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Abstract

Solar jets have been studied for over 100 years and may hold the key to

some of the most long-standing questions in solar physics. Analytical models

are well established as a useful tool for examining solar phenomena, many

of which exhibit magnetohydrodynamic wave behaviour. In this thesis we

investigate a potential mechanism by which solar jets are formed and explore

the connection between features such as spicules and magnetic bright points

in the lower solar atmosphere.

A model is created, utilising a perturbation method and adapting the system

of MHD equations in the context of a magnetic flux tube in order to explore

the generation of mass flux due to torsional Alfvén waves. Using the zero-

beta approximation to model these intensely magnetic regions, we derive that

the presence of such waves can result in field-aligned plasma motion formed

non-linearly as a result of the Lorentz force. Comparisons are made with

observed properties of spicules.

In the next iteration we include a density discontinuity, representing the solar

transition region. The initial upward-propagating Alfvén pulse is reflected

from this discontinuity, resulting in a reversal of the flux which may be iden-

tified with the behaviour of spicules. The relative mass of plasma lifted by

the transmitted and reflected waves is estimated as a ratio, and comparison

is made between the relative total mass of spicules and the solar wind.
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Finally, the model is augmented with a finite transitional layer in which the

atmospheric density decreases exponentially. The Alfvén pulse interacts with

and is partially reflected by this layer. We find that the wave transmitted

into the upper solar atmosphere results in greater mass flux when compared

with the previous model. We examine how varying the parameters of this

transitional layer affects the ratio of the flux above and below the layer.
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CHAPTER 1

Introduction

1.1 The Sun

Throughout human history the Sun has been an object of great interest: once

worshipped by ancient cultures around the world, it later became the literal

centre of controversy when Copernicus presented his heliocentric model of

the planets, and is still an influence on aspects of everyday life from the

weather to satellite communications. The Sun is also a fascinating system of

complex physical processes originating with the nuclear fusion reaction that

is the source of the star’s extreme heat and energy, causing atoms themselves

to separate into ionised nuclei and electrons in the form of plasma. Far from

being the static sphere that is apparent to the naked eye, even more inter-

esting behaviour is exhibited by the constantly changing magnetic fields and

charged plasma of the solar atmosphere, which is akin to a cosmic laboratory

of exotic magnetohydrodynamic effects. Recent developments in technology

have allowed for increasingly high-resolution observations of the solar atmo-

sphere and of the dynamic features that take place there on various scales,

from large coronal mass ejections (CMEs) that can extend far into the solar

system, to relatively small spicules and fibrils that are close to the limit of

our observational capabilities.
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Figure 1.1: A diagram of the structure of the Sun, showing the scale of the

different regions of the solar interior.

1.2 Solar Interior

Like all stars, the Sun was born from the gravitational collapse of a giant

molecular cloud of gas and dust. It is composed of 92% hydrogen (in the

plasma state, i.e. as ionised gas), which it converts into helium primarily via

a type of nuclear fusion reaction known as the proton-proton chain. This

reaction takes place in the core of the Sun, releasing massive amounts of

energy in the form of photons and resulting in temperatures of up to 15

million Kelvin (Priest, 2014). This energy slowly makes its way through the

radiative zone, an incredibly dense and opaque region where the photons are

absorbed and re-emitted repeatedly, before they reach the convection zone.

Here plasma can move more freely and therefore can transport energy more

quickly via convection. Similar to the motion of a lava lamp, material at

the base of the convection zone is heated and rises, then emits the energy

as it approaches the surface, and falls as it cools. Even below the surface,
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Figure 1.2: A graph of the temperature and density variation with height in the

solar atmosphere, according to the VAL model (Vernazza et al., 1973). Image

source Lang (2001).

waves propagate through the plasma and are reflected and refracted by the

stratified structure of the solar interior (Leighton et al., 1962). The study of

such waves via helioseismology allows us to infer properties of solar plasma

and the structure of the Sun (Claverie et al., 1979; Fossat et al., 2017).

1.3 Solar Atmosphere

1.3.1 Photosphere

The heat and energy generated in the core is transferred outward towards the

surface of the Sun via a process that can take around 170,000 years (Mitalas

and Sills, 1992). However, the temperature actually falls to its minimum of

around 4000 Kelvin just above the lowest region of the solar atmosphere, the

photosphere.

The radius of the Sun is 695,500 km, or around 109 times that of the Earth.

However, unlike the Earth, the radius of a star is not defined by a solid
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surface but is generally thought of as the point at which the plasma becomes

opaque to visible light, or as the point at which the local temperature equals

the solar effective temperature (Brown and Christensen-Dalsgaard, 1998).

The photosphere is thus the apparent surface of the Sun from which visible

light is emitted. This region is relatively thin, with a thickness of only a few

hundred kilometers (Priest, 2014). Many solar phenomena originate from or

are ‘anchored’ in the photosphere.

In this base layer of the solar atmosphere, we can observe features such as

granulation, a pattern of tightly packed irregular shapes across the entire

photosphere. Granulation is the evidence of convective plasma cells rising to

the surface, formed by columns of convective material that extend from deep

within the solar interior — these shapes, or granules, are only the visible top

of the columns. The hot plasma rises in the bright center of each granule,

then moves outwards towards the edges into the intergranular lanes where it

flows downwards again (Hathaway et al., 2002).

Magnetic bright points (MBPs) are relatively compact1 regions of concen-

trated magnetic flux (Dunn and Zirker, 1973; Berger et al., 1995; Crockett

et al., 2010; Keys, 2013; Liu et al., 2018) with field strengths on the order

of a kilogauss (Keys et al., 2013, 2019; Vargas Domı́nguez and Utz, 2022)

and with reduced density compared to the surrounding atmosphere, allowing

observation deeper into the photosphere (De Wijn et al., 2009). Magnetic

forces dominate inside MBPs, and they can be modelled as thin flux tubes

(Cranmer and van Ballegooijen, 2005). They are thought to be the source of

certain MHD waves (Jess et al., 2009; Fedun et al., 2011; Keys et al., 2011),

and may be important in the transfer of kinetic energy through the otherwise

turbulent lower solar atmosphere into higher regions. They have also been

associated with the appearance of jets (Stenflo, 1973; Jess et al., 2012a), per-

haps acting as anchor points — they occur frequently at intergranular lanes

1Like spicules, MBPs are close to the lower limit of the resolution we can currently

observe even with the SST, Big Bear Solar Observatory (BBSO), or New Vaccuum Solar

Telescope (NVST), but it is possible that the Daniel K. Inouye Solar Telescope (DKIST)

will enable a breakthrough on the observational side of this — see DKIST Science Use

Cases (https://nso.edu/telescopes/dkist/csp) e.g. SUC178
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and supergranule boundaries (Dunn and Zirker, 1973; De Wijn et al., 2009),

the same regions we observe high concentrations of spicules (Tsiropoula et al.,

2012).

Sunspots are relatively cool and dark regions of concentrated magnetic flux

where energy transport by convection is inhibited. They can be observed in

the photosphere in visible light and can sometimes even be seen without a

telescope (using a solar filter to protect the eyes). As a result, they have been

observed by astronomers for hundreds of years. Sunspots are an indicator

of the solar activity cycle and are associated with active regions of the solar

atmosphere, where strong magnetic fields occur in complex configurations of

opposing polarity. It is also in these regions that extremely energetic events

such as solar flares are most likely to occur, when the magnetic energy and

material stored in the twisted magnetic field lines is released during the

process of magnetic reconnection.

The Sun’s activity — including sunspot number, solar flare occurrence, mag-

netic flux, and radiation output — periodically changes over an 11-year du-

ration. Solar maximum is the point in the cycle at which the Sun is most

active, and it is at this time that large solar flares occur more frequently (As-

chwanden, 2005). Solar activity can have an impact on space weather in the

solar system and can adversely affect modern communications systems and

technology; observing the photosphere is one way to monitor this activity

cycle, which may allow us to predict these effects.

1.3.2 Chromosphere

The chromosphere is a highly dynamic region of the atmosphere and is the

location of a variety of jets such as spicules (Beckers, 1968; Sterling, 2000)

which form a ‘forest’ of constantly rising and falling energetic material. In ad-

dition, the region is characterised by plasma flows such as swirls (Wedemeyer-

Böhm and Rouppe van der Voort, 2009; Liu et al., 2019a), and wave motions

between the photosphere and the outer atmosphere (Jess et al., 2015). The

intergranular magnetic field of the photosphere continues and expands up-

wards as the chromospheric network.
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Figure 1.3: An image of the solar surface showing granulation, with magnetic

bright points visible in the intergranular lanes. This image was taken by the

Daniel K. Inouye Solar Telescope (credit due to NSO/NSF/AURA).
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This layer of the atmosphere is around 2–3 Mm thick and can be observed in

a wide range of electromagnetic wavelengths from visible light to EUV (De

Pontieu et al., 2014). During a solar eclipse, the chromosphere is visible as a

pink glow at the limb of the Sun due to its emission of the 656 nm wavelength

of visible light known as H-alpha. Space-based platforms including the So-

lar and Heliospheric Observatory (SOHO) and Solar Dynamics Observatory

(SDO) allow for advanced spectral imaging, enabling us to view the solar

atmosphere at certain wavelengths not visible from Earth.

The lower chromosphere is dominated largely by plasma pressure forces

rather than magnetic forces, except perhaps in certain localised phenom-

ena such as flux tubes. This begins to change higher up in the region, giving

rise to complex magnetic behaviour such as twisting, expansion, and recon-

nection (Ayres et al., 2009) while the field also interacts with the constantly

moving plasma jets. Above the temperature minimum at the lower end of the

chromosphere, the temperature rises with height and notably undergoes an

extreme increase in the transition region between the chromosphere and the

outer part of the solar atmosphere, starting around 3 Mm above the photo-

sphere (Alissandrakis, 2022). Meanwhile the density decreases severely with

height in the chromosphere, dropping by around 6–7 orders of magnitude

from the photosphere to the corona (Priest, 2014; Roberts, 2019).

1.3.3 Corona

Named after the Latin word for ‘crown’, the corona is the outermost layer

of the Sun’s atmosphere proper, although the heliosphere continues much

further out into the solar system as the solar wind (Parker, 1958; Marsch,

2006). This region is visible during solar eclipses (or with a coronagraph) as a

glowing halo around the Sun consisting of wispy strands of plasma. Coronal

holes, areas of open field lines located at the poles of the Sun, are present for

most of the solar cycle except during the solar maximum (Priest, 2014).

The corona is highly ionised, has low plasma density, and reaches a local

temperature maximum on the order of 1 million Kelvin (Aschwanden, 2005).

As a result, magnetic forces dominate (low plasma-beta) in the majority of
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Figure 1.4: A diagram of the solar atmosphere, composed of images from space-

based observatories. The images of the chromosphere and underlying photo-

sphere are sourced from NASA’s SDO using the AIA instrument to observe dif-

ferent wavelengths of light, at 304Å and 1700Å respectively. The background

image of the corona was observed by ESA’s SOHO using the LASCO instrument

(and is not to scale). Helioviewer.org was used to obtain the images.
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this region, and plasma forms large oscillating loops as it follows the arcing

magnetic field lines anchored in the active regions of opposite polarity in the

photosphere. Areas of closed magnetic field lines outside of coronal holes

or active regions are known as the Quiet Sun, although these areas are still

host to dynamic features such as jets, nanoflares, bright points, and loops

(Aschwanden, 2005).

One of the major goals within the field of solar physics is to fully explain

how the chromosphere and corona are heated to such extreme temperatures,

such a short distance from the temperature minimum in the cooler photo-

sphere. This is known as the coronal heating problem (Withbroe and Noyes,

1977; Zirker, 1993; Heyvaerts, 2000). Various mechanisms are expected to

play a role in heating the chromosphere and corona, for example magnetic

reconnection (Cirtain et al., 2013), Alfvén waves (Taroyan and Erdélyi, 2009;

McIntosh et al., 2011), and chromospheric jets (Athay and Holzer, 1982; De

Pontieu et al., 2011).

The solar wind is another subject of ongoing research, as the source of its

heating and acceleration is complex and many different processes are in-

volved. The boundary between the corona and solar wind is called the Alfvén

surface, occurring in an irregular region at around 12–20 solar radii above the

photosphere, at which point the bulk solar wind speed surpasses the Alfvén

speed (typically on the order of 300 km s−1, depending on the underlying

corona) (DeForest et al., 2014; Adhikari et al., 2019). There are fast and

slow components of the solar wind, which originate from different local mag-

netic field configurations in the corona (open or closed) - CMEs also have a

large but transient effect on the solar wind (Marsch, 2006). The interaction

of the solar wind with the Earth’s atmosphere and magnetic field gives rise

to aurorae and geomagnetic storms.

1.4 Magnetohydrodynamics

Due to its ionised nature, the movement of plasma (described by its velocity

field v) is influenced by, and affects, the magnetic field B. The system of

equations that govern plasma motion must therefore be adapted from the
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equations of fluid dynamics and Maxwell’s equations of electromagnetism,

along with Ohm’s law and physical conservation laws. The combined system

is known as magnetohydrodynamics (MHD).

1.4.1 Solar Plasma

First, let us define the parameters and properties of the plasma.

The solar atmosphere, although comprised of plasma made up of charged

electrons and ions, is considered to be almost electrically neutral on average,

over a macroscopic scale. Local fluctuations result in charge imbalance, pro-

ducing an electric field over a small region. A free charge in a plasma will

become surrounded by particles of the opposite charge, shielding the free

charge from the plasma at distances much greater than λD, a scale known

as the Debye length (Goedbloed and Poedts, 2004). In this way, the plasma

reacts to and compensates for local charge imbalances, and so is considered

to be quasi-neutral.

In solar plasma, the number of particles inside a sphere of radius λD is large

(Priest, 2014). The characteristic time scale t0 of plasma behaviour is short

in comparison to the average time between collisions of charged and neutral

particles, and the characteristic length scale l0 is large in comparison to the

Debye length. It is also reasonable to assume that ions and electrons have

similar velocities, and that MHD interaction takes place over non-relativistic

timescales, i.e.

l0
t0

≪ c , (1.1)

where c is the speed of light. (Goedbloed and Poedts, 2004).
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1.4.2 Electromagnetic equations

Now, let us introduce Maxwell’s equations:

∇ ·B = 0 (1.2)

∇ · E =
ρ∗

ε
(1.3)

∇× E = −∂B

∂t
(1.4)

∇×B = µj+
1

c2
∂E

∂t
. (1.5)

Equation (1.2) is the solenoidal constraint, also known as Gauss’ law of mag-

netism; this establishes the fact that there must be no magnetic monopoles

in the system because the divergence of the magnetic field B is zero.

Gauss’ law (or Gauss’ flux theorem) in Eq. (1.3) states that the divergence

of the electric field E is equal to the charge density ρ∗ divided by the per-

mittivity of free space ϵ. Due to our assumption of charge neutrality, the

right-hand side of this equation can be neglected for our purposes and so we

have ∇ · E = 0.

Faraday’s law in Eq. (1.4) states that a time-varying magnetic field also

results in the presence of an electric field that is rotational, i.e. it varies in

space in such a way that it is non-conservative.

Ampere’s law, given by Eq. (1.5), relates the curl of the magnetic field to the

current density j. Here, µ is the magnetic permeability, and c is the speed of

light in a vacuum. Due to the assumption that we made in Eq. (1.1), we can

neglect the second term on the right-hand side of Ampere’s law and write

∇×B = µj.

In addition, we introduce Ohm’s law:

j = σ(E+ v ×B) , (1.6)

where σ is the electrical conductivity. This defines the total electric current

as the total of the current due to the electric field E acting on the plasma at

rest, plus the additional current caused by the plasma moving through the

magnetic field.
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1.4.3 Induction Equation

Combining Ampere’s law (1.5) with Ohm’s law (1.6), along with the MHD

assumptions we made in Section 1.4.1, results in

η(∇×B) = E+ v ×B , (1.7)

where η = 1/µσ is the magnetic diffusivity. Next, we take the curl of Eq. (1.7)

and substitute in Eq. (1.4), also using the vector identity

∇2B = ∇(∇ ·B)−∇×∇×B , (1.8)

along with Eq. (1.2). Then, after rearranging, we obtain the induction equa-

tion,
∂B

∂t
= ∇× (v ×B) + η(∇2B) . (1.9)

The relationship between the magnetic field and the plasma velocity, defined

by the induction equation, is key to magnetohydrodynamics. The first term

on the right-hand side of Eq. (1.9) describes the effects of magnetic induc-

tion on the plasma, while the second relates to magnetic diffusion; the ratio

between these terms is called the magnetic Reynolds number Rm, and can be

approximated using characteristic values of the plasma speed v0 and length

scale l0 as

Rm =
v0l0
η

. (1.10)

In most solar physics contexts, Rm is very large and therefore advection

dominates over diffusion, thus we can neglect the second term on the right-

hand side of the induction equation. In this case, we consider the plasma

to be a perfectly conductive and ideal gas, which is known as ideal MHD.

This also leads to Alfvén’s Frozen-in Flux Theorem (Alfvén, 1943), which

suggests that in the limit of Rm → ∞, magnetic flux will be conserved and

plasma will be ‘fixed’ to the magnetic field lines. Plasma in this case can

only move parallel to the field lines; bulk motion perpendicular to the field

lines will drag the field along with the plasma. In reality, some particles will

still cross magnetic field lines, and processes such as magnetic reconnection

demonstrate that the frozen-in theorem does not always apply. However, the

theorem is often useful as an approximation when considering large length

scales, such as in the solar atmosphere.
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1.4.4 Plasma equations

Since we will be treating solar plasma as a perfect gas, we can introduce the

ideal gas law,

p =
kBT

m
ρ , (1.11)

relating the pressure p and mass density ρ of the plasma, where T is the

temperature, kB is the Boltzmann constant, and m is the mean particle

mass.

As usual, we must impose the physical constraint that mass is constant within

the system, so there are no sources or sinks of matter. This is described by

the continuity equation,

∂ρ

∂t
+∇ · (ρv) = 0 . (1.12)

Applying Newton’s second law to an ionised fluid in the presence of a mag-

netic field gives the equation of motion for a plasma,

ρ
∂v

∂t
+ ρ(v · ∇)v = −∇p+ j×B+ ρg . (1.13)

Similar to the Navier-Stokes equation describing fluid motion, Eq. (1.13)

expresses that the change in the momentum of the plasma is proportional to

the total of the forces acting on it: the force due to the gradient of the plasma

pressure p, the Lorentz force j×B due to the charged plasma moving through

the magnetic field, and the force due to the effect of gravity g directed towards

the centre of the Sun.

Finally, we introduce the energy equation,

D

Dt

(
p

ργ

)
= −L , (1.14)

where γ = 5/3 is the ratio of specific heats for fully ionised plasma (Roberts,

2019), and L is the energy loss function. We will consider only the adiabatic

case L = 0, which means that there is no energy loss or gain in the system.
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1.4.5 Plasma Beta

Note that, using Faraday’s law (1.4) with the MHD approximation and ap-

propriate vector identities, the Lorentz force can be written as

j×B =
1

µ
(∇×B)×B =

1

µ
(B · ∇)B−∇

(
B2

2µ

)
. (1.15)

The two terms on the right-hand side of Eq. (1.15) are the magnetic tension

force and the magnetic pressure force. Then, taking the ratio of the magnetic

pressure force and the plasma pressure term in Eq. (1.13), we obtain an

important dimensionless parameter, the plasma beta,

β =
gas pressure

magnetic pressure
=

2µ0p0
B2

0

, (1.16)

where the zero subscript represents the equilibrium value of the parameters.

