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Abstract

A kinetic theory has been developed within the framework of pre-

existing nucleation theory and applied, for the first time, to investi-

gate the one-step formation of amyloid fibrils. Atomistic Nucleation

Theory (ANT) for fibrils, in particular, has been successfully applied

to model real peptides and proteins, in order to investigate at the

molecular level the nucleation of amyloid fibrils from a homogeneous

solution. Kinetic parameters predicted by the theory, such as the

nucleation rates, have been compared successfully to the results of

experiments. The present theoretical study has shown that variations

in solubility are the primary origin of the changes in the nucleation

rates between a protein and its point-mutations. The same ANT ap-

proach allows the analysis of the fibril size distribution, whose results,

once again, are consistent with experimental observations. In the last

stage of the investigation, computer simulations have been carried out

to test selected assumptions underlying the theory. For the first time,

the nucleation of strongly anisotropic systems has been investigated

using kinetic Monte Carlo (KMC) simulations. Novel and unexpected

features, never discussed before in either experiments or simulations

studies, have been revealed by the simulations. Although obtained

within the study of amyloid fibrils nucleation, these last results are

of general validity, providing useful insight on the nucleation of all

systems whose molecules interact via strongly anisotropic forces.
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Chapter 1

Introduction

Proteins seem to have an intrinsic tendency to assemble into highly ordered fibril-

lar aggregates (28), known as amyloid fibrils. The self-assembly of proteins into

amyloid fibrils is an important phenomenon with wide implications ranging from

human disease to nanoscience. Amyloid fibril formation is in fact associated

with a significant number of neurological and systemic diseases (22) including

Alzheimer, Huntington and Parkinson’s diseases, and the application of amy-

loid fibrils as molecular building blocks in bio-sensors, tissue engineering and

antibacterial agents has been demonstrated (43). In addition, different studies

(e.g. Ref. (22; 36)) have identified living systems such as bacteria, fungi and

insects which exploit the extraordinary properties of amyloid fibers for functional

roles. Escherichia coli and Salmonella, for instance, employ amyloid fibers to cre-

ate a matrix that modulates surface adhesion to support their colony formation

(22; 36). Fungi use amyloid fibers to lower the water surface tension to enable

the spore formation (22). Moths and spiders exploit the strength of the fibers

to protects their egg shells and to build nest and webs (36). In mammals the

amyloid fiber is used as a template for the synthesis of melanin (11).

An essential point in the current understanding of amyloids is that dif-

ferent peptides and proteins, unrelated in sequence and structure, have been

shown to convert into amyloid fibrils (22). The main insight into the amy-

loid structures formed by proteins comes from structural biology experiments,

whose results have been confirmed and complemented by computer simulations

(4; 7; 65; 102; 109; 110; 124; 136; 145; 152) (see Section 1.2). Proteins self-

aggregate into these highly ordered fibrillar structures which may assume differ-

ent conformations depending on detailed amino-acid sequence, and on a variety
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of environmental factors that, however, are still largely unknown. Despite the va-

riety of conformations, fibrillar aggregates are classified as amyloids if they share

a common cross-β structure formed by intertwined layers of β-sheets as shown by

Fig. 1.1 from Ref. (69). Within each β-sheet the proteins or peptides (coloured

arrows in the picture) are in an extended conformation that allows them to form

a strong hydrogen bonding network (4; 65; 102; 109; 110; 111; 124; 136; 145; 152)

with neighbouring proteins or peptides. The successive layering of β-sheets

is caused by much weaker hydrophobicity-mediated interactions between the

proteins or peptides. In amyloid fibrils the β-sheets are aligned parallel to

the fibril elongation axis, and the proteins or peptides are perpendicular to it

(4; 109; 110; 111; 136).

Figure 1.1: Amyloid fibril structure obtained by cryo-electron microscopy with
a cross-β structure modelled into the electron density map based on the work of
J.L. Jimenez et al. (69). Each arrow in the picture represents a peptide. The
peptides are linked to their neighbours by hydrogen bonds to form a β-sheet that
stack on top of on other β-sheet. The interwining of the saked β-sheets give the
amyloid fibril.

It is now well established (4; 5; 31; 32; 33; 38; 40; 41; 54; 60; 61; 67; 98; 100;

101; 109; 110; 111; 128; 157; 163) that fibrillar protein aggregates form through a

nucleation mechanism. The amyloid fibril formation, in particular, is considered

a nucleation-mediated process because of the activated and reversible character

of the process itself as will be explained later in Section 1.2. Nucleation, in turn,

is a phenomenon characteristic of first order phase transitions. In the present

case, in particular, the phase transition connects a homogeneous solution of indi-

vidual peptides, with a population of fibrils solvated in water. The study of the

amyloid formation process, therefore, is a complex and multidisciplinary subject,

whose comprehensive description requires notions on the structure of peptides,

2



1.1 Nucleation Theory

proteins and fibres, on their mutual interactions in solution, together with theo-

retical concepts concerning nucleation theory as well as a working knowledge of

statistical mechanics, simulation, and computational methods. To set the stage

for the discussion that follows, I briefly introduce here the major ingredients that

I will use in the development of my investigations.

1.1 Nucleation Theory

Understanding phase transitions is extremely important not only for technology

and industrial applications, but also for the interpretation of a wide variety of

natural processes, whose detailed knowledge could open the way to their control

and exploitation. Nucleation is a fundamental aspect of every first order phase

transition, and nucleation theory gives an exhaustive theoretical description of

the transformation kinetics. Early versions of nucleation theory have been pri-

marily developed to model the formation of liquid droplets from a vapour phase.

Later versions covered the case of crystal nucleation from the liquid phase, or

the formation of an ordered ad-layer on top of a crystalline substrate.

The self-assembly of peptides and proteins into particular structures called

amyloid fibrils represents a transition from a fluid phase to a new phase charac-

terised by a substantial amount of ordering, and by negligible intra-fibril diffu-

sion. In many respects, the transition is the analogue of a fluid to solid phase

change, and experiments show that the transition is first order. For this reason,

in my thesis the formation of amyloid fibrils is investigated within the framework

of nucleation theory.

At equilibrium every system exhibits the phase at which its Gibbs free energy

is minimal, and, in such a case, the system is in a stable thermodynamic state.

The identity of the stable phase can change upon changing parameters such as

the system temperature and pressure, and, to maintain its equilibrium charac-

ter, the system undergoes a phase transition. There are different types of phase

transition, depending on the order of discontinuity that appears in some thermo-

dynamic variables. A first order phase transition is revealed by a discontinuity

in the first derivative of the free energy with respect to some thermodynamic

variable. Fig. 1.2 shows a plot of the van der Waals equation that provides a

good model to describe the gas-liquid phase transition ending in a critical point

at Tc.

3



1.1 Nucleation Theory

Figure 1.2: Volume dependence of the pressure for a van der Waals fluid.

As can be seen from the graph, the van der Waals (vdW) equation shows no

phase transition for T > Tc (magenta line) because the system is in a thermody-

namically and mechanically stable gas phase, while at T = Tc (red line) the liquid

and gas phase are indistinguishable from each other. At T < Tc (black line), the

liquid and vapour phases coexist, separated by an anomalous region correspond-

ing to a density discontinuity, pointing to a first order phase transition. The

vdW isotherm under Tc develops a loop, with regions that are thermodynami-

cally metastable, where nucleation processes take place (shaded regions in the

graph), and regions in which the system is mechanically and thermodynamically

unstable, where the phase separation occurs by spinodal decomposition (white

region in the graph). Since the part of the isotherm in the white region of the

graph is unstable and thus forbidden, the system must find some other way to

get from the right side of the graph to the left not following the vdW isotherm.

It does so by means of a discontinuity in the volume (or, equivalently, density)

following the straight black line given by the so called “Maxwell construction”;

in short, a first order phase transition is taking place (77).

As mentioned, the shaded region in the vdW graph identifies the portion of

the phase space in which the system is metastable, and the first order transition

occurs through nucleation and growth of the stable phase. During nucleation,

the system lowers its free energy and moves towards a stable state corresponding

4



1.1 Nucleation Theory

to the new liquid phase on the left side of the barrier in the graph 1.2, upon

crossing a free energy barrier schematically represented in Fig. 1.3

Figure 1.3: Free energy ∆G barrier for a spherical droplet of radius R.

The nucleation process can be understood qualitatively using the framework

of classical nucleation theory (CNT). For the sake of simplicity, I first consider

the case of a spherical liquid droplet nucleating in an otherwise homogeneous

vapour. It is worth remembering that for a transition to happen, the free energy

of the new phase must be lower than the free energy of the old phase. The

transition occurs through nucleation and growth whenever the two phases are

separated by a thermodynamic barrier. According to the classical nucleation

theory (CNT), the difference (∆G) between the free energies of the system in

the new (liquid) (G(R)) and old phase (gas) (G(1)) is given as a function of the

droplet radius by the two terms in Eq. 1.1:

∆G = G(R)−G(1) = −4

3
πR3ρl∆µ+ 4πR2σ, (1.1)

In Eq. 1.1, R is the radius of the formed droplet, ρl is the number density of the

liquid, ∆µ is the difference in the chemical potential between the gas phase and

the liquid phase, σ is the surface tension or the liquid-gas surface free energy

density. The free energy 4πR2σ required to create the liquid/gas interface of the

new cluster represents the obstacle that in the metastable region of the vdW

graph prevents the formation of droplets and it is given by the second term in

5



1.1 Nucleation Theory

Eq. 1.1 (surface term). The first term, known as a “volume” or bulk term,

accounts for the free energy advantage of the liquid phase with respect to the

vapour phase.

Fig. 1.3 shows ∆G as a function of the droplet radius R. From the figure the

competing effect of the two terms can be seen. For small R (small droplets) the

surface term dominates and the free energy increases with increasing R. Thus,

the gas phase will persist until thermal fluctuations pay the free energy cost

to reach the top of the barrier at the critical size Rc. Beyond that dimension,

the free energy decreases with increasing radius and the phase transition will

continue spontaneously, driven by a dominant volume/bulk term.

The first theoretical explanation of the vapour-liquid transition phase at equi-

librium was developed by Gibbs in the 19th century (44). The case of interest

here, however, is the nucleation of a solid-like phase out of a solution. This

problem is somewhat more difficult than the vapour-liquid nucleation, and for

this reason its theoretical analysis took longer to develop. In 1934 Stranski and

Kaischew wrote the first papers (73; 74; 75; 134; 135) referring to a classical

nucleation theory (CNT) of crystals and crystal monolayers. A comprehensive

description of the nucleation process including the kinetics aspects was given one

year later by Becker and Döring (10) based on the experiments of Volmer, Weber

and Farkas (29; 150). Since that time, the CNT for crystal nucleation has been

corrected and modified. Good reviews of the evolution of the theory through the

years can be found in different exhaustive texts (77; 125). The model used by

Stranski and Kaishew to investigate the crystal nucleation is the Kossel crystal

that has a one to one correspondence with the Ising model of ferromagnets (64).

The Kossel crystal is a fairly basic model that allows to measure important in-

formation into the crystallisation of the nucleation of different systems (141) by

means of theoretical studies and simulations.

A wide range of experiments have been able to investigate the nucleation

phenomena in different fields giving an estimation of parameters including the

nucleation rate J (number of clusters per unit time and volume). The range

of the experimentally predicted nucleation rate spans more than 20 orders of

magnitude (from 10−3 to 1020 s−1/cm3), depending on the technique used to

measure it (153).

Unfortunately, theoretical predictions of J by CNT do not agree with experi-

mental results except in some rare case (56; 59; 159; 162). For example the CNT
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1.1 Nucleation Theory

predictions for the nucleation rate of argon deviates from experimental data by

16 to 26 order of magnitude while for nitrogen the discrepancy ranges from 10

to 20 order of magnitude (153) depending on temperature. This disagreement

is surprising, considering that a substance such as argon behaves almost ideally.

The deviations of the CNT from the experimental results can be associated with

the fact that this theory is “classical” and neither quantum mechanical correc-

tions nor the atomistic structure of the nucleus have been taken into account.

However, it is still apparent that CNT can qualitatively explain the process.

Furthermore, in crystal nucleation the enormous discrepancy between CNT, nu-

merical and experimental results for both 2D and 3D Kossel crystal nucleation

motivated Walton to put forward in 1962 an atomistic nucleation theory (ANT)

which represents the process of crystal nucleation in terms of microscopic or

atomistic parameters (151). The important difference between CNT and ANT

is in the shape that the cluster assumes during its evolution. While CNT allows

only the same equilibrium shape of the nucleus independently of the size of the

cluster, ANT takes into account all of the possible irregular shapes and considers

the lowest in surface energy. The ANT theory has been further developed by

Shneidman and Nita (130; 131; 132; 133).

With the advent of the computer the nucleation process has been increasingly

investigated by computational approaches and simulation results have been com-

pared with experimental findings and theoretical predictions (45; 82; 147; 154).

There have been numerous examples of computer simulations of nucleation using

both the Monte Carlo (MC) and Molecular Dynamics (MD) technique. The MC

technique is a stochastic method capable of giving a description of the nucleation

process at equilibrium, while MD is more suitable to obtain information about

the dynamics of the process (37). However, already in the early stages of com-

puter simulation, the MC method has been generalised to the so-called kinetic

Monte Carlo technique, which can give information on relaxation processes and

on the real-time evolution of nucleating clusters (13).

Simulations of nucleation processes can be extremely time-consuming be-

cause nucleation is a rare event and a realistic description might require a large

simulation sample. The Kossel crystal nucleation for example, has been exten-

sively investigated by Monte Carlo simulations that continue to be carried out

nowadays (15; 16; 70; 71; 94; 119; 129; 140; 141; 156) because they are usually

less time-consuming than the respective molecular dynamic simulations. Back
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1.1 Nucleation Theory

in 1970 Gilmer and Bennema studied by MC simulations the 2D Kossel crystal

nucleation and growth on a substrate with and without surface diffusion showing

that their simulation results are independent of the amount of surface diffusion

(45). In 1977 Van der Erden et al. studied the migration of crystallites with

a MC technique that introduces time as a continuous parameter (146) while

Kashchiev et al. investigated the thin film deposition on a Kossel crystal face

as a substrate (82). Additional early examples of simulation studies of nucle-

ation include those by Swope and Anderson, who have studied the formation

of crystals from a Lennard-Jones fluid in 1990 (137). In 1998 ten Wolde and

Frenkel carried out extensive MC simulations of the condensation of a Lennard-

Jones fluid (139), and shortly afterwards Yasuoka and Matsumoto employed MD

simulations to study the same system (158). Since then, a variety of computer

experiments have been performed to study homogeneous/heterogeneous nucle-

ation and crystal growth of 2D and 3D Kossel crystal with kinetic Monte Carlo.

Recent works from ter Horst and from Kashchiev et al. calculated the rate and

growth probability of isotropic 2D and 3D Kossel crystals, showing that the rate

prediction from CNT overestimates the simulation results while ANT is closer to

the simulation and experimental results (140; 141; 142). The correction to the

classical nucleation theory (CCNT) takes into account the above overestimation

and allows for a reliable analytical estimation of the nucleation rate that is closer

to the ANT predictions and to simulation results (80).

It is worth pointing out that, almost without exceptions, all these studies

considered the simplest case of nucleating solids, in which the system was made

of cubic-like particles. Anisotropic cases have received only little attention so far.

Moreover, the few available papers on anisotropic systems (5; 27; 57; 68; 120; 121)

have been restricted to the study of phase diagrams or geometrical aspects of the

self-assembly. My work, instead, is specifically devoted to the study of highly

anisotropic systems, such as amyloid fibrils, and to the study of the effect of the

anysotropic interactions on the nucleation kinetics, never approached before in

terms of nucleation theory.

Understanding the nucleation process is a fundamental topic with application

in many fields. The brief introduction given above concerned homogeneous phase

transitions, but in nature the heterogenous nucleation is the most common pro-

cess. To study the kinetics of a first order transition, therefore, it is important

to distinguish if it happens under heterogeneous or homogeneous conditions. In
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1.2 Amyloid fibrils

heterogenous nucleation the phase transition occurs in the presence of alien sur-

faces or particles present in the old phase. Water, for example, would freeze well

below the well known freezing point in the absence of particles that are acting

as nucleation centres in the solution. In heterogeneous nucleation the transition

process could be triggered or prevented by the external body. Despite the fact

that in experiments and in nature most of the transition phases are heteroge-

neous, a complete understanding of the homogeneous nucleation is a necessary

pre-requisite to obtain a full description of the nucleation process. The amyloid

fibril formation from a solution of proteins or peptides is an example of a nucle-

ation mediated process. The aim of this study is to apply nucleation theory to

describe the homogeneous amyloid fibril nucleation.

1.2 Amyloid fibrils

According to basic principles of statistical mechanics and thermodynamics, and

consistently with many experimental and computational works (1; 12; 54; 66; 76;

108; 113), amyloid fibrils start to form out of the homogeneous solution when-

ever the peptide or protein concentration raises above an equilibrium value Ce,

measuring their solubility limit for any given thermodynamic condition. The

equilibrium concentration for the fibril condensation is usually measured exper-

imentally by determining when the fibril formation and the fibril dissolution

rates are equal (1; 54; 66; 108). Measurements are carried out using the turbid-

ity method, and sometimes the fibril phase is heated to speed up the formation

and solvation kinetics (1; 54; 66). Even above Ce, i.e., in the stability range of

amyloids, fibrils may not form instantaneously, since the process is usually con-

trolled by important kinetic effects limiting the nucleation process. According

to the elementary picture of nucleation, schematically illustrated in Fig. 1.3,

the homogeneous solution and the fibrillar state are separated by a free energy

barrier (∆G(R) in Fig. 1.3), that is determined by the competition between the

free energy advantage of the condensed fibril phase, and the free energy cost of

forming an interface between the two phases. Only at peptide concentrations far

above Ce, the activation barrier for the fibril’s formation vanishes, and the phase

change occurs instantaneously through spinodal decomposition, driven by the

large free energy advantage of fibrils with respect to the homogeneous peptide

solution. These considerations set the stage for the essential role of kinetics and
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1.2 Amyloid fibrils

of the nucleation stage in the formation of amyloid fibrils, which is in fact the

central topic of my thesis.

According to the nucleated-polymerisation model (54; 66) the fibril formation

occurs via the random aggregation of monomers into small clusters that are

thermodynamically unstable because of the barrier. The process proceeds slowly

through its initial stages (nucleation stage in Fig. 1.4) since it is driven only by

thermodynamic fluctuations. However if a cluster reaches the size corresponding

to the top of the barrier in Fig. (1.3), it becomes a critical nucleus and it has

a 50% probability of growing into a mature fibrils. At this stage the process is

relatively fast (elongation stage in Fig. 1.4) because the attachment of further

monomers to the cluster is thermodynamically favourable, i.e. there is no barrier

(right side of Fig.1.3).

Figure 1.4: Schematic representation of the amyloid fibril nucleation process as
revealed by fluorescence signal. By convention the maximal nucleation rate, ka,
is the slope of the tangent in the picture and the lag time, τl, is the intersection
of the tangent line with the time axis.

Kinetic information about the amyloid fibril nucleation can be obtained from

studies of the overall process of protein aggregation that is characterised by an

initial lag time τl during which no protein aggregates can be detected (slow pro-

cess) and by a maximum rate, ka, of the protein conversion into aggregates (quick

process) (6; 24; 28; 33; 34; 51; 58; 61; 62; 87; 90; 92; 112; 116; 122; 157; 164).
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1.2 Amyloid fibrils

Both the aggregation lag-time and the maximum rate may depend on the overall

fibril nucleation rate and are obtainable from time-resolved optical experiments

such as those that measure the fluorescence signal arising from dye molecules

bound to protein aggregates (Fig. 1.4). Dye molecules suitable for these mea-

surements include the Congo red and thioflavin, which bind to mature fibrils,

giving their typical fluorescence signal, the intensity of which is proportional to

the amount of amyloid fibrils in the sample. As shown in the schematic picture

of Fig. 1.4, by convention the maximal rate of aggregation, ka, is defined as the

slope of the maximal tangent to the curve, while the τl is the intersection of the

tangent to the time axis.

High resolution structural details can be revealed by X-ray crystallography,

solid state nuclear magnetic resonance (SSNMR), cryo-electron microscopy (cry-

oEM) and circular dichroism (22; 97; 136). A variety of fibrillar morphologies

have been observed, with diameters of 7 - 15 nm and a wide range of lengths,

which can reach several µm or even more. As mentioned previously, the amy-

loid fibril is a fibrillar structure whose core has the typical diffraction pattern of

cross-β structure (see Fig. 1.5) that shows a distance between the proteins or

peptides in the β-sheet of ∼ 4.7 Å and a distance between two different sheets

of ∼ 6 - 11 Å.

Figure 1.5: Structure of Amyloid fibrils from (50). A) Mature Amyloid fibrils
from negatively stained transmission electron microscopy. B) Schematic diagram
of the β-cross structure and C) typical cross-beta diffraction pattern (12).

However there are different configurations and architectures that these units

can assume into the amyloid fibril. Due to the lack of long range order, X-

ray diffraction alone is unable to provide an atom-by-atom view of amyloids’
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1.2 Amyloid fibrils

structure. For these reasons, atomistic-scale models play an invaluable role in

understanding the chemical principles of the amyloid structure (22). The picture

in Fig. 1.1, for example, is a model based on a cryo-electron microscopy map

representing the amyloid fibril formed by SH3 polypeptide chains (69). From

these models, it has been found that the cohesive portion of the fibril does not

involve the entire protein, but it is made of only some amino-acidic sequences

giving rise to the β-sheet in the fibril (22; 107). Furthermore, within each β-sheet

two or more extended protein or peptide segments can be found in a parallel or

antiparallel (Fig. 1.6a) arrangement, in such a way that the carbonyl group of one

fragment is linked by hydrogen bonds to the complementary group of the other

peptide. The parallel or antiparallel arrangement can be in-register or out-of-

register if the amino-acids of the first peptide are paired to the respective amino-

acids of the adjacent identical peptide. The majority of amyloids studied appear

to be in a parallel in-register arrangement (22; 144), even though some parallel

out-of-register and some antiparallel arrangements are also observed (22; 107).

The β-sheet can then stack on each other in different final conformations, a few

of them being shown in the picture.

It is known that a polypeptide chain can assume a multitude of conforma-

tional states and in solutions it converts from one state to another one. Fig. 1.7

illustrates a “hypothetical” conformational pathway starting from the biosyn-

thesis of the protein on a ribosome, from which the protein is initially unfolded.

From this starting point, the protein can fold and unfold through different inter-

mediate conformational states or oligomers (clusters of a small numbers of pro-

tein or peptide molecules without a fibrillar structure) and eventually it might

“misfold”, giving rise to amyloid fibrils. The study of the intermediate states are

becoming more intriguing since it has been found that the oligomeric states are

toxic and they play a critical role in the pathologies related to amyloids (22).

Experiments (24; 28; 51; 58; 62; 87; 92; 112; 116; 122; 157; 164) have been

performed to reveal the relationship between the physicochemical properties of

the natural amino acids forming the peptide and the kinetics of amyloid forma-

tion and to validate phenomenological models (23; 30; 138; 144; 161) able to

predict the changes in the propensity of proteins to aggregate upon mutation

as well as to identify amino acid sequences of proteins that are likely to belong

to the fibril core. Among these phenomenological models, PASTA (144) is a

representative example of a numerical tool that can predict the regions in the
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1.2 Amyloid fibrils

Figure 1.6: Most common peptide patterns in amyloid fibrils from Ref. (14)
The arrows represent peptides. (A) Peptides in antiparallel arrangement and in
parallel in-register, in the β-solenoid structure where a single monomers forms
two layers of the fiber structure. (B) Conformational diversity of fibers according
to several models of Aβ fiber structures based on SSNMR, and CryoEM ((14)).
(C) Types of β-solenoids, Two types of solenoid include β-helix (top) (3β-sheet
form a triangular interface) and β-roll, where the two sheets form an in interface
akin to the β-sandwich.

peptide chain that are more likely to be part of the cross-β structure of the amy-

loid fibril. Furthermore, this approach can predict if the peptide in the β-sheet

is in a parallel or antiparallel, in-register or out-of-register arrangement. The

calibration of PASTA is based on the frequency at which a given amino-acid pair

is found in globular proteins, as reported in standard data bases. A reference

PASTA implementation is hosted on a freely accessible server that scans a given

sequence and returns the pairing energies for all the likely combinations.

Also, the statistical mechanics algorithm Tango (30) predicts the β-sheet

aggregation propensity for any given amino-acid sequence. In particular, it esti-

mates the pairing free energy using statistical and empirical considerations, tak-

ing into account hydrophobicity, electrostatic interactions and hydrogen bonding

between the two amino-acids being considered, as well as physiological conditions

such as pH, buffer and concentration of the initial protein solution. It was the

first algorithm to predict the effect of a given protein mutation on the aggregation

properties.

To gain further insight into the nucleation mechanism and to determine im-
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1.2 Amyloid fibrils

Figure 1.7: Diagram of different conformational states that can be assumed by a
polypeptide chains, eventually ending into an amyloid fiber conformation. The
scheme has been taken from Ref. (22).

portant nucleation parameters such as the fibril nucleus size and nucleation rate,

small-angle X-ray scattering (114; 149) and fluorescence correlation spectroscopy

experiments (23; 24; 28; 30; 41; 42; 51; 58; 62; 87; 92; 112; 114; 116; 122; 138;

144; 149; 161; 163; 164) have been used to monitor the fibril population den-

sity and to identify changes in the size and structure of protein aggregates in
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1.2 Amyloid fibrils

solution. In particular Garai et al. (41) have carried out experiments using flu-

orescence correlation spectroscopy (FCS) (97) to estimates the size distribution

of a solution of amyloidβ peptides nucleating into amyloid fibrils. From the size

distribution of the aggregates they were able to provide an estimation of the

surface energy of the peptide and of the barrier for the nucleation process using

the framework of the CNT.

Despite the many experimental and computational studies briefly reviewed

previously, and despite the fundamental role of the amyloid formation process,

it is fair to say that the nucleation of nanofibrils is still poorly understood. The

reason is that experiments characterising the early stages leading to the forma-

tion of these aggregates are difficult mainly because of the transient nature and

structural heterogeneity of the amyloid precursors. Furthermore the complex-

ity and size of the protein systems has made it difficult to simulate the fibril

nucleation events.

To understand and interpret experiments on the early stages of amyloid fibril

formation it is necessary to develop a theoretical model of fibril nucleation. Mod-

els based on protein physico-chemical properties have been proposed and used

for predicting changes in the aggregation propensities (20; 23; 30; 138; 144; 161).

Although such models have been able to correctly predict changes due to mu-

tation, as well as to identify protein sequences that are likely to be part of the

amyloid fibril core, they do not provide information about the fibril nucleation

barrier and rate. Models at the molecular level have been put forward for de-

scribing amyloid fibrillation (90; 101; 157; 163) but they do not fully exploit

existing general theories of nucleation for treating the fibril nucleation process.

Zhang et al. (163), for instance, performed a series of MC simulations to

study the growth and the kinetics of amyloid fibril formation from a solution.

Using a coarse grained lattice model, important information such as lag-time, fib-

ril mass and morphology, critical concentrations depending on temperature and

molecular interactions have been obtained. Lomakin et al. (101) have studied

the fibrillogenesis of amyloidβ protein using quasi-elastic light scattering spec-

troscopy and they have examined the structure of the amyloid fibrils with circular

dichroism spectroscopy and electron spectroscopy. Their esperimental findings

are consistent with a model for the fibrillogenesis where the peptide micelles

form above a critical concentration, the fibrils nucleate on heterogeneous nuclei

or micelle and then grow by binding monomers to its end.
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1.3 Aim and results of this thesis

In summary, there are a multitude of theoretical, experimental and simulation

studies on amyloid fibril formation, but up to now none of them have fully

exploited the pre-existing atomistic nucleation theory.

A topical question, in the field of amyloid fibril self-assembly, is whether

the amyloid fibrils nucleate in one-step, where the unfolded monomeric pro-

tein/peptide in solutions polymerises directly into fibrils, or they follow a two-

step path, where metastable oligomers first appear in solution (like droplet con-

densation in supersaturated vapour) which convert into fibrils at a later stage

(reordering step). Two step nucleation has been observed in many peptide and

protein amyloid systems (8; 9; 39; 58).

This thesis is specifically devoted to the one-step nucleation case, and assumes

that before fibrillation the building blocks (peptides or proteins) are already

in the unfolded state most suitable for forming amyloid fibrils. The analysis

will reveal the general principles underlying the nucleation kinetics of amyloid

fibrillation, showing that amyloid fibril formation can be treated in the framework

of existing general theories of nucleation of new phases.

1.3 Aim and results of this thesis

The task initially set for my work has been to develop and apply a nucleation the-

ory able to describe at the molecular level the one-step homogeneous nucleation

of amyloid fibrils from monomers.

For the first time, the atomistic nucleation theory (ANT) has been adapted

and applied to study the assembly of proteins into amyloid fibrils, providing

important results that open the way to further developments and applications.

My work has been carried out within the framework of pre-existing nucleation

theories. As a result of my investigations, the kinetic and thermodynamics of

the fibril formation have been predicted and compared with experimental results,

giving confidence to the validity of the theory.

In particular, the ANT prediction of the nucleation rate of fibrils has been

applied to real protein models, adopting parameters for the amino acid-amino

acid interaction proposed in recent theoretical works. Using this approach, the

study of the effect of point-mutations lead to the important conclusion that the

solubility is primarily responsible for the changes in the nucleation rate. The

theoretical curves are in very good agreement with the experimental results,
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despite of the fairly idealised character of the model. The study has shown

that the theory is a powerful tool, not only because it allows for theoretically

understanding of the qualitative features of amyloid fibril nucleation, but also

because it provides semi-quantitative data to support experiments. The analysis,

in fact, is able to reproduce the effect of mutations, and to identify the physical

conditions that can trigger, slow down, accelerate or prevent the amyloid fibril

nucleation. For these reasons the theory can have a strong impact in the research

field devoted to the analysis of amyloid fibrils formation.

Additionally, the application of ANT to fibril nucleation allowed the estima-

tion of the size distribution of the aggregates. This time a direct comparison

of the analytical calculation with experimental results has been impossible for

lack of experimental data measured at conditions comparable to those used in

my calculations. However, qualitative features in the size distribution, such as

the presence of special (“magic”) sizes, are apparent both in the analytical re-

sults and in the experimental data, providing indirect support for the validity

of my results. Hopefully, this study will stimulate new experiments at the right

physical conditions able to confirm directly the predicted size distribution, and

to provide further insight on the important estimation of the fibril sizes.

Finally a computer simulation study has been carried out to test selected

theoretical assumptions used in the development of the theory discussed in the

first five chapters. My results for isotropic systems are in excellent agreements

with previous simulation and theoretical study, thus validating my implemen-

tation of a kinetic Monte Carlo (KMC) simulation. More importantly, for the

first time, the nucleation of strongly anisotropic systems has been investigated

using kinetic Monte Carlo simulations. This study revealed novel and surprising

results, never obtained previously in either experiments or simulations studies.

Because of the universal character of the model, the results can give important

information about any nucleating system whose building blocks interact among

themselves with strong anisotropic forces.

1.4 Thesis structure

The thesis is organised as follow:

In chapter 2 the classical nucleation theory (CNT) and a model for amy-

loid fibril nucleation will be given. I will show how the fibrillation process can
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be qualitatively described by CNT and how a corrected version of the classical

nucleation theory (CCNT) can provide more accurate parameters for this pro-

cess. Furthermore a theory-independent estimation of the fibril dimension will

be given.

