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Abstract

The electric power system is a complex nonlinear system that functions in a dynamic envi-

ronment and is frequently subjected to a wide range of small and large disturbances. Small

disturbances occur continuously due to load changes, while large disturbances are often caused

by faults (such as equipment malfunction, human error, or attacks) and then propagate through

the system. Depending on the system operating conditions, such disturbances can lead to sta-

bility issues and, in the worst case, to blackouts. The onset of instability in power systems

causes fluctuations in different physical properties of the system, with the most critical being

the voltage and frequency. Monitoring the variation of these physical properties over time allows

for extracting information about the stability status of the system.

This thesis aims to tackle power system stability concerns by creating real-time detection al-

gorithms that rely on Phasor Measurement Units (PMUs). These algorithms serve as early

warning systems and are valuable inputs for stabilizing control techniques. The algorithms in

question focus on two types of stability issues: short-term oscillatory stability, which pertains to

low-frequency interarea oscillations, and long-term voltage stability, which is related to gradual

voltage collapse.

In the thesis, the first section covers Low-Frequency Oscillations (LFO) in the power grid.

While typically well-damped, under-damped LFOs can pose a significant threat to the grid’s

stability, making it crucial to detect them early for real-time monitoring. One important aspect

of analyzing oscillatory stability is determining the frequency and damping of critical oscillatory

modes, which can be challenging due to closely spaced and noisy natural modes in PMU signals.

To address this issue, the thesis proposes a method for detecting LFO using the Empirical

wavelet transform, which adaptively extracts different signal modes through a wavelet filter

bank.
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The second part of the thesis focuses on long-term voltage stability (LTVS) in electric power

systems, which can gradually deteriorate over time due to the grid’s inability to meet demand.

Factors such as insufficient reactive resources, load characteristics, and tap changer response

can contribute to LTVS, but the thesis primarily examines the stressed power system caused

by high active power demand from excessive load. For the real-time assessment of long-term

voltage stability (LTVS), this study proposes an approach that utilizes data mining and ma-

chine learning methods to evaluate long-term voltage stability (LTVS). The proposed technique

employs a feature ensemble method to predict the voltage stability margin (VSM).
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Chapter 1

Introduction

The electric power system comprises a complex network of generators, transformers, loads,

transmission lines, and distribution lines. The generators convert mechanical energy into elec-

trical energy, which is then transported to consumers (loads) through the transmission and

distribution systems. The main objective of the transmission and distribution systems is to

ensure uninterrupted supply of high-quality electricity.

The global energy demand has been rising due to rapid urbanization and population growth,

leading to significant changes in the power system. In the past, electric utilities were vertically

integrated and operated within specific geographic regions. However, the deregulation of the

electricity market now allows utility companies to sell power across borders and compete for

customers.

To meet the increasing demand for energy, the power system has expanded significantly, with

decentralized and renewable sources such as wind, solar, and hydro-power being integrated

into the system. The regional grids are also interconnected to enable power exchange over a

broader area. However, this complexity also increases the likelihood of contingencies and the

severity of their impact. In the event of a disruption such as loss of generation or a short-circuit,

the generator’s rotor angle separation, bus voltages, and system frequency could be disturbed,

leading to cascading failures [4].

At the same time, extensive utilization of power electronic devices and the presence of variable

demands, such as those from electric vehicle charging stations and electrified railways, con-

tribute power quality anomalies to electrical grids, including harmonics and rapid fluctuations
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in frequencies. In one way or another, these new sources have affected the power system operat-

ing conditions by degrading the quality of supply and forcing the system to work under stressful

conditions. Consequently, the modern power system encounters numerous challenges that sig-

nificantly jeopardize its stability parameters. Among these challenges, inter-area oscillations

and voltage stability hold particular importance.

Inter-area oscillations belong to the so-called Small Disturbance, or Small Signal Stability prob-

lem in power systems [5]. Inter-area oscillations frequently appear among different parts of the

power system due to continuing growth in the interconnections. Another contributing factor to

these oscillations is the high electricity demand, due to which transmission corridors operate

closer to their small-signal, and transient stability limits [6]. If not damped, these oscillations

can increase in magnitude and result in system separation, synchronization loss, or even black-

outs as a worst-case scenario [7]. Many grids have experienced these oscillations, including

South China, the USA, South America, Africa, and Scandinavian countries [8].

On the other hand, voltage stability problems are linked to the escalation of loading in the

transmission lines, scarce reactive supplies, and long-distance power distribution. A sequence

of events accompanying voltage stability can drive the system to voltage collapse, characterized

by an initially slow progressive decline in the voltage magnitude of the power system buses and

a final rapid decrease in the voltage. Several incidences of voltage collapse across the world were

reported in [9], including the blackouts that happened in Belgium (Aug 1982), Sweden (Dec.

1983), and Tokyo (July 1987). Another incidence of blackout in the United States and Canada

(Aug 2003) has proven to be the most significant [10]. Approximately 63 GW of the load was

lost during the outage, and about 50 million people were affected. Yet another major collapse

took place in Southern Sweden (Sep 2003) that impacted up to 2.4 million customers [11].

These instances prove that any disruption in the power system would lead to cascading outages

and dire consequences due to other major infrastructures heavily relying on electricity, such as

communication, traffic, water and gas supply, etc.

Therefore, a power system with continuous monitoring and stability prediction is urgently

needed. Furthermore, the centralized computational approaches, traditionally used in power

systems, face severe challenges in analyzing modern power systems. Due to extensive intercon-

nections, the degree of complexity of the power system has increased to the extent that planning

and operation are virtually unmanageable without comprehensive and robust analysis methods.
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Research in this area aims to predict voltage collapse to reduce its risk on the power stabil-

ity networks and identify inter-area modes by continuously capturing and processing power

oscillations on wide-area measurement system (WAMS) and its corresponding frequency and

damping. Large-scale blackouts such as the 1996 blackout in the U.S. [12], the 2003 blackout in

North America [13], the 2003 blackout in Italy [14], and the 2006 blackout in Europe. Vleuten

et al.[15] highlight the risks associated with lack of reliability in electric energy infrastructure

and the economic impacts of blackouts. Analysis of these blackouts shows that a sequence of

cascading events involving line tripping, overloading of other lines, malfunctions of protection

systems, power oscillations, voltage stability, and system splitting and collapse caused these

outages [16].

1.1 Motivation and research objectives

The primary focus of this thesis revolves around two crucial aspects in the power system domain:

1. Long-term voltage stability, and

2. Interarea oscillations.

The motivation for studying these phenomena arises from numerous instances of voltage col-

lapse experienced globally. While both long-term voltage stability and interarea oscillations are

associated with power system stability, they each tackle different aspects. Long-term voltage

stability focuses on maintaining stable voltage levels at all busses, whereas interarea oscillations

pertain to slower oscillations that occur between distinct regions within the power system.

The slow nature of these two instabilities presents significant opportunities for applying machine

learning (ML) algorithms. Their gradual processes make them suitable candidates for leveraging

ML techniques, which is why we have chosen to investigate these phenomena in our research.

By harnessing ML’s capabilities, we aim to gain deeper insights into these complex stability

issues and develop effective strategies for enhancing the stability of power systems.

In the following subsections, we discuss the implications presented by these phenomena and the

driving factors that have sparked our research endeavor.
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1.1.1 Unveiling the Significance of Oscillatory stability in Electric Power

Systems

Interarea oscillation involves slower and sustained oscillations that occur between different re-

gions or areas of a power system. These oscillations typically have frequencies in the range

of a few cycles per second and are observed in the large system with groups of generators, or

generating plants connected by relatively weak tie lines. These oscillations involve groups of

generators, or generating plants, on one side of the tie oscillates against groups of generators

on the other side of the tie[17]. Interarea oscillation is an area of interest and concern for

researchers due to the following reasons:

• Widespread Impact: Interarea oscillations are low-frequency oscillations that can prop-

agate across large geographical regions, affecting multiple interconnected areas of the

power system. These oscillations can lead to widespread disturbances and impact the

stability of the entire grid[18].

• Cascading Effects: Interarea oscillations can trigger cascading failures, where the oscil-

lations interact with various system components, leading to a chain reaction of failures.

Cascading events can result in extensive blackouts and severe disruptions in the power

supply[19].

• Resonance Phenomena: The process of interarea oscillations can be triggered by res-

onance phenomena, where the natural frequencies of different parts of the power system

align, leading to amplified oscillations. Understanding these resonance mechanisms is

crucial to mitigate their adverse effects[20].

• Complex System Dynamics: Power systems are complex and interconnected networks

with multiple generation sources, transmission lines, and loads. Interarea oscillations are

challenging to analyze and control due to the complexity of the system dynamics [21].

• Renewable Integration: With the increasing integration of renewable energy sources,

power systems become more susceptible to interarea oscillations. The variability and

unpredictability of renewable generation can introduce additional uncertainties in the

system, impacting stability[22].

• Transmission Line Dynamics: Interarea oscillations can interact with the dynamics of

long-distance transmission lines, affecting the system’s behavior over large distances [23].
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• Interconnected Grids: Interarea oscillations can be exacerbated in interconnected

power grids, where power transfers between different regions can influence oscillation

dynamics [24].

Detecting and mitigating these oscillations in real-time require advanced monitoring and control

strategies. Understanding the dynamics of these oscillations and developing effective control

strategies are essential to safeguarding the smooth operation of interconnected power grids.

1.1.2 Unveiling the Significance of Long-Term Voltage Stability in Electric

Power Systems

Long-term voltage stability, as a gradual process, emerges when the power network encounters

challenges in delivering sufficient reactive power support, particularly in specific network nodes

or areas of the power system [25]. It involves assessing the system’s ability to withstand varying

load conditions, generation patterns, and other factors that may impact voltage levels. Long-

term voltage stability is an area of concern for researchers in electric power systems due to

several reasons:

• Power System Complexity: Modern power systems are becoming increasingly com-

plex, incorporating various sources of generation, flexible loads, and interconnected trans-

mission networks. As the complexity of the power grid increases, it becomes challenging

to ensure stable voltage levels over extended periods [26].

• Renewable Energy Integration: The integration of renewable energy sources, such as

solar and wind, introduce intermittent and variable generation patterns into the power

system. These fluctuations can impact voltage stability, especially during periods of high

renewable energy penetration[27].

• Reduced Stability Margins: Power systems are often operated with reduced stability

margins to optimize asset utilization and accommodate diverse demand patterns. Operat-

ing with smaller stability margins makes the system more susceptible to voltage instability

and collapses [28].

• Risk of Blackouts: Voltage instability can lead to cascading failures, where a disturbance

in one part of the system triggers a chain reaction of failures, eventually resulting in

blackouts. Such blackouts can have severe consequences, including economic losses and
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disruption of essential services [29].

• Demand Growth: Growing electricity demand and changing load patterns can put

additional stress on the power system, affecting voltage stability. Researchers need to

understand how the changing demand can impact the long-term voltage stability of the

grid [30].

Long-term voltage stability analysis helps power system planners and operators anticipate po-

tential voltage stability issues. By analysing voltage stability over the long term, power system

operators can identify potential vulnerabilities and risks associated with different operating

scenarios.

1.1.3 Shortcomings of existing methods

:

Techniques used for interarea oscillation analysis often include modal analysis, eigenvalue anal-

ysis, and frequency response analysis. These methods help identify the critical interarea oscil-

lation modes and assess the stability of the power system concerning these oscillations. Long-

term voltage stability analysis requires a different set of techniques and tools, such as load flow

studies, voltage stability indices, and voltage stability margins. These methods help identify

potential voltage stability issues in the power system and assess its ability to withstand large

disturbances, such as heavy load demands or equipment failures.

Analyzing long term voltage stability and interarea oscillation in power systems using traditional

methods has some shortcomings, and ML offers a better choice to address these limitations. Here

are some of the shortcomings of traditional analysis:

• Complexity and Nonlinearity: Power systems are complex and nonlinear, and tra-

ditional analysis methods may struggle to capture the intricate relationships between

variables accurately.

• Sensitivity to Assumptions: Traditional methods often rely on simplifying assump-

tions, which may not accurately represent real-world conditions, leading to potential in-

accuracies in stability assessments.

• Limited Data Utilization: Traditional approaches might not effectively utilize the vast

amount of high-resolution data available from PMUs and other sensors, missing valuable
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insights.

• Time-Consuming: Simulation-based methods for stability analysis can be computa-

tionally intensive and time-consuming, making real-time monitoring and decision-making

challenging.

• Difficulty in Handling Missing Data: Traditional methods may struggle to handle

missing or incomplete data, leading to information loss and reduced accuracy.

1.1.4 Unleashing the Potential of ML Techniques

:

Recently, ML techniques offer a paradigm shift in long-term voltage stability analysis by lever-

aging the power of data-driven insights and advanced computational capabilities. The inherent

challenges faced by traditional methods in accurately addressing voltage stability and oscillation

issues have paved the way for the motivation behind the utilization of ML techniques. These

algorithms are gaining popularity due to several reasons:

• Data-Driven Insights: ML leverages data from real-world scenarios to reveal complex

relationships and patterns that traditional methods might overlook.

• Nonlinear Dynamics: Long-term voltage stability involves nonlinear interactions. ML

techniques can capture these non-linearities more effectively.

• Model Complexity: Power systems are intricate and constantly evolving. ML can

handle large datasets and adapt to changing system dynamics.

• Enhanced Prediction: ML algorithms can predict voltage stability margins based on

historical data, offering real-time assessment and early warning capabilities.

• Automation: ML-based tools can automate the analysis process, reducing the need for

manual parameter tuning and simplifying complex calculations.

• Adaptability: ML algorithms can adapt to changing system conditions and incorporate

new data for continuous improvement.

• Early Detection: ML-based monitoring can offer early detection of potential voltage

instability, allowing grid operators to take proactive control actions.
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Overall, this research aims to provide valuable insights into long-term voltage stability and

interarea oscillations in electric power systems. By leveraging PMU data and employing data-

driven approaches with ML techniques, we seek to enhance stability assessments and contribute

to the overall reliability and efficiency of power systems.

1.2 Monitoring of power system stability

Modern power systems are comprised of two sets of measurement systems,

• SCADA and

• WAMS [31].

Both of these systems have their pros and cons. Due to longer tenure, the SCADA system has

amassed a variety of operational experiences, while WAMS offers accurate and rapidly updated

measurements [32].

1.2.1 Supervisory Control and Data Acquisition

The traditional monitoring approach uses a SCADA tool to gather the system’s information.

SCADA is a computer system for assembling, analyzing, and monitoring real-time data. SCADA

systems monitor and control plants or equipment and gather information from meters, transduc-

ers, and similar devices. The collected data contain information on the real and reactive power

flows, voltage magnitudes, and breakers and switches’ status [33]. Simultaneously, the system

status measured from the substations is broadcast to the control centre. In the control centre,

the SCADA system facilitates the operators to monitor or control the entire power system by

transmitting the data to the principal computer facility, and presenting the information to the

operator through the human-machine interface [34].

However, with the rapid economic growth and increasing electricity demand, power systems

often operate closer to their stability limit and are more endangered by fast-evolving dynamic

events. In this scenario, the SCADA applications are inadequate to assist power systems in

performing firmly and securely; the blackout in North America and Canada in 2003 is such

an example. Since the SCADA system provides low sampling density and non-synchronous

information about the network, the control center cannot know the dynamic operation states

of the system precisely [35].
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Figure 1.1: Architecture of WAMS; where PMUs collect the data from various sources of power
systems. The collected data sets are delivered to a local Phasor Data Concentrator (PDC), which
transmits them to a master database called super-PDC. The consolidated data sets collected
by super-PDC are fed into analytic applications such as state estimation, stability assessments,
data visualization, real-time monitoring, and control.
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1.2.2 Wide Area Measurement Systems

Due to its asynchronous and slow nature, SCADA does not provide power system information

at sub-second time frames to the state estimator and, therefore, does not provide dynamic

state estimations [36]. WAMS comprising several phasor measurement units (PMUs) provide

enhanced capabilities for accurate and real-time monitoring of the system’s stability [37]. WAMS

complements the data acquisition functions of SCADA and has higher precision, shorter update

cycle, lower transmission delay, and sensitivity with the system status variation.

Over the past two decades, WAMS has been widely deployed to monitor power system stabil-

ity and get real-time measurements of voltage magnitude, frequency, phase-angle, active and

reactive-power variations, and waveforms with high-quality visualizations. Due to its high sam-

pling rates, WAMS are capable of capturing data with a level of granularity that significantly

reduces online estimation errors. This enhanced frequency of data acquisition allows for a more

accurate representation of the dynamic behavior of the power system, ensuring that real-time

measurements closely align with the actual system conditions [38].

Fig. 1.1 shows the architecture of a typical WAMS. Widely distributed PMUs dispatch the

measurements to PDC. Generally, a specified number of PMUs are dealt with by a single PDC.

The PDC retains the local applications’ data and transmits the rest to a super PDC for advanced

application. In super PDC, the measured data from the whole power system is synchronized

using timestamps. The three layers of WAMS operations can be classified into data acquisition,

management, and applications. The WAMS technology helps prevent blackouts, improve state

estimation, and better utilize transmission networks [39].

1.3 Classification of Power System Stability

For a given initial operating condition, power system stability refers to the ability of an elec-

tric power system (EPS) to regain a state of operating equilibrium after being subjected to a

physical disturbance, with most system variables bounded so that practically the entire system

remains intact [40]. Fig. 1.2 gives an overall picture of the power system stability classification,

identifying its categories and subcategories. This thesis focuses on two of the power system

stability categories [41]:

1. Angle Stability or Rotor Angle Stability
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2. Voltage Stability

Figure 1.2: Classification of power system stability. In orange the sub-categories of interest in
this thesis [1]

The selection of Angle Stability (Rotor Angle Stability) and Voltage Stability as the primary

focus for the thesis is based on their characteristics as slow-moving stability issues. These types

of stability problems generally evolve over a more extended period compared to other types

of instability in power systems, which can provide better opportunities for the training of ML

algorithms.

We present here several justifications for the pertinence of incorporating slow-moving stability

concerns into ML training, and we elucidate the rationale behind selecting them as the central

focal point:

• Data Availability and Quality: Slow-moving stability issues allow for more frequent

and continuous measurements of system variables, such as angles and voltage levels, over

time. This availability of high-quality data can be crucial for effectively training ML

algorithms, as large datasets can enhance the model’s accuracy and generalization.

• Feature Engineering: In slow-moving stability problems, the system dynamics change

gradually, allowing for more effective feature engineering. ML algorithms can benefit
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from well-engineered features that capture the system’s behavior and changes, leading to

improved model performance.

• Resilience Analysis: The study of slow-moving stability issues can help identify critical

vulnerabilities and potential instability threats in power systems. ML algorithms can be

applied to assess the resilience of the system to varying conditions and disturbances.

• Decision Support Systems: Slow-moving stability issues demand effective decision

support systems that can provide timely warnings and actionable insights to power system

operators. ML algorithms can be used to develop intelligent decision support tools that

enhance situational awareness and aid in stability management.

The research can play a vital role in advancing the state-of-the-art in power system stability

analysis and control, benefiting both the power industry and society as a whole. A brief summary

of the two stability aspects mentioned above is presented as follows:

1.3.1 Rotor angle stability

Angle stability (or Rotor Angle stability) is defined as ’the ability of interconnected synchronous

machines of a power system to remain in synchronism’. The category of angle stability can be

considered in terms of two main subcategories [1]:

Transient stability results from the inability to maintain synchronism after large disturbances

such as system faults and /or equipment outages. Transient stability studies aim to determine

if a system’s machines will return to a steady synchronized state following a large disturbance.

Small signal stability results from the inability to maintain synchronism and/or dampen out

system transients and oscillations caused by small system changes, such as continual changes

in load and /or generation. This stability problem involves the study of electromechanical

oscillations (EO) inherent in power systems. EO was observed in the power system as soon

as synchronous generators were interconnected to provide more power capacity and reliability.

Formerly interconnected generators were close to each other, and oscillations were in a frequency

range of 1 to 2 Hz [42],

As more utilities connected, oscillations in different frequency ranges were observed. Nowadays,

EO can be classified by specific types, with each type exhibiting a particular range of oscillation

frequency when the phenomenon occurs.
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In general, EO can be grouped into four broad classes:

• Local plant mode oscillations occur when synchronous generators swing against the ex-

tensive power system in a specific power station. This type of oscillation occurs within a

range of 0.7 to 3 Hz.

• Inter-area mode occurs when a group of generators in one area swings against a group

of generators in another area of the power system. The frequency range of inter-area

oscillation mode is in the range of 0.1 to 0.7 Hz.

• Interplant mode occurs when two or more synchronous generators in the same power plant

or nearby power plant swing against each other between 1.5 to 3 Hz.

• Torsional mode oscillations occur due to the interaction of the mechanical turbine gen-

erator and a system connected through the series compensated line. The characteristic

frequency of torsional mode oscillations is 10Hz to 46 Hz.

From an operational perspective, oscillations are permissible as long as they decay. However,

unstable EOs can be even triggered by regular small changes in the system load. In this case,

there might be no warnings to the operator.

1.3.2 Voltage stability

Voltage stability can be defined as ’the ability of a system to maintain steady acceptable voltages

at all buses following a system contingency or disturbance’. Voltage stability arises from the

inability of the transmission and generation system to supply the power demanded by loads.

A system can reach a state of voltage stability when the increase in load demand or shift

in system condition yields a sudden and unmanageable drop in voltage. An EPS is small

disturbance voltage stable at a given operating state if voltages near the loads do not alter or

maintain pre-disturbance values after being subject to any small disturbance. The notion of

small disturbance voltage stability is connected to steady-state stability and can be examined

using the system’s small-signal (linearized) model [41].

The literature of this thesis will focus on the steady-state/dynamic stability subcategory related

to inter-area oscillations and small disturbance voltage stability related to voltage stability. Both

of these subcategories are indicated by orange boxes in Fig. 1.2.
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1.4 Thesis Contributions

This thesis proposes two methods for detecting power system stability problems, which can help

provide preventive actions for system operators. The first method is designed to monitor long-

term voltage stability, while the second method is intended to observe low-frequency inter-area

oscillations (LFIO). These methods are outlined in detail in the following papers

• A feature-subspace-based ensemble method for estimating long-term voltage stability mar-

gins.

• Detection of Oscillatory Modes in Power Systems using Empirical Wavelet Transform

The main contributions of this thesis are summarised below:

Contributions related to voltage stability

• Previous research has introduced various machine learning (ML)-based techniques like

artificial neural networks (ANN), support vector machines (SVM), and Classification and

Regression Trees (CART) to predict voltage stability/loadability margin. This thesis

proposes two novel concepts to enhance precision and robustness: (i) an automated feature

selection method for improved long-term voltage stability (LTVS) predictions and (ii) a

feature ensemble ML models for robust predictions under changing topological conditions.

• Feeding numerous features into an ML model exponentially increases the search space,

leading to challenges in generalization due to the curse of dimensionality. Feature selection

becomes crucial, especially for large, high-dimensional datasets like power systems, as it

optimizes the learning complexity of ML models. This reduces redundancy, computational

complexities, memory usage, and computation time.

• A significant contribution of this thesis is the introduction of a novel feature ensemble ap-

proach for online voltage stability monitoring, surpassing conventional methods. Despite

various available feature selection techniques, effective feature selection remains challeng-

ing. Initial experiments reveal discrepancies in feature sets produced by current methods

under the same conditions. Unlike existing techniques, this approach aggregates outputs

from multiple feature selectors to handle high-dimensional data and improve generaliza-

tion. It outperforms regression-based [43] and attention mechanism [44] approaches in

terms of enhancing feature extraction, model performance, and interpretability. Indi-

17



1.4. Thesis Contributions Chapter 1. Introduction

vidual techniques such as RElieff [45] and mutual information [46] exhibit inconsistent

performance, making reliance on a single method risky for building models with selected

features. Automation is difficult due to the need for domain expert analysis. The thesis

addresses these challenges through the ensemble feature selection technique.

• In the field of electric power systems (EPS), many ML studies use Monte Carlo (MC) sim-

ulation for data generation and operating space selection. However, this traditional MC

approach is computationally expensive, particularly for fast assessment applications and

identifying low-probability high-impact outage events. The study introduces a Cluster-

based sampling approach to alleviate computational burden and capture diverse load

features. Clustering identifies similarities in load profiles collected from distributed Pha-

sor Measurement Units (PMUs), enabling understanding of consumption patterns across

different consumer types and time scales.

Contributions related to oscillatory stability

• The central objective of this thesis is to design an adaptive data-driven signal process-

ing framework for determining modal parameters, specifically focusing on leveraging the

Empirical Wavelet Transform (EWT). However, one notable challenge with EWT arises

from its requirement to pre-specify the number of modes—a task complicated by closely

spaced modes in power systems and signal noise.

• To overcome this challenge, a pioneering sliding window-based empirical wavelet trans-

form (SEWT) methodology is introduced in the thesis. This SEWT approach excels in

automatically detecting modes without the need for a predefined mode count. It employs

a sliding window-driven segmentation strategy, defining empirical boundaries that enable

signal decomposition into mono-components. These components hold potential anomaly

insights. By leveraging the Hilbert transform, modulation information is extracted from

the mono-components.

• A primary goal of this thesis is to attain precise damping estimations for Inter-area modes,

renowned for their susceptibility to noise interference. The innovative aspect of this ap-

proach lies in the integration of SEWT with machine learning (ML) models through a mul-

tivariate paradigm. Through the fusion of adaptive signal processing and ML techniques,

the proposed method effectively avoids limitations and achieves heightened accuracy in
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estimating Damping Ratios (DRs) and modal frequencies.

• A distinct novelty emerges from the integration of multivariate machine learning into

the methodology. This integration significantly boosts the approach’s ability to esti-

mate signals originating from multiple buses. The incorporation of this multivariate ap-

proach efficiently captures intricate inter-dependencies among variables, a capability that

sets it apart from conventional wavelet and Empirical Mode Decomposition (EMD) tech-

niques—methods that often grapple with unravelling complex multivariate relationships.

1.4.1 List of published papers

• Ambreen Khurram, and Arief Gusnanto, and Petros Aristidou, “ Detection of oscillatory

modes in power systems using empirical wavelet transform”, published in IEEE Madrid

PowerTech, 2021

• Ambreen Khurram, and Arief Gusnanto, and Petros Aristidou, “ A feature-subspace-based

ensemble method for estimating long-term voltage stability margins”, published in EPSs

Research, 2022

• Ambreen Khurram, and Arief Gusnanto, and Petros Aristidou, “ Estimation of interarea

modes in power system using ensemble learning.”, to be submitted.

1.5 Outline of the Thesis

The thesis is organized as follows:

In Chapter 2, the focus is on power system stability issues and a comprehensive analysis of

the related literature. The long term voltage stability problem formulation is explained and

various techniques for generating relevant data are discussed. It is emphasized that accurate

modeling of power system loads is crucial for understanding the voltage stability phenomenon.

Furthermore, dynamic load models are found to be more effective than static load models for

studying voltage stability. To achieve this, clustering-based algorithms are presented as a means

of generating realistic load operating data.

In Chapter 3, the Ensemble Feature Selection approach is introduced as a means of improving

the determination of long-term voltage stability. The chapter details the proposed scheme and

explains its significance in this context. Additionally, the chapter provides a background on
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various feature selection methods and classification algorithms and explains how these tech-

niques can be applied to predict VSM. The chapter includes case studies and describes dynamic

simulations used to generate load operating points. The feature ensemble technique is then

applied to select the most pertinent features, and a ML model is trained offline. Finally, the

chapter evaluates the performance of the classifier on the generated offline data.

Chapter 4 is dedicated to the application of a trained MLM for estimating voltage stability

margin (VSM) in real time, with the primary goal of providing qualitative information about

stability margins to the transmission operator. However, during the online process, statistical

classification tasks face additional challenges due to potential differences between the training

and target sample distributions over time, caused by changes in the system’s topology or vari-

ous fault conditions. To address this challenge, a k-means clustering-based approach is utilized

to detect changes in operating conditions by measuring the distance between the cluster cen-

troid. The chapter highlights the importance of the database update stage in improving the

feature ensemble scheme’s generalization ability and robustness under complex operating condi-

tions. Moreover, the study explores whether the distance measured from the k-means clustering

indicates the need to update the database.

In Chapter 5, interarea oscillation is introduced, and a detailed review of low-frequency os-

cillation phenomena in power systems is presented. The chapter provides a clear definition

of low-frequency oscillation and its categorization. It also includes examples of power sys-

tem blackout incidents caused by low-frequency oscillation. The chapter presents widely used

methodologies for studying low-frequency oscillation among researchers.

In Chapter 6, a technique is presented for estimating interarea modes in real-time using PMU

measurement data. The algorithm proposed in this chapter is designed to identify the DNF and

DR of the interarea oscillatory modes that are present in the power system signal. To reduce

the multidimensional PMU data, principal component analysis is used initially. Then, SEWT

approach is introduced that employs moving window segmentation for detecting boundaries in

the Fourier spectrum. By decomposing the low-frequency electromechanical oscillation signal

into a series of mono-components, the SEWT approach effectively applies the Hilbert transform

to the IMF to acquire the instantaneous parameters of the signal. The DNF and DR of each

mode are then determined by computing the average of the instantaneous parameters. The

proposed method achieves accurate segmentation even in noisy and non-stationary signals.
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Additionally, simulated and experimental signals are utilized to confirm the efficacy of the

proposed method.

In Chapter 7, a ML based approach is presented for estimating an inter-area dominant mode.

Initially, the oscillatory signal’s features are extracted through SEWT, and the dominant inter-

area modes are evaluated. Subsequently, the Hilbert transform (HT) is employed to estimate the

instantaneous amplitude and instantaneous frequency from the decomposed monocomponents

signal. The ML algorithm is then utilized to process the extracted features, and the trained

model is implemented to estimate the interarea modes from multiple busses in real-time. The

proposed method’s effectiveness is demonstrated by applying it to the Nordic test system, which

shows improved accuracy of inter-area mode estimation as compared to the traditional approach.

Chapter 8 concludes the work and shows the future scope of work.
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Voltage stability analysis

Long-term voltage stability is usually related to a gradual or uncontrollable drop in voltage

magnitude after the system is subjected to a disturbance, a rise in load demand, or an inability to

meet the reactive power demand [29]. Voltage stability may result in a black-out in parts of the

system. When the power system operates with an inadequate Voltage Stability Margin (VSM),

it becomes susceptible to voltage collapse. As power systems are operated under increasingly

stressed conditions, the ability to maintain voltage stability becomes a growing concern. Voltage

stability analysis mitigates the risk of voltage collapse and should be considered during the power

system’s planning and real-time operating stages.

