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Abstract

This thesis concerns the time and space efficiency of programs in GP2, a
rule-based graph transformation language that facilitates formal program
analysis. Such programs are a sequence of control structures in which rules
are called. A rule describes how part of a host graph is changed to another
by specifying a subgraph that is to be replaced. We call the process of finding
the specified subgraph in the host graph matching, which takes polynomial
time in general. In practise however, we often want rule application to take
constant time since it likely corresponds to a single step in a classical algo-
rithm.

Several case studies show that the time complexity of GP2 programs can
be on the same level as that of their imperative counterparts. We give linear-
time programs for connectedness checking, DAG recognition, and topological
sorting, as well as an efficient implementation of Boruvka’s algorithm for
finding minimum spanning trees. This efficiency is achieved via roots, which
are special nodes in rules and graphs that can be accessed in constant time
and allow matching to happen locally around them. The given programs also
use depth-first search to traverse graphs in linear time instead of iterating
over nodes because GP2 abstracts away from internal graph data structures.

In the spirit of formal program analysis, we give a framework in which
to describe the time complexity of these efficient programs. This framework
is underpinned by a formal semantics that describes program execution in a
sequence of steps that do not cover more than one rule application.

On the topic of space efficiency, we give a theoretical result that shows
GP2, like some graph-based machine models, can simulate Turing machines
using less space and only quadratic time overhead.
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1
Introduction

Our first step in this thesis is to outline the motivation behind it in Section
1.1. We then describe the goal of this thesis and how our contributions
achieve it in Section 1.2. In Section 1.3, we outline the structure of this
thesis. Section 1.4 contains the history of publications that form the basis
this thesis.

1.1 Motivation

In rule-based graph transformation, we modify graphs by applying rules to
them. A rule specifies how this modification occurs using a left- and a right-
hand side graph. A host graph is modified by finding a subgraph that matches
the left-hand side, and changing it to match the right-hand side.

Rule-based graph transformation is an important area of research be-
cause it provides a formal basis for programs that transform graphs, which
are ubiquitous in computer science. The use of graph transformation enables
the analysis and verification of programs in a formal way, which is crucial for
ensuring their correctness and efficiency. Graphs are widely used to model
complex systems and processes, such as communication networks [82], social
networks [13], relational databases [88], UML diagrams [96], pointer struc-
tures [29], longitudinal information systems [92], and chemical reactions [3].
Additionally, graph transformation can be used to convert computer graphics
files containing virtual worlds [6], phenotype plants [68], assist in engineering
design [80], geometrically model quasi-manifolds [56], and model epidemics
[90]. By using rule-based graph transformation, we can naturally express
and manipulate graph algorithms concerning topological sortings, minimum
spanning trees, and many other problems. This makes rule-based graph
transformation a powerful and versatile tool in computer science research
and development.

There are numerous theoretical results in this field [35], but also a lot of
work on programming languages based on rule-based graph transformation.
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Such languages include PROGRES [72], AGG [67], GReAT [1], GROOVE
[41, 48], GrGen.Net [47, 48], Henshin [79, 48] and PORGY [36].

In this thesis, we focus on the experimental programming language GP2,
whose aim is to facilitate formal reasoning. It is nondeterministic since ap-
plying a rule can result in different graphs, and since it allows for a set of
rules to be called nondeterministically. The language comes with a simple
formal semantics [25], and a C compiler [8, 11]. GP2 is computationally com-
plete in that it can implement any computable function on graphs [60, 42].
Research on this language includes Hoare-calculi for program verification
[63, 64, 94, 95], static analysis for confluence checking [46], and formalisation
in a proof assistant [78]. GP2 is introduced in [58] as the successor to GP
[53].

In general, applying a rule is less efficient than we desire an atomic oper-
ation to be due to graph matching. Given the left-hand side L of a rule, and
a host graph G, the number of possible matches is bounded by size(G)size(L),
which is polynomial since a rule is part of a program and hence considered
of fixed size. We consider the size of a graph to be the number of nodes and
edges plus the size of its labels. The aforementioned bound is reached if L
and G have no edges for instance. In the worst case, only one of the possible
node mappings makes the labels match, and all mappings have to be checked
for that.

Note that graph matching is not the same as the subgraph isomorphism
problem, which is NP-complete [39, 84]. In the latter, both graphs are con-
sidered part of the input, whereas in the graph matching problem, one of the
graphs is considered fixed.

A way to mitigate expensive matching is to use root nodes (or roots),
first introduced by Dörr [30]. They are special nodes in a graph that can
be accessed in constant time if there are only boundedly many, which can
be implemented using a list of pointers for instance. Roots can only match
roots, which allows matching to occur locally around them. They can be
thought of as nodes that are currently being worked on by an algorithm.

Rules with roots can be shown to apply in constant time under some mild
conditions. One such approach [10] uses fast rules that can be matched in
constant time for connected host graphs of bounded degree with a bounded
number of roots.

A bounded number of roots can easily be achieved by carefully managing
them during programming. Whether or not the node degree is bounded
depends on the application. Traffic networks or electrical circuits for instance
can be considered bounded-degree graphs.

The first GP2 program that used this technique is 2-colouring [10, 11],
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which is shown to take linear time on connected graphs of bounded degree.
Furthermore, the compiled program’s performance is measured for input
graphs with up to 100, 000 nodes, and found to match that of Sedgewick’s C
implementation of 2-colouring [75].

Improvements to the GP2 compiler [21, 20] led to time-efficient matching
in more cases. For instance, if we restrict rules to fast outgoing rules, but
extend host graphs to include graphs of only bounded outdegree, matching
can still happen in constant time. This technique is first used in [26].

A deliberate design feature of GP2 is that internal data structures are
abstracted away from. The programmer only has access to rules, graphs, and
programs. This means one can establish theoretical results without relying
on the implementation (correctness or termination proofs for instance). Be-
cause of this, graph data structures cannot be exploited, which is a common
practice in many graph algorithms. When needing to iterate over nodes for
instance, instead of going through an array of nodes in a data structure, one
needs to do a depth-first search. In both approaches, there is a trade-off
between convenience and high-level reasoning.

The programmer may wish to use additional data structures, like lists or
stacks. These can be implemented within a host graph. The GP2 imple-
mentation of topological sorting for instance [19] implements a stack using
nodes and edges to keep track of its top and the overall sequence of nodes.

When it comes to space efficiency, we build on a theoretical result. There
are graph-based machine models, namely Schönhage’s storage modification
machines [69] and Kolmogorov-Uspenskii machines [49], that exhibit a space
compression property. That is, they can simulate Turing machines using less
space and only polynomial time overhead [85, 52].

To the best of our knowledge, in the field of rule-based graph transfor-
mation, there is no other research on concrete time bounds for well-known
graph algorithms. That is the starting point of this thesis.

1.2 Aim and Contributions

The aim of this thesis is to show that rule-based graph programs, specifically
in GP2, can be efficient with respect to both time and space, and to pro-
vide a framework in which to give formal arguments about these programs’
complexity. We do this using the following contributions.

A small-step semantics. We introduce a new semantics for GP2 that
is small-step, i.e. every step described by the semantics corresponds to no
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more than one computation step of a program. This fine-grained approach
to describing program execution provides a solid foundation for a complexity
framework. The new semantics is equivalent to the original semantics (in
that they can simulate each other) for terminating programs, and improves
upon it for non-terminating programs.

A formal complexity framework. We establish what constraints a set of
programs and inputs have to satisfy in order for us to define time and space
complexity measures. One constraint is constant-time matching for each
rule. This can be shown using a variety of results with different assumptions
on rule and host graph structure, based on assumptions on the time com-
plexity of various compiler operations [10, 19]. The other constraint is that
backtracking (i.e. undoing parts of the program) is avoided, since that can
create either time or space overhead. This framework is established by going
into implementation details so that a programmer using it only has to reason
about rules, graphs, and programs to get complexity results.

A collection of efficient graph programs. We provide GP2 programs
that have the same asymptotic complexity (on graphs of bounded degree)
as equivalent imperative implementations. We argue about correctness and
complexity by giving theoretical proofs and/or empirical evidence. The pro-
grams achieve this by using linear-time depth-first search and rules that can
be matched in constant time under mild conditions. These programs are the
following.

• is-connected recognises whether an input graph is connected or not
in linear time.

• top-sort recognises whether an input graph is a directed acyclic graph
(DAG) and constructs a topological sorting if it is, all in linear time.

• mst-boruvka implements Boruvka’s algorithm for finding a minimum
spanning tree in linear time.

A space compression property. We show that GP2 shares the property
of space compression with the graph-based computation models known as
storage modification machines and Kolmogorov-Uspenskii machines. A class
of programs in a subset of GP2 can simulate Turing machines using less
space and only quadratic time overhead. We give proofs for correctness as
well as time and space complexity.
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1.3 Thesis Structure

This thesis is divided into chapters which contain the following.

• Chapter 2 defines the programming language GP2 in detail. It de-
scribes the mathematical foundations of applying graph transformation
rules with roots and labels. On a higher level, it describes the structure
of GP2 programs, i.e. the syntax, as well as program behaviour using
semantics. Both the original and an improved semantics are given and
compared.

• Chapter 3 gives a framework for describing the complexity of GP2 pro-
grams. It starts with assumptions on low-level operations of the com-
piler, and uses those on the matching algorithm to show it is constant-
time in some cases. This is then used to establish time and space
complexity measures under some assumptions.

• Chapter 4 provides case studies of GP2 programs that have efficient
time complexities. Arguments for their correctness and efficiency are
given. These programs implement connected graph recognition, topo-
logical sorting, directed acyclic graph (DAG) recognition, and minimum
spanning trees.

• Chapter 5 shows that GP2 can simulate Turing machines using less
space and a quadratic time overhead. This is done by giving proofs
for the time and space complexity of a class of programs in a subset of
GP2.

• Chapter 6 caps this thesis off by drawing conclusions and providing
some items of future work.

Chapters for which it is relevant come with a section or subsection on
related work to provide context. Literature on relevant topics is cited and
discussed. They are in a separate section in order to preserve the narrative
flow of the other sections.

We assume that the reader has elementary knowledge in theoretical com-
puter science and mathematics, particularly when it comes to discrete math-
ematics, logic, and notation. However we do give some basic definitions for
the sake of rigour. We also assume a familiarity with basic graph theory
terms [23, 93] such as incoming edges, outgoing edges, indegree, adjacent
nodes, loops, connectedness, reachability, etc.
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1.4 Publication History

The results of this thesis are published in several peer-reviewed journal, con-
ference, and workshop papers, as listed below. Each entry is followed by a
description of this thesis’ author’s contributions for co-authored papers, and
of which part of the thesis they are related to.

[18] Graham Campbell, Brian Courtehoute & Detlef Plump (2019):
Linear-Time Graph Algorithms in GP2. In Markus Roggen-
bach & Ana Sokolova, editors: Proc. 8th Conference on
Algebra and Coalgebra in Computer Science (CALCO 2019),
Leibniz International Proceedings in Informatics (LIPICS) 139,
Schloss Dagstuhl-Leibniz-Zentrum für Informatik, pp. 16:1–16:23,
doi:10.4230/LIPIcs.CALCO.2019.16.

This thesis’ author contributes everything related to the recogni-
tion of binary directed acyclic graphs (DAGs) and to topological
sorting to this paper. Those programs do not feature in this thesis
as such because they are improved upon in the extended journal
version [19] of this paper.

[19] Graham Campbell, Brian Courtehoute & Detlef Plump (2022):
Fast Rule-Based Graph Programs. Science of Computer Program-
ming 214, doi:10.1016/j.scico.2021.102727.

An extended journal version of [18], adding further programs and
more detailed proofs. This thesis’ author contributes everything
related to connectedness recognition, topological sorting, and gen-
eral directed acyclic graph (DAG) recognition. These programs
form the basis for two of the case studies in Chapter 4. Elements
of the approach for showing a program’s time complexity can be
found in Chapter 3.

[24] Brian Courtehoute & Detlef Plump (2020): Fast Graph Program
for Computing Minimum Spanning Trees. In: Proc. 11th Inter-
national Workshop on Graph Computation Models (GCM 2020),
Electronic Proceedings in Theoretical Computer Science 330, pp.
163-180, doi:10.4204/eptcs.330.10. Revised Selected Papers.

We introduce an efficient GP2 implementation of Boruvka’s al-
gorithm for finding minimum spanning trees, including empirical
time measurements. This case study can be found in Chapter 4.

https://doi.org/10.4230/LIPIcs.CALCO.2019.16
https://doi.org/10.1016/j.scico.2021.102727
https://doi.org/10.4204/eptcs.330.10
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[25] Brian Courtehoute & Detlef Plump (2021): A Small-Step Op-
erational Semantics for GP2. In: Proc. 12th International
Workshop on Graph Computation Models (GCM 2021), Electronic
Proceedings in Theoretical Computer Science 350, pp. 89-110,
doi:10.4204/eptcs.350.6. Revised Selected Papers.

We introduce a new small-step operational semantics for GP2. We
show some of its properties and prove that it is equivalent to the
original semantics on terminating programs. These results are pre-
sented in Section 2.3.

[26] Brian Courtehoute & Detlef Plump (2022): Time and Space Mea-
sures for a Complete Graph Computation Model. In: Proc. 13th In-
ternational Workshop on Graph Computation Models (GCM 2022),
Electronic Proceedings in Theoretical Computer Science 374, pp.
23-44, doi:10.4204/eptcs.374.4. Revised Selected Papers.

We show that GP2 can simulate Turing machines in less space with
only a quadratic time overhead, which can be found in Chapter
5. This paper also establishes the foundations of the complexity
framework in Chapter 3.

https://doi.org/10.4204/eptcs.350.6
https://doi.org/10.4204/eptcs.374.4


2
The Programming Language GP 2

GP2 is a programming language that takes graphs as input, runs a program
on it that transforms it using various control constructs, and outputs the
resulting graph, as illustrated in Figure 2.1. The language is first introduced
in [58] and implemented as a GP2-to-C compiler in [8]. Updates to the
compiler are introduced in [21, 20]. GP2 is computationally complete, in
that every computable function on graphs can be programmed [60].

GP 2
Program

Input Graph

Execute
Output
Graph

Figure 2.1: The GP2 computational model

In GP2, we use attributed graphs, i.e. nodes and edges carry information
via marks and labels. Marks are represented using 5 colours, a fixed set of
values that are hard-coded into GP2. Labels include integers, strings, and
lists thereof. Edges are directed, and we allow loops and parallel edges.
Our graphs also feature roots, a subset of nodes that are singled out for
fast access. Computation happens on the structure of graphs, as well as on
attributes. GP2 allows for various operations on labels, such as arithmetic
expressions and list concatenation. This facilitates programming algorithms
with weighted edges for instance, such as finding a minimum spanning tree,
or computing a shortest path.

In Section 2.1 we give the theory behind double-pushout graph transfor-
mation. Subsection 2.1.1 introduces graphs, and 2.1.2 morphisms, which we
use to map graphs into each other. Subsection 2.1.3 defines the rules we use
to transform graphs, which is followed by an introduction to the concepts of
category theory in Subsection 2.1.4. We then use these concepts to define di-
rect derivation in Subsection 2.1.5, and talk about existence and uniqueness
in Subsection 2.1.6.
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We then move on to attributed graph transformation in Section 2.2, where
we introduce GP2 labels in Subsection 2.2.1, and more expressive rules, called
rule schemata, that use these labels in Subsection 2.2.2. Next, we describe
how we apply rule schemata in Subsection 2.2.3, and go into the problem of
relabelling and rooting in Subsection 2.2.4.

Section 2.3 gives an overview of GP2 programs and the theory behind
them. The syntax is defined in Subsection 2.3.1, followed by a description of
how components of a program behave in Subsection 2.3.2, and an example
program in Subsection 2.3.3. Next, Subsection 2.3.4 gives motivation and
context for why we have two GP2 semantics. The original semantics is given
in Subsection 2.3.5, and the small-step semantics in Subsection 2.3.6. We
show several properties of the latter semantics in Subsection 2.3.7 before
comparing the two in Subsection 2.3.8. In Subsection 2.3.9, we talk about
semantics in the literature.

2.1 Double-Pushout Graph Transformation

In this section, we describe double-pushout graph transformation with rela-
belling and re-rooting. This serves as the foundation of GP2 programs.

2.1.1 Graphs

We use finite graphs with directed edges that allow for loops (edges from a
node to itself) and parallel edges (multiple edges between two nodes). Graphs
have a set of labels which will remain unspecified in this section.

Definition 2.1 (Function). Let A and B be sets. A function f :A → B
associates to each element a ∈ A a unique element f(a) ∈ B.

We say g:A
par−−→ B is a partial function if there is a subset A′ ⊆ A such

that g:A′ → B is a function and g does not associate any element of B to
any element of A − A′. We say A′ = dom(g) is the domain of g. We call g
undefined on A− A′. We say that g is a total function if A′ = A. □

Definition 2.2 (Function Properties). Let f :A→ B be a function.

• We say f is injective if for each b ∈ B, there is at most one a ∈ A such
that f(a) = b.

• We say f is surjective if for each b ∈ B, there is at least one a ∈ A
such that f(a) = b.
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• We say f is bijective if it is both injective and surjective, i.e. for each
b ∈ B, there is a unique a ∈ A such that f(a) = b. We call a the
preimage of b. If f is bijective, we define its inverse f−1:B → A by
f−1(b) = a for each b ∈ B, where a is the unique preimage of b.

• We say two functions f :A → B and g:C → D are equal (commonly
known as equality by extensionality), i.e. f = g, if A = C, B = D, and
for each x ∈ A = C, f(x) = g(x).

• We call idA:A → A the identity function on A if, for each a ∈ A,
idA(a) = a. □

Note that the inverse of a bijective function is a bijective function.

Definition 2.3 (Operations on Functions). We define the following opera-
tions on functions.

• Given two functions f :A → B and g:B → C, their composition g ◦
f :A→ C is defined by g ◦ f(x) = g(f(x)) for each x ∈ A.

• Given a function f :A → B and a subset C ⊆ A, the restriction
f |C :C → B of f to C is defined by f |C(x) = f(x) for all x ∈ C. □

The restriction of partial functions is defined analogously. Note that the
restriction of a partial function to its domain is a function.

Definition 2.4 (Graph). Let L be a set of labels. A graph over L is a system
G = ⟨VG, EG, sG, tG, lG,mG, pG⟩ whose components are as follows.

• VG and EG are finite sets of nodes and edges.

• sG:EG → VG is the source function for edges.

• tG:EG → VG is the target function for edges.

• lG:VG
par−−→ L is the partial node labelling function.

• mG:EG → L is the edge labelling function.

• pG:VG
par−−→ {0, 1} is the partial rootedness function. A node v ∈ VG is

rooted or a root if pG(v) = 1, and unrooted or a non-root if pG(v) = 0.



2.1 Double-Pushout Graph Transformation 21

We call elements of VG ∪ EG items, and denote them as x ∈ G.
The graph G is called totally labelled if its node labelling function lG

is total. We call nodes v for which lG is undefined unlabelled, denoted as
lG(v) = ⊥ (assuming ⊥ ̸∈ L), thereby extending lG to a total function on
L ∪ {⊥}.

The graph G has defined rootedness if its rootedness function pG is total.
We say nodes v for which pG is undefined have undefined rootedness, denoted
as pG(v) = ⊥, thereby extending pG to a total function on {0, 1,⊥}. □

Rootedness is a special status that, if given only to a handful of nodes,
allows for fast access to the local area around the roots. Intuitively, they can
be seen as the “current node” described in graph algorithms, and used to
traverse a graph for instance. Roots are drawn with double borders. They
are modelled using a partial function that maps a node to either 0 or 1,
meaning that node is unrooted or rooted respectively. We model it as a
partial function for the same reason node labels are modelled with a partial
function. Note that a graph of defined rootedness need not have roots. It
only means that each of its nodes is either a root or not.

Not that we require the node labelling and rootedness functions to be
partial. This is because it allows us to map nodes while abstracting away from
their labels and rootedness. More details on this can be found in Subsection
2.2.4.

⊥⊥⊥

⊥⊥⊥⊥⊥⊥

⊥⊥⊥

⊥⊥⊥ ⊥⊥⊥

Figure 2.2: Example of a graph

An example of how we represent graphs can be seen in Figure 2.2. We
draw nodes using circles or pill shapes. Root nodes have double borders.
Nodes of undefined rootedness are drawn with dashed double borders. Edges
are drawn as arrows from their source to their target nodes. Note that nodes
contain the symbol ⊥⊥⊥, which stands for an undefined label. We elaborate on
how labels are drawn once the labels we use in GP2 specifically are defined
(Subsection 2.2.1).



22 The Programming Language GP2

2.1.2 Morphisms

Let us define how we map graphs into each other with structure-preserving
functions called graph morphisms. We sometimes omit the word ‘graph’ since
we do not use other kinds of morphisms.

Definition 2.5 (Graph Morphism). Let G and H be graphs. A (graph)
morphism g:G → H is a pair g = ⟨gV , gE⟩ of functions gV :VG → VH and
gE:EG → EH such that the following holds.

• Preservation of sources and targets: for each edge e ∈ EG, we have
gV (sG(e)) = sH(gE(e)) and gV (tG(e)) = tH(gE(e)).

• Preservation of edge labels: for each edge e ∈ EG, we have mG(e) =
mH(gE(e)).

• Preservation of defined node labels: for each node of defined label v ∈
dom(lG) ⊆ VG, we have gV (v) ∈ dom(lH) and lG(v) = lH(gV (v)).

• Preservation of defined rootedness: for each node of defined rootedness
v ∈ dom(pG) ⊆ VG, we have gV (v) ∈ dom(pH) and pG(v) = pH(gV (v)).

□

We omit the name of the morphism if it is not needed. Note that node
labels and rootedness are treated analogously.

Definition 2.6 (Morphism Properties). Let g:G→ H be a morphism.

• We say g is injective/surjective if both gV and gE are injective/surjective.

• We say g is bijective if it is injective and surjective.

• We say morphisms g:G→ H and f : I → J are equal, denoted by g = f ,
if G = I, H = J , gV = fV , and gE = fE.

• We call idG:G → G where idG = ⟨idVG
, idEG

⟩ the identity (graph)
morphism. □

Definition 2.7 (Graph Isomorphism). A (graph) morphism g:G → H is a
(graph) isomorphism if it is a bijective morphism that preserves undefined
labels and undefined rootedness, i.e. for each v ∈ VG, if lG(v) = ⊥ then
lH(gV (v)) = ⊥, and if pG(v) = ⊥ then pH(gV (v)) = ⊥. If such an isomor-
phism exists, we call G and H isomorphic, denoted by G ∼= H. □
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Definition 2.8 (Graph Inclusion, Subgraph). A (graph) morphism g:H →
G is a (graph) inclusion if for each v ∈ VH and each edge e ∈ EH , we have
gV (v) = v and gE(e) = e.

If g is an inclusion, we may use the notation g:H ↪→ G, and we say H is
a subgraph of G, denoted as H ⊆ G. □

Note that inclusions are injective due to their definition. Furthermore
note that, since morphisms only preserve defined labels and defined rooted-
ness, nodes that are labelled or have defined rootedness may be unlabelled
or of undefined rootedness in a subgraph. Also, we have that G ⊆ H and
H ⊆ G, if and only if G ∼= H.

Definition 2.9 (Operations on Morphisms). Let g:G→ H be a morphism.

• Given morphisms g:G→ H and f :H → I, we define their composition
f ◦ g:G → I as f ◦ g = ⟨fV ◦ gV , fE ◦ gE⟩. We sometimes omit the
composition’s name by writing G→ H → I.

• Given a morphism f :G → H, and a subgraph I of G with a strict
inclusion g: I ↪→ G, we define the restriction of f to I as f |I : I → H
where f |I = ⟨fV |VI

, fE|EI
⟩. □

Note that if two functions are morphisms, isomorphisms, or inclusions
then so is their composition.

Furthermore note that restriction preserves the properties of being a mor-
phism, or an inclusion. It does not preserve isomorphisms, but it does pre-
serve injectivity.

2.1.3 Rules

The principal, most basic graph computation construct we use is a rule, which
has a left-hand side graph L and a right-hand side graph R. When a rule is
applied to a graph G, we find a morphism from L to G, and transform the
image of L in G so it resembles R.

Definition 2.10 (Rule). A rule ⟨L←↩ K ↪→ R⟩ consists of graph K with un-
labelled nodes of undefined rootedness and no edges, totally labelled graphs
with defined rootedness L and R, and inclusions K ↪→ L and K ↪→ R. We
call L the left-hand side, R the right-hand side, and K the interface. □

Note that K consists of unlabelled nodes of undefined rootedness. This
is to enable the inclusions to map these nodes to rooted or unrooted nodes
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with any label. Without this ability, labels and rootedness of nodes would
have to be the same in L and R, making it impossible for a rule to relabel, or
to change the rootedness status of a node, which is an ability we want GP2
to have. A discussion of this can be found in Subsection 2.2.4. There is no
need to change labels of edges because rules can delete and re-insert an edge
of a different label between the same pair of nodes.

0
red
red
red
red

red
red
red
red

1

←↩ ⊥⊥⊥
1

↪→ 1
blue
blue
blue
blue

blue
blue
blue
blue

1

Figure 2.3: Example of a rule

An example of a rule can be seen in Figure 2.3. It uses GP2 labels
(numbers 0 and 1, as well as red and blue colours), which are defined in
Subsection 2.2.1. Nodes that are drawn without a label are considered to have
the GP2 label empty. Furthermore, nodes with small numbers next to them
identify nodes in the interface. These numbers also show how interface nodes
are mapped by the inclusions. Because of this, we can omit the interface K
when drawing a rule ⟨L ←↩ K ↪→ R⟩, in which case we depict the rule as
L⇒ R.

2.1.4 Basic Category Theory Notions for Graphs

In order to apply a rule to a host graph and get a unique outcome, we use
double-pushouts from category theory, and properties thereof, as described
in [34]. Categories are defined as follows.

Definition 2.11 (Category). A category C = ⟨O,M, ◦, id⟩ consists of

• a class of objects O,

• a set of morphisms M(A,B) for each pair of objects A,B ∈ O,

• a composition function ◦A,B,C :M(B,C)×M(A,B)→M(A,C) for all
objects A,B,C ∈ O, and

• an identity morphism idA ∈M(A,A) for each object A ∈ O.

such that the following holds.

• Associativity : For all objects A,B,C,D ∈ O, and morphisms f ∈
M(A,B), g ∈ M(B,C), and h ∈ M(C,D), we have h ◦ (g ◦ f) =
(h ◦ g) ◦ f .
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• Identity : For all objects A,B ∈ O and morphisms f ∈ M(A,B), we
have f ◦ idA = f and idB ◦ f = f . □

Instead of stating results for categories in general, we restrict ourselves
to the category of graphs. Our objects are graphs as we have defined them.
Morphisms are graph morphisms. Composition is composition of graph mor-
phisms. The identity morphism is the identity graph morphism. Associa-
tivity and identity properties follow from those of function composition and
identity.

Definition 2.12 (Pushout, Pullback, Natural Pushout). Let A, B, C, and
D be graphs with morphisms A → B, B → D, A → C, and C → D, as
illustrated in Figure 2.4. Assume square (1) commutes (A→ B → D = A→
C → D).

We say square (1) is a pushout if for all graphs D′, and all morphisms
B → D′ and C → D′ such that A → B → D′ = A → C → D′ (see Figure
2.4a), there is a unique morphism D → D′ such that triangles (2) and (3)
commute (B → D′ = B → D → D′ and C → D′ = C → D → D′).

We say square (1) is a pullback if for all graphs A′, and all morphisms
A′ → B and A′ → C such that A′ → B → D = A′ → C → D (see Figure
2.4b), there is a unique morphism A′ → A such that triangles (2) and (3)
commute (A′ → B = A′ → A→ B and A′ → C = A′ → A→ C).

We call a square (1) a natural pushout if it is both a pushout and a
pullback.

We call B and C pushout/pullback complements. □

B

(2)

A (1) D D′

(3)

C

(a) A pushout

B

(2)

A′ A (1) D

(3)

C

(b) A pullback

Figure 2.4: A pushout and a pullback

Intuitively, pushouts can be seen as gluings. Graph D is obtained by
combining B and C, glued (or merged) along the nodes and edges they share
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with A. Pullbacks on the other hand can be seen as intersections. Graph A
is obtained by taking the parts of B and C that are glued (or merged) in D,
and glue (or merge) them in the same way.

Definition 2.13 (Natural Double-pushout). Let the squares in Figure 2.5 be
natural pushouts. Then we call the diagram a natural double-pushout. □

L K R

(NPO) (NPO)

G D H

Figure 2.5: A natural double-pushout

Natural double-pushouts allow us to relabel nodes, which is explained in
Subsection 2.2.4. This approach to relabelling with pushouts is introduced in
[43]. Since node labelling and rootedness are modelled analogously, the same
approach can be extended to changing rootedness, as introduced in [21].

2.1.5 Direct Derivation

We use natural double-pushouts as depicted in Figure 2.5 to apply a rule
⟨L ←↩ K ↪→ R⟩ to a graph G, resulting in graph H. Note that when we
apply a rule, we want an injective morphism g:L→ G that matches L with
part of G. In order to apply a rule, we use a construct called direct derivation.
An example of a direct derivation can be seen in Figure 2.6.

Definition 2.14 (Direct Derivation, Derivation). Let r = ⟨L ←↩ K ↪→ R⟩
be a rule, G a totally labelled graph, and L→ G an injective morphism. Let
D and H be graphs such that the squares in Figure 2.5 is a natural double-
pushout. Then G⇒r H is a direct derivation. We write G⇒ H if the name
of the rule is not relevant.

Derivation ⇒∗ is the reflexive (with respect to isomorphism) and transi-
tive closure of ⇒, i.e. G⇒∗ H if either G ∼= H, or there is a finite sequence
of direct derivations G⇒ . . .⇒ H. □

We want direct derivation to exist and to be unique up to isomorphism.
Uniqueness is in part due to the fact that the double-pushout is natural,
contributing to the pushout complement being unique. Figure 2.7 shows
two distinct pushout complements. Only the pushout on the left is natural.
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0
red
red
red
red

red
red
red
red

L

1

⊥⊥⊥

K

1

1
blue
blue
blue
blue

blue
blue
blue
blue

R

1

0
red
red
red
red

red
red
red
red

G

1

⊥⊥⊥

D

1

1
blue
blue
blue
blue

blue
blue
blue
blue

H

1

g d

Figure 2.6: Example of a direct derivation

In a direct derivation (Figure 2.10), since L is totally labelled, and K is
completely unlabelled, and has no edges, the double-pushout being natural
forces nodes in d(K) ⊆ D to be unlabelled.

0 ⊥⊥⊥

0 ⊥⊥⊥

0 ⊥⊥⊥

0 0

Figure 2.7: Two distinct pushout complements

Note that, while nodes drawn without labels in K are truly unlabelled,
nodes drawn without labels in L, G, R, and H are considered labelled with
the “empty label”. A detailed definition of labels is given in Subsection 2.2.1.
In graph D, unlabelled nodes in d(K) ⊆ D are considered truly unlabelled,
and any other unlabelled nodes are considered to have the empty label.

This distinction is not needed for edges. Since K has no edges by defini-
tion of a rule, D can use edge labels ofG without breaking its double-pushout.
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2.1.6 Construction of Direct Derivation

We can show existence of direct derivation by showing its construction, sim-
ilar to that found in [43]. One of the prerequisites for this construction is
called the “dangling condition”. If a rule deletes a node in G, there might be
additional edges that are left without a source or target (dangling), resulting
in an invalid graph. Hence we require the dangling condition, forbidding
incident edges in G to nodes that get deleted by the rule (nodes not in the
interface K).

Definition 2.15 (Dangling Condition). Given a rule ⟨L ←↩ K ↪→ R⟩ and a
graph G, an injective morphism g:L→ G satisfies the dangling condition if
no edge in EG − gE(EL) is incident to a node in gV (VL − VK). □

Direct derivation is constructed as follows. FirstD is obtained by deleting
nodes and edges in G that are part of the left-hand side L, but not of the
interface K. Nodes that are also in K have their labels removed, and get
undefined rootedness. Then H is obtained by gluing graphs D and R such
that the parts of them that stem from K get merged. The nodes that are
merged get their labels and rootedness from R since their counterparts in K
and D are unlabelled and have undefined rootedness.