Chapter 3 discusses the nucleation of amyloid fibrils at the molecular level.

The atomistic nucleation theory (ANT), specifically developed for amyloid fibril,

will be applied to an idealised peptide system and compared with CNT and

CCNT.

ANT for amyloid fibrils will be applied to a real protein model in chapter 4.

The application of ANT to the proteins β2-microglobuline and Amyloid β fibrils

will allow for the predictions of recent kinetic experiments.

In chapter 5, ANT is applied to the nucleation of Aβ40 fibrils, aiming at

estimating the size of the aggregates under particular physical conditions that

are consistent with experimental results.

Chapter 6 presents the results of a computer code that simulates the 2D

crystal nucleation with a kinetic Monte Carlo (KMC) method. The idealised

character of the model allows the application of the simulation results to highly

anisotropic systems, such as amyloid fibrils, and to isotropic Kossel crystal.
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Chapter 2

Classical theory of amyloid fibril

nucleation1

In a recent article (81), the classical nucleation theory (CNT) (77; 84) and the

corrected CNT (CCNT) (80) were applied for describing the amyloid fibril nucle-

ation thermodynamics and kinetics when the process occurs by direct polymeri-

sation of β-strands (peptides or protein segments) into β-sheets. This mechanism

is operative when no fibril precursor such as droplet-like protein aggregates ap-

pears in the solution as a first step in the nucleation process. In this chapter

the application of CNT and CCNT for describing the nucleation of amyloid fib-

ril will be discussed. In particular the work to form a nanosized amyloid fibril

(protofilament) built up of successively layered β-sheets, the size of the fibril

nucleus, the nucleation work and the fibril nucleation rate as explicit functions

of the concentration and temperature of the protein solution will be determined.

The analysis reveals that application of existing nucleation theories can qualita-

tively describe the amyloid fibril formation and that the CCNT is more reliable

in the prediction of the rate of fibril formation than CNT. The results discussed

in this chapter concern homogeneous nucleation, which occurs when the solution

is sufficiently pure and/or strongly supersaturated.

2.1 Introduction

Here some important general nucleation theory formulae will be introduced. All

the formulae presented here are valid in the scope of the Szilard-Farkas model

1This chapter is based on Refs. (81) and (18).
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(29) of single-component nucleation according to which each n-sized cluster of

the new phase has only one shape and it can change its size by attachment or

detachment solely of monomers (single atoms or molecules). Since the theory

is being applied to the nucleation of amyloid fibrils, the monomer here are the

β-strands, i.e. the peptides or protein segment.

At a given absolute temperature T (K) there exists an equilibrium concentra-

tion Ce (m−3) of β-strands at which the fibril neither grows nor dissolves. At

this condition the fibril nucleation cannot occur and the solution is saturated.

When the actual concentration of β-strands C1 (m−3) is higher than Ce, fibrils

can nucleate and grow to macroscopic sizes, the system is then metastable and

the solution is supersaturated. When the actual concentration C1 is lower than

Ce the solution is in a stable state and the nucleation is impossible. In the

nucleation theory the fundamental quantity which takes into account the impor-

tant role of the equilibrium concentration or solubility is the supersaturation ∆µ

(Joules) and these two quantities are related by the formula:

∆µ(C1) = kBT ln(C1/Ce), (2.1)

where kB is the Boltzmann constant. The supersaturation ∆µ is the driving

force of the nucleation and its definition contains the difference between the

chemical potentials of the β-strands in the solution and in the bulk fibrillar

phase as it will be discussed below (77).

The general expression for the work Wn (Joules) to form an n-sized amyloid

fibril (n is the number of β-strands building the fibril) is of the form:

Wn = −(µs − µf )n+ Φn, (2.2)

where µs (Joules) and µf (Joules) are the chemical potentials of a β-strand

in the solution and in the macroscopically large fibrillar phase respectively, while

Φn (Joules) is the fibril excess energy. Physically the first term is the work gained

by the system on forming the fibrillar phase while the second term is the work

done on creating the fibril/solution interface.

According to the amyloid nucleation process, an n-sized fibril would eventu-

ally nucleate in a supersaturated solution by random attachment and detachment

of single β-strands to and from smaller fibrils. The size n of the fibril would fluctu-

ate with time until it does grows sufficiently beyond the size n = n∗ of a so-called
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critical nucleus or fibril nucleus. At n = n∗ the work assumes its maximum value

and for that reason a fibril nucleus is in labile thermodynamic equilibrium with

the remaining β-strands in the solution. The n-sized fibril can grow deterministi-

cally up to macroscopic size, only if it is sufficiently bigger than the fibril nucleus.

Once n∗ has been determined, the work to form the fibril nucleus or nucleation

work W ∗ ≡ Wn∗ can be obtained and it is of particular interest because beyond

this barrier the fibril would evolve spontaneously into super-nucleus fibrils.

The smallest supernucleus fibrils appear then as a result of random attach-

ments of protein monomers to the fibril nuclei. The nucleation rate J (m−3s−1)

is defined as the frequency of appearance of supernucleus fibrils per unit solu-

tion volume. The general expression for the stationary, i.e. time-independent,

nucleation rate J is of the form (e.g., refs. (77; 84))

J = zf ∗C∗. (2.3)

In amyloid fibril nucleation, C∗ ≡ C(n∗) (m−3) is the concentration of fibril

nuclei in the solution, and f ∗ ≡ f(n∗) (s−1) is the frequency of attachment of

β-strand monomers to the fibril nucleus. The numerical parameter z ≤ 1 is the

so-called Zeldovich factor which takes into account that C∗ is roughly twice the

stationary concentration of nuclei and that not every attachment event results

in overgrowth of the nucleus to a macroscopic size. The concentration of n-sized

fibrils in the solution can be written as a function of the work necessary to form

an n-sized cluster:

C(n) = C1 exp[(W1 −Wn)/kBT ]. (2.4)

In the latter equation C1 ≡ C(1) (m−3) is the actual concentration of single β-

strands in the solution, W1 ≡ W (1) and Wn ≡ W (n) are, respectively, the work

to form a β-strand, which is formally considered as the smallest representative

of the nucleating phase, and the work to form an n-sized fibril. Combining Eqs.

(2.4) and (2.3) gives the formula :

J = zf ∗C1 exp[(W1 −Wn∗)/kBT ]. (2.5)

The quantities given in this section are thermodynamically derived and can

be analytically calculated having a detailed knowledge of the work W (n) to

form the n-sized fibril. Furthermore all the fundamental formulae above can be
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applied in the CNT description which provides a clear mathematical explanation

of the fibril nucleation process, but, as it has been shown in Ref. (80), this

classical theory disregards the work done to attach the first β-strand at the

periphery of the CNT fibril nucleus. In order to cure this important inaccuracy

the corrected CNT (CCNT) will be applied. While the fibril nucleus size in

CCNT is just one β-strand bigger than the one predicted from the classical

theory, CNT indeed underestimates considerably the nucleation work and, as a

consequence overestimates by many order of magnitude the fibril nucleation rate

(81). In this chapter both of these theories will be applied to the assembling

of β-strands into fibrils and the main features and differences of the CNT and

CCNT approaches will be highlighted.

2.2 Physical model

Figure 2.1: Classical model of a nanosized amyoid fibril with thickness of i = 2
β-sheets and length of m = 10 β-strands. The σ’s are the specific surface energies
of the three fibril faces, and the a’s are the areas of the three peptide faces.

For describing the arrangement of the virtually fully extended β-strands in

a nanosized amyloid fibril of successively layered β-sheets (Fig. 2.1) (77), a lat-

tice model which parallels those of Nguyen and Hall (Fig. 8 in Ref. (111)) and

of Zhang and Mutukumar (163) has been used. The considerations here per-

tain to nanosized amyloid fibrils (protofilaments) built up of successively layered

β-sheets with fixed width and thickness. Fig. 2.1 schematises such a fibril con-

taining i such β-sheets (i ≥ 1), each β-sheets having m practically fully extended

rod-like β-strands (m ≥ 1) arranged parallel to each other and perpendicular to
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the fibril lengthening axis. The fibril is therefore always prismatically shaped

and contains a total of n = i ×m β-strands (n ≥ 1). The areas occupied by a

β-strand at the fibril faces perpendicular to the m and i axes are a (m2) and ah

(m2) respectively, and the area occupied by the β-strand in the (m, i)-plane is

a0 (m2) (Fig. 2.1). These areas are given by a0 = dhd, a = d0d, and ah = d0dh,

where dh (m) is the distance between the β-strands in a β-sheet, d (m) is the in-

tersheet distance in the fibril, and d0 (m) is the β-strand length, i.e. the β-sheet

width.

The ontogenesis of the smallest (nanosized) amyloid fibrils in the (m, i)-plane

can be described by 2D crystal nucleation and growth theories. Essential pa-

rameters in these theories are the specific surface energies of the different crystal

faces. As shown by Kashchiev and Auer (81), in amyloid fibril nucleation two of

the three fibril specific surface energies (Fig. 2.1) are of immediate importance:

the first one is the specific surface energy σ (J/m2) of the fibril face perpendicular

to the m axis, and the second one is the specific surface energy σh (J/m2) of the

fibril face perpendicular to the i axis. The third fibril specific surface energy, σ0

(J/m2), characterises the fibril face parallel to the (m, i) plane and enters in the

description of the fibril energetics only implicitly via the supersaturation (81).

To a first approximation, the surface energy is proportional to the energy

of the broken bonds at the respective surface (73; 74; 134) and, for that rea-

son, σ and σh are largely determined by the strength of the bonds between the

neighbouring β-strands in the fibril. The fibril elongation is primarily driven

by the formation of strong hydrogen bonds between the β-strands along the m

axis, while the fibril thickening along the i axis is due to the much weaker bonds

between the β-strands arising, e.g., from the hydrophobic effect. This allows

to write for amyloid fibrils the important inequality σ � σh. For example, it

could be σh = σ/10 or σh = σ/20 for fibrils with bond energy (per β-strand)

between two nearest-neighbours β-sheets that is about 10 or 20 times lower than

the hydrogen bond energy between nearest-neighbour β-strands in a β-sheet. In

this chapter, in particular, the analytical calculations and results for the nucle-

ation of fibrils characterised by a = ah and a ratio of the specific surface energies

σ/σh = 10 will be presented.
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2.3 Fibril evolution mechanism

2.3 Fibril evolution mechanism

Within CNT all the parameters such as fibril-formation work, nucleus size, nucle-

ation work and nucleation rate can be calculated by analytical formulae that will

be presented through this chapter. However it is important to spend some time

discussing how the fibril evolves and eventually grows according to the CNT de-

scription. A fundamental requirement is that the fibril preserves the equilibrium

shape given by the thermodynamic condition of minimal total surface energy

and thus of minimal formation work. In CNT the fibril excess energy Φi,m is

expressed as the fibril total surface energy (77),(84) so that, according to the

present model, the work to form an n or i,m-sized fibril can be written from Eq.

(2.2) as:

Wi,m = −(µs − µf )im+ 2a0σ0im+ 2aσi+ 2ahσhm, (2.6)

or

Wi,m = −im∆µ+ 2aσi+ 2ahσhm (2.7)

where ∆µ ≡ µs−µf−2a0σ0 is defined as the effective supersaturation specifically

for the present 2D model. From the condition for extremum of Wi,m from Eq.

(2.7), ∂Wi,m/∂i = ∂Wi,m/∂m = 0, with i and m treated as continuous variables,

it is found that the thickness i and the length m of an equilibrium shaped fibril

are not independent of each other but are related by :

m

i
=

σ

σh

. (2.8)

This important relation is a form of the Gibbs-Curie-Wulff theorem for the equi-

librium shape of a crystal (55; 143) as found by Kaischew for rectangularly

shaped 2D crystals (72). For the present specific model the ratio in Eq. (2.8) is

equal to 10.

With the help of Eqs. (2.2) and (2.8) the evolution of the fibril can be

modelled bearing in mind that its shape is always prismatic, so that m and i are

not necessarily integers. Furthermore, the equation for the work (Eq. (2.2)) is not

valid for n < m/i because, according to Eq. (2.8) and the relation n = i ×m,

a fibril would have the physically meaningless thickness of i < 1. This leads

to the conclusion that the fibrils start growing as single β-sheet. The first β-

sheet cannot grow unlimitedly as one-dimensional (1D) formation, because its

total surface energy may be higher than that of a fibril with the same number
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2.4 Work of fibril formation

of β-strands arranged in 2β-sheets. Specifically, the fibril would evolve into a

2D formation of 2β-sheets once the size n has reached the transition size nt =

m/i = 10. The same mechanism can be extended to describe the further fibril

evolution. According to the thermodynamic requirement of minimal surface

energy, from n = nt to n = 22nt the CNT equilibrium shape requires a fibril

thickness between one and two β-sheets, while from n > 22nt = 40 to n =

32nt = 90 a fibril thickness between two and three β-sheets is required, and finally

between size n > 32nt = 90 and n = 42nt = 160 a fibril thickness between three

and four β-sheets guarantees the CNT equilibrium shape. The fibril evolution

would follow the CNT equilibrium shape requirement up to the desired size as

explained above, presenting always a geometrically prismatic shape and having

at n = nt, 2
2nt, 3

2nt, 4
2nt the transition to the second, third, forth and fifth β-

sheet respectively. It is important to notice that the differently sized fibrils are

considered as possessing always the fixed shape of elongated right rectangular

prism, consistently with the fact that i and m are not necessary integers. In this

way the nanoscale irregularities in the actual fibril shape that arise, e.g., from

the presence of incompletely built-up β-sheets on the fibril surface, are totally

neglected by CNT.

2.4 Work of fibril formation

As already stated, in CNT the fibril excess energy Φi,m(J) is considered as equal

to the total surface energy of the n-sized fibril (n = im):

Φi,m = 2a0σ0n+ 2aσi+ 2ahσhm. (2.9)

Up to now CNT neglects the possible dependence of σ0, σh and σ on the fibril size,

however the fibrils, unlike the rigid crystallites, are flexible bodies. An additional

(i,m)-dependent term that takes into account the bending, twisting and other

eventual deformations could be incorporated in Φi,m of equation (2.9), without

changing the formal expression of the work in the formula (2.2). In the present

study, for simplicity, these (i,m)-dependent terms are neglected. The general

expression for the dimensionless work wi,m = Wi,m/kBT to form a prismatic

nanosized fibril with length of m β-strands, thickness of i β-sheets and size of

n = i×m ≥ 1 β-strands is obtained by combining Eqs. (2.2) and (2.9) as done
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2.4 Work of fibril formation

in Ref. (81):

wi,m = −sn+ 2ψi+ 2ψhm. (2.10)

Here, s ≡ (µs − µf − 2a0σ0)/kBT ≥ 0 is, for the present model, the effective

dimensionless supersaturation or driving force for nucleation of 2D fibrils and

their further growth in length and thickness. Furthermore, in the latter formula,

the dimensionless surface energies ψ and ψh of the fibril faces perpendicular to

the m-axis and the i-axis respectively, are given by :

ψ = aσ/kBT (2.11)

ψh = ahσh/kBT. (2.12)

As shown in Ref. (81), s can be calculated from the equations s = ln(C1/Ce)

or s = L∆T/kβTeT for solutions in which the supersaturation is experimentally

controlled by the concentration C1(m
−3) of monomer proteins at a given T or

by T at a given C1. In these equations ∆T ≡ Te − T (K) is the undercooling,

Te (K) is the solution equilibrium temperature, and L(J) is the latent heat (per

β-strand) of protein aggregation. In the CNT description, regardless of its size

n, the fibril is always prismatically shaped and its size is connected with m and

i by the relation n = i ×m. Using this relation to eliminate m in Eq. (2.10) it

is found that the formation of an n-sized fibril with a fixed number i of β-sheets

(the so-called iβ-sheet (7)) requires the work (81)

wi,n = −(s− 2ψh/i)n+ 2ψi. (2.13)

Special attention must be paid to the work

w1,n = −(s− 2ψh)n+ 2ψ (2.14)

to form 1β-sheet of n β-strands.

Fig. 2.2 shows the dependence of the work w1,n for different scaled super-

saturations s/ψh = 1, 2 and 3 as straight lines labelled 1β, drawn according to

equation (2.14). Equation (2.14) is of great interest because it gives the con-

dition under which 1β-sheet, and thus the fibril formation from a solution of

β-strands, can spontaneously occur. In particular, the 1β-sheet forms sponta-

neously at supersaturations s > 2ψh (1β line at s/ψh = 3 in Fig. 2.2) because
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2.4 Work of fibril formation

Figure 2.2: Dimensionless work to form an n-sized fibril at different supersat-
urations s/ψh = 1, 2 and 3 for ψ/ψh = 10. The magenta lines, labelled as 1β,
2β and 3β in the graph, illustrate the work to form 1β, 2β and 3β-sheet; Eq.
(2.14) for 1β (straight line) and Eq. (2.13) with i = 2 and 3 to draw 2β and
3β (dashed lines) have been used. The three black curves represent the work to
form a fibril of equilibrium shape given by Eq. (2.18) and are labelled according
to the scaled supersaturations. In the graph the transition size nt and nt,3 to
the 2ndβ-sheet and the 4thβ-sheet, respectively, are marked with black points on
the curves. nt,2, labelled with a green star, represents the transition size to the
4thβ-sheet and the fibril nucleus n∗ at the same time.

then w1,n diminishes with increasing n. According to CNT, then, the process of

fibril formation occurs in a metanucleation regime because it is not impeded by

the existence of a nucleation barrier. In contrast, when s < 2ψh the 1β-sheet

elongation requires work to be done (w1,n increases with n, 1β line at s/ψh =

1 in Fig. 2.2), which means that fibril formation is then nucleation mediated.

The maximum supersaturation at which CNT is applicable is, therefore, the su-

persaturation s1β = 2ψh (81). Physically, s1β is the supersaturation at which

the 1-βsheet is in thermodynamic equilibrium or coexistence with the solution,

because at s = s1β no work is done on the fibril growth or dissolution (then w1,n

is n-independent, 1β line at s/ψh = 2 in Fig. 2.2). In Fig. 2.2 Eq. (2.13) is

also plotted for i = 2 and 3 as visualised by the straight dashed lines 2β and 3β,

respectively, at scaled supersaturations s/ψh = 1, 2 and 3 for ratio ψ/ψh = 10.

In particular, Eq. (2.13) for i = 2 at s/ψh = 1 is a constant straight line parallel

to the n axis. This means that once the fibril has reached the 2β-sheets con-

figuration, it is in equilibrium or coexistence with the solution of the remaining
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2.4 Work of fibril formation

β-strands. In fact, no work has to be done to detach or attach β-strands to or

from it. Then, for i = 2 at s/ψh = 1 the work w2,n becomes n-independent. In

the same way, Eq. (2.13) for i = 1 at s/ψh = 2 (upper supersaturation limit for

the nucleation process) shows the coexistence between the 1β-sheet fibril and the

solution. Therefore, the supersaturations in which the 3β-sheets and 4β-sheets

are in equilibrium or coexistence with the solution can be found by setting to zero

the factor in brackets that contains the driving force for the iβ-sheets formation

in Eq. (2.13) (81):

si,β = 2ψh/i. (2.15)

Also, the equilibrium concentration Ci,β of β-strands at which the iβ-sheets

are in coexistence with the solution can be obtained using Eq. (2.15) and Eq.

(2.1) to give :

Ci,β = Ce exp(2ψh/i). (2.16)

Both si,β and Ci,β, as can be seen from Eqs. (2.15) and (2.16), decrease with

increasing i thickness of the fibril. In the limit of i → ∞ it is si,β → 0 and

Ci,β → Ce.

Although initially the fibril comes into being as a 1β-sheet, with increasing its

size n by lengthening along the m-axis, its total surface energy becomes greater

than that of a 2β-sheets with the same size n. For that reason, as already

discussed in the previous section, after a certain time a second β-sheet starts

forming on top of the original 1β-sheet. The transition size nt, given in (81)

can now be re-written as nt = ψ/ψh = 10. nt marks the fibril transition from

1D evolution (growth in length only) into 2D evolution (growth in both length

and thickness) and it is indicated with a black point in Fig. 2.2. Therefore,

the condition that characterises the fibril equilibrium shape as a function of the

dimensionless surface energies (81) becomes:

i

m
=
ψh

ψ
. (2.17)

Following the latter condition and considering that n = i × m, the fibril will

eventually start to form a third β-sheet for n > nt,2 = 22nt = 40. Similarly the

transition between the 3β-sheets and the 4β-sheets configuration will appear at

n > nt,3 = 32nt = 90, and the fifth β-sheet will start to be formed at n > nt,4 =
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2.4 Work of fibril formation

42nt = 160 and so on. The circles in Fig. 2.2 mark the different transitions at nt

nt,2 and nt,3.

Using n = i×m and Eq. (2.17) for elimination of i and m in Eq. (2.10) yields

the dimensionless work wn ≡ Wn/kBT to form an n-sized fibril with equilibrium

shape at a given supersaturation s ≤ s1β = 2ψh:

wn = −sn+ 4(ψψh)
1/2n1/2. (2.18)

It is important to note that Eq. (2.18) is not valid for n < nt = ψ/ψh, because

according to it and the relation n = i × m, such small fibrils would have the

physically meaningless thickness i < 1. Hence, the dependence of the fibril

formation work is given by Eq. (2.14) in the region 1 ≤ n ≤ nt and by Eq.

(2.18) in the region n > nt.

In Fig. 2.2 the curves wn according to Eq. (2.18) at different scaled super-

saturations s/ψh = 1, 2 and 3 for ratio ψ/ψh = 10 are shown. From Fig. 2.2

it can be seen that all three curves are below the lines 1β 2β and 3β which are

drawn with the help of equation (2.13) at the correspondent supersaturation. In

fact, the three portions of straight lines 1β, 2β and 3β envelop the correspond-

ing wn curve. From the same figure it can clearly be seen how the barrier wn

changes with respect to the supersaturation. At s/ψh = 3 the fibril will form

spontaneously, since the work decreases with increasing n for any thickness i.

At s/ψh = 2, the curve is characterised by the equilibrium shape of 1β-sheet

up to n = 40, after which the fibril will pass to a 2D evolution characterised

by spontaneous growth since the barrier wn is decreasing with the increasing of

n. Finally, at s/ψh = 1, the system encounters a barrier to complete its first

layer and even after the transition point n = nt = 10 the curve wn will increase

with the fibril size n. The size n = nt,2 = n∗ marks the fibril transition from a

2β-sheets to a 3β-sheets configuration, and, importantly, determines the end of

the increasing trend of wn as a function of n. Beyond n = n∗ the second layer

of the fibril will be completed without spending any work, and at n = n∗ the

fibril is in coexistence with the solution. Subsequently a third β-sheet will be

spontaneously build, since wn is decreasing with increasing n.
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2.5 Nucleus size and nucleation work

The fibril of size n = n∗ that corresponds to the top of the curve in Fig. 2.3 is

called the fibril nucleus or critical nucleus and it is defined as the maximum of

the wn function.

Figure 2.3: Dimensionless work wn to form an n-sized fibril at s/ψh = 1 for
ψ/ψh = 10 according to Eq. (2.14) for 1 ≤ n ≤ nt and Eq. (2.18) for n > nt.
Black points indicate nt, nt,3 and nt,4. nt,2 is marked with a green star because it
is a transition point and fibril nucleus at the same time (n∗ in the graph). The
green double arrow illustrates the magnitude of the energy barrier that the fibril
has to overcome to assume the size n = n∗

The condition for maximum, (dwn/dn)n=n∗ = 0, employed to Eq. (2.18) leads

to the following simple analytical formulae for the supersaturation dependence of

the size n∗ of the fibril nucleus and the dimensionless nucleation work w∗ ≡ wn∗

(0 ≤ s ≤ s1β = 2ψh) (81):

n∗ =
4ψψh

s2
(2.19)

w∗ =
4ψψh

s
. (2.20)

The formula (2.19) is the Gibbs-Thomson equation for nucleation of 2D con-

densed phases (e.g., Ref. (77)) and furthermore, w∗ and n∗ are related by the

formula w∗ = sn∗ and by dw∗/ds = −n∗ known as the nucleation theorem in ∆µ

form (77; 78; 83). These quantities are of great interest because they determine
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2.5 Nucleus size and nucleation work

the energy barrier, (w∗−w1,1)kBT , that the 1β-sheet fibril has to overcome to be

able to grow up to macroscopic sizes. In Fig. 2.3 the barrier height for ψ/ψh = 10

at s/ψh = 1 is shown.

Figure 2.4: Supersaturation dependence of n∗, i∗, m∗ and w∗/ψh, as labelled, are
shown according to Eqs. (2.19)-(2.22) for ψ/ψh = 10. In the graph the arrow
points to the supersaturation s1,β, which is the limit for the CNT applicability.

Combining Eq. (2.17), Eq. (2.19) and the relation n∗ = i∗ × m∗, leads to

analytical formulae expressing the nucleus thickness i∗ and the nucleus length

m∗ (0 ≤ s ≤ s1β = 2ψh):

i∗ =
2ψh

s
, (2.21)

m∗ =
2ψ

s
. (2.22)

In Fig. 2.4 the supersaturation dependence of w∗/ψh, i
∗, m∗ and n∗ are

plotted according to Eqs. (2.19)-(2.22) for ψ/ψh = 10. All four curves decrease

as the supersaturation increases, in particular at s = s1,β = 2ψh, i
∗ = 1, m∗ =

nt = 10 and then n∗ = 10, which means that the fibril can grow barrierlessly

since w∗ = w1,1. At this supersaturation, in fact, Fig. 2.2 shows that a single β-

strand can attach to the (nt−1)β-strands to complete the 1β-sheet fibril without

any work needed to be done. As already stated, s1,β is considered as the upper

limit of s for the CNT applicability. All the formulae described in this section

are not valid for s > s1,β, because for higher supersaturations the fibril formation
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would be spontaneous and barrierless and i∗ would be smaller than 1, which is

physically meaningless.

2.6 Nucleation rate

If the fibril size n is sufficiently larger than the nucleus size n∗, the fibril

can grow deterministically up to a macroscopically large size. In particular it

suffices that the size M of this supernucleus is M > 2n∗ (79), hence from this

size up, the fibril will irreversibly both lengthen and thicken as long as C1 > Ce.

The stationary rate J of appearance of supernucleus fibrils per unit solution

volume, at constant supersaturation and temperature, is given by the general

formulae for J , (2.3) and (2.4). In order to calculate J , an explicit expressions

for the Zeldovich factor, z, the frequency f ∗ = f(n∗) and the equilibrium nucleus

concentration C∗ are needed. In the scope of the classical Szilard-Farkas model of

single-component nucleation (e.g. Refs. (77; 84)), for 2D nucleation, according

to CNT in its self-consistent formulation, z and C∗ are expressed as (e.g. Ref.

(77))

z =
( s

4πn∗

)1/2

(2.23)

and

C∗ = C1 exp(w1,1 − w∗). (2.24)

In Eq. (2.24) w1,1 is the dimensionless work to form a β-strand monomer, which

is formally considered as the smallest representative of the nucleating phase, and

C1 (m−3) is the concentration of monomeric β-strands. Eq. (2.24) is often used

in the equivalent form C∗ = C0 exp(−w∗), because C1, w1,1 and the concentration

C0 (m−3) of nucleation sites in the solution are related by the expression (77)

C1 = C0 exp(−w1,1). As to f ∗, it depends on the particular mechanism of β-

strand attachment to the nucleus fibril. Under the assumption that the β-strand

diffusion to the fibril nucleus is so fast that there are always β-strand monomers

ready for attaching to the fibril ends, the frequency of β-strand attachment to

the fibril nucleus can be written down as (81)

f ∗ = f1i
∗. (2.25)

32
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Here f1 (s−1) is the s-dependent frequency of β-strand attachment to the two

ends of a 1β-sheet, and i∗ is the thickness of the fibril nucleus ,i.e. the number

of β-sheets in the fibril nucleus. When T is fixed and s is controlled by means

of the concentration C1 of monomer β-strand, the f1(s) dependence is given by

(81) f1 = f1,eC1/Ce = f1,ee
s, where f1,e (s−1) is the value of f1 at the equilibrium

concentration Ce, i.e. at s = 0. Substituting Eqs. (2.23) - (2.25) into Eq.

(2.3), using Eq. (2.14) to determine w1,1, taking into account Eq. (2.19) and

the relation (81) i∗ = 2ψh/s yields the CNT formula for the supersaturation

dependence of the rate of amyloid fibril nucleation (81) (0 ≤ s ≤ s1,β = 2ψh)

J =

(
ψhs

4πψ

)1/2

× f1(s)C1

[
2(ψ + ψh)− s−

4ψψh

s

]
. (2.26)

Figure 2.5: Supersaturation dependence of the nucleation rate J according to Eq.
(2.26) at ψ = 12.0 and ψ/ψh = 10. In the graph nucleus sizes n∗ according to
Eq. (2.19) are shown in magenta points. The arrows indicate the supersaturation
limit for the CNT applicability, s1,β, and the transition supersaturation s2,β at
which the fibril assume a 2β-sheet configuration.

The line in Fig. 2.5 illustrates the supersaturation dependence of the nucle-

ation rate J in the CNT description according to Eq. (2.26) for ψ/ψh = 10.

In fact the graph is plotted using T = 300 K, a = 5 nm2 and σ = 10 mJ/m2

according with a specific surface energy in the range of 0.1-30 mJ/m2 as reported

by experimental works for protein crystals in aqueous solutions (41). These pa-

rameters lead to the values ψ = aσ/kBT = 12.0 and ψh = aσh/kBT = 1.2, at

T = 300 K. The nucleation rate J is a smooth monotonic function that increases
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2.7 Corrected classical nucleation theory

with increasing supersaturation, however its rate of increase is higher at lower

supersaturations and tends to get lower and lower as s1,β is approached. This

trend can be interpreted considering that with increasing supersaturation the

nucleation work w∗ decreases as does the critical nucleus size n∗. The numbers

labelling the line in Fig. 2.5 represent the nucleus sizes at the corresponding

supersaturation. The supersaturation limit for the CNT applicability s1,β and

the transition supersaturation to the 2β-sheet configuration, s2,β, are also high-

lighted.

2.7 Corrected classical nucleation theory

CCNT does not provide a correction of the CNT Eq. (2.18) for the work wn

to form an n-sized fibril. It only corrects the CNT Eqs. (2.19), (2.20) and

(2.26) for the nucleus size n∗, the nucleation work w∗ and the nucleation rate

J , respectively. This correction is necessary, because CNT disregards the work

(−s+2ψ)kBT done in attaching side-wise the first β-strand to the surface of the

CNT nucleus. This β-strand increases the size of the CNT nucleus by unity and

triggers the barrierless build-up of a new β-sheet on the CNT nucleus, a β-sheet

needed for the nucleus to thicken and, thereby, to preserve the CNT equilibrium

shape. Fig. 2.6 illustrates the geometrical difference between the CCNT and the

CNT fibril nuclei at the same supersaturation s and same ψ/ψh ratio.

