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Abstract 

The expanding scale of 3D hominid fossils and archaeological artefacts have 

encouraged a growing use of rigorous scientific study to reveal mechanisms of human 

evolution and understand human activities and behaviour. Often statistical analysis and 

visualisation methods, e.g. geometric morphometrics, are applied to obtain what may 

appear to be reliable findings. However, owing to the diversity and complexity of research 

materials and questions, off-the-shelf methods may not work well. Thus, there are some 

important considerations that need to be borne in mind regarding the interdisciplinary 

study, and innovative approaches are required to enhance performance. 

There are multiple challenges that I have addressed. First, three different 

semilandmarking approaches on morphometric analyses and visualisation of mean and 

allometrically scaled surfaces are assessed. These approaches produce different 

semilandmark locations, which in turn lead to different results, although non-rigid 

approaches are broadly consistent. My second concern is about virtual restoration by 

means of reflection. A landmark-free method is presented to quantify gross and regional 

surface asymmetry, and then a landmark-based deformation method is developed to 

compute geometric models of missing data with the predicted boundary curve as a 

constraint. Finally, I explore craniofacial relationships between hard and soft tissues 

among modern humans, and develop computerised methods to recreate probable faces of 

archaic humans and Homo sapiens based on the learnt relationships. Results suggest 

average dense facial soft tissue thickness depths contribute to enhancing the 

approximation accuracy. Although nasal (and oral) hard tissues have an effect on the 

corresponding soft tissues, some caution is needed when approximating soft tissue 

structures.  

Overall, this thesis makes contributions within the field of virtual anthropology and 

archaeology. I examine the effect of semilandmarking approaches on geometric 

morphometrics, and develop new methods for asymmetry detection, virtual restoration 

and facial approximation. These proposed methods have been applied to different case 

studies. 
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Chapter 1 Introduction 

Physical anthropologists and archaeologists try to make sense of human evolution 

and history by observing and analysing its tangible remains (e.g. fossil specimens and 

artefacts). Examples of particular interest include the examination of morphological 

variation and taxonomic classification of hominid fossils (Hershkovitz et al., 2021) 

(Lacruz et al., 2019), and modelling and simulation of human activities and behaviour 

(Brooks et al., 2018; Dolbunova et al., 2022). The expanding scale of fossils and artefacts 

has encouraged a growing use of a computational methods to understand variation and 

the factors that contribute to it, minimising subjective interpretation and 

misunderstanding. The underpinning idea is to translate the research question at hand into 

a geometric or statistical question. For example, traditional morphometric methods are 

applied to make quantitative comparisons of organismal form in the study of 

morphological variations based on the statistical analysis of a set of measurements (e.g. 

distances, angles and ratios) (Harvati et al., 2011; Roth & Mercer, 2000). However, such 

measurements tend to capture limited detailed information and statistical methods alone 

cannot provide the graphical representation to improve understanding of shape variations. 

A more powerful statistical analysis method in conjunction with visualisation is desirable. 

The past thirty years witnessed the fast development of the acquisition of digital (or 

virtual) specimens and artefacts through non-contact measurement techniques, such as 

laser scanning, photogrammetry and medical imaging techniques (Davies et al., 2017; 

Falkingham et al., 2018; Ruiz et al., 2021). Such techniques can create a large collection 

of digital models to access, reuse and analyse the archaeological and anthropological 

materials flexibly and easily, thereby revolutionising conventional studies. One of 

particular interest is virtual anthropology (or virtual morphology) that provides innovative 

tools as well as software and methods to quantify shape and size variations and study 

morphology (Recheis et al., 1999; Weber, 2015). Generally, it includes six main areas: 

exposure of internal structures, comparison of shapes and forms, reconstruction, 

materialization of digital specimens, and sharing data (Weber, 2015). Often the related 

concepts, techniques and tools can also contribute to the research and application in 

an archaeological context when artefacts are used instead of fossil specimens (Okumura 

& Araujo, 2019; Weber, 2014). 

Digital resources, tools and quantitative methods facilitate academic research and 

practical applications in both Archaeology and Anthropology, thereby promoting an 

understanding of the materials. However, owing to the diversity and complexity of data 

and research questions, generalised computational methods may not work well. 

Inappropriate methods probably reduce the scientific rigour and might hinder 

understanding of the analytical results. Thus, innovative scientific techniques and 
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methods must be developed and applied to discover new knowledge and get new research 

findings. This chapter first introduces the general background of the most commonly used 

methods and some of their applications in Anthropology and Archaeology, and then 

introduces the research aims and questions, the structure of the thesis and its scientific 

contribution. 

1.1 General background and problem statement 

1.1.1 Geometric morphometrics 

Landmarks refer to discrete points which are in some sense equivalent among 

biological structures, taking into account anatomical, developmental, biomechanical or 

evolutionary knowledge (Bookstein, 1991). Using landmark coordinates reflecting the 

shape and form (shape plus size) of physical specimens, geometric morphometric 

methods are regularly employed to quantify shape and size variations and visually 

interpret morphological variations, revolutionising conventional morphometrical studies 

(Adams et al., 2004; Bastir et al., 2019; Mitteroecker & Gunz, 2009; O'Higgins, 2000; 

Theska et al., 2020; Viscosi & Cardini, 2011). However, few homologous landmarks can 

be identified from biological structures, especially in the smooth regions, such as the 

cranium vault and tooth crown. To address this problem, several equivalent point 

correspondences (called semilandmarks) are generated to describe the detailed and rich 

information. It is important to note that the establishment of semilandmarks relies 

primarily on mathematical mapping algorithms based on topographic features rather than 

developmental or evolutionary equivalences. In practice, sliding approaches that 

minimise the bending energy of Thin plate-splines (TPS) or Procrustes distance, a 

measure of the absolute magnitude of shape difference, are carried out to yield sliding 

semilandmarks over curves or surface regions between landmarks (Gunz & Mitteroecker, 

2013; Perez et al., 2006). Recently, a practical guide and a range of solutions have been 

provided to help researchers place sliding semilandmarks during data collection (Bardua 

et al., 2019). It should be noted that landmarks are reliable and respect homologies as far 

as they can be identified, while semilandmarks may add uncertainties or errors in 

subsequent morphometric analysis (Cardini, 2020). 

After obtaining the digital models of specimens, the first step of a geometric 

morphometric analysis is to select and design a landmark (and semilandmark) 

configuration with regard to the research question at hand (Oxnard & O’Higgins, 2009). 

Because landmarks are frequently scant and cannot capture rich shape information, high-

density semilandmarks are often used to promote the quantification of morphological 

shape (Bardua et al., 2019). Subsequently, General Procrustes Analysis (GPA) is applied 

to the landmark and semilandmark configurations among specimens, removing the non-

shape variation (e.g. location, orientation and scaling) (Mitteroecker et al., 2013). After 

completing the superimposition, Procrustes shape coordinates of every specimen are 
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projected into the Kendall’s shape space, which is a multidimensional Riemannian space 

with points in the space representing the shapes of specimens (Mitteroecker & Gunz, 

2009).Afterwards, Procrustes distance matrices can be analysed to assess the shape 

differences. Next, multivariate statistical methods, such as principal component analysis 

(PCA), two-block partial least squares analysis (PLS), multivariate regression, 

multivariate analysis of variance (MANOVA), and clustering, are used to perform 

statistical analysis with regard to the research question (Mitteroecker & Schaefer, 2022). 

Finally, TPS transformation grids or surface warps facilitate visual interpretation of the 

patterns of shape variation of mean and allometrically scaled shapes and quantifying the 

shape changes (Bookstein, 1989; Klingenberg, 2013). Alternatively, other visualisation 

techniques (e.g. colour maps between the reference and target surfaces, lollipops, etc.) are 

implemented to understand the underlying shape variations. It is worth mentioning that 

the locations of semilandmarks cannot be singly interpreted (Bastir et al., 2019; 

Mitteroecker & Schaefer, 2022; Oxnard & O’Higgins, 2009). 

Archaeological artefacts as a living witness of significant cultures and human values 

are an important form of tangible cultural heritage. They provide reliable historic 

evidence for examining the past organization of human societies and 

historical manufacturing capacities (McNabb et al., 2018; Saragusti et al., 1998). For 

example, artefact tool typologies facilitate understanding of human and early human 

cognitive development, and cultural transmission processes (Herzlinger et al., 2017). In 

similar applications in biology and anthropology, several previous studies have often 

employed the concept and general process of geometric morphometrics to assess 

archaeological artefact groups (Thulman, 2012) and quantify morphological difference 

between tools (Hashemi et al., 2021; Lycett et al., 2010). However, the definition and 

design of landmark and semilandmarks are problematic because the concept of 

developmental or evolutionary homology does not apply to artefacts, unlike landmarks 

among biological fossil specimens (Okumura & Araujo, 2019). Often equally spaced 

semilandmarks are placed over artefacts to capture geometric information (García-

Medrano et al., 2020; Herzlinger & Grosman, 2018).  

Geometric morphometrics is a set of powerful visual statistical tools to quantify 

shape variations, regularly applied among human fossils (Cui & Wu, 2015; Mori et al., 

2020; Torres-Tamayo et al., 2020) and artefacts (Archer et al., 2018; Serwatka, 2015), 

Several software packages are available, such as morphologika (O'Higgins & Jones, 

1998), IDAV Landmark Editor (Wiley et al., 2005), EVAN Toolbox (www.evan-

society.org), MorphoJ (Klingenberg, 2011), the Thin-plate spline (TPS) series (Rohlf, 

2015), SlicerMorph (Rolfe et al., 2021), and R packages, e.g. geomorph and Morpho 

(Adams & Otárola‐Castillo, 2013; Schlager, 2017) to carry out geometric morphometric 

analyses. However, the definition of an appropriate landmark and semilandmark 
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configuration with regard to the research question is the prerequisite step. It is an 

important task to examine the effects of using different semilandmarking approaches and 

densities of semilandmarks on morphometric analyses and visualisations. Understanding 

these effects can assist researchers to design reliable and appropriate configurations with 

regard to a specific question. 

1.1.2 Different applications 

The geometric morphometric toolkit has wide applications in Anthropology and 

Archaeology (Archer et al., 2018; Bastir et al., 2019; Mitteroecker & Schaefer, 2022). 

Examples include asymmetry surface detection (Melchionna et al., 2021), virtual 

restoration of damaged fossils and artefacts (Gunz et al., 2009; Lautenschlager, 2016), 

and examination of the relationships between hard and soft tissues in conjunction with 

facial approximation (Guyomarc'h et al., 2014; Malá et al., 2018).  

1.1.2.1 Asymmetry detection 

Bilaterally symmetrical objects represent a large and important proportion of 

archaeological artefacts and biological objects. Asymmetry detection provides 

considerable guidance and reliable evidence to allow experts to examine 

historical manufacturing capacities (McNabb et al., 2018), repair damaged artefacts (Jo 

et al., 2020; Profico et al., 2019), evaluate human developmental variability and 

instability (Hou & Fagan, 2021), and perceive the evolution of human cognition (Wynn, 

2002). Geometric morphometrics is the preferred way of quantifying asymmetry among 

a collection of samples (McGrath et al., 2022; Neubauer et al., 2020). In this process, GPA 

and PCA are applied to symmetric components comprising the original and mirrored 

landmark configurations, and asymmetric components including differences of the 

original configuration from the symmetric averages, separately. Then, asymmetry can be 

detected and visualised using geometric morphometric and multivariate statistical 

analyses.  

To quantify surface asymmetry of every specimen or artefact, the current method 

involves the comparison of geometric differences between the original and registered 

mirrored landmark configurations with regard to the plane of symmetry determined by 

the landmark configuration (Damstra et al., 2012). However, the locations of landmarks 

are primarily dependent upon the experts’ knowledge and visual perception, especially in 

the featureless and smooth regions. Thus, placement errors are inevitable and the choice 

of landmark configuration affects the subsequent results. To avoid landmark placements, 

a landmark-free morphometric approach is proposed to identify the plane of symmetry 

based on the mid-points of a full set of vertices between original and aligned mirrored 

meshes (Di Angelo et al., 2019; Noori et al., 2020). Then, the gross asymmetry is assessed 

by computing the Euclidean distance between the original and registered surfaces and the 
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colour map of distance of every vertex is used to recognise the regional asymmetry (Claes 

et al., 2011). However, the existing morphometric approach is influenced by missing data 

and shape distortion. New methods and tools are desirable to deal with these issues and 

to promote accuracy. 

1.1.2.2 Virtual restoration  

Human fossils are often discovered broken and exhibit missing anatomy, hence 

virtual restoration is an important and inevitable step towards subsequent analysis, e.g. to 

compare morphology (Davis et al., 2021) and in facial approximation of the dry skull 

(Hayes et al., 2013). Additionally, virtual restoration methods can facilitate computation 

of missing structures of the damaged artefacts and in producing physical models via 3D 

printing, avoiding physical intervention and secondary damage. Several factors, e.g. 

biological constraints and morphological integration (Gunz et al., 2009), require 

consideration when dealing with biological and anthropological specimens. Similarly, 

when recreating the geometry and texture of damaged artefacts, various aspects, such as 

geometrical constraints, decorative and cultural information, and artistic style, should be 

considered to ensure the accuracy of the restoration (Jo et al., 2020; Lanitis et al., 2012). 

In a situation where the damaged object exhibits bilateral symmetry and more than 

half of each object is perfectly preserved, reflection is a straightforward and reliable 

means for restoration through the prediction of the locations of landmarks or point 

correspondences over the missing regions. Subsequently, the non-rigid registration 

approaches, e.g. TPS, can be carried out to warp the reflection of an intact region to a 

damaged region, thereby generating the missing geometry surface (Gunz et al., 2009; 

O'Higgins et al., 2019). Notably, the prediction of landmark and semilandmark locations, 

and the choice of deformation (or registration) approaches will affect the ultimate results. 

Additionally, when both sides of e.g. a fossil are incomplete, a surface from a well-

preserved specimen is often used as a template; it is commonly warped to the damaged 

specimen to achieve virtual restoration (Amano et al., 2015; Benazzi et al., 2009). 

However, the choice of the template will affect the restoration result, because the 

morphology of the deformed template is used to complete the damaged specimen. 

Recently, statistical shape models (SSM) (Ebert et al., 2022; Schlager & Rüdell, 2017) 

have been shown to be a promising way to reconstruct the complete model from a partial 

fossil. They incorporate prior knowledge from within the same group to capture shape 

variability (Brunton et al., 2014). Generally, PCA is applied to the aligned dense point 

correspondences among specimens to generate the SSM, and hence shape variability can 

be parametrized by the mean surface and principal components (PCs). Subsequently, the 

damaged fossil is rigidly fit to the SSM, and the parameters of the SSM are optimized to 

allow the reconstructed surface derived from the SSM to match the damaged fossil. When 

there are great fitting errors, the reconstructed surface is further warped to the damaged 
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fossils using TPS (Fuessinger et al., 2018). This method is said to provide a more reliable 

reconstruction of fossil specimens with missing geometry, however it requires a suitable 

sample of specimens. 

1.1.2.3 Facial approximation 

Individual human faces are unique due to the differences in bony morphology, facial 

soft tissues, and locations, sizes and shapes of facial features (e.g., eyes, nose, mouths, 

ears) (Richmond et al., 2018). Facial approximation (sometimes known as facial 

reconstruction) aims to recreate a probable soft tissue face based on a dry skull alone. It 

is a last resort for human identification of a seriously decomposed cadaver when there are 

no other clues in forensic science. It also has provided new insights, facilitating the visual 

depiction of archaic humans and Homo sapiens (Baldasso et al., 2021; Guyomarc’h et al., 

2018; Hamre et al., 2017; Hayes, 2016; Lee et al., 2014). Over the past century, there are 

two different viewpoints about the reliability of facial approximation (Stephan, 2015; 

Wilkinson, 2005). Some researchers argue that the detailed facial surface can be recreated 

accurately based on skull morphology. They suggest failed prediction is attributable to 

lack of use of detailed skull morphology and technical knowledge in modelling. By 

contrast, others point out there are varying degrees of facial approximation errors and 

uncertainties, and hence multiple faces of the same person can be recreated with similar 

degrees of confidence. 

The conventional manual method was first proposed by anthropologists and artists 

who sculptured clays over a replica of the dry skull based primarily upon facial soft tissue 

thickness depths (FSTDs) at a limited number of landmarks and the predicted muscle 

structures (Wilkinson, 2010). Therefore, a subjective and artistic interpretation is 

inevitable, resulting in potentially biased and inconsistent approximations (Campbell et 

al., 2021; Stephan, 2015). This process is very time consuming and requires sculpturing 

skill. To address these limitations, interactive virtual sculpturing (Wilkinson et al., 2006) 

and automated computerised methods based on algorithms (Claes et al., 2010; Stephan et 

al., 2019a) have been developed and applied to the dry skull. These computerized 

methods are faster, more objective and efficient. The quantification of craniofacial 

(anatomical modelling) relationships between hard and soft tissues is the fundamental 

basis of facial approximation. Average FSTDs (Stephan et al., 2019b) or regressed FSTDs 

(De Greef et al., 2009; Guyomarc’h et al., 2013) at landmarks associated with personal 

information (e.g. sex and age) is used to predict the facial points of the approximated 

result. Additionally, geometric morphometric methods are used to explore the craniofacial 

relationships between facial features and bony structures (Guyomarc'h et al., 2014; Kustár 

et al., 2013; Ridel et al., 2020) and relationships between the facial profile and bony 

structures (Malá et al., 2018). These learnt relationships can further be used to recreate 

facial features of the dry skull, thereby improving approximation accuracy.  
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Many studies have assessed performance in facial approximation through a 

quantative assessment of similarity between the approximated and actual faces or a 

recognition rate tested by a face pool (Claes et al., 2010; Gietzen et al., 2019; Lee et al., 

2012). However, there is considerable controversy regarding approximated facial 

features (Guyomarc'h et al., 2014; Wilkinson, 2010). Therefore, a degree of artistic 

interpretation and modelling is required, especially in archaeological applications. New 

methods need to be developed to quantify craniofacial relationships and perform facial 

approximation, minimising the approximation errors and subjective interpretation. 

1.2 Motivation and objectives 

This study is mainly motived by my own experience in interdisciplinary 

collaborations, which illustrated the need to implement geometric morphometric 

approaches in archaeological contexts. Given recent progress in the accessibility of 3D 

archaeological and anthropological datasets, it is common for archaeologists and 

anthropologists to collaborate with computer scientists to undertake research using 

statistical analysis and visualisation techniques. However, each side in such 

collaborations has their own knowledge, preference and experience, and hence there have 

sometimes been some controversial suggestions and concerns in addressing the same 

questions. For example, if it is of interest to place landmarks and semilandmarks, 

computer scientists are concerned with the speed, computation cost, geometric accuracy, 

and the degree of human intervention, however, they always ignore biological concepts 

of homology, which are important in studies of variation, evolution and development. 

Thus, they need to know the principles and methods of anthropology and archaeology, 

while anthropologists require understanding of limitations of the computerised methods 

(Greener et al., 2022). As a computer scientist working in an archaeology department, I 

have attempted to bridge the gaps in interdisciplinary study and explore advanced and 

novel algorithms and methods for paleoanthropological and archaeological data. 

Owing to the diversity and complexity of 3D data research questions, existing 

computational methods may not be directly applicable. Novel methods are necessary to 

provide a better interpretation of human fossils and artefacts, and to offer an opportunity 

for virtual simulation of the past. This thesis aims to advance methods by pursuing two 

objectives. These are as follows: 

 Assess the extent to which morphometric analyses and visual descriptions of 

shapes of interest generated by different semilandmarking approaches and densities 

of semilandmarks differ and how they differ, allowing archaeologists and 

anthropologists to carefully consider whether semilandmarks are necessary to answer 

the question at hand and balance this need against the statistical and biological 

downsides. 
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 Develop a complete workflow and novel computerised method for each special 

application, including semilandmarking, asymmetry detection, virtual restoration, 

and facial approximation, thereby minimising human intervention and enhancing the 

performance. 

1.3 Research questions 

The main research questions address topics in anthropological and archaeological 

research using statistical analysis and visualisation methods. These questions may 

broadly be formulated as follows: 

1) Semilandmarking methods and densities in geometric morphometrics 

 To what extent do different semilandmarking methods and densities lead to 

different morphometric results, concerning semilandmark locations, mean landmark 

and semilandmark configurations, centroid sizes, Procrustes distance matrices, PCs 

of shape variation, and allometrically scaled shapes? (Chapter 2) 

 To what extent do the visualisations of mean and allometrically scaled shapes 

differ when using different semilandmarking approaches and densities of 

semilandmarks? (Chapter 3) 

 To what extent does the use of landmarks and semilandmarks affect 

morphometric results and visualisation in comparison to those generated by using 

landmarks alone? (Chapters 2 and 3) 

2) Asymmetry detection and virtual restoration of bilaterally symmetrical objects  

 Can a landmark-free method identify a suitable plane of symmetry and quantify 

the surface asymmetry from objects with little geometric distortion or simple missing 

geometry? If so, are there differences between the planes of symmetry and 

asymmetry generated by landmark-free and landmark-based morphometric methods? 

(Chapter 4) 

 Can computerised methods generate a digital model of missing geometry that 

tightly matches the boundary curves of missing geometry, thereby supporting virtual 

and physical restoration? (Chapter 5) 

3) Facial approximation of archaic humans and Homo sapiens 

 Can average dense FSTDs be used to quantify overall craniofacial relationships 

in order to achieve reliable facial approximation (Chapters 6 and 7)? 

 To what extent do skull morphology and the choice of FSTDs affect the 

approximated faces (Chapter 6)? 

 To what extent do nasal (and oral) hard tissues affect soft tissue shapes? Can 

high-density semilandmarks be used to improve the accuracy of the approximated 
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nose (and mouth) soft tissue shapes (Chapter 7)? 

1.4 Structure of thesis  

This thesis is composed of six individual articles (Chapters 2-7), supplemented by 

the introductory Chapter 1 and concluding Chapter 8. Each article covers a theme within 

the overall topic. Each is intended for separate journal publication and can be read 

independently or as part of the whole. From a theoretical perspective, Chapters 2 and 3 

are related to the geometric morphometric methods. Chapter 2 has been submitted to a 

special issue “Geometric Morphometrics Applied to Biological Structures” of Animals 

and Chapter 3 has been published in Animals. Based on the fundamental principles of 

geometric morphometrics, Chapters 4-7 give different applications. Chapters 4 and 5 seek 

to quantify asymmetry detection and achieve virtual restoration of artefacts and fossils 

exhibiting near bilateral symmetry. Chapter 4 has been accepted by ACM Journal on 

Computing and Cultural Heritage and Chapter 5 has been published in Journal of Cultural 

Heritage. Chapters 6 and 7 aim to recreate probable facial appearances of archaic humans 

and Homo sapiens, respectively. Chapter 6 has been published in Archaeological and 

Anthropological Sciences and Chapter 7 has been submitted to Journal of Anatomy. 

Because different journals have different formats, each article has been re-formatted 

according to a standard style to provide a coherent thesis. The main revision is to heading 

numbering and reference formatting.  

The study has been approved by the Ethics Review Committee of Department of 

Archaeology, University of York (20 April 2021). 

1.4.1 Chapter 2  

Different semilandmarking approaches and densities of semilandmarks result in 

different locations of semilandmarks, therefore they can be expected to yield different 

analytical results. The article presented in Chapter 2 assesses the performance of three 

landmark driven semilandmarking approaches and different densities of semilandmarks 

using two different datasets (adult human head and ape cranial surfaces) with different 

degrees of variation and complexity. Six null hypotheses are tested, of no difference in 

semilandmark locations, mean landmark and semilandmark configurations, centroid sizes, 

Procrustes distance matrices, PCs of shape variation, and allometrically scaled shape. 

Additionally, this article examines the effect of semilandmarks on morphometric analyses 

by computing the correlations between the results calculated using the landmarks alone 

and those based on the landmarks and semilandmarks. These analytical results facilitate 

assessment of the performance of different semilandmarking approaches and densities. 

This article has been submitted as follows: 

Wuyang Shui, Antonio Profico and Paul O’Higgins. A comparison of 

semilandmarking approaches in the analysis of size and shape. Animals. 2023. (under 
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review) 

Author contributions: Conceptualization, Shui, O’Higgins and Profico; methodology, 

Shui, O’Higgins and Profico; software, Shui, Profico; validation, Shui and O’Higgins; 

formal analysis, Shui; investigation, Shui, O’Higgins and Profico; resources, Shui, 

O’Higgins and Profico; data curation, Shui, O’Higgins and Profico; writing—original 

draft preparation, Shui; writing—review and editing, O’Higgins, Shui and Profico; 

visualisation, Shui; supervision, O’Higgins; project administration, O’Higgins, Shui.  

1.4.2 Chapter 3 

Different semilandmarking approaches can yield different semilandmark locations, 

thereby generating different estimates of mean and allometrically scaled shapes by 

warping the template surface. It is important to note that semilandmarks cannot be singly 

interpreted, but rather be analysed as a whole. The article presented in Chapter 3 assesses 

how different semilandmarking approaches and densities of semilandmarks affect the 

visualisations of the estimates of mean and allometrically scaled shapes using two 

different datasets (adult human head and ape cranial surfaces) with different degrees of 

variation and complexity datasets. Additionally, this article examines the effect of the 

choice of template surface and semilandmarks on the visualisation, respectively. These 

visualisation results facilitate assessment of the performance of different 

semilandmarking approaches and determining whether semilandmarks are necessary for 

the visualisation. 

This article has been published as follows: 

Wuyang Shui, Antonio Profico and Paul O’Higgins. A comparison of 

semilandmarking approaches in the visualisation of shape differences. Animals. 2023, 

13(3): 385. 

Author contributions: Conceptualization, Shui, O’Higgins and Profico; methodology, 

Shui, O’Higgins and Profico; software, Shui, Profico; validation, Shui and O’Higgins; 

formal analysis, Shui; investigation, Shui, O’Higgins and Profico; resources, Shui, 

O’Higgins and Profico; data curation, Shui, O’Higgins and Profico; writing—original 

draft preparation, Shui; writing—review and editing, O’Higgins, Shui and Profico; 

visualisation, Shui; supervision, O’Higgins; project administration, O’Higgins, Shui.  

1.4.3 Chapter 4 

Landmark-based and landmark-free morphometric methods for detecting planes of 

symmetry have both been proposed. However, the landmark-based approach requires 

manual identification of landmark locations (time consuming and prone to error) and 

landmark independent morphometric method is always influenced by missing data. The 

article presented in Chapter 4 explores a novel landmark-free approach to identify the 
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best-fitted plane of symmetry from nearly bilaterally symmetrical objects by finding the 

plane with the minimum geometric differences between the original and mirrored meshes. 

The potentially symmetrical regions are extracted through the examination of the extent 

of asymmetry and plane clustering, and hence this method is robust to small geometric 

distortion and simple missing geometry. Based on the recognised plane, this article 

quantifies gross and regional surface asymmetry and produces the profile drawings. The 

proposed method is evaluated and applied to both synthetic and real anthropological (e.g. 

skull, cranium, endocast and femur) and archaeological (terracotta warriors head, bronze 

mask, ceramic plate and pottery spoon) data.  

This article has been accepted as follows: 

Wuyang Shui, Pianpian Wei, Xia Zheng, Shengling Geng. A landmark-free approach 

for surface asymmetry detection and profile drawings from bilaterally symmetrical 

geometry. ACM Journal on Computing and Cultural Heritage. 2022. (accepted) 

Author contributions: Conceptualization, Shui, Wei, Zheng and Geng; methodology, 

Shui; software, Shui; validation, Shui; formal analysis, Shui; investigation, Shui, Wei, 

Zheng and Geng; resources, Shui, Wei, Zheng and Geng; data curation, Shui, Wei, Zheng 

and Geng; writing—original draft preparation, Shui; writing—review and editing, Shui, 

Wei, Zheng and Geng; visualisation, Shui; project administration, Shui.  

1.4.4 Chapter 5 

Symmetry may be useful in reconstructing missing geometry by deforming the intact 

side to the damaged area. However, it remains challenging to improve the quality of 

deformation when artefacts are heavily corroded and have irregular boundaries. The 

article presented in Chapter 5 develops a non-rigid deformation approach to allow the 

reflection of the intact region to match the damaged artefact, thereby generating a digital 

model of missing geometry. This model can be converted to a physical one to achieve 

physical restoration of artefacts via 3D printing technique. Additionally, this article 

employs geometric morphometrics and anthropometric measurements to capture 

characteristic features based on landmarks. The proposed method is evaluated and applied 

to a metal mask of the Liao dynasty from the Palace Museum, China.  

This article has been published as follows: 

Wuyang Shui and Fei Gao. A geometric completion and shape analysis method for 

damaged bilaterally symmetrical artefacts. Journal of Cultural Heritage. 2021, 52, 118-

127. 

Author contributions: Conceptualization, Shui and Gao; methodology, Shui; software, 

Shui; validation, Shui; formal analysis, Shui and Gao; investigation, Shui and Gao; 

resources, Shui and Gao; data curation, Shui and Gao; writing—original draft preparation, 
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Shui; writing—review and editing, Shui and Gao; visualisation, Shui; project 

administration, Shui.  

1.4.5 Chapter 6 

The conventional manual facial approximation method is often used to recreate a 

probable face of archaic humans. However, this process consumes time and the 

approximate results rely primarily upon the practitioner’s experience and interpretation. 

The article presented in Chapter 6 develops a computerized facial approximation method 

for archaic humans based on the assumption that the distributions of FSTDs of modern 

living humans are similar to those of archaic humans. The deformation method is used to 

fit the warped template face to the coarsely facial appearance recreated by assigning the 

average dense FSTDs to the dry skull, thereby filling in the missing geometry and adding 

facial features. Additionally, this article assesses the extent to which skull morphology 

and the choice of FSTDs affect the approximated faces and then employs the geometric 

morphometric methods to examine shape variations among modern human faces and 

approximated faces. The difference in the distributions of FSTDs is used to evaluate the 

proposed method. Finally, the proposed method is applied to the Jinniushan 1 archaic 

human skull which is one of the most important fossils of the Middle Pleistocene from 

China, dating back to approximately 260,000 BP. 

This article has been published as follows: 

Wuyang Shui, Yameng Zhang, Xiujie Wu and Minquan Zhou. A computerized facial 

approximation method for archaic humans based on dense facial soft tissue thickness 

depths. Archaeological and Anthropological Science. 2021, 13:186. 

Author contributions: Conceptualization, Shui, Wu, Zhang and Zhou; methodology, 

Shui; software, Shui; validation, Shui; formal analysis, Shui and Zhang; investigation, 

Shui, Zhang, Wu and Zhou; resources, Shui, Zhang, Wu and Zhou; data curation, Shui, 

Zhang, Wu and Zhou; writing—original draft preparation, Shui; writing—review and 

editing, Shui, Zhang, Wu and Zhou; visualisation, Shui; project administration, Shui.  

1.4.6 Chapter 7 

The article presented in Chapter 7 quantifies the covariations of nasal (and oral) hard 

and soft tissue morphologies and presents a computerised method facial approximation 

method for Homo sapiens. The facial statistical shape model is used to fit the coarsely 

approximated face recreated by assigning the average dense FSTDs to the dry skull and 

the predicted nose and mouth soft tissues, thereby filling in the missing geometry and 

adding facial features. Resemblance comparison and recognition rate are used to test the 

accuracy of the proposed method. Finally, the proposed method is applied to approximate 

the facial appearance of the Upper Cave (UC) 101 skull, an important 30,000-year-old 

human skull excavated from the village of Zhoukoudian in northern China. 
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This article has been submitted as follows: 

Wuyang Shui, Xiujie Wu and Minquan Zhou. A computerized facial approximation 

method for Homo sapiens based on facial soft tissue thickness depths and geometric 

morphometrics. Journal of Anatomy. (under review) 

Author contributions: Conceptualization, Shui, Wu and Zhou; methodology, Shui; 

software, Shui; validation, Shui; formal analysis, Shui; investigation, Shui, Wu and Zhou; 

resources, Shui, Wu and Zhou; data curation, Shui, Wu and Zhou; writing—original draft 

preparation, Shui; writing—review and editing, Shui, Wu and Zhou; visualisation, Shui; 

project administration, Shui.  

1.4.7 Chapter 8 

Finally, Chapter 8 provides conclusions and ideas for future research. 
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Chapter 2 A comparison of semilandmarking approaches in the 

analysis of size and shape 

Abstract: Often few landmarks can be reliably identified in analyses of form variation 

and covariation. Thus, semilandmarking algorithms have increasingly been applied to 

surfaces and curves. However, the locations of semilandmarks depend on the choice of 

algorithm and their density, by the investigator. In consequence, to the extent that different 

semilandmarking approaches and densities result in different locations of semilandmarks, 

they can be expected to yield different results concerning patterns of and variation and 

co-variation. The extent of such differences due to methodology, rather than sampling is 

as yet unclear and often ignored. In this study, the performance of three landmark driven 

semilandmarking approaches is assessed, using two different surface mesh data sets with 

different degrees of variation and complexity, by comparing the results of morphometric 

analyses. These approaches produce different semilandmark locations, which in turn lead 

to different statistical results, although the non-rigid semilandmarking approaches are 

broadly consistent. Thus, the results of morphometric analyses using semilandmarks must 

be interpreted with due caution, recognising that error is inevitable and that, in 

consequence, statistical descriptions of transformations based on any semilandmarking 

approach are approximations of reality. 

Article details: 

Wuyang Shui, Antonio Profico and Paul O’Higgins. A comparison of semilandmarking 

approaches in the analysis of size and shape. Animals. 2023. (under review) 

At the time of submission, this chapter was pending. It was published by Animals on 

March 28, 2023. See the link: https://www.mdpi.com/2076-2615/13/7/1179. 
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2.1 Introduction  

Geometric morphometric (GM) methods are regularly applied in the analysis of size 

and shape variation among landmark configurations taken from biological structures 

(Adams et al., 2004; Mitteroecker & Gunz, 2009; Mitteroecker & Schaefer, 2022; 

O'Higgins, 2000; Viscosi & Cardini, 2011). Landmarks are matched points among objects 

that define a map of point equivalences among samples. In biology, the selection and 

identification of landmarks is a critical first step because it translates the question at hand 

into a geometric one, amenable to statistical analysis. As such it has been argued that the 

choice of landmarks and the basis upon which they are considered equivalent should 

derive from the specific question at hand (Oxnard & O’Higgins, 2009). However, 

probably more common in practice is ‘question free’ landmarking, in the sense that the 

landmarks do not specifically aim to represent a particular hypothesis to be tested, but 

rather to ‘capture overall form’ (Bardua et al., 2019). As such, as many landmarks as 

possible are placed on the specimens, with the basis of equivalence among them being 

defined according to different criteria (i.e. with mixing of landmarks deemed to be 

developmentally or evolutionarily equivalent or homologous, with points that are 

equivalent in terms of function, topography or geometry). Analyses then address specific 

biological questions by examining vectors of covariation of landmark configurations with 

extrinsic variables of interest such as size, age, sex, ecology, etc. (Chakravarty et al., 2011).  

The choice of landmarks inevitably impacts the results (e.g. distance matrices) 

obtained from subsequent analyses. In studies where the aim is simply to discriminate 

groups, or classify specimens as belonging to one or other predetermined group, the 

effects of landmark choice on the distance matrix among specimens may matter little. 

What does matter is the degree of discrimination and the accuracy of classification or 

identification. As such, landmarks (and semilandmarks, see below) may be chosen and 

marked up, based only on eventual discrimination and classification accuracy.  

However, in studies of biological transformations of form it is argued (Cardini, 2020; 

Oxnard & O’Higgins, 2009) that the basis of matching of points between specimens is 

important and requires prior knowledge of developmental or evolutionary homology. 

Thus, in studies of developmental or evolutionary transformations or of variation 

resulting from these processes, the process of landmarking relates to developmental or 

evolutionary equivalences (‘this point, becomes that point over time’), while in studies of 

function, different criteria for matching are more appropriate. Uncertainties in identifying 

such corresponding points, differences in these criteria and choice of landmarks will result 

in different landmarking schemes (Oxnard & O’Higgins, 2009), which in turn will lead 

to different distance matrices among specimens and so to different descriptions of 

transformation or variation.   

Beyond these issues, further problems arise, in that that few, if any reliably equivalent 
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landmarks, defined in terms of homology, can be identified in most studies. This is less 

of an issue where the equivalence of landmarks required for a particular study is 

functional. In this case these points represent biomechanical equivalences (e.g. end points, 

fulcrum, etc. of levers (Oxnard & O’Higgins, 2009)). However, the claim of equivalence 

between landmarks in terms of homology, is problematic, because as Macleod (MacLeod, 

1999) has noted, ‘The methods for inferring biological homology classically apply to 

entire structures; not to infinitesimally small geometric points (e.g., landmarks) within 

those structures.’ This is echoed by Oxnard and O’Higgins (2009) who note that ‘There 

are many cases where landmarks are poorly defined, not repeatable, and uncertain with 

regard to equivalence’. The extent to which landmarks can be considered homologous in 

a developmental or evolutionary sense is debatable. Some features such as the tips of 

tooth cusps might be argued to be homologous, and to present readily identified 

landmarks, while others such as the surface of the parietal bone in mammals may also be 

homologous but do not present readily identifiable landmarks. Morphometricians often 

refer to ‘homologous landmarks’, but this is shorthand for ‘equivalent points on 

homologous structures’. We adopt this convention here, as shorthand, but recognize that 

homology of points is at best uncertain and that this uncertainty relates to the both 

identifiability (how readily the location of a landmark can be identified) and a hypothesis 

of homology (shared developmental or evolutionary origin). Landmarks may be readily 

identifiable (e.g. from topography) but not biologically homologous. The extent to which 

identifiability and homology coincide is largely unknowable, but clearly varies according 

to anatomical (topographic) features and the extent to which the material on which they 

are located is the product of shared developmental or evolutionary processes. This is 

recognized by Bookstein’s (1991) classification of landmarks and is considered in greater 

detail by Oxnard and O’Higgins (2009). While recognizing these difficulties in 

identifying homologous landmarks, in this study, we treat landmarks as if they are truly 

homologous, because the focus of this work is on the effects of choosing different 

algorithms for locating semilandmarks.  

Landmarks cannot be readily identified over smooth surfaces such as the cranial vault. 

It has therefore become increasingly common to use algorithms to place densely matched 

points over such regions in every specimen. In these cases, equivalence of placement is 

determined by algorithms that often, but not always, use the locations of identifiable 

landmarks as a guide. The aim may be more explicitly to capture ‘overall form’, e.g. by 

‘increasing the density of the shape information’ (Marshall et al., 2019) rather than to 

identify and mark up homologous points among the sample. Algorithmic landmarking 

methods that use ‘known’ point homologies (landmarks) to estimate ‘dense point 

correspondences’ (a term commonly used in computer science (Blanz & Vetter, 1999)) 

among surfaces between landmarks are commonly termed semilandmarking methods or 

approaches and such dense point correspondences are known as semilandmarks 



46 
 

(Bookstein, 1997). This terminology distinguishes them from landmarks that are 

considered to be equivalent among specimens in the sense of developmental or 

evolutionary homology (Oxnard & O’Higgins, 2009).  

While identification and equivalence of landmarks are critical issues to resolve, the 

design of a landmark configuration is also of central importance. In practice, landmark 

configurations in any one study should be determined by the question at hand, the 

biologists’ knowledge and experience, prior work, preservation of material and available 

time for digitization. This is an unsatisfactory situation because different researchers 

approaching the same question may use different landmarks and obtain different 

analytical results. Inevitably, this has prompted debate over how to define an appropriate 

configuration of landmarks for each study (Cardini, 2020; Oxnard & O’Higgins, 2009; 

Viscosi & Cardini, 2011). This goes beyond the question of whether or not the landmark 

configuration as a whole captures enough ‘information’ (Bardua et al., 2019; Goswami et 

al., 2019), because the ‘information’ required will vary according to the hypothesis. A 

simple configuration may be perfectly adequate and entirely appropriate, depending on 

the question.  

Where landmarks are sparse and data on regions between landmarks is deemed 

necessary especially in smooth regions, several approaches to creating dense point 

correspondences have been proposed. One approach is to identify points on each 

specimen based on some simple mathematical rules applied to each separately (e.g. 

evenly spaced over a curve (2D) or surface (3D) using sampling algorithms (Bardua et 

al., 2019; Boyer et al., 2015)). The correspondence of points among specimens is 

specified in terms of the algorithmic rule used to place them. While terminology is 

inconsistent, such point correspondences have been referred to as pseudo-landmarks, 

rather than semilandmarks (e.g. (Goswami et al., 2019)), reflecting the fact that they are 

placed without reference to other specimens (based on a prior model of equivalence such 

as developmental equivalence; developmental homology). Semilandmarks, on the other 

hand, are defined on curves or surfaces in such a way that their locations are controlled 

by true landmarks and depend on the locations of landmarks in a template or in the sample 

as a whole. Both pseudo- and semilandmarks are treated as true “landmarks” in 

subsequent analyses (Bookstein, 1997; Gunz et al., 2009).  

Since different landmarking philosophies and approaches lead to different landmarks, 

and so, are used to ‘ask’ different questions and produce different analytical results, the 

question of how to automatically yield landmarks has generated great interest. In studies 

of transformations and variation arising as a result of development or evolution, 

homologies inevitably underpin landmarking (Bookstein, 1989; Oxnard & O’Higgins, 

2009). Within computer science where the focus has been more on ‘general’ similarity or 

geometric difference (discrimination) and identification/classification, biological 
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homology, is usually not explicitly considered, rather the focus is on matching of points 

taken on similar topographical features. At least four approaches are commonly used. In 

the first, an approach used both in biological morphometrics and computer vision, 

landmarks are recognized (usually on the basis of equivalence between specimens in 

terms of topographical features, e.g. curvature, known homology or by defined rules and 

relationships) and marked up manually or semi-automatically (Negrillo-Cárdenas et al., 

2022). In the second approach, landmarks are marked up or automatically identified on a 

template and these are then projected onto the target specimens using rigid and non-rigid 

alignment algorithms that are very similar to those used in the majority of 

semilandmarking approaches (Li et al., 2017; Porto et al., 2021). That landmarks need to 

be transferred from a template might be considered a drawback. This may be avoided in 

the third approach, which predicts landmarks based on a training model derived from a 

statistical shape model describing a priori knowledge of 3D shape variation (Canavan et 

al., 2015; Cootes et al., 1995). Finally, deep learning has been used to mark up the 

locations of landmarks (Chen et al., 2021; Le et al., 2020). Despite the considerable effort 

that has been devoted to them, there has been limited interaction between biological 

morphometricians and computer scientists with respect to the theoretical and 

philosophical underpinnings of these last two approaches. In consequence different 

landmarking strategies are routinely applied in each field.  

Further, landmarks are frequently scant and this has driven the development of 

approaches to marking up dense correspondences (= semilandmarks) between specimens 

over surface regions between landmarks. Different strategies are commonly applied to 

semilandmarking in biological morphometrics and computer vision.   

In morphometrics as applied in biology, methods for semilandmarking have been 

developed that use equivalent landmarks (based on prior knowledge) as control points to 

estimate the locations of semilandmarks by projection followed by sliding. Under this 

procedure a template specimen is manually landmarked and then semilandmarks are 

manually or semiautomatically placed on curves and surfaces. Subsequently, the 

semilandmarks on the template specimen are transferred to each specimen (e.g. by 

selecting the nearest point between the template and target specimen (Rolfe et al., 2021)). 

This is followed by sliding of semilandmarks, usually to minimize either the bending 

energy of a triplet of thin-plate splines (TPS) or Procrustes distances among specimens 

(Gunz et al., 2005; Perez et al., 2006). Sliding is achieved iteratively, replacing and 

refitting the template with the mean for the first iteration, and with the recomputed mean 

for subsequent ones. Of the two approaches, sliding TPS through the minimization of 

bending energy is most commonly applied (Gunz & Mitteroecker, 2013). It is argued that 

in Procrustes distance minimization, all landmarks and semilandmarks influence the 

sliding, even if very distant from the semilandmarks being slid, while minimization of 
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bending energy gives greater weight to landmarks and semilandmarks that are local to the 

semilandmarks (note, however, that landmarks may be close to semilandmarks, but on 

different surfaces). However, in both cases a set of landmarks is necessary to guide the 

sliding approach, and it cannot be applied when none are present. 

Different strategies for marking up dense point correspondences (=semilandmarks) 

have been pursued in the field of computer vision. These have been applied to biological 

material as well as to non-biological objects where they rely on mathematical mappings 

based on topographic features, rather than developmental or evolutionary equivalences. 

While the use of topographic features to identify point correspondences is different in 

principle to how landmarks are said to be identified in biology, in practice biologists often 

rely on anatomical features defined topographically rather than through detailed 

developmental or evolutionary analysis. This is for the simple reason that in closely 

related species and within species, similar structures in similar locations are usually 

developmentally and evolutionarily homologous. However, in regions with simple 

topography the locations of semilandmarks depend more on the algorithm used to place 

them. Algorithms used in computer science for mapping include optic flow (Blanz & 

Vetter, 1999), Generalized Procrustes analysis (GPA) and TPS (Mydlová et al., 2015; 

Velemínská et al., 2012), GPA and coherent point drift (CPD) (Musilová et al., 2016), 

non-rigid Iterative closest point (NICP) (Amberg et al., 2007; Booth et al., 2018; Shui et 

al., 2020), scaled rigid Iterative closest point (ICP) and visco-elastic models (White et al., 

2019) and a 3D registration method integrating ICP, CPD and the Laplace-Beltrami 

operator (Dai et al., 2020). Notably, in each of these, a set of point correspondences 

(determined algorithmically or visually) provides an initial map of equivalences among 

specimens that is used to guide subsequent algorithmic marking up of dense 

correspondences among the surfaces, between landmarks. 

To avoid manually placing landmarks, several landmark-free algorithms have also 

been proposed for marking up dense correspondences (Van Kaick et al., 2011). The fitting 

of a template (reference) specimen surface to each target via registration or alignment 

algorithms underlies the most common approaches, such as the ICP algorithm (Besl & 

McKay, 1992). This comprises two steps, iterated until the sum of squared distances 

among point correspondences between the template and target specimens reaches a 

minimum. First, correspondences are updated by searching for the nearest points to the 

registered template points in the target. Second, point clouds of template and target 

surfaces are rigidly registered by minimizing the squared Euclidean distances among 

candidate pairwise corresponding points. Registration and identification of 

correspondences are then iterated until a minimum is reached. Many variants of the ICP 

algorithm have been proposed with the aim of improving the accuracy of registration 

(minimisation of template-target distances) by e.g. using different distance metrics or 
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assigning different weights to vertices and rejecting outliers (Rusinkiewicz & Levoy, 

2001). For example, an improved ICP-based approach has been proposed to register the 

surfaces of specimens by minimising the symmetric point-to-plane distances (along the 

surface normal vector) instead of point-to-point distances (Pomidor et al., 2016). 

Additionally, the point correspondences found by the ICP algorithm rely on the initial 

alignment of two surfaces, by for example, least squares. An alternative is to use principal 

component analysis (PCA) to find the principal axes of the template and target point sets 

to provide a sensible initial position. Different approaches lead to different maps of point 

correspondences (semilandmarks).  

Another landmark-free algorithm, available as an auto3dgm package (Boyer et al., 

2015) based on the ICP framework, has been proposed to yield semilandmarks among 

specimens. In this, a set of points on the template specimen are projected onto the target. 

However, the choice of the template, the degree of complexity, and the density and 

locations of points affect the results (Gao et al., 2018; Vitek et al., 2017). To mitigate this, 

a template is chosen that has the greatest overall geometric similarity to the members of 

the sample. Then semilandmarks of the template specimen are projected to each specimen. 

Vitek et al. (2017) have indicated that the choice of initial alignment influences the 

resulting estimates of point correspondences when using auto3dgm and the lack of true 

landmarks as control points impacts registration. Moreover, this approach involves rigid 

registration and so can result in equivalent points on the template and target specimens 

being placed on different anatomical features. This is most pronounced among specimens 

with large differences in shape and size, e.g. points around the zygomatic process of a 

rigidly registered temporal bone might be projected from the reference onto the condyle 

of the target (Vitek et al., 2017). 

One landmark-free approach (Gu et al., 2004; Wang et al., 2007) uses conformal 

geometry to establish point equivalences among 3D meshes, because any genus zero 

surface can be mapped conformably onto a sphere and surface with a single boundary can 

be mapped onto a unit disk. In practice, the conformal transformation is applied to the 3D 

surface and then the correspondences between two surfaces are found in the 2D domain. 

Examples are provided by the work of (Boyer et al., 2011) and (Koehl & Hass, 2015), 

however, these conformal methods are sensitive to the quality of surfaces and the 

complexity of topologies.  

Landmark-free algorithms, e.g. ICP-based method, for marking up point 

correspondences between surfaces can result in mappings that are quite different from the 

map of point equivalences based on postulated homologies. This effect can be large, with 

semilandmarks from the template projected to different anatomical features in the target. 

In any case, even when ‘appropriately located’, such equivalences have no implicit 

biological basis, they might, or might not, be good approximations of homology. In 
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consequence, statistical (e.g. PCA) and/or visual (e.g. warping between surfaces) 

descriptions of (developmental or evolutionary) transformation might or might not 

properly describe them and analyses of variation based on them may or may not reflect 

the developmental or evolutionary basis of variation. By their nature, point 

correspondences identified without paying attention to homology have an uncertain 

relationship to the underlying processes responsible for differences in form. They may 

however be useful in discrimination, identification or classification of specimens to prior 

groups. These are a different, yet important and common application of landmark data in 

computer vision, but very different tasks to that of describing developmental and 

evolutionary transformations.  

It is worth noting that all semilandmarking approaches are dependent on 

mathematical models of matching. As such, homology is only respected to the extent that 

the mathematical model uses the homologies of true landmarks to estimate 

semilandmarks, and to the extent that the landmarks actually represent biologically 

homologous points. Semilandmarks can be intended as estimates of, rather than true, 

homologous point matchings (landmarks). Thus, different semilandmarking approaches 

will yield different semilandmarks. The reasons for preferring one approach over another 

cannot rest entirely on arguments of developmental or evolutionary equivalence of the 

resulting semilandmarks because the definition and identification of homologous points 

relies on prior developmental and evolutionary knowledge (which is often lacking). No 

algorithm without a knowledge driven model of homology can properly determine or 

interpolate homology from surface or texture features. Instead, assessment of algorithms 

has focused on their ‘performance’ defined in various ways. 

A few previous studies have attempted to assess the performance of different 

semilandmarking approaches. Evaluated criteria for comparing different 

semilandmarking approaches include: the Euclidean distances between semilandmarks 

(or landmarks) from each approach or with manually placed ones (Porto et al., 2021), 

comparison between methods of: the resulting distributions of groups (Boyer et al., 2015; 

Gonzalez et al., 2016; Rolfe et al., 2021), the geometric deviation between template and 

transformed meshes (Rolfe et al., 2021; Shui et al., 2020), the first two principal 

components (PCs) (Boyer et al., 2015; Gonzalez et al., 2016; Harper et al., 2022), distance 

matrices to quantify shape variations (Boyer et al., 2011; Boyer et al., 2015; Harper et al., 

2022; Pomidor et al., 2016), and comparison of estimates of centroid size of resulting 

configurations (Porto et al., 2021). These criteria may indicate how different 

semilandmarking strategies perform in matching surfaces, distinguishing groups or 

identifying unknown specimens, but they do not relate to how well the homology map is 

represented by the resulting semilandmarks. All suffer from the fact that semilandmarks 

are not point homologies, they may be estimates of such homologies, but each estimate 
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is different. As such, the extent to which they correctly describe biologically homologous 

anatomical differences and transformations is limited by the extent to which knowledge 

of homology is embedded in their construction.  

The consequences of choosing alternative semilandmarking approaches in studies of 

biological form variation need to be further investigated. In this study, the degree to which 

they generate different results is investigated and the significance of the findings for 

future studies is discussed. To these ends, we employed three landmark driven 

semilandmarking methods, sliding TPS, an example of a rigid, and an example of a non-

rigid registration approach to yield semilandmarks for two datasets comprising surfaces 

with different degrees of complexity and distributions of identifiable landmarks to guide 

semilandmarking. These semilandmarking approaches are compared by empirically 

testing six hypotheses using surface scans of human faces and ape crania based on the 

same template of landmarks and semilandmarks. These are: (i) that for the same density 

of semilandmarking there are no differences in semilandmark locations generated by 

different approaches and (ii) in mean landmark and semilandmark configurations. Further, 

between densities of semilandmarking using any one approach and between 

semilandmarking approaches, there are no differences in resulting estimates of (iii) 

centroid sizes (iv) distance matrices (v) PCs of shape variation (vi) allometrically scaled 

shapes.  

2.2 Materials and Methods 

2.2.1 Materials 

Two high resolution datasets were used in this study. These comprise surface meshes 

with different degrees of surface complexity and variation in form. Each human head 

surface scan comprises more than 146,000 vertices and 290,000 triangles and each ape 

cranial surface model comprises more than 196,000 vertices and 391,000 triangle meshes.  

2.2.1.1 Adult human heads  

The sample comprises 100 surface scans of adult human male heads from the 

Liverpool-York 3D ‘headspace’ dataset, consisting of 1519 subjects. Geometry and 

texture were captured using a 3dMD five-camera system (Dai et al., 2020). 16 anatomical 

(homologous) landmarks had already been manually marked up on each using the EVAN 

toolbox, in the course of a previous study (Smith et al., 2021) and these are shown in 

Figure 2.1a. These cover much of the facial region but landmarks are not identifiable over 

the scalp. 

2.2.1.2 Ape crania 

This sample included 20 surface meshes of ape crania captured by CT scanning, 

including 5 Gorilla, 5 Hylobates lar, 5 Pan troglodytes, and 5 Pongo abelii (Table 2.S1). 
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These present more complex surfaces and a far greater degree of variation in size and 

shape than the head surface dataset. As shown in Figure 2.1b, 41 anatomical landmarks 

had already been manually placed over the entire cranium, in the course of a previous 

study (Profico et al., 2017).  

 

Figure 2.1 Two datasets with anatomical landmarks. (a) An adult human male head with 16 landmarks. (b) 
An ape cranium with 41 landmarks. 

2.2.2 Methods 

2.2.2.1 Three semilandmarking approaches 

Based on the fixed landmarks, we used three different methods to mark up 

semilandmark sets of varying density among specimens using a common template and 

then tested six hypotheses (Figure 2.2).  

 
Figure 2.2 Workflow of comparison of three semilandmarking landmarks  

2.2.2.1.1 Generation of template  

A landmark and semilandmark template was created for each dataset to be used as 

the basis of semilandmarking using three different approaches. To create this template for 

the head data, we used the NICP algorithm (Amberg et al., 2007) developed in Matlab to 

align all of the human heads using landmarks as a ‘soft constraint’, and from this 

alignment computed a mean template form (size and shape) surface, by averaging the 

coordinates of every vertex of all the heads. Then, we used the k-means clustering 
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algorithm to evenly distribute five different densities (200, 400, 600, 800, and 1000) of 

surface semilandmarks over the template, ignoring the locations of true landmarks and 

avoiding the ears, which have a complex surface.  

For the ape crania, the external surface of every specimen was extracted by 

computing the intersection points of each cross-section plane and the 3D meshes (Shui et 

al., 2020), to avoid the internal surface interfering with the sliding and projection of 

semilandmarks. Next, we used the fastKmeans function in the Morpho R package to 

perform the k-means clustering algorithm to evenly sample 800 surface semilandmarks 

over an arbitrary specimen (a male gorilla, the Procrustes distance between it and the 

template, based on the landmarks and semilandmarks was 0.0988, which is very similar 

to the average difference between individuals and the mean, estimated using sliding TPS 

semilandmarking), ignoring symmetry, and employed the sliding TPS approach to yield 

semilandmarks among specimens. Then, the mean form of landmarks and semilandmarks 

was calculated and the arbitrary specimen surface was deformed to approximate the mean 

surface form. This surface was used as the template. Finally, we utilized the k-means 

clustering algorithm to evenly sample five different densities of surface semilandmarks 

(50, 100, 200, 400, 800) on the template, avoiding the cranial base and teeth.  