If β << 1, then magnetic forces dominate over pressure forces and thus

the pressure gradient term in Eq. (1.13) can be neglected. This occurs in

the corona and in other regions of low gas pressure and high magnetic field

strength, including the Earth’s ionosphere.

1.4.6 Linear MHD

Starting from the system of ideal MHD, we can linearise the equations by

assuming an initial state of equilibrium and then perturbing the system, so

that all quantities are defined as f = f0 + f1, where f1 is a small quantity.

Since the system is initially static, the velocity is defined such that v0 = 0.

We will also consider the plasma to be homogeneous and the equilibrium

magnetic field to be constant and uniform in the z-direction, B0 = B0ẑ.

Then, neglecting all non-linear (small) terms as well as gravity, we obtain
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the system of linear ideal MHD,

∇ ·B1 = 0 (1.17)

∂B1

∂t
= ∇× (v1 ×B0) (1.18)

∂ρ1
∂t

+ ρ0∇ · v1 = 0 (1.19)

ρ0
∂v1

∂t
= −∇p1 +

1

µ0

(∇×B1)×B0 (1.20)

∂p1
∂t

+ γp0∇ · v1 = 0 . (1.21)

Differentiating the equation of motion with respect to t, we can then combine

Eq. (1.20) with Eqs. (1.19) and (1.18) to obtain a wave equation,

∂2v1

∂t2
− c2s∇(∇ · v1) =

1

µ0ρ0
(∇× (∇× (v1 ×B0)))×B0 , (1.22)

where cs =
√

γp0/ρ0 is the sound speed. If we also neglect the pressure per-

turbation, so p1 = 0, then the second term on the left-hand side of Eq. (1.22)

becomes zero.

Now, consider plane-wave solutions so that v1 is of the form

v1 = (vx, vy, vz)e
i(k·r−ωt) , (1.23)

where vx, vy, vz are constants, k is the wave-vector and ω is the frequency.

This allows us to replace ∂t with −iω, and ∇ with ik. Therefore, taking into

account the p1 = 0 condition, Eq. (1.22) becomes an eigenvalue problem,

ω2v1 =
B2

0

µ0ρ0

((
k×

(
k× (v1 × ẑ)

))
× ẑ

)
. (1.24)

This implies that v1 is orthogonal to ẑ, and so the plasma velocity is per-

pendicular to the equilibrium field B0. If we define the vector k to be in the

x−z plane and consider the y-component of v1, we find a dispersion relation

(ω2 − v2Ak
2
z)vy = 0 , (1.25)

where

vA =
B0√
µ0ρ0

(1.26)



16 Introduction

is the Alfvén speed. Therefore we have found that the perturbation results

in Alfvén waves, which propagate along the magnetic field lines with phase

velocity vA and with magnetic tension as their restoring force.

1.5 MHD in the Solar Atmosphere

Throughout the solar atmosphere, magnetohydrodynamic waves are ubiqui-

tous (Erdélyi, 2008; Mathioudakis et al., 2013; Jess et al., 2015; Srivastava

et al., 2021). Structures formed in the solar atmosphere can act as waveg-

uides for MHD waves. For example, cylindrical magnetic features such as

sunspots or jets can be modelled as magnetic flux tubes in which the mag-

netic field lines are parallel to the tube axis and the field has a discontinuity

at the tube boundary; other structures such as prominences may be modelled

as magnetic slabs, where layers of plasma meet at planar discontinuities.

Waves in magnetic configurations such as these have been studied in great

detail. For example, Defouw (1976) studied wave propagation in a magnetic

flux tube and later Roberts and Webb (1978, 1979) described more gener-

ally the governing equations and dispersion relations for flux tube waves;

Roberts (1981a,b) and Edwin and Roberts (1982) examined surface waves at

a magnetic interface and waves in a magnetic slab; Hollweg (1978, 1981) and

Hollweg et al. (1982) investigated propagating nonlinear Alfvén waves with

numerical methods; and Spruit (1981, 1982) studied the properties of waves

in thin flux tubes. More recently, Allcock (2020) studied magnetohydrody-

namic wave theory with a focus on on asymmetric waveguides.

In solar jets, various waves have been observed to occur (Zaqarashvili and

Erdélyi, 2009; Bate et al., 2022). The purely magnetic Alfvén wave described

in Section 1.4 is one example of an MHD wave mode, but when pressure and

other factors are taken into account we obtain other types of wave such

as the fast and slow magneto-acoustic waves (MAWs). These are MHD

waves with both the plasma pressure gradient and the Lorentz force as the

restoring forces. Magneto-acoustic kink modes are transverse motions found

in flux tubes, which involve oscillation of the axis of the tube (Edwin and

Roberts, 1983; Morton et al., 2014), while sausage modes are symmetric
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oscillations that perturb the magnetic interface. These have been observed

in chromospheric jets (Kuridze et al., 2012; Shetye et al., 2021) and coronal

loops (Nakariakov and Verwichte, 2005).

Torsional waves are a type of Alfvén wave that are thought to occur in

footpoints of dynamic features (Ruderman et al., 1997; Mathioudakis et al.,

2013), and are thought to play a role in coronal heating (Antolin and Shi-

bata, 2010; Srivastava et al., 2017; Soler et al., 2019; Kohutova et al., 2020).

Torsional Alfvén waves are known to occur in photospheric magnetic bright

points and related features (Jess et al., 2009; Stangalini et al., 2021), and have

been observed in many small-scale solar phenomena including spicules (De

Pontieu et al., 2012). The relationship between these features is a subject of

ongoing investigation; MBPs have been observed to exhibit oscillations that

may be funnelled higher into the atmosphere through spicules (Jess et al.,

2012a).

Vortex motions, occurring concurrently with magnetic swirls (Liu et al.,

2019a), have been observed in association with bright points in the lower

solar atmosphere (Wang et al., 1995; Wedemeyer-Böhm and Rouppe van der

Voort, 2009; Liu et al., 2019b). These swirls are also associated with magnetic

flux tubes (Kitiashvili et al., 2012). They are thought to have the potential

to excite Alfvén waves (Fedun et al., 2011; Battaglia et al., 2021), in partic-

ular torsional Alfvén pulses, that propagate upwards from the photosphere

(Liu et al., 2019c) and may transport energy to the upper chromosphere (Ya-

dav et al., 2021), the corona (Wedemeyer-Böhm et al., 2012), and the solar

wind (Finley et al., 2022). A major motivation for the research presented in

this thesis is the need to improve our understanding of the role that these

dynamic and magnetic features may have in the generation of solar jets.

1.6 Jets

A solar jet is characterised by a collimated, fast-moving flow of plasma orig-

inating from the lower solar atmosphere, resulting in a short-lived structure

resembling a ‘spike’ of plasma.
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Jets of plasma are particularly common throughout the chromosphere. There

are various names for chromospheric jets, including fibrils, mottles, straws,

rapid blue-shifted excursions (RBEs), and spicules. Many of these jets may

in fact be very similar features viewed from different angles (Tsiropoula and

Tziotziou, 2004; Rouppe van der Voort et al., 2009; Kuridze et al., 2015).

Different solar jets are also observed on larger scales, e.g. macrospicules

(Bohlin et al., 1975; Withbroe et al., 1976; Kiss et al., 2017; Kiss, 2019;

Duan et al., 2023), and in other regions of the atmosphere, e.g. coronal

X-ray jets (Shibata et al., 1992) and switchbacks (Magyar et al., 2021).

Solar jets, and spicules in particular, are an important part of the solar and

heliospheric system due to their extreme prevalence on the Sun and their

highly dynamic nature. Understanding the relationship between localised

solar features may be the key to explaining the larger scale phenomena. A

subject of great interest is the role of spicules in transferring energy, mo-

mentum, and mass into the upper solar atmosphere (McIntosh et al., 2011).

Greater knowledge of the dynamics and processes which govern the behaviour

of relatively small but energetic events, such as spicules, may shed light on

the question of chromospheric and coronal heating and the origin of the mass

flux of the solar wind.

1.6.1 Spicules and Chromospheric Jets

Spicules are an especially well-studied class of solar jet, as they were first

observed in 1877 by Angelo Secchi (Secchi, 1877) and have since been the

subject of much research (Beckers, 1968; Sterling, 2000; Zaqarashvili and

Erdélyi, 2009; Tsiropoula et al., 2012). Although they have been observed

for almost 150 years, they remain some of the smallest distinct features that

can be observed in the solar atmosphere with diameters of only a few hundred

kilometers. Appearing in the chromosphere in vast numbers, spicules create

the appearance of ‘grass’, and are visible at the solar limb; although we

can clearly see their vertical extents, it is difficult to observe their internal

structures and the process of their formation. Spicules appear dark compared

to the surrounding plasma of the chromosphere (see Fig. 1.5), suggesting

cooler and denser plasma.
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Figure 1.5: Spicules observed in the chromosphere. Source: EST, Swedish 1m

Solar Telescope, Luc Rouppe van der Voort (CC BY-NC-ND 4.0)

https://www.est-east.eu/solar-gallery
https://creativecommons.org/licenses/by-sa/4.0/deed.en
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It has been suggested that there are two main types of spicule (De Pontieu

et al., 2007b). The traditional “Secchi-type” — or Type I — spicules have

lifetimes of around 5 minutes on average, and exhibit rising and falling mo-

tion, moving at speeds on the order of 20 km s−1 (Sterling, 2000). Type II

spicules, also referred to as rapid blue excursions (RBEs) (Rouppe van der

Voort et al., 2009; Kuridze et al., 2015), are distinguished by the way they

are seen to fade away in hot coronal channels rather than falling back to

the surface — this is thought to be due to these spicules being heated to

the point that they disappear from the near-ultraviolet Ca II H passband

while the jets themselves may continue to evolve, rising even higher into the

atmosphere (Pereira et al., 2014). Type II jets are thought to be the faster

of the two spicule classes, with speeds of around 50–150 km s−1, and are

described as ‘thin’ often with widths less than 200 km (De Pontieu et al.,

2007b). They are also much more short-lived, often disappearing from (Ca

II H) observations in under a minute (Rouppe van der Voort et al., 2009).

It should be noted that the existence of a clear distinction between Type I

and II spicules has been called into question by Zhang et al. (2012). On the

other hand, Pereira et al. (2012) found evidence to support the distinction

and also suggested that Type II spicules were overwhelmingly more common

than Type I in the quiet Sun (QS) and in coronal holes (CH), while Type I

were more common in active regions.

The height of spicules can be difficult to measure since the ‘top’ is not clearly

defined, but Beckers (1968) collected measurements of average spicule heights

that range from 6.5 Mm to 9.5 Mm. The wavelength of light used to observe

may make a difference — Pasachoff et al. (2009) found ranges for spicule

height of 5.6–14.7 Mm when observed in 160 nm, and 4.1–12.2 Mm when

observed in Hα. More recently, the maximum lengths of both types of spicules

were found to be comparable by Pereira et al. (2012), but with some variation

based on the local environment of the spicules; the average length in active

regions was approximately 6.87 Mm for ‘parabolic’ (Type I) spicules and

7.75 Mm for ‘linear’ (Type II) spicules, while the average lengths were lower in

the regions where Type II spicules dominate, at 5.48 Mm (QS) and 6.59 Mm

(CH). The measured properties will depend on the spatial and temporal
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resolution of the instrument as well as seeing conditions — older instruments

may not observe smaller spicules and may even mistake several reoccurring

jets for one long-lived ‘Type I’ spicule, while newer space-based instruments

are more able to find jets matching the description of Type II spicules (Pereira

et al., 2013).

1.6.2 Generation of Jets

The process that leads to the formation of solar jets is still a topic of active

research, even though jets have been observed for over a century. It is rea-

sonable to assume that more than one process is involved — some of these

formation mechanisms and potentially related phenomena are discussed here.

Due to their presence in the majority of dynamic solar features, Alfvén waves

are naturally thought to contribute to jet formation (Haerendel, 1992; Dover

et al., 2020). Building on the preceding work of Hollweg et al. (1982), Hollweg

(1982) provides an example of a numerical approach to the study of spicule

formation with a focus on the role of Alfvén waves which, when non-linear

processes are taken into account, may result in rebound shocks. The excita-

tion of vertically propagating shocks in chromospheric flux tubes was studied

further in Hollweg (1992), and was suggested as a driver for spicules. Using a

similar numerical model, Kudoh and Shibata (1999) suggested that torsional

Alfvén waves generated by random motions in the photosphere may lift the

transition region in a motion consistent with the appearance of spicules.

Later, Matsumoto and Shibata (2010) used a numerical flux tube model and

found that Alfvén wave resonance may explain the dynamics of spicules and

their potential to heat the corona.

One suggestion for the spicule mechanism proposed by Haerendel (1992)

was that momentum may be transferred to the plasma by the damping of

upwards-moving Alfvén waves, due to ion-neutral collisions. This was ex-

plored further via numerical simulations — for example, James and Erdélyi

(2002) and James et al. (2003) found that spicules could not be convincingly

recreated with their model, but also stated that the mechanism may still play

a part in spicule formation due to the temperatures achieved in their simula-
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tions. A later study by Mart́ınez-Sykora et al. (2017) found that ion-neutral

interactions allowed magnetic tension to be transported upwards and may

be important for spicule formation. Overall, it appears that Alfvén waves

may indeed be important in the formation of spicules, though the effect of

ion-neutral interaction is yet to be fully determined.

Magnetically-driven jets have also been studied in the context of astrophys-

ical phenomena of various scales (Shibata and Uchida, 1985; Innes et al.,

1997; Smith, 2012), in addition to solar jets. Building on their earlier work

relating to other astrophysical jets, Shibata and Uchida (1986) suggested a

mechanism for solar jets involving a packet of magnetic twist driving mass

along a flux tube, which they studied numerically.

Different mechanisms may be more likely to occur in certain regions of the

solar atmosphere, which could have an influence on the diversity of the var-

ious classes of solar jets. The leakage of sub-photospheric p-modes into the

atmosphere is an example of a mechanism that has been suggested to be able

to drive plasma upwards and generate jets such as Type I spicules (Suematsu,

1980; De Pontieu et al., 2004) and fibrils (Hansteen et al., 2006). It has been

theorised that global surface oscillations due to plasma motion in the con-

vection zone may be responsible for the ‘forest’-like appearance of spicules

in the chromosphere (Dey et al., 2022). Magnetic reconnection is another

example of a mechanism that may drive jets (Samanta et al., 2019). This

process has been explored as a possible mechanism for the formation of Type

II spicules using numerical MHD simulations (González-Avilés et al., 2018),

and has been observed to be associated with the formation of macrospicules

(Duan et al., 2023). Other proposed mechanisms include granular buffeting

(Roberts, 1979).

1.7 Thesis Outline

Chapter 2

An analytical model is introduced to study torsional perturbations in flux

tubes, and their ability to create vertical mass flux with the potential to
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drive solar jets. The ideal MHD system is approximated via the use of a per-

turbation method to include limited non-linear effects. An Alfvén pulse is

introduced at the lower boundary of a flux tube as a magnetic shear pertur-

bation. Initially, Fourier and Laplace transforms are employed to solve the

equations in the general case, along with continuity and boundary conditions.

A relation is found for the vertically propagating waves. Complications arise

when we attempt to apply the Laplace transform, establishing the premise

for our use of the zero-beta approximation. Suitable stipulations are consid-

ered for the physical context of spicules, allowing us to simplify the MHD

equations and look for solutions. We find that vertical plasma flux is formed

as a result of a ponderomotive force.

Chapter 3

Building on the previous iteration of the model, we utilise a flux tube model

including a density discontinuity located at an upper boundary, correspond-

ing to the transition region of the solar atmosphere. The propagating Alfvén

wave is partially reflected from this boundary, and as a result the initial in-

duced upwards mass flux is followed by the reversal of the flux, consistent

with observed behaviour of jets. An example solution is used to study the

properties of the pulse. The ratio of the transmitted and reflected mass flux

is found and compared with the estimated relative total mass of spicules

compared to that of the solar wind.

Chapter 4

We expand on the model with the inclusion of a vertically stratified atmo-

sphere in the form of a three-layered system, which specifies a decreasing

function of height for the density in the intermediary layer between two

constant-density layers. This is intended to better represent the conditions

in the locality of solar jets in the lower solar atmosphere, improving on our

previous analysis. We utilise the Fourier transform to find solutions for the

induced vertical perturbations, and calculate the ratio of the mass flux above

and below the transitional layer. We discuss the effect of varying the parame-

ters of the transitional layer and make comparison with the expected physical
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conditions of the solar atmosphere.

Chapter 5

Finally, we summarise the results of the preceding chapters and discuss pos-

sible future work.



CHAPTER 2

Propagation of Torsional Alfvén Pulses

in Zero-beta Flux Tubes

Our initial investigation into mathematically modelling solar features was

developed into two papers, both published in The Astrophysical Journal

(ApJ). Primarily, Scalisi et al. (2021a) will form the basis of this chapter,

but Oxley et al. (2020) is also referenced. In addition, the development

process of the model is explored in more detail than in the published paper.

In this chapter, we motivate and introduce an analytical flux tube model,

which is then refined using the zero-beta approximation. We investigate

analytically the generation of mass flux due to a torsional Alfvén pulse intro-

duced at the lower boundary of the tube as a magnetic shear perturbation.

Suitable assumptions are made for the physical context of spicules, allowing

us to simplify the MHD equations and look for solutions. Boundary condi-

tions are specified to create an example solution, and comparison is made

with known properties of solar jets.

We derive that the presence of torsional Alfvén waves can result in vertical

plasma motions; field-aligned plasma flux is formed non-linearly as a result

of the Lorentz force generated by the perturbations. The formation of this

mass flux may be a viable contribution to the generation of chromospheric
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mass transport and could be consistent with the early stages of spicule evo-

lution, thus playing potential roles in the formation of localised lower solar

atmospheric jets.

These results are encouraging, but we acknowledge that a more complex

model is required for the full evolution of a spicule. Critical discussion of

the model follows, including suggestions for improvements to determine the

entire evolution of a jet.

2.1 Background and motivation

Understanding different types of jets, particularly spicules and macrospicules,

is a major goal for solar research given their ubiquity and therefore their role

in the mass, momentum, and energy transport of the lower solar atmosphere.

The process by which these jets form is not certain, but over the years there

have been a wide range of theoretically proposed mechanisms. The non-linear

MHD system involved in this formation process is difficult to solve even nu-

merically, let alone analytically, although access to greater computing power

has enabled the development of MHD simulations of jets. See Section 1.6.2

for a brief review of jet formation.

In spite of the theoretical challenges, analytical modelling allows us to con-

sider a simpler version of this complex system, for example with an initial

equilibrium state, and then introduce perturbations or controlled changes in

order to examine the effect of specific phenomena without those features of

interest being obscured by other effects. This can be useful as a first approx-

imation for the behaviour of the system and gives an important alternative

perspective to observations and simulations. In order to refine and improve

our knowledge of the dynamic features of the solar atmosphere, we must use

a variety of methods to consider all components of the system as well as the

interactions between different processes.

An analytical study of note is Hollweg (1971), in which a perturbation

method is utilised to investigate the second-order non-linear effects of Alfvén

waves propagating in the direction of a background magnetic field, by con-
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sidering multiple perturbation scales. The study concentrates on density

perturbations, but the method could also be adapted to jets or spicules.

We have employed similar techniques in our work, with applications such as

different equilibrium conditions and perturbation structure, and a 3D coor-

dinate system rather than only transverse and longitudinal components.