K

K

L-KK

L

KG-L

D

KG-L L-K

G

Figure 2.8: Abstract illustration of the deletion construction

Proposition 2.16 (Deletion with Dangling Condition). Let r = ⟨L←↩ K ↪→
R⟩ be a rule, G a graph, and g:L → G an injective morphism that satisfies
the dangling condition. Construct a graph D as follows.

• VD = VG − gV (VL − VK).
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• ED = EG − gE(EL − EK).

• sD = sG|ED
, tD = tG|ED

, mD = mG|ED
.

• lD(v) =

{
⊥ if there is u ∈ VK such that g(u) = v,
lG(v) otherwise.

• pD is analogous to lD.

Then the square consisting of graphs K, L, D, and G and the morphisms
between them is a natural pushout.

The proof of Proposition 2.16 follows from arguments about the equiva-
lent construction in [43], treating roots the same as node labels.

For the next step, we need the disjoint union, which we denote by +. It
is simply a matter of renaming all elements to be distinct and taking the
union. This can be done with cross products as follows for instance. For sets
A and B, let A+B = (A× {0}) ∪ (B × {1}).

K

K

R-KK

R

KD-K

D

KD-K R-K

H

Figure 2.9: Abstract illustration of the gluing construction

Proposition 2.17 (Gluing). Let r = ⟨L ←↩ K ↪→ R⟩ be a rule, G a graph,
g:L→ G an injective morphism that satisfies the dangling condition, and D
a graph constructed by the deletion described in Proposition 2.16. Construct
graph H as follows.

• VH = VD + (VR − VK).

• EH = ED + (ER − EK).
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• sH(e) =


sD(e) if e ∈ ED,
dV (sR(e)) if e ∈ ER − EK and sR(e) ∈ VK,
sR(e) otherwise.

• tH is analogous to sH .

• lH(v) =

{
lR(v) if v ∈ VR,
lD(v) otherwise.

• mH and pH are analogous to lH .

Then the square consisting of graphs K, R, D, and H and the morphisms
between them is a natural pushout.

Again, the proof of Proposition 2.17 is analogous to [43].

2.1.7 Existence and Uniqueness of Direct Derivation

Theorem 2.18 formalises existence and uniqueness of direct derivation, as-
suming the right square is only a pushout. In [43], it is shown that the
right square of a direct derivation is a pullback as well. However, with the
introduction of roots, that fact no longer holds. Since we now require that
non-roots in a rule cannot match with roots in a host graph [17], we require
the right square to be a pullback again, making rules invertible.

L K R

(NPO) (NPO)

G D H

g d

Figure 2.10: A direct derivation

Theorem 2.18 (Existence and Uniqueness of Direct Derivation). Consider
rule r = ⟨L ←↩ K ↪→ R⟩, graph G, and injective morphism g:L → G as in
Figure 2.10. Then there exists a direct derivation G ⇒r H if and only if g
satisfies the dangling condition.

If G⇒r H does exist, D and H are unique up to isomorphism, i.e. if D′

and H ′ form another direct derivation G⇒r H
′, then D ∼= D′ and H ∼= H ′.

Furthermore, since G is totally labelled, H is totally labelled.
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Existence is given by the deletion and gluing constructions from Propo-
sitions 2.16 and 2.17.

The proof of Proposition 2.18 can be found in [43]. The graphs in that
paper do not have rootedness. However, since rootedness is modelled analo-
gously to node labels, reasoning about them is also analogous [17].

2.2 Attributed Graph Transformation

For graph programming in GP2, we want rules to be more expressive than
the graph transformation rules we have seen before. We extend rules so they
allow for variables in labels and for application conditions. Natural double-
pushouts are still the underlying framework.

2.2.1 Labels

The labels we use follow the subtype hierarchy in Figure 2.11. They consist
of single characters char, sequences of characters string, integers int, either
strings or integers atom, and lists of atoms list. Lists can be empty, and
atoms are considered to be lists of length 1. Similarly, every character is
considered a string of length 1.

list

atom

int string

char

⊆

⊆ ⊇

⊆

Figure 2.11: GP2 subtype hierarchy

GP2 labels are generated with context-free string grammars. The gram-
mars’ abstract syntaxes [8] are given in Figures 2.13 and 2.14. We call the
syntaxes abstract because the grammars they define are ambiguous. The in-
teger expressions 5*3+4 for instance can be generated in multiple ways. This
ambiguity can be resolved using parentheses. For parsing, we use unambigu-
ous concrete syntaxes that can be found in [8]. We use abstract syntaxes
because it facilitates associating types to labels. There are two grammars
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because we distinguish between host graphs, which are the graphs we mod-
ify, and rule graphs, which help us describe these modifications. Intermediate
graphs are used as an intermediate step to facilitate relabelling.

Definition 2.19 (Intermediate, Host, and Rule Graph). An intermediate
graph is a graph over the set of labels generated by the grammar in Figure
2.13.

A host graph is a totally labelled intermediate graph.
A rule graph is a totally labelled graph over the set of labels generated

by the grammar in Figure 2.14. □

Note that labels generated by the grammar in Figure 2.13 are a subset
of labels generated by the grammar in Figure 2.14. Hence host graphs can
be considered a subset of rule graphs. Host graphs are also a subset of
intermediate graphs by definition.

0

bl
ue"l
ab
el
"

re
d

3:"
c"

gre
en

blue
blue
blue
blue

blue
blue
blue
blue

42

red
red
red
red

red
red
red
red

⊥⊥⊥"label"

green
green
green
green

green
green
green
green

-1

grey
grey
grey
grey

grey
grey
grey
grey

grey
grey
grey
grey

3:"c"

Figure 2.12: Example of a host graph

An example of how a host graph is represented on paper can be seen in
Figure 2.12. Marks are represented using corresponding colours. The name
of the mark is written within the colours for accessibility purposes. Note that
the grey mark is reserved for nodes and the dashed mark for edges. Label
expressions are drawn inside their node or next to their edge. Items with the
empty label are drawn without label (i.e. blank), the empty keyword is re-
served for textual representation only. Unlabelled nodes (undefined labelling
function) are drawn using ⊥⊥⊥ in order to avoid confusion.

In the grammars of Figures 2.13 and 2.14, terminals are represented in
a typewriter font within single quotation marks. Nonterminals start with
capital letters. The ones ending in ‘Label’ are the starting nonterminals.
The rule graph label syntax reuses the definitions of HostMark, Character,
and Digit from the host graph label syntax. NodeID is a set containing
distinct identifiers for each node in a given graph. More details on these
can be found in the concrete syntax of GP2 in [8]. The sets ending in ‘Var’
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HostLabel ::= HostList [HostMark]
HostList ::= ‘empty’ | HostAtom {‘:’ HostAtom}
HostAtom ::= HostInteger | HostString
HostInteger ::= [‘-’] Digit {Digit}
HostString ::= ‘"’{Character}‘"’ | HostChar
HostChar ::= ‘"’Character‘"’
HostMark ::= ‘red’ | ‘green’ | ‘blue’ | ‘grey’ | ‘dashed’
Character ::= Printable characters except for ‘"’
Digit ::= ‘0’ | ‘1’ | ‘2’ | ‘3’ | ‘4’ | ‘5’ | ‘6’ | ‘7’ | ‘8’ | ‘9’

Figure 2.13: Abstract syntax of host graph labels

RuleLabel ::= RuleList [RuleMark]
RuleList ::= LVar | ‘empty’ | RuleAtom | RuleList ‘:’ RuleList
RuleAtom ::= AVar | RuleInteger | RuleString
RuleInteger ::= IVar | [‘-’] Digit {Digit} | ‘(’RuleInteger‘)’

| RuleInteger (‘+’ | ‘-’ | ‘*’ | ‘/’) RuleInteger
| (‘indeg’ | ‘outdeg’) ‘(’NodeID‘)’
| ‘length’ ‘(’(LVar | AVar | SVar)‘)’

RuleString ::= SVar | RuleChar | ‘"’{Character}‘"’
| RuleString ‘.’ RuleString

RuleChar ::= CVar | ‘"’Character‘"’
RuleMark ::= HostMark | ‘any’

Figure 2.14: Abstract syntax of rule graph labels

contain typed variables, which we later elaborate on. For rule graph labels,
we associate types to strings of terminals by naming them as follows.

• (List) expression: string of terminals generated by RuleList.

• Atom expression: expression generated by RuleAtom.

• Integer expression: atom expression generated by RuleInteger.

• String expression: atom expression generated by RuleString.

• Character expression: string expression generated by RuleChar.

Note that in their grammar, the nonterminals given a type above call
each other in a way that matches the subtype hierarchy given in Figure 2.11.
Associating types to host graph labels is analogous.

Compared to those of host graphs, the labels of rule graphs allow for
more general expressions and variables which are intended to match with a
host graph label. The functions indeg and outdeg return the indegree and
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outdegree of a node respectively. The length function returns the length of
a variable. The any mark matches with either of the marks in a host graph,
but not with a lack of mark, i.e. any matches either red, green, blue, or
grey.

2.2.2 Rule Schemata

Since rule schemata labels contain variables, there can be some ambiguity.
For instance with two concatenated string variables x.y, there can be multi-
ple variable assignments that result in the same string. Lists have the same
issue.

Definition 2.20 (Simple Label/Expression). We say a rule graph label is
simple if its expression is simple. An expression is simple if it has the fol-
lowing properties

• It contains no length, degree, or arithmetic operators, except for the
unary minus.

• It contains at most one list variable.

• Every string expression it contains has at most one string variable. □

Definition 2.21 (Rule Schema). A rule (schema) ⟨L ←↩ K ↪→ R⟩ is a rule
where L and R are rule graphs, and K an intermediate graph such that:

• All labels in L are simple.

• All variables occurring in R must also occur in L.

• All nodes in R with the any mark must be the image of an interface
node whose image in L also has the any mark.

A (conditional) rule (schema) ⟨L←↩ K ↪→ R, c⟩ consists of a rule schema
and a (application) condition c generated by the grammar in Figure 2.16.
We require that all variables occurring in c must also occur in L. □

increment(i:int)

i
any
any
any
any

any
any
any
any

1

⇒ i+1
blue
blue
blue
blue

blue
blue
blue
blue

1

where i>=0

Figure 2.15: Example of a conditional rule schema
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We omit ‘conditional’ or ‘schema’ when talking about concrete GP2 pro-
grams since we only need this distinction for the theoretical foundations of
rule application. We sometimes consider rule schemata without condition
to be conditional rule schemata whose conditions are always true (using the
condition 1=1 for instance). An example of how we draw a conditional rule
schema can be seen in Figure 2.15. The rule is named increment. The in-
teger variable i is declared right after the rule name. The right-hand side
contains the arithmetic expression i+1. The any mark is represented with a
pink/magenta colour. The condition requires i to be non-negative.

Condition ::= (int | char | string | atom) ‘(’(LVar | AVar | SVar)‘)’
| RuleList (‘=’ | ‘!=’) RuleList
| RuleInteger (‘>’ | ‘>=’ | ‘<’ | ‘<=’) RuleInteger
| edge ‘(’ NodeID ‘,’ NodeID [‘,’ RuleLabel] ‘)’
| not Condition
| Condition (and | or) Condition
| ‘(’ Condition ‘)’

Figure 2.16: Abstract syntax of conditions

The rule application condition is a Boolean statement depending on prop-
erties of the host graph. The left-hand side of a rule is only matched if the
condition is fulfilled. The functions int, char, string, and atom are subtype
predicates that check whether a given variable is of a certain type. The edge
function checks whether there is an edge (potentially with a given label) be-
tween two given nodes. We have equality comparisons for list expressions,
inequality comparisons for integer expressions, and logical operators.

In order to apply a rule schema, we need a way to map rule graphs
with variable labels to host graphs with constant labels. We use variable
assignments to assign variables to values, and premorphisms to map one
graph into another while ignoring labels.

Definition 2.22 (Variable Assignment). Let r = ⟨L ←↩ K ↪→ R, c⟩ be a
conditional rule schema. Let LVarr, AVarr, IVarr, SVarr, and CVarr be the
set of variables used in r of the corresponding type. A variable assignment
is a family of functions α = (αX)X∈{L,A,I,S,C}, where αL: LVarr → HostList,
αA: AVarr → HostAtom, αI: IVarr → HostInteger, αS: SVarr → HostString,
and αC: CVarr → HostChar. We often omit the subscript from α since only
one function is applicable to a given variable. □
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Definition 2.23 (Graph Premorphism). Let G and H be graphs. A (graph)
premorphism g:G ⇀ H is a pair g = ⟨gV , gE⟩ of functions gV :VG → VH and
gE:EG → EH such that the following holds.

• Preservation of sources and targets: for each edge e ∈ EG, we have
gV (sG(e)) = sH(gE(e)) and gV (tG(e)) = tH(gE(e)).

• Preservation of defined rootedness: for each node of defined rootedness
v ∈ dom(pG) ⊆ VG, we have gV (v) ∈ dom(pH) and pG(v) = pH(gV (v)).

□

We can now instantiate a rule schema. This means that variables and any

marks are substituted according to a variable assignment and a premorphism.

Definition 2.24 (Rule Schema Instance). Let r = ⟨L ←↩ K ↪→ R, c⟩ be a
conditional rule schema, g:L ⇀ G an injective premorphism, where G is a
host graph, and α a variable assignment. A rule schema instance is a tuple
rg,α = ⟨Lg,α ←↩ K ↪→ Rg,α, cg,α⟩, where Lg,α, Rg,α, and cg,α are obtained from
L, R, and c by substituting variables with their assignments, replacing the
any mark with the corresponding mark in G, and evaluating any arithmetic,
list, and logic operations, as well as statements about the host graph G (i.e.
indeg, outdeg, and edge), all with respect to the mapping g. □

Note that since all variables have been substituted, and all operations
have been evaluated, Lg,α and Rg,α can be considered either host, rule, or
intermediate graphs.

2.2.3 Rule Schema Application

In order to apply a conditional rule schema r = ⟨L ←↩ K ↪→ R, c⟩ to a
host graph G, we need to find an injective premorphism g:L ⇀ G and a
variable assignment α such that the Boolean statement cg,α is true, and the
labels of L match the labels of G. Specifically, the latter means that we
have a morphism g:Lg,α → G, which is obtained from the premorphism g by
swapping out nodes and edges of L for those of the instance Lg,α. We give
both the morphism and the premorphism the same name g since they map
nodes and edges in the same way.

Furthermore, we need g to satisfy the dangling condition in order to
preserve the structural integrity of the host graph (otherwise edges may be
left dangling, i.e. with no adjacent node), and hence ensure the applicability
of the rule.
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Definition 2.25 (Match). Let r = ⟨L ←↩ K ↪→ R, c⟩ be a conditional rule
schema, G a host graph, g:L ⇀ G an injective premorphism, and α a variable
assignment. We say ⟨g, α⟩ is a match for r in G if the following holds.

• g:Lg,α → G is an injective morphism that satisfies the dangling condi-
tion.

• cg,α evaluates to true. □
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Figure 2.17: Example of a rule application

We then use natural double-pushouts from the previous section on the
instantiated rule, injective morphism g, and graph G to apply the rule to
G. An example of such a rule application based on previous rules and their
application can be seen in Figure 2.17.

Definition 2.26 (Derivation Using Attributed Graphs). Let r = ⟨L←↩ K ↪→
R, c⟩ be a conditional rule schema, G a host graph, and ⟨g, α⟩ a match for r
in G. We say G ⇒r H if G ⇒rg,α H (in the way described in the previous
section with a natural double-pushout, as illustrated in 2.18).
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We define derivation ⇒∗ using attributed graphs analogously to deriva-
tion in Definition 2.14 as the reflexive (with respect to isomorphism) and
transitive closure of ⇒. □

L K R

Lg,α K Rg,α

(NPO) (NPO)

G D H

α α

g

Figure 2.18: A direct derivation

Based on the results from the previous section, we get uniqueness of this
direct derivation as well.

Proposition 2.27 (Uniqueness of Matching [62]). Let r = ⟨L←↩ K ↪→ R, c⟩
be a conditional rule schema and G a host graph. Then there is at most one
instance of r for which there is a match.

The proof of Proposition 2.27 can be found in [62].

2.2.4 Relabelling and Changing Rootedness

In traditional double-pushout graph transformation, only totally labelled
graphs are used. Since morphisms preserves labels, this means there’s no
way to change the label of a node. In order to enable relabelling, we allow
for partially labelled graphs, but require the double-pushout to be natural.
This allows for a unique direct derivation [43].

Figure 2.19 shows a direct derivation that relabels a node. By assumption,
L and G are totally labelled, while K is completely unlabelled. If we only
require (1) to be a pushout, the pushout complementD may be either labelled
or unlabelled. However, we require (1) to be a pullback as well, forcing D to
be unlabelled. Then H can be uniquely constructed on the assumption that
(2) is a pushout.

Figure 2.20 shows a derivation that roots an unrooted node. Morphisms
like g preserving defined rootedness means we cannot match the unrooted L
with a rooted G, which could lead to unexpected behaviour of the rule, i.e.
instead of rooting an unrooted node, a rooted node stays rooted.
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Figure 2.19: A direct derivation that relabels
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Figure 2.20: A direct derivation that roots a node

Similarly to the situation with labels, since K has undefined rootedness
and L and G are unrooted, (1) being a pullback forces D to have undefined
rootedness. Again, H can be uniquely constructed on the assumption that
(2) is a pushout.

The reasons why roots behave as expected are morphisms that preserve
defined rootedness, the fact that some nodes can have undefined rootedness,
and the fact that the double-pushout is natural [20].

2.3 GP2 Programs: Syntax and Semantics

Now that we have defined rules, the fundamental operations that allow GP2
to transform graphs, let us define programs. The main constructs of GP2
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programs are loops and conditional branching statements. They allow us to
implement entire graph algorithms.

2.3.1 Syntax

Figure 2.21 contains the abstract syntax of a GP2 program in Extended
Backus-Naur form. It is abstract in that it is used for writing programs on
paper and designed to be interpreted by humans. Programs given to the
compiler for execution use the concrete syntax, which is designed to help the
compiler interpret programs, can be found in an appendix in [8].

Program ::= Declaration { Declaration }
Declaration ::= MainDecl | ProcedureDecl | RuleDecl
MainDecl ::= Main ‘=’ CommandSeq
ProcedureDecl ::= ProcedureID ‘=’ [ ‘[’ LocalDecl ‘]’ ] CommandSeq
LocalDecl ::= ( RuleDecl | ProcedureDecl ) { LocalDecl }
CommandSeq ::= Command {‘;’Command}
Command ::= Block

| if Block then Block [ else Block ]
| try Block [ then Block ] [ else Block ]

Block ::= ‘(’ CommandSeq ‘)’ [‘!’]
| SimpleCommand
| Block or Block

SimpleCommand ::= RuleSetCall [‘!’]
| ProcedureCall [‘!’]
| break
| skip
| fail

RuleSetCall ::= RuleID | ‘{’ [ RuleID { ‘,’ RuleID } ] ‘}’
ProcedureCall ::= ProcedureID

Figure 2.21: GP2 Program Syntax

A GP2 program consists of different types of declarations. MainDecl
is a sequence of commands that are executed when running the program.
This sequence can contain procedures, which are named command sequences
that are declared in ProcedureDecl. When a procedures name is called,
its command sequence is executed. Procedures can have local declarations,
which are declarations of rules and procedures that are only for use within
the scope of their containing procedure. Rules are declared in RuleDecl.
Its definition is omitted from the figure since we do not use the textual
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representation of rules in this thesis, only the graphical representation, as
seen in the previous section (Figure 2.15 for instance). Note that each rule
comes with a name denoted as RuleID.

Command sequences consist of commands separated by semicolons. Com-
mands can be either an if statement (with an optional else branch), a try

statement (with optional then and else branches), a command sequence in
brackets, a loop denoted by ‘!’, an or statement, or a simple command.

2.3.2 The Behaviour of Command Sequences

As described by the syntax, GP2 programs and procedures consist of com-
mand sequences. Calling a command sequence on a host graph can have
three different outcomes. Either it results in another host graph (possibly
transformed by rules), it results in failure (if a rule is inapplicable or the
fail statement is called), or it does not terminate.

Before we introduce the formal semantics, let us give an idea of how the
different statements within a command sequence behave.

The call of a rule set {r1, . . . , rn} nondeterministically applies one of the
rules whose left-hand graph matches a subgraph of the host graph such that
the dangling condition and the rule’s application condition are satisfied. The
call fails if none of the rules is applicable to the host graph.

The command if C then P else Q is executed on a host graph G by first
executing C on G. If this results in a graph, P is executed on the original
graph G; otherwise, if C fails, Q is executed on G. The try command has
a similar effect, except that P is executed on the result of C’s execution in
case C succeeds.

The loop command P ! executes the body P repeatedly until it fails. When
this is the case, P ! terminates with the graph on which the body is entered
for the last time. The break command inside a loop terminates that loop
with the current graph and transfers control to the command following the
loop.

A program P or Q non-deterministically chooses to execute either P or
Q, which can be simulated by a rule-set call and the other commands [58].
The commands skip and fail can also be expressed by the other commands:
skip is equivalent to an application of the rule ∅ ⇒ ∅ (where ∅ is the empty
graph) and fail is equivalent to an application of {} (the empty rule set).



42 The Programming Language GP2

2.3.3 Example Program

Let us look at an example. The program in Figure 2.22 shows a GP2 program
that produces a node colouring, i.e. every node gets assigned an integer (each
integer represents a different colour) such that no two adjacent nodes have
the same integer.

Main = mark!; init!; inc!

mark(x:list)

x

1

⇒
blue
blue
blue
blue

blue
blue
blue
blue

x

1

init(x:list)
blue
blue
blue
blue

blue
blue
blue
blue

x

1

⇒ x:1

1

inc(a,x,y:list; i:int)

x:i y:i
a

1 2

⇒ x:i y:i+1
a

1 2

Figure 2.22: A GP2 program producing a node colouring

The loop mark! calls the rule mark for as long as possible, marking every
node blue. A node being blue means it has not yet been assigned an integer.
The loop init! appends the integer 1 to the label of every node. Then inc!

makes sure that, as long as there are adjacent nodes with the same integer,
one integer gets incremented, producing a colouring.

1 2

34

∗⇐
⊥ ⊥

⊥⊥

⇒∗

1 2

12

Figure 2.23: Two possible results from applying the colouring program

Note that GP2 programs are nondeterministic, specifically concerning
rule matching. Depending on how the rules called in inc! match and in
which order, different colourings may be produced, as can be seen in Figure
2.23. The two results differ because of where the rule inc matched.

In order to describe different outcomes of a GP2 program and how we
get there, we use a formal semantics. We define a transition sequence on
program states that break the execution of programs down into steps. Using
that, a semantic function lists the possible outcomes of executing a given
program on a given graph.

2.3.4 Two Semantics

There are two operational semantics for GP2. An operational semantics
is small-step if atomic computation steps during program execution corre-
spond to transition steps between states in a semantics, meaning that the
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language can be implemented by translating the transition steps into cor-
responding code. The original semantics is defined by both small-step and
big-step inference rules [60]. However there is also a truly small-step opera-
tional semantics for GP2 which, in particular, accurately models diverging
computations, introduced by this thesis’ author in [25].

While the original semantics (Figure 2.27) has small-step elements, the
branching and loop constructs are not small-step. This can lead to the se-
mantic transition sequence blocking or getting stuck [55], i.e. reaching a con-
figuration which is neither a graph nor the failure state, such that no inference
rule is applicable.

P1 = try (r1!) then skip else skip

r1 =

1

⇒
grey
grey
grey
grey

grey
grey
grey
grey

1

Input graph G1 =

Figure 2.24: The GP2 program P1 and input graph G1

To illustrate this situation, consider the program P1 in Figure 2.24 applied
to graph G1 from the same figure. Remember the statement r1! means that
the rule r1 is called until it is no longer applicable. The try statement
attempts to evaluate r1! but will neither branch to the then nor the else

part because the loop r1! diverges on G1. In the original semantics, try
statements are handled with the following inference rules:

[try′1]
⟨C, G⟩⇝+ H

⟨try C then P else Q, G⟩⇝ ⟨P, H⟩

[try′2]
⟨C, G⟩⇝+ fail

⟨try C then P else Q, G⟩⇝ ⟨Q, G⟩
The premises of these inference rules are that the conditional part C of a

try statement applied to host graph G results in either a graph H or failure,
which determines whether P or Q is called. If ⟨C,G⟩ diverges (does not
terminate) however, neither rule applies. Since there are no other try rules,
the transition sequence gets stuck.

The small-step semantics handles try statements with the following rules:

[try1] ⟨try C then P else Q, S⟩ → ⟨TRY(C,P,Q), push(top(S), S)⟩

[try2]
⟨C, S⟩ → ⟨C ′, S ′⟩

⟨TRY(C,P,Q), S⟩ → ⟨TRY(C ′, P,Q), S ′⟩

[try3]
⟨C, S⟩ → S ′

⟨TRY(C,P,Q), S⟩ → ⟨P, pop2(S ′)⟩
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[try4]
⟨C, S⟩ → fail

⟨TRY(C,P,Q), S⟩ → ⟨Q, pop(S)⟩
Here S and S ′ are stacks of graphs. The rule [try1] duplicates the top

of the stack, and the TRY construct signals that the copy operation has
happened. Repeated applications of the inference rule [try2] model the eval-
uation of the condition in a small-step fashion. If the condition loops, [try2]
can be applied indefinitely, and we get an infinite transition sequence.

Intuitively, P1 should loop, which is what happens in the implementation
of GP2. In the original semantics however, P1 gets stuck because r1! di-
verges, which means that we cannot apply either of the inference rules [try′1]
or [try′2] to resolve the try statement.

The original semantics tries to remedy this issue in the semantic function
which associates to a program P1 and host graph G the set [P1]G of all pos-
sible outcomes of the execution of P1 on G. These outcomes can be a graph,
the element fail, or ⊥ which represents an infinite transition sequence. The
original semantic function uses ⊥ as an outcome if the transition sequence
gets stuck. However, there are problems with this approach.

P2 = try Loop then skip else skip

Loop = {r1,r2}!
r1 =
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⇒
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r2 = ⇒ ∅

Input graph G1 =

Figure 2.25: The GP2 program P2 and input graph G1

Consider the program P2 in Figure 2.25. The command {r1,r2} is a
rule set call, meaning that rules r1 and r2 are selected nondeterministically.
When P2 is executed on the host graph G1, an application of r2 causes the
loop to terminate since it removes the marked node which is necessary for
either rule to be applicable. Hence r1 may be applied a number of times, and
then r2 is applied once. But it should also be possible that r2 is never called,
resulting in a diverging computation. Hence the set of outcomes we want is
{⊥, ∅, , , , . . . }. According to the original semantics, however, the
execution of P2 on G1 cannot get stuck since Loop can always transition
to a graph; and by the rules [try′1] and [try′2], the execution cannot diverge
either. So ⊥ ̸∈ [P2]G1 = {∅, , , , . . . }. The small-step semantics
corresponds exactly to our intuition of the operational behaviour of GP2
programs. Moreover, we conjecture that the implementation is sound with



2.3 GP2 Programs: Syntax and Semantics 45

respect to the small-step semantics, in that the behaviour of the implemen-
tation is covered by the small-step semantics.

P3 = try ({r3,r2}!) then skip else skip

P4 = try r2 then skip else skip

r3 =

1

⇒
1

r2 = ⇒ ∅

Input graph G1 =

Figure 2.26: The GP2 programs P3 and P4, and input graph G1

In the original semantics, the behaviour of diverging programs may also
lead to two programs being semantically equivalent, even though they should
not be. Programs P and P ′ are semantically equivalent if [P ] = [P ′], i.e. they
have the same outcomes for all host graphs. Consider program P3 from Figure
2.26. It can diverge on G1 but is semantically equivalent to program P4 from
the same figure, since the original semantics cannot detect that divergence.
For instance, [P3]G1 = [P4]G1 = {∅}, but [P3]G1 should include ⊥.

The aforementioned issues can also happen with if statements, which
work similarly to try statements, except that the changes the condition
made to the host graph are reversed, even if the evaluation of the condition
succeeds. Nested loops such as Loop! can get stuck as well since their
inference rules also assume that the loop body either results in a graph or
fails.

Diverging computations not being modelled properly entails an undesir-
able property, namely infinite nondeterminism, i.e. there can be infinitely
many configurations reachable in a single transition step. Consider the pro-
gram P2 again. We have [Loop]G = {∅, , , , . . . , ⊥}. In a transi-
tion sequence starting with ⟨P2, G⟩, since the try statement is resolved within
a single step, it only takes one step to transition to either of the graphs in
the set {∅, , , , . . . }, of which there are infinitely many.

The small-step semantics truly is small-step and as such, it accurately
models looping computations with diverging transition sequences. When
starting with a GP2 program, it cannot get stuck, which is a property we
call non-blocking. As a consequence of the small-step approach, we get finite
nondeterminism, meaning we can only reach a finite number of configurations
within a single transition step.
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2.3.5 Original Semantics

Like Plotkin’s structural operational semantics [57], the original GP2 seman-
tics is given by inference rules.

Most of these inference rules in Figure 2.27 have a horizontal bar. These
rules consist of a premise above the bar and a conclusion below. The conclu-
sion defines a transition step provided that the premise holds. A rule without
a bar is called an axiom and can be applied to a configuration without any
precondition.

The semantics operate on configurations, which are different states a pro-
gram can be in during its execution. Configurations can contain elements of
G, the set of all GP2 host graphs or of ComSeq, the set of command sequences
as defined in the syntax (see Figure 2.21), where we assume that procedure
IDs have been eliminated by macro expansion. This means that procedure
IDs have been replaced with their defining command sequence, and name
clashes arising from local declarations have been resolved by renaming. The
element fail represents the program resulting in a failure state.

Definition 2.28 (Original Configuration). We call a member of the set
(ComSeq× G) ∪ G ∪ {fail} an original configuration.

• An original configuration in ComSeq× G is called non-terminal.

• An original configuration in G ∪ {fail} is called terminal. □

Definition 2.29 (Original Semantic Transition). The rules in Figure 2.27
define the transition relation ⇝ over the following set:

(ComSeq× G) × ((ComSeq× G) ∪ G ∪ {fail}).

The inference rules contain universally quantified variables, namely host
graphs G and H, command sequences in ComSeq C, P , P ′, and Q, and rule
set call R. The transitive closure of ⇝ is denoted by ⇝+, and the reflexive
transitive closure by ⇝∗. □

In general, the execution of a program on a host graph may result in
another graph, fail, or diverge. Also, executions can get stuck in that they
reach a non-terminal configuration (neither a graph nor fail) to which no
inference rule is applicable. Let G be the set of all host graphs and G⊕ =
G ∪ {⊥, fail}. These outcomes are described by the semantic function. By
P(G⊕), we denote the powerset of G⊕, i.e. the set of all subsets of G⊕.
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[call′1]
G⇒R H
⟨R, G⟩⇝ H

[call′2]
G ̸⇒R

⟨R, G⟩⇝ fail

[seq′1]
⟨P, G⟩⇝ ⟨P ′, H⟩

⟨P ;Q, G⟩⇝ ⟨P ′;Q, H⟩ [seq′2]
⟨P, G⟩⇝ H

⟨P ;Q, G⟩⇝ ⟨Q, H⟩

[seq′3]
⟨P, G⟩⇝ fail
⟨P ;Q, G⟩⇝ fail

[if ′1]
⟨C, G⟩⇝+ H

⟨if C then P else Q, G⟩⇝ ⟨P, G⟩

[if ′2]
⟨C, G⟩⇝+ fail

⟨if C then P else Q, G⟩⇝ ⟨Q, G⟩

[try′1]
⟨C, G⟩⇝+ H

⟨try C then P else Q, G⟩⇝ ⟨P, H⟩

[try′2]
⟨C, G⟩⇝+ fail

⟨try C then P else Q, G⟩⇝ ⟨Q, G⟩

[alap′
1]

⟨P, G⟩⇝+ H
⟨P ! , G⟩⇝ ⟨P ! , H⟩ [alap′

2]
⟨P, G⟩⇝+ fail
⟨P ! , G⟩⇝ G

[alap′
3]
⟨P, G⟩⇝∗ ⟨break, H⟩
⟨P ! , G⟩⇝ H

[break′] ⟨break;P, G⟩⇝ ⟨break, G⟩

(a) Inference rules for core commands

[or′1] ⟨P or Q, G⟩⇝ ⟨P, G⟩ [or′2] ⟨P or Q, G⟩⇝ ⟨Q, G⟩
[skip′] ⟨skip, G⟩⇝ G [fail′] ⟨fail, G⟩⇝ fail

[if ′3] ⟨if C then P, G⟩⇝ ⟨if C then P else skip, G⟩
[try′3] ⟨try C then P, G⟩⇝ ⟨try C then P else skip, G⟩
[try′4] ⟨try C else P, G⟩⇝ ⟨try C then skip else P, G⟩
[try′5] ⟨try C, G⟩⇝ ⟨try C then skip else skip, G⟩

(b) Inference rules for derived commands

Figure 2.27: Original GP2 Semantics
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Definition 2.30 (Original Semantic Function). The original semantic func-
tion is the function [ ] : ComSeq → (G → P(G⊕)) which, for a command
sequence P and a host graph G, is defined as

[P ]G = {X ∈ G ∪ {fail} | ⟨P,G⟩⇝+ X}
∪ {⊥ |P can diverge or get stuck from G}.