Voltage stability assessment methods can be divided into offline and online [29]. Offline studies

are conducted during the system planning stage, and online assessment is performed during

the system operations (in real-time). In contrast to offline planning, where the computational

speed may not be critical, online analysis tools are of great importance for assessing the voltage

stability of the power system in real-time and determining proximity and potential stability

mechanism [47]. Proximity gives a measure of voltage security and uncovers how close the

system is to voltage collapse, whereas a mechanism provides information helpful in determining

system modifications or operating strategies that could be used to prevent voltage stability.

Over the past three decades, various methods have been proposed for voltage stability analysis.

In this Chapter, an overview of the most popular and successful analysis techniques is presented.
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2.1 Literature Review

Voltage stability analysis methods proposed in the literature can be broadly classified into three

categories:

• Methods based on Modal Analysis

• Methods based on Loading Margin

• Methods based on Machine Learning

These methods are briefly described in this section.

2.1.1 Methods Based on Modal Analysis

The modal analysis method [47] is a mathematical technique, mainly used to predict voltage

collapse in complex power systems. The approach computes the smallest Eigenvalue of the

reduced power flow Jacobian matrix to estimate how close the system is to the voltage col-

lapse. However, the modal analysis results are valid for incremental (small-signal) changes only.

Consequently, the strength of this methodology lies in providing information on system trends

rather than estimating the actual numerical values of system variables following changes [48].

2.1.2 Methods Based on Loading Margin

One of the practical approaches to assess voltage stability is by calculating the loadability

margins. Methods based on the calculation of the loadability margins can be further divided

into the following methods:

• Continuation power flow (CPF) method

• P–V and Q–V curves and

• Voltage stability index (VSI)

Continuation Power Flow technique

A major limitation of conventional power flow is its inability to converge to a maximum loading

point and the problem of reaching the singularity point of the Jacobian matrix. To avoid

this issue, the power flow equations can be reformulated by applying a locally parameterized

continuation technique. Continuation methods have four basic elements: i) parameterization, ii)
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predictor, iii) step length control, and iv) corrector [49]. The continuation technique estimates

a new solution in each predictor step by increasing the load in the conventional power flow

equation. The exact solution is computed in the subsequent corrector step. The process resumes

till the tangent vector becomes zero at which point the maximum loading point is achieved [50].

One of the early contributions to computing the turning points appeared in [51]. However,

much of the analytical development of robust path-following techniques is due to Keller [52].

An outstanding explanation of a locally parameterized continuation algorithm was provided by

Rheinboldt in [53]. Some good additional resources for turning points computation were men-

tioned in [54] and [55]. Lately, [56] applied geometric parameterisation-based CPF to eliminate

the Jacobian matrix singularity by the addition of the line equations which pass through the

points in the plane determined by the variables loading factor and the sum of nodal voltage

magnitudes, or angles, of all system buses. Ju et al. [57] suggested a local geometric parameter-

isation technique that can trace the P–V curve with a fixed step length. The technique focuses

on tracing the segment near the saddle-node bifurcation (SNB) point and the lower part of the

P–V curve.

However, [58] has classified two types of failure in applying CPF for real-time voltage stability

monitoring. The first failure is related to the conventional global parameterisation that cannot

overcome the Jacobian matrix singularity for stability cases with strong local characteristics.

The second failure arises when the extended Jacobian matrix in the corrector procedure becomes

singular because of improper parameterisation.

P-V and Q-V Curves

The P-V curve portrays the relationship between voltage (V) and active power (P), while the

Q-V curve shows the associations between the V in a bus and its reactive power (Q) [59]. Both

curves show the variation (increase or decrease) of the voltage as the load demand varies. The

nose point of the P-V curve is the voltage collapse/critical point [50]. The upper part of the

P-V curves indicates a stable region, while the lower part shows unstable region. Whereas in

the Q-V curve, if the operating point is on the right side of the curve, the system is considered

stable and if the operating point is on the left side of the curve the process is deemed to be

unstable. The voltage collapse occurs when the system load (P and/or Q) increases beyond a

specific limit. The VSM for a given operating point can be easily found if the limiting values
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of P and Q are known [60].

[61] investigated the impact of grid-connected photovoltaic (PV) system on static voltage sta-

bility using P-V curve and improved VSI. [62] proposed a P-V curve-based method using one

of the load bus voltages as a parameter by regularizing the power flow solution around the

maximum loading point. The method monitors Q limits on P-V buses. P-V curves were traced

with and without voltage-dependent loads. [60] combined P-V and Q-V curves into P–Q curves

to determine the voltage stability limit. The boundary of the voltage stability region is first

determined and then presented in the P-Q plane. The voltage stability margin is determined

from the stability boundary in the P-Q plane. Motivated by [60] work, [63] presented a method

of determining the voltage stability boundaries for a power system with voltage-sensitive loads

using P-Q curves by incorporating the load characteristics such as constant current, constant

impedance and mixed load. The limiting or critical values of P and Q at the voltage collapse

point are first determined for each type of load and then used to plot the voltage stability

boundary in the P-Q plane.

The P-V, Q-V curve involve performing power flow calculations at different voltage levels to

obtain the relationship between active/reactive power and voltage. However, these methods

have limitations for online applications due to the following reasons:

1. Computational Complexity: The P-V and Q-V curve methods require solving power flow

equations at multiple voltage levels, involving a large number of nonlinear equations and

iterative calculations. This computational complexity increases exponentially with the

size of the power system, making it impractical for real-time or online applications where

quick and efficient analysis is required.

2. Limited Scalability: Power systems are becoming increasingly larger and more complex,

with the integration of renewable energy sources, distributed generation, and advanced

control technologies. The P-V and Q-V curve methods struggle to scale effectively with

such complex systems due to their computational limitations. As the size of the system

grows, the computational burden becomes even more significant, hindering their practi-

cality for online applications.

3. Lack of Dynamic Information: The P-V and Q-V curve methods provide static information

about the power-voltage relationship at different operating points. However, they do not
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capture the dynamic behavior and transient effects that can occur in power systems, such

as voltage fluctuations, disturbances, or rapid load changes. Online applications often

require real-time monitoring and analysis of dynamic system conditions, which cannot be

adequately addressed by the static P-V and Q-V curve methods.

Voltage Stability Index

Voltage collapse is marked by gradual variations in the system’s operating point due to an

increase in the loads such that the voltage magnitude slowly decreases until a sharp decline

occurs. It has been found that voltage magnitudes do not give a good indication of proximity

to the voltage stability limit. The problem of voltage collapse may be explained as the inability

of the power system to supply reactive power. An effective VSI indicates how far the current

operating condition is from voltage collapse, what weak lines exist, which buses are the most

vulnerable, and which ones will go a long way in helping power system operators [64]. Many

VSIs have been proposed in the literature. These indices can be broadly classified as:

• Jacobian matrix based VSI

• Bus, line and overall VSIs

In this review, we will refer only to the techniques that have been applied widely in the literature

for the case study of online electric power stability (EPS) assessment.

Jacobian matrix based voltage stability indices

VSIs based on the Jacobian matrix utilize the notion of the singularity of the power flow

Jacobian matrix [65, 66, 67, 68]. The Jacobian matrix near the point of voltage collapse is close

to the singularity, hence the minimum singular value or eigenvalue index could measure the

distance of the current state from the voltage collapse point [69]. However, the computation

time of the VSI based on the Jacobian matrix is high and is not suitable for real-time monitoring

as any topological change leads to a change in the Jacobian matrix and this matrix must be

recalculated.

Line voltage stability indices

The line stability indicators set the discriminant of the voltage quadratic equation to be greater

than or equal to zero to achieve stability [70]. The theoretical foundation of most line VSIs is

the same except for the assumptions made by each index.
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[71] put forward a line stability index, Lmn founded on the principle that there exist solutions

to the quadratic voltage equation; the index equal to the maximum value of one indicates the

voltage stability is collapsing, and a value of zero indicates there is no load in the system. Lmn

assumes zero shunt resistance and that real power does not affect voltage stability. Its primary

advantage is its insensitivity to transmission lines’ resistance/reactance ratio, as shown by the

authors in [64]. However, the assumption that real power does not affect voltage stability might

cause the index to be inaccurate under certain operating conditions [72].

[73] formulated the fast voltage stability index (FVSI), which measures the stability related

straight to reactive power and indirectly to active power across the lines. For a system to

remain stable, FVSI must be below 1. Otherwise, the system will experience a sudden voltage

drop, and voltage collapse will occur. FVSI assumes that the voltage angle difference between

sending end and receiving end buses is approximately zero. This assumption is a significant

drawback as large voltage angle differences are considered a precursor to the voltage collapse, as

highlighted by authors in [74]. Another disadvantage is the index’s sensitivity to the resistance-

reactance ratio of the transmission line [75].

[76] introduced the line stability factor (LQP) on the same principle as Lmn and FVSI. To

maintain stability, LQP must be less than 1. This index ignores shunt admittances and as-

sumes that lines in the power system are lossless, which could cause it to be inaccurate under

certain operating conditions. The advantage of this index is it’s insensitive to transmission lines’

resistance/reactance ratio of transmission lines [75].

[71] proposed Line Stability Index based on the same concept as the last VSIs. Voltage collapse

can be assessed based on the value of the developed index. If the system yields a value exceeding

its maximum limit of stability index one, it indicates a voltage collapse situation. In this index,

the effect of reactive power on voltage stability and line shunt admittance is neglected, and it

is assumed that only the active power affects the line voltage stability.

Bus voltage stability indices

The VSIs based on buses assess the voltage stability of system to determine critical buses or

estimate the voltage stability margins of the EPS [77]. Bus VSIs are widely used in power

system analysis to assess the voltage stability of individual buses in a power system. These

indices are typically based on voltage magnitudes and angles at the buses and are useful for
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identifying buses that are experiencing or approaching voltage instability. However, they do not

directly provide information about the components such as transmission lines, transformers, or

generators with limited capability, that can contribute to voltage problems [70]. Some VSIs are

briefly described in this section.

[78] offered Index L, which varies in the range of 0 (no-load of the system) and 1 (voltage col-

lapse) to determine the voltage stability or the proximity of a collapse. The L-index estimates

the closeness of the actual state of the system to the stability limit [77]. The S-difference-

criterion (SDC) presented in [79] is established because when the system approaches collapse,

the total increase in apparent power loading is due to the transmission losses. [80] suggested

the Local Identification of Voltage Emergency Situations (LIVES) index based on the Load Tap

Changer (LTC) controllers of bulk power delivery transformers. Furthermore, an extension of

the aforementioned is presented as NLI (New LIVES Index) by Vournas, Lambrou, and Man-

doulidis [81], based on observing the controlled voltage of bulk power delivery LTC transformers

on the distribution side. [82] formulated the Voltage Collapse Proximity Index (VCPI) by using

the voltage phasor and angle information and the network admittance matrix to assess the

system voltage stability at a given bus. The index is derived from the fundamental power flow

equation, and its value varies between 0 and 1, with 1 being the collapse point.

One major drawback of many VSIs is not providing enough intuitive information as provided

by the offline analysis tools such as P-V curves or CPF for making a proper decision. Moreover,

these VSIs show different levels of accuracy under different conditions and load models [64].

The practical aspects such as measurement errors and incorrect network topology information

can also affect the accuracy of VSIs estimation in different ways and it is difficult to single out

one VSI which is more reliable [28].

2.1.3 Methods based on Machine Learning

As mentioned above, numerous tools have been developed to conduct a comprehensive analysis

of the voltage stability assessment. However, most of these methods cannot be used in real-time

as they are computationally time-consuming and rely on the complex mathematical modelling

of the EPS. The enormous computational requirements could be resolved by utilizing machine

learning techniques. Machine learning provides computers with learning capabilities without

being programmed [83]. Specifically, machine learning is the subset of artificial intelligence (AI)
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which extracts knowledge by analyzing and manipulating data compiled from real-world use

cases [84]. Machine learning comprises numerous approaches such as artificial neural network

(ANN), decision trees (DTs), fuzzy logic (FL), adaptive neuro-fuzzy inference systems (ANFIS)

and support vector machines (SVMs).

Artificial Neural Network

ANNs are inspired by biological neural networks. ANN can learn to solve many types of prob-

lems by mimicking the processes of real neurons in the brain [85]. The basic computational

units are called neurons or nodes. A simplified ANN incorporates an input layer, a hidden

layer, and an output layer. These layers are interconnected. The essential operation of ANN

is multiplication, summation and activation. Every input value is multiplied by the individual

weight. The Hidden layers of the ANN then sum the weighted inputs, add bias, and process

the sum with a transfer function. An artificial neuron passes the processed information via the

output layer.

Within the context of voltage stability, ANN can investigate and predict the long-term voltage

stability margin represented by the Loadability Margin [28]. ANN suffer from the amount of

training time and the scores of the learning parameters. Because of the slow gradient-based

learning algorithms with all the parameters tuned iteratively, the training time of feed-forward

neural network is in general higher

Below we provide a review table for some of the voltage stability analysis based on ANN.
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Proposed Type Input Output Configuration Features
Selection

Ref [[86]] MLP

Vol. mag.,
phase angles
and injected
active and
reactive
powers

VSM and
real part
of critical
eigenvalues

A single ANN
for different
configurations
or A separate
ANN for each
configurations

Self
organizing
map
(SOM)

Ref [[87]] RBF
Load active
and reactive
powers

Vol.
performance
index

A separate ANN
for each cluster
of input pattern

Class
separability
index and
corr.
conditions

Ref [[88]] RBF

Vol.profile
extracted
by wavelet
transform

VSM
A single ANN
for different
configurations

Principal
component
analysis .
(PCA)

Ref [[89]] RBF
Active and
reactive
line flows

L-index
A separate ANN
for each cluster
of input pattern

Mutual
information

Ref [[90]] MLP

Vol. mag.
Active power
of the slack,
P-V buses,
system loads,
& system
generators

VSM
A single ANN
for different
configurations

Gram–
Schmidt
orthogon-
alization
process

Ref [[91]]
FF
BP
NN

Complex
voltage
phasors,
Real &
Imaginary
parts of Bus
Vol.

VSM CPF Ward
reduction

Ref [[92]]
FF
BP
NN

VSM Active
learning

Ref [[93]] MLP

Vol. mag.,
Vol. angles.
Rate of active
power change

VSM
A single ANN
for different
Configurations

Actual VSM
obtained
using:
CPF

Ref [[94]]
ANN,
SVM,
ELM

Vol. mag. VSM
A single ANN
for different
configurations

Actual VSM
obtained
using:
CPF
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Support Vector Machine

Support Vector Machine (SVM) is a supervised classification and regression algorithm that use

machine learning theory to maximize predictive accuracy without data over-fitting. The goal

of SVM is to create the best line or decision boundary (the best decision boundary is called

hyperplane) that can separate the data into classes and extend this to non-linear boundaries

using kernel trick [95]. The kernel function implicitly maps the training data into a higher-

dimensional space where the data is linearly separable. Two similar hyperplanes are constructed

on both sides of the hyperplane that separates the data. The classifier generalizes well if the

margin or distance between these parallel hyperplanes is larger [96].

Proposed
by

Kernel
type

Opt.
Algorithm Input Output Config. Feature

Selection

Ref [46] Least
Square

Real power &
reactive power VSM CPF PCA,

MI

Ref [97] Gaussian
(RBF)

Vol. mag. &
vol. Angle VSM CPF

Ref [98] RBF PSO
GA

Vol. mag. &
vol. Angle VSM CPF

Ref [99] Gaussian
(RBF) GA Vol. mag. &

reactive power VSI VSI

Ref [100] RBF

Vol. mag. &
vol. Angle,
active, reactive
power

VSI VSI PCA

Even though SVM has superior features but inappropriate selection of hyper parameters may

lead to over fitting or under fitting of SVM model. Various optimization techniques have been

used to determine these parameters such as Grid Search method and Genetic Algorithm (GA).

Classification and Regression Trees

Classification And Regression Trees (CART) [101] have greatly increased in popularity during

the past several years. CART represent a methodology for the analysis of large data sets via

binary partitioning procedure. This consists of a recursive division on which a response variable

and a set of predictors are observed. Such partitioning procedure is known as a regression tree

when the response variable is numerical, and as a classification tree when the response variable

is categorical [102]. Decision trees can capture the non-linear relationship between the data
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with simplicity by clearly identifying the feature importance. However, a DT tends to overfit,

and slight variations in the data can generate a completely different tree.

Recently, [103] explored the use of CART for fast evaluation of oscillatory and voltage stability

and investigated the impact of the DT growing method and node-set on the classification ac-

curacy. [104] proposed DT utilization for online status appraisal of power grid model by using

knowledge database that covers all possible pre-fault operating conditions and decision rules in

the form of hierarchical trees for online assessment. Krishnan and McCalley [105] proposed a

decision tree-based power system security assessment for multiple contingencies. A contingency

grouping technique was used to produce a reduced number of DTs for multiple contingencies.

The contingency grouping is based on a newly devised metric that finds the overlap of class

boundary progression of various contingency’s training databases. [106] developed a combined

method for online voltage security assessment by using PCA to reduce the dimensions of PMU

measurement data. In [107] the DT-based PCA method is combined with two optimization

algorithms, namely biogeography-based optimization and invasive weed optimization, to assess

the voltage stability. [108] proposed a new approach based on fuzzy decision trees to assess the

voltage security of the power system. The proposed approach’s objective is to analyze power

system parameters and locate the probable area contributing to voltage collapse.

Ensemble Learning

Ensemble learning algorithms construct a set of base classifiers and then classify new data points

by taking a vote of their predictions. The generalization capability of an ensemble is usually

more robust than that of base learners [113]. The base learners are generally constructed by

perturbing the original training data. Voting is the second stage of ensemble methods which

combines the base models built in the previous step into the final ensemble model. Several

ensemble machine-learning techniques have been proposed for the online monitoring of voltage

stability.

[114] proposed a new online voltage security assessment method based on wide-area measure-

ments and evaluated several machine learning methods for the voltage stability analysis. The

study comprised of an evaluation of two groups of machine learning methods – single and En-

semble learning classifiers. Ensemble classifiers include Bagging, XGBoost, Random Forrest

and AdaBoost. It was shown that AdaBoost achieved the highest classification accuracy. [115]
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Proposed
by

DT
type Inputs Outputs Config. Feature

Selection

Ref [103] CART 16

Vol.mag.,
vol. angle,
current Mag.,
Current Angle

VSM CPF

Ref [109] C4 .5
Vol. mag.,
vol. Angle,
Real Power

Voltage
stability
boundary

P-V
curve

Eigenvalue
Analysis,
RELIEF

Ref [110] Classification
rules

Vol. mag.,
vol. Angle,
Active Power

Voltage
stability
boundary

Eigenvalue
Analysis,
Direct method
using CPF

Ref [111] CART

VSI,
Power flow
for load
consumption

Voltage
stability
boundary

CPF

Ref [112] CART

Active power
flows and
PMU-based
voltage

Voltage
stability
boundary

CPF

Ref [104]

Active power
flows and
PMU-based
voltage

Voltage
stability
boundary

designed an ensemble by combining a model of Extreme Learning Machine in parallel. The

model was initialized by randomly assigning a hidden node number to each Extreme Learning

Machine within an optimal range, subjected to a pre-tuning procedure. In the training stage,

the single ELMs produce their prediction output. The final prediction result is taken as the

average value of individual ELMs.

2.2 Voltage stability margin

The additional power that can be transmitted before reaching the voltage collapse point from

the current point of operation is usually referred to as the VSM or load margin (LM). Since the

LM is easily understandable and because it reflects the proximity to voltage collapse in terms

of a measurable and controllable quantity, the system operators can be alerted and automatic

remedial actions can be initiated when the LM drops below pre-determined set of critical values.

Although the LM is a good indicator of voltage stability, it is difficult to compute the LM
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in real-time using the CPF for a large network, due to the iterative computations involved.

Furthermore, the topology and parameters of the network at the current time are required for

CPF. Therefore, an alternative strategy is required to predict the LM using real-time power

system measurements. The approaches based on machine learning techniques are potential

candidates.

2.3 Problem formulation

The main objective of online voltage stability analysis (VSA) is to determine whether the current

operating point of power system is stable, meeting various operational criteria [116]. Voltage

stability is often assessed through Power Voltage analyses [117]. The P-V curve of the system

(see Fig. 2.1), in combination with the current operating conditions can be used to obtain the

VSM. The P-V curve, as shown in Fig. 2.1 is an important tool in voltage stability analysis,

representing the relationship between active power and voltage magnitude in the power system.

By simulating load growth from a predefined operating point, the P-V curve is constructed.

The curve resembles a human nose and is commonly referred to as the ”nose curve”. The nose

point on the curve indicates the maximum power the system can deliver. As the load increases,

the power-voltage point moves along the curve towards the tip of the nose. At the tip, the

maximum power that the system can provide is reached. Beyond this point, additional loads

cause a drop in voltage and power, and the curve extends towards the lower left corner of the

plot, corresponding to the uncontrollable region.

The decline in voltage at the nose point occurs due to the escalating demand for reactive power

in the system. As active power increases, the demand for reactive power also rises. However,

the sources of reactive power in the system may reach their limits in providing the necessary

reactive power. Reactive power is crucial for sustaining voltage levels and supporting inductive

loads. Consequently, the system experiences a decline in voltage because it becomes incapable

of generating or supplying sufficient reactive power to meet the growing demand. The decline

in voltage at the nose point indicates that the system is nearing its stability limit. If the power

demand continues to increase beyond this point, the voltage may further decrease, potentially

resulting in voltage collapse or instability. System operators monitor the P-V curve, especially

the nose point, to evaluate the system’s stability margin.

In Fig. 2.1 the nose point or the maximum loading is represented as Pmax. The initial state is
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Figure 2.1: The P-V curve determines the loading margin of a power system. The margin
between the voltage collapse point (Pmax) and the current operating point (P0) is used as the
voltage stability criterion. If the voltage is on the upper side of the red dotted line then total
stability is under normal operating conditions. Below the red line the system cannot maintain
voltage stability

represented in the figure by P0. The Voltage Stability Margin (VSM) [118] can be expressed as

follows:

λ = Pmax − P0
Pmax

≥ 0 (2.1)

A larger λ value indicates a stable system while a decreasing value suggests closeness towards

voltage instability [119].

It should be noted that different system topologies and operating conditions produce different

P-V curves. In addition, faults occurring in the system that can lead to topology changes (e.g.,

line tripping) or changing operating conditions (e.g., generator tripping) can significantly affect

the P-V curve and the value of λ for the current operating condition.

2.3.1 Framework for Real-Time Prediction of Loadability

Calculating the VSM using conventional methods, like the CPF, can be time-consuming (es-

pecially in large-scale systems) and thus ineffective for online monitoring solutions. On the

contrary, machine learning-based techniques can be used to estimate the VSM almost instan-

taneously but require heavy offline computations for model training, feature selection, and

parameter tuning.
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Bagging Boosting Feature Ensemble

Description

Builds multiple
independent models
by training on different
subsets of the training
data.

Trains multiple
models sequentially,
where each
subsequent model
corrects the
mistakes of the
previous ones.

Selects subsets of
features and trains
models on those
subsets to capture
different aspects of
the data.

Usage
Classification,
Regression,
Ensemble Learning

Classification,
Regression,
Ensemble Learning

Feature Selection,
Dimensionality
Reduction,

Advantages

Reduces variance,
improves stability,
handles outliers ,
improve generalization

Reduces bias,
handles complex
datasets,
improves accuracy

Enhances diversity,
improves
interpretability

Data
Sampling

Random sampling
with replacement
(bootstrap)

Weighted sampling
based
on misclassifications

Random subset
of features

Model
Training

Independent models
trained on separate
data subsets

Sequential models
trained iteratively

Independent models
trained on separate
feature subsets

Combining
Predictions

Averaging or majority
voting of individual
model predictions

Weighted combining
based on model
performance

Combining predictions
or decisions

Table 2.1: Comparison of different ensemble techniques

This thesis proposes a machine learning approach that shows promise in predicting the VSM

during online operation. The technique employs ensemble learning to fit a model on distinct

sets of randomly selected features within the training dataset. The objective of ensemble feature

selection is to capture the relationship between the input and output pairs obtained from offline

simulations. In this case, the inputs correspond to the system measurements provided by the

PMUs, such as the bus voltage magnitude and phase angle, while the output is the VSM

indicator λ. Subsequently, the method is applied to estimate the VSM during online operation.

In contrast to conventional ensemble methods such as bagging or boosting, which primarily

concentrate on forming a diverse subsets of training data or adjusting sample weights to enhance

overall model performance, the feature ensemble approach randomly selects distinct sets of

features from the training dataset. It’s important to emphasize that, unlike boosting and

bagging which generate ensemble predictions for classification tasks, the outcome of the ensemble

feature selection technique is a subset of features.

In bagging, multiple bootstrap samples are derived from the original training dataset. This
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Figure 2.2: An overview of the proposed framework is shown in Fig. 2, in which the planned
framework is illustrated with the part enclosed by the dotted lines. It comprises of three stages:
1)Data generation 2) Offline Training and 2) Online Prediction and Update

entails employing homogeneous weak learner models that autonomously learn from each other

in parallel, and later combine their insights to establish a model average. In contrast, Boosting

strives to construct a robust classifier through a series of weak learners. These weak learners

are designed to minimize errors or misclassifications in the training data. Notably, the weights

of incorrectly classified instances are amplified, thereby increasing their influence in successive

training iterations.

Table 2.1 provides a comparison for the different ensemble approaches.

Design Methodology

The methodology for constructing a real-time LM predictor is illustrated in Fig. 2.2 via a flow

diagram. Initially, a database containing input-output data pairs is generated, followed by

cleaning and pre-processing procedures, including the handling of missing values, data format

conversion, and data splitting into training and testing sets.

Subsequently, a feature selection process is carried out to eliminate redundant and irrelevant

inputs using feature selection techniques like filter or embedded methods to select feature subsets

for each model. The feature selection algorithms utilized in the feature ensemble scheme include

the F-test, variance threshold (VAR), and Lasso. The F-test and VAR are classified as filter

methods while Lasso belongs to the category of embedded methods.
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Filter methods evaluate feature relevance using a ranking process and subsequently eliminate

features with low scores. These methods are known for their speed, scalability, computational

simplicity, and classifier independence. In contrast, Embedded methods perform feature selec-

tion as part of the modeling algorithm’s execution. They are seamlessly integrated into the

algorithm, either as its standard functionality or as an extended feature.

The chosen features are subsequently utilized as input for various regressors, including K-

nearest neighbours (KNN), DT, and SVM. However, it’s important to note that each regressor

is employed individually with different feature selectors. Each regressor brings its own unique

modelling capabilities and characteristics. KNN is a non-parametric algorithm that captures

local patterns, DT is capable of representing complex decision boundaries, and SVM aims to

find the optimal hyperplane for classification or regression. Different regressors may perform

better or worse depending on the characteristics of the data. By using a variety of regressors, the

ensemble approach becomes more robust to different data distributions, ensuring that at least

one regressor is effective in capturing the underlying patterns and relationships. Additionally,

by examining the performance of the same predictor with different feature selectors, we can gain

insights into the importance and relevance of specific features. If certain features consistently

appear in the selected subsets across different feature selectors, it suggests their significance

for the predictor. This information can aid in feature interpretation and provide guidance for

further analysis.

During training, cross-validation techniques is employed to prevent overfitting. The trained

machine learning model, which captures the relationship between input voltage variables and

loading margin, is used to predict values on the testing data. The final prediction is generated

by combining the outputs of the trained models through a weighted average.

The final phase of the proposed approach involves online testing, where real-time data from

PMUs is inputted into the trained machine learning model to predict voltage stability margin.

To evaluate the model’s performance, various contingencies are applied during this phase to sim-

ulate data drift. Additionally, the database is updated using the K-means clustering algorithm.

This allows the database to adapt to changing data distributions over time. By incorporating

the updated K-means clusters into the database, the model can continuously learn and enhance

its predictions based on the most recent information.

For more details on these stages and validation examples, please refer to Chapter-3 and Chapter-
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4. The proposed methodology utilizes real-time data from PyRAMSES [120], and the perfor-

mance of the ensemble model is evaluated using metrics such as R-squared and mean squared

error.

2.4 Preparation of Training and Testing Data

A comprehensive database of training examples is an essential requirement for the development

of the proposed machine learning-based online load margin predicting system. It is not practical

to obtain these data from historical measurements as voltage stability events which in reality

changed a power system to an unstable state are very rare. Therefore, training data need to be

invariably generated through simulations.

2.4.1 Overview of Data Generation Process

The process is initiated by generating a large set of initial operating points to obtain data

corresponding to a diverse set of operating conditions. These operating points are obtained

through a clustering of load profile data for electricity consumption. The clusters are validated

with the Silhouette index method. The CPF is performed to trace the P-V curve to the voltage

collapse point for each operating point. Subsequently, the VSI described in Section 2.2, and

the corresponding LMs are calculated at each operating point. These calculations start from

the initial operating point and end at the voltage collapse point. This process is repeated

over different operating points under various contingencies to produce a learning database for

ensemble training.

2.4.2 Operating point generation

The training dataset of P-V curves is generated based on different operating points and fault

conditions (contingencies). The consumption patterns from the retailer set of hourly customer

load readings over twelve months period are used to extract load operating points. Fig. 2.3

shows the hourly load profile for one year period. The yearlong load profile W is first separated

in a continuous sequence of daily load profiles Lj built from hourly load data Hd,x.
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Figure 2.3: DBSCAN: Hourly load profile based on electricity consumption of end users.

W = [L1, L2, . . . , Ld]

Lj = [Hj,1, Hj,2, . . . .Hj,24]
(2.2)

where j = 1, 2, . . . , d and d is the number of days.

The feature vectors Ld can be input to the density-based spatial clustering of applications with

noise (DBSCAN) algorithm [121] to group load profiles based on similarity. DBSCAN offers

several advantages for load profiling. It can identify clusters of arbitrary shapes, which is bene-

ficial for capturing complex and irregular energy consumption patterns. By considering density,

DBSCAN adapts to different load scenarios without requiring prior knowledge of the number

of clusters. It effectively handles noisy data by distinguishing outliers, ensuring robustness in

load profiling. Additionally, DBSCAN can handle varying cluster sizes, accurately representing

load variations across different customer segments.