The same author provides an example of a numerical approach to the study

of spicule formation in Hollweg (1982) with a focus on the role of Alfvén

waves which, when non-linear processes are taken into account, may result

in rebound shocks. The study presents the concept that spicules may form

when the chromosphere is thrust upwards by these rebound shocks. In our

analytical work, however, we find and argue that these shocks may not be

necessary for spicule formation. Instead, weakly non-linear Alfvén waves may

drive secondary perturbations without the development of shocks, directly

triggering plasma movement which then may be identified with spicules. This

also highlights the importance of using various approaches to study these

features, as it is likely that multiple processes contribute to the excitation of

jets.

The evolution of an Alfvén pulse was studied in Verwichte et al. (1999), using

both analytical and numerical methods. This study utilised a perturbation

method and assumed a homogeneous cold plasma, i.e. zero-beta. Although

the study was not specific to solar jets, it was found that density perturba-

tions and field-aligned plasma flows were possible as a result of this type of

Alfvén wave. Consequently, a similar concept could be applicable to spicules

and so we incorporate some aspects from this into our model.

Taking a different approach, Goodman (2012) attempted to model the accel-

eration of spicules by specifying a current which would generate an associated

Lorentz force, and used the momentum equation to obtain the plasma veloc-

ity. Unfortunately, the method implemented by Goodman (2012) may not

be valid, as the full MHD system is not considered properly in that paper

(e.g. the induction equation is not mentioned). Hence, the specified current

and results may not be applicable to solar plasma or spicule formation. The

concept itself is reasonable, however, and should be explored further with

mathematical rigour. Consequently, we re-evaluate the approach of Good-
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man (2012) as part of the inspiration for the study presented here.

Shear flows, or equivalently a shear in the magnetic field due to the highly

frozen-in property of the lower solar atmospheric plasma, may be capable

of exciting vertical plasma motion, i.e. mass and momentum transport, due

to the rise of the local Lorentz force. The idea of spicules driven by the

Lorentz force (see e.g. Shibata and Uchida (1986)) requires further research

and inspired us to construct our own model. In particular, we focus on the

role of torsional Alfvén waves. Magnetic shear in the form of a torsional

Alfvén wave pulse may provide the necessary Lorentz force.

Recent observational findings show strong links between torsional waves and

magnetic flux concentrations, including magnetic bright points (Jess et al.,

2009) and swirls (Liu et al., 2019c,a). It is thought that MBPs appear

bright because through them we can observe deeper into the solar atmo-

sphere (Berger et al., 2007; Sánchez Almeida et al., 2010), almost like looking

through a tube. This, along with the nature of the jets themselves, will influ-

ence our choice of model. Our aim is to investigate the non-linear behaviour

of a torsional Alfvén pulse to find a viable mechanism by which spicules may

be formed, such that we account for their possible connection to localised

magnetic waveguide features such as magnetic bright points.

2.2 Model

The model presented in this chapter uses an axially symmetric straight flux

tube configuration and is an idealised description of the real solar atmosphere,

assuming no stratification.

Using the regular perturbation method (Hinch, 1991) we model the effect

of a localised magnetic field disturbance in the form of magnetic shear, and

focus on the resulting Lorentz force. It should be emphasised that we use

standard methods and the well-known ideal MHD equations, and as such the

model discussed here shares properties with and builds on the methods of

some works mentioned in Section 2.1 such as Hollweg (1971). However, our

application is different and we specify the model for our purposes.
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2.2.1 Physical Considerations

Flux tubes, as building blocks of the solar atmosphere, are a versatile tool

for solar modelling applications (Mathioudakis et al., 2013; Ryutova, 2015)

and a tube with a magnetic shear perturbation is a reasonable fit for the

physical configuration we are interested in. The model could be applicable

to the aforementioned magnetic bright points and swirls, which have the

potential to generate magnetic wave fields comparable to the perturbation

we consider. We will consider a cylindrical magnetic flux tube (see Figure

2.1) located in the lower solar atmosphere, anchored in a magnetic bright

point and surrounded by the quiet Sun. Cylindrical coordinates (r, θ, z) are

hence defined such that the z-axis is directed vertically upwards along the

centre of the tube, perpendicular to the solar surface.

Assuming a background state of equilibrium with a constant vertical mag-

netic field, we consider the effect of introducing a torsional Alfvén wave

perturbation confined to a tube of radius R0. Observations suggest MBPs

have diameters up to around 0.6Mm (Berger et al., 1995; Liu et al., 2018),

comparable to the observed width of spicules. Magnetic shear is introduced

at the ‘base’ of the tube (z = 0) which we consider to be at the height

of the photosphere. The perturbation then propagates upwards as a pulse,

travelling along the tube towards the upper chromosphere.

Although we are using a simplified model, the problem is complex in the gen-

eral non-linear case, even when some higher order terms are neglected. One

way to approach the problem is to consider the zero plasma-beta case, an

approximation that is relevant in regions of dominant magnetic field strength

when compared to the plasma pressure. Since MBPs are known to have con-

siderably lower kinetic pressure than their surrounding plasma and have field

strength on the order of a kilogauss (Keys et al., 2013), this approximation

is appropriate for our purpose of modelling the lower atmospheric roots of

MBPs. In the general case, we also assume total pressure is balanced at the

boundary of the tube. Applying the zero-beta approximation inside the tube

will allow us to consider this region independently and ignore the plasma

pressure gradient, therefore enabling us to isolate the vertical component of

the Lorentz force that directly results from the shear perturbation.
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B0ẑ

Bθ1θ̂

Fz

z = 0

z

r

r = R0

Figure 2.1: The flux tube in the region r < R0 and z > 0, with the torsional

perturbation shown in darker red. The perturbation is an Alfvén pulse originating

at z = 0 and propagating vertically up the tube. The vertical force Fz = (j×B)z

is the z-component of the Lorentz force. The vertical magnetic field B0ẑ, shown

by the blue arrows, is constant inside the tube. The image showing photospheric

granulation and bright points is used for illustrative purposes only, to represent

the photosphere at z = 0, and is adopted from the Daniel K. Inouye Solar

Telescope (credit due to NSO/NSF/AURA).
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2.2.2 The MHD framework

The standard ideal MHD equations (Goedbloed and Poedts (2004), see also

Chapter 1) are used along with the solenoidal constraint ∇ · B = 0, but

gravity is neglected, so we have

ρ
∂v

∂t
+ ρ(v · ∇)v = −∇p+ j×B (2.1)

∂ρ

∂t
+∇ · (ρv) = 0 (2.2)

∂B

∂t
= ∇× (v ×B) (2.3)

D

Dt

(
p

ργ

)
= 0 , (2.4)

with the assumption that all quantities are independent of θ, so ∂/∂θ = 0.

The quantities B,v, ρ, p are, respectively, the magnetic field, plasma velocity,

mass density, and plasma pressure, and j = ∇×B/µ0 is the current density

(where µ0 is the magnetic permeability of free space). Also, we assume that

temperature is constant, and c =
√

γp/ρ is the sound speed, where γ is the

adiabatic gas index.

Perturbations

In order to begin studying the non-linear behaviour of the Alfvén wave, we

use the regular perturbation method (Hinch, 1991). Let us define that each

of the variables take the following functional form,

f(r, z, t) = f0 +
∞∑
i=1

εifi(r, z, t) , (2.5)

where ε is a small expansion parameter. Here, ε is the ratio of the strength of

the torsional magnetic field perturbation to that of the vertical background

field within the tube. The ‘zero-order’ quantities are assumed to be constant

and in equilibrium, so v0 = 0 and we define the equilibrium magnetic field

B0 = B0ẑ to be constant and vertically aligned. The general case would

require the background field and pressure to depend on r because they would

be different in the interior versus the exterior region, but due to the zero-beta

approximation which is assumed in this study, we find it is not necessary to
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make this distinction in the notation because we are able to focus only on

the interior region (see Section 2.4).

In the linear approximation, we assume only a decoupled torsional Alfvén

wave, which is the primary perturbation of order ε. By introducing terms of

order ε2, we now begin to consider the non-linear behaviour of the system,

where we see the effect of the Lorentz force on the plasma, i.e. the manifes-

tation of the second-order perturbation. Quantities are only defined up to

order ε2. The variables are thus perturbed in the following way,

vr = ε2VR2 , vθ = εVθ1 + ε2Vθ2 , vz = ε2VZ2 ,

Br = ε2BR2 , Bθ = εBθ1 + ε2Bθ2 , Bz = B0 + ε2BZ2 ,

p = p0 + ε2p2 , ρ = ρ0 + ε2ρ2 . (2.6)

The perturbed quantities are then substituted into the MHD equations. Since

the features we wish to model are characterised by vertical motion of plasma

according to observations, finding a solution for vz is of particular interest.

2.2.3 First-order approximation

First, we neglect all terms involving square and higher powers of ε. Only

the azimuthal components of the momentum and induction equations have

terms of order ε,

∂Vθ1

∂t
=

B0

µ0ρ0

∂Bθ1

∂z
(2.7)

∂Bθ1

∂t
= B0

∂Vθ1

∂z
. (2.8)

These equations can then be combined into the wave equations for Bθ1, e.g.

∂2Bθ1

∂t2
=

B2
0

µ0ρ0

∂2Bθ1

∂z2
. (2.9)

The solutions to Eq. (2.9) are waves propagating in the z direction at the

Alfvén speed vA, where v
2
A = B2

0/µ0ρ0. For our purposes, we consider r, z, t ≥
0 and use a solution for Bθ1 of the form

Bθ1(r, z, t) = f(t− z/vA)g(r) . (2.10)
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Note we will only consider the wave travelling in the positive z-direction, so

we introduce Elsässer variables (Elsässer, 1956),

R± = vθ ±
vA
B0

Bθ . (2.11)

Using the MHD equations we find solutions for R± of the form

R+ = R+(t+ z/vA) , R− = R−(t− z/vA) . (2.12)

Since we are only interested in the wave travelling in the positive z-direction,

we will set R+ = 0 and thus we obtain

vθ = − vA
B0

Bθ . (2.13)

The relationship between vθ and Bθ means that introducing a magnetic shear

perturbation has the same effect as introducing a shear flow (velocity) per-

turbation.

2.2.4 Second-order approximation

Now, we collect terms of order ε2 in the MHD equations. The resulting

system of equations shows how the torsional Alfvén waves affect the other

quantities in the system. The ε2-order equations (including the solenoidal

constraint) are
∂BR2

∂r
+

BR2

r
+

∂BZ2

∂z
= 0 , (2.14)

ρ0

(
∂VR2

∂t
− V 2

θ1

r

)
=

−∂p2
∂r

− 1

µ0

(
∂Bθ1

∂r
Bθ1 +

B2
θ1

r
−B0

(
∂BR2

∂z
− ∂BZ2

∂r

))
, (2.15)

ρ0

(
∂Vθ2

∂t

)
=

B0

µ0

(
∂Bθ2

∂z

)
, (2.16)

ρ0

(
∂VZ2

∂t

)
= −∂p2

∂z
− 1

µ0

(
∂Bθ1

∂z
Bθ1

)
, (2.17)

∂ρ2
∂t

+ ρ0

(
∂VR2

∂r
+

VR2

r
+

∂VZ2

∂z

)
= 0 , (2.18)
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∂BR2

∂t
= B0

(
∂VR2

∂z

)
, (2.19)

∂Bθ2

∂t
= B0

(
∂Vθ2

∂z

)
, (2.20)

∂BZ2

∂t
= −B0

(
∂VR2

∂r
+

VR2

r

)
, (2.21)

∂p2
∂t

− γp0
ρ0

∂ρ2
∂t

= 0 . (2.22)

From here, we wish to find out whether the torsional perturbation Bθ1 could

result in jet-like motion by obtaining a solution for VZ2. We could either at-

tempt a general solution by combining the equations and using integral trans-

forms, or we could look for a way to simplify the mathematical framework

with suitable approximations. In our initial investigations we considered the

first option, but unfortunately this quickly becomes a rather complex prob-

lem because the equations are coupled (see Section 2.3). As a result we were

motivated to explore the latter option, presented in Section 2.4. Addition-

ally, we are able to confirm that the approximation is compatible with the

general case, shown in Section 2.4.1.

2.3 General case

Although approximations can be useful, it would be preferable to solve the

general case of the problem. In the general case of the model, we must con-

sider the radial as well as the vertical perturbation of the plasma, along with

continuity and boundary conditions for the flux tube. The system of equa-

tions from the ϵ2 approximation can be combined into fourth-order PDEs.

Equations (2.16) and (2.20) are already decoupled from the rest of the sys-

tem. First, we find an equation involving only VR2, Bθ1, and Vθ1. Fourier

and Laplace transforms are needed to simplify the expression for VR2. From

this, we will be able to find expressions for the transforms of VZ2 and ρ2 in

terms of VR2, and apply boundary conditions to solve for the transform of

VZ2. Finally we will need to apply the appropriate inverse transformations

to recover the original parameters. However, the inverse Laplace transform

may present additional challenges given the need to connect the Riemann
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sheets and due to the possibility of leaky waves, motivating our use of the

zero-beta approximation as an alternative method.

2.3.1 Radial velocity perturbation

The fourth order PDE involving VR2 is

∂4VR2

∂t4
+

(
c2v2A

∂2

∂z2
− (c2 + v2A)

∂2

∂t2

)[
∂2VR2

∂z2
+

∂

∂r

(
1

r

∂

∂r
(rVR2)

)]
= − 1

µρ0r

∂

∂t

[
∂2

∂t2

(
rBθ1

∂Bθ1

∂r

)
+

((((((((((((((((((
∂2

∂t2
− c2

∂2

∂z2

)(
B2

θ1 − µρ0V
2
θ1

)]
(2.23)

Note that the last term of Eq. (2.23) can be cancelled due to Eq. (2.13).

Define a Fourier transform for an even function f(z) = f(−z)

f̂(k) =

∫ ∞

−∞
f(z)e−ikzdz = 2

∫ ∞

0

f(z) cos(kz)dz , (2.24)

and a Laplace transform for g(t),

g̃(s) =

∫ ∞

0

g(t)e−stdt , ℜ(s) > 0 . (2.25)

When both transforms are applied to a function f(z, t) in either order, f

is transformed to f̄(k, s). Apply both transforms to Eq. (2.23), using the

assumption that VR2 is an even function of z with ∂n

∂tn
VR2 = 0 at t = 0 for

n = 0, 1, 2, 3. Then VR2(r, z, t) becomes V̄R2(r, k, s) while
∂
∂z

is replaced by ik

and ∂
∂t

is replaced by s. Let ξ(r, z, t) = B2
θ1. Thus Eq. (2.23) rearranges to

∂2V̄R2

∂r2
+

1

r

∂V̄R2

∂r
−
(

1

r2
+ a2

)
V̄R2 = α

∂ξ̄

∂r
, (2.26)

where

a2 =
(s2 + v2Ak

2)(s2 + c2k2)

s2c2 + (s2 + c2k2)v2A
, α =

s3

2µρ0(s2c2 + (s2 + c2k2)v2A)
. (2.27)

If we set the RHS equal to zero then Eq. (2.26) is a modified Bessel equation

with general solution V̄R2 = PI1(ar)+QK1(ar) where P and Q are constants
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in r. Using variation of constants we can find solutions for Eq. (2.26) of the

form

V̄R2 = u1(r)I1(ar) + u2(r)K1(ar) , s.t.
∂u1

∂r
I1(ar) +

∂u2

∂r
K1(ar) = 0 .

(2.28)

After some rearranging and use of integration by parts we find

V̄R2 =

[
P + aα

∫ r

R0

r′K0(ar
′)ξ̄(r′, k, s) dr′

]
I1(ar)

+

[
Q+ aα

∫ r

R0

r′I0(ar
′)ξ̄(r′, k, s) dr′

]
K1(ar) . (2.29)

Internal and external regions

We will consider the behaviour of the system inside and outside a tube of

radius R0. Quantities inside the tube are given the subscript i while those

outside are denoted e. For example

V̄R2 =

V̄R2i , 0 ≤ r ≤ R0 ,

V̄R2e , r > R0 .
(2.30)

For simplicity, the Bθ1 magnetic field will be assumed to be negligible outside

the tube. As a result the Alfvén speed will be zero for r > R0, so vA is only

relevant in the interior region and does not need a subscript. Thus

a2e =
s2 + c2ek

2

c2e
, αe =

s

2µρ0ec2e
. (2.31)

2.3.2 Perturbation of total pressure

Total pressure is defined as

pT = pT0 + ϵ2pT2 = c2ρ+
B ·B
2µ

. (2.32)

Using the MHD equations and taking the Fourier and Laplace transforms,

then substituting in V̄Z2 from Eq. (2.47), we obtain an expression for the

perturbation quantity p̄T2 in terms of only V̄R2 and ξ̄,

p̄T2 = − s2

2µ(s2 + c2k2)

[
1

αr

∂

∂r

(
rV̄R2

)
− ξ̄

]
. (2.33)
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Then, using Eq. (2.29), we find

p̄T2 = Λ

{[
P + aα

∫ r

R0

r′K0(ar
′)ξ̄ dr′

]
I0(ar)

−
[
Q+ aα

∫ r

R0

r′I0(ar
′)ξ̄ dr′

]
K0(ar)

}
, (2.34)

Λ = − s2a

2µα(s2 + c2k2)
; Λi = − ρ0i

sai
(s2 + v2Ak

2) , Λe = −sρ0e
ae

. (2.35)

The total pressure must be continuous at the boundary of the tube, r = R0.

2.3.3 Boundary conditions

Now, we introduce the boundary conditions for VR2 and pT2; the same con-

ditions apply to V̄R2 and p̄T2.

1. VR2 = 0 at r = 0,

2. VR2 → 0 as r → ∞,

3. VR2 and pT2 are continuous at r = R0.

The first condition concerns only V̄R2i . Note that K1(x) → ∞ as x → 0,

while I1(0) = 0. Therefore to satisfy the first condition we must have

Qi − aiαi

∫ R0

0

r′I0(air
′)ξ̄i(r

′, k, s) dr′ = 0 . (2.36)

Similarly for the second condition, we consider only V̄R2e . Note thatK1(x) →
0 as x → ∞, while I1(x) → ∞. Therefore to satisfy the second condition,

assuming ae > 0, we must have

Pe = −aeαe

∫ ∞

R0

r′K0(aer
′)ξ̄e(r

′, k, s) dr′ (2.37)

However, the magnetic field perturbation is zero in this region, which means

ξ̄e = 0. Thus Pe = 0.

To satisfy the third condition we must have

V̄R2i(R0, k, s) = V̄R2e(R0, k, s) , and p̄T2i(R0, k, s) = p̄T2e(R0, k, s) .

