gate frequency response G(@)with the
original frequency response F(w), the gated value at any frequency @, can be deter-
mined by multiplying the original frequency response by the reverse of the gating fre-
quency function centered at that frequency, and summing the result (this being the

definition of convolution):

F @)= 3 Fn-80)-G(@,~n-Aw) (338)

n=—N
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For the center point (zero frequency, or DC) of a gated frequency response where
the time gate is centered at t=0, the response is the sum of a multiplication of the sinc
function (which is the gate frequency response as described above) with the original
measured frequency response. For the case of the last frequency point (highest), the
sinc function is centered on the last data point, and half the gate function is multiplied
by zero (for frequencies above w=N-Aw), and does not add to the sum. Thus, the
last data point will be one-half the value of the DC point, or 6 dB lower. This creates
the unfortunate result that any gating will distort the last points (and first points in
band-pass mode) of the gated frequency response.

The VNA time-domain compensates for this roll-off through a post-gate renor-
malization. The post-gate renormalization is determined by creating a frequency re-
sponse that 1s unit magnitude. A pre-gate window is applied to this unit-response that
is the same as the pre-transform window applied to the normal frequency response data.
This unity-magnitude frequency response is convolved with the gate frequency re-
sponse, to generate the final normalizing frequency response. The time-gated fre-
quency response is divided by this function to remove the roll-off effects of the time
gating. This normalizing function works perfectly for a unit time response at the center
of the gate. If the gate is not symmetric around the time function, there will be show
errors in the gated response when compared to the original frequency response.

Tt is instructional to view the actual gate shape in the time-domain, which can be
done using a function not normally available in commercial VNAs. The gate shape
may be generated by creating a delta-like  frequency  response
(F(0)=1, F(w)=0 for w#0), applying gating, and transforming the result to the
time-domain to see the actual gate shape. This is useful in understanding how the gate
shape affects the gated response.

Figure 3-7 (upper) shows the gating function for various gate center times. Figure 3-
7 (middle) shows a unit frequency response ( F (@) = 1) in the time-domain, with gates
applied at various gate times. Note that the peak of the time-domain response is nearly
unchanged as the time-gate fully encompasses the impulse at all three center times, but
there is some difference in the side lobes for the shifted gates. Figure 3-7 (lower)
shows the frequency response after gating. Here there is a substantial difference in the
response at high frequency for the different gate center times. It is clear that normaliza-

tion is optimal when the gate is centered on the response being gated.
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The gated time-response may be viewed in time-domain by taking the IFT and dis-
playing the result. In fact, it is almost always required first view the time-domain re-
sponse to assign proper gating start and stop values: the transform function is turned on,
and the resultant time-domain response is displayed, and the gate start and stop are set.
Next gating is turned on. Finally, the transform is turned off, and the time gated fre-
quency response is shown in the frequency display.

A study of the time-domain response of several examples of composite responses of
several component elements will show how time gating can be used to separate the re-
sponses in time and display the individual frequency responses of the component ele-
ments, but with some distortion due to masking effects [75]. From this a method is de-

veloped that compensates for these effects.

3.6 Examples of time-domain transforms of various networks

3.6.1 Time-domain response of changes in line impedance

For ladder networks, that is, networks that consist of series connected elements, the
time-domain transform provides very good insight into the nature of the discontinuities
by which the frequency response is generated. As a first example, consider a network
in figure 3-8 (upper) of a short Z, line followed by a Zo/2 impedance line segment ter-
minated in a Zo line. Note that there will also be re-reflections if the time scale is ex-
tended. There are two main reflections from the impedance steps at the beginning and
end of the Zy/2 line segment. The impedance value of a discontinuity caused by a step
in impedance of a transmission line can be directly related to the time-domain step re-
sponse, which shows reflections as a function of time. The reflections are relative re-
flection coefficient, so for a 50 ohm reference impedance, a 1% reflection relates to ap-
proximately 1 ohm change in impedance, as

Z-7,

I'= , and for Z = 50, I'(%) = AZ, where AZ=7Z-2, (3.39)
Z+Z,

Care must be used in this interpretation, as other factors such as loss in the transmis-
sion line, changes in line impedance, and previous reflections can affect the apparent

reflection being investigated. For the lines in figure 3-8, the step in impedance is quite

large, and the reflection coefficient of each step is the same, |F| =0.33. However, the

apparent reflection coefficient of the second transition, I'z, is only 0.30, as shown in
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figure 3-8 (lower). Also, the impulse response shows a similar “masking” effect in the

second reflection response.
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Figure 3-8 (upper) Model of concatenated lines of different impedances,
(lower) Step (black) and Impulse (gray) response of the lines in time.

3.6.2 Time-domain response of Discrete Discontinuities

As a second example, concatenated transmission lines with discrete discontinuities
between sections are evaluated with a time-domain transform of the frequency re-
sponse, and the values of the various discontinuities are individually determined. Fig-
ure 3-9 (upper) shows a schematic of a Z, reference, followed by a first capacitive dis-
continuity, and followed by a Z, line then a second identical capacitive discontinuity

terminated in a Zo load.
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The time-domain response of this network is shown in figure 3-9 (lower). This is
the low-pass step response, which shows capacitive discontinuities as negative dips in
the time-domain. The reflections of the discontinuities repeat at the spacing of the dis-
continuities, and these repetitive reflections should ideally continue on, at diminishing
levels, for infinite time (though actually they get added to all the aliased responses).
Also, note that even though the responses are caused by identical discontinuities, the
response of the second discontinuity appears smaller than the first. The second re-
sponse is somewhat masked by the first, though by a different amount than in the ex-

ample of figure 3-8, indicating a different masking mechanism.
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Figure 3-9 (upper) Model of 2 capacitive discontinuities, (lower) Step response
of the S11 of two discontinuities
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3.7 The effects of masking and gating on measurement accuracy

The concept of time gating above refers to mathematically removing a portion
of the time-domain response, and viewing the result in the frequency domain. The in-
tent is to remove the effects of unwanted reflections, say from connectors and transi-
tions, leaving the desired response of the device being measured. This should improve
the quality of the response, that is, the gated response should more closely resemble the
device response as if it were measured with no other reflections. However, the effects
of previous reflections can have an effect on the time-gated measurement. Previous
work has reported on the compensating for the effect of loss [76] but ignored the effect
of previous reflections. Others have proposed an error associated with previous reflec-
tions [75] but have not provided for compensation methods, or for errors associated
with change in impedance. These effects are mathematically described below, along
with new compensation methods, and with an uncertainty analysis on the time-gated

frequency response, applied to several particular examples.

3.7.1 Compensation for changes in line impedance

For the lines in figure 3-8, the apparent reflection coefficient of the second transi-
tion, I'y, is only about 90% of the actual value. To understand this, consider that at the
interface of the first reflection, the reflection coefficient is calculated as defined in
(3.39). However, the signal that continues down the transmission line structure is

changed by the transmission coefficient defined as [77]

7 =24 (3.40)

' Z,+2,

where Z, is the input line, and Z, is the second section of line. The reflection apparent at
the input due to the second step in impedance, I';, is further changed by a second (re-

verse) transmission coefficient, T, as defined by

_ 24 (3.41)
27+ 7,

The total apparent reflection, 2, due to the second step is now computed as

A Z,-Z
I =I,- I, T, = (Z 2) (42120); where I', :u——ﬁ (3.42)

(2,+2,) (2,+%)
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recognizing the reference impedance for I';, is the Z; line. For the example of Figure 2,

2 =+0.30. This precisely matches the measured value in fi gure 3-8,

Further, for the case of a response following a change in line impedance, where the
first line impedance is not the reference impedance, two compensations are required.
First the reflection response must be compensated by dividing the apparent response by

the transmission coefficient term product, T;-T, to produce a reflection response rela-

tive to the line, S, =S,,/T,-T,, (derived from [* as shown above) . The second com-

pensation is re-normalizing the response by the impedance of the line just before the
desired response. The frequency response assumes a reference impedance of the sys-
tem impedance, typically 50 ohms. The re-normalization consists of converting the

reflection response to an effective impedance Z5 , using the line impedance Z;;,, just

before the desired response (S;,), as the reference impedance. This is then re-
converted from the resulting effective impedance back to effective reflection response

(S11(¢) ) using the system impedance:

/ Z . —Z
Zeff =Zjine ‘llsl,—l’ 11¢eff) = 0 (3.43)

3.7.2 Compensation for discrete discontinuities

Figure 3-9 shows the time-domain response of two capacitive discontinuities. The
second discontinuity, which is caused by an identical element in the circuit, has a dif-
ferent time-domain response from the first element. The most noticeable aspect is the
magnitude of the response is smaller, which is consistent with the first example. How-
ever, in this case, there is no change in reference impedance to account for the differ-
ence. Instead, the first reflection removes some of the energy from the forward (inci-
dent) wave, such that there is less energy available at the second discontinuity. A simi-
lar effect occurred in the first example, and was accounted for by the transmission coef-
ficients. For a localized discontinuity, with the same impedance on each side, the effect
on the transmitted wave must be determined in a different manner.

From power conservation, the magnitude of the voltage wave incident on the second

reflection, lV{l , (assuming the first reflection is loss-less) is

g 1’|Fll2 (3.44)

‘/1+

A




77

where V|" is the incident voltage wave and I, is the first reflection. The magnitude of

the reflected voltage, |V2_l , from the second reflection is

-

v,

T, =

‘/l+

-(1-|0,f)-T, (3.45)

The signal V; reflects again off I'; with a portion transmitted, V; ( the portion of
the signal from I, that is actually measured at the input port), which is reduced in the
same manner as equation (3.44) to yield the effective value of the second reflection as
a
v

Ity =1==a-r,f)-r, (3.46)

This result only applies to the magnitude of the reflection as the power conservation
argument does not apply the phase of the transmitted signal, and while consistent with
the result described by Lu [75], goes further to provide a means to remove the effects of

the first discontinuity.

3.7.3 Gating the first of two discontinuities

The effectiveness of gating can be evaluated using the circuit from figure 3-9.
Figure 3-10 shows the original frequency response in light gray, with the characteristic
ripple pattern found from two discontinuities separated by a length of line. The thin

black trace is the result of computing the ideal S;; of just a single capacitive discontinu-
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Figure 3-10: Sy, rsponse of 2 capacitive discontinuities (light gray) and gating
around the first cap (dark grey). Also shown is the Sy of just the first cap (black)



78

ity, terminated in Zo. Gating around the first capacitive discontinuity yields a response
(Fig. 10-3, dark grey) nearly identical to the frequency response calculated for only the
first discontinuity. The difference is seen only at the high frequency of the response,
most likely due to the errors in the re-normalization, as described in figure 3-7 (lower).
Clearly, gating about a first discontinuity terminated in Z, is very effective in removing

effects of other elements. However, if the gate is applied to the second discontinuity,

the response is not similar.

3.7.4 Gating the second of two discontinuities

The time-gated response of the second discontinuity is quite different from the un-
derlying response as shown in figure 3-11, (thin dark trace, labeled “2nd Cap, Gated,
No Comp.”). The frequency response of the gated measurement of the second discon-
tinuity may be compensated by taking the gated response of the first discontinuity, and
applying equation (3.46) as compensation. This compensation has been applied in fig-
ure 3-11, with the result showing remarkably good compensation over most of the fre-
quency range (thick black trace, labeled “2nd Cap, Gated & Comp.”). However, the
band edge response deviates because of the normalization does not completely com-
pensate the error due to the gate, as described in the figure 3-7.

Also shown in figure 3-11 is the un-gated S;; measurement of both discontinuities
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black).
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(light gray), and, for reference, the S;; of just a single discontinuity (dark gray, labeled
“Ideal Cap.”). This shows the effectiveness of the compensation method, where there
is substantial deviation from ideal of the un-compensated gated response of the second
capacitive discontinuity. Also note that this is a very large discontinuity, having a fre-

quency response return loss value of nearly 0 dB over much of the frequency range.

3.7.5 Compensation for a combination of discontinuities and line impedance
changes.

Many practical applications of time-gated measurements include effects of both dis-
crete discontinuities and impedance steps. For example, the measurement of a connec-
tor at the far end of a cable is affected by the cable’s near end connector, and the im-
pedance of the cable. Figure 3-12 (upper) shows a circuit diagram and (lower) time-
domain response of a 55-ohm cable with a 20 dB return loss (at 1 GHz) input and out-

put mismatch due to capacitive loading, terminated in 50 ohms. The cable itself has a
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Figure 3-12 (upper) Circuit with 2 capacitive discontinuities, and an offset im-

pedance line; (lower) Time-domain response of the circuit (black) with gating
around the first cap (wide gray) and second cap (thin gray)
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5% reflection, and each discontinuity is approximately 10% at 1 GHz.
Figure 3-13 (upper) and (lower) shows the time-gated frequency response of the first
and second discontinuity as a result of gating about each respectively. In the case of

gating the first discontinuity, there is only an impedance step to be accounted for.

A normalization of the first case can be performed by recognizing in the step re-
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Figure 3-13 (upper) Time gated response of the first discontinuity S’thick gray, “Ist
Gated”), and with compensation (thick black, “1st Gated & Cf)mp )., along with
original S11 (light gray) and ideal single capacitive discontinuity .(thm bla.ck);
(lower) similar to the upper trace but with gating and compensation applied to the

second discontinuity
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sponse that the value of the step after the gate represents an offset impedance in the

termination. The effective reflection results in

A r
=r+—-72
1 1 (-T,T,) (3.47)
which, using
1 1 5
= ~x—x"..forx<l (3.48)
can be reduced to find the value for I'y , for small reflections, as
A T (T.)> A
I‘lel—I‘z——lﬁ—zFl—F2 (3.49)

1-1,-T,)

Here T', is the reflection coefficient of the 55-ohm cable that forms the termination af-

ter gating, and there is assumed no delay before I',. Figure 3-13 (upper) shows the
first discontinuity, after gating and gating plus compensation. If there is delay before
the first discontinuity, the phase of I", must be shifted to account for the delay.

