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Abstract

This thesis investigates the modelling and prediction of macroeconomic and financial
time series by using S-vine models and vt-S-vine models. The first contribution of this
thesis is to demonstrate that non-linear and non-Gaussian models in the class of S-vine
processes can fit better than autoregressive moving average (ARMA) models for cer-
tain types of macroeconomic time series, such as inflation rates. The S-vine processes
generalize the class of Gaussian ARMA models by modelling dependencies using pair
copulas and by modelling marginal behaviour using arbitrary continuous distributions.
The second part of this thesis concerns the modelling and forecasting the volatile finan-
cial returns series by vt-S-vine models. Returns are traditionally estimated by using
the generalized autoregressive conditionally heteroscedastic (GARCH) type processes
or variants. We show that the vt-S-vine models can compete with GARCH processes in
many cases. In order to reveal the statistical properties and structures of GARCH type
processes, the vt-S-vine models are applied to replicate GARCH type processes. The
best combinations of margins and pair copulas in vt-S-vines for replicating GARCH
type processes are determined. The higher-order vt-S-vine processes with a sequence of
mixed pair copulas can mimic GARCH type processes more precisely than first-order
or second-order S-vine with t copulas as proposed by previous studies. The final part
of this thesis is devoted to the application of vt-S-vines in the trading book of banks.
The value-at-risk (VaR) and the VaR exceedance probabilities are estimated in vt-S-
vine processes, where the best quantile estimation methods are presented in each case.
Surprisingly, the quantile estimator that is closest on average to the true value of the
quantile of a distribution may not be the one that yields the most accurate value for the
exceedance probability. Vt-S-vines are very flexible and promising models for stationary
macroeconomic, financial and banking time series, and deserve to be widely used and
rapidly developed in future.
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Chapter 1

Introduction

Time series data, which are data that have been collected over a period of time on one
or more variables, are one of the most widely employed data in quantitative analysis
of financial problems. Time series data are associated with a particular frequency of
observation or frequency of collection of data points. Generally, all data used in a
model should be of the same frequency of observation. For macroeconomic data, the
daily, weekly, monthly or quarterly observations are commonly used. The frequency of
financial data can be intra-daily and higher. In many studies in finance, the starting
point is a time series of prices or rates, although interest centres on the returns. For a
number of statistical reasons and practical applications, the academic finance literature
generally employs the log-return formulation (which is the difference between log prices
of this period’s price and the previous period’s price).

The serial dependence of financial returns can be captured by copula models. The
applications of copulas and their variations in financial time series, such as vine copulas,
have recently attracted the attention of academics and practitioners. There are large
and growing literature on copula-based models for economic and financial time series;
details can found in the review written by Patton [2012]. The copula-based methods can
study separately the marginal distributions and the dependence structures that links
these distributions to construct a joint distribution. This property gives a greater degree
of flexibility in defining and estimating the model, which allows for more selections for
the researchers.

1.1 Statistical models for macroeconomic data

Univariate time series models are a class of specifications where one tries to model and
forecast financial and economic variables using the information contained their own past
values and possibly current and past values of an error term. The time series models
are designed to capture the empirically relevant features of the observed data that arise

1



2 Chapter 1. Introduction

from a variety of different structural models. A widely used class of time series models
is the family of ARIMA models, which were proposed by Box et al. [1970].

ARIMA models are classic models for estimating and predicting macroeconomic
data. There are some variants of ARIMA models developed to describe the fea-
tures in macroeconomic data, such as seasonal autoregressive integrated moving-average
(SARIMA) model for macroeconomics time series with seasonality, autoregressive frac-
tionally integrated moving-average (ARFIMA) model for long-memory macroeconomic
data. Furthermore, the decomposition of economic time series into trend and cyclical
components plays an important role in much of macroeconomics, which can remove the
trend or seasonality in the original data and use the ARMA processes to model the
remaining stationary time series. More details and references of modeling the macroe-
conomic data are presented in Chapter 4.

The family of classical ARMA processes is widely used in many traditional appli-
cations of time series analysis. These processes describe the linear nature of macroeco-
nomic times series, where the model is linear in the parameters, so there is one parameter
multiplied by each variable in the model. However, the ARMA processes do not allow
for the volatility in data and many relationships in finance are intrinsically non-linear.
They can model the macroeconomic data accurately, since the macroeconomic data
usually have stable volatility and linear structures. However, the empirical financial
data usually exhibit changing volatility, which is difficult to be modelled by the family
of ARMA processes. In this case, the GARCH type models can be used.

1.2 Statistical models for volatile financial returns

For a single time series of financial returns, there are stylized facts existing, such as the
serial dependence of the return series and their absolute values, volatility clustering or
their heavy tails. The stylized facts of financial time series are based on the empirical
observations and their inferences. The stylized facts are typically applied to time series
of daily log-returns and often continue to hold in the longer-interval series, such as
weekly or monthly returns. It is important to capture these properties of financial
returns accurately in empirical application, not only for financial institutions, but also
for banking regulators. The widely applied univariate time series models that can mimic
the empirical properties of financial returns includes autoregressive integrated moving-
average (ARIMA) processes, generalized autoregressive conditionally heteroscedastic
(GARCH) processes and their variations. The GARCH-type processes can capture the
important phenomenon of volatility, which is very crucial for financial returns. The
combinations of the ARMA and GARCH processes, such as ARMA-GARCH models
are also widely applied in industry.

Linear structural models such as ARMA model are unable to explain a number of
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important features common to much financial data, including:

• Leptokurtosis, which is the tendency for financial asset returns to have distribu-
tions that present heavy tails and excess peakness at the mean.

• Volatility clustering, which is the tendency for volatility in financial markets to
appear in bunches. Therefore, large returns are expected to follow large returns.
Correspondingly, small returns are followed by small returns.

• Leverage effects, which is the tendency for volatility to rise more following a large
price fall than following a price rise of the same magnitude.

The details can be found in Cuthbertson [2004].

GARCH models are the most popular non-linear financial models used for modelling
and predicting volatility. They are non-linear in variance. The GARCH models, which
are extensions of autoregressive conditionally heteroscedastic (ARCH) models proposed
by Engle [1982], are developed by Bollerslev [1986]. The GARCH models allows the
conditional variance to be dependent on the previous lagged squared values. Generally,
the GARCH processes can capture the volatility clustering features in financial returns.

There are a huge number of extensions and variants of the basic GARCH models that
have been proposed. For example, the asymmetric GARCH models, including GJR-
GARCH proposed by Glosten et al. [1993], or the exponential GARCH (EGARCH)
introduced by Nelson [1991]. The two types of extensions of GARCH processes can
describe the leverage effects more precisely. It is argued that a negative shock to a
financial time series can cause volatility to rise by more than a positive shock of the
same magnitude. In the case of equity returns such asymmetries are typically attributed
to leverage effects, which can be modelled well by asymmetric GARCH processes.

The GARCH-type models can also be combined with ARMA model, written as
ARMA-GARCH models, which are the ARMA models with GARCH errors. These give
us a flexible family of ARMA models with GARCH errors that combines the features
of both model classes.

The accuracy and efficiency of GARCH type processes in modelling the volatility of
financial returns make them very popular in finance, insurance, banks and regulators.
However, the marginal distributions of GARCH-type models are unknown. The option
of choosing the innovation distributions allow the flexibility of the GARCH models,
but the connection between the innovation distributions of GARCH processes and their
marginal distributions is not clear so far. Moreover, when setting the regulation for risk
measures, such as value-at-risk (VaR), it is difficult to calculate the VaR in GARCH
type models, although we can obtain the approximate VaR by Monte Carlo simulation.
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1.3 Copula-based methods

The copula-based methods allow the researchers to specify the models for marginal
distributions separately from the joint distributions modelling the dependence structures
of the transformed time series that follow a uniformly distributed copula process. Unlike
the GARCH-type processes, the marginal distributions and the joint distributions are
specified, which means we clearly understand the different parts of the models. This
property gives more possible combinations of the models. We can choose different
margins and copula processes.

There are also extensions and variants of copula-based methods. For the financial
time series with volatility, the v-transformation can be combined with copula-based
methods to describe the volatility. The definition of v-transformation will be introduced
in Chapter 5. The v-transformation is developed in McNeil [2020], who proposed the
models are constructed to describe both stochastic volatility in the magnitude of price
movements and serial correlation in their directions.

1.3.1 Vine copulas

Among a vast number of variants of copulas, vine copulas proposed by Joe [1996] are
widely applied and very popular, because of their flexible structures which allow for
the combination of distinctive bivariate copulas in one model. There are many different
types of vine structures, such as D-vines, C-vines or R-vines. The type of vine is
selected according to the structure of data. The references to vine copulas can be found
in Chapter 3.

For financial time series, the D-vine copulas are widely applied, since D-vine struc-
ture corresponds well to the time order of each values in time series. D-vine copulas
belong to the Markov process. Chen and Fan [2006] investigate the first-order Markov
models which are special cases of D-vines in modelling dependence of time series. The
research of D-vine copulas extends to higher-order Markov models by Ibragimov [2009].
Nikoloulopoulos et al. [2012] proposed to apply vine copulas with asymmetric tail de-
pendence for financial return data. Other references and properties of D-vine copulas
and their variants will be discussed in Chapter 3.

1.4 Outline of the thesis

This thesis consists of three main topics. These topics are mainly around the S-vine
copulas, which are the stationary D-vine copulas, including their theory, properties, ap-
plications and also their variants for modelling the volatile financial returns. Chapter 2
introduces the fundamental concepts and properties of copulas and vine copulas. Mean-
while, the candidate marginal distributions and bivariate copulas used in S-vine models
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are discussed. The methodology of using the S-vine processes to model and predict
economic and financial time series is described in Chapter 3, where the simplification of
the S-vine models, which reduces the number of parameters remarkably, is explained. In
addition, Chapter 3 is also devoted to presenting the techniques and methods employed
to improve the partial autocorrelation estimation in vine copulas, such as the rotation
of bivariate copulas when the dependence is negative.

Chapter 4 develops the first topic of this thesis, which is applying the S-vine processes
in modelling and predicting inflation rates, which embodies the application of S-vine
models to macroeconomic time series. This chapter discusses the methods used to adjust
raw data to stationary time series in the first part. The results of fitting different S-
vine models to the adjusted inflation rates are compared and the prediction results are
assessed via the quantile score methods. Chapter 4 is also devoted to the application
of both parametric and semi-parametric S-vine models, so as to reveal the influence of
marginal distributions.

The second topic is discussed from Chapter 5 to Chapter 7. In Chapter 5, we
state the definition and properties of vt-S-vine models, which are the combinations of
v-transformation and S-vine models. In order to explore if the vt-S-vine models can
model the volatility of GARCH processes, we mimic GARCH processes by vt-S-vines in
Chapter 6. The one-step prediction for GARCH processes is exhibited in Chapter 6 as
well. Chapter 7 investigate the empirical study of vt-S-vines, where the volatile returns
series are modelled and forecasted by selected vt-S-vine models.

The third topic concerns the distribution of quantile exceedances in volatile data
generated from vt-S-vine models, which is in the eighth chapter. This has an application
to the "traffic light system" used in the regulation of banks’ trading books. Chapter
8 is concerned with the VaR exceedances and VaR estimations from vt-S-vine models.
In this chapter, we also investigate six possible quantile estimation methods used by
banks and regulators. The objective is to find the most suitable methods in different
cases for vt-S-vine processes. The distributions of exceedances from vt-S-vine models
are also studied in Chapter 8.

1.4.1 New material in the thesis

The background knowledge and fundamental concepts of copulas and S-vine copulas in
Chapters 2 and 3 are based on existing literature by a number of authors, as cited in
these chapters. Chapter 5 is a review of the concepts and properties of v-transforms
underpinning the models used in Chapter 6 and 7; this is also based on published
literature. Except for the contents referred to above, the simulations, estimations,
predictions and applications of these models and other analyses and explorations of
S-vine/vt-S-vine models are new.
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Chapter 2

Copulas

This chapter introduces some terminology and concepts in dependence modelling with
copulas. We focus on copulas and their properties, especially vine copulas. The key
contents and certain properties of copulas in this chapter are based on Chapter 7 in
McNeil et al. [2015]. Most of the definitions and expressions of vine copulas in Section
2.6 are referred in Joe [2014].

2.1 Dependence modelling

Suppose we have a sample of size n consisting of vector xi = (xi1, ..., xid)
⊤ for i = 1, ..., n.

The xi are independent and identically distributed (i.i.d) realizations of a random vector
X = (X1, ..., Xd)

⊤.

There are two components for dependence modelling with copulas. The first is
choosing the univariate model for each of the variables X1, ..., Xd, which is referred
to as marginal distribution in this chapter. The second is the copula models for the
dependence of the d variables.

Generally, the choices for the univariate parametric families in marginal distribution
estimation depend on features such as modality, tail weight and asymmetry. Details are
discussed in Section 2.2.

After univariate models for each variable have been chosen, copulas can be applied
to describe the different types of dependence structure, such as positive or negative
dependence, and conditional independence. Also, copulas can embody different joint tail
behaviours. The shape and tail behaviour of the density are the reference for selection
of parametric copula families and the selection of parametric univariate families.

One of the challenges in copula construction is extending the many available bi-
variate copulas to multivariate models in order to obtain flexible dependence. Vine
copulas are one of the approaches used to express multivariate dependence in terms of
combinations of bivariate copula sequences. The details are discussed in Section 2.6.

7



8 Chapter 2. Copulas

2.2 Marginal distributions

Before using the copula to describe the dependence between different variables, the
marginal distribution is applied to transfer data to uniform distribution in each dimen-
sion.

Proposition 1 (Probability Transform). If X has distribution function F , where F is
continuous univariate distribution function, then F (X) ∼ U(0, 1).

Proposition 1 is referred to in Proposition 7.2 of McNeil et al. [2015]. The values
transformed from probability transform is probability integral transformation (PIT)
values. The marginal distributions develop pseudo-observations of the original data
as the inputs for copulas. In practice, we do not know F and have to estimate it
with model F̂ . The pseudo observations can be written as: Uij = F̂j(xij), where
j = 1, ..., d, i = 1, ..., n. Hence, the selection of marginal distributions exerts influence
on the estimation of copulas. The marginal distributions developing PIT values that
can pass uniformity tests are chosen in the first step.

There are two main choices of marginal model, parametric and non-parametric mar-
gins. The parametric margins are the distributions with parameters, such as normal
distribution and student t distribution. The non-parametric margins are usually the
empirical distribution function. The two types of margins are both applied in the esti-
mation process.

Many kinds of data found in finance usually have heavier tails than normal distri-
bution; see Ibragimov [2004] for details. There are a number of studies documented in
which the distributions of macroeconomics do not follow the normal distribution, includ-
ing Acemoglu et al. [2017] and Fagiolo et al. [2008]. A recent study, Bladt and McNeil
[2022] propose that skewed student distribution from the family of skewed distributions
referred to in Fernández and Steel [1998] are more flexible than normal distribution.
In order to find the distributions that can describe tails better and transform data to
uniform distribution, the skewed distributions are considered in this thesis.

2.3 Copulas

Definition 2.3.1 (copula). A d-dimensional copula is a distribution function on [0, 1]d

with standard uniform marginal distributions.

Theorem 1 (Sklar 1959). Let F be a joint distribution function with margins F1, ..., Fd.
Then there exists a copula C : [0, 1]d → [0, 1] such that, for all x1, ..., xd in R̄ = [−∞,∞],

F (x1, ..., xd) = C(F1(x1), ..., Fd(xd)).
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If the marginal distributions F are continuous, then C is unique; otherwise C is
uniquely determined on RanF1 ×RanF2 × · · · ×RanFd, where RanFi = Fi(R̄) denotes
the range of Fi. Conversely, if C is a copula and F1, ..., Fd are univariate distribution
functions, then the function F defined in Sklar [1959] is a joint distribution function
with marginal distributions F1, ..., Fd; see Chapter 7.1 of McNeil et al. [2015] for proofs.
The copula of a random vector (X1, ..., Xd) is the distribution functions of (U1, ..., Ud)

where Ui = Fi(Xi) for all i, i.e. PIT transformation is applied to each variable.
If the marginal distributions F (x) are continuous, we use f(x1, ..., xd) to express the

density function of F (x1, ..., xd).Then, the density function can be written as:

f(x1, x2, ..., xd) = c{F1(x1), ..., Fd(xd)} ×
d∏

k=1

fk(xk) for all x ∈ Rd,

where c is the density of C, called copula density, and f1, ..., fd are the marginal densities.
The expression of copula density is given in (7.18) in McNeil et al. [2015],

c(u1, ..., ud) =
∂C(u1, ..., ud)

∂u1, ..., ∂ud
. (2.1)

Note that not all the copulas have joint densities. The expression 2.1 is the copula
density for copulas which are continuous in [0, 1]d. The copula densities are calculated
sometimes for fitting copulas to data by the maximum likelihood estimation method.

Proposition 2. Let (X1, ..., Xd) be a random vector with continuous margins and copula
C and let T1, ..., Td be strictly increasing functions. Then, C is the unique copula of
(T1(X1), ..., Td(Xd)) as well.

The proof of Proposition 2 is demonstrated in Proposition 7.7 in McNeil et al. [2015].
If C is the distribution function of (U1, ..., Ud) then the distribution function of

(1−U1, ..., 1−Ud) is called the survival copula C. The survival copula is an application
of Sklar’s identity to multivariate survival functions, proposed in Sklar [1959]. In the
case where F1, ..., Fd are continuous this identity can be written by

F̄ (x1, ..., xd) = P(X1 > x1, ..., Xd > xd)

= P(1− F1(x1) ≤ F̄1(x1), ..., 1− Fd(xd) ≤ F̄d(xd))

= Ĉ(F̄1(x1), ..., F̄d(xd)),

(2.2)

where F̄i = 1 − Fi is the marginal survival function and Ĉ is the survival copula.
Therefore, Equation 2.2 follows by writing Ĉ for the distribution function 1 − U , where
U := (F1(X1), ..., Fd(Xd))

⊤ and 1 is the vector of ones in Rd.
Another important property of copulas is radial symmetry.

Definition 2.3.2. A random vector X (or its distribution function) is radially sym-



10 Chapter 2. Copulas

metric about a point a if (X − a) and (a−X) have the same distribution.

Chapter 7.1.5 in McNeil et al. [2015] points out that an elliptical random vector
X ∼ Ed(µ,Σ, ψ) is radially symmetric about µ. If U has a copula C as its distribution
function, the only possible symmetric centre should be (0.5, ..., 0.5), so C is radially
symmetric if

(U1 − 0.5, ..., Ud − 0.5)
d
= (0.5− U1, ..., 0.5− Ud) ⇔ U

d
= 1 − U . (2.3)

Therefore, if a copula C is radially symmetric, its survival copula Ĉ is equal to itself.
In other words, the 180 degree rotation of a radially symmetric copula C has exactly
the same expression as C.

Definition 2.3.3 (Exchangeability). A random vector X is exchangeable if (X1, ..., Xd)

has the same distribution as (XΠ(1), ..., XΠ(d)) for any permutation (Π(1), ...,Π(d)) of
(1, ..., d).

If a copula C is an exchangeable copula of an exchangeable random vector of uniform
variates U , it must satisfy that

C(u1, ..., ud) = C(uΠ(1), ..., uΠ(1)) (2.4)

for possible permutations; details may be found in Definition 7.16 in McNeil et al. [2015].

The conditional distributions of copulas are useful concepts of copulas. We focus on
the bivariate copulas.

Definition 2.3.4 (Conditional distributions of copulas). If (U1, U2) has copula C, then
its conditional distribution is

CU2|U1
(u2|u1) = P(U2 ≤ u2|U1 = u1) =

∂

∂u1
C(u1, u2), (2.5)

where the partial derivative exists almost everywhere (see Nelsen [2007] for details).

The conditional distribution is a distribution on the interval [0, 1], which is only
a uniform distribution when C is the independence copula. According to Definition
2.3.4 and the concept of exchangeability, if the distribution function of (U1, U2) is an
exchangeable bivariate copula, then

P(U2 ≤ u2|U1 = u1) = P(U1 ≤ u2|U2 = u1), (2.6)

which implies symmetry.
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2.3.1 Tail dependence

Tail dependence is a measure of strength of dependence in the joint lower or joint upper
tail of a multivariate distribution (Chapter 2.13 in Joe [2014]). This section focuses on
the tail dependence of bivariate copulas.

The tail dependence coefficient is a measure of the strength of dependence in the tails
of bivariate distributions. It is a concept of extremal dependence. The tail dependence
coefficient is derived via a conditional probability. Hence, the range of the coefficient is
between 0 and 1.

Assuming there are two random variables X1 and X2 with marginal distributions
F1 and F2, the coefficient of upper tail dependence of X1 and X2 can be written as

λU := λU (X1, X2) = lim
q→1−

P(X2 > F−1
2 (q)|X1 > F−1

1 (q)),

where q is the quantile, provided λU ∈ [0, 1] exists. Hence, the upper tail dependence
is the probability that X2 exceeds its q-quantile under the condition that X1 exceeds
its q-quantile. If λu ∈ (0, 1], then we can say there is an upper tail dependence or
extremal dependence of X1 and X2 in the upper tail; if λU = 0, then X1 and X2

are asymptotically independent in the upper tail. Similarly, the lower tail dependence
coefficient can be written as

λL := λL(X1, X2) = lim
q→0+

P(X2 ≤ F−1
2 (q)|X1 ≤ F−1

1 (q)),

provided λL ∈ [0, 1] exists.

If F1 and F2 are continuous, then we can obtain simple expressions for λU and λL in
terms of the unique copula C of the bivariate distribution. The lower tail dependence
can be written as

λL = lim
q→0+

C(q, q)

q
. (2.7)

Copula C has lower tail dependence if λL ∈ (0, 1] and no lower tail dependence when
λL = 0. For upper tail dependence, the coefficient is

λU = lim
q→0+

Ĉ(q, q)

q
, (2.8)

where Ĉ is the survival copula of C. Copula C has upper tail dependence if λU ∈ (0, 1]

and no upper tail dependence when λU = 0. For radially symmetric copulas, the
survival copula is equal to the copula. Hence, the upper and lower tail dependence are
equal for radially symmetric copulas.

The concepts of tail dependence of bivariate copulas can be extended to multivariate
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copulas, but this is beyond the scope of this thesis. Some details can be found in Chapter
2.13 in Joe [2014].

2.3.2 Rank correlations

Rank correlations are measures of dependence that depend only on the copula of a
bivariate distribution and not on the marginal distributions. The rank correlation coef-
ficients calculated from data only concern the ordering of the sample for each variable
and not the actual numerical values.

The main reason for considering the rank correlations is that they can be used to
calibrate copulas to empirical data. Generally, there are two main varieties of rank
correlation, Kendall’s and Spearman’s. Both of them can be taken as a measure of
concordance for bivariate random vectors. Assuming there are two points in R2, (x1, x2)
and (x̃1, x̃2), they are concordant if (x1 − x̃1)(x2 − x̃2) > 0 and they are discordant if
(x1 − x̃1)(x2 − x̃2) < 0. This thesis applies the Kendall’s tau to describe the rank
correlations between variables.

Assume there are two random vectors (X1, X2) and (X̃1, X̃2), which are indepen-
dent of each other and have exactly the same distribution. If X1 and X2 have the same
changing trend, then the probability of concordance is expected to be high compared
to the probability of discordance. Conversely, if X1 and X2 have the opposite changing
trend, the conclusion is expected to be opposite. Moreover, the probability of concor-
dance will be 0.5, which is the same as the probability of discordance when X1 and X2

are independent. Hence, the expression of Kendall’s tau can be simply written as

τ(X1, X2) = P((X1 − X̃1)(X2 − X̃2) > 0)− P((X1 − X̃1)(X2 − X̃2) < 0). (2.9)

Definition 2.3.5 (Kendall’s tau). For continuous random variables X1 and X2,
Kendall’s tau is given by

τ(X1, X2) = 4

∫ 1

0

∫ 1

0
C(u1, u2)dC(u1, u2)− 1, (2.10)

where C is the unique copula of X1 and X2.

Details of Definition 2.3.5 are in Definition 7.31 of McNeil et al. [2015]. According
to Fredricks and Nelsen [2007], via integration by parts,

τ(X1, X2) = 1− 4

∫ 1

0

∫ 1

0
CU2|U1

(u2|u1)CU1|U2
(u1|u2)du1du2. (2.11)

A proof of Formula 2.10 can be found in Proposition 7.32 of McNeil et al. [2015].
If we know the copula of the random variables, we can apply Formula 2.10 to calculate
τ(X1, X2).
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The sample version of Kendall’s tau for data (xi1, xi2), i = 1, ..., n, (see Section
2.12.1 in Joe [2014]) is

τ̂(X1, X2) =
4

n(n− 1)

∑
1≤i<j≤n

I((xi1 − xj1)(xi2 − xj2) > 0)− 1. (2.12)

2.4 Examples of copulas

After introducing the properties of copulas, we present two commonly used parametric
families of copulas, Gaussian copula and Archimedean copula. The applications of the
properties are proposed in this section.

2.4.1 Gaussian copula

If Y ∼ Nd(µ,Σ) is a multivariate normal random vector, then its copula is called
Gaussian copula. According to Proposition 2, the copula of Y is exactly the same as
the copula of X ∼ Nd(0,P), where P is the correlation matrix of Y . It is because
the operation of standardizing the margins amounts to applying a series of strictly
increasing transformations Xi =

Yi−µi√
Σii

, where i = 1, ..., d.
The Gaussian copula of X is given by

CGaP (u) = P(Φ(X1) ≤ u1, ...,Φ(Xd) ≤ ud)

= ΦP (Φ
−1(u1), ...,Φ

−1(ud)),
(2.13)

where Φ denotes the standard univariate normal distribution function and ΦP denotes
the joint normal distribution function of X. The notation CGaP emphasizes that the
copula is parameterized by the 1

2d(d− 1) parameters of the correlation matrix (McNeil
et al. [2015], p. 227). In two dimensions, the Gaussian copula can be written as CGaρ ,
where ρ = ρ(X1, X2) and ρ denotes the Pearson correlation coefficients between X1 and
X2.

The bivariate Gaussian copula can be expressed as an integral over density of X,

CGaρ (u1, u2) =

∫ Φ−1(u1)

−∞

∫ Φ−1(u2)

−∞

1

2π(1− ρ2)1/2
exp

(
−(s21 − 2ρs1s2 + s22)

2(1− ρ2)

)
ds1ds2.

(2.14)
The conditional distribution of Gaussian copula is:

CU2|U1
(u2|u1; ρ) = Φ

(
Φ−1(u2)− ρΦ−1(u1)√

1− ρ2

)
. (2.15)

The Gaussian copula is radially symmetric. Hence, the 180 degree rotation of Gaus-
sian copula is equal to itself, which means the survival copula of the Gaussian copula
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is identical to the Gaussian copula itself.

The Gaussian copula is asymptotically independent in both the lower and upper
tails. We calculate the coefficients of tail dependence for two-dimension copula as an
example. By applying L’Hôpital’s rule and using equation 2.5, the coefficients of the
lower tail dependence are

λL = lim
q→0+

dC(q, q)

dq
= lim

q→0+
P(U2 ≤ q|U1 = q) + lim

q→0+
P(U1 ≤ q|U2 = q).

Since Gaussian copula is exchangeable, using formula 2.6, the expression can be written
as

λL = 2 lim
q→0+

P(U2 ≤ q|U1 = q). (2.16)

Due to the copula C is an elliptical distribution, its coefficient of upper tail dependence is
equal to the coefficient of lower tail dependence. In order to evaluate the tail-dependence
coefficient for Gauss copula CGaρ , let (X1, X2) := (Φ−1(U1),Φ

−1(U2)), so (X1, X2) has a
bivariate normal distribution with standard margins and correlation ρ. It follows from
equation 2.16 that

λL = λU = 2 lim
q→0+

P(Φ−1(U2) ≤ Φ−1(q)|Φ−1(U1) = Φ−1(q))

= 2 lim
x→−∞

P(X2 ≤ x|X1 = x).

According to Equation 2.15, using the fact that X2|X1 = x ∼ N(ρx, 1− ρ2), it can be
computed that

λL = λU = 2 lim
x→−∞

Φ(x
√

1− ρ/
√
1 + ρ) = 0,

provided |ρ| ≤ 1. Therefore, the Gaussian copula is asymptotically independent in both
tails; see Example 7.38 in McNeil et al. [2015] for details.

Furthermore, if random variables (X1, X2) have Gaussian copula function C, the
Kendall’s tau rank correlation for Gaussian copula is

τ(X1, X2) =
2

π
arcsin ρ. (2.17)

Gaussian copula can describe both positive and negative dependence.

2.4.2 T copula

The t copula can be written as

Ctν,P (u) = tν,P (t
−1
ν (u1), ..., t

−d
ν ), (2.18)
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where tν is the df of a standard univariate t distribution with ν degrees of freedom.
Similar to Gaussian copula, the P is a correlation matrix. The tν,P is the joint df of the
vector X ∼ td(ν,0, P ). When the df ν goes to infinity, the t copula will converge to the
Gaussian copula. However, the t copula will not be independent copula when P = Id if
ν <∞.

We focus on the bivariate t copula in this thesis. There are two parameters in the
t copula, df (ν) and correlation coefficient (ρ). The Kendall’s tau of the t copula is
exactly the same as the one of Gaussian, which can be found in Equation 2.17. The
tail dependence of the t copula is different with the Gaussian copula. An asymptotic
tail dependence formula for the t copula can be found in Example 7.39 of McNeil et al.
[2015], which is

λ = 2tν+1

(
−

√
(ν + 1)(1− ρ)

1 + ρ

)
, (2.19)

where ρ > −1. The lower and upper tail dependence are the same in the t copula,
because the t copula is radially symmetric.

2.4.3 Archimedean copulas

Let ψ[0,∞) → [0, 1] be a decreasing, continuous function that satisfies the conditions
ψ(0) = 1 and limt→∞ ψ(t) = 0. A d-dimensional Archimedean copula can be written as

C(u1, ..., ud) = ψ(ψ−1(u1) + · · ·+ ψ−1(ud)) (2.20)

which is a copula if and only if ψ is convex. The function ψ is called the Archimedean
generator and function.

In this section, we concentrate on the bivariate Archimedean copulas, which are
written as

C(u1, u2) = ψ(ψ−1(u1) + ψ−1(u2)).

The well-known one-parameter Archimedean copulas include Joe, Gumbel, Frank
and Clayton copulas, whose generators are shown in Table 2.1. We assume the param-
eter in the one parameter bivariate Archimedean copulas is θ.

Kendall’s rank correlations can be computed for Archimedean copulas directly from
the generator inverse using Proposition 3 below. The formula obtained can be applied to
calibrate Archimedean copulas to empirical data using the sample version of Kendall’s
tau, as Equation 2.12. The estimation approach is applying the principle of the method
of moments.

Proposition 3. Let X1 and X2 be continuous random variables with a unique
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Copula Parameter Range Generator ψ(t)
Joe [1,∞) 1− (1− e−t)1/θ

Gumbel [1,∞) exp−t1/θ
Frank R −1

θ ln(1− (1− e−θ)e−t)

Clayton [−1,∞) max((1 + θt)−1/θ, 0)

Table 2.1: Parameter ranges and copula generators of one parameter bivariate
Archimedean. θ denotes the parameter in each copula. ψ(t) represents the Archimedean
copula generators.

Copula τ λL λU
Joe 1 + 2(2− θ)−1[DG(2)−DG(2/θ + 1)] 0 2− 21/θ

Gumbel (θ − 1)/θ 0 2− 21/θ

Frank 1 + 4θ−1(D1(θ)− 1) 0 0

Clayton θ/(θ + 2)

{
2−1/θ, θ > 0

0, θ ≤ 0
0

Table 2.2: Kendall’s tau and coefficients of tail dependence for one parameter bivariate
Archimedean. θ denotes the parameter in each copula. τ represents the Kendall’s tau
and λL and λU denote the coefficients of lower and upper tail dependence, separately.
DG is the digamma function which is introduced in the Section 4.7.1 in Joe [2014].
D1(θ) is the Debye function of order one, defined by D1(θ) =

∫ θ
0 t/(exp(t)− 1) dt/θ.

Archimedean copula C generated by ψ. Then

τ(X1, X2) = 1 + 4

∫ 1

0

ψ−1(t)

dψ−1(t)/dt
dt. (2.21)

Proof. See Corollary 5.1.4 in Nelsen [2007].

The coefficients of tail dependence are easily calculated, since the Archimedean
copulas are closed-form copulas. Values for Kendall’s tau and the coefficients of tail
dependence for the copulas in Table 2.1 are presented in Table 2.2.

The Kendall’s tau of Joe copula in Table 2.2 is a simplification of a result of Schep-
smeier [2010]. The Joe and Gumbel copulas can only describe positive dependence. The-
oretically, Clayton copula can manifest negative dependence when θ < 0, but it is hardly
implemented in software. Because the density is 0 on the set (u1, u2) : u

−θ
1 + u−θ2 < 1,

the extension is not useful for statistical modelling; see Section 4.6 of Joe [2014] for
details. Hence, the Clayton copula can only describe positive dependence in practice.
Frank copula contains negative dependence as well. The survival copula of Joe, Gumbel
and Clayton copulas have exactly the same Kendall’s tau as the copulas themselves,
according to Equation 2.10. Hence, the 180 degree rotation of Joe, Gumbel and Clayton
copulas share the Kendall’s tau with themselves.

According to the coefficients of lower and upper dependence, the Joe and Gumbel
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copula are asymptotically independent in lower tails, but have upper tail dependence,
whose strength depend on the parameter θ. The Frank copula like the Gaussian copula,
is independent in both tails. The Clayton copula has the opposite tail dependence
of Gumbel copula. However, when θ ≤ 0, the Clayton copula can be asymptotically
independent in both tails.

The Joe, Gumbel and Clayton copulas are not radially symmetric, which can be
seen in their tail dependence. Frank is the only radially symmetric Archimedean copula
as was proved in Frank [1979].

Furthermore, since the Joe, Gumbel and Clayton copulas only have positive depen-
dence, we can use them to model negative dependence by rotating them at 90 or 270
degree. In addition, the Clayton copula can present the similar tail dependence coeffi-
cient as Joe and Gumbel via its 180-degree rotation. Therefore, we can model the tail
dependence of data more accurately by applying their rotations.

2.4.4 Asymmetric bivariate copulas

The copulas referred to in Sections 2.4.1, 2.4.2 and 2.4.3 are symmetric bivariate copulas.
Vine copulas with asymmetric tail dependence are introduced by Nikoloulopoulos et al.
[2012]. In this section, the bivariate BB1 copula proposed by Joe and Hu [1996] is
introduced as an example of an asymmetric bivariate copula. There are some other
families of two-parameter copulas, such as the BB7 copula with a complex expression of
Kendall’s tau; these are beyond the scope of this section. We focus on the BB1 copula
in this thesis.

The BB1 copula is a mixture of the Gumbel family and gamma Laplace transfor-
mation (deltails see Chapter 4.17 in Joe [2014]). The expression of this two-parameter
copula family is

C(u, v; θ, δ) = {1 + [(u−θ − 1)δ + (v−θ − 1)δ]1/δ}−1/θ, (2.22)

where 0 ≤ u, v ≤ 1 and θ > 0, δ ≥ 1.
The BB1 copula with two parameters, θ and δ, has asymmetric lower and upper tail

dependence, λL and λU , which can be expressed as

λL = 2−1/(δθ) and λU = 2− 21/δ, (2.23)

where 0 < λL, λU < 1.
The Kendall’s tau of the BB1 copula is

τ = 1− 2

δ(θ + 2)
, (2.24)

where θ > 0, δ ≥ 1. When δ = 1, the BB1 copula is the Clayton copula. This property
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will help us to estimate the parameters in applications.
The BB1 copula is positively dependent, so we rotate it by 90 or 270 degrees when it

is required to model negative dependence. Meanwhile, the asymmetry of the upper and
lower tail dependence can improve the modelling of the time series with asymmetric tail
dependence features. The 180-degree rotation of the BB1 copula can be used to make
the copula more suitable for real data in some cases.

2.5 Partial copulas and partial correlations

The partial copula is a complex concept. It is an approach to remove the dependence
on the conditional value, which is discussed in Bergsma [2004]. Before introducing the
partial copula, we consider the random variables which are expressed by conditional
distribution of copula

U1|2 := C1|2(U1|U2) and U3|2 := C3|2(U3|U2), (2.25)

where U1, U2, U3 are three variables whose joint distribution is a copula. These random
variables are also called conditional probability integral transforms (CPIT), see the
formula (3.32) in Czado [2019]. The distribution of U1|2 is uniform since

P(U1|2 ≤ u1|2) =

∫ 1

0
P(C1|2(U1|U2) ≤ u1|2|U2 = u2)du2

=

∫ 1

0
P(U1 ≤ C−1

1|2 (u1|2|U2)|U2 = u2)du2

=

∫ 1

0
C1|2(C

−1
1|2 (u1|2|u2)|u2)du2

=

∫ 1

0
u1|2du2 = u1|2

holds. Similarly, the random variable U3|2 has a uniform distribution as well. The joint
distribution of (U1|2, U3|2) is a copula; this copula is called the partial copula and is
denoted by CP . It is worth noting that the partial copula does not depend on a specific
value of the conditional variable U2 ([Czado, 2019, p. 66]). Besides, Gijbels et al. [2015]
proves that the partial copula is a copula by definition.

To explain the definition of partial copula in a different way, we use the Gaussian
copula as an example. Assume we have three random variables X1, X2, X3 with multi-
variate Gaussian distribution. The copula of the distributions of X1 and X3 given X2 is
a Gaussian copula, which connects X1|X2 to X3|X2 in "partial copula". The correlation
between the two conditional variables is partial correlation.

In the case of d variables, we can start by considering the dependence of any pair of
copulas. The partial correlations can be used to study the dependence of two variables
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after the effects of the remaining variables are removed.
Partial correlations can be interpreted as the correlations between the variables Xi

and Xj conditional on the third variable Xl, where 0 ≤ i, j, l ≤ d and they are different
to each other. For the calculation of the partial correlations, Yule and Kendall [1950]
defined the following recursive formula.