Figure 2.6: Geometrical difference between the CNT and CCNT nucleus as la-
belled in the picture. The pink rectangle on one of the σh faces, represents the
β-strand that triggers the barrierless growth of a new β-sheet.
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Accounting for the above, CCNT provides the equations (81) (0 ≤ s ≤ 2ψh)

n∗ =
4ψψh

s2
+ 1 (2.27)

w∗ =
4ψψh

s
− s+ 2ψ, (2.28)

which correct the CNT Eqs. (2.19) and (2.20) for n∗ and w∗. The applicability of

these formulae is restricted to the CNT supersaturation range [0,s1,β], therefore

Eq. (2.27) is known as the corrected Gibbs-Thomson equation. It can also be

shown that Eqs. (2.27) and (2.28) satisfy the nucleation theorem in the form

dw∗/ds = −n∗ (77; 78; 83) and are related by the formula w∗ = (n∗ − 2)s+ 2ψ.

While the correction of the CNT nucleus size is small (one more β-strand in

the nucleus), the correction of the CNT nucleation work is of major importance,

because the energy term −s+ 2ψ is usually much greater than unity (81).

Figure 2.7: Supersaturation dependence of n∗ and w∗/ψh at ratio ψ/ψh = 10
for CNT (black lines Eq. (2.19) and (2.20)) and CCNT (red lines Eq. (2.27) and
(2.28)) descriptions.

These differences are clear in Fig. 2.7 that shows n∗ and w∗/ψh against s/ψh

in black lines for CNT and in red lines for CCNT. The n∗ and w∗/ψh lines

are drawn using Eqs. (2.19) and (2.20) of CNT and Eqs. (2.27) and (2.28) of

CCNT at ratio ψ/ψh = 10. As in the CNT description, in the CCNT one n∗

and w∗ decrease with increasing supersaturation. Fig. 2.7 clearly confirms that
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while the differences in the CNT and CCNT predictions for n∗ are negligible, the

differences in the predictions for the nucleation work w∗/ψh are considerable and

are increasing with the supersaturation up to a value of 18 units at s/ψh=2.0.

Interestingly, at s = s1,β the CCNT nucleation barrier is still different from

zero ((w∗ − w1,1)kBT = 2(ψ − ψh)kBT ), unlike the CNT barrier which is nil

at the same supersaturation. Hence, CCNT predicts that the fibril formation

is a nucleation mediated process even beyond the CNT supersaturation upper

limit s1,β after which the fibril growth will proceed barrierlessly in the so-called

metanucleation region (80).

To correct the CNT nucleation rate J from Eq. (2.26), CCNT uses again

the general Eq. (2.3) in combination with C∗ from Eq. (2.24) in which w1,1

is determined according to Eq. (2.14), but w∗ is taken from Eq. (2.28). In

addition, CCNT employs the approximation z = 1/2, because only about half

of the equilibrium nucleus concentration C∗ is effective in stationary nucleation

(77) and because after attaching a protein monomer, the CCNT nucleus virtually

always grows to a macroscopically large size. Also, in accordance with Eq. (2.25),

in CCNT f ∗ is approximated by f ∗ = 2f1, since in most cases the CCNT nucleus

is expected to be two β-sheets thick (one β-sheet plus one β-strand on the sheet).

As a result, the CCNT nucleation rate J is given by the expression (81) (0 ≤
s ≤ s1β = 2ψh)

J = f1(s)C1 exp

[
2ψh −

4ψψh

s

]
. (2.29)

Comparison of Eqs. (2.26) and (2.29) shows that the CCNT nucleation rate

is much lower than that of CNT because the exponential function in Eq. (2.29)

does not contain the term (2ψ − s) which, as already noted, is usually much

greater than unity. The absence of this term cannot be compensated by the

absence in Eq. (2.29) of the factor (ψhs/4πψ)1/2, which is typically a number

between 0.01 and 0.1. Like Eq. (2.26), Eq. (2.29) is applicable in the CNT

supersaturation range [0,s1β].

Fig. 2.8 shows the supersaturation dependence of J according to the CNT de-

scription (Eq. (2.26)) and the CCNT one ( Eq. (2.29)). The two curves show the

same trend but the CCNT nucleation rate J is generally slower and it becomes

slower and slower with increasing supersaturation, due to the factor (2ψ− s). In
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2.7 Corrected classical nucleation theory

Figure 2.8: Supersaturation dependence of J at ψ = 12.0 and ratio ψ/ψh = 10
for CNT (black line Eq. (2.26)) and CCNT (red line Eq. (2.29)) descriptions.
In the graph the nucleus sizes at the corresponding supersaturations are marked
on the J curves with magenta (obtained with Eqs. (2.19)) and green points
(obtained with Eqs. (2.27)) for CNT and for CCNT, respectively.

the J curves are highlighted for certain supersaturations the nucleus sizes (ma-

genta and green points on the CNT and CCNT J curves respectively) calculated

according to formulae (2.19) and (2.27) of CNT and CCNT respectively.

When T is fixed and s is controlled by means of the concentration C1 of

β-strands in the solution, the nucleation rate J from (2.29) can be expressed as

J(C1) (1≤ C1/Ce ≤ exp(2ψh)):

J = f1,eCe exp(2ψh)︸ ︷︷ ︸
A

(
C1

Ce

)2

exp[− 4ψψh︸ ︷︷ ︸
B

/ln(C1/Ce)]. (2.30)

The latter is an important formula that can be related to experimental con-

ditions. In Eq. (2.30) A (m−3s−1) is known as the kinetic factor and B is the

dimensionless thermodynamic parameter. Furthermore, differentiating with re-

spect to C1 the logarithm of both sides of Eq. (2.30) and using Eq. (2.27) the

important relation can be obtained:

n∗(C1) =
d(ln J)

d(lnC1)
− 1. (2.31)

The last formula is of fundamental applicability. It is in fact valid in the CNT

approach as well, as can easily be obtained from n∗ of Eq. (2.19) and expressing
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2.8 Conclusion

J of Eq. (2.26) as a function of C1. Eq. (2.31) is in fact a general result that

comes from the application of the nucleation theorem to isothermal nucleation of

condensed single-component phases (77; 78; 81; 83). Then, if isothermal J(C1)

data are available, Eq. (2.31) gives a theory independent estimation of the fibril

nucleus size as a function of the concentration of the β-strands in the solution

measuring the slope of ln(J) versus ln(C1). Furthermore, keeping in mind that

s = ln(C1/Ce), Eq. (2.31) can be approximately written as a function of the

supersaturation in the form:

n∗(s) ≈ d(ln J)

d(s)
− 1, (2.32)

Eq. (2.32) gives an estimation of the nucleus size n∗ in term of the parameter s

easily controlled during experiments.

2.8 Conclusion

The aim of this chapter was to study amyloid fibril nucleation using standard

nucleation theory in the form of CNT and CCNT. A general introduction gave a

universal nucleation description that is valid for both of these theories. Then the

amyloid fibril nucleation has been studied with the CNT and CCNT description

highlighting the conceptual differences in the results. In particular the work to

form an n-sized fibril has been obtained, and from it, the fundamental nucleation

quantities such as the nucleus size n∗, nucleation work w∗ and nucleation rate J

of amyloid fibrils have been derived.

In the CNT description, the fibril formation is described using a 2D lattice

model where the single β-strand is represented as a right prism with surface en-

ergies that are fundamental parameters for the protein aggregation into amyloid

fibrils. The nano-sized fibril would eventually form because of random attach-

ment and detachment of β-strands. If the process climbs the thermodynamic

barrier up to the nucleation work w∗ the fibril will become a nucleus of size

n = n∗ and from then on, it could grow to macroscopic sizes. The rate J of fibril

nucleation can be analytically calculated taking into account the barrier that the

process has to overcome to form nucleus fibrils.

Although CNT could give a good qualitative explanation of the process, it has

been shown that it strongly underestimates the nucleation work. CCNT corrects
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2.8 Conclusion

this result by adding one unit to the nucleus size formula and introducing the

necessary work to add that unit to the nucleation work formula. In the CCNT

description, upon reaching the nucleus size, the fibril could grow barrierlessly a

new β-sheet that allows the fibril to thicken and reach the equilibrium prismatic

shape given by the CNT description. CCNT provides a new formula for the

nucleation rate which is also expressed in terms of the nucleation work. It has

been shown that the CNT formula for J is highly inaccurate for crystals with

dimensionless specific energy ψ > 1 and it should not be used. A reliable formula

for J is given by the CCNT equation Eq. (2.30). Importantly, it has been

discussed that the nucleation rate can be related to experimental isothermal

data and to the protein solubility. Furthermore the estimation of the nucleus

size from J(s) data is theory-independent, because it is a general result based

on the nucleation theorem.

To summarise, in this chapter, kinetic and thermodynamic aspects of the

amyloid fibril nucleation have been studied from the classical nucleation point

of view and it has been shown that standard nucleation theories can give a

general qualitative explanation of the process. The analysis offers answers to

common questions in the intriguing phenomenon of amyloid fibril nucleation

such as numerical estimation of the fibril size, rate and barrier of the assembly

process.
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Chapter 3

Atomistic theory of amyloid

fibril nucleation1

Also in this chapter the focus of the discussion is the nucleation of amyloid fibrils

at the molecular level, when the process takes place by a direct polymerisation

of peptides or protein segments into β-sheets. Here, in particular, employing the

atomistic nucleation theory (ANT), a general expression for the work to form

a nanosized amyloid fibril (protofilament) composed of successively layered β-

sheets will be derived. The application of this expression to a recently studied

peptide system will allow to determine the size of the fibril nucleus, the fibril

nucleation work and the fibril nucleation rate as functions of the supersaturation

of the protein solution. The analysis illustrates the unique feature of ANT that

the size of the fibril nucleus is a constant integer in a given supersaturation

range. Furthermore the ANT nucleation rate will be calculated and compared

with the rates determined in the previous chapter in the scope of the classical

nucleation theory (CNT) and the corrected classical nucleation theory (CCNT).

The main result is that while the CNT nucleation rate is orders of magnitude

greater than the ANT one, the CCNT and ANT nucleation rates are in very

good quantitative agreement. The results obtained in the chapter are applicable

to homogeneous nucleation which occurs when the protein solution is sufficiently

pure and/or strongly supersaturated.

1This chapter is based on Refs. (18) and (81).
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3.1 Introduction

In the previous chapter, the classical nucleation theory (CNT) (e.g., Refs. (77;

84)) and the corrected CNT (CCNT) (80) were applied for describing the amy-

loid fibril nucleation thermodynamics and kinetics when the process occurs by

direct polymerisation of peptides or protein segments into β-sheets. In these the-

ories the fibril energetics is described in terms of the fibril dimensionless surface

energies ψ and ψh which are macroscopic characteristics of the fibril/solution

interface. Also, the differently sized fibrils are considered as possessing the fixed

shape of an elongated right rectangular prism and in this way the nanoscale

irregularities in the actual fibril shape that arise, e.g., from the presence of in-

completely built-up β-sheets on the fibril surface, are neglected. It is, however,

of interest to analyse the fibril nucleation thermodynamics and kinetics at the

molecular level, expressing ψ and ψh in terms of the broken bond energies of a

β-strand (peptide or protein segment) constituting the fibril and then obtain-

ing information about the actual fibril shape. The atomistic nucleation theory

(ANT) (e.g., Refs. (77; 80; 96)) provides a framework for treating nucleation at

the molecular level. In the present chapter ANT will be applied to the nucle-

ation of amyloid fibrils by the mechanism of direct polymerisation, according to

which the smallest fibrils appear as a result of a series of random attachments

and detachments of monomer peptides or protein segments. This mechanism

is operative under conditions when no fibril precursors such as droplet-like pro-

tein aggregates are formed in the solution as a first step in the fibril nucleation

process.

The dimensionless work to form a n-sized fibril, oriented along i and m axes of

a 2D lattice, can be obtained by considering the general Eq. (2.2) and replacing

the appropriate excess energy into it, giving:

wn = −sn+ lnψ + lh,nψh. (3.1)

The details of the last formula will be discussed later in the chapter. For now

it is important to note that it is applicable in the framework of both ANT and

CNT. However, in CNT, n = i×m, ln = 2i and lh,n = 2m ( as in Eq. (2.10)) and

because of the assumed prismatic shape of all fibrils regardless of their size n the

building β-sheets are equally long. In ANT, instead, ln and lh,n are the numbers

of all broken bonds parallel to the fibril m and i axes, n has only integer values

41



3.1 Introduction

and the β-sheets can have different length, accounting for the molecular level

shapes. For all these reasons the ANT fibril shape can depart from the prismatic

shape postulated by CNT.

Given Eq. (3.1), expressions for the nucleus size n∗, nucleation work w∗ and

nucleation rate J can be obtained. In particular, following the same procedure

already adopted in CNT, from the global maximum of wn from Eq. (3.1), n∗

and then w∗ will be calculated for ANT, as described later in the chapter.

For the exact determination of the stationary nucleation rate J the following

general exact Becker-Döring formula (10), (77) will be used :

J =
1∑M−1

n=1

(
1

fnCn

) . (3.2)

Here M is the size of a large enough supernucleus fibril, Cn (m−3) is the equilib-

rium concentration of n-sized fibrils, and fn (s−1) is the frequency of attachment

of monomer β-strands to an n-sized fibril. Eq. (2.3), given in the introduction

of Chapter 2, is a good approximation to the exact formula (3.2). Furthermore,

once the appropriate expression for Cn and fn of the classical and atomistic de-

scription are introduced, Eqs. (2.3) and (3.2) are applicable to both CNT and

ANT.

ANT originated in the pioneering papers on crystal nucleation and growth

(73; 74; 75; 134; 135) and was later applied to other cases of nucleation (77; 95;

96; 104; 105; 106; 151). Recently (80), it has been shown that ANT describes

much more accurately than CNT the nucleation rate of model two-dimensional

(2D) and three-dimensional (3D) crystals because of its more realistic accounting

for the actual shape of the smallest crystalline clusters. ANT was found to be

superior also to CCNT despite that both theories were in good quantitative

agreement with simulation and numerical data for the crystal nucleation rate.

It is therefore important to verify whether ANT is successful in predicting the

nucleation rate of amyloid fibrils when these are modelled at the molecular level.

In particular, the objective of the present chapter is (i) to employ ANT for

describing the work to form the nanosized amyloid fibrils (protofilaments) and

for determining the size of the fibril nucleus, the fibril nucleation work and the

fibril nucleation rate, and (ii) to compare ANT and CCNT predictions for the

fibril nucleus size, nucleation work and nucleation rate.
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3.2 Physical model

3.2 Physical model

In the following, both the ANT and the classical descriptions will be applied

to a model peptide system studied previously (4; 5; 7; 8). In this system the

peptides in the amyloid fibril represent the β-strands of the general description

given in the previous chapter and the model in Fig 2.1 will be adapted to an

ANT description.

Figure 3.1: (a)Atomistic model of a nanosized amyloid fibril consisting of n = 15
β-strands arranged in two β-sheets, the first of them having ten β-strands, and
the second of them having five β-strands. In this example each β-strand is com-
posed of 12 amino acids which are schematised only in the rightmost β-strand.
The a′s are the areas of the three β-strand faces. (b) Corresponding fibril cross
section in the (m, i) plane. The thick and the thin lines represent, respectively,
the strong and the weak broken bonds of the β-strands at the periphery of the
fibril cross section. In this example there are ln = 4 strong broken bonds with
energy E/2 per bond and lh,n = 20 weak broken bonds with energy Eh/2 per
bond.

In the ANT for amyloid fibrils, each amino acid in a peptide is represented by

a right rectangular prism (twelve such amino acids are illustrated in Fig. 3.1a by

the prisms in the rightmost peptide). The amino acids in the rod-like peptide are

in a row and the peptide is thus also a right rectangular prism (Fig. 3.1a). In the
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3.2 Physical model

model, due to their strong hydrogen bonds, the peptide can arrange themselves

laterally into β-sheets. The sheets consist of a different number m of peptides

(m = 1, 2, 3, ...) and are parallel to the fibril lengthening axis (the m axis in Fig.

3.1a). Along its thickening axis (the i axis in Fig. 3.1a), the fibril is made of i

β-sheets (i = 1, 2, 3, ...) which are held together by relatively weak bonds, such

as hydrophobic-mediated bonds between the peptides. Since the fibril width

is fixed and equal to the peptide length, the fibril can be considered as a 2D

aggregate in the (m, i) plane, with building blocks (the peptides) arranged on

a 2D lattice with simple rectangular symmetry (Fig. 3.1b). The application is

valid under the assumption that each amino acid in a peptide can form hydrogen

bonds solely along the fibril m axis, and that the hydrophobic-mediated bonds

can be formed along both the m axis and the i axis of the fibril. Assuming

further that the strength of these two kinds of bonds are the same for all amino

acids and that bonds can only be formed between nearest-neighbour amino acids,

the inter-peptide binding energy denoted by E (Joules) along the m axis can be

written as

E = qε+ qhεh. (3.3)

Similarly, the inter-peptide binding energy Eh (Joules) along the i axis is given

by

Eh = qhεh. (3.4)

In Eqs. (3.3) and (3.4) ε (Joules) is the energy of the hydrogen bond between

two nearest-neighbour amino acids, εh (Joules) is the hydrophobicity-mediated

bond energy of such amino acids, and q and qh are the numbers of hydrogen and

hydrophobic bonds between two nearest-neighbour peptides, respectively. For

the model system considered here a = ah and q = qh = 10 have been set. The

latter differs somewhat from q = 10 and qh = 12 in Refs. (4; 5; 7; 8), because in

the model studied in those references, the first and the last of the 12 amino acids

in a peptide did not form hydrogen bonds with nearest-neighbour amino acids.

Also, for the ratio between the energies of the hydrogen and the hydrophobicity-

mediated bonds it has been used ε/εh = 9, a value about twice as small as the one

employed in Refs (4; 5; 7; 8). The interactions are then confined solely between

nearest-neighbour β-strands in the fibril and the interstrand binding energies are

E = (100/9)× ε and Eh = (10/9)× ε. The corresponding broken-bond energy of

a β-strand at the fibril σ or σh face is then E/2 or Eh/2, respectively (Fig. 3.1b).
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3.3 ANT fibril evolution mechanism

Owing to the rectangular symmetry of the fibril lattice in the (m, i) plane, to

first approximation (73; 74; 80; 95; 134), σ and σh are related to E and Eh by

σ = E/2a and σh = Eh/2ah . Taking into account Eqs. (2.11) and (2.12), ψ and

ψh are thus

ψ =
E

2kBT
(3.5)

and

ψh =
Eh

2kBT
. (3.6)

As seen, physically, according to this picture, in ANT ψ or ψh is merely the

dimensionless energy of the broken bond of a β-strand at the fibril σ or σh face,

respectively. In accordance with Eqs. (2.11), (2.12), (3.5) and (3.6) and the last

approximations, the ε/εh value results in ψ/ψh = 10 for both the ANT and the

classical descriptions.

3.3 ANT fibril evolution mechanism

In ANT, the determination of wn and the ensuing calculation of n∗, w∗ and J

requires specification of the sequence of shapes that an aggregate takes during

its evolution from the monomer size n = 1 to the considered size n > 1. In

reality, there are many such sequences, but similar to CNT, ANT is restricted

to considering a single sequence of shapes for which the aggregate total surface

energy is as low as possible. A reference low-energy shape can be the CNT

equilibrium shape, because the latter corresponds to the minimal total surface

energy. This argument will be tested by kinetic Monte Carlo simulations of the

growth of the nanosized fibrils in Chapter 6, since the choice of a fibril shape

sequence for theoretical analysis can affect the results obtained.

Fig. 3.2 exemplifies fibril shapes in the (m, i) plane from a sequence which

models amyloid fibril nucleation in the case of ψ/ψh = nt = 10 and which will

be used in the considerations to follow in order to obtain general results for any

ψ/ψh ≥ 1. In figure 3.2, from n = 1 to the transition size nt = 10, the fibril

grows as a single β-sheet, i.e. it exhibits 1D growth in order to keep minimal

its total surface energy or, equivalently, the total energy of its broken bonds ln

and lh,n. According to CNT, transition from 1D to 2D growth occurs at nt so

that the (nt +1)-sized fibril should already be more than one β-sheet thick. This
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3.3 ANT fibril evolution mechanism

Figure 3.2: Fibril cross sections in the (m, i) plane which illustrate partially the
sequence of fibril shapes during the evolution of an amyloid fibril characterised
by ψ/ψh = 10. From the fibril nuclei, hatched sizes), the β-strand attachment
occurs at no surface-energy cost up to the pink nanofibril; from that size on, the
fibril growth corresponds to jagged lines in the barrier up to the blue fibril sizes
that are followed by fibril nuclei (hatched). The plus signes indicate the kink
sites.

fibril (the one of size n = 11 in Fig. 3.2) can therefore be assumed to have the

shape of 1β-sheet of length nt with one peptide monomer adsorbed side-wise.

Importantly, this monomer gives birth to the fibril second β-sheet and creates

two kink sites at the fibril surface (the sites are marked by plus signs in Fig. 3.2).

Further peptide attachment to a kink site does not increase the fibril total surface

energy, because fibrils of size n = nt + 1, nt + 2, ..., 2nt have the same number of

broken bonds ln and lh,n. In Fig. 3.2 these are the fibrils with n =11, 12, 20.

Thus, the growth of the second β-sheet continues at no surface-energy cost until

n = 2nt = 20. Since from n > nt = 10 to n = 2× 2nt = 40 the CNT equilibrium

shape requires fibril thickness between one and two β-sheets, the attachment of
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3.3 ANT fibril evolution mechanism

the next peptide monomer to the 2nt-sized fibril can be assumed to occur at one

of the two fibril ends. This lengthwise monomer attachment creates a kink site

at the end of the fibril of size n = 2nt + 1 = 21 (see Fig. 3.2) and the next

monomer is attached to this site with no surface-energy cost. Thus, further fibril

growth occurs by alternating creation and annihilation of kink sites at the fibril

ends until the fibril reaches the size n = 2× 2nt = 40.

At this size, the attachment of the next peptide monomer can be assumed to

occur again to the surface of one of the two β-sheets of the fibril, because the

CNT equilibrium shape requires a fibril thickness between two and three β-sheets

for fibril sizes from n > 2 × 2nt = 40 to n = 3 × 3nt = 90. The fibril of size

n = 2 × 2nt + 1, the one with n = 41 in Fig. 3.2, will therefore have the shape

of a 2β-sheet of length 2nt with one peptide monomer adsorbed on one of the

β-sheet surfaces rather than on one of the β-sheet ends. This monomer triggers

the growth of the fibril third β-sheet, because it generates two kink sites at which

subsequent peptides can attach themselves without changing the number of the

fibril broken bonds. In Fig. 3.2, the fibrils with n = 41 and 42 illustrate this

situation.

When the third β-sheet is completed at size 3 × 2nt = 60, the fibril growth

continues by lengthwise attachment of the next peptide monomer (see the fibrils

with n =60 and 61 in Fig. 3.2). Subsequent lengthwise attachment of peptides

to the fibril is thermodynamically favoured only up to size n = 3 × 3nt = 90,

since between n = 3 × 3nt + 1 and the size n = 4 × 4nt = 160 the fibril has to

increase its thickness by one more β-sheet in order to keep its shape close to the

CNT equilibrium shape. Thus, it can again be assumed that the fibril of size

n = 3 × 3nt + 1 = 91 will have the shape of a 3β-sheet of length 3nt with one

peptide adsorbed on the surface of the fibril β-sheets.

Further growth of the fibril can be expected to occur in the above manner

provided it is not disturbed by other processes, e.g., by fibril flocculation. Using

the sequence of fibril shapes described above and partially illustrated in Fig. 3.2

for the model peptide system considered, which is characterised by the value of

ψ/ψh = 10, the non-analytical n-dependence of the numbers ln and lh,n of the

fibril strong and weak broken bonds will be determined. This determination will

make it possible to calculate the ANT wn, n∗, l∗ = ln∗ , l
∗
h = lh,n∗ , w

∗ and J .
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3.4 Work of fibril formation

According to ANT (80), for any n-sized fibril the role of the part 2aσi+2ahσhm of

the fibril excess energy Φi,m from Eq. (2.9) is played by the sum lnE/2+ lh,nEh/2

of all broken-bond energies at the periphery of the fibril cross-section with the

(m, i) plane, i.e.

2aσi+ 2ahσhm =
lnE

2
+
lh,nEh

2
, (3.7)

where ln or lh,n, as already stated, is the total number of the n-sized fibril strong

and weak broken bonds that are parallel to the fibril m or i axis with correspond-

ing energy E/2 or Eh/2, respectively (see Fig. 3.1). Combining Eq. (2.2), (2.9),

(3.5)-(3.7) and recalling that s ≡ (µs−µf−2a0σ0)/kBT leads to Eq. (3.1) for the

dimensionless work wn to form an n-sized fibril (n = 1, 2, 3, ...). In general, the

differently determined fibril shape in CNT and ANT leads to a quantitative dif-

ference in the prediction of the work wn to form an n-sized fibril. When the fibrils

have the CNT equilibrium shape, i and m are not independent variables, but are

connected by Eq. (2.17). Using this equation and the relation n = i×m yields

i = (ψh/ψ)1/2n1/2 and m = (ψ/ψh)
1/2n1/2 so that in CNT (n ≥ nt = ψ/ψh),

ln = 2

(
ψh

ψ

)1/2

n1/2 (3.8)

and

lh,n = 2

(
ψ

ψh

)1/2

n1/2. (3.9)

Substitution of ln and lh,n from these formulae into Eq. (3.1) transforms this

equation into Eq. (2.18). This means that the CNT and ANT descriptions yield

the same wn values, but only for those n-sized fibrils that happen to have the

CNT equilibrium shape. Regrettably, in ANT the numbers ln and lh,n of fibril

broken bonds are not analytical functions of the fibril size n. They are obtainable

solely by considerations at the molecular level. Hence, given the n value, the ANT

ln and lh,n have to be calculated with the aid of, e.g. a computer program for

all possible fibril shapes corresponding to this n value. For the peptide model

considered here it has been selected a particular sequence of shapes, having as a

reference the CNT evolution mechanism, which specifies for each n the numbers

of broken bonds ln and lh,n as in Fig. 3.2. By directly counting the number of

broken bonds at the fibril periphery in the (m, i) plane for nucleation of fibrils
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3.4 Work of fibril formation

with the shape sequence illustrated partially in Fig. 3.2, it has been found that

ln and lh,n have the values given in Table 3.1 for n = 1, 2, 3, ..., 300.

Using the ln and lh,n values of Table 3.1 in Eq. (3.1) yields the ANT depen-

dence of the fibril excess energy Φn and then of the work wn for formation of

fibrils with the shape sequence illustrated in Fig. 3.2.

Figure 3.3: Dependence of ln, lh,n and ϕn on the fibril size at ψ/ψh = 10: solid
lines ANT ln, lh,n from Table 3.1 and ANT ϕn from the equation ϕn ≡ lnψn +
lh,nψh,n; dotted lines CNT Eqs. (3.8), (3.9) and ϕn = 4(ψψn)1/2n1/2.

The ANT dependence of ln and lh,n and of the dimensionless fibril excess en-

ergy Φn/kBT = ϕn ≡ lnψn+lh,nψh,n of the fibril total surface energy is illustrated

in Fig. 3.3 by the solid lines. For comparison, the dotted lines in the figure show

the CNT Φn/kBT = ϕn ≡ 4(ψψh)
1/2n1/2, ln and lh,n from Eqs. (2.18), (3.8) and

(3.9). From the figure, it can be seen that CNT agrees with ANT only for those

fibril sizes (n = 10, 40, and 90) for which the ANT and CNT fibril shapes are

identical. Also, Fig. 3.3 shows that CNT underestimates ln and overestimates

lh,n for all other n values. While in ANT the initiation of a new β-sheet occurs

stepwise at sizes n = 11, 41, and 91 at which the first peptide monomer of this

β-sheet is adsorbed on a fibril σh face, in CNT at these sizes the new β-sheet

starts to build up continuously on such a face. Thus, in ANT the first adsorbed

peptide on the σh face creates two new strong broken bonds and afterwards ln

remains unchanged until the fibril reaches the next size at which the ANT and

CNT shapes become identical. In contrast, the adsorption of the first peptide
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n ln lh,n n ln lh,n n ln lh,n n ln lh,n n ln lh,n

1 2 2 61 6 42 121 8 62 181 10 80 241 10 98
2 2 4 62 6 42 122 8 62 182 10 80 242 10 98
3 2 6 63 6 42 123 8 62 183 10 80 243 10 98
4 2 8 64 6 44 124 8 62 184 10 80 244 10 98
5 2 10 65 6 44 125 8 64 185 10 80 245 10 98
6 2 12 66 6 44 126 8 64 186 10 80 246 10 100
7 2 14 67 6 46 127 8 64 187 10 80 247 10 100
8 2 16 68 6 46 128 8 64 188 10 80 248 10 100
9 2 18 69 6 46 129 8 66 189 10 80 249 10 100
10 2 20 70 6 48 130 8 66 190 10 80 250 10 100
11 4 20 71 6 48 131 8 66 191 10 80 251 12 100
12 4 20 72 6 48 132 8 66 192 10 80 252 12 100
13 4 20 73 6 50 133 8 68 193 10 80 253 12 100
14 4 20 74 6 50 134 8 68 194 10 80 254 12 100
15 4 20 75 6 50 135 8 68 195 10 80 255 12 100
16 4 20 76 6 52 136 8 68 196 10 80 256 12 100
17 4 20 77 6 52 137 8 70 197 10 80 257 12 100
18 4 20 78 6 52 138 8 70 198 10 80 258 12 100
19 4 20 59 6 54 139 8 70 199 10 80 259 12 100
20 4 20 80 6 54 140 8 70 200 10 80 260 12 100
21 4 22 81 6 54 141 8 72 201 10 82 261 12 100
22 4 22 82 6 56 142 8 72 202 10 82 262 12 100
23 4 24 83 6 56 143 8 72 203 10 82 263 12 100
24 4 24 84 6 56 144 8 72 204 10 82 264 12 100
25 4 26 85 6 58 145 8 74 205 10 82 265 12 100
26 4 26 86 6 58 146 8 74 206 10 84 266 12 100
27 4 28 87 6 58 147 8 74 207 10 84 267 12 100
28 4 28 88 6 60 148 8 74 208 10 84 268 12 100
29 4 30 89 6 60 149 8 76 209 10 84 269 12 100
30 4 30 90 6 60 150 8 76 210 10 84 270 12 100
31 4 32 91 8 60 151 8 76 211 10 86 271 12 100
32 4 32 92 8 60 152 8 76 212 10 86 272 12 100
33 4 34 93 8 60 153 8 78 213 10 86 273 12 100
34 4 34 94 8 60 154 8 78 214 10 86 274 12 100
35 4 36 95 8 60 155 8 78 215 10 86 275 12 100
36 4 36 96 8 60 156 8 78 216 10 88 276 12 100
37 4 38 97 8 60 157 8 80 217 10 88 277 10 100
38 4 38 98 8 60 158 8 80 218 10 88 278 10 100
39 4 40 99 8 60 159 8 80 219 10 88 279 12 100
40 4 40 100 8 60 160 8 80 220 10 88 280 12 100
41 6 40 101 8 60 161 10 80 221 10 90 281 12 100
42 6 40 102 8 60 162 10 80 222 10 90 282 12 100
43 6 40 103 8 60 163 10 80 223 10 90 283 12 100
44 6 40 104 8 60 164 10 80 224 10 90 284 12 100
45 6 40 105 8 60 165 10 80 225 10 90 285 12 100
46 6 40 106 8 60 166 10 80 226 10 92 286 12 100
47 6 40 107 8 60 167 10 80 227 10 92 287 12 100
48 6 40 108 8 60 168 10 80 228 10 92 288 12 100
49 6 40 109 8 60 169 10 80 229 10 92 289 12 100
50 6 40 110 8 60 170 10 80 230 10 92 290 12 100
51 6 40 111 8 60 171 10 80 231 10 94 291 12 100
52 6 40 112 8 60 172 10 80 232 10 94 292 12 100
53 6 40 113 8 60 173 10 80 233 10 94 293 12 100
54 6 40 114 8 60 174 10 80 234 10 94 294 12 100
55 6 40 115 8 60 175 10 80 235 10 94 295 12 100
56 6 40 116 8 60 176 10 80 236 10 96 296 12 100
57 6 40 117 8 60 177 10 80 237 10 96 297 12 100
58 6 40 118 8 60 178 10 80 238 10 96 298 12 100
59 6 40 119 8 60 179 10 80 239 10 96 299 12 100
60 6 40 120 8 60 180 10 80 240 10 96 300 12 100

Table 3.1: ANT numbers ln and lh,n of, respectively, the strong and weak broken
bonds of an n-sized amyloid fibril at the periphery of the fibril cross section in
the (m, i) plane (ψ/ψh = nt = 10).
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3.4 Work of fibril formation

monomer leaves lh,n unchanged for all subsequent fibril sizes until the new β-

sheet is fully formed (Fig. 3.3). When the fibril grows further, lh,n increases

stepwise (Fig. 3.3) due to the alternating creation and annihilation of kink sites

at the fibril ends until the fibril assumes the next size at which the ANT and

CNT shapes become identical. Importantly, CNT underestimates the part ϕn of

fibril total surface energy for all n values for which the ANT and CNT shapes

differ. This underestimation turns out to be the main reason for which CNT

predicts a much lower nucleation rate than the one obtained using Eq. (3.2) for

ANT.