The masking of the second discontinuity is more difficult to account for. There
are three effects: first masking due to signal loss in the first discontinuity as described
by equation (3.46), and second, by the change in reference impedance as described by
(3.42), and finally, by the change in terminating impedance, relative to the modified
reference impedance, as described by equation (3.49). Thus three compensations are
required. First, the effective reflection after the first discontinuity is found by applying
the first compensating equation, then the effect of the impedance transformation is
compensated by applying the equation (3.42) to the result of the first equation, which in
this case is a small effect, and finally, compensating for the step in impedance from the
at the termination. Also, as this compensation includes an additive element associated

with the terminating impedance, phase becomes important. Both I', and I'; are phase

shifted by the delay of line Z,, which may be determined directly from the time-domain

response. Thus, the effective impedance [ is
Py = L8 20) (_p ). oy, hoe (3.50)
2
(Z,+2,)
where T is the gated response of the second discontinuity, T, is the reflection of only
the second discontinuity, T, is the (gated) first discontinuity, Z; is the 55 ohm line,

I, is the reflection from Z, to the terminating impedance, Zo, and 7,(Z,)is the delay
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corresponding to the length of the line Z;. The compensation is determined by solving

equation (3.50) for I',:

I, = (i-\z Lo 1022 __F3) (Zl;' ZO)2
(I_IFII )-(42,Z,)

(3.51)

Figure 3-13 (lower) shows the results of gating the second discontinuity, and apply-
ing the compensations as described in (3.51). Also shown is the frequency response of
a single (ideal) discontinuity associated with the first capacitance as though it were on a
matched line, and the original response of the 2 discontinuities with the offset imped-
ance line in between. In figure 3-13, for both the (upper) and (lower) plots, there is re-
markable improvement in the gated measurement, especially at low frequencies, when
evaluated against the ideal response. In this example, the compensated result is quite
sensitive to the delay selected for the 55-ohm line. This delay was determined by
choosing the delay displayed at the peak of the second discontinuity. These compensa-

tions are appropriate for single discontinuities that are loss-less and non-distributed.

3.7.6 Estimating an uncertainty due to masking.

The proposed compensations described above may generate some error, in part due
to lack of consideration of loss in the network, and due to inability to totally separate
responses. In some cases it may not be necessary to actually compensate the network
for gated response, but rather to establish an estimate of uncertainty associated with the
response that is gated out. This uncertainty can be derived from equation (3.46), for a
second gated response on matched line. Additional uncertainty will come from non-
matched lines leading up to the reflection of interest, and following the reflection of
interest. The magnitude of the uncertainties can be determined in a manner similar to

(3.42) and (3.50) with the resultant total uncertainty after gating determined as

(42,2,)
(2,+7,)

1_‘ZG

1‘|F1|2

where T is the first (gated out) discontinuity and Z and Z, are the lines before and

AF2=

|F21zo|2 + |F1|2

]'*'Fzzzl (3.52)

after the desired reflection I';, respectively, and Zo is the system impedance, and
I',1z0 and ['z,7; are the reflection between lines Z1 & Zo and Z, & Z respectively, and

I',; is the value of the gated response.
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3.8 Conclusions:

The exact relationship of time-domain transform used in vector network analyzers to
the analytic impulse response of measured networks has been described for the first
time with mathematical rigor, and details of the time gating function have been pre-
sented. From this background, the effects of time gating on measured results have been
explored, and a method is given for compensating for undesired masking effects, yield-
ing superior time-gated measurement results. Additionally, the uncertainty of time-
gated measurements has been quantified, and qualitative errors due to the subtle effects
of gate properties and renormalizations have been presented. The results of this mask-
ing investigation will be useful in understanding the resonator interactive effects of tun-

ing filters in time domain.
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Chapter 4 Filter Tuning Using Time-Domain Transforms

In 1999 this author presented a novel filter tuning method [24-26] based on the time-
domain response of a filter. References [25] and [26] are included as published papers
1 and 2, respectively, where the first contains an outline of the method, and second re-
ports details on applying the tuning method. The technique, which was empirically de-
veloped, describes a method of tuning coupled resonator filters by looking only at the
time-domain response using the built-in time-domain function of a VNA. The follow-

ing sections document the experimental investigation into the time-domain response of

filters.

4.1 The invention of the time-domain tuning method

The first filter for which the time-domain response was documented was a 5-
resonator all-pole filter. As noted earlier, the discovery of the relationship between the
VNA time-domain response and the proper tuning of a filter was serendipitous, but
provides good motivation for a broad basic training for all electrical engineers, as well
as good observational skill, and provides some insight into why this relationship be-
tween a filter’s tuning and its time-domain response had not been previously noted.

The author was tasked with evaluating improvements in network analyzer measure-
ments resulting from an enhancement of the CPU speed. Until this time, full two-port
calibration [78] required significant post processing time that slowed the real-time
sweeping of components, such as filters, and filter tuning was often done without full
calibration. Since filter tuning was a key application for the network analyzer, a 5-pole
band-pass filter was chosen as a test device. Turning on time-domain was done solely
to add an additional computation burden to the CPU. Figure 4-1 shows the S;; and Sy
frequency response of the filter in the upper plot, and the S, time-domain response in
the lower plot. While tuning the filter, and evaluating the real-time “feel” of the trace
response, the author noted that turning a tuning screw on the filter caused a change in
the time-domain trace over one region of the trace, and turning a different screw caused
a change at in different region. Thus, the time-domain appeared to separate the effects
of tuning screws, with the tuning screws closest to the test port affecting the earlier por-
tions of the time-domain trace, and tuning screws farther from the test port affecting
latter portions of the time-domain trace. This in itself was surprising, as conventional
wisdom held that the time-domain function was not useful when looking at band-pass

filters. The reasoning was that the time resolution of the time-domain function 1s 1n-
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Figure 4-1: Frequency response (S11 and S21, upper plot) and time-domain re-
sponse (lower plot) of a 5-pole band-pass filter

versely proportional to the frequency span. With a wide frequency span (to get narrow
resolution) almost all the energy is reflected from the filter, so the time-domain re-
sponse shows essentially the response of a short- or open-circuit, depending upon the
first element of the filter.

Consider the circuit of a 3-pole Butterworth filter shown in figure 4-2. This is a 50
MHz wide filter, centered at 1 GHz, and is one of the filters used throughout the rest of
the thesis to illustrate several aspects of time-domain tuning. Figure 4-3 shows the
frequency response for S,; and Sy, of this filter. From this frequency response one can
see that the filter is not ideally symmetric due to the fact that capacitors are used as
coupling elements. One might note the unusual frequency settings for the measure-

ment. These were chosen to be consistent with the requirements for the low-pass mode

- 2.251 pF 2.251 pF
Y Y
J| J1
Yot L L 50
T 61.411 pF |
61.411 pF 59.16 pF
0.398 nH 0.398 nH 0.398 nH

Figure 4-2: Schematic of a 50 MHz wide, 1 GHz center frequency band-pass fil-
ter used to illustrate time-domain tuning effects
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Figure 4-3: S11 and S21 frequency response of a 3-pole band-pass filter

time-domain transform as described in section 3.4.

From the frequency settings shown, one can calculate a time-domain resolution of
about 500 psec, or about 75 mm in air. The time-domain transform for this filter is
shown in figure 4-4. It is clear that there is a nearly unity response at time zero, with
what looks like a substantial ringing response that follows. Since almost all the energy
reflected is in the first peak, at time 7=0, there does not appear to be any useful infor-
mation in the time-domain response with respect to filter tuning. The band-pass mode,
which may be used over a narrow range, was considered unsuitable as the frequency
span used to view the filter, perhaps 2 or 3 times the filter bandwidth, would yield a
time resolution of about 7 nsec, or roughly 2 meters in air, which is many times longer
than the physical length of the filter.

However, the fact that the tuning screws appeared to have some relationship to the

CH1 S11 log MAG 10 dB/ REF 0 dB 1_:-.6589 dB

1 (ﬁ Os

-
PRm
Cor

Hid

L i ';HH L 'Hl‘ e =

CH1 START-15 ns

STOP135ns

Figure 4-4: Low-pass mode time-domain response of a 3-pole filter
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time-domain response was not the only or even the key observation from which the de-
velopment of the time-domain tuning method was set in motion. Another feature of

modern network analyzers is the ability to change frequency, and interpolate the error-
correction arrays that are used in the 2-port calibration. On older models, the interpola-
tion takes about 10 seconds, but on the faster CPU, the interpolation takes less than |
second. To test interpolation, with the time-domain on, the display was changed to
time-domain only, and the center frequency of the network analyzer was changed by
about half the filter bandwidth.

Figure 4-5 shows the resulting time-domain response of the original S-pole filter of
figure 4-1, after shifting the network analyzer center frequency (dark green), as well as
the time-domain response before shifting the center frequency (light blue) as a refer-
ence. It was noted that the nulls in the time-domain were no longer deep. Adjusting
the tuning screws affected each null in turn, and starting with the first null, the tuning
screws were adjusted until the time-domain trace looked about the same as the refer-
ence. While there was some interaction, each null was substantially affected only by its
associated tuning screw. After the time-domain response was lined up, the transform
was turned off to see what, if any, affect there had been in the frequency domain. The
author was surprised to note that the frequency response was identical to the original
frequency response in shape, but was now tuned exactly to the new center frequency!
It was this observation that convinced the author that there was a substantial opportu-
nity for investigating new filter tuning techniques using time-domain transforms.

From this beginning, extensive testing was performed, both on real filters and in

simulations, to understand the time-domain tuning process, and to try to explain why it
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Figure 4-5: Dark green: time-domain response after shifting the VNA center
frequency; light blue: before shifting center frequency
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should work. The results of these experiments are reported below.

4.2 Experimental and simulated results on the effects of tuning on the
time-domain response of filters

The tuning relationship between resonator tuning and the time-domain response can
be illustrated with the following example of tuning the original 5-pole filter, starting
from an un-tuned state (all the resonator screws turned out — all resonators high in fre-

quency). This filter had fixed coupling, so only the resonators were adjustable.

4.2.1 The relationship between time-domain dips and resonator tuning

The 5-pole filter was tuned by adjusting the first resonator, and looking for a deep
null. This was repeated for the second, third, fourth and fifth resonators. Figure 4-6
shows as overlaid traces the five responses in frequency domain in the upper plot, time-

domain for tuning the first two resonators in the middle plot, and time-domain for tun-
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Figure 4-6: Tuning of a S-pole filter, one resonator at a time
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ing resonators 3 through 5 in the lower plot. Each labeled trace corresponds to each

tuning screw adjustment. It was noted that there was some difficulty in tuning the
fourth and fifth resonators for deep nulls, as they seemed quite interactive, that is, tun-
ing the fourth resonator for a deep null, then tuning the fifth, resulted in the null disap-
pearing somewhat for the fourth. Re-tuning the fourth for a null caused the null associ-
ated with the fifth to be affected as well. Iterating between the two allowed deep nulls
to be achieved for both tuning screws. The final result of tuning the fifth resonator is
seen in the upper plot as a symmetrical return loss, of about 15 dB, centered nearl y per-
fectly on the center frequency of the network analyzer. Further tuning allowed the
nulls to be deepened, and after tuning, the filter was very nearly perfectly symmetric
about the center frequency of the analyzer sweep.

Whether the nulls associated with the tuning screws in the time-domain transform
are inherent in a properly tuned band-pass filter is a key question to answer. In an at-
tempt to discern this, the 3-pole filter of figure 4-2 was evaluated by simulation over a
narrower range, corresponding to approximately five times the bandwidth. The fre-
quency response of S,; and the band-pass mode time-domain response of S, of the nar-
row sweep is shown in figure 4-7. From this simulation it is clear that there are nulls in
the time-domain response. A further simulation was performed on the low-pass proto-

type filter used for the design of this band-pass filter, and the low-pass time-domain
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Figure 4-7: The narrow band frequency response and band-pass mode time-
domain response of a simulated 3-pole filter
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response was taken and compared with the band-pass time-domain response of figure
4-7. This is shown in figure 4-8. Note that the band-pass version and the low-pass pro-
totype response are nearly identical. The time-domain responses were generated by
downloading the simulated frequency response of the filter into the VNA, and using the
VNA band-pass impulse transform function to perform the IFT. The built in time se-
ries function of Agilent’s Microwave Design System (MDS) simulator was used at
first, but this function generated a transform assuming that the frequency response rep-
resented a real time-periodic function, and interpreted the frequencies similarly to the
low-pass mode of the VNA, thus, did not give the same representation as the VNA
time-domain band-pass mode.

From the result of equation (3.36), it is expected that the magnitude of the VNA
band-pass transform and low-pass transform are the same. Since the nulls also appear

in the low-pass prototype, they are likely due to some fundamental aspect of the filter

structure.
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Figure 4-8: Comparison of the time-domain response of a band-pass filter and
it's low-pass prototype, for the simulated 3-pole filter
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4.2.2 Verifying the time-domain effects of tuning resonators

To verify that the tuning effect was not some artifact of the particular filter, simula-
tions of the model of a 3-pole, capacitive coupled filter were conducted using Agilent’s
Advanced Design System (ADS, a replacement for MDS) simulation software. In the
simulation, the filter was analyzed by tuning only the capacitor in the last (third) reso-
nator by +-2%, and viewing the results in (figure 4-9 top) for several values, with the
time-domain (right) and frequency (left). Note that the third null shows substantial
change, with the null being deepest only when the resonator is tuned to the center fre-
quency, but the first two nulls show very little change. Also note the effect of variation

on the frequency response, where the deepest response is with the resonator tuned.
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Next, the third capacitor was mistuned 50% low, and the capacitor of second resonator

was tuned over +-2% (this is the reverse of a normal tuning process, in that the resona-

tors are sequentially un-tuned). The result is shown in figure 4-9 middle. Again, the
second null is only deep with the resonator tuned. Finally, both the second and third
capacitors are tuned +50%, and the capacitor of the first resonator is tuned +-2%,
shown in figure 4-9 bottom. Here, only the time-domain plot is shown, as the fre-
quency response shows an essentially flat response at 0 dB, due to the nearly total re-
flection from the second and third resonator. Once again, the null is deepest with the
first resonator tuned.

From these results one can conclude that tuning the resonators does appear to have a
direct effect on the depth of the nulls, and suggest a tuning process, namely reverse the
process shown in figure 4-9 to achieve a properly tuned filter. This simulation essen-
tially verifies the experimental results shown earlier, and confirms that the results were

not merely due to some peculiarity of the particular 5-pole filter used.