By divergence we mean non-termination, that is the existence of an infi-
nite transition sequence starting in ⟨P,G⟩. □

2.3.6 Small-Step Semantics

In this subsection, we provide a fully small-step semantics defined by infer-
ence rules, and provide examples of transition sequences. This is introduced
by this thesis’ author in [25].

One major difference compared to the original semantics is that, instead
of operating on a single graph, the small-step semantics operates on a stack
of graphs. The top of that stack is the graph that rules are applied to, while
the rest provide a history of earlier graphs that can be reverted to quickly.

Another change is the addition of ITE and TRY statements that stand
in for if and try statements whose condition is currently being evaluated.

Due to these additional constructs, the small-step semantics needs to
distinguish between command sequences that are valid GP2 programs, and
command sequences that are intermediary (extended command sequences).

Definition 2.31 (Command Sequence). A command sequence is a member
of ComSeq from Definition 2.29 that satisfies the following.

A breakmust be enclosed within a loop. If a break is in the condition of a
branching statement (i.e. an if, try, ITE, or TRY statement), the enclosing
loop must be within the same condition.

We call this constraint the break condition, and the set of these command
sequences CommandSeq. □

The break condition is one of the context conditions in [8]. This con-
straint is not specific to graph programs: Java, C, and Python have similar
restrictions on the use of break statements.

Definition 2.32 (Extended Command Sequence). An extended command
sequence is a member of ComSeq from Definition 2.29, where commands can
also be of the form ITE(Block,Block,Block) or TRY(Block,Block,Block) (see
the definition of Command in the syntax in Figure 2.21).

We define ExtComSeq as the set of extended command sequences. □
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The auxiliary constructs ITE and TRY do not follow the break condition
since we may want a break outside of a loop in an intermediary transition
step. The ITE and TRY statements serve to advance the command sequence
in the condition in a small-step fashion, as well as to maintain the stack of
host graphs. When we enter an ITE or TRY statement, the top of the stack
(and current host graph) is duplicated in order to keep a backup. When
these statements end, we either pop the top, modified graph, or the second
graph on the stack which is the unmodified backup copy depending on the
outcome of the condition. The stack structure is needed because if and try

statements may be nested. Whenever we enter an ITE or TRY construct,
we push a graph, and whenever we exit one, we pop a graph. This ensures
that the stack always contains enough graphs to pop and that the current
host graph is always on top.

Definition 2.33 (Graph Stack). A graph stack S = [G1, G2, G3, . . . , Gn] is
a finite ordered list of GP2 host graphs with the following operations.

• top(S) = G1.

• pop(S) = [G2, G3, . . . , Gn].

• pop2(S) = [G1, G3, . . . , Gn]

• push(G,S) = [G,G1, G2, . . . , Gn], where G is a host graph. □

We call S the set of all non-empty graph stacks.

Definition 2.34 (Small-Step Semantic Transition). The rules in Figure 2.28
inductively define a transition relation → over the following set:

(ExtComSeq× S) × ((ExtComSeq× S) ∪ S ∪ {fail}).

We call this transition the small-step (semantic) transition. □

There are several universally quantified meta-variables within the infer-
ence rules. P , P ′, Q, Q′, C, and C ′ stand for extended command sequences
in ExtComSeq, S stands for a graph stack in S, G represents a host graph,
and R represents a rule set. We denote the transitive closure of → by →+,
and the reflexive transitive closure by →∗.

Definition 2.35 (Small-Step Configuration). We call an element of the set
(CommandSeq× S) ∪ S ∪ {fail} a (small-step) configuration.
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[call1]
top(S)⇒R G

⟨R, S⟩ → push(G, pop(S))
[call2]

top(S) ̸⇒R

⟨R, S⟩ → fail

[seq1]
⟨P, S⟩ → ⟨P ′, S ′⟩

⟨P ;Q, S⟩ → ⟨P ′;Q, S ′⟩ [seq2]
⟨P, S⟩ → S ′

⟨P ;Q, S⟩ → ⟨Q, S ′⟩

[seq3]
⟨P, S⟩ → fail
⟨P ;Q, S⟩ → fail

[break] ⟨break;P, S⟩ → ⟨break, S⟩

[alap1] ⟨P ! , S⟩ → ⟨try P then P ! else skip, S⟩
[alap2] ⟨TRY(break, P ! , skip), S⟩ → pop2(S)

[if1] ⟨if C then P else Q, S⟩ → ⟨ITE(C,P,Q), push(top(S), S)⟩

[if2]
⟨C, S⟩ → ⟨C ′, S ′⟩

⟨ITE(C,P,Q), S⟩ → ⟨ITE(C ′, P,Q), S ′⟩

[if3]
⟨C, S⟩ → S ′

⟨ITE(C,P,Q), S⟩ → ⟨P, pop(S ′)⟩

[if4]
⟨C, S⟩ → fail

⟨ITE(C,P,Q), S⟩ → ⟨Q, pop(S)⟩
[try1] ⟨try C then P else Q, S⟩ → ⟨TRY(C,P,Q), push(top(S), S)⟩

[try2]
⟨C, S⟩ → ⟨C ′, S ′⟩

⟨TRY(C,P,Q), S⟩ → ⟨TRY(C ′, P,Q), S ′⟩

[try3]
⟨C, S⟩ → S ′

⟨TRY(C,P,Q), S⟩ → ⟨P, pop2(S ′)⟩

[try4]
⟨C, S⟩ → fail

⟨TRY(C,P,Q), S⟩ → ⟨Q, pop(S)⟩

(a) Inference rules for core commands

[or1] ⟨P or Q, S⟩ → ⟨P, S⟩ [or2] ⟨P or Q, S⟩ → ⟨Q, S⟩
[skip] ⟨skip, S⟩ → S [fail] ⟨fail, S⟩ → fail

[if5] ⟨if C then P, S⟩ → ⟨if C then P else skip, S⟩
[try5] ⟨try C then P, S⟩ → ⟨try C then P else skip, S⟩
[try6] ⟨try C else P, S⟩ → ⟨try C then skip else P, S⟩
[try7] ⟨try C, S⟩ → ⟨try C then skip else skip, S⟩

(b) Inference rules for derived commands

Figure 2.28: Small-Step GP2 Semantics
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• A configuration in CommandSeq× S is called non-terminal.

• A configuration in S ∪ {fail} is called terminal. □

Definition 2.36 (Small-Step Extended Configuratuions). We call an ele-
ment of the set (ExtComSeq×S) ∪ S ∪ {fail} a (small-step) extended con-
figuration.

• An extended configuration in ExtComSeq× S is called non-terminal.

• An extended configuration in S ∪ {fail} is called terminal. □

The inference rules inductively define the transition relation →. The
rules [call1] and [call2] are base cases. Their premises are GP2 derivations.
Which of the two premises is satisfied depends on whether top(S)⇒R G or
top(S) ̸⇒R, i.e. whether a rule in the rule set can be applied to the current
host graph or not. The if and try statements are modelled by the [ifi] and
[tryi] rules.

Sequential composition of commands is covered by [seq1], [seq2], and
[seq3], covering the cases of whether the first command called on a host
graph results in a configuration, a graph stack, or fail.

Loops are semantically described as a try statement in [alap1]. Calling
a command sequence as long as possible is modelled by trying to apply the
command sequence, and if it succeeds, keep applying it as long as possible.
Breaking from a loop is handled by [break], which makes sure commands
following the break are discarded, and [alap2], which terminates the loop if
there is an isolated break in the TRY condition.

Figure 2.28a shows the inference rules for the core commands of GP2,
while Figure 2.28b gives the inference rules for derived commands such as or,
skip, and fail, as well as some if and try statements with omitted then

and else clauses. These commands are referred to as derived commands
because they are defined by the core commands (see [58] for the case of the
original semantics).

Let us look at a couple of examples of transition sequences in Figures
2.29 and 2.30, the first to illustrate loops, and the second to illustrate if

and try statements. For each transition, we note the applied inference rule
as a subscript. If the conclusion of [rule1] is used as a premise for [rule2], we

denote it by [rule1]
[rule2]

.

Example 2.37. Consider the program P=r! and the rule r : 1 ⇒ 1 .
Let us examine a transition sequence of P applied to the graph , as
seen in Figure 2.29.
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⟨r!, [ ]⟩
→[alap1] ⟨try r then r! else skip, [ ]⟩
→ [try1] ⟨TRY (r, r!, skip), [ , ]⟩
→ [call1]

[try3]

⟨r!, [ ]⟩

→[alap1] ⟨try r then r! else skip, [ ]⟩
→ [try1] ⟨TRY (r, r!, skip), [ , ]⟩
→ [call1]

[try3]

⟨r!, [ ]⟩

→[alap1] ⟨try r then r! else skip, [ ]⟩
→ [try1] ⟨TRY (r, r!, skip), [ , ]⟩
→ [call2]

[try4]

⟨skip, [ ]⟩

→ [skip] [ ]

Figure 2.29: Example transition sequence of program P.

We start by applying [alap1] which turns the loop into a try statement.
Unlike in the original semantics, we model a loop by trying to apply its body,
and if it is successful, we call the loop again.

The inference rule [try1] transforms the try statement into the auxiliary
TRY construct, which advances the program in a small-step fashion, unlike
the original semantics. There is a similar ITE construct which models if

statements. The top of the graph stack is duplicated since the changes made
by the condition of the try may be discarded.

We then apply r to the current host graph (top of the stack) so [call1]
can be applied. This serves as a premise for [try3], which ends the TRY
statement, pops the second element of the stack, and moves on to the then

part which is the original loop.
We repeat this process until r is no longer applicable to the host graph.

At this point, [call2] serves as the premise for [try4] which exits the TRY
statement. This time, the condition results in fail, so we move on to the
else part which is skip and the loop terminates.

Now consider program P’=try(if (r1;r1) then (r1;r1)) and the rule
r1 : 1 ⇒ 1 . A transition sequence of P’ applied to host graph
can be found in Figure 2.30.

Since the try statement does not have a then or else part, we first apply
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⟨try(if(r1;r1) then(r1;r1)), [ ]⟩
→[try7] ⟨try (if (r1;r1) then (r1;r1)) then skip else skip,

[ ]⟩
→[try1] ⟨TRY(if (r1;r1) then (r1;r1), skip, skip),

[ , ]⟩
→ [if5]

[try2]

⟨TRY(if (r1;r1) then (r1;r1) else skip, skip, skip),
[ , ]⟩

→ [if1]
[try2]

⟨TRY(ITE(r1;r1, r1;r1, skip), skip, skip),
[ , , ]⟩

→[call1]
[seq2]
[if2]
[try2]

⟨TRY(ITE(r1, r1;r1, skip), skip, skip),
[ , , ]⟩

→[call1]
[if3]
[try2]

⟨TRY(r1;r1, skip, skip), [ , ]⟩

→[call1]
[try2]

⟨TRY(r1, skip, skip), [ , ]⟩

→[call1]
[try3]

⟨skip, [ ]⟩

→[skip] [ ]

Figure 2.30: Example transition sequence of program P’.

[try7], which adds skip as both the then and else parts.
The inference rule [try1] turns the try statement into the auxiliary TRY

statement and duplicates the top of the stack. For most of the remaining
transition sequence, we apply [try2] under various premises to advance the
condition.

Since the if has no else part, [if5] completes it with a skip. The if

statement is then turned into the auxiliary ITE statement, duplicating the
top of the stack once again.

The rule r1 is applied to the host graph which advances the concatenation
with [seq2], the ITE with [if2], and the TRY with [try2]. Calling r1 a second
time resolves the ITE, and the top of the stack is popped since changes made
by the conditions of if statements are reversed.

We keep applying the condition of the TRY, until we resolve it with [try3].
This time the second graph on the stack is popped since changes made by
the condition of a try that did not result in fail are preserved. □
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2.3.7 Properties of the Small-Step Semantics

In this subsection, we show that the small-step semantics is non-blocking, i.e.
if a transition sequence leads to an extended configuration, we can always
apply an inference rule (Proposition 2.40). Note that we can only guaran-
tee the non-blocking property for extended configurations that are part of
a transition sequence originating in a valid GP2 program. We call those
reachable extended configurations. This is reasonable because there can be
no other types of configurations in a transition sequence modelling a GP2
program.

Furthermore, we will describe the outcomes of a transition sequence start-
ing with a valid GP2 program (Proposition 2.42), and show that we have
finite nondeterminism (Proposition 2.45), i.e. there are only finitely many
one-step transitions starting from any configuration, and what it means for
the semantic function.

Let us first look at a lemma that guarantees we can make a transition
step from extended configurations that do not contain a break, which is the
first step towards showing the non-blocking property.

Lemma 2.38 (Progress from Extended Configurations). Let ⟨P, S⟩ be an
extended configuration. Then one of the following applies:

• ⟨P, S⟩ → ⟨P ′, S ′⟩ for some extended configuration ⟨P ′, S ′⟩.

• ⟨P, S⟩ → S ′ for some graph stack S ′ ∈ S.

• ⟨P, S⟩ → fail.

• P is not a command sequence and contains a break.

Proof. We shall prove this lemma by going through what P could be accord-
ing to the syntax and the semantics.

Case 1: P is a rule set call. Then either top(S)⇒P G or top(S) ̸⇒P . So
either [call1] or [call2] can be applied.

Case 2: P is a loop. If P is a loop, [alap1] can be applied.
Case 3: P is fail, skip or an or statement. Then [fail], [skip], or [or1]

can be applied respectively.
Case 4: P is of the form if P1 then P2 else P3 or try P1 then P2 else P3.

Then [if1] or [try1] can be applied. If any then-clause or else-clause is omitted
as specified by the syntax, [if5], [try5], [try6], or [try7] can be applied.

Case 5: P is of the form ITE(P1, P2, P3) or TRY(P1, P2, P3). If P
contains a break, the fourth point of the lemma is satisfied. Specifically, P
is not a command sequence since it contains an ITE or TRY statement, and
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P contains a break by assumption. So for the remainder of this case, assume
P does not contain a break. Let P ′

1 be the first component of P1, i.e. P1 is
not a sequential composition. It is possible for the first component of P ′

1 to
contain an ITE or TRY statement, whose condition has a first component
that also contains such a statement. We shall show the lemma’s statement
by induction on how many ITE or TRY statements are nested in P ′

1 in this
way, i.e. via the first sequential component of the condition.

• For the base case, assume P ′
1 is not an ITE or TRY statement. Then

P ′
1 must be covered by one of the cases 1-4, satisfying the lemma.

• Now for the induction step, assume that P ′
1 is an ITE or TRY state-

ment. Then P ′
1 does derive either a configuration ⟨P ′′′

1 , S ′⟩, a graph
stack S ′ or fail by the induction hypothesis. Hence one of [if2], [if3],
[if4], [try2], [try3], or [try4] can be applied to ⟨P, S⟩.

Case 6: P is a sequential composition. Then we can decompose P into
P = P1;P2 where P1 is not a sequential composition. We can apply [seq1],
[seq2], or [seq3] since ⟨P1, S⟩ → ⟨P ′

1, S
′⟩, ⟨P1, S⟩ → S ′, or ⟨P1, S⟩ → fail

respectively by cases 1 to 5.
Case 7: P contains a break.
If P is not a command sequence, the final point of the lemma is satisfied.

Otherwise, P satisfies context conditions, meaning it must be enclosed within
a loop, so either case 2 or one of the other previous cases is applicable.

Lemma 2.38 has a case where the extended command sequence contains
a break. This is because for a transition sequence not to get stuck on a
break, we need to start with a command sequence where the break is within
a loop, which we cannot guarantee if we consider a single transition step
like in Lemma 2.38. In order to deal with this case, we prove that we can
construct a transition sequence that leads to a state with no break in the
following lemma. However, we need to restrict it to extended configurations
reachable from a valid GP2 program. We say that an extended configuration
C is reachable if there is a configuration ⟨P, [G]⟩ such that ⟨P, [G]⟩ →∗ C.
This will still allow us to work towards non-blocking, since we only care about
transition sequences that start with valid GP2 programs.

Lemma 2.39 (Removing the break Statement). Let ⟨P, S⟩ be an extended
configuration that is reachable and non-terminal. Suppose that P contains a
break. Then one of the following applies.

• There is an extended configuration ⟨P ′, S ′⟩ containing no break state-
ment such that ⟨P, S⟩ →∗ ⟨P ′, S ′⟩.
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• There is a graph stack S ′ such that ⟨P, S⟩ →+ S ′.

• ⟨P, S⟩ →+ fail

Proof. First assume that ⟨P, S⟩ satisfies context conditions, i.e. the break is
contained within a loop, and if the break is in the condition of an if or try
statement, the enclosing loop must be in the same condition.

We will apply various inference rules to construct a transition sequence
starting in ⟨P, S⟩. Remember that whenever we apply such an inference rule,
it results in either a non-terminal extended configuration, a graph stack, or
fail. If it results in a graph stack or fail, the second or third point of the
lemma is satisfied. So at each step of the transition sequence we construct,
we only need to consider the case where an inference rule results in a non-
terminal extended command sequence.

If there are multiple loops with break statements, they are either in
different sequential composition components, or nested. So let us show this
lemma by induction on nesting and sequential composition.

As a base case, assume P contains a single loop with a break, and want
to show we can apply a sequence of inference rules that ultimately removes
the break. So P is of the form Q0;Q1!;Q2, where Q1 contains a break, and
neither Q0 nor Q2 do. (What follows also applies if P is of the form Q1!;Q2,
Q0;Q1!, or Q1!.) We can repeatedly apply Lemma 2.38 to transition to
Q1!;Q2. Then we apply [alap1] followed by [try1] to get TRY(Q1, Q1! , skip).
We can then use Lemma 2.38 repeatedly as a premise for [try2] until we get
TRY(Q3;Q4, Q1! , skip), where Q3 contains break and is not a sequential
composition. If Q3 is a break, we can apply [try2] under the premise of
[break], followed by [alap2] to get rid of the break. We know Q3 cannot be a
loop since we assumed Q1! is the enclosing loop of the break. So Q3 is either
an or, if, or try statement. If it is an or statement, we can apply [or1]
or [or2] to either remove the break or lead to TRY(break;Q5, Q1! , skip).
Similarly, if Q3 is an if or try statement, the break must be in the then or
else part due to context conditions, and we can use inference rules to either
remove the break or lead to TRY(break;Q5, Q1! , skip). We can now apply
[try2] under the premise of [break] to get TRY(break, Q1! , skip). To this,
we can apply [alap2], which gets rid of the break.

For the induction step, let us first consider the case of nesting. Assume
that P is of the form Q0; (Q1;Q2;Q3)! ; Q4, where Q2 satisfies the lemma
statement, and Q1 or Q2 contains a break. We can use the same arguments
as in the base case in addition to [seq1] under the premise of the induction
hypothesis to get rid of any break.

Now consider sequential composition. As an induction step, assume that
P is of the form Q0;Q1! ;Q2; Q3! ;Q4, where one of Q1 or Q3 satisfies the
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lemma statement, and the other contains a break. Again, we can use the ar-
guments from the base case as well as the induction hypothesis in conjunction
with [seq1] to remove any break.

Finally, assume that ⟨P, S⟩ does not satisfy context conditions, i.e. either
there is a break without an enclosing loop, or there is a break in the condition
of a branching statement whose enclosing loop is not within that condition.
Since ⟨P, S⟩ is reachable, the latter cannot be the case: transitions steps
cannot separate a break from its enclosing loop in a way that they stop
being within the same condition of a branching statement (loops can only be
removed by inference rules, they cannot be “moved”). So suppose there is
a break without an enclosing loop. This must be because [alap1] is applied
earlier in the transition sequence, so it must be within the condition of a try

or TRY. So we can use the same arguments as earlier in the proof, except
that we need not argue that some of the inference rule, such as [alap1] or
[try1] need to be applied.

Now that we have Lemmata 2.38 and 2.39, we can prove that the non-
blocking property holds.

Proposition 2.40 (Non-Blocking Property). Let ⟨P, S⟩ be an extended con-
figuration that is reachable and non-terminal. Then there is a transition step
⟨P, S⟩ → C for some extended configuration C.

Proof. If P does not contain a break, this proposition follows from Lemma
2.38. Otherwise, it follows from Lemma 2.39.

Let us now introduce a lemma that makes various statements about the
size of host graph stacks in order to ensure that the inference rules are well-
defined. Since we defined stacks to be nonempty, we want to make sure
that if a transition sequence starts with a nonempty stack, it cannot lead
to an empty stack, which the following lemma shows. Furthermore, when a
transition sequence terminates in a graph stack, we want that stack to only
contain one host graph.

For this lemma, we want to start from a valid GP2 program, not extended
command sequences in general (since they may contain auxiliary constructs
like ITE and TRY). So we consider configurations in CommandSeq×S. These
follow the context conditions on where the break statement can appear as
specified in [8].

Lemma 2.41 (Stack Size). Let ⟨P, [G]⟩ be a configuration in CommandSeq×
S.



58 The Programming Language GP2

(a) If ⟨P, [G]⟩ →∗ ⟨P ′, S⟩, where ⟨P ′, S⟩ is an extended configuration, then
|S | ≥ 1.

(b) If ⟨P, [G]⟩ →+ S, where S is a graph stack, then |S |= 1.

Proof. The statement in (a), is satisfied for zero transition steps. So let us
examine the inference rules that contain push, pop, and pop2. The rule
[call1] contains both push and pop, but preserves the size of the stack. The
rules that push a graph onto the stack are [if1] and [try1] which are exactly
the rules that introduce an ITE or a TRY. The rules that pop a graph from
the stack are [alap2], [if3], [if4], [try3], and [try4]. These are exactly rules
that remove an ITE or TRY from the extended command sequence. Since
⟨P, [G]⟩ contains no ITE or TRY statements and only one host graph, we
have |S |= #(P ′) + 1, where # counts the combined number of ITE and
TRY statements in an extended command sequence. Since |S |= #(P ′) + 1,
we have |S | ≥ 1.

Now in case (b), we can break down the transition sequence into ⟨P, [G]⟩
→∗ ⟨P ′, S ′⟩ → S. Like in the proof of (a), the formula |S ′|= #(P ′) + 1
applies. Let us examine which inference rules can be applied in the final step
of the transition. It can only be either [skip], [call1], or [alap2]. To apply
[skip], P ′ must be skip and #(skip) = 0, so |S |= |S ′|= 1. To apply [call1],
P ′ must be a rule set call, and hence cannot contain ITE or TRY, so |S |=
|S ′|= 1. To apply [alap2], P

′ must be of the form TRY(break, P ′′! , skip),
where P ′′ is an extended command sequence. We know P ′′ cannot contain
an ITE or TRY statement because they can only be nested in their first
argument. Indeed, if an extended command sequence already starts with an
ITE or TRY, no inference rule allows for said ITE or TRY statement to be
nested within another one. So the only way to nest statements is via the
rule [try2], which modifies the first argument. But the first argument of P ′ is
break, which contains no ITE or TRY statements. So #(P ′) = 1 and |S ′|= 2.
Since we apply [alap2], we have S = pop2(S ′), so |S |= |S ′|−1 = 1.

We also want to make sure that if we call pop2 on a stack to pop its
second element, the stack does indeed contain at least two elements. More
precisely, under the premise of Lemma 2.41, if ⟨P, [G]⟩ →+ ⟨P ′, pop2(S)⟩
(an extended configuration) or ⟨P, [G]⟩ →+ pop2(S) (a graph stack), then
|S |≥ 2. This follows directly from Lemma 2.41 since |pop2(S)|= |S |−1.

Let us now use Lemmata 2.38, 2.39, and 2.41 is to describe what the
possible outcomes of a transition sequence starting in a valid GP2 program
are.
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Theorem 2.42 (Outcomes of Transition Sequences). Let ⟨P, [G]⟩ be a con-
figuration. Then one of the following applies:

• There is an infinite transition sequence ⟨P, [G]⟩ → ⟨P1, S1⟩ → ⟨P2, S2⟩
→ . . . where ⟨Pi, Si⟩ is an extended configuration for all i ≥ 1.

• ⟨P, [G]⟩ →+ [G′] for some host graph G′.

• ⟨P, [G]⟩ →+ fail.

Proof. Lemma 2.41 guarantees that if a transition sequence starts in ⟨P, [G]⟩
and ends in a stack, that stack only contains one graph. So for this propo-
sition, it is enough to show that transition sequences end in a stack in the
relevant cases.

In order to get rid of a potential break statement in P , we can apply
Lemma 2.39 to ⟨P, [G]⟩. If we get a graph stack or fail, we fulfil the second
or third case of this proposition. Otherwise we get an extended configuration
⟨P ′, S⟩ that contains no break.

Since there is now no break in either ⟨P, [G]⟩ or ⟨P ′, S⟩, we can apply
the first, second, and third cases of Lemma 2.38 either indefinitely to get an
infinite transition sequence, or until we get a graph stack or fail.

Now that we know the possible outcomes of a transition sequence, we can
define the semantic function for the small-step semantics.

Definition 2.43 (Small-Step Semantic Function). The small-step semantic
function is defined as J K : CommandSeq→ (G → 2G

⊕
), where G is the set of

host graphs, [G] the set of stacks consisting of exactly one host graph (which
we can identify with single host graphs), and G⊕ = [G] ∪ {fail,⊥}. The
symbol ⊥ is used to represent an infinite transition sequence, i.e. divergence.
The function is defined as

JP KG = {X ∈ [G] ∪ {fail} | ⟨P,G⟩ →+ X} ∪ {⊥ |P can diverge from G}.

□

This functions differs from the original semantic function presented in
[60] and Subsection 2.3.5 since ⊥ is only used when P diverges, because we
know by Proposition 2.40 that P cannot get stuck. We will show in Lemma
2.51 that every infinite or stuck transition sequence in the original semantics
corresponds to an infinite transition sequence in the small-step semantics.
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Let us now examine the property of finite nondeterminism as specified
by Apt in Section 4.1 of [4], i.e. the set of elements reachable from a con-
figuration in one transition step is finite. A related concept is bounded non-
determinism, where the cardinality of the aforementioned set is finite and
depends on the program only (and not on the size of the current state).
An example for a language with bounded nondeterminism is Dijkstra’s lan-
guage of guarded commands [65]. Many references [28, 37, 65, 81] equate
the concepts of finite and bounded nondeterminism and call it “bounded
nondeterminism”. However, rule-based languages generally have unbounded
nondeterminism because they rely on nondeterministic rule matching. This
also applies to GP2 which the following example illustrates.

Example 2.44. Consider the rule r : 1 ⇒ 1 and the comb graph
G4 as shown in Figure 2.31. There are four possible matches for the left-

Figure 2.31: The comb graph G4

hand side of rule r in graph G4 since due to the dangling condition, the
node without a number can only be matched with nodes that do not have
additional adjacent edges. So applying the rule can result in four different
non-isomorphic graphs, which is a finite amount. When applying r to comb
graph Gk, we get k non-isomorphic graphs, which depends on the size of the
host graph and hence is not bounded. □

We now show that GP2 does have finite nondeterminism.

Proposition 2.45 (Finite Nondeterminism). Let γ ∈ ExtComSeq×S be an
extended configuration, and Tγ = {γ′ | γ → γ′ ∈ ExtCommSeq × S}. Then
|Tγ| is finite.

Proof. The only inference rules that cause nondeterminism are [or1], [or2],
and [call1]. If the rules [or1] and [or2] are applicable to γ then there are
exactly two configurations reachable from γ. In [call1], the nondeterminism
comes from several GP2 rules being called non-deterministically as part of a
rule set, as well as from all the ways these rules can be matched in the host
graph. Since rule sets and host graphs are finite, the number of configurations
reachable from γ in one step via the inference rule [call1] is finite as well.



2.3 GP2 Programs: Syntax and Semantics 61

Reynolds [65] defines this kind of nondeterminism using the semantic
function instead of the set of configurations reachable in one step. The
following corollary shows that this semantics fulfils that definition as well.

Corollary 2.46. Let P ∈ CommandSeq and G ∈ G such that JP KG is infi-
nite. Then ⊥ ∈ JP KG.

Proof. Let γ0 = ⟨P, [G]⟩. Then T ∗
γ0

= {γ | γ0 →∗ γ ∈ ExtCommSeq × S} is
infinite as well since it contains all elements of JP KG except perhaps fail or ⊥.
The set T ∗

γ0
can be seen as a tree whose nodes are configurations and whose

edges are defined by transitions. Since Tγ is finite for all configurations γ by
Proposition 2.45, each node in the tree only has finitely many adjacent nodes.
By König’s Lemma [50], the tree contains an infinite path. Since every node
of the tree is reachable from the root γ0, there is an infinite path starting
from γ0. By definition of the tree, this means there is an infinite transition
sequence starting with γ0. By definition of the small-step semantic function,
we can conclude that ⊥ ∈ JP KG.

2.3.8 Comparison of the Two Semantics

In this subsection, we show that the small-step semantics is a conservative
extension of the original one, i.e. their behaviour is equivalent on converging
configurations, and if a configuration diverges in the original semantics, it
also diverges in the small-step one.

When we mention graph stacks in this subsection, we allow them to be
empty. We use the notation [G1, G2, . . . , Gk, S] (where Gi are graphs, S
is a graph stack, and k > 0) to denote a stack whose top k elements are
G1, G2, . . . , Gk, and whose remaining elements are the elements of S.

Lemma 2.47 (Simulating Finite Original Transition Sequences). Let P ∈
CommandSeq, G ∈ G, and X ∈ {⟨P ′, G′⟩, G′, fail}, where P ′ ∈ CommandSeq
and G′ ∈ G. If ⟨P, G⟩⇝∗ X, then, for any graph stack S, there is a transi-
tion sequence

• ⟨P, [G,S]⟩ →∗ ⟨P ′, [G′, S]⟩ if X = ⟨P ′, G′⟩.

• ⟨P, [G,S]⟩ →∗ [G′] if X = G′.

• ⟨P, [G,S]⟩ →∗ fail if X = fail.

Proof. We shall prove this lemma by induction on the number of if, try,
and ! statements in P combined.

If P has no if, try, or ! statements, none of the [if], [try], and [alap]
inference rules are applicable. All other rules behave identically in both
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semantics when identifying the tops graph of the stacks in the small-step
rules with the graphs in the original rules. Hence the base case is satisfied.

As the induction hypothesis, assume the lemma holds for P containing
k if, try, or ! statements. Now consider the case where P contains k + 1
of them. Let ⟨P1, G1⟩⇝ ⟨P2, G2⟩ be a derivation step of ⟨P,G⟩⇝∗ X that
uses an [if], [try], or [alap] rule (possibly as a premise for another rule such as
[seq1]). If such a step does not exist, the lemma holds by the same argument
used in the base case. Consider the [if], [try], or [alap] rule [r] that relates to
the if, try, or ! statement enclosing all others resolved in the same step.
Then no rule where [r] is a premise (or the premise of a premise) is an [if],
[try], or [alap] rule. Since those are identical in both semantics, we only need
to show that the part of P resolved by [r] is resolved in a way that fulfils the
lemma statement.