Density-based spatial clustering of applications

Let us denote a load profile dataset as L, where point p ∈ L, the epsilon parameter (a radius

denoted as ε) is usually determined by the user and it has a large influence on the right creation

of clusters by this algorithm. The next parameter, i.e. the MinPts (µ) is the minimal number of

neighboring points belonging to the so-called core point (see Fig. 2.4). The following definitions

will be helpful in determining the DBSCAN parameters.
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Figure 2.4: Cluster created by DBCAN with MinPts = 3, black dots represent the noise, blue
dots represents the border points, and pink dots represent the core points

• Definition 1: The ε-neighborhood of a point p in the load profile dataset L is denoted

as Nε(p) and defined as:

Nε(p) = {q ∈ L | dist(p, q) ≤ ε} (2.3)

where dist(p, q) represents the distance between points p and q.

The Nε refers to a region around a data point within a specified radius. It is a key

parameter in the DBSCAN algorithm that determines the density of points in a cluster.

• Definition 2: A point p is considered a core point if the number of points belonging to

Nε(p) is greater than or equal to µ.

• Definition 3: A point q is said to be directly density reachable from a point p (given ε

and µ) if p is a core point and q belongs to Nε(p). In other words, q is directly connected

to p without passing through any other core points.

Figure 2.5: Directly reachable points: Point q is directly reachable from point p.
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• Definition 4: If a point q is directly density reachable from a core point p, but the

number of points belonging to Nε(q) is less than µ, then q is classified as a border point.

• Definition 5: Any point that is neither a core point nor a border point is considered

noise.

• Definition 6: A point q is density reachable from a point p (given ε and µ) if there exists

a chain of points q1, q2, . . . , qn such that q1 = p, qn = q, and each qi+1 is directly density

reachable from qi. It is worth clarifying that while ”directly density reachable” focuses on

the immediate connection between two points, ”density reachable” allows for a chain of

connections between them.

Figure 2.6: Directly density reachable: Point q is directly density reachable from point p through
a chain of points q1, . . . , qn.

• Definition 7: A point q is density connected to a point p (given ε and µ) if there exists

a point o such that both p and q are density reachable from o.

• Definition 8: Cluster C (given ε and µ) is a non-empty subset of L and the following

conditions are satisfied: first, ∀p, q: if p ∈ C and q is density-reachable from p, then q ∈ C,

next ∀p, q ∈ C : p is density-connected to q.

The DBSCAN algorithm works as follows: Initially, a point p is randomly selected. If Nε(p)

contains at least µ points, p is considered a core point and a new cluster is created. The cluster

is then expanded by including all points that are density reachable from the core point. This

process continues until no more points can be added to the cluster. If Nε(p) contains fewer

than µ points, p is classified as noise. However, this noise point can still be included in another

cluster if it is density reachable from a core point.

42



Chapter 2. Voltage stability analysis 2.4. Preparation of Training and Testing Data

Figure 2.7: Density connected: Point q is density connected to point p through point o as p and
q are density reachable from o

Cluster Validation

Assessing the results of a clustering algorithm is known as cluster validity which finds a set of

clusters that best fits natural partitions (of given datasets) without any prior class information.

A cluster validity index validates the outcome of the clustering process and can be categorized

into three classes, namely internal, external and relative cluster validity index.

Figure 2.8: Silhouette coefficient example; a represents average intra-cluster distance i.e the
average distance between each point within a cluster while b represents average inter-cluster
distance i.e the average distance between all clusters

In this study, we have used the Silhouette Coefficient, an internal measure that utilizes the

notions of intra-cluster similarity or compactness. The silhouette coefficient is a measure of

both cohesion and separation of clusters and is based on the difference between the average

distance to points in the closest cluster and to points in the same cluster.
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The Silhouette coefficient of data object i ∈ Ck clusters is given by:

si = bi − ai

max(ai, bi)
(2.4)

where i = 1, . . . , N with N being total data objects in a given dataset, ai denotes the average

proximity of data object i to all other objects in its cluster, and bi indicates the smallest average

proximity of data object i to all objects in any other clusters. To measure the overall validity,

we take the average over all data objects:

S = 1
N

N∑
i

si (2.5)

Where S is the Silhouette coefficient and ranges from -1 to 1. A value close to +1 indicates

that data object i is much closer to points in its own cluster and is far from other clusters. A

value close to zero indicates that i is close to the boundary between two clusters. Finally, a

value close to −1 indicates that i is much closer to another cluster than its own cluster, and

therefore, the point may be mis-clustered.

Furthermore, the optimal number of clusters (k) is determined using the Silhouette coefficient.

To achieve this, a range of potential cluster numbers (k values) is selected for evaluation. The

DBSCAN algorithm is then applied to the data for each value of k within the chosen range. The

average silhouette coefficient is computed across all data points for each k value. The optimal

number of clusters is typically identified by the highest average silhouette coefficient, and the

corresponding k value at the peak of the silhouette coefficient curve is selected as the optimal

choice.
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Chapter 3

Ensemble Feature Selection

3.1 Introduction

In Chapter 2, we discussed how we could obtain data from various operating points, as the

model’s usefulness and performance depend on the data used. In this chapter, we want to

generate the data based on simulation and train and validate the model offline.

This work proposes a machine learning (ML) algorithm able to map the real-time voltage mea-

surements to the voltage stability margin (VSM) described in Section 2.2. A ML algorithm

can find patterns or make decisions based on previous data. It is proposed to use an ensemble

feature selection technique of ML models, each of which uses a different feature selection algo-

rithm. Ensemble learning has been successfully applied to classification problems but is also a

means for improving other ML functions, such as feature selection. Ensemble feature selection

integrates feature selection and ensemble [122]. In a real-world scenario, the benefit is that the

user does not have to decide which feature selection algorithm might be the most appropriate

for a given problem. Such techniques improve the predictive performance of a single model by

training multiple models and combining their predictions [123].

Table 3.1 provides a comparison of feature ensemble techniques with feature ensemble method

used for the assessment of voltage stability. Feature ensemble offer several advantages com-

pared to the techniques mentioned in Table 3.1. By leveraging the collective knowledge and

diverse perspectives of individual models, feature ensembles can enhance performance. This

is achieved by considering multiple subsets of features, which helps diminish the impact of
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Figure 3.1: Feature-ensemble model with different base selector and same classifier.

noisy or irrelevant features when combining predictions from different models. Furthermore,

feature ensemble methods tend to improve generalization performance by reducing overfitting

and yielding more accurate predictions on unseen data. In addition, feature ensemble models

exhibit greater stability and robustness when faced with changes in the training data, outper-

forming individual models. By aggregating predictions from multiple models, feature ensemble

provide more reliable predictions while minimizing the influence of individual model biases or

errors.

Fig. 3.1 shows the formation of feature ensemble models using different feature selection methods

but the same training data. This approach is referred as heterogeneous feature ensemble.

The objective is to generate N models using different feature selection methods but the same

training data. The heterogeneous ensemble accounts for the individual techniques’ strengths

and weaknesses. The selected features are fed into the ML models to predict VSM. The final

output is obtained by taking the average of all the predictions. The pseudo-code of this approach

is given below:

We aim to achieve data diversity in our heterogeneous ensemble with three feature selection

methods:

1. F-Test/F-Regression (F-Reg)

2. Variance threshold (VAR)

3. Least absolute shrinkage and selection operator (Lasso)
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Approach Methodology Pros Cons

Correlation-
based

Calculate correlation
between each feature
and target variable

Easy to implement Only captures
linear relationships

RElief
algorithm

Evaluate the importance of
features by considering the
difference between nearest
neighbors

Considers local feature
interactions and relevance
to target

Assumes equal
importance of
all features

Mutual
Information

Measure the mutual
dependence between a
feature and the target
variable

Considers non-linear
relationships

Assumes independence
between features

Genetic
Algorithms

Use genetic
optimization to
evolve feature
subsets

Can handle large
feature spaces

Computationally
expensive
and sensitive to
parameters

Recursive
Feature

Elimination

Iteratively eliminate
the least important
features based on
model performance

Captures feature
importance

Can be time
consuming for
large feature sets

Feature
Ensemble

Create multiple
subsets of features,
train separate models,
and combine
predictions

Captures diverse
perspectives and
feature interactions

Requires additional
model training and
complexity

Table 3.1: Comparison of feature selection algorithms with respect to existing feature selection
methods

As mentioned in section 2.3.1, the first two feature selection algorithms can be classified as filter

methods, while the latter is classified as embedded. Filter methods rank features by calculating

a score for each feature using various statistical metrics. Embedded methods perform the feature

selection during the learning process and then derive feature importance from this model, which

measures the extent to which the feature contributes most to the prediction [124].

The feature ensemble method is validated using three different ML classifiers separately. The

optimal number of features and fine-tuning of the ML models hyperparameter is conducted

using the Bayesian optimization technique for the best validation set performance. Experimen-

tal results of the methodology show the suitability of the proposed ensembles. The following

two sections provide a brief mathematical background of feature selection techniques and the

classification algorithms used in the proposed study.
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Algorithm 1: Pseudo-code of the heterogeneous feature ensemble
Data: N — number of feature selection methods
Data: T — threshold of the number of features to be selected
Result: P — classification prediction

for each n from 1 to N do
Obtaining feature ranking An using feature selection method n;

end
At = Select T top attributes from An

Build classifier SVM/KNN/DT with the selected attributes At

P = Obtain prediction
Combining predictions P with average combinations

3.2 Feature Selection Techniques

3.2.1 F-Test

F-Reg is a uni-variate feature selection technique that calculates the interaction between a

feature and a target variable for each feature separately. For each feature, a p-value is calculated,

indicating whether that feature significantly impacts the target variable. The objective is to

train simple linear regression models of each feature separately to predict the target variable

and calculate the F-score. The F-score of a simple linear regression model becomes the F-score

of the feature it is trained on. The F-score of each model explains how well that feature predicts

the changes in the target variable. That score is used to determine the relevance of that feature

to the target variable compared to other features.

To apply the F-test as a feature selection method let the training data set D be (xi, yi)n
i=1,

where xi ∈ X ⊆ Rm and LM be the output denoted as yi ∈ Y ⊆ R. The input attribute vector

xi consists of voltage magnitude and voltage phase angle for i-th operating point operating

point of the n samples. yi is the associated target values of VSM. The column values in the

data matrix D would be treated as a group, and we find the F-ratio, which can be defined as

between-group variance over within-group variance. The between-group variance is calculated

as:

σ2
between =

p∑
j=1

nj∑
i=1

(x̄j − x̄)2 = nj

p∑
j=1

(x̄j − x̄)2 (3.1)

Where n is the sample size of group j, x̄j is the mean of the group j, and x̄ is the overall mean.
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The within group variance is calculated as:

σ2
within =

p∑
j=1

nj∑
i=1

(xij − x̄j)2 (3.2)

Where xij is the i-th measurement of the j-th group. An F-ratio is then calculated as the ratio

between the two variances:

F = σ2
between

σ2
within

(3.3)

Then, the p-value based on F-statistic is calculated as p-value = Prob{F (j − 1, n − j) > F},

where j − 1 and n − j are the degrees of freedom. Features are ranked by sorting p-value in

ascending order. The magnitude of the F-ratio shows the group separation. Features with

an F-ratio greater than a specified threshold are retained, while those below the threshold are

removed.

3.2.2 Variance threshold

In ML, variance is used to measure a set of data spread. VAR is a feature selection method

that removes all the low variance features from the dataset. It is an unsupervised method that

looks only at the feature values (X) and not the desired output (y).

VAR is a simple and effective method for feature selection that is motivated by the idea that

low-variance features contain less relevant information and less value in predicting the response

variable. It calculates the variance of each feature and removes those with a variance less than

a given threshold.

In the case of VARing, the only hyper-parameter to be tuned is the threshold value of the

variance.

3.2.3 Least absolute shrinkage and selection operator

Lasso [125] performs two main tasks: regularization and feature selection . Regularization helps

in reducing errors and overfitting, while feature selection eliminates unimportant variables that

are not associated with the response variables.

Consider the training dataset D containing (xi, yi)n
i=1 pairs, where xi ∈ X ⊆ Rm represents

the input attributes for the i-th operating point among n samples, and yi ∈ Y ⊆ R denotes
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the corresponding target value of VSM. The input attribute vector xi comprises the voltage

magnitude and voltage phase angle, forming an m-dimensional vector.

In the context of multiple linear regression, the response variable yi is often influenced by

multiple explanatory variables in X. This relationship is captured by the equation:

yi = β0 + β1x1 + β2x2 + · · · + βmxm + ϵi, (3.4)

where β0, β1, . . . , βm are regression parameters, and ϵi represents the error term introducing

random variation in yi not explained by the X variables. The goal is to optimize β and ϵ to

minimize the cost function.

In Lasso regression, the cost function is modified by introducing a penalty term:

n∑
i=1

(yi − ŷi)2 =
n∑

i=1

yi −
m∑

j=1
βjxij

2

+ δ
m∑

j=1
|βj |, (3.5)

where ŷi represents the predicted value and δ controls the level of shrinkage. When δ = 0, all

features are considered, and equation (3.5) reduces to standard linear regression. As δ increases

toward ∞, more features are gradually eliminated. The trade-off involves increased bias with

higher δ values, while variance increases as δ decreases. The regularization process adjusts the

coefficient values of the regression variables, shrinking some towards zero, thereby neutralizing

the impact of irrelevant features in the data [126].

3.3 Classification Algorithms for VSM prediction

The feature ensemble produces a subset of features that are used as an input for three different

regressors, namely:

• Support Vector Regressor (SVR)

• Classification and regression trees(CART)

• K-nearest neighbor (KNN)

These regressors utilize the selected features to predict VSM. In the context of feature ensemble,

single models like SVR, KNN, and decision tree (DT) are preferred choices over ensemble
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algorithms like Random Forest or AdaBoost. By using single models, the focus remains on

creating diversity through feature selection, while avoiding unnecessary complexity associated

with double ensemble. Additionally, using deep learning models within the feature ensemble

can increase the timing complexity, making it less desirable in scenarios where computational

efficiency is a priority. Table 3.2 presents a comparison of the computational complexity and

advantages of using SVR,KNN, and DT algorithms for feature ensemble.

Algorithm Advantage Computational Complexity

Support
Vector
Regressor
(SVR)

- Capable of capturing
complex relationships - Training: O(nˆ2) or O(nˆ3)

- Good generalization ability - Prediction: Depends on the
number of support vectors

- Suitable for high-dimensional data

K-Nearest
Neighbors
(KNN)

- Considers local dependencies
and spatial patterns - Training: Fast

- Potentially reveals underlying trends - Prediction: O(n log n) or O(n)
- Simple and interpretable

Decision
Tree
(DT)

- Captures non-linear relationships - Training: O(n * m * log m)
- Interpretable and easy to visualize - Prediction: O(log n)
- Efficient for large datasets

Table 3.2: Comparison of Machine Learning Algorithms for Feature Ensembles

In comparison to other ML methods:

• Deep learning models (e.g., neural networks) have higher computational complexity and

training times compared to the mentioned algorithms.

• Ensemble methods (e.g., Random Forest, XGBoost) introduce an additional layer of en-

semble and may increase computational complexity.

• Linear models (e.g., Linear Regression) typically have faster training times compared to

complex models like SVR or neural networks, they may not be the best choice for capturing

the non-linear relationships typically present in power system data.

Please note that the computational complexity mentioned is a generalization and may vary

depending on specific implementations, data size, and other factors. Below we provide brief

mathematical background for the above mentioned algorithms.
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3.3.1 Support Vector Machine

Let the training data set D be (xi, yi)n
i=1, where xi input attribute vector consists of voltage

magnitude and voltage phase angle for i-th operating point of the n samples. yi is the associated

target values of VSM that correspond to the m size of the training data. Using mathematical

notation, the regression function takes the form:

f(x) = ⟨ω, x⟩ + b (3.6)

where f(x) is the output function, ω is the weight vector, x is the input and b is bias threshold,

⟨., .⟩ is the dot products in the feature space.

Where ω ∈ Rn, b ∈ R denote the linear regression in a high-dimensional feature space, which

is non-linearly mapped to the input space x. The objective is to find the values of the weight

vector ω and bias b such that the values of x can be determined by minimizing the following

objective function with constraints:

R[f ] =
l∑

i=1
ε(yi, f(x̄i, ω)) + 1

2∥ω∥2 (3.7)

where ω denotes the Euclidean norm, l denotes the sample size and ε is the insensitive loss

function which is given by:

ε(yi, f(x̄i, ω)) = 0 |f(x) − y| < ε (3.8)

otherwise:

ε(yi, f(x̄i, ω)) = |f(x) − y| − ε (3.9)

The solution of this problem does not allow any errors. To allow some errors to deal with noise

in the training data, the soft margin SVR uses slack variables ξ−
i , ξ

+
i

Then, the optimization problem can be revised as follows:

min R[f ] = U
n∑

i=1
(ξ−

i , ξ
+
i ) + 1

2∥ω∥2 (3.10)
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subject to:

yi − ωρ(xi) + b ≤ ϵ+ ξ−
i , i = 1 . . . l (3.11)

ωρ(xi) + b− yi ≤ ϵ+ ξ+
i , i = 1 . . . l (3.12)

xi−i , ξ
+
i ≥ 0 i = 1 . . . l (3.13)

where U is a pre-specified value and ξ−
i , ξ

+
i are slack variables that measure the error.

The slack variables ξ−
i , ξ

+
i deal with infeasible constraints of the optimization problem by im-

posing the penalty to the excess deviations which are larger than ε.

To solve the optimization problem of equations (3.10)-(3.13), we can construct a Lagrange

function from the objective function with Lagrange multipliers as follows:

L =1
2∥ω∥2 + U

l∑
i

ξ−
i , ξ

+
i −

l∑
i

α−
i (ε+ ξ−

i − yi + ⟨ω, x⟩ + bi) (3.14)

−
l∑
i

α+
i (ε+ ξ+

i − yi + ⟨ω, x⟩ + bi) −
l∑
i

(η−
i ξ

−
i + η+

i ξ
+
i ) (3.15)

where η−
i , η

+
i , α

−
i , α

+
i are the Lagrange multipliers which satisfy positive constraints.

Differentiating the Lagrangian function with respect to ω, b, ξ− and ξ+ , we can derive the dual

problem of equation (3.7) as follows:

max
α+α−

−1
2

l∑
i,j

(α−
i − α+

i )(α−
j − α+

j )k(xi · xj) +
l∑
i

(α−
i − α+

i )yi − ε
l∑
i

(α−
i − α+

i ) (3.16)

subject to:

l∑
i

(α−
i − α+

i ) = 0 (3.17)

0 ≤ α−
i , α

+
i ≤ U i = 1 . . . l (3.18)

The kernel function, denoted by k(xi ·xj), is defined in equation (3.16). It calculates the product

of two vectors, xi and xj , in the feature space ρi(x) and ρj(x). By using the kernel function K,

the inner product in the transformed feature space can be calculated as efficiently as the inner

product (xi · xj) in the original input space. Once we have determined the solutions of α− and

α+ in equation (3.16), we can use them to obtain the linear regression function:
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f(x) =
l∑
i

(α−
I − α+

j )k(xi · x) + b (3.19)

3.3.2 Decision Tree Algorithm

A DT is a widely used supervised learning algorithm. It has a hierarchical tree structure

consisting of a root node, branches, internal nodes and leaf nodes.

Figure 3.2: Structure of the Decision Tree

As shown in Fig. 3.2, the DT has a root node at the top, which does not have any incoming

branches. The root node takes the entire training dataset and is split into two by considering the

best attribute and threshold value. The outgoing branches from the root node join the internal

nodes, also known as decision nodes. The decision nodes are further split using the same logic

mentioned above. Both types of nodes perform evaluations to formulate homogeneous subsets

represented by terminal nodes/leaf nodes. The leaf nodes characterise all the possible outcomes

within the dataset.

In this study, we utilized the CART method introduced by Breiman et al. [127], which is one of

several DT algorithms available, such as Iterative Dichotomies 3 (ID3), CHi-squared Automatic

Interaction Detector (CHAID), and Multivariate Adaptive Regression Splines (MARS).

CART is a non-parametric technique that accommodates data with numerical or categorical

values and handles missing attribute values. It employs a binary split criterion, meaning that a

node in a decision tree can only be divided into two groups. In CART, the Gini index is utilized
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as a purity measure for attribute selection. The Gini index quantifies how often a randomly

chosen element from a set would be incorrectly labeled if assigned a label according to the

distribution of labels in the subset. The attribute that leads to the most substantial reduction

in impurity is selected for node splitting. The Gini Index is calculated by subtracting the sum

of squared probabilities of each class from one:

G(D) = 1 −
c∑

i=1
(Pi)2 (3.20)

Here, G(D) represents the Gini index of the dataset D, and Pi denotes the probability of

class i among all classes in the entire set D. The decision tree continues to grow through

successive subdivisions until a point is reached where further divisions do not significantly

reduce impurity. At this stage, the node cannot be subdivided any further and becomes a

terminal node automatically.

3.3.3 K-Nearest Neighbor

K-nearest neighbor (KNN) regressor is based on learning by comparing the given test instances

with the training set. Let the training data set D be (xi, yi)n
i=1, where xi ∈ X ⊆ Rm and output

yi ∈ Y ⊆ R. Here xi = (xi1, xi2, . . . , xim) is the i-th instance denoted by m attributes with its

output yi, and N is the number of instances. With the given a test instance xtest. The distances

of the new observations xtest with the other observations of the dataset D is computed by using

distance measure di:

di = dist(xtest, xi)∀ i ∈ {1, . . . , n} (3.21)

Using the distance calculation function di, the k observations from the dataset D close to xtest

are retained. In regression problems, the output y of xtest is the mean of the outputs of its k

nearest neighbors i.e. ŷ = 1
k

∑k
i=1 yi(x) .

3.4 Hyperparameter Optimization

The main aim of hyperparameter optimisation (HPO) is to automate the hyper-parameter

tuning process and enable users to apply ML models to practical problems effectively. The

optimal model architecture of a ML models is expected to be obtained after a HPO process.
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Figure 3.3: Steps for hyperparameter optimization

Some important reasons for applying HPO techniques to ML models are as follows [128].

• It reduces the human effort required since many ML developers spend considerable time

tuning the hyper-parameters, especially for large datasets or complex ML algorithms with

many hyperparameters.

• It improves the performance of ML models. Many ML hyper-parameters have different

optimums to achieve best performance in different datasets.

• It makes the models and research more reproducible. Applying the same HPO process to

different ML algorithms promotes reproducibility and facilitates fair comparisons. Fair-

ness in comparing algorithms relies on implementing the same level of HPO, allowing

for a meaningful evaluation of their performance. By using a consistent HPO method-

ology, biases arising from different optimization techniques are eliminated. This ensures

that any differences in performance can be attributed to the inherent characteristics of

the models rather than variations in the optimization process. The goal is to identify

the best-performing model for a specific problem or task by evaluating them under sim-

ilar conditions. Model complexity, problem-specific considerations, bench-marking, and

domain knowledge should also be considered for comprehensive evaluations.

The main steps of HPO are provided in Fig.3.3. However, most traditional optimization tech-

niques are unsuitable for HPO problems since many HPO problems are non-convex or non-

differentiable optimization problems and may result in a local instead of a global optimum [128].

Compared with traditional optimization methods like gradient descent, many other optimiza-

tion techniques are more suitable for HPO problems, including decision-theoretic approaches,

Bayesian optimization models, multi-fidelity optimization techniques, and meta-heuristics algo-
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rithms [129]. In this thesis, we use Bayesian hyperparameter optimization (BHO) to get the

optimal hyperparameters.

Bayesian hyperparameter optimization

BHO leverages Bayesian methods to guide the search for optimal hyperparameters, aiming

to strike a balance between exploration (searching different hyperparameter configurations)

and exploitation (exploiting promising regions). The motivation behind using BHO can be

summarized as follows:

• Efficiency: BHO techniques aim to optimize hyperparameters with minimal model eval-

uations. Traditional methods like grid search or random search can be time-consuming,

particularly when dealing with a large hyperparameter search space. In contrast, Bayesian

optimization, utilize probabilistic models to capture the relationships between hyperpa-

rameters and model performance. This enables more efficient exploration of the hyperpa-

rameter space.

• Prior Knowledge Incorporation: BHO allows for the incorporation of prior knowledge or

beliefs about the hyperparameters. This is particularly useful when there is prior informa-

tion available about the expected ranges or relationships between the hyperparameters. By

incorporating such knowledge, the search can be guided towards more promising regions

of the hyperparameter space, leading to faster convergence and improved optimization

results.

• Handling Noisy Evaluations: BHO can handle noisy evaluations by modeling the surro-

gate function and using uncertainty estimates to guide the search. It can intelligently

balance exploration and exploitation even when evaluations are noisy or have some degree

of uncertainty. In contrast, grid search and gradient-based methods do not explicitly ac-

count for noisy evaluations, potentially leading to sub-optimal results or requiring a larger

number of evaluations.

BHO searches for the best hyperparameter on the domain space Φ by using Bayesian optimiza-

tion [130]. For a given phasor measurement unit (PMU) data of training set and validation set

G = {Gtrain, Gval} we train a feature selection model involving hyperparameter vector ϕ. The

best hyperparameter vector is determined by minimizing the validation error E(ϕ,Gtrain, Gval).

Generally there are three inputs to BHO [131], (i) a target function E(ϕ,Gtrain, Gval) which
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determines validation error or classification accuracy based on the hyperparameter vector and

training/validation datasets, (ii) h different hyperparameter vectors ϕs = (ϕ∗
1 . . . , ϕ

∗
h) and (iii)

a limit L which specifies the number of candidates of hyperparameter vectors to search the best

configuration.

The BHO searches a minimum, gradually accumulating (ϕ∗
s, E1(ϕ∗

s)) with s increasing and

returns the best configuration of hyperparameters ϕb. Using a predictive distribution, the BHO

guides the search to only focus on the areas of the input space that are expected to provide the

most useful information about the solution to the optimization problem. Starting with a set

of initial hyperparameter vectors {(ϕ∗
1, E1), . . . , (ϕ∗

h, Eh)}, a surrogate function model Fsurrogate

is fitted to the data with the accumulated set of hyperparameter vector and its corresponding

validation error.

In this thesis, the Gaussian process regression model FG serves as a surrogate function that

approximates the landscape of E over the space Φ. BHO utilizes all the information in the

history (reflected by the built surrogate model) to determine what will be sampled next. Thus,

the next hyperparameter is sampled at the place optimizing an acquisition function A(ϕ|FG) at

which the validation error E is evaluated.

3.5 Case Study

A comprehensive stability database is necessary to train MLMs. Such databases can be ob-

tained in power systems by performing simulations on various scenarios and fault recording.

In the present thesis, we generate an artificial database by inputting clustered load profiles de-

rived from historical electricity consumption into PyRAMSES [132]. PyRAMSES is a Python

module that facilitates the use of the dynamic simulator RAMSES and provides advanced in-

tegration like defining test cases, running a simulation, and extracting information. For this

thesis, we employed Electromagnetic Transients simulation (EMT). EMT captures the dynamic

and transient behaviour of power systems. It models the electrical quantities as time-varying

waveforms, taking into account the detailed electromagnetic and electromechanical dynamics of

the system. EMT simulations are used to study system responses to faults, switching events,

and other transient disturbances.

Moreover, a test system is crucial for understanding the phenomena under investigation, as it
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provides a controlled and simplified representation of a real power system. In this study, the

Nordic test system [133] is employed, which is widely utilized for long-term voltage stability

analysis, including scenarios that may lead to system collapse. By employing the Nordic test

system, we can effectively analyze and comprehend the dynamics of voltage stability in a realistic

and controlled environment.

The single-line diagram of the test system is provided in Fig. A in Appendix. A.1. The system

is composed of four areas:

• ’North’ with hydro generation and some load.

• ’Central’ with much higher load and thermal power generation

• ’Equiv’ connected to the North, which includes a simple equivalent of an external system

• ’South’ with the thermal generation, which is loosely connected to the rest of the system

Altogether there are 74 buses in the network, of which 32 transmission buses, 22 distribution

buses, and 20 generator buses. There are 102 branches, among which 22 distribution and 20

step-up transformers. The nominal frequency is 50 Hz. The system carries long transmission

lines with 400 kV nominal voltage and is burdened with heavy inter-area transfers from North

to Central.

3.5.1 Data generation

DBSCAN algorithm is used to extract the load operating points from the historical electricity

consumption load profile data [134]. The load profile dataset contains 8760 operating points

(365 days times 24 hourly consumption data) for 2018. Regarding the DBSCAN algorithm, the

difficulty lies in choosing proper values for parameters ϵ and MinPts.

We have used the nearest neighbors method to reach a fair estimation for ϵ. The technique

calculates the average distance between each point and its kth nearest neighbor. Fig. 3.4-(a)

depicts the result of a distance plot of the load profile data points sorted in ascending order to

the 20-th nearest neighbor. The angle bent the most is selected as the ϵ value and is found to be

0.005. Once the ϵ value is found, the Silhouette index is applied to find the MinPts. Fig. 3.4-(b)

shows the results of applying the Silhouette index, iterated for different sample sizes. The red

line shows the maximized scores for the Silhouette index. Based on the score, we can choose a

minimum sample size of 4 or 5. With ϵ=0.005 and MinPts=5, ten clusters were obtained. The
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Figure 3.4: a) Elbow plot for K selection, b) Silhouette Score

clustering results of the method in this thesis are shown in Fig. 3.5. The representative members

from the clusters were obtained using mean, minimum, and maximum. After clustering 8760

profiles with DBSCAN, 720 representative load operating points were extracted.

Figure 3.5: Cluster of operating points

Dynamic Simulations

Starting from the 720 load operating points, dynamic simulations were carried out to generate

the corresponding P-V curves. At the beginning of the simulation, the loads were set to the

initial operating point P0. The loads in the system were uniformly and slowly scaled up while

the power factor was kept constant. This approach is used instead of a CPF analysis since
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it allows us to capture better the dynamics of the generators and loads (OXL or OEL limits,

saturation, etc.).

Dynamic simulations in RAMSES involve solving a set of time-domain differential equations that

represent the dynamic behavior of various components in the power system. These simulations

require smaller time steps compared to steady-state simulations, as they need to capture the

system’s response at different time intervals during transients. The computational implications

of dynamic simulations are typically more demanding compared to steady-state analysis. The

simulations may require higher computational resources and longer simulation times due to the

increased complexity and time resolution needed to model the dynamic behavior accurately.