4.2.3 Changes of the time-domain center frequency of a tuned filter

One of the first experiments with the original filter was to change the center fre-
quency of the VNA. It was noted that all the nulls disappeared. The result of this ex-
periment is shown in figure 4-5, above. In this case, the center frequency was changed
by about half the bandwidth of the filter. Many coupled-resonator filters are designed
with very wide ranges of coupling and resonator tuning. This allows a single mechani-
cal structure to be mass-produced for low cost, and custom tailored to a variety of ap-
plications at the time it is tuned. Occasionally, one filter is retuned to a different center
frequency, while trying to maintain the same filter shape. This can be easily accom-
plished by setting the VNA at the current center frequency of the filter, and storing a
trace into the analyzer’s display memory. With both data and memory displayed, the
VNA center frequency is changed to the new desired frequency, in incremental
amounts. If this is a large change, it may not be possible to see any dips in the time-
domain, so the size of the frequency change is chosen to maintain a time-domain re-
sponse with recognizable nulls. The filter is tuned to the new, incremental center fre-
quency, and the process is repeated until the desired frequency is reached. A more di-
rect tuning method is demonstrated below that removes the need for the incremental
changes.

If the procedure for changing the center frequency as described above is followed, it

may be noted that the bandwidth of the filter (and the time-positions of the resonator
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nulls) will not match those of the originally tuned filter. This is readily understood by

realizing that the coupling factors of the filter, from which the filter bandwidth is de-
termined, are always determined from a ratio of the bandwidth to the center frequency.
If the center frequency is changed, without changing the coupling values, the resultant
filter bandwidth will change as well.

Thus, several simulated and real experimental examples all support the conjecture
that by observing the nulls associated with each resonator, and tuning for deep nulls, a

properly tuned filter will result, for the all-pole type filters tested. A theoretical basis to

underpin this conjecture is presented in chapter 5.

4.24 Compensating for resonator interactions

When starting with a completely un-tuned filter, and sequentially tuning the resona-
tors, there is an interactive effect of one resonator on another. This can be noted by ob-
serving, for example, the first null of the band-pass filter in the middle plot of figure 4-
6. When the second resonator is tuned, the first null becomes less deep. This is also
observed in the third null of the lower plot of figure 4-6. The depth of the null is
changed when tuning the fourth and fifth resonators. The interactions follow certain
behavioral patterns. For example, if all the resonators are tuned too high, and the first
resonator is tuned down, to create a deep null in the time-domain, and then the second
resonator is tuned also for a null, the first null will no longer be deep. It is necessary to
return to the first resonator and tune it further (in the same direction) to get a deep null
again. This has some small effect on the second resonator, which must be re-tuned as
well. The effect diminishes as the tuning becomes closer but the interactions do result
in more iterations. Experimentally, it appears that if the preceding resonator is tuned
high in frequency, it has the effect of making the resonator which follows appear
somewhat lower in frequency, so that the following resonator is not tuned down low

enough while it is being tuned.

4.2.5 The relationship between time-domain peaks and coupling tuning

Since the response of a band-pass filter is set almost entirely by the coupling factors,
assuming the resonators are properly tuned, it is often necessary to tune couplings to
achieve the desired pass band shape. The coupling principally affects the bandwidth,
ripple, and skirt steepness in all-pole filters. In an effort to understand if the time-
domain response would show the effects of changes in coupling, several simulations

and experiments were performed.
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In one simulation of a 5-pole filter, the values of individual coupling elements were
changed, and the results recorded. An example is shown in figure 4-10. Here, the cou-
pling between resonators 1 and 2 is increased by 10%, in the blue trace. Notice the
second peak in the time-domain trace has been reduced, and every peak after the sec-
ond peak has increased. Also note that the first peak is essentially unchanged. This is
consistent with the intuitive idea that increasing the coupling between resonators 1 and
2 will cause more signal to couple into resonator 2, thus less is reflected. causing the
peak to be reduced. Since more energy is coupled into resonator 2, more is available to
reflect off the other coupling elements, thus the peaks of all the rest of the couplings are
increased. Also note that the second peak occurs at a slightly earlier time value. This
is consistent with the results of Ness [8] , which utilizes the group delay of the reflec-
tion response to tune the coupling values of a filter. In this case, the peak value of the
coupling appears to give a better resolution than using the delay value, but both values

might reasonably be used in tuning method. Unlike the method proposed by Ness, it is

possible to determine which coupling element is mistuned even on a nearly tuned filter.
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Figure 4-10: Response of a 5-pole filter after changing the first coupling (Cc12)
by +10% (blue) vs the original (red)

Figure 4-11 shows a similar experiment, where the coupling between resonators 2
and 3 has been decreased by 10%. Following the insight of the previous result, de-
creasing the coupling results in an increase in the reflected signal associated with that
coupling (the peak between nulls 2 and 3), and a decreasing of all the peaks to follow,
as there is less energy entering resonator 3, to be available to reflect off the remaining
coupling elements. Note also that the time associated with the peak is slightly longer
after decreasing the coupling, again consistent with the results of Ness that the delay
response contains coupling information. From these simulations one might imagine a
coupling tuning process where the peaks between nulls represent the coupling between

. . . 5 g re - o o 2 u
the resonators associated with the nulls. Changing one coupling value results in
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change with the associated peak in the time-domain. If 4 target filter shape is captured
by the VNA in memory (from a “golden” filter or from a simulation), another filter

may be tuned to the same response by tuning the coupling to match the peaks, and

tuning the resonators for nulls.
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Figure 4-11: Response of a 5-pole filter after changing the second coupling ca-
pacitor (Cc23) by -10% (blue) vs. the original (red)

4.2.6 Interactive effects on coupling peaks from tuning other couplings

The tuning of any coupling has interactive effects on the couplings that follow. This
is illustrated very clearly in figures 4-10 and 4-11. This interactive effect must be con-
sidered when using time-domain to tune filters. Experimental tests indicate that it is
necessary to properly adjust the outer couplings before attempting to adjust the cou-
plings for inner resonators. Misalignment of the outer couplings will cause increasing
misalignment of the center couplings. Note how well the time-domain separates one
coupling from another, in that changes in Cc23 (the coupling between resonators 2 and
3) has almost no effect at all on the peaks that come before it (figure 4-11, right). Also
note from figure 4-10 and 4-11 that the frequency response appears almost the same; it
would be very difficult to know what has changed between the two frequency re-
sponses.

However the time-domain makes the difference very clear. For some filters, the in-
put and output coupling is fixed, so that the associated first and last time-domain peak
does not align with that of the target filter shape; thus proper tuning of the remaining
couplings becomes in doubt. An area for further study is the interactive effect, which
may allow for compensation techniques that remove the restriction of tuning the cou-
plings in order from the outer resonators to the center resonators, and provide guidance

as to how to compensate for misaligned but fixed input coupling.
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4.2.7 Examples of tuning filters with adjustable coupling

An example of the coupling tuning process is shown in figure 4-12 below, starting
with an un-tuned (red) and tuned (blue) 8-pole filter shown in the time-domain (left)
and frequency domain (right). From this figure we can see that the filter is not properly
tuned in frequency (notice the nulls are not deep in the red trace as compared to the
blue trace), due to resonator mistuning. The resonators are first tuned by making the
nulls associated with each as deep as possible. For this filter, the first four resonators

were tuned looking at S;;, and the last four resonators were tuned looking at S»,. (Only

S11 1s shown 1n the figure, S,; plots are similar).
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Figure 4-12: Time-domain (left) and frequency response (right) of a ""golden™
or reference filter (blue) and an un-tuned filter (red)

Figure 4-13 shows the results after tuning all the resonators. The filter response 18
well centered, but the return loss does not match the target return loss. Notice in figure
4-13 (left), that the coupling must be mistuned, as the peaks do not align. The next step
is to tune the coupling elements, so that the peaks associated with the couplings line up
with the peaks of the target or reference filter. During the process of tuning the cou-
pling, it is necessary to start by tuning the outside elements first, and proceeding to the
center elements. For this tuning, the couplings 1-4 are tuned from Sy, and couplings 5-

8 are tuned from the S», side. In this filter, tuning the coupling changes the resonator
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Figure 4-13: Same filter as in fig. 4-12, but with resonators tuned f(.)r nulls. .
Note the frequency response is not the same, and the peaks in the time-domain
trace do not line up.
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tuning, so that each resonator must be re-tuned such that its associated null is main-
tained. This process is continued until all the peaks in the time-domain trace are lined
up, as shown in Figure 4-14. Note that the 5™ peak, (which represents the coupling be-
tween resonator 4 and 5) is slightly off, as are the peaks that follow. This is because it
was adjusted to be a compromise between its response as seen from Si1 and S,,. The
peaks that follow the fifth peak are more than halfway through the filter. It was not
possible to exactly match the peaks on both sides, as the input coupling (first peak in
the time-domain trace) is not adjustable, and it’s not perfectly aligned. Thus, it will
affect all the other peaks and cause the overall response to be slightly different. How-
ever, after the real filter’s couplings were adjusted to align the peaks in the time-

domain response to the best extent possible, the resulting frequency domain bandwidth

and return loss levels were nearly identical.
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Figure 4-14: An 8-pole filter tuned after aligning the coupling peaks, and tuning
for deep nulls in the resonators. Note that this filter does not line up perfectly
with the target filter, probably due to differences in the loss between the fixed
input couplings

4.2.8 Tuning to a simulated target response

The filter above was tuned to a target filter response created by measuring a previ-
ously tuned filter. The application note [26] included at the end of this thesis as paper 2
shows a example where a simulation was used to create a target response for a filter
with a 60% wider bandwidth than the filter above. This target response was used to
reset the filter couplings, and allowed the filter to tuned to match the desired specifica-
tions over a wider bandwidth. The application note includes other examples of filter

tuning which are not repeated here.
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4.2.9 The effects of loss on the time-domain response

One effect of non-ideal resonators is that of loss in the resonators, which results in
non-infinite Q in the filter. The effect of loss may become important when attempting
to create a target time-domain response from a simulated ideal filter. Figure 4-15
shows that loss causes each subsequent coupling peak to become progressively smaller.
This makes intuitive sense if one considers the couplings as reflecting some energy,
and passing some along. If energy is lost in each resonator, then one might expect the
effect of the loss to be greater farther into the filter. Figure 4-15 shows just such be-
havior. If an ideal filter simulation is used as a template for tuning a real, lossy filter,
then the coupling tuning process described above will result in the couplings towards
the center of the filter being to small (because the peak associated with the coupling
would be higher than intended, to accommodate the loss in the real filter), thus yielding

a filter with a bandwidth that is narrower than intended.
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Figure 4-15: The time-domain response (left) and frequency response (right) of
a lossy filter (blue) compared with a lossless filter (red)
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4.2.10 Synopsis of time-domain tuning method for all-pole filters

The time-domain tuning process is outlined in table 2 below.

Table 4-1: Synopsis of Time-domain Filter Tuning for All-Pole Filters

1.

Set the center frequency of the network analyzer equal to the desired
center frequency for the filter.

Set the frequency span to be 2 to 5 times the bandwidth of the filter.

Use 201 points in the sweep for a good compromise between sweep
speed and resolution.

Measure S110n one channel and Sy, on the other channel. If desired, a
4-parameter display can be used to view both the frequency and time-
domain responses at once. Viewing both domains while tuning may
provide better insight for optimizing the filter's response.

Select the band-pass mode time-domain transform.

In the time-domain, choose the start limit to be about one resonator de-
lay on the minus side; approximately t = -(2/xBW). Choose a stop limit
of about 2 to 3 times the full filter delay; approximately
t = (2N+1)/(nBW), where N is the number of filter sections (resonators)
and BW is the filter 3 dB bandwidth in Hz.

Use log magnitude format (dB), and set the reference position to 10
(top of the graticule) and the reference value to 0 dB.

If the filter has tunable coupling, set the coupling screws a_pproximately
correct; for example, by adjusting them to the same physical height as
those on a "golden" filter.

Tune the resonators first, adjusting for deepest dips in thg time-domain
trace. Start with the resonators at the input and output sides and work
towards the middle.

10.Tuning one resonator may cause the previous resonator to become

slightly un-tuned. In this case, go back and retune the previous resona-
tor, then optimize the current resonator again.

11.Tune the coupling apertures from the input and output sides first and

work towards the middle. After adjusting e_ach coupling screw, readjust
the resonators on each side to make the dips as low as possible.

12.Repeat the tuning process at least once to fine-tune, or as needed to

achieve desired response.
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4.3 Filters with transmission zeros

For many communication applications, it is necessary to make a filter skirt response
steeper than normally obtained by all-pole type filters. Discrete transmission zeros
(where the S;; goes to zero) can be obtained in the filter stop band by adding cross—
coupling (coupling between resonators other than nearest neighbors). Filters are often
designed with transmission zeros to sharpen the stop band rejection. The transmission
zeros can be generated by a variety of means. Common among these are using cross
coupling between non-adjacent resonators to create a transmission zero [57,79], or us-
ing additional resonators to create a notch in the stop band [80]. Typically, the number
of resonators over which the coupling crosses will determine the characteristics of the
transmission zeros. Crossing over an odd number of resonators, as seen in Fig. 2-4,
results in an asymmetric frequency response, with a zero on only one side of the pass
band. Crossing over two resonators results in transmission zeros on both sides of the
pass band. Filters with cross coupling present additional difficulties compared to tun-

ing all-pole filters, especially if the value of the cross coupling is also adjustable.

4.3.1 Time-domain response of filters with cross-coupling

The time-domain response of filters with cross coupling to create transmission zeros
may be useful in tuning these filters [65,81] (included as published papers 3 and 4 at
the end of this thesis). The time-domain response of these filters differs from all-pole
filters, in that tuning the characteristic nulls to be as deep as possible does not result in
the filter being properly tuned. Fig. 4-16 shows the frequency and time response of the
4-pole filter with asymmetric cross coupling from resonators 2 to 4. The filter, in this

case, had coupling adjustments for only the input, output and cross coupling. The cou-
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Figure 4-16: Time-domain response (left) and frequency response (right) of a 4-
pole filter with cross-coupling between resonators 2 and 4. Notice the null
associated with the second resonator is not at all deep.