The wn plots at s/ψh = 1, 4/3, 2 and 3 are seen in Fig. 3.4. The jaggedness

Figure 3.4: Dependence of wn and wi,n on the fibril size at ψ/ψh= 10 at scaled
supersaturation s/ψh=1, 4/3, 2 or 3 (as indicated): solid lines ANT Eq. (3.1)
with ln and lh,n from Table 3.1; dotted lines CNT Eq. (2.18); dashed lines 1β,
2β and 3β CNT Eq. (2.13) at i = 1, 2 or 3 for 1β-sheet, 2β-sheet or 3β-sheet,
respectively.

of the dependences is inherited from that of the ln and lh,n dependences in Fig.

3.4 and reflects the fibril nucleation mechanism. The sharp peak of wn at fibril

size n = 11, 41, or 91 corresponds to the adsorption of the first peptide monomer

on a fibril outer β-sheet (the ascending straight line) and the ensuing completion

of the newly born β-sheet (the descending straight line). The jagged line after

the peak reflects the consequent elongation of the fibril by alternating creation

and annihilation of kink sites at the fibril ends until the fibril reaches the size

corresponding to the next peak. For comparison, by dashed and dotted lines,

respectively, in Fig. 3.4 also the CNT wi,n from Eq. (2.13) (at s/ψh = 4/3 and
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3.5 Nucleus size and nucleation work

i = 1, 2 and 3) and CNT wn from Eq. (2.18) (at s/ψh = 1, 4/3, 2 and 3) are

displayed. In conformity with the ln and lh,n dependences, CNT and ANT wn

agree only for n = 10, 40, and 90, and CNT from Eq. (2.13) provides a tangent

to the ANT wn function on the side of the minima. As seen in Fig. 3.4, the CNT

wi,n lines for successive iβ-sheets form a broken straight line enveloping the CNT

wn line. The reason for which the former is above the latter is that wn is derived

under the condition of equilibrium shape of the fibrils. On the other hand, the

CNT wi,n lines connect the minima of the respective ANT wn line because wi,n

corresponds to fibrils with strictly rectangular shape, and does not account for the

atomistic irregularities in the actual fibril shape. As already noted, in CNT the

supersaturation s1,β = 2ψh is the divider between the nucleation (s ≤ 2ψh) and

metanucleation (s > 2ψh) regimes of fibril formation. In the latter regime, each

monomer peptide is a nucleus and the fibrillation process occurs spontaneously.

In contrast, in ANT the nucleus size is still n∗ = 11 when s > 2ψh. Although

the work is gained on building up the 1β-sheet up to n = 10 (see line 3 in Fig.

3.4), the adsorption of the first peptide monomer on the β-sheet surface requires

the creation of two kink sites and costs a high additional energy. This energy

represents a barrier to the fibril overgrowth and for that reason, as predicted by

CCNT (81), for s > 2ψh fibril formation is still nucleation-mediated, but in a

non-classical way. Only at a supersaturation sufficiently higher than s1β does

this barrier vanish and the fibrils then form in the metanucleation regime.

3.5 Nucleus size and nucleation work

The fibril shape characterised by the lowest total surface energy has been used

for determining the ANT wn dependence from Eq. (3.1). The calculation of the

respective nucleus size n∗, nucleation work w∗ can be done as explained in the

previous sections. Given the supersaturation s, in ANT the nucleus size n∗ can

be determined only numerically from the global maximum of wn from Eq. (3.1).

Importantly, ANT predicts that n∗ has different s-independent integer values in

successive s ranges, which means that n∗ is a stepwise function of s. For that

reason, the n∗(s) dependence which corresponds to those given by the classical

and corrected Gibbs-Thomson Eq. (2.19) and (2.27) cannot be represented an-

alytically. Nonetheless, using the obtained numerical n∗ values for calculating

the numbers l∗ ≡ ln∗ and l∗h ≡ lh,n∗ of strong and weak broken-bonds of the fibril

52



3.5 Nucleus size and nucleation work

nucleus allows numerical determination of the supersaturation dependence of the

dimensionless nucleation work w∗ with the help of the expression (s ≥ 0)

w∗ = −sn∗ + l∗ψ + l∗hψh, (3.10)

which follows from Eq. (3.1) and in which all n∗, l∗ and l∗h are s-independent

positive integers in a given supersaturation range. For that reason, the ANT

nucleation work from Eq. (3.10) obeys the nucleation theorem in the form (77),

(83), (78) dw∗/ds = −n∗. Also, at ψ/ψh = 1, Eq. (3.10) passes into that in Ref.

(80) for 2D nucleation of crystals.

The supersaturation at which the ANT nucleus changes its size stepwise from

n∗j to n∗j+1 (j = 1, 2, 3, ...) is the so-called transition supersaturation st,j. This

quantity can be determined from the crossing of two successive w∗(s) straight

lines, i.e. from the definition equation w∗(st,j, n
∗
j) = w∗(st,j, n

∗
j+1) (106). Using in

this equation w∗ from Eq. (3.10) leads to the general expression (j = 1, 2, 3, ...)

st,j = [(l∗j+1 − l∗j )ψ + (l∗h,j+1 − l∗h,j)ψh]/(n
∗
j+1 − n∗j). (3.11)

For the model peptide system considered, the ANT lines in Fig. 3.4 show

that the nucleus size is n∗1 = 11 for s/ψh > 4/3 and jumps to n∗2 = 41 at the

transition supersaturation st,1 = 4/3. The fibril nuclei of these two sizes are

shown shaded in Fig. 3.2. The values of the first five nucleus sizes and transition

supersaturations, listed in Table 3.2, are obtained from wn plots as those in Fig.

3.4 but for sufficiently wide n and s ranges.

Table 3.2 confirms that an outstanding characteristic feature of ANT for

amyloid nucleation is that the size of fibril nucleus is a constant integer in a

given supersaturation range.

Inspection of Table 3.2 shows that for the model peptide system considered

l∗j , l
∗
h,j, n

∗
j and st,j/ψh are related by the simple expressions (j = 1, 2, 3, ...)

l∗j = 2(j + 1), (3.12)

l∗h,j = 2jnt, (3.13)

n∗j = 1 + j2nt, (3.14)

st,j

ψh

=
4

2j + 1
. (3.15)
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3.5 Nucleus size and nucleation work

j st,j/ψh s/ψh range n∗ m∗
j,1 m∗

j,2 m∗
j,3 m∗

j,4 m∗
j,5 m∗

j,6 l∗j l∗h,j

1 4/3 > 4/3 11 10 1 0 0 0 0 4 20
2 4/5 4/3-4/5 41 20 20 1 0 0 0 6 40
3 4/7 4/5-4/7 91 30 30 30 1 0 0 8 60
4 4/9 4/7-4/9 161 40 40 40 40 1 0 10 80
5 4/11 4/9-4/11 251 50 50 50 50 50 1 12 100

Table 3.2: ANT transition supersaturations st,j and supersaturation ranges in
which the fibril nucleus has constant size of n∗j peptides (j = 1, 2, 3,...). The
jth nucleus has m∗

j,p peptides in its pth β-sheet (p = 1, 2, 3,...) so that n∗j =
m∗

j,1 +m∗
j,2 +m∗

j,3 + .... The last two columns list the numbers l∗j and l∗h,j of the
strong and weak broken bonds at the periphery of the nucleus cross section in
the (m, i) plane. The values are relevant for ψ/ψh = nt = 10.

When nt = ψ/ψh = 10, these equations say, for example, that the first ANT

nucleus (j = 1) has four strong and 20 weak broken bonds, that it contains 11

peptides, and the first transition supersaturation st,1 equals 4ψh/3. It can be

noted as well that Eq. (3.15) follows from Eq. (3.11) in the particular case of l∗j ,

l∗h,j, and n∗j given by Eqs. (3.12)-(3.14).

Figure 3.5: Supersaturation dependence of the nucleus size at ψ/ψh = 10: red
dotted line CNT Eq. (2.19); blue dashed line CCNT Eq. (2.27); black solid
line ANT Eq. (3.14).

The ANT n∗(s) dependence presented in Table 3.2 is depicted by the stepped

line in Fig. 3.5. The figure clearly demonstrates that n∗j(s), from Eq. (3.14),
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3.5 Nucleus size and nucleation work

is a constant integer in a given supersaturation range and exhibits jumps at the

transition supersaturations st,j, from Eq. (3.15). In CNT and CCNT the n∗(s)

dependence is described by the Gibbs-Thomson Eqs. (2.19) and (2.27), both of

which approximate relatively well the size even of the smallest ANT nucleus. In

Fig. 3.6 the ANT dependence of w∗(s) dependence obtained from Eq. (3.10)

with the aid of the n∗, l∗ and l∗h values from Table 3.2 is illustrated.

Figure 3.6: Supersaturation dependence of the nucleation work w∗ at ψ/ψh

= 10: red dotted line CNT Eq. (2.20); blue dashed line CCNT Eq. (2.28);
black solid line ANT Eq. (3.16). The arrows point at the first three transi-
tion supersaturations and at the supersaturation s1,β which limits the CNT and
CCNT applicability. The numbers indicate the constant ANT nucleus size in the
corresponding s range.

It can be observed that the ANT nucleation work is a broken linear function

of s and the slopes of the linear portions determine the corresponding n∗ values.

This is so, because according to Eq. (3.10), the ANT w∗(s) is a linear function

of s if the nucleus size n∗ and the numbers ln and lh,n of the nucleus strong and

weak broken bonds are constant. The s dependence of the jth nucleation work

w∗
j is given by the formula (j = 1, 2, 3...):

w∗
j = −(1 + j2nt)s+ 2(2j + 1)ψ, (3.16)

which follows from Eqs. (3.10) and (3.12)-(3.14). For comparison, by dotted

and dashed lines, in Fig. 3.6 is also shown the respective CNT and CCNT

w∗(s) dependences from Eqs. (2.20) and (2.28). It is seen that while CNT
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greatly underestimates the ANT nucleation work, there is a good quantitative

agreement between the CCNT and ANT description except around the first

transition supersaturation st,1.

3.6 Nucleation rate

For the determination of the ANT nucleation rate J the exact formula given in

the introduction Eq. (3.2) has been used. In the formula (3.2) the frequency of

attachment can be approximated as fn = f1ln/2, where the proportionality of fn

to ln reflects the fact that the β-strands are attached predominantly to the ends

of the fibril β-sheets (the fibril hydrogen broken bonds are at these ends), and the

divisor 2 takes into account that the monomer β-strand has two hydrogen broken

bonds. With the aid of Cn from the general formula (77), Cn = C1 exp(w1,1−wn)

(cf. Eq. (2.24)),w1,1 from Eq. (2.14), wn from Eq. (3.1), and fn from the above

approximation, Eq. (3.2) leads to the Becker-Döring ANT (BDANT) expression

for the fibril nucleation rate (s ≥ 0):

J(s) =
f1C1∑M−1

n=1 exp[−s(n− 1) + (ln − 2)ψ + (lh,n − 2)ψh]
. (3.17)

The above approximation for fn has a negligible effect on the J values calculated

from Eq. (3.17). For that reason, the J(s) dependence from Eq. (3.17) will be

used for a reliable quantitative verification not only of the CNT and CCNT J(s)

dependences from Eq. (2.26) and (2.29), but also of the ANT J(s) dependence

from Eqs. (3.18) obtained below.

As known (e.g., ref. (77)) Eq. (2.3) is a good general approximation to the

Becker-Döring Eq. (3.2). For that reason as in CNT and CCNT, an approximate

ANT formula for J can be obtained from Eq. (2.3), in combination with Eq.

(2.24) for C∗ and Eq. (3.10) for the ANT w∗. Also, the CCNT approximations

z = 1/2 and f ∗ = 2f1 can be used for the Zeldovich factor z and the attachment

frequency f ∗ in Eq. (2.3). Thus, since in ANT w1,1 is again given by w1,1 =

−s+2(ψ+ψh), using Eq. (2.3) the ANT J(s) dependence can be written in the

form (s ≥ 0)

J(s) = f1(s)C1 exp[(n∗ − 1)s− (l∗ − 2)ψ − (l∗h − 2)ψh]. (3.18)
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In this expression, ψ and ψh are specified by Eqs. (3.5) and (3.6), and n∗, l∗

and l∗h are s-independent positive integers in a given supersaturation range. As

shown previously, these three nucleus parameters are obtainable solely by model

considerations at the molecular level. Assigning different values of the super-

saturation s, from Eqs. (3.17) and (3.18) one can obtain the J(s) dependence

for any amyloidogenic protein solution. In the experimentally important case of

fibril nucleation at fixed temperature T , the supersaturation s and the product

f1(s)C1 are given by (81) s = ln(C1/Ce) and f1(s)C1 = f1,eCe exp(2s). It thus

follows from Eqs. (3.17) and (3.18) that in this case the explicit BDANT and

ANT J(C1) dependences read (C1 ≥ Ce):

J(C1) =
f1,eCe∑M−1

n=1 (2/ln)(C1/Ce)−(n+1) exp[(ln − 2)ψ + (lh,n − 2)ψh]
(3.19)

and

J(C1) = f1,eCe

(
C1

Ce

)n∗+1

exp[−(l∗ − 2)ψ − (l∗h − 2)ψh]. (3.20)

respectively. Equation (3.20) parallels the ANT J(C1) formula for nucleation in

solutions (77) and in it n∗, l∗ and l∗h have different C1-independent integer values

in successive C1 ranges.

The BDANT J(s) dependence was obtained from Eq. (3.17) with the ln, lh,n

values from Table 3.1, ψ = 12.0, ψh = ψ/10 = 1.2, and M = 300. This M value

was chosen, because larger values had no effect on the J values calculated from

Eq. (3.17) at all supersaturation values studied. The resulting BDANT J(s)

dependence is illustrated in Fig. 3.7 by circles.

Also shown in Fig. 3.7 is the ANT J(s) dependence (the solid line) obtained

from Eq. (3.18) with n∗, l∗ and l∗h from Table 3.2 and with the above ψ and ψh

values. All n∗, l∗ and l∗h are different s-independent integers in the successive s

ranges limited by the respective transition supersaturations st,j, the first two of

which are indicated in the figure. For that reason, the ANT ln J is a broken linear

function of s and the slopes of the successive straight lines are determined by the

corresponding n∗. As seen, the ANT ln J has a behaviour similar to that of the

BDANT ln J , which exhibits sharp bends followed by practically linear portions.

The same similarity between nucleation rates obtained from the Becker-Döring

equation (3.2) and that predicted by ANT has also been observed in nucleation

of 2D and 3D Kossel crystal (80). The agreement of the ANT nucleation rate
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Figure 3.7: Supersaturation dependence of the nucleation rate J at ψ = 12.0 and
ψh = 1.2: circles BDANT Eq. (3.17); solid line ANT Eq. (3.18); dashed line
CCNT Eq. (2.29); dotted line CNT Eq. (2.26). The arrows point at the first
two transition supersaturations and at the supersaturation s1,β which limits the
CCNT and CNT applicability. The numbers indicate the constant ANT nucleus
size in the corresponding s range.

with the BDANT one is remarkable, especially at high supersaturations where

the ANT Eq. (3.18) captures the sharp bends of the BDANT J(s) dependence

at the consecutive transition supersaturations. Equation (3.18) works well even

for supersaturations s > s1β = 2ψh, i.e. in the s range where CNT and CCNT

are not applicable. This is due to the fact that in this s range the n∗1-sized fibril

(n∗1 = 11) continues to act as nucleus and a work greater than w1,1 is still needed

for its formation (see solid line 3 in Fig. 3.4). At s = 3.8ψh, the nucleation

work w∗
1 becomes equal to w1,1 and the nucleation barrier vanishes. At this s

value n∗ diminishes stepwise from 11 to 1 (i.e. the peptide monomer becomes

nucleus) and, accordingly, l∗ and l∗h decrease stepwise from 4 to 2 and from 20

to 2, respectively. Using n∗ = 1, l∗ = 2 and l∗h = 2 in the ANT Eq. (3.18) allows

determining the nucleation rate for s > 3.8 ψh, the result being J = f1(s)C1 (this

relation is represented by the horizontal portion of the solid line in Fig. 3.7).

At such high supersaturations, fibril formation for the model peptide system

considered occurs in the metanucleation regime.

The CNT and CCNT J(s) dependences from Eq. (2.26) and Eq. (2.29) at

the above ψ and ψh values are illustrated in Fig. 3.7 by the dotted and dashed

lines, respectively. As seen, there is a stark quantitative disagreement (about

eight orders of magnitude) between CNT and all BDANT, ANT and CCNT.
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The main reason for this is that CNT greatly underestimates the nucleation

work w∗ (see Fig. 3.6). In contrast, J(s) of CCNT agrees quite well with that of

both BDANT and ANT. It deviates most markedly from them only around the

first transition supersaturation st,1 because of the greatest difference between the

ANT and CCNT nucleation works around this transition supersaturation (Fig.

3.6).

3.7 Conclusion

Application of ANT for describing the nucleation of amyloid fibrils when the

process occurs by direct polymerisation of peptides or protein segments into β-

sheets leads to general expressions for the work to form a nanosized fibril and for

the fibril nucleus size, nucleation work and nucleation rate. The main difference

between the ANT description and that of both CNT and CCNT is that while

the latter considers all fibrils as having the shape of rectangular prism, the ANT

captures the fine details of the fibril shape. It is this explicit consideration of the

fibril shape at molecular level that makes the ANT model interesting, allowing

it to provide qualitative new results.

Comparison of the ANT expressions for wn, n∗, w∗ and J with the corre-

sponding CNT and CCNT ones illustrates the principal differences between the

atomistic and classical descriptions, which are exemplified by the studied model

peptide system. The analysis reveals that the CNT work wn to form a fibril un-

derestimates the ANT one for all fibril sizes, except for those at which the CNT

and ANT fibril shapes are identical. A prominent characteristic feature of ANT

is that the fibril nucleus size n∗ is a constant integer in a given supersaturation

range, whereas in CNT and CCNT n∗ diminishes continuously with increasing s,

as described by the Gibbs-Thomson equation (2.19) and (2.27). The characteris-

tic jumps in the ANT n∗(s) dependence imply that the ANT nucleation work w∗

is a linear function of the supersaturation s in a given s range. Comparison of

the CNT and ANT Eqs. (2.20) and (3.10) for the fibril nucleation work w∗ shows

that this quantity is greatly underestimated by CNT. This underestimation is al-

most completely eliminated by CCNT upon accounting that the CNT nucleation

work should include the work to attach that peptide or protein segment to the

surface of the CNT nucleus, which generate a new β-sheet on this nucleus. The
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resulting CCNT Eq. (2.28) for the nucleation work agrees well with the ANT

Eq. (3.10).

The stark quantitative disagreement between CNT and the CCNT and ANT

formulae for the nucleation work w∗ has a crucial impact on the CNT and the

ANT predictions for the fibril nucleation rate J . The CNT-predicted J values are

greater than the practically exact BDANT ones by many orders of magnitude.

In contrast both the CCNT nucleation rate from Eq. (2.29) and, especially, the

ANT one from Eq. (3.18) agree very well with that predicted by the BDANT

Eq. (3.17). Remarkably, the ANT J(s) dependence works very well even at

supersaturations higher than the maximum supersaturation s1β where CNT and

CCNT are not applicable. So far, CCNT has been applied only to nucleation of

2D and 3D Kossel crystals, (80), and again has been successful in describing the

supersaturation dependence of the nucleation rate. Despite its success however,

as the corrections introduced by it are in the scope of CNT, CCNT is limited by

the major CNT weakness of not accounting for the possible dependence of the

fibril surface energy on the fibril size.

It is worth pointing out that changing the ratio of the β-strand surface ener-

gies, nt = ψ/ψh, does not change qualitatively the results but only modifies the

quantitative details of the curves shown in the previous pages. A change in the

ratio nt implies that a new sequence of optimal shapes has to be determined.

According to Eqs. (3.1), (3.10) and (3.14), in particular, increasing the ψ/ψh

ratio has the effect of increasing the barrier wn/ψh, the nucleus size, n∗ and the

nucleation work, w∗. Then, as expected, the nucleation rate J will decrease upon

increasing the ψ/ψh ratio, as apparent from Eq. (3.17).

The major result of the present study is that one should always use CCNT

rather than CNT for a quantitatively reliable analytical description of n∗, w∗

and J when formation of amyloid fibrils is nucleation-mediated. An even better

description of these quantities is provided by ANT, but this theory cannot be

solved analitically, since the ANT work wn to form a fibril does not admit a

simple analytical expression. The practically exact J(s) dependence is obtainable

numerically from the BDANT Eq. (3.17).
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Chapter 4

Amyloid fibrillation kinetics:

Insight from atomistic nucleation

theory1

In this chapter the nucleation of β2-microglobulin (β2m) and amyloid β40 (Aβ40)

nanosized fibrils composed of successively layered β-sheets will be discussed at

molecular level. As in the previous chapters, the nucleation process considered

here takes place by direct polymerisation of protein segments (β-strands) into

β-sheets. In particular, employing ANT to amyloid nucleation of β2m and Aβ40

fibrils, predictions of the fibril nucleus size and of the fibril nucleation rate will be

determined as functions of the supersaturation and concentration of the protein

solution. Then the ANT results will be correlated to recent time-resolved optical

experiments, where the effects of the protein concentration and mutations on the

initial lag time in the protein solution have been measured. The present analysis

reveals the general principles underlying the nucleation kinetics of nanosized

amyloid fibrils and indicates that the protein fibrillation can be treated in the

framework of existing general theories of the nucleation of new phases.

4.1 Introduction

The assembly of proteins into amyloid fibrils is a widespread and much-studied

phenomenon, because it has wide implications ranging from biotechnology to hu-

man disease (22; 43). Yet, the nucleation of such nanofibrils is poorly understood.

1This chapter is based on Ref. (17).
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The reason is that experiments characterising the early stages leading to the for-

mation of these aggregates are notoriously difficult, and the complexity of the

protein systems has made it difficult to simulate the fibril nucleation events. It is

now well established that fibrillar protein aggregates form through a nucleation

mechanism (4; 5; 31; 32; 33; 38; 40; 41; 54; 60; 61; 67; 98; 100; 101; 109; 110; 111;

124; 128; 152; 157; 163). Their formation kinetics in fact is characterised by an

initial lag time τl(s) during which no aggregates are detected, and by a maximal

rate ka (s−1) of the overall aggregation process. Time-resolved optical experi-

ments that measure the fluorescence signal arising from dye molecules such as

thioflavin-T bound to the protein aggregates enable the determination of τl and

ka. Numerous experiments (24; 28; 51; 58; 62; 87; 88; 92; 112; 116; 122; 157; 164)

have been performed to reveal the relationship between the physicochemical

properties of the natural amino acids and the kinetics of amyloid formation.

These experiments have in turn been used to substantiate phenomenological

models (20; 23; 30; 138; 144; 161) able to predict changes in the propensity of

proteins to aggregate upon mutation as well as to identify amino acid sequences

of proteins that are likely to belong to the fibril core.

In this chapter the stated problem is approached from a different angle con-

sidering that this specificity might be a particular expression of a common fibril

nucleation mechanism which could be treated in the framework of existing gen-

eral theories of nucleation of new phases (e.g., Ref. (77)). Progress to support

this view was made in recent works (6; 18; 81), where concepts from the theory

of overall crystallisation to describe the kinetics of overall protein aggregation

have been used, and classical and atomistic nucleation theories (CNT and ANT,

respectively) have been applied to describe the nucleation of amyloid fibrils. In

this study the objective is to illustrate the application of ANT to analyse and

possibly predict the results of experiments on the fibrillation kinetics of β2m and

Aβ40 with some point mutations.

β2-microglobulin is a 100 amino-acid long protein which can self-assemble into

amyloid fibers. It has been shown that the β2m fibers are associated with nu-

merous hemodialysis human diseases (22; 122). Amyloid β is a 36-42 aminoacid-

long peptide formed by cleavage of Amyloid Precursor Protein (APP) and it is

the major component of amyloid plaques in the brains of patients affected by

Alzheimer’s disease (22; 24). The most common peptide found in the amyloid

fiber core are Aβ40 and Aβ42. Because of health and medical implications there
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are a wide range of experimental and theoretical studies related to β2m and Aβ40

peptides (53).
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4.2 Modelling the amyloid fibril

In this chapter the fibril model discussed in chapter 3 (Fig. 3.1) is applied to

real proteins. The fibril model proposed is based on reported structural and

morphological studies of amyloid fibrils and microcrystals (65; 103; 124; 152). It

is worth reminding that due to their strong hydrogen bonds, the virtually fully

extended β-strands of proteins can arrange along the fibril lengthening axis (the

m axis in Fig. 4.1) into β-sheets. The much weaker hydrophobicity-mediated

bonds cause the β-strands to arrange along the fibril thickening axis (the i axis in

Fig. 4.1) in such a way that a nanosized amyloid fibril composed of successively

layered β-sheets can form. Since the fibril width is fixed and equal to the β-strand

length, the fibril can be considered as a 2D aggregate in the (m, i) plane, with

building blocks (the β-strands) arranged in a 2D lattice of simple rectangular

symmetry (Fig. 4.1).

Figure 4.1: Schematic picture of n = 15-sized fibril with thickness of i = 2 β-
sheets of length m = 10 β-strands in the first β-sheet and m = 5 β-strands in
the second β-sheet. Each β-strand is composed of 10 amino acids. The blue and
red lines shown for the rightmost β-strand represent the broken bonds of each
amino acid in the direction of the i and m axes, respectively. The sum of the
broken bond amino acids give the interstrand broken bond energies E/2 (Joule)
and Eh/2 (Joule) according to Eqs. (4.1) and (4.2). Here the total number of
E/2 and Eh/2 sides, parallel to the fibril i and m axis, are given by l = 4 and lh
= 20, respectively.

To apply the model to a real protein it is necessary to identify the amino

acids that represent the β-strand in the fibril model considered. Once the most

aggregation-prone regions in the protein have been identified, the binding ener-

gies E and Eh need to be calculated.
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4.3 Sequence-specific bonding energies

In the atomistic approach to nucleation of amyloid fibrils (17; 18; 80), important

parameters are the binding energies of the β-strands within the fibril. As stated

in the previous chapter E and Eh are the binding energies between two nearest-

neighbour β-strands along the m and i axes in Fig. 4.1, respectively. The excess

energy of any n-sized nanofibril equals the fibril total surface energy (81) which,

according to ANT (18; 80), is given by the total energy lnE/2 + lh,nEh/2 of the

nearest-neighbour broken-bonds at the periphery of the fibril cross section in the

(m, i) plane. In the above sum, n is the number of β-strands in the fibril, and ln

or lh,n is the total number of nearest-neighbour broken bonds that are parallel

to the fibril m axis or i axis, respectively.

In order to calculate E and Eh it is assumed that each amino acid in a β-

strand (ten such amino acids are illustrated in Fig. 4.1 by the prisms in the

rightmost β-strand of the shorter β-sheet) forms hydrogen bonds solely along

the m axis, and that hydrophobicity-mediated bonds can be formed along both

the m and i axes. Assuming further that bonds can only be formed between

nearest-neighbour amino acids, the interstrand binding energies E and Eh are

given by summation of the bond energies of such amino acids over all amino acid

pairs in neighbouring β-strand:

E =
∑

p

[εjq(p) + εh,jq(p)] (4.1)

and

Eh =
∑

p

εh,jq(p). (4.2)

In Eq. (4.1), the summation goes over all amino acid pairs p in two nearest-

neighbour β-strands of a β-sheet, and in Eq. (4.2) over all amino acid pairs p

in two nearest-neighbour β-strands of two successive β-sheets. Here the energies

of a nearest-neighbour hydrophobicity-mediated amino acid bond and a nearest-

neighbour hydrogen bond between two amino acids j and q are denoted by εh,jq

and εjq, respectively (εjq >> εh,jq, because the hydrogen bond is much stronger

than the hydrophobicity-mediated interaction). The assignment of sequence-

specific binding energies to εjq and εh,jq allows the application of the fibril model

to specific protein systems. In this study, the sequence-specific hydrogen-bond
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energies used are based on a statistical analysis (144) of the frequency that two

residue types are found paired in neighbouring strands within β-sheets in globular

proteins. The pairing energy depends on the orientation (parallel or antiparallel)

of the β-strands. In the model εPjq and εAjq are the dimensionless pairing energies

for the parallel and antiparallel orientation, respectively. In particular their

values are taken from Table 1 of Ref.(144) to modulate the basic unit ε (Joule)

of the hydrogen bond energy in such a way that the values of the binding energy

εjq lie in the interval [0, 2ε]:

εjq =

2

(
εAPRO,ASP − ε

P(A)
jq

)
εAPRO,ASP − ε

A
CYS,CYS

ε. (4.3)

Here, εACYS,CYS = -2.57 and εAPRO,ASP = 3.55 are, respectively, the dimen-

sionless bond energies of a CYS-CYS pair and a PRO-ASP pair in an antiparallel

β-sheet, and ε
P(A)
jq equals εPjq or εAjq for the parallel or antiparallel orientation.

For the basic unit of the hydrogen bond ε = 6.95 × 10−21 J (1 kcal/mol) has been

used, because this value is in the range of the hydrogen-bond energies measured

experimentally (35). For simplicity, the energy of the hydrophobicity-mediated

bond is assumed to be the same for all amino acid pairs, so that εh,jq = εh, and

further εh = ε/10 has been set.

4.4 Nanofibril evolution mechanism

The determination of the nucleation rate J from Eq. (3.19) requires specification

of the sequence of shapes that the fibril takes during its evolution from the

monomer size n = 1 to the considered size n > 1. In reality, there are many such

sequences, as explained in the previous chapter, the sequence of shapes which

has the CNT equilibrium shape as a reference has been chosen. This is because

the latter corresponds to the minimal total surface energy consistent with the

Szilard-Farkas mechanism (81). The same evolution mechanism explained in the

previous chapter will be adapted to describe nanofibril growth mechanism for

two real proteins, i.e, β2m and Aβ40.