2.2.2.1.2 Semilandmarking approaches 

Once the templates were created, the three commonly used methods of 

semilandmarking described above were applied as follows:  

a)  Sliding TPS  

Semilandmarks were projected from the template surface onto each target surface 

and then iteratively slid over the target surface to minimize the bending energy of the TPS 

between each specimen and template. This is the classic approach first described by 

(Bookstein, 1997) and developed by (Gunz & Mitteroecker, 2013; Gunz et al., 2005). It 

is advised not to locate semilandmarks beyond the bounds of the true landmarks (Oxnard 

& O’Higgins, 2009) where the TPS, whose bending energies are minimised during 

subsequent sliding, is progressively less constrained by the landmarks. Consequently, 

after sliding the scalp semilandmarks may be located on non-homologous features (Gunz 

& Mitteroecker, 2013). However, the other two semilandmarking approaches (below) are 

expected to function adequately over the scalp, depending on landmarks only for the 

initial registration. Thus, for consistency and to be able to compare results, the sliding 

TPS algorithm was applied to scalp semilandmarks, despite known issues. Subsequent 

analyses compare results from the scalp and face among semilandmarking approaches, 

and so provide insights into the severity of this issue in this dataset. We used the patching 

(placePatch) and sliding (slider3d) procedures in the Morpho R package to slide the 

semilandmarks based on the templates (Schlager, 2017).  
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b)  Rigid registration 

Rigid registration aims to find the linear transformation of the template to each 

specimen surface (translation and rotation) that aligns two surfaces without scaling in 

such a way that the sum of squared Euclidean distance between landmarks (and, if present, 

semilandmarks) is minimised. Note, this method does not deform a surface to optimise 

fitting. So, it is prone to error due to the difference in size between the template and every 

specimen. 

Semilandmarking of the target was achieved iteratively using a hybrid rigid 

registration combining LS and point-to-point ICP algorithms (LS&ICP). First, the LS 

algorithm was used to fit the template to each specimen, minimizing the distances 

between landmarks on the template and each target specimen by translating and rotating 

the template to best fit the target. Subsequently, the ICP algorithm iteratively rigidly 

refitted the template to the target, minimising the sum of the squared distances between 

the landmarks and current estimate of semilandmarks, found by searching for the nearest 

points on the target surface from the registered template semilandmarks. The initial rigid 

alignment based on landmarks speeds up convergence during the ICP phase. The C++ 

programming language was used to code the algorithm to generate semilandmarks using 

this LS&ICP approach. 

c)  Non-rigid registration 

We presented a hybrid non-rigid registration approach (Shui et al., 2021) to deform 

the template specimen to fit each target specimen and then projected the semilandmarks 

from the warped template onto each specimen by searching for the nearest points on its 

surface, to yield semilandmarks across all specimens. More details of the algorithm can 

be seen in Chapter 6. Unlike rigid registration, in fitting, each vertex of the template can 

be moved freely with stretching based on a non-rigid transformation and landmarks acting 

as constraints. This comprised two steps: first, the TPS algorithm was used to warp the 

template to every specimen based on the fixed landmarks. This removed size and shape 

differences between the template and each target set of landmarks and provided a 

reasonable initial alignment of surfaces. Second, the NICP algorithm (Amberg et al., 2007) 

was applied to warp the deformed template surface to each specimen as rigidly as possible, 

optimizing the cost function by assigning an affine transformation to each vertex, rather 

than an interpolation function as used in TPS. For this procedure, the cost function 

comprised a landmark term, a local affine regularization term and a stiffness term. 

Registration loops were performed by decreasing stiffness weights iteratively and 

deforming the template incrementally. This resulted in the warped template surface 

matching the target closely. Here, this approach is referred to as TPS&NICP. The C++ 

programming language and Matlab were used to apply this approach. The software 

prototype used to generate the semilandmarks using three different approaches can be 
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downloaded from the Internet (https://github.com/sissun/Geometric_morphometrics.git). 

2.2.2.2 Comparison of three semilandmarking approaches 

We compared the different semilandmarking approaches by testing the null 

hypotheses.  

2.2.2.2.1 The locations of semilandmarks 

Differences between methods in the placement of semilandmarks were assessed by 

visualizing them and computing the Euclidean distances between each semilandmark 

(that share the same initial template position), computed using each semilandmarking 

approach. These were used to compute the average semilandmarking ‘error’ between 

approaches and to examine their distributions. Note these are ‘errors’ between algorithmic 

results and not in homology mapping per se, which cannot be evaluated because truly 

homologous dense point correspondences are unknowable. 

2.2.2.2.2 Comparisons of mean landmark and semilandmark 

configurations 

Generalised Procrustes analysis (GPA) was applied to the landmark and 

semilandmark configurations estimated for the sample and then the mean centroid sizes 

were compared among different semilandmarking methods and densities. Subsequently, 

the Procrustes distances among estimates of the mean shape were computed to quantify 

the differences between them arising from different semilandmarking approaches. To 

contextualise the extent to which Procrustes distances between means differ, these were 

compared to the average distances between individuals and the mean for each density of 

semilandmarks.  

2.2.2.2.3 Procrustes distances among specimens obtained using different 

semilandmarking approaches and densities 

We examined the effect of different semilandmarking approaches and different 

densities of semilandmarks on Procrustes distance matrices.    

a)  The effect of different semilandmarking approaches 

Generalised Procrustes analysis was applied to each of the landmark and 

semilandmark sets generated by the different semilandmarking approaches. Then, 

Procrustes shape coordinates and their sample means and centroid sizes were obtained. 

Procrustes distance matrices among all individuals were calculated and a Mantel Test 

(Dutilleul et al., 2000) performed to compare distance matrices obtained by the different 

semilandmarking approaches. Additionally, vectors of Procrustes distances between each 

individual and the mean were compared among semilandmarking methods by plotting 

bivariate graphs and computing Pearson correlations.  
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b)  The effect of different densities of semilandmarks 

The results obtained from analyses of the landmarks and different densities of 

semilandmarks were compared with those obtained using the landmarks and maximum 

density of semilandmarks from each method. This was achieved by computing the 

Pearson correlations among vectors of Procrustes distances to the mean and by 

performing a Mantel Test between the Procrustes distance matrices derived from each 

density and that from the maximum density. Additionally, the matrix of Procrustes 

distances among specimens based on the landmarks alone was computed in order to 

compare these distances with those obtained by different semilandmarking approaches 

and densities.   

2.2.2.2.4 PCA and allometry 

For the landmarks alone, a GPA and PCA of the covariance matrix was carried out in 

order to compare PCs with those from the semilandmarking methods. Then, for the 

landmarks and each density of semilandmarking, a separate GPA was carried out of the 

landmark and semilandmark configurations derived from each of the three 

semilandmarking methods. A PCA was then carried out on the resulting shape coordinates 

from each GPA at each semilandmarking density. To assess how the major vectors of 

variation (PCs) differ between approaches and semilandmarking densities, we compared 

the distributions of specimens along the first two PCs by computing the Pearson 

correlations among the PC 1 and among the PC 2 scores arising from each 

semilandmarking approach and from landmarks alone.  

Next, a joint GPA and PCA was carried out combining landmarks and semilandmark 

sets of the same density from each semilandmarking approach. The full set of PC scores 

(which completely account for the Procrustes distances among specimens) was used to 

estimate allometry (the relationship between size and shape) based on each 

semilandmarking method (Klingenberg, 2016). Allometry was estimated for the whole 

sample and each semilandmarking density by multivariate regression of PC scores on the 

natural logarithm of centroid size. These estimates of allometry were then compared 

between different semilandmarking approaches based on the angles between allometric 

vectors (Gonzalez et al., 2010). Small angles indicate that semilandmarks generated by 

different approaches are similar and large angles indicate that they are more different.  

Subsequently, the predicted shapes of landmarks and semilandmarks representing the 

extreme limits (smallest-largest) of the allometric vectors derived using each 

semilandmarking method and density were compared. This comprised two steps: first, the 

predicted shapes (landmark and semilandmark configurations) corresponding to the upper 

and lower limits of centroid sizes estimated by each approach were estimated from the 

multivariate regression (O'Higgins, 2000). Second, Procrustes distances were computed 
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between the predicted shapes representing the maximum and minimum centroid sizes 

from each of the landmark and semilandmark sets generated by the different 

semilandmarking approaches.  

2.3 Results 

We first compared semilandmarking approaches using the adult human head surfaces 

and then repeated key analyses using the ape cranial dataset to compare findings between 

surfaces that differ in their complexity, distribution of identifiable landmarks, and degree 

of variation in size and shape. 

2.3.1 Human head scans 

2.3.1.1 The locations of semilandmarks 

The resulting differences in placement of semilandmarks (‘errors’) from the three 

semilandmarking approaches are presented in Tables 2.1-2.3 for the comparisons of 

sliding TPS and TPS&NICP, sliding TPS and LS&ICP, and TPS&NICP and LS&ICP 

approaches, respectively. The tables list differences in location (diff, in mm), the average 

deviation (dev in mm) and the % of semilandmarks that differ in location by 0.0-1.0 mm, 

1-2.5 mm, 2.5-5 mm and ≥5.0 mm. 

 Table 2.1 Comparison of semilandmarks from sliding TPS and TPS&NICP. 

diff mm 
200 400 600 800 1000 

dev % dev % dev % dev % dev % 

[0.0-1.0)  0.68 16.00 0.71 15.75 0.72 15.17 0.74 15.13 0.75 15.00 

[1.0-2.5) 1.63 18.00 1.68 21.75 1.69 23.67 1.68 27.12 1.72 29.40 

[2.5-5.0) 3.81 40.00 3.83 45.25 3.74 50.67 3.73 52.25 3.67 55.50 

≥5.00 5.75 26.00 5.64 17.25 5.35 10.50 5.12 5.50 5.02 0.10 

Total 3.42 100.00 3.18 100.00 2.96 100.00 2.80 100.00 2.66 100.00 

Table 2.2 Comparison of semilandmarks from sliding TPS and LS&ICP. 

diff. mm 
200 400 600 800 1000 

dev % dev % dev % dev % dev % 

[0.0-1.0)  - - - - - - - - - - 

[1.0-2.5) - - - - - - - - - - 

[2.5-5.0) 4.21 37.50 4.26 47.25 4.28 51.50 4.34 58.63 4.36 52.60 

≥5.00 5.83 62.50 5.60 52.75 5.54 48.50 5.51 41.37 5.52 47.40 

Total 5.22 100.00 4.97 100.00 4.89 100.00 4.82 100.00 4.91 100.00 
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Table 2.3 Comparison of semilandmarks from TPS&NICP and LS&ICP. 

diff. mm 
200 400 600 800 1000 

dev % dev % dev % dev % dev % 

[0.0-1.0)  - - - - - - - - - - 

[1.0-2.5) - - - - - - - - - - 

[2.5-5.0) 4.35 12.50 4.37 15.00 4.33 15.83 4.38 20.25 4.38 17.90 

≥5.00 6.84 87.50 6.56 85.00 6.45 84.17 6.43 79.75 6.40 82.10 

Total 6.53 100.00 6.23 100.00 6.12 100.00 6.02 100.00 6.04 100.00 

The mean locations of 1000 semilandmarks generated by sliding TPS (black points), 

LS&ICP (red points) and TPS&NICP (green points) approaches are illustrated in Figure 

2.3 on the template surface warped to the mean of the sliding TPS generated landmark 

and semilandmarks. It is evident that their locations differ among semilandmarking 

approaches. The mean configurations from both TPS&NICP and LS&ICP lie close to, or 

on the surface defined by the mean configuration from sliding TPS. Similar results are 

found for all semilandmarking densities, with sliding TPS and TPS&NICP approaches 

producing the most similar semilandmark locations.  

 

Figure 2.3 Locations of the average coordinates of 1000 semilandmarks generated by sliding TPS (black 
points), LS&ICP (red points) and TPS&NICP (green points) approaches.  

Focusing on the highest semilandmarking density (but note that these findings apply 

equally to all higher densities), Figure 2.4a shows the differences in location among 1000 

semilandmarks generated by sliding TPS and TPS&NICP approaches. 15% (Table 2.1) 

of the full set of semilandmarks (yellow points) differ in location by <1.0 mm and nearly 

all of these are located on the face (Figure 2.4a), where the density of landmarks is high. 

As the density of landmarks in a region falls, the differences in semilandmark placement 

increase. Thus, 29.4% (Table 2.1) of the semilandmarks (Figure 2.4a, blue points) present 

a difference of 1.0-2.5 mm, principally around the forehead and cheeks and 55.6% of the 

semilandmarks (red and black points) present differences greater than 2.5 mm in location 

among semilandmarking approaches, principally these larger differences are located over 

the scalp. Figure 2.4b shows the differences in placement of 1000 semilandmarks 

generated by sliding TPS and LS&ICP approaches. Compared to Figure 2.4a, the 

deviations between equivalent semilandmarks are larger. This reflects the differences 
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presented in Table 2.2. For 1000 semilandmarks, all deviations between sliding TPS and 

LS&ICP are >2.5mm, while sliding TPS and TPS&NICP, locate 44.4% of semilandmarks 

with difference in location of less than 2.5mm. These greater differences are most evident 

in the face (Figure 2.4b) where increased asymmetry of differences in the locations of 

semilandmarks is also evident.    

 

Figure 2.4 Average differences (Euclidean distance in location in mm) between 1000 semilandmarks 
generated by different approaches. (a) differences between sliding TPS and TPS&NICP. (b) differences 
between sliding TPS and LS&ICP. Differences between TPS&NICP and LS&ICP approaches are not shown 
because they are very similar to those in b. 

2.3.1.2 Comparison of landmark and semilandmark configurations among 

different semilandmarking approaches 

For adult human male heads, the centroid sizes of the estimated mean configurations 

derived from different semilandmarking approaches, are presented in Table 2.4. They 

indicate that the mean centroid sizes estimated using each approach are almost the same 

and increase similarly with increasing semilandmark density, as expected.  

Table 2.4 The centroid sizes of the mean landmark and semilandmark configurations generated by different 
semilandmarking approaches and different densities of semilandmarks.  

 200 400 600 800 1000 

Sliding TPS 1514 2126 2599 2990 3334 

LS&ICP  1513 2123 2595 2986 3330 

TPS&NICP 1513 2124 2598 2989 3333 

Additionally, Procrustes distances were computed among estimates of the mean 

landmark and semilandmark configurations from different semilandmarking approaches 

(Table 2.5). Comparison of these distances among semilandmarking methods and 

densities indicates that the estimates of the mean landmark and semilandmark 

configurations generated from sliding TPS are more similar to TPS&NICP than to 

LS&ICP. With increasing numbers of semilandmarks, the LS&ICP approach converges 

on the results obtained using sliding TPS and TPS&NICP, as indicated by the 

progressively reducing Procrustes distances with increasing semilandmarking density in 

rows 1 and 3 of Table 2.5. In contrast, the estimated mean configurations from sliding 

TPS and TPS&NICP present a very similar Procrustes distance (0.0049+/-1) at all 

densities.  
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Table 2.5 Procrustes distances computed between mean landmark and semilandmark configurations. 

 200 400 600 800 1000 

Sliding TPS  

 LS&ICP 
0.0112 0.0093 0.0086 0.0083 0.0082 

Sliding TPS 

TPS&NICP 
0.0048 0.0049 0.0049 0.0050 0.0049 

LS&ICP  

TPS&NICP 
0.0122 0.0103 0.0096 0.0093 0.0091 

At each semilandmarking density the estimates of mean shape arising from the 

different semilandmarking approaches differ by between 14.15% and 37.43% of the 

average difference between individuals and the mean, estimated using sliding TPS 

semilandmarking. Between sliding TPS and TPS&NICP this relative distance remains 

stable (~14.5%) with increasing semilandmark density, whereas it decreases from ~35% 

to 25% for the comparisons between the mean derived by LS&ICP and those from both 

sliding TPS and TPS&NICP.  

To further explore why estimates of mean landmark and semilandmark 

configurations from different semilandmarking approaches show the patterns of 

difference presented in Table 2.5, the semilandmarks generated by sliding TPS were 

separated into two regions, face (yellow points) and scalp (red points), as in Figure 2.5. 

Then, Procrustes distances were computed between the landmark and semilandmark sets 

from these regions, obtained using different approaches and semilandmarking densities 

(Table 2.6). At all densities, the Procrustes distances between landmarks and 

semilandmarks in the face and scalp, computed from sliding TPS and TPS&NICP are the 

smallest, with distances among face semilandmarks being the largest, and these are 

consistent among semilandmarking densities. By contrast, the Procrustes distances from 

LS&ICP and both sliding TPS and TPS&NICP (Table 2.6 rows 1 and 3) are larger. Similar 

to the comparison of sliding TPS and TPS&NICP, distances are greater among facial 

landmarks and semilandmarks, than among scalp semilandmarks. Further, the distances 

among face landmarks and semilandmarks from LS&ICP and both sliding TPS and 

TPS&NICP decrease with increasing semilandmark density. This likely accounts for the 

convergence with increasing numbers of semilandmarks between the LS&ICP approach 

and both sliding TPS and TPS&NICP mean shapes seen in Table 2.5.   

 

Figure 2.5 The mean semilandmarks generated by sliding TPS over the face (yellow points) and scalp (red 
points). 
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Table 2.6 Procrustes distances computed between mean landmark and semilandmark configurations in the 
face and scalp. Sliding TPS vs LS&ICP (first row), Sliding TPS vs TPS&NICP (middle row), and LS&ICP 
vs TPS&NICP (bottom row). 

200 400 600 800 1000 

Face Scalp Face Scalp Face Scalp Face Scalp Face Scalp 

0.0229 0.0067 0.0195 0.0058 0.0179 0.0058 0.0168 0.0060 0.0166 0.0062 

0.0056 0.0055 0.0057 0.0055 0.0061 0.0054 0.0061 0.0056 0.0061 0.0054 

0.0238 0.0081 0.0205 0.0074 0.0190 0.0072 0.0181 0.0071 0.0175 0.0072 

2.3.1.3 Comparison of centroid sizes and Procrustes distance matrices 

2.3.1.3.1 Differences between semilandmarking approaches 

Centroid sizes of individuals, computed using the landmarks and semilandmarks 

generated by alternative semilandmarking approaches are compared between sliding TPS 

and the other two semilandmarking approaches in Figure 2.6 (the comparison of 

TPS&NICP and LS&ICP approaches is not shown because it is very similar to those in 

Figure 2.6a). Figure 2.6a compares centroid sizes between sliding TPS (horizontal axis) 

and LS&ICP (vertical axis). The dashed line denotes the expected relationship if centroid 

sizes are identical, and the red line represents the fitted line from a regression of centroid 

sizes of individuals from the landmark and semilandmark configurations computed by 

LS&ICP (dependent variable) on those computed by sliding TPS (independent variable). 

In each case, the fitted red line shows a smaller gradient than the expected linear 

relationship indicated by the dashed line. Likewise, Figure 2.6b compares centroid sizes 

from sliding TPS (independent variable) and TPS&NICP (dependent variable). The plots 

indicate that the centroid sizes from sliding TPS (red lines) were very similar to those of 

TPS&NICP at all assessed semilandmarking densities. 

 
Figure 2.6 Comparison of the centroid sizes of landmarks and semilandmark configurations computed by 
different approaches. (a) Comparison of TPS sliding and LS&ICP. (b) Comparison of TPS sliding and 
TPS&NICP. TPS&NICP and LS&ICP approaches are not compared in this figure because the results are 
similar to those in a.  
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Figure 2.7 summarizes the vectors of Procrustes distances between each individual 

and the mean calculated using landmarks and semilandmarks from the sliding TPS, 

LS&ICP, and TPS&NICP approaches. In Figure 2.7, the horizontal axis represents 

different densities of semilandmarks and the vertical axis represents Procrustes distances. 

Consistently across semilandmarking densities within each method, the smallest distances 

arise from the LS&ICP approach and the largest from TPS&NICP, with sliding TPS 

intermediate.  

 

Figure 2.7 Vectors of Procrustes distances between each individual and the mean computed for each 
semilandmarking approach using different densities of semilandmarks. Cyan points represent Procrustes 
distance between every specimen and the Procrustes mean shape and red points represent the average value 
of the Procrustes distance vector. 

 

Figure 2.8 Comparison of the vector of Procrustes distances between every specimen and the mean among 
different approaches. (a) Comparison of TPS sliding and LS&ICP approaches. (b) Comparison of TPS 
sliding and TPS&NICP approaches. TPS&NICP and LS&ICP approaches are not compared in this figure 
because the results are very similar to those in a.  

Figure 2.8 directly compares the distances from the sliding TPS approach with those 

from the other two approaches. The results comparing TPS&NICP and LS&ICP are not 

shown, because they are similar to those in Figure 2.8a comparing vectors of Procrustes 

distances between each individual and the mean produced by sliding TPS (horizontal axis) 

and LS&ICP (vertical axis). The dashed line denotes the expected relationship if 

Procrustes distance vectors are identical, and the red line represents the linearly fitted 

regression of the vector derived from LS&ICP (dependent variable) on the vector from 

sliding TPS (independent variable). For each density of semilandmarking, the fitted red 
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line has a smaller gradient and lies below the expected linear relationship indicated by the 

dashed line, indicating that Procrustes distances from sliding TPS are greater than those 

from LS&ICP (supported by Figure 2.7) and this difference increases as Procrustes 

distance increases. Likewise, Figure 2.8b compares Procrustes distance vectors between 

sliding TPS and TPS&NICP. The plots indicate that the Procrustes distance vectors from 

sliding TPS (red lines) are less than those from TPS&NICP at all semilandmarking 

densities.  

Table 2.7 compares the Pearson correlations among the vectors of Procrustes 

distances between every individual and the mean as well as the Mantel correlation 

between the Procrustes distance matrices. At all semilandmarking densities, the largest 

Pearson correlations (r) are between Procrustes distance vectors from sliding TPS and 

TPS&NICP and these correlations increase with increasing numbers of semilandmarks 

(second row in Table 2.7). In contrast, the weakest correlations are consistently between 

LS&ICP and TPS&NICP and these decrease with increasing semilandmark density.   

Table 2.7 Pearson correlations among vectors of Procrustes distances between each individual and the mean 
and Mantel tests of association between the Procrustes distance matrices derived using different 
semilandmarking approaches. Sliding TPS vs LS&ICP (first row), Sliding TPS vs TPS&NICP (middle row), 
and LS&ICP vs TPS&NICP (bottom row). 

200 400 600 800 1000 

Pearson Mantel Pearson Mantel Pearson Mantel Pearson Mantel Pearson Mantel 

0.6830 0.6841 0.6068 0.6260 0.5790 0.5978 0.5555 0.5790 0.5323 0.5528 

0.7284 0.7017 0.7901 0.7576 0.8304 0.8009 0.8623 0.8311 0.8829 0.8564 

0.3955 0.3916 0.3615 0.3646 0.3478 0.3504 0.3438 0.3454 0.3368 0.3382 

Using Mantel tests, Table 2.7 also compares the matrices of Procrustes distances 

among all individuals calculated using landmarks and semilandmarks generated by the 

different semilandmarking approaches. The largest matrix correlations were found 

between sliding TPS and TPS&NICP and the association becomes stronger with 

increasing numbers of semilandmarks (second row in Table 2.7). The weakest association, 

as assessed by Mantel tests, is between matrices calculated from semilandmarks derived 

from LS&ICP and TPS&NICP. These become weaker with increasing numbers of 

semilandmarks. Additionally, the matrix (Mantel) correlations for this comparison are 

consistently low relative to the other comparisons (bottom row in Table 2.7 vs rows 1 and 

2).   

2.3.1.3.2 Differences densities of semilandmarks 

Consistency within semilandmarking methods, of relative Procrustes distances 

among specimens computed using varying densities of semilandmarks, was assessed by 

tests of association. Pearson correlations were computed among vectors of Procrustes 

distances between each individual and the mean, as were Mantel correlations among the 
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matrices of Procrustes distances. These, presented in Table 2.8, compared the distances 

from the landmark and semilandmark configuration comprising 1000 semilandmarks 

from the head surface data with those from configurations comprising 200-800 

semilandmarks. Within each semilandmarking approach, these correlations are generally 

large (>0.90) and increase with increasing numbers of semilandmarks. The largest 

correlations are found across semilandmarking densities arising from TPS&NICP and the 

smallest, from sliding TPS, especially at lower semilandmarking densities. 

Table 2.8 Pearson correlations among vectors of Procrustes distances and Mantel tests comparing 
Procrustes distance matrices between each density of semilandmarking and the maximum density. 

 200 400 600 800 

Pearson Mantel Pearson Mantel Pearson Mantel Pearson Mantel 

Sliding TPS 0.9029 0.9075 0.9580 0.9597 0.9829 0.9832 0.9886 0.9898 

LS&ICP 0.9919 0.9893 0.9975 0.9969 0.9981 0.9977 0.9991 0.9990 

TPS&NICP 0.9978 0.9976 0.9994 0.9993 0.9994 0.9994 0.9998 0.9997 

Additionally, the Pearson correlations among vectors of Procrustes distances between 

each individual and the mean and the Mantel correlations among distance matrices were 

computed between distances derived from each semilandmarking approach and density 

and the distances based on landmarks alone are computed (Table 2.9). The TPS&NICP 

approach results in distances that are most highly correlated with those from landmarks 

and the sliding TPS approach results in distances that are a little less strongly correlated 

while the LS&ICP approach results in distances that are poorly correlated with those from 

landmarks alone. For LS&ICP and TPS&NICP approaches, but not sliding TPS, the 

correlations become smaller with increasing semilandmarking density.  

Table 2.9 Pearson and Mantel correlations between vectors and matrices of Procrustes distances from each 
semilandmarking approach and density and those from landmarks alone. Sliding TPS (first row), LS&ICP 
(middle row), and TPS&NICP (bottom row). 

200 400 600 800 1000 

Pearson Mantel Pearson Mantel Pearson Mantel Pearson Mantel Pearson Mantel 

0.6424 0.5718 0.6604 0.5826 0.6729 0.5910 0.6928 0.6084 0.6848 0.6115 

0.3234 0.3164 0.2677 0.2634 0.2549 0.2472 0.2469 0.2378 0.2342 0.2260 

0.7315 0.7035 0.7237 0.6976 0.7221 0.6949 0.7222 0.6952 0.7208 0.6944 

2.3.1.4 PCA and allometry 

2.3.1.4.1 Correlations between PC scores from different semilandmarking 

methods and densities 

To broadly compare distributions of specimens arising from different 

semilandmarking approaches and densities, correlations (ignoring sign, and so arbitrary 

reflections on PCs) were computed between of scores of individuals on the first two PCs 

of shape derived from separate GPA/PCA of the landmark and semilandmark 

configurations (Table 2.10). These first two PCs account for greater than 30% of the total 
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shape variance in each analysis of landmarks and semilandmarks from sliding TPS and 

LS&ICP, and 49% for those from TPS&NICP. Correlations are generally moderate to 

weak. They are low for comparisons of PC1 and PC2 scores between LS&ICP and 

TPS&NICP and become smaller for comparisons of PC 1 scores between LS&ICP and 

sliding TPS with increasing density. In contrast, PC1 and PC2 correlations from sliding 

TPS and TPS&NICP are low for lower densities, rising for higher ones. 

Table 2.10 Pearson correlations between PC1 and PC 2 scores derived using different semilandmarking 
approaches. Sliding TPS vs LS&ICP (first row), Sliding TPS vs TPS&NICP (middle row), and LS&ICP vs 
TPS&NICP (bottom row). 

200 400 600 800 1000 

PC1 PC2 PC1 PC2 PC1 PC2 PC1 PC2 PC1 PC2 

0.6246 0.0788 0.5441 0.6581 0.4280 0.8798 0.3951 0.7776 0.3804 0.5059 

0.2829 0.4818 0.4947 0.0921 0.7287 0.2434 0.8004 0.5523 0.7954 0.6903 

0.1436 0.1030 0.1621 0.0848 0.1727 0.0713 0.1718 0.0411 0.1735 0.0085 

Within each semilandmarking approach, the correlations among PC1 and PC2 scores 

from every density and the maximum density of each semilandmarking approach are 

presented in Table 2.11. The correlations from LS&ICP and TPS&NICP were consistently 

large, whereas the correlations from sliding TPS increase with increasing semilandmark 

densities. Table 2.12 details the extent to which PC scores for the analyses of Table 2.11 

correlate with those from PCA of landmarks alone. For TPS&NICP landmarks and 

semilandmarks, at all densities, PC1 scores show a consistent correlation of 

approximately 0.89, and PC2 scores, ~0.49. In contrast, PC scores based on landmarks 

and semilandmarks from sliding TPS, show a lower correlation of PC1 ~0.55, except at 

the lowest density of semilandmarking where the correlation is 0.2437. PC2 correlations 

are uniformly low. LS&ICP semilandmarking at all densities results in PC1 and PC2 

scores with uniformly low correlations. 

Table 2.11 Pearson correlations of PC1 and PC 2 scores between each semilandmark density and the 
maximum (1000) density. 

 200 400 600 800 

PC1 PC2 PC1 PC2 PC1 PC2 PC1 PC2 

Sliding TPS 0.4697 0.5826 0.7051 0.1701 0.9532 0.6054 0.9815 0.9131 

LS&ICP 0.8661 0.8934 0.9469 0.9534 0.9799 0.9805 0.9942 0.9938 

TPS&NICP 0.9989 0.9988 0.9994 0.9992 0.9996 0.9995 0.9998 0.9998 

To assess the extent to which scalp semilandmarks, which lack nearby fixed 

landmarks to guide their placement, affect the relative performance of semilandmarking 

approaches, a set of PCAs was carried out using facial landmarks and semilandmarks 

alone. Table 2.13 presents the resulting correlations among PC scores extracted using 

each semilandmarking approach at each density of semilandmarking. These first two PCs 
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account for almost 40% of the total shape variance in each analysis. Those between 

sliding TPS and TPS&NICP are consistently high (>0.9), while correlations between 

LS&ICP and both sliding TPS and TPS&NICP are consistently low.  

Table 2.12 Pearson correlations of PC1 and PC 2 scores from landmarks alone and those from each 
semilandmarking approach and density. Sliding TPS (first row), LS&ICP (middle row), and TPS&NICP 
(bottom row). 

200 400 600 800 1000 

PC1 PC2 PC1 PC2 PC1 PC2 PC1 PC2 PC1 PC2 

0.2437 0.2256 0.4119 0.0538 0.5586 0.0485 0.6165 0.1081 0.5782 0.2153 

0.0385 0.1486 0.0422 0.1751 0.0342 0.1821 0.0222 0.1929 0.0240 0.2085 

0.8897 0.4997 0.8844 0.4937 0.8847 0.4913 0.8877 0.4906 0.8932 0.4931 

Table 2.13 Pearson correlations between PC1 and PC 2 scores based on facial landmarks and 
semilandmarks derived using different semilandmarking approaches. Sliding TPS vs LS&ICP (first row), 
Sliding TPS vs TPS&NICP (middle row), and LS&ICP vs TPS&NICP (bottom row). 

200 400 600 800 1000 

PC1 PC2 PC1 PC2 PC1 PC2 PC1 PC2 PC1 PC2 

0.2112 0.5431 0.2130 0.4862 0.2095 0.4510 0.2245 0.3525 0.2445 0.2261 

0.9617 0.9388 0.9520 0.9258 0.9525 0.9338 0.9603 0.9351 0.9654 0.9337 

0.0859 0.4849 0.0626 0.4541 0.0565 0.4235 0.0912 0.3150 0.1310 0.1869 

In Table 2.14, for each semilandmarking approach, the correlations are presented 

between scores on PC1 and PC2 calculated using maximum semilandmarks and each 

lower semilandmarking density on the face. These correlations are consistently high for 

the sliding TPS and TPS&NICP approaches, while they are consistently low for the 

LS&ICP approach. Table 2.15 presents the correlations between PC1 and PC2 scores 

computed using the facial landmarks alone and those from the set of landmarks and 

semilandmarks over the face derived from each semilandmarking approach and density. 

TPS&NICP derived PC1 scores are consistently highly correlated with those from the 

landmarks and PC2 scores are less strongly, but still highly correlated. The PC scores 

from the sliding TPS approach show intermediate levels of correlation with those from 

landmarks and the LS&ICP approach present the lowest correlation. 

Table 2.14 Correlations of PC1 and PC 2 scores between each facial landmark and semilandmark 
configuration at lower densities of semilandmarks and the configuration with the maximum density. 

 200 400 600 800 

PC1 PC2 PC1 PC2 PC1 PC2 PC1 PC2 

Sliding TPS 0.9861 0.9855 0.9941 0.9943 0.9944 0.9931 0.9982 0.9976 

LS&ICP 0.8549 0.8663 0.9149 0.9196 0.9429 0.9447 0.9848 0.9846 

TPS&NICP 0.9971 0.9915 0.9996 0.9991 0.9998 0.9994 0.9998 0.9993 
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Table 2.15 Correlations of PC1 and PC 2 scores derived from the landmarks alone and each facial landmark 
and semilandmark configuration generated by different approaches and densities. Sliding TPS (first row), 
LS&ICP (middle row), and TPS&NICP (bottom row). 

200 400 600 800 1000 

PC1 PC2 PC1 PC2 PC1 PC2 PC1 PC2 PC1 PC2 

0.8371 0.5124 0.7841 0.3921 0.7775 0.4043 0.8021 0.3888 0.8159 0.4043 

0.1129 0.2667 0.1775 0.2187 0.2052 0.1938 0.1921 0.1522 0.1755 0.1097 

0.9193 0.7084 0.9023 0.6413 0.8955 0.6351 0.8997 0.6233 0.8971 0.6407 

2.3.1.4.2 Comparison of allometric vectors 

To assess the effects of semilandmarking approach on allometric vectors at each 

density, the landmark and semilandmark configurations from each approach were 

submitted to a joint GPA followed by PCA. Angles, as a measure of dissimilarity, were 

then computed among allometric vectors estimated by multivariate regression of shape 

(scores on all PCs) on the natural logarithm of centroid size (Table 2.16). Angles exceed 

90o for some comparisons because the allometric vectors were compared respecting their 

polarity (i.e. from small to large). At all semilandmarking densities, the angles between 

sliding TPS and TPS&NICP derived vectors were smaller than those in comparisons 

involving LS&ICP. This indicates that the allometric vector resulting from 

semilandmarking using the LS&ICP approach is rather different from those derived from 

sliding TPS and TPS&NICP. Meanwhile, the angles between allometric vectors from 

sliding TPS and TPS&NICP become smaller with increasing semilandmark densities, 

whereas they increase in the comparisons with LS&ICP. 

Table 2.16 The angles (° ) between allometric vectors from different semilandmarking approaches and 
densities. 

 200 400 600 800 1000 

Sliding TPS 

 LS&ICP 
87.39 90.21 92.37 93.44 93.68 

Sliding TPS 

TPS&NICP 
32.47 29.57 26.29 24.00 23.12 

LS&ICP  

TPS&NICP 
92.76 97.60 98.64 100.01 100.32 

2.3.1.4.3 Comparison of allometric scaling of landmark and semilandmark 

configurations 

We compared the predicted landmark and semilandmark configurations representing 

the extreme limits (maximum and minimum centroid sizes) of each allometric vector 

derived from each semilandmarking method by computing Procrustes distances between 

them. The results are presented in Table 2.17. The Procrustes distances among predictions 

are smallest and converge with increasing density for comparisons between predicted 

shapes from sliding TPS and TPS&NICP. For these comparisons, the distances among 
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predicted shapes at minimum size (~0.024) are approximately double those at maximum 

size (~0.012) because the distribution of centroid sizes is skewed towards the maximum. 

These distances are approximately 70% of the average Procrustes distance to the mean 

for the comparisons of predicted shapes at minimum centroid size and 35% at maximum 

centroid size. Distances between predicted shapes from LS&ICP and those from the other 

semilandmarking approaches are generally greater.  

Table 2.17 Comparison of Procrustes distances between the predicted shapes corresponding to the 
maximum (Max) and minimum (Min) centroid size derived using semilandmarking approaches and 
densities. Sliding TPS vs LS&ICP (first row), Sliding TPS vs TPS&NICP (middle row), and LS&ICP vs 
TPS&NICP (bottom row). 

200 400 600 800 1000 

Max Min Max Min Max Min Max Min Max Min 

0.0298 0.0494 0.0288 0.0495 0.0281 0.0504 0.0278 0.0520 0.0283 0.0529 

0.0128 0.0260 0.0131 0.0257 0.0125 0.0231 0.0118 0.0222 0.0117 0.0217 

0.0352 0.0628 0.0355 0.0653 0.0347 0.0646 0.0347 0.0659 0.0350 0.0668 

Taken together, these findings indicate that predicted landmark and semilandmark 

configurations from allometric analysis are most similar between the sliding TPS and 

TPS&NICP approaches and least between LS&ICP and the other approaches.  

2.3.2 Ape crania 

2.3.2.1 The locations of semilandmarks 

We repeated a subset of the foregoing analyses using ape cranial surface meshes. Ape 

crania vary more in form (shape and size) and have a more complex surface than the head 

scans used in the previous analyses. They present identifiable landmarks over the whole 

surface, unlike the head surface data which offer no identifiable scalp landmarks (Figure 

2.1). Figure 2.9 shows the average locations of 800 semilandmarks generated by sliding 

TPS (red points), LS&ICP (red points), and TPS&NICP (green points) approaches on the 

mean surface generated by deforming the template cranium to the mean landmarks and 

semilandmarks derived from the sliding TPS approach. Semilandmarks generated by 

LS&ICP tend be located in different positions to those from the other approaches. 

Additionally, the mean configurations from the TPS&NICP and particularly LS&ICP do 

not exactly lie on the sliding TPS mean surface. These differences are particularly evident 

for semilandmarks around and in the orbits, temporal fossae, over the brow ridges, 

zygomatic arch and maxilla.  
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Figure 2.9 800 semilandmarks generated by different semilandmarking approaches on the mean surface 
generated by sliding TPS. 

Table 2.18 shows the differences in locations of semilandmarks generated by sliding 

TPS and TPS&NICP approaches. It lists average differences in location (dev in mm) and 

the percentage of semilandmarks (%) that differ in location by 0.0-1.0 mm, 1-2.5 mm, 

2.5-5.0 mm and ≥5.0 mm. Figure 2.10a, illustrates these differences. Between sliding TPS 

and TPS&NICP approaches, differences are all less than 5.0 mm, with the majority (>99%) 

less than 2.5 mm (Figure 2.10a) and the proportion of semilandmarks from sliding TPS 

and TPS&NICP located within 1.0 mm of each other tends to decrease with increasing 

semilandmarking density. By contrast, the semilandmark locations derived from LS&ICP 

are more different from those derived by both sliding TPS and TPS&NICP. For brevity, 

only the differences in semilandmarks between sliding TPS and LS&ICP (Table 2.19 and 

Figure 2.10b; 98.62% ≥5.0 mm) are presented, but the results are similar for the 

comparison of TPS&NICP with LS&ICP.   

Table 2.18 Comparison of semilandmarks from sliding TPS and TPS&NICP approaches. 

diff. mm 
50 100 200 400 800 

dev % dev % dev % dev % dev % 

[0.0-1.0)  0.56 52.00 0.64 46.00 0.70 35.50 0.68 30.25 0.70 33.75 

[1.0-2.5) 1.34 48.00   1.44 54.00 1.47 64.00 1.49 69.50 1.50 66.13 

[2.5-5.0) - - - - 2.99 0.5 2.57 0.25 2.73 0.12 

≥5.00 - - - - - - - - - - 

Total 0.94 100.00 1.08 100.00 1.21 100.00 1.25 100.00 1.23 100.00 

Table 2.19 Comparison of semilandmarks from sliding TPS and LS&ICP approaches.   

diff. mm 
50 100 200 400 800 

dev % dev % dev % dev % dev % 

[0.0-1.0)  - - - - - - - - - - 

[1.0-2.5) - - - - - - - - - - 

[2.5-5.0) 4.93 2.00 4.54 4.00 4.58 5.50 4.82 1.25 4.80 1.38 

≥5.00 9.04 98.00 9.89 96.00 10.41 94.50 11.05 98.75 11.52 98.62 

Total 8.96 100.00 9.68 100.00 10.09 100.00 10.97 100.00 11.37 100.00 
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Figure 2.10 The average differences in location (mm) between 800 semilandmarks generated by different 
approaches. (a) Differences between sliding TPS and TPS&NICP approaches. (b) Differences between 
sliding TPS and LS&ICP approaches. Differences between TPS&NICP and LS&ICP approaches are not 
shown because they are very similar to those in b. 

2.3.2.2 Differences among Mean Landmark and Semilandmark Locations 

To compare the estimates of mean landmark and semilandmark configurations, 

Procrustes distances were computed among the mean landmarks and semilandmarks 

generated by different approaches (Table 2.20). The Procrustes distances between mean 

shapes from sliding TPS and TPS&NICP increase with increasing density, unlike the 

results using the head surface data (middle row, Table 2.5). These distances range from 

0.0051 with 50 semilandmarks to 0.0072 with 800 semilandmarks, which are 4.87% and 

7.62% of the average distance (computed using semilandmarks derived from sliding TPS 

plus landmarks) of specimens from the mean at each density.  

These Procrustes distances among estimates of the mean are similar to those from 

the equivalent analyses of the head surface data (Table 2.5, middle row), while they are a 

much smaller proportion of the average distance of specimens from the mean compared 

to the equivalent percentages for the head surface data (~14.5%), reflecting the greater 

degree of variation in shape of the ape crania.    

Table 2.20 Procrustes distance (dist) between mean landmark and semilandmark configurations derived at 
varying densities from sliding TPS and TPS&NICP approaches. 

 50 100 200 400 800 

dist 0.0051 0.0061 0.0072 0.0067 0.0072 

2.3.2.3 Comparison of centroid sizes and Procrustes distance matrices 

The differences in semilandmark locations derived using LS&ICP from those derived 

by the other two approaches are emphasised by the analyses of Table 2.21. This table 

presents the Pearson correlations among the vectors of Procrustes distances between 

every individual and the mean as well as the correlations, from Mantel tests, comparing 

the matrices of Procrustes distances among all individuals, calculated using landmarks 

and semilandmarks generated by different semilandmarking approaches and densities. 
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The largest (all >0.99) Pearson and Mantel correlations were found between sliding TPS 

and TPS&NICP. LS&ICP clearly produces quite different results to those obtained using 

the other semilandmarking approaches, especially at higher semilandmarking densities. 

For this reason, we focus on comparison of the results from analyses of landmarks and 

semilandmarks from sliding TPS and TPS&ICP. 

Table 2.21 Pearson correlations among the vectors of Procrustes distances between each ape cranium and 
the mean and Mantel tests among Procrustes distance matrices. Sliding TPS vs LS&ICP (first row), Sliding 
TPS vs TPS&NICP (middle row), and LS&ICP vs TPS&NICP (bottom row). 

50 100 200 400 800 

Pearson Mantel Pearson Mantel Pearson Mantel Pearson Mantel Pearson Mantel 

0.7630 0.8024 0.6789 0.7403 0.5954 0.6711 0.5066 0.5993 0.4185 0.5241 

0.9988 0.9986 0.9962 0.9970 0.9959 0.9961 0.9951 0.9947 0.9948 0.9944 

0.7540 0.7929 0.6643 0.7268 0.5806 0.6561 0.4739 0.5761 0.3881 0.5050 

Table 2.22 presents Pearson correlations between the distance vectors and matrices 

calculated using the full set of landmarks alone, and those from the landmarks and 

semilandmarks generated by each semilandmarking approach and density. Distances from 

sliding TPS and TPS&NICP approaches are similarly correlated with those from 

landmarks alone. Thus, these correlations are ~0.96 for the lowest density of 

semilandmarking and fall gradually to ~0.9 for the highest. In contrast correlations for the 

LS&ICP approach are moderate (~0.5-0.75), but follow the same trend by becoming 

smaller with increasing semilandmarking density.  

Table 2.22 Pearson and Mantel correlations between vectors and matrices of Procrustes distances from 
each semilandmarking approach and density and those from the landmarks alone. Sliding TPS (first row), 
LS&ICP (middle row), and TPS&NICP (bottom row). 

50 100 200 400 800 

Pearson Mantel Pearson Mantel Pearson Mantel Pearson Mantel Pearson Mantel 

0.9619 0.9579 0.9460 0.9401 0.9303 0.9244 0.9160 0.9079 0.9105 0.8995 

0.7424 0.7951 0.6627 0.7532 0.6081 0.7153 0.5413 0.6742 0.4916 0.6402 

0.9602 0.9551 0.9473 0.9391 0.9350 0.9241 0.9260 0.9135 0.9221 0.9076 

Centroid sizes and Procrustes distances between each cranium and the mean were 

very similar between landmark and semilandmark configurations from sliding TPS and 

TPS&NICP, as indicated in Figures 2.11 and 2.12, where the fitted lines are almost 

coincident with the dashed lines, thereby indicating identity. However, LS&ICP tends to 

produce landmarks and semilandmark configurations with larger centroid sizes than those 

from sliding TPS for small crania, and smaller for large crania (Figure 2.11). Comparisons 

of Procrustes distances from the mean derived from LS&ICP and sliding TPS (Figure 

2.12b) at varying semilandmark densities show marked differences, unlike comparisons 

between the same distances from TPS&NICP and sliding TPS.   
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Figure 2.11 Comparisons of centroid sizes estimated by different semilandmarking approaches. (a) Sliding 
TPS vs LS&ICP. (b) Sliding TPS vs TPS&NICP. 

 

Figure 2.12 Comparison of the vector of Procrustes distances from the mean between semilandmarking 
approaches. (a) Sliding TPS vs LS&ICP. (b) Sliding TPS vs TPS&NICP. 

2.3.2.4 PCA and allometry 

Additionally, we calculated the correlations of scores on the first two PCs of shape 

variation resulting from the separate GPA and then PCA of each semilandmark 

configuration and density (Table 2.23). These are all greater than 0.99, considerably 

greater than the values obtained for the same comparisons using the head surface data 

(middle row, Table 2.10). The scatterplots of the first two PCs reflect this and account for 

~60% of the total shape variance. Examples are superimposed in Figure 2.13.  

Table 2.23 Comparison of Pearson correlations of PC1 and PC 2 between Sliding TPS and TPS&NICP. 

50 100 200 400 800 

PC1 PC2 PC1 PC2 PC1 PC2 PC1 PC2 PC1 PC2 

0.9993 0.9989 0.9983 0.9992 0.9978 0.9985 0.9974 0.9977 0.9972 0.9967 
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Figure 2.13 Visualisation of superimposed scatterplots of PC1 and PC 2 from analyses of 20 ape crania 
using landmarks and semilandmarks from sliding TPS and TPS&NICP approaches with varying densities. 
Horizontal axis represents PC 1 and vertical represents PC 2. Cross: Pongo abeli. Circle: Gorilla. Rectangle: 
Pan troglodytes; Triangle. Hylobates lar. Red: Sliding TPS. Cyan: TPS&NICP. 

Table 2.24 presents the correlations between PC scores on the first PCs of shape from 

each landmark and semilandmark configuration generated by semilandmarking 

approaches and densities and those from GPA and PCA of the landmarks alone. These are 

very similar for both semilandmarking approaches, being large to moderate and slightly 

greater for PC1 than PC2 scores, decreasing ~5-7.5% with increasing semilandmarking 

density. Additionally, the correlations of PC1 and PC2 scores between each 

semilandmarking density and the maximum (800) density are presented in Table 2.25. 

This shows that the correlations within each approach are high, and increase with 

increasing density.  

Table 2.24 Pearson correlations among PC scores from each semilandmarking density and from the 
landmarks alone. Sliding TPS (first row), and TPS&NICP (bottom row). 

50 100 200 400 800 

PC1 PC2 PC1 PC2 PC1 PC2 PC1 PC2 PC1 PC2 

0.9487 0.8634 0.9238 0.8435 0.9104 0.8188 0.9021 0.8155 0.8963 0.8077 

0.9430 0.8732 0.9186 0.8434 0.8999 0.8020 0.8880 0.8108 0.8833 0.8012 

Table 2.25 Pearson correlations among PC scores from each semilandmarking density and the maximum 
density.  

 50 100 200 400 

PC1 PC2 PC1 PC2 PC1 PC2 PC1 PC2 

Sliding TPS 0.9888 0.9769 0.9971 0.9900 0.9987 0.9963 0.9996 0.9984 

TPS&NICP 0.9876 0.9765 0.9962 0.9908 0.9989 0.9965 0.9998 0.9993 

The angles between allometric vectors derived by multivariate regression of shape 

(the full set of non-zero PC scores) on the natural logarithm of centroid size using 

landmarks and semilandmarks from sliding TPS and TPS&NICP (Table 2.26) are 

generally small (< 9°) and increase moderately with semilandmarking density.  

Table 2.26 The angles (°) between allometric vectors derived using sliding TPS and TPS&NICP approaches. 

 50 100 200 400 800 

Sliding TPS 

TPS&NICP 
6.52 7.67 8.68 8.97 8.73 

The Procrustes distances between predicted landmark and semilandmark 



74 
 

configurations at the extreme limits of the allometric vector are shown in Table 2.27. The 

Procrustes distances between allometric predictions of cranial shape at the maximum 

centroid size are between a half and two thirds of those between predictions at the 

minimum centroid size. As with the head surface data, this is explained by the distribution 

of centroid sizes being skewed towards the maximum. These distances increase with 

semilandmarking density. They range between 9% and 14% of the average distance of 

specimens from the mean, for the predictions of cranial shape at the maximum centroid 

size and between 16% and 21% for predictions at the minimum centroid size.  

Table 2.27 Procrustes distances between the predicted landmark and semilandmark configurations from 
sliding TPS and TPS&NICP corresponding to the maximum (Max) and minimum (Min) centroid sizes.  

 50 100 200 400 800 

Max 0.0095 0.0113 0.0122 0.0124 0.0134 

Min 0.0168 0.0189 0.0211 0.0214 0.0202 

2.4 Discussion 

This study compares alternative strategies for marking up dense point 

correspondences (semilandmarks) among biological structures for subsequent statistical 

analyses. We compared these semilandmarking approaches by empirically testing six 

hypotheses (i-vi, below) using surface scans of human faces and ape crania.  

2.4.1 Tests of hypotheses 

2.4.1.1 Hypothesis i 

Taking each hypothesis in turn, i) regarding semilandmark locations, Tables 2.1-2.3 

show that for the head surfaces, at all densities of semilandmarking, sliding TPS and 

TPS&NICP result in smaller differences in semilandmark locations (~34-45% < 2.5 mm, 

Table 2.1) than between these methods and LS&ICP, where all differences are greater 

than 2.5 mm (Tables 2.2-2.3). The least differences between sliding TPS and TPS&NICP 

are found at higher semilandmarking densities and where true landmarks are nearby 

(Figure 2.4). For the ape cranial surfaces, sliding TPS and TPS&NICP, produce similar 

semilandmark locations, with more than 99% lying within 2.5 mm of their corresponding 

one (Table 2.18). Larger differences in semilandmark locations are found between 

LS&ICP and sliding TPS (94%-98% ≥ 5.0 mm apart; Table 2.19).  

These findings falsify the hypothesis of no difference. However, beginning with the 

same template, sliding TPS and TPS&NICP produce the most similar semilandmark 

locations among the three methods, especially at higher semilandmarking densities and 

where landmarks are nearby. LS&ICP produces semilandmark locations that differ more 

from those derived from sliding TPS and TPS&NICP, than they differ from each other, 

especially for the more complex ape cranial surfaces. It should be noted that differences 

in semilandmark locations do not in themselves indicate that one or more methods fails 

to identify homologous semilandmarks, rather they could be identifying different 
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homologous semilandmarks. However, it is unlikely that any approach identifies 

semilandmarks that are homologous, because they are constructed by algorithms that do 

not take account of evolutionary or developmental history, except in the sense that 

homologous landmarks may be used to guide their placement and only to the extent that 

the landmarks are indeed homologous.  

2.4.1.2 Hypothesis ii 

With regard to hypothesis ii), that there is no difference between mean landmark and 

semilandmark configurations estimated using different semilandmarking approaches, 

from Table 2.4 it is evident that within each density of semilandmarking, there are 

negligible differences in estimates of the centroid size of the mean configuration of 

landmarks and semilandmarks from the head data. However, configuration shapes do 

differ, as shown in Table 2.5, where the Procrustes distances between the means from 

sliding TPS and TPS&NICP are consistently in the range 0.0048 to 0.005 irrespective of 

semilandmark density. In contrast means from LS&ICP become more similar to the 

means estimated by the other approaches with increasing semilandmarking density. 

Differences in estimates of the mean shape not inconsiderable, particularly where the 

comparisons involve means estimated by LS&ICP.  

Table 2.20 presents Procrustes distances between estimates of the mean ape cranial 

landmark and semilandmark configuration derived from sliding TPS and TPS&NICP. 

These increase with increasing density, unlike the results based the head surface data 

(middle row, Table 2.5). The reason for this difference between analyses of the two 

datasets requires further investigation, but likely relates to differences in surface 

complexity among the two datasets. They range from 4.87% to 7.62% of the average 

distance of specimens from the mean at each density, and are smaller than the equivalent 

percentages for the head surfaces, likely reflecting the greater variance (and so average 

distances from the mean) of the ape cranial surfaces. 

The differences between estimates of the mean are the result of differences in 

semilandmark locations achieved by each method.  

2.4.1.3 Hypothesis iii 

With regard to hypothesis iii), Figure 2.6 for the head surfaces and Figure 2.11 for 

the ape cranial surfaces plot the centroid sizes of configurations from sliding TPS against 

those from TPS&NICP as well as those from sliding TPS against those from LS&ICP. 

For both sets of surfaces (Figures 2.6 and 2.11), the plots indicate that the centroid sizes 

from sliding TPS are were very similar to those of TPS&NICP at all assessed 

semilandmarking densities, while those from LS&ICP are larger than those from sliding 

TPS at low semilandmark densities and smaller at higher densities. The plot of 

TPS&NICP vs LS&ICP (not shown) is similar to that of sliding TPS vs LS&ICP. This 
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falsifies the hypothesis that centroid sizes of configurations do not differ between 

semilandmarking approaches, because the centroid sizes produced by LS&ICP differ 

somewhat from those generated by the other semilandmarking approaches. However, 

sliding TPS and TPS&NICP approaches result in configurations with very similar 

centroid sizes at all semilandmarking densities. 

2.4.1.4 Hypothesis iv 

Considering the impact of different semilandmarking approaches on the distribution 

of specimens, hypothesis iv) was tested by quantifying the extent to which distance 

matrices differ. The relative Procrustes distances among specimens were compared using 

Pearson correlations of vectors of Procrustes distances to the mean and Mantel 

correlations, computed among entire Procrustes distance matrices derived using different 

semilandmarking approaches and densities. Additionally, the vectors of distances from 

the mean were plotted against each other to visualise their associations.   

For the head surfaces, the vectors of distances to the mean show differences between 

semilandmarking approaches. Thus, in Figure 2.7, at every semilandmarking density, 

estimates of Procrustes distances are largest for configurations using semilandmarks 

computed by TPS&NICP, and least for those computed using LS&ICP. The correlations 

among distance vectors and matrices from sliding TPS and TPS&NICP approximately 

range from 0.7 to 0.85 and become greater with increasing numbers of semilandmarks 

(Table 2.7). The vectors and matrices from both sliding TPS and TPS&NICP show 

smaller correlations with those from LS&ICP and these become smaller with increasing 

numbers of semilandmarks (Table 2.7). The plots of Figure 2.8 support these findings, 

and show that at all semilandmarking densities, TPS&NICP and sliding TPS result in 

vectors of distances from the mean which are highly correlated, although distances are 

larger when computed from semilandmarks derived by TPS&NICP than those from 

sliding TPS. As Procrustes distances between specimens increase, those from TPS&NICP 

increase at a faster rate than those from sliding TPS. From Figure 2.8 it is also apparent 

that correlations between vectors from sliding TPS and LS&ICP are smaller and that as 

Procrustes distances from the mean increase, those from LS&ICP do so at a lower rate 

than sliding TPS.  

