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Abstract

This thesis addresses the problems in feature selection, particularly focusing on selecting

features from higher order correlations. To this end, we present two supervised feature

selection approaches named Graph based Information-theoretic Feature Selection and

Hypergraph based Information-theoretic Feature Selection respectively, which are capa-

ble of considering third or even higher order dependencies between the relevant features

and capturing the optimal size of relevant feature subset. Furthermore, we develop two

unsupervised feature selection methods which can evaluate features jointly rather than in-

dividually. In this case, larger feature combinations are considered. The reason for this is

that although an individual feature may have limited relevance to a particular class, when

taken in combination with other features it may be strongly relevant to the class.

In Chapter 2, we thoroughly review the relevant literature of the classifier indepen-

dent (filter-based) feature selection methods. One dominant direction of research in this

area is exemplified by the so-called information theoretic feature selection criteria, which

is measuring the mutual dependence of two variables. Another influential direction is

the graph-based feature selection methods, which are to select the features that best pre-

serve the data similarity or a manifold structure derived from the entire feature set. We

notice that most existing feature selection methods evaluate features individually or just

simply consider pairwise feature interaction, and hence cannot handle redundant features.

Another shortcoming of existing feature selection methods is that most of them select

features in a greedy way and do not provide a direct measure to judge whether to add

additional features or not. To deal with this problem, they require a user to supply the

number of selected features in advance. However, in real applications, it is hard to es-

timate the number of useful features before the feature selection process. This thesis



addresses these weaknesses, and fills a gap in the literature of selecting features from

higher order correlations.

In Chapter 3 we propose a graph based information-theoretic approach to feature se-

lection. There are three novel ingredients. First, by incorporating mutual information

(MI) for pairwise feature similarity measure, we establish a novel feature graph frame-

work which is used for characterizing the informativeness between the pair of features.

Secondly, we locate the relevant feature subset (RFS) from the feature graph by maximiz-

ing features’ average pairwise relevance. The RFS is expected to have little redundancy

and very strong discriminating power. This strategy reduces the optimal search space

from the original feature set to the relatively smaller relevant feature subset, and thus

enable an efficient computation. Finally, based on RFS, we evaluate the importance of

unselected features by using a new information theoretic criterion referred to as the multi-

dimensional interaction information (MII). The advantage of MII is that it can go beyond

pairwise interaction and consider third or higher order feature interactions. As a result, we

can evaluate features jointly, and thus avoid the redundancies arising in individual feature

combinations. Experimental results demonstrate the effectiveness of our feature selection

method on a number of standard data-sets.

In Chapter 4, we find that in some situations the graph representation for relational

patterns can lead to substantial loss of information. This is because in real-world problems

objects and their features tend to exhibit multiple relationships rather than simple pairwise

ones. This motive us to establish a feature hypergraph (rather than feature graph) to

characterize the multiple relationships among features. We draw on recent work on hyper-

graph clustering to select the most informative feature subset (mIFS) from a set of objects

using high-order (rather than pairwise) similarities. There are two novel ingredients. First,

we use MII to measure the significance of different feature combinations with respect to

the class labels. Secondly, we use hypergraph clustering to select the most informative

feature subset (mIFS), which has both low redundancy and strong discriminating power.
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The advantage of MII is that it incorporates third or higher order feature interactions.

Hypergraph clustering, which extracts the most informative features. The size of the

most informative feature subset (mIFS) is determined automatically. Experimental results

demonstrate the effectiveness of our feature selection method on a number of standard

data-sets.

In addition to the supervised feature selection methods, we present two novel unsu-

pervised feature selection methods in Chapter 5 and Chapter 6. Specifically, we propose a

new two-step spectral regression technique for unsupervised feature selection in Chapter

5. In the first step, we use kernel entropy component analysis (kECA) to transform the

data into a lower-dimensional space so as to improve class separation. Second, we use `1-

norm regularization to select the features that best align with the data embedding resulting

from kECA. The advantage of kECA is that dimensionality reducing data transformation

maximally preserves entropy estimates for the input data whilst also best preserving the

cluster structure of the data. Using `1-norm regularization, we cast feature discriminant

analysis into a regression framework which accommodates the correlations among fea-

tures. As a result, we can evaluate joint feature combinations, rather than being confined

to consider them individually. Experimental results demonstrate the effectiveness of our

feature selection method on a number of standard face data-sets.