In the sequence of shapes shown in Fig. 4.2, the fibril initially evolves as a

single β-sheet, and according to CNT (81), the transition from one-dimensional
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4.4 Nanofibril evolution mechanism

(1D) to two-dimensional (2D) evolution occurs at a transition size nt = E/Eh.

This size is an important parameter, because it characterises the fibril equilibrium

shape, i.e., the fibril thermodynamically favoured aspect (length/thickness) ratio.

In particular the shape sequence in Fig. 4.2 represents the fibril evolution into

nanofibrils from β2m β-strands with nt = E/Eh = 12. Thus, the (nt + 1)-sized

Figure 4.2: Fibril shapes with minimum total surface energy depicting the fibril
evolution at nt = E/Eh = 12. The shaded fibrils represent the subsequent nuclei.

fibril (the one with n = 13 in Fig. 4.2) has the shape of 1β-sheet of length nt with

one protein monomer (β-strand) adsorbed on the sheet surface. This monomer

gives birth to the fibril second β-sheet and creates two kink sites at the fibril

surface (marked by plus signs in Fig. 4.2). As shown in Ref. (18), in a certain

supersaturation range the (nt + 1)-sized fibril requires maximum work for its

formation and is therefore the so called nucleus. Further monomer attachment

to a kink site does not increase the fibril total surface energy, because the fibrils

of size n = nt + 1, nt + 2,..., 2nt have the same total number of broken bonds (see

the fibrils with n = 13, 14 and 24 in Fig. 4.2). Since the CNT equilibrium shape

requires fibril thickness between one β-sheets and two β-sheets from n = 2nt to

n = 2× 2nt, the attachment of the next protein monomer to the 2nt-sized fibril

can be assumed to occur at one of the two fibril ends. This lengthwise monomer

attachment creates a kink site at the end of the fibril of size n = 2nt + 1 (the
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fibril with n = 25 in Fig. 4.2)) and the next monomer is attached to this site

with no surface-energy cost. Thus, further fibril growth occurs by alternating

creation and annihilation of kink sites at the fibril ends until the fibril reaches

the size n = 2× 2nt (see the fibrils with n = 25 and 48 in Fig. 4.2). At this size,

the attachment of the next protein monomer can be assumed to occur again to

one of the fibril two β-sheets (see the fibril with n = 49 in Fig. 4.2), because the

CNT equilibrium shape requires fibril thickness between two and three β-sheets

for fibril sizes from n = 2×2nt+1 to n = 3×3nt. Further growth of the fibril can

be expected to occur in the above manner. For this shape sequence (Fig. 4.2)

it is now possible to determine the nucleation rate J from Eq. (3.19), simply by

counting ln and lh,n for each n. In Appendix A, Table A.1 shows the number of

broken bonds ln and lh,n at the fibril periphery in the (m, i) plane for the shape

sequence illustrated in Fig. 4.2 from n =1 to n = 300.

4.5 Solubility

As already stated in the previous chapters, for protein solutions in which the

supersaturation s is experimentally controlled by the concentration C1 (m−3) of

monomer protein at a fixed temperature T, s can be calculated from the equation

(81)

s(C1) = ln(C1/Ce). (4.4)

The integrated van’t Hoff equation relates the equilibrium concentration Ce

(m−3) to the latent heat or enthalpy per β-strand L (Joule) of protein aggregation

and is given by

Ce = Cr exp(−L/kT ), (4.5)

where Cr (m−3) is a reference concentration. In analogy to the Haas-Drenth

lattice model of protein crystals (52), L is approximately given by half of the

average binding energy < Eb > of a β-strand within the bulk fibril phase (81)

L =< Eb > /2. (4.6)

For the fibril model considered here, < Eb > = 2(E + Eh), where E and

Eh are given by Eqs. (4.1) and (4.2). If sW and sM are the supersaturations

for wild-type and point-mutated proteins respectively, employing Eqs. (4.4) and
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(4.5), allows to write the change ∆s ≡ sM − sW in the supersaturation upon a

point mutation of the wild-type protein, at the same β-strand concentration C1

and temperature T , in the form

∆s ≡ (LM − LW )/kBT. (4.7)

The latent heat LW or LM of the wild-type protein or the mutant can be

calculated from Eq. (4.6) when the corresponding average binding energy < Eb >

is known. In the same manner, if Ce,W and Ce,M are the solubilities of wild-type

and point-mutated proteins, respectively, the change in the fibril solubility at the

same temperature can be characterised by the ratio

Ce,M/Ce,W = exp[(LW − LM)]/kBT. (4.8)

This formula follows from Eq. (4.5) provided the point mutation has practically

no effect on Cr.
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4.6 Prediction of experimental results

β2m and its mutants

At first, it is considered the amyloid fibrillation of β2m, for which the concen-

tration dependence and the effect of mutations on the overall aggregation has

been investigated experimentally (118; 122; 157). In order to apply the present

fibril model to describe a β2m fibril, it is necessary to identify the amino acids of

β2m that represent the β-strand in the fibril model. This can be done unambigu-

ously only when the amyloid fibril structure is known at atomistic resolution. In

absence of such detailed structural knowledge of β2m fibrils, experimental data

(118; 122) and theoretical models (30; 144) that identify the most aggregation-

prone regions in proteins have been used. Both methods suggest that for β2m

the amino acid sequence 61 to 70 (SFYLLYYTEF) is the most aggregation-prone

region (where S = Serine, F = Phenylalanine, Y = Tyrosine, L = Leucine, T =

Threonine, E = Glutamic Acid). Thus 10 amino acids form a sequence that is de-

fined to be the β-strand in the fibril model (Fig. 4.1). Furthermore, it is assumed

that consecutive β-strands within the same β-sheet are arranged anti-parallel as

suggested theoretically (144).

With the set of parameter values given in the previous sections, the inter-

strand binding energies E and Eh for the β-strand (SFYLLYYTEF) within an-

tiparallel β2m fibrils can be calculated from Eqs. (4.1) to (4.3) giving E = 11.9

ε and Eh = 1.0 ε.

The determination of the nucleation rate J from Eqs. (3.17) or (3.19) requires

specification of the sequence of shapes that the fibril takes during its evolution

from the monomer size n = 1 to the considered size n > 1. As previously

explained in section 4.4, the sequence of shapes (Fig. 4.2) which has the CNT

equilibrium shape as a reference will be assumed. By using the numbers of broken

bonds ln and lh,n in Table A.1 of Appendix 1 for the β2m shape sequences, the

J dependence has been determined according to Eqs. (3.17) or (3.19). The

broken bond numbers at the fibril periphery in the (m, i) plane for the β2m

shape sequence are partially illustrated in Fig. 4.2.

First the plots as a function of the supersaturation s will be described. The

J(s) dependence from Eq. (3.17) in Fig. 4.3 has been plotted using T = 300

K, M = 300, Ce = 0.2 µM (obtained from the comparison with experimental

data described below), and f1,e = 10−4s−1 inferred from measured elongation
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Figure 4.3: Dependence of the fibril nucleation rate J on the supersaturation
s = ln(C1/Ce) for wild-type β2m according to Eq. (3.17). Here C1 is the concen-
tration of monomer protein and Ce is the β2m fibril solubility. The red arrows in
the graph point to the transition supersaturations (from Eq. (3.11)) correspond-
ing at which the J curve bends, decreasing its slope and thus the fibril nucleus
size according to Eq. 2.31.

rates (93). The value for M was chosen because larger values had no effect on

the J values calculated at all the supersaturations that have been studied. The

solid line in Fig. 4.3 illustrates that the dependence exhibits practically linear

portions followed by sharp bends that allow the J(s) curve to change slope. In

the graph the fibril nuclei size n∗ have been highlighted for each supersaturation

region and the transition supersaturations st,0, st,1 and st,2, which mark the start

and the end of the linear portions, are indicated by red arrows.

The isothermal J(s) dependence, has been used in Eq. (2.32) for the deter-

mination of n∗(s). The n∗ dependence as a function of the supersaturation s is

depicted by the solid line in Fig. 4.4. From the picture it can be seen that within

each linear portion the nucleus size is a constant integer which undergoes large

changes in the corresponding bending region of J(s). The amyloid fibril for-

mation for β2m protein is nucleation-mediated within the ANT supersaturation

range (0.37 < s < 3.30) according to the formula Eq. (3.11). This supersat-

uration range corresponds to the concentration range 0.29 µM < C1 <4.9 µM.

Furthermore, the curve in Fig. 4.4 has been calculated using Eq. (2.31) that

gives a theory-independent estimation of the nucleus size n∗. Thus, considering

the bending parts of the curve, it can be said that the nucleation-mediated region
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Figure 4.4: Supersaturation dependence of the fibril nucleus size n∗ obtained
from Eq. (2.31) with the help of the data for J according to 3.17 for wild-type
β2m. The red arrows point to the supersaturations value at which the fibril
nucleus size jumps to a practically constant portion in a given supersaturation
range.

is between C1 = 0.2 µM and C1 = 10 µM. In the nucleation-mediated region the

nucleation rate J and n∗ depend strongly on the concentration and supersatu-

ration. In Figs. 4.3 and 4.5 at exemplifying protein concentration C1 = 1.1 µM

or s = 1.7, the nucleation rate is J = 1010 m−3s−1, and the fibril nucleus size

is n∗ = 13. In a solution volume of 100 ml typically used in experiments, this

nucleation rate corresponds to the formation of 3.6 × 109 supernucleus fibrils in

a time period of 1 hour. Diluting the protein solution to C1 = 0.45 µM, which

correspond to s = 0.81, reduces the nucleation rate by ten orders of magnitude

to J = 1 m−3s−1 and causes the nucleus size to increase to n∗ = 49. In the same

solution volume this nucleation rate corresponds to the formation of 3.6 × 10−1

supernucleus fibrils in the same time period of 1 hour, or in other words to the

creation of one supernucleus fibril every 3 hours. This strong concentration or

supersaturation dependence of the nucleation rate predicted for the present fibril

model shows that the fibrillation kinetics can strongly depend on the solution

conditions. The low nucleation rate predicted for nucleus sizes n∗ > 49 suggests

that nuclei of such sizes can hardly be observed experimentally, in agreement

with experiments (157) that mainly report smaller nucleus sizes.

In order to verify the J and n∗ predictions, direct measurements for the

nucleation rate and nucleus size for amyloid fibril nucleation are needed. At
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present, the numerous experimental studies are mainly for the lag time τl and the

maximal rate ka of overall aggregation of proteins. Although τl may be directly

related to the nucleation rate, it is well known that it depends also on solution

agitation and post-nucleation events such as fibril growth and fragmentation.

Thus, this type of experiments does not allow a reliable determination of J and a

reliable verification of the theory. Most generally, it can be expected that, when

J increases, τl decreases, and for the present analysis the following empirical

relation has been used:

τl = a/Jx. (4.9)

In Eq. (4.9) the constant a (m−3x s1−x) and the exponent x are parameters.

A classical example for which the relation between τl and J is known comes

from the kinetics of overall crystallisation when the phase transformation occurs

by simultaneous nucleation and growth of many crystallites. The crystallites

are treated as isomorphic and growing irreversibly without fragmentation until

the phase transformation is completed. In the special case in which the crystal

nucleation and growth rates are time-independent, the relation between τl and

these rates is known exactly and takes the form of the empirical relation proposed

above (77).

The experiments by Routledge et al. (122), measuring lag times τl for wild-

type β2m and several of its point mutations at C1 = 84 µM and T = 300 K,

could be used to test ANT for these fibrils. In order to be able to calculate the

J(C1) dependence for wild-type β2m and its mutants using Eq. (3.19), the fibril

solubility Ce has to be known. The fibril solubility is different for each mutant,

because the binding energy of the β-strand within the fibrils is different. Since

Ce has not been determined experimentally for any of the mutants, a theoretical

estimation of them has been obtained using Eqs. (4.5)-(4.8). This enables the

calculation of Ce from the average binding energy of a β-strand within a fibril,

yielding Ce = 0.65, 0.46, 0.31, 0.31, 0.46, 0.46 and 0.57 µM, for point mutations

F62A, Y63A, L64A, L65A, Y66A, Y67A and F70A respectively. The acronym

F62A indicates the point mutation obtained replacing the residue F at the 62nd

position of the wild-type β2m with the aminoacid A (A = Alanine). All the

other point mutations are named according to the same convention. Following

the procedure outlined for wild-type β2m, the J(C1) dependence according to

Eq. (3.19) for all mutants have been calculated and they are shown in Fig. 4.5.
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Figure 4.5: Predicted dependence of the nucleation rate J on the concentration
C1 of monomer protein obtained from Eq. (3.19) for wild-type β2m and a number
of its mutants: green line WT; black line F62A; blue line Y63A, Y66A, Y67A;
red line L64A, L65A; orange line F70A. The corresponding dependence of J on
the supersaturation s calculated according to (3.17) is shown in the inset.

In agreement with Routledge’s experiments, all mutations reduce the nucleation

rate (or increase the lag time). Furthermore, ANT predicts that the nucleus size

for the mutated fibrils is larger than the one calculated for the wild-type. Some

of the mutations, such as Y63A, Y66A and Y67A, lead to β-strands that have

the same kind of amino acids. Although the specific residue sequence of these

β-strands is different, the binding energies of the β-strands within the fibril are

identical for parallel β-sheets, and consequently the fibril nucleation rates are the

same. In the present case, β-strands within β2m fibrils are arranged antiparallel,

this does not necessarily need to be the case, but for the case above, it does

happen. This fact is not a limitation of ANT, but is due to the assumption of

the present model that the interaction between amino acids is restricted to the

nearest neighbours. As a consequence, the present model does not capture the

experimental observation (49) that a specific residue sequence within a β-strand

determines fibrillation, rather than amino acid identity alone.

A closer inspection of Fig. 4.5 shows that ANT predicts the correct hierarchy

of the effect of a mutation on the nucleation rate, i.e. that the nucleation rate

for the wild-type protein is higher than that of the mutant L64A, which is higher

than that of mutants Y66A and Y67A, which is higher than that for mutant

F70A, which is higher than that of F62A. Not predicted correctly is the effect of
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Figure 4.6: Correlation (red circles) between experimentally measured lag times
τl and predicted nucleation rates J(C1) obtained from Eq. (3.19) for wild-type
β2m (WT) and several of its mutants, as shown by the labels, at C1 = 84 µM.
The linear best fit to the data points (solid line) yields a correlation coefficient
of 0.43. The slope of the solid line is the exponent in Eq. (4.9).

the mutations L65A and Y63A. The complete correlation analysis between the

experimentally measured lag times τl and the nucleation rates J(C1) predicted

by Eq. (3.19) for β2m and its mutants at C1 = 84 µM is shown in Fig. 4.6 using

the relation in Eq. (4.9). The linear fit to the data points, for wild type and

mutants as labelled in the graph, yields the exponent x = 0.74 of Eq. (4.9) and

a correlation coefficient of 0.43. The interpretation of this correlation analysis

has to be taken with caution because the correlation is made for data that are

obtained in the metanucleation regime. As a consequence, the observed changes

upon mutation on τl are small (specifically a factor of about 2 in the experiments,

and even less in the calculated J). Such small changes in τl may be entirely due

to the changes in the attachment frequency f1,e, because a mutation can lead to

an enhanced or reduced ability of lengthwise attachment of β-strands to the fibril

ends. For example, the mutation L65A, whose nucleation rate is not correctly

predicted, is known to diminish the thermodynamic stability of the native fold

of wild-type β2m, which can enhance the ability of lengthwise attachment of β-

strands to the fibril ends. Such changes in f1,e are not explicitly considered in

the correlation analysis and a reliable experimental test of the present predicted

nucleation rates require quantitative measurements of both τl and f1,e.

In the insets of Figs. 4.5 and 4.7 the dependencies of J and n∗ on the su-

persaturation s = ln(C1/Ce) are shown, respectively. In this cases, all data

obtained for wild-type and different mutants fall onto a single line. This implies
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Figure 4.7: Predicted dependence of the nucleus size n∗ on the concentration C1

of monomer protein obtained from Eq. (2.31) for wild-type β2m and a number
of its mutants: green line WT; black line F62A; blue line Y63A, Y66A, Y67A;
red line L64A, L65A; orange line F70A. The corresponding s dependence of n∗

is shown in the inset.

that the primary effect of a mutation on the nucleation rate and nucleus size is

associated to the change in the fibril solubility. It is the explicit consideration of

the different solubilities Ce in Eq. (3.19) that leads to changes in J(C1) for the

different mutants at fixed concentration and temperature. Finally, an important

general result of this analysis is that a mutation that decreases the thermody-

namic stability of a fibril decreases the fibril nucleation rate. For example, since

the interstrand binding energy E is reduced from 11.9 ε for the wild-type to 11.2

ε for the point mutation F62A, at C1 = 1.5 µM thereby the fibril nucleation rate

J is lowered from 7.9×1011 for the wild-type to 6.3×101 m−3 s−1 for the point

mutation F62A.

The exponent x = 0.74 in Eq. (4.9) is determined from the correlation anal-

ysis between experimentally measured lag times τl and the predicted J(C1) from

Eq. (3.19) obtained for wild-type β2m and several of its mutants as described

previously. The correlation analysis allowed to convert the experimentally mea-

sured isothermal τl(C1) dependence by Xue et al.(157) at T = 300 K into the

corresponding J(C1) dependence and compare it to the one calculated from Eq.

(3.19). The results are shown in Fig. (4.8) by red circles and a best-fit analy-

sis between the experimentally measured and theoretically predicted nucleation

rates yields estimates for the constant a = 1017 m−2.22 s−0.26 and the fibril sol-
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Figure 4.8: (a) Dependence of the fibril nucleation rate J on the supersaturation
s = ln(C1/Ce) for β2m (black continuous line) according to Eq. (3.17), the red
circles are obtained from experimental data in Ref. (157) in combination with
Eqs. (3.17) and (4.9). Here C1 is the concentration of monomer protein and Ce is
the β2m fibril solubility. (b) Respective supersaturation dependence of the fibril
nucleus size n∗ obtained from Eq. (2.32) with the help of the data for J shown
in (a) for β2m in black line, the red circles are obtained from experimental data
in combination with Eq. (2.32) applied to the data in (a).

ubility Ce = 0.2 µM as used in the calculation of J(C1) from Eq. (3.19). The

comparison shows that ANT predicts correctly the increase of J with increas-

ing C1. The weak J(C1) dependence obtained from the experiments indicates,

however, that they have been performed in the metanucleation regime in which

the nucleus is the single β-strand. Indeed, the corresponding nucleus size ob-

tained by using the experimental J(C1) data in Eq. (2.31) yields n∗ = 1 over

the whole concentration range investigated experimentally. The determination

of the transition concentration between the nucleation and the metanucleation

regimes requires the determination of the narrow concentration range in which τl

increases dramatically. Knowledge of this transition concentration would allow

a more reliable ANT estimate of the fibril solubility.
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AB40 and mutants

As a second application of ANT the fibrillation of Aβ40 has been considered.

The molecular structure of the Aβ40 fibrils is known (117; 123) and the effect

of point mutations of the wild-type residue 18 (Valine) on the overall protein

aggregation has been investigated experimentally (24). The analysis is based on

the molecular structure by Sachse et al. for Aβ40 fibrils, in which the β-strand is

formed by a long amino acid stretch at the C-terminal tail of the protein monomer

(123). As in the case for β2m fibrils, theoretical models (30; 144) are considered

to identify the most aggregation-prone amino acids in the Aβ40 protein. The

theoretical algorithm by Trovato et al. (144) predicts that the amino acids 12-

20 (VHHQKLVFF) and 31-40 (IIGLMVGGVV) are the most aggregation-prone

(V = Valine, H = Histidine, Q = Glutamine, K = Lysine, L = Leucine, F =

Phenylalanine, I = Isoleucine, G = Glycine, M = Methionine). Joined together,

these 19 amino acids form a sequence that defines the β-strand in the present

fibril model (Fig. 4.1). The interstrand binding energies E and Eh for the β-

strand (VHHQKLVFFIIGLMVGGVV) arranged parallel within wild-type Aβ40

fibrils can be calculated from Eqs. (4.1) and (4.2) and are E = 25.4 ε and Eh

= 1.9 ε. In the same manner as for β2m, J(s), J(C1) and n∗ dependencies have

been calculated from Eqs. (3.17), (3.19) and (2.31).

For Aβ40 however, the depicted fibril evolution needs to be adapted to the

case nt = E/Eh = 14. Fig. 4.9 shows the evolution mechanism for Aβ40. For

the modified sequence of fibril shapes, the dependence of J and n∗ on s for the

wild-type Aβ40 have been determined with M = 300, Ce = 1 µM (suggested by

few experiments i.e. (115; 155)) and exemplifying f1,e = 10−4 s−1 (inferred from

measured elongation rates (93)).

The J(s) and n∗(s) dependencies are shown as green dashed lines in Fig.

4.10a and 4.10b, respectively. The J(s) dependence exhibits the practically lin-

ear portions (Fig. 4.10a) in which the corresponding nucleus size is a constant

integer. Due to the larger transition size nt, the linear portions for Aβ40 are

more extended than those obtained for β2m whose corresponding J(s) is shown

in black for comparison in Figs. 4.10a and 4.10b. In the nucleation regime, the

nucleation rate for Aβ40 fibrils is substantially lower than that of β2m, whereas

the fibril nucleus size is always larger (Fig. 4.10b). Interestingly, in the metanu-

cleation regime the nucleation rate predicted for Aβ40 fibrils is higher than that
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4.6 Prediction of experimental results

Figure 4.9: Sequence of nanofibril shapes corresponding to minimum total surface
energy, which depicts the fibril evolution when the transition from 1D to 2D
aggregate is at size nt = E/Eh = 14 as for Aβ40.

of β2m. This observation is important as most experiments on the fibrillation ki-

netics of proteins are performed in the metanucleation regime, and a comparison

of kinetic data obtained for different proteins at the same solution conditions can

lead to the opposite results if the experiments are performed in the nucleation

regime.

Finally, the J(C1) and n∗(C1) dependencies have been calculated for point

mutations of residue 18 (V) with amino acids Alanine (A), Aspartic acid (D),

Glutamic acid (E), Phenylalanine (F), Glycine (G), Histidine (H), Isoleucine (I),

Lysine (K), Leucine (L), Asparagine (N), Proline (P), Glutamine (Q), Arginine

(R), Serine (S), Threonine (T), Tryptophan (W) and Tyrosine (Y). As described

for β2m, the fibril solubilities have been calculated theoretically (see section 4.4)

to give for the mutations mentioned above in the same order Ce = 4.3, 7.87,
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4.6 Prediction of experimental results

Figure 4.10: (a) Dependence of the fibril nucleation rate J on the supersatu-
ration s = ln(C1/Ce) for β2m (black line) and Aβ40 (green line) according to
Eq. (3.17). Here C1 is the concentration of monomer protein and Ce is the
β2m and Aβ40 fibril solubility. The black and green arrows in the graph point
to the transition supersaturations (obtained using Eqs. (3.11)) at which the J
curves bend decreasing its slope. (b) Respective supersaturation dependence of
the fibril nucleus size n∗ obtained from Eq. (2.32) with the help of the data for
J according to 3.17 for both β2m in black line and Aβ40 in dashed green line.
The black (β2m) and green (Aβ40) arrows point to the supersaturations value
at which the fibril nucleus size jumps to a practically constant value in a given
supersaturation range.

7.78, 1.51, 7.33, 2.26, 1.03, 5.95, 1.99, 2.8, 15.7, 5.66, 7.01, 3.61, 3.63, 2.16, and

2.76 µM, respectively. In agreement with experiments performed at C1 = 120

µM and T = 300 K (24), ANT predicts that the mutations with residues A, D,

E, F, G, H, K, L, N, P, Q, R, S, T lead to a lower nucleation rate compared

to that of the wild-type protein, whereas mutations with residues W, Y and I

lead to a higher nucleation rate (see Figs. 4.13 and 4.11). From Fig. 4.11 it can

be seen that ANT predicts the correct hierarchy of the effect of a mutation on

the nucleation rate, i.e. that the nucleation rate for the wild-type Aβ40 is higher

than that of the mutant N, which is higher than that of the mutant R, which is

higher than that of the mutant P. As stated in Ref. (24), in the experiments it

was not possible to observe the formation of fibrils for the mutation with residue

P, which is consistent with the present prediction that this mutation has the

lowest nucleation rate. In the inset of Fig. 4.11 a plot of the corresponding J(s)

dependences is shown. As for the β2m case, all lines fall on top of each other

illustrating that the primary effect of a mutation on the nucleation rate is caused

by the change of the fibril solubility. The corresponding n∗(C1) dependence for

Aβ40 and its four mutants is depicted in Fig. 4.12 by a continuous curve made of
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4.6 Prediction of experimental results

Figure 4.11: Predicted dependence of the nucleation rate J on the concentration
C1 of monomer protein obtained from Eq. (3.19) for wild-type Aβ40 and three of
its mutants: green line WT; orange line V18P; blue line V18R; red line V18N.
The corresponding dependence of J on the supersaturation s = ln(C1/Ce) is
shown in the inset.

linear portions corresponding to constant integer value for the nucleus size and

of bending regions where the nucleus size undergoes large changes. In Fig. 4.12

Figure 4.12: Predicted dependence of the nucleus size n∗ on the concentration
C1 of monomer protein obtained from Eq. (2.31) for wild-type Aβ40 and three of
its mutants: green line WT; orange line V18P; blue line V18R; red line V18N.
The corresponding dependence of n∗ on the supersaturation s = ln(C1/Ce) is
shown in the inset.

the nucleus size for the P mutant assumes noticeably larger values with respect
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4.6 Prediction of experimental results

to the other mutants and the original protein. In particular, it is worth noting

that at the same experimental concentration C1 = 120 µM, the predicted ANT

fibril nucleus size is n∗ = 15 for the wild type protein and the mutations N and

R, while for the mutant P the fibril nucleus size is n∗ > 15 (see Fig. 4.12). This

means that the fibril formation is thus nucleation-mediated for all the four cases.

Finally, in the inset of Fig. 4.12, the plot of the n∗(s) dependences for wild-type

and mutants confirm that the primary effect of a mutation on the nucleus size is

given by the change of the fibril solubility, since all the lines in Fig. 4.12 fall on

top of each other.

The complete correlation analysis between the experimentally measured lag

times τl and the nucleation rates J predicted by Eq. (3.19) is shown in Fig.

4.13. A linear fit to the data points shown in Fig. 4.13 yields the exponent

x = 0.05 and a good correlation coefficient of 0.71. Note that in the correlation

Figure 4.13: Correlation (red circles) between experimentally measured (24) lag
times τl and the predicted nucleation rates J(C1) obtained from Eq. (3.19) for
wild-type Aβ40 and several of its mutants, as shown by the labels, at C1 =
120 µM. The linear best fit to the data points (solid line) yields a correlation
coefficient of 0.71. The slope x = 0.05 of the solid line is the exponent in Eq.
(4.9).

analysis the mutations with residues Y and W, for which ANT predicts higher

nucleation rates, are not included. This is because the slope x obtained including

these three residues is negative, and a negative value for x leads to nucleation

rates that increase with the corresponding lag times invalidating the previous

fundamental assumption.
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4.7 Conclusion

In this chapter, the ANT predictions of relevant parameters has been discussed

for the nucleation of β2m, Aβ40 and their mutants. In particular, the nucleation

rate J and the nucleus size n∗ as a function of the supersaturation and concentra-

tion of the solution have been calculated and correlated to experimental results.

The characteristic feature of ANT, according to which the fibril nucleus size n∗

is a constant integer in a given supersaturation range, has been confirmed by

the results for real proteins. Furthermore, the characteristic jumps in the n∗(s)

dependence imply that the nucleation rate ln J(s) is a linear function of the

supersaturation s in successive s ranges.

Remarkably, the analysis of the effect of mutations on the fibril nucleation

rate and nucleus size reveals that the primary effect of the predicted changes in

J and n∗ is due to an alteration of the fibril solubility not considered so far in

theoretical and experimental studies. The strength of ANT is, in fact, that it

utilises the molecular interactions between the β-strands in the fibrils to predict

the supersaturation and concentration dependences of the fibril nucleation rate

and nucleus size.

The analysis reported in the chapter is based on a number of assumptions

about the fibril structure, the fibril interactions and the fibril nucleation mech-

anism. Moreover, the correlation between the theoretically predicted nucleation

rates and experimentally obtained lag-times is based on Eq. (4.9) which is em-

pirical. For these reasons, the emphasis of the present analysis is not on the

quantitative agreement with experimental results, but rather, it is meant to pro-

vide an illustration of how amyloid fibril nucleation can be treated in the frame-

work of existing general theories of nucleation of new phases. To validate the

application of nucleation theories to treat amyloid fibril formation, experiments

that determine the nucleation rate and nucleus size are needed. In absence of

such experiments, investigations on the lag time τl of overall protein aggregation

have been considered in this chapter. However, this type of experiments does

not allow a reliable determination of J , because post-nucleation processes such

as fragmentation can affect the overall aggregation process. Most generally, one

may only expect that τl decreases when J increases. Furthermore, the empirical

Eq. (4.9) has no theoretical foundation in the field; its form here has been moti-

vated by analogy to a known exact relation between J and τl from the kinetics
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of overall crystallisation. The presented correlation analysis (Figs. 4.6 and 4.13)

between experimentally measured lag times τl and the nucleation rates J pre-

dicted by Eq. (3.19) for two wild-type proteins and several of their mutants can

be used to verify this equation, but the experiments considered have not been

designed for this analysis.

Although the obtained correlation coefficients of 0.43 for β2m and of 0.7 for

Aβ40 can be considered as reasonably good, the correlation analysis suffers from

incomplete knowledge of the important input parameters needed in Eqs. (3.17)

and (3.19). In particular, the effect of the mutation on the fibril attachment rate

f1,e and the fibril solubility Ce needs to be determined experimentally. In fact,

in protein aggregation, f1,e may vary widely from 10−4 to 105 s−1 (81), and, as

already noted, the primary effect of mutations on the nucleation rate is due to a

change of Ce.

Another important finding of the present analysis is that the relatively weak

concentration dependence of J observed experimentally for β2m (see Fig. 4.8)

indicates that the data have been obtained in the metanucleation regime, in

which fibril formation is not impeded by the existence of a nucleation barrier

and the nucleus is the single β-strand.

The presented theoretical framework is applicable to homogeneous nucleation

of amyloid fibrils in sufficiently dilute solutions. In its present version, entropic

effects such as the loss of entropy occurring when a β-strand is attached to a

fibril or the entropy due to vibrations of a β-strand within the fibril are not

considered. Entropic effects can be taken into account by providing expressions

for the entropic contribution to the fibril solubility and β-strand binding energy,

but this goes beyond the scope of the present thesis. Examples of such expressions

can be found in Ref. (31) and they could be the basis of an important extension

of the present nanofibril model. It should be noted that the entropic effects on

the fibril solubility are automatically accounted for, when experimental data for

Ce are used in the ANT Eq. (3.19) for J . Then the missing information is about

the entropic contribution to the broken-bond energies, but it could be obtained

from full atomistic simulations. It is worth noting as well that in order to apply

ANT to two-step nucleation involving formation of oligomeric precursors or to

heterogeneous nucleation on nucleation-active sites provided by foreign agents

such as nanoparticles, the theory needs appropriate modification. This may be

performed following an approach already used in CNT (e.g., Ref. (77)). Since

84



4.7 Conclusion

the present theoretical formalism stems from first principles in nucleation theory,

it has the potential not only to become a standard tool in analysing experiments

on amyloid fibril nucleation, but also to help designing new experiments aimed

at better understanding of how to control the birth of amyloid fibrils.