101

pling between resonators was fixed. The filter was optimized for return loss in the pass
band and rejection in the upper stop band. Note that the level of the two peaks in the
return loss over the pass band are the same, even though the shape of the two are dif-
ferent, showing that the filter is properly tuned.

Interestingly, the time responses of the nulls are not deep for many of the resonators,
especially resonator 2. To understand why this is, and how to tune these filters, one
must first look back at the design methods for the simple, all-pole filters.

With cross coupling added to the filter, the time-domain response no longer has the
simple relationship to filter tuning. Further, especially in filters with asymmetric
transmission zeros, the tuning of the filter is not optimum when each node frequency is
centered at the filter center frequency. (The node frequency is here defined to be the
resonant frequency of the node with all connected couplings -- including cross coupling
-- grounded). The resonators are often “pulled” to compensate for the effect on the
pass-band of the transmission zeros in the stop-band, thus achieving the desired pass-
band return loss specification. This results in an asymmetric shape to the return loss, as
demonstrated in Fig. 4-16. Tuning for deep nulls results in a filter that does not meet
the return loss specifications. However, the tuning of these filters may be addressed
using time-domain techniques as described below.

Assume that argument still holds that the time response of any particular node of a
filter displays a deep null when the node frequency is exactly centered on the network
analyzer center frequency. The difficulty with these complex filters is that the node
frequencies are no longer easy to determine. But one can use the network analyzer it-
self, on a properly tuned or “golden” filter, or on a simulated filter, to discover the indi-
vidual node frequencies. This is done setting up the vector network analyzer in dual
channel mode, with one channel on frequency domain and one on time-domain. The
center frequency of the VNA is adjusted while looking at the null associated with a par-
ticular resonator. When the null is maximized, that frequency is recorded as the node
frequency for that resonator. Fig. 4-17 illustrates the time response of the filter tuned at
the filter center frequency, and then tuned to a frequency that maximizes the null asso-
ciated with resonator 2 (one of the resonators with cross coupling).

This process is repeated for each of the filter’s resonators, adjusting the VNA center
frequency until each null is maximized. For best sensitivity, the VNA frequency span
is reduced to just two times the bandwidth. Table 4-2 below gives the node frequencies

determined for each resonator for the filter from Fig. 4-16. Armed with this informa-
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tion, and using the measurement from Fig. 4-17 as the tuning template, a filter tuning

process for complex filters can now be defined.
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Figure 4-17: The time-domain response of a cross-coupled filter, with the center
frequency of the VNA changed to give the maximum null for resonator 2

TABLE 4-2: Node Frequency for Each Resonator of the
Filter from figure 4-17

Resonator No. Node Frequency
836.25 MHz
833.85 MHz
834.55 MHz
836.45 MHz

AW IN| =

4.3.2 Tuning method for filters with cross-coupling

The experimental results on all-pole filters demonstrate that nulls in the time-domain
have a correlation to an associated resonator, and when the resonators are tuned such
that the nulls are deep, the filter is properly tuned in the time-domain. However, if the
same simple tuning method is used on filters with cross coupling which result in trans-
mission zeros, the filter is not properly tuned.

The experimental results on tuning filters with cross coupling are described below.
The key result is that cross coupling causes the nulls to be not deep, when the filter is
properly tuned, perhaps because the cross coupling alters the effective resonant fre-
quency of any particular resonator so that it is not exactly on the center of the filter pass
band, as shown if figure 4-16. The effective value of the resonators are found by shift-

ing the center frequency of the VNA while monitoring the time-domain response of the
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input and output match, as shown in figure 4-17. When the null associated with any

particular resonator of a properly tuned filter is deepest, the value of the VNA center
frequency is recorded, and assigned to the associated resonator, see table 4-2.

A tuning method was developed using these values as a template for an un-tuned fil-
ter. An example of using the time-domain method for tuning cross-coupled filters is
shown below, for the 4-pole filter depicted by the responses of fi gure 4-16. Figure 4-18
(left) shows (in red) the time-domain response of the un-tuned filter as well as the tar-
get or “golden” filter response (black). The filter is initially tuned for deep nulls asso-
ciated with the resonators (blue). Also shown (right) is the frequency response of Sy,
and Sj; of the un-tuned filter (red) and the filter tuned for deep nulls (blue) and the tar-
get response (black).
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Figure 4-18: Time-domain response (left) and frequency response (right) of an
un-tuned -pole filter (red), a filter tuned for deep nulls (blue) and the target or
"'golden'' filter (black)

Next, the main couplings are adjusted to match the values of the peaks of the target
filter, just as in the simplified tuning method, as shown in figure 4-19. During this
process, the resonators are re-tuned to maintain deep nulls.

The cross coupling value is tuned to set the transmission zero to the proper fre-

quency in the stop band, by observing S; in the frequency domain, as shown in figure
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Figure 4-19:Time-domain response (left) and frequency response (right) of the
filter after tuning the coupling (red), to match the peaks of th.e target or
"golden' filter (black). S21 of the filter to be tuned is shown in blue
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Figure 4-20: The cross-coupling value is adjusted until the filter S21 (blue) trace
matches the target filter trace (black), in the frequency domain. Also shown is
the S11 response (red) of the filter to be tuned

4-20.

Finally, the center frequency of the VNA is reset for each resonator, in turn, to the
value in table 4-2, and the associated resonator tuned for a deep null. Each resonator is
tuned for a deep null at its respective frequency, starting from the outside in. Because
of interactions between resonators, this is an iterative process, repeated until the null for
each resonator is maximized at its respective target frequency as listed in table 4-2.
Figure 4-21 shows the final result of this tuning: the filter is tuned almost perfectly to

match the target response.
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Figure 4-21:Time-domain response (left) and frequency response (right) of t!\e
filter after final tuning of each resonator (red), to create a maximum null at its
respective target frequency. Target filter is in black and S21 of the tuned filter

is shown in blue

Many questions remain with respect to filters with transmission zeros, such as how
to predict the value of the resonator frequency based on the filter structure, and alterna-
tive methods for tuning the cross coupling. This cross coupling may be used to flatten

the group delay responses of filters [47], but the effect of this cross coupling on the

time-domain response has not been investigated.
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4.3.3 Filters with zeros from adjacent coupled resonators

As an alternative to cross coupling, it is also possible to create a transmission zero

by adding a notch filter resonator, typically coupled to the input or output of the filter.
The effect on the time-domain response of a filter of adding a notch resonator has not

been investigated, but may be closely related to tuning duplex filters.

4.3.4 Filters with arbitrary resonator tuning

The experiments described above demonstrate a key hypothesis with respect to the
time peaks and resonator nulls. For all-pole filters, each resonator is tuned to the center
frequency of the filter. For filters with transmission zeros, the apparent resonator fre-
quency may be different than the filter center frequency. This can even be extended to
filters that are not designed to mimic exactly some low-pass prototype filter. For ex-
ample, some filters used in communication systems must have a specific phase re-
quirement at the center frequency, but not have tight control on the return loss. In tun-
ing these filters, the return loss is tuned to achieve a good response, then one or more of
the resonators are adjusted to create the correct phase value (often this is the outside
resonator). In this case, an all-pole filter tuned to meet the phase specification will not
have all resonators set at the filter center frequency. However, using the techniques
from section 4.3.2, the resonator values can be characterized using time-domain tech-
niques and subsequent filters can be deterministically and successfully tuned to match

the response of the initial filter.

4.4 Time-domain resolution with respect to filter tuning

Section 4.1 noted that the time-domain transform of filters had not previously been
considered useful with respect to band-pass filters, as the narrow frequency span used
to measure band-pass filters would result in a distance resolution many times the filter’s
length. However, the experiments described above clearly show that there is sufficient
resolution to resolve individual filter tuning elements. These apparently conflicting
views can be brought together by realizing that filters exhibit what is known as “slow-
wave” behavior [82]. That is, the electrical delay through a filter is many times more

than expected from its physical length. The delay is approximately given by [82]

n
delay = — 4.1)
e ay BW

where 7 is the number of resonators in the filter and BW is the bandwidth of the filter

(in Hertz). Thus, any single resonator has an approximate delay of 1/BW, with the re-
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flection delay being twice as much, as signals travel forth and back. The time-domain
resolution also goes as approximately 1/BW, so if the frequency span is significantly
more than the bandwidth of the filter (say, 2 to 5 times more) then the resolution of the
time-domain transform should be sufficient to resolve resonators for a filter with any
arbitrarily small bandwidth.

There are further questions as to the maximum number of resonators that a filter
may have and still have the time-domain tuning method apply, and why there are such
interactive effects seen on the last resonators in the filter when tuning from only one
end. As to the first question, the time-domain tuning method has been effectively used
on up to 17-pole filters, where both S;; an Sy, were used to tune the resonators at the
inputs and outputs. The practical limit may be due to losses in the filter. As to the sec-
ond question, experimentally it appears that one can effectively tune a filter to N/2+1
resonators in from one side of the filter, or, halfway through the filter plus one resona-
tor. This makes sense due to the nature of most filter coupling coefficients as described
below.

Most filters used are of the equal-ripple, Chebyshev or Butterworth form. All of
these filters have the attribute that the coupling factors are largest on the outer elements
and smallest on the inner elements. One way to view coupling elements is as coupling
bandwidths between resonator sections [5]. Thus, one may consider these filters as a
series of one-pole filters, getting progressively narrower as one proceeds from the outer
filter elements to the center elements. For a time-domain response from the outermost
element (with the largest bandwidth) there should be sufficient resolution to resolve the
first resonator as long as the frequency sweep is on the order of 2-5 times the filter
bandwidth. Considering the waveform that passes through the first filter and impinges
on the second resonator, one may note that the filtering of the first section narrows the
effective frequency span of this waveform. Thus, the frequency content might not have
sufficient resolution for resolving the second resonator, but as the bandwidth of second
coupling is narrower than the first, thereby having longer delay, less frequency span is
needed to resolve the second resonator. This argument holds up until the center resona-
tor is reached. At the center resonator, all the coupling bandwidths that follow are pro-
gressively wider (i.e., have shorter delay) such that it becomes increasingly more diffi-
cult to resolve resonators from one-another as one passes beyond the center resonators.
From this one can propose that filters should be tuned from both sides, tuning each side
up to the center resonator. Practical experience has shown that trying to use time-

domain tuning from only one-side results in substantial interactions between tuning
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resonators beyond the center resonator. This is apparent in the tuning of resonators 4

and 5 from figure 4-6 in section 4.2.1.
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Chapter 5 Theoretical Analysis of Time-domain Filter Tuning

Time-domain tuning has been empirically shown to be effective in tuning many
common filter types, particularly all-pole filters. The experimental results described in
chapter 4 provide compelling evidence that a relationship exists between the time-
domain response nulls and resonator tuning, and between the time-domain response
peaks and coupling value. However, there has not been any mathematical study that
shows why this should be so. In an attempt to justify and quantify this relationship,
several avenues of theoretical work were pursued. An analysis of the VNA time-
domain response of the input and output reflection of filters, as compared with the filter
impulse time-response, is presented which provides a theoretical basis for explaining
the success of the time-domain tuning technique. Below, a three-pole band-pass filter
is first analyzed analytically, with the result that the analytic impulse response is found
to be quite different from the VNA time-domain result, though this example did not
provide any intuitive understanding of the cause of the difference or for the behavior of
nulls in the time-domain tuning method. A simpler case, that of a one-pole filter, is
completely examined in terms of its analytic impulse response and VNA time-domain
response, from which a complete understanding of the source of the nulls in the time-
domain response, and their behavior with tuning is ascertained. This simple model is
then extended to the multi-pole case through an analysis of simulated results on a

multi-pole filter.

5.1 Calculating band-pass time-domain responses from low-pass proto-
types

The first effort in providing a theoretical basis for time-domain tuning was to dem-

onstrate that a properly tuned all-pole band-pass filter must have deep nulls in the time-
domain response. Chapter 3 of this thesis illustrated that the band-pass response of a
filter can be related to the low-pass prototype filter, using the shift theory. The time-
domain response of band-pass filter calculated analytically would always be a sinusoi-
dal waveform with an envelope that follows the low-pass prototype. This sinusoid
would make determining nulls in the time-domain very difficult. Figure 5-1 illustrates
the transmission responses of a 3-pole low-pass filter (left) and similar band-pass filter
(right) in linear (upper) and log magnitude (lower) formats. (The peaks of the low-pass
and band-pass responses are made to be the same in this figure). From the dB plot, it is

clear that while low-pass plot has a few distinct nulls, the band-pass has many nulls as-
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sociated with the carrier term. However, a VNA takes only one-sided frequency data
and thus its time-domain response has both real and imaginary parts. The magnitude of
the time-domain response is identical to that of the low-pass prototype as shown in

equations (3.35) and (3.36), and figure 5-1 (left, lower). If one can show that the low-
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Figure 5-1 (left) Low-pass impulse response of a 3-pole filter in linear (upper)
and log magnitude (lower); (right) band-pass impulse response of 3-pole band-
pass filter in linear (upper) and log magnitude (lower) formats

pass prototype must have deep nulls in the time-domain response, it would follow that a
band-pass filter based on this prototype would also have deep nulls. The next sections
provide calculations on low-pass filters to show that such nulls must exist, and the

depth of the null depends on the tuning of the filter resonators.

51.1 Time-domain reflection response of 3 pole Butterworth filter

A 3-pole Butterworth low-pass filter was chosen for the first calculations, due to its
relatively simple transfer function. Once the time-domain response of the low-pass fil-
ter is known, the envelope for a 3-pole Butterworth band-pass filter is determined.

The transfer response of a normalized 3-pole Butterworth filter is [83]

to|—
i,
N
s
~

T(jw)| =
i) 1+a°

From this S-parameters can be determined from
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.2 1
1S, ()| = s (5.2)

From direct calculation, or [83],

1

H(s)=——2 and so,
5T +25°+2s+1 (5.3)

D(s)=s>+2s* + 25 +1

The input impedance for an all-pole Butterworth filter can be written directly as [84]

D(s)-s"
Z,(s)=———" 54
! D(s)+s" 4
and from equations (2.22), (5.3) and (5.4)
S, (s) == (5.5)
11 D(S) .
and from equation (5.5), S;; can be computed as
Si(s)= (5.6
n(s) s> +2s* +25+1
Replacing s with jw results in,
6 4 .n. 5 3
-0’ +2w" - jRw’ - w
Sy = 222~ ) (5:7)
1+w
and
» b )
S (jo)| = (5.
S ) 1+ °
To verify this result, power conservation is used to compute | S;, |* from
6
2 2 1 7]
|Sn| =1—|S:>.1| =1- 6 6 (3-9)

The frequency response of S;,(@) of the 3-pole Butterworth is shown in figure 5-2.