If [r] = [if1], we have ⟨if C then P3 else Q, G3⟩ ⇝ ⟨P3, G3⟩ under the
premise of ⟨C, G3⟩⇝+ H. Since P contains k + 1 if, try, or ! statements,
C contains at most k of them. So by the induction hypothesis, there is a
transition sequence ⟨C, [G3, S]⟩ →∗ [H,S] (for any graph stack S). We can
decompose this transition sequence into ⟨C, [G3, S]⟩ →l ⟨C4, S4⟩ → [H,S]
where l ≥ 0, and S4 is a graph stack. This fulfills the premise of [if2] l times,
and then the premise of [if3] once. So for any graph stack S ′, the premises
are fulfilled by choosing S = [G3, S

′], and we have

⟨if C then P3 else Q, [G3, S
′]⟩ →[if1] ⟨ITE(C,P3, Q), [G3, G3, S

′]⟩
→l

[if2]
⟨ITE(C4, P3, Q), S4⟩

→[if3] ⟨P2, [G3, S
′]⟩.

If [r] = [if2], we have ⟨if C then P3 else Q, G3⟩ ⇝ ⟨Q, G3⟩ under the
premise of ⟨C, G3⟩ ⇝+ fail. Again, we can use the induction hypothesis to
conclude ⟨C, [G3, S]⟩ →∗ fail (for any graph stack S), which is a sequence of
l ≥ 0 transitions ⟨C, [G3, S]⟩ →l ⟨C4, S4⟩ between extended configurations,
followed by 1 transition ⟨C4, S4⟩ → fail. This fulfills the premise of [if2] l
times, and then the premise of [if4] once. So for any graph stack S ′, the
premises are fulfilled by choosing S = [G3, S

′], and we have

⟨if C then P3 else Q, [G3, S
′]⟩ →[if1] ⟨ITE(C, P3, Q), [G3, G3, S

′]⟩
→l

[if2]
⟨ITE(C4, P3, Q), S4⟩

→[if4] ⟨Q, [G3, S
′]⟩.

If [r] = [try1], we can use the same arguments as when [r] = [if1] to get
a transition sequence ⟨try C then P3 else Q, [G3, S

′]⟩ →+ ⟨P3, [G4, S
′]⟩ for

any graph stack S ′.

If [r] = [try2], we can use the same arguments as when [r] = [if2] to get
a transition sequence ⟨try C then P3 else Q, [G3, S

′]⟩ →+ ⟨Q, [G3, S
′]⟩ for
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any graph stack S ′.

If [r] = [alap1], we have ⟨P3! , G3⟩ ⇝ ⟨P3! , H⟩ under the premise of
⟨P3, G3⟩ ⇝+ H. Since P contains k + 1 if, try, or ! statements, P3 con-
tains at most k of them. So by the induction hypothesis, we can conclude
⟨P3, [G3, S]⟩ →∗ [H,S] for any graph stack S. We can decompose this tran-
sition sequence into ⟨P3, [G3, S]⟩ →l ⟨P4, S4⟩ → [H,S], where l ≥ 0, and S4

is a graph stack. These derivations fulfil the premise of [try2] l times and
then the premise of [try3] once. So for any graph stack S ′, the premises are
fulfilled by choosing S = [G3, S

′], and we have

⟨P3! , [G3, S
′]⟩ →[alap1] ⟨try P3 then P ! else skip, [G3, S

′]⟩
→[try1] ⟨TRY(P3, P3! , skip), [G3, G3, S

′]⟩
→l

[try2]
⟨TRY(P4, P3! , skip), S4⟩

→[try3] ⟨P3! , [H,S ′]⟩.
If [r] = [alap2], we have ⟨P3! , G3⟩⇝ G3 under the premise of ⟨P3, G3⟩⇝+

fail. Again, we can use the induction hypothesis to conclude ⟨P3, [G3, S]⟩ →∗

fail for any graph stack S. We can decompose this transition sequence into
⟨P3, [G3, S]⟩ →l ⟨P4, [G4, S]⟩ → fail, where l ≥ 0, and G4 is a graph. Let
us argue that the graph stack right before the fail is [G4, S]. The stack ends
in S because P3 is a command sequence and hence does not contain ITE or
TRY statements, which are the only constructs that could pop and hence
modify S. Any if, try, and ! statements in P3 must resolve before the
configuration that leads to fail in one step because fail is not reachable in
one step from if, try, !, ITE, and TRY statements. Since they all resolved,
any push has a corresponding pop, meaning the number of graphs in the
stack before S remains 1. The derivations fulfil the premise of [try2] l times
and then the premise of [try4] once. So for any graph stack S ′, the premises
are fulfilled by choosing S = [G3, S

′], and we have

⟨P3! , [G3, S
′]⟩ →[alap1] ⟨try P3 then P ! else skip, [G3, S

′]⟩
→[try1] ⟨TRY(P3, P3! , skip), [G3, G3, S

′]⟩
→l

[try2]
⟨TRY(P4, P3! , skip), [G4, G3, S

′]⟩
→[try4] ⟨skip, [G3, S

′]⟩
→[skip] [G3, S

′].

If [r] = [alap3], we have ⟨P3! , G3⟩⇝ H under the premise of ⟨P3, G3⟩⇝∗

⟨break, H⟩. Again, we can use the induction hypothesis to conclude ⟨P3,
[G3, S]⟩ →∗ ⟨break, [H,S]⟩ (for any graph stack S). Let l ≥ 0 be the number
of steps in that transition sequence. These derivations fulfil the premise of
[try2] l times. So for any graph stack S ′, the premises are fulfilled by choosing
S = [G3, S

′], and we have
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⟨P3! , [G3, S
′]⟩ →[alap1] ⟨try P3 then P3! else skip, [G3, S

′]⟩
→[try1] ⟨TRY(P3, P3! , skip), [G3, G3, S

′]⟩
→l

[try2]
⟨TRY(break, P3! , skip), [H,G3, S

′]⟩
→[alap2] [H,S ′].

Lemma 2.48 (Configurations That Get Stuck). Let ⟨P,G⟩ be a configuration
to which no inference rule of the original semantics is applicable. Then P
starts with an if, try, or ! statement such that the condition (or the body
in the case of !) diverges or gets stuck in the original semantics.

Proof. For this proof, whenever we say a rule is applicable, we mean it is
either applicable, or it can be used as a premise for a [seq] rule.

Let us first show that, if P does not start with an if, try, or ! statement,
we can apply an inference rule to ⟨P,G⟩. If P starts with a rule set, that
rule set is either applicable to the host graph or not, so either [call1] or [call2]
can be applied. If P starts with a break, skip, or fail, then [break], [skip],
or [fail] can be applied respectively. If P starts with an or statement, either
[or1] or [or2] can be applied.

Now assume that P starts with an if, try, or ! statement with a con-
dition or body C. If ⟨C,G⟩ neither converges nor gets stuck, there is a
transition sequence ⟨C,G⟩⇝ fail, or ⟨C,G⟩⇝ H for some graph H. Hence
one of [if1], [if2], [try1], [try2], [alap1], or [alap2] is applicable.

Lemma 2.49 (Loop-Free Command Sequences Do Not Get Stuck). For
every loop-free command sequence P and graph G, no transition sequence
starting with ⟨P,G⟩ gets stuck in the original semantics.

Proof. We prove this lemma by structural induction. For a base case, con-
sider programs consisting of a single rule set R. Then on any graph G, R is
either applicable or not. So to ⟨R,G⟩ we can apply either [call1] or [call2],
leading to a graph or fail. They are both transition sequences that end in a
terminal state, and hence do not get stuck.

Another base case is skip or fail, which always lead to a graph or fail
in a single step, and hence cannot lead to stuck transition sequences.

The break statement cannot be in P since context conditions require it
to have an enclosing loop.

For the induction step, we assume that every proper subprogram of P
cannot get stuck, and show that P cannot get stuck either.

Assume P = P1;P2. By the induction hypothesis, for any graph G,
no transition sequence starting with ⟨P1, G⟩ gets stuck, i.e. they can all
be extended to either ⟨P1, G⟩ ⇝+ fail or ⟨P1, G⟩ ⇝+ H for some graph
H. This fulfils the premise of [seq1] some number of times, and then the
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premise of either [seq2] or [seq3] once. The same applies to P2. So each
transition sequence staring with ⟨P,G⟩ must be of the form ⟨P,G⟩⇝+

[seq] fail

or ⟨P,G⟩⇝+
[seq] H.

Assume P = if C then P1 else P2. Then by induction hypothesis, for
any graph G, no transition sequence starting with ⟨C,G⟩ can get stuck, i.e.
they can all be extended to either ⟨C,G⟩ ⇝+ fail or ⟨C,G⟩ ⇝+ H for some
graph H. This satisfies the premise of either [if1] or [if2]. So each transition
sequence staring with ⟨P,G⟩ must be of the form ⟨P,G⟩ ⇝[if1] ⟨P1, G⟩ or
⟨P,G⟩ ⇝[if2] ⟨P2, G⟩. Any continuation of these sequences cannot get stuck
because P1 and P2 satisfy the induction hypothesis.

The case P = try C then P1 else P2 is analogous to the previous one.
If P is an if or try with omitted then or else clauses, one of [if3], [try3],

[try4], or [try5] can be applied, and then the arguments used in the if and
try cases can be applied.

Assume P = P1 or P2. Then for any graph G, any transition sequence
starting with ⟨P,G⟩ starts with either ⟨P,G⟩ ⇝[or1] P1 or ⟨P,G⟩ ⇝[or2] P2.
Any continuation of these sequences cannot get stuck because P1 and P2

satisfy the induction hypothesis.

Lemma 2.50 (Non-Nested Loops Do Not Get Stuck). For every loop-free
command sequence P and graph G, no transition sequence starting with
⟨P ! , G⟩ gets stuck in the original semantics.

Proof. It is enough to show that either ⟨P,G⟩ ⇝+ H, ⟨P,G⟩ ⇝+ fail, or
⟨P,G⟩ ⇝∗ ⟨break, H⟩. Because then, one of [alap1], [alap2], or [alap3] is
applicable. And if [alap1] was applicable, we get ⟨P ! , G⟩ ⇝ ⟨P ! , H⟩, the
same arguments can be used on ⟨P ! , H⟩, and hence on all its successors.

First of all, since P contains no !, ⟨P,G⟩ cannot diverge. If P does not
contain a break, ⟨P,G⟩ cannot get stuck by Lemma 2.49. If P does contain
a break, that is never called, the arguments of the proof of Lemma 2.49
still apply, and ⟨P,G⟩ does not get stuck. If P contains a break that is
called, that means there is a transition sequence ⟨P,G⟩ ⇝∗ ⟨break, H⟩, or
⟨P,G⟩⇝∗ ⟨break;Q,H⟩, to which we can apply [break] to get the former.

So either ⟨P,G⟩⇝∗ ⟨break, H⟩, or ⟨P,G⟩ neither diverges nor gets stuck,
which means ⟨P,G⟩ must resolve to either a graph or fail.

Lemma 2.51 (Simulating Original Transition Sequences That Are Infinite
or Stuck). Assume there is an infinite transition sequence ⟨P,G⟩ ⇝ . . . , or
a stuck transition sequence ⟨P,G⟩⇝∗ ⟨P ′, G′⟩. Then for any graph stack S,
there is an infinite transition sequence ⟨P, [G,S]⟩ → . . . .

Proof. First assume there is an infinite transition sequence ⟨P,G⟩⇝ ⟨P1, G1⟩
⇝ . . . . To each step ⟨Pi, Gi⟩ ⇝ ⟨Pi+1, Gi+1⟩ in that transition sequence,
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we can apply Lemma 2.47 to get a transition sequence ⟨Pi, [Gi, Si]⟩ →∗

⟨Pi+1, [Gi+1, Si+1]⟩ for any graph stack Si and some Si+1. We can concatenate
these into an infinite transition sequence.

Now assume there is a stuck transition sequence ⟨P,G⟩⇝∗ ⟨P ′, G′⟩. We
can apply Lemma 2.47 to each step in that sequence to get ⟨P, [G,S]⟩ →∗

⟨P ′, [G′, S]⟩ for each graph stack S.
We claim that for any command sequence P ′ such that ⟨P ′, G′⟩ is stuck

with respect to⇝, there is a diverging transition sequence ⟨P ′, [G′, S]⟩ → . . .
for any graph stack S. This is enough to prove the Lemma. Let us show this
by induction on the combined number of if, try, and ! statements in P ′.

If there are no such statements, then ⟨P ′, G′⟩ cannot get stuck by Lemma
2.48, so there has to be at least one, and P ′ starts with it. If there is exactly
one statement and that one statement is an if or a try, then ⟨P ′, G′⟩ cannot
get stuck by Lemma 2.49. If it is a ! statement, ⟨P ′, G′⟩ cannot get stuck
by Lemma 2.50. So there have to be at least two if, try, or ! statements.

So for our base case, assume P ′ contains exactly two if, try, or ! state-
ments. By Lemma 2.49, P ′ must contain a ! statement. If the two state-
ments are not nested, we can apply Lemmata 2.49 and/or 2.50 sequentially
to conclude that ⟨P ′, G′⟩ does not get stuck. So the two statements must
be nested, and they must be the start of P ′ by Lemma 2.48. Assume the
“inner” statement is not a ! statement. Then the “outer” statement must
be the ! statement. By Lemma 2.50, ⟨P ′, G′⟩ does not get stuck. So the
“inner” statement must be a ! statement Q!. The loop Q! cannot resolve
to a graph or fail because then, the “outer” statement could be resolved and
⟨P ′, G′⟩ would not be stuck. By Lemma 2.50, Q! cannot get stuck either.
So Q! must diverge, and so must the condition or body C of the starting
statement of P ′. So there is an infinite transition sequence ⟨C,G′⟩ ⇝ . . . ,
and hence by Lemma 2.47 to each step in that transition sequence, we get
⟨C, [G′, S]⟩ → . . . for any graph stack S. This serves as a premise for [if2] or
[try2], which we can use to get an infinite transition sequence ⟨P ′, G′⟩ → . . . .

Now for the induction step, assume we get infinite transition sequences for
programs with at most k if, try, and ! statements. Assume P ′ has k+1 such
statements. By Lemma 2.48, since ⟨P ′, G′⟩ is stuck, P ′ must start with one
of those statements. So we can apply either [if1], [try1], or [alap1] followed by
[try1] to get ⟨P ′, [G′, S ′]⟩ →+ ⟨P ′′, [G′, G′, S ′]⟩ for any graph stack S ′, where
P ′′ starts with either ITE(C,Q,Q′) or TRY(C,Q,Q′). Now C has at least one
less if, try, or ! statement than P ′, so we can apply the induction hypothesis
to get an infinite transition sequence ⟨C, [G′, G′, S ′]⟩ → . . . , which can serve
as premises for infinitely many applications of [if2] or [try2] (or these inference
rules provide the premises for [seq1]). Hence we have an infinite transition
sequence ⟨P ′, [G′, S ′]⟩ →+ ⟨P ′′, [G′, G′, S ′]⟩ → . . . .



2.3 GP2 Programs: Syntax and Semantics 67

Lemma 2.52 (Simulating Finite Small-Step Transition Sequences). Let P ∈
CommandSeq, G ∈ G, S a graph stack, and X ∈ {⟨P ′, [G′, S ′]⟩, [G′, S ′], fail},
where P ′ ∈ CommandSeq, S ′ is a graph stack, and G′ ∈ G. If ⟨P, [G,S]⟩ →∗

X, then there is a transition sequence

• ⟨P, G⟩⇝∗ ⟨P ′, G′⟩ if X = ⟨P ′, [G′, S ′]⟩.

• ⟨P, G⟩⇝∗ G′ if X = [G′, S ′].

• ⟨P, G⟩⇝∗ fail if X = fail.

Proof. Let us show this lemma by induction on the combined number of
if, try, and ! statements in P . If P has no such statements, no step in
⟨P, [G,S]⟩ →∗ X uses [if], [try], or [alap] rules. So no pushing or popping
occurs and only the top of the stack is modified. The applied rules behave
identically to those in the original semantics when identifying the top of the
stacks in the small-step rules with the host graphs in the original rules. Hence
the lemma is satisfied in the base case.

Now assume that the lemma holds for command sequences with k if,
try, and ! statements, and assume P has k + 1 of them. By the previous
paragraph, we can simulate transition steps that do not involve [if], [try], or
[alap] rules. So let ⟨Q, [H,S ′]⟩ be a configuration (we will handle the case
where ⟨Q, [H,S ′]⟩ is an extended configuration, but not a configuration later)
in the sequence ⟨P, [G,S]⟩ →∗ X that uses such a rule to get the next state.
Let [r] be that rule. It can only be [if1], [try1], or [alap1] since ⟨Q, [H,S ′]⟩ is
a configuration and hence does not contain ITE or TRY.

If [r] = [if1], then we get

⟨Q, [H,S ′]⟩ → ⟨ITE(C,Q1, Q2);Q3, [H,H, S ′]⟩ →+ ⟨Q4;Q3, [H,S ′]⟩,

where Q1, Q2, and Q3 are command sequences, and where Q4 ∈ {Q1, Q2}
(since this is part of a transition sequence that ends in X, a configura-
tion, graph, or fail, we know that the if eventually resolves). So either
⟨C, [H,H, S ′]⟩ →∗ [H ′, H, S ′] or ⟨C, [H,H, S ′]⟩ →∗ fail. We can apply the in-
duction hypothesis to C, which has at most k if, try, and ! statements, to
get that either ⟨C,H⟩⇝∗ H ′ or ⟨C,H⟩⇝∗ fail. We can use this as a premise
for either [if1] or [if2] to get ⟨Q,H⟩ ⇝ ⟨Q4;Q3, H⟩, where Q4 ∈ {Q1, Q2},
which simulates the sequence outlined at the beginning of this case.

If [r] = [try1], then we get either

⟨Q, [H,S ′]⟩ → ⟨TRY(C,Q1, Q2);Q3, [H,H, S ′]⟩ →+ ⟨Q1;Q3, [H
′, S ′]⟩ or

⟨Q, [H,S ′]⟩ → ⟨TRY(C,Q1, Q2);Q3, [H,H, S ′]⟩ →+ ⟨Q2;Q3, [H,S ′]⟩,
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where Q1, Q2, and Q3 are command sequences, and H ′ some graph. We can
use the same arguments as in the previous case to get a transition sequence
⟨Q,H⟩⇝ ⟨Q1;Q3, H

′⟩ or ⟨Q,H⟩⇝ ⟨Q2;Q3, H⟩.
If [r] = [alap1], we have Q = Q1! ;Q2 so either

⟨Q1! ;Q2, [H,S ′]⟩ →∗ ⟨Q1! ;Q2, [H
′, S ′]⟩,

⟨Q1! ;Q2, [H,S ′]⟩ →∗ ⟨Q2, [H,S ′]⟩, or
⟨Q1! ;Q2, [H,S ′]⟩ →∗ ⟨TRY(break, Q1! , skip);Q2, [H

′, H, S ′]⟩
→ ⟨Q2, [H

′, S ′]⟩.
We can conclude that either ⟨Q1, [H,S ′]⟩ →∗ [H ′, S ′], ⟨Q1, [H,S ′]⟩ →∗

fail, or ⟨Q1, [H,S ′]⟩ →∗ ⟨break, [H ′, S ′]⟩. By induction hypothesis, we get
that either ⟨Q1, H⟩ ⇝∗ H ′, ⟨Q1, H⟩ ⇝∗ fail, or ⟨Q1, H⟩ ⇝∗ ⟨break, H ′⟩.
These can be used as premises of [alap1], [alap2], or [alap3] to conclude that
either

⟨Q1! ;Q2, H⟩⇝ ⟨Q1! ;Q2, H
′⟩,

⟨Q1! ;Q2, H⟩⇝ ⟨Q2, H⟩, or
⟨Q1! ;Q2, H⟩⇝ ⟨Q2, H

′⟩.
Finally, if ⟨Q, [H,S ′]⟩ is an extended configuration, but not a configu-

ration, Q must contain an ITE, TRY, or a break that does not satisfy the
context conditions. All of these must originate in an if, try, or ! statement,
and are hence covered by the previous part of the proof.

Note that the first point of Lemma 2.52 only applies to transition se-
quences between command sequences (they do not contain TRY or ITE
constructs). So diverging transition sequences in the small-step semantics
where all command sequences contain ITE or TRY after some step cannot
necessarily be simulated with diverging transition sequences in the original
semantics.

Theorem 2.53. Let P ∈ CommandSeq and G ∈ G. Then
(a) [P ]G ⊆ JP KG and

(b) [P ]G \ {⊥} = JP KG \ {⊥}.
Proof. Lemma 2.47 guarantees that (a) holds for graphs and fail, and Lemma
2.51 guarantees that (a) holds for ⊥. Furthermore, (b) follows from (a) and
Lemma 2.52.

Definition 2.54 (Termination). A program P is terminating if for all graphs
G, ⊥ /∈ JP KG. □
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Note that in the small-step semantics, ⊥ ∈ JP KG corresponds to there
being an infinite transition sequence starting in ⟨P, [G]⟩ by Theorem 2.42 and
the definition of the semantic function. This is not the case for the original
semantics, which can also get stuck if ⊥ ∈ [P ]G.

2.3.9 Related Work: Semantics

The Nielson and Nielson book [55] gives an overview of different approaches
of defining the semantics of a programming language.

Operational semantics describe how the state changes during program
execution, either overall which we call big-step, or in individual steps which
we call small-step. This gives rise to a sequence of transitions that not only
describes input and output relations, but also how the program got there.
Plotkin [57] builds up his structural operational semantics using inference
rules. This is the chosen approach for the GP2 semantics since, unlike others,
it describes program execution in step-wise detail, making it especially useful
for time complexity analysis.

Denotational semantics are based exclusively on inputs and outputs of
programs, as described by a semantic function. This function is defined com-
positionally, which means to every syntactic element, we associate a mathe-
matical object, usually a function. To programs, we associate a composition
of those objects. There are denotational semantics for Standard ML [91] and
Scheme [22], a dialect of Lisp. While GP2 has a semantic function, it is not
defined compositionally.

Axiomatic semantics are a very different approach where we care about
program verification like the one proposed by Hoare [44]. In this context, we
care about formal pre- and post-conditions on a program execution. While
there is substantial research on formal verification in GP2 [63, 64, 94, 95], it
is out of the scope of this thesis since we focus on complexity. Furthermore,
axiomatic semantics are generally needed for reactive programs, which GP2
does not have.

The only other graph transformation language with formal semantics we
are aware of is PROGRES [72]. Its semantics, given in [70], is based on
programmed graph replacement systems [71].

The semantics only depends on input and output graphs. A grammar
in Extended Backus-Naur form [73] generates control-flow diagrams that de-
scribe the execution of a program.

The downside is that over 300 rules are used to define the semantics,
while GP2 uses around a dozen rules without sacrificing formality or the
ability to describe nondeterminism. Instead of a control-flow diagram, we
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get a transition sequence that describes how the the state of program and
host graph changes.



3
Time and Space Complexity

In this chapter, we give a framework for analysing the time and space com-
plexity of a GP2 program. We do this in terms of worst-case asymptotic
complexity using the big-O notation. As is customary in complexity anal-
ysis, the program is considered to be fixed, and complexity is measured in
terms of graph size, which we define in Subsection 3.3. Essentially, it is the
number of nodes, edges, and the sum of the sizes of all labels.

In some cases, one might wish to count integer labels as part of the size,
like in problems where integers are part of the input. Consider for example
a program constructing an n × n grid starting from a single node labelled
with the integer n. If n is not considered part of the input size, input graphs
would have the same size, and any asymptotic complexity analysis would be
meaningless. In this thesis however, we only consider problems that do not
require such an integer input.

In Section 3.1, we briefly talk about the GP2-to-C compiler we use to run
GP2 programs, and as a starting point to analyse complexity. We describe
how it handles nondeterminism in Subsection 3.1.1, outline its data structures
in Subsection 3.1.2, and state a few assumptions on its runtime complexity
in Subsection 3.1.3.

In Section 3.2, we discuss the complexity of applying a GP2 rule. First,
we give the abstract matching algorithm for rules in Subsection 3.2.1. We
then analyse how matching is implemented in the GP2 compiler in Sub-
section 3.2.2. Using these algorithms, we then conclude that matching is
constant-time for fast rules under mild conditions in Subsection 3.2.3, outgo-
ing fast rules in Subsection 3.2.4, and some other rules in Subsections 3.2.5
and 3.2.6.

Next, in Section 3.3, we analyse what conditions programs and input
graphs must fulfil in order for us to define complexity measures of GP2
programs, and we define these measures.

We finish this chapter in Section 3.4 by talking about different approaches
to matching in the literature, including the topics incremental matching and
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dynamic search plans.

3.1 The GP2-to-C Compiler

GP2 comes with a compiler that takes a program and an input graph, and
turns it into C code that can be executed [8, 11]. The aim of this section is
to the describe this compiler and based on that, to make assumptions about
the complexity of its low-level operations. These assumptions provide the
foundation for our complexity theory.

We believe the implementation is sound with respect to the semantics.
There is also a Haskell interpreter [9], but in this thesis, we focus solely on
the C compiler for efficiency reasons.

3.1.1 Nondeterminism

GP2 is nondeterministic in two ways. A rule can have multiple matches,
which we call match nondeterminism. And when a set of rules is called,
several rules could be applicable, which we call rule nondeterminism. The
or construct is a derived command, i.e. it is semantically equivalent to a
sequence of other commands [58]. Hence we do not consider it another type
of nondeterminism.

Instead of giving every possible nondeterministic result, the implementa-
tion of GP2 chooses a nondeterministic path. Whenever there is a nonde-
terministic choice, the implementation picks the first one that does not fail
(which happens when a rule has no match for instance). This approach is
picked for the speed of the implementation, since backtracking is costly. It
is up to the programmer to write programs so that it does not matter which
nondeterministic path is picked. Otherwise, this local choice of a nondeter-
ministic path may lead to non-termination, even though a terminating path
exists.

This kind of relation between theory and implementation is not unique to
GP2. The Prolog implementation for instance adds a construct that allows
cutting off nondeterministic paths, sacrificing nondeterministic completeness
for efficiency [5]. In fact, GP2 compromises less since no constructs are cut,
its implementation just picks a nondeterministic path.

3.1.2 Data Structures

As described in more detail in [20], graphs consist of three components: the
array of nodes, the array of edges, and a linked list of nodes named NodeList.
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Each entry of NodeList consists of a pointer to a node in the array of nodes,
and a pointer to the next entry of NodeList. This linked list skips over holes
in the node array left by deletion, and allows deletion of all nodes and edges
of a graph to happen in linear time.

Nodes contain their in- and outdegree (number of incoming and outgoing
edges), and a linked list of outgoing edges, and one of incoming edges. This
is done to speed up finding an edge of either type during matching, since it
limits the search space.

As described in more detail in [8], host graph labels are stored as an
enumeration of marks and a doubly-linked list whose entries are C strings
and integers. This corresponds to how GP2 labels are defined.

Strings are stored as C strings. However, concatenations of strings are
stored as doubly linked lists for the sake of efficiency during string compari-
son.

Morphisms are represented using arrays of node identifiers, edge identi-
fiers, as well as an array and stack keeping track of assignments.

3.1.3 Complexity Assumptions

As a basis for a GP2 complexity model, we make a few assumptions about the
runtime of low-level operations, shown in Figure 3.1, and first made in [18].
These assumptions are made on which worst-case asymptotic complexity
class the operations belong to, where n is the size of a graph, as defined below.
In Definition 3.24 of a later section, worst-case asymptotic time complexity
classes are defined for GP2 programs.

Definition 3.1 (Graph Size). The size of a graph G is defined as

|G|= |VG|+|EG|+
∑

v∈dom(lG)

|lG(v)|+
∑
e∈EG

|mG(e)|,

where the size of a label l is defined as

|l|=


1 if l is an integer or character,

len(l) if l is a string,∑n
i=1|ai| if l = a1 : a2 : · · · : an is a list.

□

Note that we assign unit cost to integers. While it is perfectly reasonable
to charge non-constant cost to integer labels, we do not do so here since no
problem presented in this thesis features unbounded integer labels.



74 Time and Space Complexity

Definition 3.2 (Asymptotic Complexity Class). Let f, g:N → R be func-
tions from non-negative integers to real numbers. We say f ∈ O(g) or
f(n) = O(g(n)) if there is a constant c ∈ N such that for all n ∈ N,
f(n) ≤ c · g(n). □

Procedure Description Complexity
alreadyMatched Test if the given item has been matched in the host graph. O(1)
clearMatched Clear the is matched flag for a given item. O(1)
setMatched Set the is matched flag for a given item. O(1)
firstHostNode Fetch the first node in the host graph. O(1)
nextHostNode Given a node, fetch the next node in the host graph. O(1)
firstHostRootNode Fetch the first root node in the host graph. O(1)
nextHostRootNode Given a root node, fetch the next root node in the host graph. O(1)
firstInEdge Given a node, fetch the first incoming edge. O(1)
nextInEdge Given a node and an edge, fetch the next incoming edge. O(1)
firstOutEdge Given a node, fetch the first outgoing edge. O(1)
nextOutEdge Given a node and an edge, fetch the next outgoing edge. O(1)
getInDegree Given a node, fetch its incoming degree. O(1)
getOutDegree Given a node, fetch its outgoing degree. O(1)
getMark Given a node or edge, fetch its mark. O(1)
isRooted Given a node, determine if it is rooted. O(1)
getSource Given an edge, fetch the source node. O(1)
getTarget Given an edge, fetch the target node. O(1)
updateMap Given a map, add a single node or edge mapping. O(1)
updateAssignment Given a variable assignment, assign a single label to a variable. O(1)
list.first Access the first element of a list label. O(1)
list.last Access the last element of a list label. O(1)
listElement.next Access the next element of a list label. O(1)
listElement.prev Access the previous element of a list label. O(1)
list.length Determine the length of a list label. O(1)
string.first Access the first character of a string. O(1)
string.last Access the last character of a string. O(1)
stringChar.next Access the next character of a string. O(1)
stringChar.prev Access the previous character of a string. O(1)
string.length Determine the length of a string. O(1)
expression.type Checking whether an expression is of a certain type. O(1)
expression.var Checking whether an expression is a variable of a certain type. O(1)
parseInputGraph Parse and load the input graph into memory: the host graph. O(n)
printHostGraph Write the current host graph state as output. O(n)

Figure 3.1: Assumptions on the complexity of various compiler operations

Empirical time measurements of GP2 programs in [19] and Chapter 4 are
evidence in support of these complexity assumptions. These time measure-
ments include the time it takes to read, parse and load the input graph into
memory, but not the time it takes to compile the program.

Figure 3.1 shows assumptions that we make on the time complexity of
some low-level compiler operations. This is originally done by Graham Camp-
bell in [19], and expanded upon with more operations by this thesis’ author.
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We also assume that operations on integers in C take constant time. Only
in applications that require computation on large integers is a more sensitive
approach needed [2]. We make the unit time assumption in the scope of this
thesis for simplicity and since the focus of GP2 is graph computation, hence
it is more likely a programmer will compute large graphs rather than large
labels.

Concatenation of strings and lists can be done in constant time since they
are stored as doubly-linked lists, and we assume accessing their pointers takes
constant time. Moreover, we assume the length of lists and strings are stored
as integers within a data structure, and as such take constant time to access.

Checking whether expressions are of type int, char, string, or atom, and
whether an expression is a variable of such a type is also assumed to take
constant time, since the information is stored as part of the data structure
for expressions.

We assume that parsing an input graph, as well as outputting a host
graph takes linear time. Note that this means program execution cannot
take sublinear time.

3.2 The Complexity of Rule Application

A crucial step of a GP2 program is rule application, which consists of match-
ing the left-hand side L of a rule into a host graph G, and of making the
relevant changes to the host graph. Matching in particular can be very inef-
ficient in general, so implementing an efficient matching algorithm is crucial.