85



Chapter 5

Size distribution of amyloid

nanofibrils1

In this chapter the size distribution of amyloid nanofibrils (protofilaments) in

nucleating protein solutions is considered when the nucleation process occurs by

the mechanism of direct polymerization of β-strands (extended peptides or pro-

tein segments) into β-sheets. Employing atomistic nucleation theory, a general

expression for the stationary size distribution of amyloid nanofibrils constituted

of successively layered β-sheets has been derived. The application of this ex-

pression to amyloidβ40 (Aβ40) fibrils allows the prediction of the nanofibril size

distribution as a function of the protein concentration and temperature. The

most remarkable feature of the distribution is its exhibiting a series of peaks

which are positioned at “magic ”nanofibril sizes (or lengths) and which are due

to points of discontinuity of the work for fibril formation. This finding of magic

sizes or lengths is consistent with experimental results for the size distribution of

aggregates in solutions of Aβ40 proteins. Also, this approach makes it possible to

gain insight into the effect of point mutations on the nanofibril size distribution,

an effect that may play a role in experimentally observed substantial differences

in the fibrillation lag-time of wild-type and point-mutated amyloid-β proteins.

1This chapter is based on Ref. (19).
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5.1 Introduction

Recently, small-angle X-ray scattering (114; 149) and fluorescence correlation

spectroscopy experiments (23; 24; 28; 30; 41; 42; 51; 58; 62; 87; 92; 112; 114;

116; 122; 138; 144; 149; 161; 163; 164) have been used to monitor the population,

structural changes and size of protein aggregates in solution. Understanding and

interpreting such experiments requires developing a theoretical framework able

to describe amyloid fibril nucleation.

In Chapter 2 and Chapter 3, concepts from the theory of overall crystallization

to describe the kinetics of protein fibrillation have been used (6); in particular

classical and atomistic nucleation theories (CNT and ANT, respectively) have

been applied to treat the one-step nucleation of amyloid fibrils (18; 81).

In Chapter 4, the validity of the ANT description has been demonstrated by

correlating theoretical fibril nucleation rates with experimental lag times in the

fibrillation kinetics of β2-microglobulin and amyloid β40 (Aβ40) proteins (17).

The objective of this chapter is to employ ANT for the determination of

the size distribution of amyloid nanofibrils (protofilaments) in protein solutions

undergoing polymerization of β-strands into β-sheets. A general expression for

the stationary size distribution of amyloid nanofibrils consisting of successively

layered β-sheets will be derived and subsequently this expression will be applied

to the smallest Aβ40 protofilaments. The results are applicable to homogeneous

nucleation which takes place when the protein solution is sufficiently pure and/or

strongly supersaturated. In the present study, the treatment differed from that

in Ref. (127), who considered the case of amyloid fibril nucleation in two steps:

single β-strands assemble into disordered oligomers, which then transform into

β-sheets.
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5.2 Nanofibril size distribution

As known from nucleation theory (e.g., Ref. (77)), the stationary size distri-

bution of the n-sized aggregates of a nucleating single-component phase can be

represented exactly as (n = 1, 2, 3,...)

Xn = Cn

M−1∑
k=n

(
1

fkCk

)
M−1∑
k=1

(
1

fkCk

) , (5.1)

when nucleation takes place by the Szilard-Farkas mechanism, according to which

the aggregates change size by random attachment and detachment solely of

monomeric building units. Here n (or k) is the number of building units in

an aggregate, Xn (m−3) is the stationary concentration of n-sized aggregates,

Cn (m−3) is the corresponding equilibrium concentration of such aggregates, M

is the number of building units in a large enough supernucleus aggregate, and

fn (s−1) is the frequency of building-unit attachment to an n-sized aggregate.

Equation (5.1) is readily applicable to nucleation of amyloid fibrils in the case

when the process occurs by the mechanism of direct polymerization of β-strands

into β-sheets. Then n is the number of β-strands in an n-sized amyloid nanofibril

and, according to ANT, Cn and fn are of the form (18)

Cn = C1 exp[(n− 1)s− (ln − 2)ψ − (lh,n − 2)ψh], (5.2)

fn =
1

2
f1ln, (5.3)

when only the nearest-neighbour interactions between the β-strands are taken

into account. In Eqs. (5.2) and (5.3), C1 (m−3) is the actual concentration of

single β-strands in the protein solution, and f1 (s−1) is the frequency of attach-

ment of a single β-strand to another single β-strand. Physically, the sum in the

exponent of Eq. (5.2), taken with minus sign, is the ratio between the workWn to

form a fibril of size n and the thermal energy kBT (kB is the Boltzmann constant,

T is the absolute temperature). It is worth reminding that for sufficiently dilute

solutions, the dimensionless supersaturation s is given by s = ln(C1/Ce), where

Ce (m−3) is the equilibrium concentration of single β-strands in the solution (Ce

is also known as the protein solubility). Moreover, the dimensionless energies
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5.2 Nanofibril size distribution

ψ and ψh per strong (mainly hydrogen) and weak (hydrophobicity-mediated)

broken bond have been defined in the previous chapter by ψ = E/(2kBT ) and

ψh = Eh/(2kBT ). Equations (5.1) and (5.2) show that both the respective equi-

librium and the stationary concentrations Cn and Xn of amyloid nanofibrils of a

given size n increase strongly with increasing the solution supersaturation s, i.e.

with a rise of the actual β-strand concentration C1 and/or a fall of the protein

solubility Ce. In Eq. (5.3) the proportionality of fn to ln reflects the fact that

the β-strands are attached predominantly to the ends of the fibril β-sheets (the

fibril strong broken bonds are namely at these ends), and the divisor 2 takes

into account that a single β-strand has l1 = 2 strong broken bonds. Combining

Eqs. (5.1)-(5.3) with the previous definitions and accounting only for the nearest-

neighbour β-strand interactions, the sought stationary fibril size distribution Xn

is expressed by the general ANT formula (n = 1, 2, 3,...) as

Xn = Cn

M−1∑
k=n

(
1
lk

) (
Ce
C1

)k

exp(lkψ + lh,kψh)

M−1∑
k=1

(
1
lk

) (
Ce
C1

)k

exp(lkψ + lh,kψh)

, (5.4)

in which

Cn = Ce

(
C1

Ce

)n

exp[(2− ln)ψ + (2− lh,n)ψh], (5.5)

is the respective equilibrium fibril size distribution.

Equation (5.4) is a central result of this chapter and it is highly reliable,

since it is based on the exact Eq. (5.1) and since in it the ratio of the two

sums is practically unaffected by the approximate character of Eq. (5.3) for

fn. Importantly, Eq. (5.5) conforms to the law of mass action because of the

proportionality of Cn to (C1)
n. Also, as a single β-strand has two strong and

two weak broken bonds, Eq. (5.5) is self-consistent in the sense that at n = 1

it returns the identity C1 = C1. It should be borne in mind that Eq. (5.4) is

applicable solely to a supersaturated protein solution (i.e. when C1 > Ce), since

the stationary size distribution Xn can exist in such a solution only. Then, as the

solution is metastable with respect to fibril nucleation and growth, Xn replaces

the equilibrium size distribution Cn which, albeit mathematically well-defined,

has no physical reality because of the solution metastability. When C1 = Ce or

C1 < Ce, however, the solution is saturated or undersaturated, respectively, and
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neither nucleation nor growth are possible, for then the solution is thermodynam-

ically stable with respect to these processes. In such a solution, the stationary

size distribution Xn is physically irrelevant and the fibril population is described

by the equilibrium size distribution Cn from Eq. (5.2) or (5.5).

It should be borne in mind that the determination of the nanofibril size

distribution requires specification of the sequence of shapes that the fibril takes

during its evolution from the monomer size n = 1 to any given size n > 1. Once

the evolution mechanism is specified ln and lh,n are known and the summation

in Eqs. (5.4) and (5.5) can be done. As already stated in the previous chapter,

there are many such sequences, but a sequence of shapes that have the CNT

fibril equilibrium shape as a reference low-energy shape has been chosen, because

it corresponds to the minimal fibril total surface energy compatible with the

Szilard-Farkas mechanism.

The formula in Eq. (5.4) will be applied to calculate the stationary size distri-

bution of Aβ40 fibrils under given condition. The nanofibril evolution mechanism

used in this chapter for Aβ40 fibril nucleation has been described in details in

section 4.4 and illustrated in Fig. 4.9.

5.3 Application to Aβ40 nanofibrils

As already discussed in the previous chapter, for Aβ40 fibril the molecular struc-

ture proposed by Sachse et al. (123) is considered. In their model the β-strand

is formed by a long amino acid stretch at the C-terminal tail of the protein

monomer. The details of the 2D model that will be taken into account for the

description of the Aβ40 amyloid fibril nucleation process have been illustrated

and extensively explained in section 4.2.

As in the previous chapter, the discussion here relies on theoretical models

that identify the most aggregation-prone amino acids in proteins. The theoretical

algorithm by Trovato et al. (144) predicts that amino acids 12 to 20 (VHHQK-

LVFF) and 31 to 40 (IIGLMVGGVV) are the most aggregation-prone ones (V

= Valine, H = Histidine, Q = Glutamine, K = Lysine, L = Leucine, F = Pheny-

lalanine, I = Isoleucine, G = Glycine, M = Methionine). Joined together, these

19 amino acids form a sequence which defines the β-strand in the previously

discussed nanofibril model (Fig. 4.1).
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The binding energies E and Eh between two nearest-neighbour β-strands

along the m and i axes in Fig. 4.1 are calculated with the help of the summation

over all the amino acid pairs in two β-strands of a β-sheet, according to Eqs. (4.1)

and (4.2) given in section 4.3. As discussed in the previous chapter, the sequence-

specific energy εjq of the hydrogen bond between amino acids j and q can vary in

the interval [0,2ε], depending on the frequency with which two residue types are

found paired in neighbouring β-strands within a β-sheet in globular proteins (see

Eq. (4.3)). For simplicity, it is assumed that the energy εh,jq of a hydrophobicity-

mediated bond is the same for all amino acid pairs, so that εh,jq = εh, and

εh = ε/10 has been set. With this set of parameter values, the interstrand

binding energies E and Eh for the β-strands (VHHQKLVFFIIGLMVGGVV)

arranged parallel within wild-type Aβ40 fibrils can be calculated from Eqs. (4.1)-

(4.3) and are E = 25.4 ε and Eh = 1.9 ε (see also Table 5.1).

Aβ40 Wild-type V18N V18R V18P

E (J) 1.76 × 10−19 1.72× 10−19 1.68× 10−19 1.65× 10−19

Eh 1.32× 10−20 1.32× 10−20 1.32× 10−20 1.32× 10−20

ψ 21.3 20.8 20.3 19.9
ψh 1.59 1.59 1.59 1.59
nt 14 14 13 13

Table 5.1: Parameter values related to the size distribution of nanosized fibrils
of wild-type and point-mutated Aβ40 at T = 300 K; the corresponding basic
hydrogen-bond energy is ε = 6.95 × 10−21 J.

The rounded-up ratio between the β-strand strong and weak binding energies

is E/Eh = 14, and the fibril transition size is thus nt = 14 (see Table 5.1), because

the CNT formula (81) gives nt = E/Eh, which characterise the fibril equilibrium

shape. It should be born in mind that during nucleation the fibrils are under

nonequilibrium conditions: on average, they are growing and thus they assume

a kinetically determined growth shape, which may differ considerably from the

equilibrium one. Computer simulation data (Fig. 2 in Ref. (163)) indicate that

the fibril kinetic aspect (length/thickness) ratio, which quantifies the fibril growth

shape, can be several times greater than the thermodynamic aspect ratio E/Eh,

i.e., that the fibrils can grow longer than expected on the basis of thermodynamic
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considerations. It should be kept in mind therefore that, in reality, the fibril

transition size nt may reach values considerably greater than the value of E/Eh

assumed here in the analysis.

Size distribution: supersaturation and concentration de-

pendence

The nanofibril size distribution for wild-type Aβ40 solution at T = 300 K and

supersaturations s/ψh = 0.9, 1, 1.2, 2 and 2.5 is displayed in Fig. 5.1 by lines

0.9, 1, 1.2, 2 and 2.5, respectively.

Figure 5.1: Stationary nanofibril size distribution Xn on (a) X
1/5
n and (b) log Xn

scale according to Eq. (5.4) at T = 300 K and supersaturations s/ψh = 0.9, 1,
1.2, 2 and 2.5 (as indicated) for wild-type Aβ40.

The lines are obtained from Eq. (5.4) by setting M = 300 (as in Ref. (18))

and by using the ln and lh,n values from Table A.2 in Appendix 1 and the ψ and

ψh values given in Table 5.1. According to the dimensionless supersaturation

s = ln(C1/Ce), with ψh from Table 5.1, the above supersaturations correspond

to the ratios C1/Ce = 4.20, 4.90, 6.78, 24.0 and 53.3, respectively. As it can
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5.3 Application to Aβ40 nanofibrils

be seen in Fig. 5.1, Eq. (5.4) predicts a series of peaks, each at a certain fixed

fibril size for high enough supersaturations and at a smaller, but again fixed, size

for sufficiently low supersaturations. Due to the choice of nanofibril evolution

mechanism illustrated in Fig. 4.9, the first peak is positioned either at fibril size

n′1 or at fibril size n
′′
1 > n′1 which are given by n′1 = 1 (for 0 < s < 2ψh) and by

n1
′′ = nt (for s > 2ψh). Here nt = 14 and 2ψh = 3.18 because of the ψ and ψh

values used in the calculation of Xn in Fig. 5.1. At s = 2ψh (line 2), the peak

is plateau-like, extending from n = n′1 to n = n
′′
1 , i.e. from the monomer size to

the fibril size nt for transition of the fibril from 1D to 2D aggregate. Similarly,

the fibril sizes n′j and n
′′
j at which the second, third, etc. peaks are positioned

at low or high supersaturations, respectively, can be obtained from the relations

(j = 2, 3, 4, ...)

n′j = j(j − 1)nt (5.6)

(for 0 < s < 2ψh/j) and

n
′′

j = j2nt (5.7)

(for s > 2ψh/j). At s = 2ψh/j, the jth peak is a plateau (jagged for j = 2, 3,

4,...) that extends from n = n′j to n = n
′′
j .

The explicit relation between the evolution mechanism and the size distri-

bution Xn calculated using it are exemplified in Fig. 5.2. The figure shows the

partial sequence of shapes for Aβ40 (Fig. 5.2a) already fully presented in Fig. 4.9,

and the size distribution Xn according to Eq. (5.4) at s/ψh = 1.2 (Fig. 5.2b). In

particular, in Fig. 5.2b some fibril shapes and their distributions are illustrated.

Furthermore in Fig. 5.2a, the first three nanofibrils of size n′j and of size n
′′
j are

coloured pink and blue, respectively, while the fibril nuclei are hatched.

Fig. 4.9, Eqs. (5.6) and (5.7) show that both the n′j-sized and n
′′
j -sized

fibrils are constituted of jβ-sheets, but their lengths m′
j and m

′′
j , respectively,

are multiples of nt (except m′
1):

m′
j = (j − 1)nt, (5.8)

m
′′

j = jnt. (5.9)

Eqs. (5.6) and (5.7) show also that for s > 2ψh, i.e., for high enough super-

saturations, all peaks (including the first one) remain fixed at characteristic or
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Figure 5.2: (a) Sequence of nanofibril shapes for Aβ40 with ratio E/Eh = 14. (b)
Corresponding stationary nanofibril size distribution, Xn/Ce, according to Eq.
(5.4) at T = 300 K and s/ψh = 1.2. In the graph some fibril shapes and their
corresponding size distribution are illustrated. The nanofibrils of size n′j, n

′′
j and

n∗ are shown in pink, blue and hatched, respectively, while the pluses indicate
the kink sites.

magic fibril sizes n
′′
j given by Eq. (5.7). The n

′′
j -sized fibril itself is jβ-sheets

thick and jnt β-strands long (see the blue fibrils in Fig. 4.9), i.e. its length m
′′
j

is determined by Eq. (5.9). This equation implies that when s > 2ψh, if plotted

as a function of the nanofibril length m, the stationary size distribution of the

nanofibrils will show multiple peaks at magic lengths m
′′
j , the peaks being at the

same distance nt from their nearest neighbours on the m axis. However, this

result regarding equidistant peaks in the nanofibril length distribution, charac-

terises the nanofibril shape sequence illustrated in Fig. 4.9. Deviations from

this sequence, in particular regarding the length at which the nanofibril acquires

the energetically very costly β-strand that gives birth of its subsequent β-sheet,

could lead to different inter-peak distances on the nanofibril length axis.

Combining Eq. (5.7) with the formula n∗j = j2nt+1 for the successive nucleus

sizes n∗j (Eq. (3.14)), the following equation can be obtained (j = 1, 2, 3, ...):

n∗j = n
′′

j + 1, (5.10)

which says that the jth fibril nucleus is just one β-strand bigger than the fibril

corresponding to the jth peak at high enough supersaturations (see Figs. 4.9

and 5.2 in which the fibril nuclei are hatched, and the n
′′
j -sized fibrils are blue).

Equation (5.10) is of particular interest, because it seems to be a result of general
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5.3 Application to Aβ40 nanofibrils

validity when amyloid fibrils are nucleated by the mechanism of direct polymer-

ization of β-strands and when s > 2ψh. According to this equation, with a

negligible difference of one β-strand, the positions n
′′
j of the peaks in a nanofibril

size distribution, that can be obtained in a real or computer experiment at a

high enough supersaturation s, merely represent the sizes n∗j of the successive

fibril nuclei.

Table 5.2 lists the first three values of n
′
j,m

′
j, n

′′
j , and m

′′
j in the respective s

ranges. To get a feeling for these values for the Aβ40 protein, it can be useful to

note that the molecular weight of the protein monomer is 4.3 kDa (48), and that

the distance between β-strands in the Aβ40 fibril is about 0.47 nm (85). Hence,

from Eqs. (5.7) and (5.9) with nt = 14, the first three peaks of the nanofibril

mass or length distribution are at magic masses 4.3 ×n′′
j , i.e., 60.2, 241 and

542 kDa or at magic lengths 0.47 ×m′′
j , i.e., 6.58, 13.2 and 19.7 nm respectively,

provided the solution is at supersaturation s > 2ψh = 3.18.

The physical reason for which the size distribution Xn of nanosized fibrils is

peaked at “magic” fibril sizes n
′
j or n

′′
j is the presence of points of discontinuity

of the work Wn to form a fibril of n β-strands as illustrated in Figs. 5.3a and

5.3b.

The attachment of a β-strand to the end of an n′j-sized fibril or to the surface

of an n
′′
j -sized fibril requires considerable work (see Fig. 5.3a) so that, depending

on the supersaturation, the n′j- or n
′′
j -sized fibrils become the most numerous in

the solution and thus give rise to peaks in the fibril size distribution as illus-

trated in Fig. 5.3b. The s value at which the jth peak is plateau-like coincides

with that at which, according to CNT (Ref. (81), Eq. (13)), a jβ-sheet is in

thermodynamic equilibrium with the solution, i.e. it neither grows nor dissolves.

Furthermore, regardless of the s value, a given peak concentration Xp,j is always

higher than the subsequent concentration Xp,j+1, i.e. the peak concentrations of

the nanofibrils obey the ordering Xp,1 ≥ Xp,2 ≥ Xp,3 ≥ ... .

Clearly, Xn will be closer to a monotonically decreasing function of n when

the work (−s+ 2ψ)kBT (see Ref.(81)) of thickness-wise β-strand attachment to

the kink-less surface of any of the n
′′
j -sized fibrils (Fig. 4.9) is sufficiently smaller

than the thermal energy kBT . Thus, the condition for relatively low peaks in

the stationary nanofibril size distribution reads

2ψ < 1 + s. (5.11)
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Aβ40 Wild-type V18N V18R V18P

n′1 s/ψh < 2 1 1 1 1
m′

1 s/ψh < 2 1 1 1 1
n
′′
1 s/ψh > 2 14 14 13 13
m

′′
1 s/ψh > 2 14 14 13 13

n∗1 s/ψh > 4/3 15 15 14 14

n′2 s/ψh < 1 28 28 26 26
m′

2 s/ψh < 1 14 14 13 13
n
′′
2 s/ψh > 1 56 56 52 52
m

′′
2 s/ψh > 1 28 28 26 26

n∗2 4/3 > s/ψh > 4/5 27 57 53 53

n′3 s/ψh < 2/3 1 1 1 1
m′

3 s/ψh < 2/3 1 1 1 1
n
′′
3 s/ψh > 2/3 14 14 13 13
m

′′
3 s/ψh > 2/3 14 14 13 13

n∗3 4/5 > s/ψh > 4/7 15 15 14 14

Table 5.2: The first three magic sizes n′j, n
′′
j and lengths m′

j, m
′′
j at which the

size and length distributions of wild-type and point-mutated Aβ40 nanofibrils are
peaked. For comparison, the sizes of the three fibril nuclei n∗j are also given in
the respective supersaturation ranges.

Since usually ψ > 1, the condition in Eq. (5.11) shows that well pronounced

peaks at magic sizes (or lengths) are to be expected in the stationary size (or

length) distributions of most amyloid nanofibrils. Moreover, the effect of the

supersaturation is quite small, because amyloid fibril nucleation occurs at s values

considerably smaller than those of ψ (18; 81). For nanofibrils of shorter β-strands

the peaks will be less pronounced, because ψ diminishes with decreasing β-strand

length. In principle, any bio-physicochemical factor that lessens the ψ value will

also contribute to the suppression of the Xn peaks and, hence, to the possible

disappearance of the magic nanofibril sizes or lengths.

Preferred sizes, lengths or thicknesses of Aβ oligomers or fibrils have been

recorded in many experiments (e.g. (2; 41; 47; 48; 85; 117)). In this respect, the

actual finding of magic sizes is in qualitative agreement with experiment. None

of the known experimental data, however, allows their use for a quantitative
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Figure 5.3: (a)Dimensionless work to form a n-sized Aβ40 fibril at supersaturation
s/ψh = 1.16 according to the Eq. (3.1). (b) Corresponding size distribution Xn

according to Eq. (5.4). The two panels show that the deep local minima for the
work n

′′
1 and n

′′
2 correspond to peaks in the size distribution function. Moreover,

the figure emphasises the close relation in the shape of the two curves.

verification of this finding. Reported histograms of the fibril mass-per-length

ratio (2; 21; 46; 47; 48; 91; 117; 123; 126) exhibit one or more peaks, but pertain

to size ranges corresponding to rather long fibrils, and there is evidence that

these usually contain an integer number of β-sheets. What is needed to reliably

quantify the magic nanofibril sizes are histograms of the masses of entire fibrils

of nanoscale length. Only Goldsbury et al. (48) have obtained such a histogram

(Fig. 4D in (48)), but this refers to pseudo-spherical rather than fibrillar Aβ40

aggregates and the authors could fit it by two Gaussian curves with maxima at

masses of 311 and 554 kDa corresponding to 72 and 128 protein molecules. The

experimental size distributions of Garai et al. (41) for solutions of Aβ40 also
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exhibit peaks at magic sizes represented by the aggregate hydrodynamic radii.

Again, a quantitative comparison between the present theory and Garai et al.

experiment (41) is not possible, because the reported size distributions are not

stationary, the aggregate morphology is unknown, and the second peak of the

size distributions is at radius of approximately 50 nm. This radius corresponds to

the rather large number of 1.2 × 105 protein molecules if, as in Garai et al. (41),

one uses 4.3 nm3 for the Aβ40 molecular volume and assumes that the aggregates

are spherical.

Figure 5.4: From the paper of Kellermayer et al. (85), in the inset a histogram
for the increments in the lengths of epitaxially growing Aβ25−35 fibrils is shown.
As discussed in the text, the histogram exhibits five peaks that are consistent
with the results presented in the chapter.

Very interesting as well are the experimental data of Kellermayer et al. (85)

which support the finding of magic nanofibril lengths. These authors have pre-

sented a histogram of most frequently observed increments of the lengths of

epitaxially growing individual Aβ25−35 fibrils (the inset in Fig. 2a of Kellermayer

et al. (85) is reported in Fig. 5.4). The histogram exhibits five successive peaks

at 6.5, 13.3, 23.2, 32.5 and 40 nm. As noted by the Kellermayer et al. (85), the

inter-peak distance of nearly 7 nm “corresponds to a stretch of fibril containing

≈ 15 peptides along its length ”. This is in close quantitative agreement with

the present finding for peaks in the Aβ40 nanofibril length distribution, which
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are equidistant at 14 β-strands or, equivalently, 6.6 nm. However, this agree-

ment is very likely to be fortuitous, because while the fibrils of Kellermayer et

al. elongate at a practically constant thickness, according to the present model

(Fig. 4.9), every subsequent fibril lengthening of nt β-strands is preceded by

fibril thickening of one β-sheet.

Effect of mutation on the size distribution

The theoretical framework presented in this chapter, enables to study also the

effect of point mutations on the nanofibril size distribution. In particular, at

fixed T and C1, how Xn is affected by the point mutations of residue 18 (V) with

amino acids Asparagine (N), Argininge (R) and Proline (P) has been examined.

The present analysis is compared with experimental results from Christopeit et

al. (24) where the effect of these Aβ40 mutations on the fibrillation kinetics has

been investigated.

In order to calculate Xn from Eq. (5.4) for each mutant, the corresponding

fibril solubility Ce and energy parameters ψ and ψh for each mutant have to be

known. In fact all the mentioned factors have different values for each mutant

because the binding energies E and Eh of the β-strands within the fibrils are dif-

ferent (see Table 5.1). For the wild-type Aβ40, the experimentally obtained Ce =

3.9 µM at T = 300 K (41) has been employed. As Ce has not been determined

experimentally for any of the mutants, it has been calculated theoretically by

making use of Eqs. (4.6)-(4.8) and of the ψ and ψh in Table 5.1. The Ce values

computed in this way for fibrils with point mutations V18N, V18R, and V18P

are given in Table 5.1. Following the procedure outlined above for the wild-type

Aβ40, from Eq. (5.4) Xn has been calculated for each mutant by setting M = 300

(as in Ref. (18)), by using the ψ and ψh values from Table 5.1 and the ln and lh,n

values from Tables A.2 and A.3 in Appendix 1. For mutations V18N, V18R and

V18P the transition size nt = E/Eh takes the values 14, 13 and 13, respectively,

and is equal or nearly equal to the transition size nt for the wild-type protein

(Table 5.1).

The nanofibril size distributions obtained at T = 300 K and C1 = 120 µM are

shown in Fig. 5.5. At this concentration, the supersaturation for the wild-type

protein and the three mutants V18N, V18R and V18P can be calculated from Eq.

(4.4) and is s = 3.43, 2.43, 1.43, and 0.63, respectively. As can be seen in Fig. 5.5,
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Figure 5.5: Stationary nanofibril size distribution Xn on (a) X
1/5
n and (b) log Xn

scale according to Eq. (5.4) at T = 300 K and monomer concentration C1 = 120
µM for wild-type Aβ40 and its mutants V18N, V18R, and V18P: black line WT,
wild-type; red line N, V18N; green line R,V18R; and blue line P, V18P.

the main effect of the mutations is that the peaks for all magic fibril sizes n′j or n
′′
j

lose height. This is so because by considerably increasing the fibril solubility, the

mutations lower the solution supersaturation, which leads to a strong decrease in

the entire fibril population and, accordingly, in the peak heights. In contrast, the

effect of the mutations on n′j or n
′′
j is minor (because nt changes only from 14 to

13 for two of the mutants) and, as a result, the peak positions remain essentially

the same. For mutant V18R, the peak is at n′2 = 26, because the Ce value for this

mutant is so high that the corresponding supersaturation ratio C1/Ce is too low

for the peak to be at n
′′
2 = 52. The effect of mutations on the fibril population

could be exemplified by considering the number of nanofibrils of 13 β-strands in

a solution of volume V = 100 ml, as typically used in experiments. From Eq.

(4.4) (see also Fig. 5.5) it has been calculated that while the number of wild-

type fibrils of size n = 13 is 1020, the V18N and V18R fibrils of the same size are

much less numerous: the V18N ones are 9 × 1014, and the V18R ones are 1010.
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Remarkably, the fibrils of the same size for mutant V18P are practically absent

from the solution, because their number is 4 × 105. It is worth noting also that

the decrease of the peak heights for the different mutants, seen in Fig. 5.5, is

consistent with experiments on protein fibrillation kinetics (24), which reveal that

the lag-time before detectable fibrillation, is longer for the mutants V18N, V18R

than for the wild-type Aβ40; and that the mutant V19P is not detectable at all.

This consistency supports the correlation reported in the previous chapter and

in Ref. (17) between ANT nucleation rates of amyloid fibrils and experimentally

measured fibrillation lag-times of wild-type and point-mutated Aβ proteins.

5.4 Conclusion

The analysis carried out in this chapter illustrates the ability of the atomistic

nucleation theory to describe the size distribution of amyloid nanofibrils in pro-

tein solutions when nucleation occurs by the mechanism of direct polymerization

of β-strands into β-sheets. The atomistic modelling of the amyloid nanofibrils

of successively layered β-sheets leads to a general formula Eq. (5.4) for the sta-

tionary fibril size distribution as a function of the protein concentration and of

the temperature (via Ce, ψ and ψh that, given the nanofibril shape sequences,

are the only three theoretical parameters). Application of this formula to Aβ40

nanofibrils reveals the existence of a series of characteristic peaks in the fibril

size distribution, which are positioned at “magic”fibril sizes and which are due

to points of discontinuity of the work for fibril formation. This finding of magic

sizes or lengths is consistent with experimental results for the size distribution of

aggregates in solutions of Aβ40 proteins. This analysis provides a new opportu-

nity to obtain information about the sizes of the successive fibril nuclei, because

according to Eq. (5.10), these sizes are practically equal to the magic sizes at

which the nanofibril size distribution is peaked when the solution supersatura-

tion is sufficiently high. Also, this atomistic approach makes it possible to gain

novel insight into the effect of point mutations on the size distribution of amyloid

nanofibrils, an effect that may play a role in experimentally observed substan-

tial differences in the fibrillation lag-times of wild-type and point-mutated Aβ

proteins.

The results obtained remain without quantitative verification because of the

lack of suitable experimental or simulation data for the size distribution of amy-
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loid nanofibrils. It is hoped that the present study will inspire new real and

computer experiments especially aimed at investigating this distribution and/or

the magic nanofibril sizes or lengths.
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Chapter 6

Kinetic Monte Carlo simulations

of amyloid fibril nucleation1

In the previous chapters ANT has been outlined and applied to study amyloid

fibril nucleation and it has been validated by comparison with experimental re-

sults. The ANT computations relied on a specific growth mechanism that has

been chosen using the CNT evolution mechanism as a reference. In this chapter

the growth mechanism will be tested by kinetic Monte Carlo (KMC) simulations.