In Chapter 6, by incorporating MII for higher order similarities measure, we establish

a novel hypergraph framework which is used for characterizing the multiple relationships

within a set of samples (e.g. face samples under varying illumination conditions). Thus,

the structural information latent in the data can be more effectively modeled. We then ex-

plore a strategy to select the discriminating feature subset on the basis of the hypergraph

representation. The strategy is based on an unsupervised method which derive the hyper-

graph embedding view of feature selection. We develop the strategy based on a number

of standard image datasets, and the results demonstrate the effectiveness of our feature

selection method.
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We summarize the contributions of this thesis in Chapter 7, and analyze the developed

methods. Finally, we give some suggestions to the future work in feature selection.
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Chapter 1

Introduction

In this chapter we provide an introduction and motivation for the research work presented

in this thesis, explaining why we are interested in selecting features from higher order

correlations. We commence by introducing the problems encountered in existing clas-

sifier independent (filter-based) feature selection methods. Then we briefly describe the

possible alternative approaches to these problems, following by our research goals and

contributions. Finally, an outline of the thesis is provided at the end of this chapter.

1.1 The problems

In many data analysis tasks, one is often confronted with the problem of selecting features

from very high dimensional data. In order to render the analysis of high-dimensional data

tractable, it is crucial to identify a smaller subset of features that are informative for clas-

sification and clustering [57]. Dimensionality reduction aims to reduce the number of

variables under consideration, and the process can be divided into feature extraction and

feature selection. Feature extraction usually projects the features onto a low-dimensional

and distinct feature space, e.g., Locally Linear Embedding (LLE) [63], kernel PCA [10],

Locality preserving Projection (LPP) [74], Neighborhood Preserving Embedding (NPE)

[75] and Laplacian eigenmap [44]. Unlike feature extraction, feature selection identi-
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fies the optimal feature subset in the original feature space. By maintaining the original

features, feature selection improves the interpretability of the data, which is preferred in

many real world applications, such as face recognition and text mining [40].

The feature selection problem is essentially a combinatorial optimization problem

which is computationally expensive. To overcome this problem, most existing filter-based

feature selection methods focus on ranking individual features based on a utility criterion,

and select the optimal feature set in a greedy manner. However, the feature combinations

found in this way has four limitations which cannot give optimal classification perfor-

mance [67] [66].

The first is that they evaluate features individually and hence cannot lead to redundant

features being evaluated. Redundant features increase the dimensionality unnecessarily

[48], and degrade learning performance when faced with a shortage of data. It is also

shown empirically that removing redundant features can result in significant performance

improvement [37].

The second weakness is that they assume that each individual relevant feature should

be dependent with the target class. This means that if a single feature is considered to

be relevant it should be correlated with the target class, otherwise the feature is irrelevant

[28]. So only a small set of relevant features is selected, and larger feature combinations

are not considered. The reason for this is that although an individual feature may have

limited relevance to a particular class, when taken in combination with other features it

may be strongly relevant to the class.

The third weakness is that most of existing methods select features in a greedy way

and do not provide a direct measure to judge whether to add additional features or not. To

deal with this problem, they require a user to supply the number of selected features in

advance. However, in real applications, it is hard to estimate the number of useful features

before the feature selection process.

Finally, most of the methods simply consider pairwise feature dependencies, and do

2



not check for third or higher order dependencies between the candidate features and the

existing features. Thus, optimal feature subset cannot be located.