3.2.1 The Abstract Matching Algorithm

The goal of matching is, given a rule r = ⟨L←↩ K ↪→ R, c⟩ and a host graph
G, find all variable assignments α and all matches g for the instantiated rule
rg,α such that cg,α evaluates to true. Remember matches are injective mor-
phisms that satisfy the dangling condition. Let us first define some notions
used by the matching algorithm.

Definition 3.3 (Partial Morphism and Premorphism). Given two graphs

G and H, partial morphism g:G
par−−→ H is a pair g = ⟨gV , gE⟩ of partial

functions gV :VG
par−−→ VH and gE:EG

par−−→ EH such that the defining properties
of graph morphisms in Definition 2.5 hold for edges in dom(gE) and nodes
in dom(gV ).

We define a partial premorphism analogously. □
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Note that a partial morphism g with dom(gE) = EG and dom(gV ) = VG

is a morphism.

Definition 3.4 (Extension of a Partial Premorphism). Let f, g:G
par−−→ H be

partial premorphisms such that, for all nodes v ∈ dom(gV ) we have gV (v) =
fV (v), and for all edges e ∈ dom(gE) we have gE(e) = fE(e).

• We say f extends g by a node v ∈ VG if dom(fV ) = dom(gV )∪{v} and
dom(fE) = dom(gE).

• We say f extends g by an edge e ∈ EG if dom(fE) = dom(gE) ∪ {e}
and dom(fV ) = dom(gV ). □

Definition 3.5 (Partial Variable Assignment). A partial variable assignment
is a variable assignment whose functions are partial functions.

By α∅, we denote a variable assignment whose functions are defined on
∅. We call a partial variable assignment whose functions are total a total
variable assignment. □

Definition 3.6 (Set of Roots). Given a graph G, we define the set of roots
of G as PG = {v ∈ VG | pG(v) = 1}. □

Definition 3.7 (Edge Enumeration). Given a graph L , a node p ∈ VL, and
a set of nodes {e1, . . . , en} ⊆ EL reachable from p via undirected paths, an
edge enumeration e1, . . . , en for p is a list of edges such that s(e1) = p or
t(e1) = p, and for each i ≥ 2, either s(ei) or t(ei) is the source or target of
some edge in e1, . . . , ei−1. □

Note that edges from an edge enumeration, along with their incident
nodes, form an entire connected component of the graph they are contained
in.

Algorithm 3.1 and its procedures, Algorithms 3.2, 3.3, and 3.4, form the
basis of the GP2 graph matching algorithm. The algorithm, along with a
correctness proof can be found in [8]. Note that it is only for rules that
have no condition, and only nodes reachable (via a path of edges of arbitrary
direction) from a root. We explore how other rules are matched in Subsection
3.2.2.

Graph Matching (Algorithm 3.1) finds matches for a graph L in a graph
G. It builds up partial premorphisms and partial variable assignments, com-
paring graph structure and labels, until they become injective graph mor-
phisms and total assignments, i.e. matches. As roots are matched, they are
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Algorithm 3.1: Graph Matching

Input: Graphs L and G; and for each root p ∈ PL, an edge
enumeration ep1 , . . . , epn

Output: The set A of all pairs of injective graph morphisms
L→ G, and total assignments α

1 A ← {⟨h:L par−−⇀ G, α∅⟩ | dom(h) = ∅}
2 while there is an untagged root p ∈ PG do

3
A0 ←{⟨h:L par−−⇀ G, αh′⟩ | h is injective, and there exists

⟨h′, αh′⟩ ∈ A such that h extends h′ by p}
4 tag p
5 Update Assignment(A0) // this is Algorithm 3.2
6 for i = 1 to n do

7
Ai ← {⟨h:L par−−⇀ G, αh′⟩ | h is injective, and there exists

⟨h′, αh′⟩ ∈ Ai−1 such that h extends h′ by epi}
8 if s(epi) ∈ PL then tag s(epi)
9 if t(epi) ∈ PL then tag t(epi)

10 Update Assignment(Ai)

11 A← An

12 return A

tagged. The while loop in line 2 iterates over untagged roots p. Partial pre-
morphisms are extended with nodes and edges in order of appearance in the
edge enumeration for p. If multiple extensions are possible, they are added as
separate partial premorphisms. After each extension, the procedure Update
Assignment is called, which extends variable assignments, compares labels,
and removes partial premorphisms whose labels do not match. Since every
node of L is assumed to be reachable from a root, the edge enumerations
cover all of L. So in the end, premorphisms become morphisms and partial
assignments become total.

The purpose of Update Assignment (Algorithm 3.2) is to remove pairs
of partial premorphisms and partial assignments that make labels mismatch,
and to update the remaining assignments such that labels match. The re-
moval happens by calling the Reject procedure (Algorithm 3.3), which deletes
the current pair from the set of potential matches and exits the enclosing for
loop (which is always the one starting in line 2, iterating over items for which
the partial premorphism is defined). Line 4 makes sure the marks match.

Comparing the labels comes next. Since labels are lists in general, we
match the rule list with a host list atom by atom. Since we require labels of
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Algorithm 3.2: Update Assignment

Input: A set A of pairs of partial injective graph premorphisms and
partial assignments

Output: A set of pairs of injective graph morphisms and partial
assignments

1 for each ⟨h, α⟩ ∈ A do
2 for each untagged item l ∈ dom(hV ) or l ∈ dom(hE) do
3 x← label(l); y ← label(h(l))
4 if mark(x) ̸= mark(y) or (mark(x) = any and

mark(y) = none) then Reject // Reject is Algorithm 3.3
5 atom a← x.first; atom b← y.first
6 while a ̸= NULL do
7 if a ∈ LVar then break
8 if b = NULL then Reject
9 if ¬Check(a, b, α) then Reject // Check is Algorithm 3.4

10 a← a.next; b← b.next

11 if a = NULL then
12 if b = NULL then exit else Reject

13 else
14 atom temp ← b
15 a← x.last; b← y.last
16 while a ̸∈ LVar do
17 if &b = &temp.prev then Reject
18 if ¬Check(a, b, α) then Reject
19 a← a.prev; b← b.prev

20 α(a)← list starting with temp and ending in b
21 exit

22 tag l

Algorithm 3.3: Reject

1 A← A− {⟨h, α⟩}
2 exit enclosing for loop

rules to be simple, a list can only have one list variable (LVar). List variables
can match lists of arbitrary length, so having several in the same list would
create ambiguity. Hence the strategy for matching lists is to first match any
atoms on the left of the list variable, then any atoms on the right of the list
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Algorithm 3.4: Check

Input: An atomic expression a in a left-hand side label, an atom b
in a host graph label, and a partial assignment α

Output: True if a and b can be matched, false otherwise

1 switch a do
2 case a ∈ Z do
3 if b ∈ Z then return (a = b) else return false

4 case a ∈ Char∗ do
5 if b ∈ Char∗ then return (a = b) else return false

6 case a ∈ CVar do
7 if b ∈ Char then α(a)← b ; return true else return false

8 case a ∈ IVar do
9 if b ∈ Z then α(a)← b ; return true else return false

10 case a ∈ AVar do
11 if b ∈ Z ∪ Char∗ then α(a)← b ; return true
12 else return false

13 case a = w.s.w′, where s ∈ SVar), w,w′ ∈ (CVar ∪ Char)∗ do
14 if b ∈ Z then return false
15 char c← a.first; char d← b.first
16 while c ̸= s do
17 if d = NULL then Reject
18 if c ∈ CVar then α(c)← d
19 else if c ̸= d then return false
20 c← c.next; d← d.next

21 char temp← d; c← a.last; d← b.last
22 while c ̸= s do
23 if &d = &temp.prev then return false
24 if c ∈ CVar then α(c)← d
25 else if c ̸= d then return false
26 c← c.prev; d← d.prev

27 α(a)← b
28 return true

variable, and any remaining atoms in the host list are assigned to the list
variable.

The while loop in line 6 iterates through the atoms from left to right until
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it finds a list variable or reaches the end of the list. Line 8 rejects if the host
list is too short. Line 9 rejects if the atoms do not match, which is done
by the procedure Check. This is also where assignment of non-list variables
happens. By the end of the while loop, all atoms before a list variable have
been matched.

In line 11, we distinguish between whether there is a list variable or not.
If there is no list variable, the previous while loop must have terminated
because a = NULL. If this is the case, we have successfully matched the
entire list only if we have reached the end of the host list, which line 12
ensures. In the else branch, we do have a list variable. Here we match atom
by atom from right to left. Line 17 makes sure the host list is not too short,
which happens if the current host atom has already been matched by a rule
atom to the left of the list variable.

The procedure Check (Algorithm 3.4) compares a rule atom and a host
atom for whether they match. It returns true if they match, and false oth-
erwise. If the rule atom is a constant, the procedure simply checks whether
they are equal or not. If the rule atom is a variable, it checks whether the host
atom is of the same type, and if so, assigns said host atom to said variable.

The case of the rule atom containing a string variable is the more complex
one. Comparing strings with a string variable is similar to comparing lists
with a list variable. A list variable can match a string of arbitrary length, and
multiple string variables in a string are not allowed in rules. The algorithm
is similar to that of list comparison with a list variable, except that we know
a string variable has to be present because of the case distinction.

3.2.2 The Implementation of Matching

Let us address how the abstract algorithm in Subsection 3.2.1 is extended to
work for all rules in the implementation. The abstract matching algorithm
(3.1) constructs morphisms and assignments in a breadth-first manner, and
returns all possible matches. The implementation (3.5) however constructs
morphisms and assignments in a depth-first manner, and ends after find-
ing the first complete match. We conjecture that, if only one match needs
to be found, the abstract matching algorithm and its implementation are
equivalent.

Edge enumerations are implemented using a static search plan, which is
a linked list of nodes and edges of the left-hand side of a rule. The items are
added in order of a depth-fist search (that ignores edge directions), starting
from a root in each connected component, or from a non-root if there is
no root. Search plans are essentially a concatenation of edge enumerations
for different nodes that list nodes as well as edges. Note that the matching
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algorithm does not depend on what order edges are enumerated in. The
choice of edge enumeration and how it is implemented is a matter of efficiency.
For instance, the depth-first search selects outgoing edges before incoming
edges, meaning the implementation needs to only check a smaller list of edges.

Algorithm 3.5: Match

Input: An entry of the search plan m, a partial premorphism h, a
partial variable assignment α, a conditional rule schema r,
and a host graph G

Output: True if h and α are extended to a morphism and a total
assignment, false otherwise

1 for all items n of G that are of the same type as m do
2 if n is flagged as matched then continue
3 if m and n have mismatching marks or rootedness status, or they

violate the dangling condition then continue
4 if m matches the label of n after updating variable assignments

then
5 add m 7→ n to h
6 flag n as matched
7 if the condition of r evaluates to true or is nonexistent then
8 if Match(m.next, h, α, r, G) = true or is nonexistent then
9 return true

10 else
11 remove m 7→ n from h
12 flag n as unmatched

13 else remove m 7→ n from h

14 return false

Algorithm 3.5 shows the procedure Match, which is a sketch of how
matching is implemented. It is a recursive procedure meant to be called
on the first entry of the search plan. Match recursively calls itself on the
next entry in the searchplan so it can report successful matching after all its
subsequent calls report success.

It is worth noting that in line 1 we iterate over the items in host graph G
that are of the same type as the current search plan entry m. If m is a root,
we only iterate over the roots of G. If m is an edge, and the previous search
plan entry its source, we only iterate over the outgoing edges of that source
node. The iteration is analogous for incoming edges. If m is a node and
the previous search plan entry is an incident edge, there is only one iteration
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since we know the node is either source or target of the previous edge. If m
is a root node and the previous search plan entry is an incident edge, there
is also only one iteration for the same reason. However, if m is a node and
the previous entry is not an incident edge, i.e. the depth-first search of the
search plan used m as a starting point, we have to iterate over all nodes of
the host graph.

The check of whether labels match in line 4 is analogous to Update As-
signment (Algorithm 3.2). In addition to comparing the labels, assignments
are also updated.

3.2.3 Applying Fast Rules

There is a type of rule for which we can guarantee constant-time matching
in some host graphs [8, 10]. So let us define those rules.

Definition 3.8 (Fast Rule). A rule r = ⟨L ←↩ K ↪→ R, c⟩ is fast if the
following holds.

• Each node in L is in the same connected component as a root (i.e.
reachable from a root via a path of edges of arbitrary direction).

• There is no string concatenation in R that is not also in L.

• There are no repeated list, string, or atom variables in either L or R.

• The application condition c contains no edge predicate, and no com-
parison x = y or x! = y, where x and y are expressions, each of which
contains a list, string, or atom variable. □

Because of the first condition, the search plan generated from L does a
depth-first search starting at roots only. So when trying to match a node
from such a starting point, the matching algorithm only has to iterate over
roots. That makes it constantly many iterations if there are only constantly
many roots in G.

String concatenation can take linear time. So in the second condition, we
forbid cases where, as part of rule application, strings are concatenated.

The third condition ensures list, string, and atom variables do not have
to be compared when matching labels. With big labels, this can take non-
constant time. The fourth condition ensures this comparison cannot happen
in the rule condition either.

Figure 3.2 shows an example of a fast rule.
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Figure 3.2: A Fast Rule

Next, we state a lemma along with its proof from [8] that shows com-
paring labels using the procedure Update Assignment (Algorithm 3.2) takes
constant time.

Lemma 3.9 (Constant-Time Label Comparison [8]). Given a fast rule r =
⟨L ←↩ K ↪→ R⟩ and a host graph G, the procedure Update Assignment com-
pares each label in L with the corresponding label in G in constant time.

Proof. Let s be the maximum number of characters in a single string expres-
sion in L, and let t be the maximum number of non-list variable atoms in a
single list expression in L. By our assumption that L is fixed, s and t are
constant.

In the worst case, the rule label l is a list containing a list variable and
t non-list variable atoms. Each of those atoms is a string expression with
a string variable and s characters. The whole list is a valid match to the
corresponding host label h, so all characters and atoms are checked.

Let us consider the execution of Check on a string expression as described
above. The number of character comparisons, pointer traversals and pointer
address comparisons are linear in s. All these operations take constant time.
There are t calls to Check, and a single assignment of the list variable to the
unevaluated sublist of h. By assumption (Figure 3.1), this takes constant
time. Moreover, the list and string variables do not occur anywhere else in
L because r is a fast rule, so verifying consistency of the assignment also
takes constant time by the complexity assumptions in Figure 3.1. Overall
the running time is O(st), a constant.

The following theorem from [8] gives the runtime of the abstract match-
ing algorithm. Host graphs need to have a bounded number of roots and a
bounded node degree (number of edges adjacent to a node). The latter is be-
cause, when matching an edge starting from a node, the matching algorithm
needs to iterate over the node’s incident edges.

Theorem 3.10 (Fast Rule Matching [8]). The abstract graph matching al-
gorithm runs in constant time for fast rules r = ⟨L←↩ K ↪→ R⟩ if there are
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upper bounds on the maximal node degree and the number of roots in host
graphs.

Proof. Consider a host graph G. Let l be the number of roots in L. Let b
and r be upper bounds on the node degree and the number of roots in G
respectively.

We count the number of times the set of partial premorphisms and vari-
able assignments is updated. There are at most l iterations of the while loop
and, within each iteration, at most m = |EL| iterations of the for loop. Note
that both l and m are constants since we assume the size of programs to be
fixed.

Consider the execution of the first iteration of the while loop. First, a
single root from L is matched with all unmatched roots in G. Since no roots
have been matched yet, r partial morphisms are created. Then, in each
iteration, either a single edge or an edge and a node is added to the domain
of one of more morphisms in the current set. Since node degrees in G are
bounded by b, no more than b additions can take place. This gives a worst-
case running time of r+ b|A0|+b|A1|+ · · ·+ b|Am−1|. The set A0 contains at
most r morphisms, A1 contains at most br morphisms, etc. It follows that
the running time is

r + br + b2r + · · ·+ bmr = r
m∑
i=0

bi.

Next, the second root of L is matched. One root in G has already been
matched, so the maximum size of the new morphism set is bmr(r−1). Hence,
by the same argument as before, the execution time after the second iteration
of the while loop is

r
m∑
i=0

bi + r(r − 1)
2m∑
i=m

bi.

After the l-th and final iteration of the while loop, the total execution
time is bounded by the constant

r

m∑
i=0

bi + r(r − 1)
2m∑
i=m

bi + · · ·+ r(r − 1)(r − l + 1)
lm∑

i=(l−1)m

bi.

It remains to examine the impact of comparing labels on the runtime. A
premorphism update adds at most two items, a node and an edge, so each ex-
ecution of Update Assignment checks up to two labels for every premorphism
in the set. By Lemma 3.9, these executions take constant time. Therefore
the total execution time is bounded from above by a constant.
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Now that we have shown fast rules are matched in constant time using
the given algorithm, we extend this to applying fast rules with conditions
r = ⟨L←↩ K ↪→ R, c⟩.
Corollary 3.11 (Fast Rule Application [8]). Fast rules can be applied in
constant time if there are upper bounds on the maximal node degree and the
number of roots in host graphs.

Proof. Consider again a fast rule r = ⟨L←↩ K ↪→ R, c⟩ with condition c and
a host graph G. By Theorem 3.10, constructing a premorphism g:L ↪→ G
and induced variable assignment α (or determining there is no such pair)
requires only constant time. We need to prove that the remaining phases of
rule application can be executed in constant time, too.

By the definition of fast rules (Definition 3.8), the condition c is a boolean
combination of predicates each of which is either (1) a relational operator
applied to integer expressions, or (2) a test x = y or x! = y where x and y
do not both contain list, string or atom variables, or (3) a type check int(e),
char(e), string(e) or atom(e). Under our assumptions on the underlying
operations (Figure 3.1), these checks can be performed in constant time.
Predicates of the form in (2) take constant time because no comparisons are
made between atom, string or list variables.

The dangling condition for an injective premorphism g:L ↪→ G can be
checked by comparing the degree of each node v in L−K with the degree of
its image gV (v). We assume a graph representation where nodes are stored
together with their indegree and outdegree. This operation then takes time
of order |V L|, a constant.

Given a match satisfying the dangling condition, removing the items in
g(L − K) can be executed in time proportional to |L|−|K|. Similarly, the
addition of nodes and edges takes time proportional to |R|−|K|. Finally,
relabelling is a constant time operation because there are no repeated string
or list variables in the right-hand side of a fast rule. Furthermore, list con-
catenation can be done in constant time since we assume they are stored as
doubly-linked lists. There are at most |V K| relabellings, so the execution
time is proportional to |V K|.

3.2.4 Applying Fast Outgoing Rules

In [26], we introduce a similar result for a more general set of host graphs,
but a more restricted set of rules. Neither is an improvement over the other,
it is simply a trade-off.

The general idea is that, since incoming and outgoing edges of a node are
stored in separate lists, we can make sure matching happens only via outgoing
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edges. This means host graphs only need to have bounded outdegree (number
of outgoing edges of a node), but nodes in the left-hand side of rules need
to be reachable from roots via a directed path. We also require there to be
at most one root in each connected component. If there were two roots in
a component for instance, one might not be reachable from the other via a
directed path. If the search plan starts at the wrong root, it would need
to traverse an incoming edge to reach the root that is not reachable via a
directed path. This would render the algorithm non-constant since we do
not require indegree to be bounded.

Note that in principle, this idea could be applied to incoming edges as well.
However, one would need to modify the search plan generation to prioritise
incoming edges over outgoing edges, instead of the other way around.

Definition 3.12 (Fast Outgoing Rule). A rule r = ⟨L←↩ K ↪→ R, c⟩ is fast
outgoing if the following holds.

• Each node in L is reachable from a root via a directed path, and there
is at most one node in each connected component of L.

• There is no string concatenation in R that is not also in L.

• There are no repeated list, string, or atom variables in either L or R.

• The condition c contains no edge predicate, and no comparison x = y
or x! = y, where x and y are expressions that both contain a list, string,
or atom variable. □

Note that we need to slightly modify search plan generation for this ap-
proach to be efficient. Since the role of incoming and outgoing edges are
flipped, we need to prioritise incoming edges instead of outgoing ones, i.e.
when adding an edge to the enumeration, edges whose source is already cov-
ered by the enumeration are prioritised over edges whose target is covered.

Figure 3.3 shows an example of a fast outgoing rule.
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Figure 3.3: A Fast Outgoing Rule
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For the proof of the theorem giving the complexity of matching fast out-
going rules, we use the assumption from Figure 3.1 that adding a node or
edge mapping to a morphism takes constant time.

Theorem 3.13 (Fast Outgoing Rule Matching). Algorithm 3.5 runs in con-
stant time for fast outgoing rules, using host graphs with a bounded outdegree
that contain a bounded number of roots.

Proof. Arguments that label comparison is constant-time are analogous to
the case of fast rules since the labels and conditions fast outgoing and fast
rules coincide.

For the rest this proof, we show that the number of times a partial pre-
morphism is updated with a single node or edge is bounded. Note that L
has a constant number of nodes and edges. So subsets of nodes or edges of
L such as PL and edge enumerations in L are also constant. The while loop
has constantly many iterations because it terminates once every node in the
bounded set PL is tagged, which happens at least once in every iteration.
The for loop has constantly many iterations because it iterates over an edge
enumeration.

In line 3, a partial premorphism is added to A0 for each match of the
root p in G. Since we use host graphs with a bounded number of roots, the
number of these matches is constant as well. Each of these premorphisms
extends the empty premorphism by one node, so there are constantly many
single-node premorphism updates.

In line 7, we extend partial premorphisms by an edge epi , whose source is
already in the extended premorphism by our assumption that edge enumer-
ations prioritise outgoing edges and the fact that each connected component
of L contains at most one root. Since G has bounded outdegree, the number
of matches for epi is bounded, and each partial premorphism can only be ex-
tended in constantly many ways. The fact that there can only be constantly
many partial premorphisms can be shown by induction on A0, A1, A2, . . . .
By the previous paragraph, A0 has bounded size. For k ≥ 0, if Ak has
bounded size, then so does Ak+1 since each of the partial premorphisms in
Ak can only be extended in constantly many ways. So there are constantly
many single-edge partial premorphism updates. Additionally, for each such
update, the target of the edge may need to be added to the definition of
the partial premorphism. Hence there are also constantly many single-node
partial premorphism updates.

We can again extend this result to rule application. The proof is analogous
to that of Corollary 3.11, and is hence omitted.
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Corollary 3.14 (Fast Outgoing Rule Application). Application of fast out-
going rules can be implemented to run in constant time, using host graphs
with a bounded outdegree that contain a bounded number of roots.

3.2.5 Applying Non-Fast Rules Efficiently

In graph programming, one often needs a kind of rule that initially introduces
a root. Because of this, the left-hand side cannot contain a root, and neither
the fast rule or fast outgoing rule complexity result can be used. However,
there are other rules that can still match in constant time. Let us characterise
one kind.

Definition 3.15 (Initialising Rule). A conditional rule ⟨L ←↩ K ↪→ R, c⟩ is
initialising if the following holds.

• L consists of a single node that is also in the interface.

• There is no string concatenation in R that is not also in L.

• There are no repeated list, string, or atom variables in either L or R.

• The condition c contains no edge predicate, and no comparison x = y
or x! = y, where x and y are expressions that both contain a list, string,
or atom variable. □

Figure 3.4 shows an example of an initialising rule.

pre init(x:list)

x

1

⇒
red
red
red
red

red
red
red
red

x 1red

1

Figure 3.4: An Initialising Rule

The abstract matching algorithm (3.1) does not work for initialising roots
since it can only start the matching process at roots. So instead, we argue
for the complexity of the implementation (Algorithm 3.5).

Theorem 3.16 (Initialising Rule Matching). Algorithm 3.5 runs in constant
time for initialising rules, using host graphs whose nodes are all a valid match
for L, i.e. they are unrooted, satisfy the rule’s condition, and have matching
label and mark.
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Proof. The for loop in line 1 iterates over all items n of G that are nodes,
which are then to be matched by node m that is the left-hand side of the rule.
For the rest of this proof, we argue that the for loop terminates after its first
iteration, and that the iteration takes constant time, making the execution
of the whole program constant-time.

The continue in line 2 cannot be triggered since nothing has been flagged
as matched yet. Neither can the continue in line 3 since m matches the label
of n by assumption, they are both non-roots by assumption, and m is in the
interface, the dangling condition does not apply.

Lines 2, 3, 5, and 6 take constant time because of the assumptions in
Figure 3.1 that flagging operations on items, accessing marks, accessing root-
edness status, and adding a mapping to a map take constant time.

Checking if the label matches in line 4 takes constant time by Lemma 3.9.
The program moves on to the then branch because the label of m is assumed
to match any node label in the host graph.

Evaluating the if condition in line 7 takes constant time since the rule
condition is nonexistent. The same argument applies to the if in line 8.

Since the rule has no condition, and there is no additional node in its
left-hand side, the algorithm then returns true, ending the execution.

We can again extend this result to rule application. The proof is analogous
to that of Corollary 3.11, and is hence omitted.

Corollary 3.17 (Initialising Rule Application). Application of initialising
rules can be implemented to run in constant time, using host graphs whose
nodes are all a valid match for L, i.e. they are unrooted, satisfy the rule’s
condition, and have matching label and mark.

3.2.6 Applying Edgeless Rules

One of the worst-case time complexities for matching happens when the left-
hand side of a rule has no edges, and each of its nodes only has one match
in the host graph. So let us explore the time complexity of that.

Theorem 3.18 (Edgeless Rule Matching). For a rule of left-hand side L
such that EL = ∅, and host graph G, Algorithm 3.5 runs in worst-case time
O(|VG||VL|) given the complexity assumptions on the compiler.

Proof. Due to assumptions we have made on the efficiency of compiler op-
erations, executing any line of the matching algorithm takes constant time.
So the bottleneck is the number of for loop iterations in line 1. In the worst
case, the for loop has to iterate over all nodes of G to find a match, since
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the search plan consists of nodes only. So a single call of the for loop has at
most |VG| iterations. Match is called recursively for each item in the search
plan, i.e. |VL| times. So the total number of for loop iterations is at most
|VG||VL|.

Once again, this result can be extended to rule application. The proof is
analogous to that of Corollary 3.11, and is hence omitted.

Corollary 3.19 (Edgeless Rule Application). Application of edgeless rules
can be implemented to run in worst-case time O(|VG||VL|).

3.3 The Complexity of GP2 Programs

Now that we have seen various conditions in which rule matching is constant-
time, we look at the bigger picture and see how we can analyse the complexity
of an entire GP2 program given a set of inputs. We call a set of programs
together with a set of inputs a model. The GP2 model is the set of all
programs with the set of all inputs.

We aim to characterise models that are subsets of GP2. One obstacle is
time-intensive rule matching. A second one is that when critical subprograms
(bodies of loops and conditions of if and try) fail, they need to be undone,
which can be handled in different ways. The current implementation of GP2
reverses the relevant rule applications. The formal semantics uses a stack of
graphs to keep track of the state of the host graph before entering a critical
subprogram. Reversion can then be done by a simple pop operation. The
downside to this is that the host graph has to be duplicated every time a
loop or a branching statement is entered, which can add a polynomial factor
to the time complexity of the overall program. It is also space-intensive, by
a polynomial factor since only finitely many loop and branching statements
can be nested in a command sequence. To avoid undoing altogether, one
wants failed critical subprograms to be null, i.e. they do not change the
graph state, meaning they do not need to be undone.

Definition 3.20 (Critical Subprogram). A GP2 subprogram C is critical
if it can be extended to (i.e. it is contained within) one of the following
subprograms: C!, if C then A else B, or try C then A else B, where A
and B are subprograms, and then and else branches are optional.

A subprogram is null on a graph state S if its execution on S results in
S. □

Models that overcome the aforementioned obstacles can be implemented
to match rules in constant time, which allows us to assign unit time cost to
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that operation. They also make undoing redundant, allowing us to charge
no time cost for that.

Another obstacle is that matching a set of rules is nondeterministic, and
backtracking that nondeterminism can be costly in time or space. This can
be addressed at the implementation level. The current GP2 compiler for
instance picks the first match it finds and does not backtrack. A more general
approach however is to show that within the scope of running a program on
an input graph, every rule and rule set (nondeterministic call of a list of
rules) can only have at most one match, effectively making the program
deterministic.

Alternatively, the programmer can make sure that, whatever nondeter-
ministic path rule matching has led to, the output falls within the program-
mer’s expectations. When searching for minimum spanning trees for instance,
nondeterminism can give different results, but they are all minimum spanning
trees.

Definition 3.21 (Efficient Model). We define an efficient model as M =
⟨P , I⟩, where P is a set of GP2 programs and I a set of GP2 graphs such
that the following two properties are satisfied within the scope of derivation
sequences starting with any ⟨P, I⟩ ∈ M.

(1) Constant Matching : Every rule matches in constant time.
(2) Critical Subprogram: Every critical subprogram that fails is null on

every graph state it is called on during execution. □

As a space measure, we use graph size, as defined in Definition 3.1, which
counts nodes, edges, and sizes of labels. This is also how we measure input
size for the sake of time and space complexity.

Definition 3.22 (Program Space Complexity). Given a set of input graphs
I, we call the (worst-case) space complexity of a terminating program P the
function

sP (n) = max{|H| |G ∈ I, |G|= n, H ∈ JP KG or ⟨P, [G]⟩ →∗ ⟨H,S⟩, S ∈ S}.

□

Now for efficient models, it makes sense to measure time using the number
of rule applications that happen during execution, whether they are successful
or not.

Definition 3.23 (Time Measure). The (worst-case) time measure t(P,G) of
a terminating program P executed on a graph G is defined as the maximum
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number of rule applications in all semantic transition sequences starting with
P and G. □

Given this time measure for the execution of programs, we can analyse the
asymptotic complexity of a program with respect to a set of input graphs.
Note that we do not generally give the time complexity function, but its
asymptotic complexity class.

Definition 3.24 (Program Time Complexity). Let ⟨P , I⟩ be an efficient
model. We say the (worst-case) time complexity of a terminating program
P ∈ P is the function tP (n) = max{t(P,G) |G ∈ I, |G|= n}. □

Note that sometimes, a single rule in a program takes non-constant time,
but is only called once. We account for these in a program’s time com-
plexity by adding that rule’s matching complexity, for instance derived from
Corollary 3.19.

3.4 Related Work: Matching

In this section, we take a look at alternate approaches to graph matching. As
far as we are aware no other graph transformation language uses fast rules.

3.4.1 Incremental Matching

Incremental matching is an approach to graph matching that stores partial
matches throughout program execution, and updates them whenever the host
graph changes. This eliminates the need to recompute previous matches,
saving time.

The RETE matching algorithm [38] is an example of incremental match-
ing. There is an implementation for graph grammars [16], and there are
benchmarks [14] showing its efficiency.

Rules are compiled into a RETE-network, which, instead of storing the
left-hand sides of all rules, stores graphs that occur as subgraphs in one or
more left-hand sides, alongside all of its matches in the host graph. This
eliminates the redundancy of storing both a left-hand side and an identical
subgraph of another left-hand side, and speeds up matching.

We do not use this approach in GP2 because the conditions under which
it yields a performance gain are quite restrictive. In fact, its time complexity
is the same as that of a naive solution in the worst case, especially when
counting the time it takes to construct RETE-networks.
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3.4.2 Dynamic Search Plans

The search plan in the current GP2 implementation is generated statically,
i.e. it only depends on the program specification, specifically the rule. A
dynamic search plan also depends on the host graph and how it changes
during executions. Independently of the language, an implementation of dy-
namic search plans needs to keep track of the host graph. This means a large
structure has to be maintained, which can create a significant time overhead.
Whether it actually improves or worsens time efficiency strongly depends on
the problem that needs to be solved. Because it involves complex structures
that do not guarantee an efficiency gain, GP2 does not use dynamic search
plans, even though they seem feasible to implement.

GrGen achieves fast matching without roots [40]. The host graph struc-
ture is analysed in advance. This is updated as rules are applied. The search
plan takes this host graph structure into account, which is what makes it
dynamic.

In [87], multiple search plans are generated in advance, but an optimal one
is selected dynamically during program execution. The paper [45] expands
on this by giving a framework that allows cost to be attributed to a variety
of search plans.