The idealised character of the model allows for the simulation results to be ap-

plied to any nucleating system with strongly anisotropic interactions between

molecules, thus covering the nucleation of amyloid fibrils and also a variety of

other organic and inorganic systems. For that reason, all the discussion in this

chapter will refer to crystal systems and crystal nucleation in general, rather

than being restricted to amyloid fibrils and amyloid fibril nucleation. In particu-

lar, the nucleation of two-dimensional model crystals will be studied in order to

gain insight into the effect of anisotropic interactions between molecules on the

stationary nucleation rate J . With the aid of kinetic Monte Carlo simulations,

J has been determined as a function of the supersaturation s. It turned out

that with an increasing degree of interaction anisotropy the dependence of ln J

on s becomes step-like, with jumps at certain s values. It will be shown that

this J(s) dependence cannot be described by the classical and atomistic nucle-

ation theories. A formula that predicts the identified J(s) behaviour is yet to

be derived and verified, and the present study provides the necessary data and

understanding for doing that.

1This chapter is based on a submitted paper.
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6.1 Introduction

Crystal nucleation is the process of random generation of nanoscale crystalline

clusters that have the ability of irreversible growth (e.g., Ref. (77)). Unless the

size of the smallest clusters exceeds the size n∗ of the nucleus, the clusters are

more likely to dissolve than to grow (n∗ is the number of molecules in the nucleus

which is defined as the cluster that requires maximum workW ∗ for its formation).

Since only clusters bigger than the nucleus can grow to macroscopically large

crystals, the nucleation rate J is defined as the number of supernuclei that form

in a supersaturated old phase per unit volume and time.

Finding J is a central problem in nucleation theory because J has a strong

impact on many important quantities of practical significance in crystallization,

crystal growth and thin film formation, such as the size distribution and the max-

imum number of crystals formed in the system, the rate of nucleation-mediated

crystal growth, and the induction time in crystallization. Theoretically (see, e.g.,

Ref. (77)), J is of the form J = Ae−W ∗/kBT , where A is a kinetic factor, kB is the

Boltzmann constant, and T is the absolute temperature. Based on this formula,

the nucleation theory predicts that in the nucleation of condensed phases at fixed

T , J is a concavely increasing function of the supersaturation s.

The various nucleation theories are based on the classical description of the

nucleation of phases whose atoms or molecules interact with isotropic potentials,

and the effect of anisotropic interactions on the nucleation barrier and/or rate

has received only a little attention so far (e.g. Refs. (5; 18; 27; 57; 68; 72; 81)).

Previous work has focused mainly on phase diagrams and on geometrical as-

pects of self-assembly (e.g. Refs. (3; 7; 26; 27; 57; 86; 99; 120; 121; 148; 163)).

However, understanding the effect of anisotropic interactions on the nucleation

kinetics is important, because condensed phases that form due to directional

interactions between molecules are ubiquitous in nature. Prominent examples

include the amyloid fibrils whose formation is driven by the strong directional

hydrogen bonds between monomeric proteins (22), the liquid crystalline phases

that form because of the anisotropic shape of their molecules (25), the close-

packed structures and string fluids formed by soft and dipolar colloidal particles

(160), and the polymer crystals whose morphology depends on the differently

strong interactions between the polymer units (63). Thus, the important ques-

tion arises: Can existing nucleation theories describe the effect of anisotropic
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molecular interactions on the J(s) dependence? The objective of this study is to

provide an answer to this question.

6.2 Model and simulation method

According to Stranski and Kaischew (134), pioneers in the classical nucleation

theory (CNT), the essential features in the processes of crystal nucleation, growth

and dissolution can be seen even in the simplest model. In this respect, the

nucleation of two-dimensional (2D) Kossel-Stranski crystals on their own sub-

strate (the (100) face of a three-dimensional (3D) Kossel-Stranski crystal) is a

simple prototype that allows for investigation of the effect of different intermolec-

ular bonds on the nucleation behaviour. In line with the Kossel-Stranski model

which has a one-to-one correspondence with the Ising model, the molecules (or

the building blocks) of the 2D crystal are arranged in a 2D lattice with square

symmetry (which represents the substrate in Fig. 6.1). The 2D crystal model re-

Figure 6.1: Artistic view of the Kossel-Stranski model used to investigate the
nucleation of 2D crystal. The cubes schematise molecules with strong and weak
interactions along the m and i axes, respectively (the m axis is parallel to the
row of five molecules in the anisotropic simulations results).

ferred to in this chapter, is essentially equivalent to the 2D fibril model explained

in the previous chapters, except that molecules, nucleating into a crystal, take

now the place of the β-strands, nucleating into a nanosized amyloid fibril. In
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particular, in this model each monomer is represented by a right rectangular

prism with two edges parallel to the m and two edges parallel to the i axis. Fur-

thermore, the monomers are arranged into the nanocrystallite with i rows (i =

1, 2, 3,...) along the i axis and each i-row is constituted of m (m = 1, 2, 3,...)

identical monomers (Fig. 6.1).

Because only nearest-neighbour interactions between molecules have been

taken into account, intermolecular bonds exist solely along the m and i axes.

These are referred to as the 2D crystal lengthening and widening axis, re-

spectively. As for the β-strands within an amyloid fibril, the molecular bond

strength within the crystal is characterised by the quantities ψ = E/2kBT and

ψh = Eh/2kBT , where E and Eh are the interaction energies between near-

est neighbours molecules along the m and i axes, respectively. The parameter

ξ = ψ/ψh quantifies the anisotropy of the interactions between molecules, ξ = 1

meaning isotropic interactions.

To investigate the effect of different interactions on the nucleation rate J ,

kinetic Monte Carlo (KMC) simulations of the type described in Refs. (13; 141;

142) have been performed. For each molecular interaction, the performed KMC

simulations were depicting the nucleation of a 2D cluster on its own substrate

(the grid in Fig. 6.1) from monomers at different values of the supersaturation.

The method considers only attachment and detachment events of monomers

to and from a given n-sized cluster without rejection of any events (13) and

periodic boundary conditions included. Furthermore, the algorithm used neglects

to simulate the diffusion of molecules along the substrate (the 3D crystal face),

because the diffusion does not affect the results (45).

When only nearest-neighbour interactions between monomers are taken into

account, the probability p+ of monomer attachment to a molecular site at the

cluster periphery, and the probability p− of detaching the jth peripheral monomer,

are given by the expressions :

p+ = k+/[l+n k
+ +

l−n∑
j=1

k−(bj, bjh)] (6.1)

and

p− = k−(bj, bjh)/[l
+
n k

+ +

l−n∑
j=1

k−(bj, bjh)]. (6.2)
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Here k+ is the frequency of monomer attachment to a molecular site at

the cluster periphery, k−(bj, bjh) is the frequency of detaching the jth periph-

eral monomer, bj and bjh are the numbers of nearest-neighbour bonds that this

monomer has along the m and i axis, respectively, l−n is the number of peripheral

monomers, l+n is the number of attachment sites at the cluster periphery, and n is

the number of monomers constituting the cluster. For the monomer attachment

frequency (k+) the following formula (45; 141; 142) has been used

k+(s) = ke exp(s), (6.3)

in which the frequency ke is the value of k+ at phase equilibrium (when s =

0). As seen from the latter formula, k+ depends on the supersaturation, but

it is independent of the number of bonds formed by the attached monomer.

The frequency k+ is, indeed, the same for each site of the cluster to which the

monomer could be attached and it is bigger the higher is the supersaturation,

since the chance for a monomer to hit a cluster site, and hence attach, increases

with increasing s. Physically the attachment event occurs because of a random

“rain” of molecules on the cluster.

Conversely to the attachment frequency k+, the detachment frequency k−j of

the jth peripheral molecule is independent of the supersaturation and depends

on the number of inter-monomer bonds that it is necessary to break in order to

detach the monomer. For that reason its formulation depends on the kind of

molecular interaction present, i.e. isotropic or anisotropic interactions. The two

formulations will be given and described in detail later in the chapter.

To briefly illustrate the KMC algorithm, a cluster with a n free sites as a

starting configuration can be considered. As an input for the simulation, the

dimensionless inter-molecular broken bond energies ψ and ψh, the maximum size

of the cluster M , the supersaturation and the position of the monomers in the

initial cluster are given. At each Monte Carlo (MC) step, it will be associated

to each of the n-sites (j = 1, 2, 3,..., n.) a probability p+ to attach a new

monomer and a p−j to detach the monomer occupying the position correspondent

to the site, according to the frequency described above. The summation of

all the probabilities will be used to normalise each probability and through a

random number in the range between [0,1) one event will be chosen, according

to the attachment and detachment probabilities. Then the MC step will result in
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either a new monomer in the cluster ((n+1)-sized cluster) or a missing monomer

from the cluster ((n − 1)-sized cluster). Then a new MC step will follow. The

simulation will be terminated when the cluster either decays to a monomer or

grows up to a size M , that is the large enough supernucleus (M > 2n∗). The M

value corresponds to a size at which the cluster does not decay to monomer and

furthermore a larger value of M would not have any effect on the nucleation rate

J .

The above algorithm has been applied to obtain the nucleation rate J . From

a computational point of view, the dimer is the natural initial configuration to

obtain the nucleation rate J . Starting from a dimer, in fact, the stationary nucle-

ation rate J can be determined with the aid of the exact general formula (77; 141)

J = f1C1P2. (6.4)

In Eq. (6.4), P2 is the dimer growth probability (which is defined as the prob-

ability that a dimer will grow to a large enough supernucleus size M before

decaying to a monomer), f1 is the monomer-to-monomer attachment frequency,

and C1 is the actual concentration of monomers. Thus, physically, P2 is merely

the nucleation rate in units of the product f1C1 in which f1 and C1 are known or

obtainable by considerations outside nucleation theory. When nucleation occurs

at fixed T , C1 can be used to determine the supersaturation s by the relation

s = ln(C1/Ce) in which Ce is the equilibrium concentration of monomers (77).

In the present case, given the ψ and ψh values, each simulation run to determine

P2 at a specified value of s started with a dimer oriented along the m axis and

the run terminated when the dimer either decayed to a monomer or grew to a

2D cluster of M = 200 molecules, because it was established that clusters of this

size do not decay to monomers. The dimer growth probability P2 was calculated

from the relation P2 = N+/(N+ + N−) where N+ is the number of “positive

runs” (those in which the dimer grew to the size of 200 molecules), and N− is

the number of “negative” runs (those in which the dimer decayed to a monomer).

A crucial ingredient of all Monte Carlo simulations is represented by the

random number generator, whose quality becomes particularly important for very

long simulations. The random number generator used in the simulation is the

“Mersenne Twister pseudorandom number generator (MT19937-64)” because its
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reliability is extensively documented in the literature. Importantly, detachments

leading to a fragmentation of the clusters in two or more clusters should not

be allowed. It has been verified that this is not statistically common and when

it does happen, during the following MC step, a monomer would be created in

the same site of the previous detachment. Furthermore, the program contained

a subroutine to avoid all the cases that would have led to fragmentation of

the cluster. The results have shown that P2 is not considerably affected by

the fragmentation mechanism. Then to save computational time the use the

subroutine for the rest of the simulations has been avoided.
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6.3 Kinetic Monte Carlo simulations

for isotropic systems

Previous studies considered the nucleation of crystals formed by monomers with

isotropic interactions (140; 141; 142). In the cited works the Bortz Kalos Lebowitz

kinetic Monte Carlo (BKL KMC) algorithm (13) has been performed to study

the growth of a 2D cluster on the Kossel (001) substrate from a vapour, melt

or solution of monomers. In these papers the monomers within the cluster have

an idealised cubic shape and in each MC step a monomer can be created on

or annihilated from the cluster, simulating a cluster that can grow or shrink by

attachment or detachment solely of monomers. In Ref. (140) the algorithm was

used to determine the Zeldovich factor z and the nucleus size n∗ from the growth

probability of the 2D cluster. In Ref. (141) the authors used the BKL KMC

method to determine, from the dimer growth probability, the nucleation rate

J of a 2D isotropic Kossel crystal nucleating on its own substrate. Finally in

Ref. (142) the simulation results for the previous 2D Kossel crystal were used to

test the CNT and ANT predictions for the nucleation rate J at different values

of the molecular isotropic energy. In all the cases studied the molecules within

the cluster are bonded by isotropic interactions so that in the correspondent

2D lattice the dimensionless broken bond energies between nearest neighbours

molecules along the m and i axes, ψ and ψh respectively, are both equal, i.e.,

ψ = ψh = ω. Then, the anisotropy degree is ξ = 1. In this section, the results

from the present computational study of the 2D Kossel isotropic crystal nucle-

ation from monomers will be discussed. The implementation of the computer

program to simulate isotropic systems nucleation has been the first step to the

study of the 2D anisotropic nucleation as will be shown in the next section.

Attachment and detachment frequencies

According to the detailed balance condition, the attachment frequency (or cre-

ation rate) of a monomer to an atomic site in the cluster is given by Eq. (6.3),

while the detachment frequency (or annihilation rate) of the jth-peripheral atom

from the cluster is expressed for a 2D system with isotropic molecular interactions

by the formula (140; 141; 142):
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k−(bj, bjh) = ke exp[2ω(2− (bj + bjh))]. (6.5)

From the latter formula, it can be seen that, at variance from the attachment fre-

quency k+, the detachment frequency k−j (bj, bjh), depends on the total number of

inter-monomer bonds bj +bjh of the jth-peripheral atom which would be detached

from the cluster edge. Furthermore, k−j is independent of the supersaturation.

The expression is consistent with the fact that detaching a monomer bonded to

more nearest-neighbours is less likely to happen than detaching a monomer with

fewer nearest-neighbours.

Results and comparison with nucleation theory

To investigate the effect of different isotropic interactions between molecules on

the nucleation of monomers into a 2D Kossel crystal, a BKL KMC program has

been implemented and different simulations have been performed. In particular,

in order to study the effect of different ω values on the nucleation rate and

to test the ANT and CNT predictions for J , a series of simulations at fixed

value of the dimensionless broken bond energy ω = 1, 2, 4, and 5 have been

performed. Each ω simulation runs for different supersaturation values in a range

that depends from the energy ω. The simulation for ω = 1, for example, runs for

the supersaturation values in the range 0.03 ≤ s ≤ 4.0 while for the simulation

at ω = 5, the supersaturation values used were in the range 3.5 ≤ s ≤ 11.75.

According to the general algorithm mentioned above, each ω simulation that runs

at a given s value started from a dimer initial configuration and ended when the

cluster either decayed to a monomer (negative run N−) or grew to cluster of M

= 200 monomers (positive run N+). Then P2 has been calculated according to

Eq. (6.4). To collect enough statistics the simulation at a given ω and s has been

performed with different random number sequences for a total number of runs

(Ntot = N+ +N−) sufficient to make the error in the measure of P2 smaller then

a pre-selected value. To reach this requirement a number of positive run N+ ≈
100 was generally enough. The total number of runs to obtain P2 depended on

the supersaturation investigated. For example, Ntot was between 2× 109 for the

smallest s value (s = 0.03 for the simulation at ω = 1) and 2×105 for the largest

s value (s = 11.75 for the simulation at ω = 5).
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For kinetic reasons and by convention, (77; 141; 142) the value of 0.5 for the

cluster growth probability P (n) is associated to the cluster with n = n∗. This can

be intuitively understood considering that the critical nucleus correspond to the

top of the barrier to form an n-sized cluster, according to this interpretation, the

condition P (n∗) = 1/2 means that the cluster with n = n∗ has 50% of chances

to decay to a monomer or to grow to macroscopic sizes.

Fig. 6.2 shows the nucleation rate J calculated according to Eq. (6.4) for each

series of simulations at fixed ω. The nucleation rates from the simulations shown

Figure 6.2: Supersaturation dependence of the nucleation rate J by KMC simula-
tion studies at ω= 1, 2, 4 and 5. The present simulation data are shown in black
circles, while Jiang’s, ter Horst-Kashschiev data (Refs. (68; 141; 141; 142; 154))
are indicated with blue stars and red squares, respectively, as labelled in the
graph (the points have been extracted by the thesis and papers (68; 141; 141)).

in the graph display an excellent agreement with the simulation data reported

in Refs. (68; 141; 154) for ω = 2, and in Refs. (141; 142) for ω = 4 and 5. In

particular, the present simulation results are shown in black circles while the red

squares and blue stars represent the data whose origin is given in the legend.

For smaller ω values (see curves for ω = 1 and 2 in Fig. 6.2), the J(s) curves

from the simulation data are smooth lines representing functions that increase

monotonically with increasing supersaturation s. Remarkably, only for higher

values of the energy (ω = 4 and 5), linear parts of ln J are connected by bends

as can be seen in Fig. 6.2. The presence of linear parts in ln J is a typical
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feature of the ANT theoretical curves as treated in chapter 3. In the same graph

the horizontal dashed line represents the condition P2 = 1/2 that allows for the

detection of the supersaturation corresponding to which the dimer is a critical

nucleus size. By the graph, the dimer is a critical nucleus size for ω = 1 already

at s = 1.7, while for ω = 2 at s = 3.5, for ω = 4 at s = 7.5 and finally for ω =

5 at s = 9.5.

The present simulation data were used to test the CCNT and ANT predictions

given by Eqs. (2.29) and (3.2), respectively, as shown in Fig. 6.3.

Figure 6.3: Supersaturation dependence of the nucleation rate J at ω = 1, 2, 4
and 5 as indicated in the figure. The open circles represent the present simulation
data, while the blue and the green curve are the CCNT and ANT theoretical
predictions for J(s) according to Eqs. (2.29) and (3.2) as explained in the text.

In particular, to plot the ANT J(s) for the present isotropic Kossel system,

an expression (Eq. (28) of Ref. (80)) of the exact Becker-Döring formula (3.2) in

combination with a particular growth mechanism (Table I in Ref. (80)) have been

used. The agreement between J from the simulation data and the theoretical

predictions for the nucleation rate by ANT and CCNT is generally fairly good.

The blue lines show J(s) dependence predicted by CCNT according to Eq. (2.29),

suggesting that for small ω values (ω = 1 and 2) CCNT slightly underestimates

the rate respect to the simulation data. For ω = 4 the agreement between the

KMC data and CCNT line is very good, but for higher values of the energy

(ω = 5) CCNT line overestimates the KMC data. On the other hand ANT
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underestimates the simulation data for ω = 1 and 2, while its agreement with

the KMC data for ω = 4 and 5 is very good, reproducing the broken linear parts

by sharp bends reported by the simulation data for ω = 4 and 5.

All of these results are confirmed by the computational and theoretical studies

in Refs. (142) and (80). In Ref. (142), KMC simulation data for J at ω = 2, 4 and

5 are compared with the CNT and ANT theoretical predictions of the nucleation

rate. The authors in Ref. (142) conclude that ANT nucleation rate describes

much better the KMC data for J than CNT does, and that the agreement with

the ANT predictions and simulations data improves for higher energy values. In

Ref. (80) theoretical studies investigate the ANT, CNT and CCNT predictions

for the nucleation rate J . Furthermore KMC simulation data for J are also

compared with the theoretical predictions. The paper confirms that the ANT

nucleation rate describes much better the KMC data for J compared to CNT,

and introduces the corrected classical description. The CCNT agreement with

the ANT predictions and the simulation data is good but still CCNT does not

reproduce the broken linear parts for higher ω values.

To summarise, ANT and CCNT predict correctly the smoothness of ln J from

the simulations at ω = 1 and 2, but both of the theoretical curves underestimate

the KMC data. Only ANT can predict the broken lines given by the simulation

results for ω = 4 and 5, but the breaks are more pronounced in the theoretical

predictions than in the simulations data. However, in general the theoretical

lines are close to the points given by the simulations, according to the results

and graphs obtained in Ref. (80).

In general, the differences between the ANT predictions and the circles in

the graph 6.3 can be interpreted as suggested in Ref. (142). The bends between

the linear part in ln J are sharp and exaggerated by the ANT predictions for

J , and ANT slightly underestimates the simulation data for the lower value of

ω because the simulation data are a statistical result to which different shapes

contribute. In ANT, instead, the theoretical curves assume that for each n-size

of the cluster only one shape contributes to the calculated nucleation rate J ,

i.e. the one that corresponds to the cluster with lowest surface energy. Always

in this prospective, the underestimation of the KMC data for smaller ω values

by ANT can be interpreted by considering that the smaller the energy value

is, the rougher the cluster periphery will be. The resulting variety of shapes is

114



6.4 Kinetic Monte Carlo simulations
for anisotropic systems

considered in the KMC data, while ANT is based on a growth imposition that

associates to each size n of the cluster only one shape.

Also, the nucleus sizes at successive s ranges according to Eq. (2.31) have

been obtained for ω = 4 and 5. The nucleus size data are in agreement with

the ones predicted by ANT with Eq. (2.31) since the slope for all the ω curves

is predicted well by the ANT equations. In particular, the graph reports the

nucleus sizes for ω = 5.

6.4 Kinetic Monte Carlo simulations

for anisotropic systems

In order to understand the effect of anisotropic interactions between monomers

on the nucleation of a 2D nanocrystal, the BKL KMC method has been used. The

computational method here is an extension of the simulation technique widely

used to study isotropic systems as explained in the previous section. In particu-

lar, to gain insight into the bond-energy anisotropy effect on the nucleation rate

J and on the morphology of the clusters, the P2(s) dependence has been deter-

mined for increasing anisotropic degree ξ = ψ/ψh = 1, 3, 5, 8, 10 and 14, with

a common value of ψh = 1. Understanding the effect of the anisotropic inter-

actions on the kinetics of the nucleation process is a fundamental problem that

finds application in different fields. The subject of this thesis is modelling the

kinetics of amyloid fibril nucleation, the fibril formation is driven, in fact, by the

strong directional hydrogen bonds between monomeric proteins. Even though

the simulations are carried out for a specific aim, the idealised character of the

model implies that the results can be applied to any system that is nucleating

into a 2D crystal with anisotropic interactions between its molecules.

Attachment and detachment frequencies

In the last section, previous studies on the nucleation of crystals with isotropic

interactions have been reviewed. For the same 2D crystal model with anisotropic

bond energies, an expression for the detachment frequency k−(bj, bjh) of a monomer

from the cluster periphery has been derived. As known from Boltzmann statis-

tics, the probability for transition from an initial to a final state decreases ex-

ponentially with the work spent on the transition. The detachment of the jth
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peripheral monomer requires the work bjE + bjhEh = 2(bjψ + bjhψh)kBT . There-

fore, the frequency k−(bj, bjh) of monomer detachment from the cluster periphery

can be written down as

k−(bj, bjh) = kref exp(−2bjψ − 2bjhψh), (6.6)

where kref is a reference frequency. Elimination of kref can be achieved with the

aid of the relation k−(1, 1) = k+(0) for the equality between the frequency of

monomer attachment at equilibrium and the frequency of monomer detachment

from a kink site (for this site bj = bjh = 1 because of the square symmetry of our

2D crystal model). Using this relation, Eqs. (6.3) and (6.6) leads to

kref = ke exp(2ψ + 2ψh), (6.7)

so that

k−(bj, bjh) = ke exp[2(1− bj)ψ + 2(1− bjh)ψh]. (6.8)

As seen from this equation, in contrast to k+, k− depends on the number of

intermolecular bonds, but is independent of the supersaturation, exactly as for

the isotropic case. It is worth noting as well that, as can be verified, k+ and

k− from Eqs. (6.3) and (6.8) satisfy the principle of detailed balance. Also, at

ψ = ψh they correspond to the known attachment and detachment frequencies

in the case of 2D crystals with isotropic bond energies as given in the previous

section and in different papers (45; 141; 142). Substitution of k+ and k− from

Eqs. (6.3) and (6.8) into the formulae for p+ and p−, Eqs. (6.1) and (6.2),

respectively, yields the probabilities used in the KMC simulations.
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Results and comparison with nucleation theory

Figure 6.4 shows representative shapes of clusters at successive moments of their

evolution during simulations at anisotropy ratio ξ = 1, 3 and 8 (the top, middle

and bottom clusters in the panels, respectively) and supersaturation s = 0.9, 1.5

and 2.5 (the left, middle and right columns of panels, respectively).

Figure 6.4: Successive snapshots (top view) of 2D Kossel-Stranski crystalline
clusters with anisotropy ratio ξ = 1, 3 and 8 (the top, the middle and bottom
clusters in the panel respectively) which evolve at supersaturation s = 0.9, 1,5
and 2.5 (the left, middle and right columns of panels, respectively) The squares
represent molecules, and the cluster lengthening is along the m axis.

From Fig. 6.4 it can be seen that at a given s value the cluster grows more

elongated when ξ is greater. This effect of the anisotropic interactions on the

cluster growth shape was reported also in Ref. (163) and could be anticipated

on thermodynamic grounds. The Gibbs-Curie-Wulff theorem for the equilibrium

shape of the 2D Kossel-Stranski crystals considered in the previous chapters, in

fact, states that the length-to-width ratio of a rectangular crystal is equal to

the ratio E/Eh, i.e. to ξ (72; 81; 163). When the anisotropy ratio ξ is high

enough, however, a remarkable effect of the supersaturation s on the cluster

shape is revealed in Fig. 6.4. Indeed, while at ξ = 1 and 3 (isotropic and weakly

anisotropic interactions, respectively) the cluster shape is virtually the same

at s = 0.9, 1.5 and 2.5; at ξ = 8 (strongly anisotropic interactions) the clusters

mainly elongate (see those at the bottom of the figure panels), but with a different

number of rows at the different supersaturations: three rows at s = 0.9, two rows

at s = 1.5, and one row at s = 2.5. The roughening of the cluster periphery
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at ξ = 1 and ξ = 3, is a result of the rather small value of the bonding energy

along the i axis (as already mentioned, the KMC simulations were performed at

ψh = 1). Increasing ξ suppresses the roughening effect due to the smallness of

ψh so that the cluster periphery becomes smooth at the molecular scale.

Figure 6.5: Supersaturation dependence of the nucleation rate J at ξ = 1, 3, 5,
8, 10 and 14 (as indicated). The threshold supersaturations s1, s2 and s3 are
indicated by the arrows, the symbols represent the simulations data, and the
lines are only guides to the eye.

The symbols in Fig. 6.5 represent the simulation data for the dependence of

P2 or, equivalently, of J/f1C1 on s at ξ = 1, 3, 5, 8, 10 and 14 (as indicated). As

seen, for ratios ξ = 1 and ξ = 3 a concave increase of the logarithm of J/f1C1

with s is observed, the J/f1C1 values spanning up to approximately ten orders of

magnitude. This is in agreement with the J(s) dependence reported previously

(68; 141; 142) for this system with isotropic (ξ = 1) or weakly anisotropic (ξ = 3)

interactions and, as already mentioned, with the nucleation theory prediction

that ln J increases concavely with s. In contrast, the simulation dependence of

the logarithm of J/f1C1 on s for anisotropy ratios ξ = 8, 10 and 14 is nearly

step-like, with jumps that are more pronounced at greater interaction anisotropy.

This is seen most clearly at ξ = 14, when J/f1C1 has a spectacularly sharp jump

of approximately seven orders of magnitude. The obtained step-like dependence

of ln J on s is surprising, because it has never been observed in experiments and

computer simulations nor predicted theoretically.
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In Fig. 6.6 the simulation data for ξ = 10 have been compared with the

theoretical predictions from CNT and the atomistic nucleation theory (ANT).

As the stark discrepancy between simulation and theory persists also for ξ = 5,

Figure 6.6: Dependence of the nucleation rate J on the supersaturation s at
ξ = 10: symbols and line 10 represent the simulations data; lines CNT and
ANT represent the predictions of CNT (Eq. (2.26)) and ANT (Eq. (3.17)),
respectively.

8 and 14 (result not shown), the comparison shows that CNT and ANT are not

able to capture the step-like dependence of ln J on s at high degrees of interaction

anisotropy.

To understand the physical reason for the existence of jumps in the s depen-

dence of ln J , crystal nucleation in solutions can be considered. In this case the

equilibrium concentration Ce is the crystal solubility, i.e. the solute concentra-

tion at which the solution is in thermodynamic equilibrium with a macroscop-

ically large crystal. Theoretical considerations (81) and computer simulations

(3; 7) reveal that the solubility of a rectangular crystal (or crystal-like forma-

tion) strongly depends on the crystal width, i.e. on the number i of molecular

rows that constitute the 2D crystal. At a given temperature T , the equilibrium

concentration Ce,i at which such a crystal of fixed number i of rows (i = 1, 2,

3,...) neither grows nor dissolves is given by (81)

Ce,i = Ce exp(2ψh/i). (6.9)
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This expression says that, at a constant T , Ce,i decreases with increasing i (i.e.

Ce,1 > Ce,2 > Ce,3 > ...) and equals Ce in the limit of i → ∞. The threshold

supersaturation si, defining the lowest s value down to which a 2D crystal of

fixed number i of rows can lengthen irreversibly, is readily obtained from Eq.

(6.9) by using the formula s = ln(C1/Ce). The result is (81):

si = 2ψh/i. (6.10)

In the present simulations ψh = 1 and this formula yields s1 = 2, s2 = 1 and

s3 = 2/3. As seen in Fig. 6.5, the first and the second jumps of the nucleation

rate are precisely at these s1 and s2 values. This can be rationalised by recalling

that for supersaturations s > s1 any monomer acts as a nucleus (80; 81) so that

even a monomolecular row (i.e. a 2D crystal with the minimum fixed width) can

lengthen irreversibly. Then the 2D crystals form in the so-called metanucleation

regime (80; 81) which corresponds to the regime of crystal formation by spinodal

decomposition. Similarly, when s > s2, the dimers oriented along the i axis act

as nuclei of 2D crystals with fixed width of two rows and these crystals are able

to irreversible elongate along the m axis (81). In the same way, the 2D crystals of

any length and fixed width of three rows can elongate irreversibly when s > s3.

Thus, the existence of the threshold supersaturations s1 = 2, s2 = 1 and s3 = 2/3

explains why in Fig. 6.4 the clusters with anisotropy ratio ξ = 8 (those at the

bottom of the figure panels) lengthen with one row at s = 2.5, two rows at

s = 1.5 and three rows at s = 0.9. What is particularly important is that when

the nucleation/metanucleation border s1 = 2ψh is crossed by decreasing s, the

nucleus changes from a monomer to a single-row nanocrystal plus one monomer

on top of it (81). The attachment of this monomer creates two kink sites, each of

energy 2ψ, and this leads to a drop in the nucleation rate when ψ is large enough.

This explanation is consistent with the observation (see Fig. 6.5) that the drop

in J becomes more pronounced with increasing ψ, i.e. ξ, because then the kink-

site creation energy is higher. Similarly, when the threshold supersaturation

s2 = ψh is crossed by further decreasing s, the nucleus changes from a single-

row nanocrystal plus one monomer on top of it, to a two-row nanocrystal plus

one monomer on top of it (81). This leads to a second drop in J when ψ, and

hence ξ, is sufficiently great (see Fig. 6.5). It is worth noting that at ξ = 14

the nucleation rate in the supersaturation range s2 < s < s1 (the yellow area
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in Fig. 6.5) can be more than ten orders of magnitude lower than that in the

supersaturation range s > s1 (white area in Fig. 6.5)).

Another reason for which the obtained step-like dependence of the logarithm

of J on s is remarkable is that if this dependence is analysed with the help of

the nucleation theorem (77; 78; 83), for certain s values it would yield a nucleus

size that according to the Eq. (2.31) increases with increasing supersaturation.