(2.38)
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Due to their limits at r and R0, the integrals in V̄R2i and V̄R2e vanish at

r = R0, so

PiI1(aiR0) +QiK1(aiR0) = PeI1(aeR0) +QeK1(aeR0) . (2.39)

Again, the integrals in p̄T2 (see Eq. (2.34)) are zero at the boundary, resulting

in

Λi [PiI0(aiR0)−QiK0(aiR0)] = Λe [PeI0(aeR0)−QeK0(aeR0)] . (2.40)

Finding constants

We have now explicitly found Pe and Qi,

Pe = 0 , (2.41)

Qi = aiαi

∫ R0

0

r′I0(air
′)ξ̄i(r

′, k, s) dr′ . (2.42)

From these we can find Pi and Qe by rearranging Eq. (2.39) and Eq. (2.40),

Pi = aiαi

(
ΛiK0(aiR0)K1(aeR0)− ΛeK0(aeR0)K1(aiR0)

ΛeK0(aeR0)I1(aiR0) + ΛiI0(aiR0)K1(aeR0)

)∫ R0

0

r′I0(air
′)ξ̄i dr

′ ,

(2.43)

Qe =
1

R0

(
αiΛi

ΛeK0(aeR0)I1(aiR0) + ΛiI0(aiR0)K1(aeR0)

)∫ R0

0

r′I0(air
′)ξ̄i dr

′ ,

(2.44)

where we have also used an identity from Abramowitz and Stegun (1964),

K0(x)I1(x) +K1(x)I0(x) =
1

x
. (2.45)

2.3.4 Vertical velocity perturbation

An equation for VZ2 in terms of VR2 is found by combining the t derivative

of Eq. (2.17) with the z derivative of Eq. (2.18),

∂2VZ2

∂t2
− c2

∂2VZ2

∂z2
=

c2

r

∂

∂r

(
r
∂VR2

∂z

)
− 1

2µρ0

∂2

∂z∂t

(
B2

θ1

)
. (2.46)

Take the Fourier and Laplace transform of this to obtain a relation between

V̄Z2 and V̄R2,

V̄Z2 =
ik

s2 + c2k2

[
c2

r

∂

∂r

(
rV̄R2

)
− s

2µρ0
ξ̄

]
. (2.47)
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Using the general solution for V̄R2 found in Eq. (2.29) and the constants we

derived in Section 2.3.3, solutions can be found for V̄Z2. The general form of

V̄Z2, for j ∈ {i, e}, is

V̄Z2j =
ikajc

2
j

s2 + c2jk
2

{[
Pj + ajαj

∫ r

R0

r′K0(ajr
′)ξ̄j dr

′
]
I0(ajr)

−
[
Qj + ajαj

∫ r

R0

r′I0(ajr
′)ξ̄j dr

′
]
K0(ajr)

}
− ikαjv

2
A

s2
ξ̄j. (2.48)

Thus in the internal region,

V̄Z2i =
−iks

2µρ0i(c2i + v2A)(s
2 + c2Tk

2)

[
v2Aξ̄i +

{
K0(air)

∫ r

0

r′I0(air
′)ξ̄i dr

′

−I0(air)

(∫ r

R0

r′K0(air
′)ξ̄i dr

′ + C

∫ R0

0

r′I0(air
′)ξ̄i dr

′
)}

(s2 + v2Ak
2)s2c2i

]
,

(2.49)

where c2T = (c2i v
2
A)/(c

2
i + v2A) and

C =

(
ΛiK0(aiR0)K1(aeR0)− ΛeK0(aeR0)K1(aiR0)

ΛeK0(aeR0)I1(aiR0) + ΛiI0(aiR0)K1(aeR0)

)
. (2.50)

In the external region, where ξ̄e = 0,

V̄Z2e =
1

D

[
iks3a2iK0(aer)

2µR0(s2 + c2i k
2)K0(aeR0)I0(aiR0)

∫ R0

0

r′I0(air
′)ξ̄i dr

′
]
. (2.51)

Here

D = ρ0iae(s
2 + k2v2A)

K1(aeR0)

K0(aeR0)
+ ρ0es

2ai
I1(aiR0)

I0(aiR0)
. (2.52)

Note setting D = 0 results in an equation similar to the dispersion relation

for surface waves in Edwin and Roberts (1983). The solution for V̄Z2e has

poles when D = 0.

2.3.5 Inverse Laplace transform for the external region

solution

In order to recover VZ2 from V̄Z2, we must use the inverse Laplace and Fourier

transforms. The inverse Laplace transform of a function f̃(s) is given by

f(t) =
1

2πi

∫ γ+i∞

γ−i∞
f̃(s)est ds , (2.53)
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such that γ > γ0 where γ0 ∈ R depends on the function f . In order to

calculate the inverse LT for V̄Z2 we will use contour integration. Recall from

Section 2.3.1 that the Laplace transform was defined for ℜ(s) > 0, so we will

need to extend V̄Z2 to the region ℜ(s) < 0.

First, we need to ensure that V̄Z2 is analytic on the appropriate region of the

complex s-plane (Priestley., 2005). Although the complex square root would

be needed to define ai, it only appears raised to even powers in the solution

for V̄Z2. This can be seen if we write the modified Bessel functions of the

first kind, which in this case are analytic, as their power series expansions.

However, the Bessel function Kν(aeR0) has a branch point at ae = 0 for

all ν ∈ C. The principle branch corresponds to the principle value of the

complex square root, which we will take to have positive real part. Therefore

V̄Z2 will have branch points at s = ±ikce.

Consider an arbitrary point s ∈ C and define

W1 = s− ikce = |W1|eiϕ1 , W2 = s+ ikce = |W2|eiϕ2 . (2.54)

Take branch cuts in the complex s-plane starting from the branch points and

extending along the imaginary axis to ±i∞ as illustrated in Figure 2.2(a).

This means we have restricted s so that ϕ1 ∈ (−3π
2
, π
2
) and ϕ2 ∈ (−π

2
, 3π

2
).

Note that

a2e =
(s− ikce)(s+ ikce)

c2e
=

|W1||W2|ei(ϕ1+ϕ2)

c2e
, (2.55)

and therefore arg(ae) =
1
2
(ϕ1 + ϕ2). Then if ℜ(s) > 0, we have both ϕ1 and

ϕ2 restricted to (−π
2
, π
2
), and we must have arg(ae) ∈ (−π

2
, π
2
) i.e. ℜ(ae) > 0.

Similarly if ℜ(s) < 0, we find we still have arg(ae) ∈ (−π
2
, π
2
) and so we find

that the real part of ae is always non-negative, as required.

So, the complex s-plane is restricted to the region

C1 = C\{il | l ∈ (−∞,−kce] ∪ [kce,∞)} . (2.56)

We establish a contour Γ as shown in Figure 2.2(b), which closes the Bromwich

contour as required for the inverse Laplace transform. The complex function

V̄Z2 is not analytic, only because of its complex poles; it is meromorphic on

the region inside Γ. The residue theorem will be used to account for these
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Figure 2.2: Left: the region C1 of the complex plane is displayed. The red

lines illustrate the branch cuts. Right: the contour Γ = Γ1 + ... + Γ10 in the

complex s-plane, used to evaluate the inverse Laplace transform. Arrows show

the direction of the contour.
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poles and find the inverse LT. We only consider poles related to the eigen-

frequencies of the function, which must be located on the imaginary axis.

Therefore the condition γ > γ0 becomes γ > 0, and we can take γ → 0. We

take the radius of the contour to be R → ∞ and the radii of the contours

around the branch points to be ε → 0.

Using Cauchy’s residue theorem (Ablowitz and Fokas, 2003), the contour

integral is ∮
Γ

V̄Z2e
stds =

10∑
n=1

∫
Γn

V̄Z2e
stds = 2πi

∑
res(V̄Z2) , (2.57)

where res(V̄Z2) is the sum of all the residues of the poles of V̄Z2, not including

the poles on the branch cuts as they are outside the contour. Note that the

integral along Γ1 is the integral required for the inverse Laplace transform,

so if we can show that each of the remaining parts of the contour (Γ2, ...,Γ10)

give no contribution to the whole contour integral, then

V̂Z2 =
∑

res(V̄Z2) . (2.58)

From here, we can apply the inverse Fourier transform and recover VZ2e . A

similar (more complicated) process could be used to find VZ2i . However, it is

difficult to determine if the remaining parts of the contour give a contribution

the integral. Therefore, we may need to use a different method to find VZ2

— for example, the zero-beta approximation. In particular, this will be

necessary in order to refine our model so that it more accurately represents

the conditions of the solar atmosphere, and to consider waves propagating in

more than one direction.

2.4 Zero-beta approximation

The zero-beta approximation is applied to the region inside the tube. If the

magnetic pressure dominates the plasma pressure (β ≪ 1) one can neglect

the pressure term in the equation of motion and so for the interior region,

Eq. (2.17) becomes
∂VZ2

∂t
= − 1

2µ0ρ0

∂

∂z
(B2

θ1) . (2.59)
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This equation is then decoupled from the rest of the MHD equations, so vr

does not need to be considered. In addition, since there are no r derivatives

in Eq. (2.59) and if Bθ1 is non-zero only within the tube, VZ2 is unaffected

by anything in the region outside the tube in the zero-beta approximation.

Note that the right-hand side of Eq. (2.59) comes from the z-component of

the Lorentz force,

Fz = (j×B)z = −ε2
1

µ0

∂Bθ1

∂z
Bθ1 , (2.60)

up to ε2 order. This force exists due to the torsional perturbation (or equiv-

alently the shear flow Vθ1) and is the sole driver for the vertical acceleration

of the jet in this approximation.

Once Bθ1 is defined (via the ε-order approximation in Section 2.2.3), VZ2 can

be found directly by integration. However, boundary conditions must also be

applied. Differentiating Eq. (2.13) with respect to t and then using Eq. (2.7),

we find Eq. (2.59) becomes

∂VZ2

∂t
=

1

2µ0ρ0vA

∂

∂t
(B2

θ1) . (2.61)

We apply the conditions that both VZ2 and Bθ1 are zero at t = 0. Integrating

Eq. (2.61) directly with respect to t, we can then negate any constants of

integration, so we have

VZ2(r, z, t) =
B2

θ1

2µ0ρ0vA
. (2.62)

Note from Eq. (2.6) that B2
θ = ε2B2

θ1 + O(ε3) and so, if ε is small, we find

that vz ≈ B2
θ/(2µ0ρ0vA) to leading order.
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2.4.1 Relating to the general case

Combining the ε2-order MHD equations from Section 2.2.4 allows us to find

a fourth-order partial differential equation relating VZ2 and Bθ1,[
∂4

∂t4
+

(
c2v2A

∂2

∂z2
− (c2 + v2A)

∂2

∂t2

)(
∂2

∂z2
+

1

r

∂

∂r

(
r
∂

∂r

))]
(VZ2)

= − 1

2µ0ρ0

∂2

∂t∂z

{[
∂2

∂t2
− v2A

(
1

r

∂

∂r

(
r
∂

∂r

)
+

∂2

∂z2

)]
(B2

θ1)

+
2c2

r

∂

∂r

(
B2

θ1 − µ0ρ0V
2
θ1

)}
. (2.63)

The full general case requires us to also consider VR2 and the pressure con-

tinuity at the tube boundary, resulting in greater complexity: as well as the

field-aligned force, radial forces may play a part in accelerating plasma via

a ‘squeezing’ effect. This is explored in greater detail in Chapter 2.3. Here,

we simply aim to show how the result achieved using the zero-beta approxi-

mation fits with the general case, without going into unnecessary detail.

Since we still require wave solutions to the first-order equations, we will use

Elsässer variables as in Section 2.2.3. Then, from Eq. (2.13), we find that

B2
θ1 − µ0ρ0V

2
θ1 = 0. Thus, the final term on the right-hand side of Eq. (2.63)

can be cancelled. Now, let ξ = t − z/vA. Redefine VZ2 = VZ2(r, ξ) and

Bθ1 = Bθ1(r, ξ) so that ∂/∂t = ∂/∂ξ and ∂/∂z = −(1/vA)∂/∂ξ. Then we

find that many terms in Eq. (2.63) cancel (including all terms involving the

sound speed c), and so the equation can be re-written as

∂2

∂ξ2

[
∂

∂r

(
r
∂

∂r

)
VZ2

]
=

1

2µ0ρ0vA

∂2

∂ξ2

[
∂

∂r

(
r
∂

∂r

)
B2

θ1

]
. (2.64)

It should be noted that the result from Eq. (2.62) is consistent with this

equation. Indeed, with suitable boundary conditions, Eq. (2.64) could be

directly integrated to provide the required consistency. Thus we have further

evidence to support that our zero-beta approximation method is valid for the

physical configuration we model here.

2.4.2 Example solution and restrictions

The perturbation should be localised within the tube (i.e. negligible ev-

erywhere else), and it must be an Alfvén wave travelling in the positive z
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direction. In order to make sense physically, Bθ1 must be zero at r = 0.

As previously mentioned in Section 2.2.3, Bθ1 can be specified as a prod-

uct of some functions f(z, t) and g(r). We impose a boundary condition at

z = 0 such that f(0, t) = f0(t) is non-zero only within a finite time period,

0 < t < τ , where τ is the characteristic time.

The wave is introduced from the boundary at z = 0, before the driver is

‘switched off’ at the characteristic time. This results in a pulse that propa-

gates along the flux tube, and we will have f = f0(t−z/vA). By changing the

value of τ we can scale the length of the pulse. Additionally, we will require

Bθ1 = 0 at t = 0, i.e. f(z, 0) = f0(−z/vA) must be zero for all positive z.

Next, since g is so far an arbitrary function, we will define g(r) so that it is

only non-zero within a certain radius 0 ≤ r ≤ R0 corresponding to the flux

tube region. Then Bθ1 is an Alfvén pulse which is localised in both z and r.

For a more specific example, define the pulse Bθ1 = Bmaxf(t−z/vA)g(r) such

that

f(t− z/vA) = sin

(
π(t− z/vA)

τ

)
, 0 ≤ t− z/vA ≤ τ , (2.65)

g(r) = sin
(
π (r/R0)

λ
)
, 0 ≤ r ≤ R0 , (2.66)

where f and g are otherwise zero and Bmax, λ are constants. We choose λ

so that the pulse is localised mostly within the inner part of the flux tube;

in this example λ = 1/4. The function f(t − z/vA) is non-zero only for

0 ≤ t− z/vA ≤ τ and is specified such that the characteristic time is half the

period of the sine function. Recall that we also restrict the domain to z ≥ 0

and t ≥ 0, so Bθ1 is actually non-zero only when both t ∈ (z/vA, τ + z/vA)

for any fixed z, and z ∈ (zmin, vAt) where zmin = max{0, vA(t − τ)}. Note

that f is zero at the boundaries of these intervals and similarly g is zero at

r = 0 and r = R0, so the functions are continuous.

2.4.3 Results

We solved for VZ2 in Eq. (2.62), in order to study the nature of the vertical

motion induced by the magnetic shear and potentially explore the relation-
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Figure 2.3: Above: a 2.5D representation of the given example of a VZ2 pulse

from Section 2.4.2, at particular times t = 0.2τ , t = 0.5τ , and t = τ . The

pulse appears as two peaks due to the axial symmetry around the z axis of the

tube, and has been re-scaled so that the VZ2 (vertical) axis is in units of A =

B2
max/(2µ0ρ0vA), while the r and z axis are in units of R0 and vAτ respectively.

An animated version of this figure, showing the evolution of the pulse from t = 0

to t = 2τ , is available online.

Figure 2.4: Rotated views of the 2.5D plot in Figure 2.3 at t = τ , showing the

z dependence (left) and the r dependence (right).
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ship between this type of perturbation and the mass flux observed in the chro-

mosphere in the form of jets. Using our example of Bθ1 = Bmaxf(t−z/vA)g(r)

from Section 2.4.2, the solution for VZ2 in the zero-beta case is simply pro-

portional to the square of Bθ1,

VZ2 =
B2

max

2µ0ρ0vA
sin2

(
π(t− z/vA)

τ

)
sin2

(
π (r/R0)

λ
)
, (2.67)

for 0 ≤ t − z/vA ≤ τ and 0 ≤ r ≤ R0, and zero otherwise - see Figures 2.3

and 2.4. Hence VZ2 will be of a similar form to Bθ1, i.e. a pulse propagating

in the z-direction. We suggest that a pulse in the form of this example could

possibly influence plasma and contribute to the formation of a jet. Using our

perturbation model we can approximate the vertical mass flux of the plasma

within the locality of the pulse, ϕz = ρvz ≈ ε2ρ0VZ2.

Interestingly, the nature of the perturbation also suggests that there could be

plasma with lower velocity near the centre of the flux tube, since we would

have ϕz = 0 at r = 0. Once the pulse is fully formed at t = τ , it will maintain

its shape while it propagates in the positive z direction. For t ≥ τ , ϕz will be

constant on concentric toroidal surfaces, which can be partially seen in Figure

2.5. The toroids degenerate into a cylinder, bounded by the limits for VZ2

stated in Eq. (2.67), as the magnitude of ϕz approaches zero; outside of this

cylinder there is no perturbation. The maximum magnitude of ϕz is reached

where both f and g are maximised, on the circle with radius r = R0/(2
1/λ)

at z = vA(t − τ/2). Other forms of the Bθ1 pulse are of course possible as

solutions to the first-order equations, but solutions which are suitable for the

model are often similar to our example in form and behaviour.

2.5 Discussion

The actual velocity of the plasma would depend on the magnitude of the

perturbation. Despite this, the results support the idea that a torsional

Alfvén wave perturbation in the magnetic field could cause plasma to be set

into motion by the Lorentz force. Even a small amount of plasma lifted from

the photosphere would be significant in the chromosphere, thus it is possible

that this mechanism could at least contribute to the initial formation of a
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Figure 2.5: (Caption next page.)
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Figure 2.5: (Previous page.) Upper image: a 3D plot of the vertical mass flux

ϕz at time t = τ/2, for the example in Section 2.4.2 (with scaled Cartesian axes

for simplicity). At this point the pulse is ‘half formed’ and there is positive mass

flux for 0 ≤ z ≤ vAτ/2 within the tube. The blue arrows at the lower boundary

represent the driver for the torsional magnetic field perturbation. An animated

version of this figure, showing the evolution of the pulse from t = 0 to t = τ/2,

is available online. Lower image: a cross section of the 3D plot (on a plane of

constant θ), included to illustrate the structure of the perturbation. For both

plots, lighter colours denote greater magnitude of ϕz, but only a relative scale is

given for this magnitude with A′ = B2
max/(2µ0vA). The magnitude approaches

zero at the boundaries for which the pulse was defined in Equations (2.65) and

(2.66), and reaches its maximum value (dependent on the size of the perturbation

of Bθ) in the interior, as shown.

solar jet, although the model is not intended to accurately describe the full

evolution of a physical jet. The analysis is useful as a first approximation to

explore this formation mechanism.

It is clear that the vertical extent of the pulse will be approximately vAτ

simply due to the localised nature of the perturbation. We can gain more

insight into this by comparing our results with observations of spicules and

magnetic bright points. An Alfvén speed of 10–20 km s−1 is feasible inside the

flux tube, based on e.g. Jess et al. (2009); Cho et al. (2019) and estimations

from data in Hewitt et al. (2014). This is assumed to be constant in the

tube, which again is a simplification. Since our model focuses mainly on the

chromosphere region, it is a reasonable assumption. Then, say, at t = 150 s,

possibly within the first half of the lifetime of a spicule and also within the

range of expected lifetimes for MBPs (Keys et al., 2019), the pulse would

reach a maximum vertical height of 1.5–3 Mm. Interestingly, this could also

be a realistic height for a spicule in the early stages of its evolution, since

spicules are observed to rise at speeds comparable to the Alfvén speed in this

case (Sterling, 2000). This shows that the pulse could extend to a reasonable

scale for a spicule within the time frame of the model, demonstrating a

decent consistency between the model and observed properties of lower solar
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atmospheric jets.

The estimated value of the Alfvén speed may not be significantly greater

than the sound speed expected in the general photosphere, which may be

up to around 10 km s−1 (Jess et al., 2012b), perhaps suggesting that β ≲ 1.

However, it is expected that the conditions inside a magnetic bright point,

partially evacuated of plasma and with high magnetic field strength (Shelyag

et al., 2010), would result in a lower plasma beta than the surrounding at-

mosphere. The value of the plasma beta in a bright point was estimated by

Cho et al. (2019) to be less than one on average, with estimated values as

low as β = 0.2, therefore it is possible that the plasma beta is low enough

for the zero-beta approximation to be useful, at least for the purposes of this

model.

In this model, we assumed ρ0 to be constant due to the small scale of the

processes we are considering compared to the height of the solar atmosphere.