Definition 2.5.1 (Recursion for partial correlations). Let X1, ..., Xd be random vari-
ables with mean zero and variance σ2i . Further denote by Id−(i,j) the set 1, ..., d with
indices i and j for i ̸= j removed. The corresponding

(
d
2

)
partial correlations ρi,j;Id−(i,j)

satisfy the following recursions:

ρi,j;Id−(i,j)
=

ρi,j;Id−1
−(i,j)

− ρi,d;Id−1
−(i,j)

ρj,d;Id−1
−(i,j)√

1− ρ2
i,d;Id−1

−(i,j)

√
1− ρ2

j,d;Id−1
−(i,j)

. (2.26)

See Anderson [1958] for a derivation of this recursion.

After calculating the partial correlations, the partial Kendall’s tau can be com-
puted in Gaussian copula using the equation 2.17. Non-Gaussian copulas, such as
Archimedean copulas, share the Kendall’s tau with Gaussian copula. Then, we can use
the expression of Kendall’s tau in Table 2.2 and apply it to calculate the parameters
for Archimedean copulas.

2.6 Vine copulas

The vine structure is introduced in this section. Vine models of dependence have been
developed in a series of publications including Chapter 3 of Joe [2014], Cooke [1997],
Kurowicka and Cooke [2006], Aas et al. [2009] and Smith et al. [2010]. Vine copulas
are a flexible class of copula models. Joe [1996] and Joe [1997] propose that copula
can be decomposed into a sequences of bivariate copulas. The decomposition is not
unique. However, all possible decomposition can be expressed by a graphical model,
called regular vine (R-vine), referred to in Bedford and Cooke [2002] and Bedford and
Cooke [2001].

2.6.1 Vine structure

Vine structure is a complex concept. In order to explain it clearly, we start from a
simple example. Assume there are four variables U1, U2, U3, U4, where Ui follows uniform
distribution for i = 1, ..., 4. To study their dependence, we can use vine copulas in the
class of pair copulas used to model each two variables. There are six options for pair
copulas, U1U2, U1U3, U1U4, U2U3, U2U4, U3U4. In vine copulas, the pairs of variables
will appear in different orders according to the shape of the vine. There are many
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Figure 2.1: Vine Example 1: D-vine of four variables

distinctive types of vine structures, which are selected according to the features of data.
We enumerate two typical and classical vines as examples.

Figure 2.1 and 2.2 are the examples of D-vine and C-vine, which are truncated at
4. In the two graphs, the vines consist of four hierarchies, which are called trees in
vine structures. The elements in each tree are nodes, for example, variables 1, 2, 3, 4

are the four nodes in Tree One. The connection of any pairs of nodes is called an
edge. In Figure 2.1, the first tree has three edges and the edges of the first tree become
the nodes of the second tree. The situation is exactly the same as the Figure 2.2.
Furthermore, all the possible combinations of variable pairs appear in a vine without
repetition. Moreover, these vine structures are not the only possible forms. There are
other reasonable forms to construct the vine models, such as Figure 2.3, another form of
C-vine. The construction of each tree and the order of elements in each tree are varied.
Therefore, the vine models are very flexible.

To summarize the properties of vine, we follow the conclusion of Joe [2014]. Suppose
we have a d-dimensional vine (V), the vine should have the properties

• The vine consists of d− 1 trees (T ), V = {T1, ..., Td−1}.

• The number of edges is d(d−1)/2, which equals to the number of pairs of variables.

• Each pair of variables appears once as a conditioned set. The size of the condi-
tioning set for any edge in Tl is l − 1.

• Each edge e in Tl is a node in Tl+1; the d nodes of T1 can be written as 1, ...d.

• If edges are used to connect the nodes Tl, then the result is a tree, which is a
connected graph with no cycles.

The degree of a node is defined as the number of edges attached to that nodes. A
regular vine is called a D-vine if all nodes in T1 have the degree not higher than two.
We concentrate on the D-vine models in the following section.
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Figure 2.2: Vine Example 2: C-vine of four variables

Figure 2.3: Vine Example 3: C-vine of four variables
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Figure 2.4: D-vine tree sequence in 5 dimensions.

Let S be a non-empty subset of {1, ..., d}, which is a conditioning set of variables.
Given 1 ≤ i, j ≤ d and i ̸= j, which is the conditioned set of variables. Besides, i, j
are not included in set S. The copulas for the conditional distributions do not depend
on the values uS of the conditioning variables, the expression can be simplified by the
assumption

Cij|S(ui|S , uj|S ;uS) = Cij|S(ui|S , uj|S), (2.27)

which means these pair copulas are independent of the conditioning variables; see Haff
et al. [2010] for details.

A vine copula or pair copula construction is the resulting copula when a set of
(
d
2

)
bivariate copulas are applied sequentially for a d-dimensional copula, constructed to
satisfy the simplifying assumption 2.27 (See Section 3.9.3 in Joe [2014]).

2.6.2 D-vine copulas

Figure 2.4 demonstrates an example of a D-vine with five variables. The key feature of
D-vine is that the edges of each tree only connect adjacent nodes, which make it simple
to understand and apply.

In Figure 2.4, there are five variables in tree one. In the second tree, four copulas are
required to describe dependence between adjacent variables (1, 2), (2, 3), (3, 4), (4, 5). In
tree three, three copulas depict the dependence of variables (1, 3), (2, 4), (3, 5) condi-
tional on 2, 3, 4, respectively. The copulas in tree four accommodate the dependence of
(1, 4), (2, 5) conditional on (2, 3) and (3, 4). Finally, a copula describing dependence of
(1, 5) under condition of (2, 3, 4) is required. Totally, ten pair copulas are required in a
D-vine with five variables. The candidate copulas can be any types of bivariate copulas,
such as Gaussian copula and the Gumbel copula. If the ten copulas are all Gaussian
copulas, then the vine copulas will be Gaussian copulas as well, and vice versa.
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Generally, each pair copulas in D-vine analyze a pair of variables conditional on
the variables in-between. Each tree consists of a single path in D-vine copulas. The
structure of D-vine is the most suitable for time series, because D-vine can describe strict
stationarity of a random vector under some additional translation-invariance restrictions
on the vine structures (Bladt and McNeil [2022]).

If a random vector has a joint density function f(x1, ..., xn), the density function
may be decomposed as D-vine. The decomposition (Bladt and McNeil [2022]) can be
written as

f(x1, ..., xn) =
( n∏
i=1

fXi(xi)
) n−1∏
k=1

n∏
j=k+1

cj−k,j|Sj−k,j
(Fj−k|Sj−k,j

(xj−k), Fj|Sj−k,j
(xj))

(2.28)
where Sj−k,j = j − k + 1, ..., j − 1 is sets including the variables in between Xj−k

and Xj , fXi represents the marginal density of Xi, cj−k,j|Sj−k,j
is the density of the

bivariate copula Cj−k,j|Sj−k,j
of the joint distribution function of Xj−k and Xj condi-

tional on the intermediate variables Xj−k+1, ..., Xj−1, and the conditional distribution
function could be expressed by

Fi|Sj−k,j
(x) = P (Xi ≤ x|Xj−k+1 = xj−k+1, ..., Xj−1 = xj−1), i ∈ {j − k, j}. (2.29)

The decomposition above implies a decomposition of the density c(u1, ..., un) of the
unique copula of (X1, ..., Xn) which could be written by

c(F1(x1), ..., Fn(xn)) =
n−1∏
k=1

n∏
j=k+1

cj−k,j|Sj−k,j
(Fj−k|Sj−k,j

(xj−k), Fj|Sj−k,j
(xj)). (2.30)

In practical applications, the simplified D-vine decomposition attracts more atten-
tion from researchers, where assuming the copula densities cj−k,j|Sj−k,j

do not depend on
the values of variables in the conditioning set Sj−k,j . Hence, we follow the notation used
in Bladt and McNeil [2022] and write cj−k,j . The expression of D-vine decomposition
can be further simplified by additional translation invariant restriction.

2.6.3 S-vine copulas

S-vine copula is a stationary D-vine copula. In order to allow for simplifying the expres-
sion of S-vine, we impose strict stationary conditions (details in Nagler et al. [2022]) to
D-vine to obtain stationary D-vine (S-vine). Under these conditions, the dependence
among variables does not change with time shifting.
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Let (V, C(V)) be a vine copula model. The vine copula model is called translation
invariant if the partial copulas of variables in edge e are the same as the partial copulas
of variables in the edge e+ τ , where τ indicates a shift in time by τ steps. Translation
invariance is formally defined by Beare and Seo [2015] and used by Nagler et al. [2022],
which proposes that translation invariance can guarantee stationarity.

Figure 2.4 exhibits an example of D-vine copula. According to the translation in-
variance condition for S-vine, the D-vine copula will be an S-vine copula if:

• Copulas describing dependence of variable pairs (1, 2), (2, 3), (3, 4) and (4, 5) are
exactly the same;

• Partial copulas describing variable pairs (1, 3), (2, 4), (3, 5) conditional on variables
2, 3, 4, respectively, are the same;

• Partial copulas describing variable pairs (1, 4), (2, 5) conditional on variable pairs
(2, 3), (4, 5), respectively, are the same.

Totally, the S-vine copula consists of four pair copulas. Therefore, compared with the
D-vine copula requiring ten pair copulas, the translation invariance condition simplifies
the vine models. If you make copulas in each tree of the D-vine copula equal, you
will obtain an S-vine copula. This is useful for time series as we explained in the next
chapter.
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S-vine Models for Time Series

This chapter presents a methodology for modelling and forecasting time series using S-
vine models. The parametric S-vine model consists of an S-vine copula with Gaussian
or non-Gaussian pair copulas and a parametric margin. In the semi-parametric model,
the parametric margin is replaced by a non-parametric margin. The autoregressive
moving-average (ARMA) model is widely applied in modelling many kinds of time
series. Hence, we compare results from parametric S-vine models with non-Gaussian
copulas and margins to ARMA models. As explained in Bladt and McNeil [2022], an
ARMA model can be represented as an S-vine model (or process) with Gaussian pair
copulas and a normal margin. Therefore, the comparison between non-Gaussian S-vines
and Gaussian S-vines is a key concern is in this chapter.

The definition of stationary time series and application of S-vine models for time
series are discussed in Section 3.1. The theory of S-vine processes is introduced in
Section 3.2. The theory in the Sections 3.1 and 3.2 is mainly based on the theory
proposed by Bladt and McNeil [2022, 2021]. The estimation methods of S-vine model
are illustrated in Section 3.3. The maximum likelihood estimation method is used
to estimate the parameters in Section 3.3. Section 3.4 presents the methodology and
theory of one-step prediction. Moreover, simulations are required before the prediction
of empirical study to compare the power of the tests and find the effective methods to
distinguish between "good" and "bad" models.

3.1 Time series modelled by S-vine copulas

S-vine copulas provide a flexible framework for constructing stationary time series mod-
els to permit both non-Gaussian marginal behaviour and non-linear and non-Gaussian
serial dependence behaviour. D-vine is the most suitable vine structure for time series
data and longitudinal data. Nagler et al. [2022] study the D-vine structures that can
be used to construct stationary multivariate time series. D-vines are the only vines for

25
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which a translation invariance assumption is sufficient to construct a stationary time
series, called S-vines. In our research, we follow them to refer to the restricted D-vines
as stationary vines or S-vines.

S-vines have a distinctive structure. There is literature which investigates the appli-
cation of S-vine in serial dependence of time series, including Darsow et al. [1992], Chen
and Fan [2006], Domma et al. [2009], Beare [2010], Joe et al. [2010] and Nikoloulopoulos
et al. [2012], who apply the first order Markov copula models as the simple examples
of S-vine processes. Among other contributions, Joe et al. [2010] introduce the tail
dependence functions of vine copula and Nikoloulopoulos et al. [2012] propose the vine
copula with asymmetric tail dependence for time series. The higher order Markov mod-
els for univariate series or multivariate series are introduced in Brechmann and Czado
[2015], Beare and Seo [2015], Nagler et al. [2022] and Loaiza-Maya et al. [2018]. Bladt
and McNeil [2021] suggest that S-vine models could be generalized to infinite order and
present how the finite or infinite copula sequences may be used to develop a non-linear
structure to compete with linear processes, such as ARMA model.

There are two types of time series, univariate time series and multivariate time series.
Univariate time series data are data for a single entity collected at multiple time periods.
Multivariate time series contains multiple entities at multiple time periods. The multi-
variate time series considers not only temporal dependence but also the cross-sectional
dependence. The temporal dependence exists within each component univariate time
series. The application of vine copula used to model univariate time series includes Joe
[1996], Aas et al. [2009] and Bedford and Cooke [2002]. There are also certain studies
that employ vine copula to model temporal dependence in longitudinal data, such as
Smith et al. [2010], Shi and Yang [2018] and Zhao et al. [2022]. In our study, we consider
univariate time series data. The cross-sectional dependence is beyond the scope of our
study. Hence, we focus on the higher order copula-based univariate time series models.

A time series (Xt) is stationary if its probability distribution does not change over
time ([Stock et al., 2003, p. 587]). The formal definition of stationarity is as follows.

Definition 3.1.1 (strict stationary). The time series (Xt)t∈Z is strictly stationary if

(Xt1 , ..., Xtn)
d
= (Xt1+k, ..., Xtn+k)

for all t1, ..., tn, k ∈ Z and for all n ∈ N.

According to the stationary definition, the distribution of a stationary time series
is invariant in time. The invariance reduces the complexity of models, but not all
vines structures guarantee the stationary condition. If the vine copula V for time series
Ut1 , ..., Utm is the same as the vine copula Vk for time series Ut1+k, ..., Utm+k, then the
vine copula model (V, C(V)) is stationary for all translation invariant choices of C(V),
where C(V) is the copula of vine V defined in Section 2.6.3.
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Bladt and McNeil [2022] propose a strictly stationary stochastic processes, whose
higher-dimensional marginal distributions are simplified D-vines. They force the
marginal distributions of all variables to be identical and the D-vine copulas they apply
are S-vine copulas, which requires that cj−k,j , defined in Section 2.6.2, is the same for
all j ∈ {k + 1, ..., n} and so each pair copula density in the model can be identified
with its lag k and we can write ck := cj−k,j , where ck is the density of some bivariate
copula Ck. We apply the formula and method referred to by Bladt and McNeil [2022]
to express the S-vine copula.

An S-vine copula density in dimension d ≥ 2 can be written as

c(d)(u1, ..., ud) =
d−1∏
k=1

d∏
j=k+1

ck
(
R∗
k−1(u[j−k+1:j−1], uj−k), Rk−1(u[j−1:j−k+1], uj)

)
(3.1)

where (ck)k∈N are the densities of the bivariate copulas in the sequence of (Ck)k∈N.
Rk : (0, 1)k × (0, 1) → (0, 1) and R∗

k : (0, 1)k × (0, 1) → (0, 1) are families of functions
defined from Rk : (0, 1)k × (0, 1) → (0, 1) in a recursion, where R∗

1(u, x) = h
(1)
1 (u, x),

R1(u, x) = h
(2)
1 (x, u) and

Rk(u, x) = h
(1)
k

(
R∗
k−1(u[k−1:1], uk), Rk−1(u[1:k−1], x)

)
R∗
k(u, x) = h

(2)
k

(
R∗
k−1(u[1:k−1], x), Rk−1(u[k−1:1], uk)

) (3.2)

for k ≥ 2, where h(i)k (u1, u2) =
∂
∂ui
Ck(u1, u2) and R0(·, u) = R∗

0(·, u) = u for all u.
The sequences of function Rk and R∗

k for k ≥ 1 are named as forward and backward
Rosenblatt functions by Bladt and McNeil [2022]. The function can be simplified if the
copulas Ck are exchangeable for k = 1, ..., d and d ≥ 1. The forward and backward
Rosenblatt functions are identical under this condition, where Rk(u, x) = R∗

k(u, x). In
this case, the recursions in Equation 3.2 can be written as

Rk(u, x) = h
(1)
k

(
Rk−1(u[k−1:1], u1), Rk−1(u[1:k−1], x)

)
. (3.3)

The Rosenblatt functions are applied in prediction. Hence, to explain them in more
details, we demonstrate their expression in the conditional probability

Rk(u, x) = P(Ut ≤ x|Ut−1 = u1, ..., Ut−k = uk)

R∗
k(u, x) = P(Ut ≤ x|Ut+1 = u1, ..., Ut+k = uk).

(3.4)

The forward functions are the conditional distribution functions of Ut given the
previous values U [(t−1):(t−k)]. The derivatives of forward function rk(u, x) = ∂

∂xRk(u, x)

are written as
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rk(u, x) =
c(k+1)(u1, ..., uk, x)

c(k)(u1, ..., uk)

= c1(uk, x)

k∏
j=2

cj
(
R∗
j−1(u[k−j+2:k], uk−j+1), Rj−1(u[k:k−j+2], x)

)
.

(3.5)

According to Bladt and McNeil [2022], the Rosenblatt forward functions have unique
inverses Qk(u, z) satisfying Rk(u, Qk(u, z)) = z for all (u, z) ∈ (0, 1)k × (0, 1). These
inverse functions are called Rosenblatt quantile functions, which can be applied to
sequentially generate the realizations from S-vine copulas.

3.2 S-vine processes

Definition 3.2.1 (S-vine process.). A strictly stationary time series (Xt)t∈Z is an
S-vine process if for every t ∈ Z and n ≥ 2 the marginal distribution of the vector
(Xt, ..., Xt+n−1) is absolutely continuous and admits a unique copula C(n) with a joint
density c(n) of the form in Equation 3.1. An S-vine process (Ut)t∈Z is an S-vine copula
process if its univariate marginal distribution is standard uniform.

The S-vine process is defined in Bladt and McNeil [2022]. In order to simplify the
processes, we follow the paper’s idea to set an identical bivariate copula sequence in
S-vine models. However, as we referred in Section 2.4.3, if the bivariate copula are not
comprehensive and cannot describe the negative dependence, then we use a rotation of
the copula or replace it with a copula that can model negative dependence.

We can choose any continuous univariate marginal distribution for S-vine processes
to satisfy the condition of S-vine copula. In this chapter, we focus on the estimation
and prediction of S-vine processes. Examples of the S-vine processes are introduced in
the following sections.

3.2.1 Gaussian processes

Gaussian processes are processes whose finite-dimensional marginal distributions are
multivariate Gaussian. Bladt and McNeil [2022] prove that every stationary Gaus-
sian process is an S-vine process. Every S-vine process in which the pair copulas of
the sequence (Ck)k∈N are Gaussian and the marginal distribution FX is Gaussian, is
a Gaussian process. Therefore, every Gaussian process has a unique S-vine copula
representation.

Let (Xt)t∈N be a stationary Gaussian process with autocorrelation function (acf)
(ρk)k∈N. The mean, variance and acf uniquely determine a Gaussian process. Mean-
while, the acf uniquely determines the partial autocorrelation function (pacf) (αk)k∈N
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via a one-by-one transformation (Barndorff-Nielsen and Schou [1973], Ramsey [1974]).
Hence, the Gaussian process has a unique pacf, which is the correlation of the con-
ditional distribution of (Xt−k, Xt) given the intermediate variables. The pair copulas
in the S-vine copula representation are given by Ck = CGaαk

, where αk is the pacf of
Gaussian copula, following the expression in Bladt and McNeil [2022]. The one-to-one
series of recursive transformations relating (αk)k∈N to (ρk)k∈N is α1 = ρ1 and, for k > 1,

αk =
ρk − ρ⊤k−1P

−1
k−1ρk−1

1− ρ⊤k−1P
−1
k−1ρk−1

, ρk = αk(1− ρ⊤k−1P
−1
k−1ρk−1) + ρ

⊤
k−1P

−1
k−1ρk−1; (3.6)

where the ρk = (ρ1, ..., ρk)
⊤ is acf of Gaussian process, ρ̄k = (ρk, ..., ρ1)

⊤ and Pk

denotes the correlation matrix of (X1, ..., Xk). P1 = 1 and for k > 1, Pk is asymmetric
Toeplitz matrix whose diagonals are filled by the first k− 1 elements of ρk; in addition,
Pk is non-singular for all k. For details, see Bladt and McNeil [2022], Joe [2006] or
the Durbin-Levinson Algorithm (Brockwell and Davis [1991], Proposition 5.2.1). The
restriction to non-singular Gaussian processes ensures that |ρk| < 1 and |αk| < 1 for all
k ∈ N.

ARMA processes are stationary and a Gaussian ARMA is the ARMA process with
Gaussian innovations. Hence, the Gaussian ARMA process is a stationary Gaussian
process, which can be represented as an S-vine process, according to Bladt and McNeil
[2022]. Therefore, any causal Gaussian ARMA(p,q) model can be estimated by full
maximum likelihood estimation using the joint density decomposition of an S-vine. Let
x = {x1, ..., xn} be a realization from a strictly stationary process with parametric
marginal distribution FX(x;θm) and joint copula density cU (u1, ..., un;θ). The full
log-likelihood can be calculated via

ln L(θc,θm;x) = ln(cU (FX(x1;θm), ..., FX(xn;θm);θc)) +
n∑
i=1

ln(fX(xi;θm))

=
k∑
i=1

n−i∑
t=1

ln ci

(
ut|St,t+i

, ut+i|St,t+i
;θi

)
+

n∑
i=1

ln(fX(xi;θm)),

(3.7)

where θi = (θ1, ..., θi) and θi is the parameter of the ith pair copula. The terms
ci

(
ut|St,t+i

, ut+i|St,t+i
;θi

)
depend on θi via the copula ci and on θ1, ..., θi−1 through the

conditional distributions ut|St,t+i
and ut+i|St,t+i

, which are defined in Section 2.5 and 2.6.
In Gaussian ARMA model, FX(xi) = Φ(xi) and CU (;θc) = Φ(;Pk). Hence, cU (;θc)

can be computed via Equation 2.1.

For ARMA(p,q) with q > 0, the sequence of Gaussian pair copulas is infinite and
hence, the order of the S-vine is infinite. For AR(p), the order is finite. There is an
assumption for acf of Gaussian ARMA to ensure the Gaussian process to be a mixing
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process and therefore ergodic (Cornfeld et al. [2012]; Maruyama [1970]), which is

Assumption 1. The acf (ρk)k∈N satisfies ρk → 0 as k → ∞.

If ϕ = (ϕ1, ..., ϕp)
⊤ , ψ = (ψ1, ..., ψq)

⊤ and ρk(ϕ, ψ) denote the AR and MA parame-
ters and the acf, then we apply the transformation between acf and pacf to parameterize
in terms of ϕ and ψ using Gaussian pair copula Ck = CGaαk(ϕ,ψ)

. The approach uses Gaus-
sian innovations to estimate the parameters of Gaussian ARMA processes, where we
select sequences of Gaussian pair copulas (Ck) parameterized by the sequences of partial
correlations (αk); see Bladt and McNeil [2022] for details. The estimation process in
this approach can reduce the amount of the parameters. For example, an S-vine pro-
cess with ARMA(p,q) has p+ q estimated parameters. If q = 0, the ARMA model will
become autoregressive model with order p and the order of S-vine will be p. If q > 0,
the process will include the moving-average part with order q and the order of S-vine
will be infinity. In practice, the order of ARMA will be estimated from the time series
first. Then, we fix the order p, q of ARMA in Gaussian S-vine process. The parameters
(ϕ1, ..., ϕp, ψ1, ..., ψq) are calculated via the relationship between ϕ, ψ and acf.

3.2.2 Non-Gaussian S-vine processes

The Gaussian ARMA process in Section 3.2.1 is a special case of S-vine models. In
this section, we consider infinite-order S-vine copula processes constructed from general
sequences (Ck)k∈N of pair copulas that are not Gaussian. The marginal distributions
of the non-Gaussian S-vine can be any continuous distributions introduced in Section
2.2. The pair copulas can be any continuous copulas. We take the sequence of pair
copulas from parametric family and parameterize them to satisfy two requirements.
The Kendall partial autocorrelation (kpacf) is identified to an ergodic Gaussian process
and the copulas should converge uniformly to the independence copula as k → ∞.

A practical approach is introduced in Bladt and McNeil [2022], which applies a well-
behaved Gaussian process to approximate the pattern of decay of dependence in data
and estimates the parameters in ARMA process via acf or pacf formula. Then, in order
to construct a stable causal process, we select the non-Gaussian copulas in the S-vine
process and calculate their parameters by connecting the parameters to the Kendall
rank correlation function.

For all Archimedean copulas, the expression between the acf or pacf and parameters
in ARMA is complex. However, the Kendall rank autocorrelation function of the copula
sequence is explicit.The Kendall rank autocorrelation function of the copula sequence
is defined in the following way.

Definition 3.2.2. The Kendall partial autocorrelation function (kpacf) (τk)k∈N associ-
ated with a copula sequence (Ck)k∈N is given by
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τk = τ(Ck), k ∈ N,

where τ(Ck) denotes the Kendall’s tau coefficient for copula Ck.

In addition, the bivariate copulas selected in the Table 2.2 are one parameter copulas,
which means the copula can be uniquely defined by one parameter.

For a Gaussian copula sequence with Ck = CGaαk
, the expression between kpacf

and pacf is in Equation 2.17. As in the previous section, suppose that (αk(ϕ, ψ))k∈N

is the pacf of a stationary and ergodic model Gaussian process parameterized by the
parameters ϕ, ψ in ARMA model. Hence, this implies a parametric form for kpacf
(τk(ϕ, ψ))k∈N as well. And then, the non-Gaussian pair copulas sequences share the
kpacf and their parameters can be calculated and the whole model is specified.

However, there is a practical problem caused by the range of kpacf τk, which should
take any value in (−1, 1). Only certain copulas, such as Gaussian or Frank satisfy the
requirement. The copula sequences with Gumbel, Joe or Clayton copulas can only give
the positive kpacf. In order to solve this problem, Bladt and McNeil [2022] suggest two
approaches, one is to allow 90 or 270 degree rotations of the copulas at negative values
of τk, the other is to substitute a comprehensive copula, such as Gaussian or Frank, at
any position k in the sequence where τk is negative.

The ARMA processes used to estimate the pacf of the time series can be ARMA pro-
cesses or seasonal ARMA processes if there are seasonality features in data. Assuming
the order of ARMA is (p, q) and the order of S-vine is k, if q = 0, the finite set of values
{α1, ..., αp} yields an AR(p) model which is a special case of the finite S-vine models.
The order k of S-vine will be equal to p in this case, because the level of dependence as
measured by the Kendall correlation when k > p will be equal to zero. Otherwise, if q
is not equal to zero, the level of dependence as measured by the Kendall correlation will
converge to zero with k → ∞. The speed of convergence depends on the selected cop-
ula families. There is a comparison between speed of convergence of Gaussian, Frank,
Clayton, Gumbel and Joe copulas in Bladt and McNeil [2022]. Additionally, the paper
points out the models based on sequences of tail-dependent copulas, such as Gumbel,
Joe and Clayton, which present slower convergence.

Furthermore, if the S-vine process has a finite order k and k is smaller than the
order required for convergence, then the dependence level will be truncated when the
lag is bigger than k, which means that the pacf is supposed to be 0 and variables are
independent at lags greater or equal to k + 1.
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3.3 Estimation of the S-vine models

The S-vine models have a hierarchical structure in the copulas part. Dependence be-
tween any pair of variables conditional on variables in between is described by a bivariate
copula. The bivariate copula (Ck)k∈N can be the Gaussian, Frank, Gumbel, Joe, Clay-
ton or any other continuous bivariate copulas. In our research, we follow the method
referred to in Bladt and McNeil [2022] to select the bivariate copulas with only one
parameter to reduce the amount of parameters in the model. Furthermore, in order
to improve the efficiency of the fitting process, especially when n → ∞, the copula
sequence includes only one or two types of copulas to capture both the positive and
negative Kendall’s tau values in time series. The details have been discussed in Section
2.4. The methodology of estimation is introduced in the next section.

There are two main kinds of S-vine models estimation methods, parametric or semi-
parametric. The parametric S-vine estimation method consists of a parametric margin
and an S-vine copula, which can be estimated as a whole model by maximum likelihood
estimation (MLE). The semi-parametric S-vine estimation method consists of a non-
parametric margin and a parametric S-vine copula, which can be estimated by pseudo
maximum likelihood estimation (pseudo-MLE), where the empirical distributions are
used as margins to transform data to uniform distribution, details may be found in
Genest et al. [1995] and Shih and Louis [1995]. The semi-parametric S-vine can reduce
the effect of error in the parametric margins and help us to observe the prediction
performance of S-vine copulas independently. Chen and Fan [2006] investigate the semi-
parametric estimation and prediction procedure for first-order Markov copula models.

The estimation of S-vine models includes two parts: to find the suitable marginal
distribution and to fit the S-vine copula model to approximated uniform distributed
data transformed by the chosen marginal distribution.

3.3.1 Estimation of marginal distribution

Parametric estimation of the marginal distribution

The estimation of parameters of marginal distribution is carried out using the MLE
method (details may be found in [Rossi, 2018, p. 227]). The comparison between dif-
ferent marginal distributions is made by using the Akaike Information Criterion (AIC),
which is a measure of relative forecasting quality. The smaller the AIC value is, the
better the model is. Hence, we choose the margins with smaller AIC values to ensure
that the transformed data are well approximated by a uniform distribution, and satisfy
the assumptions of an S-vine copula process.

According to Proposition 1, the marginal distribution is the true distribution func-
tions of random variables X1, ..., Xn. Given data x1, ..., xd, the u1, ..., un should be the
uniform distribution, where Ui = F (Xi), i = 1, ..., n. The transformed uniform data can
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be called as probability integral transformation (PIT) values; see details in the Propo-
sition 7.2 of McNeil et al. [2015]. Hence, we can check the feasibility of the marginal
distribution through testing if the PIT values are uniformly distributed.

The parametric distribution can be chosen from a wide range of distribution func-
tions. This section introduces the mainly used margins in this thesis only, including
normal (norm), skewed Laplace (slap), skewed double Weibull (sdwe), skewed stu-
dent (sst), hyperbolic (hyp), normal inverse Gaussian (NIG) and generalized hyperbolic
(ghyp) distributions. The skewed distributions are chosen according to the family of
skewed distributions proposed by Fernández and Steel [1998]. These parametric margins
are the functions we have in the software; theoretically, we can choose any continuous
distributions.

Non-parametric estimation of marginal distribution

Assume we have data vectors (X1, ..., Xn), the scaling empirical distribution function is
one type of non-parametric margins, where the expression is

Fn(x) =
1

n+ 1

n∑
t=1

I{Xt≤x}, (3.8)

see Equation (7.54) in McNeil et al. [2015]. We use the scaling empirical distribution
function to ensure the Fn(x) is strictly in the range of (0, 1).

The margins develop the PIT value of the original data as the input for the S-vine
copulas. Hence, the selection of marginal distributions is very important. The good
margins can yield uniform PIT values. Many kinds of data, particularly in finance,
have heavier tails than normal distribution. In practice, the distributions that can
describe tails better and transform data close to uniform distribution include sdwe, sst,
hyp, NIG and ghyp distributions.

3.3.2 Estimation of S-vine copula processes

After transforming the original time series (x1, ..., xn) on to an approximately uniform
scale, we fit the S-vine copula process to the transformed data (û1, ..., ûn) to estimate
the parameters. The parameters of S-vine copula are the parameters of ARMA(p,q)
models that are used to express the kpacf of each conditional bivariate copulas. Then,
the non-Gaussian copula sequences share the same kpacf values of Gaussian copulas,
which are expressed by parameters in ARMA(p,q). Following this, we apply the MLE
method estimating the parameters θ in S-vine copulas via formulas in Table 2.2, where
the parameters θ are expressed by the parameters of an ARMA(p,q) process with the
same Kendall’s tau values as the S-vine copula process. Hence, there are p+q parameters
estimated by MLE.



34 Chapter 3. S-vine Models for Time Series

In order to compare different combination of copulas in S-vines, we calculate AIC
values of different combinations and select the ones with smaller AIC values.

The parameters of marginal distribution and S-vine copula can be estimated jointly
in one step in the parametric S-vine process. Then, we calculate the AIC values of each
estimation process and select the combination of margins and copulas with the smaller
AIC values. Furthermore, we can apply the chosen copula sequences and parameters
of S-vine copula obtained via the pseudo-MLE method to the MLE method. Because
the pseudo-MLE method uses scaling empirical distribution, this can help to find the
appropriate bivariate copula sequences and estimate their parameters with the reduction
effect of marginal distribution. The results from the pseudo-MLE method can be used
as the start values for the MLE approach. This can improve the efficiency of MLE
methods.

3.4 Prediction of S-vine models

3.4.1 Methodology of one-step prediction

In this section, we consider one-step predictions. Assume we have n+m data and intend
to use the first n data to make m one-step predictions which can be compared with the
final m observations. The Figure 3.1 shows the procedures of forecasting using moving
window. The forecasting by moving window is presented in the following description.
In this study, we decide to predict applying the moving window, since the increasing
window does not improve the result and it requires more data which costs time in
prediction.

Step 1 Divide the time series X1, X2, ..., Xn+m, into two parts, X1, X2, ..., Xn used as
training data, Xn+1, Xn+2, ..., Xn+m used as test data.

Step 2 Fit S-vine models to the training data to estimate the parameters in the model.

Step 3 Use the fitted model and training data to predict the next value X̂n+1.

Step 4 Add the first test data Xn+1 to the training data and use the new time series
X1, X2, ..., Xn+1 and remove the first value X1 of the time series. Then, use the
new time series and the fitted model in the Step 3 to predict the next one-step
predicting value.

Step 5 Similar to Step 4, add test data Xn+i to time series Xi−1, X2, ..., Xn+i−1 and
remove the Xi−1 in the ith step and predict the next value X̂n+i+1. Finally, obtain
a sequence of one-step predictions X̂n+1, X̂n+2, ..., X̂n+m.

The training data are used to estimate parameters of the applied model and the
test data are used to evaluate its accuracy. The size of the test data is typically about
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Figure 3.1: Diagram of One step prediction using moving window

20 percent of the total sample, although this value depends on how long the sample
is and how far ahead you want to forecast, as discussed in Chapter 3 of Hyndman
and Athanasopoulos [2018]. The length of the training data used for prediction in the
moving window is fixed.

Moreover, the forecasting approach used above keeps the parameter estimates fixed.
It keeps using the fixed models with the fitted parameters in Step 2. In order to observe
the effect of using refitted parameters, we can also attempt to refit the testing data
either at each step or after a fixed number of steps. For example, if we have quarterly
data, refitting every four steps will be a reasonable choice. Details of refitting of the
models will be discussed in the following section.

3.4.2 Predictive distributions

We study one-step predictive distributions, which can be described by their cumulative
distribution functions (cdf), quantile functions (qf) and probability density functions
(pdf). The prediction process uses the Rosenblatt transformation (Chapter 2 in Hofert
et al. [2018]), which can transform the dependent uniform data to independent data.
The Rosenblatt function used in the prediction is discussed in Bladt and McNeil [2022].
The expression is in Equation 3.4. In empirical study, if the size of training data n is
larger than the lag of S-vine k, then the previous value used in the Equation 3.4 is equal
to k, where the order of the S-vine model is k− 1. However, if the size of training data
n is smaller than k, then the lag of the S-vine will be n, since the input of the predictive
function will be n each step. In our study, we choose n > k, so the notation of lag in
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the following equation will be k.
The function Rk(u, x) is applied in the calculation of the cdf of the one-step predic-

tion. The x can take any values between 0 and 1. Given an S-vine process (Xt)t∈Z, if we
want to forecast Xt+1 conditional on the previous k values, we use Ft+1|k(x) as a pre-
dictive cdf. The predictive distribution function and its density and quantile function
can be written as

Ft+1|k(x) = Rk(FX(x[t−k+1:t]), FX(x))

ft+1|k(x) = rk(FX(x[t−k+1:t]), FX(x))fX(x)

F−1
t+1|k(u) = F−1

X (R−1
X (FX(x[t−k+1:t])), u)

(3.9)

where FX and fX are the marginal distribution function and density of the S-vine
process and Rk and rk are defined in Equation 3.2 and 3.5.

The PIT values behaving like samples of a predictive cdf should be iid uniform
distribution if the prediction function is accurate; the inference may be found in Diebold
et al. [1997].

In order to compare prediction results with the testing data, we apply the score
function introduced by Gneiting and Raftery [2007] to evaluate forecasts of quantiles.
The scores can quantify the discrepancy between the prediction and the observation from
the distribution. The expected scores are calculated using score functions. Quantiles
can minimize the expected scores. The risk measures that can minimize the scoring
functions are said to be elicitable (Gneiting and Raftery [2007]). The formal definition
of score function is as follows; details may be found in [McNeil et al., 2015, p. 356].

Definition 3.4.1. A score function is a function S : R× R → [0,∞) that satisfies the
following conditions for any y, l ∈ R:
(i) S(y, l) ≥ 0 and S(y, l) = 0 if and only if y = l;
(ii) S(y, l) is increasing for y > l and decreasing for y < l;
(iii) S(y, l) is continuous in y.

A real-valued statistical functional T defined on a space of distributions is elicitable
if there exists a scoring function S satisfying two conditions for every F on the same
space of T , (1)

∫
R S(y, l)dF (l) <∞, ∀y ∈ R,

(2)T (F ) = argminy∈R
∫
R S(y, l)dF (l).

In this case, the scoring function S is said to be strictly consistent for T .
The quantile risk measure is elicitable for strictly increasing distribution functions,

so we apply the scoring function for elicitable risk measures introduced in Proposition
9.8 of McNeil et al. [2015].

Proposition 4. For any 0<α<1 the statistical functional T (FL) = F−1
L (α) is elicitable

on the set of strictly increasing distribution functions with finite mean. The scoring
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function
Sqα(y, l) = |1{l≤y} − α||l − y| (3.10)

is strictly consistent for T .