Indeed, due to this theorem, for nucleation of condensed phases the relation

n∗ ≈ d(ln J)/ds − 1 (Eq. (2.32)) holds at fixed T (77; 78; 83) and hence the

slope of the ln J(s) line gives directly the nucleus size n∗. Thus, with reference to

the nucleation theorem, the step-like course of the simulation J(s) dependence

would lead to the conclusion that for s tending from below to s1, s2, etc., n∗

increases with increasing s. The increasing n∗ with increasing s is paradoxical if

viewed within the scope of CNT and ANT, but it is not when it is realised that

it results from applying the nucleation theorem to a process that is not really

nucleation when ξ is large enough. Indeed, then the process is more like a highly

anisotropic spinodal decomposition in which, depending on the s range, the 2D

crystals form at a fixed width of one or two or three, etc. molecular rows (see

the bottom clusters in the panels of Fig. 6.4).

The unexpected step-like behaviour of the nucleation rate as a function of

supersaturation s, observed at large values of the anisotropy ψ/ψh, prompted us

to search a sequence of shapes that, once used in the ANT theoretical equation

could generate a theoretical line closer to the simulation data. No sequence

is really able to reproduce the jumps of J(s). However a sequence of shapes

identified by the minimum surface energy turns out to give an ANT curve closer

to the simulation data. This result is illustrated in Fig. 6.7, where the red line

represents the predictions of equation (3.17) using the new cluster sequence to

compute each term.

The sequence of shapes used to draw the red curve is not compatible with the

Szilard-Farkas model because, with increasing size n, it presents abrupt changes

of cluster shape. For example, the cluster of size n = 21 peptides presents a 1-row

configuration, while the cluster of n = 22 peptides is in a 2-row configuration

with 11 peptide in the first row, and 11 in the second row.

Further investigations, currently under way, have been planned to clarify

these issues, and have already produced interesting preliminary results, showing
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a closer agreement between theoretical and simulation curves. The results will

be published soon in a paper now in preparation.

Figure 6.7: Dependence of the nucleation rate J on the supersaturation s at ξ
= 10: symbols and line 10 represent the simulations data; lines CNT and ANT
represent the predictions of CNT (Eq. (2.26)) and ANT (Eq. (3.17)) while the
red curve has be drawn with the help of Eq. (3.17) using a sequence of shape
not compatible with the Szilard-Farkas model.
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6.5 Conclusion

In this chapter the nucleation of a 2D crystal from monomers on its own substrate

has been investigated by kinetic Monte Carlo simulations. A brief introduction

about the method has been given in section 6.2, then the method has been

applied to the case of isotropic inter-monomer interactions within the crystal,

and in 6.3 section the method has been applied to the nucleation of a 2D crystal

characterised by anisotropic interactions between its monomers.

In particular the effect of the interactions on the nucleation rate J has been

investigated and compared with the theoretical ANT and CNT predictions for the

isotropic case. For smaller ω values, both CCNT and ANT predict the smooth

and monotonic increase of J(s) with increasing supersaturation s given by the

simulation data but underestimate the nucleation rate. For higher ω values,

instead, ANT reproduces better the features of the J curves from the KMC

data. The results shows that ANT reliably predicts the simulation data and

the agreement improves at higher ω values. Furthermore, ANT can reproduce

the broken linearity of ln J(s), but exaggerates the bends that are sharp instead

smooth as in the simulations data. The underestimation of the KMC data for

smaller ω values by ANT can be interpreted with the fact that the smaller the

interaction value is, the rougher the cluster periphery will be. The resulting

variety of shapes is considered in the KMC data, since the statistical character

of KMC accounts for fluctuations in shape of the growing clusters. ANT, instead,

is based on a fixed growth sequence that associate to each n-sized cluster only

one shape.

The effect of the anisotropic degree on the nucleation rate and on the mor-

phology of the cluster has been discussed in the second part of the chapter. The

J(s) dependence obtained in the present study of nucleation of 2D crystals with

anisotropic molecular interactions is highly unusual. As the anisotropy of the

interactions between molecules increases, there is a transition in the dimension-

ality of the crystals. Whereas at isotropic or weakly anisotropic interactions the

smallest nanocrystals grow in two dimensions by simultaneous lengthening and

widening, at strongly anisotropic interactions they evolve virtually in one dimen-

sion. More precisely, smallest nanocrystals, characterised by strongly anisotropic

interactions within their monomers, mainly lengthen by preserving a fixed width

of one or two or three, etc. molecular rows depending on the supersaturation.
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As a result, the J(s) dependence of 2D crystals with high enough interaction-

anisotropy ratio changes dramatically: ln J becomes a step-like function of s.

This changed dependence can be understood in the CNT-like framework out-

lined elsewhere (81) and used for obtaining Eq. (6.10), but cannot be described

by CNT (81) and ANT (18). A formula that predicts jumps of ln J(s) at the

threshold supersaturations si from Eq. (6.10) when the nucleating crystals or

crystal-like phases are constituted of molecules with strongly anisotropic inter-

actions is yet to be derived and verified, and the present study provides the

necessary data and understanding for doing that.

Although the results here pertain to nucleation of 2D crystals on their own

substrate, upon replacing s by an effective supersaturation (see, e.g., Refs. (45;

80)) they are directly applicable to 2D crystals nucleated on a foreign substrate.

More generally, the results also apply to nucleation of phases structured in a 2D-

like lattice and constituted of molecules with strongly anisotropic interactions.

A prominent example in this respect (22) is the nucleation of amyloid fibrils.

These protein aggregates are of great interest because of their involvement in

various amyloid-related diseases (22) and nanotechnological applications (89).

In chapter 4, the nucleation of amyloid-β40 fibrils has been studied, and it can

be said here that this process corresponds to the nucleation of 2D crystals with

anisotropy ratio ξ = 14. Thus, the application of our high-anisotropy-ratio re-

sults to amyloid fibril nucleation occurring by direct polymerization of monomeric

protein is straightforward. It is worth noting as well that the present results are

directly applicable also to the 2D square-lattice Ising model with anisotropic

nearest-neighbour coupling, provided the broken-bond energies (ψ/2)kBT and

(ψh/2)kBT are replaced by the coupling constants Jx and Jy along the x and y

axes, respectively, and the halved supersaturation (s/2)kBT is replaced by the

external field H.

124



Chapter 7

Summary and Outlook

7.1 Summary and Conclusions

The self-assembly of amyloid fibrils is a widely studied phenomenon because it

has important implications ranging from biotechnology to human diseases (Ref.

(22)). Amyloid fibrils deposition is in fact associated to many systemic and

neurodegenerative diseases. On the other hand the highly ordered structure of

this supra-molecular material makes it unique for its mechanical and biological

properties (Ref. (22)). Novel materials using amyloid fibers as templates can

find applications in food packaging and wrapping, as bio-sensors or in the bio-

scaffolding industry, aiming to exploit the biodegradability, strength and bio-

compatibility of the amyloid fibers (Ref. (22)). Interestingly living beings such

as moths and spiders, synthesise amyloid fibers to build their nest or webs and

to protect their shells (Ref. (36)). Fungi and bacteria (Escherichia coli) employ

extracellular amyloid (curli) to create a matrix that modulate surface adhesion

of biological environments in order to support the colony formation (Ref. (36)).

Furthermore amyloid fibrils have functional roles in the human body (Ref. (11;

36)). For instance, a study has shown that the protein Pme17 forms fibrous

structures (Mα amyloid) vital for the bio-synthesis of melanin (Ref. (11; 36)).

It is well established that most fibrillar aggregates do form through a nucle-

ation mechanism. Over the last decades there has been a considerable effort in

understanding the nucleation mechanism associated with the protein fibrillation,

and numerous experiments and theoretical studies have been devoted to the in-

vestigation of the self-assembly of protein (Ref. (4; 32; 33; 34; 38; 60; 61; 67; 81;

90; 100)). However, the nucleation of nanofibrils is poorly understood, mainly
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7.1 Summary and Conclusions

because the experiments characterising the early stages of these aggregates are

difficult, and furthermore, the complexity of protein systems has made it difficult

to simulate the fibril nucleation events.

Understanding and interpreting such experiments requires developing a the-

oretical framework to describe amyloid fibril nucleation. The aim of this thesis

has been to illustrate how the amyloid fibril nucleation can be treated in the

framework of existing nucleation theories of nucleation of new phases such as the

Classical and Atomistic Nucleation Theory (CNT and ANT respectively). The

theoretical formalism developed here (ANT for amyloid fibril nucleation) stems

from first principles in nucleation theory and it has not only the potential to

become an important tool in analysing experiments in amyloid fibrils but also in

designing new experiments aimed at a better understanding of how to control the

birth of amyloid fibrils. The results discussed in the thesis are applicable to the

one-step homogeneous nucleation which occurs when the solution is sufficiently

pure and/or strongly supersaturated.

In chapter 1 a brief introduction illustrated the self-assembly of proteins into

amyloid fibrils, giving the experimental and theoretical state of art. In addition to

the motivation of this thesis, concepts of nucleation theory have been introduced

and the reasons which justify the use of overall crystallization theory have been

given.

In chapter 2 CNT (77; 84) and CCNT (80) were applied for describing the

thermodynamics and kinetics of amyloid fibril nucleation. In particular, the work

to form a nanosized amyloid fibril built up of successively layered β-sheets, the

size of the fibril nucleus, the nucleation work and the fibril nucleation rate have

been determined as explicit functions of the concentration and temperature of

the protein solution. It has been found that although CNT could give a good

qualitative explanation of the process, it disregards the work done to attach the

first β-strand at the periphery of the CNT fibril nucleus. Because of that, CNT

underestimates the fibril nucleus size and, even more, the nucleation work leading

to an overestimation of the nucleation rate J by many orders of magnitude.

CCNT corrects this important inaccuracy giving a more reliable expression for

the calculation of J . Importantly it has been discussed that the CCNT nucleation

rate can be related to experimental isothermal data such as the protein solubility.

Finally, an important theory-independent estimation of the nucleus size from J

data has been given.
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7.1 Summary and Conclusions

In chapter 3 the nucleation of amyloid fibrils has been discussed at the molec-

ular level employing the ANT for fibril. In particular, an expression for the work

to form a nanosized amyloid fibril (protofilament) composed of successively lay-

ered β-sheets has been derived. With the help of this expression, the nucleation

work and the nucleus size have been obtained. Subsequently, ANT has been

applied to an idealised peptide system. Also in this case, the size of the fibril

nucleus, fibril nucleation work and fibril nucleation rate as functions of super-

saturation of the protein solution have been obtained. The analysis illustrates

the unique feature of the ANT fibril nucleus size as a constant integer in a given

supersaturation range. Furthermore, the comparison between ANT, CNT and

CCNT leads to the conclusion that while the CNT nucleation rate is orders of

magnitude greater than the ANT one, the CCNT and ANT nucleation rates are

in very good quantitative agreement with each other. However, ANT is gener-

ally considered more reliable than the previous theories because of its realistic

accounting for the actual shape of the clusters. In the field of crystal nucle-

ation, in fact, ANT has been found to be in better quantitative agreement with

simulation and numerical data than the CNT and CCNT.

The ANT developed for amyloid fibrils has been applied to a real protein

model in chapter 4. In particular, employing ANT to model the amyloid nu-

cleation of β2m and Aβ40 fibrils, predictions of the fibril nucleus size and of the

fibril nucleation rate have been determined as functions of the supersaturation

and the concentration of the protein solution. Subsequently, these ANT results

have been correlated to recent time-resolved optical experiments, where the ef-

fects of the protein concentration and mutations on the initial lag time in the

protein solution have been measured. These important results lead to the con-

clusion that the primary effect of the predicted changes in the nucleation rates

and nucleus sizes of mutations, is due to the change of the fibril solubility. A

correlation analysis between the ANT nucleation rates and the experimentally

measured lag times yields a correlation coefficient of 0.43 for β2m and 0.71 for

Aβ40, providing a statistically relevant validation of the present model.

Employing ANT, a general expression for the stationary size distribution of

amyloid nanofibrils constituted of successively layered β-sheets has been derived

in chapter 5. This expression applied to Aβ40 fibrils allowed the prediction of

the nanofibril size distribution as a function of the protein concentration and

temperature. The most remarkable feature of the distribution is its exhibiting a
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7.2 Outlook

series of peaks which are positioned at “magic” nanofibril sizes (or lengths) that

are consistent with experimental results for the size distribution of aggregates

in solutions of Aβ40 proteins. The approach makes it possible to gain insight

into the effect of point mutations on the nanofibril size distribution, an effect

that might explain the substantial differences experimentally observed in the

fibrillation lag-time of wild-type and point-mutated amyloid-β proteins.

In chapter 6, some assumptions of ANT have been tested by kinetic Monte

Carlo simulations (KMC). The idealised model in the simulation makes it possible

to apply the results to any nucleating system whose molecules interact with

strongly anisotropic forces, including the case of amyloid fibrils nucleating from

a peptide solution. In particular, the focus of the investigation has been to

study the effect of nucleation of isotropic and anisotropic interactions on the

stationary nucleation rate J . To this aim, by KMC simulations, J as a function

of the supersaturation s has been obtained for a variety of different values of the

anisotropic parameter ξ = ψ/ψh. The results show that with increasing ξ the

dependence of ln J on s becomes step-like, with jumps at certain s values. This

J(s) dependence observed in the simulations cannot be described by the classical

and atomistic nucleation theories. It represents, in fact, a completely novel result,

never reported previously in either experiments or simulations studies.

7.2 Outlook

The developed theory is able to explain the kinetics and thermodynamics of nu-

cleation of amyloid fibrils as one-step process for homogeneous systems, opening

the way to new exciting directions. Furthermore, the novel results obtained by

KMC simulations extend the study toward a more fundamental problem such as

the nucleation of clusters composed of atoms or molecules bonded by anisotropic

interactions.

An important extension of the present study would be the inclusion of a

specific hydrophobic interaction for each amino acid. In fact, the hydrophobic

interaction among proteins is known to play an important role in amyloid fibril

formation. However, in the calculations of chapter 4, chapter 5 and in the sim-

ulations described in chapter 6, this contribution has been neglected, assuming

the same hydrophobicity for each amino acid. The most detailed interaction

model that has been used, i.e., the PASTA model, has been derived in Ref.
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7.2 Outlook

(144) upon analysing the structure of protein’s crystals at negligible or no hy-

dration, and thus, even in this case, hydrophobicity was neglected. Preliminary

calculations, not included in the thesis for reasons of length and clarity, have

shown that prediction of equilibrium concentrations improves considerably when

specific hydrophobic interactions are included in the model.

In the present theory, the model assumes nearest-neighbour interactions among

the molecules in the crystal. This simplifying assumption might represent an-

other important limit of the model, possibly affecting the quality of the results.

In chapter 4, for instance, the application of the theory to real protein repro-

duced the effect of some mutations but not of all of them. In the model the effect

of replacing amino acid α with amino acid γ within a protein or a peptide does

not depend on the position of replacement along the chain, but depends on the

identity of the two amino acids α and γ. That means that the nucleation rate for

two different mutations has to be the same if both correspond to the change of

the same amino acid type, occurring at two different positions along the chain.

This fact does not correspond to the experimental reality. The introduction of

second neighbour interactions could easily remove this limitation, and improve

the results of chapter 4 concerning the nucleation rate of mutants with respect

to the wild case.

A further important improvement of the present study would require upgrad-

ing the actual model to a more realistic description of polymer peptide system

in a biological environment. For example, the charge and polarity of the amino

acids have been neglected in the model. Moreover, proteins in biological fluids

are influenced by the state of motion of the environment, giving rise to the so

called hydrodynamic interactions. For example, the fluid’s shear can trigger the

self-assembly or prevent it depending on the physical condition. Shear, in partic-

ular, could contribute significantly to the fragmentation processes that represent

an important mechanism of amyloid fibril nucleation.

As a further important aspect, it is worth pointing out that, in its present

version, the model does not explicitly include entropic effects such as the loss

of entropy occurring when a β-strand is attached to a fibril or the entropy due

to vibrations of a β-strand within the fibril. Entropic effects can be taken into

account by providing expressions for the entropic contribution to the fibril solu-

bility and β-strand binding energy. Ideas on how to estimate these contributions

can be found in Ref. (31) and they could be the basis of an important extension
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7.2 Outlook

of the present nanofibril model. It should be noted that the entropic effects on

the fibril solubility are automatically accounted for when experimental data for

Ce are used in the ANT Eq. (3.19) for J .

Another stimulating new direction could to be the study of the polymorphism

phenomenon. Amyloid fibrils from a single polypeptide chain can form poly-

morphs that can self-propagate in seeded elongation reactions. In particular, the

choice of the seed can control the conformation of the final fibril. Furthermore,

sequence differences between the seed and monomer can prevent the elongation

if the sequences diversity is conspicuous. This phenomenon is known to happen

in the context of prion related disease.

It is worth noting as well that the ANT theory requires appropriate modifica-

tions to deal with different relevant situations such as: (i) the two-step nucleation

case involving formation of oligomeric precursors or (ii) the heterogeneous nucle-

ation on nucleation-active sites provided by foreign agents such as nanoparticles.

The process of heterogeneous nucleation can be reformulated in terms of the

problem of seeded nucleation which is well related to a real aspect in the self-

assembling of protein into amyloid fibrils. It is in fact well known that in the

biological systems the aggregation into amyloid fibrils can be triggered by the

presence of nanoparticles and lipid bilayers of membranes. The theory could be

extended to include in the model and in the actual “effective supersaturation”

the presence of a foreign seed or of a seed made from the same protein. The

process could be then verified by KMC simulations.

Finally, the computer program written for this thesis, could be easily extended

to study the nucleation of crystals in a three-dimensional (3D) space, giving

important results applicable to 3D crystal and anisotropic systems in general.
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Appendix A

Tables for β2m, Aβ40 and their

mutants

The following tables show the ANT numbers l∗j and l∗h,j of, respectively, the strong

and weak broken bonds of an n-sized amyloid fibril at the periphery of the fibril

cross section in the m, i plane for:

β2m and its mutants (ψ/ψh = nt = 12) A.1;

Aβ40 and V18N (ψ/ψh = nt = 14) A.2;

V18R and V18P (ψ/ψh = nt = 13) A.3.
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Table A.1: ANT l and lh numbers for β2m and mutants.

n ln lh,n n ln lh,n n ln lh,n n ln lh,n n ln lh,n

1 2 2 61 6 48 121 8 72 181 8 92 241 10 98
2 2 4 62 6 48 122 8 72 182 8 92 242 10 98
3 2 6 63 6 48 123 8 72 183 8 92 243 10 98
4 2 8 64 6 48 124 8 72 184 8 92 244 10 98
5 2 10 65 6 48 125 8 72 185 8 94 245 10 98
6 2 12 66 6 48 126 8 72 186 8 94 246 10 100
7 2 14 67 6 48 127 8 72 187 8 94 247 10 100
8 2 16 68 6 48 128 8 72 188 8 94 248 10 100
9 2 18 69 6 48 129 8 72 189 8 96 249 10 100
10 2 20 70 6 48 130 8 72 190 8 96 250 10 100
11 2 22 71 6 48 131 8 72 191 8 96 251 12 102
12 2 24 72 6 48 132 8 72 192 8 96 252 12 102
13 4 24 73 6 50 133 8 72 193 10 96 253 12 102
14 4 24 74 6 50 134 8 72 194 10 96 254 12 102
15 4 24 75 6 50 135 8 72 195 10 96 255 12 102
16 4 24 76 6 52 136 8 72 196 10 96 256 12 104
17 4 24 77 6 52 137 8 72 197 10 96 257 12 104
18 4 24 78 6 52 138 8 72 198 10 96 258 12 104
19 4 24 59 6 54 139 8 72 199 10 96 259 12 104
20 4 24 80 6 54 140 8 72 200 10 96 260 12 104
21 4 24 81 6 54 141 8 72 201 10 96 261 12 106
22 4 24 82 6 56 142 8 72 202 10 96 262 12 106
23 4 24 83 6 56 143 8 72 203 10 96 263 12 106
24 4 24 84 6 56 144 8 72 204 10 96 264 12 106
25 4 26 85 6 58 145 8 74 205 10 96 265 12 106
26 4 26 86 6 58 146 8 74 206 10 96 266 12 108
27 4 28 87 6 58 147 8 74 207 10 96 267 12 108
28 4 28 88 6 60 148 8 74 208 10 96 268 12 108
29 4 30 89 6 60 149 8 76 209 10 96 269 12 108
30 4 30 90 6 60 150 8 76 210 10 96 270 12 108
31 4 32 91 6 62 151 8 76 211 10 96 271 12 110
32 4 32 92 6 62 152 8 76 212 10 96 272 12 110
33 4 34 93 6 62 153 8 78 213 10 96 273 12 110
34 4 34 94 6 64 154 8 78 214 10 96 274 12 110
35 4 36 95 6 64 155 8 78 215 10 96 275 12 110
36 4 36 96 6 64 156 8 78 216 10 96 276 12 112
37 4 38 97 6 66 157 8 80 217 10 96 277 10 112
38 4 38 98 6 66 158 8 80 218 10 96 278 10 112
39 4 40 99 6 66 159 8 80 219 10 96 279 10 112
40 4 40 100 6 68 160 8 80 220 10 96 280 10 112
41 4 42 101 6 68 161 8 82 221 10 96 281 10 114
42 4 42 102 6 68 162 8 82 222 10 96 282 10 114
43 4 44 103 6 70 163 8 82 223 10 96 283 10 114
44 4 44 104 6 70 164 8 82 224 10 96 284 10 114
45 4 46 105 6 70 165 8 84 225 10 96 285 10 114
46 4 46 106 6 72 166 8 84 226 10 96 286 10 116
47 4 48 107 6 72 167 8 84 227 10 96 287 10 116
48 4 48 108 6 72 168 8 84 228 10 96 288 10 116
49 6 48 109 8 72 169 8 86 229 10 96 289 10 116
50 6 48 110 8 72 170 8 86 230 10 96 290 10 116
51 6 48 111 8 72 171 8 86 231 10 96 291 10 118
52 6 48 112 8 72 172 8 86 232 10 96 292 10 118
53 6 48 113 8 72 173 8 88 233 10 96 293 10 118
54 6 48 114 8 72 174 8 88 234 10 96 294 10 118
55 6 48 115 8 72 175 8 88 235 10 96 295 10 118
56 6 48 116 8 72 176 8 88 236 10 96 296 10 120
57 6 48 117 8 72 177 8 90 237 10 96 297 10 120
58 6 48 118 8 72 178 8 90 238 10 96 298 10 120
59 6 48 119 8 72 179 8 90 239 10 96 299 10 120
60 6 48 120 8 72 180 8 90 240 10 96 300 10 120
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Table A.2: ANT l and lh numbers for Aβ40 wild-type and V18N mutant.

n ln lh,n n ln lh,n n ln lh,n n ln lh,n n ln lh,n

1 2 2 61 6 56 121 6 82 181 8 92 241 10 112
2 2 4 62 6 56 122 6 82 182 8 92 242 10 112
3 2 6 63 6 56 123 6 82 183 8 92 243 10 112
4 2 8 64 6 56 124 6 84 184 8 92 244 10 112
5 2 10 65 6 56 125 6 84 185 8 94 245 10 112
6 2 12 66 6 56 126 6 84 186 8 94 246 10 112
7 2 14 67 6 56 127 8 84 187 8 94 247 10 112
8 2 16 68 6 56 128 8 84 188 8 94 248 10 112
9 2 18 69 6 56 129 8 84 189 8 96 249 10 112
10 2 20 70 6 56 130 8 84 190 8 96 250 10 112
11 2 22 71 6 56 131 8 84 191 8 96 251 10 112
12 2 24 72 6 56 132 8 84 192 8 96 252 10 112
13 2 26 73 6 56 133 8 84 193 8 98 253 10 112
14 2 28 74 6 56 134 8 84 194 8 98 254 10 112
15 4 28 75 6 56 135 8 84 195 8 98 255 10 112
16 4 28 76 6 56 136 8 84 196 8 98 256 10 112
17 4 28 77 6 56 137 8 84 197 8 100 257 10 112
18 4 28 78 6 56 138 8 84 198 8 100 258 10 112
19 4 28 59 6 56 139 8 84 199 8 100 259 10 112
20 4 28 80 6 56 140 8 84 200 8 100 260 10 112
21 4 28 81 6 56 141 8 84 201 8 102 261 10 112
22 4 28 82 6 56 142 8 84 202 8 102 262 10 112
23 4 28 83 6 56 143 8 84 203 8 102 263 10 112
24 4 28 84 6 56 144 8 84 204 8 102 264 10 112
25 4 28 85 6 58 145 8 84 205 8 104 265 10 112
26 4 28 86 6 58 146 8 84 206 8 104 266 10 112
27 4 28 87 6 58 147 8 84 207 8 104 267 10 112
28 4 28 88 6 60 148 8 84 208 8 104 268 10 112
29 4 30 89 6 60 149 8 84 209 8 106 269 10 112
30 4 30 90 6 60 150 8 84 210 8 106 270 10 112
31 4 32 91 6 62 151 8 84 211 8 106 271 10 112
32 4 32 92 6 62 152 8 84 212 8 106 272 10 112
33 4 34 93 6 62 153 8 84 213 8 108 273 10 112
34 4 34 94 6 64 154 8 84 214 8 108 274 10 112
35 4 36 95 6 64 155 8 84 215 8 108 275 10 112
36 4 36 96 6 64 156 8 84 216 8 110 276 10 112
37 4 38 97 6 66 157 8 84 217 8 110 277 10 112
38 4 38 98 6 66 158 8 84 218 8 110 278 10 112
39 4 40 99 6 66 159 8 84 219 8 110 279 10 112
40 4 40 100 6 68 160 8 84 220 8 110 280 10 112
41 4 42 101 6 68 161 8 84 221 8 112 281 10 114
42 4 42 102 6 68 162 8 84 222 8 112 282 10 114
43 4 44 103 6 70 163 8 84 223 8 112 283 10 114
44 4 44 104 6 70 164 8 84 224 8 112 284 10 114
45 4 46 105 6 70 165 8 84 225 10 112 285 10 114
46 4 46 106 6 72 166 8 84 226 10 112 286 10 116
47 4 48 107 6 72 167 8 84 227 10 112 287 10 116
48 4 48 108 6 72 168 8 84 228 10 112 288 10 116
49 4 50 109 6 74 169 8 86 229 10 112 289 10 116
50 4 50 110 6 74 170 8 86 230 10 112 290 10 116
51 4 52 111 6 74 171 8 86 231 10 112 291 10 118
52 4 52 112 6 76 172 8 86 232 10 112 292 10 118
53 4 54 113 6 76 173 8 88 233 10 112 293 10 118
54 4 54 114 6 76 174 8 88 234 10 112 294 10 118
55 4 56 115 6 78 175 8 88 235 10 112 295 10 118
56 4 56 116 6 78 176 8 88 236 10 112 296 10 120
57 6 56 117 6 78 177 8 90 237 10 112 297 10 120
58 6 56 118 6 80 178 8 90 238 10 112 298 10 120
59 6 56 119 6 80 179 8 90 239 10 112 299 10 120
60 6 56 120 6 80 180 8 90 240 10 112 300 10 120
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Table A.3: ANT l and lh numbers for V18R and V18P mutants of Aβ40.

n ln lh,n n ln lh,n n ln lh,n n ln lh,n n ln lh,n

1 2 2 61 6 52 121 6 78 181 8 92 241 10 104
2 2 4 62 6 52 122 6 78 182 8 92 242 10 104
3 2 6 63 6 52 123 6 78 183 8 92 243 10 104
4 2 8 64 6 52 124 6 78 184 8 92 244 10 104
5 2 10 65 6 52 125 6 78 185 8 94 245 10 104
6 2 12 66 6 52 126 6 78 186 8 94 246 10 104
7 2 14 67 6 52 127 8 78 187 8 94 247 10 104
8 2 16 68 6 52 128 8 78 188 8 94 248 10 104
9 2 18 69 6 52 129 8 78 189 8 96 249 10 104
10 2 20 70 6 52 130 8 78 190 8 96 250 10 104
11 2 22 71 6 52 131 8 78 191 8 96 251 10 104
12 2 24 72 6 52 132 8 78 192 8 96 252 10 104
13 2 26 73 6 52 133 8 78 193 8 98 253 10 104
14 4 26 74 6 52 134 8 78 194 8 98 254 10 104
15 4 26 75 6 52 135 8 78 195 8 98 255 10 104
16 4 26 76 6 52 136 8 78 196 8 98 256 10 104
17 4 26 77 6 52 137 8 78 197 8 100 257 10 104
18 4 26 78 6 52 138 8 78 198 8 100 258 10 104
19 4 26 59 6 54 139 8 78 199 8 100 259 10 104
20 4 26 80 6 54 140 8 78 200 8 100 260 10 104
21 4 26 81 6 54 141 8 78 201 8 102 261 10 106
22 4 26 82 6 56 142 8 78 202 8 102 262 10 106
23 4 26 83 6 56 143 8 78 203 8 102 263 10 106
24 4 26 84 6 56 144 8 78 204 8 102 264 10 106
25 4 26 85 6 58 145 8 78 205 8 104 265 10 106
26 4 26 86 6 58 146 8 78 206 8 104 266 10 108
27 4 28 87 6 58 147 8 78 207 8 104 267 10 108
28 4 28 88 6 60 148 8 78 208 8 104 268 10 108
29 4 30 89 6 60 149 8 78 209 10 104 269 10 108
30 4 30 90 6 60 150 8 78 210 10 104 270 10 108
31 4 32 91 6 62 151 8 78 211 10 104 271 10 110
32 4 32 92 6 62 152 8 78 212 10 104 272 10 110
33 4 34 93 6 62 153 8 78 213 10 104 273 10 110
34 4 34 94 6 64 154 8 78 214 10 104 274 10 110
35 4 36 95 6 64 155 8 78 215 10 104 275 10 110
36 4 36 96 6 64 156 8 78 216 10 104 276 10 112
37 4 38 97 6 66 157 8 80 217 10 104 277 10 112
38 4 38 98 6 66 158 8 80 218 10 104 278 10 112
39 4 40 99 6 66 159 8 80 219 10 104 279 10 112
40 4 40 100 6 68 160 8 80 220 10 104 280 10 112
41 4 42 101 6 68 161 8 82 221 10 104 281 10 114
42 4 42 102 6 68 162 8 82 222 10 104 282 10 114
43 4 44 103 6 70 163 8 82 223 10 104 283 10 114
44 4 44 104 6 70 164 8 82 224 10 104 284 10 114
45 4 46 105 6 70 165 8 84 225 10 104 285 10 114
46 4 46 106 6 72 166 8 84 226 10 104 286 10 116
47 4 48 107 6 72 167 8 84 227 10 104 287 10 116
48 4 48 108 6 72 168 8 84 228 10 104 288 10 116
49 4 50 109 6 74 169 8 86 229 10 104 289 10 116
50 4 50 110 6 74 170 8 86 230 10 104 290 10 116
51 4 52 111 6 74 171 8 86 231 10 104 291 10 118
52 4 52 112 6 76 172 8 86 232 10 104 292 10 118
53 6 52 113 6 76 173 8 88 233 10 104 293 10 118
54 4 52 114 6 76 174 8 88 234 10 104 294 10 118
55 4 52 115 6 78 175 8 88 235 10 104 295 10 118
56 4 52 116 6 78 176 8 88 236 10 104 296 10 120
57 6 52 117 6 78 177 8 90 237 10 104 297 10 120
58 6 52 118 8 78 178 8 90 238 10 104 298 10 120
59 6 52 119 8 78 179 8 90 239 10 104 299 10 120
60 6 52 120 8 78 180 8 90 240 10 104 300 10 120
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