On a larger scale the density of the solar atmosphere decreases with height,

so this model does not apply at higher elevations such as in the corona.

Although the solution is a pulse which propagates to infinity, we know this

would not occur in reality. For large t we expect that the solar atmosphere

will deviate from the model, but the main objective was to study the effects

in the photosphere and lower chromosphere since this is where the features of

interest are likely to form. To improve the model, we could also take gravity

and variable temperature into account. Including the ε3-order perturbation

terms would allow us to consider the back-reaction on the Alfvén wave, and

we could also take into account reflection of the initial wave.

In the general case, without assuming β = 0, the model becomes more com-

plex because the ε2-order equations remain coupled. The equations of motion

must be solved as fourth-order PDEs, and to solve for vz we must apply the

condition of continuous total pressure on both sides of the boundary of the

tube in addition to boundary conditions for vr. Due to the extra complexity

it is possible that the plasma could be excited by both the Lorentz force

acting vertically and by the radial ‘squeezing’ of the tube, causing material

to be forced upwards due to the continuity of mass. The general case of this

problem could be explored more thoroughly in future works.
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The magnetic slab model may also be useful for investigating magnetic bright

points and their role in the formation of spicules, especially the elongated

bright points mentioned in Liu et al. (2018). A study using the slab model

is conducted in a separate work (Oxley et al., 2020).
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CHAPTER 3

Reflection and Evolution of Torsional Alfvén Pulses in

Zero-beta Flux Tubes

This chapter is based on the paper of the same name, Scalisi et al. (2021b),

published in The Astrophysical Journal.

Building on Chapter 2, we again utilise a flux tube model and study the

behaviour of a torsional Alfvén pulse in the context of spicules. In order to

account for the fact that most of the material in a spicule must fall back to

the surface of the Sun, this model includes a density discontinuity located

at an upper boundary, corresponding to the change in density found at the

transition region of the solar atmosphere. A pulse is introduced at the lower,

photospheric boundary of the tube as a magnetic shear perturbation and the

resulting propagating Alfvén waves are reflected from the upper boundary.

The induced upwards mass flux is thus followed by the partial reversal of the

flux, which may be identified with the rising and falling behaviour of certain

lower solar atmospheric jets.

We find the ratio of the mass flux present above the discontinuity compared

to the mass flux resulting from the initial wave. This presents a method of

estimating the relative total mass of spicules in relation to the total mass

of the solar wind, and we find good agreement with previous estimations.
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We also discuss the possibility that the interaction between the initial and

reflected waves may create a localised flow that could persist after the initial

pulse, and suggest that this could relate to the observation of distinct spicule

types.

3.1 Background and motivation

In Chapter 2, we investigated torsional Alfvén waves, which are observed in

the lower solar atmosphere and have long been theorised to be involved in

the formation of spicules (see Section 1.6). We constructed a fundamental

model as a starting point to explore the idea of an Alfvén wave perturbation

originating in the vicinity of a MBP, notably utilising a perturbation method

to include non-linear terms without excessive complexity, then considered the

consequent vertical plasma motion and the possible connection to spicules

based on their observed properties. The results were consistent with spicule

formation as a first approximation, thus we now continue to advance the

model to better represent the dynamics and later evolution of these features.

If the proposed mechanism is indeed related to jet formation then we should

also account for the fact that not all of the material in solar jets can be

transported into the higher atmosphere and solar wind. In fact, it has been

suggested that spicules alone carry a mass flux into the low corona of 100

times that of the solar wind (De Pontieu et al., 2004), suggesting that spicules

are a likely source for some of the material in the solar wind, but also that

there must be a means to prevent the vast majority of their mass from reach-

ing the outer solar atmosphere. Gravity is a known factor but, considering

the nature of our model, wave reflection could also have a significant effect on

the dynamics of jets and is another factor that should be taken into account.

There have been several studies on the reflection of Alvén waves, for example

recently Tsap and Kopylova (2021) provided an effective investigation involv-

ing reflection from a boundary at the transition region. Our model similarly

considers a sharp boundary, although we use different methods for the model

itself and our focus is on the possibility of application to jets. Certainly

waves, in particular this type of torsional wave, seem to be a likely driver for
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much of solar jet activity. In another example, Sterling and Hollweg (1984)

suggest spicules may act as resonant cavities, with reflected torsional Alfvén

waves resulting in heating and twisting of the spicule rather than the ver-

tical motion. It is not certain if these different aspects could be caused by

the same process acting differently at various stages of the evolution of the

spicule, perhaps due to reflection, but the two ideas are not incompatible

since our vertical mass flux is a secondary non-linear consequence of an ini-

tial magnetic perturbation. This vertical motion is due to the Lorentz force

and is a known effect that has been studied in various MHD contexts. For

example, see the study by Shibata and Uchida (1985), who numerically sim-

ulated jets driven in part by the Lorentz force. See also Rankin et al. (1994),

where it is shown that a ponderomotive force due to shear Alfvén waves can

drive plasma perturbations in the cold plasma of the Earth’s magnetosphere.

3.2 Reflected wave model

When considering waves on the scale of solar jets, which originate possibly

from below the photosphere and extend well into the upper chromosphere, the

stratification of the solar atmosphere should be taken into account. Waves

may be affected by this stratification, especially in the transition region where

the atmospheric density drops significantly. This somewhat sharp change in

density may result in the reflection of a portion of the torsional Alfvén waves

which originate from the solar surface or lower chromosphere, and propagate

upwards. In fact, this may be a key part of the interaction between solar jets

and this type of wave, which we began to study in our previous works Oxley

et al. (2020); Scalisi et al. (2021a) (see Chapter 2).

Since certain jets are known to fall back after initially rising while others

appear to fade, we would like to investigate how this behaviour can be at-

tributed to wave reflection. It is of interest to determine whether wave re-

flection may affect jet dynamics, and to test if it could be a distinguishing

factor between different types of jets. In particular, we want to know if a

reflected wave may correspond to the falling motion of a jet.
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3.2.1 Model formulation

The premise of this model is to examine the evolution of a wave that initially

propagates vertically upwards and is then partially reflected downward from

a boundary at z = L, representing the relatively sharp change in plasma

density in the transition region.

The model that we use here is initially set up in a similar way to the model

presented in Chapter 2. Inside the tube the plasma motion is described by

the ideal magnetohydrodynamic (MHD) equations for zero-beta plasma,

∂ρ

∂t
+∇ · (ρv) = 0, (3.1)

∂v

∂t
=

1

ρµ0

(∇×B)×B, (3.2)

∂B

∂t
= ∇× (v ×B), (3.3)

where ρ is the density, v the velocity, B the magnetic field, and µ0 the

magnetic permeability of free space. Note that we neglect the effect of gravity

in the momentum equation. This is necessary due to our use of the zero-beta

approximation and the fact that we initially have an equilibrium state; taking

gravity into account would require a significantly more complex model. For

the moment, we intend to focus solely on the effect of the reflected Alfvén

wave. In the unperturbed state, there is a straight magnetic tube with the

constant radius R. In cylindrical coordinates r, θ, z with the z-axis coinciding

with the tube axis, the equilibrium magnetic field is B0 = B0ẑ, where ẑ is

the unit vector in the z-direction and B0 is a constant. We assume axial

symmetry, so derivatives with respect to θ are zero. The equilibrium density

and velocity are ρ0 and zero, respectively. The magnetic field is confined

inside the tube. The plasma outside the tube is magnetic-free and warm,

and the equilibrium pressure of this plasma is equal to the magnetic pressure

inside the tube. Hence, the total pressure at the tube boundary is continuous

as required.

As in Chapter 2, we use the regular perturbation method and look for the

solution to the system of equations (3.1)–(3.3) in the form of expansion with
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Figure 3.1: (Caption next page.)
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Figure 3.1: (Previous page.) (a) The flux tube in the region r < R0 and

z > 0, with the initial torsional perturbation shown in blue. The perturbation

is an Alfvén pulse originating at z = 0 and propagating vertically up the tube.

The vertical magnetic field B0ẑ, indicated by the blue arrow, is constant inside

the tube. (b) The perturbation reaches the density discontinuity at z = L

and is partially reflected. (c) The reflected and transmitted waves propagate

in opposite directions. The image showing photospheric granulation and bright

points is used for illustrative purposes only, to represent the photosphere at

z = 0, and is adopted from the Daniel K. Inouye Solar Telescope (credit due to

NSO/NSF/AURA).

respect to the small parameter ϵ,

f = f0 + ϵf1 + ϵ2f2 + . . . , (3.4)

where f represents any of quantities ρ, v, or B (see Eq. (2.6)). We recall

that v0 = 0.

3.2.2 First-order approximation

At the surface z = 0, which we propose to be in the photosphere, we intro-

duce an initial Alfvén wave perturbation in Bθ1i within the tube. Then, we

assume that, in the first-order perturbation with respect to ϵ, the solution is

a torsional Alfvén wave where only the azimuthal components of the velocity

and magnetic field perturbation are non-zero. The plasma outside of the

magnetic tube is not perturbed. Then, the solution of the first-order approx-

imation is the superposition of the incoming and reflected waves below the

discontinuity and the transmitted wave above it. Hence, the expression for

the azimuthal component of the magnetic field can be written as

Bθ1 =

Bθ1i(t− z/vA1) +Bθ1r(t+ z/vA1) , 0 ≤ z < L ,

Bθ1t(t− z/vA2) , z > L .
(3.5)

Here, the subscripts i, r, and t refer to the incoming, reflected, and transmit-

ted waves, respectively. For z < L and z > L the Alfvén speeds are vA1 and
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vA2 respectively. We obtain from Eq. (3.2) in the first-order approximation

that the azimuthal components of the velocity and magnetic field are related

by
∂Vθ1

∂t
=

B0

µρ0

∂Bθ1

∂z
. (3.6)

It follows from Eqs. (3.5) and (3.6) that

Vθ1 =

Vθ1i(t− z/vA1) + Vθ1r(t+ z/vA1) , 0 ≤ z < L ,

Vθ1t(t− z/vA2) , z > L .
(3.7)

Now, we specify the boundary conditions at the tube base and discontinuity:

• Introduce the torsional perturbation at z = 0 as a localised ‘pulse’

driven from t = 0 up until a characteristic time t = τ , so we assume

the form

Bθ1 = F (t, r) at z = 0 , (3.8)

where F (t) is non-zero only for 0 < t < τ .

• Continuity of Bθ1 and Vθ1 at z = L, so

Bθ1i(t− L/vA1) +Bθ1r(t+ L/vA1) = Bθ1t(t− L/vA2) , (3.9)

Vθ1i(t− L/vA1) + Vθ1r(t+ L/vA1) = Vθ1t(t− L/vA2) . (3.10)

Initial condition: Bθ1(r, z, t = 0) = Vθ1(r, z, t = 0) = 0.

The incoming pulse arrives at the discontinuity at t = L/vA1 and, at this

time, the reflected and transmitted waves appear. The incoming wave com-

pletely disappears at t = τ + L/vA1. The leading edge of the reflected pulse

arrives at the z = 0 boundary at t = 2L/vA1 and completely disappears at

t = τ + 2L/vA1 if we assume that the reflected pulse is completely absorbed

at this boundary. The transmitted wave also appears at t = L/vA1 and exists

for any t > L/vA1. We will assume that τ < L/vA1.

From the first-order equation (3.6) and the definitions of Bθ1 and Vθ1, we

have

Vθ1i = −vA1

B0

Bθ1i , Vθ1r =
vA1

B0

Bθ1r , Vθ1t = −vA2

B0

Bθ1t . (3.11)
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Thus, Eq. (3.10) can be rewritten as

Bθ1i(t− L/vA1)−Bθ1r(t+ L/vA1) =
vA2

vA1

Bθ1t(t− L/vA2) . (3.12)

Using Eqs. (3.8), (3.9), and (3.12) we obtain

Bθ1t(t) =
2vA1

vA2 + vA1

F (t− L(1/vA1 − 1/vA2)), (3.13)

Bθ1r(t) =
vA1 − vA2

vA2 + vA1

F (t− 2L/vA1). (3.14)

Using these equations we then also obtain that the azimuthal component of

the magnetic field above the discontinuity (z > L) is given by

Bθ1(t, z) =
2vA1

vA2 + vA1

F (t− L/vA1 − (z − L)/vA2). (3.15)

Below the discontinuity (z < L) the azimuthal component is given by

Bθ1(t, z) = F (t− z/vA1)−
vA2 − vA1

vA2 + vA1

F (t+ (z − 2L)/vA1). (3.16)

In this expression, the first term corresponds to the incident wave, and the

second to the reflected wave. Recalling that F (t) = 0 for t ≤ 0 and t ≥ τ

we notice that the incident wave completely disappears for t > τ + L/vA1.

The reflected wave first exists below the discontinuity only for L/vA1 < t <

τ + 2L/vA1. In particular, it follows from these results that the azimuthal

component of the magnetic field is zero everywhere below the discontinuity

for t ≥ τ + 2L/vA1.

Using Eq. (3.11), we arrive at

Vθ1(t, z) = −


vA1

B0

(
F (t− z/vA1) +

vA2 − vA1

vA2 + vA1

F (t+ (z − 2L)/vA1)
)
,

2vA1vA2

B0(vA2 + vA1)
F (t− L/vA1 − (z − L)/vA2) .

(3.17)

for z < L and z > L, respectively.
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3.2.3 Second-order approximation

Although we are using a similar model to Chapter 2, there will be impor-

tant differences here because now we do not neglect the waves travelling in

the negative z-direction. The second-order perturbation VZ2, that describes

vertical plasma motion influenced by the primary torsional perturbation via

the Lorentz force, may have a more complex form than in Chapter 2.

Collecting terms of the order of ϵ2 in the z-component of Eq. (3.2), we obtain

∂VZ2

∂t
= − 1

2µρ0

∂

∂z
(B2

θ1) = − 1

B0

Bθ1
∂Vθ1

∂t
, (3.18)

noting that the right-hand side of the equation results from the z-component

of the Lorentz force, which in this case is also the ponderomotive force. This

result is consistent with Chapter 2. Let us now solve this equation separately

below and above the discontinuity. First, we consider the region below the

discontinuity and take z < L. Using Eqs. (3.16) and (3.17), we reduce

Eq. (3.18) to

∂VZ2

∂t
=

1

µ0ρ01vA1

(
F (t− z/vA1)−

vA2 − vA1

vA2 + vA1

F (t+ (z − 2L)/vA1)

)
(3.19)

×
(
∂F

∂t
(t− z/vA1) +

vA2 − vA1

vA2 + vA1

∂F

∂t
(t+ (z − 2L)/vA1)

)
. (3.20)

We look for the solution to this equation in the form

VZ2 = VZ2i(t− z/vA1) + VZ2r(t+ z/vA1) + VZ2n(t, z). (3.21)

The first and second terms on the right-hand side of this equation correspond

to the incoming and reflected waves, respectively. The third term, VZ2n,

describes the interaction between the incoming and reflected waves. The

three terms on the right-hand side of Eq. (3.21) are defined by the expressions

∂VZ2i

∂t
=

F (t− z/vA1)

µ0ρ01vA1

∂F

∂t
(t− z/vA1), (3.22)

∂VZ2r

∂t
= −

(
vA2 − vA1

vA2 + vA1

)2
F (t+ (z − 2L)/vA1)

µ0ρ01vA1

∂F

∂t
(t+(z− 2L)/vA1), (3.23)
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∂VZ2n

∂t
=

vA2 − vA1

µ0ρ01vA1(vA2 + vA1)

(
F (t− z/vA1)

∂F

∂t
(t+ (z − 2L)/vA1)

− F (t+ (z − 2L)/vA1)
∂F

∂t
(t− z/vA1)

)
. (3.24)

The functions of VZ2i, VZ2r, and VZ2n are not uniquely defined. In partic-

ular, we can impose any initial conditions on these functions satisfying the

restriction that their sum is zero at t = 0. We impose the condition

VZ2i = VZ2r = VZ2n = 0 at t = 0. (3.25)

Then, it immediately follows from Eqs. (3.22) and (3.23) that

VZ2i =
1

2µ0ρ01vA1

F 2(t− z/vA1), (3.26)

VZ2r = − 1

2µ0ρ01vA1

(
vA2 − vA1

vA2 + vA1

)2

F 2(t+ (z − 2L)/vA1). (3.27)

On the other hand, we cannot integrate Eq. (3.24) with arbitrary function

F . To calculate VZ2n we need to specify function F . It is straightforward

to see that VZ2r = 0 for t ≤ L/vA1. Since the right-hand side of Eq. (3.24)

is zero for t ≤ L/vA1 and VZ2n = 0 at t = 0, it follows that VZ2n = 0 for

t ≤ L/vA1. Hence, VZ2 = VZ2i for t ≤ L/vA1 as it can be expected.

Although we cannot obtain the general expression for VZ2n, we can calculate

this quantity at z = L. Since the right-hand side of Eq. (3.24) is zero at

z = L, it follows that from the boundary condition Eq. (3.25) that VZ2n = 0

at z = L. Then it is straightforward to verify that VZ2n is continuous at

z = L, as it should be.

Now, we proceed to solving Eq. (3.18) above the discontinuity and take z > L.

Using Eq. (3.15) we reduce Eq. (3.18) to

∂VZ2

∂t
=

4vA2

µ0ρ01(vA2 + vA1)2
F (t− L/vA1 − (z − L)/vA2)

× ∂F

∂t
(t− L/vA1 − (z − L)/vA2).

(3.28)

When deriving this equation we used the identity ρ01v
2
A1 = ρ02v

2
A2. Using the

condition that VZ2 = 0 for t ≤ 0 we obtain from Eq. (3.28)

VZ2 =
2vA2

µ0ρ01(vA2 + vA1)2
F 2(t− L/vA1 − (z − L)/vA2) , z > L . (3.29)
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3.3 Mass flux

Next, let us calculate the relative mass transmitted through the discontinuity.

The incoming mass flux is equal to the instantaneous mass flux at z = 0

integrated over the time interval [0, τ ] and over the tube cross-section. As a

result, we obtain that the total mass flux of the tube cross-section is

Mi = ρ01

∫ R

0

r

∫ τ

0

VZ2i dt dr =
1

2µ0vA1

∫ R

0

r

∫ τ

0

F 2(t, r) dt dr . (3.30)

To obtain the total transmitted mass flux we integrate the instantaneous

mass flux at any z > L over the time interval (−∞,∞), although, of course,

VZ2t is different from zero only on a finite time interval. Hence,

Mt = ρ02

∫ R

0

r

∫ ∞

−∞
VZ2t dt dr

=
2v2A1

µ0vA2(vA2 + vA1)2

∫ R

0

r

∫ τ

0

F 2(t, r) dt dr .

(3.31)

The relative mass flux is

Mt

Mi

=
4v3A1

vA2(vA2 + vA1)2
. (3.32)

Shown in Figure 3.2 is a plot of the mass flux ratio given by Eq. (3.32), as

a function of the Alfvén speed ratio. Note that this ratio does not depend

on the specification of F . If we take as a typical value vA2/vA1 = 10, then

we obtain Mt/Mi ≈ 0.0033, that is only about 0.33% of the incoming mass

is transmitted through the discontinuity. Also shown in the figure is the 1%

line, corresponding to the percentage of the mass flux of spicules estimated

to be equal to the mass flux of the solar wind (De Pontieu et al., 2004). This

value of transmitted mass flux is reached at vA2/vA1≈ 6.72.