According to Chapter 9 in McNeil et al. [2015], the approach of computing the
empirical quantile score Q at α quantile is

m∑
t=1

Sqα(Q̂t
α, Xt), t = 1, ...m (3.11)

where Q̂t
α is the tth quantile prediction at quantile α based on information of the previous

n realizations. Xt is the tth realization of the testing data.
We use the Equation 3.11 and 3.10 to calculate the quantile scores at 0.05, 0.1,

0.25, 0.5, 0.75, 0.9, 0.95-quantiles for the two models. However, there are seven quantile
scores at seven quantiles, so it is necessary to find a scoring rules to consider the seven
scenarios in one calculation. According to Gneiting and Raftery [2007], the scoring rule
could be calculated by

S(F, x) =

∫ 1

0
Sα(F

−1(α);x)ν(dα), (3.12)

where Sα denotes a proper scoring function for the quantile α and ν is a Borel measure
on (0, 1). According to the Equation 3.12, if we assume that each score function has the
same weight, the score rule can be computed as the average quantile score function at
different quantiles. The method used to calculate the average quantile score is expressed
in Equation 3.13.

E(Sα(F
−1(α);x)) =

1

m

m∑
i=1

Sαi(F
−1(αi);x), (3.13)

where m is the amount of chosen quantiles.

3.4.3 Simulations

Before applying the prediction methodology to real data, it is necessary to ensure that
the evaluating method is proper and effective. Therefore, we conduct a simulation
study to find an appropriate comparison method to distinguish between "good" and
"bad" models in this section. Another question we explore in this section is the size
of sample required to obtain meaningful comparisons between forecast models. The
simulation is developed to ensure that the method used performs as we can expect
and can thus find the effective tests to compare prediction results. In the simulation
study, we use the non-parametric distribution to avoid the effect from margins. Hence,



38 Chapter 3. S-vine Models for Time Series

the first step is transforming time series into approximately uniform distribution by
empirical distribution. The two S-vine copula models used in this section are Gumbel
with Gaussian copula sequences and Gaussian S-vine models. The Gumbel with a
Gaussian copula sequence replaces the Gumbel copula in the sequence with Gaussian
copula when the Kendall’s tau becomes negative. We select the Gumbel with Gaussian
copulas, because this combination in the class of the S-vine model usually present more
accurate fitting result than other copulas.

We use the S-vine with Gumbel and Gaussian copula sequences with kpacf from
ARMA(4,3) to generate 191 simulations, which corresponds to the amount of real data
we will have in the application of Chapter 4. We choose the ARMA(4,3) that will
be used to model UK inflation rates in Chapter 4 and the parameters are exactly the
same as the ones used in UK inflation models. The simulated models are applied to
mimic real data set. The dependence is strong which can be seen in the kpacf plots of
the simulations (see Figure 3.2). Then, we use the first 151 simulations to fit the two
models that we have intended to compare; one is the original model we used to generate
data, the other is the Gaussian S-vine model. The AIC values of the two models are
calculated. The AIC of Gumbel with Gaussian copula sequences is smaller than the
benchmark model, because it is the true model that has been used to simulate the data
(although the parameters are estimated).

Then, we use the fitted model and the other 40 simulations to do the one step pre-
dictions. The following one-step predictions are all forecast using the moving windows
and without the refitting process. The PIT values are computed by predictive cdf via
Equation 3.9, so as to be applied in the independence and uniformity tests in the next
step. Meanwhile, the quantiles at 0.05, 0.1, 0.25, 0.5, 0.75, 0.9, 0.95 are calculated via
the quantile function of the predictive distributions. Also, the real quantiles at these
quantiles are computed using the true models.

We found that the PIT values from the benchmark models do not fail tests of
uniformity and independence, despite the fact that the benchmark model is not a "good"
model in this case. Hence, a method that is used to distinguish between "good" and
"bad" model is required. Therefore, we attempt the quantile score function.

In order to reveal the improved accuracy of the average quantile score, the similar
simulation procedures are repeated 1000 times and the quantile scores at equal divided
quantiles 0.05, 0.10, ..., 0.95 and the average quantile scores computed by Equation 3.13
of the "good" and "bad" model are compared. If the "good" model has a lower score, it
means the approach to comparing models is reasonable. Hence, we record the percentage
of accuracy of the quantile score at all the 19 quantiles and the average quantile scores
(AQS). By accuracy we mean the probability that the "good" model presents smaller
quantile scores or average quantile scores than the "bad" model. The results of α =

0.05, 0.10, 0.25, 0.5, 0.75, 0.9, 0.95 and AQS at all 19 quantiles are presented in Table 3.1.
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Figure 3.2: Kpacf plots of simulation by S-vine with Gumbel with Gaus-
sian copula sequences and ARMA(4,3) order, whose parameters are ϕ =
{−0.178,−0.100,−0.423,−0.130}, and ψ = {0.728, 0.598, 0.691}.

Accuracy of quantile scores
Quantiles 0.05 0.10 0.25 0.5 0.75 0.90 0.95 AQS
Accuracy 62.8% 66.3% 72.0% 77.0% 77.3% 77.0% 72.8% 79.9%

Quantile scores
"Good" model 0.6785 1.1148 1.7713 2.5390 2.0709 1.0996 0.6268 1.4144

Benchmark 0.6771 1.1361 1.9713 2.5443 2.3321 1.4245 0.8321 1.5596

Table 3.1: Accuracy of the quantile scoring function and quantile score values of the
benchmark model(Gaussian copula sequences in S-vine) and the "Good" model (Gum-
bel with Gaussian copulas sequences in the S-vine). The parameters in ARMA(4,3)
used for kpacf estimation are ϕ = {−0.178,−0.100,−0.423,−0.130}, and ψ =
{0.728, 0.598, 0.691}.
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Absolute values of differences to the real quantile
Quantiles 0.05 0.10 0.25 0.5 0.75 0.90 0.95

"Good" model 0.6536 0.7997 0.9770 1.0640 1.1080 1.1628 1.1800
Benchmark 1.4134 1.7939 2.4525 3.0215 3.4427 3.5746 3.3973

Table 3.2: Absolute values of differences to the real quantile of the benchmark
model(Gaussian copula sequences in the S-vine) and the "good" model (Gumbel
with Gaussian copulas sequences in the S-vine). The parameters in ARMA(4,3)
used for kpacf estimation are ϕ = {−0.178,−0.100,−0.423,−0.130}, and ψ =
{0.728, 0.598, 0.691}.

The quantile scores of the benchmark model should be greater than the ones of the
true model at all the quantiles, but the Q0.05 of the true model is a little greater than
the benchmark model. In this case, the AQS can be compared as a reference as well.
The conclusion is almost in accordance with our expectation. The true models should
have smaller AQS and quantile scores at most quantiles. Even though the sample size
is not very big, the advantage of the true model in the quantile score function is evident
still. Hence, the quantile score function and AQS is a reliable method to distinguish
"good" and "bad" models.

Meanwhile, in order to present the difference between the real model and estimated
models more clearly, we calculate the sum of the absolute values of differences between
the real quantile and the estimated quantile. The real quantile in one-step prediction
could be computed directly in the simulation. The estimated quantile at the six quantiles
is predicted by the two models. The results are in Table 3.2.

The advantage of the true model is remarkable compared to the benchmark model
in Table 3.2. Moreover, the plots of the one-step predicted quantile at 0.95 and 0.05 are
presented in the Figure 3.3.

In Figure 3.3, the green line is close to the black line. Meanwhile, the trend of the
red line is generally in accordance with the trend of the real quantile, but the changing
range of the prediction from the benchmark model is smaller than the one from the
real model. Hence, the S-vine model with Gumbel with Gaussian copula sequences
forecasts better than the benchmark model. Moreover, the advantages of the "good"
model are more significant at quantile 0.95 than at 0.05, which might be caused by the
asymmetry of the Gumbel copula. Also, the benchmark model does better at quantile
0.05 than at 0.95. In practice, the real quantile is unknown, so it is impossible to use
this method. The quantile score function might be an advisable option. Furthermore,
if the practical time series have strong dependence, the tests we refer to in this section
can also be applied as a method to exclude "bad" models. Besides this, practical data
will use margins to transform the data into uniform scale data. The prediction results
of parametric S-vines have relatively greater variations. These tests can be more useful
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Figure 3.3: One step predicted quantiles at 0.95 and 0.05 by S-vine with Gumbel with Gaussian
copula sequences and benchmark model.The computed real quantile is in black line. The red
line is the quantile forecasted by benchmark model. The green one is the predicted quantile
from Gumbel with Gaussian copula sequences.
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to exclude bad cases in parametric S-vines.
The prediction with refitting processes every four steps is also attempted in the

simulation data as well. Surprisingly, the refitting does not improve the results. The
results are similar but slightly worse than the ones without refitting. The reason might
be that there are noises in the refitting process with simulation data sets. In the
simulation, the model we fit to the simulations is the model used to simulate these
data. Therefore, fitting once may be sufficient to find the accurate parameters. It may
generate a lot of noise if we repeat the fitting process. Hence, this phenomenon may
only happen in the simulation. The refitting process still has a possibility to improve
the prediction results in real data. Therefore, it is attempted, and the comparison with
prediction without refitting is demonstrated in Section 4.6.



Chapter 4

Empirical Study of S-vine Models
for Inflation Modelling

This chapter describes the empirical study of S-vine models for modelling and predicting
inflation rates. The data we used are introduced in Section 4.1. The data processing
of the consumer price index is discussed in Section 4.2. There are three methods we
used to adjust the data, so as to make it satisfy the stationary condition of the S-vine
model. The three approaches are presented in Section 4.3. Section 4.4 lists the choice
of marginal distribution and copulas. The estimation results of semi-parametric and
parametric S-vine models are shown in Section 4.5. The predictions by S-vine models
for inflation rates are demonstrated in Section 4.6. Besides this, the method used to
compare predictions from different models is discussed in Section 4.6. Finally, Section
4.7 summarizes the results of the empirical study and develops the possible further
study topics.

4.1 Consumer price index

The consumer price index (CPI) measures the overall level in consumer prices over time
based on a representative basket of goods and services. It can reflect the trend and
the extent of changes of the price level of consumer goods and services of residents in
a certain period. The CPI is the most widely used measure of inflation. Modelling
and forecasting the inflation rate is important to households, businesses and policy-
holders. Central banks aim to forecast and keep inflation stable and near a target level.
Therefore, an accurate model of describing and predicting inflation is required.

Autoregressive moving average (ARMA) models are widely used for stationary
macroeconomic time series. The linear structure of ARMA models is believed to de-
scribe the dependencies well. According to the work of Box et al. [1970], ARMA models
have become a standard tool for modelling and forecasting univariate time series. There

43
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are a lot of studies of inflation modelling and forecasting following the work in Box et al.
[1970], including Stoviček [2007], Krukovets et al. [2019], Moriyama and Naseer [2009]
and Kelikume and Salami [2014]. Marcellino et al. [2006] compares the direct and
iterated multistep autoregressive (AR) methods for macroeconomic time series.

More recently, the coefficient instability in CPI inflation is investigated in Stock and
Watson [2007], which introduces a time-varying integrated moving average (IMA) model
for inflation. Huwiler and Kaufmann [2013] apply the disaggregate forecasts method for
inflation using the autoregressive integrated moving average (ARIMA) model. Hassler
and Wolters [1995] investigate the long-range dependence in the inflation rates and apply
the fractionally integrated ARMA (ARFIMA) models to describe the fluctuations in
data. There is a lot of research on variants of ARMA models, such as Zhang et al. [2020],
which refers to applications of the stochastic volatility model with ARMA innovations
for inflation forecasts. These studies discuss the non-stationary features in the inflation
data. In order to simplify the modelling process, Huwiler and Kaufmann [2013] also take
seasonal difference to make the inflation rates more stable and model the differenced
inflation by ARMA model.

Furthermore, the seasonal ARIMA (SARIMA) models for inflation modelling are
discussed in certain studies, such as Arteche [2007], Arlt [2021], Klutse [2020] and
Ospina and Padilla Ospina [2019]. These researchers use the SARMA model to model
and predict inflation rates to describe the seasonality in inflation more accurately.

Our study investigates the empirical application of S-vine models for CPI infla-
tion rates and compares the results with ARMA model in order to improve both the
modelling and prediction results. As noted, the classical ARMA model with Gaussian
innovation is a special case of S-vine processes, called Gaussian processes. For this
reason we take it as our benchmark model.

In this section, the empirical studies of S-vines with different kinds of bivariate
copulas sequences and margins will be presented and the results will be compared to
the benchmark model.

The bivariate copulas chosen in this section are Gaussian, Joe, Gumbel, Frank and
Clayton. We also consider 180-degree rotations of copulas. For negative dependence,
when the copula family is not comprehensive, we take the rotations through 90 or
270 degree, and we take Gaussian and Frank substitutions into consideration as well.
According to Table 2.2, the Joe and Gumbel copulas both have upper tail dependence.
In contrast, the Clayton copula has lower tail dependence. Hence, if we rotate the
Clayton copula, we obtain a model with upper tail dependence as well.

There are nine kinds of margins compared in the empirical study: empirical, normal,
skewed Laplace, skewed double Weibull, skewed student t, skewed hyperbolic student
t, hyperbolic, Normal inverse Gaussian (NIG) and generalized hyperbolic distributions.
The best margins are chosen according to the AIC values and Q-Q plots of margins in
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Figure 4.1: Quarterly UK and US CPI between 1973 Q1 and 2021 Q4

the first step of the empirical fitting process. Then, the stationary time series are trans-
formed to uniform in the second step. The transformed times series should generally be
uniformly distributed if the marginal distribution is a good model for the data.

4.2 Data processing for consumer price index

We use the Consumer Price Index (CPI) from two countries-the UK and the US. The
UK and US data used to estimate the parameters are from the first quarter of 1973
to the fourth quarter of 2011. The other ten years of data (from the first quarter of
2012 to the fourth quarter of 2021) are used to validate the one-step predictions. The
data are grouped according to the procedure described in Chapter 3.4 of Hyndman
and Athanasopoulos [2018], which says the size of prediction data sets is typically 20
percent of the total sample. The reason we choose the data in this period is that the
data excludes the volatility caused by the first oil crisis in 1973; see Hamid and Dhakar
[2008] for details. Both of the two data sets are taken from the OECD website. The
time series plots of the two sets of data are presented in Figure 4.1.

There are increasing trends in the two time series. Hence, the two time series are
not stationary. In order to remove trend and seasonality, the first-order or second-order
differences or seasonal differences can be taken. Also, the time series decomposition
methods can be applied to remove the trend and seasonality and make the time series
more stationary (details can be found in Hyndman and Athanasopoulos [2018]). Three
methods are developed in this section.
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We decided to take logarithm for each dataset in order to obtain the growth rate
of CPI when we take the first order difference at lag one, which can be taken as the
inflation rate. Meanwhile, a multiplier, 400 is used to scale the logarithm of CPI, in
order to obtain an annualized measurement that can be interpreted (approximately) as
a percentage. The explanation of taking logarithm and difference of macroeconomics
is referred to in Chapter 14.6 in Stock et al. [2003]. We use yt to denote the CPI and
analyse xt, the annualized inflation rate being expressed as a percentage, where

xt = 400(log yt − log yt−1). (4.1)

The annualized inflation from the UK and the US are shown in Figure 4.2.

The trend and seasonality may still exist in the annualized inflation rate in both
the UK and the US according to Figure 4.2. The stationarity tests, Augmented
Dickey-Fuller (ADF) (Dickey and Fuller [1979]) and Kwiatkowski-Phillips-Schmidt-Shin
(KPSS) tests (Kwiatkowski et al. [1992]) are applied to confirm whether a stationary
model is tenable. The null hypothesis of the ADF test is that the data require a model
with a unit root, in other words, a non-stationary model. In contrast, the KPSS test
null hypothesis is that the data can be explained by a model without unit roots, which
is a stationary model. If the null hypothesis is rejected in the ADF test, while being
accepted in the KPSS test, then we will have sufficient evidence to deem that the data
are suitable to be modelled by stationary models. The p-values of the ADF test and
the KPSS test are in Table 4.1. We assume that when the p-value is higher than 0.05,
the null hypothesis cannot be rejected. Hence, the null hypothesis for UK inflation does
not have enough evidence to be rejected by the ADF test and accepted by the KPSS
test, which means that the UK inflation can be explained by a non-stationary model.
Similarly, the null hypothesis of US inflation is almost rejected by both ADF and KPSS
tests. The results of US inflation are conflicted in the two tests. The time series suitable
for the stationary model should generate the same results in the two tests. Hence, US
inflation may be adapted for the non-stationary model as well.

It is widely reported that there is seasonality in the inflation rate; some examples can
be found in Osborn and Sensier [2009], Bataa et al. [2014] and Arteche [2007]. In our
study, the data we used show the seasonal pattern in quarters; see box plots in Figure
4.3. Therefore, we attempt three approaches to remove the seasonality and make the
inflation rates suitable for the stationary model in the next section.
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Figure 4.2: Annualized CPI inflation rate in UK and US between 1973 Q1 and 2021
Q4 (in percentage). The data from 1973 Q1 to 2011 Q4 are used as training data. The
other data (in the green shaded area) are applied as the testing data.
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p-values ADF KPSS
UK inflation 0.1220 0.01
US inflation 0.0296 0.01

Table 4.1: P-values of the ADF and KPSS test for UK and US inflation. The null
hypothesis of ADF tests is that the data have a unit root, which is non-stationary. The
null hypothesis of KPSS tests is that the data have no unit root, which is stationary.

4.3 Three methods to remove seasonality

The S-vine model is a stationary D-vine model, so the time series fitted by it should
admit a stationary model. However, the original CPI data or the annualized inflation
rate are not consistent with a stationary model. Therefore, it is necessary to try certain
methods to transform the time series into stationary form. There are three approaches
introduced in this section.

4.3.1 Method 1 : Model seasonal differenced inflation rates with
ARMA

The seasonality of inflation rates in the UK and the US are not obvious in the time
series plot. In order to present the seasonal features clearly, boxplots are applied to the
two datasets; see Figure 4.3. The quarterly seasonality is demonstrated in the box plots,
so we decide to take the seasonal difference at lag four to remove the seasonality. The
seasonal difference is referred to by Hyndman and Athanasopoulos [2018] in Chapter 8,
which says that the seasonal difference is the difference between an observation and the
previous observation from the same season and can be written as

y′t = yt − yt−m, (4.2)

where m is the number of seasons and is referred to as the "lag-m differences".

Since the data we use is quarterly CPI, we pick four as the lag in the seasonal
difference. The p-values of the UK and US inflation after being taken the seasonal
difference are presented in Table 4.2. The null hypothesis of both the two time series
are rejected by the ADF test and not rejected by the KPSS test, which means the two
datasets are relatively suitable for the stationary models. The box plots of the seasonal
differenced UK and US inflation rates are presented in Figure 4.4. The time series
plots are demonstrated in the Figure 4.5. The seasonal differenced annualized quarterly
inflation rates are without obvious trends and the seasonality is removed, which can
be seen from the box plots. Hence, the adjusted time series can generally satisfy the
stationary condition of S-vine models.
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Figure 4.3: Box plots of the training data of annualized quarterly inflation rates in UK
(top panel) and US (bottom panel) from 1973 Q1 to 2011 Q4
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Figure 4.4: Box plots of the training data of seasonal differenced annualized quarterly
inflation rates in UK (top panel) and US (bottom panel) from 1973 Q1 to 2011 Q4
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Figure 4.5: Time series plots of the training data of the seasonal differenced annualized
quarterly inflation rates in UK (top panel) and US (bottom panel) from 1973 Q1 to
2011 Q4



52 Chapter 4. Empirical Study of S-vine Models for Inflation Modelling

p-values ADF KPSS
Seasonal diff UK inflation 0.01 0.1
Seasonal diff US inflation 0.01 0.1

Table 4.2: P-values of the ADF and KPSS test for seasonal differenced UK and US
inflation. The null hypothesis of ADF tests is that the data have a unit root, which is
non-stationary, while the null hypothesis of KPSS tests is that the data have no unit
root, which is stationary.

4.3.2 Method 2: Model inflation rates with seasonal ARIMA

In Method 1, the seasonal difference is taken to remove the seasonality of inflation rates.
In Method 2, the seasonality of the time series is described through the seasonal ARIMA
in the S-vine structure. Therefore, the order of the difference depends on the order of
the seasonal ARIMA.

In the second method, after taking seasonal difference, we use a stationary seasonal
ARIMA(p,d,q)(P,D,Q)[m] (d = 0, D = 0), which can be termed as a seasonal ARMA.
This is equivalent to a higher order ARMA with certain parameter constraints.

Example 1. A seasonal ARIMA(1,0,0) (1,0,0)[4] is the ARIMA model with quarterly
seasonality. Assume B represents the backward shift operator, which means

BXt = Xt−1.

In this example, the mathematical expression of ARIMA(1,0,0)(1,0,0)[4] is

(1− ϕ1B)(1− Φ1B
4)Xt = εt.

The bracket can be expanded to obtain the polynomial in the left hand side,

Xt − ϕ1BXt − Φ1B
4Xt + ϕ1Φ1B

5Xt = εt.

According to the backward shift expression, the equation could be written as

Xt − ϕ1Xt−1 − Φ1Xt−4 + ϕ1Φ1Xt−5 = εt.

The expression above is a mathematical expression of ARIMA(5,0,0) without Xt−2 and
Xt−3, and the parameter for Xt−5 is the product of parameters for Xt−1 and Xt−4.

Therefore, the seasonal ARMA models can be transformed to higher-order ARMA
models, some details can be found in the Chapter 8 of the Hyndman and Athanasopoulos
[2018]. We use this property to simplify our model. Moreover, in order to reduce the
calculations of the transformation process and avoid generating an extremely high order
ARMA model caused by integrated parts in the seasonal ARIMA, we expect that the
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p-values ADF KPSS
Adjusted UK inflation (Method 2) 0.01 0.1
Adjusted US inflation (Method 2) 0.01 0.1

Table 4.3: P-values of the ADF and KPSS test for adjusted UK and US inflation via
Method 2. The null hypothesis of ADF tests is that the data have a unit root, which
is non-stationary, while the null hypothesis of KPSS tests is that the data have no unit
root, which is stationary.

degree of differencing of the main and seasonal parts of ARIMA are zero (d = 0, D = 0),
which can be realized by taking differences to data.

The first step is applying the auto.arima function in R, an automatic fitting pro-
cedure of seasonal ARIMA referred to in Hyndman and Athanasopoulos [2018] to find
the degree of differencing in both the main part (d) and seasonal part (D). Then, we
take the difference or seasonal difference to the data according to the suggested dif-
ferencing order from auto.arima. Finally, the adjusted data can be modelled by the
seasonal ARMA model. This step can reduce the amount of parameters produced by
transformation of seasonal ARIMA to higher order ARMA, so as to avoid overfitting
and increase the efficiency of the fitting process in S-vine models.

The next step is to find the reasonable order (p, q) of ARMA model via the
auto.arima function in R. However, the auto.arima function using the stepwise and
approximation method and the options within this function may not be comprehensive
(details may be found in Chapter 8 of Hyndman and Athanasopoulos [2018]). In order
to take more options in consideration, we also write our own functions to find the best
order of ARMA or seasonal ARMA according to AIC and AICc. The AICc is similar to
AIC, which is the AIC with a correction of small sample sizes. The comparison between
AIC and AICc can be found in Burnham et al. [2011].

According to the results of fitting ARIMA(p,d,q)(P,D,Q)[4] process to annualized
quarterly inflation rates (Xt), the selected differencing orders are d = 0, D = 1 in UK
and d = 1, D = 0 in the US, respectively. Therefore, seasonal differences are applied to
the UK annualized quarterly inflation rates, which using Equation 4.2 with m = 4. For
US inflation rates (Xt), we take difference at lag one via Equation 4.2, where m = 1.
The adjusted time series are in Figure 4.6, which can be modelled by the seasonal
ARMA structure in the following study. The ADF and KPSS test results are presented
in Table 4.3. The adjusted data are suitable for the stationary model according to the
two test results.

4.3.3 Method 3: Time series decomposition of inflation rates

In the Chapter 6 in Dickey and Fuller [1979], it is stated that the time series (yt) at time
t can be thought of as comprising three components: a trend-cycle component (Tt), a
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Figure 4.6: Time series plots of annualized quarterly UK (top panel) and US (bottom
panel) inflation rates between 1973 Q1 and 2011 Q4 adjusted via Method 2
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seasonal component (St) and a remainder component (Rt), which includes anything else
in the time series.

An additive decomposition can be written as

yt = Tt + St +Rt. (4.3)

We apply the additive decomposition to xt = log yt − log yt−1. In the CPI inflation
rates, we assume that the time series (Xt) can be additively decomposed. Hence, we
apply Equation 4.3. In the additive decomposition, the deseasonalized time series can
be obtained by the original time series minus the seasonal component, which means

yt − St = Tt +Rt.

The reason for removing the seasonal component instead of the trend component is that
seasonality is usually easier to predict. There are many approaches applied to forecast
seasonality, such as the seasonal naïve method, which sets each forecast to be equal to
the last observed value from the same season (Hyndman and Athanasopoulos [2018],
Section 3.1). However, the trend component is difficult to predict, so is the remaining
component. It is unreasonable to decompose the trend out and predict it separately.
Therefore, it is advisable to forecast the trend and remaining component as a whole
via a time series analysis model and add back the predicted seasonality via a simpler
method, such as the naïve method.

There are three main approaches for time series decomposition introduced in Chap-
ter 6 of Hyndman and Athanasopoulos [2018], the X11 decomposition (described
in Dagum and Bianconcini [2016]), the seasonal extraction in ARIMA Time Series
(SEATS) decomposition (for details see Dagum and Bianconcini [2016] and the sea-
sonal and trend decomposition using Loess (STL) decomposition (developed by Cleve-
land et al. [1990]). The X11 and SEATS decomposition are commonly used by banks
(Dagum and Bianconcini [2016]). They are suitable for analyzing quarterly and monthly
data. Alternatively, STL decomposition can handle any kind of seasonality, not only
the quarterly and monthly data. Also, the STL decomposition is robust to outliers.
The disadvantages of STL decomposition are that it does not handle trading day or
calendar variations automatically, they need to be set by the users. The contents of the
three decomposition methods are beyond the scope of this thesis; details can be found
in the Dagum and Bianconcini [2016].

In the following study, we choose the decomposition methods according to the rec-
ommended order from the automatic fitting process of ARMA (auto.arima) for the
deseasonalized annualized inflation rates, the robustness of decomposition and the effi-
ciency of calculation. In practice, it is important to have a strong dependence structure
in ARMA part, so that the relatively big Kendall’s rank autocorrelation helps to forecast
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Figure 4.7: The X11 decomposition of annualized quarterly UK inflation rates from
1973 Q1 to 2011 Q4

data, which can embody the differences between distinctive types of bivariate copulas
more clearly. Furthermore, a robust decomposition can improve the accuracy of predic-
tions. In addition, the faster and easier operating methods will be preferred.

According to the conditions above, X11 decomposition is applied to the inflation
rates of the US and the UK, because X11 decomposition provides better order and
stronger dependence of ARMA structure. The decomposition results are presented in
Figure 4.7 and Figure 4.8. The inflation rates (Xt) are divided into three components.
Both of the UK and the US results have remarkable seasonality, which changes regularly
with time. Hence, the seasonality can be easily forecasted by the naïve method. How-
ever, the other two components- trend and irregular parts-do not have obvious patterns,
which are difficult to predict according to the regularity. Therefore, we extract trend
and remainder and model their summation, which are termed as deseasonalized time
series, by ARMA process.

The deseasonalized time series of the UK and the US are shown in Figure 4.9, which
demonstrates trends contained in the decomposed time series. Therefore, it is necessary
to remove the trends from the deseasonalized data by taking differences from them.
Similarly, the order of difference is set according to the automatic fitting procedure of
ARIMA and the function we write in R for finding the best order of ARMA. Both of
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Figure 4.8: The X11 decomposition of annualized quarterly US inflation rates from 1973
Q1 to 2011 Q4
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Figure 4.9: Plots of deseasonalized annualized quarterly UK and US inflation rates from
1973 Q1 to 2011 Q4 by X11 methods
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p-values ADF KPSS
Deseasonalized UK inflation 0.3245 0.01
Deseasonalized US inflation 0.1869 0.01

Diff deseasonalized UK inflation 0.01 0.1
Diff deseasonalized US inflation 0.01 0.1

Table 4.4: P-values of the ADF and KPSS test for deseasonalized UK and US inflation
decomposed by X11 method, the third and fourth row are p-values of differenced de-
seasonalized inflation rates. The null hypothesis of ADF tests is that the data have a
unit root, which is non-stationary, while the null hypothesis of KPSS tests is that the
data have no unit root, which is stationary.

ARMA(p, q)(P,Q) UK US
Method one ARMA(4, 3) ARMA(1, 5)
Method two ARMA(3, 3)(0, 2) ARMA(4, 1)(1, 1)

Method three ARMA(2, 1) ARMA(4, 0)

Table 4.5: The chosen ARMA model for UK and US inflation adjusted by the three
methods

the two data sets are taken once difference at lag one to remove the trends. In order
to ensure that the adjusted time series are stationary, the ADF and KPSS tests are
applied and the results are demonstrated in Table 4.4. According to the Table 4.4,
the deseasonalized inflation rates are not rejected by the ADF test and rejected by the
KPSS test. Hence, they are hardly suitable for stationary models. On the contrary, the
differenced deseasonalized inflation rates are relatively suitable for stationary models
and their plots are shown in Figure 4.10, which does not contain obvious trends for
both the UK and the US.

The three methods can transform the time series into stationary form, so as to
satisfy the conditions to be applied in the S-vine models. The next step is to find the
order of ARMA, which is used to estimated the kpacf of the time series.

The order in ARMA fitting

In order to fit the S-vine models to the adjusted time series, we need to set the order
of the ARMA process, which is used to estimate the kpacf of the datasets. The order
is set according to the automatic fitting process of ARMA. In the second method, the
order of the seasonal part should be set on the basis of the automatic fitting procedure
with seasonal ARMA. The order of selected ARMA models is presented in the Table
4.5. Furthermore, we input start values of the parameters in different orders of ARMA
process for S-vine models. The parameters will be estimated by the maximum likelihood
estimation method in the next step. This approach is taken for simplicity, since it takes
too long to try S-vine processes with lots of different orders.
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Figure 4.10: Time series plot of annualized quarterly UK (top panel) and US (bottom
panel) inflation rates from 1973 Q1 to 2011 Q4 adjusted by Method 3. These data are
the differenced time series of Figure 4.9.
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Parametric margins used in S-vine models
Country UK US

Method one norm (889.1283) norm (770.9587)
sdwe (811.2870) slap (758.4566)
sst (828.9800) sst (759.9314)

NIG (826.0457) hyp (760.1776 )
Method two norm (889.1283) norm (762.0686)

sdwe (812.1338) slap (733.6209)
sst (828.9800) sst (735.4019)

NIG (826.0457) hyp (735.6752)
Method three norm (804.3684) norm (693.8083)

sdwe (720.0326) sdwe (655.9986)
sst (722.8885) sst (659.2513)

NIG (723.6248) NIG (659.6610)

Table 4.6: The parametric marginal distributions chosen to transform the stationary
data from the UK and the US into uniform distribution and their AIC values (in brack-
ets).

4.4 Choice of marginal distribution and copulas

After setting the order of ARIMA part, we start by finding out the best margins and
sequences of bivariate copulas, separately. The margins can transform the adjusted time
series to dataset with range between 0 and 1, which should be uniform distribution if
the margin is good enough.

There are two types of margins, non-parametric and parametric. The scaling em-
pirical distributions (expressed in Equation 3.8) are used as non-parametric margins in
our study.

There are eight kinds of parametric margins in our study, including normal, skewed
Laplace (slap), skewed double Weibull (sdwe), skewed student t (sst), skewed hyperbolic
student t (shyt), hyperbolic (hyp), normal inverse Gaussian (NIG) and generalized
hyperbolic distributions (Ghyp). We choose the top four margins used in the following
research according to the Akaike information criterion (AIC) and Q-Q plots of the
marginal distributions. The margins with the smallest AIC and linear qqplots are the
one we choose to use in the following research.

There are three approaches to acquire stationary time series, which are distinctive
from each other. Hence, we need to find the proper margins and bivariate copulas for
them, separately. The Gaussian S-vine process with normal margin is the benchmark
model. Thus, the normal distribution is also attempted in the following study. The
chosen parametric marginal distributions are summarized in the Table 4.6.

In order to show the improvement of the margins, the Q-Q plots of the chosen
margins for the data obtained from the first method are shown in Figure 4.11 as an
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Figure 4.11: Q-Q plots of chosen margins of differenced UK inflation rate in the first method,
the one at the top left is the normal distribution, the one at top right is the skewed double
Weibull margin. The skewed student t distribution is at the left bottom. And the NIG margin
is at the right bottom.

example. Compared to the Q-Q plots of the other three margins, the normal distribu-
tion has obvious disadvantages. Nevertheless, the Q-Q plots of the other three marginal
distributions do not have significant differences. We decided to apply all the four mar-
gins in each case in the combination of margins and copulas in S-vine structures and
compare them with the benchmark models.

After choosing the proper margins, the next step is to find the sequences of bivariate
copulas, which can describe the data in the S-vine structures. The first step is to find the
appropriate options of bivariate copulas and their combinations. In order to avoid the
influences of marginal distribution, we use the non-parametric distribution, to transform
the stationary time series into uniform distribution.

The options for the sequences of copulas in the S-vine are mentioned in Section 3.2.2.
The radially symmetric and comprehensive copulas are Gaussian and Frank copulas.
And the non-radially symmetric copulas are Gumbel, Joe and Clayton copulas. Non-
radially symmetric copulas can be rotated 180 degrees; to denote the rotated copulas
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we write, for example, Clayton180. Besides, the 90- and 270-degree rotation of copula
are written as R and L, respectively, in order to treat the negative dependence. The
treatment of negative dependence can also be denoted as G and F where the Gaussian
and Frank copula replace the copula when the kpacf has negative values. For example,
(Clayton180_F ) represents the 180-degree rotated Clayton with Frank copulas when
kpacf has negative values and (Gumbel_L) means Gumbel with left-rotated (270-degree
rotation) Gumbel copulas when kpacf has negative values. It is worth pointing out that
the order of the S-vine was set to 30, so as to save the calculation time. The orders
equal to 30 are mostly sufficient for the convergence of acf or pacf. We only impose the
order equal to 30 when the models are with moving-average terms.

Besides, we choose the survival Clayton copula, because when using the bivariate
copula to fit the UK and US inflation rate data, the survival Clayton (also written as
Clayton180) shows better results than Clayton, since there is evidence of the upper tail
dependence in the inflation rates.

In order to model data with both upper and lower tail dependence, the two-
parameter t copula and BB1 copula are applied in the s-vine models. The BB1 copula
can be used to model asymmetric tail dependence (details can be found in Joe et al.
[2010] and Nikoloulopoulos et al. [2012]). However, the extra parameters in the two
types of copula will increase the difficulty of estimating the parameters of S-vine pro-
cesses and cause the increase of AIC. Furthermore, Joe et al. [2010] pointed out that
if the bivariate copulas at the first tree have upper or lower tail dependence, then all
bivariate margins of a vine copula have the corresponding tail dependence. Hence, we
substitute the t copula, BB1 copula or rotation of BB1 copula at the first tree and leave
the copulas at the other trees as Gaussian copula. The S-vine copula is truncated at lag
30, so the two combinations for the two-parameter copula is written as t(1)_Ga(29),
BB1(1)_Ga(29) or sBB1(1)_Ga(29), where sBB1 represents the survival BB1 copula.

4.5 Estimation results for S-vine models

4.5.1 Estimation for semi-parametric S-vine models

The semi-parametric S-vine models have non-parametric margins and parametric S-vine
copulas. After we transform the data to uniform scale via scaling empirical distribution,
we concentrate on modelling approximated uniformly distributed data by parametric
S-vine copulas, referred to as semi-parametric estimations.

In order to decrease the volume of work, we decided to pick five types of sequences
of copulas in the following study according to the AIC values, residual plots and the
kpacf plots. Meanwhile, in order to test the normality of residuals, the Shapiro-Wilk
tests are applied to in the residuals. The Gaussian copulas are used as the benchmark
in each dataset, so as to make a comparison between different copulas and present
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AIC Method 1 Method 2 Method 3
Country UK US UK US UK US
Gaussian -71.5805 -62.0898 -79.9213 -77.8253 -3.5245 -31.7128

Joe -2.3212 5.3124 -0.3212 6.6748 2.5733 -0.2405
Joe_G -57.7207 -35.1237 -60.0648 -73.1653 -4.6685 -29.5735
Joe_F -50.7055 -32.1583 -53.1106 -74.7198 -5.3209 -26.7659
Joe_L -40.3367 -29.2928 -41.4346 -57.8568 -1.6985 -38.5731
Joe_R -73.0530 -26.1545 -72.4664 -40.8520 -25.0859 -20.1309
Gumbel -5.7180 3.8497 -0.2001 6.8250 3.9172 -2.7763

Gumbel_G -84.8357 -57.1118 -87.2472 -68.3043 -5.5867 -29.6744
Gumbel_F -77.5947 -57.4089 -74.6097 -70.6466 -5.5860 -27.2218
Gumbel_L -76.0798 -52.8068 -78.5224 -74.1481 -11.1290 -42.3491
Gumbel_R -75.6880 -53.1009 -92.1431 -67.8641 -23.5814 -26.9929
Frank -57.8343 -60.5853 -70.9216 -70.3200 -4.612572 -29.8039

Clayton180 -0.3507 4.9779 1.6493 6.7681 4.655113 -1.6634
Clayton180_G -57.7267 -39.4112 -61.0333 -75.4336 -3.524537 -29.9202
Clayton180_F -41.2799 -35.8599 -54.0985 -72.2573 -4.612572 -27.4338
Clayton180_L -42.4032 -30.3299 -42.8254 -61.4604 3.421432 -36.0535
Clayton180_R -70.1552 -35.3284 -68.1050 -55.7069 -25.2234 -21.5908

Table 4.7: AIC values for the S-vine structures with seventeen types of combinations
of copulas and the empirical distributions fitted to UK and US differenced inflation
rate adjusted in the three methods. The values in lime colour are the AIC values of
benchmark model. The ones in yellow colour are the AIC values of best model in each
case.

the improvement from the Archimedean copulas. The AIC values of fitting the S-vine
with the seventeen types of combinations to datasets transformed via non-parametric
methods are summarized in Table 4.7. The datasets are acquired from the three methods
used to remove the seasonality.