4
Case Studies in Time Complexity

In this chapter, we present several case studies where we analyse the time
complexity of GP2 programs. We use the complexity models and results
from Chapter 3.

The programs in this chapter are efficient because they are able to traverse
a graph in linear time. Since GP2 does not grant the programmer access
to a graph’s internal data structure, this is not trivial. Graph traversal is
implemented using depth-first search, which takes linear time on connected
graphs of bounded degree thanks to fast rule matching (Subsection 3.2.3).

An alternate approach to create efficient GP2 programs is to write pro-
grams that reduce the size of the host graph during their execution. Having
fewer nodes and edges reduces the number of potential matches for a rule,
speeding up matching. However, this is not suitable for programs that output
a structure, such as topological sortings or minimum spanning trees, since
one wants to preserve the structure of the input graph. But it is a useful
technique for programs that check whether a graph has a given property,
such as recognising trees or binary directed acyclic graphs (DAGs) [19].

Note that these programs are only efficient for connected host graphs of
bounded degree. Disconnected host graphs pose a problem when one com-
ponent has a linear size. Matching an arbitrary node in another component
can take linear time, since in the worst case, the matching algorithm has to
consider every single node of the large component. Bounded degree is neces-
sary for many rules to match in constant time. With an unbounded degree,
finding an adjacent edge that matches can take linear time.

Our case studies are a program that recognises whether a graph is con-
nected in Section 4.1, a program producing a topological sorting while recog-
nising directed acyclic graphs in Section 4.2, and a program finding a min-
imum spanning tree of a weighted graph in Section 4.3. In each section,
we give the program, some correctness argument, and evidence for its time
complexity.

In Section 4.4, we take a look at time complexity case studies and bench-



4.1 Recognising Connected Graphs 95

marks of other graph programs and algorithms in the literature.

4.1 Recognising Connected Graphs

This program introduces a useful technique for creating efficient GP2 pro-
grams, namely linear-time graph traversal using depth-first search.

Input: An arbitrary labelled host graph such that every node and
edge is unmarked, and every node is unrooted.

Output: Fail if and only if the input graph is not connected.

Throughout this section, when we refer to specified input graph, we mean
a graph as described by the input specification.

4.1.1 The Program is-connected

The program is-connected (Figure 4.1) can detect the connectedness of a
graph. It fulfils the specification in that it fails if and only if its input graph
is not connected. This is achieved by conducting a depth-first search (DFS)
that turns unmarked nodes into grey ones. Since the DFS cannot propagate
beyond the connected component it started in, the presence of an unmarked
node indicates that the host graph is not connected.

Main = try init then (DFS!; Check)

DFS = forward!; try back else break

Check = if match then fail

init(x:list)
x
1

⇒
blue
blue
blue
blue

blue
blue
blue
blue

x
1

match(x:list)
x
1

⇒ x
1

forward(a,x,y:list)
blue
blue
blue
blue

blue
blue
blue
blue

x ya

1 2

⇒
blue
blue
blue
blue

blue
blue
blue
blue

x
blue
blue
blue
blue

blue
blue
blue
blue

ya

1 2

back(a,x,y:list)
blue
blue
blue
blue

blue
blue
blue
blue

x
blue
blue
blue
blue

blue
blue
blue
blue

ya

1 2

⇒
blue
blue
blue
blue

blue
blue
blue
blue

x
grey
grey
grey
grey

grey
grey
grey
grey

ya

1 2

Figure 4.1: The program is-connected

4.1.2 Correctness of is-connected

In order to show correctness, we first exhibit a host graph property that is
invariant throughout the program execution.
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Lemma 4.1 (Invariant of is-connected). Throughout the execution of the
program is-connected on a specified input graph, all marked nodes in the
host graph are in the same connected component.

Proof. The rule init is only called at the start of the program, and turns an
unmarked node into a blue one. Subsequently, only applications of forward
can turn unmarked nodes into grey ones, and only if init was successfully
applied. The rules back and match do not modify the number of marked
nodes. Every rule preserves the structure of the host graph up to marks and
rootedness. Let us inductively show that the invariant is satisfied.

If init is applied at the start of the program, it introduces a single blue
node into a specified input graph, which does not violate the invariant. If
init fails, forward is never called, and the invariant is trivially satisfied due
to a lack of successful rule applications.

Assume by induction that the invariant holds on the current host graph.
An application of forward turns node 2 in the rule’s left hand side blue.
However, forward can only be applied if said node is adjacent to an existing
blue node 1. Hence it shares a connected component with the other marked
nodes.

Lemma 4.2 (Termination of is-connected). On any host graph, the pro-
gram is-connected terminates.

Proof. Since the loop body of forward! consists of a single rule, forward
either applies and reduces the number of unmarked nodes in the host graph,
or fails to find a match and terminates the loop. At some point, since the
host graph is finite, there are no unmarked nodes left, and forward cannot
match, terminating the loop.

For the termination of the loop DFS!, consider a couple #(G) = ⟨a, b⟩
consisting of the number a of unmarked nodes of a host graph G, and the
number b of dashed edges of G. By reducing the measure # we mean that
after changing a host graph G to a graph H, we have #(G) > #(H) with
respect to the lexicographical ordering, i.e. ⟨a, b⟩ < ⟨c, d⟩ if either a < c or
both a = c and b < d.

When calling DFS on a host graph G, because of try back else break,
either back is applied, or the loop terminates. When back is applied, the
measure # is reduced. Indeed, if forward is applied at least once the number
of unmarked nodes is reduced (back does not modify the number of unmarked
nodes). And if forward is not applied, the number of unmarked nodes
remains the same, but the number of dashed edges decreases when back

applies. If back does not succeed, the loop terminates anyway.
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Due to host graphs being finite, # cannot be reduced anymore at some
point, which means back cannot be applied. Hence break is invoked and the
loop terminates.

Lemma 4.3 (Existence of a Marked Connected Component). In the output
graph of try init then DFS! executed on a specified input graph, there is
a connected component consisting only of marked nodes.

Proof. The lemma is trivially true for an empty specified input graph. In
the case of an input graph consisting of a single node, init marks the entire
graph blue, satisfying the lemma. So we can assume the input contains at
least two nodes.

Assume for the sake of a contradiction that all connected components
have at least one unmarked node in the output graph. Since the input is
nonempty, init is applied. Consider the connected component of the node
init was applied to. Let u and v be adjacent marked and unmarked nodes
of the output graph, respectively. They exist because they share a connected
component that has at least one marked node (application of init) and at
least one unmarked node (assumption). We aim to show that u and v are
matched by forward during the execution, contradicting our assumption.

If u is grey, it must have been matched by back. Right before that
happened, u must have been a blue root, and forward cannot have been
applicable to it (note that there is at most one root in the host graph at any
given time). However, since v is unmarked and adjacent to u, forward must
have been applicable, which is a contradiction. So we may assume u is blue.

Since u is blue in the output graph, it must have been matched by either
init or forward at some point. Either way, after that rule application, u is
a blue root, and the program is executing the loop forward!. Since forward
can be applied to u and v, u must have an unmarked neighbour w different
from v, otherwise v would be marked blue.

For the next argument, let us take a look at the data structure the pro-
gram creates. The dashed edges form a path of blue nodes, where a node at
an end is rooted. This can be seen as a stack of blue nodes, where the root
represents the top. Indeed, init initialises the stack, forward implements
the push operation, and back the pop operation. Note however that back

leaves the popped node with a grey mark, meaning it cannot be pushed again.
This prevents the path from becoming a cycle, and also means that through-
out the execution of DFS!, the number of unmarked nodes is reduced. Since
the host graph has finitely many nodes, forward is not applicable anymore
at some point, due to unmarked nodes reachable by forward being gone. So
eventually, only back can be applied, popping the top of the stack until the
loop terminates.
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Coming back to u, v, and w, this reasoning can be applied to the loop
DFS! from the point where u is first rooted onward, in the subgraph of the
nodes reachable from w without going through u. By that reasoning, at some
point, the top of the stack is popped until u is the top again. When this
happens, back is applied and the loop DFS! enters its next iteration, which
starts with forward!. This leaves us in the same situation as previously,
where we must assume u has another unmarked neighbour, distinct from v
and w. However at some point, there will be no unmarked neighbours to
apply the previous argument to (since host graphs are finite), so v will have
to matched by forward, contradicting our assumption.

Theorem 4.4 (Correctness of is-connected). Running is-connected on
a specified input graph results in fail if and only if the input graph has more
than one connected component.

Proof. Termination follows from Lemma 4.2. For correctness, first assume
input graph G has no connected components, i.e. G is the empty graph.
Then init cannot be applied, and the procedure Check is called. The rule
match cannot be applied either, so the program terminates without failing.

Assume G has exactly one connected component. We know by Lemma
4.2 that DFS! terminates. Furthermore, by Lemma 4.3, the output H of try
init then DFS! has a connected component whose nodes are blue. Since
no rule adds or deletes nodes or edges, H is isomorphic to G ignoring marks
and roots. Hence the marked connected component must be the entirety of
H. The procedure Check is called, and match cannot find a match in a graph
containing only marked nodes. Hence is-connected does not fail.

Assume G has more than one connected component. The loop DFS!

still terminates by Lemma 4.2. Furthermore, by Lemma 4.3, the output H
of try init then DFS! has a connected component C with marked nodes.
Since by Lemma 4.1, all marked nodes share the same connected component,
and since H consists of more than one connected component, there is an
unmarked node in H − C. Hence the rule match matches and the program
fails.

4.1.3 Time Complexity of is-connected

Before we examine the complexity of is-connected, let us show the critical
subprogram property and hence that backtracking is not necessary.

Proposition 4.5 (Critical Subprogram Property for is-connected). When
executing is-connected on a specified input graph, all critical subprograms
that fail are null.
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Proof. This is trivially true for critical subprograms to consist of only a single
rule. The only one that does not is DFS, which cannot fail since loops cannot
fail and the try statement cannot fail since break cannot fail.

Theorem 4.6 (Time Complexity of is-connected). On a class of bounded
degree specified input graphs, the program is-connected (Figure 4.1) termi-
nates in linear time with respect to the size of its input.

Proof. To prove this theorem, we show that for each rule, the number of
applications during an execution multiplied with its matching complexity is
linear.

The rule match has a linear matching complexity by Corollary 3.19. It is
also only called once, so we can add its time complexity to the program’s. It
remains to show that the rest of the program has linear time complexity.

In order for Corollary 3.11 to be applicable, there can only be a constant
number of roots in the host graph. This is indeed the case. The only rule
that does not preserve the number of roots is init, which is only called once.
So the host graph can have at most one root at any time.

The rules forward and back are fast rules, and hence apply in constant
time by Corollary 3.11. Additionally, init matches in constant time by
Corollary 3.17, and is only applied once.

Let us show that back is applied a linear number of times. The num-
ber of applications is the number of successful applications plus the number
of unsuccessful applications. Since the loop DFS! terminates after back is
successfully matched (see Lemma 4.2), we know that back succeeds at each
call except for the final one, i.e. it has a constant number of unsuccessful
applications. So it is enough to show the linearity of the number of successful
applications of the rule. It is easy to see that back increases the number of
grey nodes, while all other rules preserve it. Since back cannot match a grey
node, it can only be applied a linear number of times.

Let us show that forward is applied a linear number of times. By the
previous paragraph, back is applied a linear number of times, meaning the
loop DFS! has a linear number of iterations. During each of these iterations,
forward fails exactly once (termination of forward! by Lemma 4.2), so there
is a linear amount of unsuccessful applications. The rule forward decreases
the number of unmarked nodes, while the other rules called in DFS! preserve
it. Since it needs an unmarked node to match successfully, it can only do so
a linear number of times. Hence forward is only called a linear number of
times.

Finally, we have collected empirical timing results, supporting our claim
that the program runs in linear time on graph classes of bounded degree, but
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(a) Discrete graph (b) Grid graph (c) Binary tree

(d) Star graph (e) Cycle graph (f) Sun graph

(g) Grid chain (h) Linked list

Figure 4.2: Input graph classes for time measurements
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Figure 4.4: Measured performance of is-connected on graphs of unbounded
degree

not necessarily on those that do not have bounded degree.
The input graphs for our measurements are depicted in Figure 4.2. Only

star graphs have unbounded degree, as they grow by increasing the number
of nodes adjacent to the central one. Discrete, grid, binary tree, cycle, and
linked list graphs grow in the intuitive way. Sun graphs grow by adding
nodes to the central cycle and completing the pattern. Grid chains grow by
concatenating additional grids and expanding the size of each grid.

The timings can be found in Figures 4.3 and 4.4. These time measure-
ments and figures are made by co-author Graham Campbell as part of [19].
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Note that program execution never takes constant time because the measured
time includes input graph parsing, which takes linear time.

4.2 Topological Sorting and DAG Recogni-

tion

In this section, we give a program that recognises directed acyclic graphs
(DAGs) and produces a topological sorting.

Input: An arbitrary labelled connected host graphG such that every
node is marked grey, every edge is unmarked, and every node
is unrooted.

Output: Fail if the input is not a DAG, and G equipped with a topo-
logical sorting otherwise.

Note that the input graph having grey nodes is a cosmetic decision. It
allows us to use the any mark to match an unvisited node. With unmarked
input nodes, rules with the any mark can be replaced a rule set call that
covers the absence of a mark in addition to the any mark. Throughout this
section, when we refer to specified input graph, we mean a graph as described
by the input specification.

4.2.1 The Program top-sort

The GP2 program top-sort (Figures 4.5, 4.6, 4.7) presented in this section
has two purposes: recognising whether its connected specified input graph is
a DAG (directed acyclic graph) and if it is, producing a topological sorting
of said graph. An example execution can be found in Figure 4.8.

The class of DAGs (directed acyclic graphs) consists of all graphs that
do not contain a directed cycle as a subgraph. A topological sorting of a
DAG G is a total order (an antisymmetric, transitive, reflexive, and strongly
connected binary relation) ≤ on the set of nodes of G, such that for each edge
of source u and target v, u ≤ v (topological property). Topological sortings
cannot exist for graphs containing directed cycles, since there is no way to
define a total order on the nodes of a cycle such that the topological property
is satisfied.

Algorithm 4.6 and Procedure 4.7 form the pseudocode for an imperative
implementation of topological sorting [23]. The program uses depth-first
search to traverse the nodes. Unvisited nodes are marked red, nodes currently
being used in the DFS grey, and finished nodes blue. When a node is finished,
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Main = try init then

(StackNodes!; unroot; LoopNodes!; if flag then fail)

StackNodes = {forward1, forward2}!; try back else break

flag(x:list)

x
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⇒ x
1

init(x:list)
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⇒ red

red
red
red
red

red
red
red
red
x

green
green
green
green

green
green
green
green

1

forward1(a,x,y:list)
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Figure 4.5: The program top-sort and procedure StackNodes

LoopNodes =

if flag then break;

try skip1 else (

try skip2 else (

try init1 then (

SortNodes!

) else (

try init2 then (

SortNodes!

) else (

break

)

)

)

)
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Figure 4.6: The procedure LoopNodes
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SortNodes =

forward!;

if {loop, two cycle, back edge} then (

set flag;

break

);

try back push else (

try back first push else (

try grey push else (

grey first push

);

break

)

)

forward(a,x,y:list)
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Figure 4.7: The procedure SortNodes
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Figure 4.8: Example derivation sequence of top-sort

it is inserted onto the front of a linked list. When the program terminates,
that linked list contains the nodes in a topological order.

The GP2 program top-sort works in a similar fashion. One difference
is that, since (by design) we do not have access to the graph data structure
in GP2, we cannot directly loop over all nodes in the host graph. So as
a first step, we use DFS to construct a stack of red edges containing all
nodes, enabling us to iterate through them. Another difference is that the
GP2 program has the secondary purpose of recognising DAGs. A topological
sorting is defined and only makes sense on DAGs. So instead of leaving the
behaviour of top-sort undefined on non-DAGs, we make the program fail
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on them. This is achieved by setting a flag if structures that signify the
existence of cycles are found during the topological sorting.

Algorithm 4.6: Topological-Sort(G)

1 L← empty linked list
2 for each node u of G do u.colour← red
3 for each node u of G do
4 if u.colour = red then DFS-Visit(G, u, L)

5 return L

Procedure 4.7: DFS-Visit(G,u,L)

1 u.colour← grey
2 for each node v adjacent to u do
3 if v.colour = red then DFS-Visit(G, v, L)

4 u.colour← blue
5 insert u onto the front of L

So the GP2 program top-sort uses depth-first search to traverse the host
graph in linear time while testing whether it is a DAG and constructing a
path of blue edges that define a topological sorting. Moreover, it terminates
in linear time on inputs of bounded node degree.

Note that while the program is only correct on connected graphs, it can
be modified to work on arbitrary graphs too, but at a cost. Not only does
the program become more complex, but the linear time complexity result
fails also, due to there being no way to iterate all the connected components
in linear time. This is because the matching algorithm finding an unvisited
node in a new connected component needs to check the nodes of the already
visited components first in the worst case. If there is an unbounded number
of connected components, the repetition of this process would take quadratic
time.

4.2.2 Correctness of top-sort

The first step is to show termination of top-sort.

Lemma 4.7 (Termination of top-sort). On any host graph, the program
top-sort terminates.
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Proof. Consider the loop {forward1, forward2}! called in the procedure
StackNodes (Figure 4.5). In each iteration, either forward1 is applied,
forward2 is applied, or both fail and the loop terminates. Whenever one of
these rules is applied, the number of grey nodes in the host graph is reduced.
Due to host graphs being finite, there are no grey nodes left eventually, and
neither rule can match, terminating the loop.

Next, consider the loop StackNodes! (Figure 4.5), a measure # consist-
ing of the number of grey nodes of a host graph paired with the number of
dashed edges, and a lexicographical ordering on said pairs. In each iteration,
either back is applied or the loop terminates due to break. If back is ap-
plied, either the number of grey nodes remains the same and the number of
dashed edges is reduced (i.e. neither forward1 nor forward2 are applied),
or the number of grey nodes is reduced (i.e. forward1 or forward2 have
been applied at least once). In either case, # is reduced. Since host graphs
are finite, # cannot be reduced anymore at some point, hence back is not
applicable. Then break is invoked and the loop terminates.

Now consider the loop forward! in the procedure SortNodes (Figure
4.7). In each iteration, either forward is applied, or the loop terminates.
Applying forward reduces the number of red nodes in the host graphs. Since
there are only finitely many, there will be no red nodes left for forward to
match eventually. Hence the loop has to terminate.

Next, consider the loop SortNodes! (Figure 4.7). In each iteration, ei-
ther the rule back push applies, the rule back first push applies, or break
is invoked. We claim that each iteration either lexicographically reduces the
number of red nodes in the host graph paired with the number of grey nodes
(let us call this measure #), or terminates the loop. The rules set flag,
grey push, and grey first push only get called in an iteration that ter-
minates the loop, so we do not need to consider them for the purpose of
reducing #. Similarly, as rules called in the condition of an if statement
do not modify the host graph, we do not need to consider loop, two cycle,
and back edge for reduction purposes either. So consider an iteration where
either either back push or back first push applies. If forward is applied
at least once this iteration, the number of red nodes is reduced, which re-
duces #. If forward is not applied at all, the number of red nodes remains
the same while either back push or back first push reduces the number of
grey nodes, reducing #. So eventually, # cannot be reduced any further in
the finite host graph, meaning neither back push nor back first push can
be applied, causing the loop to terminate.

Finally, consider the loop LoopNodes! (Figure 4.6). In each iteration,
either break is invoked, or one of the rules skip1, skip2, init1, and init2

is applied. Each of these rules reduces the number of red edges in the host
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graph. So eventually, since host graphs are finite, there are no red edges that
can be matched by these rules anymore, so all of them will fail, meaning
break is invoked due to the structure of the nested try statements, and the
loop terminates.

The command init; StackNodes! creates a stack of nodes in order to
navigate between strongly connected components while doing a depth-first
search that travels in the direction of the edges. It is equivalent to try init

then StackNodes! if init is applied successfully. We shall define stacks via
their implementation.

A stack is a finite set of red nodes connected by red edges such that the
red edges form a path that does not self-intersect. The node in the path that
has no incoming red edge from another path node is called the top of the
stack. Additionally, there is an unlabelled green root node called the pointer
with only one adjacent edge, namely an outgoing red edge whose target is
the top of the stack.

Note that such a stack can also be defined with blue nodes and edges
instead of red ones, in which case we shall call it a blue stack. In fact, during
the execution of LoopNodes!, a red and a blue stack coexist using the same
green root.

Lemma 4.8 (Correctness of init; StackNodes!). The command sequence
init; StackNodes! is totally correct with respect to the specification:

Input: A specified input graph G.
Output: G where all its nodes are in a red stack.

Proof. Termination follows from Lemma 4.7.
The proof that all nodes of G are marked red is analogous to that of

Lemma 4.3.
To show that a correctly encoded stack is formed, let us proceed by in-

duction. The rule init creates a valid stack containing a single node. Now
assume a valid stack is encoded in the host graph. Let us argue that after
applying StackNodes, that is still the case. Whenever a red edge is created,
the target is the top (since it is adjacent to the green root), and the source is
a grey node (and hence not part of the path already, since a specified input
graph has grey nodes), extending the non-self-intersecting path. The green
root now points toward the newly added node, making it the new top.

Let us now define how to represent a topological sorting in the context of
GP2.

Definition 4.9 (Topological sorting as a graph structure). Consider a graph
G and the set of its blue nodes B. Define a binary relation on B by u ≤ v if
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there is a blue edge from u to v, or if u = v. G contains a topological sorting
if the transitive closure of ≤ is a topological sorting of the subgraph of G
induced by the blue nodes B and the unmarked edges. □

With such a structure, one can test whether two nodes are in a topological
order by checking whether there is a path of blue edges connecting them.

Lemma 4.10 (Correctness of LoopNodes!). On a graph whose nodes are
all in a red stack, and whose subgraph induced by its unmarked edges is a
DAG, LoopNodes! outputs a graph G that contains an unmarked root or a
topological sorting.

Proof. Termination follows from Lemma 4.7.
Let us assumeG does not contain an unmarked root, and show that it does

contain a topological sorting. In fact, since no rules called in LoopNodes!

can mark or unroot an unmarked node, we can assume that no unmarked
root is introduced at any point, i.e. set flag is not applied.

Consider the binary relation ≤ on the set of blue nodes defined by blue
edges as in Definition 4.9, and let us show it is a topological sorting. It is
transitive since it is defined as a transitive closure.

Antisymmetry follows from the fact that ≤ is reflexive and the fact the
subgraph H of G induced by blue edges does not contain directed cycles.
Indeed, H behaves like a stack of blue nodes and edges with a green root
pointing towards the top with a blue edge. When the green root is unlabelled,
the stack is initialised as a single blue node, and the green root is labelled
0. Once that label has been established, non-blue nodes are pushed. At no
point does the program pop a blue node, or change the mark of a blue node.
Hence no blue cycle can be introduced.

Strong Connectedness follows from the fact that every node is eventually
marked blue, i.e. pushed. By using arguments analogous to those in Lemma
4.3, we can conclude that after SortNodes! is applied, the grey root and all
nodes reachable from it are marked blue (which we can only conclude because
the if statement does not change the host graph since we assume set-flag
is not applied). This difference is because the steps of the depth-first search
are sensitive to edge direction. In order to sort through remaining nodes,
LoopNodes! skips over blue, i.e. already sorted nodes in the red stack with
skip1 and skip2, until it reaches a red, i.e. unsorted node, which is then
initialised as grey root with init1 or init2. Then StackNodes! is applied
on that grey root. Since all nodes of the input graph are in the red stack by
Lemma 4.8, all nodes are eventually marked blue.

It remains to show that ≤ satisfies the topological property, namely that
for each unmarked edge from u to v in the input, u ≤ v, i.e. there is a
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blue path from u to v in the output graph. Since the blue edges form a
stack of all nodes, it is enough to show that u is pushed after v. Con-
sider the iteration of SortNodes! that pushes u onto the blue stack with
one of the push rules (grey first push, grey push, back first push, and
back push). The node u has no outgoing unmarked edge with a red node as
the source because then forward! would have had at least one more itera-
tion, and this would not be the iteration of SortNodes! that pushes u. So
v is not red. It cannot be grey either because then there would be a path of
dashed edges from v to u (since the grey nodes are in a path of dashed edges,
and the root, u, is the final node of the path), which would mean there was
a cycle of unmarked edges in the input. So v must be blue, i.e. it is pushed
before u.

Now let us show the total correctness of top-sort. Note that we include
the empty graph in the definition of DAGs. If one wishes to exclude it from
the class of DAGs, it suffices to add the else fail to the try statement in
Main, since init fails on the empty graph.

Theorem 4.11 (Correctness of top-sort). The program top-sort (Figures
4.5, 4.6, 4.7) is totally correct with respect to the specification:

Input: A specified input graph.
Output: Fail if the input is not a DAG, and G equipped with a topo-

logical sorting otherwise.

Proof. If G is the empty graph, init is not successfully applied, and the
output is G, which defines a valid topological sorting of the empty DAG.

Termination follows from Lemma 4.7.
If G is a DAG, and no unmarked root is introduced in LoopNodes!, it

follows from the same lemmata and the fact that no rule of top-sort changes
the structure of the underlying graph of unmarked edges, that the output
is G containing a topological sorting. So we need to show that, if G is a
DAG, LoopNodes! does not introduce an unmarked root. Conversely, if
G is not a DAG, we need to show that an unmarked root is introduced in
LoopNodes because matching flag is the only way for Main to fail (unroot
always matches since SteckNodes leaves a red root in the host graph).

The only rule that introduces an unmarked root is set flag, which is only
called during the if statement in SortNodes, if the condition is satisfied. So
it is enough to show that G is a DAG if and only if neither loop, two cycle,
nor back edge matches.

As argued in the proof of Lemma 4.10, every non-pointer node is pushed
onto the blue stack with one of the push rules. So the if statement called
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right before the push rules are invoked for each non-pointer node while it is
a grey root.

If G is a DAG, loop and two cycle cannot match since they need a 1-
cycle or 2-cycle respectively to be present in G. The rule back edge cannot
match either. It contains a path from node 2 to node 1. As the target of
a dashed edge, node 1 is in the stack of dashed edges, so there is a path to
node 1 to node 2, the top of the stack. This means there is a cycle.

Conversely, assume that G is not a DAG. If it contains a 1- or 2-cycle,
either loop or two cycle matches. So assume G contains a cycle of length
at least 3. Consider the first time a node of that cycle becomes a grey root
due to forward. Eventually, forward is applied to make the next node in
the cycle the grey root. We can repeat this argument until the last node in
the cycle is the grey root (in the cycle, all edges but one are dashed, all nodes
are grey, and the node with an outgoing unmarked edge is rooted). Then
back edge can match.

4.2.3 Time Complexity of top-sort

Before we examine the complexity of top-sort, let us show the critical sub-
program property and hence that backtracking is not necessary.

Proposition 4.12 (Critical Subprogram Property for top-sort). When ex-
ecuting is-connected on a specified input graph, all critical subprograms
that fail are null.

Proof. This is trivially true for critical subprograms consisting of only a single
rule, or a single rule set.

The loop body StackNodes cannot fail because a loop cannot fail, and
the try statement cannot fail since break cannot fail.

In the loop body LoopNodes, nothing can fail since it is a combination of
branching statements, a loop, and break statements.

Using the same reasoning on the loop body SortNodes, we can conclude
that set flag and grey first push are the only rules that can cause failure.
The rule set flag cannot fail because it is immediately preceded by an
application of either forward, init1, or init2, which all leave behind a
grey root. Similarly, these preceding applications guarantee the presence of
a grey root for grey first push. The green root is there because it is created
by init. If it had a label, it would also have a blue edge pointing to a blue
node, which is apparent from all the rules that modify the green root’s label
and its outgoing blue edge. Therefore, grey push in the try condition would
have matched and grey first push would never have been called in the first
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place. So we can assume the green root has no label, and grey first push

cannot fail.

Theorem 4.13 (Complexity of top-sort). On a class of bounded degree
specified input graphs, the program top-sort (Figures 4.5, 4.6, 4.7) termi-
nates in linear time with respect to the size of its input.

Proof. To prove this theorem, let us now show that for each rule, the number
of applications during an execution multiplied with its matching complexity
is linear.

First consider init. It is applied once, and every node of the input graph
is a valid match, so its matching complexity is constant by Corollary 3.17.

Let us now argue that there is a constant number of roots at any given
time, so that we can apply Corollary 3.11. The rule init introduces a green
root. In all other rules, the rootedness and mark no green nodes get modified,
and no green nodes get introduced. The rule init also introduces a red
root. In StackNodes!, no rules modify the number of red roots. Then with
unroot, the one red root is removed. The rules init1 and init2 introduce
a grey root. Whenever one of them is applied, SortNodes! is called. Let us
show that SortNodes! removes the grey root. This loop can only terminate
when break is invoked (termination itself is shown in Lemma 4.8), or when
grey first push does not find a match. In the latter case, either the grey
root has already been removed (which is what we want), or the green root
has a label. If the green root as a label, grey push or back push would have
been applied, and grey first push never called. Now consider the case
where break is invoked. This must be preceded by a successful application
of set flag, grey push, or grey first push. In the latter two cases, the
grey root is unrooted. In the former case, the grey root is unmarked, and
various break and fail statements are invoked and the program terminates.
In either case, the number of roots remains constant.

Each rule except for init, is a fast rule. So by Corollary 3.11, they have
constant matching complexity. So it remains to show that the number of
applications is at most linear.

The rules unroot and flag are applied at most once.
Note that {forward1, forward2} is only successfully applied a linear

number of times since it reduces the number of grey nodes, of which there
can be only linearly many, and no other rule in StackNodes! introduces grey
nodes. So back can only be successfully applied a linear number of times.
And the number of times back is unsuccessfully applied is once, since in that
case break is invoked. Henceback is applied a linear number of times. This
also means that the number of iterations of StackNodes! is linear. So the
number of times forward1 and forward2 are unsuccessfully applied can only



4.2 Topological Sorting and DAG Recognition 113

be linear as well. Hence forward1 and forward2 are applied a linear number
of times.

Therefore there can only be linearly many red edges. In each success-
ful iteration of LoopNodes!, one of skip1, skip2, init1, init2 has to be
applied, reducing the number of red edges. So there can only be linearly
many iterations of LoopNodes, making the number of applications of skip1,
skip2, init1, and init2 linear.

The rule forward can only be successfully applied a linear number of
times since it reduces the number of red nodes, and no other rule in the
loop LoopNodes! modifies that number. So there can only be linearly many
dashed edges, meaning that combined, back first push and back push can
only be applied a linear number of times. Hence there can only be a linear
number of applications of SortNodes. So each rule r called only once in
SortNodes has only a linear number of total applications. That also means
that the number of times forward is unsuccessfully applied is also linear, so
forward is applied a linear number of times.
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Figure 4.9: Measured performance of top-sort

We have collected empirical timing results, supporting our claim that the
program runs in linear time on classes of connected graphs of bounded degree
(Figure 4.9). The input graph classes are the same as the ones in Subsection
4.1.3. These time measurements and figures are made by co-author Graham
Campbell as part of [19].
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4.3 Minimum Spanning Trees

The program in this section finds a minimum spanning tree, that is a tree
of minimum edge weight that contains all nodes of a graph. The correctness
of this program is based on its similarity to the algorithm it implements, as
well as testing on various small examples.

Input: A connected host graph G such that every node is marked
grey, every edge is unmarked, and every node is unrooted,
nodes have arbitrary labels, and edges have positive integer
labels.

Output: Graph G where a minimum spanning tree is highlighted with
blue edges.

4.3.1 Boruvka’s Algorithm

Prim’s, Kruskal’s, and Boruvka’s algorithms for computing MSTs can all be
implemented to run in O(m log n) time, where m is the number of edges,
and n the number of nodes. However Prim’s algorithm needs binary heaps
to achieve it, and Kruskal’s algorithm the union find data structure [12].
The advantage of Boruvka’s algorithm is that it only needs very simple data
structures that are clean to implement in GP2 to reach that time complexity
bound [76]. GP2 has no predefined data structures except for the host graph
that it transforms. Any additional data structures need to be encoded in the
host graph itself, which can make a program tricky to read. Hence we choose
to implement Boruvka’s algorithm in GP2.