The time-domain response can be found from the inverse Laplace transform of S1(s)

in equation (5.6) (see appendix 1 for the detailed calculation):

Su(0 =-00) +{e™ +e ™" (cosE) ~Lsinn)l-ve (5.10)
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The magnitude of the S;; impulse response is shown in figure 5-3 (left). for com-

parison with the VNA time-domain transform of the frequency response S,,(w), figure

5-3 (right). This is also shown in the linear magnitude format, as it is a complex result.
Clearly, the S;; impulse response that was calculated analytically does not match the
time-domain transform of the frequency response, such that one must conclude there is
some special attribute of the VNA transform that causes the differences in responses
shown in figure 5-3. In particular, there is a null near 7 = 0 in the VNA transform that
is not in the impulse response. Unfortunately, this does not give good insight as to why
the nulls in the VNA time-domain transform become less deep when the resonators are

not properly tuned. Further analytical analysis of the three-pole filter is mathematically

difficult, therefore an even simpler circuit will be used to further explore this aspect of

the VNA time-domain transform.
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Figure 5-2: Frequency response of a 3-pole Butterworth low-pass filter, in dB
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Figure 5-3 Analytically calculated impulse response (left) and VNA Ytim}e-do‘nl]am
response (right), of a 3 pole Butterworth filter. Note the change in y-axis scale.
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5.2 Analytical calculations based on a single-pole low-pass filter

A single pole low-pass filter will be used to examine the relationship between the
VNA time-domain transform and its impulse response, which may then be extended to
band-pass filters. A single pole low-pass filter consisting of a series inductor (or shunt
capacitor) can represent the single pole band-pass case. Band-pass filters, though, can
be mistuned from their desired center frequency, resulting in a non-symmetric response
about that center frequency. Low-pass filters consisting of physically realizable parts
(e.g., inductors and capacitors) must always have symmetric responses about the origin.
However, if the use of non-realizable elements is allowed, then it is possible to “tune” a
low-pass filter to have a non-symmetric response about the origin. Adding a fixed reac-

tance, of value w , will provide the non-symmetric low-pass response that can be used

to investigate the band-pass response of a mistuned single-pole band-pass filter.

5.2.1 Modeling a low-pass response centered about frequencies other than zero
Hertz.

Figure 5-4 shows the frequency response with @ (=0 for a filter with a cutoff of

w=1. For a 1 pole RC filter, the analytical calculation of the frequency response
yields

2? . 2wRC
2 AP 2
2°+(wRC) 2°+(wRC)

S;|(w)=-1+ (3,11}

For a corner frequency of @ =1 and R=1, then C=2. The frequency response of the
network is shown, with the frequency span equal to 2 times the bandwidth. (Note, this
is equivalent to a band-pass filter with a bandwidth of 2).

The impulse response of the network can be calculated analytically (see appendix 1)

0 ——
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=20
20 log (|S;;(@))
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w

Figure 5-4 Frequency response of a 1-pole low-pass filter, where “@" represents
the radian frequency.
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to obtain the result
s“(z)z[e“’-U(z)—d(r)] (5.12)

where U(r) is the Heavyside (or unit) step function. This result is plotted in figure 5-5
(left). Since the frequency response is hermitian, the resulting time response is pure

real. Equation (5.12) is also plotted in log magnitude (dB) format in figure 5-5 (right),

however the delta function is not shown on this plot. Note that the response forms a

straight diagonal line when displayed in log magnitude.
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Figure 5-5 Impulse response of a l-pole low-pass filter in (left) linear, and (right)
log magnitude (dB) formats. Note the negative delta function at time t=0.

If the VNA time-domain transform is performed on the frequency response data, the
time-domain response can be plotted. Figure 5-6 shows the time-domain response plot-
ted (red) in dB, as is the custom with VNA displays, since the data is often complex
and ranges over large values. The analytically calculated result from figure 5-5 (right)
of the impulse response is plotted on the same plot for comparison (blue, dashed).
Clearly, there is a substantial difference. This difference becomes more interesting

when the center frequency of the response is changed.
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Figure 5-6 VNA time-domain response of a 1-pole filter (red) and impulse re-
sponse (blue) both in log magnitude (dB).
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The time response for a frequency-shifted network can be determined analvtically

from the Fourier transform shift theory to be:

S, (1) =] ™ UW)=-6) |- (

n
=
W

Figure 5-7 (right) shows the frequency response with @ ;=—0.2. A VNA time-domain
transform is performed on the shifted frequency response data and the resulting trace is
plotted in figure 5-7 (right, red trace), along with the magnitude impulse response from
equation (5.13) (blue trace), (the negative delta function is not shown in the blue trace).
There is a change in the magnitude of the time-domain transformed signal, but no
change in display of the analytically calculated impulse response. The latter result is
evident from equation (5.13) as the complex exponential factor has no effect on the
magnitude of this function. This discrepancy leads to questioning the validity of the

VNA time-domain transform, and is further investigated in the next section.
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Figure 5-7 (left) Frequency response of a 1-pole filter offset tuned; (right) time —
domain (red) and analytic impulse response (blue) of a 1 pole filter tuned offset.
(Negative delta function at =0 not shown on the impulse response)

5.2.2 Comparison of impulse response & VNA time-domain transforms as ap-
plied to a 1-pole low-pass filter

As outlined in section 3.3, the truncation of frequency response data can distort the
time-domain transform, effectively adding a rectangular window to the analytically cal-
culated impulse response. The effects of truncation can be applied to the parts of equa-
tion (5.12). This effect is the convolution of

sin at (5.14)
at

with each of the individual parts of equation (5.12). The convolution of the first (expo-
nential) part is difficult to calculate analytically, but can be numerically computed to

illustrate its effect, or the discrete inverse Fourier transform can be peﬁormed on
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)

Sll(w)+l: 2° ’ 20WRC

2% +(wRC)? / 22 + (WRC)’

(5.15)

which is the frequency response associated with the exponential part. The second part
(delta function) convolution is easy to calculate analytically, as convolution of a delta
with any function returns that function. For this part of the investi gation, the frequency
span 1s increased to 10 times the bandwidth, and the linear magnitude is displayed. The
frequency responses of the individual parts of equation (5.11) are shown in figure 5-8
(left); note the flat frequency response (blue trace along the top graticule) associated
with the delta function in the time response of equation (5.12). The log magnitude of
the impulse responses of the two parts are shown individually in figure 5-8 (right), with
the portion attributable to the delta function in blue, and the portion attributable to the
frequency dependent function in red. This time response is calculated as though the

magnitude of the frequency response is zero outside the plotted region, thus truncating

equation (5.11) for ‘a)| >10. Here one can see that the time responses become confus-

ing due to the side lobes caused by the truncation function.

1 0
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Figure 5-8 (left) Frequency response associated with the impulse (blue) and
the exponential (red) portions of eq. (5.11), (right) the time response of the
truncated impulse (blue) and exponential (red) portions of eq. (5.12).

In the VNA time-domain transform, the side lobes are controlled by a window func-
tion that makes a smooth transition to zero at the edges of the frequency response. The
window function used in the VNA is a Kaiser-Bessel window, typically of factor 6.
The effect of the window function is shown in chapter 3, figure 3-5.

The windowed frequency response of the two parts of equation (5.11) is shown in
figure 5-9 (left). The impulse response of these functions is shown in figure 5-9 (right).
The data is re-normalized such that the amplitude of the transform of a unit input fre-
quency response is unity at =0 (that is, normalizing the time response (0 the sum of the

window coefficients, as described in section 3.3.5). Compared with figure 5-8. this
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display is visually clearer, with less of the detail obscured by the side-lobes. The pen-
alty for this is a widening of the impulse responses, which if windowed too much
would lead to a lack of resolution in the display.

Figure 5-10 shows the result of taking the individual displays of figure 5-9 (right),
and combining them into one display that represents the overall impulse response of the

windowed S;; function. By adding the effects of windowing and truncation to the im-

1 0
0.75 "l
S (@) s |S11(f)| "
(LinMag) (dB) -30
0.25
-40
0 ™ A
=10 =5 0 5 10 2,5 0 2.5 5 7.5
W time (nsec)

Figure 5-9 (left) The two parts of equation (5.11) windowed in the frequency
domain with the delta portion in blue, and the other portion in red; (right) the
time response of the respective parts with windowing applied.
pulse response of equation (5.12), it becomes the same as the VNA time-domain trans-
form. This has a deep null near r=0. Inspection of these parts show that the null is
caused by the windowed delta portion of equation (5.13) exactly canceling the win-
dowed exponential portion. Thus the deep null is a function of the truncation and win-

dowing of the frequency response widening the delta portion of S;;(t) such that it ex-

actly cancels part of the exponential portion.
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Figure 5-10 Impulse response of a 1-pole network with truncation & windowing
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Figure 5-11 (left) shows the S, frequency response of each portion of a filter shifted

by @, =-0.5. It is clear that the delta function portion has not changed at all (the delta

function in time-domain is a constant in frequency domain), but the frequency depend-

ent portion has changed. Inspection of equation (5.13) shows that since o(t) is zero at

t#0, and e/*' =1at t=0, the delta function portion of S;;(t) is not affected by the fre-
quency shift. Figure 5-11 (right) shows the impulse response of the shifted filter after
windowing. This shows no deep null, thus confirming that offset tuning a filter will

affect the null in the time domain.
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Figure 5-12 (left) frequency response of the individual portions of S11 of a
windowed and frequency shifted 1-pole network; (right) combined impulse re-
sponse of the frequency shifted 1-pole network.

The depth of the null becomes even more clear if one looks at the real and imaginary
time responses of the individual parts of windowed version of equation (5.13) as shown
in figure 5-12 (left) and 5-12 (right), respectively. Equation (5.13) describes the im-
pulse response when the “center frequency” is changed (that is, a constant reactance
added so that the S, frequency response is no longer centered at zero). Note that for a
zero shift, it is the same as equation (5.12). The behavior of the individual parts of

equation (5.13) can be observed to better under the effect of frequency shift.

, 0.5 0
Re(S,;(1)) Im(S”(Iz‘)) \/f

By L. 0 2.5 3 73 =25 0 2.5
time (nsec) time (nsec)

Figure 5-11 (left) Real part of exponential (red) and delta portion (b!ue); _(right)
imaginary part of exponential (red) and delta portion (blue) of equation (5.13).
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The imaginary portion related to the delta function is always zero regardless of the
shift. The imaginary portion of the rest of the time response portion of equation (5.13)
however grows as the sine of the shift grows, and the real portion is reduced as the co-
sine of the shift is reduced (both are functions of the complex exponential element).
For small shifts, the size of the imaginary portion is very small, but it is noticeable on a
log magnitude plot. Since the Sy;(r) function is pure real only if there is no shift, the
deep null is possible only if each portion, both real and imaginary, of equation (5.13)
cancel, but the delta portion is always pure real. Thus, the depth of the null is directly
proportional to the remaining imaginary part of the exponential portion of S;;(7).

This becomes quite clear if the total result of S,;(z) is plotted against the imaginary
part of the exponential portion, as shown in figure 5-13. The depth of the null cannot
go below the magnitude of the imaginary part. From this it is clear that for a one-pole
resonator, a deep null will exist if the resonant frequency is exactly on the center of the
data used for the transform. If the resonator is not on the center, the depth of the null

will be proportional to the sine of the shift of center frequency.
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Figure 5-13 Log magnitude of the overall impulse response of a shifted 1-pole
network (blue, dashed), along with only the imaginary part (red).

From the examples above, it is clear that the impulse response of a 1-pole filter dif-
fers from the VNA time-domain response only because of the windowing and trunca-
tion effects. These effects cause a spreading of the individual portions of the impulse
response, and this spreading creates a null in the VNA time response near time 7=0.

Further, if the response is shifted from being centered on the transform, the resulting

time-domain response will no longer have a deep null, with the depth of the null being

proportional to the imaginary portion of the response, which in turn is proportional to
the frequency shift. This one-pole response can be extended to multi-pole filters, by
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realizing that the filter response can be modeled as the concatenation of a series of 1-

pole filters, as discussed below.

5.3 Time-domain response of multi-pole filters

To extend the results of the previous section to multi-pole filters, it is only necessary
to realize that the reflections seen at the input port are the sums of reflections occurring
at each of the resonators, in turn. That is, the time-domain of the S1) response of a filter
can be thought of as a series of responses from 1-pole filters, coupled by the coupling
factor. Consider the filter from figure 2-3: it can be re-configured to show explicitly
the resonators and coupling structures as shown in lower portion of figure 5-14. Here,
the coupling elements include (non-realizable) negative shunt capacitances, with a posi-
tive capacitance of the same value in-between. Note that with this re-configuration, the
resonators are all tuned to exactly the same frequency.

The effects of each resonator on the time-domain can be studied by adding a dual di-
rectional coupler between resonators 1 and 2, taking a portion of the incident and re-
flected signals thus coupled out, passing the reflected signal through a copy of the cou-
pling elements and first resonator, to a third port, and the incident signal to a fourth
port. This will act as a probe to allow the individual effects of the resonators to be
studied. The copy of the coupling elements and resonator for the third port enable
viewing the portion of the signal reflected off resonator 2 as it would appear at port 1, if
it were separated from the reflection off resonator 1. An experimental schematic of a 5-

pole filter thus configured is shown in figure 5-14. Note that a gain block is added to

remove the effects of the coupling loss. Only the first two couplings are shown, and

\ Reflected
| O Wave | 008 J
IC _c
AW [ el L
Rin Ly C.12 i Cc.23 R
Vin A 1 A 1 b A
T ™ ™ T r\c »3 )
= E Rout
Cr bl G142 Cr ¢ .c.23
.2
Res.1 v < Res v . & Res. 5

Figure 5-14 Schematic of a 5 pole filter with the signal to port 2 (incident and
reflected) coupled off for testing.
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resonator 4 is not shown. Simulations were performed on this filter to investigate the
effects of each resonator, and demonstrate the reasons for the interactive effects of tun-
ing 1n the time-domain.