1.2 Our Goals

The overall goal of this thesis is to develop novel classifier independent (filter-based)

feature selection methods addressing the problems shown above. Specifically,

i) We aim to develop a feature selection criterion which is able to measure the signif-

icance of different feature combinations. In particular, it can go beyond pairwise feature

interaction and consider third or even higher order dependencies between the relevant fea-

tures. Hence, we can evaluate features jointly rather than individually. Thus we are able

to handle feature redundancy.

ii) We aim to select an optimal feature subset, where the size of the feature subset can

be automatically determined.

iii) We aim to develop a novel framework for unsupervised feature selection which

considers the correlations among features. In this case, it is very possible that the combi-

nation of several “week” features can better differentiate different clusters, although they

are not very informative in differentiating different clusters if evaluated independently.

1.3 Contributions

To achieve the research goals described in Section 1.2, we make the following specific

contributions:

1.3.1 Graph based Information-theoretic Feature Selection

In Chapter 3, we propose a new information theoretic criterion referred to as the multidi-

mensional interaction information (MII) to measure the significance of different feature
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combinations. The advantage of MII is that it is sensitive to the relations between feature

combinations. As a result it can be used to seek third or even higher order dependencies

between the relevant features. Hence, we can evaluate features jointly rather than individ-

ually [82]. Thus we are able to handle feature redundancy. However, MII involves evalu-

ating all possible interactions among the selected features which has two problems: 1) it

requires an exhaustive “combinatorial” search over the feature space, and 2) it demands

large training sample sizes to estimate the higher order joint probability distribution in

MII with a high dimensional kernel [49].

To reduce the search space in using MII, we propose a graph-based feature selection

algorithm consisting of three steps, namely, i) by incorporating mutual information (MI)

for pairwise feature similarity measure, we first establish a novel feature graph framework

which is used for characterizing the informativeness between the pair of features, ii) we

then extract the relevant feature subset (RFS) from the feature graph by maximizing fea-

tures’ average relevance. The main property of RFS is that the overall relevance among

the internal features is greater than that between the external feature and the internal fea-

tures, iii) based on RFS, we evaluate the importance of unselected features by using MII.

In this feature selection scheme, we commence by extracting the relevant feature subset

(RFS) from the initial features as a pre-processing step for ranking features. This strategy

reduces the optimal search space from the original feature set to the relatively smaller

relevant feature subset, and thus enable an efficient computation. In addition, the size of

the relevant feature subset is determined automatically.

However, in some situations the graph representation for relational patterns can lead

to substantial loss of information. This is because in real-world problems objects and

their features tend to exhibit multiple relationships rather than simple pairwise ones. This

motivates our work in Chapter 4.
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1.3.2 Hypergraph based Information-theoretic Feature Selection

A natural way of remedying the information loss described in Chapter 3 is to represent the

features as hypergraph instead of a graph. In Chapter 4, we propose to use a hypergraph-

based feature selection algorithm consisting of two steps [83]. Firstly, we construct a

hypergraph in which each node corresponds to a feature, and each edge has a weight

corresponding to the MII among features connected by that edge. Secondly, we apply

hypergraph clustering to the hypergraph in order to locate the most informative feature

subset (mIFS), which has both low redundancy and strong discriminating power. In con-

trast with existing feature selection methods, our proposed methods is able to determine

the number of relevant features automatically.

The proposed feature selection methods in Chapter 3 and Chapter 4 are supervised

feature selection methods. While the labeled data required by supervised feature selection

can be scarce, there is usually no shortage of unlabeled data. Hence, there are obvious

attractions in developing unsupervised feature selection algorithms which can utilize this

data. Therefore, in the following two chapters (Chapter 5 and Chapter 6), we extend our

attention to unsupervised feature selection methods.

1.3.3 Kernel Entropy Analysis for Unsupervised Feature Selection

Feature selection for unsupervised learning is difficult because, without class labels, it is

hard to assess the relevance of a feature or a subset of features. In Chapter 5, we develop

a novel regularization based unsupervised feature selection method for feature subset se-

lection. The idea underpinning our proposed method is to select the features which best

preserve the cluster structure derived from the entire feature set. Specifically, we propose

a new two-step spectral regression technique for unsupervised feature selection. In the

first step, we use kernel entropy component analysis (kECA) to transform the data into

a lower-dimensional space so as to improve class separation. Second, we use `1-norm
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regularization to select the features that best align with the data embedding resulting from

kECA. The advantage of kECA is that dimensionality reducing data transformation maxi-

mally preserves entropy estimates for the input data whilst also best preserving the cluster

structure of the data. Using `1-norm regularization, we cast feature discriminant analysis

into a regression framework which accommodates the correlations among features. As a

result, we can evaluate joint feature combinations, rather than being confined to consider

them individually.