For the ape crania (Table 2.21) all distance vector and matrix correlations among 

semilandmarking approaches are larger than those for the heads (Table 2.7). Correlations 

among distance vectors and matrices from sliding TPS and TPS&NICP become slightly 

smaller with increasing numbers of semilandmarks, while the correlations between these 

vectors and matrices with those from LS&ICP reduce more markedly with increasing 

numbers of semilandmarks (Table 2.21). These findings are reflected by the plots of 

Figure 2.12, which compares vectors of Procrustes distances computed using different 

semilandmarking densities. These indicate that, at all densities of semilandmarking, the 



77 
 

vectors of distances are almost identical between TPS&NICP and sliding TPS, reflecting 

the very high correlations in Table 2.21, while between sliding TPS and LS&ICP there 

are greater differences in both the relative distances (bigger scatters) and in how the 

vectors differ between semilandmarking methods with increasing semilandmarking 

density (varying slopes and positions of regression lines).    

These results falsify the hypothesis of no differences among distance matrices 

derived using different semilandmarking approaches. The most similar vectors of 

distances from the mean and distance matrices are found between sliding TPS and 

TPS&NICP, with those from LS&ICP being most distinctive. Further, they indicate that 

the extent to which different semilandmarking approaches result in different distance 

matrices depends on the density of semilandmarks and on the landmark distribution over 

surfaces, as well as the complexity and degree of variation among surfaces and the 

distribution.  

Beyond this, analyses were conducted using the head surface data to assess, within 

each semilandmarking approach, if distance matrices converge with increasing 

semilandmark density. Table 2.8 presents, for the head surfaces, the results of 

comparisons of the distance matrices using 1000 semilandmarks with those with fewer 

semilandmarks for each method of semilandmarking. All correlations are high, with 

distance matrices from all densities below 1000 semilandmarks correlating >0.99, and 

increasing slightly from low to high densities, for semilandmarks derived from 

TPS&NICP and LS&ICP. For semilandmarks derived from sliding TPS, the distance 

vector and matrix from 200 semilandmarks show correlations >0.90, rising progressively 

with increasing density to >0.988 with 800 semilandmarks. Thus, slight converge of 

distance matrices, from a high initial level of similarity, occurs with both TPS&NICP and 

LS&ICP. Sliding TPS also shows convergence of distance matrices and vectors, but from 

an initially lower correlation. Thus, convergence does occur, most markedly for sliding 

TPS, while the other two approaches are more consistent across semilandmarking 

densities.   

For the head surface data, Table 2.9 tabulates the correlations between the vectors 

from the mean, the distance matrices calculated using the landmarks alone and those 

based on the landmarks and semilandmarks generated by each semilandmarking approach. 

The same calculations for the ape crania are presented in Table 2.22. Correlations are 

much higher for the ape crania, indicating that the semilandmarks and landmarks more 

closely reflect the landmark data. This may be because in the head surface data a 

substantial region, the scalp, is not landmarked, and so variations in configuration shape 

over the scalp are unaccounted for by the landmark data alone, while landmarks are 

distributed over the whole surface of the ape crania, as are semilandmarks. Additionally, 

it may be because the ape crania represent several species and differ much more than the 
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human heads. Correlations with landmark data fall with increasing semilandmarking 

density in all cases, for both surface datasets, except for sliding TPS in the head surface 

data (Table 2.9, row 1). The fall in strength of correlation may indicate that increased 

density of semilandmarking results in additional aspects of shape variation, not described 

by landmarks alone, being captured by the semilandmarks. However, the decrease in 

strength of correlation is slight to moderate for TPS&NICP for both head and ape data 

and for sliding TPS with the ape data (<5%), while for LS&ICP it is relatively much 

greater (~40% for the head surface data and ~15% for the ape crania). It is not clear if the 

decreases in strength of correlation occur because higher semilandmarking densities 

describe additional shape variation or additional error. However, in the case of LS&ICP, 

the anatomical placement of semilandmarks is clearly very different from the template 

and from those arising from the other semilandmarking approaches in the ape crania 

(Figures 2.9 and 2.10) and to a lesser extent, the head surface data (Figures 2.3 and 2.4). 

For sliding TPS, applied to the head surface data, correlations with distances from the 

landmark data increase slightly (by ~6%) between the lowest and highest 

semilandmarking densities, in contrast to the other semilandmarking approaches. 

Landmarks are not present over the scalp in this dataset and so, scalp variations are not 

accounted for by the landmark data. It is likely that this, and the consequent inadequate 

control of sliding over the scalp have led to the difference in result with sliding TPS. 

2.4.1.5 Hypothesis v 

Further analyses tested the hypothesis (v) that PCs of shape variation arising from 

analyses of landmarks and semilandmarks derived by different methods and at different 

densities do not differ. PCA is an exploratory technique whose results are prone to change 

with changes in included specimens or data. However, it is commonly used to assess 

relationships among specimens based on plots of PCs. For this reason, PC scores from 

separate GPA and PCA of each landmark and semilandmark set were compared among 

landmark and semilandmark sets generated by different methods and densities of 

semilandmarking.  

For the head surfaces, Table 2.10 presents the correlations among PC1 and PC2 

scores from analyses of landmark and semilandmark configurations from different 

semilandmarking approaches and with different densities of semilandmarks. These are 

low to moderate and tend to increase for the comparisons between sliding TPS and 

TPS&NICP, but vary less predictably for the comparisons between LS&ICP and the other 

approaches. Additionally, within each semilandmarking approach PC1 and PC2 scores 

converge on the PC scores obtained using 1000 semilandmarks as semilandmarking 

density increases (Table 2.11). This convergence is most marked for sliding TPS and least 

for TPS&NICP, which shows very high correlations for all densities (>0.99). These 

findings indicate that PCA results are sensitive to both semilandmarking approach and 
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density, with TPS&NICP producing the most stable results with varying semilandmark 

density.  

Table 2.12 compares PC scores derived from the landmarks alone with those from 

the different semilandmarking approaches and densities. The results indicate that 

correlations are moderate or low for all comparisons except for those between PC1 scores 

from TPS&NICP and landmarks alone. TPS&NICP therefore most consistently replicates 

the distances that arise from analysis of the landmarks alone, while LS&ICP results in the 

biggest differences. Sliding TPS results in differences that are intermediate. This is likely 

because scalp semilandmark sliding is inadequately controlled. This was investigated by 

carrying out further analyses omitting scalp semilandmarks.     

The results of analyses of facial landmarks and semilandmarks in Tables 2.13-2.15 

differ from those using the full set of facial landmarks and neurocranial semilandmarks 

presented in Tables 2.10-2.12, in particular the sliding TPS approach shows much higher 

correlations with results from TPS&NICP (Table 2.13) and landmarks alone (Table 2.15). 

Additionally, the PC scores from sliding TPS at lower semilandmarking densities are 

consistently highly correlated (~0.99) with those from landmarks and the maximum 

semilandmarks located on the face (Table 2.14), unlike when scalp semilandmarks were 

included (Table 2.11). These findings likely reflect the lack of fixed landmarks to control 

sliding over the neurocranium, which inevitably impacts the functioning of the sliding 

TPS algorithm. In the face, where landmarks are present, it achieves very similar results 

to the TPS&NICP approach. The TPS&NICP approach appears to be much less sensitive 

to the presence or absence of landmarks, reflecting that fact that this method does not rely 

on landmarks to control the eventual positions of semilandmarks (except in the initial 

registration and projection steps).    

In contrast similar analyses using the ape crania show consistently very high (>0.99 

in Table 2.23) correlations among PC1 and PC2 scores between landmark and 

semilandmark sets of varying density from sliding TPS and TPS&NICP. This is reflected 

in the superimposed PC plots of Figure 2.13, which show close correspondence between 

semilandmarking approaches at varying densities. For both of these semilandmarking 

methods, PC1 and PC2 scores correlate strongly (>0.8) with those from analyses of 

landmarks alone (Table 2.24). Additionally, analyses of surfaces from lower densities of 

semilandmarks are very highly correlated with those from 1000 semilandmarks (>0.97 in 

Table 2.25).  

These findings falsify hypothesis (v), PC scores do change depending on the 

semilandmarking algorithm, and the density of semilandmarking. Greater consistency 

among sliding TPS and TPS&NICP is found in the analyses of ape crania than in those 

of the heads. This is, part because landmarks are scattered over the whole surface of the 

ape crania but are not present over the scalp in the head surface data, providing inadequate 
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control of the sliding TPS algorithm. Additionally, the ape crania are more variable and 

so the PCs are more strongly determined and less prone to change because of small 

changes in the semilandmark configurations. The correlations between PC scores from 

landmarks alone and those obtained using different semilandmarking approaches are very 

high for the ape crania (Table 2.24), which suggests that the semilandmarks add little 

additional information, but they are lower for the head surface data, plausibly because the 

landmarks are not located over the scalp. Scalp semilandmarks reflect additional aspects 

of variance that result in lower correlations with the landmark data. The results of Table 

2.15, concerning facial landmarks and semilandmarks alone separately, lend support to 

this explanation.   

2.4.1.6 Hypothesis vi 

Finally, hypothesis (vi) that there are no differences in resulting estimates of 

allometric scaling of shape was tested. With the head surface data, as expected from the 

differences in semilandmark locations produced by each of semilandmarking approaches, 

the angles among allometric trajectories (Table 2.16) are very large (~90o - 100o), 

respecting polarity of the vectors) for comparisons of LS&ICP with the other approaches 

and somewhat smaller between sliding TPS and TPS&NICP (~32o - 24o). For the ape 

crania only the angles between the vectors from sliding TPS and TPS&NICP were 

computed and these are smaller than those found with the head surface data (~6o - 9o), 

becoming greater with increasing semilandmark density (Table 2.26), whereas they 

decline among human heads (Table 2.16).  

With regard to the differences in shape of the predicted individuals with the minimum 

and maximum centroid sizes from each semilandmarking approach, for both data sets, the 

Procrustes distance between them is greater for the comparisons of predicted shapes with 

minimum centroid size. This is because in both data sets the distribution of centroid size 

is skewed towards the maximum.  

It would be of interest to more widely explore the consequences of different 

semilandmarking approaches in comparing allometric trajectories between sexes or 

species. This was not possible in the present study, which was limited to comparing 

predicted allometrically scaled mean shapes and the angles between allometric vectors 

derived using different semilandmarking approaches. These angles indicate that the 

semilandmarking approaches generate different results (because semilandmarks are in 

different locations), but they do not inform us about the effects of different 

semilandmarking approaches on the comparison of allometric trajectories between sexes 

or species, because no such comparison was carried it with these data. 

2.4.2 Significance and implications of findings 

In the present and previous studies (Boyer et al., 2015; Gonzalez et al., 2016; Rolfe 
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et al., 2021), differences are found in the locations of semilandmarks produced using 

different approaches and these have consequences of subsequent analyses. Thus, mean 

landmark co-ordinates, centroid sizes and distributions of specimens in Kendall’s shape 

space are all impacted by the locations of semilandmarks. Just as different landmarking 

choices impact the results of subsequent analyses, so do variations in the number and 

locations of semilandmarks.  

Previous studies have noted that with increasing semilandmark density, there is 

increasing consistency of scores on PC1 (Boyer et al., 2015; Vitek et al., 2017), while 

(Gonzalez et al., 2016) found that increasing density of semilandmarks did not necessarily 

result in greater group separation. These studies did not assess consistency of results with 

increasing density, among alternative semilandmarking methods. Here we find that the 

results generated by sliding TPS and TPS&NICP approaches are most consistent, 

especially where, as should always be the case with the sliding TPS algorithm, the 

surfaces are delimited by true landmarks. Greater differences are found between 

landmarks and semilandmarks from LS&ICP and the other two approaches especially for 

the more complex surfaces of the ape crania. For the head surface data, within 

semilandmarking approaches, the distributions of specimens as assessed by distance 

matrices and PCAs are most consistent across varying semilandmark densities for 

TPS&NICP and least for sliding TPS (Tables 2.8 and 2.11). Omitting the scalp, sliding 

TPS performs similarly to TPS&NICP when considering only the facial semilandmarks 

and the (facial) landmarks (Table 2.14). For the ape cranial data, sliding TPS and 

TPS&NICP produce distributions that are consistent within semilandmarking approaches 

across densities (Table 2.22). As such, TPS&NICP produces the most consistent results 

with both surface data sets, and between semilandmarking densities. Sliding TPS is 

almost as consistent, when applied to surfaces with landmarks over their entirety e.g. the 

ape crania and the facial region in the head surface data.    

However, consistency does not relate to how well the homology map is represented 

by the resulting semilandmarks. Methods may be consistently wrong in identifying 

homology, and so, in describing differences. Here, for instance, both sliding TPS and 

TPS&NICP use a triplet of thin plate splines to achieve an initial fit between template and 

each specimen. In consequence these algorithms begin with initial placements of 

semilandmarks that are identical. This could well underlie why these two approaches 

achieve very similar results, rather than because they are both converge on ‘the correct 

solution’. Each method estimates equivalent points in terms of its specific algorithm, but 

each estimate is different. In fact, all estimates of mean coordinate configurations, of the 

distance matrices and other statistical results are correct in each analysis, insofar as they 

are the correct results obtained from the landmarks and semilandmarks. Differences arise 

because of differences in the data; in the landmark and semilandmark locations. The issue 
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in studies that aim to describe and compare developmental or evolutionary 

transformations is which, if any, of the semilandmarking approaches correctly marks up 

homologies. How well the resulting semilandmarks represent homologies among 

specimens is limited by the extent to which knowledge of homology is applied in locating 

them, by the fact that such point homology is largely unknowable and, indeed, may not 

exist in reality because points at one stage may not actually turn into points at another. 

These considerations also apply to landmarks themselves, albeit arguably to lesser degree.  

Semilandmarks have deficient coordinates, and so are located on the surface of 

interest, but with uncertainty regarding the equivalence (e.g. homology) of their position. 

Oxnard and O’Higgins (2009), Mitteroecker & Schaefer (2022) and Bastir et al. (2019) 

argue that the locations of the semilandmarks themselves should not be interpreted but 

rather the form of the surface mesh or curve that they describe should be the basis of 

comparison. This recognises their deficient coordinates in focusing on the form of the 

surface itself, however it also raises an important point and a question. 

Thus, semilandmarks describe surfaces, but different semilandmarking approaches 

achieve this through different locations of semilandmarks. These differences in locations 

have very real effects on subsequent statistical analyses, here resulting in estimates of 

mean configurations, distributions and principal modes of shape variation (PCs) and 

covariation (e.g. allometry) that differ to some degree. This is an important point, because 

we rely on statistical results to test our hypotheses and yet, where these concern 

developmental or evolutionary transformations, the extent to which analyses of shape 

variation and covariation using any one method or density of semilandmarking respect 

and reflect homology is also unknowable. 

Some insight into this, might be gleaned from a consideration of how well findings 

from analyses of landmarks and semilandmarks match findings based on presumed 

homologous points alone. Here several analyses have compared results obtained by 

different semilandmarking approaches and densities with those from landmarks alone. 

For ape crania, where landmarks are located, albeit sparsely, over the whole surface, 

Procrustes distances from both sliding TPS and TPS&NICP correlate strongly (>0.9) with 

distances from landmarks (Table 2.22). For the head surface data, correlations are weaker, 

but for the face alone, where landmarks are present, correlations (Table 2.15) are 

moderate to high. These findings suggest that analyses of landmarks and semilandmarks 

are consistent with those of landmarks alone, when landmarks are sufficient in number 

and located such that they delimit the surfaces that are to be semilandmarked. There are 

some consistent differences, which as noted above, may be due to better description 

(additional information) of surface form, or to shared error. However, given that high 

dimensional data, such as arises with semilandmarks presents serious analytical issues 

(Cardini et al., 2019), the potential benefits of semilandmarks in, particularly, 
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visualisation, should be set against the potential pitfalls of statistical analysis of such data 

(Cardini, 2020). The statistical gains are at best, unclear in the analyses presented here 

and there is an unresolvable doubt that the ‘gains’ may in fact not be gains at all, but rather 

due to erroneous identification of homologies. There may, however, be gains in 

applications to discrimination, identification and discrimination (Schlager & Rüdell, 2017; 

Shui et al., 2017), but these topics are not considered here, and further studies need to be 

conducted to assess this possibility.  

With regard to visualisation, semilandmarks are often applied to enable detailed high 

quality representation of results as surface warping. Surface mesh form, rather than the 

form of a landmark and semilandmark configuration over the surface, is relevant in many 

practical circumstances. For example, surfaces are often visualised by warping a template 

to statistical estimates of e.g. mean landmark and semilandmark configuration form 

(Klingenberg, 2013). Beyond this, surfaces representing statistical results, such as the 

mean, might be used in the clinic to compare patient cranial form with that of the wider 

population, using clinic and condition specific (re)parameterisations of reference and 

patient surfaces (Duncan et al., 2022). Another increasingly common application of 

surfaces arising from geometric morphometric analyses is to use them to build finite 

element models (O'Higgins et al., 2019; O’Higgins et al., 2011). Thus, an important 

question arises, which is considered in a follow on study (Shui et al., 2023): how do 

different semilandmarking approaches perform in characterising the form, variation and 

covariations of the shape of the surface mesh itself, rather than the locations of 

semilandmarks on it?  

What are the implications of this study for future work using semilandmarks? The 

results indicate that sliding TPS and TPS&NICP approaches produce very similar results 

in both data sets, and with the simpler surfaces of the head surface data, TPS&NICP 

produces the most consistent results between low and high density semilandmarks. As 

expected, sliding TPS performs less well where landmarks are inadequate to control their 

sliding. The LS&ICP approach appears least consistent with other approaches. However, 

as has been noted above, consistency does not necessarily indicate reliable identification 

of homologous points. This echoes (Cardini, 2020), who noted that consistency might be 

thought of as suggesting precision (repeatability of measures) but does not equate with 

accuracy (i.e. correctly marking up homologous points).  

Our results cannot, support or refute the possibility that the consistency of results 

between sliding TPS and TPS&NICP reflects shared accuracy of identification of 

homologous semilandmarks. However, estimation of means depends on what is measured. 

They are a statistical, rather than biological entity and are ‘correct’ for the semilandmarks 

from each approach. The issue is not whether or not statistical results are correct, but 

rather if the semilandmarks are homologous in studies of transformations. The present 
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analyses have shown that differences in semilandmark locations (hypothesized 

homologies) among specimens will lead to differences in statistical results (Shui et al., 

2023), and whether or not these differences are important depends on the context and the 

likelihood of reaching erroneous conclusions. 

As such, it is not possible to state that any one method is superior to any other in 

identifying homologous semilandmarks, but it is clear from our findings with LS&ICP 

that some methods result in semilandmarks that clearly do not represent homologies (ape 

crania), while estimates from sliding TPS and TPS &NICP appear more reasonable in 

anatomical terms. Thus, in applying any method, extrinsic anatomical knowledge can 

guide assessment of accuracy of semilandmarking sensu (Cardini, 2020), but this is 

subjective. Some approaches will clearly fail this test while others will not. However, 

every approach will give rise to different statistical results. The extent to which 

differences due to choice of semilandmarking approach depends on the how large these 

are in relation to the aspects of variation among specimens that are of interest.  

The degree to which results from semilandmarks are correlated with those from 

landmarks alone might be used as a basis for identifying ‘good’ methods (that yield results 

consistent with those based on homologous landmarks), but perfect association between 

methods would rather undermine the need for analyses of semilandmarks in the first place, 

because landmarks are obtained with much less effort. This is similar to the situation with 

true landmarks, in that landmarks can be located with error and choices of landmarks need 

to be made, both affect statistical results. However, landmarks, unlike semilandmarks, 

being defined based on prior anatomical knowledge, do not require an algorithm to be 

chosen as the basis of locating them. As noted by (Oxnard & O’Higgins, 2009), the 

number and locations of landmarks chosen in any particular study can and should be 

based on the question at hand. Many questions can be sensibly and fully addressed using 

a few well-chosen landmarks. However as noted in the introduction, landmarks may be 

sparse on (homologous) structures of interest, they also can have doubtful homology or 

be difficult to locate.  

A cautious approach to working with landmark and semilandmark data would be, 

first to design a landmark configuration that relates to the hypothesis under test (Oxnard 

& O’Higgins, 2009), and then semilandmark the sample. Statistical testing might then be 

seen as distinct from visualisation, and proceed on the basis of the landmark 

configurations alone. Visualisations (warped surface meshes between e.g. means or 

representing a vector of transformation) can then be estimated based on parallel analyses 

using the landmarks and semilandmarks. This avoids the philosophical issues that arise 

concerning semilandmark homology and it avoids the statistical issues that arise when 

many variables are taken on small samples than arise with semilandmarks (p (number of 

variables) /n (sample size) ratio) (Cardini, 2020; Cardini et al., 2019). However, this 
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approach limits the analysis to identifiable landmarks and so, omits what might be useful 

‘signal’ from the surface between landmarks. However, in semilandmarking surfaces 

there is a decision to be made regarding the balance between likelihood of erroneous 

results (‘noise’- inaccurate identification of homologous points and the ratio of the 

number variables to the number of specimens - p/n ratio) from semilandmarking and the 

potential gains in ‘signal’. To large degree this is a judgement call. However, the p/n ratio 

issue can be mitigated by minimizing the number of semilandmarks used, while the issue 

of homology of semilandmarks cannot.  

With regard to the suggestion that visualisations based on landmarks and 

semilandmarks be estimated in a separate step from statistical testing using landmarks, 

for this to be reasonable, the choice of semilandmarking approach needs to have little 

effect on subsequent visualisations. As noted earlier, configurations of landmarks and 

semilandmarks lie on surfaces and, in some applications, the form of the semilandmark 

configuration is of secondary interest to that of the surface mesh itself. Different 

configurations might reasonably define the form of the same surface. While these 

different configurations may lead to different statistical findings (e.g. mean shape 

coordinates, patterns of variation and covariation), it is unclear if visualisations of surface 

mesh form warped to configurations derived from different semilandmarking algorithms 

also differ and if so, to what extent. This is an important consideration in certain 

applications and it is considered in (Shui et al., 2023). 

2.4.3 Limitations and future work 

The differences identified in the present study reflect the differences in semilandmark 

locations achieved by different algorithms for semilandmarking. As noted in the 

introduction, previous studies have compared the performance of different 

semilandmarking approaches based on different criteria: distance matrices (Boyer et al., 

2011; Boyer et al., 2015; Pomidor et al., 2016), principal components (PCs) (Boyer et al., 

2015; Gonzalez et al., 2016; Gunz & Mitteroecker, 2013; Rolfe et al., 2021) and 

differences between template and transformed meshes (Rolfe et al., 2021; Shui et al., 

2020). Such sensitivity studies are useful in understanding sources of error and in guiding 

eventual parameterisation in a particular context, but it is not clear how generalisable their 

findings are. This caveat also applies to the present study and so, its findings cannot be 

considered as definitive, rather they offer insights into the consistency of statistical 

findings based on a limited range of alternative semilandmarking approaches. This study 

is limited in its scope, having examined only three possible semilandmarking approaches 

applied to head and cranial surface data. Future work should consider alternative 

approaches, the effects of varying numbers of landmarks on semilandmarking and a wider 

range of surface data. Additionally, studies need to be conducted using simulated data, 

created by perturbing a known surface in known ways to allow assessment of the accuracy 
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of estimation of means and other statistical parameters. 

2.5 Conclusion 

In summary, this study utilized three different semilandmarking approaches to yield 

semilandmarks at different densities. The effects of different semilandmarking 

approaches and densities of semilandmarks on semilandmark locations and on subsequent 

statistical results were then considered. It is not possible to assess the extent to which the 

different approaches yield semilandmarks that accurately reflect homology, but it was 

possible to assess consistency (= precision) (Cardini, 2020) between approaches and 

densities of semilandmarks. The TPS&NICP approach yields the most consistent results 

across varying semilandmark densities applied to both the head surface and ape cranial 

data and sliding TPS produces results that are most consistent with those from TPS&NICP, 

especially at higher semilandmarking densities and if only regions bounded by landmarks 

are considered. However, consistency is not the same as accuracy and so it is not possible 

to say which if any method produces semilandmarks that accurately represent homologies 

among specimens. This is a significant issue in applications to the study of developmental 

or evolutionary transformations, but less so in other applications, such as 

identification/discrimination. By focusing on landmarks with more secure homology for 

statistical analyses and employing semilandmarks for visualisation, these issues are 

minimised.  

Further work is needed to assess alternative semilandmarking approaches in different 

contexts, but for now interpretations of statistical results based on semilandmarks should 

be made with due caution regarding the potential errors in semilandmarking and serious 

consideration should be given to why semilandmarking is being undertaken, given that 

simpler landmark data may well yield the same results, with less uncertainty about 

homology and so interpretation of studies of transformation of form. 
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Supplementary material 

Table 2.S1 Ape cranium specimen 

Specimen number Species Sex Repository 

USNM 176211 Gorilla  Male Smithsonian Institution 

USNM 252578 Gorilla  Male Smithsonian Institution 

USNM 590949 Gorilla Female Smithsonian Institution 

USNM 590952 Gorilla Female Smithsonian Institution 

USNM 599170 Gorilla Female Smithsonian Institution 

USNM 083262 Hylobates lar Female Smithsonian Institution 

USNM 083263 Hylobates lar Female Smithsonian Institution 

USNM 083264 Hylobates lar Female Smithsonian Institution 

USNM 111970 Hylobates lar Male Smithsonian Institution 

USNM 111988 Hylobates lar Male Smithsonian Institution 

USNM 174701 Pan troglodytes Female Smithsonian Institution 

USNM 174704 Pan troglodytes Male Smithsonian Institution 

USNM 220062 Pan troglodytes Female Smithsonian Institution 

USNM 220327 Pan troglodytes Male Smithsonian Institution 

USNM 395820 Pan troglodytes Male Smithsonian Institution 

USNM 143590 Pongo abelii Male Smithsonian Institution 

USNM 267325 Pongo abelii Male Smithsonian Institution 

USNM 270807 Pongo abelii Female Smithsonian Institution 

USNM 283737 Pongo abelii Female Smithsonian Institution 

USNM 293165 Pongo abelii Male Smithsonian Institution 
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Chapter 3 A comparison of semilandmarking approaches in the 

visualisation of shape differences 

Abstract: In landmark based analyses of size and shape variation and covariation among 

biological structures, regions lacking clearly identifiable homologous landmarks are 

commonly described by semilandmarks. Different algorithms may be used to apply 

semilandmarks, but little is known about the consequences of analytical results. Here, we 

assess how different approaches and semilandmarking densities affect the estimates and 

visualisations of mean and allometrically scaled surfaces. The performance of three 

landmark driven semilandmarking approaches is assessed, using two different surface 

mesh data sets with different degrees of variation and complexity: adult human head and 

ape cranial surfaces. Surfaces fitted to estimates of the mean and allometrically scaled 

landmark and semilandmark configurations arising from geometric morphometric (GM) 

analyses of these datasets are compared between semilandmarking approaches and 

different densities as well with those from warping to landmarks alone. We find that 

estimates of surface mesh shape (i.e. after re-semilandmarking and then re-warping) made 

with varying numbers of semilandmarks are generally consistent, while warping of 

surfaces using landmarks alone yields surfaces that can be quite different to those based 

on semilandmarks, depending on landmark coverage and choice of template surface for 

warping. The extent to which these differences are important depends on the particular 

study context and aims.       

Article details: 

Wuyang Shui, Antonio Profico and Paul O’Higgins. A comparison of semilandmarking 

approaches in the visualisation of shape differences. Animals. 2023, 13(3): 385. 
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3.1 Introduction 

Over the last three decades, landmark-based geometric morphometric (GM) methods 

have been increasingly applied to quantify and compare size and shape variation and 

covariation (Adams et al., 2004; Mitteroecker & Schaefer, 2022; O'Higgins & Jones, 1998; 

Rohlf, 1998; Viscosi & Cardini, 2011). Before performing GM analyses, the definition of 

a suitable configuration of landmarks in relation to the research aim is required (Cardini, 

2020; Oxnard & O’Higgins, 2009). A simple landmark configuration might be perfectly 

adequate to quantify shape differences appropriate to the question in hand. In studies of 

biological transformations such as growth or evolution, the landmarks define equivalent 

points; that are ‘the same’ in terms of development or evolution (‘this point turns into that 

point’; is homologous), but the locations of homologous landmarks and their density are 

limited by the extent to which they can be identified and usually on the presence of 

identifiable anatomical features as well as preservation of material and available time for 

digitization. 

In many biological applications, landmarks cannot readily be identified, e.g. over 

smooth regions such as the human cranial vault or tooth crowns. In an attempt to provide 

detailed information on such regions, different approaches have been proposed to 

marking up semilandmarks (or dense point correspondences) among curves or surfaces 

between landmarks (Bardua et al., 2019; Van Kaick et al., 2011). The method of sliding 

semilandmarks that locates semilandmarks by minimising the bending energy of thin-

plate splines (TPS) or Procrustes distance (Bookstein, 1997; Gunz & Mitteroecker, 2013; 

Gunz et al., 2005) is most commonly used in biology. Alternative semilandmarking 

methods include rigid registration approaches, e.g. the auto3dgm package (Boyer et al., 

2015) based on the iterative closest points (ICP) algorithm (Besl & McKay, 1992), and 

non-rigid registration approaches, e.g. non-rigid ICP (NICP) (Amberg et al., 2007; Booth 

et al., 2018) and the optical flow algorithm (Blanz & Vetter, 1999), among others. The 

fundamental task of these semilandmarking approaches is to transfer the semilandmarks 

from a template surface (e.g. a mean surface) to the target specimen. It is worth noting 

that semilandmarks rely primarily on mathematical mappings and/or the similarity of 

topographic features, rather than developmental or evolutionary equivalences based on 

prior knowledge.  

Recent studies have assessed the performance of different semilandmarking 

approaches based on principal components (PCs) (Boyer et al., 2015; Gonzalez et al., 

2016; Gunz & Mitteroecker, 2013; Perez et al., 2006; Rolfe et al., 2021), distance matrices 

(Boyer et al., 2011; Boyer et al., 2015; Pomidor et al., 2016), the geometric deviation 

between template and transformed meshes (Rolfe et al., 2021; Shui et al., 2020). These 

have found that different approaches yield different semilandmark locations and so, result 

in analytical results that differ to some degree. This has been further investigated in a 
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prior study (Shui et al., 2023) that provided the starting point for the present one. The 

performance of three of the semilandmarking approaches described above was 

systematically examined. These included the sliding TPS approach outlined above. The 

second approach employed a hybrid rigid registration combining least squares (LS) (Arun 

et al., 1987) and ICP algorithms (LS&ICP). After using the LS algorithm to fit the 

template landmarks to those of each specimen, the ICP algorithm rigidly refitted the 

template to the target, minimising the sum of squared distances between landmarks and 

estimated semilandmarks, found by searching for the nearest points on the target from the 

registered template semilandmarks. The third approach (TPS&NICP) (Shui et al., 2021), 

used TPS to perform an initial non-rigid registration of the template landmarks and 

surface to specimens and then the NICP algorithm (Amberg et al., 2007) was applied to 

further warp the deformed template surface to each specimen as rigidly as possible, 

optimizing the cost function by assigning an affine transformation to each vertex, rather 

than an interpolation function as used in TPS, before transferring the semilandmarks from 

the template to the nearest point of the specimen surfaces. We compared among 

semilandmarking approaches, differences in the locations of semilandmarks, Procrustes 

distances between landmark and semilandmark configurations, estimates of mean 

landmark and semilandmark configurations, PCs of configuration shape, and estimates of 

allometry.  

Because homology is unknown for regions that were semilandmarked, it is not 

possible to assess how well semilandmarks represent homology, rather the focus was on 

comparing the results of analyses based on semilandmarks between and within methods, 

with increasing semilandmark density. The analyses showed that each semilandmarking 

approach yields different locations of semilandmarks, which result in differences in each 

of the comparisons (Shui et al., 2023). The sliding TPS algorithm and TPS&NICP yielded 

results that are more similar to each other than with those based on LS&ICP. Further, we 

assessed consistency within methods among results obtained using different densities of 

semilandmarks, finding that sliding TPS and TPS&NICP approaches are most consistent, 

especially where true landmarks are dense. The extent to which these differences are 

important depends on the context, the question being addressed and the purpose of the 

study, but all semilandmarking approaches estimate homology with error, the extent of 

which is unknowable. Therefore, all subsequent statistical analyses that aim to describe 

developmental or evolutionary transformation are subject to that error, and should be 

treated with an appropriate degree of caution (Cardini, 2020; Shui et al., 2023).  

Geometric morphometric analyses enable visualisation of statistical findings, 

generating landmark and semilandmark configurations that represent shapes or forms 

(sizes and shapes) of interest such as the mean, or allometrically scaled configurations. 

Surfaces or regular grids are often warped to these configurations to aid visualisation of 
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shape differences, and where applicable, changes. This is most commonly done using 

TPS (Bookstein, 1989; Mitteroecker & Gunz, 2009). However, (Oxnard & O’Higgins, 

2009) noted that ‘With sliding semilandmarks, their relative positions on equivalent 

curves, surfaces, etc. are not singly interpretable, but rather should be read as a whole, 

respecting the fact that the underlying assumption in their construction is one of 

equivalence of the curve or surface patch as a whole’. This has recently been reiterated 

(Bastir et al., 2019; Mitteroecker & Schaefer, 2022), ‘the coordinates of semilandmarks 

along the surface are meaningless, and one cannot interpret the position of single 

semilandmarks, only the surface geometry that all semilandmarks describe together’. 

Thus, although semilandmarks are treated as landmarks in statistical analyses, and so 

‘errors’ in their locations (or differences using different methods to locate them) influence 

statistical outcomes, as was demonstrated in the previous study (Shui et al., 2023), 

visualisation and interpretation of differences should ignore their locations and focus on 

the shape of the curve or surface they describe.  

It is therefore of interest to know the extent to which the shapes of surfaces warped 

to fit semilandmark and landmark configurations varying in semilandmark density and 

locations (e.g. arising from different approaches to placing them) are consistent. If 

different densities and approaches yield identical or very similar visualisations, this may 

be reassuring in certain practical applications. For instance, a mean surface might be used 

in clinical work to compare measurements taken on a patient with an estimate of the 

population mean (Duncan et al., 2022) and facial approximation from the skull alone in 

the realm of forensic science (Shui et al., 2016). Additionally, surfaces from GM analyses 

are used to virtually repair and reconstruct fossil material (Gunz et al., 2009) and to build 

3D models for functional analyses such as finite element analysis (FEA) (O’Higgins et 

al., 2011). The extent to which such estimated surfaces differ when derived using different 

semilandmark densities and semilandmarking approaches is unknown, yet it is important 

in that it may affect subsequent morphometric or functional analysis. This question is 

addressed in the present study.  

The main purpose of this study is to empirically test two hypotheses using surface 

scans of human heads and ape crania: that there are no differences in surface mesh shape 

(the shape of the configuration of surface vertices, the nodes of the surfaces mesh, rather 

than the landmark and semilandmark configuration) between estimates, derived using 

different semilandmarking densities and approaches, applied to surfaces representing (a) 

the mean of a sample (b) allometrically scaled shapes.  

To these ends, a template surface mesh is warped to fit estimated mean and 

allometrically scaled mean landmark and semilandmark configurations derived from 

different semilandmarking densities and approaches and the resulting surfaces are 

compared. Additionally, these surfaces are compared with surfaces warped using 



98 
 

landmarks alone. Of interest is the extent to which these surfaces differ and how they 

differ. The focus is on the comparison of shape of the surface rather than the geometry of 

the underlying mesh. 

3.2 Materials and Methods 

3.2.1 Materials 

3.2.1.1 Datasets and templates 

We used two datasets comprising surface meshes that exhibit varying degrees of 

complexity: 100 adult human male heads comprising 16 anatomical landmarks from the 

Liverpool-York Headspace dataset (Dai et al., 2020; Smith et al., 2021) and 20 ape crania 

consisting of 41 anatomical landmarks (5 Gorilla, 5 Hylobates lar, 5 Pan troglodytes, and 

5 Pongo abelii) (Profico et al., 2017). More details of the ape crania can be seen in Table 

3.S1. We extracted the external surfaces of heads and ape crania using the method 

developed in the previous study (Shui et al., 2020). It may avoid the internal surface 

interfering with projection of semilandmarks. The 3D meshes were post-processed by 

smoothing surfaces, removing the irrelative discrete vertices, and repairing self-

intersecting triangle meshes. Compared to human heads, the sample of ape crania of 

different species shows greater size and shape variation and presents more complex 

surfaces.  

Similar to the previous study (Shui et al., 2023), the mean surfaces of heads and ape 

crania were estimated and used as templates (after landmarking and semilandmarking 

them) for each dataset to yield semilandmarks among every specimen. For the human 

head, we selected an arbitrary head as the initial template and then used NICP (Amberg 

et al., 2007) to align all of the human heads based on landmarks and establish dense point 

correspondences (identify points on the target surface that match each vertex of the 

template surface). Next, the mean head was estimated by averaging correspondences 

among heads. For the ape crania, which vary far more in form, an alternative approach 

was required. The k-means clustering algorithm was employed to sample 800 points over 

a Gorilla cranium, then the sliding TPS approach (Gunz & Mitteroecker, 2013) was used 

to yield semilandmarks among specimens. Following this, the mean form of the landmark 

and semilandmark configurations was calculated, and the mean ape cranial surface was 

estimated by warping the surface mesh of an ape cranium specimen (USNM 176211) to 

fit this configuration. Note that the Procrustes distance between the selected specimen and 

the mean shape based on the mean landmarks and 800 semilandmarks was 0.0988, which 

is very similar to the average difference between individuals and the mean, estimated 

using sliding TPS semilandmarking method. This process of making an initial estimate 

of the mean follows that commonly used to compute semilandmarks, where an arbitrary 

specimen is used as an initial template to estimate semilandmark coordinates, and the 
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mean of the resulting landmarks and semilandmarks is used to estimate a new mean 

template by re-warping of the original template to them, before re-semilandmarking the 

sample. 

Figure 3.1a shows the human template head with 16 landmarks and Figure 3.1b 

shows the ape template cranium with 41 landmarks. Notably, the scalp surface in the 

headspace data lacks identifiable landmarks, while the ape crania present landmarks over 

the whole surface. These differences are expected to affect how well semilandmarking is 

controlled, particularly for sliding TPS, because landmarks are required to control sliding, 

which is not the case for the other approaches. Sliding TPS was applied over the scalp for 

consistency of analyses and comparability of results.  

 

Figure 3.1 Two datasets. (a) The human template head with 16 landmarks. (b) The ape template cranium 
with 41 landmarks. 

3.2.1.2 Semilandmarks 

The k-means algorithm was used to sample, as evenly as possible, 10 different 

densities of semilandmarks per square centimetre from the template head; 20 (0.017/cm�), 

40 (0.034/cm�), 60 (0.052/cm�), 80(0.069/cm�), 100 (0.086/cm�), 200 (0.172/cm�), 400 

(0.343/cm�), 600 (0.515/cm�), 800 (0.688/cm�) and 1000 (0.858/cm�) semilandmarks. 

Additionally, the above procedure was repeated to generate five different semilandmark 

densities among ape crania; 50 (0.129/cm� ), 100 (0.258/cm� ), 200 (0.517/cm� ), 400 

(1.033/cm�) and 800 (2.067/cm�). Following creation of the templates, three different 

semilandmarking approaches were employed to project semilandmarks from the template 

to every specimen, to yield semilandmarks, as follows (Shui et al., 2023). The software 

prototype used to generate the semilandmarks using three different approaches can be 

downloaded from the Internet (https://github.com/sissun/Geometric_morphometrics.git).  

a)  Sliding TPS  
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The sliding TPS approach is the most commonly used approach in biological studies, 

to yield semilandmarks by sliding semilandmarks projected from the template along the 

tangent direction of a curve or the tangent plane of a surface, minimising the bending 

energy of TPS (Gunz et al., 2005; Mitteroecker et al., 2013). In this study, we used the 

patching (placePatch) and sliding (slider3d) procedures in the Morpho R package 

(version 2.10) to yield sliding semilandmarks at varying densities based on the template 

(Schlager, 2017). The sliding step minimises bending energy and so, depends on 

landmarks to control the sliding. For the headspace data, no landmarks are present over 

the scalp and so we expect sliding to be poorly controlled. This situation does not arise 

with the ape cranial data.  

b)  Rigid registration 

We used the rigid LS&ICP method to register the template to every specimen based 

on the fixed landmarks and then projected semilandmarks from the template to each 

specimen. First, the initial rigid alignment calculated by LS, constrained by landmarks, 

was performed to fit the template to each specimen. Second, the ICP algorithm rigidly 

refitted the template to the target, minimising the sum of squared Euclidean distances 

between landmarks and semilandmarks on the template and specimen. The alignment 

generated by LS speeds up convergence of the ICP algorithm. Finally, we projected 

different densities of semilandmarks from the registered template to each specimen. This 

was carried out using purpose-built code in the C++ programming language using 

Microsoft Visual Studio 2015. 

c)  Non-rigid registration 

We used the non-rigid TPS&NICP method (Shui et al., 2021) to yield semilandmarks 

on every specimen. This comprised two steps: first, a triplet of TPS was used to warp the 

template to every specimen based on the fixed landmarks. Second, the NICP algorithm 

(Amberg et al., 2007) was applied to warp the deformed template surface to each 

specimen and establish dense point correspondences based on locally affine 

regularizations and adjustable stiffness parameters. In this process, preliminary 

correspondences are established by searching for the nearest points between two surfaces 

and then the cost function is optimized. It comprises a landmark term, a local affine 

regularization term and a stiffness term and assigns an affine transformation to each 

vertex. New correspondences are obtained by searching the deformed template surfaces. 

Registration loops are carried out in which stiffness weights are iteratively decreased and 

the template is incrementally deformed. This non-rigid method, in contrast to the rigid 

registration used in LS&ICP, matches the warped template surface closely to each 

specimen. This was carried out using purpose-built code in the C++ and Matlab 

programming language.  
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Figure 3.2a shows 100 semilandmarks generated by sliding TPS (black points), 

LS&ICP (red points), and TPS&NICP (green points) on the mean form of head surface 

generated by sliding TPS. While semilandmark locations differ among methods of 

semilandmarking, the differences are small between sliding TPS and TPS&NICP 

approaches and a little larger between these and the LS&ICP approach (Shui et al., 2023). 

In contrast, differences are much greater among methods in the ape cranial dataset. Thus, 

Figure 3.2b shows 100 semilandmarks on the mean ape cranium generated by sliding. 

Semilandmarks generated by Sliding TPS appear to be in similar locations to those 

generated by TPS&NICP, but the locations of semilandmarks generated by LS&ICP are 

quite different. 

 
Figure 3.2 Different densities of semilandmarks generated by the sliding TPS (black points), LS&ICP (red 
points) and TPS&NIPC (green points) approaches. (a) Mean forms of adult human heads. (b) Mean forms 
of ape crania. 

3.2.2 Methods 

3.2.2.1 Comparisons of mean surface meshes between different approaches 

For each dataset, we applied GPA to the landmark and semilandmark configurations 

from each semilandmarking approach and density and then computed the Procrustes 

mean configurations (centroid size = 1.0). Subsequently, the surface of the template 

specimen was warped using TPS to fit each mean configuration, thereby generating a 

‘mean surface’ consisting of the coordinates of the full set of vertices with identical 

topology but different relative vertex locations for each estimate of the mean (from each 

semilandmarking method and density). A vertex is a node of the mesh and the connections 

among nodes describe mesh topology. It should be noted that the template surface was 

already warped to an estimate of the mean during the semilandmarking process and as 

such, undergoes little further deformation in this step. Next, the differences among these 

estimates of the mean surface shape were quantified and visualized. A hybrid approach 
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was used to quantify global and regional differences in mean surface estimates generated 

by different semilandmarking approaches. The global comparison used 

Procrustes superimposition to register mean shape surface mesh vertices generated by 

different semilandmarking approaches, following which the Procrustes distance between 

mean surfaces was calculated and a principal components analyses (PCA) of mean 

surfaces was carried out. Additionally, regional differences between estimated mean 

surfaces were visualized based on (registration independent) colour maps (see example 

in Figure 3.3) of surface area differences between each equivalent triangle of the two 

surface meshes (Profico et al., 2021). While these are registration free depictions of 

differences in surface area, they incompletely describe the differences between surfaces 

and should be interpreted in conjunction with the surface renderings of reference and 

target shapes.  

However, differences in semilandmark locations and densities between approaches 

resulted in different locations of mesh vertices, even if the shapes of surfaces being 

compared are identical. This affected visualisations and computations of distances and 

PCs based on the vertices.     

This is related to the point made by Oxnard and O’Higgins (2009) , Mitteroecker and 

Schaefer (2022), and Bastir et al. (2019) that semilandmark locations on surfaces should 

not be interpreted singly. In warping the mesh to each semilandmark, the locations of 

semilandmarks directly control where mesh vertices are located, and so affect the local 

geometry of the mesh. Warping transfers differences in individual semilandmark 

locations to mesh vertices. This is evident from Figure 3.3 which presents colour maps of 

differences in mesh triangle areas among mean surface shapes generated using different 

semilandmarking approaches. 

 

Figure 3.3 Visualisation of the differences in mesh triangle surface areas among mean surface shapes 
generated using different semilandmarking approaches. (a) Differences between sliding TPS (reference) 
and LS&ICP approaches (target). (b) Differences between sliding TPS (reference) and TPS&NICP (target) 
approaches. (c) Differences between TPS&NICP (reference) and LS&ICP (target) approaches. Scale bar 
indicates difference in local area between reference and target surfaces expressed as a proportion of the 
reference area. Other refers to the values outside the range of the scale bar. 
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In the comparisons of Figure 3.3, numerous punctate regions of localised differences 

in areas of triangle meshes are evident, particularly between sliding TPS and TPS&NICP 

approaches, where semilandmarks located over the vault are in slightly different places. 

These lead to the punctate appearance of the colour map. The resulting Procrustes 

distances between mesh vertices are illustrated in Figure 3.4. These distances increase 

between the lowest and highest semilandmarking densities, but this is not directly related 

to the number of semilandmarks used to warp the meshes. Rather the figure shows a 

generally increasing trend but with increases or decreases in Procrustes distance between 

successive increments of semilandmark density. While some part of these Procrustes 

distances relates to differences in surface shape, distances are inflated to unknown degree 

by the differences in semilandmark locations over the surface.  

 
Figure 3.4 Procrustes distances computed between vertices of the mean surfaces of human heads generated 
by warping the template mesh to the semilandmarks obtained by different approaches. 

To avoid this problem, a second semilandmarking step followed by a re-warping of 

the template surface to these new semilandmarks and the landmarks is required on all 

surfaces to be compared. First, the semilandmarks of the template surface were projected 

onto the estimated surfaces (e.g. mean or allometrically scaled shapes) generated by 

different approaches and densities to generate new semilandmarks based on the fixed 

landmarks (re-semilandmarking). Second, the template surface is warped to fit the 

original landmarks and new semilandmarks generated by different approaches and 

densities to produce the surface (re-warping). This eliminates the localised effects on 

mesh geometry (e.g. more or less deformed triangles within the meshes, while topology 

remains constant) of differences in semilandmark locations due to choice of 

semilandmarking approach. It focuses the comparison on the shapes of the re-warped 

surfaces, rather than mesh geometry. The sliding TPS and TPS&NICP semilandmarking 

approaches result in very similar semilandmark locations and consistent statistical results 

(Figure 3.2 and (Shui et al., 2023)). Either could be chosen as the basis of re-

semilandmarking and re-warping of meshes, with little or no effect on the outcome of 
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comparisons. In this study, the sliding TPS approach was chosen because it is most 

commonly applied in such work. The result of re-semilandmarking and re-warping is 

shown in Figure 3.7 (results section) and the Procrustes distances between the vertices of 

these re-semilandmarked and re-warped surfaces is illustrated in Figure 3.6a (results 

section).  

The resulting visualisations of differences and Procrustes distances between 

estimates of the mean surface mesh indicate smaller differences after re-sliding (or re-

semilandmarking) and re-warping, as expected. Thus, in Figure 3.7, differences between 

the mean surface mesh derived by LS&ICP and the other two approaches are relatively 

large in the face, especially around irregular features such as the nose and mouth, while 

between sliding TPS and TPS&NICP the mesh differences are small, and diffuse. In 

Figure 3.6a, Procrustes distances, generally increase with increasing density as in Figure 

3.4, but are smaller than those from the original fitting of the template mesh to the 

semilandmarks from each approach.  

This re-semilandmarking and re-warping allows mesh surface shape to be compared 

between semilandmarking methods. It ignores the local differences in surface mesh 

triangle areas that will affect the colour maps of differences in mesh triangle surface areas, 

and refocuses the analysis on the shape of the surface (in the sense of its topography). It 

was applied to all subsequent comparisons of mean surfaces and allometrically scaled 

surfaces arising from different semilandmarking approaches in this study. It was also 

applied to the comparison of surfaces derived by each semilandmarking approach using 

different densities of semilandmarks. 

3.2.2.2 Comparisons of allometrically scaled surface meshes 

In the previous study (Shui et al., 2023), the predicted landmark and semilandmark 

configurations representing the extreme limits (smallest and largest) of the allometric 

vector, derived by multivariate regression of shapes (the scores of specimens on the full 

set of PCs) on the natural logarithm of centroid size, were computed using each 

semilandmarking method and density. This was done for both datasets. To investigate 

how differences in semilandmark locations between approaches affect predictions of 

allometrically scaled surfaces, the template surface was warped to these configurations. 

Next, as for the comparisons of mean surfaces, these surfaces were re-semilandmarked 

and re-warped to yield surface meshes before calculating Procrustes distances between 

mesh vertices, PCs and visualisations of differences in mesh triangle areas. 

3.2.2.3 Comparisons of surface meshes resulting from different 

semilandmarking densities 

The previous analyses focused on differences in surface mesh predictions arising 

from the use of different semilandmarking approaches. Further analyses were directed to 
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assessing the extent to which predicted surfaces differ when produced by each 

semilandmarking approach using different densities of semilandmarks. It was applied to 

both datasets. As for the comparisons of mean and allometrically scaled surfaces, the 

surfaces produced by each semilandmarking density using each semilandmarking 

approach were re-semilandmarked and re-warped and then GPA and PCA were carried 

based on the vertices of the surfaces generated by different densities of semilandmarks 

from each approach. Procrustes distances and PCAs were used to assess overall shape 

difference. Colour map visualisations of differences in mesh area were also produced, but 

these first required scaling of the meshes. Because the number of semilandmarks varies, 

the centroid sizes of the full set of vertices of the surfaces fitted to each mean 

semilandmark and landmark configuration are inversely related to the density of 

semilandmarks, i.e. surfaces generated using low-densities of semilandmarks are larger 

than those using high-densities. Therefore, to visualise differences in predicted surface 

mesh triangle areas, the surfaces (configuration of the full set of vertices) were scaled to 

the same centroid size.  

3.2.2.4 Comparisons of mean and allometrically scaled surface meshes 

resulting from landmarks alone. 

In order to assess what, if anything, is gained by using landmarks and semilandmarks 

to compute mean and allometrically scaled surfaces, the surfaces from the analyses 

described above were compared with warped surfaces derived using only the landmarks 

by computing Procrustes distances among vertices of the template surface mesh warped 

to fit the mean landmarks or allometrically scaled landmarks from each dataset. The 

differences between these surfaces and those derived using landmarks and semilandmarks 

were visualized using colour maps, as described above.   

The template mesh for each dataset is an initial estimate of the average surface and 

so it is expected that fitting it to the mean landmarks will yield a surface not very 

dissimilar to the mean surfaces estimated using landmarks and semilandmarks. In practice, 

it is common to use the surface of an individual close to the mean for visualisation as the 

template, yet the effects of choice of template surface are unclear. Therefore, surfaces 

derived using landmarks and semilandmarks were compared with those derived using 

landmarks alone, this time using the head surface with the smallest Procrustes distance to 

the mean (based on landmarks and the maximum number of semilandmarks) and the ape 

cranial surface (USNM 176211) used to generate the template cranium, respectively. The 

resulting predictions of mean and allometrically scaled surfaces were compared with 

those based on the template surfaces.  
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3.3 Results 

The effects of different semilandmarking approaches and densities on estimates of 

mean and allometrically scaled surfaces of human heads was assessed after the surfaces 

were re-semilandmarked and re-warped, and then key analyses were repeated using the 

ape cranial surfaces to compare the performance of approaches on surfaces that exhibit a 

greater degree of variation and complexity of surface size and shape. Additionally, these 

surfaces were compared with those warped to fit the landmark configurations (without 

semilandmarks).  

3.3.1 Comparison of estimates of mean surfaces 

The differences in shape of estimated mean surfaces generated by 1) different 

semilandmarking approaches and 2) densities are quantified. All of these comparisons, 

and those of allometrically scaled surfaces are based on surfaces derived by re-

semilandmarking and re-warping as described in the methods section. 

3.3.1.1 Different semilandmarking approaches 

The mean head surfaces from each semilandmarking approach derived using varying 

numbers of semilandmarks, after re-semilandmarking and re-warping are shown in Figure 

3.5. The surface mesh renderings before re-semilandmarking and re-warping are not 

noticeably different in shape and so, are not shown.  

 

Figure 3.5 Visualisation of the head mesh surfaces generated using different semilandmarking approaches 
after re-semilandmarking and re-warping. (a) Sliding TPS. (b) TPS&NICP approaches. (c) LS&ICP 
approaches. Increasing semilandmark density from left to right.  

In Figure 3.5, all head surfaces after re-semilandmarking and re-warping appear very 

similar. The main differences are in the detail of complex regions of the surfaces, where 

those from LS&ICP appear less sharp and more smooth, especially around the eyes and 

mouth of heads generated by high-density semilandmarks. In order to compare these in 

detail, Procrustes distances were computed between the coordinates of all vertices of the 

surface meshes of the mean human head surfaces estimated using different 

semilandmarking approaches and densities (Figure 3.6a). For comparison, for the same 
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surfaces, the Procrustes distances were also computed between the mean landmarks and 

semilandmarks (Figure 3.6b). These distances are very similar, indicating that the re-

warping of meshes preserves differences between the landmark and semilandmark sets. 

In contrast, the re-warping has a marked effect on Procrustes distances between meshes 

compared to those warped to the original landmark and semilandmark configurations (see 

Methods; Figure 3.4 vs Figure 3.6a).   

 

Figure 3.6 Procrustes distances computed between the mean surfaces of human heads obtained by different 
approaches after re-semilandmarking and re-warping the template mesh. (a) Procrustes distances computed 
between all the vertices (b) Procrustes distances between mean landmarks and semilandmarks. 

Comparison of these distances among different semilandmarking approaches (Figure 

3.6a), indicates that the full set of vertices of the mean surface generated from sliding TPS 

are, in general, most similar (smallest Procrustes distances) to those from TPS&NICP at 

all semilandmarking densities and these distances increase with increasing semilandmark 

density. The Procrustes distances between mean surfaces based on semilandmarks from 

LS&ICP and both sliding TPS and TPS&NICP are, in general, larger and also tend to 

increase with increasing semilandmark density.  

Differences between mean surfaces of human heads derived from different 

semilandmarking approaches and densities of semilandmarks are illustrated in Figure 3.7. 

This visualizes differences in areas of equivalent triangles of the template surface mesh 

derived from each semilandmarking approach and density, after re-semilandmarking and 

re-warping. Figure 3.7a visualizes the differences in shape among mean surface meshes 

from sliding TPS (reference) and LS&ICP.  

Differences in local surface areas between sliding TPS and TPS&NICP (Figure 3.7b) 

are very small at all semilandmark densities. The scalp region smoothly presents slightly 

smaller local surface areas (~ratio of difference in area ~0.01 = 1%; light green) from 

TPS&NICP relative to sliding TPS. In comparisons between LS&ICP and the other 

semilandmarking approaches (Figures 3.7a and c) differences increase markedly with 

increasing semilandmark number and are mostly found in the face in regions of complex 

topography e.g. eyes, nose, mouth and chin, and in which semilandmarks are closer to 
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fixed landmarks. They are much less marked over the scalp. These visualisations reflect 

the Procrustes distances between surfaces presented in Figure 3.6a.  