Table 4.7 presents that the combination of copulas can give superior results than the
sequence of Gaussian copulas for UK data. Generally, mixed copula sequences perform
better than the sequence of single copulas. However, for the US data, the sequences of
Gaussian copulas demonstrate the smallest AIC values in the first and second method.
The combinations of copulas show improvemens in the two respective methods compared
to the single copula sequences. The advantage of the combination is embodied in the
third method in the US data set.

According to Table 4.7, the combination of copulas has a significant improvement
compared to the sequences of one type of copula, especially in the Joe, Gumbel or
180 degree rotated Clayton copulas, which can only describe the positive Kendall’s tau.
Table 4.8 demonstrates that the left-rotated Joe, Gumbel or 180 degree rotated Clayton
are chosen when the kpacf has negative values in most data sets. This might be because
the left-rotated Archimedean copulas can describe the negative Kendall’s tau of inflation
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Sequences of copulas used in S-vine models for the empirical distribution
Country UK US

Method one Gaussian Gaussian
Joe_R Joe_G

Gumbel_G Gumbel_G
Frank Frank

Clayton− 180_R Clayton− 180_G
Method two Gaussian Gaussian

Joe_R Joe_F
Gumbel_R Gumbel_L
Frank Frank

Clayton180_R Clayton180_G
Method three Gaussian Gaussian

Joe_R Joe_L
Gumbel_R Gumbel_L
Frank Frank

Clayton180_R Clayton180_L

Table 4.8: The sequences of copulas chosen for the empirical distribution of data from
the UK and the US.

rates better. There are no rotated combinations in the Gaussian and Frank copulas,
because they are capable not only of expressing the positive correlations but also the
negative ones.

In order to present the comparison between different sequences of copulas and high-
light the effects of rotation Archimedean copulas in the negative Kendall’s tau expres-
sion, we show the kpacf plots of the selected sequences of copulas and the plots of Joe,
Gumbel and 180 degree rotated Clayton copulas. There is quite a large amount of kpacf
plots in different data sets. Thus, we select two data sets to present the comparison
from different types of copula sequences. For the first method of data adjustment, the
kpacf plots of UK data are shown in the Figure 4.12. Kendall’s tau of UK inflation
rates by the second method are presented in Figure 4.13. For the third approach, the
US data are selected for kpacf plots in Figure 4.14.

The combinations of copulas improve the kpacf fitting significantly in all the three
figures. The second method uses the seasonal ARMA in the estimated kpacf plots, so
there are some seasonal features in the kpacf plots in the second method; for details
see Figure 4.13. In Figure 4.14, most of the kpacf of US stationary inflation rates are
negative, so the Joe, Gumbel and 180 degree rotated Clayton demonstrate poor fitting
results compared to the combinations with Gaussian, Frank or their rotations. Never-
theless, the strengths of combinations compared to the Gaussian and Frank copulas are
difficult to tell in the figures, so we take the AIC values as a reference as well.

We attempt a Q-Q plot of residuals as well. If the model describes the dataset
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(a) Gaussian (b) Frank

(c) Joe (d) Joe with right-rotated Joe

(e) Gumbel with Gaussian (f) Clayton180 with right-rotated Clayton180

Figure 4.12: Kpacf plots of adjusted UK inflation rates in the first method. From 4.12a
to 4.12f, they are Gaussian, Frank, Joe, Joe with right-rotated Joe, Gumbel with Gaussian,
survival Clayton with its right-rotation copulas. The first black bar is kpacf calculated from
real data and the previous value on the red line. The red line is the kpacf calculated from the
S-vine models, details in Bladt and McNeil [2021].
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(a) Gaussian (b) Frank

(c) Joe (d) Joe with right-rotated Joe

(e) Gumbel with right-rotated Gumbel (f) Clayton180 with right-rotated Clayton180

Figure 4.13: Kpacf plots of adjusted UK inflation rates in the second method. From 4.13a
to 4.13f, they are Gaussian, Frank, Joe, Joe with right-rotated Joe, Gumbel with right-rotated
Gumbel, survival Clayton with right-rotated survival Clayton copulas. The first black bar is
kpacf calculated from real data and the previous value on the red line. The red line is the kpacf
calculated from the S-vine models, details in Bladt and McNeil [2021].
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(a) Gaussian (b) Frank

(c) Joe (d) Joe with left-rotated Joe

(e) Gumbel with left-rotated Gumbel (f) Clayton180 with left-rotated Clayton180

Figure 4.14: Kpacf plots of adjusted US inflation rates in the third method. From 4.14a
to 4.14f, they are Gaussian, Frank, Joe, Joe with left-rotated Joe, Gumbel with left-rotated
Gumbel, survival Clayton with its left-rotation copulas. The first black bar is kpacf calculated
from real data and the previous value on the red line. The red line is the kpacf calculated from
the S-vine models, details in Bladt and McNeil [2021].
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AIC Method 1 Method 2 Method 3
Country UK US UK US UK US

t(1)_Ga(29) -89.5103 -80.6217 -92.6245 -83.1878 -23.6984 -42.8055
sBB1/BB1(1)_Ga(29) -83.8371 -69.6765 -87.3849 -46.4979 7.9494 -18.1245

Table 4.9: AIC values for S-vine models based on empirical margins with two-parameter
copulas at first level of tree fitted to UK and US differenced inflation rate in the three
methods. Note:only the US inflation rates adjusted by the second method use BB1
copula. The other dataset use the survival BB1 copula.

accurately, the residuals that are the differences between estimated values and observed
values should be normally distributed (Pagan and Hall [1983]). Hence, the Q-Q plot of
the residuals should be close to the straight red line if the model is reasonable. However,
the advantages of S-vine copula models are not presented clearly in these plots, so we
have decided not to show details of these plots in this section.

Two-parameter copulas in S-vine models

In order to capture both the upper and lower tail dependence in inflation rates, we apply
S-vine models with two-parameter copulas, such as t copula or survival BB1 copula, at
level one and Gaussian copula for the other levels. The survival BB1 copula performs
better in inflation rates than the BB1 copula, so we decide to use survival BB1 copula
in the following steps. The AIC values of the two combinations in S-vine copulas are
presented in Table 4.9.

According to Table 4.9, the t(1)_Ga(29) copulas obtain the smaller AIC values than
any other types of S-vine copulas in Table 4.7 in both UK and US datasets in the first
and second method. The advantage of t(1)_Ga(29) model in UK inflation rates in the
third method is not apparent. The sBB1(1)_Ga(29) model improves the estimation
results in UK and US inflation rates in the first method, but it can not perform better
than the best models in Table 4.7. The sBB1(1)_Ga(29) model is more suitable for
the asymmetric tail dependence. Therefore, the reason for t(1)_Ga(29) copulas yielding
smaller AIC values may be that there is both upper and lower tail dependence existing
in the two datasets and the tail dependence of the inflation rates is relatively symmetric.

4.5.2 Estimation for parametric S-vine models

After selecting proper parametric margins for data and finding feasible copula sequences
via a semi-parametric estimation approach, we fit the parametric S-vine models to the
detrended and deseasonalized time series. The models combining parametric margins
and S-vine copulas are called parametric S-vine models. As we discussed in Section
3.3.2, the estimation process of parametric S-vine models is based on the results from
the estimation of semi-parametric models. The AIC values, marginal plots, kpacf plots
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AIC of the first method of adjusted UK inflation rates
norm sdwe sst NIG

Gaussian 811.4814 734.7820 750.2338 744.5911
Joe_R 821.9290 756.9242 746.9493 744.7967

Gumbel_G 841.3379 733.4545 735.9072 730.9872
Frank 785.2184 750.9871 759.5937 757.9247

Clayton180_R 830.9615 740.0448 753.6860 751.8919
AIC of the second method of adjusted UK inflation rates

norm sdwe sst NIG
Gaussian 794.7407 726.0176 739.2647 740.0537
Joe_R 822.1728 727.4579 744.1916 735.3891

Gumbel_R 791.4435 702.2344 728.2249 717.3876
Frank 779.7509 734.3166 746.9644 746.2894

Clayton180_R 829.7111 736.1130 755.592 751.909
AIC of the third method of adjusted UK inflation rates

norm sdwe sst NIG
Gaussian 780.4248 712.6835 717.1248 716.9361
Joe_R 706.5202 689.1821 681.1636 692.2709

Gumbel_R 727.5703 685.4403 681.6743 681.0495
Frank 785.5359 714.9143 717.2708 717.8501

Clayton180_R 725.7483 694.2959 687.1514 684.954

Table 4.10: AIC values for the S-vine models with selected copula sequences and
marginal distributions fitted to stationary UK inflation rates adjusted by the three
methods. The AIC in the green cell is the one from the benchmark model. The yellow
one is the best full model. The best margins and copula sequences are marked in blue.

and Q-Q plots of residuals are produced. The Shapiro-Wilk tests are applied to the
residuals of the full models to check their normality (Shapiro and Wilk [1965]).

We develop the fitting process in each combination of copulas and margins. There
are two datasets and each dataset is adjusted by three approaches. Hence, in total, we
divide the datasets into six groups. In order to make it brief, we choose the adjusted
UK inflation from all the three methods and US inflation from the second method and
represent their AIC results. The reason for choosing the three groups of data from
the UK is that they contain distinctive types of combinations of copulas, and we can
illustrate the advantages of non-Gaussian copulas and margins. Then, we can observe
the influences from S-vine copulas in the full models. The AIC values of adjusted UK
inflation in the three approaches are presented in Table 4.10. Table 4.11 shows the AIC
values of adjusted US inflation in the second approach. The non-Gaussian copulas do
not demonstrate improvement in the US data set compared to the other four copulas
sequences, but the margins can improve the fitting process.

It is worth pointing out that the combinations of best margins and best copula
sequences in the S-vine process are not always the best full models. The UK data set
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AIC of the second method of adjusted US inflation rates
norm slap sst hyp

Gaussian 677.1613 653.3312 664.0922 668.8172
Joe_F 669.0866 657.5672 659.9301 659.5339

Gumbel_L 727.3565 674.0208 665.6345 675.9005
Frank 687.6807 661.5585 666.7535 662.9571

Clayton180_G 680.5335 653.4326 655.6574 665.1901

Table 4.11: AIC values for the S-vine models with selected copula sequences and
marginal distributions fitted to stationary US inflation rates adjusted by the second
method. The AIC in the green cell is the one from the benchmark model. The yellow
ones are the best full models.The best margins and copula sequences are marked by
blue colour.

adjusted by the second method in Table 4.10 demonstrates that the S-vine consisting of
Gumbel with its right rotation sequences and NIG margins is the best model, which is
the combination with neither the best copula sequence nor the best margin. There is a
compromise between imperfect margins and imperfect copulas. According to Bladt and
McNeil [2022], it may be because one of the copulas has much stronger tail dependence
than the others. Hence, the whole S-vine process tends to generate data that are not
perfectly uniform in a small sample. A relatively "bad" margin transforming the data
into not perfectly uniform may be a compromising choice in this case.

The S-vine with non-Gaussian copulas and marginal distributions shows evident
advantages compared to Gaussian processes for both UK and US inflation rates. Joe
et al. [2010] provide the theoretical justification and derivations for the method to
capture the strong tail dependence at first tree in vine copula and why this model
can surpass Gaussian models. In order to shed light on the performance of the non-
linear and non-Gaussian models in the class of S-vine processes, we put the marginal
distributions, kpacf and residual plots of the best model and benchmark model together.
We use the results for UK inflation rates adjusted by the second and third approaches
as examples. Figure 4.15 demonstrates the plots of the benchmark and Gumbel with
right-rotated Gumbel copulas with skewed double Weibull margins for the UK data
set in the second method. The Gumbel_R copula sequence with NIG margins for UK
inflation used in the third approach is shown in Figure 4.16. The benchmark model is
shown as a comparison.

Figure 4.15a and 4.16a show the obvious improvement in the margins of the non-
linear and non-Gaussian models compared to the benchmark models. The advantages
of kpacf fittings are presented in Figure 4.15b and 4.16b. There is an obvious seasonal
pattern in Figure 4.15b which embodies the features of seasonal ARIMA model. The
residuals of the non-Gaussian and non-linear models are more close to the red line and
are more linear, which means that their residuals are more in accordance with normal
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(a) Plots of marginal distributions

(b) Kpacf plots

(c) QQ-plots of Residuals

Figure 4.15: The three plots on the left are the marginal, kpacf and residuals plots of bench-
mark models of the UK inflation rates adjusted by the second approach. The ones on the right
are the plots of Gumbel with its right-rotation copulas with skewed double Weibull margins
models of the UK inflation rates adjusted by the second approach.
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(a) Plots of marginal distributions

(b) Kpacf plots

(c) QQ-plots of Residuals

Figure 4.16: The three plots on the left are the marginal, kpacf and residuals plots of bench-
mark models of the UK inflation rates adjusted by the third approach. The ones on the right
are the plots of Gumbel with right rotated Gumbel copulas with NIG margins models of the
UK inflation rates adjusted by the third approach.
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Method One Two Three
Benchmark model

UK 1.21× 10−9 1.218× 10−7 1.495× 10−11

US 4.759× 10−7 9.266× 10−6 1.084× 10−8

Best model for each dataset
UK 0.8584 0.8245 0.1139

(Gumbel_G+NIG) (Gumbel_R+ sdwe) (Gumbel_R+NIG)
US 0.04245 0.9804 0.5271

(Gaussian+ sst) (Gaussian+ slap) (Gumbel_L+NIG)

Table 4.12: P-values of the Shapiro-Wilk test for adjusted UK and US inflation rates.
The null hypothesis of the Shapiro-Wilk test is that the data come from a normally
distributed population.

AIC of the first method of adjusted UK inflation rates
norm sdwe sst NIG

t(1)_Ga(29) 816.6525 728.9716 735.4622 737.6350
sBB1(1)_Ga(29) 829.8066 731.0628 740.8192 740.1331

Table 4.13: AIC values for the S-vine models with selected copula sequences and
marginal distributions fitted to stationary UK inflation rates adjusted by the first
method.

distribution; see Figure, 4.15c and 4.16c.

Moreover, the Shapiro-Wilk tests are applied to the residuals of the S-vine processes.
The null hypothesis of the Shapiro-Wilk test is that the data are normally distributed.
The results are shown in Table 4.12. All the null hypotheses of benchmark models
are rejected by the tests, which means their residuals are hardly in accordance with
normal distribution. Thus, the Gaussian with normal margin is not a suitable model
for inflation rates. Conversely, the null hypotheses of non-Gaussian and non-linear
models are not rejected by the normality tests, which indicates that there is not enough
evidence against these models. The p-value of US inflation rates adjusted by the first
method is slightly smaller than 0.05, which means the null hypothesis has a relatively
higher possibility to be rejected, but the value is close to 0.05. Hence, the model is still
acceptable.

Two-parameter copulas in S-vine processes

The AIC values of the S-vine with two-parameter copula sequences fitted to estimating
UK and US inflation rates adjusted by the first method and the second method, sepa-
rately, are presented in Table 4.13 and Table 4.14. The reason we add AIC results for
US CPI adjusted by the second method is to make it correspond to the results in Table
4.11. Then, we can compare it with the S-vine with one-parameter copulas.
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AIC of the second method of adjusted US inflation rates
norm slap sst hyp

t(1)_Ga(29) 678.5489 642.1164 645.2675 656.2833
BB1(1)_Ga(29) 715.1267 683.7448 669.7348 697.434

Table 4.14: AIC values of the S-vine models with selected copula sequences and marginal
distributions fitted to stationary US inflation rates adjusted by the second method.

Table 4.13 shows that the S-vine processes with skewed double Weibull margin and
t copula at level one and Gaussian copula for the other level estimate the UK inflation
rates better than the best S-vine processes in Table 4.10. Similarly, the S-vine processes
with skewed Laplace or skewed t margins and t copula at level one and Gaussian copula
at other levels in Table 4.14 outperform the S-vine processes with one-parameter copula
sequences.

4.6 Forecasting inflation rates via S-vine models

The best S-vine models for fitting each data sets are found in the previous section. The
goal of this section is to use the selected models to predict the future inflation rates in
different methods. The methods and theories developed in the one-step prediction are
discussed in Section 3.4.1. The one-step forecasting for real time series is produced in
this section.

In order to compare different results, we have decided to calculate the mean, median,
quantiles of 0.05, 0.10, 0.25, 0.75, 0.90, 0.95, and the probability integral transform
(PIT) values. If the model is good enough, the PIT value in S-vine models should
be iid uniform distribution. Hence, the Ljung-Box test and Kolmogorov-Smirnov tests
are applied to test the independence and uniformity of PIT values, separately. The
null hypothesis of the Ljung-Box test is that the tested data are independent. The
null hypothesis of the Kolmogorov-Smirnov tests is that the tested data are uniform
distribution. However, this does not mean that the model not rejected by all the tests
is a good model. In contrast, if a model is rejected by one of these tests, it means the
model is not a reasonable choice for the data. Furthermore, in order to test the accuracy
of predictions distributed between quantiles following an arithmetic sequence, such as
quantiles equal to 0.05, 0.10, ..., 0.95, the chi-square test is used as well. In addition,
the quantile score function is used to distinguish between the "good" model and "bad"
models.

The next step is to use the model to forecast the next quarter inflation rate. Before
the fitting and prediction processes, the inflation rates are differenced following the
procedure in Section 4.3. There are three approaches to make the data stationary. In
prediction, we decide to use the first and second methods in Section 4.3, because the
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Quantile scores of UK dataset–Semi-parametric
Quantiles 0.05 0.10 0.25 0.5 0.75 0.90 0.95 mean

UK inflation adjusted by the first method
Gumbel_G 0.777 1.323 2.213 2.590 2.142 1.116 0.615 2.051
Gaussian 0.738 1.249 2.045 2.715 2.199 1.340 0.793 2.017
t(1)_Ga(29) 0.684 1.125 1.865 2.634 2.083 1.229 0.741 1.900
Gumbel_G_4 0.765 1.295 2.274 2.617 2.206 1.114 0.626 2.017
Gaussian_4 0.693 1.210 2.018 2.748 2.320 1.377 0.799 2.041

UK inflation adjusted by the second method
Gumbel_R 0.662 1.140 2.052 2.481 2.129 1.251 0.745 1.911
Gaussian 0.687 1.148 1.886 2.395 2.173 1.275 0.758 1.869

Gumbel_R_4 0.653 1.110 2.068 2.670 2.219 1.256 0.747 1.983
Gaussian_4 0.713 1.185 1.912 2.693 2.306 1.241 0.719 1.984

Table 4.15: Quantile score values and average quantile scores of one-step prediction for UK in-
flation adjusted by the first and second approach in semi-parametric S-vine models. Gumbel_G
is the Gumbel with Gaussian copula sequences without refitting. Gaussian is the Gaussian S-
vine copulas without refitting. t(1)_Ga(29) is the S-vine copula with t copula at level one
and Gaussian copulas for the other levels. Gumbel_G_4 is the Gumbel with Gaussian copula
sequences with refitting each 4 steps. Gaussian_4 is the Gaussian S-vine copulas with refitting
each 4 steps. Gumbel_R is the Gumbel with right-rotated Gumbel sequences in S-vine copula
without refitting. Gumbel_R_4 is the Gumbel with right-rotated Gumbel sequences in S-vine
copula with refitting each 4 steps.

third method, the time decomposition method is a little more complex to forecast and
is beyond the scope of this thesis.

The parametric S-vine models fit the whole models with adjusted time series and
estimated the parameters both in S-vine copulas and margins. The semi-parametric
first transforms the data to approximated uniform distribution by empirical distribu-
tion. Then, the S-vine models are fitted to the data on uniform scale to estimate the
parameters in the S-vine. The semi-parametric method can analyze the S-vine copulas
and margins, separately. We only include the model with two-parameter copula at lag
one if it gives an improvement in each dataset.

4.6.1 Semi-parametric S-vine process

We choose the best copula sequences according to the AIC values in the fitting process.
In the UK inflation dataset adjusted by the first approach that deals with seasonality,
the model is the Gumbel_G copula and the Gaussian copulas are used to compare with
the best model. For seasonal ARMA kpacf in the second approach, the Gumbel_R
copula sequence is selected to predict the next data. The VaR score values and the
average VaR score (Equation 3.11 and Equation 3.13) of the one step prediction are
demonstrated in Table 4.15. Meanwhile, the prediction results from refitting each four
steps are presented in the Table 4.15.
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Quantile scores of US dataset–Semi-parametric
Quantiles 0.05 0.10 0.25 0.5 0.75 0.90 0.95 mean

US inflation adjusted by the first method
Frank 0.827 1.482 2.777 3.588 2.764 1.328 0.675 2.583

Gaussian 0.823 1.483 2.710 3.580 2.864 1.514 0.899 2.601
Frank_4 0.828 1.459 2.795 3.745 3.047 1.661 0.890 2.730

Gaussian_4 0.791 1.394 2.778 3.932 3.315 2.014 1.237 2.868
US inflation adjusted by the second method

Clayton180_G 0.749 1.347 2.351 3.317 2.701 1.441 0.846 2.396
Gaussian 0.687 1.162 2.223 3.030 2.438 1.318 0.777 2.346
t(1)_Ga(29) 0.720 1.243 2.188 2.912 2.315 1.305 0.756 2.130

Clayton180_G_4 0.831 1.405 2.368 3.217 2.486 1.296 0.730 2.318
Gaussian_4 0.769 1.216 2.136 2.843 2.251 1.152 0.663 2.076

Table 4.16: Quantile score values and average quantile scores of one-step prediction for US
inflation adjusted by the first and second approach in semi-parametric S-vine models. Frank
is the Frank copula sequences without refitting. Gaussian is the Gaussian S-vine copulas
without refitting. t(1)_Ga(29) is the S-vine copula with t copula at level one and Gaussian
copulas for the other levels. Frank_4 is the Frank copula sequences with refitting each 4 steps.
Gaussian_4 is the Gaussian S-vine copulas with refitting each 4 steps. Clayton180_G is the
survival Clayton with Gaussian sequences in S-vine copula without refitting. Clayton180_G_4
is the survival Clayton with Gaussian sequences in S-vine copula with refitting each 4 steps.

According to the Table 4.15, theGumbel_G copula in the first method removing sea-
sonality shows smaller average quantile scores than the Gaussian S-vine process, which
means the non-Gaussian S-vine copula can improve the one-step prediction. However,
the Gumbel_R copula in the second method has smaller AIC in the fitting process,
but the average quantile score is greater than the Gaussian copulas in prediction. This
means that the model fitted best may not predict accurately. In contrast, a model not
fitting precisely is possible to forecast well. It has to be remembered that the number
of out of sample forecasts is small, so it is possible that this can happen, as we have
discussed in the simulation study. The quantile score of US inflation (Table 4.16) is an
example for this conclusion. Moreover, the quantile scores of refitting each four steps are
greater than the ones without refitting. Hence, the refitting process does not improve
the one-step prediction.

Furthermore, the S-vine with t copula at level one improves the prediction results
according to the mean of quantile scores in the UK inflation rates adjusted by the first
method. However, refitting for the S-vine copulas with two-parameter copula will create
difficulties in calculation and the fitting process will be slower, so we do not do refit for
the t(1)_Ga(29) model.

In the US inflation dataset, the Gaussian S-vine is the best model in the one-
parameter copulas, but in the first method dealing with seasonality of data, the average
quantile scores of the Gaussian are greater than the Frank copula sequences, which
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means it is possible that a good model does not predict well or this result may be caused
by the small sample size as we discussed before. Furthermore, the quantile scores at
different quantiles manifest distinctive comparison results. This may be because of the
asymmetry of non-Gaussian copulas.

Similar to UK dataset, the S-vine with t copula at level one improves the prediction
results according to the mean of quantile scores in the US inflation rates adjusted by the
second method. However, refitting for the S-vine copulas with two-parameter copula
will increase the difficulty of calculation and make the process slower, so we do not do
refit for the t(1)_Ga(29) model in this dataset as well.

4.6.2 Parametric S-vine process

The advantages of non-Gaussian copulas and margins S-vine models are pronounced
in parametric S-vine processes as well. Table 4.17 has the quantile scores of a "good"
model and the benchmark model in UK inflation rates adjusted by the first and second
method.

Most of the quantile scores of the benchmark model are greater than non-Gaussian
S-vine models, according to Table 4.17. However, the scores of refitting each four steps
are smaller than the ones without refitting in the parametric models. This may be
because the refitting could improve the estimation of margins. Moreover, the differences
between the non-Gaussian S-vine and benchmark models are much greater than the
semi-parametric S-vine models in both the first and second method. The t copula
does not show advantage in parametric case for UK inflation in the first method. The
seasonal ARMA presents better results in the parametric S-vine models. In order to
present quantile values in each prediction, the predicted median and quantile values at
quantiles 0.10, 0.25, 0.5, 0.75, 0.90 of the Gumbel_G copulas with sdwe margin in the
S-vine model for UK inflation adjusted by the first approach are demonstrated and the
one of the benchmark model for UK inflation adjusted by the first approach is presented
in Figure 4.17.

The black lines in Figure 4.17 present the observations, which should have ex-
ceedance points beyond the lines describing the predicted quantiles α for 40α times
when α < 0.5 and 40(1 − α) times when α > 0.5. The exceedances of the benchmark
model are barely beyond the quantile lines. In contrast, the line of observations crosses
the quantile lines many times, which means the exceedances of the predicted quantiles
of the S-vine model with the class of Gumbel_G copula and sdwe margin are closer
to our expectation. Therefore, the quantile prediction from the chosen model is more
reasonable than the benchmark model in this dataset.
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Figure 4.17: One step predicted median and quantile at quantiles 0.1,0.25,0.5,0.75,0.9 of S-vine
with Gumbel_G copula sequences and skewed double weibull margin model (top panel) and
benchmark model (bottom panel) in UK inflation adjusted by the first approach.
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4.7 Discussion

S-vines with non-Gaussian copulas and non-linear structures can improve both the
fitting and prediction processes compared with ARMA processes, which are equal to
the Gaussian copula sequences and normal margins in the S-vine with infinite orders.
This section finds the quantile score and average quantile scores constitute an effective
method to compare "good" and "bad" predictions if the sample size is large enough.
Moreover, we assume that the weights of quantile scores at different quantiles are the
same. Different weights could be attempted at different quantiles.

In addition, it is necessary to find more sensitive statistical tests for the small sample.
In fitting processes, the AICcs can be a proper approach to select the best model for a
small sample size.

Furthermore, the one-step prediction for the data adjusted by the third method
could be realized in further research. Other types of asymmetric copulas with two
parameters, such as the BB7 copula, could be considered to model features of data
more precisely in the future. The reason why we did not try BB7 in this thesis is that
the Kendall’s tau formula is more complicated in BB7, which makes it less suitable than
BB1 in our methodology.
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Chapter 5

Vt-S-vine Models for Asset Return
Data

In previous chapters, we discussed the time series that can be modelled by stationary
vine copulas processes. However, many financial data exhibit volatility, so models that
can capture volatile patterns are required. Loaiza-Maya et al. [2018] pointed out that
the heteroskedastic data, which are the data with volatility, are usually with a cross
shape of copula densities. Few bivariate copulas can meet these requirements in practice.
Only the t copula with a correlation parameters and degrees of freedom both close to
zero can do so (Demarta and McNeil [2005]). However, the t copula with the degrees of
freedom approaching to zero is numerically unstable and difficult to conduct in practice.
Therefore, Loaiza-Maya et al. [2018] developed the method to use mixtures of copulas
and their rotations to model financial data. Moreover, they proposed a symmetric
transformation to combine with mix copulas, so as to facilitate measuring persistence in
the volatility. Similarly, in order to model volatile financial time series more accurately,
McNeil [2021] proposes combining S-vine processes with a class of uniformity-preserving
transformations called v-transform. The theory of v-transforms in this chapter is based
on McNeil [2021].

Let x1, ..., xn be a time series of assets return that can be modelled by a strictly
stationary stochastic process (Xt)t∈N, which has a marginal distribution FX . Gener-
ally, the returns on financial assets Xt have limited serial correlation. However, the
squared (X2

t ) or absolute (|Xt|) processes have prominent and persistent positive serial
correlation, which is caused by volatility clustering; Cuthbertson [2004] and Cont [2001]
discussed this stylized fact of financial return data. The volatility clustering is defined
in Cont [2001] that the large changes in price tend to be followed by large changes and
small changes tend to be followed by small changes, which also exhibits the fact that
high-volatility events tend to cluster in time.

Transformed series like |Xt| are a typical example of symmetric volatility proxy
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series; see McNeil [2021] for details. In these series, the volatility is exhibited via serial
correlation. We denote the volatility proxy series as (T (Xt)), where T : R → R is a
transformation for this absolute process that satisfies the conditions: (i) depends on a
change point µT that may be zero, (ii) the transformation is increasing in Xt − µT for
Xt ≥ µT and (iii) increasing in µT −Xt for Xt ≤ µT .

The (T (Xt)) for |Xt| process is symmetric and linear on both sides of the change
point µT . Nevertheless, one can also construct volatility proxies that can be asymmetric
and non-linear. The expression of T (Xt) is diversified and flexible. Moreover, the
volatility proxy series has its own distribution as well, where FT (X) denotes the cdf of
T (Xt). In this chapter, we concentrate on modelling the relationship between PIT series
of a volatility proxy series (Vt) and PIT series of stationary stochastic process (Ut). We
follow the definition developed by McNeil [2021] and use the same notation to define
Vt = FT (X)(T (Xt)) and Ut = FX(Xt) for all t. Then, a v-transform is a function to
describe their relationship. The theory of v-transforms will be developed later.

Given (Vt) and letting v-transform be written as V, we can have the following chain
of transformations:

Xt
FX−−→ Ut

V−→ Vt
FT (X)(v)

−1

−−−−−−−→ T (Xt), (5.1)

where FT (X) is the marginal distribution of the volatility proxy series T (Xt). Under
the chain of transformations in 5.1, Vt can be modelled by a stochastic process of
correlated uniform variables, such as S-vine processes. Hence, by selecting different
types of marginal distribution or v-transforms, we can produce distinctive processes via
the transforming chain. The relationship between v-transforms and volatility proxy is
embodied in the this chain.

5.1 V-transforms for stochastic volatility

In practice, there is stochastic volatility existing in financial and economic data. In
order to capture the volatility, the volatility proxy transformation is used. V-transforms
describe the relationship between quantiles of the stationary distribution of time series
and quantiles of the distribution of a predictable volatile proxy variable. The linear v-
transform is the simplest v-transformation. Hence, we start from the linear v-transform.

Example 2 (Linear v-transform). We can construct a symmetric volatility proxy trans-
formation T (Xt) = |Xt|. Assume the marginal distribution of Xt is FX and the marginal
distribution of |Xt| is F|X|, where FX and F|X| are absolutely continuous and the den-
sity fX satisfies fX(x) = fX(−x) for all x > 0. The probability integral transformation
(PIT) can be written as Ut = FX(Xt) and Vt = F|X|(|Xt|).
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Since the density fX is symmetric, the Vt can be expressed as

Vt = F|X|(|Xt|) =

F|X|(−Xt) = 1− 2FX(Xt) = 1− 2Ut, ifXt < 0

F|X|(Xt) = 2FX(Xt)− 1 = 2Ut − 1, ifXt ≥ 0
(5.2)

where we could obtain the relationship between Vt and Ut that

Vt = V(Ut) = |2Ut − 1|. (5.3)

The v-transform V(u) = |2u− 1| is symmetric and linear v-shaped function.

The linear v-transform is a special case of v-transforms. There are other types of
v-transforms that are asymmetric and non-linear.

5.1.1 Asymmetric and non-linear v-transforms

In order to generalize non-linear v-transforms, we introduce the definition of volatility
proxy and profile proposed in McNeil [2021] first.

Definition 5.1.1 (Volatility proxy transformation and profile.). Let T1 and T2 be
strictly increasing, continuous and differentiable functions on R+ = [0,∞) where
T1(0) = T2(0). Let µT ∈ R, then any transformation T : R → R of the form

T (x) =

 T1(µT − x) x ≤ µT

T2(x− µT ) x > µT
(5.4)

is a volatility proxy transformation. The parameter µT is the change point of T and the
associated function gT : R+ → R+, gT (x) = T−1

2 (T1(x)) is the profile function of T .

From Equation 5.4, there is a change point µt in which the different functions T1 and
T2 for returns may contribute distinctive influence to the volatility proxy depending on
the sign of the return. This is a stylized fact of asset returns, called leverage effect, which
is suggested in economic theory that market information should have an asymmetric
effect on volatility, which means that the bad news leading to a fall in the equity value
of a company tends to increase the volatility. The phenomenon is similar to the leverage
effects in GARCH type models referred to by Ding et al. [1993] and Cont [2001].

In the case that a volatility proxy transformation is symmetric about µT , where
T1 = T2, the profile function gT (x) = x. Besides, the profile function of a volatility
proxy transformation is a strictly increasing, continuous and differentiable function in
R+. Generally, if the change point µT and profile function gT are known, the infor-
mation of constructing a v-transform is fully obtained. Moreover, by applying different
continuous marginal distribution FX and volatility proxy transformation T , we can
construct different v-transforms V(U).
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Proposition 5. Suppose FX is an absolutely continuous and strictly increasing marginal
distribution of a random variable X on R and a volatility proxy transformation expressed
by T . Let U = FX(x) and V = FT (X)(T (X)) be the PIT values of X and T (X). Then,
the v-transform V = V(U) can be written as

V(u) =

 FX(µt + gT (µT − F−1
X (u)))− u, u ≤ FX(µT )

u− FX(µT − g−1
T (F−1

X (u)− µT )), u > FX(µT ).
(5.5)

The Proposition 5 is given by McNeil [2021]. In Example 2, the volatility proxy
transformation TX(Xt) = |Xt| with change point 0.5 and profile function gT (x) = x

produces the symmetric v-transform in the form of Equation 5.3. Nevertheless, if we
change the volatility proxy transformation to TX(Xt) = X2

t , the change point and
profile function will be exactly the same as the ones in Example 2. Therefore, we
obtain the same v-transform as Equation 5.3. The result reveals that any two volatility
transformations TX and T̃X sharing the same change point µT and profile function gT

lead to the same resulting v-transform. The formal definition of the v-transform and
the fulcrum proposed by McNeil [2021] is in Definition 5.1.2.

Definition 5.1.2 (V-transform and fulcrum). Any transformation V that can be ob-
tained from Equation 5.5 by choosing an absolutely continuous and strictly increasing
marginal distribution FX on R and a volatility proxy transformation T is a v-transform.
The value δ = FX(µT ) is the fulcrum of the v-transform.

According to Definition 5.1.2, the fulcrum δ is an important parameter for v-
transforms. If we set the fulcrum δ to zero, then V(u) = u for u ∈ [0, 1]. For a
linear v-transform, the fulcrum is the only parameter, so the linear v-transform can be
called one parameter v-transform as well. In practice, the v-transform can be flexible
and constructed by applying an asymmetric and parametric FX , for example, a distri-
bution of the type introduced by Fernández and Steel [1998]. We follow the functions
and assumptions suggested by McNeil [2021] to set µT = 0 and gT (x) = kxξ for k > 0

and ξ > 0. Clearly, the profile function gT (x) = x of a symmetric volatility proxy
transformation is a special case of this profile, where k = ξ = 1.

Let f0 be a symmetric density and set γ > 0 to be a scalar parameter. The model
suggested by Fernández and Steel [1998] is

fX(x; γ) =


2γ

1+γ2
f0(γx) x ≤ 0

2γ
1+γ2

f0(
x
γ ) x > 0.

(5.6)

We can develop the parametric v-transform by using Equation 5.6 and setting
the f0 to be a special case of a Laplace or double exponential distribution f0(x) =

0.5 exp(−|x|), in order to produce a tractable expression; see McNeil [2021] for details.
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Proposition 6 (Three-parameter v-transform). Let FX(x; γ) be the cumulative distri-
bution function (cdf) of the density in Equation 5.6 when f0(x) = 0.5 exp(−|x|). Set
µT = 0 and let gT (x) = kxξ for k, ξ > 0. The v-transform in Equation 5.5 is given by

Vδ,κ,ξ(u) =

 1− u− (1− δ) exp(−κ(− ln(uδ ))
ξ) u ≤ δ,

u− δ exp(−κ−1/ξ(− ln(1−u1−δ ))
1/ξ) u > δ,

(5.7)

where δ = FX(0) = (1 + γ2)−1 ∈ (0, 1) and κ = k/γξ+1 > 0.

The expression in Equation 5.7 is a three-parameter v-transform, which is a
uniformity-preserving transformation. In the case ξ = 1, we obtain the two-parameter
v-transform. Another special case is linear v-transform when ξ = 1 and κ = 1, which
can be written as

Vδ(u) =

(δ − u)/δ u ≤ δ,

(u− δ)/(1− δ) u > δ.
(5.8)

Equation 5.8 contains the special case of Example 2 when δ = 0.5. The linear v-
transform is the simplest case of v-transform. In the empirical study, the linear v-
transform are widely used to be combined with other models, in order to simplify the
entire models and reduce the amount of parameters.

In order to present the features of v-transforms intuitively, we demonstrate one
example for each of the three types of v-transform, linear, two-parameter and three-
parameter in Figure 5.1. The fulcrum δ is set to 0.4 in the first two transforms. In the
v-transform with two parameters, κ = 0.6. In the case of three parameters, delta = 0.35,
κ = 1.2 and ξ = 0.8.

According to Figure 5.1, the v-shape is skewed to the right when κ > 1 and skewed
to the left when κ < 1, which can be proved by taking the second order derivatives of
Equation 5.7. When κ > 1, the second order derivative is negative on the left side and
positive on the right side. Hence, the function decrease faster on the left and increase
faster on the right, which leads to the v-shape being skewed to the right and vice versa.