1.3.4 Hypergraph Spectral Analysis for Unsupervised Feature Selec-

tion

In Chapter 6, by incorporating MII for higher order similarities measure, we establish a

novel hypergraph framework which is used for characterizing the multiple relationships

within a set of samples (e.g. face samples under varying illumination conditions). Thus,

the structural information latent in the data can be more effectively modeled. Then an

unsupervised method is proposed to find the discriminating feature subset on the basis

of hypergraph representation. For the unsupervised learning, we derive a hypergraph

embedding view of feature selection, where the projection matrix is constrained to be

a selection matrix designed to select the optimal feature subset. Experimental results

demonstrate the effectiveness of our feature selection methods on a number of standard

image datasets.

1.4 Thesis Outline

The rest of the thesis is organized as follows: In Chapter 2, we give a thorough review

of the relevant literature. We commence by discussing the information-theoretic based

approaches for feature selection. Then, we extend our attention to graph based feature
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selection methods. In Chapter 3, we present our first attempt to select the discriminating

features by a new criterion referred to as MII; Furthermore, to reduce the search space in

using MII, we introduces a graph based information theoretic to feature selection; Chapter

4 describes a hypergraph based information theoretic to feature selection, which can be

more effective in representing multiple relationships among features; Chapter 5 presents

an unsupervised regularization based feature selection method using kernel entropy analy-

sis; Chapter 6 introduces hypergraph spectral analysis for unsupervised feature selection;

Finally, in Chapter 7, we summarize the contributions of this thesis, discuss the weak-

nesses in the work, and suggest avenues for future work.
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Chapter 2

Literature Review

Feature selection can be divided into two categories, i) filter methods [30] where the fea-

ture selector is independent of classifiers, ii) wrapper methods [58] [80] utilize the clas-

sifier (i.e. support vector machine recursive feature selection referred as SVM-RFE [32])

to evaluate each possible feature subset by the estimated accuracy. Although wrapper

approaches usually have good performance, their computational cost is very expensive

when the number of features is large. This is because a learning algorithm is employed to

evaluate each and every set of features considered, wrappers are prohibitively expensive

to run, and can be intractable for large databases containing many features. In this thesis,

we focus on exploring filter approaches to feature selection, which are model-independent

criteria that provide a ranking of the features. We commence in Section 2.1 with a review

of the mutual information (MI) based feature selection method, which is the most popu-

lar filter approach to feature selection. Additionally, we also describe the shortcomings of

existing MI-based methods which motivate us to select features from higher order correla-

tions. We then review the graph-based feature selection methods in Section 2.2, followed

by an overview of hypergraph representation for structural pattern recognition in Section

2.3. Finally, Section 2.4 concludes the chapter.
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2.1 Information theoretic based Feature Selection Meth-

ods

High-dimensional data pose a significant challenge for pattern recognition [51]. The most

popular methods for reducing dimensionality are variance based subspace methods such

as PCA [31]. However, the extracted PCA feature vectors only capture sets of features

with a significant combined variance, and this renders them relatively ineffective for clas-

sification tasks. Hence it is crucial to identify a smaller subset of features that are infor-

mative for classification and clustering. Recently, mutual information has been shown to

provide a principled way of measuring the mutual dependence of two variables, and has

been used by a number of researchers to develop information theoretic feature selection

criteria. We present a selection of the most well-known criteria as below:

2.1.1 MIFS

Battiti [55] has developed the Mutual Information-Based Feature Selection (MIFS) cri-

terion,

Jmifs = I(fi;C)− β
∑
fs∈S

I(fs; fi) . (2.1)

It is used to select the most relevant m features from an initial set of d features and the

features are selected in a greedy manner. Given a set of existing selected features S,

at each step it locates the candidate feature fi that maximize the relevance to the class

I(fi;C) without considering the joint MI between the selected feature set and the output

class C. The selection is regulated by a proportional term βI(fi;S) that measures the

overlap information between the candidate feature and existing features. The parameter

β may significantly affect the features selected, and its control remains an open problem.