 

Figure 3.7 Visualisation of the differences in mesh triangle surface areas among mean surface shapes 
generated using different semilandmarking approaches after re-semilandmarking and re-warping. 
Differences between (a) sliding TPS (reference) and LS&ICP (target) approaches. (b) Sliding TPS 
(reference) and TPS&NICP (target) approaches. (c) TPS&NICP (reference) and LS&ICP (target) 
approaches. Scale bar indicates difference in local area between reference and target surfaces expressed as 
a proportion of the reference area. Other refers to the values outside the range of the scale bar. 

The analyses described above were repeated with the ape cranial surfaces generated 

by mean landmarks and semilandmarks. Figure 3.8 presents the mean surfaces estimated 

by each semilandmarking approach at varying densities of semilandmarking. As with the 

headspace data, they appear very similar to the naked eye, with that from LS&ICP 

appearing slightly different (e.g. zygomatic region), from those derived by sliding TPS 

and TPS&NICP, especially at higher semilandmarking densities.  

Because LS&ICP yields unreasonable semilandmarks among ape crania (red points 

in Figure 3.2b) and results in distinctive estimates of mean ape cranial shape, especially 

at higher densities of semilandmarking (Figure 3.8c), we focus on comparison of mean 

surfaces based on semilandmarks of varying density from sliding TPS and TPS&NICP. 

Procrustes distances between the coordinates of all vertices of the surface mesh of ape 

crania warped to the mean landmark and semilandmark configurations are presented in 

Table 3.1. These indicate that differences between the full sets of vertices of the mean 

surfaces generated from sliding TPS and TPS&NICP become greater with increasing 

density. As with the headspace data (Figure 3.6a, b), Procrustes distances based on the 

mean landmarks and semilandmarks of ape crania (Table 3.1) are similar to those based 

on the vertices of the surface meshes warped to fit them (Table 3.2), and the Pearson 

correlation between these vectors of distances is 0.9940.  

Table 3.1 Procrustes distances computed between the mean surfaces of ape crania generated by Sliding 
TPS and TPS&NICP after re-semilandmarking and re-warping the template mesh.  

 50 100 200 400 800 

dist 0.0018 0.0025 0.0024 0.0027 0.0030 
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Table 3.2 Procrustes distances computed between the mean landmarks and semilandmarks of ape crania 
generated by Sliding TPS and TPS&NICP after re-semilandmarking the warped mesh.  

 50 100 200 400 800 

dist 0.0023 0.0029 0.0029 0.0032 0.0034 

 

Figure 3.8 Surface meshes of the estimated mean ape cranium generated using different semilandmarking 
approaches after re-semilandmarking and re-warping. (a) Sliding TPS. (b) TPS&NICP. (c)LS&ICP. 

The regional differences between mean surfaces of ape crania derived from sliding 

TPS (reference surface) and TPS&NICP approaches are illustrated in Figure 3.9. This 

figure reflects the Procrustes distances of Table 3.1 in indicating that differences in mean 

surfaces become greater with increasing semilandmarking density. The differences are 

concentrated in the vicinity of more complex surface regions, e.g. sagittal crests, 

supraorbital ridges, zygomatic arch, temporal fossa and nuchal crest.  
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Figure 3.9 Visualisation of the regional differences in local surface areas of mean ape cranial shapes from 
sliding TPS (reference) and TPS&NICP (target) approaches. Scale bar indicates difference in local area 
between reference and target surfaces expressed as a proportion of the reference area. Other refers to the 
values outside the range of the scale bar. 

3.3.1.2 Different densities of semilandmarks 

The vertices of estimated mean surfaces from every semilandmarking approach and 

density, were submitted to separate GPA and PCA. Superimposed scatterplots of the first 

two PCs from each analysis are presented in Figure 3.10, and the proportion of the total 

variance explained by each axis is expressed as a percentage and tabulated in Table 3.3. 

Superimposition facilitates visual appraisal of differences in PC scores derived using each 

semilandmarking approach and density. 

Table 3.3 Percentages of total variance explained by PC 1 and PC 2 of mean surface shape. 

 Human heads Ape crania 

PC1 PC2 PC1 PC2 

Sliding TPS 79.96% 7.37% 42.12% 27.51% 

LS&ICP 68.32% 9.68% - - 

TPS&NICP 64.15% 13.48% 42.33% 24.76% 

Figure 3.10a shows the superimposed scatterplots of PC1 vs PC2 from separate PCAs 

of the estimates of the mean surface of the human heads obtained using each 

semilandmarking approach. The sliding TPS and TPS&NICP approaches result in very 

similar PC plots, while the PCA of estimated mean surfaces generated by LS&ICP results 

in a plot showing a similar pattern of variation among means, but with greater variance 

on both PCs (larger scatter). Similarly, for estimates of the mean surface among the ape 

crania derived using the sliding TPS and TPS&NICP approaches, the first two PCs from 

each separate PCA are superimposed in Figure 3.8b. These plots indicate that sliding TPS 

and TPS&NICP produce very similar scatters of estimated means. Both plots of Figure 

3.10 present ‘U’-shaped curves, with the means estimated using the lowest and highest 

densities of semilandmarks having higher scores on PC2, although they are widely 

separated on PC1.     
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Figure 3.10 Superimposed scatterplots of PC 1 and PC 2 of mean shape surfaces using sliding TPS (red 
points), LS&ICP (green points) and TPS&NICP (cyan points) approaches. (a) Human heads. (b) Ape crania.  

These results are supported by Procrustes distances, computed between mean surface 

mesh vertices derived from each lower density and the maximum density of 

semilandmarks, as shown in Tables 3.4 and 3.5, and Figure 3.11. For both datasets, all 

semilandmarking approaches show convergence between the surfaces based on 

increasing numbers of semilandmarks and that based on the maximum number. For the 

headspace data (Table 3.4, Figure 3.11a) sliding TPS and TPS&NICP perform similarly, 

in that they result in mean surfaces based on <1000 semilandmarks that are closer to that 

based on 1000 semilandmarks than their equivalents from LS&ICP. Likewise sliding TPS 

and TPS&NICP perform similarly and show convergence for the ape cranial dataset 

(Table 3.5, Figure 3.11b) 

Table 3.4 Procrustes distances between the vertices of the estimated mean human head surfaces using 1000 
semilandmarks and those using increasing numbers of semilandmarks from each approach after re-
semilandmarking and re-warping the template mesh. Sliding TPS (first row), LS&ICP (middle row), and 
TPS&NICP (bottom row). 

20 40 60 80 100 200 400 600 800 

0.0029 0.0026 0.0027 0.0026 0.0026 0.0024 0.0016 0.0011 0.0007 

0.0055 0.0058 0.0050 0.0046 0.0050 0.0037 0.0027 0.0020 0.0015 

0.0023 0.0020 0.0020 0.0021 0.0021 0.0019 0.0014 0.0012 0.0008 

Table 3.5 Procrustes distances between the vertices of mean ape cranial surfaces estimated by each 
approach, using 800 semilandmarks and those estimated using increasing numbers of semilandmarks after 
re-semilandmarking and re-warping the template mesh. 

 50 100 200 400 

Sliding TPS  0.0050 0.0051 0.0044 0.0034 

TPS&NICP 0.0049 0.0044 0.0038 0.0036 
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Figure 3.11 Procrustes distances of estimated mean surfaces between every density and the maximum 
density from each approach to semilandmarking. (a) Human heads. (b) Ape crania. 

Within each approach to semilandmarking, the local variations in area between 

human head mean surfaces estimated by increasing densities of semilandmarks and the 

surface from 1000 semilandmarks were visualised as colour maps. These are presented in 

Figures 3.12a-c. Consistent with the Procrustes distances presented in Table 3.4, the 

closest fitting surfaces are between the surfaces derived using semilandmarks from 

sliding TPS and TPS&NICP. The colour maps comparing these surfaces with those from 

1000 semilandmarks are relatively smooth (Figures 3.12a, b). Further, as 

semilandmarking density increases, the surfaces based on lower densities of 

semilandmarks converge with the surface from 1000 semilandmarks. Differences are 

more pronounced between surfaces derived using lower densities of semilandmarks, and 

1000 semilandmarks generated by the LS&ICP approach. This reflects the generally 

greater Procrustes distances presented in Table 3.4, and visually, differences are most 

evident in the face (Figure 3.12c). The nasal, ocular and perioral regions show localized 

large differences but converge with increasing semilandmarking density on the surface 

derived using 1000 semilandmarks, particularly around the nose and eyes. However, with 

increasing densities of semilandmarks generated by LS&ICP the quality of the mean 

surfaces is poor (i.e. less sharp features around eyes and mouth in Figure 3.5c), because 

equivalent semilandmarks lie in different anatomical locations.  

Similar comparisons were undertaken for the ape crania. Figures 3.13a, b show 

regional differences in area of mean surfaces computed between lower densities and the 

maximum density of 800 semilandmarks generated by the sliding TPS and TPS&NICP 

approaches. In both, the smallest differences are found in the cranial vault, where the 

colour map is smooth and indicative of small local area differences. Larger differences 

are observed around the frontal bone, supraorbital ridges, zygomatic arches, malar region, 

nasal bones and maxillae. Consistent with Table 3.5, with increasing semilandmark 

density, a degree of convergence occurs with the surface based on 800 semilandmarks.  
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Figure 3.12 Colour maps of local surface mesh area differences among mean surfaces of human heads 
derived using lower densities (target) and that from 1000 semilandmarks (reference) using different 
semilandmarking approaches. (a) Sliding TPS. (b) TPS&NICP (c) LS&ICP. Scale bar indicates difference 
in local area between reference and target surfaces expressed as a proportion of the reference area. Other 
refers to the values outside the range of the scale bar. 

 
Figure 3.13 Colour maps of local surface mesh area differences among mean surfaces of ape crania derived 
using lower densities (target) and 800 semilandmarks (reference) based on different semilandmarking 
approaches. (a) Sliding TPS. (b) TPS&NICP. Scale bar indicates difference in local area between reference 
and target surfaces expressed as a proportion of the reference area. Other refers to the values outside the 
range of the scale bar. 

3.3.2 Comparison of estimates of allometrically scaled surfaces 

We generated surface meshes warped by TPS to the predicted landmark and 

semilandmark configurations representing the extreme limits (maximum and minimum 

centroid sizes) of the allometric vector then, after re-sliding and re-warping, we assessed 

the overall and regional differences among surfaces generated by different 

semilandmarking approaches and densities.  
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3.3.2.1 Different semilandmarking approaches 

Procrustes distances between the vertices of the allometrically scaled surfaces of 

human heads representing the maximum centroid size generated by different approaches 

are illustrated in Figure 3.14a. Likewise, Procrustes distances between the fitted surfaces 

representing the minimum centroid size are illustrated in Figure 3.14b. In both cases, in 

comparisons between LS&ICP and the other two approaches, Procrustes distances 

between surface meshes increase with increasing numbers of semilandmarks while those 

between sliding TPS and TPS&NICP decrease. Sliding TPS and TPS&NICP approaches 

result in the most similar predictions as semilandmarking density increases. The distances 

among predicted shapes at minimum size are somewhat greater those at maximum size 

because of the skewed distribution of centroid sizes (see Figure 3.17).    

 
Figure 3.14 Procrustes distances computed between the vertices of human head surfaces, allometrically 
scaled to the maximum and minimum centroid sizes, based on different semilandmarking approaches after 
re-semilandmarking and re-warping the template mesh. (a) Maximum. (b) Minimum. 

Additionally, the differences among allometric predictions of large and small 

surfaces were visualised between different semilandmarking approaches and different 

densities of semilandmarks in Figure 3.15. The visualizations show differences in surface 

area of equivalent triangles among re-warped to re-semilandmarked surface meshes 

predicted for the maximum centroid size, in Figure 3.15a, and those corresponding to the 

minimum centroid size are illustrated in Figure 3.15b. In both cases the differences 

between surface mesh predictions based on landmarks and semilandmarks from sliding 

TPS and TPS&NICP are small (middle rows in Figures 3.15a, b). They reflect the 

Procrustes distances in Figures 3.14a, b in becoming more similar with increasing 

semilandmark density and in being more similar for comparisons among predictions of 

the surface at the maximum centroid size than at the minimum. The differences among 

surface meshes predicted by LS&ICP and the other approaches (Top and bottom rows in 

Figures 3.15a, b) also reflect the Procrustes distances in Figures 14a, b in being large, 

becoming larger with increasing density, and in being larger for comparisons of the 

predicted surfaces at the minimum centroid size.  
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Figure 3.15 Visualisation of the differences in mesh triangle surface areas among predicted allometrically 
scaled surfaces of human heads representing the a) maximum and b) minimum centroid size generated by 
different semilandmarking approaches. In each figure, top row: sliding TPS (reference) vs LS&ICP (target), 
middle row: sliding TPS (reference) and TPS&NICP (target) and bottom row: TPS&NICP (reference) vs 
LS&ICP (target). Scale bar indicates difference in local area between reference and target surfaces 
expressed as a proportion of the reference area. Other refers to the values outside the range of the scale bar. 

Similar visualisations compared allometrically scaled surfaces of the ape cranial 

dataset. The LS&ICP approach was not evaluated, because it failed to produce sensible 

semilandmarks when applied to these more complex and variable surfaces. Procrustes 

distances, between the mesh vertices of predicted cranial surface corresponding to the 

maximum and minimum centroid size estimated using the sliding TPS and TPS&NICP 

approaches are compared in Table 3.6. These distances indicate that differences among 

both allometric predictions of the surface increase with increasing semilandmark density, 

as with the comparison among means from the ape data estimated using sliding TPS and 

TPS&NICP approaches (Table 3.1). From Table 3.6, Procrustes distances at the maximum 

centroid size are less than those at the minimum, consistent with the skewing of the 

distribution of centroid sizes towards the maximum, which results in greater allometric 

warping of the mean shape towards the minimum than the maximum centroid size (see 

Figure 3.18). Further, the Procrustes distances are somewhat larger than those between 

estimated mean surfaces in Table 3.1, indicating greater differences in among 

allometrically scaled surfaces.  

  



116 
 

Table 3.6 Procrustes distances computed between vertices of ape cranial surfaces, allometrically scaled to 
the maximum (Max) and minimum (Min) centroid size, from sliding TPS and TPS&NICP semilandmarking 
approaches after re-semilandmarking and re-warping the template mesh.  

 50 100 200 400 800 

Max 0.0040 0.0039 0.0044 0.0052 0.0055 

Min 0.0072 0.0056 0.0088 0.0077 0.0100 

These differences are visualized in Figure 3.16 where consistent with the Procrustes 

distances of Table 3.6, differences in mesh triangle surface areas increase with 

semilandmarking density, are greater for the estimates of the mean ape cranium scaled to 

the minimum centroid size and are most pronounced around more complex surface 

regions e.g. periorbital region, crests, infratemporal region.  

 

Figure 3.16 Visualisation of the differences in mesh triangle surface areas among fitted surface shapes of 
ape crania generated by the sliding TPS (reference) and TPS&NICP (target) approaches after re-
semilandmarking and re-warping of the template. (a) Comparison of predictions corresponding to the 
maximum centroid size. (b) Comparison of predictions corresponding to the minimum centroid size. Scale 
bar indicates difference in local area between reference and target surfaces expressed as a proportion of the 
reference area. Other refers to the values outside the range of the scale bar. 

Finally, these predictions are compared through GPA and PCA of allometrically 

scaled mesh vertices created using varying numbers of semilandmarks from each 

semilandmarking approach. The first two PCs from PCAs of the mean and allometrically 

scaled head surfaces are presented in Figure 3.17, and those of the ape surfaces in Figure 

3.18. The first two PCs in both of these analyses account for nearly all of the variance 
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among surfaces (heads 97%, ape crania >99%) and so they well represent the differences 

among them well.   

 

Figure 3.17 PC1 (92.4% of total variance) vs PC2 (4.7%) from PCA of the mean and allometrically scaled 
head surfaces derived using varying densities of semilandmarks and each semilandmarking approach. 
Triangles = means, squares = allometric predictions of surfaces at the sample minimum centroid size, circles 
= allometric predictions of surfaces at the sample maximum centroid size. Red = sliding TPS, blue = 
TPS&NICP, green = LS&ICP. Numbers indicate number of semilandmarks. The sliding TPS and 
TPS&NICP means are nearly superimposed.  

 

Figure 3.18 PC1 (99.5% of total variance) vs PC2 (0.15%) from PCA of the mean and allometrically scaled 
head surfaces derived using varying densities of semilandmarks and the sliding TPS and TPS&NICP 
semilandmarking approaches. Triangles = means, squares = allometric predictions of surfaces at the sample 
minimum centroid size, circles = allometric predictions of surfaces at the sample maximum centroid size. 
Red = sliding TPS, blue= TPS&NICP. Numbers indicate number of semilandmarks. Means are nearly 
superimposed.  

Consistent with the visualisations of Figure 3.15 and the Procrustes distances in Table 

3.4 and Figure 3.14, the PC plot of head data (Figure 3.17) shows that sliding TPS and 

TPS&NICP achieve very similar results (surfaces) with the means plotting on top of each 

other, the allometric predictions of the mean surface at the sample maximum centroid size 

(PC1 left, circles) grouping closely and those at the sample minimum centroid size (PC1 

right, rectangles) being more variable. The mean and allometrically scaled surfaces from 
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LS&ICP (green) are somewhat dissimilar based on the PC plots, Procrustes distances and 

colour maps. Likewise, the PC plot of ape cranial surfaces (Figure 3.18) is consistent with 

the visualisations of Figure 3.16 and the Procrustes distances in Tables 3.5 and 3.6. It 

shows that the mean and allometrically scaled surfaces of ape crania derived using sliding 

TPS and TPS&NICP are very similar to each other, with smaller variance among the 

predictions of surface mesh shape at the sample maximum centroid size (PC1 left, circles) 

than those at the sample minimum centroid size (PC1 right, rectangles).  

Further, the plots of Figures 3.17 and 18 serve to give perspective to differences seen 

in Table 3.6 and Figures 3.14-16. While the colour maps are highly sensitive to differences 

in surfaces and identify many regions of difference, when they are set against the 

differences among the estimates of the means and allometrically scaled means in the PC 

plots, they appear much more similar, especially for comparisons of results obtained using 

the sliding TPS and TPS&NICP approaches at all semilandmarking densities.     

3.3.2.2 Different densities of semilandmarks 

For each semilandmarking approach and dataset, the differences in shape between 

the allometrically scaled surfaces derived from lower densities of semilandmarks and 

those from the maximum density were assessed by computing the Procrustes distances 

among their vertices and visualizing differences in local surface areas. For the head 

surfaces, Table 3.7 presents, and Figure 3.19 plots these Procrustes distances. In both 

cases, the sliding TPS and TPS&NICP approaches consistently result in surfaces from 

lower semilandmarking densities being more similar (smaller Procrustes distances) to the 

surface with the maximum semilandmarking density than is the case for those derived 

using the LS&ICP approach. Further, at lower semilandmarking densities distances from 

the TPS&NICP approach are slightly smaller than those from sliding TPS. Procrustes 

distances are a little larger among predicted surfaces at the sample minimum centroid size, 

especially at lower semilandmarking densities, than among those at the sample maximum 

centroid size, because of the skewed distribution of centroid sizes (see Figure 3.17).  

Table 3.7 Procrustes distances between vertices of the allometrically scaled surfaces of heads at the 
maximum and minimum centroid sizes using the landmarks and highest density of semilandmarks and 
surfaces estimated using the landmarks and lower densities of semilandmarks, after re-semilandmarking 
and re-warping. Sliding TPS (first two rows), LS&ICP (middle two rows), and TPS&NICP (other rows). 

Size  20 40 60 80 100 200 400 600 800 

Max 0.0075 0.0063   0.0066 0.0059   0.0056 0.0048 0.0031   0.0019    0.0014 

Min 0.0137   0.0102  0.0100 0.0091   0.0084    0.0083 0.0048    0.0031    0.0022 

Max 0.0140 0.0124   0.0120 0.0112  0.0103    0.0082   0.0050   0.0044   0.0030 

Min 0.0182  0.0160   0.0128 0.0145    0.0137    0.0104   0.0073   0.0067    0.0037 

Max 0.0067  0.0049    0.0050  0.0041    0.0038    0.0036   0.0025    0.0019    0.0012 

Min 0.0119   0.0084   0.0079    0.0081   0.0083  0.0074  0.0056    0.0036    0.0017 
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Figure 3.19 Procrustes distances, after re-semilandmarking and re-warping, between the allometrically 
scaled head surfaces derived from the maximum density and those from lower densities of semilandmarks. 
(a) Procrustes distances between predicted surfaces at the maximum centroid size. (b) Procrustes distances 
between predicted surfaces at the minimum centroid size.  

Additionally, local differences in area between allometric predictions of head 

surfaces derived using the maximum density semilandmarks and lower densities, from 

each semilandmarking approach are visualized in the colour maps of Figure 3.20. Figures 

3.20a, b present the visualisations corresponding to the sample maximum and minimum 

centroid size, respectively. Consistent with the Procrustes distances presented in Table 3.7 

and Figure 3.19, the LS&ICP approach shows the greatest differences between surfaces 

derived from lower densities and the maximum while sliding TPS and TPS&NICP 

perform similarly. In all cases, shape differences between lower and the maximum 

semilandmarking densities become smaller with increasing density. The greatest 

differences between densities of semilandmarking are found around nose mouth, ears and 

chin, where topography is complex and the smallest around the forehead, scalp, where 

the surface is smooth and lacks identifiable landmarks.  

These analyses were repeated using the allometric predictions of ape cranial surfaces 

between every density and the maximum density of semilandmarks generated by sliding 

TPS and TPS&NICP, respectively. The Procrustes distances between allometrically 

scaled predictions of the ape crania from varying semilandmarking densities and those 

from the maximum semilandmarking density are presented in Table 3.8 and plotted in 

Figure 3.21. These are very similar in magnitude for surfaces derived using both sliding 

TPS and TPS&NICP approaches at all densities and, with increasing density, show a 

similar trend of convergence on the surface derived using 800 semilandmarks. Procrustes 

distances between this surface and those derived using lower density semilandmarks are 

greater for estimates of the allometric predictions of surfaces at the minimum centroid 

size than at the maximum. This reflects the skewed distribution of centroid sizes, in 

particular, the greater difference between the overall mean and the predicted mean surface 

at the minimum than at the maximum centroid size (see Figure 3.18).  
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Figure 3.20 Colour map of local area differences computed between the re-semilandmarked and re-warped 
allometric predictions of surfaces of human heads at the (a) maximum and (b) minimum sample centroid 
sizes, computed between lower densities (reference) and the maximum density (target) of semilandmarking. 
In each figure, top row: sliding TPS, middle row: LS&ICP and bottom row: TPS&NICP. Scale bar indicates 
difference in local area between reference and target surfaces expressed as a proportion of the reference 
area. Other refers to the values outside the range of the scale bar. 

Table 3.8 Procrustes distances between vertices of the estimated predictions of ape cranial surfaces at the 
maximum and minimum centroid sizes derived from the maximum density of semilandmarks and those 
from lower densities of semilandmarks, after re-semilandmarking and re-warping.   

 Size  50 100 200 400 

Sliding TPS 
Max 0.0139 0.0094 0.0076 0.0058 

Min 0.0267    0.0191    0.0146    0.0104 

TPS&NICP 
Max 0.0141 0.0099  0.0075    0.0058 

Min 0.0272 0.0199 0.0157 0.0119 

 

Figure 3.21 Procrustes distances, after re-semilandmarking and re-warping, between the allometrically 
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scaled ape cranial surfaces derived from the maximum density and those from lower densities of 
semilandmarks. (a) Procrustes distances between predicted surfaces at the maximum centroid size. (b) 
Procrustes distances between predicted surfaces at the minimum centroid size. 

These localised variations in surface areas of the allometrically scaled surfaces are 

visualised in Figure 3.22. These visualisations reflect the Procrustes distances presented 

in Table 3.8 and Figure 3.21 in showing greater differences among densities of 

semilandmarking for the allometric predictions of the ape crania at the minimum centroid 

size than those at the maximum and convergence with increasing semilandmarking 

density. The largest shape differences are observed in the facial region, zygomatic arches, 

supraorbital, temporal and nuchal regions, where surface topography is most complex, 

and the least are observed over the cranial vault.  

 
Figure 3.22 Colour map of local area differences computed between the re-semilandmarking and re-warped 
allometric prediction of surfaces of ape crania at the (a) maximum and (b) minimum sample centroid sizes, 
computed between lower densities (reference) and the maximum density (target) of semilandmarking. Left: 
sliding TPS and right: TPS&NICP. Scale bar indicates difference in local area between reference and target 
surfaces expressed as a proportion of the reference area. Other refers to the values outside the range of the 
scale bar. 
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3.3.3 Comparisons of mean and allometrically scaled surface resulting from 

landmarks alone 

For each dataset, the mean surface from sliding TPS and 1000 semilandmarks was 

compared with warped surfaces derived using only the landmarks. The template surfaces, 

which are themselves an initial estimate of the average surface (see methods), were fitted 

to the mean landmarks (Figure 3.23 for heads and Figure 3.24 for apes). In practice, it is 

common to use the surface of an individual close to the mean for visualisation, yet the 

effects of choice of surface are unclear. Therefore, the estimation of mean surfaces was 

repeated, this time using the head surface with the smallest Procrustes distance to the 

mean and the ape surface (USNM 176211) used to generate the ape template, respectively. 

The resulting predictions of mean head surfaces for each dataset were compared using 

colour maps of local mesh surface area changes (Figure 3.23). For the ape surface 

comparison, two different colour maps were drawn, the first using the same colour scale 

range used in preceding analyses, to allow direct comparison with them, the second using 

an extended range to better visualise the full range of local area differences (Figure 3.24).  

 

Figure 3.23 The effects of different template surfaces and semilandmarks on the visualisations of mean 
head. (a) Mean head surface estimated by warping the template surface to the mean configuration of 
landmarks and 1000 semilandmarks from sliding TPS. (b) Mean head surface estimated by warping the 
template surface to the mean landmark configuration (c) Mean head surface estimated by warping the 
surface of the head with minimum Procrustes distance from the mean to the mean landmark configuration. 
(d) Colour map between the surfaces a (reference) and b (target). (e) Colour map between the surfaces a 
(reference) and c (target). (f) Colour map between the surfaces b (reference) and c (target). Other refers to 
the values outside the range of the scale bar. 

To the naked eye, the mean head surfaces (Figures 3.23a-c) differ but to a lesser 

degree than the mean ape cranial surfaces (Figures 3.24a-c). In both cases the greatest 

similarity (d, in each figure) is between (a), the surface estimated by warping the template 

surface to the mean configuration of landmarks and 1000 semilandmarks from sliding 

TPS and (b), the surface estimated by warping the template surface to the mean landmark 

configuration. More marked differences (e) are found comparing (a) with (c). In the case 

of the head dataset, both comparisons with (Figure 3.23c) show very similar differences 

in the face (Figure 3.23e compared to Figure 3.23f), especially around nose, mouth and 
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eyes where landmarks are present, but there are contrasting differences over the scalp, 

which lacks identifiable landmarks to control warping. In the case of the ape cranial 

dataset where landmarks are distributed over the entire surface, both comparisons with 

(Figure 3.24d) are similar (Figure 3.24e compared to Figure 3.24f) with the main 

differences concentrated around crests and ridges. 

 

Figure 3.24 The effects of different template surfaces and semilandmarks on the visualisations of mean ape 
cranium. Top Row: (a) Mean ape cranial surface estimated by warping the template surface to the mean 
configuration of landmarks and 1000 semilandmarks from sliding TPS. (b) Mean ape cranial surface 
estimated by warping the template surface to the mean landmark configuration (c) Mean ape cranial surface 
estimated by warping the surface of the cranium used to generate the template to the mean landmark 
configuration. Colour maps between the surfaces using different colour ranges (see text) in the middle row 
and bottom rows: (d) Colour map between the surfaces a (reference) and b (target). (e) Colour map between 
the surfaces a (reference) and c (target). (f) Colour maps between the surfaces b (reference) and c (target). 
Other refers to the values outside the range of the scale bar. 

Similar analyses are conducted to assess how landmarks alone perform in predicting 

allometrically scaled surfaces, as might be carried out where no initial estimate of the 

mean surface is possible (e.g. hand collected landmark data), but a surface mesh is 

available for warping. These focus on the comparison of the individual head surface 

closest to the mean and the ape surface (USNM 176211) used to generate the template, 

warped to the allometrically scaled landmark configurations, with those from allometric 

scaling of the template surfaces based on all landmarks and the maximum densities of 

semilandmarks. The results for the predictions of surfaces at the maximum sample 

centroid sizes are presented in Figure 3.25, and for the minimum centroid sizes in Figure 

3.26. Note that the scale bar used to compare ape cranial means is wider than that used 

elsewhere, because the differences are greater. In both cases, the surfaces of individuals 

warped to fit the allometrically scaled landmark configurations (Figures 3.25b, e, and 

Figures 3.26b, e), are superficially similar to those derived by warping the template to the 

allometrically scaled landmark and highest density semilandmark configurations for each 

dataset. However, they differ in detail such that the human head surfaces estimated using 

landmarks alone and the surface of the individual nearest to the mean (Figures 3.25b and 

3.26b) present more rounded faces with subtle differences around the eyes, mouth and 
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nose when compared with the template surfaces warped to the allometrically scaled 

landmark and semilandmark configurations (Figures 3.25a and 3.26a). The same 

comparisons for the ape crania (Figure 3.25d vs Figure 3.25e and Figure 3.26d vs Figure 

3.26e) present more obvious differences, particularly around sagittal and nuchal crests, 

orbits and temporal fossae.  

 

Figure 3.25 The effects of different template surfaces and semilandmarks on the visualisations of allometric 
prediction of surface at the maximum centroid size. (a) Allometric prediction of head surface at the sample 
maximum centroid size using the template surface, estimated using landmarks and 1000 semilandmarks 
from sliding TPS. (b) Allometric prediction of head surface at the sample maximum centroid size using the 
surface of the head with minimum Procrustes distance to the mean, warped using landmarks alone. (c) 
Colour map between the surfaces a (reference) and b (target). (d) Allometric prediction of ape surface at 
the sample maximum centroid size using the template surface, estimated using landmarks and 800 
semilandmarks from sliding TPS. (e) Allometric prediction of ape surface at the sample maximum centroid 
size using the ape cranium used to generate the template, estimated using landmarks alone. (f) Colour maps 
between the surfaces d (reference) and e (target) using different ranges. Other refers to the values outside 
the range of the scale bar. 

 

Figure 3.26 The effects of template surface and semilandmarks on the visualisation of allometric prediction 
of surface at the minimum centroid size. (a) Allometric prediction of mean head surface at the sample 
minimum centroid size using the template surface, estimated using landmarks and 1000 semilandmarks 
from sliding TPS. (b) Allometric prediction of mean head surface at the sample minimum centroid size 
using the surface of the head with minimum Procrustes distance to the mean, warped using landmarks alone. 
(c)  Colour map between the surfaces a (reference) and b (target). (d) Allometric prediction of mean ape 
surface at the sample minimum centroid size using the template surface, estimated using landmarks and 
800 semilandmarks from sliding TPS. (e) Allometric prediction of mean ape surface at the sample minimum 
centroid size using the ape cranium used to generate the template, estimated using landmarks alone. (f) 
Colour maps between the surfaces d (reference) and e (target) using different ranges. Other refers to the 
values outside the range of the scale bar. 
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These warped surfaces were added to the PCAs of the mean and allometrically scaled 

head surfaces derived using varying densities of semilandmarks and each 

semilandmarking approach in Figures 3.17 and 3.18. Figure 3.27 presents plots of PC1 

vs PC2 and PC1 vs PC3 (accounting for 95% of the total variance) of the mean and 

allometrically scaled head surfaces. A further 3% of the total variance is explained by 

PC4. The plot of PC1 vs PC4 from this analysis (not shown) is very similar to that in 

Figure 3.17 in indicating a difference in allometric vector direction between LS&ICP and 

all other approaches. It is clear that the surfaces estimated by warping the surface of the 

individual head with minimum Procrustes distance from the mean to the mean and 

allometrically scaled landmark configurations are distinct from those estimated using the 

template surface and semilandmarks. Additionally, the vector connecting this mean and 

allometrically scaled means is not parallel to the vector connecting the semilandmark 

derived mean and scaled surfaces. Further, the template surfaces warped to fit the mean 

and scaled landmark configurations are arranged along a vector parallel to them, but with 

the mean near the mean of the surfaces warped using semilandmarks. Thus, while these 

surfaces are warped to exactly fit the overall mean and the allometrically scaled mean 

landmark configurations, the regions between the landmarks are deformed in the same 

way for both surfaces, but differently to the template surface warped to fit the landmark 

and semilandmark configurations. This is consistent with the visual comparisons of 

Figure 3.23a vs Figure 3.23c, Figure 3.25a vs Figure 3.25b and Figure 3.26a vs Figure 

3.26b.  

Similarly, Figure 3.28 presents a plot of PC1 vs PC2 of the mean and allometrically 

scaled ape cranial surfaces. This plot accounts for 99% of the total variance. The surfaces 

estimated by warping the ape cranial surface used to generate the template and 

allometrically scaled landmark configurations are again distinct from those using the 

template surface and semilandmarks. As with the head surfaces, the vector connecting the 

semilandmark derived mean and allometrically scaled surfaces is not parallel to the vector 

connecting these estimates of the mean and allometrically scaled surfaces and the surfaces 

obtained by warping the template to fit the mean and allometrically scaled landmark 

configurations lie along a parallel vector to the latter, with the mean near the means of 

surfaces derived using semilandmarks. Thus, as with the head surfaces, the surface 

between the landmarks is different to the template surface warped to fit the landmark and 

semilandmark configurations, and it is deformed differently. Again, this is consistent with 

the visual comparisons of Figure 3.24a vs Figure 3.24c, Figure 3.25d vs Figure 3.25e and 

Figure 3.26d vs Figure 3.26e.   
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Figure 3.27 Scatter plots of the mean and allometrically scaled head surfaces. Top: PC1 (72.1% of total 
variance) vs PC2 (17.5%) and bottom: PC1 vs PC3 (5.36%) from PCA of the mean and allometrically 
scaled head surfaces derived using maximum density of semilandmarks from each semilandmarking 
approach (from Figure 3.14). Red = sliding TPS, blue = TPS&NICP, green = LS&ICP. Also included in this 
PCA are surfaces warped to the mean and scaled landmark configurations; the head surface with minimum 
Procrustes distance from the mean, black; and the template surface, grey. Triangles = means, squares = 
allometric predictions of surfaces at the sample minimum centroid size, circles = allometric predictions of 
surfaces at the sample maximum centroid size.  

 

Figure 3.28 Scatter plots of the mean and allometrically scaled ape surfaces. PC1 (93.2% of total variance) 
vs PC2 (6.04%) from PCA of the mean and allometrically scaled ape cranial surfaces derived using 
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maximum density of semilandmarks and each semilandmarking approach (from Figure 3.15). Red = Sliding 
TPS, blue = TPS&NICP, also included in this PCA are surfaces warped to the mean and scaled landmark 
configurations; the ape cranial surface used to generate the template, black; and the template surface, grey. 
Triangles = means, squares = allometric predictions of surfaces at the sample minimum centroid size, circles 
= allometric predictions of surfaces at the sample maximum centroid size. 

3.4 Discussion 

The use of digital surface meshes of biological and anthropological specimens in 3D 

GM studies has become increasingly common, as has the use of landmarks and 

semilandmarks generated by different semilandmarking approaches to compare the 

details of morphology (Boyer et al., 2015; Dai et al., 2020; Gunz & Mitteroecker, 2013; 

Koehl & Hass, 2015; Pomidor et al., 2016; Rolfe et al., 2021). While dense coverage by 

semilandmarks allows more detailed description of form and, potentially, biological 

signal (Goswami et al., 2019), it introduces several difficulties in comparing forms. 

Further, given that semilandmarks are treated as equivalent between specimens in GM 

analyses and are given the same weight as landmarks, the basis of equivalence is an 

important consideration. In studies of biological transformations such as occur during 

development and evolution, the equivalences required to model and compare them are 

developmental or evolutionary. Landmarks and semilandmarks at each stage need mark-

up points that are equivalent between specimens in terms of development or evolution at 

another stage (homologous points). For landmarks this matching is based on prior 

knowledge, but for semilandmarks it is algorithmic and relies on mathematical mappings 

and topographic features. As such the extent to which semilandmarks can be considered 

homologous has contributed to the debate about their validity and usefulness in relation 

to the study of developmental or evolutionary transformations (Cardini, 2020; Goswami 

et al., 2019; Oxnard & O’Higgins, 2009).  

It has been noted by previous researchers that, because the locations of 

semilandmarks on surfaces and curves are uncertain, they should not be interpreted singly, 

but rather as a whole (Bastir et al., 2019; Mitteroecker & Schaefer, 2022; Oxnard & 

O’Higgins, 2009). While this avoids over interpreting differences in individual 

semilandmark locations, it does not avoid statistical issues. Thus, differences in 

semilandmark locations will lead to different distance matrices among specimens and so, 

to different analytical results. The extent of this issue has been explored in several 

previous studies (Boyer et al., 2011; Boyer et al., 2015; Gonzalez et al., 2016; Gunz et al., 

2005; Perez et al., 2006; Pomidor et al., 2016; Rolfe et al., 2021). Additionally, the use of 

high-density semilandmarks raises statistical issues related to the ratio of variables to 

specimens (i.e. high p and low n) and in assessing covariances within landmark and 

semilandmark configurations (Cardini, 2020; Cardini et al., 2019).  

Statistical considerations aside, high-density semilandmarks are routinely used to 

assess shape variations and covariations and to perform classification (Goswami et al., 
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2019; Musilová et al., 2016; Schlager et al., 2018; Verhelst et al., 2021) with results 

presented as visualisations of a warped surface mesh. It is therefore of interest to know 

how different semilandmarking approaches, and densities of semilandmarks affect 

visualisations. This has been addressed by the analyses presented here.  

In this study, we compare surface meshes warped to configurations of landmarks and 

semilandmarks arising from GM analyses that represent the overall mean and 

allometrically scaled surfaces. The aim is to compare the surface meshes used for 

visualisation rather than the statistical outcomes of analyses of the landmark and 

semilandmark configurations. These were compared in (Shui et al., 2023). Three different 

semilandmarking approaches were used with varying semilandmark densities. These are 

the method of sliding semilandmarks, minimising the bending energy of a set of thin-

plate splines or Procrustes distances (Mitteroecker et al., 2013), the non-rigid combined 

approach of TPS&NICP (Shui et al., 2021), and the rigid LS&ICP approach. These lead 

to semilandmark configurations that differ in the locations of semilandmarks. These 

differences are least between sliding TPS and TPS&NICP approaches, and larger when 

comparing these with the LS&ICP approach (Figure 3.2). However, the locations of 

individual semilandmarks are not interpretable and, as noted above, they lie on the surface 

and so should be interpreted as a whole, in terms of differences between surfaces that fit 

them.   

This study aimed to do this by empirically testing two hypotheses using surface scans 

of human heads and ape crania: that there are no differences in surface mesh shape 

between estimates, derived using different semilandmarking densities and approaches, 

applied to surfaces representing (a) the mean of a sample (b) allometric scaling of the 

mean. The surfaces were quantitatively compared using the coordinates of their vertices 

after re-semilandmarking and re-warping (see methods) to calculate Procrustes distances 

between them and, where relevant by extracting and comparing principal components. 

They were visually compared using colour maps of differences in local surface areas. 

Both hypotheses are falsified, differences clearly exist between estimated mean and 

allometrically scaled surfaces, but the degree of difference between semilandmarking 

approaches is small to moderate, with the non-rigid semilandmarking approaches (sliding 

TPS and TPS&NICP) showing a high degree of consistency.  

Because landmarks have more secure homology, than semilandmarks and should be 

chosen with respect to the question at hand (Cardini, 2020; Oxnard & O’Higgins, 2009), 

they are likely few in number and less likely to result in statistical issues arising from 

large numbers of variables relative to the number of specimens. Additionally, surfaces 

can be warped to landmarks to visualise analytical results, albeit with less detail than 

warping based on dense correspondences. Thus, the present study also assessed 
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differences between warped surfaces based on landmarks and semilandmarks and those 

based on the landmark configuration alone, using different reference surfaces.   

The three semilandmarking approaches were used to estimate sample mean surface 

meshes, by warping the template (an initial estimate of the average surface in each dataset) 

to the mean landmark and semilandmark coordinates arising from each method using 

varying semilandmark densities. For the head surfaces the means are visually quite 

similar (Figure 3.4) but differ in detail (Figures 3.6 and 3.7). The resulting mean surfaces 

from sliding TPS and TPS&NICP are most similar, and those from LS&ICP most 

different. Similar results are obtained in estimating the mean surface of the ape crania 

(Table 3.1 and Figures 3.8 and 3.9), but the LS&ICP approach performed poorly in 

locating semilandmarks in reasonably corresponding locations with the more complex 

ape cranial surfaces. In both datasets, estimated mean surfaces converge with increasing 

semilandmarking density on the surface from the highest density (Tables 3.4 and 3.5, and 

Figures 3.10-3.12). For the head surface data, warping the template surface to the mean 

landmark configuration (Figure 3.23b) resulted in a surface that was quite similar in 

general to that warped to landmarks and high-density semilandmarks, but which differed 

in detail from the semilandmark based mean (Figure 3.23d). This similarity is in large 

part due to the fact that the template surface is already an initial estimate of the mean. 

Repeating the analysis using the surface of the individual nearest to the mean landmarks 

and semilandmarks, resulted in an estimate of the mean surface (Figure 3.23c) that 

presented greater differences from the semilandmark based mean surface (Figure 3.23e). 

Visually this approach worked reasonably despite the lack of identifiable landmarks to 

guide warping of the scalp, however this is likely because the template scalp was not an 

initial estimate of, and very similar to the mean.  

The mean ape surfaces estimated using sliding TPS and TPS&NICP with varying 

densities of semilandmarks are also visually quite similar (Figure 3.8), although the 

surface from LS&ICP shows some obvious differences. Focusing on sliding TPS and 

TPS&NICP, the mean surfaces resulting from these methods using varying numbers of 

semilandmarks are very similar, with differences increasing with semilandmarking 

density, especially where surface topography is complex (Figure 3.9 and Table 3.1). 

Surfaces estimated using increasing numbers of semilandmarks converge on the surface 

estimated using the maximum number of semilandmarks (Figures 3.10, 3.11, 3.13).  

It should be noted that in the implementation of NICP used here, the initial 

registration of surfaces between template and target uses a triplet of TPS. This is also the 

case for the sliding TPS approach. This shared initial, non-rigid registration doubtless 

contributes to the similarities in results obtained using these approaches, when compared 

to the rigid, least squares registration employed in the LS&ICP approach. However, even 

the LS&ICP approach used the same landmark set for registration. It would be of interest 
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in future work to assess the impact of using different landmark configurations to estimate 

semilandmarks.    

Using the mean landmark configuration alone to warp the template surface mesh 

results in a visually similar surface to the mean based on landmarks and high-density 

semilandmarks, but which differs in detail, especially around crests and ridges (Figures 

3.24a, b and d). Visualisation of the mean by warping the ape surface used to generate the 

template results in a more different surface (Figures 3.24c, e and f), which in some ways 

resembles the mean based on landmarks and high-density semilandmarks (Figure 3.24a), 

but which differs particularly in regions with complex topography (Figures 3.24c and f). 

These landmark based warping differ in detail from the landmark and semilandmark 

based ones, but also bear a resemblance. Whether or not they are adequate depends on the 

purpose to which they are put. They may be sufficient to describe general aspects of shape 

variation, but would likely yield different results if used to build finite element models 

(FEM). Warping of a surface that is an initial estimate of the mean to the landmarks alone, 

inevitably yields a surface more like that based on landmarks and semilandmarks than 

warping a surface from an individual, even if close to the mean. This also applies to the 

comparisons of mean surfaces resulting from semilandmarking approaches and densities. 

Predicted allometrically scaled mean surfaces were also compared among 

semilandmarking approaches and densities. With the head surface dataset, sliding TPS 

and TPS&NICP produced very similar surfaces particularly at the highest 

semilandmarking densities (Figures 3.14 and 3.15). The surfaces from LS&ICP were 

dissimilar. Likewise, for ape cranial surfaces, the allometrically scaled mean surfaces 

from sliding TPS and TPS&NICP are similar, but differ in detail, especially around ridges 

and crests (Table 3.6 and Figure 3.16). They become more dissimilar in the regions of 

crests and ridges as semilandmarking density increases, reflecting the more detailed 

controlled of warping by greater densities of semilandmarks. Both semilandmarking 

approaches show a similar pattern of convergence on the surface derived from the highest 

density, of surfaces with increasing densities of semilandmarking (Figures 3.21 and 3.22, 

and Table 3.8).      

These differences among allometrically scaled means from both datasets and the 

different approaches and densities of semilandmarking are summarized by the PC plots 

of Figures 3.17 and 3.18. Figure 3.17 presents for the head surface data, the first two PCs 

from an analysis of mean and allometrically scaled mean surfaces derived from varying 

densities of semilandmarks and each approach. It shows that sliding TPS and TPS&NICP 

achieve very similar results, with many points overlapping, but that LS&ICP results in 

quite different estimates of the same surfaces that vary along a different vector from the 

other two approaches. The comparable analysis, for the ape crania compared only sliding 

TPS and TPS&NICP, and the resulting PC plot shows that these achieve very similar 
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results. These findings give perspective to the differences identified in the Procrustes 

distance matrices and visual comparisons in the analyses described above. Thus, the 

Procrustes distances between mean surfaces from varying semilandmarking approaches 

and densities are small compared to those between surfaces allometrically scaled to the 

maximum and minimum sample centroid sizes. The colour maps are very sensitive, 

identifying and emphasising what are in reality very small differences.    

Allometrically scaled ape cranial surfaces from sliding TPS with 800 semilandmarks 

are compared with surfaces derived by warping to the allometrically scaled landmark 

configurations the template surface and the surface used to generate the template. The 

resulting predictions of surfaces at both the sample maximum and minimum centroid 

sizes share general similarities with, but differ in detail from the surfaces based on 

semilandmarks (Figures 3.25d, e and f and Figures 3.26d, e and f). As with the head 

surfaces, these differences reflect similar aspects of scaling, which may be adequate in 

describing general scaling trends but would likely lead to differences in FEA results 

among models based upon them. 

The differences in scaling are emphasised by the PCAs of Figures 3.27 and 3.28, 

where for both datasets, the surfaces derived by warping the surface of the individual 

nearest to the mean to the allometrically scaled mean landmark configurations, are distant 

from the semilandmark based surfaces and are arranged along a vector that is not parallel 

to the vector between surfaces scaled using semilandmarks. Warping the template surface 

to the mean and allometrically scaled means in both datasets results in a vector parallel 

to that derived by warping the head surface of the individual nearest to the mean or the 

ape cranium used to generate the template, but with the mean close to the means from 

semilandmark based approaches. This indicates that these different surfaces scale in very 

similar ways. Thus, the choice of template surface determines where in the shape space 

the allometric vector is located while the landmarks and semilandmarks used to deform 

the surface determine how it is deformed. Semilandmarks result in the surface regions 

between landmarks being deformed differently to what is achieved through warping to 

the landmark configurations alone. This is not surprising and underlines how 

semilandmarks contribute to control of surface deformation.  

The results of this study have shown that different semilandmarking approaches and 

densities achieve different visualisations of mean and allometrically scaled surfaces. The 

degree of difference depends on the approach, with non-rigid semilandmarking (sliding 

TPS and TPS&NICP) producing surfaces that are consistently more similar to each other 

than to those derived using the rigid LS&ICP approach. Additionally, the non-rigid 

approaches show consistency of surfaces produced using semilandmarks of varying 

densities. While Procrustes distances and colour maps emphasise differences among 

approaches, PCAs comparing scaled mean surfaces show that the differences between 
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surfaces from non-rigid semilandmarking approaches are very small when compared to 

the differences among allometrically scaled means. The differences between surfaces 

derived using LS&ICP are greater.    

Semilandmarking involves a great deal of extra effort compared to landmarking alone, 

and as has been noted earlier, brings with it some severe statistical issues. This has led to 

questioning of their benefits and criticism that they may lead to erroneous conclusions 

(Cardini, 2020; Cardini et al., 2019). Thus, this study compared surfaces warped using 

landmark configurations alone with those from landmark and semilandmarking 

configurations. These comparisons have shown that if a surface that is an initial estimate 

of the mean surface is used, then mean surfaces are well estimated. This is to be expected, 

since the mean landmarks have little warping to do. This finding likely explains why 

LS&ICP results in more similar mean surfaces to those from sliding TPS and TPS&NICP 

at lower rather than higher semilandmarking densities (Figures 3.6 and 3.7). When an 

alternative surface is used, the surface visualisation is different, having inherited features 

of this new surface. Surfaces warped to scaled landmark configurations show differences 

and some similarities to those warped to landmarks and semilandmarks in combination. 

Such analyses and visualisations based on landmarks alone may be perfectly adequate for 

many questions, they involve less work to produce and avoid the statistical issues that can 

arise with many semilandmarks and few specimens. However, compared to surfaces from 

semilandmarks, they would likely lead to different results if used to build functional or 

biomechanical models.   

Finally, we should emphasise that consistency is not the same as accuracy (Cardini, 

2020). It is tempting to conclude that the remarkable consistency of surface shapes 

derived using sliding TPS and TPS&NICP reflects accuracy of estimation of means. Our 

results cannot, however, support or refute this possibility since no ‘true mean’ is known 

(or knowable). Estimates of means depend on what quantities are measured and compared 

because means are a statistical, rather than biological entity, particular to the data used to 

calculate the mean. The results are ‘correct’ for the variables (semilandmark locations) 

resulting from each method. However, with semilandmarks there is inevitable uncertainty 

about the extent to which they are equivalent between specimens in terms of homology. 

Our studies have shown that differences in semilandmark locations among specimens will 

lead to differences in statistical results (Shui et al., 2023) and visualisations (present 

study). In these studies, these differences are quite small relative to the differences among 

specimens, but it is not clear to what extent these empirical results apply to diverse 

datasets and semilandmarking approaches (e.g. minimisation of Procrustes distances by 

sliding (Gunz & Mitteroecker, 2013)); morphometric ‘fishnets’ (Polly, 2008). This can 

only be addressed by further extensive studies of real data and by simulation experiments, 

in which an initial ‘mean’ is perturbed and then estimated from the perturbed data.  
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For now, we have shown that the two non-rigid semilandmarking approaches yield 

consistent estimates of mean and scaled surfaces. Semilandmarking involves a great deal 

of additional work and runs statistical risks in analyses. With these things in mind, the 

investigator should carefully consider if semilandmarking is necessary to answer the 

question at hand and balance this need against the statistical and biological (e.g. regarding 

homology) downsides and the time involved in gathering and using semilandmarks to 

assess shape variance and covariances. It may be a more secure strategy to base statistical 

tests on homologous landmarks and visualisations on landmarks and semilandmarks from 

parallel analyses.  

It should be borne in mind that homology is often also uncertain for landmarks, and 

that different sets of landmarks will lead to different results. However, three approaches 

that we compare in this study led to visually similar estimates of surface meshes that may 

be adequate for visualisation and functional simulation, in the sense that they are likely 

to be fair representations of average and scaled surfaces, but there is no single ‘true’ 

representation against which to assess this (see above). Their applicability depends on 

how much error in the estimation of surface shapes is judged acceptable, given the context 

of the particular study.    

Finally, it should be noted that this study is limited in its scope, being based on only 

human heads and ape crania, different datasets need to be examined to assess the 

reliability of the findings. Studies also need to be conducted using simulated data in which 

true mean and allometrically scaled surfaces are known, in order to assess the accuracy 

of the estimates of these surfaces. Additionally, this study compared a limited range of 

possible approaches to semilandmarking and future work needs to extend these 

comparisons to include other methods and ‘landmark free’ approaches.  

3.5 Conclusion 

This study examined the effects of different semilandmarking approaches and 

densities of semilandmarking on estimates of mean and allometrically scaled mean 

surfaces. These are investigated by assessing overall and regional shape differences based 

on Procrustes distances and colour maps of local surface mesh area differences. The 

results show that the mean and fitted surfaces generated by the sliding TPS and 

TPS&NICP approaches are very similar, while the LS&ICP approach yields surfaces that 

differ most. Surfaces warped to landmark configurations differ from these, depending on 

the degree of similarity of the surface to the mean, and show a different vector of 

allometric scaling, reflecting the differences between TPS interpolation and 

semilandmark control of surfaces between landmarks. In conclusion, visualizations 

derived using, especially semilandmarks from non-rigid semilandmarking approaches are 

likely to fairly represent surfaces and differences between them, but are not identical. The 
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extent to which these differences are important depends on the particular study context 

and aims.   
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Supplementary material 

Table 3.S1 Ape cranium specimen  

Specimen number Species  Sex Repository  

USNM 176211 Gorilla  Male Smithsonian Institution 

USNM 252578 Gorilla  Male Smithsonian Institution 

USNM 590949 Gorilla Female Smithsonian Institution 

USNM 590952 Gorilla Female Smithsonian Institution 

USNM 599170 Gorilla Female Smithsonian Institution 

USNM 083262 Hylobates lar Female Smithsonian Institution 

USNM 083263 Hylobates lar Female Smithsonian Institution 

USNM 083264 Hylobates lar Female Smithsonian Institution 

USNM 111970 Hylobates lar Male Smithsonian Institution 

USNM 111988 Hylobates lar Male Smithsonian Institution 

USNM 174701 Pan troglodytes Female Smithsonian Institution 

USNM 174704 Pan troglodytes Male Smithsonian Institution 

USNM 220062 Pan troglodytes Female Smithsonian Institution 

USNM 220327 Pan troglodytes Male Smithsonian Institution 

USNM 395820 Pan troglodytes Male Smithsonian Institution 

USNM 143590 Pongo abelii Male Smithsonian Institution 

USNM 267325 Pongo abelii Male Smithsonian Institution 

USNM 270807 Pongo abelii Female Smithsonian Institution 

USNM 283737 Pongo abelii Female Smithsonian Institution 

USNM 293165 Pongo abelii Male Smithsonian Institution 
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Chapter 4 A Landmark-free Approach for Surface Asymmetry 

Detection and Profile Drawings from Bilaterally 

Symmetrical Geometry  

Abstract: Bilaterally symmetrical objects represent a large and important proportion of 

archaeological artefacts and biological objects. The identification of the plane of 

symmetry plays a vital role in quantifying surface asymmetry and producing profile 

drawings in archaeology and anthropology. The correct recognition of symmetry provides 

evidence to allow experts to restore damaged artefacts, assess consistency in artefact 

manufacture, and examine morphological variability in human development. With the 

increasing availability of archaeological and anthropological 3D meshes, landmark-based 

and landmark-free morphometric methods for detecting planes of symmetry have both 

been proposed. However, the landmark-based approach requires manual identification of 

landmark locations, hence time consuming and prone to error. Additionally, the landmark 

independent morphometric method is influenced by missing data. This study presents an 

effective landmark-free approach to approximate the plane of symmetry from nearly 

bilaterally symmetrical objects by means of finding the best-fitted plane with the 

minimum geometric differences between the original and mirrored meshes. 

Subsequently, a global and regional method is carried out to quantify surface asymmetry, 

reducing the effect of the size and orientation of 3D meshes on gross asymmetry 

detection. Finally, profile drawings are produced by computing the intersections of the 

plane of symmetry and 3D meshes. Both synthetic and real objects are used to evaluate 

the effectiveness and robustness of the proposed method. Our results show the 

approximated plane of symmetry generated by the proposed method is consistent with 

that determined by anatomical landmarks, and no significant differences in asymmetry 

ratio (AR) representing the degree of gross asymmetry are found between the landmark-

based and proposed methods. These results demonstrate that the proposed method 

provides a suitable plane of symmetry from a bilaterally symmetrical object with small 

geometric distortion or simple missing geometry, thereby speeding up asymmetry 

detection and profile drawings.  
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4.1 Introduction 

Bilateral symmetry is one of the most important characteristics of archaeological 

artefacts and human fossil specimens. In recent decades, asymmetry detection has wide 

applications in archaeology, anthropology, palaeontology, biology and craniofacial 

surgery (Klingenberg, 2015; Mitra et al., 2013). These analytical results provide 

considerable guidance and reliable evidence to allow experts to examine 

historical  manufacturing capacities (McNabb et al., 2018; Saragusti et al., 1998) , repair 

damaged artefacts (Shui & Gao, 2021), evaluate human developmental variability and 

instability (Hou & Fagan, 2021), and perceive the evolution of human cognition (Wynn, 

2002). For example, an examination of asymmetry in pottery can enable researchers to 

assess whether potters employed a fast wheel, thereby indicating the level and scale of 

manufacturing in past societies. In addition, the recognition of fluctuating asymmetry of 

biological specimens contributes to examining the effects of genetic stress and 

environmental changes on human evolution. 