Figure 5-15 shows the filter’s transmission and reflection response (thin red and blue
lines, respectively) and the response from the resonator 2 incident signal probe (thick
red line). This is the signal that is applied to resonator 2, and shows the bandwidth re-
duction effects of the first resonator. That is, the thick red line shows that the incident
signal to resonator 2 does not have a flat frequency response, but is reduced outside the
bands of the filter. (The ringing on the signal is likely due to the way in which the

source impedance of the coupling network reacts with the coupling element used as a

& Refl.

Trans.

0.98 0.99 1 .00 7. 91 1 o 0.2
freq, GCHz

Figure 5-15: Transmission response (red) and reflection response (blue) from
the overall filter (thin lines), along with reflection from just before resonator 2
(thick blue) and incident signal to resonator 2 (thick red)

probe in the circuit). Also shown in figure 5-15 is the reflection signal from the input
to resonator 2 (thick blue line) including the effects of passing back through the copy of
the first coupling and resonator elements.

The reflection probe couples the signal off with -40 dB coupling to avoid affecting
the overall frequency response. This signal is then amplified to account for the cou-
pling loss, and finally, is passed through a network that is identical to the first inter-
stage coupling and first resonator. Thus, this signal represents the contribution of reso-
nators 2 to 5 of this filter on the overall S;; reflection, but does not include the contri-
bution from the first resonator. Adding in the extra circuitry provides for the same
band limiting and delay as that which occurs on the same reflection signal as measured
at S;;. This can be most easily understood by viewing this trace in the time-domain.

Figure 5-16 shows the time-domain transform of the Sy trace (blue) and the condi-
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Figure 5-16: Time-domain response of the S;; of the S-pole filter (blue) and of
the reflection from just before resonator 2 (red)

tioned reflection from resonator 2 (red). The time of the null for the second resonator is
offset by exactly the delay of the first resonator, as can be determined by calculating
the delay of only the filtering elements associated with the first resonator in the output
of the probe circuit.

Also, it is remarkable that past the second null in the blue trace in figure 5-16 (that
is, past the first null in the red trace), the two time-domain plots are identical. This
confirms that the red trace represents the reflection from the rest of the filter beyond the
first resonator, and that the circuitry added to the reflection probe properly conditions
the signal to represent the contribution of resonators 2 through 5 on the S;; response.
From this plot, the contribution of the resonators 2 through 5 (red trace) can be sub-
tracted from the overall S;; response to give the contribution of only the first resonator
to the overall Sy, response. Figure 5-17 shows the overall Sy, response (blue) and the
response created from subtracting the resonator 2 input response from the overall Sy,
response to give the response from only the first resonator (red), after shifting the sec-
ond resonator to account for 270 degrees of phase shift from the first resonator and
coupling.

Note that the red trace is nearly identical to that found in the previous section, figure
5-6, for a 1-pole resonator, and which has been shown to have a null that is propor-
tional to the tuning of the resonator center frequency (of course the delay is different as
it is scaled by the frequency span of the filter). This remarkable result indicates that the
time-domain response can truly separate individual resonator responses, for multi-pole

filters.
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Figure 5-17: Time-domain transform of overall S;; (blue) and from only the
first resonator (red) found by subtraction of the two traces in figure 5-16.

The technique to display this individual resonator response can be repeated for each
additional resonator in the filter to demonstrate the individual response of each. Some
observations on these plots are appropriate. Notice that the first resonator null does not
land exactly at the same time point as the overall S;; response. This is easily under-
stood by recognizing that the overall response also contains some portion of a real sig-
nal from the reflection of resonators 2 to 5 occurring at the same time as the null asso-
ciated with the overall response of S;;. This causes an apparent shift in the null of the
overall response from that of the single resonator response. This also may account for
why the resonator null associated with the first resonator sometimes appears just before
the =0 axis.

Also note that these nulls will not be deep if the resonator associated with the null is
not properly tuned, as that will yield an imaginary portion which cannot be cancelled
out by the real response that occurs from the windowed delta function as shown in fig-
ure 5-13 of the previous section.

This also demonstrates why there appears some interactive effect of one resonator
tuning on another. The interactive effect can arise from insufficient bandwidth on the
frequency response measurement, which will result in a spreading of the time-domain
transform, causing the imaginary part of one resonator to land in the region of a null
associated with a different resonator. An additional cause of interaction is due to the
shift in the center frequency of the signal applied to the second and subsequent resona-

tors. To illustrate this interactive effect, the capacitor on the first resonator of the filter
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from figure 5-14 was adjusted up by 1%. The resulting frequency is shown in figures

5-18, and time-domain in figure 5-19.
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Figure 5-18: Frequency response of a 5 pole filter with the first capacitor mis-
tuned 1%, S,; (thin red), Sq; (thin blue), and the input to resonator 2 (thick red)
and the reflection from resonators 2-5 (thick blue).

Note from figure 5-18 that while the frequency response of the input reflection, Sy,
(thin blue line) is dramatically degraded (to only about -5 dB), the response of the re-
flection to the second resonator (thick blue line) is substantially unchanged in the pass
band when compared to figure 5-15. The input to the second resonator (the thick red
line) is tuned lower in frequency, resulting in more signal below the pass band center
incident on the second resonator, causing a higher reflection in the stop band below the

center frequency than in the tuned case. Presumably, this may result in the center fre-
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Figure 5-19: Time-domain response of Sy (thin blue line), r.eflecfion from reso-
nators 2-5 (red), and calculated first resonator response (thick, light blue).
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quency of he second resonator appearing higher than it really is. This effect will be ex-

plored further in the next chapter.

The time-domain response of the mistuned filter shows all the nulls have nearly dis-
appeared (thin blue trace, figure 5-19). The response from input to the second resona-
tor (thin red line) also shows the nulls associated with the second resonator have been
apparently reduced. Subtracting this reflection response from the overall Si) response
yields the response expected from only the first resonator, mistuned, as though it were
terminated in the reference impedance (thick blue line). This is very similar to the plot
of the mistuned single resonator response as described by figure 5-7 (ri ght). In another
simulation experiment, the filter was terminated after the first resonator, and the time-
domain response obtained was found to be identical to the calculated time-domain re-
sponse of figure 5-19 (thick blue line), confirming that this simulation technique does
properly render the response of individual resonators even when they are not properly
tuned.

A similar experiment was performed on the input to resonator 3, using simulation
and inter-stage probes to characterize the input reflection response at resonator 3. This
response was subtracted from the overall S;; input to produce a signal that corresponds
to only the reflection of the first two resonators. Further, the response from the first
resonator, as calculated above was also subtracted to produce a response that corre-
sponds to the reflection from only the second resonator, as shown in figure 5-20 below.
The response of the second resonator has two nulls: the first is due to the frequency of
just the second resonator, and the second null is likely due to the reflection and re-

reflection of the signal off of the first resonator. Note that the second resonator time
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Figure 5-20: The calculated time-domain return loss of only the second resona-
tor (red) and the overall S11 (blue)
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response is considerably spread out due to the filtering of the first stage, and the nar-
rower bandwidth of the associated coupling, when compared to the S11 trace, but is

quite similar to the null associated with the second resonator found in figure 5-16 (red

trace).

5.4 Conclusions

A closed form analysis has been presented for a 1-pole filter, and has shown for the
first time that a deep null must appear in the VNA time-domain transform when the fil-
ter is tuned to the center frequency of the VNA, and that the null disappears in propor-
tion to the amount of mistuning of the resonator. Further, it has been demonstrated that
the case of a multi-pole filter can be reduced to cascaded 1-pole filters, such that the
time-domain response of the multi-pole filter is a sum of responses of 1-pole filters, and
as such, the nulls in the time-domain response of a multi-pole filter should be associ-
ated with each resonator in turn, and that the nulls are separated in time by a delay that
is essentially the delay of each individual 1-pole response.

From these simulations and analysis it is clear that the nulls in the time-domain are
directly related to the tuning of the associated resonators. The experiments in chapter 4
indicate a tuning method that depends upon tuning each resonator for a deep null. There
is no way to determine from the tuning method whether a resonator is tuned too high in
frequency or too low in frequency. However, the results of figure 5-19 suggest a new
idea for determining the frequency of individual resonators. In this figure, constructed
by sampling the signal after resonator 1 and subtracting it from the overall Sy, the time
response of only resonator 1 is displayed. From this, taking the forward transform of
this response should yield the single resonator frequency response of resonator 1. Of
course, it is not practical to sample the internal signals or real-world filters, but consid-
ering the discussion in chapter 3 on time-domain gating, a new technique for isolating

the individual resonators is suggested, and is developed fully in the next chapter.
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Chapter 6 The Time-Domain Gated Response of Filters.

While the time-domain response has clear application in the tuning of filters, the
practical application of interpreting the response has limits. For example, while the
tuning of an individual resonator can be identified, it is not clear from the time-domain
response alone whether the resonator is too high or too low in frequency. For filters
such as filters with cross coupling, where the apparent frequency of resonators may not
all be at the same frequency, resetting of the VNA center frequency for each resonator

is required to apply the methods developed. The investigation described below devel-

ops a new method that overcomes these limitations.

6.1 Time-domain gated response of filters

Since individual resonators appear to be associated with specific nulls in the time-
domain, it may be possible to isolate the individual responses of these resonators. To
investigate this, concepts of time-domain gating from chapter 3 are combined the rela-
tionship between a time null and frequency shift described in section 5.2 in an experi-
ment on a 5-pole band-pass filter. The time-domain response of this filter is shown in
figure 6-1 (blue) along with a gated time-domain response (red), where the start and
stop gates are set to the peak just before and just after the null associated with the sec-
ond resonator. The time-gated response of figure 6-1 is similar to the impulse response

for a 1-pole filter, as shown in figure 5-6.
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Figure 6-1 Time-domain response of a 5-pole filter without gating (blue); and with
gating (red)
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Figure 6-2 shows the frequency response of the filter, with time gating off (blue) and

gating on (red). The time-gated response shows a single null exactly centered at the
filter center frequency. Again, this is similar to the frequency response one would ex-

pect from a 1-pole network.
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Figure 6-2 Frequency response of a 5-pole filter (blue), and with gating of resona-
tor 2 (red)

Next, resonators 2 and 4 of the filter were mistuned lower, and the time-domain re-
sponse was observed as shown in Figure 6-3 with the time gate still applied to resonator
2. The response shows the null associated with the second resonator is not deep, which
1s evidence in the time-domain that the second resonator is mistuned. Note that the

gated response resembles the response of a shifted 1-pole filter (figure 5-7, right).
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Figure 6-3 Time-domain response of a mistuned 5-pole filter (blue) and with gat-
ing of resonator 2 (red)



128

Figure 6-4 shows the frequency response of the mistuned filter with gating (red) and
without gating (blue) applied. The gated response associated with the second resonator
shows the resonator tuned low in frequency. Unlike the time-domain response, it is

clear from the gated frequency response that the resonator is low in frequency, and by

what amount.
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Figure 6-4 Frequency response of a mistuned 5-pole filter (blue) and with gating
of resonator 2 (red)

The gated time-response is similar to the response seen in section 5-2, where a direct
relationship between the frequency shift of a 1-pole response and the depth of the null
in the time-domain is demonstrated. Figure 6-5 shows the result of applying the gate
function individually to the time nulls associated with each resonator, and overlaying

the resulting gated frequency responses on a single plot. Itis clear that one can discern
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Figure 6-5 Gated frequency response of 4 resonators, overlaid.
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an equivalent resonator frequency for each resonator. Note that even though only reso-
nators 2 and 4 were mistuned (both tuned low in frequency), resonator 3, and to a lesser
extent, resonator 1, both appear to be shifted up in frequency. This interactive effect
will be quantified below.

The effectiveness of tuning a filter utilizing the time-gated response is demonstrated
by sequentially tuning each resonator to move its gated frequency response to the cen-
ter of the VNA display. Figure 6-6 shows the response after tuning resonator 2 to be
centered on the VNA display. From this display it is the apparent that effect of a mis-
tuning resonator 2 on the shift of resonator 3 is diminished, and the shift of resonator 1
is eliminated entirely. That is, as resonator 2 is tuned to bring the frequency response
associated with resonator 2 in the figure 6-6 closer to the center frequency, the response

associated with resonator 3 also moves closer to the center frequency.
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Figure 6-6 Gated frequency response, after tuning resonator 2

These interactive effects are observed in resonator 3, and to a lesser extent, resonator
1. Resonator 3 appears to be mistuned high in frequency, even though it is known a-
priori that only resonators 2 and 4 have been mistuned. These interactive effects
caused by the mistuning adjacent sections, are anticipated by the results of section 5.3,
and are further examined in the next section.

Finally, resonator 4 is tuned to be centered on the VNA center, figure 6-7, and after
this tuning, the apparent frequency of resonator 3 1s also on the VNA center frequency.
The frequency response of the filter thus tuned is identical to that of figure 6-2, demon-
strating that tuning the gated response of individual filter resonators is an effective way

to tune filters. This method has not been previously published in any journal, though
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patents have been applied for and granted based on this idea of time-domain gating tun-

ing methods [85,86].
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Figure 6-7 Gated frequency response with all resonators tuned.

6.2 Understanding interactive effects

The development of this time-gated tuning method establishes a very simple way to
evaluate the frequency of individual resonators in a coupled resonator filter. This
method 1s found to be quite useful in tuning all-pole filters of high order, but as with
the time domain tuning method of chapter 4, the tuning effectiveness suffers by the in-
teractive effects that one resonator’s tuning has on other resonators. These interaction
effects may be investigated using the techniques of chapter 5.3 combined with the time-
gating techniques presented above and the time-domain gate masking effects described
in chapter 3, to come to a new explanation of the interactive effects. Reducing the in-
teraction effects promises to reduce the number of tuning passes required to align fil-

ters.