Additionally, conducting multiple dynamic simulations to generate P-V (Power-Voltage) curves

for the 720 load operating points can be computationally intensive. However, dynamic simula-

tions offer valuable insight into the system’s stability and dynamic behavior, allowing for a better

understanding of the system’s response under various operating conditions and disturbances.

Conversion of clustered load profile into system loads

Table 3.3 shows the original loads from the Nordic test system. Loads of the highlighted buses

are iteratively scaled during the simulation process with the 720 load operating points from the

DBSCAN load clusters. Scaling is performed to adjust the values of the clusters to a specific

range that is suitable for multiplication with the load data. By scaling the clusters, their values

are transformed to be on a similar scale as the load data. This ensures that the multiplication

and combination of the scaled clusters and load data are meaningful. In this case, the scaling

range is set to (0, 0.09). The scaled clusters are then multiplied with the corresponding load

data to produce the desired results.

Table 3.4, shows an example where the highlighted loads are converted after scaling with the

clustered load operating points. Starting from 720 load operating points, dynamic simulations

were carried out for database generation.

Calculation of P-V margin

At the beginning of the simulation, the loads were set to the initial operating point P0. Sub-

sequently, the loads were uniformly scaled up while keeping the power factor constant. This

scaling of loads increases the power demand on the system, which can lead to a voltage drop
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No. Bus name vnom pload qload bshunt qshunt
1 1 20 600 148.2 0 0
2 2 20 330 71.0 0 0
3 3 20 260 83.8 0 0
4 4 20 840 252.0 0 0
5 5 20 720 190.4 0 0
6 11 20 200 68.8 0 0
7 12 20 300 83.8 0 0
8 13 20 100 34.4 0 0
9 22 20 280 79.9 0 0
10 31 20 100 24.7 0 0
11 32 20 200 39.6 0 0
12 41 20 540 131.4 0 0
13 42 20 400 127.4 0 0
14 43 20 900 254.6 0 0
15 46 20 700 211.8 0 0
16 47 20 100 44.0 0 0
17 51 20 800 258.2 0 0

Table 3.3: Parameters of Nordic buses

and voltage variations. By capturing system measurements during this load scaling process, the

P-V curve is generated to analyze voltage stability. This approach provides valuable insights

into voltage stability margins and the behavior of voltage levels as the load increases. It allows

for controlled analysis of the system’s response to changing load conditions, enabling the evalu-

ation of its capacity to handle load variations while maintaining voltage stability. Furthermore,

uniform scaling of loads helps capture system limits and saturation effects, such as voltage col-

lapse or equipment saturation near operating limits. This information is crucial for identifying

system vulnerabilities and establishing appropriate operating limits. With this approach, we

generate data that relate the system measurements to the VSM.

Furthermore, two worst-case contingencies [135], namely Fault-1 and Fault-2, were considered

to investigate their impact on the P-V curves and generate more VSM data under faulted con-

ditions. Fault-1 is a short-circuit of 100 ms on transmission lines 4031-4041. This transmission

line pass between the ’North’ and the ’Central’ area and is close to bus 4022. The fault is

cleared by tripping the line. Fault-2 takes place near bus 4012 in the ’North’ region by tripping

generator g10.

Given the 720 operating states, the two contingencies are simulated, yielding two more datasets.

The generated datasets are stored in a database with input vectors comprising voltage magni-

tude and phase angle of all the buses. The output vector/target is the PMargin.
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Bus name vnom pload qload bshunt qshunt
1 20 607.68 150.1 0 0
2 20 334.22 71.91 0 0
3 20 263.33 84.87 0 0
4 20 850.75 255.22 0 0
5 20 729.21 192.84 0 0
11 20 200 68.8 0 0
12 20 300 83.8 0 0
13 20 100 34.4 0 0
22 20 280 79.9 0 0
31 20 100 24.7 0 0
32 20 200 39.6 0 0
41 20 546.91 133.8 0 0
42 20 405.12 129.3 0 0
43 20 911.52 257.86 0 0
46 20 708.96 214.51 0 0
47 20 101.28 44.56 0 0
51 20 810.24 261.5 0 0

Table 3.4: Parameters of Nordic buses

Fig. 3.6 illustrates three P-V curves, both before and after contingencies. The base case is

represented by the blue curve, while the red and green curves correspond to Fault-2 and Fault-

1, respectively. In this scenario, the base case refers to node 1041, which is identified as the

critical bus. The critical bus is determined by analysing the variation in voltage magnitudes

across buses in the power system. The bus with the highest variance in voltage magnitude is

considered more susceptible to voltage instability and is designated as the critical bus. Fig. 3.7

displays the variance of voltage magnitudes for transmission and distribution buses. It is evident

that bus-1041 exhibits the highest variance.

In Fig. 3.6 , at the initial operating point P0, the base load’s active power is 29.58 pu, while

at the critical point, the maximum active power Pmax reaches 32.40 pu. Consequently, for this

initial operating point, the load’s Pmargin is calculated as 2.82 pu. The load margin for the

post-contingency P-V curves is smaller than that of the pre-contingency curve (blue) due to

changes in the system’s topology and characteristics following the disturbance (contingency) in

the network.
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Figure 3.6: The P-V curves are obtained by gradually increasing all loads in the Central area.
The blue curve shows when the system operates without a contingency. The margin is higher as
the power is transferred without endangering the limits of transmission lines and the bus itself.
After the contingency is applied (red curve and green curve), the reduction of VSM occurs. As
noticed, in the contingency case, the critical level is reached more quickly, resulting in the loss
of voltage stability.

Figure 3.7: Variation of voltage magnitude across all buses

Fig. 3.8 shows the PV margin for the base case assuming a uniform percentage load increase

for all the loads. In Fig. 3.8, the curve labelled 1041 is a load bus, and this bus reached its

active power limit around λ = 0.0885. After this point, its voltage drops rapidly, leading to

eventual voltage collapse. At initial point P0, the base load active power is 29.45 MW. At this

critical point (λ = 0.0885), the maximum load active power is 32.31 MW. Therefore for this
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initial operating point, the load P margin is 2.861 MW. Similarly the PMargin is calculated for

each point on the PV-curve i.e. P(Margini) = Pmax − Pi, where i = [0, . . . , N ].

Many such computations starting from randomly generated different operating points were

carried out to generate the training and testing data for designing the feature ensemble.

Figure 3.8: PV curve generated for initial load operating point

3.5.2 Structure of the Data

In the data generation process, cases with different initial operating points and contingencies

are considered. Therefore rows of the database are generated at each operating point for each

of these cases. The factors which define the created data base size such as; number of initial

operational points considered, number of contingency cases used in addition to base case and

the total number of data points generated through resampling of CPF are tabulated in Table

3.5.

Table 3.5: Dataset information

Test
System

Number of initial
operating points

Number of
columns

Number of
rows

Nordic Test System 720 154 2847124

The generated data comprised three dimensions, namely 1) time, 2) location, and 3) type of

variables. Every value recorded by PMU has a timestamp, a location represented by buses, for

instance, Generator Buses or Transmission Buses, and a measurement variable, in this case,

Voltage Magnitude and Voltage Phase Angle. The variables measured by a PMU are a power
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system’s voltage and current phasors. If we denote the number of available PMU by p, each

provides m measurements, then a total of N = p × m measurements is collected at each time

sample. This study p = 2 corresponds to phase angle (A) and voltage magnitude (M). Table-3.6

shows a set of n such samples, each taken at different times.
Generator Buses Transmission Distribution Target

Time g1 m g1 a . . . g20 m g20 a 1011 a . . . 4072 m 12 m . . . 72(M) VSM
0 1.05 9.298 . . . 1.02 -2.94 -0.079 . . . 1.058 0.98 . . . 0.996 4.55
0.02 1.05 9.316 . . . 1.02 -2.91 -0.0619 . . . 1.058 0.98 . . . 0.996 4.55
0.04 1.05 9.335 . . . 1.02 -2.87 -0.043 . . . 1.058 0.98 . . . 0.996 4.55
...

...
...

...
...

...
... . . . vdots

...
...

...
...

20 1.06 18.04 . . . 1.02 13.85 7.615 . . . 1.057 0.98 . . . 0.995 4.55

Table 3.6: Structure of Data

For the prediction of long term VSM we do not require timestamp therefore we drop the time

variable. The above data can be represented as n×d matrix, with n rows and d columns, where

rows corresponds to observations in the dataset, and columns represent attributes or voltage

measurements, including voltage magnitude and voltage phase angle. Each row in the data

matrix records the observed attributes values for a voltage measurements. The n× d matrix is

given as:

D =



X1 X2 . . . Xd

x1 x12 x13 . . . x1d

x2 x22 x23 . . . x2d

...
...

... . . . ...

xn xn1 xn2 . . . xnd


(3.22)

where xi denotes the i-th rows. Each row may be considered as a d-dimensional column vector:

xi = [xi1, xi2, . . . , xid]T ∈ Rd (3.23)

and Xj denotes j-th column which can also be treated as a vector in n-dimensional space Rn :

Xj =


x1j

x2j
...
xnj



As we can see, we can consider the entire dataset as an n× d matrix, or equivalently a set of n

row vector xT
i or as a set of d column vector Xj ∈ Rn.

The objective of ML models is to predict a target/output or response variable yi, given an input
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feature vector xi. The model’s output is a function f that automatically produces a prediction.

The predicted output is denoted with ŷ, for any set of predictors: ŷi = f(xi).

The generated dataset is used for training and validation of the feature ensemble model. The

data is split into training and testing sets and 3-fold cross validation was conducted. Cross-

validation involves running multiple iterations of model training and evaluation. Higher fold

values (e.g., 10-fold) would require more iterations, leading to increased computational resources

and time. Using 3-fold cross-validation provides a good compromise for obtaining reliable

estimates of model performance without excessive computational burden. In each 3-fold cross

validation the data is partitioned into 3 subsets of equal size and the results are averaged over

3 runs. In each run, a distinct subset is used for testing, while the remaining instances are

provided as training data.

3.6 Model Performance Evaluation

In order to evaluate the performance of the model, this study uses following indicators are used:

Mean squared error

The mean squared error (MSE) is the average squared distance between the observed and

predicted values. The MSE tells you how close a regression line is to a set of points.

MSE =
∑(yi − ŷi)2

n
(3.24)

Where yi is the i-th observed value, ŷi is the corresponding predicted value and n is the number

of observations in the dataset.

Root mean squared error

While MSE represents the difference between the original and predicted values which are ex-

tracted by squaring the average difference over the data set. It is a measure of how close a fitted

line is to actual data points. Root mean squared error (RMSE) on the other hand is the error

rate by the square root of MSE. It is defined as the square root of the average of the squared

errors.
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Classifier MSE RMSE R2 Training time (S) Testing time (S)
KNN 0.000019 0.00432 0.999999 61.662174 2.216540
SVR 0.002552 0.050515 0.998261 448.202024 0.429013
DT 0.000387 0.019682 0.999736 1273.867204 0.008904

Table 3.7: Performance of Individual Classifiers

RMSE =

√∑(yi − ŷi)2

n
(3.25)

Coefficient of determination

R-squared or Coefficient of determination is a statistical measure that represents the proportion

of the variance for a dependent variable that’s explained by an independent variable.

R2 = 1 −
∑(yi − ŷi)∑(yi − ȳ) (3.26)

Where ȳ = 1
n

∑n
i=1 yi

The testing and validation of the proposed feature ensemble is carried out in four phases.

1. Phase 1: In the first phase, the performance of each classifier is evaluated without using

any feature selection method.

2. Phase 2: In the second phase performance of the proposed feature selection algorithm

(F-Reg, Lasso, VAR) is compared with other similar feature selection methods.

3. Phase 3: In the third phase performance of the feature ensemble method is evaluated

and compared with the performances of classifiers evaluated during the first phase.

4. Phase 4: In the final phase Robustness of the feature ensemble against noisy data is

evaluated by introducing three different noise levels.

3.6.1 Phase-1: performance of the classifier without feature selection

In this work, KNN, DT, and SVR are used to conduct experiments, compare and find the best

algorithms suitable for estimating the VSM. Table- 3.7 shows the average evaluation metrics of

each ML algorithm without feature selection. MSE represents the average squared difference

between the original and predicted values in the data set. It measures the variance of the

residuals, while RMSE is the standard deviation of residuals. The R2 represents the proportion
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Figure 3.9: Comparison of classifier performance

of the variance in the dependent variable, which the linear regression model explains. R2 can

have negative values, which mean that the regression performed terribly. R2 can have value

0 when the regression model explains none of the variability of the response data around its

mean. Analysis of R2 score revels the score closer to 1 meaning perfect prediction.

Performance results for the RMSE for the three models are plotted in Fig. 3.9 which indicates

that KNN with an RMSE of 0.00432 gives the best results compared with the other two classi-

fiers, Table- 3.7 also show the training time and testing time taken by these three algorithms.

These values indicate the computational time taken by each classifier during the training and

evaluation process.

The training time (S) refers to the amount of time, measured in seconds, that each classifier took

to complete its computations and training on the dataset. It represents the total processing

time consumed by the respective classifier to perform the required tasks, such as fitting the

model while the testing time is the time required in making predictions.

Fig. 3.10 shows the actual vs predicted results for all three classifiers. All the model plots are

very accurate, however the best result is achieved by KNN. There’s a strong correlation between

the model’s predictions and actual results. Fig. 3.11 is the residual plot for the same classifiers

where the prediction made by the model is on the x-axis, and the accuracy of the prediction

is on the y-axis. The distance from the line at 0 is how bad the prediction was for that value.

Since.
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Figure 3.10: Comparison of classifier performance

Figure 3.11: Residual plot for the classifier performance
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Residual = Observed− Predicted (3.27)

The positive values for the residual (on the y-axis) mean the prediction was too low, and negative

values indicate the projection was too high; 0 means the estimation was correct. In general, the

plots are symmetrically distributed, tending to cluster towards the middle of the plot.

3.6.2 Phase-2: performance comparison of the proposed feature selection

algorithms with similar feature selectors

This section describes the of performance comparison of the proposed feature selection algorithm

i.e. F-Reg, VAR and Lasso with other similar filter and embedded methods. We have compared

the performances with MI, Ridge, FFE and RFE.

The target of feature selection is to select features highly correlated with the class label in the

data set and delete irrelevant and redundant features. As mentioned above, the collected data

is normalized and randomly divided into training and testing sets. The training set is employed

for feature selection, and the testing set is utilized to check the quality of the selected feature

subset.

This process of feature selection method for the VSA can be described in two stages. In the first

stage, the feature score is calculated with the training set and used for measuring the relevance

between features and classes. The features are ranked from large to small based on the score.

In the second step, the ranked features’ classification performance is calculated using the KNN,

SVR, and DT models, and MSE, RMSE, and R2 is calculated.

Table 3.8 shows the performance of different feature selection algorithms and the number of

features selected. The total number of features selected by each feature selection is based

on the optimal hyperparameter configuration from the Bayesian optimization described in the

section 3.4. The best scores for the hyperparameters are provided in Table B.1 in the Appedix B.

It can be seen from Table 3.8 that the proposed feature selection algorithms achieve significantly

better results in terms of MSE and RMSE, R2. Based on the RMSE values from the analysis in

Table 3.8, it is evident that the combination of Lasso with KNN achieved the lowest RMSE value

(0.00259). This result suggests that this specific combination exhibits the best performance

among all the feature selection techniques and classifiers evaluated in the dataset. Conversely,
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Feature
selector classifier MSE RMSE R2 Training

Time (S)
Testing

Time (S)

No. of
feature
selected

F-Reg SVR 0.00228 0.04776 0.99845 44.32969 0.43160 48
F-Reg KNN 0.00051 0.02257 0.99997 10.21231 1.74670 43
F-Reg DT 0.00053 0.02301 0.99964 4.14455 0.01562 47
VAR SVR 0.00276 0.05257 0.99812 339.18407 1.80649 77
VAR KNN 0.00066 0.02568 1.00000 11.64501 1.41669 21
VAR DT 0.00185 0.04307 0.99874 1.84484 0.01504 23
Lasso SVR 0.00242 0.04916 0.99835 59.40518 1.01620 20
Lasso KNN 0.00001 0.00259 0.99999 32.81606 1.53322 20
Lasso DT 0.00010 0.00978 0.99993 22.05807 0.00316 17
MI SVR 4.45857 2.11153 0.80887 496.21278 28.09595 4
MI KNN 0.00506 0.07113 0.89999 108.01582 0.15672 13
MI DT 3.94625 1.98652 0.86159 108.77875 0.00156 11
Ridge SVR 2.89817 1.70240 0.82595 949.53478 33.74993 40
Ridge KNN 0.00340 0.05832 0.90000 4.26084 1.49275 40
Ridge DT 2.94355 1.71568 0.80975 1.91896 0.00806 39
RFE DT 0.00461 0.06792 0.89997 654.01146 0.01005 30
SFE DT 0.02827 0.16814 0.89981 397.95250 0.01523 4

Table 3.8: Performance of Feature Selection methods.

Figure 3.12: Comparison of RMSE of feature selection algorithms
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the combination of MI with SVR has the highest RMSE value (2.11153), indicating that the

model predictions using this combination might be less accurate.

Moving on to the R2 values from the analysis:

• The combination of Lasso with KNN achieved the highest R2 value (0.99999), demon-

strating an exceptional fit of the model to the data.

• Several other combinations also display high R2 values, signifying their strong predictive

capabilities. These combinations include F-Reg with DT, VAR with KNN, Lasso with

DT, and Lasso with SVR.

• Conversely, combinations involving MI with SVR, MI with KNN, MI with DT, Ridge with

SVR, Ridge with KNN, and Ridge with DT exhibit lower R2 values, indicating that these

models might not explain the data as effectively as the top-performing combinations.

Regarding the training and testing times provided for each combination of feature selection

techniques and classifiers:

• Training and testing times exhibit significant variation across different combinations.

• Combinations with SVR as the classifier (e.g., F-Reg with SVR, VAR with SVR, Lasso

with SVR, MI with SVR, and Ridge with SVR) generally have longer training times

compared to other classifiers.

• KNN as the classifier (e.g., F-Reg with KNN, VAR with KNN, Lasso with KNN, and MI

with KNN) demonstrate moderate training times, but they tend to have longer testing

times.

• DT as the classifier (e.g., F-Reg with DT, VAR with DT, Lasso with DT, MI with DT,

Ridge with DT, RFE with DT, and SFE with DT) generally exhibits shorter training and

testing times compared to SVR and KNN.

These observations highlight the trade-offs between different combinations in terms of predictive

performance and computational efficiency, providing insights into the strengths and limitations

of various feature selection techniques and classifiers. Figures Fig. 3.12 present visual rep-

resentations of RMSE (Root Mean Squared Error) based on the data provided in the above

Table 3.8.
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Figure 3.13: Time consumption by classifiers

Fig. 3.13 shows the change in computational training time when the proposed classifiers are

used with feature selection algorithms. Positive bars represent the time saved when classifiers

are used with feature selection methods, while negative bars indicate that specific feature se-

lection methods have taken longer computational time than the classifier itself. As observed

in Fig. 3.13, the proposed feature selection algorithms have achieved better computational effi-

ciency compared to other feature selection methods. This is attributed to the fact that VAR and

F-Reg belong to the filter feature selection method, known for their computational efficiency.

In contrast, RFE and FFE fall under the wrapper class and necessitate a longer computational

time compared to filter methods.
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Figure 3.14: Comparison of root mean squared error for the classifier performance

Classifier MSE RMSE R2 Training
time (S)

Testing
time (S)

No.of
Features

Ensemble-SVR 0.026033 0.161347 0.982264 501.11298 35.94650 29
Ensemble-DT 0.002270 0.047645 0.999845 110.72919 0.05010 20
Ensemble-KNN 0.000110 0.010488 0.999993 56.78106 4.18316 17

Table 3.9: Performance of feature ensemble

3.6.3 Phase-3: performance of the feature-ensemble

This section describes and compares the performance of ML classifiers with and without feature

selection algorithm. Fig. 3.14 shows the RMSE results for each classifier used in the proposed

scheme, It can be noticed that without feature selection the error is low as the features. However

considerable amount of time can be saved when feature selection algorithms are employed as

can be seen from Fig. 3.15.
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Figure 3.15: Training time with and without feature selection

3.6.4 Phase-4: Robustness of the feature ensemble against noisy data

This section describes the effect of noise on the proposed ensemble. The first and foremost

consideration for the implementation of the algorithm for a real system would be measurement

noise. To check the proficiency of the proposed algorithm under noisy measurements, simula-

tions have been completed with noise. The ensemble is retrained with white noise, which is

added after the simulation of the P-V curve. Simulations showed that the proposed method

works well within the measurement noise limit for the PMU device. The performance of each of

the learners was evaluated at three noise levels 80dB, 60dB and 40dB. We compute error ratios

to capture the degree to which algorithms outperform each other in noise outcomes.

Comparing the results of different classifiers used in feature ensemble, we can see that all three

models perform better in the absence of noise. When the noise level is increased to 60dB,

the performance is not much affected. When the noise level is further increased to 40db, DT

performs significantly worse than the other base learner because it tends to place a lot of weight

on the noisy examples.

Fig. 3.16, Fig. 3.17, and Fig. 3.18 show the scatter plots of Actual vs Predicted which tells

us how well the model performs under the influence of noise. For the Ideal model, the points

should be closer to a diagonal line. From the plots, we can see that at noise level of 40dB, KNN

and SVR perform similarly, while the data points in DT are more widespread from the diagonal

line. R2 has a closer relationship to the actual vs predicted plots. If the model has a higher R2
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Figure 3.16: Noise with 80dB

Figure 3.17: Noise with 60dB

Figure 3.18: Noise with 40dB
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Classifier Noise
Level MSE RMSE R2 Training

Time (S)
Testing

Time (S)
No. of

Features
Ensemble-SVR 80 0.0024 0.0488 0.9919 87.6468 3.1846 31
Ensemble-KNN 80 0.0002 0.0126 0.9995 74.7639 7.9444 32
Ensemble-DT 80 0.0003 0.0182 0.9989 40.7827 0.0204 31
Ensemble-SVR 60 0.0029 0.0536 0.9901 119.2287 5.1489 34
Ensemble-KNN 60 0.0002 0.0153 0.9992 74.8683 7.9336 34
Ensemble-DT 60 0.0008 0.0284 0.9972 44.281 0.0204 34
Ensemble-SVR 40 0.0159 0.1262 0.9453 661.8249 27.298 40
Ensemble-KNN 40 0.0139 0.1181 0.9521 77.48 9.1753 40
Ensemble-DT 40 0.0347 0.1862 0.8809 46.3534 0.0184 40

Table 3.10: Performance of feature ensemble under the influence of noise

Figure 3.19: Root Mean Squared Error (RMSE) after introducing noise to the data.

value, all the points would be closer to the diagonal line. However, lower R2 indicates the data

points are far away from this diagonal line. We can see from table 3.10 that the R2 score for

DT when the noise level is 40db is 0.8809, which is lowest among all the three classifiers.

Fig. 3.19 provides the comparative analysis of the model accuracy based on RMSE for three

levels of noise. It can be seen that the RMSE increases with increase with noise level. However,

despite the RMSE is high at noise level of 40dB it is still significantly low in general which

proves robustness of the proposed feature ensemble against the noise.

For commercially-available PMUs, SNR is at least 100 (total vector error is less than 1%) [22].

This means the magnitude of the noise is always less than 1% of the measured signal magnitude.

But, it was found that the algorithm can predict stability even with noise to SNR 40.
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Figure 3.20: Scatter Plot: Actual vs Predicted for Random Forest, AdaBoost, and XGBoost
Models.

Model MSE RMSE R2 Training
Time (S)

Testing
Time (S)

Ensemble KNN 0.00011 0.010488 0.999993 56.78106 4.18316
Ensemble DT 0.00227 0.047645 0.999845 110.7292 0.0501
Random Forest 0.005127 0.071603 0.994533 676.5657 1.799916
XGBoost 0.005411 0.073559 0.99432 566.3191 0.047421
Ensemble SVR 0.026033 0.161347 0.982264 501.113 35.9465
AdaBoost 0.098608 0.314019 0.932921 300.1995 1.000281

Table 3.11: Comparison of Feature Ensemble with Random Forest, Adaboost, and XGBoost

3.6.5 Comparative Analysis: Feature Ensemble Method vs. State-of-the-Art

Machine Learning Techniques

This section provides an in-depth comparison between the feature ensemble method and other

prominent machine learning techniques. The detailed analysis is presented in Table 3.11, where

the performance of the feature ensemble is juxtaposed against Random Forest, AdaBoost, and

XGBoost.

Considering the provided metrics, the Ensemble-KNN and Ensemble-DT models outshine other

ensemble approaches in terms of MSE, RMSE, and R2 values. These two ensembles consistently

deliver accurate predictions and robust fits to the data. Notably, Ensemble-KNN achieves

the lowest MSE (0.00011), RMSE (0.010488), and highest R2 (0.999993), positioning it as an

exceptional performer. Fig. 3.21 further illustrates the comparative performance of Random

Forest, AdaBoost, XGBoost, and the feature ensemble.
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Figure 3.21: Comparison of the RMSE.

Figure 3.22: Residual Plot: Actual vs Predicted for Random Forest, AdaBoost, and XGBoost
Models.
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Figure 3.23: Comparison of the training time.

The Random Forest and XGBoost models exhibit commendable performance, although they

have slightly higher MSE and RMSE values compared to the top-performing ensembles. Con-

versely, the Ensemble-SVR and AdaBoost models manifest higher MSE and RMSE values,

indicating comparatively less accurate predictions and weaker fits the data.

Fig. 3.20 and Fig. 3.22 depicts scatter plots for Random Forest, AdaBoost, and XGBoost.

Notably, the scatter plot for AdaBoost displays a wide dispersion, while those of Random

Forest and XGBoost tend to align more closely with the diagonal. Their respective residual

plots showcase the extent of the spread.

When considering data requirement, the ensemble methods generally benefit from larger datasets

due to their complex nature. Computation time varies across models, with Ensemble-KNN and

Ensemble-DT being more computationally efficient, while Random Forest and XGBoost may

require more resources.

Ultimately, the choice of model depends on the specific requirements of the application. If high

accuracy and training efficiency are essential, Ensemble-KNN and Ensemble-DT are strong

contenders. For versatile options with reasonable accuracy, Random Forest, XGBoost, and

Ensemble-SVR may be suitable. It’s important to strike a balance between accuracy, efficiency,

and computational resources when selecting the most appropriate model for a given task.

It’s important to note that Ensemble-KNN and Ensemble-DT boast the quickest training times,

while Random Forest and XGBoost exhibit longer training durations due to their ensemble
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nature. Ensemble-SVR and AdaBoost fall in between these extremes. The selection of an

appropriate model should consider the trade-off between training time and performance metrics

such as MSE, RMSE, and R2. Fig. 3.23 provides a visual comparison of the training times

across all methods.
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Chapter 4

Online application of Machine

Learning Model

Chapters 2 and 3 involve the creation of a voltage stability database during the offline stage,

achieved by conducting simulations across various operating points and fault scenarios. The

database is then subject to an ensemble feature selection process that eliminates irrelevant

features, leaving behind only the relevant ones. Subsequently, a machine learning (ML) model

is trained on the database, and the voltage stability margins (VSMs) estimated by the model are

combined to generate the final prediction. This chapter discusses the practical implementation

of the trained ML model in real-time for VSM estimation. The ML model is designed to

quickly assess long-term voltage stability, and its findings are employed to facilitate control

decision-making. Additionally, in the online stage, the stability database can be updated with

current system information, such as network configuration and load composition, to enhance

the accuracy of the existing database. Importantly, this online update ensures that the model

is capable of adapting to unexpected system changes. Fig. 4.1 provides a conceptual overview

of the proposed approach for real-time long-term voltage stability assessment.
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Figure 4.1: Online VSM evaluation scheme

The Scheme comprised of the following steps:

1. K-means clustering is applied to the training dataset. The objective is to divide the clus-

ters into groups so that members within each group share comparatively more similarities

than those from other groups.

2. Once we get the data inputs from the phasor measurement unit (PMU), the trained feature

ensemble is applied, and VSM is estimated. At the same time, the distance of the input

data to the cluster centroids is calculated.

3. The estimated VSM and distance of data points are compared against the threshold values.

The threshold values are the 99% confidence interval calculated for the following values:

• VSM

• Root mean squared error (RMSE) and

• Centroid Distance

4. If the estimated VSM is below the threshold value, the operator should be informed to

take necessary action. Else no action is required, and the algorithm continues to estimate.

However, it is important to acknowledge that the initial database used for training the

algorithm offline may not accurately reflect the current operating conditions and dynamics

of the power system. System dynamics in the context of power systems refer to the vari-

ations and changes that occur over time due to factors such as load fluctuations, network
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re-configurations, and equipment failures. To account for these dynamic changes, the al-

gorithm needs to be adaptive and capable of adjusting to the evolving system conditions.

This adaptability is crucial for maintaining reliable and accurate predictions of the VSM.

As new situations arise, such as changes in the network structure or load composition,

the algorithm should be able to learn from and adapt to these scenarios. In this study,

we propose a method to address these system dynamics and contingencies in the power

system. We compare the RMSE and distance of the newly arrived data points to the

threshold values to detect online drifts or significant deviations. We update the database

used by the algorithm to incorporate the new observations and ensure it can adapt to the

evolving system dynamics effectively.

4.1 K-means Clustering

The k-means is an unsupervised learning algorithm that solves the well-known clustering prob-

lem. Let the training data set D be (xi)n
i=1, where xi is the input attribute vector consists

of voltage magnitude and voltage phase angle for i-th operating point of the n samples in a

d-dimensional space. Given the number of desired clusters k, the goal of k-means clustering is

to partition the dataset into k groups or clusters, denoted as C = C1, C2, . . . , Ck. The cluster

means are initialized by randomly generating k points in the data space. Each iteration com-

prised of two steps a) cluster assignment and b) centroid update. In the cluster assignment step,

each observation xi is assigned to the cluster Ci with the closest center to that observation. In

the centroid update step, the centers are redefined using the observations in each cluster: then

the column means µi are used to define the centroid of all points in the cluster, that is

µi = 1
ni

∑
xj∈Ci

xj (4.1)

To evaluate its quality or goodness of the algorithm, the sum of squared errors (SSE) scoring

function is used which is defined as:

SSE =
k∑

i=1

∑
xj∈Ci

∥xj − µi∥2 (4.2)
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The aim is to find the clustering that minimizes the sum of squared errors scoring function:

i∗ =
k

arg min
i=1

{∥xj + µj∥}2 (4.3)

The ArgMin function is commonly employed to identify the minimum values under certain

constraints. To achieve a fixed point or local minimum, the k-means algorithm performs iterative

cluster assignment and centroid update steps. The process of updating the centroids involves

computing the mean of the data points in each cluster and potentially transferring data points

to different clusters. This assignment and centroid update process is repeated until convergence

is achieved, which is characterized by either no points changing clusters or unchanged centroids.