The issue of quantitative analysis of asymmetry from archaeological and 

anthropological objects has created considerable interest. Much effort has gone into 

landmark-based approaches, because landmarks describe the shape and size of specimens 

in terms of anatomical, developmental, biomechanical or evolutionary knowledge 

(O'Higgins, 2000). A landmark-based geometric morphometrics (GM) method is the 

preferred way of quantifying asymmetry from a large collection of samples (McGrath et 

al., 2022; Neubauer et al., 2020; Profico et al., 2021). Generalized Procrustes Analysis 

(GPA) is applied to symmetric and asymmetric components comprising landmark and 

semilandmark configurations separately, removing the effect of location, orientation and 

scaling factors. Subsequently, Principal Component Analysis (PCA) is used to project 

every sample into shape space. Quantitative analysis, e.g. multivariate regression, and a 

colour map of geometric differences in fitted shapes along the extreme limits of the 

principal components of interest can be used to explore the patterns of asymmetry.  

Current methods to quantify surface asymmetry of each individual involve the 

comparison of geometric differences between the original and registered mirrored 

landmark configurations or surfaces with regard to the plane of symmetry which passes 

through the mid-points of the landmark configuration, e.g. mid-sagittal plane (MSP) 

(Cassi et al., 2019; Claes et al., 2011; Damstra et al., 2012; Gibelli et al., 2018; Green et 

al., 2017; Verhoeven et al., 2016; Willing et al., 2013). Notably, the identification of the 

plane of symmetry plays a vital role in quantifying asymmetry. However, the manual 

placement of landmarks consumes the amount of time and the locations are primarily 

dependent upon the experts’ anatomical knowledge and visual perception. Consequently, 

placement errors are inevitable, especially in featureless and smooth objects, thereby 

leading to inaccurate identifications of the plane of symmetry. To tackle the issue, the 
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landmark independent method needs to be further explored to improve the effectiveness 

of surface asymmetry detection.  

In archaeological reports, a conventional manual 2D line drawing is commonly used 

as a standard method to record geometric properties and artefact cross-sections. However, 

this procedure is a time-consuming task and profile drawings are primarily dependent 

upon experts’ skills (Karasik & Smilansky, 2008). Recent studies have proposed 

computer-assisted approaches to extract line drawings and to capture the dimensional 

features in archaeological potteries (Angelo et al., 2020; Wilczek et al., 2018). These 

procedures are very fast and the results are accurate and reproducible. Notably, the most 

challenging task in these applications is to find the axis of rotation from 3D meshes to 

accomplish the orientation process automatically. Likewise, the plane of symmetry is the 

fundament for orientating 3D meshes and sketching profile drawings of bilaterally 

symmetrical objects.  

Archaeological and anthropological objects frequently exhibit asymmetry and 

contain missing geometry. In this study, we propose a landmark-free approach for 

effectively recognizing the best-fitted plane of symmetry from the symmetrical object. 

Furthermore, we quantify the extent of surface asymmetry and produce profile drawings 

regarding the approximated plane of symmetry. The main contributions are as follows: 

 We identify the symmetrical regions from 3D meshes through the examination of the 

extent of asymmetry and plane clustering.  

 We improve the morphometric method to approximate the plane of symmetry by 

finding the best-fitted plane with the minimum geometric differences between the original 

and mirrored 3D meshes.  

 We present a generalized method to quantify gross and regional surface asymmetry 

with regard to the plane of symmetry.  

4.2 Related work 

Our literature review focuses on landmark-free approaches for approximating the 

plane of symmetry from 3D meshes. It comprises four categories: the landmark-free 

morphometric method, the extrinsic-based method, the intrinsic-based method, and deep 

learning method. 

Extending the framework of the landmark-based morphometric approach which 

identifies the plane by fitting the mid-points of the original and registered mirrored 

landmark configurations (Damstra et al., 2012), the landmark-free morphometric method 

has been proposed based on a full set of vertices of 3D meshes (Di Angelo et al., 2019; 

Noori et al., 2020). It comprises three steps: first, the mirrored meshes were generated 

based on an arbitrary plane or one of the principal directions passing through the centroid 



143 
 

point of 3D meshes (Zhang et al., 2006). Second, the iterative closest point (ICP) 

algorithm (Besl & McKay, 1992) was conducted to register the original and mirrored 

meshes by minimizing the sum of the squared Euclidean distance between 

correspondences established by searching the nearest points. Finally, the plane of 

symmetry was fitted based on the mid-points of the original and registered mirrored 

meshes. It is worth noting that the ICP algorithm is likely to suffer from a local minima 

problem especially when the original and mirrored meshes have a great difference in 

initial location and orientation. To tackle the issue, an improved ICP algorithm has been 

proposed to speed up the convergence through the assignment of weight to paired 

correspondences, the rejection of outliers, and the optimization of the point-to-plane 

distance metric (Padia & Pears, 2011).  

In computer vision, an effective approach to identifying the plane of symmetry is 

dependent upon extrinsic features that refer to invariance under rigid transformations. In 

Euclidean space, local extrinsic shape signatures, e.g. principal curvature (Mitra et al., 

2006), orientation histogram (Sun & Sherrah, 1997) and spherical harmonics (Kakarala 

et al., 2013) have been used to find symmetrical correspondences of 3D meshes. 

Subsequently, the plane of symmetry was recognized based on all these reliable matches. 

Tevs et al. (2014) segmented the whole shapes into overlapping regions and then 

performed graph matching to establish the semantically meaningful symmetrical parts of 

man-made objects in terms of symmetric transformations. However, they might lead to 

failure when objects exhibit non-rigid transformation and distortion (Ovsjanikov et al., 

2008).  

Intrinsic spectral descriptors rely on the analysis of the eigenvalues and 

eigenfunctions of the Laplace-Beltrami (LB) operator that is a symmetrical negative 

semidefinite on a Riemannian manifold (Biasotti et al., 2016; Li & Hamza, 2014). Unlike 

extrinsic features, they preserve geodesic distances and remain invariant under 

an isometric mapping on the manifold (Xu et al., 2009). For example, Sun et al. (2009) 

presented a heat kernel signature (HKS) to represent the heat transfer from one point to 

another in time parameter t due to the diffusion process. Recent studies have shown that 

intrinsic features support measuring the similarity between non-rigid shapes (Zhang et al., 

2021) and detecting the plane of symmetry. Sipran et al. (2014) employed a spectral 

descriptor to approximate the plane of symmetry from partial geometry. In their work, an 

intrinsic feature that balance the global and local characterization was used to find a set 

of distinctive points with the local maxima. Subsequently, the vote-based algorithm was 

conducted to obtain positive votes to improve the accuracy of identification. However, 

this method may be less effective when applied to featureless geometry.  

With the progress towards the accessibility of a large collection of 3D meshes, recent 

studies have employed deep neural networks to detect the plane of symmetry. Ji and Liu 
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(2019) employed PointNet++ architecture to classify the point clouds to capture the 

reflection symmetry property and then used the random sample consensus (RANSAC) 

and least-squares algorithms to find the initial plane of symmetry. Based on this initial 

identification, the landmark-free morphometric method was employed to improve the 

accuracy of the symmetry. However, the annotation of training data takes the amount of 

time. To address this problem, Gao et al. (2020) proposed an unsupervised 3D 

convolutional neural network to extract global model features and then identify global 

planar reflective symmetry automatically.   

4.3 Materials and methods 

4.3.1 Materials 

A variety of 3D acquisition technologies, e.g. medical imaging techniques (Zhang et 

al., 2012), 3D scanning (Kuzminsky & Gardiner, 2012) and photogrammetry (Gruen, 

2012) have been used to digitize archaeological and anthropological objects. In this study, 

we used different technologies to capture 3D meshes. The 3D dataset comprises three 

parts and more details are provided in the supplementary material (Table 4.S1):   

(a) In our previous study (Shui et al., 2016), a clinical multi-slice CT scanner system 

(Siemens Sensation 16) belonging to the Affiliated Hospital of Shaanxi University of 

Chinese Medicine was used to generate 3D meshes of 100 modern human male skulls, 

most of whom were residents of Shaanxi province, China. This work has been approved 

by the Institutional Review Board (IRB) of the Affiliated Hospital of the Shaanxi 

University of Chinese Medicine. The CT images of every skull were archived in standard 

DICOM 3.0 with a resolution of 512 × 512. Subsequently, digital models were 

reconstructed from the segmented images using the threshold algorithm (Shui et al., 2017) 

to represent hard tissues and then the external surface of the skull was extracted by 

computing the intersection points between every cross-section and 3D meshes (Shui et 

al., 2020). This approach reduces the computational complexity and minimize the effect 

of internal structures and cervical spine on the shape analysis. Finally, the irrelative 

discrete meshes were manually removed and the reconstructed surfaces were processed 

smoothly. Each skull usually comprises of more than 160,000 vertices and 300,000 

triangles. In this study, we selected thirty complete skulls aged 20-30 years old to test the 

effectiveness of the proposed method. Additionally, the CT scanner was used to acquire 

3D meshes of a damaged modern human skull of a patient. Asymmetry analysis of this 

damaged skull can aid in formulating the surgery plan. Finally, a complete femur found 

at Jiangzhuang site in Jiangsu, north of the Yangtze, China was scanned using a clinical 

multi-slice CT scanner system to assess the accuracy of the proposed method to recognize 

the plan of symmetry from asymmetrical objects. 

(b) We used two portable 3D scanners to obtain digital models of archaeological 
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artefacts. First, a Handyscan 700 scanner with a resolution of 0.03 mm was used to 

capture 3D meshes of a terracotta warrior head and a bronze mask. Second, an Artec 

spider scanner with a resolution of 0.05 mm was applied to capture 3D meshes of a pottery 

spoon, a ceramic plate, a clay pot, a tripod, a helmet and a Tibetan Buddha statue. The 

digital models were processed smoothly to improve the quality using the open-source 

software MeshLab (Cignoni et al., 2008).  

(c) Two damaged crania have been digitized from casts by photogrammetry 

technique and then uploaded into the online digital repository on Sketchfab by the 

Research Labs of Archaeology, University of Chapel Hill, North Carolina. We used them 

to test the effectiveness in partial geometry. The first cranium (2501.1rp35) was known 

as Rhodesian Man, dating back to 125,000 years B.P (https://sketchfab.com/3d-

models/homo-sapiens-25011rp35-cranium-96ce6fa86a01479d907f7032e3e8f9b1). The 

second model (2501.1rp20-1) was a cranium fragment of Paranthropus boisei, dating 

back to 1.8 million years ago (https://sketchfab.com/3d-models/paranthropus-boisei-

25011rp20-1-cranium- cd285c22e12c 4cbaaf1684f80aed5d2e). 

4.3.2 Methods 

This study presented a landmark-free computerized approach to extract symmetrical 

regions and approximate the best-fitted plane of symmetry, thereby quantifying surface 

asymmetry and producing profile drawings. Figure 4.1 summarizes the pipeline of the 

proposed method. It comprises three stages: First, the plane of symmetry was 

approximated through four steps: (a) the intrinsic feature of every vertex was calculated 

and visualized as a colour map; (b) 3D segmentation algorithm was used to separate 3D 

meshes into different regions through a comparison of the similarity of the 

neighbouring vertices; (c) the symmetrical regions (blue points) were extracted from the 

segmented results, each of which can be used to identify the plane of symmetry. (d) the 

best-fitted plane of symmetry was approximated (red colour) and then the accuracy was 

assessed by synthetic and real objects. Second, we registered the original (grey colour) 

and mirrored meshes (peach colour) and then quantified the extent of surface asymmetry 

by means of computing the geometric deviation between these two meshes. Finally, we 

orientated the 3D meshes and then sketched the profile (red colour) by calculating the 

intersections of the plane of symmetry and 3D meshes.  

We used Matlab 2019 to calculate intrinsic features of 3D meshes (Li & Hamza, 2014) 

and employed C++ to recognize the plane of symmetry, quantify surface asymmetry and 

produce profile drawings. The software prototype can be downloaded from the Internet 

(https://github.com/sissun/Asymmetry_detection.git). 
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Figure 4.1 The workflow of asymmetry detection and profile drawings based on the identification of the 
plane of symmetry. (a) Visualisation of intrinsic feature of every vertex. (b) The segmented results. (c) The 
extraction of symmetrical region (blue points) accompanying the plane of symmetry (red colour). (d) The 
approximated best-fitted plane of symmetry (red colour) of 3D meshes. (e) The superimposition of original 
(grey colour) and registered mirrored meshes (peach colour). (f) Visualisation of asymmetry detection. (g) 
The orientated 3D meshes associated with the plane of symmetry. (h) Profile drawings.  

4.3.2.1 An approximation of the plane of symmetry 

An intrinsic wave kernel signature (WKS). WKS describes the average probability 

distribution of quantum mechanical particles with different energy densities (Aubry et al., 

2011). It is invariant under isometric transformation (translations, reflections 

and rotations) and robust to small non-isometric deformations. Unlike HKS, WKS uses a 

band-pass filter to capture the geometric information from different frequencies. The 

evolution of a quantum particle can be governed at a location x at time t by wave function

( , )x t that is a solution of Schrödinger’s equation 

   ( , ) ( , )x t i x t
t





 


                                                  (4.1) 

 wheredenotes the Laplace-Beltrami operator, and i indicates the imaginary number. 

 The wave kernel function can be represented as follows:  

    
0

( , )= ( ) ( )ki t

k E k
k

x t e x f  



                                              (4.2)                                                             

where ( )E kf  represents the initial energy probability distribution and E denotes the 

energy at time t = 0. k  and ( )k x represent the k index eigenvalue and corresponding 

eigenvector.  

WKS at a location x can be represented as follows:  
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To further support the calculation of WKS at a point of the manifold, WKS can be 

represented in the logarithmic energy scale logk ke E  
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   and   represents the variance, respectively.  

The WKS values at the first k frequencies can be denoted by  

   , ,2 ,WKS i 1 i i kWKS WKS WKS                                         (4.5)                                                    

where ,i kWKS denotes the WKS value at the k index energy frequency of the i index 

vertex.  

The WKS values at lower frequencies indicate the global topological information, 

and the values at the highest frequencies indicate the local topological information. In this 

study, we discriminated symmetrical regions of 3D meshes based on the intrinsic WKS 

features at the first k lowest frequencies (e.g. k =100). Figure 4.2 shows the WKS values 

at four different frequencies, respectively, including 1k   , 1 0k   , 50k   , and 1 0 0k 

(from left to right). Red colour represents the higher value and blue colour indicates the 

smaller value. Figure 4.2a displays the WKS values of a plane that exhibits perfect 

symmetry. Figure 4.2b illustrates the WKS values of a skull that exhibits nearly bilateral 

symmetry. The results show that symmetrical regions can be observed based on the WKS 

values. 

 
Figure 4.2 The WKS values of two models at different four energy frequencies, including k=1, k=10, k=50 
and k=100 (from left to right). (a) A plane. (b) A skull. 

Mesh segmentation. The region growing and merging algorithm (Wan & Higgins, 

2003) is a promising means of extracting a region of interest. The choice of seed points 

and the growing and merging criterion affect the segmented results, e.g. inappropriate 

seeds might lead to under-segmentation or over-segmentation. To address this problem, 

this study used multiple sampling points as the seeds and then measured the cosine 
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similarity of the WKS values of the neighbouring vertices to segment 3D meshes into 

different regions. It comprised three steps:  

Step 1: We used the Poisson-disk sample algorithm (Corsini et al., 2012) generate a 

set of points as seeds which covered the entire meshes evenly. 

Step 2: In the growing process, the regions were iteratively grown through a 

comparison of the cosine similarity of WKS values between the current region and the 

unlabelled one-ring neighbouring vertices. The vertex that has a greater cosine similarity 

value than a fixed threshold g  would be assigned to the respective region. This 

process was performed until all the vertices were reached. 

Step 3: The merging process was performed when it satisfied the condition that the 

cosine similarity of two different adjacent growing regions was larger than a fixed 

threshold m , i.e. only m merging regions 1 2, ,{ }, mS S S S   were extracted from n growing 

regions ( m n ). It was an iterated process until all the growing regions were labelled. 

The extraction of symmetrical regions. We assumed that the symmetrical regions 

comprised of two categories: first, the segmented region that exhibits symmetry itself, e.g. 

nasal bone and anterior mandible. Second, two different segmented regions exhibit 

symmetry with regard to the plane of symmetry, e.g. condylar process and zygomatic 

bones. We presented a method to extract the symmetrical regions from segmented regions 

by analysing the extent of symmetry and performing a clustering technique, as shown in 

Figure 4.3.   

 

Figure 4.3 The workflow of the extraction of symmetrical regions from segmented regions. 

Suppose every segmented region and pairs of two different segmented regions with 

similar mean WKS values were represented by , =1,2{ }, ,iA A i l   , the landmark-free 

morphometric method was applied to identify the plane of symmetry. PCA was first 

applied to generate three initial planes corresponding to principal eigenvectors of each 

region. Then we recreated the mirrored meshes of iA with regard to every initial plane as 

follows:  

   2 ( + )i i iq p p d  n n
 

                                                 (4.6)                          
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 where
3=( , , )i i i ip x y z   and 

3=( , , )i i i iq x y z  represent every vertex of the original and 

mirrored meshes, respectively. a, b, c, and d are the coeffectiens of the equation of a plane, 

and  = a b cn


denotes the normal vector.  

Then the ICP algorithm was used to register the original and mirrored meshes and 

establish the correspondences between these two meshes by searching the nearest points. 

The correspondences with a smaller geometric deviation were regarded as symmetrical 

pairwise correspondences (SPC), and afterward the SPC ratio defined as the percentage 

of the number of SPC to the number of a full set of vertices was calculated to examine 

the extent of asymmetry. Notably, the choice of the initial plane affects the accuracy of 

the identification of the plane of symmetry. In this study, one of the planes derived from 

PCA with the condition of the maximum SPC ratio should be regarded as the 

more appropriate initial plane to identifying the plane of symmetry. iA with a greater SPC 

ratio was regard as a potentially symmetrical region (PSR). Otherwise, it was labelled as 

a falsely symmetrical region. 

The next step was to refine the symmetrical regions through plane clustering. The 

cluster accumulated the consistent planes of symmetry through a comparison of the 

difference in orientation of normal vectors as follows:  

    arccos( )i j  n n
 

                                                  (4.7)                                                                  

where in


and jn


denote the normal vectors of two different planes, and  denotes the 

dot product. If    is smaller, these two planes are regarded as the consistent planes, 

thereby belonging to the same cluster. 

In this study, if the plane of PSR belonged to the cluster that had the maximum 

consistent planes (hereafter called the consistent plane cluster), PSR would be regarded 

as the symmetrical regions, denoted by ={ }jC C , which satisfies C A . Figure 4.4 shows 

an example of recognizing the symmetrical regions of the mandible. Figure 4.4a shows 

five segmented regions using the region growing and merging algorithm. Figure 4.4b 

shows a graph with five segmented regions as nodes and ten pairs of the segmented 

regions as edges. It represents possible combinations between the segmented regions to 

detect symmetrical regions. Figure 4.4c shows the SPC ratio and the plane of symmetry 

(red colour) of every node (top row) or every pair of nodes (middle and bottom rows). 

The results show that three separately segmented regions and four pairs of segmented 

regions (in green and black rectangles) with a greater SPC ratio (> 0.7) are regarded as 

PSR. Furthermore, only four of them (in green rectangles) with a consistent orientation 

of normal vectors are regarded as symmetrical regions by performing plane clustering (

is set to 6  in this experiment). 
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Figure 4.4 The extraction of symmetrical regions. (a) Five segmented regions of the mandible. (b) The 
graph representing with five segmented regions as nodes and ten pairs of the segmented regions as edges. 
(c) Every node (top row) and pairs of nodes (middle and bottom rows) accompanying the SPC ratio and the 
plane of symmetry (red colour). Seven of them (in green and black rectangles) with greater ratios, and only 
four of them (in green rectangles) within the consistent plane cluster. 

The approximation of the plane of symmetry of 3D meshes. The plane with the 

minimum geometric differences between the original and mirrored meshes should be the 

best-fitted plane of symmetry of 3D meshes. We approximated the plane of symmetry 

taking into account two categories: first, the plane of symmetry in each symmetrical 

region coincided with the plane of symmetry of 3D meshes; Second, the fitted plane 

derived from at least three centroid points of ={ }jC C  was consistent with the plane of 

symmetry of 3D meshes.  

Let 
3=( , , )j j j jco x y z   denotes a centroid point of 

jC calculated by averaging all the 

vertices within this symmetrical region, the coefficients of the fitted plane from centroid 

points regarding a subset of ={ }jC C can be optimized as follows 
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where
T

=l l l l
a b c  n


denotes the normal vector of the fitted plane, 3=( , , )co x y z 

represents the centroid point of the selection of jC , and -= jco co  M .    

Evaluation. Since an archaeological and anthropological object often lacks an actual 

plane of symmetry, the plane determined by the manually placed landmarks was always 

regarded as the ground truth to evaluate the accuracy of the proposed method. The 

difference in orientation of normal vectors between the approximated and the landmark-

based planes was calculated to validate the accuracy of the proposed method. It is an 

acknowledged that the smaller angle indicates the approximated plane is consistent with 

the manually placed planes. Additionally, we computed geometric differences between 

the original and mirrored meshes by calculating the average value (dist) of Euclidean 

distances between every pair of corresponding vertices. The student’s t-test was further 

carried out to examine the consistency in geometric differences to validate the accuracy. 
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4.3.2.2 Asymmetry detection  

We presented a global and regional method to detect surface asymmetry with regard 

to the plane of symmetry. An asymmetry ratio (AR) was used to quantify the gross 

asymmetry of bilaterally symmetrical objects. A greater AR indicates that the meshes 

exhibited obvious asymmetry. It comprised four steps: first, we used the ICP algorithm to 

register the original and mirrored meshes, removing the location and orientation. Second, 

we calculated an average value of geometric differences between the original and 

registered mirrored meshes. Next, 3D meshes were separated into two halves with regard 

to the plane of symmetry. Euclidean distance between every vertex and the plane of 

symmetry was calculated and then maximum distance of each side was computed. Finally, 

we computed a ratio of the average geometric differences divided by the summed 

maximum distances. Additionally, the colour map of Euclidean distances of 

correspondences between the original and registered mirrored meshes was used to 

quantify the regional asymmetry. 

Figure 4.5 gives an example of the qualification of surface asymmetry of the 

mandible. Figure 4.5a shows the original (grey colour) and mirrored meshes (peach 

colour), and the colour map of geometric differences between these two meshes. Black 

colour represents a large difference and yellow colour represents a small difference. Since 

the differences in location and orientation have not been removed, geometric differences 

between these two meshes are rather large. We registered the original and mirrored 

meshes together. Figure 4.5b shows the average value (error) of Euclidean distance 

between the original and registered mirrored meshes with an increase of iterations. The 

results show that error declined dramatically and then it gradually converged. Figure 4.5c 

shows the superimposition of the original (grey colour) and registered mirrored (peach 

colour) meshes after 100 iterations and the colour map of geometric differences between 

these two meshes. The results show that asymmetry can be observed around the condylar 

process.  

 
Figure 4.5 The qualification of surface asymmetry of the mandible. (a) The colour map of geometric 
differences between the original (grey colour) and mirrored meshes (peach colour). (b) Geometric 
difference between the original and registered mirrored meshes with an increase of iteration. (c) The colour 
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map of geometric differences between the original (grey colour) and registered mirrored meshes (peach 
colour) after 100 iterations.  

4.3.2.3 Profile drawings 

3D meshes were transformed to make the approximated plane of symmetry coincide 

with the YOZ plane of the coordinate system. Then, the profile was produced by 

calculating the intersections of the plane of symmetry and every triangle mesh. The 

intersection points were projected onto the plane of symmetry to improve the smoothness 

of profile drawings. Additionally, different profile drawings can be sketched when planes 

of interest are provided.    

4.4 Results 

4.4.1 The approximation of the plane of symmetry   

The identification of the plane of symmetry is the fundamental step in surface 

asymmetry detection and profile drawings. Both synthetic objects with the actual planes 

of symmetry and real objects were used to evaluate the accuracy of the proposed method.  

4.4.1.1 The plane of symmetry in synthetic data 

We compared the approximated plane of symmetry generated by the proposed 

method with the actual one of synthetic data. Figure 4.6a shows the identification of MSP 

in a synthetic skull that exhibits nearly perfect bilateral symmetry. The leftmost two 

figures show twenty-eight growing regions ( 0.99
g
  ) and twenty segmented regions by 

merging the adjacent growing regions ( 0.985
m
  ). The third figure shows the consistent 

plane cluster (red colour) comprising nine planes of symmetry derived from each 

symmetrical region. The next two figures display two examples of symmetrical regions 

(blue colour) consisting of a segmented region alone (left) and a pair of segmented regions 

(right), respectively. The rightmost figure shows the approximated MSP (red colour) 

generated by the proposed method and the actual MSP (green colour). The result showed 

that the approximated MSP almost coincided with the actual one. Figure 4.6b shows the 

identification of MSP in a synthetic skull containing asymmetrical regions around parietal 

and zygomatic bones and mandible. From left to right, each figure displays the segmented 

regions, the consistent plane cluster (red colour), and the approximated (red colour) and 

actual (green colour) MSPs. Figure 4.6c shows the identification of MSP in a synthesized 

skull that contains a missing region around left parietal bone. In these experiments, there 

was a small difference in orientation of normal vectors ( � < 0.2° ) between the 

approximated and actual MSPs. Notably, the extracted symmetrical regions, e.g. nasal 

bone, strongly contribute to recognizing the MSPs.  
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Figure 4.6 The comparison of the approximated and actual MSPs in synthetic skulls. (a) A nearly perfect 
skull; (b) An asymmetrical skull. (c) A damaged skull with missing data. 

4.4.1.2 The plane of symmetry in real objects 

The MSPs in the complete skulls. To assess the reliability of the proposed method, 

we identified the MSPs of thirty real skulls and then compared these approximated MSPs 

with those derived from the landmark-based morphometric approach (Damstra et al., 

2012) which are determined by anatomical landmarks including nasion, nasospinale, 

prosthion (midline landmarks) and incisura supraorbitalis, frontozygomatic sutures, 

orbitale and porion (bilateral landmarks). Figure 4.7a shows the differences in orientation 

of normal vectors between the approximated and landmark-based MSPs. The average 

value of angles was about 1.24°  and the standard deviation was about 0.65° . To 

examine the degree of difference in orientation of normal vectors, Figure 4.7b displays 

the approximated (red colour) and landmark-based (green colour) MSPs corresponding 

to a maximum angle (2.34°) and a minimum angle (0.13°), respectively. These results 

indicated there was a small orientation difference in normal vectors between two methods. 

Figure 4.7c shows the geometric differences between the original and mirrored meshes 

of every skull generated by the proposed (cyan colour) and the landmark-based 

morphometric (red colour) methods, respectively. The results showed there was a strong 

Pearson correlation (r = 0.67) and no significant difference (p = 0.357) between geometric 

differences generated by these two methods. Additionally, almost 56.67% (n = 17) of all 

the skulls had a smaller geometric deviation using the proposed method. These results 

indicated that the approximated MSPs generated by the proposed method were consistent 

with those derived from the landmark-based morphometric method. 
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Figure 4.7 The comparison of the approximated and landmark-based MSPs. (a) The difference in 
orientation between the approximated and landmark-based MSPs. (b) The approximated (red colour) and 
landmark-based (green colour) MSPs corresponding to a maximum angle (2.34°) and a minimum angle 
(0.13°), respectively. (c) The comparison of geometric differences between the original and mirrored skulls 
using the proposed (cyan colour) and the landmark-based morphometric (Damstra et al., 2012) (red colour) 
methods. 

 
Figure 4.8 The identification of MSPs in three damaged skulls. (a) 2501.1rp35 cranium. (b) 2501.1rp20-1 
cranium. (c) The damaged modern human skull. 

The MSPs in partial geometry. We identified the MSPs of three damaged bilaterally 

symmetrical skulls. Figures 4.8a and b show the approximated MSPs from 

No.2501.1rp35 and No.2501.1rp20-1 crania. From left to right, each column shows the 

incomplete cranium, the segmented regions, the consistent plane cluster (red colour), and 

the approximated MSP (red colour), respectively. An example of the identification of the 
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MSP in a damaged modern human skull was illustrated in Figure 4.8c. To reduce the 

effect of the inner structure and spine on the identification and speed up computation, we 

used the method mentioned in literature (Shui et al., 2020) to extract the external surface 

(middle figure) and then portioned this surface into different regions. The MSP (red 

colour in rightmost figure) was identified based on the symmetrical regions. These results 

show the proposed method can identify the plane of symmetry in damaged bilaterally 

symmetrical objects.  

The plane of symmetry in artefacts. We identified the planes of symmetry in the 

bilaterally symmetrical artefacts. Because there was no clear definition of landmarks over 

the artefact to identify the plane of symmetry, we used the landmark-free morphometric 

method to identify the planes and then compared them with those generated by the 

proposed method. Figure 4.9 shows the approximated planes of six artefacts generated by 

the proposed (red colour) and landmark-free morphometric (green colour) methods, 

respectively. Table 4.1 reports geometric differences (mm) between the original and 

mirrored meshes, and the difference in orientation of normal vectors between the 

approximated planes of symmetry using these two methods. The smaller geometric 

deviation and orientation difference indicated that the planes of symmetry of the terracotta 

warrior head, pottery spoon, ceramic plate and clay pot (Figures 4.9a-d) generated by two 

methods were almost identical. However, the planes of symmetry (green colour) of the 

tripod and helmet (Figures 4.9e-f) generated by the landmark-free morphometric method 

seemed less confidence, because these artefacts contained missing parts and exhibited 

asymmetry. Additionally, the identification of the plane of symmetry from an 

asymmetrical artefact was depicted in Figure 4.10. Figure 4.10a shows the segmented 

regions of a terracotta warriors hand based on the WKS values. The hand was portioned 

into four main parts, including fingers, thumb, the end part of hand and others. Figure 

4.10b shows the approximated plane (red colour) of symmetry generated by the proposed 

method and that (green colour) derived from the landmark-free morphometric method. 

The results showed these two approximated planes were different, because the 

approximated plane using the landmark-free morphometric method was primarily 

determined by the entire meshes.  

Table 4.1 The approximated planes of symmetry of different artefacts 

Artefact dist (ours) dist (morphometric method)     Angle (°) 

terracotta warriors head  2.16 2.95 1.81 

pottery spoon 0.59 0.54 1.38 

ceramic plate 0.34 0.37 0.88 

clay pot 0.45 0.46 1.16 

tripod  1.81 3.13 6.85 

helmet  3.14 13.19 10.26 
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Figure 4.9 The comparison of the approximated planes of symmetry generated by the proposed (red colour) 
and the landmark-free morphometric (green colour) methods. (a) Terracotta warriors head. (b) Pottery 
spoon. (c) Ceramic plate. (d) Clay pot. (e) Tripod. (f) Helmet. 

 

Figure 4.10 The identification of the plane of symmetry in a terracotta warriors hand. (a) Segmented regions. 
(b) The approximated planes generated by the proposed (red colour) and the landmark-free morphometric 
(green colour) methods. 

4.4.2 Asymmetry detection   

Based on the approximated plane of symmetry, we used the proposed method to 

quantify the gross and regional surface asymmetry of thirty skulls, as shown in Figure 

4.11. Figure 4.11a shows the AR to capture the gross asymmetry of every skull. Figure 

4.11b displays the most asymmetrical skull corresponding to the highest AR (0.0191) and 

the colour map of geometric differences (mm) between the original and registered 

mirrored skulls. Red colour represents the obviously asymmetrical regions and yellow 

colour indicates the nearly symmetrical regions. The result showed the greatest 

asymmetrical regions were found around parietal and occipital bones. Figure 4.11c 

displays the nearly symmetrical skull corresponding to the smallest AR (0.0060) and the 

colour map of geometric differences. To validate the reliably of the proposed method, we 

compared AR generated by the proposed method to those derived from the landmark-

based morphometric method (Damstra et al., 2012). The results showed there was a strong 

Pearson correlation (r = 0.94) and no significant difference (p = 0.763) between AR 

generated by these two methods. Additionally, we used the proposed method to quantify 

the surface asymmetries of artefacts, as shown in Figure 4.12.  
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Figure 4.11 Surface asymmetry detection of thirty skulls. (a) AR of every skull. (b) The most asymmetrical 
skull corresponding to the highest AR and the colour map of geometric difference. (c) The nearly 
symmetrical skull corresponding to the smallest AR and the colour map of geometric difference. 

 

Figure 4.12 Surface asymmetry detection of archaeological artefacts. 

4.4.3 Profile drawings 

We produced profile drawings of nearly bilaterally symmetrical objects based on the 

plane of symmetry or an arbitrary plane. Figure 4.13a shows profile drawings of the 

terracotta warriors head, bronze mask, ceramic plate, pottery spoon and Tibetan Buddha 

statue with regard to the plane of symmetry. Figure 4.13b displays profile drawings of the 

skull, human endocast and femur. Figure 4.13c shows the profile drawing of the skull 

associated with the transverse plane and that of the tripod with regard to an arbitrary plane. 
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Figure 4.13 Profile drawings of symmetrical objects. (a) Profile drawings of artefacts with regard to the 
plane of symmetry. (b) Profile drawings of anthropological objects with regard to the plane of symmetry. 
(c) Profile drawings of objects with regard to different planes.  

4.5 Discussion 

The increased accessibility of digital models and the development of computerized 

technologies have led researchers to quantify surface asymmetry and produce profile 

drawings of archaeological artefacts and fossil specimens automatically, objectively and 

effectively. This study presented a landmark-free approach for approximating the plane 

of symmetry from nearly bilaterally symmetrical objects. Subsequently, we quantified 

surface asymmetry and produced profile drawings with regard to the plane of symmetry.  

The identification of the plane of symmetry is a crucial step in quantifying asymmetry 

using the morphometric method. As natural objects always exhibit different extents of 

asymmetry, e.g. fluctuating asymmetry, the actual plane of symmetry always does not 

exist. The landmark-based morphometric method is the most commonly used method to 

identify the plane of symmetry (Damstra et al., 2012). Nevertheless, the debate over the 

choice of landmark configuration has attracted great interest. For example, central 

landmarks and bilateral landmarks have been suggested for approximating the MSP 

(Willing et al., 2013). On the contrary, central landmarks including nasion, basion and 

incisive foramen are recommended in other study (Green et al., 2017). Instead, this study 

attempts to find the best-fitted plane that yields the minimum geometric differences 

between the original and mirrored meshes. The results clearly demonstrate that the 

proposed and landmark-based methods can yield consistent MSPs in skulls. This finding 

suggests the use of high-density SPC does not significantly alter MSPs. Additionally, the 

proposed method avoids landmark placements, especially in featureless and smooth 

regions, e.g. clay pot. Hence, it contributes to identifying the plane of symmetry in 

archaeological artefacts.  

Compared to nearly perfectly symmetrical objects, the identification of the plane of 

symmetry in partial geometry and asymmetrical objects faces a challenging problem 

using the landmark-free morphometric method (Di Angelo et al., 2019; Zhang et al., 

2006). Because the centroid point and principal directions generated by PCA before and 

after being broken are different, it is likely to yield an inaccurate mid-point configuration 
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between original and registered mirrored meshes, thereby leading to an unreasonable 

plane of symmetry, e.g. the tripod and helmet. To address this problem, a set of 

symmetrical regions were manually segmented to approximate the plane of symmetry 

(De Momi et al., 2006; Xu et al., 2022). The idea behind is that the planes of symmetry 

in the extracted symmetrical regions are consistent with that of the entire meshes. This 

study employed a coarse-to-fine strategy to extract the symmetrical regions, avoiding 

human intervention. The extraction of symmetrical regions through the examination of 

the extent of asymmetry and plane clustering strongly contributes to identifying the plane 

of symmetry of objects with geometric distortions or simple missing geometry. However, 

our method might not be suitable for objects with substantial missing geometry due to 

lack of sufficiently symmetrical regions. In case that the entire meshes are regard as a 

single region, the identification of the plane of symmetry derived from the proposed 

method would be consistent with that derived from the landmark-free morphometric 

method.  

The extraction of symmetrical regions is partially dependent upon the segmentation 

results using the growing and merging algorithm. The smaller growing threshold is likely 

to lead to under-segmentation and ignore PSR. The insufficient symmetrical regions 

might result in an inaccurately approximated plane, especially in missing geometry and 

partial geometry. In contrast, a higher growing threshold can yield more segmented 

regions, thereby facilitating the extraction of PSR from partial and asymmetrical 

geometry. It is noteworthy that the over-segmentation increases the complexity of 

computation in extracting the symmetrical regions and identifying the plane of symmetry. 

In practice, the threshold values need to be investigated taking into account the extent of 

completeness of geometry and the degree of asymmetry. The same threshold values can 

always be used to extract symmetrical regions and identify the planes of symmetry from 

the same group of objects, e.g. skulls, reducing human intervention. 

Several methods have been proposed to quantify the magnitude of surface asymmetry 

by measuring geometric differences between the original and registered mirrored meshes 

(Cassi et al., 2019; Claes et al., 2011; Gibelli et al., 2018; Melchionna et al., 2021; 

Verhoeven et al., 2016) or the normal distance between centroids of corresponding 

triangles (Willing et al., 2013).To examine the extent of asymmetry across a collection of 

specimens, an asymmetry index defined as the geometric differences between the original 

and the mirrored meshes divided by the diagonal length of the bounding box has been 

proposed to quantify the global asymmetry (Bockey et al., 2018). However, the 

orientation of the object affects the diagonal length, thereby leading to an inaccurate 

analytical result. In this study, AR regarding geometric differences divided by the length 

associated with the plane of symmetry was used to measure the gross asymmetry, 

minimizing the effect of the size and orientation of 3D meshes on asymmetry detection.  
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4.6 Conclusion 

In archaeology and anthropology, the recognition of the plane of symmetry plays an 

important role in virtual restoration, asymmetry detection and profile drawings. Previous 

studies have proposed the landmark-free morphometric method to approximate the plane 

of symmetry. However, missing data and asymmetry might lead to inaccurate 

identifications. This study proposes an effective landmark-free approach to find the best-

fitted plane of symmetry with the minimum geometric differences between the original 

and mirrored meshes. Subsequently, we present a global and regional method to quantify 

surface asymmetry. Finally, we produce profile drawings based on the plane of symmetry 

or an arbitrary plane. The experiments demonstrated that the proposed method is effective 

and robust for symmetrical objects with small geometric distortions or simple missing 

geometry. We expect the proposed method will have a range of applications. 
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Supplementary material 

Table 4.S1 Archaeological and anthropological objects 

Artefact Scanner Number Repository  

Human skulls CT  30 Beijing Normal University 

Damaged skull CT 1 Beijing Normal University 

Femur CT 1 Fudan University 

Bronze mask Handyscan 700 1 Beijing Normal University  

Tripod Artec Spider 1 Beijing Normal University  

Helmet Artec Spider 1 Beijing Normal University  

Pottery spoon Artec Spider 1 Zhejiang University 

Ceramic plate Artec Spider 1 Zhejiang University 

Clay pot Artec Spider 1 Zhejiang University 

Tibetan Buddha statue Artec Spider 1 Qinghai Normal University 

Rhodesian Man Photogrammetry 1 Sketchfab 

Paranthropus boisei Photogrammetry 1 Sketchfab 
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Chapter 5 A geometric completion and shape analysis method for 

damaged bilaterally symmetrical artefacts 

Abstract: Archaeological artefacts are important forms of tangible cultural heritage, 

providing evidence of cultural signification, human values, and the development of 

manufacturing technologies. The reconstruction of damaged bilaterally symmetrical 

artefacts is frequently undertaken for research and public display. However, traditional 

restoration technology requires physical intervention, which can cause secondary 

damage, and raise questions of authenticity. In this study, we proposed a hybrid non-rigid 

deformation approach to repair damaged bilaterally symmetrical artefacts based on a 

study of a heavily corroded metal mask of the Liao dynasty from the Palace Museum, 

China. In addition, since the mask is always placed over the head of the deceased person, 

it is an interesting question to capture the characteristic features. We employed geometric 

morphometrics (GM) and anthropometric measurements (AM) to investigate the 

geometric variations between the mask and human faces. The experimental results 

demonstrated the effectiveness of the proposed approach in the application of virtual 

restoration and shape analysis. These methods have wider application to other forms of 

archaeological and anthropological data. 

Article details: 

Wuyang Shui and Fei Gao. A geometric completion and shape analysis method for 

damaged bilaterally symmetrical artefacts. 2021. Journal of Cultural Heritage. 2021, 52, 

118-127. 
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5.1 Introduction 

Archaeological artefacts provide reliable historic evidence for the past organization 

of human society, and allow us study the knowledge and skills of our ancestors. However, 

the majority of artefacts have been damaged due to weathering, erosion, physical stress, 

human activity, etc. In order to provide reliable evidence and clues for scientific research 

and preserve the value of artefacts, archaeologists and conservators need to undertake 

restoration. Existing approaches are generally concerned with two aspects: fragment 

reassembly and completion of missing geometry (Papaioannou et al., 2017). During this 

procedure, conservators often repair damaged artefacts by hand, but they face several 

challenges, including the cost of lengthy time-consuming processes, risks of physical 

intervention, and the introduction of subjective biases (Gilboa et al., 2013). These have 

raised the interest of conservators in improving the reliability and speed of restoration, 

and preventing secondary damage. Exploring computerized approaches offers a 

promising perspective for the completion of missing geometry, in particular, with regard 

to those artefacts that exhibit bilateral symmetry. 

Over recent decades, cutting-edge digital technologies provide new insights for the 

analysis, interpretation and repair of artefacts. They present a potential way to address the 

limitations of the traditional approach to restoration and attract great interest from both 

conservators and computer scientists. Previous studies have employed 3D data 

acquisition technologies, e.g. laser scanning (Kuzminsky & Gardiner, 2012), 

photogrammetry (Sapirstein, 2018), computerized tomography (CT) (Zhang et al., 2012), 

etc., to record the entire geometric shape and texture of the artefacts. These high-quality 

3D models of cultural resources can be accessed and investigated, rather than the actual 

artefacts. For example, conservators utilize interactive software to reassemble fragments 

and fill in the gaps. In recent years, 3D printing (also known as additive manufacturing) 

has been applied to produce replicas and repair damaged artefacts (Arbace et al., 2013; 

Jo et al., 2020). Without considering the characteristics of the materials, this technology 

provides a complementary component for the traditional casting technology. 

A damaged metal mask (21.00 cm length, 19.00 cm width and 0.5 mm depth) of the 

Liao dynasty from the Palace Museum, China, shown in Figure 5.1a, had been broken 

into a large fragment and four small ones, each of which was covered in a green patina. 

To avoid secondary damage and further deterioration, and display the original appearance 

to the general public, it was decided to repair the mask by means of interdisciplinary 

technologies. Before the physical restoration, the composition and corrosion of the mask 

were examined using different analytical technologies, including X-

Ray diffraction, Raman Spectroscopy, and Micro-Fourier Transform Infrared 

Spectroscopy (Qu et al., 2018). Subsequently, the conservator (the second author, Fei Gao) 

cleaned the surface of the mask manually, removed the corrosion, and consolidated the 
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mask using Cyclododecane. Finally, all the fragments were repositioned and reassembled 

by hand. However, the right cheek of the repaired mask still had two missing areas (Figure 

5.1b). A computerized completion method was required to produce digital models that 

could be embedded within the damaged regions, such that the boundary curves of the 

embedded models are consistent with those of the damaged regions.  

 
Figure 5.1 The metal mask. (a) The mask consisted of five fragments. (b) Fragment reassembly. 

The Liao dynasty was founded by nomadic Qidan tribes in 907 A.D. During this 

period, the preservation of the remains of the deceased formed the central part of the 

funerary process that was an important cultural event and burial custom. The metal masks 

used to cover the faces of deceased are often recovered from the tombs (Mayberger, 2020; 

Peng, 2003). The masks were personalized and hence always have different characteristic 

features. For example, Shimada described a mask from the collection of the 

archaeological museums of Tokyo University with wide open eyes, comparatively large 

nose, indicated nostrils, and heavy upper and lower lips (Shimada, 1950). Both the general 

public and the conservators wanted to understand the extent to which the mask resembled 

a human face.  

In this study, we presented a computerized approach to repair missing geometry and 

analyse the shape variations of archaeological artefacts that exhibit bilateral symmetry. It 

comprises the estimation of the plane of symmetry, the restoration of the missing 

geometry based on geometric deformation, and the landmarks-based shape analysis. It 

improves the reliability of completion and minimizes the effect of corrosion and distortion 

on the accuracy of deformation. The key contributions are as follows: 

 We propose a framework with minimal human intervention to accomplish the 

completion of the damaged artefact and shape analysis. 

 We present a hybrid non-rigid deformation combining thin-plate splines (TPS) 

(Bookstein, 1989) and Laplacian deformation (Sorkine et al., 2004) to repair the damaged 

artefact with the predicted boundary curve as a constraint.  

 We employ landmark-based geometric morphometrics (GM) and anthropometric 

measurements (AM) to capture the characteristic features of the mask. The findings using 

GM are almost consistent with those using AM. 
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5.2 Related work 

In recent years, there has been an increasing demand for repairing broken artefacts 

and capturing geometric features using advanced computer technologies. Geometric 

completion is one of the most important tasks in repairing damaged 

bilaterally symmetrical artefacts. In general, it is a straightforward way to warp the 

template model to the damaged region by means of non-rigid deformation methods.  

During completion, the first step is to extract the plane of symmetry. Biologists often 

estimate the plane based on paired landmarks placed over the fossil manually (Gunz et 

al., 2009). Such landmarks can also guide the deformation and allow shape analysis to be 

performed using GM. To avoid intervention, many computerized approaches have 

attempted to extract the plane of symmetry automatically based on intrinsic and extrinsic 

features. Sipiran et al. (2014) recognized the symmetric plane from a set of candidate 

symmetries based on heat diffusion geometric features and a vote-based strategy. 

However, this algorithm is not suitable for models with less geometric features. Li et al. 

(2011) designed a descriptor that consisted of the principal curvatures and a shape 

diameter function to identify the plane of symmetry. But the distortion and noise data 

within the surface may influence the accuracy of estimation. 

After the template model was recreated, a thin-plate splines (TPS) interpolation 

function was often used to repair the damaged model and correct the distortion (Gunz et 

al., 2009). During the interpolation, a landmark configuration is used as control points 

that need to be placed manually or automatically. It is of note that the number and 

positions of the landmarks will influence the resulting deformation. When the control 

points were limited, the resulting deformation was always inadequate. Schlager et al. 

(2018) placed 3D bilateral semilandmarks on the curves and surfaces to cover the entire 

fossil to enhance the quality of deformation. In addition, Deng et al. (2011) generated 

extra geometric correspondences and employed the compactly supported radial basis 

functions interpolation algorithm to closely align the two surfaces. But above 

interpolation methods are often sensitive to the degree of complex surface.  

To improve the accuracy of deformation, a variety of non-rigid registration methods 

have been proposed by means of computing the transformation of every vertex of the 

template model. Amberg et al. (2007) proposed the non-rigid ICP (NICP) algorithm to 

enhance the accuracy of deformation by optimizing a cost function that consisted of 

different energy terms. In this process, a landmark term was used as a soft constraint to 

speed up the convergence. Sorkine et al. (2004) proposed the Laplacian deformation 

based on the discrete Laplacian operator. The geometric coordinates of every vertex can 

be calculated by optimizing an error function that comprised a fitting term that measured 

the distance of landmarks between two surfaces and a distortion term that quantified the 

extent to which the template model changed. Myronenko and Song (2010) presented a 
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coherent point drift (CPD) method for two point clouds alignment by solving a probability 

density estimation problem. Dai et al. (2020). employed the improved CPD method 

combining Laplace-Beltrami projection and Gaussian process posterior model to 

accomplish the deformation and establish the correspondences We need to investigate an 

approach to improve the accuracy of deformation for archaeological artefacts with heavy 

erosion.   

It is an important question to characterize the shape features of artefacts. Researchers 

have generally employed an AM approach based on analysing the geometric 

measurements, e.g. distances, angles, ratios, surface area, etc. (Munn & Stephan, 2018). 

However, such variables are not suitable for the analysis of shape variations and 

covariation among different specimens. In biology, GM that combines quantitative 

statistical analysis and visualisation technology is a powerful tool to capture the main 

patterns of the specimen and interpret the development of fossil evolution (O'Higgins & 

Jones, 1998). Landmarks are central to the study, because different landmarks always 

result in different distance matrices and lead to ambiguous findings (Oxnard & O’Higgins, 

2009). During this procedure, Generalized Procrustes Analysis (GPA) and Principal 

Component Analysis (PCA) are used to transform the Cartesian coordinates of the 

landmark configuration in shape space. Visualisation and quantitative analysis 

technologies are used to capture the shape features.  

Few studies have employed GM to analyse archaeological artefacts (Okumura & 

Araujo, 2019). The main challenges are the limited number of suitable artefacts and the 

definition of landmarks among different groups. In archaeology, researchers have begun 

to employ the quantitative analysis method to capture the features of stone tools based on 

2D landmarks during previous decades (Brande & Saragusti, 1996; Gero & Mazzullo, 

1984). More recently, 3D GM has been used to investigate the morphological variations 

of stone tools based on landmarks only or landmarks and semilandmarks together. Shott 

and Brian (2010) employed GM to investigate shape variations of lithics and 

demonstrated the effectiveness of shape analysis. Okumura and Araujo (2014) adopted 

GM to interpret the geometric shape of lithic stemmed bifacial points over time. In their 

work, the relative warp ordination plot of each specimen was visualized in shape space, 

and partial least squares was used to examine the correlation among different groups. We 

need to investigate whether GM can be used when the group of artefacts is limited. 

5.3 Materials and methods 

5.3.1 Materials 

A Creaform Handyscan 700 portable laser scanner was used to obtain the digital 

model of the mask. The open-source tool Meshlab (Cignoni et al., 2008) was then utilized 

to process the model, removing outlier points and filling in the small holes. The high-
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quality model was archived as a .obj format file. Figure 5.2a shows the Gaussian 

curvatures of all the vertices of the mask. It can be seen that the surface is heavily corroded, 

in particular, the surface is not smooth around the right cheek. The distortion and erosion 

may lead to an inaccurate restoration during the deformation using a TPS interpolation 

function. Because landmarks are used to guide the completion and shape analysis, we 

employed eighteen landmarks according to the commonly known landmarks in the 

literature (Li et al., 2017). Six landmarks were on the midline and twelve landmarks were 

bilateral (Table 5.1). Figure 5.2b shows the landmark configuration on the mask.  

 

Figure 5.2 The digital mask as repaired through the reassembled fragments. (a) Visualisation of Gaussian 
curvatures of all the vertices. (b) The digital mask with eighteen landmarks labelled. 

Table 5.1 Eighteen Landmarks 

No. Landmark definition Position 

1 Nasion (n) midline 

2 Pronasale (prn) midline 

3 Subnasale (sn) midline 

4 Labiale superius (ls) midline 

5 Sublabiale (sl) midline 

6 Gnathion (gn) midline 

7 Exocanthion (ex) bilateral 

8 Endocanthion (en) bilateral 

9 Subalare (sbal) bilateral 

10 Chelion (ch) bilateral 

11 Zygion (zy) bilateral 

12 Tragion (tr) bilateral 

5.3.2 Methods 

Based on the landmarks, we proposed a computerized approach to repair the missing 

areas of the mask and employed AM and GM to capture the characteristic features (Figure 

5.3). This process involves two stages. In the first stage, we approximated the missing 
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geometry of the damaged mask: (a) the plane of symmetry was estimated based on six 

landmarks on the midline and the reflection of the intact side was calculated; (b) based 

on the landmarks, the template model was produced using least squares and TPS methods, 

and the boundary curve of missing areas was predicted; (c) Laplacian deformation 

approach was used to deform the template model, minimizing the effect of heavy erosion 

and geometric distortion on the restoration; (d) a quantitative comparison of geometric 

deviation were used to validate the reliability of completion. In the second stage, we 

performed AM to analyse nine geometric measurements calculated by landmarks and 

employed landmark-based GM to visualize the geometry along the first two PCs in shape 

space. Maltab was used to code the algorithm to repair the missing geometry and perform 

geometric morphometric analysis. The software prototype can be downloaded from the 

Internet (https://github.com/sissun/Bilateral_Restoration.git). 

 

Figure 5.3 The pipeline of the proposed method. 

5.3.2.1 The restoration of the damage mask 

a)  The plane of symmetry 

Assuming that the equation of the symmetric plane was defined as + 0Ax By C z D  

and the landmarks on the midline were 
3ml={ }, ( , , )i i i i iml ml x y z  , the least squares fitting 

method (Shui et al., 2015) was used to compute the coefficients of the symmetric plane by 

minimising the following equation 

    
5 2

0

E min +i i i
i

Ax By Cz D


                                           (5.1)                  

 where A, B, C, and D denoted the coefficients of the plane. 

   Once the plane of symmetry was given, the left intact region 
3LM={ }, ( , , )i i i i ip p ll x ly lzl    and the right broken side of the mask

3RM={ } irp  were 

separated. The reflection of the intact side
3RLM={ }, ( , , )i i i i iref ref ref ref rep x fp y z  was 

generated by the following equation: 
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The landmarks on the reflection of the intact region can also be calculated using Eq. 

5.2. To validate the symmetric state of the mask, the Euclidean distance between each 

vertex of the mask and the plane of symmetry was calculated and visualized. Based on 

the symmetry of plane, the two new masks can be produced by reflecting the left and right 

sides, respectively.  

b)  The repaired boundary curve of the missing areas  

The boundary curve of the mask consisted of two parts: the original curve and the 

break curve that was a newly generated curve when the artefact was broken. Hence, the 

first step of virtual restoration is to generate the template model and predict the boundary 

curve of the missing areas. It contained five steps:  

Step 1: The boundary curves of the damaged mask and the reflection of the intact 

side were recognized based on the assumption that the one-ring neighbouring points of 

every vertex belonging to the boundary cannot form a closed loop. The boundary curve 

was equidistantly sampled and the corner points were identified based on the comparison 

of the angles of sampling points. In Figure 5.4a, the left figure shows sampling points 

(red points) and the angle � of 3v that was determined by 3 2v v


 and 3 4v v


. The right figure 

displays the identifications of the corner points (red points) based on the anlages that 

compared to an appropriate threshold.  

Step 2: The break curve was separated from the original curve in four steps. First, 

least squares algorithm based on singular value decomposition was used to rigidly register 

two meshes by minimizing the distance of labelled landmarks (Yu et al., 2019). Then, 

several extra points were automatically sampled on the damaged mask and the 

corresponding points were calculated on the reflection of the intact side by searching the 

nearest points. Subsequently, a TPS function was used to deform the reflection of the 

intact side to the damaged mask. Finally, the break curve was recognized through 

comparison of the Euclidean distance between the boundary curve of the damaged mask 

and the boundary curve of the resulting deformation. Once the distance was greater than 

the threshold, the vertex was suggested to belong to the break curve. In Figure 5.4b, the 

left figure displays the resulting deformation and the right figure illustrates the coarsely 

extracted break curve (yellow points). 

Step 3: We extracted start and end points (fuchsia colour) from the corner points that 

covered the coarse break curve, as shown in Figure 5.4c. Then the improved break curve 

(blue points) and the original curve (red points) were separated. 
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Step 4: The sampling points located on the original curve only were chosen as the 

curve semilandmarks. We projected these curve semilandmarks on the boundary curve of 

the reflection of the intact side to identify the corresponding curve semilandmarks. 