6.2.1 Using probing and simulation to evaluate interaction compensation

The interactive effects of tuning one resonator on the apparent frequency of an adja-
cent resonator can be better understood by evaluating the responses seen in figures 5-
18, 5-19 and 5-20, and comparing them to the gated responses as described in the sec-
tion above. Figure 6-8 shows the frequency response of the reflection off the second
resonator of the filter from figure 5-14, with the CI mistuned high, thus mistuning
resonator 1. The response of the input reflection to resonator 2 (thick red) is overlaid

along with a “normalizing” function (thin blue), and a response where the mistuned re-
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sponse is normalized (thick blue). The normalizing function is created by taking the
square of ratio of the transmitted signal incident to resonator 2 (see figure 5-15, thick-
red) in the tuned case and the signal incident to resonator 2 in the mistuned case (see
figure 5-18, thick red). The ratio must be squared to account for the fact that the re-
sponse is shifted due to the incident signal changing from the mistuned filter case as it
passes through the first resonator, as well as the reflected signal which passes back
through the first resonator as it is reflected off resonator two.

This normalizing function is anticipated from the discussion of gating compensation,
particularly equation (3.46) and recognizing that 1—‘1“2\ represents the square of the

transmitted signal, from equation (2.20). Note that the normalized resonator 2 reflec-
tion response in figure 6-8 (thick blue) is a very close fit to the response seen in figure
5-15, indicating that the normalization is almost perfect. Of course, in practice it is not
possible to sense the signals used in the probing experiment, but the time-gate masking

compensation provides an alternative to probing the transmitted signals.
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Figure 6-8: Sy; at the input to resonator 2 for the mistuned filter (thic.k red), E}nd
after normalizing the trace (thick blue) The normalizing function (thin blue) is
created from the incident signals to resonator 2 for tuned and mistuned cases.

6.2.2 Appling time gating to verify resonator interaction effects

Time gating may be used with the frequency responses of figure 6-8 to show the ef-
fects of normalization on the time gated frequency response of resonator 2, as shown in
figure 6-9 below. These traces are the reflection response of resonators 2 through 3,
obtained by coupling off a portion of the reflection signal at resonator 2. The blue trace

on the left of figure 6-9 shows the response as it would appear if gating is applied to the
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Figure 6-9: Time-domain response of the mistuned filter resonator 2 reflection
(left, red) and normalized reflection (right, red) along with gated response (blue)

reflection response associated with resonator 2, while the red trace is the un-gated re-
sponse. The plot on the right shows the response after normalizing to account for the
differential signal loss caused by mistuning the first resonator. These plots show a re-
sponse much more similar to the time-domain response of the tuned filter, with resona-
tor 2 showing a deep null.

Finally, the time-gated frequency response of the two-gated signals is calculated, in
figure 6-10, below. In this figure, the gated frequency response of the input reflection
of resonator 2 is shown in the red trace, and the gated frequency response of the nor-
malized trace is shown in the blue trace. Clearly, the normalization results in a proper
reading of the frequency of resonator 2, when compared to the un-normalized response.

These experiments demonstrate that the apparent frequency of the time-gated reso-

nator response is affected by masking of the signal occurring from previous resonators.
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Figure 6-10: Gated frequency response, for a filter with resm?ator 1 mistuned,
of the input reflection from resonator 2 (red) and the normalized response from
resonator 2 (blue).
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An interesting area for future work might be applying more fully the de-masking tech-
niques of chapter 3 to the time-gated tuning method presented in this chapter. An al-

ternative method of accounting for these interactions is described in chapter 7.

6.3 Time gated tuning with cross-coupled filters.

This method of inferring the resonator frequency from the time gated frequency re-
sponse can be combined with the methods of tuning filters with transmission zeros (or
other arbitrary frequency responses), as described in section 4.3. As an example, the
time gating technique is applied to the filter shown in figure 4- . The individual gated
resonator responses are shown in the time-domain in figure 6-11. In this figure, the
thin black trace is the normal time-domain response of S;;; S, looks similar. Even
though the filter is properly tuned, it is clear that the second null, associated with the
second resonator, is not deep, indicating that the second resonator is not tuned exactly
to the center frequency of the VNA sweep. Gating can be applied to each null to de-

termine the resonator frequency. The thick red and thin blue traces represent the time-
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Figure 6-11: The time-domain response of a cross-coupled filter, with gating
applied to individual nulls associated with each resonator

gated response of Sy for the first resonator, and S»; for the last resonator, respectively.
The thick mauve and thin green traces represent the time-gated responses of Sy of the
second resonator, and S», of the third resonator, respectively. This plot shows one un-
gated trace, and four gated time-domain responses associated with each resonator.

With time-gating remaining on for each trace, the time-domain transform can be
turned off to show the gated frequency response of each of the four resonators, as

shown in figure 6-12. Note that the minimums of each trace closely approximate the
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resonator values determined in table 4-2. From this time-gated example, it is clear that
the need for changing VNA center frequencies for tuning the individual resonators is
eliminated. All that is required is to tune the individual resonators to the target values

as determined by applying time gating to a properly tuned reference filter.
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Figure 6-12: Time-gated frequency response of individual resonators for a

four-pole cross-coupled filter. The resonator values match closely to the values
determined in table 4-2.

6.4 Conclusions

With the conclusion of this chapter, the theoretical basis of the time-domain tuning
of filters has been established. Chapter 5 provided the theoretical basis for the reason
nulls are found in the time-domain response when a filter is properly tuned, and why
they disappear when it is not properly tuned. This chapter extends that result to estab-
lish the cause of interactions between resonators as they are tuned, and introduced a
remarkable new technique utilizing the time gating feature of VNAs applied to tuning
filters in a novel way. The technique of using the time-gated response as a solution for
determining filter characteristics, and thus providing a method for tuning resonators to
achieve a desired frequency response, is significant in its simplicity and its feasibility.
This provides the technological backbone for developing a software application for
semi-automated filter tuning. The details of extending the ideas presented in this chap-

ter into a practical software application are the topic of the next chapter.
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Chapter 7 Filter Tuning Software (FTS)

The ideas of chapters 4 through 6 suggest that filter tuning might be easily and de-
terministically accomplished using time-domain techniques. The problems of tuning
filters in a manufacturing environment include many difficulties not normally consid-
ered by a theoretical analysis of the problem of filter tuning, such as filters with interac-
tions between tuning elements, filters for which tuning elements cannot be made to
match the desired values, filters with non-ideal filter elements that exhibit loss and dis-
persion, and finally, filter tuning personnel that lack experience or education to fully
understand filter tuning processes. Despite these limitations, thousands of filters are
manufactured and tuned everyday, and there has been an ongoin g effort to automate the
filter tuning process, as indicated by recent workshops on Computer Aided Filter Tun-
ing [87]. This chapter presents the result of an effort to develop a commercial filter
tuning software application [88], first introduced in 2001 [89] (included as published
paper 5 at the end of this thesis), based substantially on the work of chapters 4, 5 and 6.

Throughout this chapter the tuning display of the filter tuning software application
(FTS), is shown as a way to capture the nature and current tuning state of the filter to be
tuned, referred to as the device-under-test (DUT). This display consists of a frequency
domain portion (typically in the upper third of the display), a time-domain portion
(typically in the middle) and a resonator indicator portion (typically in the lower por-
tion of the display). In the frequency and time displays, the target filter responses are
shown as dotted lines, and the current DUT responses are shown as solid lines. The
time domain displays also show the coupling markers, which are indicative of the time

gates for each resonator null, and the peak value used in determining coupling.

7.1 Creating the reference filter

The FTS application relies on two key principles from the chapters above: The
peaks of the time-domain response can be used to determine the coupling values of the
filter, and the time-gated frequency response, found by time-gating around each null,
can be used to determine the associated resonator frequency. From these two aspects of
the time-domain response of filters, a filter tuning method was developed.

The first step in the filter tuning method is to start with a properly tuned “golden” or
“reference” filter, the response of which is the target to which other filters are to be
tuned. From this reference filter, key points are taken to ensure proper characterization

in the time-domain.
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Figure 7-1 shows the set-up screen to start capturing the data for the reference filter.
The values in this screen are used to automatically set up the VNA for creating the
time-domain transform, and for picking the peak values for characterizing the nulls and
the peaks of the reference filter. If adjustable coupling is selected, the values of the
peaks are recorded. The center frequency is used to set the center of the VNA fre-
quency sweep, and frequency span is set to 5 times the bandwidth. The number of
resonators is used to determine the proper search for peaks, with the N/2 (IN+1]/2 for N
odd) peaks looked for on the S, side of the filter, and N/2-1 ([N-1]/2 for N odd) peaks
looked for on the Sy, side of the filter. The number of points is used to set the VNA to
provide a good compromise between measurement speed and frequency resolution.
Finally, the electrical delay setting is used to “normalize” the phase response when
phase measurements are made, providing a convenient display for characterizing devia-
tion from linear phase.

Once these values are set the software sweeps the VNA over the frequency span and
creates two time-domain plots, showing the peaks and nulls, and pre-setting the marker
values on the selected peaks, as shown in figure 7-2. Some practical considerations are

important to note here. The value of the Kaiser-Bessel £ factor, see equation (3.16),

controls the height of the side-lobes before the first peak. Marker 1 searches for the
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Figure 7-1: The reference filter setup dialog for the filter tuning software
(FTS)
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first -40 dB point in the time-domain trace, then starts the peak searches from there.
The peak search algorithms assume some minimum excursion to assign a valid peak,
thus reducing the effect of noise on finding false peaks. The dB values of the peaks are
recorded, and used as the target values for setting any adjustable couplings in the filter.
The time values of the peaks are used to set the time-domain gate start and gate stop for
applying the time gate to frequency response at each particular resonator. The gated
frequency response is calculated for each of the resonators, and recorded. One issue
addressed in the software, for commercial reasons, is concealing the use of time-
domain gating to determine the resonator frequencies, thus protecting the key intellec-
tual property described in chapter 6.

While this process is essentially automated, allowances are made for manually set-
ting the coupling peaks for both forward and reverse responses, in case there is some
unusual filter response that does not match the expected response of the peak search
algorithms.

Next, the values of the resonator frequencies are determined and displayed as shown

in figure 7-3, upper, and the coupling peak values are displayed as shown in figure 7-3

Pick Peaks: Coarse Stage e ; |

511 Measurement _HE’LJ
N St » .

T RRST s

If the displaved coupling markers are not properly placed, move marker 1 to
the left of the first coupling peak and press Re-compute Peaks, or move the Re-compute Peaks
coupling peak markers directly to their proper location and press Next.

< Back Cancel |

Figure 7-2: The peak values for the forward (upper) and reverse (lower)
time-domain responses are automatically selected, and recorded for the
reference filter.
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lower. Here one can see the tuning indicators. After much experimentation, these tun-
ing indicators were developed to have useful human interface attributes [90].

Primarily there is a tuning target represented by the centerline, and a tuning accep-
tance region, represented by the green zone. The tuning indicator is the blue bar, which
moves higher and lower as the resonator frequency is tuned higher and lower. If the
bar goes outside the acceptance region, the tuning bar turns red. There are also two
blue lines outside the green pass region that represent the linear portion of the tuning

indicator. In this region, the tuning indicator moves linearly with the resonator fre-
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Figure 7-3: Resonator target values (upper) and coupling peak. values
(lower) in the dialog boxes used to set the tuning indicator attributes
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quency or coupling peak. Outside this region, the tuning indicator follows a log type
movement, where the sensitivity becomes much less at the outside edges. This makes a
great deal of sense for a human operator, providing a real-time indication of the current
resonator frequency as it is being tuned. Often, the resonators must be tuned within a
small percentage of the overall measurement bandwidth. In such a case, it is sufficient
to know if the resonator is far above or far below the desired target. However, as the
resonator becomes tuned more closely to the target, it is advantages to increase the sen-
sitivity of the indicator. Finally, when the resonator is quite close, it is best to follow a

linear tuning function to avoid a hypersensitive region ri ght near the target.

7.2 Using FTS to adjust an un-tuned DUT filter

After a reference filter is measured and the values for the resonator targets (and cou-
plings, if adjustable) are captured, an un-tuned DUT filter is connected to the VNA, and
the filter tuning process is started with the software. Figure 7-4 shows the frequency
response (upper) and time-domain response of S;; and S, (middle) of an 8 pole DUT.
The lower portion shows the values of the resonators as determined by time-domain
gating the DUT filter response for each resonator, according to the peaks and nulls de-
termined during the capture of the reference filter. The complete first pass tuning proc-

ess, tuning one resonator at a time, is shown on the next page, figure 7-5.

' LogMag (dB) Trac

Ready z [EB35X VerzFW VNA Status: Inuse  Dynamc Peak Search OFf 7|

Figure 7-4: An un-tuned filter, showing the frequency response (upper), and
S11 and S;; time-domain response (middle). The lower port19n shows the
value of the resonators as extracted by the time gating technique.
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Figure 7-5: Tuning the filter,
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After the first pass through the filter, the filter shape is approximately correct, but the
return loss is not nearly as good as the target filter. From figure 7-5, one can see that
during the first pass through tuning the filter, tuning each resonator has a significant
effect on the adjacent resonators.  Also note the direction of interaction: the adjacent
resonator indicators always move in the opposite direction from the resonator being
tuned, though it is difficult to see the effect if the adjacent resonator is also tuned far off
frequency. For example, when resonator 1 (R1) is tuned (top, left plot), resonator 2
(R2) indicator shows that it is too high in frequency (top, left plot). When R2 is tuned
lower (top, right plot), the indicator for R1 goes up, as well as the indictor for resonator
3 (R3). But R3 is so far low in frequency that the indicator barely moves, being in the
non-linear region of the tuning indicator. For each plot, the resonator that was tuned is
the one that appears as a blue indicator, centered on the target value.

There are some alternative choices in tuning procedures, for example, one might
tune R1, then R2, then return to R1 to re-tune it until the tuning indicator shows that it
is tuned, then return to R2 to retune it again in turn. Experience has shown that the in-
teractive effects of one resonator on another diminish as the resonators become closer
to being tuned. In the next section, the resonator interactions will be discussed exten-
sively. Next R3 might be tuned, and R2 re-tuned until its indicator is centered. But,
retuning R2 will cause the indicators for R3 and R1 to show these resonators are not
tuned as well. Thus, the method of re-tuning each resonator after the adjacent one is
tuned causes many iterations of tuning each resonator. Practically, it takes a great deal
more time to change resonator (moving the screwdriver, engaging in the drive in the
screw head) than the time it takes to tune resonators. Thus, tuning each resonator in
turn, without re-adjusting the preceding resonators has proven to be a good technique to
minimize tuning time.