3.4 Pulse example

In a similar way to Section 2.4.2, we now take F (t, r) = BmaxH(t)G(r), where

H(t) = sin(πt/τ) , 0 ≤ t ≤ τ , (3.33)

G(r) = sin (π (r/R0)
σ) , 0 ≤ r ≤ R0 , (3.34)
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Figure 3.2: A plot of the mass flux ratio Mt/Mi as a function of the Alfvén speed

ratio vA2/vA1. The range for the Alfvén speed ratio represents realistic values for

the parameters, with smaller values excluded for clarity; we must have vA2 > vA1

(100% transmission is reached at vA2/vA1 = 1). The dotted line highlights the

1% transmission threshold which is reached at vA2/vA1 ≈ 6.72.
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where H and G are zero otherwise, τ is the characteristic time, and Bmax

and σ = 0.25 (chosen for the purpose of this example) are constants. This

option of F (t, r) results in a localised perturbation.

Therefore, we have

Bθ1i(t− z/vA1) = Bmax sin
(π
τ
(t− z/vA1)

)
sin (π (r/R0)

σ) , (3.35)

Bθ1r(t+ z/vA1) =
Bmax(vA1 − vA2)

vA1 + vA2

× sin
(π
τ
(t+ (z − 2L)/vA1)

)
sin (π (r/R0)

σ) ,

(3.36)

so for z < L,

Bθ1 = Bmax sin (π (r/R0)
σ)

×
(
sin
(π
τ
(t− z/vA1)

)
+

vA1 − vA2

vA1 + vA2

sin
(π
τ
(t+ (z − 2L)/vA1)

))
.
(3.37)

It follows from Eqs. (3.26) and (3.27) that

VZ2i =
B2

max

2µ0ρ01vA1

sin2
(π
τ
(t− z/vA1)

)
sin2 (π (r/R0)

σ) , (3.38)

VZ2r = − B2
max

2µ0ρ01vA1

(
vA1 − vA2

vA1 + vA2

)2

× sin2
(π
τ
(t+ (z − 2L)/vA1)

)
sin2 (π (r/R0)

σ) ,

(3.39)

and from Eq. (3.24),

∂VZ2n

∂t
= G∗(r)

[
sin
(π
τ
(t− z/vA1)

)
cos

(
π

τ

(
t+

z − 2L

vA1

))
− sin

(
π

τ

(
t+

z − 2L

vA1

))
cos
(π
τ
(t− z/vA1)

)]
,

(3.40)

where

G∗(r) =
πB2

max

τµ0ρ01vA1

(
vA2 − vA1

vA1 + vA2

)
sin2 (π (r/R0)

σ) . (3.41)

Equation (3.40) is only valid when the following two inequalities are satisfied:

0 < t− z

vA1

< τ, 0 < t+
z − 2L

vA1

< τ. (3.42)



66 Reflection and Evolution of Torsional Alfvén Pulses

When at least one of these inequalities is violated we have ∂VZ2n/∂t = 0.

Then, after simple algebra, we obtain

∂VZ2n

∂t
=

 G∗(r) sin

(
2π(L− z)

vA1τ

)
,

2L− z

vA1

< t <
z

vA1

+ τ,

0, otherwise.

(3.43)

In particular, it follows from this equation that ∂VZ2n/∂t = 0 for z < L −
1
2
τvA1, because in this case (2L− z)/vA1 > z/vA1 + τ . Then, it follows that

for any time

VZ2n = 0 for z < L− τvA1

2
. (3.44)

Next, for L− 1
2
τvA1 < z < L we obtain

VZ2n =



0, t <
2L− z

vA1

,

G∗(r) sin

(
2π(L− z)

vA1τ

)(
t− 2L− z

vA1

)
,

2L− z

vA1

< t <
z

vA1

+ τ,

G∗(r) sin

(
2π(L− z)

vA1τ

)(
τ − 2L− 2z

vA1

)
, t >

z

vA1

+ τ.

(3.45)

3.5 Restrictions

A noteworthy result is that VZ2n is non-zero and and is independent of t for

t > z/vA1 + τ and L − 1
2
τvA1 < z < L. We show that because of these

conditions, our solution is only valid on a finite time interval. We collect

terms of the order of ϵ2 in Eq. (3.1) to obtain

∂ρ2
∂t

+
ρ01
r

∂(rVR2)

∂r
+ ρ01

∂VZ2

∂z
= 0. (3.46)

We consider this equation for L− 1
2
τvA1 < z < L and and t > (2L−z)/vA1+τ .

The second inequality guarantees that VZ2i = VZ2r = 0. Now, we integrate

Eq. (3.46) over a cross-section z = const. This yields

∂

∂t

∫ R

0

rρ2 dr =
2ρ01
vA1

W (z)− ρ01RVR2(t, R, z), (3.47)
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Figure 3.3: (Caption next page.)
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Figure 3.3: (Previous page.) Contour plots at various times showing the relative

mass flux ϕz = ρVz for the given example — in this particular representation

we have chosen L = vA1τ , for simplicity, and we have specified vA2/vA1 = 3 so

that both the reflected and transmitted waves are visible. The value of the mass

flux indicated by the colorbar is scaled relative to the maximum magnitude of

the initial pulse, denoted A. The initial wave results in positive (upwards) mass

flux shown in orange whilst the reflected wave results in negative (downwards)

flux, potentially echoing the rising and falling behaviour of a spicule. In addition,

the lower three images show the formation of the lingering mass flux which

forms after the reflection, due to the non-linear interaction between the initial

and reflected waves. An animation of this figure is available, showing the full

evolution of the plasma perturbation leading up to and between the still images

shown in the figure, from t/τ = 0 to t/τ = 3 where this duration has been scaled

to 9 seconds.

where

W (z) =

[
π

(
1− 2L− 2z

τvA1

)
cos

(
2π(L− z)

vA1τ

)
− sin

(
2π(L− z)

vA1τ

)]
×
∫ R

0

G∗(r)r dr .

(3.48)

We note that the first term on the right-hand side of Eq. (3.47) is independent

of time. If VR2(t, R, z) → 0 as t → ∞ then it follows from Eq. (3.47) that∫ R

0
rρ2 dr linearly grows with time for large t. This, in turn, implies that

ρ2 is unbounded with respect to time. This conclusion is only incorrect if

RVR2(t, R, z) → 2W (z)/vA1 as t → ∞. Let us assume that this condition is

satisfied. We consider the equation of the perturbed magnetic tube boundary

r = R+η(t, z). Next we write the kinematic boundary condition at the tube

boundary,

VR =
∂η

∂t
+ VZ

∂η

∂z
. (3.49)

The quantity η can also be expanded in the power series of the form given

by Eq. (3.4). Collecting term of the order of ϵ2 in Eq. (3.49) yields

VR2 =
∂η2
∂t

. (3.50)
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z

t

L

VZ2n

VZ2i

VZ2r

τ

L

vA1

L

vA1

+
τ

2

L− τvA1

2

2L

vA1

2L

vA1

+ τ

L

vA1

+ τ

Figure 3.4: A diagram clarifying the interaction between the incoming and re-

flected waves. The velocity in the incoming wave is non-zero in the pink strip, and

it is non-zero in the reflected wave in the blue strip. The dark lilac / crosshatched

triangle is the region where the two waves interact. In this region the right-hand

side of Eq. (3.43) is non-zero. VZ2n is non-zero in this triangle as well as in the

crosshatched vertical strip above it.
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Since VR2 tends to a non-zero limit as t → ∞, it follows that η2 grows linearly

for large t.

Hence, we obtained that either ρ2 or η2 (or both of them) is unbounded for

large t. When using the regular perturbation method with the expansion

of all variables given by Eq. (3.4) we assumed that that any next term is

much smaller than the previous one. In particular, this implies that our

method fails when the coefficient at ϵ2 becomes of the order of ϵ−1 because in

this case the term proportional to ϵ2 becomes of the same order as the term

proportional to ϵ. We can give a rough estimate of the critical time tc after

which our solution becomes invalid,

tc = τϵ−1. (3.51)

We need to have our analysis valid at least until the perturbation reaches

the discontinuity. This condition gives tc > L/vA1, which is equivalent to

τvA1 > ϵL.

3.6 Discussion

The mass flux is a second-order effect, driven by the Lorentz force resulting

from the first-order Alfvén wave perturbation. The result complements the

previous models in Oxley et al. (2020); Scalisi et al. (2021a) as we have

the same initial mass flux, followed by the downwards flux provided by the

reflected wave which makes the model potentially applicable to both Type I

and II spicules as discussed in De Pontieu et al. (2007b). The example pulse

given in Section 3.4 allows us to examine and visualise the complete secondary

non-linear perturbation including the interaction term. It is straightforward

to verify that VZ2 = VZ2i+VZ2r +VZ2n is continuous in the region 0 ≤ z < L

and for t ≥ 0 (see Appendix A). We can also verify that VZ2 is continuous at

z = L.

Our analysis of the mass flux ratio in Section 3.2.3 may suggest that the

distinction between spicule types could be attributed to localised differences

in the relative densities of the chromosphere/transition region (equivalently,

the difference in Alfvén speed). Spicules that do not simply fade away have
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been observed to follow parabolic trajectories (De Pontieu et al., 2007b),

with their maximum deceleration approximately matching their initial ac-

celeration. We may theorise that, if this reflection effect is indeed related

to spicule behaviour, then the reflected wave may correspond to parabolic

spicule motion associated with Type I spicules. Considering our results,

both the initial and reflected waves propagate at the (chromospheric) Alfvén

speed in opposing directions, which can be estimated for the special case of

our highly magnetic flux tube on the order of around 10 km s−1 (Beckers,

1968). The scale of the mass flux is difficult to estimate but we note that

the relative magnitude of the initial and reflected wave is similar when the

Alfvén speed ratio vA2/vA1 is appropriately high.

In theory, a more strongly transmitted wave may correspond to Type II

spicules which exhibit linear motion, or possibly might relate to jets that

extend higher into the solar atmosphere such as macrospicules. The mass flux

present above the discontinuity due to the transmitted wave, as a proportion

of the mass flux resulting from the initial wave (our ‘mass flux ratio’) increases

when the Alfvén speed ratio decreases. In that case, according to our model,

we would expect these more linear jets to appear more commonly in regions

where the change in atmospheric density at the transition region is smaller,

i.e. where the Alfvén speed ratio is lower. However, there may be additional

factors to consider that are beyond the scope of this model.

The time restriction for validity of our analysis is related to the fact that

in the domain L − 1
2
τvA1 < z < L there is plasma flow with the velocity

independent of time for t > z/vA1 + τ . This flow results from the interac-

tion of the incoming and reflected waves. This property of the two wave

interaction is the direct consequence of neglecting the plasma pressure due

to the zero-beta approximation. Taking account of plasma pressure would

cause the decay of the velocity created by the wave interaction after the

pulse had passed. However, in cases where wave reflection occurs and the

magnetic pressure is strongly dominant, it is not unreasonable to suggest

that a physical analogue of this hypothetical flow may exist — for example,

jets are observed in the corona and upper chromosphere, and the flow may be

related to these higher atmospheric jets. It is interesting that a similar prob-
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lem of unbounded growth of perturbations caused by neglecting the plasma

pressure arises in other problems of space physics. For example, Ruderman

and Goossens (2014) studied non-linear kink oscillations of magnetic tubes

in the cold plasma approximation. They obtained that the density pertur-

bation linearly grows with time. To stop this unbounded growth the plasma

pressure must be taken into account.

Although comparison with observations is useful, we can only speculate on

some of the values used in our example due to the difficulty of obtaining

accurate measurements of e.g. the density, in highly localised regions such as

spicules. We are again left with the problem of the persistent mass flux re-

sulting from the interaction term which may not be present if we considered

gravity, more complex atmospheric stratification, dissipation / heating, or ra-

diative losses — therefore these will need to be included in subsequent models.

These factors are somewhat interconnected, for example the inclusion of grav-

ity also requires atmospheric stratification, adding further complexity. We

intentionally left gravity out of this model because we wanted to isolate and

study the effect of the reflected Alfvén waves, in order to clearly understand

what effect a discontinuity has on the generation of plasma perturbations.

However, it is important to establish whether the proposed mechanism of

a torsional Alfvén wave perturbation would be viable with these additional

considerations.



CHAPTER 4

Effect of a Transitional Layer on Vertical Flows

Generated by Torsional Alfvén Pulses

This chapter is based on Scalisi et al. (2023), published in The Astrophysical

Journal.

In this chapter, we attempt to model the potential ability of spicules to af-

fect the solar wind, by augmenting the existing model with the inclusion

of a vertically stratified atmosphere in the form of a three-layered system

representing the structure of the chromosphere. A finite transitional layer,

in which the atmospheric density decreases exponentially, is sandwiched in

between two constant-density layers which are similar to the model atmo-

sphere in the previous chapters. This allows for more complexity and should

create a more physical representation of the solar atmosphere, improving on

our analytical investigation of solar jets.

Spicule activity in the chromosphere is modelled via the effect of a torsional

Alfvén wave pulse propagating through plasma in a highly magnetic flux

tube in the stratified atmosphere. The wave pulse is introduced at the lower

boundary and interacts with the transitional layer, also being partially re-

flected. The total mass flux induced by the pulse, and the proportion of this

that is reflected vs transmitted through the layer, is calculated and exam-
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ined in the context of spicules and the solar wind, using an example solution.

We find that the inclusion of the transitional layer results in more plasma

flux being transferred into the upper solar atmosphere, when compared with

the case of a discontinuity. We examine how varying the parameters of this

transitional layer affects the ratio of the flux above and below the layer.

4.1 Background and motivation

Since spicules occur throughout the chromosphere (Sterling, 2000; Tsiropoula

et al., 2012) — a region dominated by dynamic features and which separates

the relatively cold, dense plasma of the photosphere from the extremely hot

corona — the conditions in the local environment of such jets may be inho-

mogeneous.

Despite being relatively thin when compared to the extent of the corona or

the scale of the solar interior, the chromosphere and transition region form

an area of the solar atmosphere over which extreme changes occur e.g. in

density (Makita, 2003). Plasma density is generally thought to decrease

near-exponentially with height, ranging from the order of 10−4 kg m−3 at

the level of the photosphere (Roberts, 2019) up to around 10−11 kg m−3 in

the transition region (Priest, 2014). Models of the solar atmosphere as a

whole have been able to take this density variation into account (Ferraro and

Plumpton, 1958; Vernazza et al., 1981), however, more research is needed to

determine how this affects the evolution of spicules and their effect on the

outer solar atmosphere.

In Chapters 2 and 3, an analytical model was developed to investigate the

influence of torsional waves on the generation and early evolution of spicules,

and the effects of wave reflection from a discontinuity. However, the verti-

cal stratification of the chromosphere from the footpoints of spicules up to

their maximum height (a distance of several thousand kilometers — see Sec-

tion 1.6.1), is also likely to affect their later evolution and decline. In this

regard, here we continue our efforts to build a model which can take into

account the inhomogeneous nature of the chromosphere, i.e. the variation in

the properties of the atmospheric plasma that occurs as the height above the
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photosphere increases.

Whereas Scalisi et al. (2021b) involved a discontinuity from which Alfvén

waves were reflected, we now include a more realistic continuous density pro-

file that may give significantly different results. Hence, we aim to investigate

how the vertical mass flux resulting from a torsional perturbation is trans-

ferred from the chromosphere to the corona, and how this depends on the

thickness of a transitional layer. This layer is intended to represent the fact

that the most extreme variation of plasma density in the solar atmosphere

occurs over a relatively thin region of the upper chromosphere. We are inter-

ested in how the stratification of the atmosphere affects the plasma flux into

the outer atmosphere, i.e. the difference between the perturbation below and

above the transitional layer. In the next section we describe the equilibrium

state and present the governing equations of the model.

4.2 Transitional layer model

In this analytical model, beginning with the ideal MHD equations and fol-

lowing on from the method of Scalisi et al. (2021a), we consider a magnetic

flux tube which acts as a waveguide for an Alfvén wave pulse. In this con-

text, the vertical background magnetic field is assumed to be strong enough

that magnetic forces dominate throughout the tube and thus the plasma beta

is much less than unity (Jess et al., 2023). We therefore use the zero-beta

approximation and neglect the plasma pressure in comparison with the mag-

netic forces. The perturbation in the magnetic field generates vertical plasma

motion via the ponderomotive Lorentz force.

The structure of the atmosphere is modelled as a three-layered system, with

the initial pulse generated in the lower region with constant plasma den-

sity, passing through the an intermediary transitional layer in which the

density decreases, and finally propagating into another region with low con-

stant density. We consider the plasma motion inside a vertical semi-infinite

axisymmetric magnetic tube of radius r0. We use cylindrical coordinates

(r, θ, z) with the z-axis vertical. The equilibrium magnetic field is in the

z-direction and has a constant magnitude B0. We consider the tube bound-
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ary to be rigid and disregard the interaction of plasma motion inside the

tube with the plasma surrounding it. The tube consists of three regions

with different plasma densities inside them. The transitional layer is defined

by L ≤ z ≤ L + ℓ, i.e. it begins at some height L above the base of the

chromosphere and has a vertical extent or thickness of ℓ. We assume that

the density ρ(z) in the transitional layer decreases exponentially, hence the

equilibrium plasma density is given by

ρ0(z) =


ρ1 , 0 ≤ z ≤ L ,

ρ1 exp((L− z)/H) , L < z < L+ ℓ ,

ρ2 , z ≥ L+ ℓ .

(4.1)

Here, H is the scale height in the transitional layer, and ρ1 and ρ2 are con-

stants related by ρ2 = ρ1e
−ℓ/H . The plasma motion is described by the ideal

magnetohydrodynamic (MHD) equations for cold plasmas:

∂v

∂t
+ (v · ∇)v =

1

µ0ρ
(∇×B)×B , (4.2)

∂B

∂t
= ∇× (v ×B) , (4.3)

where v = (vr, vθ, vz) is the plasma velocity, B = (Br, Bθ, Bz) the magnetic

field, ρ the plasma density, and µ0 the magnetic permeability of free space.

The Alfvén speed, vA, is defined by

v2A =
B2

0

µ0ρ0
, vA(z) = vA1e

(z−L)/2H , (4.4)

where vA1 = vA(L) is the (constant) Alfvén speed below the transitional layer

and H is the scale height. It follows that vA2 = vA1e
ℓ/2H is the Alfvén speed

above the transitional layer.

Below, we consider the motion with small dimensionless amplitude ϵ ≪ 1

and we look for a solution to the problem in the form of expansions

v = ϵV1 + ϵ2V2 + ... , B = B0ez + ϵB1 + ϵ2B2 + ... , (4.5)

where ez is the unit vector in the z-direction. We impose the boundary

condition at the tube base

Bθ = ϵF (t, r), Vθ = −ϵvA1

B0

F (t, r) at z = 0 , (4.6)
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where F (t, r) is a function that defines a localised finite-duration pulse inside

the flux tube. This will drive a torsional Alfvén wave propagating upwards

in the first-order approximation; we will then investigate the effect that this

has on the second-order quantities.

4.3 First-order approximation

In the first-order approximation, we collect the terms of the order of ϵ and

then look for the solution of obtained equations in the form of torsional wave.