Step 5: Based on the landmarks and curve semilandmarks, a TPS function was used 

to deform the reflection of the intact side as the template model. Then the start and end 

points of the damaged mask could be projected on the boundary curve of the template 

model. The curve segments of the template model between start and end points were 

suggested to be the predicted missing boundary (Figure 5.4d).  

 

Figure 5.4 The repaired boundary curve of the missing area. (a) Corner points detection (red points) by 
means of computing the angle of every sampling vertex. (b) The extraction of the coarse break curve. The 
left figure displays the resulting deformation via TPS and the right figure illustrates the coarsely extracted 
break curve (yellow points). (c) The recognitions of start and end points (fuchsia colour), the break curve 
(blue points) and the original curve (red points). (d) The prediction of the boundary curve.  

c)  The deformation of the template model   

Having formed the closed curve of the missing areas, Laplacian deformation was 

conducted to accomplish the completion (Sorkine et al., 2004). Assuming the template 

model can be represented as
3TM={ }, i ip p  , the discrete Laplacian operator of 

ip with the 

uniform weights can be as follows: 

   ( )=
1

j i

i i j
qi

p p q
d 




                                                    (5.3)  

where
i denoted the one-ring neighbouring vertices of 

ip and
id represented the 

number of vertices within
i . 

Geometric coordinates of every vertex on TemMask can be calculated by minimizing a 

weighted error function E that consisted of a fitting term of boundary curve Eboudanry , a 

fitting term of geometric correspondences E closest
, and a distortion term E distortion

.  

   E=E E + Eboudanry clos disto iest rt on                                             (5.4) 

   where  and  denoted weights that were used to balance the error function of every 

term. 

   Eboudanry  was used as the hard constraint that allowed the boundary curve of the 

deformation to match the repaired boundary curve of the damaged artefact. 
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   where
iv denoted the i-th vertex of the repaired and original boundary curves of the 

damaged mask and
iu represented the i-th corresponding point by searching the nearest 

point on the boundary curve of TM ; k denoted the number of the corresponding vertices 

of boundary curves. 

   E closest
  expressed the distance between geometric correspondences between the 

template model and the damaged mask. 

   2

1

E =
m

closest i i
i

p q


                                                  (5.6) 

   where
ip denoted the remaining vertices of TM except for the boundary curve and

iq

represented the corresponding vertices of the damaged mask by searching the nearest 

points. The distance between two points can be used to evaluate the reliability of 

correspondences. m denoted the number of geometric correspondences. 

E distortion
 quantified the changes of TemMask between before and after deformations. 

2

=1

E = ( ') ( )
t

idistortion i
i

p p                                             (5.7) 

where 'ip  denoted every vertex after deformation, and ( ')ip  represented Laplacian 

coordinates using Eq. 5.3, and t denoted the number of vertices of TemMask . 

During the optimization of the error function, we increased   and decreased   to 

allow the template model to match the damaged mask tightly. After the deformation was 

performed, we extracted the digital model of the missing geometry. Then, 3D printing 

technology was applied to covert the digital model to the physical model. Having 

considered the depth of the mask and the instrumental precision of 3D printer, an 

industrial resin 3D printer with a high precision, iSLA 880 produced by ZRapid Tech, 

China, was used. It is a type of Stereolithography that utilized an ultraviolet laser to draw 

a pre-programmed design and harden the liquid material to form a layer (Zhang et al., 

2016). This process is repeated until every layer has been printed.  

d)  The evaluation of the reliability 

To verify whether the resulting deformation can be used to fill in the gaps, we 

compared the geometric differences of surfaces and boundaries. The geometric deviation 

(error) between the damaged mask and the resulting deformation were quantitatively 

calculated as follows: 

   
1 1

2 2
b derror = error + error                                              (5.8)                     

Where berror denoted the average fitting discrepancy of every vertex of the boundary 

curve and 
derror   represented average distortion discrepancy of every corresponding 

vertex. 
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5.3.2.2 Shape analysis of the mask 

It is an interesting question to capture the characteristic features of the mask and 

investigate the geometric variations between the mask and human faces. To capture the 

features of the mask, the dataset consisted of two groups: a) we selected 100 human faces 

(50 males and 50 females) from a dataset of 140 individuals, which was reconstructed 

using CT images acquired by a clinical multi-slice CT scanner system. More details of 

the dataset and the procedure of reconstruction 3D meshes were provided in our previous 

study (Shui et al., 2017). b) the actual damaged mask and two simulated masks via 

reflection. Then, we employed GM and AM to capture the shape features based on the 

Cartesian coordinates of eighteen landmarks.  

a)  Shape analysis using GM 

To minimise the effects of translation, rotation, and scaling on the shape analysis, 

GPA was used to superimpose all the eighteen landmarks of human faces and the masks 

by minimising the overall sum of squares of the landmark configurations with regard to 

the Procrustes mean shape (Mitteroecker & Gunz, 2009). The procedure was as follows: 

first, an arbitrary specimen within the dataset was selected as the template model, and the 

other specimens were then aligned to the template model using Procrustes 

superimposition. The centroid size (CS) of each specimen, defined as the square root of 

the sum of squares Euclidean distances between every landmark and centroid, was 

calculated. Second, the Procrustes mean shape consisting of landmarks was calculated by 

averaging the Procrustes shape coordinates of all the specimens, and each specimen was 

then aligned to the Procrustes mean shape using Procrustes superimposition. This process 

was repeated through several iterations, i.e., the Procrustes mean shape was repeatedly 

calculated until the change in the Procrustes mean shape was less than a predetermined 

threshold or a maximum number of iterations. Finally, the Procrustes shape coordinates 

of every specimen were represented as discrete points in a hyper hemisphere, which 

approximated a Riemannian manifold, called Kendall’s shape space (Slice, 2001).  

We applied PCA to convert the landmark configuration of all the specimens to a 

tangent shape space. The landmark configuration of each specimen was represented by 

the average landmark configuration and a linear combination of principal component (PC) 

scores and the corresponding orthogonal PCs. Because all the PCs described the 

independent modes of shape variations in shape space, the visualisation of PCs of interest 

can further be conducted to interpret and explain the shape variability (O'Higgins, 2000; 

Shui et al., 2017). Student’s t-test was performed on the PC scores to verify the 

significance level between the PC scores of human faces and the masks.  

b)  Shape analysis using AM 

Craniofacial anthropometry is a conventional approach for morphological shape 
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analysis and identification in the realm of anthropology. Based on the given eighteen 

landmarks, we calculated nine anthropometric measurements of human faces and the 

masks, which included tr-tr, zy-zy, en-ex, n-prn, sbal-sbal, prn-sn, ch-ch, ls-sl and n-gn. 

Then, statistical analysis was performed and Student’s t-test was carried out to assess the 

differences of the measured variables. 

5.4 Results 

5.4.1 The restoration of the damaged mask 

To repair the broken mask, the first step was to estimate the plane of symmetry and 

recreate the reflection of the intact region. Based on six landmarks on the midline, we 

calculated the symmetric plane (red colour) of the mask (Figure 5.5a). Figure 5.5b shows 

the Euclidean distance (mm) from every vertex of the mask to the plane of symmetry. It 

indicated that the mask was asymmetric, particularly around the ears. Subsequently, the 

intact and damaged sides were separated and the reflection of the intact side was 

generated. Figure 5.5c shows the reflection of the intact side (grey colour) and the 

damaged side (peach colour) in the common coordinate system. Based on the plane of 

symmetry, two digital masks can be simulated by means of reflecting the digital models 

of the intact and damaged sides, respectively (Figures 5.5d and e).  

In addition, we compared the plane of symmetry with other methods. Figure 5.5f 

shows the symmetric plane (red colour) through the identification of the principal axes 

using PCA, which is greatly dependent on the distribution of the vertices of the mask 

(Koutsoudis et al., 2010). Due to the existence of the missing areas and shape distortion, 

the plane of symmetry is not accurate. The symmetric plane was extracted by the 

calculation of the intrinsic wave kernel signature (WKS) (Aubry et al., 2011), as shown 

in Figure 5.5g. The left figure displayed the WKS descriptor of every vertex. The middle 

figure showed the symmetric region whose WKS values were relatively minimum. The 

right figure illustrated the extract symmetric plane by means of identification of the 

principal direction (red colour). The estimated plane was relatively closer to the plane that 

was recognized based on landmarks. 
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Figure 5.5 The reflection structure of the intact side of the mask. (a) The plane of symmetry (red colour) 
using six landmarks on the midline. (b) The Euclidean distance between every vertex and the plane of 
symmetry. (c) The damaged side (peach colour) and the reflection of the intact side (grey colour) in the 
common coordinate system. (d) The simulated digital mask by reflecting the surface of the intact side. (e) 
The simulated digital mask by reflecting the surface of the damaged side. (f) The estimated plane using the 
principal axis. (g) The estimated plane using the WKS descriptor and the principal axis. The left figure 
displayed the WKS descriptor of every vertex, and the middle figure showed the region that existed 
symmetry and the right figure illustrated the estimated symmetric plane (red colour). 

We employed a hybrid non-rigid deformation approach to recreate the template 

model and accomplish the completion of the missing areas. Figure 5.6a shows the 

damaged side of the mask (peach colour) and the registered reflection of the intact side 

(grey colour) using the least squares method. The geometric deviation between these two 

meshes was visualized in Figure 5.6b, where the error was 3.2 mm and berror  was 4.07 

mm. Figure 5.6c illustrated 43 curve semilandmarks of the damaged mask (grey colour) 

and those of the reflection of the intact side (peach colour). Based on landmarks and 

semilandmarks, a TPS function was used to deform the reflection of the intact side to 

generate the template model. Figure 5.6d shows the template model and the geometric 

difference between the template model and the damaged side, where the error was 0.66 

mm and berror   was 0.55 mm. The areas whose deviations were the greatest can be 

observed around the missing areas. Figure 5.6e shows the repaired boundary curve (blue 

points) that was used as the hard constraint in the further deformation. Figure 5.6f shows 

the resulting deformation via Laplacian deformation. The left two figures displayed the 

front and profile views of the resulting deformation and the right figure illustrated the 

geometric deviation between the resulting deformation and the damaged side. The error 

was 0.21 mm and berror  was 0.27 mm. It indicated the deformed template model fitted 

the damaged mask well and the boundary curve was almost consistent with that of the 

damaged mask. Thus, we can extract the digital model from the resulting deformation and 

it can be tightly embedded in the missing areas. 
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Figure 5.6 The deformation of the template model using our method. (a) the registered template model 
(grey colour) via least squares method and the damaged mask (peach colour). (b) The visualisation of 
geometric deviation between these two meshes. (c) Curve semilandmarks (red points) of the damaged mask 
(left figure) and the template model (right figure). (d) The resulting deformation via TPS based on 
landmarks and curve semilandmarks (left figure) and the visualisation of geometric deviation (right figure). 
(e) The repaired boundary curve and the original curve. (f) The deformed template model via Laplacian 
deformation (left and middle figures) and the visualisation of geometric deviation (right figure).  

We extracted the missing geometry from the resulting deformation. Figure 5.7a 

shows the frontal and profile views of the damaged mask (peach colour) and the resulting 

deformation (grey colour). Figure 5.7b illustrates the repaired missing geometry is 

adhered to the damaged mask. We solidified the surfaces of the missing geometry and 

then utilized a 3D printer to produce the physical model. Figure 5.7c shows the replicas 

of the damaged mask and the missing geometry that can be reassembled together. In 

addition, the proposed method was compared with other non-rigid deformation 

approaches. Figure 5.7d shows the deformed template model using Laplacian 

deformation method (Sorkine et al., 2004), but the predicted boundary curve was not used. 

The deformed template model tightly matched the damaged mask; however, the boundary 

curve of the missing areas was inconsistent with that of the damaged mask. Figure 5.7e 

shows the deformed template model via the NICP method (Amberg et al., 2007). The 

majority of the resulting deformation closely matched the damaged mask; however, great 

variation was located around the ear and the boundary curve of the resulting deformation 

(grey colour) was inconsistent with that of the damaged mask (peach colour). Figure 5.7f 

shows the deformed template model via the CPD method (Myronenko & Song, 2010). It 

can be seen that the deformed template model (grey colour) and the damaged mask (peach 

colour) have not overlapped and the boundary curve of the deformed template model was 

inconsistent with that of the damaged mask. 
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Figure 5.7 The evaluation of the reliability of the restoration. (a) The frontal and profile views of the 
damaged mask (peach colour) and the resulting deformation (grey colour) using the proposed method. (b) 
The digital surfaces of the predicted missing areas and the damaged mask. (c) The replicas of the repaired 
missing geometry and the damaged mask. (d) The resulting deformation via the Laplacian deformation 
without the predicted boundary curve as constraint. (e) The resulting deformation via the NICP method. (f) 
The resulting deformation via the CPD method. 

We also examined the effects of the weighting coefficients   and   on the 

deformation by fixing one coefficient and adjusting the other. Geometric deviations 

between the deformed template models using different weights and the damaged mask 

were listed in Table 5.2. As shown in Figure 5.8, the left figure displayed the resulting 

deformation, and the middle figure showed the resulting deformation and the damaged 

mask were located together, and the right figure illustrated the geometric deviation 

between two meshes. Figure 5.8a shows the resulting deformation when  was set 0.0 and 

  was set 10.0 and Figure 5.8b shows the resulting deformation when  was set 1.0 and 

   was set 10.0. It is of note that when all the reliable correspondences between two 

meshes were used, the resulting deformation was closer to the damaged mask. Figure 5.8c 

displays the resulting deformation when  was set 1.0 and  was set 0.01 and Figure 5.8d 

displays the resulting deformation when  was set 1.0 and  was set 10000. The resulting 

deformation was much closer to the damaged mask when  approached to zero, and the 

resulting deformation approximated the template model when  became greater.  

Table 5.2 Geometric deviation between the damaged mask and the resulting deformation using different 
coefficients 

The weigh coefficients berror  (mm) 
derror  (mm) error (mm) 

=0.0 and =10.0  0.31 0.78 0.55 

=1.0 and =10.0  0.39 0.13 0.26 

=1.0 and = 0.01  0.21 0.05 0.13 

=1.0 and =10000  0.50 0.85 0.68 
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Figure 5.8 The effect of every weight on the deformation. The left figure displayed the resulting 
deformation, and the middle figure showed the resulting deformation and the damaged mask were located 

together, and the right figure illustrated the geometric deviation between two meshes. (a)  was set 0.0 and

 was set 10.0. (b) was set 1.0 and  was set 10.0. (c)  was set 1.0 and  was set 0.01. (d)  was set 1.0 

and  was set 10000. 

We used synthetic data that almost exhibited bilateral symmetry to test the reliability 

of the proposed method. To remove the partial geometry, the open-source software 

MeshLab (Cignoni et al., 2008) was applied. Figure 5.9a displays the restoration of a 

terracotta warrior head, where we removed the right cheek manually. This artefact was 

captured by an Artec spider scanner and provided by Beijing Key Laboratory of Digital 

Preservation and Virtual Reality for Cultural Heritage, Beijing Normal University. Figure 

5.9b shows the restoration of a Qihe human cranium, where we removed the left eyebrow 

and forehead. This fossil was scanned using an industrial computerized tomography 

scanner at the Institute of Vertebrate Paleontology and Paleoanthropology, Chinese 

Academy of Sciences. From left to right, each figure illustrates the actual models, the 

damaged models, the intact and damaged sides of the models, the resulting deformation 

of the intact side, the predicted missing geometry (peach colour) and the damaged models 

(grey colour), the predicted geometry missing and the visualisation of geometric deviation 

between the predicted and the actual models. The average geometric value of the 

terracotta warrior head was 1.12 mm and the average geometric value of cranium was 

0.71 mm. These results demonstrate that the repaired models adhere closely to the 

damaged artefacts. 
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Figure 5.9 The restoration of synthetic data. From left to right, each figure illustrated the actual models, 
the damaged artefacts that removed partial regions manually, the intact and damaged sides of the models, 
the resulting deformation of the intact side, the predicted geometry missing (peach colour) and the damaged 
models (grey colour), the predicted geometry missing and the visualisation of geometric deviation between 
the predicted and the actual models. (a) A terracotta warrior head. (b) An ancient human cranium. 

5.4.2 Shape analysis of the mask 

A total of 30 PCs accounted for almost 98% of the total morphological variance. The 

first two PCs accounted for 28.05% and 11.78% of the total variance, respectively. 

Scatterplots of PC 1 and PC 2 of human faces and three masks were depicted in Figure 

5.10a. The masks appeared to be located along the extreme positive PC 1, which provided 

a clear impression that the masks and human faces were greatly different in shape space. 

To identify the main patterns of shape variance along PC 1 and PC 2, four new shapes 

were produced along the extreme positive and negative PC 1 and PC 2, respectively 

(Figure 5.10b). The positive PC 1 (PC 1+) connected with an upper wide face that has a 

long, narrow and flat nose, broad eyes, and a narrow, short and small mouth. In contrast, 

the negative PC 1 (PC 1-) represented a narrow upper face with a short, wide and 

protruding nose, narrow eyes, and a wide and long mouth. Student’s t-test was applied to 

the PC scores of two groups. There was a highly significant difference on PC 1 (p-value 

< 0.005). In contrast, the positive PC 2 (PC 2+) was related to a short nose and a short 

mouth. The negative PC 2 (PC 2-) represented a long nose and a long mouth. It is of note 

that PC 1 seems to be the inverse of the main patterns of morphological variation in the 

nose and mouth along PC 2. According to the analysis and the visualisation of the shape 

changes on PC 1 and PC 2, the mask has a broader upper face, broader eyes, a longer, 

narrower and flatter nose, and a shorter, narrower and smaller mouth than the human faces. 
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Figure 5.10 Shape variations between human faces and the masks in shape space. (a) Scatterplots of PC 1 
and PC 2 of the human faces and three masks. (b) The visualisation of shape variabilities along the extreme 
positive and negative PC 1 and PC 2. 

We employed AM to capture the main features of the mask. The average values of 

nine anthropometric measurements were calculated (Table 5.3). There are significant 

differences among the six anthropometric measurements, which represented the width of 

the head (tr-tr), the length (n-prn), width (sbal-sbal) and depth (prn-sn) of the nose, the 

length (ls-sl) and width (ch-ch) of the mouth. In addition, the width of the face (zy-zy) 

and the eyes (en-ex) of the masks were greater than the average values for human faces. 

These findings were consistent with those obtained using GM. 

Table 5.3 The comparison of anthropometric measurements 

Geometric 
Measurements 

The average value of 
human faces (mm) 

The actual Mask 
(mm) 

The average value of 
three masks (mm) 

tr-tr 150.40 166.97 168.42** 

zy-zy 126.28 129.54 129.19 

en-ex 31.65 37.77 35.63 

n-prn 42.75 51.16 51.16** 

sbal-sbal 30.36 20.86 20.55** 

prn-sn 18.38 12.88 12.85** 

ch-ch 52.31 31.13 30.55** 

ls-sl 28.75 16.21 16.21** 

n-gn 109.27 118.59 118.59* 

                                               * p-value < 0.05, ** p-value < 0.005 

5.5 Discussion  

The reconstruction of bilaterally symmetrical artefacts is an important task for 

conservators in order to maintain and restore damaged artefacts. It is a complex field that 

involves not only the technologies of restoration and shape analysis, but also historic 

concerns, culture, aesthetics, arts, education, etc. (Fowles et al., 2003; Qiao et al., 2020). 

Due to its vulnerable conservation status, it is necessary to repair the damaged mask 

featured in our case study in order to describe the aesthetic value that raises public interest 

in learning history, and disseminating and communicating cultural heritage. Therefore, 

this study presented a hybrid non-rigid deformation approach to repair the missing areas, 

minimizing human intervention.   
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When artefacts need to be repaired, conservators must respect the appearance, form, 

design, material, function, traditions and techniques of the past. Historically, several 

policies have proposed the fundamental principles to preserve authenticity and 

discernibility in the restoration of cultural heritage. In 1964, the Venice Charter pointed 

out that “It is our duty to hand them on in the full richness of their authenticity”. To avoid 

misunderstanding, the replacement of missing parts must be different from the original 

artefact. In the digital era, these principles still require compliance. Both the London 

Charter and Seville principles highlight the need for authenticity in scientific visualisation 

and virtual restorations (Lopez-Menchero & Grande, 2011; Vico, 2018). But different 

countries have different interpretations and principles, and such different understandings 

have led to different approaches to restoration. For example, “Restoring the old as it was” 

is the core principle in China (Zhu, 2017). As a consequence, conservators attempt to 

recover the geometry and texture of the original appearance so that the general public 

have a complete appreciation of past artefacts from the perspectives of aesthetics and 

beauty. Under these circumstances, the original artefact might be manipulated or 

corrected manually, and the replacements are not always distinguished. Virtual restoration 

and 3D printing technologies provide a promising way to integrate aesthetics, beauty and 

authenticity during the restoration and minimize the physical contact with the artefact. 

Geometric documentation that consists of digital models, texture, metadata and paradata 

records information about artefacts before and after restoration authentically and 

permanently. In addition, the physical model of the missing geometry through the use of 

3D printing can be used to repair the missing geometry and can also be recognized easily. 

It is of note that the authenticity of 3D printing material is a challenge during the 

restoration. An improved physical model of the missing geometry would be reproduced 

when new scientific technologies and authorized 3D printing materials are used. 

Both the production of the template model and the performance of the deformation 

greatly impact on the reliability of the virtual restoration of damaged artefacts. It is note 

of that the plane of symmetry influences the generation of the template model. To improve 

the reliability, the least squares approach based on the landmarks is used, instead the 

automatic extraction approaches (Li et al., 2011; Sipiran et al., 2014).When there is no 

other historical evidence, it is acknowledged that template model provides a considerable 

reference and guidance to repair the damaged artefact. The closer the resulting 

deformation of the model and the damaged artefact match, the more confidence there is 

in the reliability of the repaired model. In general, either the reflection of the retained 

geometry or the geometric-similar model is chosen as the template model based on 

whether more than half the original artefact survives (Jo et al., 2020; Shui et al., 2020). 

Because only small regions of the mask have not survived, the resulting deformation of 

the retained side via least squares and TPS methods is chosen as the template model that 

is relatively similar to the damaged side. It remains challenging to allow the resulting 
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deformation and the unsmooth and distorted surface to match tightly, particularly around 

the boundary curves. In our previous work, we had put great effort to employ 3D 

interactive graphical software to recreate and modify the digital model (Qu et al., 2018), 

but it is a tedious and time-consuming task and the repaired missing geometry might still 

not tightly match the damaged artefact. Using the repaired boundary curve as a hard 

constraint and the weighting coefficients to balance every term of the error function, we 

improved the resulting deformation more successfully than other approaches (Amberg et 

al., 2007; Deng et al., 2011; Myronenko & Song, 2010; Sorkine et al., 2004). But one of 

the limitations is that the details of the template model will transfer to the repaired artefact 

during the deformation. In addition, when the artefact is asymmetric or the missing area 

is greater than half, the regression based on statistical shape model (SSM) is a promising 

approach based on the establishment of the dense correspondences of artefacts within the 

same group (O'Higgins et al., 2019). Then the best-fitting parameters of the damaged 

artefact are used to estimate the missing geometry in shape space.  

Since more software and packages, e.g. R packages (Adams & Otárola‐Castillo, 

2013), etc., can be freely used to perform shape analysis of 3D models, both AM and GM 

have been widely used to capture the characteristic features in biology. It is of note that 

landmarks play a central role that needs to be carefully defined in relation to a specific 

question. In this study, we used only landmarks to ensure the reliability of 

correspondences among different groups. Because no other metal masks of the Liao 

dynasty can be collected, we had to use both the actual mask and two simulated masks as 

a group to investigate morphological variations. This study offers a promising 

quantitative analysis and visualisation approach to describe the geometric shape of the 

artefact. We believe that a large dataset of the metal masks of the Liao dynasty will help 

archaeologists and general public to appreciate the main features of the masks and their 

cultural value.  

5.6 Conclusion 

In this study, we presented a computerized hybrid non-rigid deformation approach to 

accomplish the completion of a bilaterally symmetrical metal mask with heavy erosion. 

Our method integrated the estimation of the plane of symmetry, the production of the 

template model, and the deformation of the template model. The quantitative comparison 

of the resulting deformation and the damaged mask was used to validate the reliability of 

the restoration. The experimental results demonstrated that the proposed method 

improved the accuracy of the geometric completion. In addition, we used AM and GM to 

characterize the main patterns of the mask. The mask has a wider upper face, broader eyes, 

a longer, narrower and flatter nose, and a shorter, narrower and smaller mouth. Our 

method can further be applied to other archaeological and anthropological data that 

exhibit near bilateral symmetry. However, this study requires the placements of 
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landmarks to guide the virtual restoration and shape analysis. In future work we plan to 

develop an automatic method for identifying landmarks and geometric features to 

minimize human intervention. 

5.7 Acknowledgements 

I express my gratitude to Beijing Normal University for granting access to the terracotta 

warrior head. Additionally, I would like to thank Institute of Vertebrate Paleontology and 

Paleoanthropology for their provision of access to the Qihe cranium. 

  



188 
 

5.8 References 

Adams, DC, & Otárola‐Castillo, E. (2013). geomorph: an R package for the collection 

and analysis of geometric morphometric shape data. Methods in Ecology and Evolution, 

4(4), 393-399.  

Amberg, B, Romdhani, S, & Vetter, T. (2007). Optimal step nonrigid ICP algorithms for 

surface registration. The IEEE Conference on Computer Vision and Pattern Recognition 

(CVPR'07), 1-8.  

Arbace, L, Sonnino, E, Callieri, M, Dellepiane, M, Fabbri, M, Idelson, AI, & Scopigno, 

R. (2013). Innovative uses of 3D digital technologies to assist the restoration of a 

fragmented terracotta statue. Journal of Cultural Heritage, 14(4), 332-345.  

Aubry, M, Schlickewei, U, & Cremers, D. (2011). The wave kernel signature: A quantum 

mechanical approach to shape analysis. The 2011 IEEE international conference on 

computer vision workshops, 1626-1633.  

Bookstein, FL. (1989). Principal warps: Thin-plate splines and the decomposition of 

deformations. IEEE Transactions on Pattern Analysis and Machine Intelligence, 11(6), 

567-585.  

Brande, S, & Saragusti, I. (1996). A morphometric model and landmark analysis of 

acheulian hand axes from Northern Israel. In Advances in morphometrics, 423-435: 

Springer. 

Cignoni, P, Callieri, M, Corsini, M, Dellepiane, M, Ganovelli, F, & Ranzuglia, G. (2008). 

MeshLab: an Open-Source Mesh Processing Tool. The Eurographics Italian Chapter 

Conference, 129-136.  

Dai, H, Pears, N, Smith, W, & Duncan, C. (2020). Statistical Modeling of Craniofacial 

Shape and Texture. International Journal of Computer Vision, 128(2), 547-571.  

Deng, Q, Zhou, M, Shui, W, Wu, Z, Ji, Y, & Bai, R. (2011). A novel skull registration 

based on global and local deformations for craniofacial reconstruction. Forensic Science 

International, 208(1), 95-102.  

Fowles, PS, Larson, JH, Dean, C, & Solajic, M. (2003). The laser recording and virtual 

restoration of a wooden sculpture of Buddha. Journal of cultural heritage, 4, 367-371.  

Gero, J, & Mazzullo, J. (1984). Analysis of artifact shape using Fourier series in closed 

form. Journal of Field Archaeology, 11(3), 315-322.  

Gilboa, A, Tal, A, Shimshoni, I, & Kolomenkin, M. (2013). Computer-based, automatic 

recording and illustration of complex archaeological artifacts. Journal of Archaeological 

Science, 40(2), 1329-1339.  

Gunz, P, Mitteroecker, P, Neubauer, S, Weber, GW, & Bookstein, FL. (2009). Principles 



189 
 

for the virtual reconstruction of hominin crania. Journal of Human Evolution, 57(1), 48-

62.  

Jo, YH, Hong, S, Jo, SY, & Kwon, YM. (2020). Noncontact restoration of missing parts 

of stone Buddha statue based on three-dimensional virtual modeling and assembly 

simulation. Heritage Science, 8, 103.  

Koutsoudis, A, Pavlidis, G, Liami, V, Tsiafakis, D, & Chamzas, C. (2010). 3D pottery 

content-based retrieval based on pose normalisation and segmentation. Journal of 

Cultural Heritage, 11(3), 329-338.  

Kuzminsky, SC, & Gardiner, MS. (2012). Three-dimensional laser scanning: potential 

uses for museum conservation and scientific research. Journal of Archaeological Science, 

39(8), 2744-2751.  

Li, M, Cole, JB, Manyama, M, Larson, JR, Liberton, DK, Riccardi, SL, Ferrara, TM, et 

al. (2017). Rapid automated landmarking for morphometric analysis of three‐dimensional 

facial scans. Journal of Anatomy, 230(4), 607-618.  

Li, X, Yin, Z, Wei, L, Wan, S, Yu, W, & Li, M. (2011). Symmetry and template guided 

completion of damaged skulls. Computers & Graphics, 35(4), 885-893.  

Lopez-Menchero, VM, & Grande, A. (2011). The principles of the Seville Charter. The 

CIPA symposium proceedings, 2-6.  

Mayberger, E. (2020). Flaming Pearls and Flying Phoenixes: Materiality, Research, and 

Stewardship of Liao Dynasty Metalwork. Journal of the American Institute for 

Conservation, 59(1), 65-76.  

Mitteroecker, P, & Gunz, P. (2009). Advances in geometric morphometrics. Evolutionary 

Biology, 36(2), 235-247.  

Munn, L, & Stephan, CN. (2018). Changes in face topography from supine-to-upright 

position—and soft tissue correction values for craniofacial identification. Forensic 

Science International, 289, 40-50.  

Myronenko, A, & Song, X. (2010). Point set registration: Coherent point drift. IEEE 

transactions on Pattern Analysis and Machine Intelligence, 32(12), 2262-2275.  

O'Higgins, P. (2000). The study of morphological variation in the hominid fossil record: 

biology, landmarks and geometry. Journal of Anatomy, 197(1), 103-120.  

O'Higgins, P, Fitton, LC, & Godinho, RM. (2019). Geometric morphometrics and finite 

elements analysis: Assessing the functional implications of differences in craniofacial 

form in the hominin fossil record. Journal of Archaeological Science, 101, 159-168.  

O'Higgins, P, & Jones, N. (1998). Facial growth in Cercocebus torquatus: an application 

of three-dimensional geometric morphometric techniques to the study of morphological 



190 
 

variation. Journal of Anatomy, 193(2), 251-272.  

Okumura, M, & Araujo, AG. (2014). Long-term cultural stability in hunter–gatherers: a 

case study using traditional and geometric morphometric analysis of lithic stemmed 

bifacial points from Southern Brazil. Journal of Archaeological Science, 45, 59-71.  

Okumura, M, & Araujo, AG. (2019). Archaeology, biology, and borrowing: A critical 

examination of Geometric Morphometrics in Archaeology. Journal of Archaeological 

Science, 101, 149-158.  

Oxnard, C, & O’Higgins, P. (2009). Biology clearly needs morphometrics. Does 

morphometrics need biology? Biological Theory, 4(1), 84-97.  

Papaioannou, G, Schreck, T, Andreadis, A, Mavridis, P, Gregor, R, Sipiran, I, & Vardis, 

K. (2017). From reassembly to object completion: A complete systems pipeline. Journal 

on Computing and Cultural Heritage, 10(2), 1-22.  

Peng, S. (2003). An archaeological view on the burial customs of the Khitan aristocracts 

in the Liao dynasty (in Chinese). Research of China's Frontier Archaeology, 2, 298-308.  

Qiao, C, Zhang, W, Gong, D, & Gong, Y. (2020). In situ virtual restoration of artifacts by 

imaging technology. Heritage Science, 8, 110.  

Qu, L, Gao, F, Liu, J, He, L, Lei, Y, & Shui, W. (2018). Museum as an Example Study of 

Metal Artefacts Reparation Using Modern Technology and Traditional Technology: 

Taking Liao Dynasty Metal Mask in the Palace (in Chinese). Museum, 8(2), 119-127.  

Sapirstein, P. (2018). A high-precision photogrammetric recording system for small 

artifacts. Journal of Cultural Heritage, 31, 33-45.  

Schlager, S, Profico, A, Di Vincenzo, F, & Manzi, G. (2018). Retrodeformation of fossil 

specimens based on 3D bilateral semi-landmarks: Implementation in the R package 

“Morpho”. PloS one, 13(3), e0194073.  

Shimada, M. (1950). A Death-Mask of the Liao Period. Artibus Asiae, 13(4), 250-253.  

Shott, MJ, & Trail, BW. (2010). Exploring new approaches to lithic analysis: laser 

scanning and geometric morphometrics. Lithic Technology, 35(2), 195-220.  

Shui, W, Zhou, M, Gao, F, & Qu, L. (2015). A digital restoration method for broken 

bronze artifacts having a symmetrical structure (in Chinese). Sciences of conservation 

and archaeology, 27(4), 113-117.  

Shui, W, Zhou, M, Maddock, S, He, T, Wang, X, & Deng, Q. (2017). A PCA-Based 

method for determining craniofacial relationship and sexual dimorphism of facial shapes. 

Computers in Biology and Medicine, 90, 33-49.  

Shui, W, Zhou, M, Maddock, S, Ji, Y, Deng, Q, Li, K, Fan, Y, et al. (2020). A computerized 



191 
 

craniofacial reconstruction method for an unidentified skull based on statistical shape 

models. Multimedia Tools and Applications, 79, 25589-25611.  

Sipiran, I, Gregor, R, & Schreck, T. (2014). Approximate symmetry detection in partial 

3d meshes. Computer Graphics Forum, 33(7), 131-140.  

Slice, DE. (2001). Landmark coordinates aligned by Procrustes analysis do not lie in 

Kendall's shape space. Systematic Biology, 50(1), 141-149.  

Sorkine, O, Cohen-Or, D, Lipman, Y, Alexa, M, Rössl, C, & Seidel, H-P. (2004). 

Laplacian surface editing. The The 2004 Eurographics/ACM SIGGRAPH symposium on 

Geometry processing, 175-184.  

Vico, L. (2018). Authenticity and realism: virtual vs physical restoration. In In 

Authenticity and Cultural Heritage in the Age of 3D Digital Reproductions, 25-33: 

McDonald Institute: Cambridge, UK. 

Yu, J, Lin, Y, Wang, B, Ye, Q, & Cai, J. (2019). An Advanced Outlier Detected Total 

Least-Squares Algorithm for 3-D Point Clouds Registration. IEEE Transactions on 

Geoscience and Remote Sensing, 57(7), 4789-4798.  

Zhang, L, Dong, H, & Saddik, AE. (2016). From 3D sensing to printing: a survey. ACM 

Transactions on Multimedia Computing, Communications, and Applications, 12(2), 27.  

Zhang, X, Blaas, J, Botha, C, Reischig, P, Bravin, A, & Dik, J. (2012). Process for the 3D 

virtual reconstruction of a microcultural heritage artifact obtained by synchrotron 

radiation CT technology using open source and free software. Journal of Cultural 

Heritage, 13(2), 221-225.  

Zhu, Y. (2017). Authenticity and heritage conservation in China: Translation, 

interpretation, practices. In Authenticity in architectural heritage conservation, 187-200: 

Springer. 

  



192 
 

Chapter 6 A computerized facial approximation method for archaic 

humans based on dense facial soft tissue thickness depths 

Abstract: Facial approximation (FA) is a common tool used to recreate the possible 

facial appearance of a deceased person based on the relationship between soft tissue and 

the skull. Although this technique has been primarily applied to modern humans in the 

realm of forensic science and archaeology, only a few studies have attempted to produce 

FAs for archaic humans. This study presented a computerized FA approach for archaic 

humans based on the assumption that the facial soft tissue thickness depths (FSTDs) of 

modern living humans are similar to those of archaic humans. Additionally, we 

employed geometric morphometrics (GM) to examine the geometric morphological 

variations between the approximated faces and modern human faces. Our method has 

been applied to the Jinniushan (JNS) 1 archaic human, which is one of the most 

important fossils of the Middle Pleistocene, dating back to approximately 260,000 BP. 

The overall shape of the approximated face has a relatively lower forehead and robust 

eyebrows; a protruding, wider, and elongated middle and upper face; and a broad and 

short nose. Results also indicate skull morphology and the distribution of FSTDs 

influence the approximated face. These experiments demonstrate that the proposed 

method can approximate a plausible and reproducible face of an archaic human. 

Article details: 

Wuyang Shui, Yameng Zhang, Xiujie Wu and Minquan Zhou. A computerised facial 

approximation method for archaic humans based on dense facial soft tissue thickness 

depths. Archaeological and Anthropological Science. 2021, 13:186.   
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6.1 Introduction  

Facial approximation (FA) or craniofacial reconstruction aims at recreating a 

potential facial appearance from a dry skull. This technique is often the last hope in the 

realm of forensic science when no other clues and evidence support the investigation 

and identification (Wilkinson, 2010). Based on the assumed relationship between soft 

tissue and the bony structure, FA has been applied in archaeology to reconstruct the 

portraits and facial appearances of people in the past (Benazzi et al., 2009; Hayes et al., 

2017; Kustar, 2004; Marić et al., 2020; Shui & Wu, 2018). It has sometimes been applied 

to named individuals, but more usually unnamed people from the past. Nonetheless, 

these applications always focused on modern humans, and they are less commonly 

applied to archaic humans, where differences in skull and facial morphologies make the 

approximation more challenging. In recent years, the approximated appearance of 

our fossil ancestor has become an area of study for anthropologists and has also captured 

the imagination of the general public, influencing perceptions of how “like us” and how 

“human” Neanderthals were. The visualisation of the approximated face rather than an 

imaginary approximation provides an effective 3D presentation to help us perceive and 

understand the characteristic features of human fossils. In addition, FA offers a new 

insight to investigate the morphological shape variations between archaic humans and 

Homo sapiens. 

3D manual facial approximation approaches have been widely used to recreate 

facial appearances (Hayes, 2016). Anthropologists collaborated with artists to recreate 

a possible likeness by means of modelling clay or plasticine over the replica of the skull 

and adding the facial features, e.g. eyes, nose, mouth, etc. During this procedure, muscle 

structures and facial soft tissue thickness depths (FSTDs) at anatomical landmarks can 

be used to represent the craniofacial relationship between soft tissue and skull. The 

manual FA approaches can be divided into three main categories: The Russian 

anatomical approach, the American anthropometrical approach, and the combination 

Manchester approach (Verzé, 2009). However, they are heavily dependent on the degree 

of anthropological interpretation, and the practitioners’ subjective experience. Under 

such circumstances, multiple approximated faces of the same skull can be produced. For 

instance, three portraits of Ferrante Gonzaga, an Italian nobleman of the Renaissance, 

have been recreated (Fatuzzo et al., 2016). Such various approximations with 

inconsistent facial features might probably lead to less public confidence when no 

convincing hypothesis and evidence can be provided. 

With the rapid progress in computer science and medical image acquisition, 

computerized FA technology has been gradually developed to increase the level of 

accuracy and reliability of the approximated face. The basic idea is to mimic the manual 

FA approach using the computer (Wilkinson, 2005). Using the FSTDs at anatomical 
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landmarks and knowledge of facial muscle, both 2D and 3D interactive graphics 

technologies which mimic the Manchester approach have been developed. In 2D 

interactive FA, the frontal and profile portraits were recreated using Adobe Photoshop 

software (Hayes et al., 2012). Likewise, 3D interactive FA was used to recreate a 3D 

probable likeness through a haptic feedback device and 3D software, e.g. Autodesk 3ds 

Max, ZBrush, Blender, etc. (Lee et al., 2014; Miranda et al., 2018; Short et al., 2014; 

Wilkinson et al., 2006). In their work, the tissue depth pegs which represented the 

FSTDs at anatomical landmarks were attached to the correspondence vertices of the dry 

skull, and the facial muscles were revised and attached to the surface of the skull. Then 

the facial features were added and sculpted to improve the reliability of the 

approximated face. However, all these technologies require both anatomical knowledge 

and expertise in modelling skills. Anthropologists have to invest great effort in manual 

modelling when they wish to produce a range of multiple candidate faces that use the 

FSTDs of different samples.  

Pioneering work on 3D graphical computerized FA was first proposed by Vanezis 

(1989). The average FSTDs at a limited number of anatomical landmarks were used to 

produce a coarse mask and then the generic face was deformed to recreate a facial 

appearance over the dry skull. It is acknowledged that the greater number of FSTDs is 

acquired, the greater reliability of the approximation is achieved. Another effective 

computerized FA employed the deformation-based approach based on the assumption 

the verified craniofacial relationship of the template model is similar to that of the dry 

skull, removing the skull morphology variations (De Buhan & Nardoni, 2018; Deng et 

al., 2011; Nelson & Michael, 1998; Quatrehomme et al., 1997; Turner et al., 2005). In 

this procedure, either a generic face or a specific face based on the properties of the dry 

skull, e.g. age, sex, ethnic group, etc. was chosen as the template model. Then the 

template face was deformed following the same transformation that was calculated by 

deforming the template skull to the dry skull. This approach is simple and easy-to-use, 

because it does not require the FSTDs table at anatomical landmarks. In recent years, 

with the increasing availability of skull and face datasets of modern living humans, a 

regression-based method has been applied to study the craniofacial relationship based 

on principal components (PC) scores of every skull and face in the shape space (Berar 

et al., 2011; Deng et al., 2016; Paysan et al., 2009). Then this predicted craniofacial 

relationship can be used to recreate the facial appearance.  

With regard to the similarities in the craniofacial relationship between relatively 

recent modern human remains and modern living humans, the majority of existing 

studies focused mainly on approximating the appearance of archaeological human 

fossils. In contrast, only a few publications concerned the investigation of archaic 

humans (Hayes, 2016). Hayes et al. estimated the frontal and lateral appearances of 
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Liang Bua, the holotype of Homo floresiensis (Hayes et al., 2013). In their work, the 2D 

profile outlines of the approximated face were created based on the FSTDs at landmarks. 

Then muscle images were deformed and attached to the surface of the skull. Finally, the 

reliability of the reconstructed face was evaluated using geometric morphometrics (GM). 

Because 3D facial morphology might allow anthropologists to better elucidate the facial 

characteristics of archaic humans and investigate evolutionary changes in the face, a 3D 

computerized FA approach still needs to be further investigated. 

The Jinniushan (JNS) 1 cranium, dating back to 260,000 years BP, was discovered 

in Yingkou County, Liaoning Province in northeast China in 1984 (Rosenberg et al., 

2006; Wu, 1988). It is one of the most important fossils in East Asia and has been used 

to investigate morphological features and shape variations with other fossils (Athreya 

& Wu, 2017; Hublin, 2013). It appears that its supraorbital shape, superciliary arch 

thickness and shape, postorbital constriction, and paranasal inflation are somewhat 

closer to those of Dali and Maba individuals, who are considered to represent population 

immigration from outside of China, and to be the result of an admixture with archaic 

humans (Andrews, 1986; Rightmire, 1998). Although a manual approach has been used 

to produce the facial appearance of JNS 1, considerable interest has been shown in 

investigating the approximated face of JNS 1 based on reasonable assumption and 

supporting data, rather than experience and imagination. This paper aims to provide a 

computerized FA method to approximate the plausible and reproducible face of the 

archaic human.  

6.2 Materials and methods  

6.2.1 Materials  

6.2.1.1 The archaic human fossil 

The JNS 1 cranium retained most of the maxillary dentition although the bone has 

been broken into more than one hundred pieces (Wu, 1988). In an attempt to perform 

FA successfully, the cranium required careful examination and restoration. It has been 

manually repaired by researchers from the Institute of Vertebrate Paleontology and 

Paleoanthropology (IVPP) in Beijing, China. The restoration procedures were as 

follows: firstly, every fragment of JNS 1 fossil was cleaned and strengthened. Secondly, 

the fractured fragments were carefully matched together based on the similarity of the 

boundary of every fragment following the experience of the researchers. Thirdly, super-

glue was used to adhere fragments to each other. Finally, plaster was used to fill in the 

missing region of the cranium guided by geometric constraints. Anthropologists 

predicted the sex and age of JNS 1 through the analysis of morphological features, 

sutures, dental wear, etc. In recent years, JNS 1 was suggested to be female because of 

two important features, the subpubic concavity and the medial aspect of the ischiopubic 
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ramus (Rosenberg et al., 2006). Likewise, based on the comparison of dentition and the 

analysis of tooth wear, an early study suggested that JNS 1 was over 30 years old (Wu, 

1988), but more recently it was suggested to have been approximately about 20-30 years 

old (Herrera & Garcia-Bertrand, 2018). 

Because only the JNS 1 cranium remained and the mandible was not preserved, a 

well preserved late archaic human mandible was required to assemble the JNS 1 cranium. 

But it remains challenging to find a suitable mandible with similar age and features. We 

have to decide to use two archaic human mandibles whose ages covered the age of JNS 

1, i.e. one mandible is more recent than JNS 1 and the other is older than JNS 1, to repair 

JNS 1. 

The Tabun 2 mandible was found in stratigraphic layer C of the Tabun cave, one of 

the paleoanthropological sites in the Near East. It was reconstructed and virtually 

recovered in six fragments, but lacking the left condyle, part of basilar symphysis, etc. 

(Quam & Smith, 2002; Schwartz & Tattersall, 2000). Morphologically, Tabun 2 is 

relatively large and robust, and it indicates a strong development of anterior marginal 

tubercle, a triangular basal corpus profile at the symphysis, mandibular foramina, etc. It 

exhibited a mixture of morphological features of Neanderthals and early modern 

humans (Harvati & Lopez, 2017). Figure 6.1a shows the JNS 1 cranium (peach colour) 

and the Tabun 2 mandible (grey colour). 

In addition, the well preserved and complete Mauer 1 mandible (Wagner et al., 

2010), a holotype of Homo heidelbergensis, was found near Mauer, southeast of 

Heidelberg, Germany in 1907. It is the oldest hominin fossil reported to date from 

central and northern Europe. It is of note that Mauer 1 exhibits a mixture of both 

primitive and modern features (Mounier et al., 2009). In this study, Tabun 2 and Mauer 

1 were selected to fit with the JNS 1 cranium. Then, these two reassembled skulls (called 

JNS 1 using Tabun 2 and JNS 1 using Mauer 1) were used to approximate the face of 

JNS 1. Figure 6.1b displays the JNS 1 cranium (peach colour) and the Mauer 1 mandible 

(grey colour). 
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Figure 6.1 JNS 1 cranium (peach colour) and two different mandibles (grey colour). (a) Tabun 2. (b) 
Mauer 1. 

6.2.1.2 Skull and face datasets of modern living humans  

In our previous study (Shui et al., 2017), we constructed a skull and face dataset 

consisting of 140 individuals who lived in Shaanxi province in northern China. Each 

individual had normal morphology and had never undergone any orthodontic treatment. 

Medical images were acquired by means of a clinical multi-slice CT scanner system 

(Siemens Sensation 16). The CT images of each individual were archived in standard 

DICOM 3.0 with a resolution of 512×512. All participants were provided with full 

details of the study and written informed consent. This work has been approved by the 

Institutional Review Board (IRB) of the Affiliated Hospital of the Shaanxi University of 

Chinese Medicine. To obtain the craniofacial relationship between soft tissue and skull 

for recreating facial appearance of JNS 1, we selected 60 modern humans (30 females 

and 30 males aged 20-30 years old) from the constructed skull and face dataset (Shui et 

al., 2017) in the present study. This research was approved by the Ethics Review 

Committee of Department of Archaeology, University of York.  

Our previous studies constructed dense corresponding vertices among skulls and 

faces, respectively. The procedure was as follows: firstly, image segmentation and the 

well-known Marching Cubes algorithm (Lorensen & Cline, 1987) were used to convert 

a series of CT images to the digital skull (or face). Secondly, the external surface of 

every skull (or face) within our dataset was computed. Thirdly, anatomical landmarks 

of the skulls and faces were defined and placed. Fourthly, the average skull (or face) 

estimated in our previous study (Shui et al., 2017) was chosen as the template. To 

register the template model and every skull (or face), the hybrid non-rigid registration 

method was applied by combining Iterative closest point (ICP), Thin-plate splines (TPS), 

and compact support radial basis function (CSRBF) algorithms. This step allows the 

warped template model to match the target skull (or face) closely. Next, every vertex of 
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the warped template model was projected onto the target skull (or face) by finding the 

closest points. This step can establish dense point correspondences, i.e. every skull (or 

face) had the same number of vertices and each vertex of every skull (or face) was 

located approximately in corresponding positions. To remove the effects of location, 

orientation and scaling, generalized Procrustes analysis (GPA) and principal component 

analysis (PCA) were carried out to construct the skull and face statistical shape model. 

Every skull (or face) can be represented by the coordinates of the average skull (or face), 

and the linear combinations of PC scores and corresponding orthogonal PCs (Shui et al., 

2020). 

6.2.1.3 Anatomical landmark definitions 

In order to estimate the overall shape of the facial appearance, an anatomical 

landmark and semilandmark configuration was defined. A total of 91 anatomical 

landmarks were chosen and their 3D coordinates were acquired using Landmark Editor 

software (Wiley et al., 2005), where 17 anatomical landmarks were located on the 

midline and 74 anatomical landmarks were bilateral, respectively (Table 6.1). Most of 

these anatomical landmarks were defined according to Martin’s definitions (Martin, 

1928). Then, 404 semilandmarks were placed on JNS 1, which were identified in 16 

patches based on the given landmarks. Here the semilandmarks of each patch were 

equally spaced within a 3 × 3 as a patch, and each patch with less than 9 anatomical 

landmarks was replenished with the middle points of two adjacent anatomical landmarks 

(Table 6.2). Finally, these semilandmarks were projected to the modern human skull, i.e. 

we established geometric correspondences between two skulls (Gunz & Mitteroecker, 

2013). These landmarks and semilandmarks can facilitate the subsequent registration of 

the template skull and JNS 1, thereby improving the reliability of establishing dense 

point correspondences between two skulls. 

Table 6.1 Anatomical landmarks  

No. Landmark definition Position 

1 Nasion midline 

2 Rhinion midline 

3 Nasospinale midline 

4 Subspinale midline 

5 Prosthion midline 

6 Infradentale anterius midline 

7 Gnathion midline 

8 Pogonion midline 

9 Glabella midline 

10 Ophryon midline 

11 Metopion midline 

12 Bregma midline 

13 Vertex midline 
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14 Lambda midline 

15 Inion midline 

16 Intersection between inferior nuchal line and external occipital crest* midline 

17 Opisthion midline 

18 Maxillofrontale bilateral 

19 Orbitale bilateral 

20 Dacryon bilateral 

21 Superior orbital fissure (foramen), the closest point superior to the 

superior fissure* 

bilateral 

22 Most prominent point of supercillary above superior orbital fissure* bilateral 

23 Root of supercillary above superior orbital fissure* bilateral 

24 Ectoconchion bilateral 

25 Frontomalare orbitale bilateral 

26 Frontomalare temporale bilateral 

27 Zygion bilateral 

28 Zygomaxillare bilateral 

29 Jugale bilateral 

30 Most concave point on the inferior margin of maxilla* bilateral 

31 Vertical projection from jugale to lower margin of zygomatic* bilateral 

32 Infraorbital foramen bilateral 

33 Middle pyriform point, horizontal projection from infraorbital 

foramen to pyriform aperture* 

bilateral 

34 Lower pyriform point, lowest point of pyriform aperture* bilateral 

35 Stephanion bilateral 

36 Frontotemporale bilateral 

37 Auriculare bilateral 

38 Most prominent point on supramastoid crest* bilateral 

39 Asterion bilateral 

40 Mastoidale bilateral 

41 Ectomalare bilateral 

42 Coronion bilateral 

43 Lowest point of mandibular notch* bilateral 

44 Gonion bilateral 

45 Condylion laterale bilateral 

46 Ramus posterius, most concave point on the posterior margin of 

ramus* 

bilateral 

47 Ramus anterius, most concave point on the anterior margin of ramus* bilateral 

48 Vertical projection from lowest point of mandibular notch to lower 

margin of mandible along ramus 

bilateral 

49 Vertical projection from alveolare of lower m2 to lower margin of 

mandible* 

bilateral 

50 Temporale anterius, most anterior point of temporal squama* bilateral 

51 Temporale superius, most superior point of temporal squama* bilateral 

52 Alveolare of upper P3* bilateral 

53 Alveolare of lower m1* bilateral 
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54 Mental foramen bilateral 

55 Mental laterale, turning point from mental to mandibular body on the 

inferior margin* 

bilateral 

Table 6.2 Eight patches on left side of JNS 1. 

No. Patch of anatomical 

region 

Semilandmark 

density 

Numbers of anatomical landmarks used in 

the patch 

1 Zygomatic 5×5 19, 24, 25, 28, 29, 31 

2 Maxilla 5×5 5, 28, 30, 32, 33, 34, 41, 51 

3 Mandible 5×5 42, 43, 44, 45, 46, 47, 48, 49 

4 Mental protuberance 5×4 6, 7, 8, 53, 54, 55 

5 Nasal 5×3 1, 2, 18, 20, 33 

6 Superciliary arches 5×5 9, 10, 18, 21, 22, 23, 25, 26, 36 

7 Frontal 9×5 10, 11, 12, 35, 36 

8 Parietal and occipital 11×6 12, 14, 15, 39, 50, 51 

 *Anatomical landmarks are defined by the authors and the rest of anatomical landmarks without special notice are from Martin 

(1928). 

6.2.2 Methods 

Figure 6.2 summarizes the framework of the proposed FA method. Firstly, the JNS 

1 cranium and the selected mandible were virtually reassembled and the missing 

geometry was repaired. Secondly, a coarse-to-fine computerized FA approach was 

proposed to recreate the possible likeness of JNS 1 based on the assumption that the 

distribution of average FSTDs of the modern humans within the dataset is similar to that 

of JNS 1. This procedure comprised four steps: a) A hybrid non-rigid registration 

approach was carried out to establish the dense geometric correspondences between the 

template skull and JNS 1, where 495 landmarks and semilandmarks were used to guide 

the transformation mapping; b) The dense FSTDs of the template were calculated and 

visualized in a graphical format; c) The coarsely approximated face of JNS 1 was 

recreated by assigning dense FSTDs to the corresponding vertices of JNS 1. The TPS 

interpolation function was used to improve the approximation. Due to the absence of 

the actual mandible, multiple approximations can also be mathematically calculated by 

interpolating the surfaces of the approximated faces based upon Tabun 2 and Mauer 1. 

d) Quantitative evaluation was used to validate the reliability of the approximation 

through comparison of the distributions of FSTDs. Finally, we employed GM to 

examine the morphological shape variations between the approximated faces and 

modern human faces. We examined the effects of skull morphology and FSTDs on the 

approximated faces. Taking the approximation of JNS 1 using Tabun 2 as an example, 

we introduce the proposed method. All these methods were programed using C++ and 

Matlab 2019 and software prototype can be downloaded from the Internet 

(https://github.com/sissun/FAarchaic.git). 
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Figure 6.2 The pipeline of the computerized facial approximation method 

6.2.2.1 The restoration of JNS 1  

Because the temporomandibular joint (TMJ) that connected the JNS 1 cranium and 

Tabun 2 was insufficiently accurate, and the left condyle of Tabun 2 seemed incomplete, 

the first step was to predict the missing geometry of Tabun 2 and match the cranium and 

mandible closely. Before the virtual restoration, the external surface of JNS 1 was 

extracted. This comprised three steps: firstly, JNS 1 was transformed into the Frankfort 

coordinate system based on the left porion, right porion, left orbitale and the glabella. 

Secondly, an external point cloud was generated based on the cylindrical sampling 

algorithm. In this procedure, a couple of cross-section planes were generated between 

the bottom and top of JNS 1. For every cross-section plane, the external points were 

obtained by calculating the intersection points between JNS 1 and a set of given rays, 

starting at centroid of every cross-section along equally spaced angle vectors (Shui et 

al., 2020). Finally, the external point clouds were converted to a set of triangular meshes. 

Subsequently, we employed the mirror restoration method to repair the external surface 

of Tabun 2 (Gunz et al., 2009). Figure 6.3 shows the external surface of JNS 1 using 

Tabun 2 that comprised the anatomical landmark and semilandmark configuration. 