One aspect of the tuning that might be a better choice than that shown in figure 7-5
would be to tune the resonators in a different order, one from outside to inside. Thus,
an order that is R1, R8, R2, R7, R3, R6, R4, RS might be optimum. This is because if
resonators 6, 7 and 8 are tuned far off, the tuning of resonator 5 might be more greatly
affected than if the resonators 6, 7 and 8 are somewhat tuned first.

A second pass of tuning was performed on the filter, with the results shown in figure
7-6. The tuning proceeded from R1 to R8 in order, with the end result being a nearly
tuned filter, and three of the eight resonator indicators showing that the resonators are
tuned. It is interesting to note that both R1 and R8 are tuned, as they are least suscepti-

ble to interactive effects (they have no masking due to other resonators).
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Figure 7-6: Second pass tuning of 8-pole filter, tuning resonators R1-R8, in or-
der, from left to right, top to bottom. Note that more of the indicators remain
acceptably tuned (blue indicators) as the filter resonators are tuned.
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At the end of the second pass of tuning, the pass-band S, shape is nearly the same
as the target filter, but the return loss shape is not quite the same as the target filter.
Another pass of tuning is required. In this third round of tuning, figure 7-7, R1 does
not need to be tuned (top-left plot, which is the same as bottom-ri ght of figure 7-6), so
tuning starts with R2 (figure 7-7, top-right). When R2 is tuned, the indicator for R3
also moves, and shows that it is tuned, so no tuning is done on R3 for this pass. How-
ever, when R4 is tuned down, R3 indicator moves back up, showing that R3 is not quite

tuned. This continues for R5, and R6. R7 shows indicator shows that it is tuned until

R6 is tuned. After R6 is tuned, the indicator for R7 shows red, so R7 is also tuned, and
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Figure 7-7: Third pass tuning, only R2 (top right), R4, RS., R6 and R7 a;e6ad-
justed this time. Top left plot is the same as the bottom right of figure 7-6.
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since R8 indicator shows that it is tuned, the third pass of tuning the filter is completed.
At the end of this pass, five of the eight resonators show tuned. The filter return loss is
very nearly the same as the target filter, with only a slight discrepancy on the slope of
the return loss trace. In a production setting, this tuning would probably be adequate.
For this example, a fourth and final tuning pass was performed, as shown in figure 7-8.
The upper-left plot is the starting point, and R3 was tuned, which also brought R4 into
tune (upper-right). When RS is tuned up, the R4 indicator shows R4 apparently mov-

ing down, out-of-tune (lower-left). A final tuning of R4 brings all resonators into tune.
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3, RS and then R4 are final tuned.

i
Figure 7-8: Fourth pass of tuning. Resonators

The preceding tuning process indicates that the tuning of all-poles filters can be de-
terministically accomplished using the time-gated frequency response as displayed by
the tuning indicators. It is also clear that there are substantial interactive effects be-
tween resonators, and it would be desirable to account for those effects to reduce the
number of iterations when tuning filters. These interactive effects are found to be much
more substantial when tuning filters with cross-coupled resonators, to the point of hav-
ing an adjustment of one resonator affect another resonator more than the one being
adjusted. Note that this filter is not quite perfectly tuned, as the final DUT response is

not identical to the target response, and some of the resonators are slightly off target.
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7.3 Compensation for resonator interactions

The interactive effects that adjusting one resonator has on adjacent resonators in a
filter have been demonstrated in many of the examples presented thus far. The causes
of these interactions have been described, with theoretical explanations for two cases.
In the first case, the cause may be due to physical interaction, such as a tuning screw of
one resonator interacting with the fields of an adjacent resonator. In another case it
may be due to masking or reflection effects, where tuning one resonator up in fre-
quency causes the apparent signal applied to, or reflected from, another resonator to
appear to shift in frequency, as demonstrated in section 6.2. A practical method has
been developed as described below, which allows compensation of one resonator for
the effects of the other resonators, and is effective for whatever mechanism causes the

apparent interaction.

7.3.1 The compensation wizard

The first step in compensating for the interactions between resonator tuning ele-
ments 18 to characterize the interactions that occur. The FTS program version 1.3 and
greater has a “compensation wizard” which guides a user through a series of measure-
ments that are used to capture these interactive effects. The compensation wizard as-
sumes that one has access to a properly tuned filter, for which each of the resonators
can be adjusted. Figure 7-9 shows the dialog box that is guides the user.

E dit Compensation [ x) I

Help |

[ Dynamic Peak Seaich

R1 Please tune the indicator to the green area at the
top of the indicator

Set as Top I

S Hact J Pt J Cancel

Figure 7-9: The compensation wizard directs users to tune each resonator up
and down in frequency.
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The wizard is used on a reference filter, after the resonator target values have been
captured. This wizard guides the user to tune each resonator up and down in frequency,
by using one of the tuning indicators with an upper and lower target value. After the
user tunes the resonator up in frequency (by approximately half the bandwidth of the
filter), the wizard moves the tuning target down in frequency automatically, and indi-
cates to the user to tune the resonator down in frequency. After the resonator reaches
the lower target zone, the original target is restored and the user is prompted to return
the resonator to the original target value. During the tuning process, the apparent val-
ues of all the other resonators are recorded at several frequency intervals, from which
the change of the apparent frequency of each other resonator as a function of the appar-
ent frequency of the resonator being tuned is established.

The interactions between resonators are not exactly linear; they diminish as the
resonator being tuned varies widely from its target frequency. A linear region of the
function is chosen, and the slope of the apparent frequency of each of the resonators to
the apparent frequency of the resonator being tuned is determined. This is formed into

a resonator interaction matrix, or “compensation table” as shown in figure 7-10.

R1 R2 R3 R4 RS R6 R7 R§
RL 1 |-030703  |-0.020558  |0.079687  0.0012641  3.07156-005 -4.5722¢-005 '0.00018174
R2 015052 |l -0.35957  -0.378  -0.0096956 |0.00013343 1.8933s-005 -0.00032128
|R3 00035935 012827 1 -0.26045  0.067606  -0.0010192 8.2076e-005 0.00013265
[ré 00002975 N ‘0.0048249  -0.13698 1 029583 001345 -0.00018292 (0.00037397
RS o.oooiééé%' 0.00010857 0.01343¢  -0.3635¢ | 016161 0006082  -0.00014759
R6 .-4.1827e-005 9.4929e-006 -0.0013698  0.1163 024705 1 01524 [0.0066443
R7 -D.00013294 -4.5645e-005 000012208 0018991 03042 (029917 1 -0.19294
RE |4.757e-005 (65772006 -1.8138e-005 0.0033006  0.046695  -0.020961 -0.36239 1

Figure 7-10: The ""compensation table" which captures the apparent shift in
frequency of each resonator due to a shift in any other resonator

The table in figure 7-10 can be read as follows: the first row records the apparent
relative shift in frequency of resonators R2 through R8 which occurs for a unit shift in
resonator R1, holding all of the actual resonators R2 through R8 at their tuned (refer-
ence) position. For this row, the value of the shift of resonator 1 is determined by the
time-gated frequency response of resonator R1. After resonator 1 is returned to its
tuned position, resonator 2 is adjusted, and row 2 records the apparent shift of resona-
tors R1 and R3 through R8 for a shift of resonator R2. The frequency shift of R2 is de-
termined by the time-gated frequency response of R2. The rest of the table is filled out
in similar manner for all the other resonators. One key aspect of determining the values

in this table is to note that since none of the other resonators are mistuned when each
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row is created, the apparent shift in the resonator being adjusted is not obscured by off-
set values in any other resonator.

It is also interesting to note that the off-diagonal elements are not symmetric, but
rather the upper diagonal elements are larger for the first half of the filter (resonators
R1 through R4) and the lower half of the diagonal is larger for the second half of the
filter (R5 through R8). This can be understood by realizing that since the time-gated
evaluation of resonators R1 through R4 are evaluated from the S;; response, masking
of R2 through R4 will cause their apparent shift to be greater. That is, tuning R1 up in
frequency causes a greater apparent shift in R2 when compared to tuning R2 up in fre-
quency, and looking at the effect on R1. Thus, the interaction matrix includes both real
interaction effects, such as from interactions of tuning screws, and apparent interaction
effects due to masking as described in chapter 3. A similar argument holds for resona-
tors RS through R8.

The values of this matrix can be utilized to compensate for apparent shifts in fre-
quency of one resonator due to actual frequency shifts in other resonators. Consider the
system of linear equations:

Afy' = 1-8f; + Cdfy + Ciafy +--Ciy By
Afy = Culdfy+ 1-Afy + Clfy +---Coyfy 7.1)
Afy = Cinildfy + CrpAfy + Cufy +--- 1- By

where Af},Af,,---Afy are the difference between the actual frequency of the resonators

and their respective target frequencies, and Afl*,Af;,---Af; are the difference between

the apparent frequency of the resonators as determined by the time-gated frequency re-

sponse method and their respective target frequency. This can be written in matrix

form as
Af 1 C, - Cy)(M
M| |Cu L G| B (72)
Af; Cvi Cy2 1 Ay

where the matrix with the C,,, coefficients is called the compensation matrix. One can

see that for the case of a properly tuned filter, all the values Af,, Af,,-++ Ofy are zero, as

are all the values of Af.,Af,,--Afy . When the compensation wizard directs the op-
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erator to adjust one of the resonators in frequency, then only the column associated

with that resonator is not zero, as in the case of resonator R,:

A = 1-0+ Cy3-0---+C,Af, +---Cpy -0
Afn*=Cn1'0+ an'O”’+ 1.Af;l +"‘C2N'O (7'3)

Af; =Cy 0+ Cyy 0.+ CyAf, +---1-0

resulting in the simple column matrix

*

Afl 1 o G o Cly 0
wil-e <1 el
Af; Ciy + Cy - 1 0
or
M) (Cud,
A.fn* = .I-Af,, (7.5)
Af; CNn.'Afn
Thus, C,,, =Af, / Af, , for any resonator R,,, whose apparent frequency shift from

*

the target frequency is Af, , given a change in resonator R, of frequency Af,, with all

m?

other resonators at their respective target frequency. From this it is easy to see that the
compensation matrix coefficients can be determined by taking each row of the compen-
sation table of figure 7-10 and transposing it to become the respective column of the
compensation matrix in equation (7.2).

Once the compensation matrix is determined, the actual values of the shift from tar-

get frequency of any resonator may be determined, given the inverse of the compensa-

tion matrix and the apparent frequencies of all the other resonators, Af, as

*

Af, 1 ¢, — CwY [M
My| [Ca 1 G| |8f (1.6)

*

AfN Cyy Cyy 1 Afy
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The compensation matrix can be inverted one time, as part of the compensation wizard,
and values Af},Af,,--Af), can be determined during the real-time measurements of the

filter through a simple matrix multiplication. This compensation method was added to
the FTS application after revision 1.3, and provides a remarkable improvement in us-
ability, as is demonstrated on the 8-pole filter used in the tuning example above [91].
One can see the effect of using the compensation matrix on an actual filter, by study-
ing the effect of mistuning only one resonator. Figure 7-11 shows the filter from fi gure
7-9, with only resonator R2 mistuned (left). Here it is clear that the apparent frequen-
cies of R1, R3 and R4 are affected. Also shown in figure 7-9 (right) are the tuning in-
dicators with the compensation matrix applied. Here, the compensation is applied to

the target for resonators R1, R3 and R4, adjusting the target lower to show that the re-

spective resonators are still properly tuned.

Figure 7-11: FTS display with only resonator R2 mistuned (left), and same condi-
tion but with the compensation matrix applied to the tuning indicators (right)

There are several formats that might be used to account for the compensation in the
apparent frequency. One choice is to display the calculated actual frequency, thus leav-
ing the targets in the center. The choice above is to shift the target by the amount of
change between the actual resonator frequency and the apparent resonator frequency.
Some people find this display pleasing as it gives a visual indication of when compen-
sation is affecting the target frequency, particularly since the compensation curves are
not completely linear, and the compensation may not be correct in instances where the
a resonator is very far from its target frequency.

Figure 7-12 shows the FTS dialog box that allows the user to choose the option for
displaying the compensation effects. Other choices include setting the target value al-
ways in the center, or moving the target value, but limiting the region over which it can

move. Keeping the target always in the center is perhaps a good choice for an unskilled
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Indicator Style l

Pick which type of indicator Help I

to use during compensation

— Indicator Style —
Compensation Applied to Measured Value

" Target always in Center E

Compensation Applied to T arget Value
" Target and Passband move across full range of indicator
(¢ Target and Passband move across linear range of indicator

T arget and Passband move across full range of indicator.
Passband maintains same percentage of indicator

OK Cancel J Appiv

Figure 7-12: Dialog box for setting the appearance of the compensation effect on
the resonator indicators

operator, but it can sometimes be confusing if the filter is tuned far off. In such a case,
the target values may be over compensated, and the tuning indicators will not operate
correctly. However, if the target value is moved off the center, then it is clear that sub-
stantial compensation is being applied, giving a clue to the operator that the filter may
be tuned far enough away from the target to make the tuning method less effective.

The options for moving the target value include moving it over the entire range, in
which case the apparent acceptance region shrinks as it moves out of the linear portion
of the indicator display. The second, preset option moves the target value in the linear
region, but maintains the target always in the linear region, and if the compensation is
greater than that, the target is held at the edge of the linear region, and the tuning bar
value is compensated. Finally, the target value may move over the entire range of the
indicator, with the acceptance band maintaining a constant visual size, so that the ac-
ceptance region becomes larger as the target moves farther from the center region.

A second example of the compensation effect is shown in figure 7-13. Here, only
resonator 4 is mistuned. In this case, only the two adjacent resonators are affected.
Again, the plot on the left is without compensation, and the plot on the right is with
compensation. This is a particularly interesting case, as the interactive effect of resona-
tor R4 on RS cannot be from masking, as the apparent value for frequency of RS is
taken from an S,, measurement, while the R1 through R4 frequencies are taken from an
S\, measurement. Clearly, compensation works very well in maintaining the proper

targets for other resonators when only one resonator is tuned off frequency, but a real-
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world tuning application would see all the resonators off frequency at the start of the

tuning process. In the next section, the 8-pole filter used throuchout this chapter is

completely tuned using the compensation matrix.

Figure 7-13: FTS display with only<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>