In applications, the v-transform is usually constructed by Equation 5.7 and the cdf
FX is set at outset. The profile function is generated via Equation 5.9, proposed in
Proposition 3 by McNeil [2021].

gT (x) = F−1
X (FX(µT − x) + V(FX(µT − x)))− µT , x ≥ 0, (5.9)

where the change point µT = F−1
X (δ).

5.1.2 Properties of v-transforms

The v-transforms plots in Figure 5.1 exhibit the main properties of v-transforms, which
are summarized in Definition 5.1.3; the details are discussed by McNeil [2021].
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Figure 5.1: Three types of v-transform plots. Linear v-transform with parameters δ = 0.4
(topleft). Two parameters v-transform where δ = 0.4 and κ = 0.6 (topright). V-transform with
three parameters, which are δ = 0.35, κ = 1.2 and ξ = 0.8 (bottom).The white space is the
space that the black line can lie in. For given fulcrum δ, a v-transform can never enter the gray
shaded area of the plot.
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Definition 5.1.3. A v-transform is a mapping V : [0, 1] → [0, 1] which satisfies the
following properties:
1. V(0) = V(1) = 1;
2. There is a fulcrum point δ existing such that 0 < δ < 1 and V(δ) = 0;
3. V is continuous;
4. V is strictly decreasing on [0, δ] and strictly increasing on [δ, 1];
5. Every point u ∈ [0, 1] except δ has a dual point u∗ on the opposite side of the fulcrum δ

that satisfies V(u) = V(u∗) and |u−u∗| = V(u). This property is called square property.

The square property in Definition 5.1.3 is proved by McNeil [2021]. This property
means that the events {V ≤ v} and {min(u, u∗) ≤ U ≤ max(u, u∗)} are the same.
Therefore, the probabilities of the two events happening are equal, which is

v = P(V ≤ v) = P(min(u, u∗) ≤ U ≤ max(u, u∗)) = |u∗ − u|. (5.10)

The square property can be used to derive the inverse function of the v-transform.
Inverting v-transform is complicated because each v corresponds to two u when v ̸= δ.
The two dual points that yield the same value are distributed on two sides of the v-
shape with different probabilities when in asymmetric v-transforms. The probability
of the inverse value on the left side of the v-transform is denoted as ∆(v). We denote
the inverse function by V−1 when u ∈ [0, δ]. The partial inverse function is given by
V−1 : [0, 1] → [0, δ],V−1(v) = inf{u : V(u) = v} and let V ′ denote the gradient of V.
The gradient of v-transform is defined for all points u ∈ [0, 1], except for the change
point δ. The expression of the inverse of the v-transform will be discussed in Section
5.1.3.

5.1.3 Modelling v-transforms by copulas

V-transforms V = V(V ) describes the relationship between two uniform random vari-
ables U and V . The joint distribution function of (U, V ) is a copula. Therefore, this
section focuses on modelling the dependence of U and V by copulas.

Proposition 7. Let V and U be uniform preserving random variables linked to the
v-transform V = V(U). The copula C describing the dependence between U and V is

C(u, v) = P(U ≤ u, V ≤ v) =


0 u < V−1(v).

u− V−1(v) V−1(v) ≤ u < V−1(v) + v

v u ≥ V−1(v) + v.

(5.11)
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McNeil [2021] proves that the inverse of v-transform can be obtained conditional on
V = v, where the distribution of U is given by

U =


V−1(v) with probability ∆(v) if v ̸= 0

V−1(v) + v with probability 1−∆(v) if v ̸= 0

δ ifv = 0

(5.12)

where
∆(v) = − 1

V ′(V−1(v))
. (5.13)

The probability ∆(v) is referred to as the conditional down probability of the v-
transform and satisfies E(∆(V )) = δ. It is the probability of a binomial distribution,
which describe the probability that the value is on the left side of the fulcrum under
the condition of V = v. The stochastic inversion function can be defined according
to these features. This function can be constructed by a Bernoulli event, by which
the value of V can be randomly distributed to one of the dual point U and U∗ where
V(U) = V(U∗) = V .

Definition 5.1.4 (Stochastic inversion function of a v-transform.). Let V be a v-
transform with conditional down probability ∆(.).The piece-wise function V−1 : [0, 1]×
[0, 1] → [0, 1] is

V−1(v, w) =

V−1(v) if w ≤ ∆(v)

v + V−1(v) if w > ∆(v)
(5.14)

which is the stochastic inversion function of V.

Suppose the random variables V and W are iid uniform distributed variables and a
v-transform V with stochastic inversion function V defined in Definition 5.1.4. Clearly,
V(V−1(v, w)) = v for any w. Given U = V−1(V,W ), then V(U) = V and U ∼ U(0, 1),
which means U has the conditional distribution expressed in Equation 5.12 and must
be uniformly distributed.

Let V be a v-transform and U = (U1, ..., Ud)
⊤ and V = (V(U1), ...,V(Ud))⊤ be

vectors of uniform random variables with copula densities cu and cv, separately. McNeil
[2021] sets the assumption thatW1, ..,Wd are iid uniformly distributed random variables
to the stochastic inversion v-transform, where

U = (V−1(V1,W1), ...,V−1(Vd,Wd))
⊤.

In this case,
cU (u1, ..., ud) = cV (V(u1), ...,V(ud)). (5.15)

The derivation of Equation 5.15 can be found in Theorem 3 of Bladt and McNeil [2021].
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5.2 Vt-ARMA models

After introducing the v-transforms and their properties, we construct a simple combi-
nation of v-transform and stationary model, the VT-ARMA model, which consists of
a v-transform V and a Gaussian S-vine process. Following the procedure in Equation
5.1, we can generate a stationary time series from the Gaussian S-vine process.

• Firstly, we generate a causal and invertible Gaussian ARMA(p, q) process (Zt)

with mean zero and variance one.

• Then, we transform the ARMA(p, q) process Zt to uniformly distributed process
Vt by Vt = Φ(Zt) for all t.

• Then, we simulate iid random variables (Wt) ∼ U(0, 1). The series PIT process
(Ut) is obtained by taking the stochastic inverses Ut = V−1(Vt,Wt).

• Finally, the process (Xt) can be produced by using Xt = F−1
X (Ut), where FX is a

continuous cdf.

Any stochastic process (Xt) generated by this process is a VT-ARMA process.
Therein, the process (Ut) is a VT-ARMA copula process (McNeil [2021]). The VT-
ARMA copula Ut is a strictly stationary process since the underlying ARMA process
Zt is strictly stationary. According to Equation 5.15, the process (Ut) is invariant under
time shift concordance with PIT process of ARMA (Vt). Generally, the VT-ARMA is
a special case of vt-S-vine, which corresponds to S-vine copula processes of a Gaussian
ARMA model.

VT-ARMA copula process is a process on variants of ARMA copula. Therefore, cer-
tain properties of VT-ARMA are related to ARMA model. Assume Ut is a VT-ARMA
copula process with v-transform V and an underlying ARMA model with autocorre-
lation function ρ(k). Then, the random vectors (Ut1 , ..., Utk) for k ∈ N has joint den-
sity cGaP (t1,...,tk)

(V(u1), ...,V(uk)), where cGaP (t1,...,tk)
is the density of the Gaussian copula

CGaP (t1,...,tk)
and P (t1, ..., tk) is a correlation matrix with (i, j) element given by ρ(|tj−ti|)

(McNeil [2021]).
The expression of VT-ARMA copula between two variables Ut and Ut+k can be

written as

C(ut, ut+k) =

∫ ut

0

∫ ut+k

0
cu(ut, ut+k)dutdut+k.

=

∫ ut

0

∫ ut+k

0
cv(V(ut),V(ut+k))dutdut+k.

=

∫ ut

0

∫ ut+k

0
cGaρ(k)(V(ut),V(ut+k))dutdut+k.

(5.16)
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The Kendall rank correlation of VT-ARMA process can be calculated by applying Equa-
tion 2.10 and 5.16.

5.3 Vt-S-vine models

VT-S-vine model consists of v-transform and S-vine models. The S-vine model is intro-
duced in Chapter 3. The definition of vt-S-vine copula processes is given by Bladt and
McNeil [2021].

Definition 5.3.1. Let V be a v-transform and (Vt) be an S-vine(k) copula process.
Suppose (Wt) is arbitrary strictly stationary copula process that is independent of (Vt).
Set Ut = V−1(Vt,Wt). If (Wt) is an iid process, then the (Ut) is called a vt-S-vine(k)
copula process. Otherwise, (Ut) is a generalised vt-S-vine(k) copula process, denoted as
gvt-S-vine(k) process.

Assuming a time series (Vt) is an S-vine copula process, according to Equation 3.1,
the d-dimensional marginal density of the random vector (Vt, ..., Vt+d−1) is

cV (v1, ..., vd) =

d−1∏
k=1

d∏
j=k+1

ck(R
∗
k−1(v[j−k+1:j−1], vj−k), Rk−1(v[j−1:j−k+1], vj)) (5.17)

where R∗
k−1(v, x)) and Rk−1(v, x)) are given in Equation 3.2.

The joint density of a gvt-S-vine process is

cu(u1, ..., ud) = cW (u1, ..., ud)
d−1∏
k=1

d∏
j=k+1

ck(R
∗
k−1(v[j−k+1:j−1], vj−k),

Rk−1(v[j−1:j−k+1], vj))|v1=V(u1),...,vd=V(ud).

(5.18)

Under the condition that (Wt) is an iid process, the vt-S-vine can be written as

cu(u1, ..., ud) =

d−1∏
k=1

d∏
j=k+1

ck(R
∗
k−1(v[j−k+1:j−1], vj−k),

Rk−1(v[j−1:j−k+1], vj))|v1=V(u1),...,vd=V(ud).

(5.19)

In the case δ = 0, the expression of Equation 5.19 is reduced to

cu(u1, ..., ud) = cv(u1, ..., ud), (5.20)

where the joint density function of the vt-S-vine copula process is simplified to an S-vine
copula process. In other words, the S-vine copula can be identified as a boundary or a
special case of a vt-S-vine(k) copula.
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The conditional density of a gvt-S-vine copula is

fUt|Ut−1,...,Ut−k
(ut|ut−1, ..., ut−k) =

cU (ut−k, ..., ut)

cU (ut−k, ..., ut−1)

= cW (ut−1, ut)
k∏
i=1

ci(R
∗
k−1(v[t−k+1:t−1], vt−k),

Rk−1(v[t−1:t−k+1], vt))|vt−k=V(ut−k),...,vt=V(ut)

(5.21)

For the iid process (Wt), cW (ut−1, ut) = 1, so the conditional density of the vt-S-vine
copula can be obtained from Equation 5.21.
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Chapter 6

Can We Replicate GARCH
Processes by Vt-S-vine Models?

Autoregressive conditional heteroskedasticity (ARCH) processes were originally pro-
posed by Engle [1982]. Bollerslev [1986] gave the condition for covariance stationarity
and introduced GARCH processes where the squared volatility is dependent on the
previous squared volatilities and squared values of the process.

GARCH processes are widely applied in modelling financial time series. A GARCH
option pricing model with filtered historical simulation is proposed by Barone-Adesi
et al. [2008]. Franses and Van Dijk [1996] predict the stock market volatility via non-
linear GARCH models. The copula based GARCH method is applied by Huang et al.
[2009] to estimate VaR of portfolios.

Furthermore, variants and extensions of GARCH methods are developed in a large
amount of studies. For example, Nelson [1991] proposes the exponential GARCH
(EGARCH) processes that takes the leverage effect of financial time series into con-
sideration. Similarly, the GJR-GARCH process is introduced by Glosten et al. [1993],
who pointed out that the process can model the leverage effect in the nominal excess
returns on stocks. Other types of GARCH models are produced to model the stylized
facts of financial data in recent years, such as censored-GARCH model for asset returns
with price limit (Wei [2002]), power GARCH investigating the gold price (Tully and
Lucey [2007]).

GARCH models have attracted lots of researchers to study their structure and prop-
erties since they fit financial time series accurately but it is very difficult to explain why
they work so well. Hence, there are some works that try to explore the structure of
GARCH models by comparing the effect of modelling empirical financial time series by
GARCH processes and the models we are familiar with. Loaiza-Maya et al. [2018] apply
S-vine copulas to model the temporal dependence in stationary heteroscedastic time se-
ries and compare the result with GARCH models. Bladt and McNeil [2022] show that
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the VT-ARMA and vt-S-vine model can rival to GARCH model in modelling Bitcoin
data. Moreover, applying other kinds of models to mimic GARCH processes is also
a reasonable approach to reveal the reason why GARCH models work so well. Zhao
et al. [2022] mimic GARCH and GJR-GARCH processes by first-order semi-parametric
S-vine process.

In this section, we attempt to replicate the GARCH processes with the vt-S-vine
introduced in Chapter 5. Section 6.1 is an introduction of three types of GARCH
processes. Section 6.2 demonstrates the methods and results of modelling GARCH
type processes by VT-S-vine models. The procedure and results of one-step prediction
by VT-S-vine for GARCH type processes are shown in Section 6.3.

6.1 GARCH process

Definition 6.1.1. Let (Zt)t∈Z be a strictly white noise with mean zero and variance one.
The process (Xt)t∈Z is a GARCH(p,q) process if it is strictly stationary and satisfies for
all t ∈ Z and a strictly positive-valued process (σt)t∈Z, the equations

Xt = σtZt,

σ2t = α0 +

p∑
i=1

αiX
2
t−i +

q∑
j=1

βjσ
2
t−j ,

(6.1)

where α0 > 0, αi ≥ 0, i = 1, ..., p, and βj ≥ 0, j = 1, ..., q.

The process (Zt)t∈Z is the innovation process that consists of the innovations, which
can be normal, t and any other types of distributions. The GARCH(1,1) model is the
most widely applied GARCH model, since in this low-order GARCH model periods
of high volatility tend to be persistent (Nelson [1990]). Meanwhile, the expression of
GARCH(1,1) is simpler for analysis. Therefore, we concentrate on GARCH(1,1) model
in our study.

If (σ2t )t∈Z is a strictly stationary process, then the GARCH process (Xt)t∈Z is sta-
tionary as well, since Xt = σtZt and (Zt)t∈Z is strictly white noise. The GARCH(1,1)
process is a covariance-stationary white noise process if and only if α1 + β1 < 1. The
variance of the covariance-stationary process is equal to α0/(1− α1 − β1) (Proposition
4.21 in McNeil et al. [2015]). For GARCH(1.1) process, if it satisfies the condition of
covariance-stationary, then it is also a strictly stationary process. In other words, the
covariance-stationary has the more strict condition in GARCH(1,1).

The covariance-stationary GARCH(1,1) can be expressed as an ARMA(1,1) model.
Let Vt be a martingale difference and Vt = σ2(Z2

t − 1), using Equation 6.1, the
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GARCH(1,1) process can be written as

X2
t = α0 + α1X

2
t−1 + β1σ

2
t−1 + Vt. (6.2)

Since σ2t−1 = X2
t−1 − Vt−1, the X2

t can be expressed as

X2
t = α0 + (α1 + β1)X

2
t−1 − β1Vt−1 + Vt. (6.3)

We can rebuild Equation 6.3 to write it in a mode of ARMA(1,1) process.(
X2
t −

α0

1− α1 − β1

)
= (α1 + β1)

(
X2
t−1 −

α0

1− α1 − β1

)
− β1Vt−1 + Vt. (6.4)

Equation 6.4 presents an ARMA(1,1) process under the condition that E(X4
t ) <∞

and α1 + β1 < 1; details can be found in [McNeil et al., 2015, p. 120].

The standard GARCH model, describes the time series in a rigidly symmetric way
where the volatility reacts to recent returns without concern about their sign. This fea-
ture of GARCH model violates the economic theory of leverage effect, where the market
information should have an asymmetric effect on volatility. Therefore, we introduce two
GARCH models that add an additional parameter to describe the leverage effect.

Nelson [1991] proposes the EGARCH(1,1) model

lnσ2t = α0 + α1Zt−1 + γ(|Zt−1| − E(|Zt−1|)) + β1 lnσ
2
t−1, (6.5)

where the coefficient α1 manifests the sign effect and γ describes the size effect. The
expression α1Zt−1 + γ(|Zt−1| − E(|Zt−1|) allows the volatility σ2t to be affected asym-
metrically by rises and falls of financial time series. In EGARCH process, the lnσ2t is a
linear process, so its covariance-stationarity and ergodicity are easy to check.

Let ϵt = α1Zt−1 + γ(|Zt−1| − E(|Zt−1|)), then (ϵt)t∈Z is strictly stationary, since
ϵ only depends on Zt and Zt is a strictly white noise. If we let Yt = lnσ2t , then
Yt = α0 + ϵt + β1Yt−1. Therefore, (Yt)t∈Z is an AR(1) process, which will be strictly
stationary process under the condition |β1| < 1. For EGARCH(1,1), the condition of
covariance stationary is the same as strictly stationary, which is |β1| < 1; proof can be
found in Exercise 4.20 in Hofert et al. [2020].

Furthermore, the GJR-GARCH(1,1) model with an additional parameter γ can also
describe the asymmetric effect of good and bad news on volatility. Glosten et al. [1993]
defined the GJR-GARCH process(1,1) by

σ2t = α0 + α1X
2
t−1 + β1σ

2
t−1 + γI{Xt−1<0}X

2
t−1, (6.6)

where It−1 = 0 if Xt−1 ≥ 0 and It−1 = 1 if Xt−1 < 0. γ represents the leverage term.
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In the GJR-GARCH model, the factor It−1 can add the influence of negative values
in financial time series to GARCH model and parameter γ facilitates the description of
asymmetry effect on volatility.

6.2 Modelling GARCH processes by vt-S-vine model

In order to study the structure of GARCH processes, we use vt-S-vine models to fit the
simulated data from standard GARCH, EGARCH and GJR-GARCH processes. Zhao
et al. [2022] have also investigated whether S-vine models can mimic GARCH, but their
study is restricted to models of first and second order with t copulas. We extend the
model to higher-order S-vine copulas. Meanwhile, the v-transform is combined with the
S-vine copulas to describe the cross-shaped copula density in GARCH type process.

6.2.1 Methods of replicating GARCH type processes

There are two types of estimation methods for S-vine models, semi-parametric and
parametric. Similarly, the vt-S-vine has the two modes as well. For semi-parametric vt-
S-vine models, we use empirical distribution to transform the simulations from GARCH
processes to uniform scale and fit them to vt-S-vine copulas. The parametric vt-S-vine
model is selecting a suitable parametric marginal distribution first and then model the
data with the entire model consisting of the vt-S-vine copula and margins.

We try three types of v-transforms, linear, two-parameter, and three-parameter v-
transforms. The choices of copulas we used is the same as the ones used in Section 4.4.
The estimation approach in S-vine copulas is also the same as in Section 4.4, where
applying kpacf from ARMA process to approximate the kpacf values of S-vine process
to reduce the amount of the parameters. The order of vt-S-vine copula is 40. The order
of ARMA process used to estimate the kpacf values is (1, 1), because the GARCH(1,1)
process can be written as the form of ARMA (1,1); the expression is in Equation 6.4.
The process of mimicking GARCH type processes to semi-parametric vt-S-vine model
is:

• Simulate 5000 data Xt from standard GARCH(1,1), EGARCH(1,1) and GJR-
GARCH(1,1) processes with normal innovation.

• Transform simulations to uniform scale Ut by empirical distribution.

• Find the best fulcrum by comparing maximum likelihood values (we input values
of fulcrum evenly distributed between 0 and 1, and calculate the likelihood values
in each case to select the fulcrum with the largest likelihood value) and plot profile
likelihood at a regularly spaced grid of values for δ.
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• Fix the fulcrum δ to v-transform and fit the model with v-transform and S-vine
copulas to the uniformly distributed Ut to estimate the parameters and calculate
the AIC values.

• Compare the AIC values with the first and second-order S-vine process with t
copula.

The process of replicating GARCH type processes by the parametric vt-S-vine model
is similar to the one by the semi-parametric vt-S-vine model. We add one step to find
the suitable marginal distribution to describe the simulations from GARCH processes
before transforming data to uniformly distributed. The choice of parametric marginal
distributions are same as the ones used in Section 4.4. Then, the simulations are
transformed to uniform scale by the chosen parametric margin in the second step. After
finding the best fulcrum, we fit the full model with margins, v-transforms and S-vine
copulas to the simulations and estimate the parameters.

The parameters of vt-S-vine models are estimated by the maximum likelihood esti-
mation (MLE) approach. Let x = {x1, ..., xn} be a realization from a strictly station-
ary process with parametric marginal distribution FX(x;θm) and joint copula density
cU(u1, ..., un;θc), where θm is the parameters in marginal distribution and θc and θv
are the parameters of the S-vine copula density and v-transform, separately. The full
log-likelihood is

L(θc,θv,θm;x) =
d−1∑
k=1

d∑
j=k+1

log ck(R
∗
k−1(v[j−k+1:j−1], vj−k),

Rk−1(v[j−1:j−k+1], vj))|v1=V(u1;θv),...,vd=V(ud;θv)

+
n∑
i=1

log (fX(xi;θm);θc) ,

(6.7)

where d is the order of the vt-S-vine copula and R∗
k−1(v, x) and Rk−1(v, x) are given in

Equation 3.2.
In our copula-based estimation method, we follow the inference-functions-for-

margins (IFM) approach introduced in Joe [1997] and estimate the marginal distri-
bution and copula model in two steps. The suitable margins F̂X are selected first
by using the second part of Equation 6.7 and then by using the pseudo-copula data
{ûi = F̂X(xi; θ̂m), i = 1, ..., n} to estimate fulcrum δ in v-transform. Finally, we fit the
full model using Equation 6.7. Before estimating the parameters in copula sequences,
the ARMA(1,1) is used to approximate the kpacf in S-vine and the parameters in bi-
variate copula sequences θc are expressed by the parameters {ϕ1, θ1} in ARMA(1,1).
Hence, only two parameters are left in the MLE process for S-vine copulas. The details
of the approach are exactly the same as the one discussed in Section 3.2.2. For semi-
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parametric vt-S-vine model, the log-likelihood is equal to the first part of the Equation
6.7.

Note that for some original data point xt, δ = ut = FX(xt), where FX is empirical
distribution, then V(ut) = 0 and the log-likelihood for the copula takes the value −∞,
which implies that the profile likelihood of δ is not differentiable at such points and
has multiple local maxima. Therefore, we apply a grid search to finding the optimal
estimation of δ, instead of continuous optimization in the interval [0, 1]; details are
discussed by Bladt and McNeil [2021].

6.2.2 Simulations

The GARCH type data are simulated from GARCH(1,1), EGARCH(1,1) and GJR-
GARCH(1,1) processes. In order to compare the results with Zhao et al. [2022], we use
the GARCH and GJR-GARCH processes with the same parameters and innovation in
this paper. The innovation distribution we use here is normal. We set the parameters
to be [α0, α1, β1] = [0.05, 0.1, 0.85] for the GARCH process and [α0, α1, β1, γ] = [0.05,

0.1, 0.85, 0.05] for the GJR-GARCH process. These parameters match the real world fi-
nancial data broadly (Oh and Patton [2013]). Furthermore, the parameters of EGARCH
process are chosen corresponding to GARCH and GJR-GARCH. Also, we make slight
adjustment to the parameters to make the dependence between data stronger, which
can illustrate the differences between vt-S-vine models more clearly. The parameters of
EGARCH with normal innovation are set to be [α0, α1, β1, γ] = [0.05,−0.03, 0.95, 0.25].

We simulate 5000 data for each model. The simulated time series are plot in Figure
6.1. The plots present volatility clustering features of GARCH type simulations.

In order to show the conditional dependence of the data, we plot the partial auto-
correlation (pacf) of the data. Moreover, the pacf of absolute values of the data are
plotted to demonstrate the conditional dependence of the volatility proxy series of data
as an example. The pacf plots are shown in Figure 6.2.

Figure 6.2 demonstrates that the absolute values of GARCH type processes have
strong dependence, which embodies the positive persistence serial correlations.

6.2.3 Modelling GARCH type processes by vt-S-vine

After simulating the GARCH type time series, the vt-S-vine models are fitted to the time
series. We also attempt the first-order and second-order S-vine model with t copulas
and compare the AIC values with vt-S-vine models. The results of semi-parametric and
parametric models are discussed in the following sections.
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Figure 6.1: Three simulations from GARCH processes (top), GJR-GARCH (middle) and
EGARCH (bottom). The parameters are presented in Section 6.2.2.
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,

,

,

Figure 6.2: Pacf plots of GARCH (left-top), absolute values of GARCH (right-top), GJR-
GARCH (left-middle), absolute values of GJR-GARCH (right-middle), EGARCH (left-bottom)
and absolute values of EGARCH (right-bottom).
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Figure 6.3: The profile log-likelihood function describing the relationship between fulcrum val-
ues δ and the corresponding log likelihood values of the vt-S-vine models with survival Clayton
copulas fitted to the simulations from GARCH processes. The x-axis represents the fulcrum
values and y-axis shows the corresponding log likelihood values. The red, green and black lines
are the vt-S-vine copulas with linear, two-parameter and three-parameter v-transforms, respec-
tively. The vertical lines give the best fulcrum corresponding to the maximum log likelihood
values in the three types of v-transforms.

Semi-parametric vt-S-vine models

In the semi-parametric vt-S-vine models, the simulations are transformed to the uni-
formly distributed time series Ut by empirical distribution. For the fulcrum search, we
draw the profile likelihood of the fulcrum values for different copula sequences, includ-
ing Gaussian, Gumbel, Joe, survival Clayton and Frank copulas. In this section, we
also apply the models based on Gaussian copula sequences with non-Gaussian substi-
tutes at the first few lags, including the model with Gumbel for the first ten orders
and Gaussian for the following thirty orders denoted as Gu(10)_Ga(30) and the model
with survival Clayton for the first ten orders and Gaussian copulas thereafter denoted
as SC(10)_Ga(30). Figure 6.3 presents the relationship between fulcrum values δ and
the corresponding log likelihood values of the vt-S-vine models with survival Clayton
copulas fitted to the simulations from GARCH processes.

According to Figure 6.3, the three-parameter v-transform always has the largest log
likelihood and the two-parameters v-transform is the second choice for each fulcrum.
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However, the fulcrums leading to the maximum log likelihood values concentrate on the
range of [0.4, 0.6]. Besides, the log likelihood values of the three types of v-transforms are
closer when the fulcrum is taken in this range. Therefore, the selection of v-transform
does not affect the estimation results significantly when the optimal fulcrum is chosen.
In other words, we can use linear v-transform as a representative of v-transforms to
reduce the amount of parameters and simplify the vt-S-vine model in some cases.

After finding the best fulcrum, we fit the vt-S-vine copula with fixed fulcrum to
the transformed uniformly distributed time series Ut and calculate the AIC values.
Furthermore, the first-order and second-order S-vine copulas with the t copula are used
to model Ut as a comparison. These results are shown in Table 6.1.

Table 6.1 demonstrates that the higher-order vt-S-vine processes capture the stylized
facts of GARCH type simulations much better than the first and second-order S-vine
processes with t copulas. The vt-S-vine process with the survival Clayton copula yields
the best results in the three data groups. Moreover, the vt-S-vine with mixture copula
sequences does not improve the results of copula sequences with single copula. The
linear v-transform shows smaller AIC values than the v-transforms with two and three
parameters in many cases and the AIC values from the three types of v-transform are
closer to each other. This observation is in accordance with the discussion in Figure
6.3. Another method to assess the estimation results is to do the residual plot. The
residuals of semi-parametric vt-S-vine processes with survival Clayton copula sequences
and linear v-transform fitted to EGARCH process are shown in Figure 6.4.

According to Figure 6.4, the upper tail of residuals slightly deviates from the stan-
dard line. This may be caused by the asymmetry of the simulated time series. The
situations of the other two datasets are similar. The survival Clayton sequences may not
capture the upper tail dependence perfectly. It is difficult to assess if the semi-parametric
vt-S-vine models GARCH type process well enough. However, we can explore the im-
provement of estimating GARCH type processes via comparing the AIC values with
the existing models, such as S-vine processes with t copula. Another approach is to
fit the simulated time series to the GARCH process and compare the AIC values with
parametric vt-S-vine to see how much difference the AIC with the real models. The
parametric vt-S-vine model is presented in the next section.

Semi-parametric vt-S-vine models with two-parameter copulas

This subsection investigates the replication of GARCH-type processes by vt-S-vine cop-
ulas with linear v-transform and two-parameter copulas, such as t and BB1 copulas,
which are used by Nikoloulopoulos et al. [2012] to model the asymmetric tail dependence
in time series. In the previous section, we found that vt-S-vine copulas with survival
Clayton copula sequences can provide the best replication for GARCH-type processes.
Hence, we apply survival Clayton copulas at higher level in vt-S-vine models and sub-
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AIC values for GARCH simulations
S − vine(1)− t -112.8375
S − vine(2)− t -194.4746

Vlinear (fulcrum) V2p (fulcrum) V3p (fulcrum)
Gaussian -262.20 (0.4937) -264.48 (0.5320) -263.29 (0.5702)
Gumbel -354.78 (0.4937) -355.94 (0.5320) -355.77 (0.5702)
Joe -351.71 (0.4554) -351.33 (0.4937) -350.09 (0.5702)

Clayton180 -385.92 (0.4937) -385.14 (0.5320) -385.82 (0.5702)
Frank -224.36 (0.4937) -224.49 (0.5320) -224.90 (0.5702)

Gu(10)_Ga(30) -350.90 (0.4554) -349.99 (0.4937) -348.97 (0.5702)
SC(10)_Ga(30) -374.00 (0.4937) -372.14 (0.4937) -374.52 (0.6085)

AIC values for GJR-GARCH simulations
S − vine(1)− t -279.6331
S − vine(2)− t -478.6405

Vlinear (fulcrum) V2p (fulcrum) V3p (fulcrum)
Gaussian -600.14 (0.4937) -600.96 (0.5320) -600.13 (0.5320)
Gumbel -818.78 (0.4937) -818.28 (0.4937) -818.59 (0.5320)
Joe -830.67 (0.4937) -831.23 (0.4937) -831.65 (0.5320)

Clayton180 -849.42 (0.4937) -849.89 (0.4937) -849.52 (0.5320)
Frank -530.15 (0.4937) -529.14 (0.5320) -527.93 (0.5320)

Gu(10)_Ga(30) -807.68 (0.4937) -806.69 (0.4937) -806.13 (0.4937)
SC(10)_Ga(30) -830.85 (0.4937) -830.47 (0.4937) -829.60 (0.6085)

AIC values for EGARCH simulations
S − vine(1)− t -168.0197
S − vine(2)− t -278.5629

Vlinear (fulcrum) V2p (fulcrum) V3p (fulcrum)
Gaussian -410.02 (0.5320) -409.09 (0.5320) -407.57 (0.5320)
Gumbel -484.29 (0.4937) -482.80 (0.5320) -481.94 (0.5320)
Joe -457.97 (0.4937) -456.07 (0.4937) -454.82 (0.5320)

Clayton180 -538.66 (0.5320) -537.46 (0.5320) -537.60 (0.5320)
Frank -366.47 (0.5320) -366.50 (0.5320) -364.64 (0.5320)

Gu(10)_Ga(30) -483.68 (0.4937) -481.69 (0.4937) -479.75 (0.4937)
SC(10)_Ga(30) -527.56 (0.4937) -526.28 (0.4937) -525.22 (0.5320)

Table 6.1: The AIC values of the semi-parametric S-vine and vt-S-vine copulas fitted to
GARCH, GJR-GARCH and EGARCH processes. S − vine(1)− t and S − vine(2)− t are the
first-order and second-order S-vine processes with t copulas. Vlinear, V2p and V3p are the
linear, two-parameter and three-parameter v-transforms, separately. The values in the brackets
are the fulcrum chosen according to the profile fulcrum functions. The order of the vt-S-vine
process is 40. Clayton180 represents the survival Clayton copulas. Gu(10)_Ga(30) is the S-
vine copula with the Gumbel copula in the first ten order and Gaussian copula in the following
30 orders. SC(10)_Ga(30) is the one with survival Clayton replacing the first ten Gumbel
copulas in Gu(10)_Ga(30). The numbers in yellow are the AIC values of the best models in
each dataset. The blue colour highlights the best copula sequences in each dataset.
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Figure 6.4: The residuals plot of semi-parametric vt-S-vine process with survival Clayton
copula sequences and linear v-transform fitted to EGARCH process.



6.2. Modelling GARCH processes by vt-S-vine model 107

GARCH GJR-GARCH EGARCH
V linear + t(1)_sclay(39) -255.63 -503.82 -332.43

V linear + sBB1(1)_sclay(39) -230.53 -523.98 -344.79

Table 6.2: The AIC values of the semi-parametric S-vine and vt-S-vine copulas fitted
to GARCH, GJR-GARCH and EGARCH processes.

stitute the copula at fist level to t or BB1 copula. Because the vt-S-vine is truncated at
lag 40, the models are denoted as t(1)_sclay(39) and sBB1(1)_sclay(39). The survival
BB1 copula obtain better estimation results in GARCH replication, so we decide to use
survival BB1 copula. In addition, the linear v-transform is used to simplify the calcu-
lation. The estimation results of semi-parametric vt-S-vine models with two-parameter
copulas are shown in Table 6.2.

According to Table 6.2, the two types of two-parameter copula do not improve the
replication of GARCH-type processes, which means the feature of tail dependence of
GARCH-type processes may not be similar to the one of t or BB1 copulas. In v-
transforms, the large changes in either positive or negative sides will be transformed
to large changes; small changes will still be small changes. It means that only large
movements in price has obvious tail dependence. That’s why the one-tail dependence
copula is better for the financial data.

Parametric vt-S-vine models

The first step for the parametric vt-S-vine model is to choose the suitable marginal
distributions. The candidate margins includes normal (norm), skewed Laplace (slap),
double Weibull (dwe), skewed double Weibull (sdwe), student t (t), skewed student t
(st), normal inverse Gaussian (NIG), hyperbolic (hyp) and generalised hyperbolic (ghyp)
distributions. The candidate margins are estimated by the GARCH type time series.
We select the margins with the smallest AIC values and the most accurate QQ-plot.
The AIC values of the three datasets are demonstrated in Table 6.3.

According to Table 6.3, the best margins for GARCH, GJR-GARCH and EGARCH
simulation processes are student t, student t and hyperbolic distributions. In order to
demonstrate the margins intuitively, the QQ-plots of the best marginal distributions of
the three datasets are shown in Figure 6.5.

The QQ-plots of marginal distributions are close to the standard red line in GARCH
and EGARCH simulations. The estimation GJR-GARCH process deviates slightly from
the red line, but the student t distribution is the best margin among the nine candidates
for GJR-GARCH. Hence, we use the chosen margins to transform data to an approxi-
mately uniform and use the same approach to find the fulcrums. Following this, the full
models with vt-S-vine and chosen margins are fitted to GARCH type processes. The
AIC values are shown in Table 6.4.
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Figure 6.5: QQ-plots of best margins in simulations from GARCH (top), GJR-GARCH (mid-
dle) and EGARCH (bottom).
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GARCH GJR-GARCH EGARCH
Margins norm 14096.22 17404.29 19665.19

slap 14343.52 17243.92 19817.38
dwe 14065.97 17107.61 19589.53
sdwe 14067.79 17109.52 19591.07

t 14048.80 17098.08 19584.17
st 14050.77 17100.03 19585.99

NIG 14049.79 17102.09 19582.96
hyp 14049.68 17107.65 19582.40
ghyp 14051.94 17101.36 19585.62

Table 6.3: The AIC values of marginal distributions fitted to the simulations from
GARCH, GJR-GARCH and EGARCH processes. The numbers in yellow are the AIC
values of the best models in each dataset.

Table 6.4 shows that the parametric vt-S-vine processes perform much better than
S-vine process with t copulas. The best copula sequences are survival Clayton copulas.
Three-parameter v-transforms present better results than the other two v-transforms
in most cases, but the differences are small. Hence, it is still reasonable to take the
linear v-transform as representative v-transform to reduce the number of parameters
and simplify the full models. The GARCH type simulations are also modelled by the
true model and calculate the AIC values as a benchmark to analyse the estimation
results from vt-S-vine and S-vine processes.

The best models are vt-S-vine processes with three-parameter v-transform and sur-
vival Clayton copula sequences in all these three datasets. Although there still is a
small gap between their AIC values and true model’s AIC, the improvement is sig-
nificant. The full models consist of the marginal distributions and vt-S-vine copulas.
Hence, the gap may be caused by the marginal distribution, since the margins we at-
tempt are not perfect, especially the tail estimation, which can be shown in QQ-plot
in Figure 6.5. Furthermore, the mixed copula sequences in vt-S-vine process do not
present advantages in estimating the GARCH type processes compared to the vt-S-vine
with single types of copulas.