 

Figure 6.3 The restoration of JNS 1 using Tabun 2 that comprised the anatomical landmark and 
semilandmark configuration. 

6.2.2.2 Computerized facial approximation  

In anthropology, it is widely accepted that facial surface has a close relationship to 

the bony structure and that the overall shape of the face can be approximated based on 
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skull morphology and the craniofacial relationship between soft tissue and skull 

(Wilkinson, 2005) . We proposed a coarse-to-fine FA approach to produce a reproducible 

and objective approximation. 

a)  Geometric correspondences between the template skull and JNS 1 

We employed two steps to establish high-quality geometric correspondences 

between JNS 1 and the template skull. We assumed that all the landmarks and 

semilandmarks of the template skull and JNS 1 were represented by

1 2 i i i i{ , , , ..., }, ( , , )lp p p p x y z P  and
1 2 i i i i{ , , , ..., } , ( , , )lq q q q x y z Q  , respectively, where l 

denoted the number of anatomical landmarks and semilandmarks. A popular non-rigid 

registration TPS function was first conducted to deform the template skull to JNS 1. 

During the deformation, it enabled the bending energy of the function ( )i if p q

minimized (Bookstein, 1989). TPS can be represented by affine transformation 

parameters and non-affine warping parameters as the following linear equation 

   
      

     
     

T

K I P w Q

P O α A
                                            (6.1)  

where the radial basis kernel can be represented by ,= i jK  K , ,i j i jK p p  and 

denoted the Euclidean distance. was the regularization parameter that used to balance 

the smoothness. I denoted the l l  identity matrix; O denoted the 4 4  zero matrix; A 

denoted the 4 1  zero matrix; 0 1 2 3[ ]a a a a Tα  and [ ]i
Tw represented the affine 

and non-affine parameters, respectively. 

Following the same transformation that was computed by warping the template 

skull to JNS 1, the template face was deformed to produce a possible likeness as a 

candidate face. Next, we employed non-rigid registration to allow the deformed 

template skull and JNS 1 to match closely by assigning an affine transformation to every 

vertex of the deformed template skull. Assumed affine transformations T

1 2 3[X X X X ]n  X

of all the vertices, we defined the cost function, ( )E X  , which consists of anatomical 

landmarks and semilandmarks term ( )lE X  , a local affine regularization d ( )E X  , and a 

stiffness term ( )sE X  . To evaluate the accuracy of the skull match, the geometric 

deviation between the deformed template skull and JNS 1 was quantitatively calculated 

and depicted in a graphical format. 

   The cost function was as follows: 

   d( ) ( ) ( ) ( )l s    E X E X E X E X                                       (6.2)                                    

where  ,  and   denoted the weights that guided the optimization process. 

( )lE X was used to initialize and guide the registration as follows: 

   2
( )l i i iv m E X X                                                (6.3)                                                   

   where im  was the i-th landmark and semilandmark of JNS 1 and iv  was the i-th 
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corresponding landmark and semilandmark of resulting deformation of the template 

skull via TPS.  

   The local affine regularization term expressed the distance between a vertex of JNS 

1 and the corresponding vertex of the resulting deformation of the template skull as 

follows: 

   2

d ( ) ( , )i i i idist q rr p E X X                                           

(6.4)   

   where ()dist denoted the distances between the corresponding points of JNS 1 and the 

resulting deformation of the template skull, and
i  denoted the reliability of the 

correspondences between these two meshes, denoted by irq  and irp . We assumed that 

the nearest points between two meshes were the correspondences. In this procedure, the 

angles between normal vectors of the corresponding points and the Euclidean distance 

of the corresponding points can be used to improve reliability and reject the outliers. 

The stiffness term was applied to regularize the deformation as follows 

   
2

( ) ( )s i j F
  E X X X G                                             (6.5) 

   where
F
  was the Frobenius norm. iX  and jX  were the transformations of 

neighbouring vertices, which were connected by an edge that belonged to the resulting 

deformation of the template skull. =diag(1,1,1, )G denoted a weighting matrix.  

b)  Dense FSTDs of the template  

During the acquisition of FSTDs of the template, the normal vector that was almost 

perpendicular to the surface of the bony structure was considered to be the measurement 

direction. A ray that started at a vertex of the template skull along the normal vector 

often passed through the template face, thus the intersection point can be calculated. The 

FSTDs were defined as the Euclidean distances between pairs of corresponding vertices. 

It is of note that the normal vector of a given point that was determined by the geometric 

coordinates and topologies of the neighbouring vertices influenced the accuracy of the 

FSTDs measurement. When the surface contained noise and sharp features, e.g. 

boundary of the surface, normal estimation remained a challenge.  

We extracted stable regions with robust normal estimation from the whole skull and 

then used FSTDs of the vertices within these stable regions to accomplish FA. It 

comprised two steps: firstly, we calculated the FSTDs of all the vertices along the closest 

distance vectors (Huempfner-Hierl et al., 2015). For every vertex of the template skull, 

the nearest point on the template face was searched and the FSTDs were defined as the 

Euclidean distances between every pair of corresponding vertices. Secondly, the 

discrepancies between FSTDs along the normal vectors and those along the closest 

distance vectors were calculated. Once the deviation was less than the threshold, the 
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vertex was suggested to be a stable vertex.  Figure 6.4a shows stable regions (red points) 

and unstable regions (blue points). In addition, the boundary vertices of the skull often 

were not considered to belong to the stable region. They can be extracted from the 

triangle meshes based on the assumption that the one-ring adjacent points of every 

boundary vertex cannot form a closed loop (Shui et al., 2020). Figure 6.4b shows the 

boundary vertices of the template skull (green points). Neither the unstable regions nor 

the boundary vertices were used to generate the coarsely approximated face. 

 

Figure 6.4 Segmentation of template skull. (a) Stable vertices (red points) and unstable vertices (blue 
points). (b) Boundary vertices (green points). 

c)  A coarse-to-fine facial approximation  

The overall shape of the facial approximation can be coarsely produced based on the 

dense FSTDs of the template using the following equation: 

   i i i if = s + dV                                                      (6.6) 

where if  and is  denoted the geometric coordinates of the i-th vertex of the 

approximated face and JNS 1, respectively. iV represented the normal vector of the i-th 

vertex of JNS 1, and id denoted the soft tissue thickness of the corresponding vertex of 

the template.  

The predictions of FSTDs and corresponding measurement directions were always 

inconsistent with the actual ones, thus the approximated face would be unsmooth. In 

addition, there always existed some voids, such as the eyes, nose, cheeks, etc. We 

employed a TPS function to warp the candidate face to the coarsely approximated face 

to improve the approximation. Because the position of the control point located on the 

two faces will greatly influence the deformation, we calculated the corresponding 

intersection points as control points based on the known anatomical landmarks and 

semilandmarks of JNS 1.  

Additionally, we offered a tool to mathematically calculate multiple approximations 
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that simulated the mandible morphology changes using the following equation 

   ( )= + 1- )   1 2JNSFace Face Face(                                       (6.7)  

where JNSFace  represented the interpolated approximation. 1Face  and 2Face  denoted 

the approximated faces of JNS 1 using Tabun 2 and JNS 1 using Mauer 1, respectively.

 0,1 represented the weight coefficient. 

d)  Evaluation of the reliability 

We validated the reliability of the approximated face by means of examining 

whether or not the distribution of FSTDs of the template was consistent with that of the 

approximated face. The FSTDs defined along the closest distance vectors were used, 

because they were insensitive to measurement direction and data noise (Gietzen et al., 

2019). The FSTDs deviation between the template and the approximation was calculated 

and visualized.  

6.2.2.3 Morphological shape variations of facial approximation  

GM was carried out to capture the main features of the approximated faces and 

examine the geometric morphological variations between the approximated faces and 

modern human faces. GPA was first used to register all the vertices of the approximated 

faces and modern human faces, removing translation, rotation, and scaling (O'Higgins 

& Jones, 1998). Thus all the faces can be represented in the non-linear Kendall’s shape 

space. The centroid size (CS) which is defined as the square root of the summed squared 

distances between all corresponding vertices and their centroid was calculated. Then, 

PCA was conducted on the Procrustes aligned coordinates to construct a facial shape 

tangent space. In this shape space, every sample was represented by the average face 

and the linear combinations of PC scores and corresponding independent orthogonal 

PCs. The Matlab were used to apply geometric morphometric analysis. Next, Student’s 

t-test was carried out to verify the significant level of PC of interest between the modern 

faces and the approximated faces. Finally, the visualisation technique was used to 

investigate the extent to which PC greatly explained the main patterns of morphological 

variation. In this process, two new faces along the positive and negative PC of interest 

were generated as follows   

   3 i i Face( ) = Mean + φ                                              (6.8) 

   where Mean and  denoted the average face and weighting coefficient (it was set to 

1 or -1), and i denoted the standard deviation of the i-th PC and iφ represented the i-th 

PC. 
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6.2.2.4 The effects of FSTDs and skull morphology on the approximated 

face 

It is noted that skull morphology and the distribution of FSTDs are the two 

fundamental components of FA. We examined how the choice of FSTDs affected the 

approximated face. The approximated faces of the same JNS 1 were produced based on 

the average FSTDs of the females and males within our dataset. Then the FSTDs 

deviation between two different approximations was calculated and depicted in a 

graphical format.  

As the real mandible of JNS 1 was not survived, we investigated the effect of 

different mandibles on the approximated faces. Different approximated faces of JNS 1 

using Tabun 2 and JNS 1 using Mauer 1 were produced based on the same distributions 

of FSTDs, respectively. Then the geometric deviation between the approximations was 

used to examine the shape difference.  

6.3 Results  

6.3.1 Facial approximation of JNS 1 

Since JNS 1 is suggested to be a female, the average skull and face of the female 

group (Figure 6.5a) were chosen as the template to approximate the facial appearance. 

Based on 495 anatomical landmarks and semilandmarks, we first used the TPS 

deformation approach to approximate the facial appearance of JNS 1 using Tabun 2. 

Figures 6.5b and c show the deformed template skull and the candidate face. Figure 6.5d 

shows the template skull (grey colour) and JNS 1 (peach colour). It can be seen that the 

deformed template skull (black points) does not match JNS 1 (peach colour) closely, as 

shown in Figure 6.5e. The geometric difference between the deformed template skull 

and JNS 1 was calculated and depicted in Figure 6.5f, where the Euclidean distance of 

every corresponding vertex was calculated. The average distance value of the vertex 

was 0.98 mm. The smaller deviation regions were located around the top of the cranial 

vault, whereas the largest geometric deviation regions were found around superciliary 

arches, the bottom of frontal, zygomatic arch, lateral mastoid process, the bottom of the 

occipital bone, partial regions of maxilla and teeth, the greater wing of the sphenoid, etc. 

It is noted that the approximated face might be inaccurate around these regions and the 

conventional deformation-based FA approach needs to be improved.  
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Figure 6.5 The deformation of the template skull and face using TPS. (a) The template skull and face. (b) 
The deformed temple skull. (c) The deformed template face. (d) The template skull (grey colour) and JNS 
1 using Tabun 2 (peach colour). (e) The superimposition of the deformed template skull (black points) 
and JNS 1(peach colour). (f) Visualisation of geometric deviation between the deformed template skull 
and JNS 1 using Tabun 2. 

We proposed a coarse-to-fine facial approximation approach by attaching the dense 

FSTDs of the template to the corresponding vertices of JNS 1. The non-rigid registration 

was used to warp the deformed template skull to JNS 1 to generate a better deformation 

result (Figure 6.6a). Figure 6.6b shows JNS 1 (peach colour) and the deformation result 

(black points). The geometric difference between the deformed template skull and JNS 

1 was calculated and visualized in Figure 6.6c, where the Euclidean distance of every 

corresponding vertex was calculated. Almost 96.9% of overall vertices on JNS 1 showed 

the deviation within a deformation error of 1.0 mm, and the average deviation value was 

0.54 mm. The area (black points) where the deviation was greater than 2.0 mm can be 

mainly observed around the boundaries of the bony structure. The region where the 

geometric deviation was greater can be observed around the superciliary arches and 

nasal bone.  

 
Figure 6.6 The deformation of the template skull using the proposed method. (a) The deformed template 
skull. (b) The superimposition of the deformed template skull (black points) and JNS 1 using Tabun 2 
(peach colour). (c) The visualisation of geometric deviation between the deformed template skull and JNS 
1 using Tabun 2. 

Dense FSTDs of the template that were calculated along the normal vector were 

visualized in Figure 6.7a. It appeared that the FSTDs were almost distributed 

symmetrically along the midsagittal plane. The thinner FSTDs were observed at vertices 

located around the forehead, superciliary arches, nasal bone, and the cranial vault. The 
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thickest FSTDs were observed around the cheek region, the greater wing of the sphenoid, 

the bottom of the occipital bone, etc. Figures 6.7b and c display the point clouds and the 

triangle meshes of the coarsely approximated face. For every landmark and 

semilandmark of JNS 1, we calculated the corresponding points on the candidate face 

(left figure) and the coarsely approximated face (right figure), as seen in Figure 6.7d. 

Figures 6.7e and f show the improved resulting approximation that is created by warping 

the candidate face to the coarse approximation using TPS. The result shows that the 

approximated face has a lower forehead, and a protruding, wider and elongated middle 

and upper face. Also, it has robust eyebrows, a broad and short nose, and a wide mouth.  

 

Figure 6.7 The facial approximation of JNS 1 using the proposed method. (a) The visualisation of dense 
FSTDs of the template. (b) The point clouds of the coarsely approximated face. (c) The surface of the 
coarsely approximated face. (d) The corresponding points on the coarsely approximated face and the 
deformed face using TPS. (e) The improved resulting approximation by warping the deformed template 
face. (f) The superimposition of JNS 1 and the facial approximation. 

We compared the approximated faces using two different methods based on the 

comparison of the distribution of FSTDs. Figures. 6.8a-c illustrate the distributions of 

FSTDs of the candidate face, the coarsely approximated face and the improved resulting 

approximation, respectively. Figure 6.8d shows the FSTDs deviation between the 

candidate face and the template (Table 6.3). Almost 62.9% of overall vertices on the 

candidate face showed geometric deviation within a discrepancy of 1.0 mm, and the 

average deviation value was 1.17 mm. The area where the deviation was greater than 

2.5 mm can be observed around the coronoid process, ramus, greater wing of the 

sphenoid, zygomatic, etc. The deviation of the vertex within the superciliary arches and 

nasal bone was greater as well. Figure 6.8e shows the FSTDs deviation between the 

coarsely approximated face and the template. Almost 87.7% of overall vertices on the 

coarse approximation showed the deviation within a discrepancy of 1.0 mm, and the 

average deviation value was 0.39 mm. It can be seen that distribution of average FSTDs 

of the template was very close to that of the coarse approximation, except for the side 

of the teeth, mandibular condyle, etc. Figure 6.8f illustrates FSTDs deviation between 

the resulting approximation and template. Almost 76.4% of overall vertices on the 



209 
 

improved approximation showed the deviation within a discrepancy of 1.0 mm, and 

average deviation value was 0.85 mm. The area where the deviation was greater than 

2.5 mm can be observed around the coronoid process, both sides of the teeth, the greater 

wing of the sphenoid, etc.  

Table 6.3 FSTDs deviation (mm) and the percentage distribution (%) between three approximations and 
the template 

FSTDs 

deviation 

The candidate face Coarsely approximated face Improved approximation 

% deviation % deviation % deviation 

(0.0,0.5] 40.5% 0.23 80.6% 0.08 51.6% 0.22 

(0.5,1.0] 22.4% 0.73 7.1% 0.71 24.8% 0.71 

(1.0,2.5] 24.5% 1.59 8.5% 1.62 17.3% 1.51 

>2.5 12.6% 4.16 3.8% 3.74 6.3% 4.74 

Total 100% 1.17 100% 0.39 100% 0.85 

 

Figure 6.8 Comparisons of the facial approximations generated by different methods. (a) The distribution 
of FSTDs of the candidate face. (b) The distribution of FSTDs of the coarse approximation. (c)The 
distribution of FSTDs of the improved approximation. (d)The FSTDs deviation between the template and 
the candidate face. (e)The FSTDs deviation between the template and the coarse approximation. (f)The 
FSTDs deviation between the template and the improved approximation. 

Because the FSTDs are the fundamental basis of the facial approximation in our 

method, we employed the FSTDs that were calculated using different methods to predict 

the overall shape of the coarsely approximated faces. Figure 6.9 shows the point clouds 

of the coarse approximation based on the normal vectors of the overall vertices, rather 

than the stable vertices. It appeared that much noise and outliers occurred around the 

coarsely approximated face. Figure 6.10a displays the FSTDs that are computed using 

a cylindrical sampling method (Shui et al., 2016). Figure 6.10b shows the coarsely 

approximated faces that are recreated by attaching these FSTDs to JNS 1 along the 

cylindrical sampling vector. Figure 6.10c shows the FSTDs deviation between the 

template and the approximation. Almost 60.5% of overall vertices on the approximation 

showed the deviation within a discrepancy of 1.0 mm, and the average deviation value 

was 1.3 mm. The area where the deviation was greater than 2.5 mm can be observed 
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around the side of teeth, greater wing of the sphenoid, the bottom of zygomatic region, 

mandibular condyle, superciliary arches, etc. These results indicated the proposed FA 

method can accurately assign the FSTDs to the corresponding vertices of JNS 1. 

 

Figure 6.9 The coarsely approximated face using the normal vectors of overall the vertices. 

 

Figure 6.10 The coarsely approximated face using the FSTDs along the cylindrical sampling vectors. (a) 
The distribution of average FSTDs of the template using the cylindrical sampling method. (b) The 
coarsely approximated face. (c) The FSTDs deviation between the template and the coarse approximation. 

6.3.2 Facial approximation of modern humans  

In order to evaluate the reliability of the proposed FA approach, we approximated 

faces of two modern female skulls (01 and 03 skulls) and two modern male skulls (02 

and 04 skulls). Then we compared the FSTDs deviation between the approximated and 

actual faces, and the geometric variations between the approximated and actual faces, 

as shown in Figure 6.11. From left to right, the leftmost column displayed the skull, and 

the next two columns illustrated the approximated face and the distribution of FSTDs. 

The middle two columns displayed the actual face and the distribution of FSTDs. The 

sixth column depicted the FSTDs deviation (error) for every vertex between the 

approximated and actual faces (Table 6.4). Additionally, the geometric deviation (error) 

between the approximated and actual faces was calculated (Table 6.5). The rightmost 

column displayed the geometric discrepancy of every vertex between the approximated 

and actual faces. Figure 6.11a shows the approximation of the 01 skull based on the 

average FSTDs of the females. Almost 59.3% of overall vertices showed the FSTDs 

deviation within 2.5 mm, and the average deviation value was 2.12 mm. etc. Figure 

6.11b shows the approximation of the 02 skull based on the average FSTDs of the 

females. Almost 63.5% of overall vertices showed the FSTDs deviation within 2.5 mm, 

and the average deviation value was 2.19 mm. Figure 6.11c displays the approximation 

of the 03 skull based on the average FSTDs of the males. Almost 80.8% of overall 
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vertices showed the FSTDs deviation within a discrepancy of 2.5 mm, and the average 

deviation value was 1.43 mm. Figure 6.11d shows the approximation of the 04 skull 

based on the average FSTDs of the males. Almost 94.4% of overall vertices showed the 

FSTDs deviation within a discrepancy of 2.5 mm, and the average deviation value was 

0.95 mm. A potential reason is that the distribution of the average FSTDs of the males 

is consistent with that of the 04 skull. However, the approximated chin of the 04 skull 

bore little visual resemblance to the actual chin, because the mental protuberance and 

tubercle seemed to be incomplete. 

 

Figure 6.11 Four approximation examples of modern humans. From left to right, the left column 
displayed the skull and the next two columns illustrated the approximated face and the distribution of 
FSTDs. The middle two columns displayed the actual face and the distribution of FSTDs. The rightmost 
two columns depicted the FSTDs deviation and geometric discrepancy between the approximated and 
actual faces. (a) The 01 skull. (b) The 02 skull. (c) The 03 skull. (d) The 04 skull.  

Table 6.4 FSTDs deviation (mm) and percentage distribution between the approximated and actual faces 

FSTDs 

deviation 

01 skull 02 skull 03 skull 04 skull 

% error % error % error % error 

(0.0,1.0] 29.8% 0.44 17.0% 0.52 52.1% 0.42 63.8% 0.47 

(1.0,2.5] 30.5% 1.73 46.5% 1.84 28.7% 1.64 30.6% 1.57 

(2.5,5.0] 36.4% 3.40 33.7% 3.17 16.9% 3.68 5.6% 3.02 

>5.0 3.3% 5.73 2.8% 6.40 2.3% 5.35 - - 

Total 100% 2.09 100% 2.19 100% 1.43 100% 0.95 
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Table 6.5 Geometric deviation (mm) and percentage distribution (%) between the approximated and 
actual faces 

Geometric 

deviation 

01 skull 02 skull 03 skull 04 skull 

% error % error % error % error 

(0.0,1.0] 27.4% 0.57 16.9% 0.57 52.3% 0.47 53.0% 0.59 

(1.0,2.5] 33.9% 1.71 44.9% 1.81 29.4% 1.61 35.8% 1.57 

(2.5,5.0] 33.4% 3.41 32.5% 3.28 15.6% 3.75 9.1% 3.16 

>5.0 5.3% 6.44 5.7% 6.78 2.7% 6.46 2.1% 6.58 

Total 100% 2.21 100% 2.36 100% 1.49 100% 1.30 

These results indicate that the overall shapes of the approximated faces 

bore resemblances to the actual faces. The area where the deviation was thinner can be 

observed around the forehead, nasal bone, maxillary bone, etc. But the greater deviation 

can be found around the cheeks, nose tip, zygomatic region, parietal and temporal 

regions, mental protuberance, etc. The distribution of FSTDs deviation was relatively 

consistent with that of the geometric discrepancy, but the average value of the FSTDs 

deviation was less than the geometric deviation. Thus the proposed FA approach can be 

applied to modern humans and the FSTDs deviation is a promising evaluation indicator 

to access the reliability of the approximated face. 

6.3.3 The effects of FSTDs and skull morphology on facial approximation 

We can recreate multiple approximated faces based on the distributions of FSTDs 

of different templates. Figure 6.12a shows another approximation of JNS 1 based on the 

average FSTDs of the males within our dataset. Figure 6.12b displays the FSTDs of the 

approximated face. The FSTDs deviation between two approximations based on the 

average FSTDs of the females and males was calculated, as shown in Figure 6.12c. 

Almost 69.9% of overall vertices showed the FSTDs deviation within a discrepancy of 

1.0 mm, and the average FSTDs deviation value was 0.81 mm. The area (blue, red and 

black points) where the FSTDs deviation was greater than 1.0 mm can be observed 

around the mouth, nasal base, zygomatic, parietal and occipital regions, cheeks, etc.  

 
Figure 6.12 Facial approximation based on the average FSTDs of the males. (a) The approximated face. 
(b) The distribution of FSTDs of the approximation. (c) The FSTDs deviation between two 
approximations. 

Using the above FA method, we recreated the approximated faces of JNS 1 using 

Mauer 1. Figure 6.13a shows the approximated face based on the average FSTDs of the 

females. Figure 6.13b shows the geometric variations between this approximation and 
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the approximation of JNS 1 using Tabun 2. We also used the distribution of average 

FSTDs of the males to recreate an approximation of JNS 1 using Mauer 1, as shown in 

Figure 6.13c. Figure 6.13d shows the geometric deviation between this approximation 

and the approximation of JNS 1 using Tabun 2. The approximation of JNS 1 using Mauer 

1 has a wider face and a more robust chin than the approximations of JNS 1 using Tabun 

2. These results showed that the geometric shape of the skull greatly influences the 

overall shape of the approximated faces. Based on the distribution of average FSTDs of 

the females, we employed the linear interpolation method to mathematically 

approximate three faces. Figure 6.14 displays three approximations using = 0.25 , = 0.50

and = 0.75 . 

 
Figure 6.13 Facial approximation of JNS 1 using Mauer 1. (a) The approximated face using average 
FSTDs of the females. (b) Geometric deviation between two approximated faces. (c) The approximated 
face using the average FSTDs of the males. (d) Geometric deviation between two approximated faces. 

 

Figure 6.14 Three approximated faces using linear interpolation. (a) =0.25 . (b) =0.50 . (c) =0.75 . 

6.3.4 Shape analysis of the approximated faces 

GM analysis was conducted to capture the geometric features of the approximated 

faces. A total of 27 PCs accounted for over 95% of the morphological variance in the 

shape space. The first PC (PC 1) accounted for 31.6% of the morphological variance 

and the second PC (PC 2) accounted for 13.3% of the morphological variance. Figure 

6.15 shows the plots of the first two PCs of four different approximations (Figure 6.S1), 

including the approximated face that used average FSTDs of the females and Tabun 2 
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(green point), the approximated face that used average FSTDs of the males and Tabun 

2 (yellow point), the approximated face that used average FSTDs of the females and 

Mauer 1 (black point), the approximated face that used average FSTDs of the males and 

Mauer 1 (cyan point), 30 modern female faces (red points), and 30 modern male faces 

(blue points). It is of note that PC 1 (p<0.005) and PC 2 (p<0.05) have significant 

differences between modern human faces and the approximated faces. To identify the 

main patterns of shape variance, four new faces were recreated along the positive and 

negative directions of PC 1 and PC 2. The positive PC 1 connected with the 

approximated face with a relatively lower forehead, and robust and wide eyebrows; a 

protruding, wider and elongated middle and upper face; a broad and short nose, a wider 

mouth and robust chin. By contrast, the negative PC 1 represented a face with a 

prominent and protruding forehead, a narrower middle and upper face, relatively 

narrower mouth, nose and chin. All the approximated faces were located at the extreme 

positive end of PC 1. It indicated that the approximated face was greatly different from 

modern human faces and verified the characteristic features of the approximations. 

When the same FSTDs were performed, the approximated faces that used Mauer 1 were 

located on the right side along the positive PC 1. It indicates that these approximations 

have wider cheeks and robust chins.  

 

Figure 6.15 Comparison of the approximated faces and modern human faces in the shape space. 
Scatterplots of 30 female faces (red points), 30 male faces (blue points), the approximated face (green 
point) that used Tabun 2 and the FSTDs of the females, the approximated face (yellow point) that used 
Tabun 2 and the FSTDs of the males, the approximated face (black point) that used Mauer 1 and the 
FSTDs of the females, the approximated face (cyan point) that used Mauer 1 and FSTDs of the males. 
The frontal and profile views of new generated faces corresponding to the extreme limits of PC 1 and PC 
2.   

6.4 Discussion 

Many previous studies have employed manual and computerized FA approaches to 

modern humans in archaeology and anthropology (Claes et al., 2010; Wilkinson, 2010). 
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However, when FA is applied to archaic humans, the main challenges are the poor 

preservation of archaic human fossils and the absence of their craniofacial relationship 

and anatomical knowledge. In this study, we propose a computerized coarse-to-fine FA 

approach to attach the distribution of average FSTDs of modern humans to archaic 

humans. The resulting approximation is promising, objective and repeatable, and the 

reliability can be evaluated through a quantitative comparison of the distributions of 

FSTDs. Furthermore, we investigate the effects of skull geometry and the distribution 

of FSTDs on the approximated face.  

The first stage of FA is to examine and restore the dry skull. When the skull had 

missing parts or distortion, the TPS function was always used to deform the reflection 

structure of the intact side to fill in the gaps based on a landmark and semilandmark 

configuration. Other studies attempted to used computerized approaches to virtually 

reassemble the skull fractures together (Yu et al., 2012). In the worst case, the fossil 

specimen, as in the case of the mandible of JNS 1, had not survived. In these cases, there 

is a potential solution, using a mandible that has similar age and morphological features 

to match the cranium. But since the mandibles of archaic humans are rarely found, and 

the geometric shapes of the mandibles are always unique, it remains challenging to 

select an appropriate mandible to provide a good fit with the JNS 1 cranium. We 

attempted to use different mandibles to match the JNS 1 cranium and recreated different 

approximations based on the repaired skull. According to these approximated facial 

appearances, multiple approximations can further be mathematically recreated to 

provide some references to describe the overall shape. Although these approximations 

cannot be interpreted anatomically, they might provide a new perspective for researchers 

to illustrate the facial appearance. 

During FA, the prediction of the craniofacial relationship between facial soft tissues 

and the dry skull, and the assignment of the predicted craniofacial relationship are two 

fundamental questions. The average FSTDs at landmarks and muscle structures of 

modern humans are always suggested to be the craniofacial relationship of people in the 

past (Hamre et al., 2017). In the study previously mentioned, the FSTDs of chimpanzees 

can be used to depict a thinner mid-face of archaic humans because FSTDs around the 

cheek were almost half that of modern humans (Hayes et al., 2013). However, due to 

the lack of evidence, there is a particular challenge to decide which FSTDs are 

confidently reasonable for JNS 1. This study considers the distribution of average 

FSTDs of modern humans as that of the archaic human and strongly suggests that 

FSTDs of the reliable regions along the normal vectors are appropriate for 

approximating the facial appearances of archaic humans.  

It is worth mentioning that the FSTDs make a great contribution to improving the 

accuracy and reliability of the approximated face (Claes et al., 2006; Starbuck & Ward, 
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2007). It is acknowledged that many factors, sex, age, nutrition status, body mass index, 

ethnic groups will impact the FSTDs of landmarks. Previous studies always placed the 

landmarks on the skull manually and then acquired the FSTDs at these landmarks 

(Stephan, 2017). We investigated the effects of the distribution of FSTDs on FA. 

Approximated faces of the same JNS 1 using different FSTDs shared a resemblance. 

The larger deviation areas of two approximated faces between using FSTDs of the males 

and females were almost consistent with the regions of the FSTDs discrepancy between 

males and females (Shui et al., 2016). Once a reliable and verified craniofacial 

relationship can be obtained, a more reliable and accurate approximation would be 

recreated. 

Because of the greater shape variations between the modern and archaic human 

skulls, it remains challenging to assign the FSTDs of the template to those of JNS 1. 

Previous studies often employed the deformation-based FA approach (Deng et al., 2011; 

Nelson & Michael, 1998; Turner et al., 2005). It is accepted that the closer the deformed 

template and the dry skulls matched, the more confidence there was in the reliability of 

the approximated face. However, the performance of the TPS deformation even 

incorporating a regularization is inadequate accuracy when two skulls have great 

geometric differences. To address this problem, this study employed a hybrid non-rigid 

registration algorithm to establish a high-quality set of geometric correspondences. 

Additionally, this approach can make use of FSTDs for every sample within the dataset 

to recreate a range of multiple approximated faces and then use PCA to construct a 

tailored approximation-space for JNS 1. In this context, the missing areas of the coarsely 

approximated face can be better repaired (Gietzen et al., 2019) and a range of possible 

approximation can be recreated by using appropriate coefficients of PCs of interests 

(Shui & Wu, 2018).  

As previous studies mentioned (Oxnard & O’Higgins, 2009; Wärmländer et al., 

2019), the anatomical landmarks and semilandmarks should be very carefully designed 

with regard to the research question. The purpose of this study is to approximate the 

overall shape of the facial appearance. Previous studies employed different numbers of 

landmarks (Deng et al., 2011; Vandermeulen et al., 2006) and topographic features, e.g. 

crest lines (Turner et al., 2005) to guide the deformation. But there is no standard 

criterion for performing FA. We recommend that landmarks and semilandmarks need to 

cover the entire skull, particularly around the region where the template and dry skulls 

are quite different. Such definitions will improve the certainties of the establishment of 

dense geometric correspondences, and so enhance the reliability of the approximated 

face. Additionally, we employed GM to capture the main features of the approximated 

faces. The dense corresponding vertices are used to provide better visualisation and 

interpretation, rather than the use of landmarks and semilandmarks. But due to the 
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complexity of biological structures, we need to carefully examine the effect of 

landmarks, semilandmarks and high-density correspondences on the shape analysis, and 

then decide which type of corresponding points can provide a reliable interpretation. 

The geometric comparison of the actual and approximated faces has been used to 

validate the reliability of FA. In this process, the shell-to-shell deviation, surface-to-

surface deviation and the shortest distance between two point clouds have been 

conducted (Miranda et al., 2018; Short et al., 2014; Wilkinson et al., 2006). But, the 

resulting registration impacts the comparisons of discrepancy between the approximated 

and actual faces. Additionally, since no verified actual faces can be provided, the 

comparison of the actual and approximated faces cannot be used to archaic humans. 

Thus, the reliability of the approximated face is mainly evaluated based upon the 

experience and knowledge of the experts. Even though the experts marked the areas of 

the approximated faces that need to be improved, researchers still do not know how to 

revise them exactly. To tackle this problem, we can integrate the approximation of facial 

appearance and recognition of the less confidence in approximated regions iteratively. 

This method provides a promising tool to allow researchers to examine the extent to 

which the resulting approximation is unreliable and where it needs to be further revised 

to improve the reliability.  

However, uncertainty still remains since there are no actual archaic human faces 

and we cannot know the actual relationship between soft tissue and skull of archaic 

human. Also, it remains challenging to understand the relationship between facial 

features, e.g. eyes, nose, mouth, ears, etc., and bony structures. Thus, the approximated 

features need to be further improved, e.g. the size and orientation of nasal aperture. In 

addition, the ages and features of Tabun 2 and Mauer 1 are different from JNS 1, and an 

appropriate mandible needs to be used to enhance the reliability of the approximated 

face. 

6.5 Conclusion 

The approximated face of JNS 1 is a typical case of interdisciplinary study that 

provides anthropologists and the general public with an improved visual interpretation 

of the facial morphology of archaic human. This study proposed a coarse-to-fine FA 

approach based on dense FSTDs of modern humans and presented an evaluation 

approach to validate the reliability of FA. We also investigated the effects of skull 

morphology and the distribution of FSTDs on the approximated faces. Since the 

mandibles of archaic humans are rarely found, it remains challenging to select an 

appropriate mandible for the JNS 1 cranium. In the future, we will attempt to collect the 

different mandibles of archaic humans to improve the reliability of the approximation 

of JNS 1. 
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Supplementary material 

Figure 6.S1 Different approximated faces of JNS 1 based on different FSTDs and mandibles. (a) The 
approximated face that used the average FSTDs of the females and the Tabun 2 mandible. (b) The 
approximated face that used the average FSTDs of the males and the Tabun 2 mandible. (c) The 
approximated face that used the average FSTDs of the females and the Mauer 1 mandible. (d) The 
approximated face that used the average FSTDs of the males and the Mauer 1 mandible. 
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Chapter 7 A computerized facial approximation method for Homo 

sapiens based on facial soft tissue thickness depths and 

geometric morphometrics 

Abstract: Facial approximation (FA) provides a promising means of generating 

the possible facial appearance of a deceased person. It facilitates exploration of the 

evolutionary forces driving anatomical changes in ancestral humans and can capture 

public attention. Despite the recent progress made toward improving the performance of 

FA methods, a limited understanding of detailed quantitative craniofacial relationships 

between facial bone and soft tissue morphology may hinder accuracy, and hence 

subjective experience and artistic interpretation are required. In this study, we proposed a 

computerized method for exploring craniofacial relationships among human populations 

and assigning the learnt craniofacial relationships to generate a probable facial 

appearance of Homo sapiens. The craniofacial relationships were dependent upon average 

facial soft tissue thickness depths (FSTDs) and covariations between nasal and oral hard 

and soft tissue morphological features using geometric morphometrics. A smaller 

resemblance comparison (average Procrustes distance was 0.0258 and geometric 

difference was 1.79 mm) between approximated and actual faces and greater recognition 

rate (91.67%) tested by a face pool indicated average dense FSTDs contributed to raising 

the accuracy of approximated faces. Results of partial least squares (PLS) analysis 

showed that nasal (or oral) hard tissues have an effect on the soft tissue shapes. However, 

relatively weak covariations (<0.4) and greater approximation errors suggested that 

we need to be cautious about the accuracy of approximated nose and mouth soft tissue 

shapes from bony structures alone. The proposed method was applied to approximate the 

facial appearance of the Upper Cave (UC) 101 skull, an important 30,000-year-old human 

skull excavated from the village of Zhoukoudian in northern China. Overall, the proposed 

method can facilitate investigations of craniofacial relationships and potentially improve 

the reliability of the approximated faces for use in numerous applications in forensic 

science, archaeology, and anthropology. 

Article details: 

Wuyang Shui, Xiujie Wu and Minquan Zhou. A computerized facial approximation 

method for Homo sapiens based on facial soft tissue thickness depths and geometric 

morphometrics. Journal of Anatomy. (under review) 

At the time of submission, this chapter was pending. It was published by Journal of 

Anatomy on June 27, 2023.  

See the link: https://onlinelibrary.wiley.com/doi/epdf/10.1111/joa.13920. 
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7.1 Introduction 

Facial approximation (FA, or known as facial reconstruction) is a commonly used 

technique to recreate the probable facial appearance of a deceased person from skeletal 

remains. In the absence of other clues, it has served as a method of last resort to recover 

possible facial likenesses for use in triggering memories to aid forensic identification of 

a seriously decomposed cadaver (Baldasso et al., 2021; Nelson & Michael, 1998). It also 

seeks to recreate sculptural portraits of undocumented Homo sapiens, e.g. famous 

historical figures and our recent ancestors, in the realms of archaeology and anthropology 

(Benazzi et al., 2009; Marić et al., 2020). The approximated faces provide new insights 

in understanding the characteristic features of human fossils, exploring the evolutionary 

forces driving anatomical changes in ancestral humans and capturing public attention. 

Until recently, FA methods for creating three-dimensional (3D) facial appearances have 

involved manual, virtual sculpture and computer-based techniques.  

The conventional 3D manual FA method is primarily based upon clay sculpturing 

techniques over skull casts, which has been used to approximate hundreds of facial 

sculptures of Homo sapiens (Hayes, 2016). This method can be divided into three main 

approaches (Verzé, 2009): the American method based on facial soft tissue thickness 

depths (FSTDs) at landmarks, the Russian method based on muscle knowledge, and the 

combined Manchester method that is the most commonly used in forensic and 

archaeology fields. However, it is argued the results are dependent upon anatomical 

interpretation and artistic skill of the individual practitioner (Campbell et al., 2021; 

Stephan, 2015). For example, subjective and artistic interpretation may lead to biased and 

inconsistent results, and hence the practitioner requires anthropological and artistic 

training and experience in practice. Additionally, the manual method is a time-consuming 

task, especially in the production of multiple possible faces of the same skull (Claes et al., 

2010).   

To address shortcomings of the manual method, a 3D interactive computerized 

method was developed by graphics software (e.g. ZBrush and Blender) and haptic 

feedback devices, mimicking the conventional Manchester method in the computer 

environment (Wilkinson et al., 2006). It has been successfully used in different case 

studies in archaeology and forensic science (Hamre et al., 2017; Lee et al., 2014). In 

practice, several virtual pegs representing FSTDs are attached to the surface of the digital 

skull at landmarks and then pre-modelled facial muscle models are interactively placed 

onto the skull. A critical point is to allow altered muscles to meet the specifications of the 

skull following anatomical guidelines. Subsequently, the appropriate facial features (e.g. 

eyes, nose, mouth and ears) are chosen from a dataset to place over the facial model. 

Finally, skin layers are added over the muscle structures and the detailed morphology and 

features were sculpted. A small geometric difference between the approximated and 
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actual faces has verified the accuracy and effectiveness (Lee et al., 2015; Miranda et al., 

2018). Such a method offers a workflow standardization and the pre-modelled muscles 

and organs provide valuable anatomical guidance to reduce approximation bias and 

subjective interpretation. Nevertheless, such a system still requires subjective 

interpretation and modelling skill training. 

Progress in the development of medical imaging technologies, such as computed 

tomography (CT), cone-beam computed tomography (CBCT) and magnetic resonance 

imaging (MRI), has led to the development of semi- and fully-automatic computerized 

FA methods (Claes et al., 2010; Wilkinson, 2005). Moreover, the accuracy of each method 

can be quantitatively assessed by computing the geometric differences between the 

approximated and actual faces. The earliest proposed 3D computerized FA efforts 

involved the deformation of the template face, e.g. an average human face, to fit the 

estimates of facial points which were generated by assigning average FSTDs at landmarks 

to the dry skull (Vanezis et al., 2000). Due to the fact that limited numbers of facial points 

cannot adequately capture detailed morphology, the approximated face might be 

inaccurate. To address this problem, a recent study has employed FSTDs at landmarks 

and high-density semilandmarks to build a facial envelope and then recreate a detailed 

facial appearance by deforming the template face (Shui et al., 2021). To avoid huge 

computation costs of dense FSTDs, an alternative deformation-based computerized FA 

method has been developed based on deformation of the template face followed by 

transformation to warp the template skull to the dry skull (De Buhan & Nardoni, 2018; 

Quatrehomme et al., 1997; Turner et al., 2005). A non-rigid registration algorithm, e.g. 

thin-plate splines (TPS) (Bookstein, 1989), was carried out to align these two skulls based 

on a set of landmarks or geometric features. Nonetheless, the ultimate approximation 

result might resemble the template face and a large skull registration error adversely 

affects the accuracy of the approximation (Deng et al., 2011; Wilkinson, 2005). 

Since a large collection of skull and face models facilitates the investigation of 

detailed craniofacial relationships amongst human populations to achieve the anatomical 

modelling, several recent studies used machine learning algorithms, e.g. multiple 

regression, to learn the relationships of principal component (PC) scores between hard 

and soft tissues and then applied them to the dry skull to generate the ultimate 

approximation (Berar et al., 2011; Jia et al., 2021; Madsen et al., 2018; Shui et al., 2017). 

Furthermore, the craniofacial relationships associated with personal attribute information, 

such as age, sex and body mass index, were explored to improve the accuracy of FA. 

Nevertheless, facial morphology is complex and the craniofacial relationships of different 

regions are inconsistent, such that a global regression-based method cannot provide 

detailed relationships in facial features. To tackle the issue, covariations between bony 

and soft tissue structures of each component was regressed separately (Deng et al., 2016; 
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Guyomarc'h et al., 2014). Alternatively, a facial statistical shape model can facilitate the 

prediction of feature features and missing geometry over the facial envelope (Gietzen et 

al., 2019). Additionally, a recent deep learning method has been proposed to generate 

craniofacial images from 2D skull images, thereby achieving 3D FA (Hu et al., 2021; Li 

et al., 2022; Zhang et al., 2022).  

The Upper Cave 101 (UC101) skull, which dates back to almost 30,000 years BP, 

was discovered in the upper cave of Zhoukoudian in northern China in 1930. As one of 

the most important East Asian human fossils, this specimen has been used to investigate 

morphological changes associated with human evolution and origins. Morphological 

analysis of UC 101 has revealed it to be derived from an adult male with shared ancestry 

with members of primitive Mongoloid, Easter Island or Upper Paleolithic European 

populations (Cunningham & Jantz, 2003). It exhibits a longer and lower cranial vault, a 

broader forehead, a more pronounced superciliary arch and a higher nasal bridge 

compared with the corresponding features of modern humans. The approximated face 

facilitates the investigation of human evolutionary processes, enhances scientific 

knowledge of the factors underlying the development of modern humans and captures 

public attention. More recently, we developed a computerized method to repair the 

damaged zygomatic arch and approximate the facial appearance based on dense FSTDs 

of modern humans (Shui et al., 2020a). In that work, average dense FSTDs were assigned 

to UC 101 to approximate the overall facial envelope. However, the resulting 

approximated facial features were predominantly derived from the template face, 

ignoring morphological traits of the skull. 

Anatomical modelling to represent craniofacial relationships between hard and soft 

tissues, and determination of facial features based on bony morphology are the 

fundamental steps in enhancing the accuracy of FA. In this study, we present a 

computerized FA method for exploring detailed craniofacial relationships between bony 

structures and facial soft tissues and afterwards developing a coarse-to-fine method to 

generate a probably facial appearance. A quantitative method based on resemblance 

comparison between approximated and actual faces and recognition rate tested by a face 

pool was used to validate the accuracy of the proposed method.  

7.2 Materials and Methods 

7.2.1 Materials 

7.2.1.1 A skull and face dataset of modern living humans 

In our previous studies (Deng et al., 2016), we constructed a skull and face dataset 

of modern living humans exhibiting normal morphological features without prior 

orthodontic treatment. To ensure consistency and accuracy in the measurements, each 

participant kept their mouth closed throughout the data acquisition process. Medical 
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images of each individual were acquired using a clinical multi-slice CT scanner system 

(Siemens Sensation 16) then CT images were archived as standard DICOM 3.0 files of 

resolution 512 × 512. Each head within the database comprised digital models of the skull 

and the corresponding face, and personal information (e.g. sex, age, ethnicity, etc.). Data 

processing procedures were as follows: first, we converted CT images of each individual 

to digital models of skull and face and then extracted external surfaces of skull and face, 

respectively. Each skull comprised more than 160,000 vertices and 300,000 triangle 

meshes, and each face consisted of more than 200,000 vertices and 500,000 triangle 

meshes. Subsequently, we manually placed skull landmarks including left porion (Lp), 

right porion (Rp), left orbitale (Lo) and glabella (G), and transformed them into the 

common Frankfort coordinate system. Thereafter, we estimated average skull and facial 

form (including shapes and sizes) surfaces. In the current study, 48 male adults aged 20-

30 years were selected to explore craniofacial relationships and test performance of the 

proposed method.  

Next, we established high-density point correspondences among skulls. The 

approach comprised four steps: first, we manually separated the average skull of the male 

group within the dataset into three components: oral and nasal hard tissues, and bony 

envelope. Second, the Poisson-disk algorithm (Corsini et al., 2012) was used to obtain 

14,933 semilandmarks from the average bony envelope (excluding the temporal bone 

mastoid process and acoustic canal) in order to reduce noise and numbers of outliers 

around approximated ear soft tissues when assigning FSTDs to semilandmarks of the dry 

skull. Additionally, a total of 556 and 215 semilandmarks were sampled from oral and 

nasal hard tissues, respectively. Third, according to the definition used in our previous 

study (Shui et al., 2021), 91 landmarks were placed over the estimates of average skull 

and every skull within the dataset. Finally, we used the hybrid non-rigid approach 

combining TPS and non-rigid iterative closest point (NICP) (Amberg et al., 2007) to align 

each skull to the average skull, and then projected semilandmarks of each component of 

the deformed average skull onto each skull to yield dense point correspondences. All these 

methods were programed using Matlab (Please see Chapters 2 and 3). 

Additionally, we established high-density point correspondences among faces using 

the same four steps: first, we manually partitioned the average face into three components:  

mouth, nose soft tissues and other facial envelope. Second, the Poisson-disk sampling 

algorithm was used to obtain 498, 497 and 150,000 semilandmarks from each component, 

respectively. Third, a total of 52 anatomical landmarks in total were chosen on every face 

(Table 7.1), where 8 landmarks were located on the midline and 22 landmarks were 

bilaterally located. Finally, the average face was deformed to align with surfaces of every 

face and then semilandmarks of each component of the deformed average face were 

projected onto each face in order to establish high-density correspondences.  
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Based on the dense point correspondences among skulls and faces, we estimated the 

average skull and face forms (shape and size). Figure 7.1a shows the average skull and 

the landmark and semilandmark configuration. The leftmost two figures show the average 

skull including bony envelope (grey), nasal (red) and oral (blue) hard tissue forms. The 

other three figures display landmarks (black) and semilandmarks of skull envelope 

(yellow), nasal (red) and oral (blue) hard tissue forms. Likewise, Figure 7.1b shows each 

component of the average face and the landmark and semilandmark configuration.  

 

Figure 7.1 Average skull and face including the landmark and semilandmark configuration. (a) Skull 
envelope (grey), nasal (red) and oral (blue) hard tissue forms including landmarks (black) and 
semilandmarks of each component. (b) Facial envelope (grey), nasal (red) and oral (blue) soft tissue forms 
including landmarks (black) and semilandmarks of each component.  

Table 7.1 Anatomical facial landmarks 

No. Definition Nature Position 

1 and 2 Medial canthus Bilateral Eyes  

3 and 4 Lateral canthus Bilateral Eyes  

5 Nasal bridge Median Nose 

6 Middle of nose Median Nose 

7 Tip of nose Median Nose 

8  Subnasale Median Nose 

9 and 10 External alar curvature Bilateral Nose 

11 and 12 Superior alar curvature  Bilateral Nose 

13 and 14 Alare Bilateral Nose 

15 and 16 Alar curvature point Bilateral Nose 

17 and 18 Corner of mouth Bilateral Mouth 

19 and 20 crista philtra Bilateral Mouth 

21 Middle of cupid's bow 

upper lip 

Median Mouth 

22 Middle of oral fissure Median Mouth 
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23 Middle of bottom lip Median Mouth 

24 Tip of chin Median Chin 

25 and 26 Otobasion superius Bilateral Ears 

27 and 28 Superior auricle Bilateral Ears 

29 and 30 Posterior auricle Bilateral Ears 

31 and 32 Inferior auricle Bilateral Ears 

33 and 34 Anterior cymba concha Bilateral Ears 

35 and 36 Superior cymba concha Bilateral Ears 

37 and 38 Posterior concha Bilateral Ears 

39 and 40 Intertragic incisure Bilateral Ears 

41 and 42 Incisura intertragica Bilateral Ears 

43 and 44 Tragion Bilateral Ears 

45 and 46 Medial concha Bilateral Ears 

47 and 48 Superior cavum concha Bilateral Ears 

49 and 50 Otobasion posterius Bilateral Ears 

51 and 52 Otobasion inferius  Bilateral Ears 

7.2.1.2 Digitisation of UC 101  

A portable 3D scanner was employed to capture a digital model of a high-quality cast 

of UC 101 archived at the Institute of Vertebrate Paleontology and Paleoanthropology 

(IVPP) in Beijing, China. Subsequently, small discrete and self-intersecting meshes were 

removed and remaining meshes were smoothly processed. We repeated abovementioned 

semilandmarking method to align the average skull to the UC 101 meshes based on skull 

landmarks and then established high-density point correspondences. Because missing 

dental crowns existed, we labelled the correspondences locating at the intact surface, 

thereby establishing point correspondences among modern human skulls. Figure 7.2a 

shows the external surface. Figure 7.2b displays the semilandmarks of skull envelope and 

nasal hard tissues. Figure 7.2c shows semilandmarks of teeth in UC 101 (left) and average 

skull (right), respectively. 

 

Figure 7.2 Semilandmarks of UC 101. (a) The external surface. (b) Semilandmarks of skull envelope 
(yellow) and nasal (red) hard tissues. (c) Semilandmarks of teeth (blue) in UC 101 (left) and average skull 
(right). 

7.2.2 Methods 

The proposed FA method includes two stages (Figure 7.3): in the first stage, we 

explored craniofacial relationships of modern humans following three steps: first, we 
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calculated average FSTDs at landmarks and high-density semilandmarks among human 

populations to represent overall craniofacial relationships. Second, the covariation of 

landmarks and semilandmarks between nasal hard and soft tissue shapes was explored 

using geometric morphometrics, thereby approximating nose soft tissue shapes. Third, 

we repeated the abovementioned step to explore the covariation between oral hard and 

soft tissue shapes and to generate mouth shapes. In the second stage, we presented a 

coarse-to-fine method to generate the facial appearance. First, the coarsely approximated 

face was generated by reassembling approximated facial envelope, nose and mouth 

shapes depended upon the learnt craniofacial relationships. Second, the improved 

approximated face was generated by fitting the facial statistical shape model (SSM) to 

the coarse approximation. Finally, we used resemblance comparison and recognition rate 

to evaluate the accuracy of the proposed method. All these methods were programed using 

C++ and Matlab and software prototype can be downloaded from the Internet 

(https://github.com/sissun/FAmodern.git). 

 

Figure 7.3 Workflow of quantification of craniofacial relationships and FA method. 

7.2.2.1 Quantification of craniofacial relationships among human 

populations  

7.2.2.1.1 Average dense FSTDs  

FSTDs were defined as Euclidean distances between skull landmarks (or 

semilandmarks) and corresponding facial points. In this study, the average FSTDs among 

humans were used to represent overall craniofacial relationships. We used the normal 

vector (Toneva et al., 2021) of every landmark and semilandmark of the average skull as 

the measured orientation and then employed the same constant orientation to record 

FSTDs across samples. Next, descriptive statistics of FSTDs among samples (e.g. mean 

and standard deviation) were calculated and a colour map was used to show distributions 

of FSTDs.  

Thereafter, average FSTDs at landmarks and semilandmarks were assigned to 

external surface of the dry skull to obtain a facial envelope, as follows: 
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   i i i ih s n d  


                                                      (7.1) 

   where 3

is    represents geometric coordinates of i-th landmarks and 

semilandmarks of the dry skull, 3{ }ih   denotes the facial points that can be used to 

generate the facial envelope. in


and id represent the measured vector and average FSTDs, 

respectively. These facial points were then converted to a set of triangle meshes by the 

ball-pivoting algorithm (Bernardini et al., 1999).  

7.2.2.1.2 Quantification of relationships between nasal (or oral) hard and 

soft tissue shapes 

To explore relationships between nasal (or oral) hard and soft tissue shapes, a 

generalized Procrustes analysis (GPA) algorithm was applied to the landmark and 

semilandmark configurations across samples, removing location, orientation and scaling. 

Next, a two-block partial least squares (2B-PLS) analysis (Rohlf & Corti, 2000) was used 

to explain the covariation between Procrustes shape coordinates of nasal (or oral) hard 

and soft tissue shapes using the R package “geomorph” (Adams & Otárola‐Castillo, 2013), 

with Block-1 defined here as hard tissue shapes and Block-2 defined as soft tissue shapes. 

Unlike principal component analysis (PCA), 2B-PLS maximizes covariance patterns, as 

derived from the cross-covariance matrix, to produce pairs of component axes. 

Subsequently, correlation coefficients and significance were determined based on 1000 

random permutations for each PLS dimension in order to quantify the level of covariation. 

Additionally, RV coefficients (Robert & Escoufier, 1976) were used to measure overall 

associations between the two matrices as generated using PLS scores derived from two 

different configurations by qualifying the multivariate extension of the correlation 

coefficient. To examine morphological variations of shapes representing the extreme 

limits of PLS of interest, fitted landmarks and semilandmarks along the positive (+) and 

negative (-) limits of PLS 1 were generated and then fitted shapes were generated by 

warping the mean shape using TPS. Regional variations of two different fitted shapes 

were found by observing main patterns of movements of landmarks and semilandmarks.  

The next step was to approximate nasal (or oral) soft tissue shapes of the dry skull. 

To reduce data dimensionality, PCA was first carried out to project Procrustes shape 

coordinates of every sample onto the shape space, whereby PC scores were used to 

quantify shape variations of hard and soft tissue shapes. Subsequently, a linear multiple 

regression was used to quantify relationships between PC scores of hard (independent 

variable) and soft tissue shapes (dependent variable) as follows:  

   
2 22arg minorgan h organ s organ organ   M nβ M nβ M                             (7.2) 

   where hnβ  and snβ  represent PC scores of nasal (or oral) hard and soft tissues, 

respectively, and organM  denotes the craniofacial relationships. organ  denotes the weighting 
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coefficient that is related to the number and standard deviation of PCs. 

Based on the learnt relationships and the calculated PC scores derived from landmark 

and semilandmarks of hard tissue, coefficients of approximated nose (or mouth) soft 

tissue shapes were computed. Next, geometric coordinates of approximated landmarks 

and semilandmarks of soft tissues were obtained by adding the mean shape of nose (or 

mouth) soft tissues among samples to the linear combination of the computed coefficients 

and PCs.  

Here we used leave-one-out cross validation (LOOCV), i.e. one sample within the 

dataset was selected for use as test data, while the other samples served as training data, 

to validate the accuracy of nose (or mouth) relationship and approximating results. This 

process was then repeated with each sample used once as the test data. The Procrustes 

distance between the approximated and actual shapes was calculated to quantify gross 

difference. The ratio of the Procrustes distance divided by the average Procrustes distance 

between soft tissues of every sample and mean shape was calculated to examine the 

degree of difference. Additionally, nose (or mouth) soft tissue shapes were generated by 

deforming the mean shape using TPS. Geometric differences in landmarks and 

semilandmarks between the approximated and actual nose (or mouth) shapes were 

transferred to the shapes to generate a colour map for use in comparing regional shape 

differences. 