Typically, the Euclidean distance is utilized to compute the distance between the data points

and centroids in this algorithm. The k-means clustering algorithm’s pseudo-code is presented

in the following Algorithm.

Algorithm 2: The k-means clustering algorithm
Require: D = {x1,x2, . . . ,xn} // Set of n data points
k // number of desired cluster.
Ensure: a set of k clusters
Steps:
1. Arbitrarily choose k data points from D as initial centroids
2. Repeat:

Assign each point xi to the cluster which has the
closest centroid;
Calculate the new mean for each cluster;
Until:
Convergence criteria is met.

4.1.1 Database Update

During the online assessment, it is pretty standard that the distribution of the collected data

changes over time due to the dynamic nature of the underlying phenomena, e.g., maintenance

of equipment, topological changes, adjustments in configurations, environmental factors, etc.

Consequently, when estimating VSM in real-time, new data belonging to unseen class labels,

i.e., labels that the ML model did not know at the time of training, are likely to be present and

may result in the wrong estimation.

Updating the prediction model frequently by appending the new data to the existing training

set is computationally exorbitant. It may require the intervention of domain experts to absorb
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the changes for VSM prediction. Due to these reasons, it is often impractical to retrain the ML

model frequently. To this aim, we propose a self-evaluation step to automatically identify the

change in the data distribution and degradation of the prediction quality over time. The main

challenge in this approach is the absence of ground-truth predictions for the newly arrived PMU

samples. Therefore we base our solution on detecting the changes in the underlying distribution

of the data by applying a k-means clustering algorithm. The process is accomplished by seg-

regating the training data D into k clusters and calculating the cluster centroids. During the

online phase, each subsequently received value trigger the application of the k-means algorithm.

The distances between each newly arrived PMU data point to the cluster centroids, obtained

from the training data D, are calculated. The distance values are compared against the spec-

ified threshold ratio. If the distance is within the confidence limit, the latest data belongs to

one of the existing clusters, and the prediction accuracy is not much affected. On the other

hand, if the distance of new data is above the threshold, the operating point is added back to

the dataset, and the training process is restarted offline.

It is important to acknowledge that in the online mode, the actions are constrained, and the

system’s ability to handle unforeseen or significant changes may be limited. The primary focus

of the online phase is to make predictions based on the available information and adapt the

model as best as possible without complete retraining. While the online mode may not allow

for extensive actions or model modifications, it still serves a crucial purpose of providing real-

time predictions and adapting to the data within the limitations. The self-evaluation step

using clustering helps identify when the model’s predictions may be affected by changes in the

underlying data distribution and prompts the offline retraining process.

4.2 Case Study

The feature ensemble is applied online to monitor and inspect new situations during the online

evaluation stage. Four time-domain simulations of online VSM estimations are presented in

Fig. 4.2. The plot shows the result of three feature ensemble models by substituting the base

learners with K-nearest-neighbor (KNN), classification and regression tree (CART), and support

vector regressor (SVR). The simulations were carried out without increasing the load factor.

In the first simulation, the system initially operated under normal conditions. The estimated

VSM remains constant, around 2.45 pu to 2.825 pu for all three ensemble models. Next, fault-1
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Figure 4.2: Online monitoring

is simulated. For this case, all three feature ensemble models show a declining trend for the

estimated VSM. A warning will be given when the VSM crosses a threshold set by the system

operator. In the subsequent simulation, fault-2 is applied. We can notice a significant dip in the

estimated VSM that recovers after 40 seconds. In the last case, a new contingency is introduced

by tripping branch 4012-4022 close to bus 4031 at t = 1s. The feature ensemble model was not

trained previously on this fault condition. The database update phase is comprised of applying

the k-means clustering algorithm and runs parallel with the online assessment to detect the

changes in the distance of the new data points to the cluster centroids.

Figure 4.3: change detection using k-means clustering
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Fig. 4.3 depicts this scenario. The green dots in Fig. 4.3 represents the distance of data points

from the cluster centroids on which the ML model has been trained. At time = 4000 s, new

contingencies are introduced. The distribution of the data changes, and the distance of the

unknown sample data points. The newly measured data point distance is measured from the

existing cluster centroids. The average distance and the confidence interval of each cluster

member from the cluster centroid are used as a benchmark. If the distance of new data falls

between the two confidence intervals, the point is considered similar to the existing clusters.

Otherwise, the operating point is put back in the database for retraining. The existing dataset is

updated, and the newest incremental samples are injected into the initial dataset. Subsequently,

the updated datasets would, in turn, serve as the initial database for the next update period.

4.2.1 Identifying Secure and Insecure Operating Points

For a Nordic test system, generally two base operating points are considered.

• Operating point A, which is very insecure , i.e. the system cannot stand some N-1 con-

tingencies’ several single contingencies cause instability or even some transient angle may

result in instability cases.

• Operating point B : which is secure i.e. the system can stand a 5-cycle (0.1 s) fault on

any line, cleared by tripping the line . The system can stand the outage of any single

generator.

The 700 operating points analyzed for long-term voltage stability used variations of operating

point B. This choice enables a focused assessment of how the system’s voltage stability responds

to different contingencies, starting from a stable initial state. This approach comprehensively

evaluates the system’s ability to manage disturbances and maintain stable operation over time.

Operating point A is highly insecure, vulnerable to N-1 contingencies causing instability and

transient angle issues. Conversely, operating point B offers greater stability. Generating P-V

curves using operating point B, rather than A, is aimed at evaluating the system’s long-term

voltage stability under realistic and stable conditions. Starting with a more stable operating

point like B is essential in stability analysis, as it yields meaningful insights into the system’s

behavior and response to contingencies, whereas using an insecure point like A could obscure

results due to inherent instability and transients.
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The following contingencies have been considered:

• a 5-cycle (0.1 s) fault on the following lines

1. 4032-4044

2. 4031-4041

3. 4041-4061

4. 4045-4062

5. 4043-4046

6. 4032-4042

Figure 4.4: operating point B, fault on line 4032-4044 cleared by opening line: distribution
voltages

The fault is cleared by tripping the lines.

• the outage of following single generators:

1. g6

2. g7

3. g16

4. g14

Criteria used in long-term dynamic simulation

90



Chapter 4. Online application of Machine Learning Model 4.2. Case Study

Figure 4.5: operating point B, fault on line 4032-4044 cleared by opening line: distribution
voltages

The post-contingency evolution is considered acceptable if, over a simulation interval of 600

seconds:

1. All distribution voltages are restored in their dead bands ([0.99 1.01] pu).

2. No generator voltage falls below 0.85 pu; and

3. No loss of synchronism takes place.

Branch tripping

Fig. 4.4 and Fig, 4.5 shows the evolution of distribution and transmission system voltages due

to the three-phase solid fault on line 4032-4044, near bus 4032, lasting 5 cycles (0.1 s). The

fault is cleared by opening the line, which remains opened.The stable evolution of the voltage

at buses 1, 2, 3 and 4 can be noticed in Fig. 4.4. Fig. 4.5, relative to the same disturbance,

shows four distribution voltages 1041, 1042, 1043 and 1044 that are successfully restored in

their dead-bands by load tap changers (LTCs).

Generator

A dynamic model of the power system can be integrated over time to determine if there will be a

stable state or a collapse. Fig. 4.6(a) depicts the time evolution of voltages at the 130-kV buses

of the Central region for three generators g-6, g-7 and g-16 respectively. The corresponding

distribution voltages are shown in Fig. Fig. 4.7. For generator g-6 it is clear that the impact is
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Figure 4.6: Generator contingencies

limited to bus 1042. It can be seen that the LTCs succeed in restoring the distribution voltages

in their dead bands, except for the one controlling bus 2 (Fig. 4.7(a)). After some unsuccessful

steps, the ratio of transformer 1042-2 hits its lower limit, which explains the pseudo-stabilization

of the system, though with unacceptably low voltages at buses 1042 and 2. For generator g7

and generator g16, it can be noticed that the voltage drops after the initial disturbance but gets

restored after 100 s and 50 s respectively.

Figure 4.7: Online monitoring

Fig. 4.8 shows the VSM for the above-mentioned generator buses. For comparison, the VSM

is plotted for the three ML algorithms i.e. KNN, SVR and CART. It can be noticed that for
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Figure 4.8: Online monitoring

generator g6 there is very little stability margin left. Simulation results given in Fig. 4.8 show

that all three proposed ensemble feature selection can estimate the stability margins, however,

the performance of KNN shows much more sensitivity to the voltage fluctuations. As can be

observed, the behaviour is quite similar to the distribution buses, indicating that with the

outage of generator g6, Central Area demand cannot be restored due to the weakened system

and corresponding reduced power transfer capability after the generator outage. Also, Fig. 4.8

shows that following the increase in load at generator g7 and g16, the voltage varies suddenly

which causes the algorithm to detect the initial disturbance occurrence by a drop in the VSM,

which gets stabilised after t=110s for g7 and t=50 s for g16.
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Chapter 5

Power system oscillations

In this chapter, an introduction is given to the electromechanical oscillation phenomena that

occur in power systems with low frequencies. The definition of low-frequency oscillation is pro-

vided, and its classification is explained in detail. Some examples of power system blackout

incidents caused by low-frequency oscillation are also provided. Recent research and develop-

ments in monitoring and estimating modal parameters for inter-area oscillations are discussed.

Furthermore, the chapter emphasizes the importance of continued research in power system

stability by motivating further investigation related to inter-area oscillation.

This chapter serves as a precursor to subsequent chapters, introducing the concept of inter-area

oscillations and underscoring their pivotal role. These oscillations share similarities with voltage

stability, exhibiting gradual changes over prolonged periods. Left unattended, these oscillations

can accumulate, resulting in heightened amplitudes and potential instability. Much like the

analysis of voltage stability, utilizing machine learning (ML) models for inter-area oscillations

presents an effective approach to capturing the dynamic behavior of the power system. By

examining historical oscillation patterns, system parameters, and operational conditions, these

models can learn from data and forecast the occurrence and magnitude of inter-area oscillations.

Consequently, they contribute to the formulation of efficient damping control strategies and

provide guidance to operators in proactively mitigating these oscillations. Although machine

learning models necessitate offline training to unveil underlying patterns, they can be swiftly

employed in real-time to analyze current measurements and make prompt decisions for damping

control.
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5.1 Power System Electromechanical Oscillations

Elecromechanical oscillations are inherently present in large interconnected power systems. Elec-

tromechanical oscillations can occur at different frequencies but are not harmful if they decay

rapidly. The parameters of such oscillations (e.g. damping, magnitudes, and frequencies) de-

pend on the system parameters and the contingencies that cause them. These parameters

provide crucial information about the modes of the power systems [40] and help determine

power system stability in real-time. For a large stability margin, the damping ratio of all the

system modes must be greater than some value, typically 3–5% [136]. An event such as tripping

of generator or a branch can result in a declining damping ratio of a system mode, suggesting a

system shift towards a less stable ratio, as observed in the 1996 western grid outage[137]. Thus,

continuous monitoring of these modes can provide critical information on the system stability

margin and can help prevent system outage by allowing a timely action.

5.1.1 Classification of Power System Oscillations

Oscillations were observed in the power system as soon as synchronous generators were inter-

connected to provide more power capacity and reliability. Originally interconnected generators

were close to each other, and oscillations were in a frequency range of 1 to 2 Hz [138]. As more

utilities interconnected, oscillations in different frequency ranges were observed. Nowadays,

oscillations can be classified by specific types, with each type exhibiting a certain degree of os-

cillation frequency when the phenomenon occurs [139]. In general, oscillations can be grouped

into two broad classes [140]:

• Forced Oscillations and

• Natural Oscillations

Forced oscillations refer to oscillations that are driven or forced by an external source or input

[141]. Forced oscillations can occur due to various factors, such as disturbances, faults, or control

actions. These external influences can introduce periodic or cyclic variations in the system’s

parameters, leading to oscillatory behavior. These oscillations occur in the range of 0.2 Hz to

2 Hz [142].

Natural oscillation refers to the inherent oscillatory behaviour of a system without any external

forcing or input. Natural oscillations are commonly observed as the system responds to distur-
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bances or changes in operating conditions [143]. These oscillations arise due to the dynamics and

characteristics of the system’s components, such as inertia, stiffness, and damping. The natural

oscillations are further classified as: 1) ambient response, and 2) transient response. Fig.5.1

provides information about the classification of power system oscillations [144]. The transient

response characterized by the electromechanical oscillation modes can be sub-classified as 1)

Ultra-low frequency oscillations, 2) Low-frequency oscillations, and 3) sub/super-synchronous

oscillations/resonances.

Here the ultra-low frequencies have a range of +0.1 Hz to -0.1 Hz. It occurs due to the negative

damping of generators.

Out of these sub-classifications, Low frequency oscillations can be further categorized as:

• Global frequency oscillations,: is a low-frequency mode of 0.01–0.2 Hz (approx. 0.06– 1.2

rad/s) in which all generating units move in unison.

• Inter area mode: occurs when a group of generators in one area swing against group of

generators located in another area of a wide area power system. The frequency range of

inter area oscillation mode is in the range of 0.1 to 0.7 Hz.

• Local plant mode oscillations: occurs when one or more synchronous generators, in a

specific power station, swing together against the whole large power system. This type of

oscillation occurs within a frequency range of 0.7 to 3 Hz.

• Local machine system oscillations: is an oscillatory electro-mechanical mode and is usually

associated with the rotors of synchronous generating units in a station swinging against

the rest of the power system or against electrically-close generating stations. The range

of its frequency is normally from 6–12 rad/s (1– 2 Hz).

Sub-synchronous oscillation (SSO) are characterized by equivalent oscillations between different

components of the power system, such as turbine-generators, series capacitors, power electronic

converters, and HVDC controllers.

The causes of SSO are varied and complex. [145],[146],[144] mentioned several causes, including:

1. Induction generator/machine effect, torque amplification, and torsional interaction be-

tween rotating components and a series compensated grid.

2. Control-device-dependent SSO, which occurs when steam-/hydro-turbines interact with
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Figure 5.1: Classifications of power system oscillations

fast response controllers, resulting in sub-synchronous torsional interaction.

3. Sub-synchronous control interaction among power electronic converters and series com-

pensated grids.

These causes reflect the impact of different equipment and control systems on the stability

of the power grid. SSO can occur within a wide range of oscillatory frequencies, unlike the

low-frequency oscillations that have a narrower frequency range. In the Hami power system,

wide-area measurement systems (WAMs) have detected SSOs with frequencies ranging from 20

Hz to 35 Hz since June 2014 [145].

5.2 Estimation of power system modes

Estimation of power system modes can be performed through two groups of methods: model-

based methods and measurement-based methods. Model-based methods linearize the governing

equations of the system about an operating point, and measurement-based methods fit a linear

model to the system measurements.

5.2.1 Model based method

There are many different methods for mode damping estimation and most of them require

a mathematical model of the system. A state variable is one of the set of variables that are
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Figure 5.2: Plot of the eigenvalues of the Nordic test system. The system is small-signal stable
as most of the eigenvalues have negative real parts , but it is poorly damped due to many of its
eigenvalues being outside the 10% damping line shown in blue.

used to describe the mathematical ’state’ of a dynamic system. Intuitively, the state of a system

describes enough about the state to determine its future behaviour in the absence of any external

forces affecting the system. The system represented by a state space model is described by the

following equation

xk+1 = Axk +Buk + wk (5.1)

yk = Cxk +Duk + vk (5.2)

where: x is the state vector; u is the inputs vector; y is the outputs vector;w and v is the

random vectos; and A, B, C, and D are the state space matrices. Whereas k represents the

discrete time interval.

For the purpose of damping estimation, only the A matrix is needed. The primary task in modal

identification is to determine the system poles of the system transfer function or equivalently,

the eigenvalues of A. The eigenvalues of the state matrix A have an important influence on

the system response, and understanding them is key to understanding the general solution of
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the state-space system. The eigenvalues are the mathematical roots of the system; they tell

about the system’s stability. The eigenvalues of the system matrix A (poles) can be plotted in

a complex coordinate system. Furthermore, each mode’s natural frequency and damping ratio

can be defined using the real and imaginary components of the poles λi = σi ± jωi and the

damping ratio of the corresponding i-th mode can be calculated as:

ζi = −σi√
σ2

i + ω2
i

(5.3)

Fig. 5.2 shows the locations of the eigenvalues for a damped mode and an undamped mode.

An eigenvalue with a negative real part results in damped oscillations, and an eigenvalue with

a positive real part results in growing oscillations. In case of Fig. 5.2 the circles on red lines

represents the modes with growing oscillations. If the solution contain oscillations, then the

imaginary part of the eigenvalue defines the frequency of these oscillations.

Due to the large-scale nature of interconnected power system, modal analysis by utilizing math-

ematical models has become a tedious task. With wide area implementations of phasor measure-

ment units (PMUs), most modern modal analysis techniques nowadays utilize measurements

based modal analysis.

5.2.2 Measurement based method

Figure 5.3: Ambient vs ringdown oscillation for the bus 4041 in Nordic test system [2]

The measurement data obtained from PMU can be classified into two types:
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1. Ambient data

2. Transient /ringdown data

Fig. 5.3 depicts both types of data. An Ambient Response is an example of a Natural Response.

Ambient data is obtained when a system is working under an equilibrium condition, and the

major disturbance is from small-amplitude random load changes [147].

A Transient Response is the system’s response immediately after a sudden disturbance, such as a

fault, line tripping, generator trip, or load tripping. A Natural Response typically characterizes

small-scale transient responses. This thesis addresses ringdown detection in the presence of

noise using an Empirical Wavelet Transform (EWT). The motivation behind using EWT is to

provide a flexible and adaptive time-frequency analysis tool that can effectively capture non-

stationary and multi-scale features in signals. EWT allows for the decomposition of a signal

into different frequency components based on the local characteristics of the signal, enabling

enhanced analysis and understanding of complex and dynamic signals in various fields such as

signal processing, image analysis, and pattern recognition.

In a ringdown approach the damping is estimated by fitting the transient (or ringdown) response

y(t) to a simple function ŷ(t). Suppose that a linear, time-invariant dynamic system is brought

to an ”initial” state x(t0) = x0, at time t0. by means of some test input or disturbance. Then,

if the input is removed and there are no subsequent inputs or disturbances to the system, it will

”ring down” according to a differential equation of form:

ẋ = Ax (5.4)

where x is the state of the system. Here, A is an (n × n) matrix representing the system

dynamics, and the dot above A represents the derivative with respect to time. This equation

describes how the state of the system evolves over time during the ringdown phase when there

are no subsequent inputs or disturbances to the system. Let λi, pi, qi. be respectively the

eigenvalues, right eigenvectors, and left eigenvectors of (n × n) matrix A, then the solution to

(5.4) can be expressed as [148]
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x(t) =
n∑

i=1
(qT

i xo) pi exp(λit) (5.5)

=
n∑

i=1
Ri xo exp(λit) (5.6)

where Ri = piq
T
i is an (n × n) residue matrix. Note that qT

i xo in (5.6) is a scalar (that is a

simple constant). This implies that, though xo determines the stimulus to the mode associated

with eigenvalue λi, the distribution of modal response among the components of x is entirely

determined by the corresponding right eigenvector pi. Consequently information about pi can

be extracted by an appropriate modal decomposition of x(t) For simplicity, suppose that there

is just one output from the system and that it is of form

y(t) = βx(t) (5.7)

Where β is a constant. Introducing y(t) = βx(t) as the output simplifies the estimation process

because it provides a direct relationship between the observed record y(t) and the state of the

system x(t) without the need for complex transformations or additional equations. The output

from the system, y(t) is linearly related to the state of the system x(t) through a constant β.

This linear relationship, allows us to directly estimate the parameters for the exponential terms

in the observed record for y(t) by fitting a function ŷ(t) to the data. This simplification allows

for more straightforward parameter estimation and facilitates the analysis and characterization

of the system’s transient response during the ringdown phase.

The ring down methods are generally designed to directly estimate the parameters for the

exponential terms in (5.6) and/or (5.7) by fitting a function

ŷ(t) =
Q∑

i=1
Ai exp(σit) cos(2πfit+ ϕi) (5.8)

to an observed record for y(t), the ring down methods aim to estimate the mode amplitude

Ai, damping factor σi, oscillation frequency fi, and phase angle ϕi for each component in the

system’s response, whereas damping is calculated using (5.3). The Q represents the number of

components or modes being considered in the model. It signifies the total number of exponential
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terms being summed up to approximate the observed record y(t).

5.3 Motivation for Damping Estimation

Figure 5.4: Growing oscillations at California Oregon border at Malin substation on August
10, 1996; source [2]

Fig. 5.4 shows power flow oscillations recorded at Malin substation by Bonneville Power Admin-

istration, leading to a break-up of the WECC system [149]. Usually, these power flow oscillations

are damped by the system impedance, but if the interconnecting system is relatively weak or

stressed, these oscillations can grow. These growing oscillations led to the August 10, 1996,

blackout. There is no guarantee that another unforeseen problem cannot occur in the future,

significantly when tie lines are continually upgraded, and power transfer is growing. These

disturbances tend to become more severe and evolve into critical inter-area modes [150]. If

not appropriately damped, such oscillations can result in increased losses and undue stress on

the mechanical components of generators and, in extreme cases, may lead to instability [151].

Detecting these oscillations in a timely manner can prevent the system from major catastrophic

events.

Due to time-dependent control actions and nonlinear dynamics, these oscillations are inherently

non-stationary and may exhibit nonlinear trends and sudden variations[152]. Furthermore,

complex observational data may contain many electromechanical modes of oscillation close in

frequency and stochastic in nature. These non-stationary, nonlinear and stochastic character-

istics of the data makes the analysis and interpretation of the system’s behaviour difficult and
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can lead to biased or incorrect results. While some existing techniques can still be useful in

cases where linearity and stationarity assumptions hold, certain limitations exist when dealing

with nonlinear and dynamic oscillations. Specifically, commonly used methods like Prony and

matrix pencil algorithms for estimating oscillation modes have their drawbacks.

Prony and matrix pencil algorithms can be sensitive to noise in the data, compromising the ac-

curacy of mode estimation, particularly in the presence of significant noise. Additionally, these

algorithms assume a stationary signal model and may struggle to capture the time-varying

nature of non-stationary oscillations accurately. Furthermore, as Prony and matrix pencil al-

gorithms are based on linear signal models, they are less suitable for capturing the nonlinear

dynamics exhibited by oscillations. If the oscillations demonstrate strong nonlinear behavior,

such as amplitude modulation or frequency modulation, these algorithms may not provide accu-

rate mode estimation. Lastly, when multiple oscillation modes are closely spaced in frequency,

Prony and matrix pencil algorithms may face challenges in distinguishing between them, lead-

ing to mode aliasing. This can result in the inaccurate identification and tracking of individual

modes.

With the advent of PMU, various measurement-based methods have been proposed for early di-

agnostics of inter-area oscillations. These methods can be loosely divided into adaptive and non-

adaptive techniques. Adaptive methods have the ability to adapt and adjust their parameters

based on the changing characteristics of the data. They can effectively handle non-stationary

and time-varying signals, making them suitable for analysing complex oscillatory behaviour in

power systems. On the other hand Non-adaptive signal processing techniques are commonly

used in applications where the signals have known and consistent properties, and there is no

need to dynamically adapt to changing conditions or learn from the input data. A discussion

on the commonly used non-adaptive methods is first provided before focusing on the adaptive

methods that the present study concerns.

Many modal analysis methods use pre-determined basis to process data and are therefore consid-

ered as non-adaptive or rigid [153]. Existing methods for inter-area oscillation analysis include

Fourier transform [154], CWT [155, 156], Prony’s method [157, 158, 159] Matrix Pencil method

[160, 161], Kalman filter [162, 163], total least square [164] and singular value decomposition

[165].

Most of the above methods start by first defining the basis function. Next, the signal is con-
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voluted with these basis function to obtain amplitude and frequency either for distribution or

for filtering. Such an approach has the advantage of a solid mathematical foundation. Unfor-

tunately, these methods are not adaptive at all [166]. Besides, most of these methods are based

on a linear approximation of the system and suitable for analysing stationary oscillation signals

only.

Another downside of these methods is the traditionalistic apriori basis, where the analysis is

based on convolution of the data with the already established basis. Any approach with apriori

basis could not fit well to the variety of the data from different underlying mechanism [166]. The

term ”traditionalistic apriori basis” refers to an established or predefined set of basis functions

or components used in certain signal processing or analysis methods. For example, Wavelet

analysis involves decomposing a signal into different frequency components using a set of wavelet

functions. These functions can be chosen based on prior knowledge or assumptions about the

signal’s characteristics. The downside highlighted is that using a fixed, predetermined set of

wavelet functions may not effectively capture the diverse and complex nature of different signals

arising from various underlying mechanisms. Each signal might require a different set of wavelet

functions to accurately represent its unique features. This limitation is further compounded by

the convolution process and its interaction with the uncertainty principle, making the estimation

of power system modal behavior more challenging.

To overcome these limitations, adaptive signal processing techniques may be more suitable.

These techniques can better handle non-stationary and nonlinear behaviour and provide more

robust and accurate estimation of oscillation modes in dynamic and nonlinear systems. Em-

pirical mode decomposition (EMD) proposed in [167], is an adaptive signal processing method.

Adaptive decomposition methods adapt to the transient feature and emphasise the local char-

acteristics of the signals without requiring any prior basis to match the signal characteristics.

They can adaptively extract the constituent oscillation modes of mono-components nature. At

the same time, they can replicate the underlying properties from a random signal to represent

it as a superposition of several mono components [168]. This permits accurate estimation of

both the instantaneous frequency and instantaneous amplitude of each constituent component

and provides an in-depth analysis of the time variability of signals.

Despite the above advantages, EMD suffers from the major drawback of mode mixing, insta-

bility under noise inferences, over/under fitting due to cubic spline interpolation and lack of
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mathematical formulation. EMD suffers from a lack of a precise mathematical formulation pri-

marily because it is an empirical or data-driven method. Unlike some other signal processing

techniques that are based on well-defined mathematical principles and equations, EMD is de-

rived from an iterative process that is guided by the intrinsic properties of the data itself. This

empirical nature makes it challenging to establish a comprehensive mathematical framework

that governs all aspects of EMD.

EMD is essentially a self-adaptive approach that aims to decompose a signal into components

called Intrinsic Mode Functions (IMFs) that represent oscillatory patterns at different scales.

These IMFs are obtained by identifying local extrema and constructing upper and lower en-

velopes using cubic spline interpolation. The process continues by subtracting the identified

IMF from the original signal and repeating the decomposition on the residual signal until cer-

tain criteria are met. The lack of a formal mathematical formulation means that the behaviour

of EMD and the properties of the resulting IMFs are not rigorously defined or proven. This

can be seen as a drawback because it makes it challenging to precisely analyse the theoreti-

cal properties of EMD and establish mathematical guarantees regarding its performance and

limitations.

Many scholars have carried out comprehensive researches on EMD and have developed related

methods, such as Ensemble Empirical Mode Decomposition (EEMD) [169], local mean decom-

position (LMD) [170] and more recently variational mode decomposition (VMD) for solving

mode mixing and over/under fitting problems. Nevertheless, due to the characteristics of intri-

cate signals encountered during the transient phenomenon in the power system, how to exploit

the merits of these methods and effectively extract the meaningful features still deserves further

investigation.

A recent addition to the adaptive mode decomposition family is EWT [171]. Unlike EMD,

EWT works in the frequency domain and adapts according to the information contained in the

analyzed signal [172]. The EWT process detects all the local maxima of the spectrum, then

gets the boundaries which are the midpoint of two consecutive maxima to segment the Fourier

spectrum. However, as mentioned in [153], it is a big challenge to employ the Fourier spectrum

for determining the boundaries in noisy and non-stationary signals. False modes prevent proper

segmentation of the spectrum. Another problem associated with the EWT boundary detection

method is selecting the number of bounds in advance. In power systems there is a large number
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of closely spaced low-frequency oscillations, thus it is difficult to guess the number of modes in a

signal apriori. [173] proposed a solution to detect the boundaries of the Fourier spectrum using

the sliding window approach; however, using just the sliding window results in unnecessary

segmentation. This means that the entire spectrum is divided into smaller segments based

solely on the window size, irrespective of the presence or significance of frequency peaks.

The decomposed EWT modes satisfy the requirements of mono-components signal and can

be used with the HT based instantaneous attributes to get the time-frequency representation.

However, HT also suffers from the energy leaks at the two ends, and the negative frequency

will emerge when the signal maxima are lower than the minima. The sampling signal cycle

must be ensured to be integral to avoid the influence of the end effect, which is not an easy

option due to the randomness of the signal. Furthermore, the most common way of calculating

the instantaneous damping ratio depends on first and second derivatives, which introduces

discontinuities.

Motivated by these existing issues, this thesis proposes to automatically determine the bound-

aries of the Fourier segments by using a sliding window approach and then limit the number of

segments by using a threshold value. With sliding windows, local maxima are determined au-

tomatically leading to a clear and concise separation of the Fourier spectrum. By thresholding

the frequency amplitude, the number of modes can be controlled. To avoid the end effect in

HT, in this paper instead of extending the end of the signal, we propose to discard the distorted

portion of the instantaneous amplitude by segmentation, and the viability and effectiveness are

verified by the case studies. An alternative damping estimation method by combining logarith-

mic decrements and instantaneous amplitude is also being proposed to improve the precision

and accuracy of the damping ratio estimates.

The highlighted contributions of this work can be summarized as follows:

• A framework to automatically determine the boundaries of Fourier segments in EWT by

detecting local maxima using a sliding window and appropriate threshold.

• Avoid the end effect in HT by discarding the distorted portion of the instantaneous am-

plitude through segmentation.