Algorithm 4.8 shows pseudocode for Boruvka’s algorithm. Although it
cannot translate directly into GP2, it is a suitable starting point for the
development of a GP2 program. A C implementation of this algorithm can
be found in [74, 75].

Algorithm 4.8: Boruvka’s MST algorithm on an input graph G

1 Preprocess: initialise the spanning forest F to be the nodes of G;
2 while F consists of more than one tree do
3 for each tree T in F do
4 FindEdge: select a minimum weight edge between T and

G− T , prioritising already selected edges if they are
minimum

5 GrowForest: add the selected edges to F

The idea of Boruvka’s algorithm is to initialise a forest as the nodes
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of the input graph without any edges, and to grow that forest by adding
minimum-weight edges from between its connected components until it be-
comes a minimum spanning tree of the input graph.
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Figure 4.10: Example input and output of mst-boruvka

As illustrated in Figure 4.10, the input of mst-boruvka is a connected
graph with unmarked nodes and edges. Nodes are unlabelled, and edges have
integer labels. In the output, the subgraph induced by the blue edges are
a minimum spanning tree of the input. The additional root with label 1 is
an auxiliary construct used in the execution of the program (which could be
removed in constant time).

4.3.2 Example Execution

Throughout the execution of mst-boruvka, the graph induced by the blue
edges is a subgraph of the minimum spanning tree highlighted in the output.
We shall call this forest F , and its connected components its trees. Let us
explore how mst-boruvka executes using the example in Figure 4.11, and
compare it to the pseudocode in Algorithm 4.8. The Main procedure of
mst-boruvka is depicted in Figure 4.12.

The procedure Preprocess initialises the forest F to be just the nodes
of the input(see line 1 of the pseudocode). It also sets up a linked list of
red edges and red nodes that helps the program loop over the trees of F
efficiently. Each tree of F is represented by exactly one of its nodes being
an entry in the linked list. Additionally, there is a pointer in the form of an
unmarked root node with an outgoing red edge towards the “current” node
in the linked list. The pointer also stores the number of trees the forest has
in order to efficiently check whether only one tree is left, terminating the
main loop (see line 2 of the pseudocode).
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Figure 4.11: Example derivation sequence of mst-boruvka

The loop TreesLoop! moves the pointer through the nodes of the linked
list, effectively looping over the trees of F (see line 3 of the pseudocode).
On each tree T , the procedure FindEdge is called, which selects a minimum
weight edge between T and its complement in the host graph by marking it
green (see line 4 of the pseudocode). If there is already an adjacent green edge
with minimum weight, no new edge is selected since that could introduce a
cycle into F . To ensure that only one node of each tree is part of the list,
the current tree gets marked for deletion from the list using a red loop under
certain conditions. Subsection 4.3.7 elaborates on this.

The procedure GrowForest adds the selected edges to F by turning green
edges into blue ones (see line 5 of the pseudocode).

The loop Rewind! serves to maintain the linked list. It moves the pointer
back to the beginning of the list. On the way, it removes nodes that have
been marked for deletion with a red loop. It also decrements the pointer’s
label each time it encounters such a node since that node’s tree has been
merged with another tree.

4.3.3 The Program mst-boruvka

The program mst-boruvka is depicted in Figure 4.12. Most of it is explained
by the example execution in Subsection 4.3.2. Let us now examine the loop
TreesLoop!.

The purpose of the loop TreesLoop! is to find a minimum weight edge
from each tree to its complement and mark it green. It initialises by rooting
the node the pointer points to. Then that node’s tree is marked blue with
the procedure ColourBlue so it can easily be distinguished from the rest
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Main = Preprocess; Loop!

Loop = if one tree then break else Body

Body = TreesLoop!; GrowForest; Rewind!

TreesLoop = root current; TraverseTree; MarkForDeletion;

CleanUp; try next tree else break

TraverseTree = ColourBlue; FindEdge

CleanUp = ColourRed; unroot red!
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Figure 4.12: The program mst-boruvka

of the graph. FindEdge then finds the minimum edge from the tree to its
complement. The procedure MarkForDeletion marks the tree for deletion
if it will be merged with another one. The procedure ColourRed makes the
nodes of the tree be red again. The command unroot red! unroots any red
roots. The rule next tree then moves the pointer to the next entry in the
linked list.

4.3.4 The Procedure Preprocess

The procedure Preprocess depicted in Figure 4.13 uses depth-first search
(DFS) to construct the linked list and the pointer. An example of its input
and output can be seen in Figure 4.11.

The rule pre init initialises some node of the input to be the starting
point of the DFS, and constructs the pointer. Since initially each node is
its own tree, the pointer’s label will count the number of nodes encountered
during the DFS. Red nodes are considered to be discovered by the DFS, and
unmarked nodes undiscovered.

The rules pre forward1 and pre forward2 are called nondeterministi-
cally. They both move the red root to an adjacent unmarked node. The
rules contain bidirectional edges (without arrowheads) that can be matched
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Main = Preprocess; Loop!

Loop = if one tree then break else Body

Body = TreesLoop!; GrowForest; Rewind!

TreesLoop = root current; TraverseTree; MarkForDeletion;

CleanUp; try next tree else break

TraverseTree = ColourBlue; FindEdge

CleanUp = ColourRed; unroot red!
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Figure 4.13: The procedure Preprocess

in either orientation. The rule is a shorthand for a non-deterministic call of
copies of the same rule whose bidirectional edges have been replaced with
directed edges in all possible combinations of orientation. The dashed edge
serves as a way to keep track of the path the DFS has taken, which is back-
tracked by the rule pre back. The backtracking enables the “forward” rules
to find new undiscovered nodes again.

The rules pre forward1 and pre forward2 also increment the counter
and construct the linked list of red edges. The reason we need both rules is
to cover both cases of whether the newest entry of the list is also the current
red root or not.

4.3.5 The Procedure FindEdge

The procedure FindEdge, depicted in Figures 4.15 and 4.16, serves to find
a minimum-weight edge between the current tree (blue nodes) to the rest
of the graph (red nodes) using DFS, and to mark it green. If among said
minimum edges is an already selected (green) one, it will stay selected, and
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no additional edge is selected for the current tree. If this were not the case,
the selected edges would form a cycle on a 3-cycle whose edges have equal
weight for instance, causing the output MST not to be a tree.
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Figure 4.14: Example derivation sequence of FindEdge

Let us examine the example execution of FindEdge in Figure 4.14. It is
part of the transition from the fifth to the sixth graph labelled TreesLoop!

in the example execution of mst-boruvka in Figure 4.11. We start with a
graph where the current tree has blue nodes to distinguish it from the rest of
the graph. This was done using the procedure ColourBlue, which is always
called before FindEdge as defined in the procedure TraverseTree in Figure
4.12. The nodes of the tree are turned grey, but are still distinguishable from
the the rest of the graph, which has red nodes.

The procedure FindEdge starts by turning the blue root grey, and creating
a green root which serves as a flag indicating whether the minimum edge has
been initialised yet. The flag is 1 if initialisation has already happened, and
0 otherwise.

We enter the loop FindLoop! and apply find forward to move the root
along in the current tree in a depth-first fashion. The flag is not yet set to
1, so we call MinSetup to initialise the minimum edge using min init1. The
rule min init2 exists in case the grey root’s only incident edge has already
been selected (marked green) when the procedure FindEdge was applied to
a different tree. An edge selected from both this tree and another tree is
represented with a label that is a list consisting of the edge weight followed by
a 0. The currently selected minimum edge of the current tree is represented
by a green edge incident to a grey as well as a red root.

We then enter the procedure Success which minimises the weight among
the unmarked edges incident to the current grey root using the procedure
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FindEdge = find init; create flag; FindLoop!; destroy flag

FindLoop = find forward!; if flag then Minimise! else

(try MinSetup); try find back else break

MinSetup = try min init2 then Success else

(try min init1 then Success)

Success = MinWithS!; set flag

Minimise = try MinWithN else MinWithoutN

MinWithS = {min s, min sn, min sp, min snp, min1 st, min2 st}

MinWithN = {min n, min np, min sn, min snp, min tn, min tnp}

MinWithoutN = {min, min p, min s, min sp, min t, min tp,

min1 st, min2 st}
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Figure 4.15: The procedure FindEdge
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Figure 4.16: More “min” rules
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MinWithS (which only calls rules that minimise edges incident to the current
grey root), and then applies set flag to indicate that the initialisation of
the minimum edge is complete.

Next, the rule find back moves the grey root back through the tree in
depth-first fashion. We then enter the next iteration of FindLoop!. The rule
find forward cannot be applied, so we continue with the loop Minimise!

since the flag has already been set.
The purpose of the loop Minimise! is to find an edge incident to the

grey root with a smaller weight than the currently selected edge. There
are 14 different cases we have to distinguish with the rules that update the
minimum edge. They can be seen as combinations of the presence or absence
of four flags s, t, n, and p, present in the rule names. The flag s is present if
the new and previous minimum edge share their “source”, i.e. the incident
grey node in the current tree. The flag t is present if the new and previous
minimum edge share their “target”, i.e. the incident red node outside of
the current tree. The flag n denotes that the new minimum edge is also a
selected minimum edge of a different tree from a previous call of FindEdge.
The presence of flag p indicates that the previous minimum edge has already
been selected for a different tree. These edges are denoted by a 0 being
appended to their label. They need to be distinguished since their green
mark needs to be preserved in order for the program to work correctly.

The “min” rules with both the s and t flags, i.e. the ones minimising
parallel edges, are a special case. We omit the cases that involve previously
selected edges (flags n or p) since such an edge would have already been
minimised over its parallel edges by previous applications of min1 st and
min2 st. We use two rules with directed edges labelled j instead of one
rule with a bidirectional edge labelled j due to parallel bidirectional edges
being disallowed by GP2. This is because, if the parallel bidirectional edges
are indistinguishable in the left hand side of a rule, the result of the rule
application is not necessarily unique up to isomorphism, since it could leave
the host graph with an edge in one of two possible directions.

In order to prioritise edges that have already been selected for different
trees, we call the rules of the procedure MinWithN first. They consist of the
rules with flag n. We can then call the rest of the rules using MinWithoutN.
Note that min sn, min tn, and min n (i.e. “min” rules with n but not p)
are the only rules that can be applied if the weights are equal. This is
because they are the only ones selecting a previously selected edge, which
we prioritise. Making the other rules applicable on equal weights can lead to
non-termination. In our example, min is applied.

Finally, the DFS terminates and the rule destroy flag deletes the tem-
porary flag needed for this procedure. The flag could have been implemented
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as an additional list entry of the unmarked root, but is chosen to be its own
green root for the sake of semantic clarity.

4.3.6 The Procedure GrowForest

The procedure GrowForest depicted in Figure 4.17 serves to turn the edges
selected by FindEdge! (green mark) into edges of the forest (blue mark),
thus merging some of the trees. Graphs 6 and 7 in the example execu-
tion of mst-boruvka in Figure 4.11 exemplify input and output graph of
GrowForest.

GrowForest = grow init; GrowLoop!; GrowClean!; unroot red

GrowLoop = GrowTree! try next root else break

GrowTree = down!; add edge!; try up else break

GrowClean = try ColourRed; try previous root else break
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Figure 4.17: The procedure GrowForest

The procedure GrowForest traverses the graph by iterating through the
list of trees, and conducting a DFS on each tree. next root helps iterate
through the list in the direction opposite to the orientation of the red edges.

The rules down and up play the roles of forward and back in a DFS.
They use blue edges to ensure only the current tree is traversed. add edge!

is called right before up to turn all green edges adjacent to the grey root blue.
After the up rule is applied to a grey root, it is not visited again by the DFS,
ensuring the new blue edges will not be traversed. Future DFSs will also not
traverse these edges since one of its adjacent nodes is grey.
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The loop CleanUp! iterates through the list of trees in the direction
opposite to GrowTree! and calls ColourRed on each tree to mark the nodes
red again.

4.3.7 Other Procedures

The program mst-boruvka calls several procedures to maintain the list data
structure or to prepare the graph for the next step. In this subsection, we
describe, ColourBlue in Figure 4.18, ColourRed in Figure 4.19, MarkForDe-
letion in Figure 4.20, and Rewind in Figure 4.21.

ColourBlue = blue init; BlueLoop!

BlueLoop = blue forward!; try blue back else break
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Figure 4.18: The procedure ColourBlue

ColourRed = red init; RedLoop!

RedLoop = red forward!; try red back else break
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Figure 4.19: The procedure ColourRed

The procedure ColourBlue uses DFS to turn the nodes of a tree from red
to blue, and the procedure ColourRed to turn the nodes of a tree from grey
to red.

The procedure MarkForDeletion determines whether the current tree
needs to be removed from the list of trees or not. This needs to be done



4.3 Minimum Spanning Trees 125

MarkForDeletion = try clean else Mark; unroot red

Mark = if red loop then skip else add loop
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Figure 4.20: The procedure MarkForDeletion

Rewind = try remove mid else RemoveEnd

RemoveEnd = try {remove top, remove bottom} else keep
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Figure 4.21: The procedure Rewind

when the current tree is being merged with another tree in the procedure
GrowForest. However, in a set of trees that are merged into one tree, exactly
one of them needs to be kept as an entry in the list. This is done by exploiting
the fact that exactly one of the green edges used to merge that set of trees
must have been selected by two different trees. If none of the edges fulfil
that condition, the merging would introduce a cycle. If multiple edges fulfil
it, the trees are merged into a forest, and not a single tree. Hence the trees
that select a previously selected edge are kept as an entry in the list. The
rule clean easily detects these edges since their label is a list of their edge
weight followed by a 0.
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The procedure Rewind returns the pointer to the beginning of the list of
trees. On the way, it removes list entries marked for deletion with a red loop,
and updates the pointer’s label which represents the number of trees in the
list.

4.3.8 Empirical Performance Results

On the graph classes we tested, time measurements as illustrated in Figures
4.22 and 4.23 show subquadratic growth on square grids and fixed degree
wheels, and polynomial growth on unbounded degree wheels. These figures
contain error bars, an addition by this thesis’ author since previous perfor-
mance measurements and visualisations are made by a paper’s co-author.
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Figure 4.22: Measured performance of mst-boruvka on graphs of bounded
degree

The execution time of the program mst-boruvka is measured on square
grids, fixed degree wheels, and unbounded degree wheels. The kth square
grid is a k × k grid graph as depicted in Figure 4.11. Figure 4.10 depicts
a wheel graph with 8 spokes. The kth fixed degree wheel is a wheel graph
with 16 spokes, each of which consist of a path graph with k edges. The kth

unbounded degree wheel is a wheel graph with k spokes.
The edge weights of the input graphs are randomly generated integers

between 1 and 1000. The number of nodes of the square grids and fixed degree
wheels ranges up to over 100000, and that of the unbounded degree wheels
to almost 35000. For each graph of a given size, the execution time depicted
with shapes is the average execution time of mst-boruvka on copies of that
graph with at least 20 random weight distributions. The bars around those
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Figure 4.23: Measured performance of mst-boruvka on unboundeed degree
wheels

data points show the range between the minimum and maximum measured
execution time for that graph. The extent of that range can be attributed to
differing random weight distributions used for each time measurement. With
a fixed weight distribution, that range is much smaller.

Figure 4.22 shows that mst-boruvka is subquadratic and close to linear
on fixed degree wheels and square grids. We expect the time complexity to
be O(m log n), where m is the number of edges and n the number of nodes,
akin to those of standard implementations of Boruvka’s MST algorithm [76].
Note that, in order to reach this time complexity in GP2, the use of root
nodes is necessary.

In Figure 4.23, mst-boruvka is seen to be of an order worse than m log n
on unbounded degree wheels. In fact, we conjecture it to be quadratic. GP2
programs that are non-destructive in that they preserve the input graph seem
to require at least quadratic time on unbounded degree input graphs. For
example, consider MinWithN! seen in Figures 4.15 and 4.16. In each case,
it has to match a root (say u) and an adjacent non-root (say v) as long as
possible. Assume that in the host graph, a root that is a valid match for
u has a linear number of adjacent nodes, all of which are a valid match for
v. Assume that the first time MinWithN is called, the node with the highest
edge weight is matched as v. The program only needs to check one node since
every node is a valid match. Then assume that the second time MinWithN

is called, the node with the next highest edge weight is matched. In the
worst case, two nodes have to be checked for a valid match. Summing up the
number of nodes that are checked if we continue this pattern, we get a sum
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of consecutive integers with a linear number of terms, which is quadratic.
Hence the quadratic time complexity.

Furthermore, procedures that are based on depth-first search and preserve
their input, such as the procedure ColourBlue in Figure 4.18, have quadratic
time complexity on unbounded degree graphs. The rule blue back looks for
a dashed edge around the blue root. Assume the blue root has degree that
is linear in the number of edges of a graph class the input graph belongs to.
Only one of its adjacent edges can be dashed since the dashed edges form a
path from the blue root to the origin of the DFS. Since there’s only one valid
match for the dashed edge, the rule application takes linear time. Every node
of the input has to play the role of the blue root in blue back at some point.

The execution time on square grids is slower than that on fixed degree
wheels by a constant factor. This is likely due to the fact that a large part
of fixed degree wheels consists of path graphs, in which separate trees often
share a minimum edge. So MinWithN is applied more often in fixed degree
wheels than in square grids. Hence more rules (those of MinWithN) generally
have to be called in square grids.

4.4 Related Work: Case Studies and Bench-

marking

Benchmarking for graph transformation is done in [89]. The authors establish
a systematic way to compare the efficiency of different graph transformation
tools on a variety of test programs.

The paper [83] is a case study on the generation of Sierpinski triangles
that compares the efficiency of different graph transformation languages. No
real complexity analysis is done, but benchmarks are given.

There are several case studies on a concrete time bound on GP2 programs
that implement well-known algorithms. These include minimising finite au-
tomata [61], 2-colouring [11], as well as transitive closure, node colouring,
cycle checking, and series-parallel graphs in [59]. As far as we are aware,
there are no such case studies in other rule-based graph transformation lan-
guages.

However, there is research into the complexity of graph-related algorithms
that decide membership, such as graph grammar parsing. When it comes to
parsing hyperedge replacement grammars and extensions thereof for instance,
it is shown to be NP-complete in some cases [51, 31]. Parsing these gram-
mars can also be accomplished using graph transformation rules. The time
complexities of efficient algorithms like that is shown for subsets of hyper-
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edge replacement grammars [32], as well as contextual hyperedge replacement
grammars [33].



5
Space Compression

Schönhage’s storage modification machines (SMMs) and Kolmogorov-Uspen-
skii machines (KUMs) are graph-based computation models that do not use
graph transformation rules. They have the remarkable feature of being able
to simulate Turing machines using less space with only quadratic time over-
head, using a uniform space measure [85]. Although these are graph-based
models, the literature on rule-based graph transformation so far seems to
have ignored the work of Schönhage [69] and Kolmogorov [49], and in par-
ticular the results of van Emde Boas [85] and Luginbuhl and Loui [52].

One fundamental difference between SMMs and KUMs on the one hand,
and GP2 on the other hand is that the inputs and outputs of SMMs and
KUMs are strings, whereas GP2 programs compute relations on graphs.
Moreover, SMMs and KUMs differ from modern graph transformation lan-
guages in that they use low-level pointer instructions instead of pattern-based
rules where the programmer can specify a subgraph and how it is trans-
formed, allowing for a more natural implementation of graph algorithms.

An advantage of structured programming languages such as GP2 is the
absence of “go to” statements which are considered to be harmful [27]. Fur-
thermore, GP2 is based on the double-pushout approach for graph transfor-
mation, which comes with a large amount of theoretical results. We are not
aware of any comparable theory for SMMs and KUMs.

The fact that the above mentioned space compression property applies to
a high-level language is not obvious. Even so, we show in this chapter that
GP2 exhibits the same space compression feature. Specifically, we show that
a Turing machine using O(s(n) log s(n)) space can be simulated in O(s(n))
space with quadratic time overhead, where s(n) is an arbitrary function. The
simulation is asymptotically more efficient than the original (for non-constant
s(n)). Rather than using full GP2, we show that a subset of the language
suffices to establish the compression result.

Note that another way to show space compression is to efficiently simulate
SMMs in general. This would also mean other properties are applicable to
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GP2, such as the real-time simulation of Turing machines shown by Lugin-
buhl and Loui [52]. This chapter’s approach however comes with a concrete
class of programs that show in much detail that the simulation is possible.
In particular, we show how to establish a result akin to van Emde Boas’ in a
rule-based graph transformation language such as GP2. Moreover, the van
Emde Boas paper lacks a lot of technical details, which we provide in our
setting.

In Section 5.1, we define the subset of GP2 sufficient to get our results.
We also show how this subset finds matches for rules efficiently.

We show how we simulate Turing machines in Section 5.2. First, we define
what Turing machines we are simulating in Subsection 5.2.1. We then outline
the basic idea of how we achieve space compression in Subsection 5.2.2. In
Subsection 5.2.3, we describe exactly how Turing machine configurations are
represented as graphs. Next, we give and describe the class of programs that
simulate Turing machines in Subsection 5.2.4. We then provide an example
of a Turing machine simulation in Subsection 5.2.5. Finally, we show the
correctness of the simulation in Subsection 5.2.6.

In Section 5.3 we show that our simulation is in a class of efficient models
based on GP2, which comes with a time complexity measure.

Next, in Section 5.4, we show the aforementioned time and space com-
plexities of the simulation, and discuss the use of logarithmic versus uniform
space measures.

To end this chapter, in Section 5.5, we talk about the relation between
space compression and the invariance thesis in the literature.

5.1 Small GP2

Throughout this chapter, we use a subset of GP2 called SGP2 (Small GP2),
which suffices to establish the simulation and compression result. This subset
uses simpler host graphs. Specifically labels are limited to being either an
integer or one of three characters, and lists of these are not allowed. Rules
are simpler as well. They use neither label expressions with variables, nor
application conditions.

Graphs are defined as before, but with labels generated by the simpler
grammar in Figure 5.1

Both nodes and edges are labelled either with an integer, with the special
characters "L", "R", "I", or with the constant empty. Figure 5.1 defines the
labels that may occur in both rules and host graphs. In this chapter, we only
use integers 0, 1, and 2 in labels.
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Label ::= Atom [Mark]
Atom ::= Integer | "L" | "R" | "I" | empty
Mark ::= red | green | blue | grey | dashed

Figure 5.1: Abstract syntax of host and rule graph labels

Prog ::= Decl {Decl}
Decl ::= RuleDecl | ProcDecl | MainDecl
ProcDecl ::= ProcId ‘=’ ComSeq
MainDecl ::= Main ‘=’ ComSeq
ComSeq ::= Com {‘;’ Com}
Com ::= RuleSetCall | ProcCall

| if ComSeq then ComSeq [else ComSeq]
| try ComSeq [then ComSeq] [else ComSeq]
| ComSeq ‘!’ | ‘(’ ComSeq ‘)’ | break

RuleSetCall ::= RuleId | ‘{’ [RuleId {‘,’ RuleId}] ‘}’
ProcCall ::= ProcId

Figure 5.2: Abstract syntax of Small GP2 programs

Rules, graph morphisms, and rule applications are as previously defined
for GP2. SGP2 programs follow the syntax described in Figure 5.2, which
is a subset of the GP2 semantics. The structural operational semantics of
programs is as defined for GP2.

5.2 Simulating Turing Machines

We describe Turing machines and how we simulate them in this section.

5.2.1 Off-Line Turing Machines

In this chapter, we consider deterministic off-line Turing machines in order to
exhibit that space compression can happen with sublinear space complexities.

The input tape is finite and uses a binary encoding, i.e. the input alphabet
is Σ = {0, 1}. It is read-only (symbols cannot be modified) with a tape head
pointing towards the tape square being read. The input tape contains the
input of the Turing machine, and its length is the length of the input.

Off-line Turing machines additionally have a working tape, a one-way
infinite tape that can be read and written on (symbols can be modified).
The tape heads on both tapes move simultaneously, but independently. We
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1 1 0 1 ... 0 input tape

q0

2 2 2 2 2 ... working tape

Figure 5.3: Initial configuration of an off-line Turing machine

allow for an additional symbol 2 as a blank symbol or separator, i.e. the
working tape alphabet is Γ = {0, 1, 2}. We use 2 instead of another symbol
because it is useful for the working tape to be encoded in base 3 for the
purposes of our simulation. Initially, the working tape contains only blank
symbols, i.e. the symbol 2. We define working tape contents to be the section
of the working tape starting at the beginning of the tape, and ending with
the final nonblank (not a 2) tape square that is followed by only blanks (only
2’s).

We consider the finite state set Q to consist of integers. There is an initial
state q0, an accepting state ha, and a transition function δ:Q×Σ×Γ→ Q×
Γ× {L,R, S} × {L,R, S}. Consider the transition δ(q, a, b) = ⟨q′, b′, D1, D2⟩.
This means in state q, with a on the input tape, and b on the working tape,
the machine goes into state q′, replaces the working tape symbol with b′,
moves the input tape head in direction D1, and moves the working tape
head in direction D2. Transitions and computations are defined as usual.

The time complexity of a Turing machine is the function which, to an
integer n, associates the maximum number of transitions (or length of com-
putation) starting from an input of size n. The space complexity is the
function which associates to n the maximum number of used working tape
squares for an input of size n.

5.2.2 The Basic Idea of the Simulation

We simulate a Turing machine M with an SGP2 program called Sim(M),
as specified in Figures 5.6 to 5.11. Input symbols, tape symbols, and state
names are encoded as integers. The compression is achieved by representing
blocks of Turing machine tape squares as single nodes. This idea is shared
with van Emde Boas’ representation [85]. By representing graphs in SGP2,
we can have an edge that provides a direct link to a distant list element,
which is impossible in a Turing machine.

The space compression comes from how we represent the working tape,
which is illustrated in Figure 5.4 (note that the text not contained within
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working tape 0 0 0 0
block 0

content: 0

1 0 2 2
block 1

content: 35

0 0 0 1
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…

CACHE red
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block 1

BLOCKSET
red
blue

red
blue

red
blue

red
blue

red
blue

block 0 block 1 block 2 block 3 block 79 block 80

block 80
contains 79

block 79
contains 3

block 3
contains 2

block 2
contains 1

block 1
contains

tape head
block 0

contains 0

Figure 5.4: Graph representation of the working tape of a Turing machine.

nodes or squares is explanatory). The working tape is divided into blocks of
size c = 4. This value is chosen for the purpose of illustration. The actual
simulation starts with c = 2 and expands as needed. Each block can be
interpreted as a 4-digit number in base 3. Block 1 for instance contains the
ternary number 1022. In base 10, that is 1·33+0·32+2·31+2·30 = 27+6+2 =
35. Hence we say the content of block 1 is 35. The graph CACHE represents
the block currently containing the working tape head, which is block 1 in
this case. We call this block the active block. CACHE is a doubly-linked
list whose 4 nodes are labelled with the symbol of the corresponding tape
square. The graph BLOCKSET is a less direct representation of the working
tape. Each of its nodes represents a block of working tape squares instead
of a single square. Instead of storing the content of a block as a spacious
label, we store it as a single dashed edge. (This is the crucial idea making
compression possible.) Block 79 for instance has content 3, so there is a
dashed edge from node “block 79” to node “block 3”. The content of a block
is converted into the index of a node in BLOCKSET (seen as a doubly-linked
list). We call the nodes of BLOCKSET block nodes.

In general, if block i has content j, there is dashed edge in BLOCKSET
from node “block i” to node “block j”. The only exception is the node rep-
resenting the active block, in this case node “block 1”, which has a dashed
edge pointing towards node “block 0”. This is by convention for the follow-
ing reason. The content of “block 1” is stored in CACHE, so storing it in
BLOCKSET as well would be redundant. So instead of using the dashed
edge to store the content of “block 1”, the dashed edge is directed to the
leftmost node (“block 0”) by convention. Since that dashed edge now holds
no information, when labels in CACHE are changed, the dashed edge does



5.2 Simulating Turing Machines 135

not need to be updated. Once the tape head moves to a different block,
and the active block changes, that dashed edge is redirected to represent to
content of its block again, and the outgoing dashed edge of the new active
block node is redirected to node “block 0”.

The only part of the tape we need to represent is the working tape con-
tents, since only blanks follow. For a given working tape, let b be the mini-
mum number of blocks that contain the working tape contents. So we only
need b nodes in BLOCKSET. Remember c = 4 is the number of tape squares
per block. Since we are converting the content of a block into a list in-
dex in BLOCKSET, the list needs to be long enough to have that index.
In other words, the number of nodes b in BLOCKSET needs to be greater
than the largest possible block content. A 4-digit ternary number can have
3c = 34 = 81 different values, so we need b ≥ 3c = 81. Since our aim is
compressing space, we want to use the lowest number of nodes, so we pick
b = 3c = 81. If the tape contents exceed the size b blocks, we extend our
representation by incrementing c, and updating b = 3c. These new values
become c = 5 and b = 243.

After incrementation, the number of nodes in CACHE is c = 5, and the
number of edges 2 · (c − 1) = 8, so 13 in total. The number of nodes in
BLOCKSET is b = 243, and the number of edges b+2 · (b− 1) = 727, so 970
in total. However the number of squares on the working tape is b · c = 19683,
which is significantly larger. The graph representation uses less space for
c ≥ 5. Let us describe this behaviour asymptotically. We have c = log3 b.
The number of outgoing edges of a node is bounded by 3, hence the number
of nodes and edges is bounded by 4(b + c), which is O(b + log3 b) = O(b).
The number of working tape squares on the other hand is O(b log3 b).

5.2.3 Turing Machine Configurations as Graphs

Figure 5.3 shows the initial configuration of a Turing machine with its in-
put and working tapes and tape heads, as well as the initial state q0. The
corresponding graph can be seen in Figure 5.5.

Let O(s(n) log s(n)) be the space complexity of a Turing machine, where
n is the size of the input tape, and s some function. For the rest of this
chapter, we omit the base of the logarithm since O(log3 n) = O(logc n) for
any constant c > 1. If we choose the number of blocks to be b = O(s(n)), we
can represent O(s(n) log s(n)) tape squares in space O(s(n)), as outlined by
the previous subsection. This is proved in Theorem 5.6.

The graph representation consists of the central node, labelled by the
initial state q0 as represented by some integer, and the subgraphs INPUT,
BLOCKSET, and CACHE. We represent ‘left’ and ‘right’ positioning by blue
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Figure 5.5: Graph representation of the initial configuration of a Turing
machine of space complexity O(s(n) log s(n)).

and red edges respectively. These edges will not be modified by the program.
The unmarked and unlabelled green edges mark the positions of the tape
heads. Dashed edges serve to encode the state of BLOCKSET and how it
relates to CACHE, as described in the previous subsection. The dashed edge
from the central node points towards the block node whose block currently
contains the working tape head (the active block node). By convention, there
is a dashed edge from the active block node to the first block node, as stated
in the previous subsection. Hence there is always a path of dashed edges
from the central node to the active block node to the first block node.

The central node is a root that is never moved. Parts of the graph such as
tape head positions and tape ends can be accessed efficiently via the central
node’s outgoing edges. The only other time roots are used in the simulation
is when extending the tape. We use roots to keep track of the end of the
tape, and later to traverse the tape. For a more in-depth explanation of how
the roots move, see Subsection 5.2.4.

INPUT represents the input tape of the Turing machine, and the position
of the tape head is represented by an unmarked green edge from the central
node. The green edge labelled "I" always points to the leftmost square of the
input tape. The working tape is represented by BLOCKSET and CACHE.
These subgraphs are implemented as doubly linked lists in order to enable
fast rule matching.

Each node in BLOCKSET represents a block of c nodes of the working
tape. The blue edge from the central node points towards the leftmost node,
and the dashed edge towards the block that contains the position of the tape
head.

CACHE is the block of the working tape that contains the tape head. Its
position within BLOCKSET is marked with a dashed edge from the central
node. The red edge from the central node points towards the rightmost node
of the cache, and the unmarked edge towards the current position of the tape
head. The node labels represent the content of each square.