7.2.2.2 Facial approximation 

7.2.2.2.1 A coarsely approximated face 

Once landmarks and semilandmarks of the dry skull were generated, we were able to 

approximate the facial envelope based on average FSTDs and recreate the probable nose 

and mouth shapes based on the learnt nose and mouth relationships, respectively. 

However, they have different locations, orientations and size. A critical step involved the 

calculation of the transformation (translation, rotation and scaling) of approximated nose 

and mouth soft tissue shapes to fit them onto the approximated facial envelope, thereby 

generating the coarsely approximated faces. 

The method used to compute such alignments comprised three steps: first, we used a 

deformation-based approach to warp the average facial envelope followed by 

transformation to align the average skull with the dry skull. Second, boundary curves of 

the deformed facial envelope with approximated nasal and mouth shapes were extracted, 

respectively. Finally, we used the least-squares algorithm to register approximated soft 

tissues of each component by minimizing Euclidean distances between boundary curves 

of the facial envelope and nose (or mouth) shapes as follows:  
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   where 3

ip    and 3

iq   represent corresponding boundary vertices of the facial 

envelope and nose (or mouth) shapes, m denotes the number of correspondences and 

(3)SOR , ( , , )x y zt t t t


and S represent rotation, translation and uniform scaling matrices, 

respectively.  

Figures 7.4a and b show the deformed average facial envelope with boundary curves 

and approximated nose (red) and mouth (blue) shapes with boundary curves, respectively. 

Figure 7.4c shows the superimposition of the deformed average facial envelope (grey) 

onto the transformed approximated nose (red) and mouth (blue) soft tissue forms. Figure 

7.4d shows the coarsely approximated face comprising approximated facial envelope 

(grey), and the transformed nose (red) and mouth (blue) soft tissue forms.  

 

Figure 7.4 The coarsely approximated face. (a) Deformed average facial envelope with boundary curves. 
(b) Approximated nasal and mouth shapes with boundary curves. (c) Superimposition of deformed average 
facial envelope (grey) and transformed approximated nose (red) and mouth (blue) soft tissue forms. (d) The 
coarsely approximated face comprising approximated facial envelope (grey), and the transformed nose (red) 
and mouth (blue) soft tissue forms. 

7.2.2.2.2 An improved approximated face 

The improved approximated face was recreated by fitting the facial SSM to the 

alignment of approximated soft tissue shapes.  

a)  Facial SSM 

   GPA was applied to landmarks and semilandmarks of every face to generate 

Procrustes shape coordinates in Kendall’s shape space, and then PCA was used to analyse 

the resulting Procrustes shape coordinates to construct the facial SSM, which represents 

the probability distribution of faces as a prior knowledge (Brunton et al., 2014). Thus, 

every face can be represented as follows: 
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                                                  (7.4)                                 
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where ( )F α  represents an arbitrary face within the database, T

1 1 1[ , , , , , , ]n n nF x y z x y z




denotes the average face among samples, and n denotes the number of landmarks and 

semilandmarks. 1 2( , , , )d  α   and 3

1 2( , , , ) n d dU μ μ μ   represent PC scores and 

corresponding orthogonal PCs derived from the covariance matrix, and d represents the 

number of PCs as determined from the cumulative proportion.  

b)  Facial fitting 

   Since the approximated facial envelope and SSM were located in different coordinate 

systems, we transformed the approximated facial envelope to fit the average face of SSM 

based on point correspondences over facial envelope. This was achieved using a method 

comprising three steps: first, we evenly sampled semilandmarks from the dry skull 

envelope. Second, we calculated intersection points from each semilandmark of the skull 

to facial envelope and the deformed average facial envelope (Shui et al., 2021). Finally, 

we recognized the index of every intersection point of the deformed average face then 

selected the vertices from the average face of SSM using the same indices, thereby 

considering the intersection points of the facial envelope and selected points of every face 

with the same indices serving as point correspondences. Afterwards, the coefficients were 

optimized to allow the coarsely approximated face to resemble the alignment of 

approximation as follows:  

   2 22arg m in ( ( ) )s i itp F  
β

βU β
                                       (7.5) 

where 1 2( , , )db b bβ   represents coefficients of the fitted approximated face in the 

facial SSM, itp  and iF


represent the i-th correspondence between the transformed facial 

envelope and the average face of SSM, s U U represents the subset of PCs of SSM and 

denotes the weighting coefficient.  

Then, geometric coordinates of every vertex of the fitting approximation were 

determined as follows: 
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                                                   (7.6) 

To minimize fitting errors and utilize the originally approximated nose and mouth soft 

tissues in place of those derived from the fitted SSM, the Laplacian deformation (Sorkine 

et al., 2004) was used to deform ( )Q β  to the coarsely approximated soft tissues. The 

established point correspondences over facial envelope and landmarks and 

semilandmarks of nose and mouth soft tissues are regarded as fixed constant anchors to 

constrain the deformation. Hence an improved approximated face was generated as 

follows: 
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    E                                        (7.7)    

where 3

ig   and 3

iv   represent the i-th vertex of improved approximation (after 
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deformation) and fitting approximation (before deformation), and i represents Laplacian 

coordinates of every vertex derived from one-ring adjacent vertices, jv and jl represent 

the j-th correspondence of the fitting approximation and the coarsely approximated soft 

tissues. 

7.2.2.3 Assessment of the proposed method 

LOOCV was performed repeatedly with the skull of each sample used once as the 

test data and other samples as the training data to quantify the craniofacial relationships. 

Subsequently, the approximated face of every tested skull was generated by the proposed 

method. We used the resemblance comparison (i.e. geometric difference between 

approximation and actual faces) to test the accuracy. In this process, 

Procrustes superimposition (Gunz & Mitteroecker, 2013) was used to register the 

approximated face and actual face based on the landmark and semilandmarks 

configuration reported in the previous study (Smith et al., 2021). The Procrustes distances 

between landmarks and semilandmarks of the registered approximated and actual faces 

were calculated to quantify gross surface difference. Additionally, a geometric difference 

was calculated by computing the average value of Euclidean distances between dense 

point correspondences established by searching the nearest point between these two faces. 

Small differences would indicate that the approximated face bears a strong resemblance 

to the actual one, whereas large differences would reflect dissimilarity. A colour map of 

Euclidean distances between correspondences of the approximated and actual faces was 

used to recognize the regional surface difference.  

Additionally, a recognition rate (i.e. a comparison of an approximated face to every 

face within the face pool comprising every actual face) was used to evaluate the accuracy. 

A correct match indicates that the approximated face is one of the k most resembled faces 

regarding the actual face through a comparison of the Procrustes distance, called top-k 

rank. The recognition rate (%) was calculated as the percentage of the number of correct 

matches divided by the number of samples.  

7.3 Results 

We analysed craniofacial relationships among modern humans and tested the 

accuracy of the proposed FA method. Afterwards, the proposed method was applied to 

UC 101. 

7.3.1 Quantification of craniofacial relationships among modern humans  

7.3.1.1 FSTDs at landmarks and semilandmarks of modern humans 

FSTDs at landmarks and semilandmarks of modern humans were analysed and 

visualised using the colour map. Figure 7.5a shows average dense FSTDs for all samples. 

The average value of FSTDs was almost 9.29 mm with a standard deviation of almost 
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6.48 mm. Our results indicated that FSTDs were almost distributed symmetrically with 

regard to the mid-sagittal plane. The smallest FSTDs were observed around the frontal 

bone and cranial vault, while the largest FSTDs were found around the lateral maxillary 

bone and mandible (corresponding to cheek tissues), the greater wing of sphenoid bone 

and the base of the occipital bone. Figure 7.5b shows measured orientations (red arrows) 

of landmarks (yellow) located within the mid-sagittal plane and at intersection points 

(blue) on the average face. Line segments (red arrow) between skull landmarks and 

intersection points represent FSTDs.  

 

Figure 7.5 Average FSTDs at landmarks and semilandmarks. (a) A colour map of average FSTDs. (b) 
Measured orientations (red arrows) of landmarks (yellow) located within the mid-sagittal plane and at 
intersection points (blue) on the average face. 

7.3.1.2 Quantification of the nasal relationship  

To explore associations between nasal hard and soft tissue shapes, we performed 2B-

PLS analysis of hard versus soft tissues. During this analysis, results obtained using hard 

tissue landmarks alone were compared to results derived from hard tissue landmarks and 

semilandmarks together in order to determine whether increased use of semilandmarks 

could enhance covariation. A summary of PLS correlation coefficients obtained using the 

two different configurations is presented in Table 7.2. Because only the first three PLS 

dimensions explained more than 10% the total shape variance, RV coefficients of these 

three PLS dimensions and all dimensions were calculated separately. The results showed 

that a weak covariation was found between the two blocks, and use of landmarks and 

semilandmarks together increased PLS and RV correlations (r), while an increase in 

number of PLS dimensions reduced the strength of the RV correlation. 

Table 7.2 The 2B-PLS analysis between nasal hard and soft tissue shapes 

Configurations 

of hard tissues 

PLS axes RV (first three PLS) RV (all the PLS) 

PLS r p value % r p value r p value 

landmarks  

PLS1 0.748 <0.01 32.84%  

0.389 

 

<0.01 

 

0.297 

 

<0.01 PLS2 0.599 <0.01 20.20% 

PLS3 0.634 <0.01 15.37% 

landmarks and 
semilandmarks  

PLS1 0.753 <0.01 34.69%  

0.525 

 

<0.01 

 

0.383 

 

<0.01 PLS2 0.793 <0.01 25.41% 

PLS3 0.645 <0.01 13.25% 
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Figure 7.6a shows scatterplots of nasal hard tissue landmark and semilandmarks 

along the horizontal axis and soft tissue landmark and semilandmarks along the vertical 

axis in PLS1. The red line represents linearly fitted regression of soft tissues (dependent 

variables) onto hard tissues (independent variables) with confidence intervals. Figure 7.6b 

and e display frontal and profile views of two fitted hard and soft tissue shapes (PLS1+ 

and PLS1-), respectively. These fitted shapes were superimposed onto the common 

coordinate system, as shown in Figures 7.6c and f. Figures 7.6d and g show the main 

patterns of movements (red arrows) of landmarks and semilandmarks with PLS1- serving 

as the reference. These results indicate nose soft tissues tend to widen and shorten with 

increasing PLS1 score, whereby PLS1+ exhibits a relatively shorter, wider and more 

protruding rhinion and bridge, a wider and bigger nasal alar, a slightly protruding infratip 

lobule and columella, and a more protruding subnasale compared to PLS1-. Additionally, 

as the PLS score becomes increasingly positive, nasal hard tissues tended to widen and 

shorten and protrude, while the region around the nasal spine becomes smaller and 

contracted. These results indicate that morphological shape changes in hard tissues along 

two axes, including the width along the right-left axis and height along the superior-

inferior axis, are almost identical to soft tissue shape changes.  

 

Figure 7.6 Covariation of PLS1 between nasal hard and soft tissue shapes. (a) Scatterplots of PLS1 axes of 
landmark and semilandmark configurations of nasal hard and soft tissues. The red line represents the 
regression of soft versus hard tissue shapes with confidence intervals. (b) Fitted shapes along the positive 
limit. (c) Superimposition of PLS1+ (peach) and PLS1- (gray) of nasal soft tissues. (d) The movements of 
landmarks and semilandmarks. (e) Fitted shapes along the negative limit. (f) Superimposition of PLS1+ 
(peach) and PLS1- (gray) of nasal hard tissues. (g) The movements of landmarks and semilandmarks. 

We used the LOOCV strategy to test the accuracy of approximated soft tissue shapes 

then calculated statistical descriptive of Procrustes distance, e.g. mean, standard deviation, 

maximum Procrustes distance ratio (maxRatio) and minimum Procrustes distance ratio 

(minRatio), as listed in Table 7.3. Figure 7.7a shows the Procrustes distance between 

approximated and actual soft tissue shapes with green curves using landmark and 

semilandmark configurations as obtained by our method, while the red curve represents 

the result obtained using the partial lest square regression (PLSR) method (Shrimpton et 

al., 2014). Because our method was associated with a smaller geometric deviation, as 

reflected by the lowest descriptive measures, the proposed method may provide an 

improved approximation. However, a great variation in the error ratio shows there is a 

greater error in the approximated nasal soft tissue shapes. Additionally, we examined the 
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effect of hard tissue landmarks alone on the approximation with cyan curves depicting 

results obtained using our method. The results suggest that the proposed method based on 

landmark and semilandmark configuration perform better. Figure 7.7b shows that the 

approximated nose (second left) bears the greatest resemblance to the actual one (left), as 

reflected by the minimum Procrustes distance. The rightmost two figures display a colour 

map of geometric differences between these two shapes, whereby yellow represents a 

smaller difference and red and blue represent greater deviation. Figure 7.7c shows the 

approximation corresponding to the maximum Procrustes distance. These results indicate 

that greatest approximated differences are observed around the nasal alar and tip, rhinion, 

bridge and subnasale. 

Table 7.3 A comparison of the approximated and actual nasal soft tissues based on Procrustes distance  

Methods 
Different configurations of hard tissues Shape  

Mean SD MaxdR MindR 

Our method landmarks and semilandmarks 0.0761 0.0131 1.4627 0.7079 

PLSR landmarks and semilandmarks 0.0842 0.0148 1.6788 0.7485 

Our method landmarks 0.0874 0.0179 2.0323 0.7390 

 
Figure 7.7 Geometric discrepancy of approximated and actual nasal soft tissue shapes. (a) Geometric 
discrepancies of every sample as derived using different approaches and configurations. (b) Comparisons 
of approximated (second left) and actual (left) shapes corresponding to the minimum Procrustes distance. 
(c) Comparison of approximated (second left) and actual (left) shapes corresponding to the maximum 
Procrustes distance. 

7.3.1.3 Quantification of the mouth relationship  

2B-PLS analysis was used to explore covariations of oral hard and soft tissue shapes. 

A summary of PLS correlation coefficients and RV coefficients obtained using two 

different hard tissue configurations is presented in Table 7.4. Due to the fact that only the 

first two PLS dimensions explained more than 10% of the total shape variance, RV 

coefficients of these PLS dimensions and all dimensions were calculated, with this 

analysis revealing that weak correlations exist between the two blocks. Each PLS and RV 

correlation (r) derived from hard tissue landmark and semilandmark configurations was 

greater than those derived from either landmark alone, respectively. However, an increase 

in the number of dimensions led to reduced RV correlations. 

Figure 7.8a shows scatterplots of hard tissue shapes along the horizontal axis and soft 
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tissue shapes along the vertical axis of PLS1. The red line represents linearly fitted 

regression of soft tissues (dependent variables) onto hard tissues (independent variables) 

with confidence intervals. Figures 7.8b and e display frontal and profile views of fitted 

hard and soft tissue shapes (PLS1+ and PLS1-). Figures 7.8c and f show superimposed 

fitted. Figures 7.8d and g illustrate movement (red arrows) of every landmark and 

semilandmark (yellow points) of PLS1- (as the reference) to describe shape changes. 

These results show that mouth soft tissue shapes tend to narrow and enlarge with an 

increasing PLS score, with an increasing PLS1+ associated with an increasingly narrow, 

protruding upper and lower lip, an increasingly protruding and enlarged open mouth and 

an oral fissure located in a more backward position. Meanwhile, an increasingly positive 

PLS score is associated with increasingly narrow and enlarged mouth hard tissue shapes 

and increasingly protruding anterior teeth. Taken together, these results indicate that main 

patterns of hard tissue shape changes were almost always consistent with shape changes 

observed for soft tissue shape. 

Table 7.4 2B-PLS analysis between mouth hard and soft tissue shapes 

Configurations 

of hard tissues 

PLS axes RV (The first two PLS) RV ( all the PLS) 

PLS r p value % r p value r p value 

Landmark 
PLS1 0.633 <0.01 63.83% 

0.374 <0.01 0.271 <0.01 
PLS2 0.704 <0.01 12.91% 

landmarks and 
semilandmarks  

PLS1 0.661 <0.01 56.55% 
0.412 <0.01 0.325 <0.01 

PLS2 0.768 <0.01 21.16% 

 

Figure 7.8 Covariation of PLS1 between mouth hard and soft tissue shapes. (a) Scatterplots of PLS1 axes 
of landmark and semilandmark configurations of hard and soft tissue shapes. The red line represents the 
regression of soft tissue shapes on hard tissues with confidence intervals. (b) Fitted shapes along the positive 
limit. (c) Superimposition of PLS1+ (peach) and PLS1- (gray) shapes. (d) Movement (red row) of every 
landmark and semilandmark of PLS1- (as the reference). (e) Fitted shapes along the negative limit. (f) 
Superimposition of fitted shapes along positive (peach) and negative (gray) limits. (g) Movement (red row) 
of every landmark and semilandmark of PLS1- (as the reference). 

Testing of approximated mouth soft tissues using LOOCV revealed the Procrustes 

distance of approximated and actual soft tissue shapes (Figure 7.9a). Procrustes distances 

between the approximated and actual shapes are reported in Table 7.5. The smaller 

average values and standard deviations of geometric deviations indicate that our method 

may improve approximating results. However, a great variation in the error ratio shows 

there is a greater error in the approximated mouth shapes. 62.5% (n = 30) of samples 
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(obtained using landmarks and semilandmarks together) yielded smaller Procrustes 

distances as compared to results obtained using landmarks alone. The result suggested 

that the use of landmark and semilandmarks improve approximation accuracy. Figure 

7.9b shows the approximated result (middle) that bears the greatest resemblance to the 

actual result (left), as reflected by its minimum Procrustes distance. The right column 

displays the colour map of geometric differences. Figure 7.9c shows regional 

approximation differences corresponding to the maximum Procrustes distance. The 

results indicated that the greatest changes were observed around boundary regions, as 

well as of philtrum, mouth corners, cupid’s bow and lower lip. 

Table 7.5 Comparison of approximated and actual mouth soft tissue shapes based on Procrustes distance 

Methods 
Different configurations of hard 

tissues 

Shape  

Mean SD MaxRatio MinRatio 

Our method landmarks and semilandmarks 0.0684 0.0221 2.0157 0.5731 

PLSR landmarks and semilandmarks 0.0734 0.0226 2.0169 0.5521 

Our method landmarks 0.0714 0.0229 2.1619 0.5715 

 
Figure 7.9 Geometric discrepancy of the approximated and mouth soft tissue shapes. (a) Geometric 
discrepancy of every sample as derived using different approaches and configurations. (b) Comparison of 
approximated (middle) and actual (left) shapes corresponding to the minimum Procrustes distance. (c) 
Comparison of approximated (middle) and actual (left) shapes corresponding to the maximum Procrustes 
distance. 

7.3.2 Evaluation of the proposed method 

We computed the Procrustes distance and geometric difference between the 

approximated and actual faces. Figure 7.10a shows the Procrustes distance of every 

sample, while the average Procrustes distance was 0.0258. The geometric difference 

between the approximated and actual faces was 1.79 mm, while 72.92% (n = 35) of 

samples showed a geometric difference less than 2.0 mm. Figure 7.10b shows the 

approximated face corresponding to the minimum Procrustes distance of 0.0164, in which 

the geometric difference was 1.12 mm. The approximated face closely resembled the 

actual face. The result showed that the approximated face closely resembled the actual 

face. Figure 7.10c shows the approximated face corresponding to the maximum 

Procrustes distance of 0.0433, while geometric difference was 3.28 mm. The greatest 
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shape differences were observed around cheeks, lateral temporal-cheek, nasolabial, 

medial inferior orbital, chin, lateral forehead, ears, and the back of head and neck.  

 
Figure 7.10 A comparison of the approximated and actual faces. (a) Procrustes distance between the 
approximated and actual face of every sample. (b) Comparison of approximated (second left) and actual 
(left) faces corresponding to the smallest deviation. (c) Comparison of approximated (second left) and 
actual (left) faces corresponding to the greatest deviation.  

To present the extent of approximation bias in different regions, the mean and 

standard deviation of Euclidean distance of every vertex among all samples are illustrated 

in Figures 7.11a and b, respectively. The results showed that the greatest differences were 

found around the cheeks, lateral temporal-cheek, ears, and the back of head and neck. 

Figure 7.12 shows eight examples generated by the proposed method.  

 
Figure 7.11 Colour maps of the approximation difference between the approximated and actual faces. (a) 
Mean. (b) Standard deviation. 

Additionally, we calculated the Procrustes distance between the approximated face 

and every face within the face pool. The top-1 recognition rate of 91.67% (n = 44) and 

the top-3 recognition rate of 95.83% (n = 46) demonstrated the effectiveness of the 
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proposed method. Each example includes the tested skull and the actual faces (the 

leftmost two columns), the approximated faced generated by the proposed (middle 

column), and a colour map of geometric deviations (rightmost column) with the 

Procrustes distance.  

 

Figure 7.12 The approximated and actual faces of eight test samples. Each example includes the test skull 
(gray), actual (second column), and approximated (third column) faces, and a color map of geometric 
deviation (rightmost). 

7.3.3 FA of the UC 101 skull 

We approximated the facial appearance of UC 101 using the proposed method. Figure 

7.13a shows the external surface of the approximated facial envelope based on average 

FSTDs. Figure 7.13b shows approximated nose and mouth soft tissue shapes (left) and 

the coarsely approximated face (right). However, it is still lacking eyes and ears, and 

including missing geometry. Figure 7.13c shows the improved approximated face and 

Figure 7.13d displays the profile views of half of the approximated face and UC 101, 

respectively. The result indicates that the main patterns and profile of the approximated 

face is almost consistent with those of UC 101. As compared to modern human faces, the 

approximated face exhibited an elongated shape, a sloped forehead, stronger and wider 

eyebrows and a wider nose bridge.  
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Figure 7.13 Facial approximation of UC 101. (a) External surface of the approximated facial envelope. (b) 
Alignment of approximated soft tissues of each component. (c) Improved approximated face. (d) Frontal 
and profile views of UC 101 and half of the approximated face.   

7.4 Discussion 

Despite recent progress in promoting the accuracy of the approximated face using 

computerized methods, existing methods suffer from several issues, including less 

confident understanding of detailed craniofacial relationships between hard and soft 

tissues and challenges related to the assignment of the learnt relationships to obtain a 

reliable and accurate facial appearance. Unlike the most computerized FA method for 

representing craniofacial relationship in a holistic way (Berar et al., 2011; De Buhan & 

Nardoni, 2018; Jia et al., 2021; Turner et al., 2005), this study has presented a 

computerized method for quantifying the craniofacial relationships based on average 

FSTDs and covariation of landmarks and semilandmarks between nasal and oral hard and 

soft tissues. Furthermore, we applied the learnt relationships to approximate the facial 

envelope, nose and mouth soft tissues and afterwards employed facial SSM to enhance 

the accuracy of approximating results. The smaller resemblance comparison and greater 

recognition rate demonstrate the effectiveness of the proposed method.    

7.4.1 The quantification of craniofacial relationships 

Anatomical modelling of craniofacial relationships plays a significant role in 

predicting facial soft tissues from the dry skull. Over the past decades, average FSTDs at 

landmarks reported in tabular forms provide a promising method to explore craniofacial 

relationships and to generate facial envelope of the dry skull (Hayes et al., 2013; 

Wilkinson, 2010). It facilitates prediction of the shape and size of muscle attachments. 

Thus many studies have collected and updated FSTDs datasets with regard to ethnicity, 

sex, age and nutritional status (Stephan, 2017). Because landmarks cannot capture the 

detailed information of skull morphology, FSTDs at landmarks cannot provide sufficient 
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information to represent detailed craniofacial relationships. Hence, the practitioner may 

determine the muscle structures based on experience and imagination. To reduce 

misinterpretation, FSTDs at landmarks and high-density semilandmarks provide a 

promising means for intuitively explaining the overall craniofacial relationships. Notably, 

the choice of FSTDs affects the ultimate FA results. A previous study highlighted average 

FSTDs at landmarks increased the accuracy of FA using virtual sculpture technique (Lee 

et al., 2015). In this study, a smaller resemblance comparison between approximated and 

actual faces verifies a positive effect of average dense FSTDs on the quantification of 

overall craniofacial relationships and the improvement of FA.  

Facial features are capable of enhancing the realism of the approximated face. The 

conventional anthropomorphic measurements of skulls and faces have been applied to 

examine the relationships (e.g. the corner positions of mouth, nasal tip, inner and outer 

canthi) (Wilkinson, 2010). Nevertheless, the lack of detailed morphology means that the 

facial feature surfaces cannot be directly produced and ambiguous findings in interpreting 

the relationships may negatively affect the accuracy of FA. Recently, a landmark-based 

geometric morphometric method was developed to examine the relationships between 

bony facial features and soft tissue morphologies (Guyomarc'h et al., 2014; Kustár et al., 

2013; Ridel et al., 2020), thereby generating surfaces by deforming the template facial 

features. A previous study indicated that there was a relatively higher correlation in nose 

and moderate correlation in mouth (RV coefficient <0.25) (Guyomarc'h et al., 2014). 

Nevertheless, approximation errors of nose (3.1 mm) and mouth (4.5 mm) were greater. 

A similar result was also found in the approximated nose (~2.7 mm) of South Africans 

(Ridel et al., 2020).  

Based on the analysis of PLS 1 of nose and mouth, we find the shapes of nose (or 

mouth) hard and soft tissues seem to be changing with each other and bony structure 

appears to have an effect on the soft tissues in a nearly linear manner (Figures 7.6 and 

7.8), e.g. a narrow nasal bone and enlarged and protruding anterior teeth are correlated 

with a mouth with narrow and protruding upper and lower lips. Hence, the multiple 

regression can be used to approximate the nasal and moth soft tissues shapes. However, 

the approximation errors are inevitable (Figures 7.7 and 7.9) and hence the approximating 

results need to be used with caution. The potential reason is that soft tissues of facial 

features cannot be totally determined by bone morphology, e.g. nasal protrusion seems 

less likely to be associated with the nasal bone (Kustár et al., 2013). Additionally, since a 

limited number of landmarks may not capture the detailed biological structures, we used 

high-density geometric morphometrics to examine the nose and mouth relationships 

between hard and soft tissues, respectively. The slightly higher correlation (Tables 7.2 and 

7.4) suggests high-density semilandmarks enhance the quantification of craniofacial 

relationships, thereby predicting better nose and mouth shapes with smaller 
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approximation errors (Figures 7.7 and 7.9).  

7.4.2 The computerized FA method 

Based on the learnt craniofacial relationships, we developed a coarse-to-fine strategy 

to approximate the entire facial appearance of the dry skull. Like our previous work (Shui 

et al., 2021), average dense FSTDs with regard to age and sex were assigned to the 

external surface of the skull to generate the facial envelope. The approximated facial 

envelope almost bears a resemblance to the actual one, especially in the regions exhibiting 

small FSTDs, e.g. forehead and scalp. This guarantees morphological consistency 

between the ultimate approximated face and dry skull and prevents overlap of the 

approximated within bony structure. However, geometric differences between the 

approximated and actual faces indicate that the greatest variations were observed around 

cheeks, chin and temporal regions, which are consistent with the results of a previous 

study that demonstrated the FSTDs variations were greatest around these regions (Dong 

et al., 2012). Hence, different choices of FSTDs can be used to generate multiple facial 

appearances of the same skull to assist facial recognitions.  

As noted in previous studies (Guyomarc'h et al., 2014; Kustár et al., 2013; Ridel et 

al., 2020), the regression method was used to predict eyes, nose and mouth morphologies. 

Here we found that the proposed regression method seems to provide a slight smaller 

approximation error than PLSR. The choice of landmarks and semilandmarks also affects 

the approximating results. High-density semilandmarks are capable of improving the 

classification of specimens (Schlager & Rüdell, 2017). In this study, high-density 

semilandmarks seem to better approximate nose and mouth shapes than the use of 

landmarks alone, although the differences between them are relatively small. However, 

the degree of equivalences of semilandmarks among skulls and faces needs to be cautious. 

Additionally, the large errors in approximated nose and mouth morphologies are observed, 

and hence indicate that nose and mouth soft tissues needs to be very carefully produced. 

The approximation might require consideration of the extent of artistic interpretation to 

show detailed facial feature morphologies (Wilkinson, 2010).  

A quantitative assessment enables us to validate the accuracy of the proposed FA 

method and to continue development and improvement, focusing on regions with the 

greatest discrepancies (Miranda et al., 2018). In recent years, the most frequently used 

method for quantitative assessment is to compare the geometric difference between the 

approximated and actual faces (Stephan & Henneberg, 2006). Several protocols, e.g. 

shell-to-shell deviation, surface-to-surface deviation, between the approximated and 

actual faces have been employed in previous studies (Decker et al., 2013; Lee et al., 2012; 

Miranda et al., 2018; Short et al., 2014). To superimpose these two faces together, a 

straightforward method is to perform registration based on the landmark configurations 

(at least three landmarks), thereby visually observing the profile variations and computing 
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the geometric difference. For example, the nasion, and the deepest lateral points of the 

orbits have been used (Decker et al., 2013; Miranda et al., 2018). Because the registration 

results greatly affect the evaluation of the level of approximation errors and resemblance, 

they need to be carefully examined before performing assessment. In this study, the 

landmarks and semilandmarks covering the whole head are used to register the 

approximated and actual faces, and then the gross and regional difference are quantified. 

Additionally, the recognition rate is a preferred way for evaluating the accuracy of 

FA in forensic science (Stephan & Henneberg, 2006). Assessors are asked to select the 

most resembled face within the face pool and then the recognition rates with regard to 

different top ranks are shown (Parks & Monson, 2018). A higher recognition rate indicates 

the effectiveness of the method. However, a few studies have criticized this process as 

being too subjective and dependent upon assessors’ intuition and experience (Li et al., 

2022). A more objective evaluation method needs to be explored. For example, Parks and 

Monson used an automated facial recognition method to evaluate the accuracy of eye 

placement in facial approximations (Parks & Monson, 2016). In this study, a quantitative 

method followed by the resemblance comparison of digital models was developed for 

determining the correct match and afterwards calculating the recognition rate, avoiding 

human intervention. We suggest the same test cases, dataset and evaluation method (e.g. 

resemblance comparison and recognition rate) should be used for validating the level of 

effectiveness of different FA methods, avoiding the dependencies on the dataset. 

A collection of skull and face models of the same person using medical imaging 

technique is the fundamental basis for exploring craniofacial relationships. It is worth 

mentioning that an increasing number of these models is capable of enhancing the 

accuracy of the approximated faces. However, a large acquisition of the whole head to 

learn craniofacial relationships remains challenging taking into account imaging time, 

cost, and health risks. In this study, the proposed method provides a promising means for 

generating the facial appearance from incomplete head CT scan, i.e. the approximated 

soft tissue shape of each component can be obtained from different datasets separately 

and then the entirely approximated face can be recreated by reassembling all these 

approximating results together. It reduces the number and quality of skull and face 

datasets to achieve FA. 

7.4.3 Facial approximation of UC 101 

As described in previous studies (Hayes et al., 2013; Wilkinson, 2010), the first step 

of FA involves an investigation of the UC101 skull to estimate personal information, such 

as age, sex and ethnicity, and examine morphological traits. Such information can 

facilitate the selection of appropriate human populations for obtaining craniofacial 

relationships. Additionally, distorted geometric surfaces and missing regions need to be 

carefully repaired based on the verified evidence, e.g. intact regions on the mirrored side 
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(Gunz et al., 2009; Guyomarc’h et al., 2018; Shui & Gao, 2021). In our previous study 

(Shui et al., 2020a), we restored the missing regions by deforming the reflection of intact 

regions to damaged regions based on manually placed landmarks. 

Modern human faces have consistent patterns of craniofacial relationships and 

muscle structures (shapes, sizes and locations) associated with the bony structures. 

Previous studies used the computer-based FA method (Coutinho Nogueira et al., 2019) 

and virtual sculpture technique (Hamre et al., 2017) to approximate the facial appearance 

of named people in the past based on assigning the craniofacial relationships of modern 

humans to the dry skull. The idea behind these case studies is based on an intuitive method 

for estimating the past in light of present observations. It is acknowledged that 

approximation biases are inevitable (Benazzi et al., 2009; Wilkinson, 2010). However, 

the approximated faces provide new insights in understanding the characteristic features 

of human fossils and enable an exploration of the evolutionary forces driving anatomical 

changes in ancestral humans. In most cases, it is recommended to generate an average 

facial appearance of historical figure in absence of other reliable evidence (Marić et al., 

2020). Hence, the verified craniofacial relationships among human populations is 

regarded as those of UC 101 to approximate facial appearance. 

Since UC 101 exhibits a considerably longer and lower cranium compared with 

modern human skulls, there might be a great approximation error in prediction of facial 

envelope using regression method. In a worse situation, the approximated face is likely 

to penetrate the skull, e.g. nasal bridge and back of the head. Thus, the facial envelope is 

approximated based on average FSTDs instead of the multiple regression method (Berar 

et al., 2011; Jia et al., 2021; Madsen et al., 2018; Shui et al., 2020b). Additionally, the 

nasal and mouth shapes derived from the deformation-based method (Deng et al., 2011; 

Turner et al., 2005) are not regarded as those of UC 101, because individual nasal and 

mouth bony variation affects the facial morphological traits. Hence, the multiple 

regression was used to predict the nose and mouth soft tissues of UC 101, making use of 

skull morphology. However, the accuracy of approximated nasal and mouth shapes 

should be considered with caution. In the absence of the actual face of UC 101, it was not 

possible to quantify the extent of resemblance and the approximation error of modern 

humans is regard as that of UC 101. We suggest that scientifically tested FA methods 

should be used to generate the facial appearance of Homo sapiens and the approximation 

error, and advantages and limitations of the method should be elucidated.  

7.5 Conclusion  

In this study, we developed a computerized FA method for exploring the craniofacial 

relationships between hard and soft tissues and developing a coarse-to-fine strategy for 

generating facial appearances. Average FSTDs at landmarks and semilandmarks are used 

to quantify the overall craniofacial relationship and contribute to enhancing the accuracy 
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of the approximated face. Additionally, nasal and oral hard tissues have an effect on their 

soft tissue shapes separately, and hence the multiple regression can be used to 

approximate the nasal and mouth shapes. However, relatively weak covariations and 

greater approximation errors suggested we need to be cautious about the approximation 

of nose and mouth soft tissue shapes. This method should be useful for a broad range of 

applications in forensic science, anthropology and archaeology. Future studies are need 

to explore the novel regression method to improve the accuracy of the approximated nose 

and mouth soft tissue shapes. 
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Chapter 8 Conclusion and future research 

8.1 General summary 

With the increased accessibility of large collections of 3D meshes, a wide range of 

data and statistical analysis and visualisation methods is now available to researchers, 

facilitating studies of classification and identification. Nevertheless, there are some 

common problems that need to be considered when using these methods (including 

geometric morphometrics) to examine morphological variations. The general aim of the 

thesis is to understand and compare how different semilandmarking approaches impact 

geometric morphometric analysis. To this end, the thesis explores the application of novel 

statistical analysis and visualisation methods to anthropological and archaeological data. 

The thesis is divided into eight chapters (Figure 8.1). The first chapter provides 

background, motivation, research questions, and context, while introducing three specific 

applications that need to be solved in archaeology and anthropology fields. Chapters 2 

and 3 lay the groundwork by elucidating the fundamental principles of geometric 

morphometrics and then investigate an impact of different semilandmarking approaches 

and densities of semilandmarks on morphometric analysis and visualisation, respectively. 

These two chapters provide new insights into selecting the appropriate landmark and 

semilandmark configuration for statistical testing and shape visualisation. Moreover, they 

assess the efficacy of the proposed semilandmarking approach (Shui et al., 2021), which 

combines the Thin-plate splines (TPS) and non-rigid iterative closest points (NICP) 

algorithms. Notably, these two chapters form the theoretical basis of the thesis, providing 

the guidance and conceptual framework to quantify surface assymetry with regard to the 

plane of symmetry from 3D meshes (Chapter 4), restore missing geometry (Chapter 5), 

examine shape difference of artefacts (Chapter 5), establish dense point correspondences 

between dry skulls and modern human skulls (Chapters 6 and 7), and explore craniofacial 

relationships to peform facial approximation (Chapters 6 and 7). 

Bilaterally symmetrical objects are common within the realms of archaeology and 

anthropology. Drawing inspiration from the framework of conventional landmark-based 

morphemic method (Damstra et al., 2012), Chapter 4 presents an innovative landmark-

free method to identify the plane of symmetry from bilaterally symmetrical objects. This 

method facilitates the quantification of asymmetry and production of profile drawings of 

the bronze mask (Chapter 5). Additionally, guided by the principles of the deformation-

based method commonly employed in the field of anthropology, Chapter 5 presents a 

novel virtual restoration method to restore the missing geometry of damaged objects. This 

method enables the warped template model to match the damaged object closely, thereby 

enhancing the restoration performance. These two chapters evolving the asymmetry 

detection and virtual restoration approaches can significantly assist in facial 
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approximation of Homo sapiens (Chapter 6) and archaic humans (Chapter 7). In Chapter 

6, average facial soft tissue thickness depths (FSTDs) of modern humans at landmarks 

and high-density semilandmarks are used to represent craniofacial relationships. This, in 

turn, facilitates the estimation of the general face of an archaic human. Given the notable 

similarities among modern humans and difference from archaic humans, Chapter 7 

extends the computerised approach developed in Chapter 6, in which nose and mouth 

craniofacial relationships between hard and soft tissues are quantified and nose and mouth 

soft tissues of modern humans are estimated. Ultimately, the facial statistical shape model 

is constructed to enhance the accuracy of facial approximation. Chapter 8 summaries the 

key findings and describes the potential for future work. 

 

Figure 8.1 The structure of the thesis 

In summary, the main objectives of the thesis have been threefold:  

 Access how different semilandmarking approaches and densities of semilandmarks 

affect morphometric analysis (Chapter 2) and the visualisation of mean and allometrically 

scaled shapes (Chapter 3).  

 Quantify the extent of gross and regional asymmetry in 3D anthropological and 
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archaeological data (Chapter 4) and then develop an approach for virtual restoration of 

missing geometry based on reflection (Chapter 5). 

 Explore craniofacial relationships between bony structure and facial soft tissues 

among modern humans and then perform facial approximation by applying the learnt 

relationships to the dry skull of archaic humans (Chapter 6) and Homo sapiens (Chapter 

7).  

8.2 Key findings and discussion 

8.2.1 Different semilandmarking approaches and densities  

Landmarks characterized by their adherence to homology and reliable identification 

play a fundamental role in anthropological and archaeological studies. Semilandmarks 

have become increasingly common due to their potential for capturing detailed 

information about anthropological and archaeological materials. However, it is important 

to note that semilandmarks are mainly determined through mathematical algorithms 

based on topographic features, rather than developmental or evolutionary equivalences. 

Consequently, uncertainty about homology affects the semilandmarks and interpretations 

of morphometric analysis results derived from semilandmarks should be made with 

caution. It is crucial to highlight that the several factors influence the selection of a 

semilandmarking approach, such as coverage of landmarks, preservation of material, 

complexity of surface, time available for placement. Recently, landmark-based 

semilandmarking approaches have been presented in the field of anthropology and 

computer science. In these approaches, landmarks provide an initial map of equivalences, 

guiding subsequent mapping. However, a notable gap exists in the systematic 

investigation of the influence of various semilandmarking approaches and densities on 

the comparison of morphometric analysis and the visualization of mean and 

allometrically scaled surfaces. To the best of my knowledge, no previous studies have 

comprehensively addressed this specific aspect. In Chapters 2 and 3, I endeavour to 

answer this question by testing different hypothesis. 

Chapter 2 evaluates the performance of three landmark-based semilandmarking 

approaches within the context of morphometric analysis. These approaches are tested 

using two different datasets with different degrees of variation and complexity. The 

findings of this analysis reveal that different approaches produce different semilandmark 

locations, subsequently leading to diverse statistical outcomes. More specifically, sliding 

TPS and TPS&NICP approaches produce very similar results, especially when landmarks 

are placed over the entire surfaces, such as ape crania and the facial region in head surface 

data. These similarities encompass semilandmark locations, mean landmark and 

semilandmark configurations, centroid sizes, distance matrices, principal components of 

shape variation, and allometrically scaled landmarks and semilandmark configurations. 
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The fundamental reason lies in the shared utilization of a triplet of Thin-plate splines (TPS) 

in both non-rigid registration methods, facilitating an initial deformation between 

template and each specimen. Conversely, semilandmarks generated by LS&ICP exhibit 

discrepancies, especially when analysing the ape crania dataset. The results of 

morphometric analyses conducted using these semilandmarks substantially differ from 

those derived through the application of the two non-rigid registration methods. This 

discrepancy can be attributed to the considerable variation in size between the template 

surface and each individual ape cranium. As a countermeasure, the isotropically scaled 

registration algorithm (Porto et al., 2021; Shui et al., 2016) can be performed as a 

prerequisite step, removing the size difference. In cases where no landmarks are available, 

sliding TPS and TPS&NICP encounter limitations. In such scenarios, ICP or NICP can 

be applied to register the template and each individual specimen while iteratively 

establishing dense point correspondences. However, we need to be cautious about the 

homology of correspondences given the absence of landmarks to guide semilandmarking. 

In anthropology and biology, estimates of mean and allometrically scaled shapes 

often involves warping the template surface using TPS. When using the estimates of mean 

landmarks and high-density semilandmarks, the warping surface would be very similar 

to the true mean surface. However, this approach may introduce inaccuracies and 

incorrect distortions, particularly in regions distant from landmarks, where bending 

energy has less effect (Klingenberg, 2013; Schlager et al., 2018). Consequently, caution 

is warranted in interpreting the estimates of surfaces. To address this problem, landmarks 

should be placed to covere the extire surface of interest and then semilandmarks over 

curves and surfaces, especially in smooth regions, are required to ensure accurate surface 

warping. For example, in Chapter 6, the average skull is deformed to the dry skull based 

on 91 landmarks and 404 semilandmarks together and then NICP are applied to enable 

the warped template to match the dry skull closely, thereby enhancing the accuracy of 

correspondences.  

Additionally, Chapter 3 extends this investigation to examine the effects of three 

different landmark-based semilandmarking approaches and densities of semilandmarks 

on estimates of mean and allometrically scaled surfaces. The results indicate consistent 

findings between surfaces generated by sliding TPS and TPS&NICP approaches, whereas 

surfaces derived from LS&ICP approach exhibit more pronounced discrepancies. This 

concurrence with the findings of the morphometric analyses in Chapter 2 emphasizes the 

importance of employing both statistical tests and visualization analyses for robust 

interpretation. Furthermore, the warping of surfaces using solely landmarks can yield 

surfaces that can be notably different from those created through landmarks and 

semilandmarks. This discrepancy becomes particularly pronounced when the selected 

template surface differs from the mean surface, as observed in the case of the ape cranium. 
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The primary underlying reason is that a limited number of landmarks may be insufficient 

to offer comprehensive information, particularly in cases where specimens display 

complex structures.  

Based on the results of Chapters 2 and 3, a strategic guideline for selecting landmarks 

and semilandmarks is presented for the application of geometric morphometrics. When 

landmarks with regard to the research question are sufficient, such as when they can 

encompass the entire surface of interest, statistical analysis may proceed based solely on 

landmarks. This strategy can mitigate the uncertainties of homology of semilandmarks in 

shape analysis. In instances where semilandmarks are needed to provide detailed 

information, a suitable method for semilandmarking could involve landmark-based non-

rigid registration, such as sliding TPS, TPS&NICP, and the mean surface generated by 

the estimates of landmarks and semilandmarks are regarded as the template surface to 

yield semilandmarks. In terms of visualisation, high-density semilandmarks are 

frequently employed to minimise the template bias in the generation of mean and 

allometrically scaled surfaces. It is important to note that morphometric analysis and 

visualization should complement and maintain consistency with each other. 

8.2.2 Asymmetry detection and virtual restoration 

The recognition of the plane of symmetry plays a crucial role in asymmetry detection 

and virtual restoration. While a variety of computational methods has been developed, 

the diverse applications and contexts make it difficult to use off-the-shelf tools and 

methods. For example, landmark-based approaches are unsuitable for analysing large 

samples. In this context, Chapter 4 presents an effective landmark-free approach to 

approximate the plane of symmetry from nearly bilaterally symmetrical objects by means 

of finding the plane with the minimum geometric differences between the original and 

mirrored meshes. Notably, this method can be applied to both complete objects and partial 

geometries. An essential step involves the automatic extraction of the symmetrical regions, 

such as the nasal bridge, from 3D meshes. This extraction mainly relies on intrinsic 

features that remain invariant under isometric mapping. Upon identifying the symmetric 

regions, the proposed method can improve the accuracy of plane of symmetry. 

Nevertheless, it is important to acknowledge that the process of region growing and 

merging, and plane clustering is computationally demanding and consumes a significant 

amount of time. As a result, the experiments conducted in Chapter 4 primarily focused on 

analysing external surfaces, with interior surfaces omitted. Several factors, such as 

surface complexity, the selection of intrinsic features, and thresholds employed in the 

region growing, can influence the accuracy of extracted symmetrical regions. This, in turn, 

leads to an inaccurate recognition of plane of symmetry. To address this challenge, 

researchers can utilise an interactive tool for manually marking up symmetric regions and 

then identify the plane (Xu et al., 2022). Alternatively, novel methods for recognising 
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symmetrical pairwise correspondences can be developed, which take advantage of both 

extrinsic and intrinsic features (Fotouhi et al., 2021). These strategies provide avenues for 

enhancing the accuracy of symmetrical region identification and ultimately addressing 

the challenge of accurately identifying the symmetry plane. 

By means of reflection of the intact side of damaged objects as a template surface, 

non-rigid deformation, such as TPS, are commonly employed to repair small regions of 

missing geometry. As noted in an earlier study (Schlager et al., 2018), it is worth noting 

that regions situated far from landmarks could potentially yield inaccurate results. 

Chapter 5 presents a hybrid non-rigid deformation to closely align the warped template 

surface with the damaged object, thereby enhancing the accuracy of restoration. In this 

process, an initial warping outcome is achieved using TPS and subsequently Laplacian 

deformation is applied to refine the deformation accuracy with the predicted boundary 

curve as a constraint. These deformation-based methods exhibit effectiveness when 

dealing with small missing regions. However, when handling large missing geometries, 

particularly in cases where a substantial portion of the object is damaged, our method 

seems ineffective. This is because the restored meshes would resemble the chosen 

template surface, and local constraints may fail to offer adequate information to guide 

accurate restoration.  

To tackle this challenge, a statistical shape model offers a promising solution by 

providing a prior knowledge to potentially capture statistical variations and shape 

distributions within a training dataset. As noted in the earlier study (Cootes et al., 1995), 

this method was initially used in computer vision and recently it has been increasingly 

applied in the fields of biology, anthropology and medical surgery (Brunton et al., 2014). 

This is because advancements in data acquisition allow access to a large number of fossil 

specimens. For example, statistical shape models have been employed in pelvic defects 

(Meynen et al., 2020). In repairing missing geometry, the process involves the 

establishment of dense point correspondences between the damaged object and training 

dataset. Subsequently, the registered damaged object is projected onto the shape space to 

compute the coefficients based on the prior distribution. Regularization techniques are 

frequently used to optimise the coefficients, minimising the overfitting and prediction 

errors. Nevertheless, one of the main challenges is the necessity for an extensive and 

diverse dataset used to represent actual shape variability. Therefore, there is an urgent 

need to encourage researchers to openly share and reuse data to construct robust statistical 

shape models, thereby enhancing restoration accuracy.  

8.2.3 Facial approximation 

Computerised facial approximation is a promising means for generating the possible 

facial appearance of a dry skull, significantly reducing subjective interpretation and the 

demands for specialised training in physical modelling skills. Recent studies (Gietzen et 
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al., 2019; Li et al., 2022) have demonstrated these methods can produce repeatable and 

objective results. Notably, achieving this objective involves two critical aspects: the 

quantification of craniofacial relationships between bony structures and facial soft tissues 

of modern humans, and the assignment of the learnt relationships to the dry skull. Chapter 

6 presents a novel computerised facial approximation method for archaic humans based 

on average FSTDs of modern humans. Building upon this analysis, Chapter 7 focuses on 

quantification of the relationships between nasal and oral hard and soft tissues using 

geometric morphometrics and then develops a novel computerised approach for Homo 

sapiens. 

In the process of facial approximation, the main challenges include the poor 

preservation of human fossils and the lack of anatomical knowledge of their craniofacial 

relationships. Thus, the prerequisite step is the examination and restoration of the dry 

skull. Since the mandibles of archaic humans are often not found, a common task involves 

locating a well-preserved mandible from the same species that fits well with the cranium. 

In such situations, conventional deformation-based (Chapters 4 and 5) or statistical shape 

model approaches cannot be applied. As a result, the restoration of archaic human skulls 

presents unique challenges. Mandibles of similar age, such as Montmaurin-La Niche 

(Vialet et al., 2018), were not available, therefore two available mandibles, Tabun 2 and 

Mauer 1, were instead used with the Jinniushan (JNS) 1 cranium in Chapter 6. Notably, 

the ages of these two mandibles differ significantly from JNS1, potentially leading to 

incorrect bony restoration and a less confident approximation result. To select the most 

suitable mandible, several factors, such as temporal proximity, regional relevance, and 

the available and quality of the fossil material, should be taken into account. In the future, 

I will endeavour to gather different mandible models and then reproduce and reassess the 

facial appearance of JNS1.  

It is important to note that skull geometry plays a significant role in determining 

facial structure. Bony structures influence the positions and proportions of facial soft 

tissues and different regions of the skull, such as the size and shape of the orbits, nasal 

aperture, zygomatic arches, and mandible, can provide valuable clues about facial 

features. To examine how skull morphology affects soft tissues, Chapter 6 computes the 

geometric differences between two approximated faces that are recreated using Tabun 2 

and Mauer 1, respectively. The greatest changes can be observed around the lower face. 

Specifically, the approximation of JNS 1 using Mauer 1 has a wider face and a more 

robust chin compared to the approximation using Tabun 2. This result is consistent with 

geometric difference between these two mandibles. When different mandibles are used to 

fit with the JNS 1 cranium, the approximated face varies. Furthermore, Chapter 7 

examines the extent to which nasal and oral hard tissues influence their soft tissues. The 

results indicate that overall changes in nose and mouth soft tissues appear to correlate 
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with those of the hard tissues. For instance, narrow and enlarged oral hard tissue shapes 

with increasingly protruding anterior teeth are correlated with a mouth having narrow and 

protruding upper and lower lips. However, approximation errors mean that we need to be 

cautious about the accuracy of the approximated nose and mouth soft tissue shapes. 

Therefore, artistic interpretation and imagination may require consideration as 

approaches to enhance reconstructions of facial features.  

The accuracy of facial approximation is influenced by the learnt craniofacial 

relationships, such as average FSTDs at landmarks and semilandmarks. In practical 

applications, average FSTDs with regard to age, sex, body mass index (BMI), ethnicity 

have been used for facial approximation of modern humans. The results of Chapters 6 

and 7 demonstrate that average FSTDs at landmarks and semilandmarks contribute to 

raising the accuracy of the approximated face. However, the limited sample size of 

modern humans may lead to imprecise descriptive statistics of FSTDs and statistical 

issues in regression of soft on hard tissues. To obtain more accurate craniofacial 

relationships, a comprehensive skull and face model dataset taking into account age, sex, 

BMI, ethnicity is needed. Given that facial morphology can be influenced by evolutionary, 

genetic and environmental factors, the relationship between soft and hard tissues of 

archaic humans probably differs significantly from that of modern humans. Hence, the 

prediction of facial appearance of archaic humans poses a significant challenge compared 

to Homo sapiens. To enhance the accuracy of prediction in archaic humans, an intriguing 

solution is to explore whether chimpanzee FSTDs can perform well for JNS 1 which 

might share more similarities with chimpanzees than with modern humans.  

A previous study (Hayes et al., 2013) suggests that chimpanzee FSTDs are 

approximately half of modern humans in the area of the cheeks, resulting in production 

of a thinner mid-face. If chimpanzees FSTDs at landmarks and semilandmarks are 

available, I will endeavour to reproduce and reassess the facial appearance of JNS1. In 

Chapter 6, average FSTDs of modern humans are regarded as those of JNS 1, and the 

warped facial features of the average human face are applied to JNS1. Approximation 

errors are inevitable and we need to be cautious about the accuracy of approximated facial 

features. Leveraging knowledge from comparative anatomy, biomechanics, and 

evolutionary biology might contribute to improving accuracy of the approximated face. 

Moreover, in the application of the anatomically modern human fossils, whose 

craniofacial relationships closely resemble those of modern humans, the approximated 

faces should be more confidences than those of archaic humans.  

The approximated faces provide new insights into the characteristic features of 

human fossils and the evolutionary forces driving anatomical changes in ancestral 

humans. Based on the average FSTDs of modern humans, Chapters 6 and 7 recreate the 

approximated faces of the Upper cave (UC) 101 and JNS 1 skulls, respectively. The 
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approximated face of UC 101 skull exhibits an elongated shape, a sloped forehead, and 

stronger and wider eyebrows. Conversely, the approximated face of JNS 1 presents a 

relatively lower forehead, robust eyebrows, a protruding, wider, and elongated middle 

and upper face. Compared to the general profile of the approximated face of JNS 1, the 

approximated face of UC 101 appears plausible and lifelike, and bears a stronger 

resemblance to modern human faces. This distinction arises from the impact of skull 

morphology on the resulting approximated face. For instance, UC 101 more closely 

resemble modern human skulls, whereas JNS 1 exhibits distinct shapes and features.  

8.3 Future research  

Landmarks serve as a crucial foundation of comparison of anthropological specimens. 

Often they are used to guide and control semilandmarking, i.e. by controlling the 

deformation of the template surface when marking up semilandmarks. However, manual 

placement of landmarks consumes time and requires anatomical knowledge. They are 

also prone to error, particularly in regions lacking distinctive features among a substantial 

collection of specimens. Thus, an automated landmarking approach is derisible. Although 

there are different strategies and methods for automatically estimating the locations of 

landmarks among specimens (e.g. human heads), these methods seem not to work well 

for all surfaces, especially in complex structures. For instance, the deformation-based 

methods mainly rely on the warping results and topographical features, and the Active 

shape model constructed by the Principal component analysis algorithm may not capture 

intricate shape variations and be sensitive to the initial estimate of the shape. Future work 

should consider the use of an end-to-end deep learning approach for landmark detection 

based on a small number of specimens with expertly placed landmarks as a training 

dataset.  

Landmarks and high-density semilandmarks (or dense point correspondences) have 

been used to estimate the mean and allometrically scaled shapes, predict missing 

geometry and accomplish facial approximation. One concern is to assess the estimating 

results by means of visually interpreting the local difference between surfaces (e.g. the 

difference in estimates of mean shapes generated by different approaches, and 

resemblance similarity between the approximated and actual faces). Colour maps of 

geometric similarity between the aligned two surfaces are often used to quantify the 

regional difference in many different applications. However, the alignment results are 

extremely sensitive to the choice of landmarks and semilandmarks, thereby leading to 

inevitably different results. In my thesis, registration free colour maps of the distribution 

of surface area differences between equivalent triangles (Chapter 3) and the difference in 

FSTDs between the approximated and template faces (Chapter 6) are visualised. However, 

this method cannot work when the generated surfaces have different vertices and mesh 

topologies. Thus, novel visualisation methods still need to be developed and applied to 
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visualise regional differences.  

Facial approximation has wide applications in forensic science, anthropology and 

archaeology. The quantification of craniofacial relationships is an important and 

inevitable step in facial approximation. In the present study, average FSTDs at landmarks 

and semilandmarks are used to quantify the overall relationships, and the results of partial 

least squares (PLS) suggest there seems to be a linear relationship between nasal (and 

oral) hard and soft tissues separately. However, multiple linear regression appears not to 

generate more accurate nose and mouth soft tissue shapes from bony structure alone. 

Deep learning with artificial neural networks is a powerful tool which has been 

increasingly applied in many tasks, achieving superior accuracy when trained a large 

dataset. Further work should increase the collection of skull and face data and design 

novel neural network models to enhance the approximation accuracy of facial features. 
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