• A technique to improve the accuracy in instantaneous damping ratio estimation by ap-

plying logarithmic decrements on the instantaneous amplitude without introducing or
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spreading discontinuities.

5.4 Interarea Oscillations

The second part of this thesis centers its attention on interarea oscillations, and a concise

background is presented below to contextualize this focus.

All power systems have electromechanical modes. Systems with power transfer over long dis-

tances with long radial lines are the most likely to have inter-area electromechanical modes with

lower damping. Several cases have been recorded in which interarea oscillations have resulted

in blackouts of power systems [174, 175, 176].

Interarea oscillations appear as a result of supply and demand imbalance between the group of

generators in two areas. These oscillations have frequencies in the range of 0.1 to 0.8 Hz [33].

Small disturbances such as load changes can induce interarea oscillations. The phenomenon can

be visualized as two large generators trying to desynchronize each other in the event of supply

and demand imbalance in each area [177]. As a result of desynchronization, a damping torque

diminishes and the amplitude of rotor oscillation increases. If no remedial action is taken these

oscillations can cause power system separation or major blackouts.

5.4.1 Modal Parameter Estimation of Interarea Oscillations

Modal analysis is a crucial technique employed in signal processing to extract essential informa-

tion from measured oscillation data. It is aimed at identifying and characterizing the inherent

oscillation modes present in a system. The fundamental parameters that define a mode of

oscillation are as follows:

• Modal Frequency: This parameter signifies the inherent frequency at which a system or

structure tends to oscillate when subjected to a disturbance or perturbation. It provides

insights into the natural dynamic behavior of the system.

• Modal Damping: Modal damping reflects the rate at which the oscillations of a mode

decay over time. It is a crucial indicator of the stability of the system. High damp-

ing implies rapid dissipation of energy and stable behavior, while low damping indicates

persistent oscillations and potential instability.

• Mode Shape: The mode shape outlines the spatial distribution of the oscillations within
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the system. It helps in understanding how different parts of the system contribute to the

overall oscillatory behavior.

Modal parameter estimation is the process of deducing these essential parameters from the

recorded oscillation waveform data [178]. Accurate estimation of modal parameters is of paramount

importance for various reasons. Firstly, precise mode estimation can aid in stabilizing poorly

damped modes, contributing to overall system stability. Secondly, real-time modal parameter

estimation can provide situational awareness, enabling operators to make informed decisions

and take timely corrective actions to maintain power system stability [179].

It’s important to note that this thesis focuses specifically on two key aspects of modal analysis:

modal frequency estimation and modal damping estimation. These parameters are integral for

understanding the dynamic behavior and stability of power systems. The subsequent chapters

will delve into a detailed methodology for effectively estimating these two crucial parameters,

contributing to an enhanced understanding of interarea oscillations and their impact on power

system stability.
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Chapter 6

Estimation of low frequency

electromechanical oscillation

6.1 Introduction

This section proposes a real-time automatic modal analysis of multi-dimensional PMU measure-

ment data. The proposed algorithm aims to identify the natural frequency (NF) and damping

ratio (DR) of the interarea oscillatory modes present in the power system’s signal. In this study,

an enhanced Empirical Wavelet Transform (EWT) approach based on a moving window seg-

mentation of the Fourier spectrum is introduced for accurate time-frequency representation of

noisy, non-stationary, and nonlinear signals. EWT is an adaptive signal decomposition method,

but its main shortcoming is that Fourier segmentation strongly depends on the local maxima

of the amplitudes of the Fourier spectrum. This shortcoming can be overcome by developing

a feasible and efficient sliding window-based empirical wavelet transform (SEWT). The SEWT

approach decomposes the low-frequency electromechanical oscillation signal into a series of in-

trinsic mode functions (IMFs). The Hilbert transform (HT) is applied to each IMF to obtain

the instantaneous parameters of the signal. Then, the NF and DR of each mode are estimated

as the average of the instantaneous parameters. The proposed method achieves perfect segmen-

tation in noisy and non-stationary signals. Furthermore, simulated and experimental signals

are used to verify the effectiveness of the proposed method.
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Figure 6.1: Flow diagram of the proposed methodology.

6.2 Proposed Scheme

Fig. 6.1 presents an overview of the proposed scheme for detecting oscillatory stability. Noisy

PMU data is collected, and the moving window technique is applied to emulate the online detec-

tion method for the estimation of modal frequency. The moving window strategy assumes that

recent data carries more significant implications than historical data. As new samples arrive,

the old samples are discarded from the window, and the parameters of the models are updated

iteratively. Due to a large amount of PMU streaming data, online analysis becomes computa-

tionally challenging. Therefore, principal component analysis (PCA) is used as a dimensionality

reduction tool. PCA aims to find appropriate directions within data that maximize variance

and sometimes reduce noise effects. As a result, the high dimensions of the data are reduced

by using only those principal components that contribute to the covariance.

In the proposed approach, the oscillation levels are continuously monitored, thus making it

possible to recognize the usual level of the ambient oscillations. Consequently, detecting events

and other inconsistencies that deviate from the ambient electromechanical changes is possible.

If the anomalies in the form of oscillations are detected, then SEWT is applied. The algorithm

estimates the signal’s oscillation frequencies and builds appropriate boundaries to create the
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Figure 6.2: Detection of an event in the proposed methodology.

wavelet filter bank. The filter banks decompose the time-series signal into a set of frequency

bands according to the estimated boundaries. This decomposition results in mono-component

signals containing only a single mode known as IMFs, When the IMFs are accurately obtained,

the signal’s instantaneous frequencies (IF) and instantaneous amplitude (IA) are identified using

HT, and the average of the instantaneous parameters is calculated. Finally, the instantaneous

damping ratio (IDR) is estimated from the instantaneous parameters. In case of unstable or

badly damped modes, an alarm is raised.

6.3 Theoretical Background

This section provides information about the theoretical background of the algorithms used in

the proposed scheme. These include:

1. Event Detection

2. Principal Component Analysis

3. Empirical Wavelet Transform

4. Hilbert Transform

6.3.1 Event Detection

A moving window technique is applied for the online detection of interarea oscillation. As shown

in Fig. 6.2, the complete procedure is used only if a significant excitation (event) is identified. To

detect an event, the signal’s variance σ is measured every time the window moves and compared
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Figure 6.3: Variance analysis for different window sizes

with a threshold τ . The complete identification method is carried out if σ is greater than the τ .

Fig. 6.3 shows the σ of a signal based on different window sizes. As can be noticed, σ is higher

for smaller window sizes and lower for larger ones. The τ has to be set up based on the size of

the time window considered.

6.3.2 Principal Component Analysis

Due to the large number of operating variables and the presence of multiple modes in each

variable, the estimation of NF and DR from voltage variables one at a time will lead to a heavy

computational burden. Moreover, voltage PMU measurements from different buses are often

strongly correlated as a result of redundant sensors and mechanism relationships [180]. Hence,

it is necessary to carry out dimension reduction to eliminate redundant data information and

capture the primary data structure. PCA can reduce the dimension effectively and maintain

data information in the first few principal components. The description of PCA may be found in

many sources[181][182]. PCA extracts the dominant pattern of the data and provides essential

reliability for the detection of modal frequency components which could not be achieved at any

given scale separately.

The voltage PMU data matrix to be analyzed by PCA is represented as X(m×s), consisting

of s observations obtained from the online measurements of the voltage variables m(m ≪ s)

measured over time t. The matrix X can be decomposed via singular value decomposition

(SVD) into X = UDVT . Where U ∈ R(s×s) and V ∈ R(m×m) are unitary orthogonal matrices.
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Figure 6.4: a) Voltage signal for all buses b) Voltage signal for generators g5,g6 and g7

The diagonal matrix D ∈ R(s×m), contains singular values of decreasing magnitude (λ1 ≥ λ2 ≥

, . . . ,≥ λm). If the elements of matrix X are standardised, a correlation matrix C(X) = VΣVT

can be obtained by squaring D and dividing by (n − 1). Similar to D, matrix Σ is also a

diagonal matrix and provides variance of X, such that σ2
1 ≥ σ2

2, . . . , σ
2
m ≥ 0.

The relationship between the PCs, Y(y1,y2, . . . ,ym) and the original dataset X(s × m) is

expressed as Y = XV = UD. The quotient (∑k
q=1 λq)/(∑m

q=1 λq) = 0.90 is used to determine

the dimensionality of the system under consideration as it describes the contribution of the k-th

PC on the variance of the data. By keeping only k components, the original dataset can be

reduced to lower dimensions yk(t), where (k ≤ m).

6.3.3 Empirical Wavelet Transform

EWT is a method for representing a signal or a time series as a combination of wavelets. A

wavelet is a particular type of mathematical function that can be used to analyze signals and

extract information about the signal’s frequency content. The EWT is a generalization of the

wavelet transform, a widely used method for analyzing signals in a time-frequency domain. One

of the main advantages of the EWT is that it can be used to analyze signals with complex struc-

tures and non-stationary behavior, which cannot be easily analyzed with traditional methods

such as the Fourier transform. The EWT is also well-suited for analyzing signals with sharp

transitions or discontinuities, as it can adapt to local features in the signal. The following three

steps can describe the EWT method [183]:
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Figure 6.5: Reconstructed signal from from first three principal components

• adaptively segment the Fourier spectrum;

• construct a suitable empirical wavelet filter bank according to the boundaries and filter

the signal;

• reconstruct empirical modes.

The classic Wavelet transform applies fixed partitions over the Fourier spectrum of the signal

for segmentation. In the EWT, the Fourier spectrum of the signal is adaptively segmented into

multiple frequency bands, and a wavelet transform is applied to each band separately. This

allows the EWT to capture both the local and global features of the signal and to adapt to the

changing characteristics of the signal over time.

An empirical wavelet filter bank is a collection of filters that can be used to perform the EWT on

a signal. The filters in the filter bank are designed to respond to different frequency components

of the signal. They can decompose the signal into a series of wavelet coefficients as part of the

EWT process. The wavelet coefficients produced by the filter bank can be analyzed in order

to extract meaningful features from the signal, such as patterns or trends. The filter bank can

also be used for denoising, compression, or classification tasks.

Reconstructing the signal from the wavelet coefficients can be considered a reverse convolution,

in which the wavelet coefficients are convoluted with the inverse wavelet function to obtain the

original signal. It’s important to note that the reconstructed signal may not be exactly the

same as the original signal due to the loss of information during the EWT process. However,

114



Chapter 6. Estimation of low frequency electromechanical oscillation6.3. Theoretical Background

Figure 6.6: Boundaries detected using the EWT in the Fourier spectrum (the black dashed lines
represent the position of boundaries). Segmentation of the Fourier spectrum of the signal for
model-C2

the reconstructed signal should be a good approximation of the original signal and can be used

for estimating the IF and IDR of the signal.

To calculate instantaneous parameters (IF and IDR), the individual oscillatory modes present

in the signal should be separated from each other (mono-component). The steps required to

analyse the signal are as follows:

Step 1) Apply fast Fourier transform to the discrete signal y(t) of the sliding window to obtain

the frequency spectrum in the range of [0, π].

Step 2) Let Fourier spectrum support be divided into N contiguous segments, then N − 1

boundaries need to be extracted excluding 0 and π. To find the boundaries, we detect the

local maxima Ln in the Fourier spectrum and obtain their corresponding frequency ωn, where

n = 1, 2, . . . , N .

Step 3) The boundary Ωn between two segments is then defined as the centre of two consecutive

maxima:

Ωn = ωn + ωn+1
2 (6.1)

where ωn and ωn+1 are frequencies with n = 1, 2, . . . , N − 1. It should be noted that first (Ω0)

and last (ΩN ) boundary frequencies are 0 and π, respectively. This is because EWT has some

constraints on the frequency range it operates on. It restricts the Fourier spectrum to the range

[0, π]. This means that only positive frequencies of the normalized Fourier axis are considered
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in the EWT. Positive frequencies are those that lie in the range [0, π] in the frequency domain.

In many cases, when working with real-valued signals, the negative frequency components are

redundant due to the symmetry properties of the Fourier transform.

Step 4) The empirical wavelet can be defined as a band pass filters on each segments of the

frequency spectrum. The empirical scaling function ϕ̂n(ω) and the empirical wavelets ψ̂n(ω)

are given by:

ϕ̂n(ω) =

1, if |ω| ≤ (1 − γ)ωn

cos(π
2α(γ, ωn)), if (1 − γ)ωn ≤ |ω| ≤ (1 + γ)ωn

0, otherwise

(6.2)

ψ̂n(ω) =

1, if (1 + γ)ωn ≤ |ω| ≤ (1 − γ)ωn+1

cos(π
2α(γ, ωn+1)), if (1 − γ)ωn+1 ≤ |ω| ≤ (1 + γ)ωn+1

sin(π
2α(γ, ωn)), if (1 − γ)ωn ≤ |ω| ≤ (1 − γ)ωn

0, otherwise

‘
(6.3)

where α(γ, ωn) = β( 1
2γωn)(|ω| − (1 − γ)ωn)). The parameter γ ensures that no overlap between

two consecutive transitions occur and can be selected as γ < minn

(
ωn+1−ωn

ωn+1+ωn

)
.

β(x) is an arbitrary function defined as

β(x) =



0, if x ≤ 0

1, if x ≥ 1

β(x) + β(1 − x) = 1, ∀ x ∈ [0, 1]

(6.4)

Step 5) Having defined the empirical wavelet and scaling function, the EWTs W ϵ
y(n, t) of the

signal is defined in a way similar to the classic wavelet transform. The approximate coefficients

can be expressed as the inner product of analysed signal y(t) with scaling function:

W ϵ
y(0, t) = ⟨y, ϕ1⟩ =

∫
y(τ)ϕ1(τ − t)dt = (ŷ(ω)ϕ̂1(ω))∨
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In the same way, the detailed coefficients are obtained by the inner product of analysed signal

y(t) with empirical wavelets:

W ϵ
y(n, t) = ⟨y, ψn⟩ =

∫
y(τ)ψ̂n(τ − t)dt = (ŷ(ω)ψ̂(ω))∨

where W ϵ
y(n, t) denotes the detailed coefficients at time t for the n filter bank. ϕ1(ω) and ψ(ω)

are empirical wavelet function and empirical scaling function respectively. ϕ̂1(ω) and ψ̂(ω) are

Fourier transform of ϕ1(ω) and ψ(ω) which are defined by (6.2) and (6.3). The reconstructed

signal can be obtained by:

y(t) = W ϵ
y(0, t)∗ϕ1(t) +

N∑
n=1

W ϵ
y(n, t)∗ϕn(t) (6.5)

The empirical mode yn(t) can be given by:

y0(t) = W ϵ
y(0, t)∗ϕ1(t)

yn(t) = W ϵ
y(n, t)∗ψn(t)

(6.6)

6.3.4 Proposed Enhanced Empirical Wavelet Transform

To enable the automatic detection of boundaries for the adaptive decomposition of EWT, we

propose SEWT for mode separation. A drawback of EWT is that when the analysed signal

comprised of noise and contain frequencies close to each other some local maxima might appear

in the detected peak sequence, which lead to improper segmentation. SEWT divides the Fourier

spectrum without being stuck in the local maxima. However, as the window moves along the

spectrum, some unnecessary segmentation is produced. Therefore, a limit on a spectrum scale

is added, which retain peaks as a percentage of the maximum amplitude in the spectrum range.

The implementation steps are given below:

1. Input Signal: Consider a real voltage signal y(t), sampled at a frequency of Fs. To

analyze this signal, we first subject the discrete signal y(td) to Fast Fourier Transform

(FFT) to obtain its frequency spectrum, denoted as Xω.

2. Sliding Window: Determine the step size for the sliding window to slide over the spec-

trum Xω as the reciprocal of the Nyquist frequency (N ) of the signal. The Nyquist

frequency represents half of the sampling frequency, i.e., N = Fs
2 . Set the step size (S)
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Figure 6.7: Segmentation of Fourier spectrum using SEWT, with the α = 0% (blue), α = 10%
(green) and α = 25% (red) of the maximum amplitude.

as the reciprocal of the Nyquist frequency: S = 1
N . This choice ensures that the sliding

window has sufficient resolution to cover the low-frequency range relevant to the inter-area

oscillations.

3. Sliding Window: Determine the step size for the sliding window as the reciprocal of

the Nyquist frequency (N ) of the signal. The Nyquist frequency represents half of the

sampling frequency, i.e., N = Fs
2 . Set the step size (S) as the reciprocal of the Nyquist

frequency: S = 1
N . This choice ensures that the sliding window has sufficient resolution

to cover the low-frequency range relevant to the inter-area oscillations.

4. Peak Detection: For each segment Λn, identify the maximum value and store these

maxima in a sequence, denoted as Lmax = L1, L2, . . .. To prioritize dominant peaks, sort

the sequence Lmax in decreasing order.

5. Filtering Peaks: Apply a filtering step to retain only the maxima Lmax that exceed

a selected threshold α. This threshold determines which peaks are retained as a per-

centage of the maximum amplitude. The filtered maxima are stored in the sequence

LZ
max = Ln ≥ α|n = 1, 2, . . . , N . By doing this, the algorithm avoids being trapped by

local maxima and focuses on significant peaks in the spectrum.

6. Boundary Definition: Define the boundaries between two consecutive maxima as the

midpoints, similar to the process described in equation (6.1). These boundaries mark the

frequency ranges that will be used for mode separation in the EWT.
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Fig. 6.7 illustrates the segmentation of the Fourier spectrum using the SEWT algorithm. The

dashed vertical lines represent the detected Fourier boundaries. By adjusting the threshold α,

we can retain the most dominant frequencies in the signal, which provides valuable information

for analysis or further processing. However, selecting the appropriate value for α involves

a trade-off between preserving essential frequency components and suppressing noise or less

significant components. There is no universally optimal threshold value, as it depends on the

signal’s characteristics and the specific requirements of the application. The choice of α should

be based on a balance between preserving important information and suppressing noise or less

relevant components to achieve optimal mode separation.

6.3.5 Selecting the signal with highest power

After performing the EWT on the signal, the resulting modes are typically ranked based on their

power or energy content. Each mode represent a specific frequency range or characteristic of the

signal. These modes are sorted based on their power, which represents the amount of energy

carried by each mode. The mode that exhibits the highest power or energy is then retained for

further analysis and interpretation. By identifying the mode with the highest power, we can

focus on the most dominant and significant component of the signal.

Retaining the mode with the most power allows us to prioritize the analysis of the strongest

and most influential oscillatory behavior or pattern present in the signal. This mode often

represents the dominant mode of interest or the major underlying phenomenon contributing to

the observed signal dynamics.

The signal obtained from the EWT is typically a discrete signal. This decomposition process

results in a set of discrete signals corresponding to each mode.

For a discrete signal y(t) defined over a finite sequence of samples N, the power is calculated as

the average of the squared magnitude of each sample:

P = 1
N

N−1∑
t=0

|y(t)|2 (6.7)

Here, y(t) represents the discrete signal obtained from the EWT. The absolute value squared,

|y(t)|2, represents the power of each sample. Summing up the squared magnitudes of all the

samples and dividing by the total number of samples N yields the average power of the signal.
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By calculating the power of the EWT output signal, we can assess the energy or strength of the

signal, which can provide insights into its characteristics and behavior.

6.3.6 Hilbert Transform

The empirical modes are narrow band components, therefore HT can be applied to study the

signal’s time variability in detail. For a given real signal y(t), the analytical signal z(t) can be

given as:

z(t) = y(t) + iH[y(t)] = A(t)eiθ(t) (6.8)

where A(t) represents instantaneous amplitude (IA), θ(t) is the instantaneous phase (IP) and

H[y(t)] is the HT of y(t) and is defined using Cauchy principal value (p.v.) as:

H[y(t)] = 1
π
p.v.

∫ +∞

−∞

y(τ)
t− τ

dτ (6.9)

In terms of y(t) and its HT, the IA, IP and instantaneous frequency (IF) are defined as:

IA = A(t) =
√
y2(t) + H[y(t)]2 (6.10)

IP = θ(t) = tan−1
(H[y(t)]

y(t)

)
(6.11)

IF = f(t) = 1
2π

dθ(t)
dt

(6.12)

The ID function ζ(t) is calculated using the technique provided in [184]:

ζ(t) =
√

ρ(t)2

1 + ρ(t)2 (6.13)

where

ρ(t) =

∣∣∣∣∣∣
ln IA0

IA(t)
2π · IF(t) · t

∣∣∣∣∣∣ (6.14)

and IA0 is the initial amplitude.

The integral in the Hilbert Transform (HT) equation, given by equation (6.9), is used to compute

the analytic signal, which is a complex representation of the original real signal y(t). The HT is

a mathematical operation that provides a way to extend a real signal into the complex domain,
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enabling the analysis of the signal’s instantaneous attributes such as amplitude, phase, and

frequency.

When the variable of integration, τ , equals t in the integral, the denominator of the integrand

becomes zero, which results in a singularity. This leads to an undefined value for the HT at that

specific point. To address this issue and provide a well-defined result for the HT, the Cauchy

principal value (p.v.) is used.

The Cauchy principal value is a mathematical concept used to handle integrals with singularities.

For the HT integral, the Cauchy principal value ensures that the integral is evaluated as a limit

around the singularity, taking into account both sides of the singularity. This process allows for

the proper computation of the HT even when τ approaches t.

6.3.7 Average parameters

While the average frequency Favg is calculated by taking the average of (6.12), to obtain the av-

erage damping coefficient, a damping equation (mentioned in[185]) is commonly used. However,

it relies on computing the derivative, which introduces discontinuities. This work estimates the

average DR ζavg with a combination of a logarithmic decrement and IA envelope obtained from

the (6.10). The most common way to calculate the DR of a free decaying oscillation is given

below:

ζ = δ√
(2π)2 + δ2 (6.15)

where δ is the logarithmic decrement of peak amplitudes of two points o1 and o2 in oscillatory

signal, exactly υ cycles apart

δ = 1
υ

ln o1
o2

(6.16)

By using (6.15) and (6.16), ζavg can be estimated much more precisely from successively discrete

decaying points of the IA envelope (Fig. 6.11). First, the logarithmic decrement is calculated

in (6.15) for each successive sample (υ = 1) in the envelope and then dividing it by the total

number of samples V in the envelop:

δi =
( 1

υ ln IAi
IAi+1

)
V

(6.17)
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where IAi is the value of the i-th instantaneous envelop sample. Next ζavg is calculated by

substituting (6.17) in (6.15) and summing up all the values:

ζavg =
V∑

i=1

δi√
(2π)2 + δ2

i

(6.18)

6.4 Online consideration

In order to meet the criteria for real-time analysis, a procedure must be capable of estimating

the stability of the system before to the arrival of the next set of measurement data. This

highlights the importance of employing fast and accurate techniques for analyzing online low-

frequency inter-area oscillations. These techniques are essential for providing the control system

with sufficient time to evaluate the situation and make appropriate decisions in a timely manner

[186].

This work proposes the utilization of a moving window technique to closely align with the

online detection method to estimate the modal frequency and DR. The moving window strategy

assumes that recent data carries more significant implications than historical data. As new

samples arrive, the old samples are discarded from the window, and the parameters of the

models are updated iteratively. There is a significant trade-off between memory to keep data

and performance. The larger the memory results in higher accuracy and low performance—lower

memory results in low accuracy but faster performance [187].

The main steps of the proposed methodology are summarised in the flowchart of Fig-6.1.

6.5 Numerical results

6.5.1 System model and case study description

The proposed scheme is tested using the Nordic test system [188]. Time-domain simulations

were conducted using the dynamic simulation software PyRAMSES [132], and the results were

saved in a database, emulating the PMU measurements. Only voltage magnitude measurements
Table 6.1: Small-signal stability analysis.

C1 C2
Mode2 Mode3 Mode2 Mode3 Mode4

Frequency(Hz) 0.538 0.742 0.533 0.766 0.949
DR (%) 3.7 3.9 -0.4 -0.1 0.3
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Figure 6.8: Case 1: Decomposition of PC1 voltage signal using SEWT.

are used from the 20 synchronous generators. A window of 20 s with a step size of 1 s is chosen

(19 s overlap). The proposed scheme utilizes a window size of 20 seconds for data from Phasor

Measurement Units (PMUs). This window size is chosen to allow for the analysis of oscillation

cycles while ensuring the continuity of data. The window operates with a step size of 1 second,

resulting in a 19-second overlap between consecutive windows.

The 19-second overlap indicates that once a 20-second window of data is stored, the window

moves forward by 1 second at a time. This rapid movement of the window ensures that new

data is continuously incorporated into the analysis, providing real-time insights into the system

behavior. The window size of 20 seconds is selected to accommodate the analysis of oscillation

cycles. It allows for capturing multiple cycles within the window, facilitating the examination

of the characteristics and dynamics of these low-frequency oscillations. By analyzing longer

time intervals, more comprehensive information about the system’s behavior and stability can

be obtained. This choice of window size, combined with the 1-second step size, strikes a balance

between capturing sufficient data for accurate analysis and ensuring a quick update rate to

facilitate real-time monitoring and decision-making.

Two case study scenarios were investigated a) Stable oscillations model (C1) and b) Un-

stable oscillations model (C2). For C2, several generator PSS controllers were deactivated

to destabilize the system. In both cases, the modes are excited by applying a three-phase fault

at bus 4072 at time t = 50 s, which is automatically cleared after 100 ms. All the measurements
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Figure 6.9: Case 1: Voltage signal for three generator buses, g6,g7 and g8 after the disturbance
is introduced at time t= 50 s

are sampled at 50 Hz. Gaussian white noise is added to the voltage signals with a signal-to-noise

ratio (SNR) of 40 dB.

We performed a small-signal stability analysis on the original differential-algebraic model used

for the above two cases and identified the main electromechanical modes as detailed in Table 6.1.

These are used as a benchmark (BM) for our real-time detection algorithm that only uses the

data flow.

6.5.2 Case study 1(Stable Model):

The first step applies PCA to the normalized voltage magnitude data. The first principal

component (PC1) accounts for 83% of the variation, while the second component (PC2) accounts

for 8% of the total explained variance. Therefore, only the first two PCs are retained, capturing

a total of 91% variation. Fig. 6.9 shows three voltage signals from generator buses g6, g7, and

g8, after the disturbance is introduced at time t=50s. Fig. 6.10-a shows the same voltage signal

with an SNR of 40 dB. Fig. 6.10-b shows the reconstructed signal obtained through PCA for

20 voltage buses. PCA is a powerful statistical technique that can be used to determine lower

dimensional representations of sampled data and reduce noise from the data. It can be noticed

from Fig. 6.10-b that PCA has successfully reduced the signal’s noise level.

For case study 1, a change in the variance level σ of the window was experienced on the system,

followed by an introduction of a disturbance at time 50 s. At this point, the variance reached
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Figure 6.10: Case 1: On the left voltage signal for generator buses g6, g7 and g8 with the SNR
of 40 dB. On the right, PC1 and PC2 for the 20 generator buses from Nordic-32 test system.
PC1 captures 83% of the variation, while the PC2 captures 8% of the total explained variance.

its threshold level of 0.05. Once the event is detected, SEWT is applied, and the signal is

decomposed. Fig. 6.7 shows the results of the segmentation of the Fourier spectrum using three

different threshold α values and a step size of 0.04 Hz. Fig. 6.8 illustrates the modes extracted

using SEWT with α = 15%. The method analyses all the modes. However, the signal power of

Mode-0 and Mode-1 is negligible and therefore discarded. We only consider Mode-2 and Mode-

3 as these modes contain more abundant impulse information. Therefore, HT is applied to

Mode-2 and Mode-3 only. Their corresponding frequencies are estimated 0.54 Hz and 0.77 Hz.

Meanwhile, the noise is separated from the dominant components, represented by Mode-4 in

Fig. 6.8.

Fig. 6.11 shows the decaying amplitude from HT for Mode-2. The envelop obtained from the

application of the HT is fitted to the reconstructed EWT signal. At the beginning and end

of the signal there is a difference due to the end effect [185] of HT as a result of a finite time

series. In a real time, analysis, we have a continuous stream of data therefore to overcome this

issue the left and right tails of the IA envelop are discarded without extending the ends. In our

analysis, we utilize a window size of 20 seconds with a step size of 1 second. As part of our

methodology, we purposefully exclude the segment extending 0.5 seconds from the beginning

and 0.5 seconds from the end of each window. This selective exclusion is achieved through a

binary masking technique, where the mask value is set to 0 within the portion that needs to

be discarded and 1 elsewhere. No information is lost as the discarded data is overlapping with

125



6.5. Numerical results Chapter 6. Estimation of low frequency electromechanical oscillation

Figure 6.11: IA envelop fitted with the reconstructed EWT signal.

the next/previous sliding windows. The average DR and the IDR of the truncated envelop are

computed using (6.18) and (6.14) respectively.

The HT method is applied to each selected mode to acquire the instantaneous components for

feature extraction. A deeper insight into the nature of temporal behavior of the oscillations

is obtained from analyzing these instantaneous attributes for each EMF. The IF and ID for

Case-1 are shown in Fig. 6.12. Simulation results show that the instantaneous attributes of the

oscillatory response exhibit increased damping, thus indicating the system approaching stability

after the disturbance. Of particular interest and practical significance is the analysis of the IF

in Fig. 6.12, which shows that the transient signal has a frequency of 0.54 Hz and 0.76 Hz for

mode-2 and mode-3, as expected from conventional linear analysis techniques.

Fig. 6.13 shows the time evolution of the average DR for different window sizes. The proposed

scheme can estimate the damping both during ambient conditions and ring down (i.e., before and

after the tripping of the branch) rather accurately. However, when a sudden disturbance occurs,

resulting in a ringdown oscillatory response, the algorithm will see that mode as negatively

damped for the time windows that have the event start time in the middle of the window. For

example, if the mode is not excited in the first 15 s of the window and is excited in the last 5

s after the event (Fig. 6.14), the peak of that mode will increase in magnitude throughout that

window. To solve this issue, the program skips the analysis windows where a high jump in the

signal occurs and starts the analysis once that sharp jump leaves the window. The channel is
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Figure 6.12: Case 1: Top panel shows IF f(t) and the bottom panel shows IDR ζ(t) of extracted
modes from PC1.

Figure 6.13: Case 1: Estimates for the average DR ζavg for different window sizes.
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Figure 6.14: Excitation of event in the middle of the window

discarded if the σ of the window is below a preset threshold.