In order to present the estimation results, we put the residuals, v-transforms and
kpacf plots of fitting parametric vt-S-vine models with three-parameters v-transform
and survival Clayton copula sequences to GARCH and EGARCH processes in Figure
6.6. The residuals of the two datasets have bias in the upper tail, which is in accordance
with the conclusion in semi-parametric vt-S-vine estimation. Therefore, it may be
caused by the copulas sequences. The three-parameter v-transform of the two datasets
have right-twist shape and fit the uniformly distributed time series accurately. The
kpacf plots demonstrate that it is reasonable to use ARMA process to approximate the
kpacf of GARCH type processes in vt-S-vine copula estimation.
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AIC values for GARCH simulations [13644.67]
S − vine(1)− t 13935.91
S − vine(2)− t 13854.34

Vlinear (fulcrum) V2p (fulcrum) V3p (fulcrum)
Gaussian 13787.63 (0.4937) 13780.95 (0.5320) 13782.75 (0.5320)
Gumbel 13694.65 (0.4937) 13695.50 (0.5320) 13690.52 (0.5702)
Joe 13698.16 (0.4937) 13699.95 (0.4937) 13696.71 (0.5702)

Clayton180 13664.55 (0.4937) 13665.69 (0.5320) 13663.62 (0.6085)
Frank 13822.68 (0.4937) 13822.41 (0.5320) 13824.33 (0.5702)

Gu(10)_Ga(30) 13697.75 (0.4554) 13699.36 (0.4554) 13696.73 (0.5702)
SC(10)_Ga(30) 13675.78 (0.4937) 13677.75 (0.4937) 13674.61 (0.6085)

AIC values for GJR-GARCH simulations [16202.66]
S − vine(1)− t 16815.19
S − vine(2)− t 16617.27

Vlinear (fulcrum) V2p (fulcrum) V3p (fulcrum)
Gaussian 16495.45 (0.4937) 16490.34 (0.5320) 16491.61 (0.5320)
Gumbel 16276.58 (0.4937) 16277.31 (0.4937) 16276.11 (0.5320)
Joe 16263.66 (0.4937) 16263.34 (0.4937) 16263.32 (0.5320)

Clayton180 16246.37 (0.5320) 16246.90 (0.4937) 16245.95 (0.5320)
Frank 16565.89 (0.4937) 16566.44 (0.5320) 16567.80 (0.5320)

Gu(10)_Ga(30) 16285.72 (0.4937) 16286.79 (0.4937) 16287.95 (0.4937)
SC(10)_Ga(30) 16264.51 (0.4937) 16264.43 (0.4937) 16264.65 (0.6085)

AIC values for EGARCH simulations [19008.73]
S − vine(1)− t 19414.06
S − vine(2)− t 19303.95

Vlinear (fulcrum) V2p (fulcrum) V3p (fulcrum)
Gaussian 19178.76 (0.4937) 19172.07 (0.5320) 19173.65 (0.5320)
Gumbel 19098.96 (0.4937) 19100.46 (0.4937) 19097.40 (0.5702)
Joe 19124.66 (0.4937) 19125.70 (0.4937) 19121.04 (0.5702)

Clayton180 19046.06 (0.5320) 19047.48 (0.4937) 19045.01 (0.5702)
Frank 19214.72 (0.5320) 19214.72 (0.5320) 19216.64 (0.5320)

Gu(10)_Ga(30) 19098.55 (0.4937) 19100.20 (0.4937) 19100.12 (0.5320)
SC(10)_Ga(30) 19056.41 (0.4937) 19057.34 (0.4937) 19057.42 (0.6085)

Table 6.4: The AIC values of parametric S-vine and vt-S-vine processes fitted to GARCH,
GJR-GARCH and EGARCH processes. The margins for GARCH, GJR-GARCH and EGARCH
simulation processes are student t, student t and hyperbolic distributions. S−vine(1)−t and S−
vine(2)− t are the first-order and second-order S-vine process with t copulas. Vlinear, V2p and
V3p are the linear, two-parameter and three-parameter v-transforms, separately. The values
in the brackets are the fulcrum chosen according to the profile fulcrum functions. The order of
vt-S-vine process is 40. Clayton180 represents the survival Clayton copulas. Gu(10)_Ga(30)
is S-vine copula with Gumbel copula in the first ten order and Gaussian copula in the following
30 orders. SC(10)_Ga(30) is the one with survival Clayton replacing the first ten Gumbel
copulas in Gu(10)_Ga(30). The values in the square brackets are the AIC values of GARCH
models fitted to the simulations from the GARCH model. The numbers in yellow are the AIC
values of the best models in each dataset. The blue colour highlights the best copula sequences
in each dataset.
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,
(a) Residuals in GARCH (left) and EGARCH (right) datasets

,
(b) V-transforms in GARCH (left) and EGARCH (right) datasets

.

,
(c) Kpacf plots in GARCH (left) and EGARCH (right) datasets

Figure 6.6: The residuals plot (top), v-transform plots (middle) and kpacf plots (bottom) of
the estimating simulations from GARCH (left) and EGARCH (right) processes by parametric
vt-S-vine process with three-parameter v-transform and survival Clayton copula sequences.
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GARCH (t) GJR-GARCH (t) EGARCH (hyp)
Gumbel 125.82 168.31 220.69
Gaussian 128.39 177.65 221.22

Joe 126.04 168.42 221.41
Clayton180 124.81 166.90 216.10
Frank 131.21 191.04 227.32

Gu(10)_Ga(30) 126.42 169.41 221.25
SC(10)_Ga(30) 125.27 168.79 217.56
t(1)_sclay(39) 131.46 194.12 229.81

sBB1(1)_sclay(39) 132.02 195.99 230.16

Table 6.5: The quantile scores of estimating the simulations from GARCH, GJR-
GARCH and EGARCH processes by marginal distributions student t, student t and
hyperbolic distributions, separately.The quantiles in this table is 0.01. The numbers in
yellow are the quantile scores of the best model in each dataset.

GARCH (t) GJR-GARCH (t) EGARCH (hyp)
Gumbel 132.99 178.20 233.67
Gaussian 137.32 186.54 238.74

Joe 132.94 178.21 234.10
Clayton180 132.47 175.50 228.83
Frank 139.54 196.20 243.78

Gu(10)_Ga(30) 133.03 177.58 232.64
SC(10)_Ga(30) 131.20 175.55 228.61
t(1)_sclay(39) 136.34 192.22 239.45

sBB1(1)_sclay(39) 138.88 195.34 243.92

Table 6.6: The quantile scores of estimating the simulations from GARCH, GJR-
GARCH and EGARCH processes by marginal distributions student t, student t and
hyperbolic distributions, separately.The quantiles in this table is 0.99. The numbers in
yellow are the quantile scores of the best model in each dataset.

Extreme quantiles estimation of parametric vt-S-vine models

The best fitting model should not only have relatively small AIC values, but also have
a accurate match to extreme quantiles. Nikoloulopoulos et al. [2012] propose to use
the log-likelihood ratio test to test the quantile violation rates. We use the quantile
score methodology instead. In order to compare different replication results of vt-S-
vine models, we calculate in-sample quantile scores at quantile 0.01 and 0.99 of the
vt-S-vine models. Similar to out-of-sample quantile score, the vt-S-vine models are fit
to the simulations from GARCH-type processes and the parameters are estimated. The
vt-S-vine models with estimated parameters are used to compute next quantiles at 0.01
or 0.99. Then, the formula 3.10 and 3.11 are applied to calculate quantile scores. The
quantiles scores of estimation at quantile 0.01 and 0.99 are shown in Table 6.5 and Table
6.6, respectively.
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According to Table 6.5, the survival Clayton has the smallest quantile scores in
the three datasets at quantile 0.01. Meanwhile, the vt-S-vine models with survival
Clayton copula sequences perform very well in extreme quantiles (0.99) estimations as
well. The Gaussian copula with the fist ten levels replaced by survival Clayton copulas
(SC(10_Ga(30)) outperform the other models in GARCH and EGARCH processes.
These results correspond to the observations of AIC values. The best models are the
best models for both methods.

6.3 Predict GARCH by vt-S-vine models

After fitting vt-S-vine processes to the simulated data from GARCH type models, we
perform one-step prediction using the estimated vt-S-vine models. There are two types
of prediction, semi-parametric and parametric predictions. The vt-S-vine process con-
sists of v-transform and S-vine copulas. In order to simplify the model and reduce the
parameters in vt-S-vine models, we use linear v-transforms for all vt-S-vine processes.
As discussed in Section 6.2.3, the differences between the three types of v-transforms are
not very significant. Moreover, to predict the process, we need to calculate the inverse
of the v-transform and the inverse of a linear v-transform is simple to obtain. We carry
out a simulation study using the following steps:

1. Simulate 7000 data from GARCH(1,1), GJR-GARCH(1,1) and EGARCH(1,1)
processes, separately. The first 5000 data are used to estimate the parameters in
vt-S-vine copulas and the remaining 2000 data are applied for one step prediction.

2. Follow the routine of modelling GARCH type time series by vt-S-vine models in
Section 6.2.3 and estimate the parameters in vt-S-vine models.

3. Predict using the estimated vt-S-vine process via the approach used to predict
S-vine process in Section 3.4. By adding the linear v-transform, the predictions
can be transformed back to Ut by inverse linear v-transform.

4. For quantile predictions, we predict at even quantiles {0.05, 0.10, 0.15, ..., 0.95} and
calculate the quantile scores at these quantiles. The mean of these quantile scores
is also calculated to compare prediction results for different vt-S-vine models.

5. The simulated time series and predictions at different quantiles are plotted.

We develop the one-step prediction in three sample size, 500, 1000 and 2000. How-
ever, the prediction results are inconsistent with the expectations when sample size are
500 and 1000. The best models for predictions are vt-S-vine with copula sequences
that do not fit well when the sample size is 500 or 1000. However, when the sample
size increased to 2000, we found that the survival Clayton copulas, which are the best
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models in fitting process, usually predict accurately, which is in accordance with our
expectations. Hence, we decide to simulate 2000 data for prediction. The results will
be presented and discussed in this section.

The prediction procedure for the parametric vt-S-vine is very similar to the semi-
parametric one. The only difference is the choice of margins. The margins used for
estimation and prediction in parametric vt-S-vine models are the parametric ones as
discussed in Section 6.2.3. For semi-parametric vt-S-vine models, we use empirical
margins instead. Furthermore, the first-order and second-order S-vine with t copulas
are applied to predict the GARCH type processes; details can be found in Zhao et al.
[2022]. The results are in the following sections.

6.3.1 Predicting semi-parametric vt-S-vine processes

The simulations from GARCH(1,1), GJR-GARCH(1,1) and EGARCH(1,1) processes
are transformed to uniformly distributed time series by empirical distribution. Then,
we fit the vt-S-vine copulas with linear v-transform and S-vine process with copula se-
quences, including Gaussian, Gumbel, Joe, survival Clayton, Frank and the mixture of
Gumbel and Gaussian (Gu(10)_Ga(30)) or mixture of survival Clayton and Gaussian
copulas (SC(10)_Ga(30)). Predictions of first and second-order of S-vine with t copulas
are compared with the higher-order vt-S-vine processes. The quantile score values are
presented in Table 6.7. Although quantile scores at {0.05, 0.10, 0.15, ..., 0.95} quantiles
are calculated, we only present the results at quantiles 0.05, 0.10, 0.25, 0.5, 0.75, 0.9, 0.95
and the mean of the quantile scores at all quantiles being predicted. Table 6.7 demon-
strates the quantile scores of the best two copula sequences in vt-S-vine models and the
two S-vine copulas with t copula sequences for each GARCH type time series.

The higher-order semi-parametric vt-S-vine processes exhibit smaller quantile scores
at lower and upper tail. The mean of the quantile scores presents the advantages of
vt-S-vine in one-step prediction. Among the copula sequences we attempt, the Gumbel,
Joe and survival Clayton copulas show the better predictions according to the mean of
quantile scores in both the GARCH and the GJR-GARCH datasets. The combination of
Gumbel and Gaussian copula sequences show the best results in the EGARCH dataset.
The vt-S-vines with survival Clayton copula sequences, which are the best models in the
fitting process for all three datasets, are usually one of the top two models in prediction.

It is reasonable that the models fitting GARCH type time series accurately can
also predict well. In order to show the advantage of the higher-order semi-parametric
vt-S-vine process in replication of GARCH type time series, the time series plot of the
predictions for EGARCH process are shown in Figure 6.7. In order to exhibit the time
series clearly, we only show the plot of the first 500 predictions.

According to Figure 6.7, the quantile predictions of semi-parametric vt-S-vine pro-
cesses describe the GARCH type time series better. The predicted lines from the vt-
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Figure 6.7: The one-step prediction of simulations from EGARCH(1,1) process by semi-
parametric second-order S-vine (top) and fortieth-order vt-S-vine with linear v-transform
and Gu(10)_Ga(30) copula sequences (bottom). The black line is the simulations from
EGARCH(1,1) process, the 0.05,0.10,0.25,0.5,0.75,0.9,0.9-quantiles are plot in blue, shallow
blue, pink, green, yellow, grey lines and black dash lines, separately.
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S-vine follow the change of EGARCH processes closely. However, the second-order
S-vines with t copulas do not reflect the fluctuation well, where the quantile predictions
are almost a straight line with very small volatility. The second-order S-vine process
does not capture the trend of EGARCH processes properly. However, the higher-order
vt-S-vine with Gu(10)_Ga(30) copula sequences can realise that, which reveals that
the v-transforms are effective at improving the modelling of GARCH type processes.

The advantages of vt-S-vine are more pronounced in parametric vt-S-vine models.
We show the results in the next section.

6.3.2 Predicting parametric vt-S-vine processes

For the parametric one step predictions, the margins applied are student t distribution
for GARCH and GJR-GARCH processes and hyperbolic distribution for EGARCH
processes. The quantile scores are presented in Table 6.8. We only show the results of
the best two vt-S-vine models for each dataset. Also, the quantile scores of prediction by
first and second-order S-vine models are presented in Table 6.8. The quantiles presented
are in accordance with Table 6.7.

The best copula sequences for parametric vt-S-vine models are SC(10)_Ga(30),
Gumbel and survival Clayton copulas in GARCH and GJR-GARCH processes predic-
tions. In EGARCH process, the vt-S-vine with Gaussian and survival Clayton copulas
are the best two models for prediction. The vt-S-vines with Clayton copula sequences
usually model the in-sample data quite well, so it is reasonable that it also predict
well. However, the Gaussian copula sequences perform poorly in the fitting process,
but it predicts even better than survival Clayton copula sequences. This may be caused
by errors in the prediction process or the 2000 data are not enough for distinguishing
between good and bad predictive models.

The advantage for parametric higher-order vt-S-vine models is remarkable compared
to first or second-order S-vine processes with t copulas. Similar to the conclusion in semi-
parametric predictions, the quantile predictions are improved significantly for the tails of
each dataset, especially for GJR-GARCH and EGARCH datasets. The time series plot
of predictions at selected quantiles are shown in Figure 6.8. The quantile predictions
are predicted from second-order S-vine model with t copula and fortieth-order vt-S-
vine with linear v-transform and Gaussian copula sequences, where the margins are
hyperbolic margins in Figure 6.8.

According to Figure 6.8, the forecasting time series from parametric vt-S-vine model
capture the trend and changes of the EGARCH process accurately and show great
improvement compared to the S-vine with t copulas. This observation is in concordance
with semi-parametric predictions. The models without v-transforms can not reflect the
fluctuations in predicted data. Another finding in both semi-parametric and parametric
vt-S-vine models is that the quantile scores calculated from vt-S-vine processes with
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Figure 6.8: The one-step prediction of simulations from EGARCH(1,1) process by parametric
second-order S-vine (top) and fortieth-order vt-S-vine with linear v-transform and Gaussian
copula sequences (bottom). The black line is the simulations from EGARCH(1,1) process, the
0.05,0.10,0.25,0.5,0.75,0.9,0.9-quantiles are plot in blue, shallow blue, pink, green, yellow, grey
lines and black dash lines, separately.
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different types of copula sequences are not highly variable, so the choice of copulas may
not have great influence on the results.



Chapter 7

Modelling Volatile Return Series
with Vt-S-vine Models

This chapter investigates the application of vt-S-vine processes to the kinds of time
series that are usually modelled well by GARCH processes. The results are compared
to the ones from GARCH processes. The empirical data are introduced in Section 7.1.
Section 7.2 elaborates the method used to model the chosen time series by vt-S-vines and
presents the estimation results. The methodology and results of one-step predictions
using vt-S-vine models are shown in Section 7.3.

7.1 Volatile data

Modelling and predicting volatility of financial data has been an important topic of many
empirical and theoretical studies. Volatility, as measured by the standard deviation
or variance of returns, is often used as a crude measure of the total risk of financial
assets ([Brooks, 2014, p.420]). The volatility of financial time series appears to varying
over time. It is often formally modelled by the processes with the changing standard
deviation of financial returns given historical information in practice.

In GARCH type processes, the volatility is a conditional standard deviation, which
is a time-varying function of the previous squared values of the processes. Hence,
GARCH models can describe the changing of volatility effectively. Furthermore, there
is a phenomenon known as volatility clustering in the financial time series. Volatility
clustering is the tendency for extreme returns to be followed by other extreme returns.
GARCH type processes can match the volatility clustering features of financial time
series very well. Therefore, GARCH processes are widely used in modelling the volatile
financial time series, such as returns on stocks, stock market index, oil or volatility
index. Besides, other stylised facts of financial returns can be captured accurately via
the variation of GARCH models, such as the leverage effect modelled by EGARCH.

121
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Therefore, leverage effects reflect the asymmetric effect of the market information on
volatility, whereby bad news leading to a fall in financial returns tends to increase the
volatility ([McNeil et al., 2015, p.122]).

In this section, we investigate whether vt-S-vines are realistic competitors to
GARCH and related models. In order to realise this objective, we use the daily price
of Bitcoin in USD and the daily price of Apple Inc. stock as two examples to show
the fitting and predicting results from GARCH type processes and vt-S-vine models.
The time period of daily prices of Bitcoin is from 1st January 2016 to 2nd September
2022 and time period of daily prices of Apple stock is from 1st January 2016 to 1st
September 2022. Figure 7.1 presents the prices of Bitcoin and their log-returns values,
which are scaled by multiplying 100 in percentage scale. The prices of Apple stocks and
scaled log-returns are shown in Figure 7.2. The log-returns of Apple stock is scaled by
multiplying 100 to make the data in percentage scale. We take log returns to make the
data stationary and be in accordance with the method other studies used to deal with
data before modelling them using GARCH type processes.

In Figure 7.1 and Figure 7.2, there are volatility clustering stylized facts existing
in the log-returns of the two datasets. For example, we can see periods in early 2020
when the pandemic happened: they are marked by large negative moves in both Bitcoin
and Apple stock returns, according to Figure 7.1 and Figure 7.2. Meanwhile, there are
some extreme values appearing in 2020 in both of the two log-returns datasets, which
may cause the tail risk in the fitting process. In order to show the dependence of the
financial returns, we present the acf of the two datasets and the acf of their absolute
values in Figure 7.3.

In Figure 7.3, the correlograms of the raw data and their absolute values for the
two data sets are presented. There is very little evidence of serial correlation in the raw
data for both data sets, while their absolute values appear to show evidence of serial
dependence. The serial dependence in the absolute values of returns is equally apparent
to the one in squared returns. Hence, the acf plots in both data sets can be seen as an
evidence of the presence of volatility clustering.

7.2 In-sample estimation of vt-S-vines

7.2.1 Estimation of parametric vt-S-vines

The Bitcoin returns and stock returns are widely modelled and predicted by GARCH
type processes. Katsiampa [2017] applied several GARCH models to explain the Bit-
coin price volatility. Lamoureux and Lastrapes [1990] investigated twenty traded stock
returns modelled by GARCH and ARCH processes. There is a large amount of studies
about using variations of GARCH processes to model and predict the financial return
series. For example, Harvey and Sucarrat [2014] investigate financial returns, includ-
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Figure 7.1: The time series plot of prices of Bitcoin (top) and scaled log-returns on Bitcoin
prices (bottom).
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Figure 7.2: The time series plot of prices of Apple stock (top) and scaled log-returns on Apple
stock prices (bottom).
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,
(a) Bitcoin returns

,
(b) Apple stock returns

Figure 7.3: The acf of Bitcoin returns (top-left) and the acf of absolute values of Bitcoin
returns (top-right). The acf of Apple stock returns (bottom-left) and the acf of absolute values
of Apple stock returns (bottom-right). Dotted lines mark the standard 95 % confidence intervals
for autocorrelations of a process of iid finite-variance random variables.
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P-values
Data kpss test arch test

Bitcoin 0.1 6.361e-05
Apple 0.1 2.2e-16

Table 7.1: The p-values of the kpss test and arch test in Bitcoin returns and Apple stock
returns. The null hypothesis of kpss test is that the time series is stationary. The null hypothesis
of arch test is that the time series is homoscedastic.

AIC values of GARCH type processes fitted to log-returns of Bitcoin
GARCH(1,1) EGARCH(1,1) GJR-GARCH(1,1)

norm 9233.45 9224.76 9223.48
t 8649.80 8605.24 8649.96
st 8641.91 8593.02 8640.42

NIG 8618.85 8593.13 8618.95

Table 7.2: The AIC values of estimating the log-returns of Bitcoin from GARCH, GJR-
GARCH and EGARCH processes with normal (norm), student t (t), skewed student t
(st) and normal-inverse Gaussian (NIG) distribution. The AIC value in yellow colour
represents the best process for describing log-returns of Bitcoin.

ing the Apple stock returns modelled by GARCH, EGARCH, GJR-GARCH and their
variations and compare the results with standard GARCH.

In this section, we separate each dataset into two parts, one as the training data,
the other as the testing data. For Bitcoin price, we used the first 1707 as the training
data and the recent two years data, which are 707 as testing data. For the Apple stock
price, the first 1175 data are used in fitting process and the last two years data, 504,
are applied as an input for one-step prediction. The data amount of Bitcoin is larger
than the one of Apple stock, so we decide to leave more data for prediction.

The candidate GARCH type processes we applied are GARCH(1,1), EGARCH(1,1)
and GJR-GARCH(1,1) with normal (norm), student t (t), skewed student t (st) and
normal-inverse Gaussian (NIG) distribution as the innovation distributions. Before we
fit the candidate models to Bitcoin and Apple stock returns, it is necessary to test
stationarity and heteroscedasticity of the two time series via kpss test and arch test.
The p-values of the two tests are shown in Table 7.1.

According to Table 7.1, the null hypothesis is accepted in the kpss test and rejected in
the arch test for both data sets. Hence, the two data sets are highly possible stationary
and heteroscedastic, which means they can be modelled by GARCH type processes.

Then, we apply the two financial return series to estimate the parameters of candi-
date models. The AIC values of fitting GARCH type processes to log-returns of Bitcoin
are presented in Table 7.2. The ones of Apple stocks are shown in Table 7.3.

Table 7.2 reveals that the EGARCH(1,1) with skewed student t innovation distribu-
tion is the best model describing the log-returns of Bitcoin. Similarly, the best process
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AIC values of GARCH type processes fitted to log-returns of Apple stock
GARCH(1,1) EGARCH(1,1) GJR-GARCH(1,1)

norm 4440.66 4387.49 4387.37
t 4273.26 4241.80 4246.11
st 4267.52 4237.88 4241.29

NIG 4265.02 4237.61 4239.31

Table 7.3: The AIC values of estimating the log-returns of Apple stock from GARCH,
GJR-GARCH and EGARCH processes with normal (norm), student t (t), skewed stu-
dent t (st) and normal-inverse Gaussian (NIG) distribution. The AIC value in yellow
colour represents the best process for describing log-returns of Apple stock.

Bitcoin (EGARCH(1,1)-st) Apple(EGARCH(1,1)-NIG)
α0 0.0273 (0.0092) 0.0612 (0.0175)
α1 0.0590 (0.0316) -0.1432 (0.0304)
β1 0.9941 (0.0000) 0.9518 (0.0145)
γ 0.4085 (0.1293) 0.2385 (0.0430)

shape 2.2372 (0.0182) 0.1584 (0.0500)
skew 0.9285 (0.1606) 0.0500 (0.1584)

Table 7.4: The estimated parameters in the best model (in bracket) in each data
set. EGARCH(1,1)-st denotes the EGARCH(1,1) model with skewed t innovation.
EGARCH(1,1)-NIG denotes the EGARCH(1,1) model with NIG innovation. The num-
bers in the bracket is are the standard errors for each parameters estimation.

for modelling log-returns of Apple stock is EGARCH(1,1) with normal-inverse Gaussian
distribution, according to Table 7.3. The estimated parameters of the best models in
the two data sets are shown in Table 7.4. In order to exhibit the estimation results
clearly, we draw the QQ-plot of standardized residuals of the best models in each data
set in Figure 7.4. Besides, the acf of the standardized residuals and acf of their absolute
values are presented in Figure 7.5.

The estimated β1 of EGARCH(1,1) is close to 1, which is the boundary of condition
for strictly stationary EGARCH(1,1) processes, in both Bitcoin and Apple stock returns,
according to Table 7.4. The shape parameter of Bitcoin is the degree of freedom in t
distribution. The degree of freedom is small, which reflects the heavy tail of the Bitcion
returns. Similarly, the parameters of NIG distribution also exhibit the heavy tails
existing in Apple stock returns.

According to Figure 7.5, the QQ-plot of in-sample estimation of EGARCH(1,1) with
skewed t innovation distribution seems not quite well in Bitcoin returns. The standard-
ized residuals of Apple stock returns is almost consistent with the NIG innovation,
which reflects the EGARCH(1,1) with NIG innovation distribution process describes
the Apple stock returns relatively accurately. There is very little evidence in Figure
7.5 to show the serial dependence in the acf of the standard residuals and acf of their
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,

Figure 7.4: The QQ-plots of standardized residuals of Bitcoin returns modelled by
EGARCH(1,1) with skewed t innovation distribution (left) and the QQ-plots of standardized
residuals of Apple stock returns modelled by EGARCH(1,1) with normal-inverse Gaussian in-
novation distribution (right).

,
(a) Bitcoin returns

,
(b) Apple stock returns

Figure 7.5: The acf of standardized residuals of Bitoin returns modelled by EGARCH(1,1)
with skewed t innovation distribution (left-top) and the acf of their absolute values (top-right).
The acf of standardized residuals of Apple stock returns modelled by EGARCH(1,1) with
normal-inverse Gaussian innovation distribution (bottom-left) and the acf of their absolute
values (bottom-right). Dotted lines mark the standard 95 % confidence intervals for autocor-
relations of a process of iid finite-variance random variables.
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AIC values of candidate margins fitted to Bitcoin and Apple stock
Margins Bitcoin Apple
normal 9593.90 4784.93
slap 8966.83 4439.24
dwe 8890.07 4434.83
sdwe 8891.95 4433.92
t 8976.76 4413.21
st 8978.76 4415.20

NIG 9078.57 4411.98

Table 7.5: The AIC values of candidate margins fitted to log-returns of Bitcoin and
Apple stock. The AIC value in yellow colour represent the best margins for each data
set. slap, dwe, sdwe, t, st and NIG denote skewed Laplace, double Weibull, skewed
double Weibull, student t, skewed student t and normal-inverse Gaussian distributions,
respectively.

absolute values. Hence, the standardized residuals in the two data sets conform to the
condition for a reasonable model.

In order to compare the results with GARCH processes, we model the two data sets
by parametric vt-S-vines and calculate the AIC values as well. The first step is to select
the best margins. The margin we choose for Bitcoin is double Weibull distribution
(dwe). Meanwhile, Normal-inverse Gaussian distribution (NIG) is the most suitable
margin for log-returns of Apple stock. The AIC values of the potential margins are
shown in Table 7.5.

After finding the best marginal distribution, we combine it with vt-S-vine copulas
and estimate all the parameters jointly by maximum likelihood estimation as an entirety.
The method used in this section is the same as the one in Section 6.2.3. The v-transform
in the vt-S-vine copulas is the linear v-transform, which can simplify the model and
reduce the number of parameters. The candidates of copulas are stated in Section 6.2.3
as well. The AIC values of fitting vt-S-vine models to log-returns of Bitcoin and Apple
stock are shown in Table 7.6.

Table 7.6 shows that the vt-S-vine with Frank copula sequences is the best model
for Bitcoin. Comparing to the AIC values in Table 7.2, the best vt-S-vine model can
describe log-returns of Bitcoin better than all the GARCH type processes in the ta-
ble. However, for the log-returns of Apple stock, the EGARCH(1,1) with t,st,and NIG
innovation distributions yield better result than the best vt-S-vine, so as the GJR-
GARCH(1,1) with st and NIG distributions. Moreover, the best vt-S-vine can outper-
form all the GARCH(1,1) processes, according to Table 7.3.

The findings can be extended to other stock price or index datasets we attempted.
In most of the datasets, the GARCH(1,1) can be surpassed by the best vt-S-vine and
so as GJR-GARCH(1,1). However, EGARCH(1,1) processes with proper innovation
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AIC values of VT-S-vine fitted to Bitcoin and Apple stock
Copulas Bitcoin (dwe) Apple (NIG)
Gumbel 8625.96 4261.27
Gaussian 8589.72 4262.06

Joe 8684.97 4271.29
Clayton180 8619.09 4245.19
Frank 8579.84 4282.31

Gu(10)_Ga(30) 8610.47 4259.08
SC(10)_Ga(30) 8613.78 4243.48

Table 7.6: The AIC values of estimating the log-returns of Bitcoin and Apple stock by
vt-S-vine models with Gumbel, Gaussian, Joe, Clayton180, Frank, Gu(10)_Ga(30) and
SC(10)_Ga(30) copula sequences. The AIC value in yellow colour represent the best mod-
els for each dataset. The words in brackets of data sets represent the margins selected for each
data set.

distributions are very competitive and hardly be surpassed. That is an open question
for our study now. It may be caused by the limited options of margins and copulas.
In order to show the estimation results of the two data sets clearly, we present the
QQ-plots of residuals, acf of residuals, acf of their absolute values, QQ-plot of margins,
v-transforms plots and the kpacf plots of the best vt-S-vine models in Bitcoin and Apple
stock returns in Figure 7.6 and Figure 7.7.

According to Figure 7.6, the QQ-plot of residuals and margins are very accurate.
Meanwhile, there is very little evidence against the independence of residuals according
to acf plots of residuals and absolute residuals. In addition, we apply the Shapiro-Wilk
test to test the normality of the residuals. The p-value of Bitcoin returns is 0.09272.
Hence, the null hypothesis is accepted that the residuals of Bitcoin returns are relatively
normally distributed. The kpacf plot is plausible in Bitcoin as well, which means the
Frank copulas capture the serial dependence in Bitcoin returns adequately. Moreover,
the v-transform plots of Bitcoin has an apparent twist against the linear v-transform.
It can be improved by using v-transforms with two or three-parameters v-transforms.
Generally, the vt-S-vine model presented in Figure 7.6 describes the Bitcoin returns
very well.

Figure 7.7 exhibits that the QQ-plots of residuals and margins are reasonable and
acceptable as well for Apple stock returns. Similarly, there is little evidence of serial
dependence between residuals and absolute residuals. The p-value of the Shapiro-Wilk
test is 0.1216. There is little evidence against the null hypothesis of normally distributed.
The kpacf and v-transforms plots of Apple stock returns are accurate. However, the
AIC values of the vt-S-vine models fitted to Apple stock returns are larger than the one
of EGARCH(1,1) with NIG innovation process, which means the in-sample estimation
of vt-S-vines can be improved. Superior and advanced margins and copulas can be
searched in the further study to realize the object, since the imperfect QQ-plots of
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,
(a) QQ-plot of residuals (left) and margins (right) in Bitcoin

,
(b) Acf of residuals (left) and acf of their absolute values (right) in Bitcoin

,
(c) Kpacf of copulas (left) and v-transforms estimations (right) in Bitcoin

Figure 7.6: The QQ-plots of residuals, margins, acf of residuals, acf of their absolute values,
kpacf plots and v-transforms plots of the vt-S-vine models with double Weibull margins, linear
v-transforms and Frank copula sequences estimated by Bitcoin returns.
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,
(a) QQ-plot of residuals (left) and margins (right) in Apple

,
(b) Acf of residuals (left) and acf of their absolute values (right) in Apple

,
(c) Kpacf of copulas (left) and v-transforms estimations (right) in Apple

Figure 7.7: The QQ-plots of residuals, margins, acf of residuals, acf of their absolute val-
ues, kpacf plots and v-transforms plots of the vt-S-vine models with NIG margins, linear v-
transforms and SC(10)_Ga(30) copula sequences estimated by Apple stock returns.
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AIC values of VT-S-vine fitted to Bitcoin and Apple stock
Copulas Bitcoin (dwe) Apple (NIG)

t(1)_sclay(39) 8641.73 4301.17
sBB1(1)_sclay(39) 8647.84 4298.38

t(1)_Ga(39) 8577.55 4262.19
sBB1(1)_Ga(39) 8584.49 4259.30

Table 7.7: The AIC values of vt-S-vine models with t(1)_sclay(39), sBB1(1)_sclay(39),
t(1)_Ga(39) and sBB1(1)_Ga(39) copula sequences fitted to the log-returns of Bitcoin and
Apple stock.

margins and kpacf plots imply that there are defects existing in the two parts.

In-sample estimation with two-parameter copulas in vt-S-vine

The vine copulas with BB1 and t copulas are applied to financial returns, especially
for modelling their tail dependence; referred to by Nikoloulopoulos et al. [2012]. There-
fore, we fit the vt-S-vine with linear v-transform and copula sequences including two-
parameter copulas at level one, such as t and survival BB1 copula to Bitcoin and Apple
stock returns. The combinations include t or BB1 copula at level one and survival Clay-
ton for the other 39 levels denoted as t(1)_sclay(39) or sBB1(1)_sclay(39). Besides, to
compare with the vt-S-vine model with Gaussian copula at the higher order, the model
with t or BB1 copulas at level one and Gaussian copula at higher level are applied,
written as t(1)_Ga(39) or sBB1(1)_Ga(39). The marginal distributions are double
Weibull distribution in Bitcoin returns and NIG distribution in Apple stock returns.
The AIC values of the four vt-S-vine models are shown in Table 7.7.

According to Table 7.7, the vt-S-vine model with t copula at level one and Gaussian
copula at the other 39 levels surpasses the best model in Bitcoin returns in Table 7.6,
which is vt-S-vine with Frank copula sequences. However, the vt-S-vine models with
copula sequences including two-parameter copulas cannot outperform the models only
with one-parameter copulas in Apple stock returns.

Extreme quantile estimations

In order to compare the estimations of extreme quantiles, we calculate the quantile
scores for the models in Table 7.6 and 7.7. The results are demonstrated in Table 7.8
and Table 7.9.

According to Table 7.8 and 7.9, the vt-S-vine with t(1)_Ga(39) copula sequences
obtain the most precise quantile estimation at both 0.01 and 0.99 quantile in Bitcoin
returns. This results are corresponding to the observations from AIC values. The vt-S-
vine with SC(10)_Ga(30) sequences is the best model in Apple stock dataset, according
to AIC values. The SC(10)_Ga(30) yields the smallest quantile scores at quantile 0.01
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Quantile scores at 0.01 of VT-S-vine fitted to Bitcoin and Apple stock
Copulas Bitcoin (dwe) Apple (NIG)
Gumbel 263.66 67.27
Gaussian 260.19 66.50

Joe 263.47 68.14
Clayton180 258.19 65.57
Frank 261.38 73.37

Gu(10)_Ga(30) 259.48 66.25
SC(10)_Ga(30) 256.38 64.98
t(1)_sclay(39) 262.48 70.92

sBB1(1)_sclay(39) 263.19 72.71
t(1)_Ga(39) 256.20 65.74

sBB1(1)_Ga(39) 256.67 67.45

Table 7.8: Quantile scores of estimating the log-returns of Bitcoin and Apple stock by vt-S-vine
models with chosen copula sequences at quantile 0.01. The numbers in yellow are the quantile
scores of the best model in each dataset.

Quantile scores at 0.99 of VT-S-vine fitted to Bitcoin and Apple stock
Copulas Bitcoin (dwe) Apple (NIG)
Gumbel 227.89 68.10
Gaussian 227.94 69.58

Joe 227.10 67.98
Clayton180 226.42 68.64
Frank 230.42 72.49

Gu(10)_Ga(30) 228.16 68.72
SC(10)_Ga(30) 228.47 68.58
t(1)_sclay(39) 226.16 74.21

sBB1(1)_sclay(39) 225.90 73.33
t(1)_Ga(39) 225.03 69.62

sBB1(1)_Ga(39) 225.50 69.93

Table 7.9: Quantile scores of estimating the log-returns of Bitcoin and Apple stock by vt-S-vine
models with chosen copula sequences at quantile 0.99. The numbers in yellow are the quantile
scores of the best model in each dataset.
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AIC values of GARCH type processes fitted to ARMA(0,1) residuals of Bitcoin
GARCH(1,1) EGARCH(1,1) GJR-GARCH(1,1)

norm 9224.87 9216.14 9219.24
t 8630.79 8584.11 8627.63
st 8632.17 8585.62 8629.08

NIG 8609.74 8585.98 8608.83

Table 7.10: The AIC values of estimating the ARMA(0,1) residuals of Bitcoin from
GARCH, GJR-GARCH and EGARCH processes with normal (norm), student t (t),
skewed student t (st) and normal-inverse Gaussian (NIG) distribution. The AIC value
in yellow colour represents the best process for describing the ARMA(0,1) residuals of
Bitcoin.

and a quantile scores very close to the smallest values from Joe copulas sequences. The
vt-S-vine with Joe copula sequences does not improve the quantile estimation at 0.99
significantly, compared to SC(10)_Ga(30).

7.2.2 Modelling residuals of ARMA filter

In order to figure out if there is an ARMA influence in modelling the returns, we apply
the ARMA filters to remove the ARMA component from the data and fit the GARCH
type and vt-S-vine models to the residuals. The automatic function is used to find
the appropriate order of ARMA in each dataset. The ARMA(0,1) is chosen for Bitcoin
returns and ARMA(3,0) is used for Apple stock returns. After fitting the chosen ARMA
models to the two data sets, the residuals are extracted and estimated by the GARCH
type models and vt-S-vine models in the next step. The time series plots of the two
data sets are shown in Figure 7.8.

The time series plots are not very different to the ones in Figure 7.1 and 7.2.
The ARMA filters do not change the data too much. We also plot the acf and acf
of the absolute values of the residuals to check if the ARMA filters change the serial
dependence in the time series. The plots are presented in Figure 7.9.

Figure 7.9 demonstrates the acf of the two ARMA residuals are not remarkable,
while the acf of their absolute values are slowly decreased. The serial dependence in
the residuals in the two data sets are not significantly changed by ARMA filters. The
next step is to fit the GARCH type models and vt-S-vines to the residuals and compare
the results to the ones without ARMA filters. The AIC values of GARCH type models
fitted to ARMA residuals of Bitcoin returns are shown in Table 7.10 and the ones for
Apple stock returns are demonstrated in Table 7.11.

Table 7.10 and 7.11 exhibit that the best GARCH model is EGARCH(1,1) with
student t innovation distribution for the two data sets. Meanwhile, we can draw the
same conclusion that the EGARCH(1,1) is always the best model no matter which
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,

Figure 7.8: The time series plots of ARMA residuals of Bitcoin returns (top) and Apple stock
returns (bottom).
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,
(a) Bitcoin returns.