It will overestimate the redundancy between features in the case where β is too large.
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It can be seen that the MIFS algorithm only consider those features that have maxi-

mum MI with the output classes, and are less dependent. However, these feature com-

binations cannot produce an optimal feature subset, since they are possibly discarding

“redundant” features which have much information about the output class and selecting

irrelevant features.

2.1.2 MIFS-U

Kwak and Choi [49] [50] improve MIFS by developing MIFS-U under the assumption

of a uniform distribution of information for selected features S. This can be defined as,

Jmifs−u = I(fi;C)− β
∑
fs∈S

I(fs;C)

H(fs)
I(fi; fs) . (2.2)

where H(fs) = −
∑

fs∈S P (fs) logP (fs) is the entropy. The uniform probability distri-

bution assumption can make sure conditioning by the class C does not change the ratio of

the entropy of fs and the mutual information between fs and fi.

This criterion makes better estimation than MIFS which considering the conditional

MI I(C; fi|S) between output class C and the candidate feature fi for a given selected

features S. However, instead of calculating I(C; fi|S) directly, only I(S; fi) and I(C; fi)

are computed, where the conditional MI I(C; fi|S) can be approximated as

I(C; fi|S) = I(C; fi)− {I(S; fi)− I(S; fi|C)} . (2.3)

MIFS-U makes a better estimation of the MI criterion than MIFS, but it also needs to care-

fully choose the parameter β. With an unproper value of β, the algorithm may produce

bad results.
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2.1.3 MRMR

Peng et al. [27] on the other hand, propose a parameter-free method (referred to as

Maximum-Relevance Minimum-Redundancy criterion (MRMR)), which is equivalent to

MIFS with β = 1
|S| . It is defined as,

Jmrmr = I(fi;C)− 1

|S|
∑
fs∈S

I(fi; fs) . (2.4)

where |S| is the cardinality of the selected feature set S. It takes the average of the re-

dundancy term, which is used to eliminate the difficulty of parameter β selection with

MIFS and MIFS-U approaches. The unproper value of β in MIFS and MIFS-U will make

the relevance term (first term in Equation (2.1) and Equation (2.2)) and the redundancy

term (second term in Equation (2.1) and Equation (2.2)) in the substraction unbalance.

This is due to the fact that the redundancy term (second term in Equation (2.1) and Equa-

tion (2.2)) is a cumulative sum, it will grow in magnitude with respect the the relevance

term (first term), as the cardinality of the subset of selected features increases. When

the relevance term (first term) becomes negligible with respect to the redundancy term

(second term), the feature selection algorithm tend to select features based on minimum

redundancy. This may cause the selection of irrelevant features. Although the MRMR

algorithm solve the unbalance problem on some degree by averaging the feature-feature

mutual information in the second term of the substraction, it also omits the conditional

MI I(C; fi|S) between output class C and the candidate feature fi for a given selected

features S. The MRMR is a first-order incremental feature selection method, which as-

suming that each feature independently influences the output class C. The MRMR also

can be effectively combined with wrapper schemes into a two-stage selection algorithm.

In the first stage, the MRMR method is used to locate a candidate feature set. In the

second stage, the backward and forward selections are used to search a compact feature

subset from the candidate feature set that minimizes the classification error. However, as

the first-order assumption, MRMR presents similar limitations as MIFS and MIFS-U in
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the presence of many irrelevant and redundant features.

2.1.4 NMIFS

Estevez et al. [53] develop an improved version of MRMR, called NMIFS, which is

dividing the normalized feature-feature mutual information to achieve a balance between

the relevance and the redundancy term as below,

Jnmifs = I(fi;C)− 1

|S|
∑
fs∈S

Î(fi; fs) . (2.5)

where Î , the normalized mutual information, is defined as,

Î(fi; fs) =
I(fi; fs)

min(H(fs), H(fi))
. (2.6)

It can be seen that NMIFS used normalized mutual information to overcome the un-

balance problem between relevance and redundancy term in MIFS, MIFS-U and MRMR

algorithm.