In this wave only Vθ1 and Bθ1 are non-zero, while other components of the

velocity and magnetic field perturbation are zero. The torsional velocity and

magnetic perturbations Vθ1 and Bθ1 are therefore related by the first-order

equation of motion,

∂Vθ1

∂t
− v2A

B0

∂Bθ1

∂z
= 0 , (4.7)

as well as the first-order induction equation,

∂Bθ1

∂t
=

∂Vθ1

∂z
B0 . (4.8)

Combining Eqs. (4.7) and (4.8), the first-order velocity perturbation is then

defined by the equation

∂2Vθ1

∂t2
− v2A(z)

∂2Vθ1

∂z2
= 0. (4.9)

The solution for the velocity below and above the transitional layer is given

by

Vθ1 =

 Vθ1i(t− z/vA1) + Vθ1r(t+ z/vA1), z ≤ L,

Vθ1t(t− z/vA2), z ≥ L+ ℓ.
(4.10)

A similar solution for the magnetic field is

Bθ1 =

 Bθ1i(t− z/vA1) +Bθ1r(t+ z/vA1), z ≤ L,

Bθ1t(t− z/vA2), z ≥ L+ ℓ.
(4.11)
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4.3.1 Fourier transform

To find a solution for Eq. (4.9) in the transitional layer we introduce the

Fourier transform with respect to time,

f̂(ω) =

∫ ∞

−∞
f(t)e−iωt dt, f(t) =

1

2π

∫ ∞

−∞
f̂(ω)eiωt dω. (4.12)

Applying this transform to Eq. (4.9) and using Eq. (4.4) yields

∂2V̂θ1

∂z2
+

ω2e−(z−L)/H

v2A1

V̂θ1 = 0 . (4.13)

This equation is valid for L ≤ z ≤ L+ ℓ. Using the variable substitution,

u =
2Hω

vA1

exp

(
−z − L

2H

)
,

∂u

∂z
= − u

2H
,

∂2u

∂z2
=

u

4H2
, (4.14)

so that

∂V̂θ1

∂z
= − u

2H

∂V̂θ1

∂u
,

∂2V̂θ1

∂z2
=

u

4H2

(
u
∂2V̂θ1

∂u2
+

∂V̂θ1

∂u

)
, (4.15)

then by substituting in (4.14) and (4.15) we reduce Eq. (4.13) to the Bessel

equation

u2∂
2V̂θ1

∂u2
+ u

∂V̂θ1

∂u
+ u2V̂θ1 = 0 . (4.16)

The general solution to this equation for V̂θ1 is

V̂θ1 = C1(ω)J0(u) + C2(ω)Y0(u), (4.17)

where J0(u) and Y0(u) are Bessel functions of the first and second type and

the zero order.

After applying the Fourier transform to the induction equation (4.8), we

obtain

B̂θ1 =
B0

iω

∂V̂θ1

∂z
=

iuB0

2Hω

∂V̂θ1

∂u
. (4.18)

Using the relations

J ′
0(u) = −J1(u), Y ′

0(u) = −Y1(u), (4.19)
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where J1(u) and Y1(u) are Bessel functions of the first and second type

and the first order, and the prime indicates the derivative, we obtain from

Eqs. (4.17) and (4.18)

B̂θ1 = −iuB0

2Hω
[C1(ω)J1(u) + C2(ω)Y1(u)] . (4.20)

Applying the Fourier transform to Eqs. (4.10) and (4.11) we obtain

V̂θ1 =

 e−iωz/vA1V̂θ1i(ω) + eiωz/vA1V̂θ1r(ω), z ≤ L,

e−iωz/vA2V̂θ1t(ω), z ≥ L+ ℓ.
(4.21)

B̂θ1 =

 e−iωz/vA1B̂θ1i(ω) + eiωz/vA1B̂θ1r(ω), z ≤ L,

e−iωz/vA2B̂θ1t(ω), z ≥ L+ ℓ.
(4.22)

We note that B̂θ1 and V̂θ1 are functions of z that depend on ω and r as

parameters.

The magnetic field and velocity must be continuous at the boundaries of the

transitional layer. This condition results in

e−iωL/vA1V̂θ1i(ω) + eiωL/vA1V̂θ1r(ω) = C1(ω)J0(u1) + C2(ω)Y0(u1) ,

e−iω(L+ℓ)/vA2V̂θ1t(ω) = C1(ω)J0(u2) + C2(ω)Y0(u2) ,

e−iωL/vA1B̂θ1i(ω) + eiωL/vA1B̂θ1r(ω) = −iB0

vA1

[C1(ω)J1(u1) + C2(ω)Y1(u1)] ,

e−iω(L+ℓ)/vA2B̂θ1t(ω) =
−iB0e

−ℓ/2H

vA1

[C1(ω)J1(u2) + C2(ω)Y1(u2)] ,

(4.23)

where

u1 = u(z = L) =
2Hω

vA1

, u2 = u(z = L+ ℓ) =
2Hω

vA1

exp

(
− ℓ

2H

)
.

(4.24)

We impose the boundary condition

Bθ1 = F (t, r) at z = 0. (4.25)

Using Eq. (4.7) and the definitions of Bθ1 and Vθ1 we obtain the relations

Vθ1i = −vA1

B0

Bθ1i, Vθ1r =
vA1

B0

Bθ1r, Vθ1t = −vA2

B0

Bθ1t. (4.26)
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The same relations are valid for the Fourier transforms of the velocity and

magnetic field. Then, we transform the third and fourth equations in Eq. (4.23)

to

e−iωL/vA1V̂θ1i(ω)− eiωL/vA1V̂θ1r(ω) = i[C1(ω)J1(u1) + C2(ω)Y1(u1)], (4.27)

e−iω(L+ℓ)/vA2V̂θ1t(ω) = i[C1(ω)J1(u2) + C2(ω)Y1(u2)]. (4.28)

We need to be able to write Vθ1t in terms of Vθ1i in order to find the mass

flux ratio when we solve the second-order approximation for VZ2. We obtain

by adding Eq. (4.27) and the first equation in Eq. (4.23),

C1(ω)[J0(u1)+iJ1(u1)]+C2(ω)[Y0(u1)+iY1(u1)] = 2e−iωL/vA1V̂θ1i(ω) . (4.29)

Subtracting Eq. (4.28) from the second equation in Eq. (4.23), we obtain

C1(ω)[J0(u2)− iJ1(u2)] + C2(ω)[Y0(u2)− iY1(u2)] = 0 . (4.30)

It follows from Eqs. (4.29) and (4.30) that

C1(ω) = 2e−iωL/vA1V̂θ1i(ω)
(Y0(u2)− iY1(u2))

G(ω)
(4.31)

C2(ω) = −2e−iωL/vA1V̂θ1i(ω)
(J0(u2)− iJ1(u2))

G(ω)
, (4.32)

where

G(ω) = [J0(u1) + iJ1(u1)][Y0(u2)− iY1(u2)]

− [J0(u2)− iJ1(u2)][Y0(u1) + iY1(u1)] .
(4.33)

Eliminating C1 and C2 from Eq. (4.28) and using the identity (from Abramowitz

and Stegun (1964))

Jν+1(x)Yν(x)− Jν(x)Yν+1(x) ≡
2

πx
, (4.34)

yields

V̂θ1t(ω) =
2ivA2V̂θ1i(ω)

πωHG(ω)
e−iωT , (4.35)

where

T =
L

vA1

− L+ ℓ

vA2

. (4.36)

Equation (4.35) is then the Fourier-transformed first-order azimuthal velocity

perturbation and is the solution to Eq. (4.13). We do not give the expression

for V̂θ1r(ω) because it is not used below.
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4.3.2 Inverse Fourier transforms

Now, let us calculate the inverse Fourier transforms. In order to make ana-

lytical progress, we first assume that F (t, r) = 0 for t ≤ 0 and t ≥ τ . This

means that there is no perturbation before an initial time t = 0 and that

the driver of the pulse is active only for a finite duration τ , after which there

is again no perturbation in the first-order quantities. The leading edge of

torsional Alfvén wave, driven by the perturbation at z = 0, arrives at the

lower boundary of the transitional layer at t = L/vA1. Before it arrives at

this lower boundary, it has the form of a pulse of length τvA1. We assume

that this length is much larger than the thickness of the transitional layer

and introduce the small parameter δ = ℓ/τvA1.

The main contribution in F̂ (ω, r), which is the Fourier transform of the

function defined in Eq. (4.6), comes from |ω| smaller than or of the order of

2π/τ , while |F̂ (ω, r)| ≪ 1 for |ω| ≫ 2π/τ , so that it is enough to consider

the Fourier transform only for |ω| ≲ 2π/τ . Since ℓ/H = 2 ln(vA2/vA1) we

have H ≲ ℓ, i.e. the scale height is of the order of, or less than, the thickness

of the transitional layer. This enables us to obtain the following estimates,

|u1| =
2H|ω|
vA1

≲
4πH

τvA1

≲
ℓ

τvA1

= δ ≪ 1. (4.37)

Since |u2| < |u1|, it follows that |u2| ≲ δ. Below, in all expressions, we only

keep terms of the order of unity, δ, and δ2, and neglect terms of higher orders

with respect to δ.

Now, we use the relations (Abramowitz and Stegun (1964), ref. 9.1)

J0(x) = 1− x2

4
+O(x4) , J1(x) =

x
2
+O(x3) ,

Y0(x) =
2
π

(
ln x

2
+ γ
) (

1− x2

4

)
+ x2

2π
+O(x4 ln |x|) ,

Y1(x) = − 2
πx

+ x
π
ln x

2
+ x

2π
(2γ − 1) +O(x3 ln |x|) ,

(4.38)

where γ is the Euler constant. With these relations, we obtain

G(ω) ≈ i(vA2 + vA1)

πHω
− χ

π

[
1 +

iHω

vA1

(
1− e−ℓ/2H

)]
, (4.39)

where

χ =
ℓ

H
−
(
vA1

vA2

− vA2

vA1

)
=

ℓ

H
+ 2 sinh

ℓ

2H
∼ O(1) . (4.40)
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Using Eq. (4.39) and the identity

1

1 + x
= 1− x+ x2 − x3 + ... (4.41)

valid for |x| ≪ 1, which is the case for

x =
iχHω (1 + iHω (1/vA1 + 1/vA2))

vA1 + vA2

≲ O(δ) , (4.42)

and taking only the first three terms (up to the order of δ2, since δ ≪ 1

and therefore further terms will be very small in magnitude), we obtain from

Eq. (4.35),

V̂θ1t(ω) =
2vA2V̂θ1i(ω)

vA1 + vA2

(
1− iχHω

vA1 + vA2

− χℓHω2

(vA1 + vA2)2

)
e−iωT . (4.43)

Then, we can calculate the inverse Fourier transforms:

Vθ1t(t) =
1

2π

∫ ∞

−∞
V̂θ1t(ω)e

iωtdω

=
vA2

π(vA1 + vA2)

∫ ∞

−∞

(
1− iχHω

vA1 + vA2

− χℓHω2

(vA1 + vA2)2

)
V̂θ1i(ω)e

iω(t−T )dω

=
vA2

π(vA1 + vA2)2

(
1− χH

vA1 + vA2

∂

∂t
+

χℓH

(vA1 + vA2)2
∂2

∂t2

)∫ ∞

−∞
V̂θ1i(ω)e

iω(t−T )dω

=
2vA2

vA1 + vA2

[
Vθ1i(t− T )− χHV ′

θ1i(t− T )

vA1 + vA2

+
χℓHV ′′

θ1i(t− T )

(vA1 + vA2)2

]
, (4.44)

where the prime indicates the derivative. Thus we have an approximate

solution for the first-order equation (4.9).

4.4 Second-order approximation

Next, we consider the second-order quantities in the MHD equations, which

depend on the solutions we have found for the first-order quantities. This

will introduce a vertical perturbation of the plasma due to the ponderomotive

Lorentz force.

In the second-order approximation, we collect the terms of the order of ϵ2 in

the z-component in Eq. (4.2). This yields

∂VZ2

∂t
= − 1

2µ0ρ0(z)

∂

∂z
(B2

θ1). (4.45)
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The torsional Alfvén wave arrives at the transitional layer at t = L/vA1.

Before that time there is no reflected wave in the region z < L, i.e. Vθ1 = Vθ1i.

Hence, for t < L/vA1 we obtain using Eqs. (4.8), (4.26), and (4.45) that below

the transitional layer,
∂VZ2i

∂t
=

1

2vA1

∂

∂t
(V 2

θ1i) . (4.46)

Since there are no perturbations for t ≤ 0 it follows from this equation that

for t < L/vA1 there is only the initial wave, so

VZ2i =
1

2vA1

V 2
θ1i(t− z/vA2). (4.47)

In the region above the transitional layer, there is only transmitted wave,

as defined in Eq. (4.10). So, again using Eqs. (4.8), (4.26), and (4.45) but

considering the region z > L+ ℓ, we have

∂VZ2t

∂t
=

1

2vA2

∂

∂t
(V 2

θ1t) . (4.48)

Since there are no perturbations for t ≤ 0, we obtain from Eq. (4.48) using

Eq. (4.44)

VZ2t =
2vA2

(vA1 + vA2)2

[
Vθ1i(Θ)− χHV ′

θ1i(Θ)

vA1 + vA2

+
χℓHV ′′

θ1i(Θ)

(vA1 + vA2)2

]2
≈ 2vA2

(vA1 + vA2)2

{
V 2
θ1i(Θ)− 2χH

vA1 + vA2

Vθ1i(Θ)V ′
θ1i(Θ)

+
χH

(vA1 + vA2)2
[
χH(V ′

θ1i(Θ))2 + 2ℓVθ1i(Θ)V ′′
θ1i(Θ)

]}
. (4.49)

Here, Θ = t− T − z/vA2.

4.5 Mass flux ratio

Now, we calculate the total mass flux through the tube cross-section below

and above the transitional layer. We assume that the function F (t, r) is

factorised and can be written as F (t, r) = Φ(t)Ψ(r). It is convenient to

calculate the incoming mass flux at z = 0, which is then given by

Mi = 2πρ1

∫ r0

0

r

∫ τ

0

VZ2i(t) dt dr, (4.50)
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where r0 is the tube radius. Using Eqs. (4.6) and (4.47), we transform this

expression to

Mi =
πϵ2ρ1vA1

B2
0

∫ r0

0

Ψ2(r) r dr

∫ τ

0

Φ2(t) dt. (4.51)

The total mass flux through any tube cross-section above the transitional

layer is the same at any z > L + ℓ. It follows from Eq. (4.49) that VZ2t

is different from zero only for 0 < Θ < τ , that is for T + z/vA2 < t <

τ + T + z/vA2. Hence

Mt = 2πρ2

∫ r0

0

r

∫ τ+T+z/vA2

T+z/vA2

VZ2t(t) dt dr . (4.52)

Although z is present in this expression, the result will be the same for any

z > L + ℓ. Using Eq. (4.49) and the integration variable substitution we

obtain

I ≡
∫ τ+T+z/vA2

T+z/vA2

VZ2t(t) dt

=
2vA2

(vA1 + vA2)2

∫ τ

0

{
V 2
θ1i(Θ)− 2χH

vA1 + vA2

Vθ1i(Θ)V ′
θ1i(Θ)

+
χH

(vA1 + vA2)2
[
χH(V ′

θ1i(Θ))2 + 2ℓVθ1i(Θ)V ′′
θ1i(Θ)

]}
dΘ. (4.53)

Using integration by parts and Eq. (4.40), we transform this expression to

I =
2vA2

(vA1 + vA2)2

∫ τ

0

(
V 2
θ1i(Θ)

+

[
H2

(
1

vA1

− 1

vA2

)2

− ℓ2

(vA1 + vA2)2

]
(V ′

θ1i(Θ))2
)
dΘ .

(4.54)

Substituting this expression in Eq. (4.52) and using Eq. (4.6) yields

Mt =
4ϵ2πρ2vA2v

2
A1

B2
0(vA1 + vA2)2

∫ r0

0

Ψ2(r) r dr

(∫ τ

0

Φ2(t) dt

+

[
H2

(
1

vA1

− 1

vA2

)2

− ℓ2

(vA1 + vA2)2

]∫ τ

0

(Φ′(t))2 dt

)
,

(4.55)
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where we changed the integration variable from Θ to t. Note that H is

proportional to ℓ such that ℓ/H = 2 ln(α) is fixed when vA1 and vA2 are

given, where α = vA2/vA1. Thus we see that the term proportional to the

thickness of the transitional layer squared (ℓ2, equivalently H2) in the square

brackets in Eq. (4.55) gives the correction to Mt related to the substitution

of the discontinuity by the smooth transitional layer, and since α > 1 it

follows that this correction is always positive. We recover the total mass flux

due to the transmitted wave in the case of a discontinuity by taking ℓ = 0

(equivalently H = 0).

To give an example we take

Φ(t) = A

(
1− cos

2πt

τ

)
, 0 < t < τ , (4.56)

where A is a constant and Φ(t) is otherwise zero. This represents the driver

of the wave, which is active for a finite duration τ , creating a wave pulse.

Then we obtain∫ τ

0

(Φ(t))2 dt =
3τA2

2
,

∫ τ

0

(Φ′(t))2 dt =
2π2A2

τ
. (4.57)

Using these results and considering Eq. (4.55), we find that the ratio of the

second term (with the square brackets) to the first term of that equation is

λ =
4π2

3τ 2

[
H2

(
1

vA1

− 1

vA2

)2

− ℓ2

(vA1 + vA2)2

]

=
4π2

3

(
ℓ

vA1τ

)2
[(

1− α

2α ln(α)

)2

− 1

(1 + α)2

]
.

(4.58)

This ratio represents the proportion of the transmitted mass that is due to

the effect of the transitional layer, compared to the case of the discontinu-

ity. It is maximised at around α = 5.082, when it is approximately equal to

0.447(ℓ/τvA1)
2 = 0.447δ2. Since we have δ < 1, the additional transmitted

mass due to the effect of the transitional layer must be much less than 44.7%

of the total transmitted mass, for any feasible value of α. If, in addition, we

take δ = 1/3 as an example to satisfy the thin-layer requirement, then we

obtain that the ratio of two terms is 0.0497. Hence, in this case the trans-

mitted flux is greater by approximately 5% than in the case of discontinuity
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Figure 4.1: A plot of the mass flux ratio R against α, showing the effect of

varying δ and thus the thickness of the transitional layer. Here, we consider

multiple values of δ in the range 0 < δ < 1. It should be noted that δ = 1

is included as an extreme case for the sake of comparison, but that the model

requires a thin layer, i.e. δ ≪ 1. The one percent transmission threshold is shown

as a cyan line which intersects with the δ = 0 curve of the ratio at α = 6.717

(blue dotted line), and with the δ = 1 curve of the ratio at α = 7.638 (orange

dotted line). Also shown is the proportion of transmitted mass that is due to the

effect of the transitional layer, λ (green dot-dashed curve) for δ = 1/3, with the

maximum indicated at α = 5.082 (green dotted line).

(illustrated in Fig. 4.1). This is encouraging because it suggests that the

actual density-stratified solar atmosphere would most likely allow for some

spicular material to pass through the chromosphere as a result of torsional

Alfvén waves.

We can also find the ratio R of the relative mass flux, i.e. the ratio of the

mass of plasma that moves due to the transmitted wave through a given

surface z > L+ ℓ above the transitional layer, as a proportion of the plasma
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that moves due to the initial wave through a surface z < L:

R =
Mt

Mi

=
4

α(1 + α)2

(
1 +

4π2

3

(
ℓ

vA1τ

)2
[(

1− α

2α ln(α)

)2

− 1

(1 + α)2

])
.

(4.59)

Notably, this is similar to the mass flux ratio found in Scalisi et al. (2021b)

(see Chapter 3, Eq. (3.32)) but with an extra term proportional to ℓ2, hence

it is clear that the inclusion of the transitional layer has had a quantifiable

effect on the model. Since we defined Ψ(r) such that it does not depend on

t or z, for the purpose of this example, R does not depend on Ψ. The ratio

R is shown in Fig. 4.1. We now explore how the mass flux ratio changes

due to the extra term introduced as a result of considering a transitional

layer sandwiched between the chromosphere and the low corona, in the next

section.