,
(b) Apple stock returns.

Figure 7.9: The acf of ARMA residuals of Bitcoin returns (left-top) and Apple stock returns
(left-bottom). The acf of their absolute values, the one in right-top is Bitcoin returns and the
one in right-bottom is the Apple stock returns.

AIC values of GARCH type processes fitted to ARMA(3,0) residuals of Apple stock
GARCH(1,1) EGARCH(1,1) GJR-GARCH(1,1)

norm 4423.28 4378.49 4381.02
t 4259.01 4233.91 4237.39
st 4260.41 4235.78 4239.13

NIG 4257.51 4234.64 4237.08

Table 7.11: The AIC values of estimating the ARMA(3,0) residuals of Apple stock from
GARCH, GJR-GARCH and EGARCH processes with normal (norm), student t (t),
skewed student t (st) and normal-inverse Gaussian (NIG) distribution. The AIC value
in yellow colour represents the best process for describing the ARMA(3,0) residuals of
Apple stock.
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Bitcoin (EGARCH(1,1)-t) Apple(EGARCH(1,1)-t)
α0 0.0239 (0.0071) 0.0398 (0.0158)
α1 0.0611 (0.0273) -0.1244 (0.0274)
β1 0.9945 (0.0001) 0.9589 (0.0139)
γ 0.3587 (0.0524) 0.2575 (0.0453)

shape 2.2818 (0.1367) 3.9501 (0.4775)

Table 7.12: The estimated parameters in the best model (in bracket) in each data
set. EGARCH(1,1)-t denotes the EGARCH(1,1) model with student t innovation. The
numbers in the bracket is are the standard errors for each parameters estimation.

,

Figure 7.10: The QQ-plots of standardized residuals of Bitcoin returns with ARMA filter
modelled by EGARCH(1,1) with student t innovation distribution (left) and the QQ-plots of
standardized residuals of Apple stock returns with ARMA filter modelled by EGARCH(1,1)
with student t innovation distribution (right).

innovation distribution are used. To present the result further, we show the estimated
parameters of EGARCH(1,1) with t innovation in the two data sets in Table 7.12.

The parameters of EGARCH(1,1) in Table 7.12 are similar to the ones in Table 7.4.
The ARMA filters do not exert remarkable influence on the parameters estimation of
GARCH part. The QQ-plots of the residuals are presented in Figure 7.10. The QQ-
plots of the two data sets with ARMA filter reveals that the tail of the residuals of the
two data sets are not estimated very well by student t distribution. Therefore, it is
possible to improve the accuracy of estimation by finding the more suitable innovation
distribution for GARCH type models. The acf of the residuals are shown in Figure 7.11.

According to Figure 7.11, there are acf values at lag 1, 5, 6, 9 and 15 beyond the
standard 95 % confident interval in Bitcoin data set. Similarly, the acf values at lag 1,
9 and 18 go over the dotted line in Apple stock returns. The residuals of the two data
sets seem have slight serial dependence, which exhibits that the model can be improved.

In order to compare the estimation results with vt-S-vine models, we fit the vt-S-
vines to the Bitcoin and Apple stock returns residuals of ARMA filter. The first step is
the marginal distribution selection. We find that the best margins are the same as the
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,
(a) Bitcoin returns

,
(b) Apple stock returns

Figure 7.11: The acf of standardized residuals of Bitoin returns with ARMA filter modelled
by EGARCH(1,1) with student t innovation distribution (left-top) and the acf of their squared
values (top-right). The acf of standardized residuals of Apple stock returns with ARMA filter
modelled by EGARCH(1,1) with student t innovation distribution (bottom-left) and the acf of
their squared values (bottom-right). Dotted lines mark the standard 95 % confidence intervals
for autocorrelations of a process of iid finite-variance random variables.
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ones in returns without ARMA filters, which is double Weibull distribution for Bitcoin
and normal-inverse Gaussian distribution for Apple stock. The v-transform is still the
linear v-transform with the suitable fulcrum. The copulas we used for Bitcoin include
Gaussian and Frank copulas. The Gaussian copulas are used as the benchmark copulas,
while the Frank copulas are the best copulas for Bitcoin returns in vt-S-vine models.
The AIC value of vt-S-vine with Gaussian copulas fitted to Bitcoin returns with ARMA
filter is 8572.896, the one of vt-S-vine with Frank copulas is 8568.113. The AIC values
of vt-S-vines are both smaller than the best GARCH models.

For Apple stock returns, we model the ARMA residuals with vt-S-vine with Gaussian
(as benchmark), survival Clayton and the combination of survival Clayton and Gaussian
copulas. The combination copula sequences are the best choice in Apple stock returns,
so we fit it in the returns with ARMA filter as well. The AIC values of the vt-S-vine with
Gaussian, survival Clayton copulas and combination of the two copulas are 4281.210,
4254.989 and 4257.001, respectively. The best copulas are survival Clayton copulas,
which are still larger than the best GARCH model. Therefore, the ARMA filters do not
improve the in-sample estimation process of vt-S-vines. In order to explore this question
further, we develop the estimation of vt-S-vine models of the normalized returns.

7.2.3 Modelling the normalized returns

The distribution of Bitcoin and Apple stock returns have heavier tail than normal distri-
bution. Generally, the GARCH type models with t or skewed t innovation distributions
describe the heavy tail of data precisely. If we normalize the returns, it may spoil the
power tail structure, which is modelled well by GARCH type models. However, the
normalization will not change the serial dependence of time series, so it may not affect
the estimation of vt-S-vine models significantly. In order to present it, we take empirical
distribution of the returns to transform the data to uniform distribution, then calculate
the corresponding quantile values of the standard normal distribution to normalize the
returns. The time series plot of the normalized Bitcoin and Apple stock returns are
shown in Figure 7.12.

According to Figure 7.12, the normalization brings the data into a range that is com-
patible with a standard normal distribution; the values all lie between approximate -3
and 3. The fluctuations of the two data sets are decreased and the tails of the normalized
returns will be smaller. Then, we fit the GARCH type models to the normalized returns
and calculate the AIC values. The AIC values of Bitcoin and Apple stock are shown in
Table 7.13 and Table 7.14, respectively. The innovation distributions of GARCH type
models we applied for the two data sets are normal, student t, skewed student t, normal-
inverse Gaussian (NIG) and generalized error (ged) distributions. The ged distribution
is very competitive when with GARCH processes in normalized Apple stock returns,
but it does not estimate accurately in normalized Bitcoin returns. Hence, we present
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,

Figure 7.12: The time series plots of normalized Bitcoin returns (top) and Apple stock returns
(bottom).
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AIC values of GARCH type processes fitted to normalized Bitcoin returns
Process GARCH(1,1) EGARCH(1,1) GJR-GARCH(1,1)

Innovation norm 4611.63 4616.75 4613.28
t 4612.46 4617.24 4613.93
st 4614.44 4619.23 4615.93

NIG 4614.69 4619.51 4616.22

Table 7.13: The AIC values of estimating the normalized Bitcoin returns from GARCH,
GJR-GARCH and EGARCH processes with normal (norm), student t (t), skewed stu-
dent t (st) and normal-inverse Gaussian (NIG) distribution. The AIC value in yellow
colour represents the best process for describing the normalized Bitcoin returns.

AIC values of GARCH type processes fitted to normalized Apple stock returns
Process GARCH(1,1) EGARCH(1,1) GJR-GARCH(1,1)

Innovation norm 3197.43 3183.10 3180.27
t 3201.41 3187.22 3184.49
st 3204.75 3190.31 3187.92

ged 3191.15 3170.05 3170.91

Table 7.14: The AIC values of estimating the normalized Apple stock returns from
GARCH, GJR-GARCH and EGARCH processes with normal (norm), student t (t),
skewed student t (st) and generalized error distribution (ged). The AIC value in yellow
colour represents the best process for describing the normalized Apple stock returns.

the AIC of GARCH type processes with ged innovation instead of NIG distribution in
Apple stock returns, and does not show results of ged innovation in Bitcoin returns.

Table 7.13 embodies that the best GARCH type model is standard GARCH(1,1)
with normal innovation distribution in Bitcoin, which is different from the results in
Table 7.2. Moreover, the EGARCH(1,1) develops the worst results with all the four
innovation distributions compared to GARCH(1,1) and GJR-GARCH(1,1). Therefore,
the normalization may break the patterns in the time series that are captured well by
EGARCH processes. The best GARCH type model for normalized Apple stock returns
is EGARCH(1,1) with ged innovation. The EGARCH(1,1) and GJR-GARCH(1,1) still
perform beter than standard GARCH process. The normalization does not affect the
estimation results of GARCH type model significantly. For further analysis, we present
the estimated parameters and the QQ-plots of the residuals of the best GARCH type
models for the two data sets in Table 7.15 and Figure 7.13, separately.

The parameters of GARCH(1,1) process α1 + β1 are close to 1 for Bitcoin returns
in Table 7.15, which is close to the boundary of condition for strictly stationary of
GARCH(1,1) processes. Similarly, the β1 is also a big value for the boundary of
EGARCH(1,1) in Apple stock returns. The shape parameter for Apple stock is small,
which means the tail of the data is heavy. It seems that the normalization does not
spoil the tail pattern of the Apple stocks. Figure 7.13 exhibits the QQ-plots of the stan-
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Bitcoin (GARCH(1,1)-norm) Apple(EGARCH(1,1)-ged)
α0 0.0261 (0.0081) -0.0093 (0.0057)
α1 0.1112 (0.0193) -0.0863 (0.0194)
β1 0.8641 (0.0232) 0.9355 (0.0168)
γ - 0.1768 (0.0348)

shape - 2.5624 (0.1767)

Table 7.15: The estimated parameters in the best model (in bracket) in each data set.
GARCH(1,1)-norm is the GARCH(1,1) process with normal distribution innovation.
EGARCH(1,1)-ged denotes the EGARCH(1,1) model with generalized error distribution
innovation. The numbers in the bracket is are the standard errors for each parameters
estimation.

,

Figure 7.13: The QQ-plots of standardized residuals of normalized Bitcoin returns modelled
by GARCH(1,1) with normal innovation distribution (left) and the QQ-plots of standardized
residuals of normalized Apple stock returns modelled by EGARCH(1,1) with generalized error
distribution innovation (right).
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,
(a) Bitcoin returns

,
(b) Apple stock returns

Figure 7.14: The acf of standardized residuals of normalized Bitoin returns modelled by
GARCH(1,1) with normal innovation distribution (left-top) and the acf of their squared values
(top-right). The acf of standardized residuals of normalized Apple stock returns modelled by
EGARCH(1,1) with generalized error distribution innovation (bottom-left) and the acf of their
squared values (bottom-right). Dotted lines mark the standard 95 % confidence intervals for
autocorrelations of a process of iid finite-variance random variables.

dardized residuals of estimations from the two data sets. The QQ-plots of standardized
residuals are almost straight lines for both of the data sets. The tail of residuals of the
normalized Bitcoin and Apple stock returns is not perfectly straight, which means the
more suitable innovation distributions can be explored.

Figure 7.14 exhibits the acf of the standardized residuals and their squared values
in both Bitcoin and Apple stock returns. The acf of Bitcoin has two violations at lag 6
and 10, while most of the acf values are consistent with the standard 95 % confidence
intervals values. The situation of acf in Apple stock returns is similar to the one of
Bitcoin. Most of the acf are in the range of the 95 % confidence intervals, so as the acf
of their squared values.

In order to analyze the influence of the normalization to the returns, we fit the
vt-S-vine models to the normalized data. The data are normally distributed, so the
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AIC values of VT-S-vine fitted to Bitcoin and Apple stock
Model Bitcoin Model Apple

Gaussian 4533.59 Gaussian 3187.96
Frank 4526.49 Clayton180 3161.20

SC(10)_Ga(30) 3159.48

Table 7.16: The AIC values of estimating the normalized Bitcoin by vt-S-vine models with
Gaussian and Frank copulas and estimating the normalized Apple stock returns by vt-S-vines
with Gaussian, Clayton180 and SC(10)_Ga(30) copula sequences. The AIC value in yellow
colour represent the best models for each data set. The margin is the normal distribution and
v-transform is the linear v-transform.

margin of the vt-S-vine is normal distribution. The linear v-transform is used in the
normalized data as well. The copulas we used for Bitcoin are Gaussian copula (as a
benchmark) and Frank copula (the best copula for Bitcoin returns). In Apple stock
returns, the copulas selected are Gaussian copula (as a benchmark), survival Clayton
copula, and combination of the two copulas (the best copula in Apple stock returns).
The AIC values of the fitting results are shown in Table 7.16.

According to Table 7.16, the Frank copula is still the best copula for normalized
Bitcoin returns and the combination of the survival Clayton and Gaussian copulas is
the best choice for normalized Apple stock returns. It is worth noting that the vt-S-
vine models with survival Clayton and the combination copulas can outperform the
best GARCH type models in normalized Apple stock returns. This may be because
the normalization spoils the features can be modelled well by GARCH, but it does
not change the serial dependence in the time series. Another possible reason is that
the marginal distribution is known here, so the estimation of vt-S-vine models will not
be affected remarkably by the marginal component. Hence, the estimation process is
improved by normalized data.

The vt-S-vine models with Gaussian and Frank copulas yield smaller AIC values
than any GARCH type models in Bitcoin. The advantage of the vt-S-vines is over-
whelming compared to GARCH type processes in both the Bitcoin returns and normal-
ized returns. The advantage may be resulting from both margin and copula components.
Also, the serial dependence of Bitcoin may be very suitable for the vine structure and
symmetric copulas, like Gaussian and Frank copulas. In order to analyse the results
further, we present the QQ-plots of residuals, acf of residuals, acf of their absolute val-
ues, QQ-plot of margins, v-transforms plots and the kpacf plots of the best vt-S-vine
models in normalized Bitcoin and Apple stock returns in Figure 7.15 and Figure 7.16.

The QQ-plot of residuals in Figure 7.15 is almost straight except for some point at
tails. Meanwhile, the acf plots of residuals and absolute value of residuals are all in the
range the confidence level at 95 %, which means the in-sample estimation by vt-S-vine
for normalized Bitcoin returns is acceptable. The margin and v-transform estimation
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,
(a) QQ-plot of residuals (left) and margins (right) in Bitcoin

,
(b) Acf of residuals (left) and acf of their absolute values (right) in Bitcoin

,
(c) Kpacf of copulas (left) and v-transforms estimations (right) in Bitcoin

Figure 7.15: The QQ-plots of residuals, margins, acf of residuals, acf of their absolute values,
kpacf plots and v-transforms plots of the vt-S-vine models with normal margins, linear v-
transforms and Frank copula sequences estimated by normalized Bitcoin returns.
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,
(a) QQ-plot of residuals (left) and margins (right) in Apple

,
(b) Acf of residuals (left) and acf of their absolute values (right) in Apple

,
(c) Kpacf of copulas (left) and v-transforms estimations (right) in Apple

Figure 7.16: The QQ-plots of residuals, margins, acf of residuals, acf of their absolute values,
kpacf plots and v-transforms plots of the vt-S-vine models with normal margins, linear v-
transforms and SC(10)_Ga(30) copula sequences estimated by normalized Apple stock returns.
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are all very accurate. Because the true margin is normal distribution, the estimation
with the true margin should be accurate. Also, the v-transform is linear, so if we find
the proper fulcrum, the v-transform will be fitted precisely. Besides, the kpacf fitting is
also accurate and similar to the Bitcoin returns, which proves the normalization does
not change the serial dependence significantly.

Similar conclusion can be drawn for the Apple stock returns, according to Figure
7.16. There are an acceptable QQ-plots and acf plots of residuals. Also, the margin and
v-transform are quite accurate. There are some defects of kpacf plots, but the kpacf
estimation is reasonable. Compare the Figure 7.15 and Figure 7.16 to Figure 7.6 and
Figure 7.7, the residuals and v-transform estimations are improved in the two data sets.
The improvement may be caused by the proper margin selection.

In conclusion, vt-S-vine models are very competitive for modelling in-sample finan-
cial return series. Usually, they can surpass GARCH, even GJR-GARCH processes,
while the EGARCH processes are difficult to be surpassed. However, the normalization
can change certain features of financial return series and make vt-S-vine models more
suitable than EGARCH processes. It is possibly caused by the distribution changed,
which spoils the structures that can be captured by GARCH type processes, while the
influence on serial dependence is hardly to be observed, which exerts less influence on
vt-S-vine estimations. Besides, after normalizing the financial returns, we know the
true marginal distribution is normal, so the errors of the estimation of margins will be
reduced and the more uniformly distributed PIT values fitted by vt-S-vine copulas are
produced, which can improve the estimation results of vt-S-vines.

7.3 Prediction using vt-S-vines

After estimating the GARCH type processes and vt-S-vine models, we do the one-step
prediction with the two types of models and compare their quantile scores. Among
all the datasets we tried, vt-S-vine models show better estimation results in Bitcoin.
Hence, we use the Bitcoin data as an example in this section.

The quantile scores of the best two vt-S-vine and the best two GARCH type pro-
cesses are shown in Table 7.17. The best GARCH type processes are GARCH with NIG
innovation distribution and EGARCH with skewed t innovation. The quantiles are taken
from 0.05 to 0.95, evenly distributed. The average quantile scores are calculated between
all the intervals. Table 7.17 presents quantiles at {0.05, 0.10, 0.25, 0.5, 0.75, 0.9, 0.95} as
examples.

According to Table 7.17, the best two vt-S-vine models yield smaller average quantile
scores compared to the GARCH type processes. The vt-S-vines with Gu(10)_Ga(30)
and SC(10)_Ga(30) copula sequences have relatively smaller quantile scores at 0.05 and
0.10, which suggests that vt-S-vine predict better in the lower tails. The t(1)_Ga(39)
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yeilds smaller quantile scores at upper tail. In general, the vt-S-vine with t(1)_Ga(39)
copula sequences can surpass GARCH processes in predicting, but hardly outperform
EGARCH processes.

The Frank copula sequences in vt-S-vine have remarkable advantage over GARCH
type processes in estimation procedure. Also, they improve the prediction results of
GARCH processes. However, they do not improve the prediction compared to EGARCH
processes. The difference between the prediction from vt-S-vine and EGARCH processes
are not significant according to the average quantile scores in Table 7.17. It is possible
that the size of data used for prediction is not large enough, so the results are not very
stable and representative. When we use 500 simulations for prediction, it is difficult to
distinguish bad and good models. However, if we increase it to 2000 simulations, the
advantage of good model is demonstrated. In Bitcoin datasets, there are 707 testing
data, which is a small sample. The replication and prediction of GARCH processes
are improved more significantly than EGARCH processes, especially in vt-S-vines with
Gu(10)_Ga(30) and SC(10)_Ga(30) copula sequences.

7.4 Conclusion

In this chapter, we tried three approaches to fit the GARCH type models and vt-S-vines
to the financial returns. We found the ARMA filters exert slight influence on the in-
sample estimations. However, the normalization can improve the effects of estimation
of vt-S-vine. The main reason may be the margin is known, so we obtain a relatively
perfect marginal estimation and uniformly distributed PIT values. This also reflects
the importance of the marginal distribution selection. Therefore, the estimation can be
elevated by finding more suitable margins. Also, the normalization breaks the features
of financial returns that can be modelled by GARCH type models. Combine with the
normalization, the vt-S-vine models can give superior estimations of GARCH, EGARCH
and GJR-GARCH processes.

For the one-step prediction, we find the average quantile scores are more effective
when the sample size is 2000 or more. However, in practice, the sample size is smaller
than 2000, the results may contains certain bias. Besides, the differences between
different models are not large. Even so, there are still small advantages appearing in
the best vt-S-vines over GARCH type models. The estimation and prediction of vt-S-
vines can be improved further when the more suitable margins and copulas are found.



Chapter 8

On the Distribution of VaR
Exeedances in a Vt-S-vine Model

Techniques for measuring risk are important to the process of managing risk in finan-
cial institutions. In the banking and insurance industries, probability distributions are
used to model and quantify risk. Given a profit and loss (P&L) distribution, risk mea-
sure provides a point estimate of the amount of capital required as a cushion against
insolvency. The main risk measure used by financial institutions and regulators is value-
at-risk (VaR), which is defined as a quantile of the P&L distribution.

The regulations usually focus on the tail of the P&L, so the quantiles for VaR are
mainly chosen to be 97.5% or 99%. The Basel regulations for market risk at banks
assume that if a bank has an adequate risk model, the number of VaR exceedances is
binomially distributed with n being the number of days backtesting and p is the VaR
percentile (1% typically for 99% VaR). Under this assumption, the Basel Committee
on Banking Supervision [2019] applies the traffic light system as a regulation based on
a sample with n = 250 observations. The system defines the backtesting green, amber
and red zones according to the critical number of exceedances of levels based on 99%
VaR.

The quantile exceedance indicator variables for the α-quantile are iid Bernoulli vari-
ables with success probability 1 − α in the traffic light system. However, the quantile
exceedance indicators variables tend to be positively dependent in practice. Hence, the
distribution of exceedances in the P&L with serial dependence caused by stochastic
volatility is not a binomial distribution. The distribution of the number of exceedances
in a sequence of n values will have an identical mean to the independent case (n×(1−α))
but it will tend to have a higher variance and a heavier tail. The insight that depen-
dence caused by stochastic volatility produces a distribution of VaR exceedances that
is heavier tailed than binomial should provide an incentive for banks to use conditional
or dynamic VaR estimation procedures.

151
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The vt-S-vines we have referred to in the previous chapters can describe the serial
dependence in the P&Ls caused by stochastic volatility. Hence, in order to explore
the influence of the dependence on distribution of quantile exceedances in P&Ls, we
use simulations of vt-S-vines to mimic the P&L of its trading book and study the
exceedances of the determined VaR in this chapter.

Another question for risk managers is: What is the best empirical quantile esti-
mator for VaR? Empirical quantile estimation by far is the most popular method of
estimating a quantile from a sample of losses. All empirical quantile estimators work by
interpolating the order statistics of the sample but there are a number of different ways
of doing this and they each have subtly different properties. We employ six widely used
empirical quantile estimator approaches in the simulations of vt-S-vines to investigate
which method banks should prefer in the sample with dependence.

Section 8.1 introduces the methods used to estimate VaR. The approaches applied
to calculate exceedances and VaR estimation errors in iid case are shown in Section
8.2. Section 8.2 also investigates the exceedances of simulations with serial dependence
and volatility, including simulations of vt-S-vine models. In Section 8.3, we study the
distribution of exceedances in vt-S-vine models and the beta-binomial distribution is
applied to model the exceedances. The conclusions of this chapter are found in Section
8.4.

8.1 Estimation of VaR

8.1.1 Historical simulation

The historical simulation method is based on re-sampling of historical risk-factor changes
or returns. Supposing the loss Lt incurred on a portfolio of traded assets in time period
t. Assume there is a window of n historical datapoints (can also be called lookback
period of length n), the procedure obtains a sample of losses S = {L1, ..., Ln} at a fixed
time.

Let α ∈ [0, 1] and let V̂ aRα denote the estimated value of V aRα at fixed time t.
The V̂ aRα can be calculated as an empirical α-quantile of the sample S. There are
many approaches to compute the empirical quantiles and all of them involve the order
statistics, which are denoted by L(1) < · · · < L(n). We assume no ties which is true of
continuous data with probability 1.
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8.1.2 Empirical quantiles

In this section, we calculate the empirical quantiles following the procedure referred to
by Hyndman and Fan [1996]. Let

K(α, n) = ⌊nα+ η(α)⌋, (8.1)

where ⌊·⌋ denotes the floor-function which represents the largest integer not exceeding
the observation. η(α) is a linear function of α taking values in [0, 1]. The function η(α)
has varied forms to define different expressions of empirical quantiles, which we referred
to as the adjustment function. The K(α, n) identify the order statistics we were used to
estimate the α-quantile in a sample of size n for a particular choice for the adjustment
function. Let

λ(α, n) = nα+ η(α)−K(α, n), (8.2)

where λ(α, n) ∈ [0, 1).

The estimated α-quantiles from a sample {L1, ..., Ln} can be expressed as
(1− λ(α, n))L(K(α,n)) + λ(α, n)L(K(α,n)+1) if K(α, n) ∈ {1, ..., n− 1},

L(1) if K(α, n) = 0,

L(n) if K(α, n) = n.

(8.3)

For every K(α, n) ∈ {1, ..., n} there is a value α(k, n) satisfying

K(α(k, n), n) = k and λ(α(k, n), n) = 0, (8.4)

where we can also obtain V̂ aRα(k,n) = L(k) and k represents the kth order statistic of
the observations. For values of α such that α(k, n) < α < α(k + 1, n) the quantile
estimation is given by linear interpolation between L(k) and L(k+1). Hyndman and Fan
[1996] summarize nine types of definitions for η(α). In this section, we follow them,
considering 6 popular choices for η(α).

1. η(α) = 0. In this case the α(k, n) = k/n so that L(k) estimates the (k/n)-quantile.
In this definition L(1) is the α-quantile estimate for α ≤ 1/n; L(n) is the 100%-
quantile estimate.

2. η(α) = 1/2. In this definition L(1) is the α-quantile estimate for α ≤ 1/(2n);
L(n) is the α-quantile estimate for α ≥ 1− 1/(2n). The L(1) and L(n) have more
symmetric properties in this case.

3. η(α) = α. In this case α(k, n) = k/(n+1). In this definition L(1) is the α-quantile
estimate for α ≤ 1/(n+ 1); L(n) is the α-quantile estimate for α ≥ n/(n+ 1).
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4. η(α) = 1 − α. In this case α(k, n) = (k − 1)/(n − 1). In this definition L(1) and
L(n) is the 0-quantile and 100%-quantile estimate, respectively.

5. η(α) = (α + 1)/3. In this case α(k, n) = (k − 1/3)/(n + 1/3). In this definition
L(1) is the α-quantile estimate for α ≤ 1/(3n+1); L(n) is the α-quantile estimate
for α ≥ (3n− 1)/(3n+ 1).

6. η(α) = (2α + 3)/8. In this case α(k, n) = (8k − 3)/(8n + 2). In this definition
L(1) is the α-quantile estimate for α ≤ 5/(8n+2); L(n) is the α-quantile estimate
for α ≥ (8n− 3)/(8n+ 2).

8.2 Exceedances of simulations from forecasting models

The exceedance probability is the probability that a loss L exceeds the estimated or
calculated V̂ aRα, which can be expressed as P(L > V̂ aRα). If we assume the sample of
losses S = {L1, ..., Ln} are independent and identically-distributed, then the exceedance
probabilities can be calculated. We show the calculation and results of exceedance
probabilities in the case of iid losses in Section 8.2.1.

Practically, there is serial dependence in the losses in most cases. Therefore, the
exceedance probabilities of simulations from models with serial dependence are studied
as well. We investigate the exceedances of vt-S-vine models in Section 8.2.2. In order to
present the results clearly, we also calculate the expected exceedances, mean absolute
error (MAE) and the bias in each model.

8.2.1 Independent and identically distributed case

When the losses are iid, the general calculation of the exceedance probability can be
computed by using an integral over the joint density of the order statistics. Let λ =

λ(α, n) to simplify the notation and k is the order of the observation, the exceedance
probabilities can be calculated as

P(L > V̂ aRα)

=

∫ ∞

−∞

∫ ∞

x
P(L > (1− λ)x+ λy)fL(k),L(k+1)

(x, y)dydx

=

∫ ∞

−∞

∫ ∞

x
P(L > (1− λ)x+ λy)

n!F (x)k−1(1− F (y))n−k−1

(k − 1)!(n− k − 1)!
f(x)f(y)dydx,

(8.5)
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where F is the cdf of L. Then, make the substitutions that u = F (x), v = F (y) and
U = F (L),

P(L > V̂ aRα)

=

∫ 1

0

∫ 1

u
P(U > F ((1− λ)F−1(u) + λF−1(v)))

n!uk−1(1− v)n−k−1

(k − 1)!(n− k − 1)!
dvdu

=

∫ 1

0

∫ 1

u
(1− F ((1− λ)F−1(u) + λF−1(v)))

n!uk−1(1− v)n−k−1

(k − 1)!(n− k − 1)!
dvdu.

(8.6)

Equation 8.6 can be computed numerically. The underlying distribution F in Equa-
tion 8.6 is the key factor for calculation of exceedance probabilities in the iid case. We
select three commonly used distributions in the calculation, which are normal, student
t and skewed student t distributions. The sample size n is 250 and 500, since there
are around 250 trading days in the financial equity markets each year and we decide
to study the historical simulations for one or two years. The target quantiles in the
simulations are 0.975 and 0.99, which are widely used values in regulation and banking.
The quantile estimation methods used are the six referred to in Section 8.1.2. The cal-
culated exceedance probabilities are shown in Table 8.1. Table 8.2 presents the expected
exceedances corresponding to Table 8.1.

methods
dist α n 1 2 3 4 5 6 true

norm 0.975 250 0.0288 0.0268 0.0249 0.0287 0.0261 0.0263 0.0250
500 0.0269 0.0259 0.0250 0.0269 0.0256 0.0257 0.0250

0.99 250 0.0137 0.0120 0.0096 0.0137 0.0111 0.0113 0.0100
500 0.0120 0.0109 0.0100 0.0120 0.0106 0.0107 0.0100

t 0.975 250 0.0288 0.0268 0.0249 0.0287 0.0261 0.0263 0.0250
500 0.0269 0.0259 0.0250 0.0269 0.0256 0.0257 0.0250

0.99 250 0.0136 0.0120 0.0096 0.0136 0.0110 0.0112 0.0100
500 0.0120 0.0109 0.0100 0.0120 0.0106 0.0106 0.0100

skt 0.975 250 0.0288 0.0268 0.0249 0.0287 0.0261 0.0263 0.0250
500 0.0269 0.0259 0.0250 0.0269 0.0256 0.0257 0.0250

0.99 250 0.0136 0.0120 0.0096 0.0136 0.0110 0.0112 0.0100
500 0.0120 0.0109 0.0100 0.0120 0.0106 0.0106 0.0100

Table 8.1: Exceedance probabilities in the iid case (calculated). norm is the standard normal
distribution. t represents student t distribution with degree of freedom, ν = 6. skt is the skewed
student t distribution with degree of freedom 6 and skew parameter equals to 0.8. true is the
true values of exceedance probabilities.

According to Table 8.1 and 8.2, the exceedance probabilities calculated by the third
method are the closest to the true values, which should be 0.025 in the 0.975-quantile
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methods
dist α n 1 2 3 4 5 6 true

norm 0.975 250 7.20 6.70 6.22 7.18 6.53 6.57 6.25
500 13.46 12.97 12.48 13.43 12.81 12.85 12.50

0.99 250 3.42 2.99 2.41 3.41 2.77 2.82 2.50
500 5.99 5.45 5.00 5.98 5.29 5.33 5.00

t 0.975 250 7.20 6.69 6.22 7.17 6.53 6.57 6.25
500 13.45 12.97 12.48 13.43 12.80 12.85 12.50

0.99 250 3.41 2.99 2.39 3.40 2.75 2.81 2.50
500 5.99 5.44 5.00 5.98 5.28 5.32 5.00

skt 0.975 250 7.20 6.69 6.22 7.17 6.53 6.57 6.25
500 13.45 12.97 12.48 13.43 12.80 12.85 12.50

0.99 250 3.41 2.99 2.39 3.40 2.76 2.81 2.50
500 5.99 5.44 5.00 5.98 5.28 5.32 5.00

Table 8.2: Expected exceedances in iid case (calculated). norm is the standard normal dis-
tribution. t represents student t distribution with degree of freedom, ν = 6. skt is the skewed
student t distribution with degree of freedom 6 and skew parameter equals to 0.8. true is the
true values of expected exceedances.

and 0.010 in the 0.99-quantile. For example, the true exceedance probability is 0.025
when α = 0.975, the probability calculated by the third method from t distribution is
0.0249 and 0.025 in sample size 250 and 500, respectively. The two calculated values are
quite similar to the true value. Furthermore, the exceedance probabilities and expected
exceedances are closer to the true values when the sample size increased to 500 from
250. It reveals there is an influence of the sample size in the accuracy of the quantile
estimation methods. Moreover, the exceedance probabilities and expected exceedances
are not very different among the three types of distributions, which implies that the
distribution does not affect the exceedances probabilities and expected exceedances too
much in iid case.

Furthermore, it is worth noting that only the third method understates the ex-
ceedances probabilities and expected exceedances. The other five approaches yields
the overstated results. The regulations of bank are based on numbers of exceedances.
Banks that consistently experience too many VaR exceedances in a time period may
be subject to higher capital requirements and may lose their option to use the internal-
models-based approach to capital that most sophisticated institutions prefer to use.
Hence, the other five approaches which always overstate the exceedances may not be
reasonable choices for banks.

In order to exhibit the results further, we calculate the MAE and bias of the esti-
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methods
dist α n 1 2 3 4 5 6

norm 0.975 250 0.1329 0.1317 0.1365 0.1328 0.1322 0.1320
500 0.0943 0.0949 0.0956 0.0943 0.0947 0.0947

0.99 250 0.1801 0.1843 0.1973 0.1799 0.1830 0.1828
500 0.1325 0.1290 0.1379 0.1323 0.1308 0.1302

t 0.975 250 0.2262 0.2281 0.2407 0.2263 0.2304 0.2296
500 0.1614 0.1638 0.1665 0.1614 0.1640 0.1639

0.99 250 0.3688 0.3918 0.4495 0.3687 0.3975 0.3946
500 0.2742 0.2733 0.2981 0.2739 0.2792 0.2775

skt 0.975 250 0.1792 0.1805 0.1902 0.1793 0.1822 0.1816
500 0.1278 0.1296 0.1316 0.1278 0.1297 0.1296

0.99 250 0.2891 0.3067 0.3511 0.2891 0.3110 0.3088
500 0.2148 0.2139 0.2332 0.2146 0.2185 0.2172

Table 8.3: Mean absolute error of the VaR estimator in the iid case (calculated). norm is the
standard normal distribution. t represents student t distribution with degree of freedom, ν = 6.
skt is the skewed student t distribution with degree of freedom 6 and skew parameter equals
to 0.8.

mator V̂ aRα. The MAE can be calculated as

E(|V̂ aRα − F−1(α)|) =∫ 1

0

∫ 1

u
|(1− λ)F−1(u) + λF−1(v)− F−1(α)|n!u

k−1(1− v)n−k−1

(k − 1)!(n− k − 1)!
dvdu.

(8.7)

The results for MAE are presented in Table 8.3 and for the bias in Table 8.4.

The MAE and bias reflect the difference between the true VaR and the estimated
VaR. According to Table 8.3, the second and sixth approaches give the smallest MAE
values in iid case with normal distribution, which means the two approaches develop
VaR estimation closer to the true VaR than other methods in normal distributions. For
student t and skewed student t distributions, the first and forth methods produce more
accurate VaR estimations, since they yield smaller MAE values. The best methods
for VaR estimations are distinctive in different distributions and at different quantiles
according to MAE values. However, the third method for quantile estimation yields the
biggest MAE values, which means the third method yields the least accurate quantile
estimates.

Combining the bias in Table 8.4, the method 3,5 and 6 have always given the positive
bias, which means that these methods overestimate the true values. They are conser-
vative in regard to VaR estimation. In contrast, methods 1 and 4 underestimate the
true values. It is apparent that larger sample size can improve the quantile estimation,
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methods
dist α n 1 2 3 4 5 6

norm 0.975 250 -0.0371 -0.0040 0.0294 -0.0355 0.0071 0.0043
500 -0.0189 -0.0024 0.0144 -0.0180 0.0032 0.0018

0.99 250 -0.0739 -0.0108 0.0768 -0.0726 0.0184 0.0111
500 -0.0405 -0.0033 0.0332 -0.0398 0.0089 0.0058

t 0.975 250 -0.0516 0.0058 0.0648 -0.0490 0.0255 0.0205
500 -0.0263 0.0021 0.0314 -0.0249 0.0118 0.0094

0.99 250 -0.1211 0.0112 0.2161 -0.1184 0.0795 0.0624
500 -0.0687 0.0111 0.0894 -0.0671 0.0372 0.0307

skt 0.975 250 -0.0415 0.0039 0.0505 -0.0394 0.0194 0.0156
500 -0.0212 0.0013 0.0245 -0.0200 0.0090 0.0071

0.99 250 -0.0959 0.0077 0.1677 -0.0938 0.0610 0.0477
500 -0.0543 0.0082 0.0694 -0.0531 0.0286 0.0235

Table 8.4: Bias of the VaR estimator in the iid case (calculated). norm is the standard normal
distribution. t represents student t distribution with degree of freedom, ν = 6. skt is the skewed
student t distribution with degree of freedom 6 and skew parameter equals to 0.8.

according to Table 8.3. Moreover, the signs of bias are not influenced remarkably by
the distributions, but highly depend on the methods used.

Furthermore, one interesting finding is that the quantile estimator is that closest on
average to the true value of the quantile of a distribution may not be the one that tends
to give the most accurate value for the exceedance probability. For example, the third
method yields the exceedance probabilities closest to the true values according to Table
8.1 and 8.2. However, the MAE values of Method 3 are larger than the ones estimated
by any other approaches, which means the VaR estimations from Method 3 are the least
accurate among the six approaches. Therefore, the exceedance probabilities and MAE
or bias give conflicting recommendations of the best method, which gives an indicator
as to the method of empirical quantile estimation that banks should prefer.

Traffic light system of iid losses

Validation of models is largely based on the concepts of VaR exceptions, which is the
exceedances of VaR estimates by the realized loss. In a trading year of 250 days, too
many exceptions to the 99% VaR can have undesired consequences for a bank. The
traffic light system in trading book stipulate:

• 5 or more VaR exceedances lead to an amber traffic light and also lead to an
increase in the multiplier. The number 5 corresponds roughly to the 95% quantile
of a binomial distribution B(250, 0.01).
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• 10 or more VaR exceedances for the overall bank portfolio leads to a red traffic
light and a maximum multiplier applied to a bank’s capital calculations. The idea
is that 10 is approximately the 99.99% quantile of the distribution of a B(250, 0.01)

distribution ([on Banking Supervision, 2019, p. 128]).