5.2 Simulating Turing Machines 137

The operations of the Turing machine happen within CACHE. If the tape
head moves out of bounds of CACHE, we encode the content of CACHE
within BLOCKSET, move on to another block, and decode it into CACHE.

Initially, the tape heads are on the first square of their tapes, and the
working tape is blank (i.e. filled with 2’s). Remember CACHE has c nodes
and BLOCKSET 3c. We start the simulation with c = 2 because it is the
smallest nontrivial value for c. If c = 1, then each block would represent a
single tape square, and no space would be gained. If we run out of nodes in
BLOCKSET, c is incremented and BLOCKSET adjusted accordingly.

5.2.4 The Simulation Sim(M)

In this subsection, we assume we have a Turing machine M and describe
Sim(M), the SGP2 program that simulates M . The program Sim(M) takes
inputs that consist of graphs such as INPUT together with the central node
and green edges as represented in Figure 5.5. The overall behaviour of
the program is that it starts the simulation with a small BLOCKSET and
CACHE. If we run out of tape squares, we reset to the initial configuration,
extend BLOCKSET and CACHE, and restart the simulation.

Figure 5.6 contains the main control sequence of Sim(M). First the rule
setup is called. It matches the root and constructs CACHE with two nodes
and BLOCKSET with nine nodes, as seen in Figure 5.5. We omit the defi-
nition of that rule since it is straightforward.

Next we have the loop Simulate!, which means the procedure Simulate
is applied until no longer possible. The loop body first calls Transitions

(Figure 5.7), a procedure that applies the transition function to the current
state of M . If Transitions cannot apply the transition function, the pro-
cedure results in failure, and the loop terminates. Next, try MoveLeft is
called, which means we attempt to apply MoveLeft and if it fails, we skip
this instruction. The rules in MoveLeft detect a label "L" on the unmarked
edge adjacent to the central node, which is created in Transitions if the
working tape head needs to move to the left. It then executes that move in
CACHE. Analogously, try MoveRight attempts to move the working tape
head to the right. These rule sets (which are nondeterministic calls of the
rules they contain) will fail however if the tape head moves out of bounds of
CACHE, which is detected by Left or Right since the continued presence
of the "L" or "R" label indicates that tape head movement still needs to be
done. In that case, PrevBlock or NextBlock (Figure 5.8) are called in order
to move towards the relevant block.

Figure 5.7 contains Transitions, the rule set that encodes the transition
functions of M . For each entry in the transition table, there is a corre-
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Main = setup; Simulate!

Simulate = Transitions; try MoveLeft; try MoveRight;

try Left then PrevBlock; try Right then NextBlock; try Flag then Restart
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Figure 5.6: SGP2 program Sim(M) that simulates Turing machine M .

sponding rule in Transitions. The rules are divided into nine categories
transitionXY, where X represents the movement of the input tape head,
and Y that of the working tape head. Each rule implements the change of
labels and the movement of the input tape head directly. For the movement
of the working tape head, a label is left behind on the unmarked edge, and
the actual movement is handled by Simulate in Figure 5.6.

In Figure 5.8, we show the procedures NextBlock and PrevBlock, which
handle movement to another block. We call the node pointed at by a dashed
edge from the central node the active block node. The procedure Encode

(Figure 5.9) saves the information from CACHE into BLOCKSET. This pro-
cess is further described in the example in Subsection 5.2.5. The procedure
CacheInc increments CACHE as a ternary number. First the rightmost digit
is turned into a red root. Then the digit is attempted to be incremented with
the rule set Inc. If the digit is a 0 or a 1, incrementation succeeds, the pro-
cess is marked as finished by turning the red root into an unmarked node,
and CacheInc terminates. If the digit is a 2 however, Inc fails, the 2 is
turned into a 0, and the red root is moved along to the next digit which is
attempted to be incremented. If Increment! ends without Inc ever suc-
ceeding, it means that all digits were 2, and that the red root is still present.
In that case, Reset! turns all digits into 0.

The procedure Decode in Figure 5.10 decodes the active block in BLOCK-
SET and stores the information in CACHE. It is analogous to Encode (note
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Figure 5.7: Rule set Transitions that models the transitions of a Turing
Machine.
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NextBlock = Encode; try Next then (HeadLeft!; Decode) else (SetFlag; break)

PrevBlock = Encode; Prev; HeadRight!; Decode
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Figure 5.8: Procedures NextBlock and PrevBlock that change the active
block.



5.2 Simulating Turing Machines 141

Encode = EncodeInit; Encoding!; Update

Encoding = CacheDec; try Finish then break; try next value

CacheDec = CacheInit; Decrement!; if Unfinished then Reset!

Decrement = try Dec then (Finish; break)

else (underflow; try CacheNext else break)

Reset = overflow; try CachePrev else break
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Figure 5.9: Procedure Encode that encodes the current block into BLOCK-
SET.
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Decode = DecodeInit; Decoding!; Update

Decoding = try prev value else break; CacheInc

CacheInc = CacheInit; Increment!; if Unfinished then (Reset!; Finish)

Increment = try Inc then (Finish; break)

else (overflow; try CacheNext else break)

DecodeInit =

{
q

1 2 3

⇒ q
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blue
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blue
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1 2 3

: q ∈ Q

}
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Figure 5.10: Procedure Decode that decodes the current block into CACHE.

that some of Decode’s rules and procedures appear in Figure 5.9). Similarly
to CacheInc, CacheDec decrements CACHE as a ternary number if that
number is not 0, and keeps it as 0 if it already is.

Figure 5.11 shows the procedure Restart which, when the machine runs
out of tape, resets the simulation and extends the tape. CACHE and hence
the size of a block is extended by one square, and the size of BLOCKSET is
tripled. The procedure RewindTapes rewinds the tape heads to the begin-
ning. Next, ResetCache resets the content of CACHE back to 2’s (the blank
symbol). Then, ResetBlockset extends BLOCKSET and directs dashed
edges to their initial state. In rules binit and copy, an unlabelled blue
root traverses the existing BLOCKSET, while blue roots with labels 1 and
2 traverse two copies of that BLOCKSET as they are being created. In
the meantime, Undirect deletes dashed edges that are outgoing from block
nodes. The rule glue appends the copies to the original BLOCKSET, tripling
its length. The blue nodes are unrooted except for the final node, which re-
mains a blue root labelled 2. The penultimate node becomes an unmarked
root, which is used in direct to traverse BLOCKSET from right to left,
creating dashed edges where needed. The rule unroot then removes the blue
and unmarked roots.

5.2.5 Example

In this subsection, we give an example of a Turing machine simulation, and
show how we move from one block to another. Consider a Turing machine
that takes as input the number n represented in unary, and writes n in binary
on its working tape n times. It is reasonable to assume the machine has a
space complexity of O(n log n). If n = 6, the machine uses 18 squares, which
are filled with 6 copies of the string 110 (6 in binary). A CACHE size of 2
and a BLOCKSET size of 9 are enough to represent 2 · 9 = 18 tape squares.
Their representation in the simulation has only 2 + 9 = 11 nodes, which is
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Restart = RewindTapes; ResetCache; ResetBlockset

RewindTapes = try RewindInput; try rewind blockset; RewindCache!

ResetCache = CInit; Erase!; end

ResetBlockset = binit; try Undirect; (copy; try Undirect)!; glue; direct!; unroot

RewindInput =

{
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Figure 5.11: Procedure Restart that resets the simulation and enlarges the
tape.
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O(n+ log n) = O(n). The initial state of the machine on input 6 is shown in
Figure 5.12, and the final one in Figure 5.13.
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Figure 5.12: Initial state of the example machine
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Figure 5.13: Final state of the example machine

Initially, the working tape is blank (all 2’s). Hence most blocks consist
of two 2’s, i.e. their content is 8 (22 in ternary is 8 in base 10). So most
block nodes point towards the block node of index 8 (final block node). The
exception is the first node, which points to itself. This is because it represents
the block that contains the tape head, which is set to index 0 by convention.
In the final state, the working tape is represented in the same manner. Note
that even though the working tape content looks binary, 2’s (blank symbols)
could be present, and hence tape blocks are considered a ternary number.
For instance consider the third block (of size 2). It contains 10, so the third
bock node points towards the block node of index 3 (fourth block node).

Let us sketch the behaviour of the machine. First, the input is copied in
unary onto the working tape for use as a counter. Then, a binary number
to the right of the counter is incremented while traversing the input. The
previous step is repeated while decrementing the counter until it reaches 0.
Tape contents need to be shifted. The symbol 2 can be used as a separator.

Now let us show what happens when the block has to be changed. Con-
sider the situation where 0100 are the first 4 squares of the working tape and
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Figure 5.14: Changing blocks

the tape head is on the third square. Let the next transition write symbol 1
and move the tape head to the left, and change state qi to state qj.

Figure 5.14 shows the process of changing the active block. In Subfigure
5.14a, a rule from Transitions has just been applied, labelling the left node
of CACHE 1, and the unmarked edge “L”. The working tape head is yet to
be moved. Next, in Simulate, Left matches and PrevBlock is called. The
procedure Encode loads the content of CACHE into a dashed edge within
BLOCKSET. While CACHE is decremented as a ternary number, the out-
going dashed edge of the current (second) BLOCKSET node is shifted to
the right. This produces the graph from Subfigure 5.14b. CACHE does
not represent the content of the second block anymore, but the dashed edge
from the second node in BLOCKSET to the fourth does. Next we move one
block to the left with Prev, and reposition the tape head in CACHE with
HeadRight!. We then load the new block into CACHE. While moving the
outgoing dashed edge of the current (first) BLOCKSET node to the left,
the ternary number in CACHE is incremented. This results in the graph
from Subfigure 5.14c. We have now loaded the content of the first block
into CACHE, so there is no need to store it with a dashed edge anymore.
Hence the dahed edge goes from the first node in BLOCKSET to itself by
convention.

5.2.6 Correctness

We define the configuration of a Turing machine to consist of the input and
working tapes, the position of the tape heads on those tapes, and the current
state.

Let us define what graphs programs in Sim operate on. We call graphs as
in Figure 5.5 configuration graphs. These graphs can vary from the depicted
graph in the following ways. The targets of the unlabelled green edge, dashed
edges, and the unmarked edge can be any node in INPUT, BLOCKSET, and
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CACHE respectively. An exception to that is the outgoing dashed edge of
the active node in BLOCKSET (target of dashed edge from the root), which
is targeted towards the leftmost node in BLOCKSET since the content of
that block is currently stored in CACHE. This is a convention that allows
the graph representation of a configuration to be unique. The labels of nodes
in INPUT, CACHE, and the root node can be any element from the in-
put alphabet, tape alphabet, or set of states respectively, encoded as SGP2
labels.

Note that the graphs’ capacity to represent tape squares is limited by the
sizes of BLOCKSET and CACHE. Hence for a non-negative integer k, we
define a function enck that encodes the configuration S of a Turing machine
as the configuration graph enck(S) with 3k+2 nodes in BLOCKSET and k+2
in CACHE. The integer k corresponds to the number of times the tape is
extended by the procedure Restart. For a given value of k that is large
enough, enck(S) exists and is unique.

For a Turing machine M we denote a single transition from configuration
S to S ′ by S ⇒M S ′, and the transitive reflexive closure of that relation using
⇒∗

M . Similarly, for an SGP2 rule r we use S ⇒r S ′ to denote a change of
configuration, and S ⇒∗

P S
′ for a program P.

During the execution of Sim(M), graphs that are not configuration graphs
are generated. They only differ in terms of edge labels, node marks, roots,
and dashed edge targets. However, these variations are temporary. Once
the procedure Simulate has successfully terminated, the host graph is once
again a configuration graph.

We say an SGP2 program P! (i.e. a loop where procedure P is applied
as long as possible) simulates a Turing machine M of initial configuration I
if, for each two configurations S and S ′ of M such that I ⇒∗

M S ⇒M S ′, we
have enc0(I)⇒∗

P! enck(S)⇒∗
P enck(S

′) for some integer k.
The following theorem shows that this is indeed the case for the class of

programs presented in this chapter.

Theorem 5.1 (Correctness). Let M be a Turing machine and Sim(M) the
corresponding SGP2 program. Then the subprocedure Simulate! simulates
M .

Proof. Let S and S ′ be configurations of M such that I ⇒∗
M S ⇒M S ′. Then

some transition δ(q, a, x) = (p, y,X, Y ) happened, where p, q ∈ Q, a ∈ Σ,
x, y ∈ Γ, and X, Y ∈ {L, S,R}. So the only changes from S to S ′ are that q
and x have been updated to p and y, and that the input and working tape
heads have been shifted into direction X and Y respectively.

We proceed by induction on the length of I ⇒∗
M S. For the base case we

only need to show enck(S)⇒∗
P enck(S

′) for some integer k. This also happens
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to be what we need to show for the induction step since enc0(I)⇒∗
P! enck(S)

is given by the induction hypothesis, and the existence of a large enough k
by part of the proof of Theorem 5.6.

Now it remains to show that enck(S)⇒∗
P enck(S

′). The procedure Reset
can be ignored because it is never called since we already have a large enough
k.

When running Simulate on the graph enck(S), the first call is the rule
set Transitions. A rule in that set that is guaranteed to be applicable is
the one corresponding to the aforementioned Turing machine transition. It
correctly updates the q and x to be p and y to match enck(S

′). It also moves
the input tape head to the correct position. For the rest of this proof, we
will show that the working tape head moves to the correct position.

If Y = S, the working tape head is not moved, corresponding to enck(S)
′.

Due to lack of an unmarked edge label, none of the try conditions in Simulate
are applicable, and we terminate with enck(S

′).
The cases for Y = L and Y = R are analogous, so we will only argue

for the former. When attempting to apply MoveLeft, if the target of the
unmarked edge is not the leftmost node of CACHE, the rule set succeeds,
the unmarked edge is in the correct position, and no other conditions of try
statements in Simulate are applicable. Hence we terminate with enck(S

′).
If the target of the unmarked edge is the leftmost node of CACHE how-

ever, the only try condition that can match is Left. This removes the edge
label and calls PrevBlock. So it remains to argue that PrevBlock turns the
host graph into enck(S

′).
The commands Prev; HeadRight! correctly position the working tape

head on the rightmost node of the previous block. It remains to show that
Encode and Decode preserve the working tape content according to the en-
coding enck.

The procedure Encode contains a loop that, whenever it decrements the
content of CACHE, it increments the content of the active block (represented
by an outgoing dashed edge). This happens until the CACHE content reaches
0, meaning the content of CACHE is correctly stored in BLOCKSET. After
moving to the new block, the procedure Decode is called. It contains a loop
that, whenever it decrements the content of the active block, increments the
content of CACHE. This terminates once the content of the active block has
reached 0, meaning the content of the active block has been correctly stored
in CACHE. Hence the host graph is now enck(S

′).
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5.3 Complexity Measures

We use the time complexity measure established in Section 3.3. For that, we
have to show that our simulation forms an efficient model. Remember that we
define an efficient model asM = ⟨P , I⟩, where P is a set of GP2 programs
and I a set of GP2 graphs such that the following two properties are satisfied
within the scope of derivation sequences starting with any ⟨P, I⟩ ∈ M.

(1) Constant Matching : Every rule matches in constant time.
(2) Critical Subprogram: Every critical subprogram that fails is null.
Let us define the graph space measure of a graph as the number of nodes

plus the number of edges. We do not consider the size of labels in this chapter
since all labels are of constant size. This measure is uniform in that it gives
unit cost to each node and edge. A discussion about this uniformity can be
found at the end of Section 5.4.

Remember that for an efficient model M, we define the time complex-
ity of a program P of M as the maximum number of rule applications in
terminating derivation sequences starting with P on graphs of a given size.

We show in this section that ⟨P, I⟩, where P = {Sim(M) |M is a Turing
machine} and I = {CG |CG is a configuration graph}, is an efficient model.
The constant matching property is given by Theorem 3.13, which holds be-
cause all rules are fast, input graphs have bounded outdegree and a bounded
number of roots, and the programs preserve this boundedness. Moreover,
when extending the tape with Restart, outgoing dashed edges of existing
block nodes are removed, and one outgoing dashed edge is added for each
block node, preserving bounded outdegree. The critical subprogram property
is shown by Proposition 5.3, which needs Lemma 5.2.

Lemma 5.2. Let P be a critical subprogram in a graph state S. Assume
either P cannot fail from state S, or P can only fail from state S due its first
component being a rule or rule set call that fails to match. Then if P fails
from state S, P is null.

Proof. If P cannot fail from state S, the lemma is trivially satisfied. Now
assume P fails from S due to its first component being a rule or rule set
failing to match. Since it failed to match, the first component cannot have
changed the host graph, and since it is the first, no other component can
have changed the host graph.

Proposition 5.3 (Critical Subprogram Property). In Sim(M), given con-
figuration graphs as inputs, every critical subprogram that fails is null.

Proof. We will argue for each critical subprogram of Sim that Lemma 5.2
applies.
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The conditions of all if and try statements are either rules or rule set
calls, satisfying Lemma 5.2.

Let us now argue for the loop bodies. The procedures Erase, RewindCache,
HeadLeft as well as HeadRight are rule sets, and rewind blockset and
direct are rules, satisfying Lemma 5.2.

Reset: The rule overflow can fail, but the other component cannot since
it is a try statement whose branches only contain break which cannot fail.

Increment: This consists of a try statement, so only the branches can
fail. Finish cannot fail because CacheInit is always called before this loop,
providing a match. The rule overflow cannot fail because it is only applied
when Inc fails and the labels of nodes in CACHE are either 0, 1, or 2. The
try statement cannot fail because its branches cannot fail.

Decrement: The reasoning is analogous to that in the previous paragraph.
Decoding: The try statement cannot fail because its branches cannot

fail. For the remainder of this paragraph, we argue that CacheInc cannot
fail either. Increment! cannot fail because it is a loop. CacheInit always
succeeds because the target of the red edge originating from the unmarked
root is unmarked because of the structure of the input graph, and because
previous applications of CacheInc and CacheDec turn the only marked rooted
node in this part of the graph unmarked and unrooted with Finish.

Encoding: The reasoning is analogous to that in the previous paragraph.
The body of the loop (copy; try Undirect)! contained in the proce-

dure ResetBlockset: The rule copy is allowed to fail, and try Undirect

cannot fail since it is a try statement.
Simulate: Transition is a rule set at the start of the body and hence

allowed to fail. The rest consists of try statements whose branches call
PrevBlock and NextBlock. Prev and Next cannot fail because we assume
that BLOCKSET in the input graph is large enough to accommodate the
execution of the Turing machine. Encode and Decode do not fail, which
we will argue for the rest of this paragraph. EncodeInit and DecodeInit

find a match because of the structure of the input graph and because previ-
ous calls of Encode and Decode leave BLOCKSET unmarked and unrooted.
Encoding! and Decoding! are loops and hence cannot fail. Update has a
match regardless of the blue root’s location within BLOCKSET.

Proposition 5.4 shows our simulation is deterministic, just like Turing
machine it simulates.

Proposition 5.4 (Unique Matches). In Sim(M), given configuration graphs
as inputs, whenever a rule or rule set is applied, there is at most one match.
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Proof. In each rule set, if the left-hand side of two rules have the same
structure, their labels are different. In Transitions in particular, no two
rules have the same left-hand side since we consider deterministic Turing
machines. Among rules with different labels but the same structure, at most
one can match, namely the one that has the same labels as the host graph.
Among rules with different structures and the right labels, at most one can
match because they differ by an edge or node that is unique in host graphs.
Furthermore, it is easy to check that each rule can only have at most one
match in the host graph. Each rule contains a root with a unique combination
of mark and label. And for each node, outgoing edges can be distinguished
in the same way.

5.4 Results on Time and Space Complexity

In this section, we present theorems on the time and space complexities of
the simulation.

Theorem 5.5 (Time Complexity). Every Turing machine M of time com-
plexity t(n) and of space complexity O(s(n) log s(n)) is simulated by Sim(M)
in time O(t2(n)), where n is the size of the input.

Proof. Given the discussion in Section 5.3, we can assign unit time to rule
and rule set calls and argue time complexity to be the number of such calls.

First, we will show that simulating one step of M (not counting restart-
ing the simulation) takes sim(n) = O(s(n)) time. We consider the size of
CACHE from the final simulation since it provides an upper bound. The
only sources of non-constant time are PrevBlock and NextBlock. Their
complexity is the worst of the loops Encoding!, Decoding!, HeadLeft!, and
HeadRight!. The latter two simply traverse CACHE, which takes O(s(n))
time. The former two decrement/increment CACHE as a ternary counter.
Their time complexity is proportional to the number of digit operations it
takes to decrement the counter from the number s(n) all the way to 0. The
rightmost digit is modified s(n) times, the next one 1

3
s(n) times, the one

after 1
3
· 1
3
s(n) times, and so on. So the total number of digit operations is∑log s(n)

k=0 s(n)
(
1
3

)k
. Using properties of the geometric series, one can see that

this is O(s(n)).
In this paragraph, we will show that resetting the simulation and extend-

ing the tape takes r(n) = O(s(n)) time. Consider the loops of Restart.
Both RewindCache! and Erase! traverse CACHE and hence take time
O(log s(n)). The loop (copy; try Undirect)! in ResetBlockset traverses
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BLOCKSET and thus takes O(s(n)) time. And direct! traverses the ex-
tended BLOCKSET in O(3 · s(n)) = O(s(n)) time.

Next, we will show that the number of times the simulation is restarted
is l(n) = O(log s(n)). The final size of the tape of M is O(s(n) log s(n)).
Since the number of represented squares is tripled in each step, the number
of steps is O(log(s(n) log s(n))). Using the formula for the logarithm of a
product, one can simplify this to O(log s(n)).

The total time complexity can be bounded by reset(n) + simulation(n),
where reset(n) = l(n) ·r(n) is the total cost of all resets, and simulation(n) =
l(n) · t(n) · sim(n) the total cost of simulating M across all resets. Using
results from previous paragraphs, we get reset(n) = O(s(n) log s(n)) and
simulation(n) = O(t(n) · s(n) log s(n)). Since space complexity s(n) log s(n)
can be bounded by time complexity t(n), the entire simulation takes O(t2(n))
time.

Theorem 5.6 (Space Complexity). Every Turing machine M of space com-
plexity O(s(n) log s(n)) is simulated by Sim(M) in graph space O (s(n)),
where n is the size of the input.

Proof. During the execution of Sim(M), nodes and edges are only created by
setup and Restart, and none are ever deleted. The numbers of nodes and
edges only differ by a constant factor since the outdegree is bounded, so we
will argue for space complexity using number of nodes only.

Initially, after application of setup, BLOCKSET has b(n) = 32 nodes,
and CACHE c(n) = 2. Then, each application of Restart adds one to c(n)
and triples b(n). So after k iterations, we have b(n) = 32+k and c(n) = 2+ k.

The Turing machine needs S(n) = O(s(n) log s(n)) tape squares. This
means that there are positive integers n0 and c such that S(n) ≤ c s(n) log s(n)
for all n ≥ n0. So for all n we can say S(n) ≤ c s(n) log s(n) + m, where
m = maxn∈{0,...,n0} S(n), a constant.

Assume Restart is called k = log s(n) − 2 + d many times, where d =
max(m, log c). For that value of k, we have c(n)b(n) = 3ds(n) log s(n) +
3ds(n) d. By definition we have d ≥ m and 3d ≥ c. Furthermore, we have
3ds(n) ≥ 1. Hence we get c(n) · b(n) ≥ c s(n) log s(n) + m ≥ S(n). So for
this value of k, the graph can store enough tape squares to execute M .

With the aforementioned value of k, the number of nodes in this graph
is c(n) + b(n) = 3ds(n) + log s(n) + d, which is O(log s(n) + s(n)) = O(s(n)).

Hence the number of nodes of the graph that is created is bounded by
c(n) + b(n), and hence in O(s(n)).

One might wonder why this space compression is not possible on ran-
dom access machines. GP2 does have a C implementation after all. The
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reason for this is related to how graphs are represented in random access
machines (RAMs), and how much space that takes. Graph edges are usu-
ally implemented as pointers. However the size of pointer addresses grows
logarithmically with the number of nodes, since these addresses are usually
stored as binary numbers. So in the context of RAMs, it does not seem very
accurate to assign unit cost to edges. To take this into account, one can
use logarithmic space, in which graphs of s(n) nodes are assigned a cost of
s(n) log s(n).

If we use logarithmic space on our model, space compression is nullified
since the simulation then has the same asymptotic space complexity as the
machine it simulates. This puts into question whether uniform or logarithmic
space should be used, which is discussed by van Emde Boas [85]. One may
want to charge more than unit space since in RAMs, edges are represented
by pointers whose size grows with the number of nodes. A related issue can
be found in the time measure of RAM models when programs have to deal
with large integers.

5.5 Related Work: Invariance Thesis

Van Emde-Boas shows in [85] the storage modification machines and Kolmo-
gorov-Uspenskii machines can simulate Turing machines in less space, with
only a quadratic time overhead. Luguinbuhl and Loui improve on this in
[52] by showing this can be done in real-time, using a complete binary tree
that encodes the contents of a tape section. This tape section can be seen
as a binary number. Depending on whether a digit is 0 or 1, a left or right
child is chosen. In this representation, the leaves correspond to all possible
tape section contents. Edges towards these leaves are used to store these
tape section contents. Having a tree structure allows changing the content
of a tape section to happen in more efficient time since it is only a matter of
traversing the depth of the tree twice in the worst case. This representation is
then implemented into a machine that uses concurrent processes that update
tape sections in the background and allow for a real-time simulation.

As described in [77, 86], the invariance thesis is as follows. There is a
standard class of machine models (including Turing machines and RAMs)
that simulate each other with a constant space overhead and a polynomial
time overhead.

The space compression results show that the invariance thesis does not
hold for uniform space measures (unit cost for edges). One has to either adopt
the more cumbersome logarithmic space measure (size of pointer addresses
representing edges taken into account) or accept that the invariance thesis
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only holds for a limited class of machine models.



6
Conclusions and Future Work

We end this thesis by drawing a few conclusions from it, and by giving some
interesting items of future work.

6.1 Conclusions

This thesis shows that rule-based graph programs, specifically in GP2, can
be efficient in both time and space. We provide a small-step semantics and a
formal complexity framework that allows us to give formal arguments about
the complexity of these programs. We also present a collection of efficient
graph programs that achieve the same asymptotic complexity as equivalent
imperative implementations, using linear-time depth-first search and rules
that can be matched in constant time under mild conditions. Finally, we
demonstrate that GP2 shares the space compression property with storage
modification machines and Kolmogorov-Uspenskii machines, meaning that a
class of programs in a subset of GP2 can simulate Turing machines using less
space and only quadratic time overhead. Overall, this thesis contributes to
the theoretical understanding of rule-based graph programs and their time
and space complexity.

When comparing fast GP2 programs (like finding minimum spanning
trees in Section 4.3) to ones that have not been optimised for time complexity
(like the ones in [59]), it is apparent that there is a trade-off. If one wants
to make a fast GP2 program, one often sacrifices readability, by which we
mean it takes more effort to intuit the program’s behaviour. This is because
the program needs to create and maintain structures on top of host graphs,
which adds complication. However, it is not the case for all algorithms.
Connectedness checking in Section 4.1 and 2-colouring in [10] are easy to
read. So are the ones based on reducing graph size in [19] since they do not
rely on additional structures to be efficient.
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6.2 Future Work

In this section, we bring up interesting avenues for future research. This in-
cludes improvements to the GP2 language and compiler, performance mea-
suring, and complexity framework, as well as finding applications for GP2.

6.2.1 Changing GP2 or Its Implementation to Enhance
Efficiency

There are multiple ways in which the implementation of GP2 and the lan-
guage itself could evolve to enable faster programs in more cases.

Limiting search space for edges. In the current compiler, the adjacent
edges of a node are stored in distinct lists based on whether they are outgoing
or incoming. One could additionally separate them based on marks. With the
right programming approach, this circumvents the need to restrict ourselves
to graphs of bounded degree or even outdegree. Assigning a different mark
to previously traversed edges can limit the search space for subsequent edge
traversals and improve the program’s efficiency. This would enable a linear-
time depth-first search on graphs of unbounded degree for instance, making
the bounded degree restriction on the case studies in this thesis superfluous.

Limiting search space for nodes. Similarly to edges, nodes can also be
separated based on marks. Currently, nodes are accessed through a linked
list of pointers. However, by creating separate linked lists for each mark, the
search space for finding a node that is not adjacent to an already matched
edge can be reduced. Essentially, nodes of each mark can be accessed as if
they were roots, which is especially beneficial when moving on to another
connected component. Assigning a distinct mark to traversed nodes allows
for highly efficient discovery of untraversed nodes. This approach enables
a linear-time depth-first search on graphs with an unbounded number of
connected components for instance. One could implement the 2-colouring
algorithm to run on graphs with multiple connected components in linear
time this way.

Adding constructs for efficient graph traversal. Another approach is to
extend the language with built-in functions that take advantage of internal
data structures for greater efficiency. This would allow the programmer to
call these functions without needing to delve into the implementation details.
For example, one possible built-in function could serve as an iterator over all
nodes, taking linear time to execute. During each iteration, a different node
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would act as the root to which rules can be applied. Another function could
add a root to each connected component in linear time, which would allow
for algorithms to be more efficient on graphs with an unbounded number of
connected components. This would simplify programs such as the one finding
a minimum spanning tree by eliminating the need for depth-first search while
making it efficient on input graphs with an unbounded number of connected
components.

Extending to parallel computing. One could explore adapting GP2 for
parallel computation, which could allow multiple procedures to run concur-
rently and potentially speed up programs. For example, as shown for stor-
age modification machines and Kolmogorov-Uspenskii machines in Luginbuhl
and Loui’s paper [52], parallel computation can enable real-time simulation
of Turing machines using less space. Additionally, parallelisation could be
utilised to speed up matching by constructing multiple potential matches at
the same time. It is worth noting, however, that this approach would offer
empirical efficiency gains and would not impact the asymptotic complexity
of rule matching.

6.2.2 Exploring Techniques for Measuring Performance

So far, time measurements for GP2 programs have been conducted on various
graph classes, but could be broadened to include any valid input graph for
the program being evaluated. Achieving this would require a method for
generating random graphs of a specific size.

One possible approach at the implementation level is to create a tool that
collects efficiency data during the execution of a GP2 program. The compiled
C program could keep track of the number of times each rule is applied and
measure the time taken in both worst and average case. For measuring space,
the tool could monitor changes in the number of nodes, edges, and label sizes
throughout the program’s execution. Recording the amount of memory used
during execution would provide empirical space measurements.

6.2.3 Extending the Complexity Framework

The formal framework for expressing the complexity of GP2 programs could
be expanded to include arbitrary terminating programs and inputs. Such an
extension would require accounting for the time needed for rule application,
which can be very inefficient.

Recent efforts in formalising GP2 in a proof assistant [78] present an
opportunity to automate complexity proofs. Another promising approach
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to automate complexity analysis is to follow the approach proposed in [54],
which is about term rewriting, i.e. similar to graph transformation. The
main advantage of this approach is that programs do not need to terminate
for the analysis to take place.

6.2.4 Finding Applications for GP2

With the improved understanding of how to make GP2 programs efficient, it
is worth exploring potential applications of the graph programming language.

Extension to string and term rewriting. The fact that GP2 applies its
rules to graphs is not a fundamental aspect of its underlying theory, and the
same semantics could be adapted for string rewriting [15] or term rewriting
[7]. The established theoretical results for graph transformation could be
leveraged, and a careful implementation could allow for similar approaches
to complexity analysis.

Real-world applications. One could apply GP2 to problems that are re-
lated to graph transformation, like modelling social networks [13], chemical
reactions [3], or epidemics [90]. Another potential area of application is in
graph databases. GP2 could be used to implement something similar to
the Gremlin graph traversal query language [66]. Queries could be expressed
using rules, or even using depth-first search to find the queried graph pattern.
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Ole Kniemeyer, Tom Mens, Benjamin Ness, Detlef Plump & Tamás
Vajk (2008): Generation of Sierpinski Triangles: A Case Study for
Graph Transformation Tools. In Andy Schürr, Manfred Nagl & Albert
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