To ensure the threshold for detecting jumps or events in the signal is carefully chosen, a rigor-

ous approach is followed, which involves running simulations multiple times and analysing the

resulting data. This process helps determine the level of jump expected when an actual event

occurs and establishes the baseline voltage magnitude when there is no event. Simulations are

conducted with different event scenarios that are representative of the system’s behaviour and

potential disturbances.

These scenarios include various types of events, such as faults, trip branch, and load changes.

Each simulation run generates a dataset that captures the response of the system under different

conditions. The datasets obtained from the simulation runs are then analyzed to identify and

quantify the jumps or changes in voltage magnitude associated with each event. Statistical

techniques were employed to determine the average jump level and its variability for different

event types. This analysis helps establish a confidence interval for the expected jump in voltage

magnitude when an event occurs. Similarly, the datasets obtained from the simulations without

any events are analysed to understand the baseline voltage magnitude when no disturbances

are present. Statistical analysis can be performed to determine the average voltage magnitude

and its variability during non-event periods. The threshold for detecting jumps or events was

set based on the findings from the above analyses. The threshold can be established as a level

above the expected baseline voltage magnitude during non-event periods, taking into account
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the confidence interval of the jump level during event scenarios. This ensures that jumps above

the threshold are indicative of actual events, while smaller fluctuations are considered as noise

or insignificant variations.

In order to provide further clarification regarding the method employed to address the afore-

mentioned issue, the events illustrated in Fig. 6.14 should be taken into consideration. Two

modes excited by this event is estimated to be 0.54 Hz and 0.77 Hz with a decay rate of 3.7%

and 3.9% respectively. If the low σ window is processed, the program would see the mode

negatively damped for the first part of the event. The output of the SEWT algorithm during

this phase would result in a pseudo negative, as shown by the green and red dots in Fig. 6.15.

Figure 6.15: Case 1: Estimates for the average DR.

As the ringdown begins to pass through the analysis window, the damping estimate approaches

its correct value and the algorithm eventually finds the correct DR. To avoid the pseudo-negative

DR, only the high variance window is processed by using a threshold, and the low variance

window is ignored. Thus, the SEWT will only start reporting when the sliding window moves

into the oscillatory zone and the pre-event results are ignored. This can be seen in Fig. 6.16.

Effect of window size on the detection process

The window length defines the length of the data over which the algorithm computes DR

and frequency. The window moves as the new data comes in. If the window is large, the

parameters calculated for oscillatory modes are closer to the data’s stationary statistics. A

longer window gets smoother statistics for data that does not change rapidly. For dynamic
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Figure 6.16: Case 1: Estimation of Damping ratio for mode-2 and mode-3.

data, a smaller window is preferred. There is a trade-off in the choice of the size of the sliding

time window and accuracy. More precision is achieved with a larger time window, but more

information must be stored. Moreover, the standard duration of the oscillation and resolution

of frequency must be considered in the choice of the window size. In the case of oscillation,

where the oscillation frequency is taken as a criterion, the window length can be calculated

as proportional to the period of the oscillation. Specifically, for our analysis (interarea), the

window length is considered proportional to the modal frequency.

There are two main parameters to handle the speed and accuracy of the window: the window

size (w) and sliding size (s). The window size determines the number of data points the detection

algorithm will get to apply the statistics, and the sliding size is the period to which the model

is updated. In Fig. 6.17, various windowing detection procedures for mode-3, corresponding

to different window sizes, are depicted for case-C1. The process is initiated by inserting a

disturbance into the system at time t=50 s in the central area, generating an oscillation in the

model. The machine in the southern area oscillates as a result of this disturbance. Subsequently,

a dominant mode extraction process is carried out using SEWT to detect the DR of the signals

for low-frequency electromechanical oscillation.

In each window, the sliding size is kept constant, i.e., s = 50 samples equivalent to one second,

while the window size increases between the sample range of w=200 (four seconds) to w=1400

(twenty-four seconds). For each window size, the average DR is calculated. It can be noticed

from Fig. 6.17 that when w is minimal (w=200), the accuracy is very low. As the window
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Figure 6.17: Case 1: Estimates for the average DR ζavg for different windows with different
sample size.

sample size increases, the accuracy is improved. Fig. 6.18 shows the RMSE for each window size.

Notice that the error is minimum when the window size is 1000 samples, which is approximately

proportional to the period of the oscillation.

6.5.3 Case study 2 (Unstable Model) :

For C2 the voltage response of the system is displayed in Fig. 6.19. The total variance accounts

for 93% of the information (85% for PC1 and 8% for PC2). Note that with this disturbance,

in addition to Mode-1 and Mode-2 discussed in case C1 there is also another mode detected

around 0.9 Hz. Analysis of the voltage variables for C2 indicates that these modes are visible

in all the busses. Therefore these modes are adequately captured by both PCs leading to a low

MSE in Table 6.4.

Fig. 6.20 displays the SEWT estimation of the average DR and average dominant frequency

(NF) for case C2. The red dots indicate a negative DR, while the blue dots represent positive

DR estimates. As observed in Fig. 6.20, the algorithm provides dynamic DR estimates of the

mode during the disturbance. These findings demonstrate that the proposed approach can offer

operators useful information regarding the changing modal parameters of inter-area oscillation

during this intricate disturbance process.

In particular, the average DR of mode-2 is noteworthy. The benchmark DR for mode-2 is

-0.4, indicating a relatively high damping level. However, due to the continuously moving
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Figure 6.18: Case 1: RMSE for different window size

Figure 6.19: Case 2: Temporal evolution of voltage signals.
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Figure 6.20: Case 2: Estimates of average DR ζavg and average frequency Favg from PC1.

window used in the SEWT algorithm, the average DR varies as the window progresses along

the signal. It is important to highlight that the observed variation primarily stems from the

calculation of the average DR based on the instantaneous parameters. Unlike methods such as

matrix pencil, or Prony, the SEWT is an adaptive signal processing technique that excels at

capturing instantaneous attributes. This attribute endows the SEWT with a unique capability

to provide real-time insights into the dynamic behavior of the system, enhancing its effectiveness

in practical applications.

Overall, the findings highlight the utility of the proposed approach in offering operators valuable

information regarding the changing modal parameters of inter-area oscillation. The average DR,

although subject to variation as the window moves along the signal, provides insights into the

damping characteristics of the mode when the oscillation is fully within the window. This

knowledge can aid in assessing system stability, making informed decisions, and implementing

appropriate control strategies during complex disturbance events.

6.5.4 Detection of false alarm

To create a reliable online oscillation detection system, it is crucial to minimize false alarms

and only trigger oscillation alerts when the identified oscillation modes are consistently present.

Grid operators would not want a method that is highly sensitive and generates a large number

of false oscillation events. Once an oscillation mode of interest is detected, it should display

consistent modal features during a specific time interval.
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Figure 6.21: Case 2: Estimates of average frequency

In order to assess the accuracy of the proposed algorithm in detecting oscillations with minimal

false positives, measurements of the signal frequency without noise and with varying noise levels

were taken. The experiment was repeated 50 times, and the mean and confidence interval were

calculated. Fig. 6.21 illustrates the average NF for the dominant mode of case-study C1 in the

absence of noise. The mean and confidence interval remain the same when there is no noise. As

can be observed from the figure, the algorithm consistently estimates the dominant frequency

of the voltage signal to be zero under normal operating conditions (first 30 time windows).

However, at time t=30 s, the branch between bus 4042 and bus 4044 was tripped, introducing

a disturbance into the system. As a result, the dominant frequency of the signal, as estimated

by the algorithm, increased to 0.54 Hz.

Table 6.2: Average frequency without noise

Natural Frequency Damping Ratio
Before disturbance True Negative = 30 0 Hz True Negative = 30 0 %
After disturbance True Positive = 40 0.54 Hz True Positive = 40 3.5% - 4.0%

Table 6.2 presents the outcomes for average DR and average NF in the absence of any noise

interference. The observations were recorded for a total of 130 instances, out of which 70

observations were considered as a reference or ground truth. These observations were divided

into two sets: 30 observations before the disturbance and 40 observations after the disturbance.

The observations before the disturbance, occurring in the time windows from Tw= 0 seconds to

Tw= 30 seconds, were labelled as true negatives since they had an NF of 0 Hz and a DR of 0%.
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Figure 6.22: Case 1: Estimates of average average frequency with different SNR

The observations after the disturbance, occurring in the time windows from Tw= 40 seconds to

Tw = 80 seconds, were labelled as true positives. These observations had an NF of 0.54 Hz and

a DR ranging from 3.5% to 4.0%.

To ensure accurate measurements and reliable classification, the transition windows from Tw =

30 seconds to Tw = 40 seconds were excluded from the analysis. These windows were omitted

because during this time frame, the oscillations were entering the window, and the true DR

values may not have been detected accurately. Similarly, observations from Tw = 80 seconds

onwards were not considered due to fluctuations in the signal. These observations were excluded

to maintain the data quality and focus on the reliable measurements within the specified time

range.

By categorizing the observations into true negatives and true positives, the evaluation of the

SEWT algorithm’s performance can be conducted. This classification provides insights into the

algorithm’s ability to accurately detect the presence or absence of oscillatory behaviour and

estimate the corresponding modal parameters (NF and DR).

Fig. 6.22 shows the NF measurement for the same voltage signal but with SNR of 80 dB, 60 dB,

40 dB, 30 dB, and 20 dB. It can be noticed from Fig. 6.22 that due to the presence of noise, the

NF is in the range of 0.8 Hz to 1 Hz under the normal operating conditions. Whereas, without

the noise interference, it should be zero thus it is marked as a false positive. However, when

the disturbance is introduced at t=30 seconds the NF converges to 0.54 Hz. The red line shows
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Table 6.3: Comparison of Damping Ratio and Damped Natural Frequency Metrics with Various
SNR Levels

Damping
Ratio

Damped
Natural Frequency Actual

Metrics SNR
60

SNR
40

SNR
30

SNR
60

SNR
40

SNR
30

No
Noise

True Negative 22 0 21 2 18 0 30
False Positive 8 30 9 28 12 30 0
False Negative 2 9 0 1 7 19 0
True Positive 38 31 40 39 33 21 40
Total 70

Figure 6.23: Case 1: Estimates of average average frequency with different SNR

the confidence interval and the black line represent the mean of the measured signals. It can be

noticed that when the noise level is low (SNR = 80 dB) the probability of detection Pd is high

compared to a high noise level (SNR = 30 dB). When the SNR is 20 dB, the noise fully takes

control of the signal and no event is detected unless some noise-reduction technique is launched.

The metrics resulting from three different SNRs are presented in Table-6.3. As shown in the

table, increasing SNR leads to an increase in false positive due to noise randomness. However,

detecting an oscillation requires consistent characteristics in a mode of interest, particularly

its oscillation frequency, over a time window. If the frequency changes significantly over three

or four consecutive detection windows, it indicates that the previous oscillation mode has dis-

appeared or merged with the current mode. In either case, triggering an oscillation alarm

is not necessary, as it would result in numerous false alarms and significantly impact system

performance.
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Figure 6.24: Case 1: Estimates of average average frequency with different SNR

To effectively reduce false alarms in the proposed algorithm, the variance of the voltage signal for

each time window is compared to a pre-computed variance threshold during normal conditions.

If the variance of a time window is above the pre-computed threshold, it is assumed that a

disturbance is present in addition to noise interference, and a detection or ”hit” is declared. The

proposed algorithm determines whether the energy and variance in each received signal sample

are too large to have likely resulted from interference alone, and assumes that a disturbance

has contributed to that sample. The concept of window variance is illustrated in Fig. 6.23 and

Fig. 6.24, where the top panel shows the transient voltage signal with increasing noise level, and

the bottom panel shows the change in signal variance. The algorithm can accurately identify the

NF and DR up to a noise level of 30 dB, beyond which the signal variance increases significantly,

and the modal parameters cannot be identified correctly.

6.6 Performance evaluation and comparison

The performance of the proposed algorithm is assessed using the Mean Squared Error (MSE).

The estimates of average DR and average frequency for each sliding window are compared with

the BM values from the small-signal analysis. The MSE is found by averaging the squared

error over the sampled window length. Table 6.4 provides the results of the MSE for SEWT

compared to EWT. SEWT PC1 and SEWT PC2 indicate the results obtained from the PC1

and PC2, respectively. Correlation analysis of the PCs suggest that PC1 is positively correlated

with all the twenty generators except g4. Thus, there is a direct relation between all the voltage
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Table 6.4: Mean squared error

Method Mode C1 MSE C2 MSE
FREQ DR FREQ DR

EWT
Mode-2 0.024 1.041 0.053 0.905
Mode-3 0.088 2.447 0.007 0.551
Mode-4 - - 0.013 3.168

SEWT PC1
Mode-2 0.001 0.144 0.06 0.092
Mode-3 0.01 1.059 0.001 0.535
Mode-4 - - 0.001 0.15

SEWT PC2
Mode-2 0.009 1.269 0.001 0.318
Mode-3 0.02 2.126 0.006 0.857
Mode-4 - - 0.147 0.86

buses and all of them participate in the oscillations. PC2 has large negative associations with

busses g1, g2, g19, and g20, therefore the larger part of variations are coming from them.

Further analysis of the voltage variables indicates that the negatively correlated generators

mainly contribute to the strong 0.54 Hz mode while the rest of generators contribute to the

0.54 Hz mode and a weak 0.77 Hz mode. This mode is vaguely visible in the PC2 as reflected

by the high MSE of the DR ζavg in Table 6.4.

6.7 Conclusion

This thesis describes the real-time application of a proposed EWT-based technique for estimat-

ing the modal frequency and DR. The algorithm is highly adaptive to the signal’s oscillation

characteristics. The proposed SEWT method automatically estimates the number of modes

based on the frequency contents of the signal. The window-based automatic mode detection

method locates the local maxima, and the use of amplitude threshold avoids any unneces-

sary segmentation of the Fourier spectrum. Unlike conventional single-channel methods, the

proposed algorithm is based on multi-variate data analysis and captures the global dynamic

features. In addition, through data compression, it is effective in reducing noise errors. Test

result evaluation and comparison with existing methods reveal that the proposed method shows

excellent potential for real-time monitoring and identification of inter-area oscillations.
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Chapter 7

Estimating interarea oscillation with

machine learning

In the previous chapter, we explained how the Natural Frequency (NF) and Damping Ratio

(DR) were extracted from voltage signals using the Sliding Window based Empirical Wavelet

Transform (SEWT) technique. In this chapter, we extend our analysis by incorporating machine

learning (ML) algorithms to estimate the NF and DR from the voltage signals.

We measured the voltage magnitude from the Nordic Test system and employed the LASSO

method to select relevant features. The selected voltage magnitude from LASSO serves as inputs

for the ML algorithm, which predicts the NF and DR as target variables. This study introduces

a multi-channel ML model for identifying inter-area oscillation modes in power systems, achiev-

ing online and real-time mode identification. This multichannel approach enables analyzing

data from multiple nodes, accurately and identify buses experiencing voltage instability due to

oscillation.

By combining SEWT and ML techniques, our goal is to precisely estimate the NF and DR from

voltage signals, leveraging SEWT’s strengths in signal decomposition and feature extraction,

and ML’s effectiveness in prediction tasks. The proposed approach offers improved accuracy

and reliability in identifying dominant inter-area modes, beneficial for power system operators

in maintaining grid security.

The chapter is organized as follows.Section 7.1 gives an introduction. Section 7.2 presents the

overall algorithm and methodology. Section 7.3 provides numerical results to verify the proposed
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methods’ performance, followed by conclusions in Section 7.4.

7.1 Introduction

Recent research works have focused on merging measurement-based techniques with machine

learning (ML) frameworks. Nonetheless, most existing methods can only process one signal or

they analyze multiple signals separately. These methods usually require measurements from

critical devices, e.g., bus frequency, which has good observability for the specific inter-area

oscillation modes. If the measurement that has good oscillation observability is not available in

some areas, single-channel methods may not be able to provide oscillation information in these

areas. As a result, a multi-channel approach becomes necessary to extract complex relationships

between multiple feature/target variables. Multi-channel/multi-variate methods can capture the

underlying relationships between features and targets. Moreover, adopting multi-target/multi-

variate approaches could lead to simpler models with improved computational efficiency.

In dealing with these challenges, this study aims to introduce a multi-channel machine learning

model (MLM) to identify inter-area oscillation modes. This approach incorporates real-time

mode identification through the integration of MLM with adaptive signal processing tools like

EWT and HT. The key contributions of this chapter can be summarized as follows:

• Utilizing SEWT for feature extraction and employing the extracted features as target

variables.

• Employing a multivariate MLM approach, utilizing features selected (voltage magnitude)

via Lasso, and associating them with the target variable (NF and DR).

• Real-time implementation of the MLM method to estimate the NF and DR.

7.1.1 Fundamentals and proposed algorithm

ML techniques approximate the unknown relationship between the multiple input voltage mag-

nitudes and the output, in our case, instantaneous damping ratio (IDR) and instantaneous

frequency (IF). Three disturbance scenarios are considered, 1) stable oscillations, 2) unstable

oscillations, and 3) sustained oscillations. Their definitions are briefly given below:

Stable Oscillations: Oscillations have been observed in power systems from the moment

networks comprising multiple generators were interconnected to provide more power capacity
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Figure 7.1: Three different operating scenarios. Case-1 represents the unstable operating
conditions, Case-2 represents the decreasing oscillations signifying the system is approaching
stability

and reliability. It is customary to operate the system or design the system controls so that each

mode decays by at least exp(-0.1π) during every oscillation cycle. The system is considered

sufficiently stable at that operating point if all modes have real parts more negative than the

limit.

Unstable Oscillations: When a power system is pressed to provide additional load, un-

stable oscillations often arise. As transmission lines become more heavily loaded, generators

must depend more on their excitation systems to maintain synchronism. However, without

supplementary control, the synchronizing oscillations may eventually become unstable. These

oscillations are identified by modes with positive real parts.

Sustained Oscillations: Slowly damped or sustained oscillations in power systems can damage

equipment, reduce the power transfer limit, and even result in cascading blackouts. Several

mechanisms can give rise to these oscillations, including improper operating conditions, periodic

disturbances, or malfunctioning controllers.

7.2 Methodology

The development of the proposed oscillatory assessment system consists of several steps, includ-

ing a) generating training data, b) extracting the features, c) selecting the important features,
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Figure 7.2: Flow diagram of the proposed methodology.

d) training and evaluation of the ML algorithm, and e) addressing real-time implementation

issues. These steps are shown in Fig. 7.2 and described in the following sections.

7.2.1 Data Generation for machine learning

The data generation process details have been provided in Section 2.4. Operating point A of the

Nordic test system [188]. is used to analyse oscillatory behaviour. For our purpose, a sufficiently

but realistically extensive range of contingencies and operating scenarios are considered to ensure

the generality of the predictive model and incorporate uncertainty.

The data generation process begins by extracting a comprehensive set of operating points from

the historical electricity consumption load profile dataset, as referenced in Chapter 3, [134].

The scenarios are constructed through a DBSCAN clustering technique.. However, prior to

clustering, the load profiles are first divided based on the seasons of the year, as depicted

in Fig. 7.3. This stratification ensures that each season is represented and reduces bias by

organizing the load profiles into homogeneous subgroups.

The clusters obtained from the stratified groups are validated using the Silhouette index method.

This validation step ensures that the resulting clusters accurately represent the characteristics

of the load profiles and further enhances the reliability of the data generation process.

Based on the extracted load operating points, datasets are generated for three cases mentioned

in section 7.1.1. These cases represent unstable, stable, and sustained oscillation scenarios. The

output/target variables comprising instantaneous frequency (IF) and instantaneous damping

ratio (IDR) are generated through the feature extraction process described in the next section.
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Figure 7.3: Stratification of load profiles based on seasons of the year

Figure 7.4: Feature extraction process.

Feature Extraction using EWT and HT

The purpose of using a feature extraction technique is to obtain a subset of features from

the original feature set while retaining as much information in the data as possible through a

functional mapping. Power system oscillation signals consist of multiple modes, and due to the

presence of noise, it can be challenging to determine the number of segments in advance. This

study proposes a technique called Sliding Window based Empirical Wavelet Transform (SEWT)

for mode separation to segment the Fourier spectrum Xω, as explained in section 6.3.4. The

goal is to extract features using SEWT and HT to classify the signal in terms of IF and IDR.

The entire process is illustrated in Fig. 7.4. First, SEWT decomposes the frequency spectrum

of the signal into an empirical mono-component, and the signal with the highest energy level is

identified as the critical mode. HT is then used to track the amplitude envelope of the critical

signal, from which the IF and DR can be calculated.
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7.2.2 Feature Selection with LASSO

Building a helpful feature set with a lower dimension for ML is significant. Moreover, the redun-

dancy of features is also an inevitable problem. Thus, in this work, a least absolute shrinkage

and selection operator (LASSO)-based [125] feature selection framework is proposed to achieve

efficient feature selection and to decrease the features redundancy. There are many advantages

to using the LASSO method; first, it can provide outstanding prediction accuracy because

shrinking and removing the coefficients can reduce variance without a substantial increase in

the bias. The regularization process updates the coefficient values of the regression variables by

reducing few to zero, meaning that it can nullify the impact of irrelevant features in the data

[126].

7.2.3 Training and evaluation

This study uses the data from PMU measurements to conduct an ML-based multi-variate anal-

ysis. Using a ML, multiple target variables are predicted simultaneously.

In multivariate analysis, given the dataset D = {(x1, y1), (x2, y2), . . . , (xn, yn)} of n training

examples, x = [x1, x2, . . . , xd] is the input attribute vector consisting of the voltage magnitudes

at the generator buses for the i-th operating point of the n samples. The output variable y

consists of multiple m target y1, y2 . . . , ym and is the associated target values of instantaneous

parameters (IF and IDR) that correspond to the m size of the training data.

The goal in multi-input multi-output (MIMO) regression is to learn a model h : x → y. For a

given input vector x, the model can predict an output vector ŷ = h(x) that best approximates

the actual output vector y. After the training phase, the constructed multi-target model will

be used to simultaneously predict m target variables based on d input variables of the new

incoming instance.

To put it briefly, if m is the number of target attributes, single target regression considers

domains where m = 1, while MIMO considers domains with m ≥ 2.

Decision Tree

A DT is a graphical representation of possible solutions to a decision based on certain conditions.

It is a tree-like model of decisions and their possible consequences. In a DT, an internal node

represents a decision, and the branches represent the possible outcomes of that decision. Each
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leaf node represents a final decision or outcome. DTs are useful because they allow you to

visually and explicitly represent decisions and their potential consequences, and they can help

make decisions under uncertainty.

There are many different algorithms for constructing DTs, such as ID3, C4.5, and CART (Clas-

sification and Regression Trees). These algorithms use training data to learn the relationships

between different features in the data and the target variable. They use this information to

create a tree that can be used to make predictions.

In this study, CART is used for building DT models as they can be used both for classification

and regression tasks. They are relatively fast to train, especially compared to more complex

algorithms such as neural networks.

Random Forest Regressor

Random Forest algorithm is used for both classification and regression in ML. It is an ensemble

method, which means that it is based on the combination of several models to make a final

prediction. In a Random Forest model, a large number of decision trees (DT) are trained

on a randomly selected subset of the training data. Each DT is trained to make predictions

independently, and the final prediction is made by taking the majority vote of all the DTs.

This process helps to reduce overfitting and improve the generalization of the model. Training

samples are randomly selected with replacements. The size of each new training set is the same

as the original dataset. As input parameters, the number of trees in the algorithm and maximum

depth should be determined initially. The change in their values may affect the performance

and predictive power of the algorithm. Therefore, all possible parameters in the dataset’s size

range are given to the method and tested. The parameters leading to the best results become

candidates to be used.

K-Nearest Neighbours

K-nearest neighbour (KNN) is a supervised ML algorithm for classification and regression. The

idea behind KNN is to determine the class of a given data point by looking at the class of the

data points that are closest to it based on a distance measure.

In KNN, the value of K determines the number of nearest neighbours that will be considered

when making a prediction. For example, if K is set to 3, the algorithm will consider the 3
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nearest data points and make a prediction based on the class of those data points.

Figure 7.5: K-nearest-neighbor

To determine the class of a given data point, the KNN algorithm calculates the distance between

that point and all other data points in the training set. It then selects the K data points closest

to the given data point and uses the majority class among those K data points to make a

prediction.

KNN is particularly useful when the training data is very large, as it is a non-parametric method

and does not require any assumptions about the underlying distribution of the data. However,

it can be computationally expensive to calculate the distance between a given data point and

all other data points in the training set, especially for large datasets.

Motivation for using machine learning models

The motivation for using Random Forest Regressor, Decision Tree, and KNN for estimating

interarea oscillation, while extracting features such as damping ratio and natural frequency

using empirical wavelet transform, can be attributed to several factors:

• Nonlinearity and Complex Relationships: Interarea oscillations in power systems often ex-

hibit nonlinear behaviour and complex relationships among the variables involved. Tradi-

tional linear models may struggle to capture these intricate dynamics effectively. Decision

Tree, Random Forest, and KNN models are capable of capturing nonlinear relationships

and can handle complex interactions between variables.

• Flexibility and Adaptability: Decision Tree, Random Forest, and KNN models are highly

flexible and adaptable to various data distributions and patterns. They do not impose
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strong assumptions on the data structure and can automatically handle feature inter-

actions and non-linearities. This makes them suitable for modelling complex interarea

oscillation dynamics.

• Ensemble Learning and Generalization: Random Forest, as an ensemble method, combines

multiple decision trees to improve prediction accuracy and reduce overfitting. It benefits

from the wisdom of crowds and captures diverse aspects of the data. Similarly, KNN

utilizes the nearest neighbors to make predictions, which can help in capturing local

patterns. These ensemble and neighbor-based approaches can enhance the generalization

ability of the models and provide robust estimation of interarea oscillation.

• Interpretability: Decision Tree-based models offer interpretability, as the decision rules

can be easily understood and visualized. This can be valuable for gaining insights into

the underlying dynamics of interarea oscillations and identifying important features and

their relationships.

By utilizing these machine learning techniques in combination with empirical wavelet transform

for feature extraction, we can leverage their strengths in handling complex relationships, non-

linearities, and adaptability to estimate interarea oscillation more accurately and potentially

gain insights into the underlying dynamics of the system.

7.2.4 Online Assessment

After completing the training stage, the obtained ML is applied for the online assessment

of low-frequency interarea oscillations. During the online monitoring stage, when a transient

fault/event occurs in the system, multiple trajectories of Vmag are acquired from individual

load buses by PMUs. These trajectories are fed into the ML model to monitor and predict

the instantaneous frequency and damping ratio. If the system is expected to be unstable,

alarm signals will be issued to warn that remedial actions should be taken as soon as possible.

Otherwise, the algorithm will keep monitoring the system status.

7.2.5 Database update condition

A feasible online estimation approach should be able to accommodate different unseen network

topologies. When some unfavourable system change is incurred, operators will be sent a warn-

ing, and the database should be updated to improve the prediction. Notably, more operating
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points relevant to the current one should be added to the database. We propose to generate the

operating points pertinent to the existing ones by adding critical contingencies to the current

operating point and deploying these newly added operating points to the online testing phase.

The operational states are assumed to not change too fast concerning the near-real-time scale.

If some contingency occurs, it is within the high probability/critical contingencies of current op-

erating points. This study implements the database update scheme using a K-means clustering

approach. Details about the k-means clustering can be found in section 4.1.

The steps for database update are provided below:

1. Initial Clustering: K-means clustering is initially applied to the training database.

This involves partitioning the dataset into a specified number of clusters (K) based on the

similarity of data points.

2. Distance Calculation: For each data point in the training database, the distances

between that data point and the cluster centers are computed. The cluster center is

essentially the mean or centroid of the data points within a cluster.

3. Threshold Ratio: A threshold ratio is set, which serves as a criterion to determine

whether a newly arrived data point during online monitoring should be associated with

an existing cluster or not.

4. Online Monitoring: As new data points arrive from the PMUs (Phasor Measurement

Units), the process of clustering continues. For each new data point, its distance to the

cluster centers is recalculated.

5. Threshold Check: If the calculated distance between a newly arrived data point and

the cluster center is within the specified threshold (i.e., the distance is relatively small),

it implies that the new data point is similar enough to the existing cluster. This helps

maintain the existing clusters and does not significantly impact the prediction accuracy.

6. Outside Threshold: On the other hand, if the distance between the newly arrived data

point and the cluster center exceeds or falls below the threshold value, it suggests that

the new data point is significantly different from the existing clusters. In such cases, the

new data point is not merged with any existing cluster. Instead, the operating point

represented by the new data point is added back to the dataset, and the training process

is restarted offline. This helps in capturing and adapting to new patterns or changes in
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Figure 7.6: C-1: Voltage signal from generator bus g10 with unstable oscillations.

the data that are not well-represented by the existing clusters.

The threshold-based approach allows for the adaptation of the clustering as the data distribution

changes over time, ensuring the accuracy of predictions and detecting significant deviations that

require dataset updates and retraining.

7.3 Numerical results

7.3.1 System model and case study description

The Nordic test system proposed by the IEEE Task Force for Voltage stability and security

assessment is used to demonstrate the dependability and security of the proposed ensemble

method. The detailed data of the test system and the operating points can be found in [135].

A one-line diagram can be seen in Fig. A.1. The system has rather long transmission lines with

400-kV nominal voltage. The model also represents some regional systems operating at 220

and 130 kV, respectively. All 20 generators (19 synchronous generators and one condenser) are

represented behind their step-up transformers. The LTCs of the step-down transformers control

all 22 loads at the distribution level. This system is made up of the following four areas:

• North with hydro generation and some load.

• Central with much higher load and thermal power generation.

• Equiv is connected to the North, which includes a simple equivalent of an external
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Figure 7.7: C-1: Fourier spectrum with detected boundaries.
Table 7.1: Small-signal stability analysis of the Nordic system.

C-1 C-2 C-3
Mode2 Mode3 Mode2 Mode3 Mode4 Mode2 Mode3

Frequency(Hz) 0.538 0.742 0.533 0.766 0.949 0.533 0.762
DR (%) 3.7 3.9 -0.4 -0.1 0.3 0.0 0.0

system.

• South with the thermal generation, loosely connected to the rest of the system.

7.3.2 Data Preparation

A large number of training data were simulated based on the Nordic Test system. The sim-

ulations were performed for 70 system operating points, including diverse generation patterns

and planned transmission outages. Time-domain simulations were conducted using the python-

based software PyRAMSES [120], and the results were saved in a database, emulating the PMU

measurements.