• More than 12 exceedances for a particular desk means that capital for that desk’s
positions must be determined using the standardised approach, which is likely to
be more capital intensive. The supervisor has the option of disallowing use of the
internal model when there are 13 or more VaR exceedances ([on Banking Super-
vision, 2019, p. 83]).

Hence, there are some critical levels in the number of exceedances of the 99% VaR
in 250 days: 5+, 10+ and 13+. The number of exceedances of the true α-quantile in
a sequence of n values from an iid process follows a binomial distribution B(n, 1− α).
The α used here is the exceedance probability calculated by each distribution at selected
quantile. Hence, we calculate the probabilities at the three levels P(N ≥ 5), P(N ≥ 10)

and P(N ≥ 13), where N is the number of exceedances. The results are shown in Table
8.5.

Methods
dist levels 1 2 3 4 5 6

normal 5 0.259606 0.181709 0.096410 0.257768 0.146966 0.154977
10 0.002630 0.000978 0.000189 0.002577 0.000556 0.000640
13 0.000051 0.000013 0.000001 0.000050 0.000006 0.000007

t 5 0.256763 0.181709 0.093762 0.254954 0.144279 0.152689
10 0.002548 0.000978 0.000176 0.002497 0.000530 0.000615
13 0.000049 0.000013 0.000001 0.000048 0.000005 0.000007

skt 5 0.256892 0.181709 0.093858 0.255082 0.144386 0.152782
10 0.002552 0.000978 0.000176 0.002501 0.000531 0.000616
13 0.000049 0.000013 0.000001 0.000048 0.000005 0.000007

Table 8.5: The calculated probabilities in binomial distribution at 5+, 10+, 13+ exceedances
in iid case. norm is the standard normal distribution. t represents student t distribution with
degree of freedom, ν = 6. skt is the skewed student t distribution with degree of freedom 6 and
skew parameter equals to 0.8.

According to Table 8.5, the third method always gives the smallest probabilities at
all three levels and distributions, which implies that the bank applies the third method
will have the smallest probabilities of getting the amber, red zone or disallowing use
of the internal model in traffic light system. The first and fourth methods yielding
probabilities that exceedances over 13 have different orders of magnitude compared to
Method 3. The probabilities of disallowing the internal models in the two approaches
are much higher than the third method. Moreover, the probabilities are not affected



160 Chapter 8. On the Distribution of VaR Exeedances in a Vt-S-vine Model

by the choice of distributions. For level 5 and 10, all the approaches, except for the
third one are bigger than the standard 5%(= 1 − 95%) and 0.01%(= 1 − 99.99%)

on Banking Supervision [2019], which means they tend to overstate the probabilities of
the amber and red zones in the traffic light system. For level 13, the results are very
close to 0 among distinctive approaches, which means the probability of the internal
model being refused by traffic light system is not influenced largely by different quantile
estimators.

8.2.2 The case of vt-S-vine models

The previous section investigates the VaR estimation in the case of iid losses. In this
section, we consider the losses with both serial dependence caused by stochastic volatil-
ity. Therefore, we use the vt-S-vine models to simulate data and study the exceedances
estimation in the simulations. We apply the linear v-transform with fulcrum 0.5 in
vt-S-vine copulas. The parameters in ARMA(1,1) which are used to estimate partial
autocorrelations are ϕ1 = 0.95 and θ1 = −0.85. The values of ϕ1 and θ1 are chosen
according to the results of empirical study in the previous chapter. The copula se-
quences used in simulation are Gaussian and survival Clayton copulas. The vt-S-vine
with Gaussian copula sequences are equal to the VT-ARMA models. Besides, survival
Clayton copulas usually perform well in modelling empirical time series, which is shown
in Chapter 6.

Assume the uniform distributed simulations generated from vt-S-vine copulas are
u1, ..., un and the marginal distribution we select is F . Then, the simulated losses are
denoted as {L1, ..., Ln}, where Li = F−1(ui), i = 1, ..., n. Following this, the estimate
V̂ aRα of the α-quantile from the sample {L1, ..., Ln} is obtained using the six approaches
introduced in Section 8.2.1. The exceedance probabilities in vt-S-vines can be calculated
as

P(L > L(k)) = 1− F (V̂ aRα). (8.8)

The expected exceedances are written as (1 − F (V̂ aRα)) × n, where n is the sample
size.

Besides, the MAE and bias can be calculated using the estimated V̂ aRα of the
α-quantile from the simulated sample {L1, ..., Ln} as

MAE = E(|V̂ aRα − F−1(α)|),

Bias = E(V̂ aRα − F−1(α)).
(8.9)

The α is set to 0.975 and 0.99, which is the same as the ones in iid case. The sample
sizes n used are 250 and 500. The simulations are repeated 1000 times in each case. The
MAE and bias are calculated from the 1000 repetitions. The exceedance probabilities
are estimated using Equation 8.8. The results are put in Table 8.6. The expected
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exceedances are shown in Table 8.7.
According to Table 8.6, the method 3 gives the exceedance probabilities that are

closest to true values, which are 0.025 for α = 0.975 and 0.010 for α = 0.99. Comparing
to Table 8.1, the vt-S-vine models yield bigger exceedance probabilities in all the cases
than in the iid case. The exceedances in Table 8.7 are all bigger than the true values,
which means the empirical quantile estimation always results in an exceedance proba-
bility larger than the true values in a vt-S-vine. Moreover, the selection of distribution
does not affect the exceedances estimation, which is the same observation in Table 8.6
and 8.7. It is noteworthy that the vt-S-vine with survival Clayton copulas yields ex-
ceedances apparently further than true values than Gaussian copulas. The choice of
copulas in vt-S-vine models may crucially effect the exceedances estimations.

In order to assess the accuracy of the VaR estimates, we exhibit the MAE and Bias
of estimator V̂ aRα in Table 8.8 and Table 8.9. The MAE values of vt-S-vine with
survival Clayton copulas are larger than the ones of vt-S-vine with Gaussian copulas,
according to Table 8.8, which means the VaR estimated by quantile estimation methods
in the survival Clayton copulas are less precisely than the ones in Gaussian copulas.
Furthermore, the normal distribution yields the smallest MAE values in all the six
methods for both Gaussian and survival Clayton copulas in vt-S-vine models. Moreover,
it is difficult to find a method that estimate VaR most or least accurately in all cases. It
may be advisable to choose different methods according to distributions, quantiles and
sample sizes. Furthermore, compared to Table 8.2, the vt-S-vine models produce higher
MAE values than the iid losses, which reveals that the empirical quantile estimates less
accurately in the presence of serial dependence.

Table 8.9 shows that the first, second and forth approaches have negative bias,
which reveals that the three approaches understate VaR. Interestingly, method 3 has
positive bias in vt-S-vine with Gaussian copulas, while negative bias in vt-S-vine with
survival Clayton copulas, which embodies that vt-S-vine can overstate VaR with Gaus-
sian copulas, but understate VaR with survival Clayton copulas using the third method.
Therefore, the nature of the serial dependence that is generated from copulas affects
the accuracy of quantile estimation very much in vt-S-vine models.

Traffic light system in vt-S-vines

In order to show the application of vt-S-vine models, we generate the traffic light sys-
tem of the simulations from vt-S-vines as well. The critical levels in the number of
exceedances of the 99% VaR in 250 days are 5,10 and 13. However, in the vt-S-vine
simulated losses, the quantile exceedance indicator variables for the α-quantile are iden-
tically, but not independent distributed Bernoulli variables with success probability
1− α. Instead they will tend to be positively dependent.

The distribution of the number of exceedances in a sequence of n values will have
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Methods
dist α n 1 2 3 4 5 6 true

Gaussian copula
norm 0.975 250 0.0306 0.0286 0.0267 0.0306 0.0279 0.0281 0.0250

500 0.0280 0.0270 0.0260 0.0279 0.0266 0.0267 0.0250
0.99 250 0.0149 0.0130 0.0107 0.0148 0.0121 0.0123 0.0100

500 0.0127 0.0116 0.0107 0.0126 0.0113 0.0114 0.0100

t 0.975 250 0.0306 0.0286 0.0266 0.0305 0.0279 0.0281 0.0250
500 0.0279 0.0270 0.0260 0.0279 0.0266 0.0267 0.0250

0.99 250 0.0148 0.0130 0.0106 0.0148 0.0121 0.0123 0.0100
500 0.0127 0.0116 0.0107 0.0126 0.0113 0.0114 0.0100

skt 0.975 250 0.0306 0.0286 0.0266 0.0305 0.0279 0.0281 0.0250
500 0.0279 0.0270 0.0260 0.0279 0.0266 0.0267 0.0250

0.99 250 0.0148 0.0130 0.0106 0.0148 0.0121 0.0123 0.0100
500 0.0127 0.0116 0.0107 0.0126 0.0113 0.0114 0.0100

Survival Clayton copula
norm 0.975 250 0.0366 0.0347 0.0329 0.0365 0.0341 0.0342 0.0250

500 0.0312 0.0302 0.0292 0.0311 0.0299 0.0299 0.0250
0.99 250 0.0204 0.0183 0.0157 0.0204 0.0174 0.0176 0.0100

500 0.0158 0.0147 0.0137 0.0158 0.0144 0.0144 0.0100

t 0.975 250 0.0366 0.0347 0.0328 0.0365 0.0340 0.0342 0.0250
500 0.0312 0.0302 0.0292 0.0311 0.0299 0.0299 0.0250

0.99 250 0.0204 0.0183 0.0156 0.0203 0.0173 0.0175 0.0100
500 0.0158 0.0147 0.0137 0.0158 0.0143 0.0144 0.0100

skt 0.975 250 0.0366 0.0347 0.0328 0.0365 0.0340 0.0342 0.0250
500 0.0312 0.0302 0.0292 0.0311 0.0299 0.0299 0.0250

0.99 250 0.0204 0.0183 0.0156 0.0203 0.0173 0.0176 0.0100
500 0.0158 0.0147 0.0137 0.0158 0.0143 0.0144 0.0100

Table 8.6: exceedance probabilities of vt-S-vine with symmetric linear v-transformation with
Gaussian copula and survival Clayton copulas. The parameters in ARMA(1,1) estimation part
are ϕ1 = 0.95 and θ1 = −0.85. norm is the standard normal distribution. t represents student t
distribution with degree of freedom, ν = 6. skt is the skewed student t distribution with degree
of freedom 6 and skew parameter equals to 0.8.
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Methods
dist α n 1 2 3 4 5 6 true

Gaussian copula
norm 0.975 250 7.66 7.15 6.67 7.64 6.98 7.02 6.25

500 13.98 13.49 13.01 13.95 13.32 13.36 12.50
0.99 250 3.72 3.25 2.67 3.71 3.04 3.09 2.50

500 6.33 5.81 5.37 6.32 5.66 5.69 5.00

t 0.975 250 7.66 7.14 6.66 7.63 6.97 7.02 6.25
500 13.97 13.49 13.01 13.95 13.32 13.36 12.50

0.99 250 3.70 3.25 2.65 3.69 3.02 3.07 2.50
500 6.33 5.80 5.37 6.32 5.65 5.69 5.00

skt 0.975 250 7.66 7.15 6.66 7.63 6.98 7.02 6.25
500 13.97 13.49 13.01 13.95 13.32 13.36 12.50

0.99 250 3.70 3.25 2.65 3.69 3.02 3.07 2.50
500 6.33 5.80 5.37 6.32 5.65 5.69 5.00

Survival Clayton copula
norm 0.975 250 9.16 8.67 8.22 9.13 8.52 8.56 6.25

500 15.59 15.10 14.60 15.56 14.93 14.97 12.50
0.99 250 5.11 4.57 3.93 5.10 4.34 4.40 2.50

500 7.91 7.35 6.86 7.90 7.18 7.22 5.00

t 0.975 250 9.15 8.67 8.21 9.13 8.51 8.55 6.25
500 15.58 15.10 14.60 15.56 14.93 14.97 12.50

0.99 250 5.10 4.57 3.91 5.08 4.33 4.39 2.50
500 7.91 7.34 6.86 7.90 7.17 7.21 5.00

skt 0.975 250 9.15 8.67 8.21 9.13 8.51 8.55 6.25
500 15.58 15.10 14.60 15.56 14.93 14.97 12.50

0.99 250 5.10 4.57 3.91 5.08 4.33 4.39 2.50
500 7.91 7.34 6.86 7.90 7.17 7.21 5.00

Table 8.7: Expected exceedance of vt-S-vine with symmetric linear v-transformation with
Gaussian copulas and survival Clayton copulas. The parameters in ARMA(1,1) estimation
part are ϕ1 = 0.95 and θ1 = −0.85. norm is the standard normal distribution. t represents
student t distribution with degree of freedom, ν = 6. skt is the skewed student t distribution
with degree of freedom 6 and skew parameter equals to 0.8.
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methods
copula dist α n 1 2 3 4 5 6

Ga norm 0.975 250 0.1788 0.1767 0.1785 0.1788 0.1766 0.1766
500 0.1241 0.1237 0.1248 0.1240 0.1238 0.1237

0.99 250 0.2204 0.2182 0.2268 0.2201 0.2162 0.2163
500 0.1646 0.1617 0.1677 0.1644 0.1628 0.1624

t 0.975 250 0.3051 0.3068 0.3160 0.3052 0.3087 0.3081
500 0.2119 0.2128 0.2166 0.2118 0.2136 0.2133

0.99 250 0.4510 0.4633 0.5146 0.4508 0.4689 0.4662
500 0.3403 0.3418 0.3617 0.3401 0.3467 0.3453

skt 0.975 250 0.2417 0.2428 0.2497 0.2418 0.2442 0.2437
500 0.1678 0.1684 0.1713 0.1677 0.1690 0.1688

0.99 250 0.3537 0.3628 0.4020 0.3535 0.3669 0.3649
500 0.2667 0.2676 0.2830 0.2665 0.2714 0.2703

SC norm 0.975 250 0.2562 0.2512 0.2480 0.2559 0.2498 0.2501
500 0.1947 0.1923 0.1912 0.1946 0.1918 0.1919

0.99 250 0.3154 0.3020 0.2887 0.3150 0.2955 0.2970
500 0.2426 0.2337 0.2312 0.2424 0.2322 0.2325

t 0.975 250 0.4376 0.4352 0.4362 0.4374 0.4351 0.4351
500 0.3357 0.3342 0.3351 0.3356 0.3343 0.3342

0.99 250 0.6299 0.6208 0.6210 0.6294 0.6161 0.6168
500 0.4977 0.4885 0.4925 0.4973 0.4884 0.4884

skt 0.975 250 0.3469 0.3447 0.3451 0.3467 0.3445 0.3445
500 0.2658 0.2645 0.2650 0.2657 0.2644 0.2644

0.99 250 0.4947 0.4869 0.4863 0.4944 0.4830 0.4836
500 0.3902 0.3828 0.3856 0.3900 0.3826 0.3826

Table 8.8: MAE of vt-S-vine with symmetric linear v-transformation with Gaussian copula
(Ga) and survival Clayton copulas (SC). The parameters in ARMA(1,1) estimation part are
ϕ1 = 0.95 and θ1 = −0.85. norm is the standard normal distribution. t represents student t
distribution with degree of freedom, ν = 6. skt is the skewed student t distribution with degree
of freedom 6 and skew parameter equals to 0.8.
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methods
copula dist α n 1 2 3 4 5 6

Ga norm 0.975 250 -0.0446 -0.0123 0.0210 -0.0431 -0.0012 -0.0040
500 -0.0257 -0.0095 0.0065 -0.0249 -0.0042 -0.0055

0.99 250 -0.0835 -0.0210 0.0621 -0.0822 0.0067 -0.0003
500 -0.0476 -0.0129 0.0210 -0.0469 -0.0016 -0.0044

t 0.975 250 -0.0546 0.0020 0.0612 -0.0521 0.0217 0.0168
500 -0.0338 -0.0059 0.0221 -0.0324 0.0035 0.0011

0.99 250 -0.1268 0.0035 0.1995 -0.1242 0.0688 0.0525
500 -0.0750 -0.0003 0.0728 -0.0735 0.0240 0.0179

skt 0.975 250 -0.0445 0.0003 0.0471 -0.0425 0.0159 0.0120
500 -0.0273 -0.0052 0.0169 -0.0262 0.0021 0.0003

0.99 250 -0.1009 0.0013 0.1542 -0.0989 0.0523 0.0395
500 -0.0595 -0.0011 0.0561 -0.0583 0.0180 0.0132

SC norm 0.975 250 -0.0946 -0.0670 -0.0393 -0.0933 -0.0578 -0.0601
500 -0.0475 -0.0322 -0.0165 -0.0468 -0.0270 -0.0283

0.99 250 -0.1765 -0.1220 -0.0537 -0.1754 -0.0992 -0.1049
500 -0.1034 -0.0713 -0.0398 -0.1027 -0.0608 -0.0634

t 0.975 250 -0.1177 -0.0696 -0.0205 -0.1155 -0.0532 -0.0573
500 -0.0554 -0.0289 -0.0011 -0.0541 -0.0197 -0.0220

0.99 250 -0.2809 -0.1711 -0.0197 -0.2787 -0.1206 -0.1332
500 -0.1635 -0.0954 -0.0286 -0.1622 -0.0731 -0.0787

skt 0.975 250 -0.0956 -0.0575 -0.0187 -0.0939 -0.0446 -0.0478
500 -0.0453 -0.0243 -0.0023 -0.0442 -0.0170 -0.0188

0.99 250 -0.2230 -0.1367 -0.0183 -0.2213 -0.0972 -0.1071
500 -0.1297 -0.0764 -0.0240 -0.1287 -0.0589 -0.0633

Table 8.9: BIAS of vt-S-vine with symmetric linear v-transformation with Gaussian copula
(Ga) and survival Clayton copulas (SC). The parameters in ARMA(1,1) estimation part are
ϕ1 = 0.95 and θ1 = −0.85. norm is the standard normal distribution. t represents student t
distribution with degree of freedom, ν = 6. skt is the skewed student t distribution with degree
of freedom 6 and skew parameter equals to 0.8.
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methods
DGP dist levels 1 2 3 4 5 6

Ga norm 5 0.2610 0.2110 0.1350 0.2600 0.1785 0.1835
10 0.0285 0.0170 0.0095 0.0270 0.0140 0.0140
13 0.0040 0.0030 0.0015 0.0040 0.0030 0.0030

t 5 0.2600 0.2110 0.1320 0.2580 0.1770 0.1825
10 0.0265 0.0170 0.0095 0.0265 0.0140 0.0140
13 0.0040 0.0030 0.0015 0.0040 0.0025 0.0030

skt 5 0.2600 0.2110 0.1320 0.2580 0.1770 0.1825
10 0.0265 0.0170 0.0095 0.0265 0.0140 0.0140
13 0.0040 0.0030 0.0015 0.0040 0.0025 0.0030

SC norm 5 0.4280 0.3700 0.2895 0.4260 0.3455 0.3520
10 0.1085 0.0855 0.0525 0.1075 0.0725 0.0765
13 0.0420 0.0345 0.0175 0.0415 0.0265 0.0295

t 5 0.4255 0.3700 0.2880 0.4250 0.3435 0.3520
10 0.1085 0.0855 0.0520 0.1075 0.0710 0.0765
13 0.0420 0.0345 0.0175 0.0415 0.0265 0.0295

skt 5 0.4255 0.3700 0.2880 0.4250 0.3435 0.3520
10 0.1085 0.0855 0.0520 0.1075 0.0720 0.0765
13 0.0420 0.0345 0.0175 0.0415 0.0265 0.0295

Table 8.10: The probabilities of exceedances over levels 5, 10, 13 in simulations from vt-S-
vine with symmetric linear v-transformation with Gaussian copula (Ga) and survival Clayton
copulas (SC). norm is the standard normal distribution. t represents student t distribution
with degree of freedom, ν = 6. skt is the skewed student t distribution with degree of freedom
6 and skew parameter equals to 0.8.

an identical mean to the independent case (n× (1−α)) but it will tend to have a higher
variance and a heavier tail. Hence, the number of exceedances of the true α-quantile in
a sequence of n values from a vt-S-vine process does not follow a binomial distribution.
Hence, we can not calculate the cumulative probabilities in traffic light system. Instead
we compare the exceedances (N) with the levels and repeat the simulations for 1000
times and count the probabilities P(N ≥ 5), P(N ≥ 10) and P(N ≥ 13). The results
are presented in Table 8.10.

The probabilities in Table 8.10 are all larger than the ones in iid case, which means
the probabilities of getting the amber, red zone or having internal models disallowed by
traffic light system are higher in serial dependent losses than iid losses. Furthermore,
the vt-S-vine with survival Clayton copulas yields larger probabilities than the one with
Gaussian copulas, which embodies that the quantile estimators have more possibilities
to obtain the exceedances in the amber or red zone, even with the internal model
being refused by the regulation. The distributions do not exert great influence on the
probabilities in vt-S-vine process as well. Besides, the Method 3 gives the smallest
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violating probabilities in traffic light system in both Gaussian and survival Clayton
copulas, which is good for banks, because they prefer less violations in practice.

8.3 The distributions of exceedances

In this section, we study the distributions of exceedances for vt-S-vine models. It is
simple to calculate the expectation of exceedances for α-quantiles in vt-S-vine models.
Suppose the sample size is n and let u = 1−α, the number of exceedances for the left-tail
and right-tail can be expressed by Nl =

∑n
i=1 I{Li≤F−1

L (u)} and Nr =
∑n

i=1 I{Li≥F−1
L (α)},

respectively. Then, the expectations of exceedances of the left and right tail can be
written as E(Nl) = nu and E(Nr) = n(1 − α). The variance of the exceedaneces is
calculated in Proposition 8.

Proposition 8. The variance of the number of exceedances of the α-quantile in a vt-S-
vine sample with linear v-transform of length n is given by

var(Nl) = nu− (nu)2 + 2

n−1∑
k=1

(n− k)C(k)(u, u) (8.10)

and

var(Nr) = n(1− α)− (n(1− α))2 + 2
n−1∑
k=1

(n− k)Ĉ(k)(α, α) (8.11)

where u = 1 − α, C(k)(u, u) is the joint distribution that denotes the probability
that Ut and Ut+k jointly take values in a lower orthant defined by the point (u,u). Ĉ(k)

denotes the survival copula of C(k)(u, u), which the expression can be found in Equation
2.2.

Proof. We argue that

var(Nl) = var

(
n∑
i=1

I{Li≤F−1
L (u)}

)
= var

(
n∑
i=1

I{Ui≤u}

)

= E

(
(

n∑
i=1

I{Ui≤u})
2

)
− E

(
n∑
i=1

I{Ui≤u})

)2

E

(
n∑
i=1

I{Ui≤u}

)
= nu

E

(( n∑
i=1

I{Ui≤u}
)2)

= E

 n∑
i=1

I2{Ui≤u} + 2

n−1∑
i=1

n∑
j=i+1

I{Ui≤u}I{Uj≤u}


=

n∑
i=1

E
(
(I{Ui≤u})

2
)
+ 2

n−1∑
i=1

n∑
j=i+1

E
(
I{Ui≤u}I{Uj≤u}

)



168 Chapter 8. On the Distribution of VaR Exeedances in a Vt-S-vine Model

=
n∑
i=1

P (Ui ≤ u) + 2
n−1∑
i=1

n∑
j=i+1

P (Ui ≤ u, Uj ≤ u)

let j = i+ k

= nu+ 2
n−k∑
i=1

n−1∑
k=1

P (Ui ≤ u, Ui+k ≤ u)

= nu+ 2
n−1∑
k=1

(n− k)P (Ui ≤ u, Ui+k ≤ u)

= nu+ 2

n−1∑
k=1

(n− k)C(k)(u, u)

var(Nl) = nu+ 2
n−1∑
k=1

(n− k)C(k)(u, u)− (nu)2

= nu− (nu)2 + 2
n−1∑
k=1

(n− k)C(k)(u, u).

Similarly, the expectation and variance of right tail exceedances Nr is

var(Nr) = var

(
n∑
i=1

I{Li≥F−1
L (α)}

)
= var

(
n∑
i=1

I{Ui≥α}

)

= E

(
(

n∑
i=1

I{Ui≥α})
2

)
− E

(
n∑
i=1

I{Ui≥α})

)2

E

(
n∑
i=1

I{Ui≥α}

)
= n(1− α)

E

(( n∑
i=1

I{Ui≥α}
)2)

= E

 n∑
i=1

I2{Ui≥α} + 2
n−1∑
i=1

n∑
j=i+1

I{Ui≥α}I{Uj≥α}


=

n∑
i=1

P (Ui ≥ α) + 2
n−1∑
i=1

n∑
j=i+1

P (Ui ≥ α,Uj ≥ α)

let j = i+ k

= n(1− α) + 2

n−k∑
i=1

n−1∑
k=1

P (Ui ≥ α,Ui+k ≥ α)

= n(1− α) + 2
n−k∑
i=1

n−1∑
k=1

P (1− Ui ≤ 1− α, 1− Ui+k ≤ 1− α)

= n(1− α) + 2

n−1∑
k=1

(n− k)Ĉ(k)(1− α, 1− α)
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var(Nr) = n(1− α) + 2
n−1∑
k=1

(n− k)Ĉ(k)(1− α, 1− α)− (n(1− α))2

= n(1− α)− (n(1− α))2 + 2
n−1∑
k=1

(n− k)Ĉ(k)(1− α, 1− α)

= nu− (nu)2 + 2

n−1∑
k=1

(n− k)Ĉ(k)(u, u).

Two types of vt-S-vine are studied in previous section, one with Gaussian copulas,
the other with survival Clayton copulas. We keep using the linear v-transform in this
section to simplify the calculation. When the copula sequences are Gaussian copulas,
the expression C(k)(u, u) in Equation 8.10 can be computed using the method proposed
by Bladt and McNeil [2020], which is

C(k)(u, u) = δ2CGaρ(k)

(u
δ
,
u

δ

)
, u ≤ δ, (8.12)

where δ is the fulcrum of the linear v-transformation and ρ(k) is the autocorrelation of
Gaussian process with copula sequences C(k). The proof of Equation 8.12 can be found
in McNeil [2020]. The left and right tail of the exceedance distribution in vt-S-vine with
Gaussian copulas are exactly the same, since Gaussian copula is symmetric. However,
for survival Clayton copula, they will be distinctive.

In order to understand the distribution of exceedances in vt-S-vine, we model the
exceedances by different distributions. In stationary vt-S-vine processes, the quantile
exceedance indicator variables for the α-quantile are identically distributed Bernoulli
variables. If these Bernoulli variables are independent, the sum of them will follow
a binomial distribution. The beta-binomial distribution is a common model for the
sum of dependent Bernoulli distributions (see Yu and Zelterman [2002]). Therefore, we
inference that the distribution of exceedances in vt-S-vine may be estimated properly
by the beta-binomial distribution.

Therefore, we fit beta-binomial distribution to the number of exceedances of quan-
tiles in vt-S-vine models with Gaussian and survival Clayton copulas and symmetric
linear v-transform. We apply the normal distribution as margin for the vt-S-vines.
Therefore, the VaR of time series, expectations and variance of the number of ex-
ceedances in vt-S-vine are calculated.

The method used to fit beta-binomial distributions to the number of exceedances at
different quantile levels in a vt-S-vine model with normal margin and Gaussian copulas
is:

Step 1 : Calculate the variance and expectation of the number of exceedances of 0.025-
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quantile and 0.01-quantile in vt-S-vine models. The variance is computed by the
Equation 8.10 and the copula C(k)(u, u) is calculated by the Gaussian copula in
Equation 8.12. The expectation is equal to nu.

Step 2 : Compute the parameters of beta-binomial distribution by method of mo-
ments, setting the number of trials equal to n, where n is 250 or 500.

a = (µ2(n−µ)−µσ2)
(nσ2−µn+µ2) , b = (nµ − 1)a

where µ and σ2 are the expectation and variance calculated in Step 1.

Step 3 : Simulate n data from vt-S-vine models, where n is equal to 250 and 500,
respectively.

Step 4 : Calculate the VaR in 0.025 and 0.01 levels where V aRu = Φ−1(u), because
the data generated from vt-S-vine models are normal distribution.

Step 5 : Compare the simulated time series in Step 2 with the VaR and count the
number of exceedances of different quantiles. Repeat the Step 2 and Step 4 for
1000 times and we will obtain 1000 exceedances..

Step 6 : Plot the density of the number of exceedances of quantiles and density func-
tion of beta-binomial distribution with computed parameters in every circum-
stance.

The steps above are fitting the beta-binomial distribution to the number of ex-
ceedances for the left tail in vt-S-vine with Gaussian copulas. The distribution of
exceedances for the left tail is exactly the same as right tail in Gaussian copula. Hence,
we only present the fitting process of left-tail exceedances in Gaussian copula. The ap-
proach used for vt-S-vine with survival Clayton copulas is very similar to the one with
Gaussian copulas. However, C(k)(u, u) in Equation 8.10 can not be calculated, since the
copula between Ut and Ut+k is unknown. The vt-S-vine with survival Clayton copulas
have different properties to Gaussian copulas, the copula for two variables that are not
adjacent may not be survival Clayton. Hence, we use the empirical variance instead.
The variance is calculated from the 1000 exceedances from Step 5. The other steps are
exactly the same as vt-S-vine with Gaussian copulas. The left tail and right tail of the
vt-S-vine with survival Clayton copulas are distinctive, so we study them separately.

The density plots of exceedances in the vt-S-vine with symmetric linear v-transform
and Gaussian copulas are shown in Figure 8.1. Figure 8.2 and Figure 8.3 exhibit the
density plots of exceedances in the left and right tail of vt-S-vine with symmetric linear v-
transform and survival Clayton copulas, respectively. The red line is the estimated beta-
binomial distributions, which are very close to the density of exceedances of simulations
from vt-S-vine in both figures. The exceedances in models with Gaussian copulas are
estimated more accurately by beta-binomial distribution, compared to survival Clayton
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p-values of KS test
α n Gaussian Clayton180 (left) Clayton180 (right)

0.975 250 0.9937 0.4324 0.1995
500 0.7591 0.0149 0.0225

0.99 250 0.8879 0.0112 0.0012
500 0.9883 0.0692 0.0869

Table 8.11: P-values of Kolmogorov-Smirnov test for exceedances of simulations from vt-S-
vine models with Gaussian and survival Clayton copulas. The "left" and "right" in bracket
means the left and right tail of vt-S-vine with survival Clayton copulas, respectively. The
null hypothesis of the test is that the exceedances and the data simulated from beta-binomial
distribution are drawn from the same continuous distribution.

copulas. The peak of the density in both left and right tail of vt-S-vine with survival
Clayton copulas are not modelled well by beta-binomial distribution.

In order to ensure the exceedances of vt-S-vines can be approximated by beta-
binomial distributions, the Kolmogorov-Smirnov test is applied to test the exceedances.
The p-values of the test for both vt-S-vine with Gaussian and survival Clayton copulas
are presented in Table 8.11.

According to Table 8.11, all the p-values in Gaussian copulas accord with the stan-
dard if we set the significance level to 0.01. Hence, there is very little evidence against
the null hypothesis in Gaussian copulas. The exceedances of vt-S-vine with Gaussian
copulas can be approximated by beta-binomial distributions at both 0.975 and 0.99
quantiles in both 250 and 500 sample size. However, the p-value of the right tail of
vt-S-vine with survival Clayton copulas in 250 sample size at 0.99 quantile is smaller
than 0.01. Thus, the beta-binomial distribution may not be suitable for the right tail
of vt-S-vine with survival Clayton copulas at 0.99 quantile in 250 sample size. Further-
more, the p-values of both tails in survival Clayton copulas are much smaller than the
ones of Gaussian copulas, which exemplifies that the beta-binomial distribution may
estimate the exceedances better in vt-S-vine with Gaussian copula sequences.

8.4 Conclusions

In this chapter, we investigated the application of vt-S-vine models in trading book of
bank. The first point we find is that the accuracy of empirical quantile estimates of VaR
decreases when the losses have serial dependence. Moreover, the six quantile estimate
methods yield exceedances closer to the true values 0.025 and 0.01 in the vt-S-vine with
Gaussian copulas than in the vt-S-vine with survival Clayton copulas. Meanwhile, the
empirical quantile estimates of VaR by the six approaches are worse for non-Gaussian
models, compared to the Gaussian models. Furthermore, we find the distributions do
not exert remarkably influence on the exceedance probabilities, while the methods of
estimating VaR affect the estimation of exceedances and VaR remarkably. Generally,
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,
(a) Sample size is 250.

,
(b) Sample size is 500.

Figure 8.1: The density plot of exceedances in vt-S-vine models with Gaussian copulas and
symmetric linear v-transform. The number of simulation in each experiment is 1000 and the
number of trail in beta-binomial distribution is equal to sample size, 250 or 500. The two
figures on the left are the ones at quantile 0.975. The two on the right are the ones at quantile
0.99. The black line is the density of exceedances in vt-S-vine simulations. The red line is the
beta-binomial distributions estimated by the method of moments.
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,
(a) Sample size is 250.

,
(b) Sample size is 500.

Figure 8.2: The density plot of exceedances in the left tail of vt-S-vine models with survival
Clayton copulas and symmetric linear v-transform. The number of simulation in each experi-
ment is 1000 and the number of trail in beta-binomial distribution is equal to sample size, 250
or 500. The two figures on the left are the ones at quantile 0.975. The two on the right are
the ones at quantile 0.99. The black line is the density of exceedances in vt-S-vine simulations.
The red line is the beta-binomial distributions estimated by the method of moments.
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,
(a) Sample size is 250.

,
(b) Sample size is 500.

Figure 8.3: The density plot of exceedances in the right tail of vt-S-vine models with survival
Clayton copulas and symmetric linear v-transform. The number of simulation in each experi-
ment is 1000 and the number of trail in beta-binomial distribution is equal to sample size, 250
or 500. The two figures on the left are the ones at quantile 0.975. The two on the right are
the ones at quantile 0.99. The black line is the density of exceedances in vt-S-vine simulations.
The red line is the beta-binomial distributions estimated by the method of moments.
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the third method yields the best exceedances estimation in both iid and vt-S-vine cases.
In most cases, method 3 overstates VaR, which means it is a conservative approach.

Another counterintuitive finding is that the quantile estimator is closest on average
to the true value of the quantile of a distribution may not be the one gives the most
accurate value for the exceedance probability. Since regulation is based on numbers of
exceedances and not closeness to the unknown true value of VaR, this gives an indicator
as to the method of empirical quantile estimation that banks should prefer.

The exceedances of vt-S-vine models are estimated by beta-binomial distributions.
It is surprising to find that the exceedances from vt-S-vine with Gaussian copulas can
be modelled so accurately by beta-binomial distributions. The exceedances of processes
with survival Clayton copulas can also be modelled by beta-binomial distributions, but
not for all quantiles and sample sizes. Moreover, the distribution of exceedances for
both left and right tail of the vt-S-vine with survival Clayton copulas have similar
densities, despite the asymmetry in survival Clayton copula. The fit of beta-binomial
distributions to exceedances in survival Clayton copulas is not as good as Gaussian
copulas, especially in the peak of the density.
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Summary and Conclusions

This thesis is devoted to the exploration of the properties and applications of S-vine
models and vt-S-vine models in macroeconomics, finance and banking regulation. There
are three topics in this thesis. The first one is modelling and predicting the inflation
rates by S-vine models. We found that the S-vine models with non-Gaussian cop-
ula sequences, marginal distributions and non-linear structures can outperform ARMA
models in most cases. Rotating Gumbel, Joe or Clayton copulas that can only describe
the positive dependence in time series can optimize the estimation and prediction results
of S-vine models. Besides, the simplification of S-vine can reduce the number of param-
eters and lead to smaller AIC values, which improve the S-vine models in estimations.
For prediction, the average quantile scores may not find the best models for forecasting
in the data with small sample size. Therefore, it is possible to attempt various weights
at different quantiles.

The second topic of this thesis is the vt-S-vine models applied to modelling and
predicting volatile time series. We use vt-S-vine models to mimic GARCH type pro-
cesses. Generally, the vt-S-vine processes with survival Clayton copula sequences obtain
the smallest AIC values among the candidate copulas in both parametric and semi-
parametric methods. Moreover, the vt-S-vine used in this thesis can compete with the
lower-order S-vine models with t copulas, which are proposed by Zhao et al. [2022]. The
higher-order vt-S-vine models with proper copula sequences has an advantage over the
lower-order S-vine models with t copulas in forecasting GARCH type processes. In the
empirical study of the second topic, the vt-S-vines can surpass GARCH or GJR-GARCH
processes in most cases. However, the EGARCH processes yield better estimation re-
sults than vt-S-vine sometimes, while the transformation of the marginal distributions
of the time series can reverse the results. This phenomenon implies that the better
marginal distribution may enhance the estimations of vt-S-vine models.

The last topic seeks to understand the distribution of quantile exceedances in volatile
data generated from vt-S-vines. This has an application to the "traffic light system"
used in the regulation of banks’ trading books. We found the best approach of quantile
estimation in vt-S-vine models in different cases according to VaR exceedances and VaR
estimations. Typically, the copula selection of vt-S-vine models exerts great influence
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on the VaR exceedances and estimations. However, we find the marginal distributions
do not exert remarkably influence on the exceedance probabilities. Moreover, a coun-
terintuitive finding is that the quantile estimator is closest on average to the true value
of the quantile of a distribution may not be the one that tends to give the most ac-
curate value for the exceedance probability. Since regulation is based on numbers of
exceedances and not closeness to the unknown true value of VaR, this gives an indicator
as to the method of empirical quantile estimation that banks should prefer.

In conclusion, S-vine and vt-S-vine models discussed in this thesis are flexible, ef-
ficient and competitive models for many kinds of macroeconomic and financial time
series. They can compete with and often surpass certain classical stochastic models,
such as the family of ARMA and GARCH processes. The vt-S-vines can even mimic
GARCH type processes to some extent. The estimation and prediction by using S-vines
or vt-S-vines may be improved by exploring more detailed marginal models and more
flexible pair copula choices. More advanced approaches of backtesting prediction results
from S-vine or vt-S-vine models will be developed in the further studies.
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