4.6 Discussion

The result from this model depends on how we specify vA1, τ , H, and α, and

specifying any one of these parameters may influence how we specify another.

However, we are particularly interested in how the ratio changes depending

on the thickness of the transitional layer ℓ while the other variables remain

constant (although we can consider various discrete cases). Therefore we

will have different values for the scale height H = ℓ/2 ln (α) when we vary

ℓ, while considering a particular value of α. Since we will consider various

cases, it may be helpful to explore physical constraints for the values of our

parameters.

4.6.1 Alvén speed and density

In strongly magnetic regions of the lower solar atmosphere inside a flux tube,

the Alfvén speed would be on the order of 10 km s−1, with some estimates

suggesting values between 7.7 km s−1 (Roberts, 2019) and 22 km s−1 (Jess

et al., 2009). Taking the latter value and using the definition of the Alfvén
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speed in Eq. (4.4), this corresponds to an estimate for the density ρ1 in the

lower layer of the model of around 1.64 × 10−8 g cm−3, with a kilogauss-

strength background magnetic field. Higher in the atmosphere, the Alfvén

speed increases by at least an order of magnitude (Vernazza et al., 1973), with

estimates of 1000 km s−1 or more in the corona (Tomczyk et al., 2007; van

Ballegooijen et al., 2011). However, our model is not intended to encompass

the corona but rather the regions below it.

Values for the Alfvén speed of around 556 km s−1 are suggested by Okamoto

and De Pontieu (2011) for the region corresponding to the extreme upper end

of the range of spicule heights (15”, or around 10.9 Mm). Using this value

for the Alfvén speed in the upper layer, the corresponding density ρ2 can be

estimated at around 2.57 × 10−11 g cm−3, again with a kilogauss-strength

background magnetic field for the purposes of this model. Comparing the

556 km s−1 estimate and the 22 km s−1 estimate gives α ≈ 25. However,

Okamoto and De Pontieu (2011) also suggest an Alfvén speed at the surface

that is higher than previously mentioned estimates for the lower atmosphere,

with their equivalent Alfvén speed ratio given as 3.39.

Informed by these sources, we will consider values for α on the order of

around 10, or equivalently a density ratio of around ρ1/ρ2 = 100. These

estimates may be rather imprecise due to the highly variable nature of the

solar atmosphere, especially in the vicinity of relatively small and dynamic

features like spicules, hence the need to consider a range of values for these

parameters. This range should give results that are compatible with the

estimated ratio of the mass flux of the solar wind vs that of spicules (1%).

4.6.2 Thickness of the transitional layer

The ratio R strictly increases proportional to ℓ2. This suggests that a wider

transitional layer, in this case a more gentle gradient between the lower and

upper regions in the model, results in stronger transmission of the wave.

Note that if we take the limit as ℓ → 0 then the ratio depends only on α,

hence this limit — equivalent to the case of the density discontinuity — gives

the minimum value of the ratio for any particular value of α. This minimum
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Figure 4.2: Plots of the mass flux ratio R against the thickness of the transitional

layer ℓ/vA1τ (scaled by the length of the pulse), illustrating the effect of varying

α. Here, we consider multiple values of α in the range 5 < α < 25. The one

percent transmission threshold is shown as a cyan line, and the line ℓ = vA1τ as an

orange line (note that ℓ > vA1τ is beyond the scope of the model). Highlighted

in red are the values of α = 6.717 and α = 7.638.
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ratio coincides with the result of Scalisi et al. (2021b); in particular, we

find the minimum ratio matches the 1% estimate at α ≈ 6.717, just as in

the example given in Chapter 3. In fact, for α < 6.717, the one percent

threshold is exceeded for all ℓ. For α > 7.638, the threshold is not reached

for 0 < ℓ < vA1τ .

The minimum value of the ratio is on the order of α−3 and so tends towards

zero as α → ∞. Increasing the value of α not only reduces this minimum

value of R but also means that the ratio increases more slowly as ℓ increases,

as illustrated in Fig. 4.2. Hence we find that less of the mass would be

transmitted above an arbitrarily thin transitional layer with a higher value

of α, and also that increasing the width of the transitional layer has less

effect with a higher value of α than it would with a lower value. This is,

again, because the gradient in the transitional layer is more severe if there

is a greater difference between the plasma density in the lower and upper

regions.

4.6.3 Length of the pulse

Note that we assumed earlier in our calculations (see Section 4.3.2) that the

transitional layer was thin compared to the length of the pulse. An effect of

this stipulation is that the travel time for the pulse to cross the transitional

layer is negligible. As a result, we should focus on the results for the range

ℓ < vA1τ to avoid loss of accuracy of the model. We are able to specify how

the pulse is driven via the boundary conditions; in Scalisi et al. (2021a) we

suggested that a pulse driven for around 150s could reach a maximum vertical

extent matching the height of spicules, and this is within the range of the

average period of torsional Alfvén waves in MBPs (where our hypothetical

wave driver is located) given by Jess et al. (2023). So for example if τ = 150 s,

along with an estimate of vA1 = 10 km s−1, we could consider ℓ < 1500 km.

However, this may not be considered “thin” in comparison to the height of

the chromosphere.

We may want to consider shorter pulses — these would still propagate at the

Alfvén speed, reaching the height of observed spicules within a few minutes,
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α = 6.717

α = 7.638

α = 10

Figure 4.3: (Caption next page.)
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Figure 4.3: (Previous page.) Plots of the mass flux ratio R against the thickness

of the transitional layer ℓ (in meters), illustrating the effect of varying pulse

duration. Each curve represents a pulse with a different discrete value of the

pulse duration (in seconds) τ between τmin = 1s and τmax = 150s, all with

constant vA1 = 10. Here, ℓ is only shown between 0 and the maximum length

of any of the pulses within the chosen range, i.e. vA1τmax = 1500m. Each

curve intersects the orange line at its distinct value of vA1τ so, according to our

assumptions about the thickness of the transitional layer, the range of ℓ that the

model encompasses for each curve is represented below and to the left of that

intersection. The cyan line represents the one percent transmission threshold

R = 0.01. We consider different values of α: (a) α = 6.717; (b) α = 7.638; (c)

α = 10.

but would themselves be shorter in length than spicules. It is unclear whether

the pulse needs to be driven continuously during the spicule’s ‘rising’ phase.

If the driver is, for example, related to a photospheric or chromospheric swirl

(Liu et al., 2019c,a) then it is likely that the duration would be shorter than

the lifespan of a spicule since these features are observed to have average

lifetimes of under 30s - although this is only slightly less than the lifespan of

certain kinds of jets such as Type II spicules or RBEs (Kuridze et al., 2015).

Again, it is useful to consider a range of possible values.

For a particular value of α, if the pulse duration τ is reduced then the mass

flux ratio increases faster as ℓ increases, i.e. a thinner transitional layer is

required to reach the same ratio of transmitted mass. Regardless of the pulse

duration we find the same value of the ratio for a given α is always reached

at ℓ = vA1τ , the upper limit of the range of ℓ that we consider valid for this

model. This maximum value of the ratio varies with α in a similar way to

the minimum value (at ℓ = 0), i.e. on the order of α−3, and reaches 1% at

α ≈ 7.638.

The effect of varying τ is illustrated in Figure 4.3, for three discrete values

of α representing different cases. In case (a), for α = 6.717, the one percent

transmission threshold (cyan line) is met at ℓ = 0 regardless of the pulse
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duration, and at ℓ = vA1τ (orange line), the ratio is always just under 1.5%.

In case (b), for α = 7.638, the one percent threshold is always met at ℓ = vA1τ

regardless of the pulse duration (cyan and orange lines are superimposed at

the same value of R = 0.01). In case (c), we consider α > 7.638, taking

α = 10 as an example; here the ratio at ℓ = vA1τ is less than 0.5% regardless

of the pulse duration, hence the mass flux present above the transitional layer

in the higher solar atmosphere would be even less than one percent of the

initial flux (for all values of ℓ < vA1τ satisfying our assumptions). This is

acceptable in a physical context, since the one percent threshold refers to the

total mass flux of spicules versus that of the solar wind, and spicules are of

course not the only potential source of the solar wind. Therefore, one percent

could be considered as the upper limit for the proportion of spicule material

that may contribute to the solar wind. It follows that (c) is likely to be the

most realistic of the three given cases. This is in line with the estimated

values of the Alfvén speeds discussed earlier in this section.

4.6.4 Limitations

There are some caveats concerning the physical interpretation of the results.

For example, although the model is not intended to include the corona, in

reality the transitional layer does not end at a region of constant plasma

density and the Alfvén speed may continue to increase with height above

the photosphere. Therefore it is likely that even less mass flux from the

perturbations we describe will be present higher up in the atmosphere, and

in the solar wind. However it is true that the greatest change in density by

far in the solar atmosphere occurs over a small length scale in the transition

region, such that the corona can be modelled with constant Alfvén speed for

the purposes of this work.

In addition, it is difficult to predict with this model what will happen to

the plasma that has already been lifted. It is possible that a spicule’s later

trajectory would be influenced by both gravity and the effect of waves being

repeatedly reflected, since many jets’ trajectories are not purely ballistic (De

Pontieu et al., 2007a; Loboda and Bogachev, 2017) and the plasma is likely to

be affected by the waves in a different way at the top of the spicule compared
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to the at the base (Okamoto and De Pontieu, 2011). The model could be

improved if we could account for this complex plasma behaviour.



CHAPTER 5

Conclusions and future work

In this final chapter, the conclusions of the combined research are reviewed

and presented, including that of the published papers and other work pre-

sented in this thesis. The results and their significance are discussed, and

the progression of the research as a whole is explained. Finally, I will suggest

the next steps for any further research that myself or others may decide to

conduct into this area of study.

5.1 Conclusions

The model presented in this thesis was developed with the intention of us-

ing analytical methods to study the mechanisms that generate solar jets.

We aimed to explore how spicules may be affected by torsional waves that

originate in photospheric magnetic bright points and propagate through the

chromosphere. In addition, we made considerable efforts to determine the ef-

fect that these features may have on the outer solar atmosphere and estimate

their potential to influence the solar wind.

Our initial investigation involved determining a suitable method to model

solar jets analytically. In Chapter 2, we introduced the cylindrical flux tube

and utilised a perturbation method, allowing us to begin to add complexity
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to the model and examine the nature of vertically propagating waves and

their effect on the motion of the plasma in the context of spicules. After

consideration of the general case of the model in Section 2.3, we adapted the

model to the physical conditions of the plasma specific to the environment

that we intended to study, resulting in our employment of the zero-beta

approximation.

The results of Scalisi et al. (2021a) presented in Chapter 2 suggest that

a torsional perturbation in the lower solar atmosphere can cause vertical

excitation of plasma by the Lorentz force, which is comparable to the motion

of solar jets. A torsional Alvén pulse propagating at speed of 10–20 km s−1

is able to generate mass flux on the scale of a spicule, reaching heights of

several megameters within the span of a few minutes. The consistency of

the model with observed properties of spicules served as proof of concept

and motivated the further development of the model to include additional

atmospheric effects.

In Scalisi et al. (2021b), presented in Chapter 3, we began to improve our

characterisation of the higher solar atmosphere by way of the inclusion of a

discontinuity in density at an upper boundary in the flux tube model. In this

way, we introduced stratification of the atmosphere representing the physical

variation that has been observed to occur in the upper chromosphere and

transition region. Studying the propagation and subsequent partial reflection

of a torsional Alfvén pulse in this environment allowed us to model the later

evolution of a spicule. We utilised this model to estimate the the mass flux

that may be present in the higher atmosphere due to the component of the

wave that is transmitted through the discontinuity, as a proportion of the

initial mass flux. The results suggest that there would be plasma flux present

in the upper region on the order of 1% of the flux due to the initial pulse, in

accordance with estimates.

With the three-layered system of Scalisi et al. (2023) explored in Chapter 4,

we expanded the model to investigate whether mass flux would be generated

due to a transmitted Alfvén wave in the solar atmosphere above a transitional

layer, and to examine the differences between this and the discontinuity case.

By introducing this additional complexity in the system we presented a more
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authentic representation of the atmosphere than the discontinuity case. This

also allowed us to confirm that our previous results are consistent with the

more physically accurate model. We found good agreement when comparing

the results with properties of spicules and the solar wind, and found that

in comparison to the case of a discontinuity there is a slight increase of the

mass flux in the upper region. This also allowed us to consider appropriate

ranges for the parameters of the atmosphere described by the model.

The development of our model has suggested several things about spicules:

primarily, that the generation of jet-like motion can be driven or influenced

by magnetic perturbations in the form of torsional Alfvén waves originating

in strongly magnetic photospheric regions. In addition, we found that these

waves are restricted in the extent that they are able to propagate out into

the atmosphere, putting a limit on the maximum height to which jets may

be driven by them and suggesting that almost all of the mass lifted by this

process will remain in the lower solar atmosphere rather than being ejected

into the corona, as expected. However, despite that limit, we suggest that

some material from the jets may be carried higher into the atmosphere by

the transmitted portion of the waves that are present during the formation

of the jets, although only a small amount of this may eventually contribute

to the solar wind.

Overall the model is a useful diagnostic tool, making use of established ana-

lytical methods but applying them in a novel way to investigate the feasibility

and compatibility of a proposed mechanism of solar jet generation. This re-

search has enabled us to explore the processes occurring in the lower solar

atmosphere, and has provided some insight into the scale of the influence

that spicules can have on the solar atmosphere beyond the chromosphere.

5.2 Future work

Although the model we have developed here has given us some idea of the

process behind jet formation and the potential role of torsional Alfvén waves

in spicule evolution, it is clear that there are limitations in this analytical

method due to the rapid increase in the complexity of the system as we ap-
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proach more physically realistic conditions. The MHD system is nonlinear

and so, therefore, is the problem of modelling solar jets — hence the popu-

larity of numerical modelling and simulation when considering plasma and

jet dynamics. It would be useful to undertake a more detailed comparison

of our results with models that are based on these methods, or to build our

own equivalent.

The analysis presented so far does not explicitly consider the variation of

the background magnetic field with height, although — since the magnetic

field strength is proportional to the Alfvén speed — it is indirectly taken

into account by the current model and the effect of this variation can be

inferred. However, tube expansion higher in the atmosphere will occur with

the decreasing magnetic field strength inside the flux tube and may affect

our estimates. A more thorough analysis of this effect could be the subject

of a future study, building on the framework of the model presented here.

Our investigations have allowed us to make estimates of physical parame-

ters, so another useful endeavour would be to make observations to check

that these estimates are in the correct range. In addition, we would like

to explicitly observe the evolution of torsional Alfvén waves in the context

of spicules. We would then be able to directly measure the effects of these

waves on plasma flux and compare with our predictions. Finally, we would

also expand the scope of the study to other solar jets such as coronal jets

and macrospicules. A long-term observational study over a full 11-year solar

cycle may uncover new patterns in the behaviour of these jets.
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APPENDIX A

Verification of continuity of VZ2

To check the continuity of VZ2 we must also consider the region above the

density discontinuity. Using Equations (3.11), (3.15), and (3.18), we find

that for z > L,

∂Vθ1

∂t
= − 2vA1vA2

B0(vA1 + vA2)

∂

∂t
F (t− L/vA1 − (z − L)/vA2) , (A.1)

and so

∂VZ2

∂t
= − 1

B0

Bθ1
∂Vθ1

∂t
(A.2)

=
2v2A1vA2

B2
0(vA1 + vA2)2

∂

∂t

(
F 2(t− L/vA1 − (z − L)/vA2)

)
. (A.3)

Therefore, we define for L/vA1 + (z−L)/vA2 < t < L/vA1 + (z−L)/vA2 + τ ,

VZ2 = VZ2t =
2vA2

µ0ρ01(vA1 + vA2)2
F 2(t− L/vA1 − (z − L)/vA2) , z > L .

(A.4)

Using our example pulse in Section 3.4, and evaluating at z = L, we obtain

VZ2t(z = L) =
2B2

maxvA2

µ0ρ01(vA1 + vA2)2
sin2 (π (r/R0)

σ) sin2
(π
τ
(t− L/vA1)

)
.

(A.5)
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For 0 < z < L we have VZ2 = VZ2i+VZ2r +VZ2n, where VZ2i is only non-zero

for z/vA1 < t < z/vA1 + τ , VZ2r is only non-zero for (2L − z)/vA1 < t <

(2L− z)/vA1 + τ , and VZ2n is defined as in Eq. (3.45).

For t < z/vA1, VZ2i = VZ2r = VZ2n = 0 by definition. At t = z/vA1,

VZ2i =
B2

max

2µ0ρ01vA1

sin2 (π (r/R0)
σ) sin2

(π
τ
(z/vA1 − z/vA1)

)
= 0 . (A.6)

For t < (2L − z)/vA1, VZ2r = VZ2n = 0 by definition so VZ2 = VZ2i. At

t = (2L− z)/vA1,

VZ2i =
B2

max

2µ0ρ01vA1

sin2 (π (r/R0)
σ) sin2

(
2π

τ
(
L− z

vA1

)

)
, (A.7)

VZ2r = − B2
max

2µ0ρ01vA1

(
vA1 − vA2

vA1 + vA2

)2

× sin2 (π (r/R0)
σ) sin2

(
π

τ

(
2L− z

vA1

+
z − 2L

vA1

))
≡ 0 , (A.8)

VZ2n = G∗(r) sin

(
2π(L− z)

vA1τ

)(
2L− z

vA1

− 2L− z

vA1

)
≡ 0 , (A.9)

and note that here VZ2i is equal to zero at z = L.

For (2L − z)/vA1 < t < z/vA1 + τ , all three wave components may be non-

zero below the discontinuity and we also have the transmitted wave VZ2t.

Therefore for z < L,

VZ2 = VZ2i + VZ2r + VZ2n

=
B2

max

2µ0ρ01vA1

sin2 (π (r/R0)
σ)

[
sin2

(π
τ
(t− z/vA1)

)
−
(
vA1 − vA2

vA1 + vA2

)2

sin2

(
π

τ

(
t+

z − 2L

vA1

))]
+G∗(r) sin

(
2π(L− z)

vA1τ

)(
t− 2L− z

vA1

)
. (A.10)

At z = L we find

VZ2 =
2B2

maxvA2

µ0ρ01(vA1 + vA2)2
sin2 (π (r/R0)

σ) sin2
(π
τ
(t− L/vA1)

)
, (A.11)

which matches the transmitted wave at z = L as in (A.5).
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Finally, for t > z/vA1 + τ , we have defined VZ2i = 0 so VZ2 = VZ2r + VZ2n for

z < L. At t = z/vA1 + τ , we have

VZ2i =
B2

max

2µ0ρ01vA1

sin2 (π (r/R0)
σ) sin2

(
π

τ
(
z

vA1

+ τ − z

vA1

)

)
≡ 0 , (A.12)

VZ2r = − B2
max

2µ0ρ01vA1

(
vA1 − vA2

vA1 + vA2

)2

× sin2 (π (r/R0)
σ) sin2

(
π

τ

(
2z − 2L

vA1

+ τ

))
, (A.13)

VZ2n = G∗(r) sin

(
2π(L− z)

vA1τ

)(
τ +

2z − 2L

vA1

)
, (A.14)

and note that here VZ2r = VZ2n = 0 at z = L.
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Robert Erdélyi. Chapter 5: Waves and Oscillations in the Solar Atmo-

sphere. In B. N. Dwivedi and U. Narain, editors, Physics of the Sun and

its Atmosphere, pages 61–108. 2008. doi: 10.1142/9789812832726 0005.

V. Fedun, S. Shelyag, G. Verth, M. Mathioudakis, and R. Erdélyi. Mhd
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