Three scenarios were investigated a) Stable oscillations model (C-1) b) Unstable oscil-

lations model (C-2) and Sustained oscillations (C-3). For C-2, several generator PSS

controllers were deactivated to destabilize the system. In both cases, the modes are excited by

applying a three-phase fault at bus 4072 at time t = 50 seconds. The fault is automatically

cleared after 5 cycles (100 ms). All the measurements are sampled at 1 cycle (20ms).

We performed a small-signal stability analysis on the original differential-algebraic model used

for the above two cases and identified the main electromechanical modes in Table 7.1. These
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Figure 7.8: C-1: Extracted mono-components of the non-stationary voltage signal.

are used as a benchmark (BM) for our real-time detection algorithm that only uses the data

flow. Only voltage magnitude measurements are used from the 20 synchronous generators. The

number of samples and features ranged from 1484 to 67557.

Feature Extraction

The SEWT method was experimentally applied to the voltage signals. Fig. 7.6 shows the

temporal voltage signal of the increasing magnitude acquired through simulation. The same

procedure described in chapter 6 is used to decompose each signal. Fig. 7.7 shows the FFT

spectrum with and without threshold (τ) levels. It can be noticed from Fig. 7.7-(a) that the

spectrum with the sliding window approach over the Fourier spectrum but without a threshold

shows unnecessary segmentation. Fig. 7.7-(b) represents the spectrum with a threshold level

of one standard deviation from the maximum peak and automatically determines the number

of segments. According to this spectrum, globally, six peaks can be distinguished, which can

be used to compute the support of the filter bank. The support boundaries of the filter bank

are the midpoint between successive frequencies associated with these peaks. The black dotted

lines in Fig. 7.7 show the estimated boundaries to create the wavelet filter bank.

Selection of Empirical Mode Functions

After performing SEWT on a voltage signal, we obtain a series of mono-components, each with

a single frequency corresponding to one modal response. We call these mono-components Em-

pirical Mode Functions (EMF). Fig. 7.8 shows the EMFs for the voltage signal of increasing
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Figure 7.9: C-1: Signal power of extracted mono-components.

magnitude for generator bus g10 and labelled as Mode 1,2,3,4,5 and 6. It can be seen that

the SEWT technique provides accurate estimates of the modes present in the signal and de-

composes the input signal into different frequency components concerning time. The temporal

EMFs in Fig. 7.8 are sorted in increasing frequency order. It can be observed from Fig. 7.8

that the amplitude values of the EMFs do not contribute equally to the analysis of interarea

oscillations. Some EMFs are closely related to the original voltage signal, but others contain

little information. Thus, in this example, we can observe that EMFs 3, 4, and 5 carry essential

information, and their behaviour in the time domain can be associated with critical inter-area

modes. Moreover, these EMFs have the highest amplitude values among the extracted EMFs.

It can also be seen that EMF-6 contains high-frequency noise.

To construct a more precise Hilbert-spectrum that identifies an oscillation mode with distur-

bance signatures, it is crucial to choose sensitive EMFs and exclude irrelevant ones by identifying

EMFs with higher power. Fig. 7.9 displays the signal’s energy over time. Notably, EMF-3 ex-

hibits the highest amplitude (0-20), making it the potential critical mode, while the remaining

modes are deemed unimportant and thus discarded.

Estimation of instantaneous parameters

For all three cases above, C-1, C-2, and C-3, each selected EMF was applied with HT to estimate

the instantaneous attributes of desired signals. A deeper insight into the nature of temporal

behaviour is obtained from analyzing the instantaneous attributes of each EMF. The IA and
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Figure 7.10: C-1: On the top Reconstructed signal with instantaneous amplitude envelop using
SEWT, in the middle instantaneous frequency, the bottom panel shows instantaneous damping
ratio.

IF of the voltage magnitude from the bus g-12 response are shown in Fig. 7.10. Simulation

results show that the instantaneous attributes of the generator bus response to disturbance

exhibit increasing amplitudes, with an average IF of 0.53 Hz, thus indicating the presence of

low-frequency interarea oscillations. Analysis of the IDR suggests that the proposed approach

can determine the precise time evolution of the relevant system parameters, thus leading to an

improved assessment of system behaviour.

7.3.3 Comparative Performance Analysis: Empirical Wavelet Transform vs.

other adaptive methods

In this section, we compare the performance of EWT with other adaptive signal decomposition

methods. We evaluate the DR, NF and root mean square error (RMSE) for each method. Our

objective is to assess how EWT performs compared to other modal decomposition techniques.

The following methods are considered for comparison:

1. Empirical Mode Decomposition (EMD): EMD [166] is a widely used mode decompo-

sition method that extracts a set of Intrinsic Mode Functions (IMFs) from a signal. IMFs

are functions with localized oscillatory behavior and are obtained by iteratively identifying

local extrema in the signal. EMD is versatile and can be applied to various types of data

without requiring predefined filters or assumptions.
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Figure 7.11: Selected features for case study C-1, C-2, and C-3

2. Variational Mode Decomposition (VMD): VMD [189] is an adaptive signal decom-

position approach capable of decomposing a multi-component signal into several quasi-

orthogonal intrinsic mode functions in a non-recursive manner. VMD aims to identify a

set of modes, each with its corresponding centre frequency, in order to collectively replicate

the input signal while ensuring that each mode exhibits smooth behaviour after demodu-

lation into baseband. The key advantage of VMD is its ability to eliminate residual noise

in the modes and reduce redundant modes compared to other techniques such as EMD.

3. Local Mean Decomposition (LMD): LMD [190] is an adaptive method for decom-

posing complex signals into a sequence of mono-components known as product functions.

These PFs are formed by combining a frequency-modulated signal with an envelope signal.

The fundamental principle of LMD involves iteratively applying moving average opera-

tions to gradually smoothen the signal. This process enables the estimation of the IF

associated with each product function. By employing LMD, a complex signal can be ef-

fectively disassembled into multiple product functions, facilitating a detailed analysis of

its frequency characteristics.

The performance of these methods are summarized in Table 7.2, and Table 7.3 respectively.

Detail discussion is provided below:

• On comparison of RMSE, EWT appears to be the most consistent and effective method

across stability categories and modes for both DR and NF. VMD also perform well, while

LMD and EMD has higher RMSE values compared to EWT.
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Table 7.2: RMSE FREQUENCY

RMSE
Stable Unstable Sustained

Method Mode-1 Mode-2 Mode-1 Mode-2 Mode-1 Mode-2
EWT 0.0194 0.0634 0.0163 0.0531 0.0219 0.1315
VAR 0.0210 0.3946 0.0206 0.1759 0.0244 0.3220
LMD 0.0222 0.3656 0.1617 0.0504 0.0280 0.3535
EMD 0.0208 0.4765 0.2205 0.0687 0.0236 0.2466

Table 7.3: RMSE DAMPING RATIO

RMSE
Stable Unstable Sustained

Method Mode-1 Mode-2 Mode-1 Mode-2 Mode-1 Mode-2
EWT 0.415 0.938 0.449 0.337 0.150 0.545
VMD 0.793 2.655 0.443 0.709 0.399 0.652
LMD 1.849 1.283 1.445 0.632 0.621 1.955
EMD 2.216 4.316 2.873 0.910 0.203 0.892

• Fig. 7.12 and Fig. 7.12 depict the evaluation of average Damping Ratio (DR) and average

Natural Frequency (NF) using EWT, VMD, LMD, and EMD. Among the various method-

ologies, the EWT stands out as the top-performing approach, particularly in the realm of

ratio estimation. It adeptly approximates the ratios for both mode-1 (3.7%) and mode-2

(3.9%).It becomes evident that the EWT’s estimation of the average DR closely aligns

with the baseline ratio, whereas the other methods encounter challenges. EWT exhibits

superior performance in frequency estimation compared to ratio estimation. This observa-

tion is supported by Fig. 7.13, which illustrates EWT’s consistent accuracy in identifying

the NF of Mode-2 for the unstable case. In contrast, VMD’s accuracy diminishes beyond

a certain point, while LMD and EMD exhibit substantial deviations.

A deeper understanding of the comparative analysis can be gleaned through mode separa-

tion process. This concept is demonstrated in Fig. 7.14, showcasing the mode separation

accomplished by EWT for the unstable mode. The decomposition of the signal is strikingly

accurate.The Fourier Frequency graph on the right vividly exhibits the distinct segrega-

tion of modes at 0.54 Hz, 0.77 Hz, and 0.9 Hz. Notably, the reconstruction of the signal

with the 0.54 Hz mode faithfully reproduces the original signal, facilitating the accurate

construction of the envelope through the Hilbert Transform. This precision ultimately

contributes to the accurate estimation of the DR.

• Variation Mode Decomposition (VMD) demonstrates relatively good performance, espe-
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Figure 7.12: Case 2: Left)Decomposition of the unstable signal using EWT, Right) Fourier
frequency of the decomposed modes.

cially in the sustained scenario where the results are similar across frequencies. However,

VMD its ratio estimation may not be as accurate as EWT. Fig. 7.15 displays the decom-

position of the unstable mode using VMD, showing clear identification of the modes at

0.54 Hz and 0.9 Hz, but it fails to detect the 0.77 Hz mode accurately.

• Local Mean Decomposition (LMD) performs relatively poorly compared to the other meth-

ods. LMD may suffer from mode mixing, resulting in inadequate separation of modes and

less accurate ratio estimation. Although LMD’s performance is similar to VMD in the sus-

tained scenario, it may not effectively capture dynamic changes. Fig. 7.16 illustrates the

decomposition performed by LMD for the same unstable mode, highlighting the struggle

with mode mixing issues and its impact on the accuracy of the DR.

• Similar to LMD, Empirical Mode Decomposition (EMD) does not exhibit strong perfor-

mance compared to EWT and VMD. EMD may also struggle with mode mixing, leading

to incomplete separation of modes and less accurate ratio estimation. Fig. 7.17 showcases

the decomposition conducted by EMD for the same unstable mode, revealing similar dif-

ficulties with mode mixing and incomplete mode separation.

In summary, EWT has performed the best among the methods, followed by VMD. EWT shows

good accuracy in ratio estimation and its frequency results are better overall. LMD and EMD

have shown weaker performance, possibly due to mode mixing issues and incomplete separation

of modes.
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Figure 7.13: Case 1 Stable Scenario:Comparison of average damping ratio estimation by dif-
ferent methods.

Figure 7.14: Case 2: Left)Decomposition of the unstable signal using EWT, Right) Fourier
frequency of the decomposed modes.

157



7.3. Numerical results Chapter 7. Estimating interarea oscillation with machine learning

Figure 7.15: Case 2: Left)Decomposition of the unstable signal using Variation Mode Decom-
position (VMD), Right) Fourier frequency of the decomposed modes.

7.3.4 Feature Selection

Table 7.4 shows the feature importance score calculated using LASSO regression. All the

features are obtained using the penalization factor of λ = 1. Our model eliminates features

that have negligible importance. The final score for the feature selection process is the average

score of all the features that survived the LASSO regression. These features are displayed in

Fig. 7.11.

7.3.5 Model training and testing

The designed feature selection framework selects seven features for training and testing. The

dataset is split into two parts: 80 % of the generated cases are randomly selected for training,

and the rest are used for the performance test. The input variables for this analysis consist

of voltage magnitudes, while the output comprises the features extracted from the Enhanced

Empirical Wavelet Transform (SEWT). These extracted features encompass both Instantaneous

Frequency and Instantaneous Magnitude. For the analysis, a time window of 20 seconds is

employed, with a step size of 1 second.A 5-fold cross-validation method is employed, wherein

the training and testing processes are iterated five times to mitigate the potential variability

and randomness in the evaluation process, leading to more reliable and consistent performance

assessments.

Table 7.5 and Table 7.6 show the evaluation results. The root means square error (RMSE)
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Figure 7.16: Case 2: Left)Decomposition of the unstable signal using Local Mean Decomposi-
tion (LMD), Right) Fourier frequency of the decomposed modes.

and the coefficient of multiple determination (R2) of each ML model under training and testing

phases with the three algorithms are presented for MIMO. The graphical analysis of the RMSE

results is shown in Fig. 7.18. The RMSE and R2 are calculated considering all the test samples.

Table 7.5, shows varying accuracy levels for different stability states and machine learning

models. The Random Forest (RF) model demonstrates relatively better accuracy for stable

and sustained states in both training and testing. The Decision Tree (DT) model performs

well in stable and unstable states, particularly in the training phase. The KNN model achieves

competitive results but exhibits slightly lower accuracy compared to RF and DT models.

Table 7.7 displays the training and testing duration for the execution of each ML model. Par-

ticularly noteworthy is the significantly shorter training time of the DT model when compared

to the other two models. For example, with an average execution time of 0.003017 s, 1.2100 s,

and 1.9400 s for stable, unstable, and sustained cases, respectively, the DT model proves to be

well-suited for near real-time voltage stability assessment. The results are shown in Fig. 7.19.

Noise impact

Noisy measured data from PMUs may introduce errors. Gaussian white noises with different

signal-to-noise ratios (SNRs) are added to the PMU data to demonstrate the effect of noise on

oscillation monitoring. A smaller SNR indicates a higher noise level. Three scenarios with SNRs

of 60 dB, 40 dB, and 30 dB are respectively tested. First, the SEWT is utilized to decompose
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Figure 7.17: Case 2: Left)Decomposition of the unstable signal using Empirical Mode Decom-
position (EMD), Right) Fourier frequency of the decomposed modes.

Figure 7.18: Root mean squared error.
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Table 7.4: Feature Score

buses Stable Unstable Sustained
g1 0 0 0
g2 0 0 0
g3 0 0 0
g4 0.165 0 9.67
g5 0 0 0
g6 0.209 0.429 0
g7 0 1.677 0
g8 0.028 0 0
g9 0 0 0
g10 0 0 0
g11 0 0.041 0.681
g12 0 0 0.048
g13 0.488 0.072 4.750
g14 0 0.740 0
g15 0 0 0
g16 0 0 0
g17 0 0 0
g18 0 47.83 0
g19 0 0 0
g20 0 0 0

Table 7.5: Value of RMSE

ML model Stable Unstable Sustained

RF Train 0.072257 0.100567 0.058324
Test 0.040147 0.09795 0.056998

DT Train 0.064289 0.111147 0.072682
Test 0.065869 0.11835 0.087194

KNN Train 0.105839 0.126707 0.073614
Test 0.107989 0.138927 0.084244

the simulated signal adaptively. Then the amplitude envelope of these modes is calculated at

each noise level. The waveforms of the generator bus g-7 with and without noise are shown in

Fig. 7.20. As the noise level increases, the frequency of 0.54 Hz is buried in solid background

noise, and it is hard to distinguish damped frequency only by the amplitude of the spectrum.

Despite the noisy signal, the SEWT method successfully separated the dominant modes from the

intense noise and extracted non-stationary features of the transient signal. Regarding accuracy,

Table 7.8 lists the test results for RMSE and R2 under noisy environments. It can be seen

from Table 7.8 that the assessment accuracy remains good till 30 dB, which thoroughly verifies

the excellent robustness of the proposed method against noise.
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Table 7.6: Value of R2

ML model Type Stable Unstable Sustained

RF Train 0.887 0.828 0.808
Test 0.873 0.778 0.744

DT Train 0.888 0.885 0.897
Test 0.820 0.880 0.897

KNN Train 0.575 0.789 0.831
Test 0.143 0.704 0.769

Table 7.7: Training and testing time

Model CPU TIME (S) Stable Unstable Sustained

RF Train time 17.90000 62.65300 89.00000
Test time 0.00106 0.00040 0.00060

DT Train time 56.67200 24.80900 43.32400
Test time 0.00302 1.21000 1.94000

KNN Train time 12.98100 135.47500 221.63500
Test time 61.67000 65.00000 97.00000

7.3.6 Database update condition

A robust online estimation approach should be able to accommodate different unseen network

topologies. Suppose the operating point A was the starting point of an online assessment. Two

typical scenarios of operation changes were considered here for the adaptability tests of online

applications.

• Scenario-1: Fault at line 4022 is triggered at t=100 s.

• Scenario-2: Line 4031–4041 is tripped due to accidental failures.

Given these scenarios, the proposed assessment scheme is tested for database updates and online

assessments. Based on each scenario’s current and ongoing conditions and credible contingen-

cies, 100000 (5000 samples based on 20 operating points) synthetic samples were generated and

fed into data update learning. On the other hand, these new samples were exploited to test the

Table 7.8: Noise Impact

Stable Unstable Sustained
Noise Level Type RMSE R2 RMSE R2 RMSE R2

40 dB Train 0.2226 0.5160 0.6184 0.4965 0.5714 0.6100
Test 0.4557 -0.3468 0.8104 0.1187 0.8563 0.3747

30 dB Train 0.3005 0.5099 0.4576 0.4093 0.5707 0.6003
Test 0.1381 -0.9684 0.7730 0.0511 0.8844 0.3426

20 dB Train 2.1210 0.4906 0.3265 0.5341 0.5692 0.6055
Test 2.8493 0.2268 0.4601 0.0706 0.8749 0.3416
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Figure 7.19: Computational time

online assessment performances of the old ML models.

Figure 7.20: Noise impact.

Online feature extraction is done on the new samples with SEWT and HT to evaluate the

effectiveness of the proposed online update scheme. Over the whole simulation, the RMSE of

the predicted data is calculated. The process of online database update is explained with the

help of Fig. 7.21. Before the black dotted, the system topology remains constant, and the RMSE

is below 0.1. At t=50 s, fault-1 is introduced, and at t=60 s, fault-2 is presented. The system

topology changes due to these faults.

In Fig. 7.21-a, the ML model was not trained on these faults; therefore, the RMSE increased

above 0.3. At the same time, K-means clustering is applied to data points that arrive during the
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Figure 7.21: Root mean squared error.

online process, and distances from the cluster centres are calculated. K-Means Clustering aimed

to handle data drift based on the system’s topological changes. Fig. 7.21-b shows the distances

from the cluster centres before and after introducing faults. The dotted blue line represents the

distance threshold (τd = 0.25). After introducing the faults, the distance from the cluster centres

crosses the threshold value triggering the database update. Once the database is updated, the

ML model is retrained. Fig. 7.21-c shows the new RMSE after the retraining of ML model.

After retraining, the average reduction in the RMSE of the post-fault data is approximately

80%.

7.4 Chapter Conclusion

Although much research has been conducted on estimating low-frequency electromechanical

oscillation in power systems, most signal-processing approaches are limited to single-channel

identification algorithms and cannot handle multichannel measurements simultaneously. While

single-channel estimation methods have been well-developed, they suffer from potentially es-

timating the same dominant mode with similar but non-identical values in different channels

due to differences in observability and embedded noise in the oscillation mode. On the other

hand, multichannel measurements provide a more comprehensive description of the system dy-

namics than single-channel measurements. This study proposes an ML-based multichannel

approach for estimating and monitoring interarea oscillation. To estimate the oscillation mode

from measurement data, the enhanced Empirical Wavelet Transform (SEWT) is applied to the
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measurement data from each bus to extract the instantaneous features of the interarea modes.

The extracted features from each channel are stored in a database, and the ML algorithm is

trained on these features. Finally, the trained model is applied online to identify and monitor

the dominant modes from multiple channels. This approach provides an alternative method to

the complicated and time-consuming power system mathematical model whilst offering a highly

accurate solution compared to existing methods.
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Chapter 8

Conclusion and future work

Due to economic and environmental constraints, power systems have operated closer to their

stability limits. Voltage stability has become an increasingly important factor in the planning

and operation of electric power systems. Due to the continuously-changing operating conditions

and various unforeseen factors associated with large power systems, offline stability studies can

no longer ensure a secure power system operation. Online stability assessment based on real-

time measurements can better estimate the power system state.

While various tools have been proposed for voltage stability analysis, such as P-V curves, Q-V

curves, voltage stability indices, and continuation power flow, their online implementation is

challenging as they require precise mathematical modelling of the system and are computation-

ally intensive. This research has a primary objective of monitoring and assessing the online

voltage stability of the power system, which can be categorized into two parts.

The first part involves monitoring and evaluating the long-term voltage stability, which occurs

over a time scale of minutes. The second part is focused on detecting and monitoring low-

frequency electromechanical oscillation. The inability of the power network to provide adequate

reactive power support to the system is the underlying cause of long-term voltage stability.

The focal point of this research is the online monitoring and evaluation of the power system’s

stability using machine learning models (MLM). In recent years, machine learning methods have

gained considerable attention from researchers as they provide an effective tool for online voltage

stability assessment, particularly due to the non-linear nature of voltage stability. Machine

learning-based techniques are more suitable than conventional analytical methods for voltage
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stability analysis. Furthermore, the execution time of the MLM is significantly less once it is

trained, which makes it an attractive alternative compared to conventional voltage stability

analysis methods.

The second part of the thesis covers the power system oscillation and, more precisely, how

to detect and monitor the oscillations. Electromechanical oscillations are characteristic of an

interconnected electrical power system. Among different types of electromechanical oscillations,

inter-area oscillations, which are the oscillatory modes involving the rotors of generators in

different areas, have gained the attention of power system researchers. This is because a stable

or a well-damped inter-area mode can become negatively damped or poorly damped due to

changes in power system structure, operating conditions, and load characteristics. Due to this

reason, the power system may collapse due to gradually increasing rotor oscillations over several

seconds. Therefore, continuous monitoring of poorly-damped modes provides information on

whether the power system operates closer to the instability and helps initiate preventive control

actions.

The main objective of this study is to build a simple and computationally efficient algorithm for

improving classification accuracy among different signal processing and machine learning tasks.

8.1 Advancements and Contributions

The original contribution of the work lies in the following aspects:

• Enhanced Feature Ensemble Approach for Voltage Stability Monitoring: This

research introduces a novel feature ensemble approach for online voltage stability moni-

toring, which demonstrates superiority over conventional feature selection methods. The

proposed approach effectively handles feature stability issues, an area of weakness in ex-

isting methods, leading to improved performance.

• Cluster-based Sampling for Enhanced Performance: - A cluster-based sampling

approach is introduced for selecting operating points, effectively reducing computational

burden and enhancing practical usability for speedy assessment applications

• Bayesian hyperparameter optimizationA Bayesian optimization technique is em-

ployed to tune the hyper-parameters of machine learning (ML) models and determine the

optimal number of features. This contributes to increased model accuracy and effective-
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ness in predicting the dynamic voltage stability status.

• Utilization of Sliding Window-based Empirical Wavelet Transform (SEWT)

for Oscillatory Stability: A significant contribution is made through the application

of the SEWT to detect low-frequency inter-area oscillations (LFIO) in power systems.

• Accurate estimation of instantaneous parameters:The SEWT approach enables ac-

curate estimation of instantaneous parameters such as amplitude and frequency, enhancing

the identification and analysis of low-frequency electromechanical oscillations.

• Multichannel approach: SEWT is integrated with machine learning techniques using

a multichannel approach, further improving accuracy in estimating inter-area modes.

• Automated Mode Detection in EWT: SEWT automatically detect modes without

the need for pre-specifying their number. This addresses the challenge of closely spaced

modes in power systems and concealed interarea modes caused by signal noise

8.2 Demonstrating Superiority: Unveiling the Strengths of the

Proposed Approach Over Existing Methods

The superiority of the proposed work compared to existing methods is evident in the following

aspects:

• The feature ensemble approach significantly enhances the accuracy of voltage stability

prediction by effectively addressing inherent feature stability challenges, a hurdle that

conventional methods often encounter. This approach offers a distinct advantage over

single feature selection techniques, as it incorporates multiple feature selectors. By doing

so, it not only bolsters stability and robustness but also introduces a heightened level

of diversity in the selection process. This diversity contributes to mitigating overfitting

concerns and enriches the overall selection of features, ultimately leading to improved

generalization capabilities of the model.

• The cluster-based sampling technique enhances computational efficiency and captures

diverse load characteristics, offering a practical alternative to traditional Monte Carlo

simulations.

• The incorporation of Bayesian optimization for hyper-parameter tuning makes a substan-
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Existing Methods

tial contribution to the enhancement of voltage stability predictions in terms of accuracy

and adaptability. This innovative approach not only fine-tunes hyper-parameters for im-

proved model performance but also introduces a unique advantage in the feature ensemble

context. Specifically, Bayesian hyper-parameter optimization facilitates the selection of

the optimal number of features for the ensemble without necessitating the explicit spec-

ification of the number of features to be chosen. This adaptive feature selection process

further amplifies the model’s capability to adapt and yield precise voltage stability pre-

dictions.

• SEWT emerges as a highly adaptable signal processing technique, presenting a marked

advantage over traditional EWT (Empirical Wavelet Transform) approaches. Particu-

larly noteworthy is SEWT’s inherent flexibility, eliminating the necessity of specifying

the number of modes in advance—a constraint often encountered by EWT. Function-

ing as an adaptive signal processing tool, SEWT boasts a multifaceted set of advantages

that distinguishes it from other established methods, including Prony and matrix pencil

techniques.

• SEWT’s adaptive nature empowers it with the capacity to seamlessly adjust to varying

signal characteristics, making it well-suited for handling non-linear and non-stationary

signals—a characteristic that sets it apart from conventional methods. The technique’s

proficiency extends to managing intricate signals characterized by multiple modes, further

enhancing its utility in real-world scenarios. An additional distinctive trait of SEWT is its

immunity to mode mixing, a challenge often faced by existing adaptive signal processing

techniques.

• Moreover, SEWT excels in the realm of noise compression, a feature that bolsters its

effectiveness in practical applications. When compared to established adaptive signal pro-

cessing techniques, SEWT stands out due to its unique combination of benefits, demon-

strating its prowess in accurately estimating modal parameters and contributing to the

detection and analysis of low-frequency inter-area oscillations within power systems.

• The SEWT approach coupled with machine learning offers superior accuracy in identifying

and analyzing low-frequency inter-area oscillations for online estimation of oscillatory

modes.
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In summary, we have demonstrated that the improved EWT method can effectively decompose

the frequency boundaries and outperforms the original EWT method. It can extract a series of

amplitude-modulated-frequency-modulated (AM-FM) signals from the given data. Moreover,

the combined scheme based on the enhanced EWT method provided modal estimates (natural

frequency and damping ratio) with high accuracy even when the signal was embedded with high

noise levels. Due to its simplicity, EWT algorithm could be implemented for online applications

efficiently. Such a technique can also be used for big data applications for low computational

expenses. However, there also exist certain limitations to the proposed EWT method. The

main shortcoming of EWT is that Fourier segmentation strongly depends on the local maxima

of the Fourier spectrum’s amplitude. This study introduced an enhanced empirical wavelet

transform using the sliding window technique over the Fourier spectrum. This technique avoids

getting stuck in the local maxima and identifies maxima for optimal spectrum decomposition

intervals. Moreover, using this technique, the spectrum is automatically decomposed, and there

is no need to specify the number of segments in advance.

8.3 Future Work

We envision extending this work in a more robust environment that addresses uncertainties

and faults in distribution networks. Our future work will describe the network accurately

and present this information in machine learning. Furthermore, issues such as identifying weak

buses for emergency demand response-based voltage stability improvement would be given more

attention. The proposed MLM could be further improved with more advanced deep learning

techniques and applied heuristic search algorithms.

Currently, features are just voltage phase angle and voltage magnitude, which seems relatively

straightforward. Next, we will develop more complex features such as current, active power,

reactive power, their derivatives, frequency, the flow direction of reaction power, etc. While long-

term voltage stability is widely studied, short-term stability receives significantly less attention.

While the issue used to be a low-probability event, this might no longer be the case with the

changes we see in the systems. It can be expected that local voltage-related issues will be

more common and will become a significant focus of system operators throughout the energy

transition. Therefore, a critical need exists to investigate and estimate short-term voltage

instabilities.
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Future investigations of oscillations would focus on identifying power system oscillation modes

using ambient data. As ring-down data is not always available, identifying power systems’ dy-

namic characteristics through measured ambient data is an alternative in this situation. Minor

stochastic disturbances, such as random load fluctuation, always exist in power systems. There

is an important assumption that these disturbances are white noise. Under these stochastic

disturbances, the ambient data measured is abundant in dynamic information. Many scholars

have conducted effective and productive explorations to obtain dynamic characteristics based

on ambient data. The effect of these and other factors can be studied with real and simulation

studies, and this area is subject to future work.

Another area of focus would be underlying system conditions and effects related to resonance in

power systems caused by forced oscillations and ways to detect such scenarios using synchropha-

sors. The resonance depends on many factors, but the most important is the location of the

forced oscillation source. Accurately locating Forced Oscillations sources in a large-scale power

system is a challenging and important aspect of power system operation. Machine learning

techniques can be used to localize forced oscillation sources using data from PMU by tracing

the source of the forced oscillation on the branch level in the power system network.
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Chapter A. appendix-A: Nordic Test System

Figure A.1: Single line diagram of Nordic Test System: Source [3]
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Chapter B. Appendix-B: Parameter setting for machine learning model

Feature Selector Classifier Parameter Value

F-Regression DT max features 11
F-Regression DT max depth 16
F-Regression DT min samples split 5
F-Regression DT min samples leaf 7
F-Regression KNN neighbors 5
F-Regression SVR C 38.82
VAR KNN Threshold 0.0006
VAR KNN neighbors 7
VAR SVR Threshold 0.0002
VAR SVR C 1
VAR DT Threshold 0.00006
VAR DT max features 11
VAR DT max depth 11
VAR DT min samples split 3
VAR DT min samples leaf 11
lasso KNN Alpha 0.00002
lasso KNN neighbors 8
lasso SVR Alpha 0.00004
lasso SVR C 10
lasso DT Alpha 0.00008
lasso DT max features 5
lasso DT max depth 23
lasso DT min samples split 10
lasso DT min samples leaf 5
MI-Regression DT max features 2
MI-Regression DT max depth 25
MI-Regression DT min samples split 10
MI-Regression DT min samples leaf 3
MI-Regression KNN neighbors 6
MI-Regression SVR C 24.96
Ridge KNN Alpha 0.00001
Ridge KNN neighbors 7
Ridge SVR Alpha 0.00001
Ridge SVR C 10
Ridge DT Alpha 0.00009
Ridge DT max features 12
Ridge DT max depth 9
Ridge DT min samples split 7
Ridge DT min samples leaf 4

Table B.1: Best score for hyperparameter obtained through Bayesian optimization
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