2.1.5 JMI

Yang and Moody’s [29] Joint Mutual Information (JMI) criterion is based on conditional

MI,

Jjmi =
∑
fs∈S

I(fifs;C)

= I(fi, C)− 1

|S|
∑
fs∈S

[I(fi, fs)− I(fi; fs|C)] . (2.7)

It selects features by checking whether they bring additional information to an existing

feature set. This method effectively rejects redundant features. The JMI criterion is

MRMR criterion plus 1
|S|
∑

fs∈S I(fi; fs|C). The JMI criterion, like MRMR, has a strong

belief in the pairwise independence assumptions as the selected feature set S grows.
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2.2 Graph based Feature Selection Methods

Recently, graph-based methods, such as spectral embedding [44], spectral clustering [33],

and semi-supervised learning [8] [21], have played an important role in machine learning

due to their ability to encode the similarity relationships among data. Various applications

of graph-based methods can be found in clustering [33] [70], data mining [56], manifold

learning [76] [45], subspace learning [73] and speech recognition [23]. A preliminary

step for all these graph-based methods is to establish a graph over the training data. Data

samples are represented as vertices of the graph and the edges represent the pairwise

similarity relationships between them. In feature selection, the attractive feature of graph

representations is that they provide a universal and flexible framework that reflects the

underlying manifold structure and the relationships between feature vectors. A frequently

used criterion in graph-based feature selection methods is to select the features which best

preserve the data similarity or a manifold structure derived from the entire feature set. The

best known methods are the Laplacian score [73], SPEC [81], Fisher score [12] and Trace

ratio [24].

2.2.1 Laplacian Score

Laplacian score [73] uses a k-nearest neighbor graph to model the local geometric struc-

ture of the data and selects the features most consistent with the graph structure. Consider

a dataset X = x1, . . . , xN . In order to approximate the manifold structure of dataset, a k-

nearest neighbor graph is built, which contains an edge with weight Wij between xi and

xj if xi is among the k nearest neighbors of xj or conversely. There are different similarity

based methods that can be used to determine the edge weights. In general, the Euclidean

distance [15] is widely used as similarity measure. Therefore, the weight matrix W can
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be defined as below,

Wij =

 e−
‖xi−xj‖

2

t , if xi and xj are neighbors

0, otherwise.
(2.8)

where t is a suitable constant. A feature that is consistent with the graph structure can be

thought of as the one on which two data points are close to each other if and only if there

is an edge between these two points. Let fri denote the i-th sample of the r-th feature

and fr = (fr1, . . . , frN)T . To select a good feature, we need to minimize the following

objective function:

SCLs =

∑
ij(fri − frj)2Wij

V ar(fr)
. (2.9)

where V ar(fr) is the estimated variance of the r-th feature. Features with larger variance

are preferred, as they are expected to have more representative power. Given W, its

corresponding degree matrix Dii =
∑

j Wij and Laplacian matrix L = D −W, the

variance of weight data can be calculated based on D which modeling the importance of

the data points.

V ar(fr) = f̃Tr Df̃r , (2.10)

where

f̃r = fr −
fTr D1

1TD1
1 , (2.11)

Here, we remove the mean of each feature fr by Equation (2.11). This is done to prevent a

non-zero constant vector such as 1 to be assigned a zero Laplacian score as such a feature

obviously does not contain any information.

For a good feature, the bigger Wij , the smaller (fri − frj), and thus it is easy to see

that, ∑
ij

(fri − frj)2Wij = 2fTr Lfr = 2f̃Tr Lf̃r , (2.12)

Finally, the Laplacian score of the r-th feature is reduced to
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SCLs(fr) =
f̃Tr Lf̃r
f̃Tr Df̃r

, (2.13)

2.2.2 SPEC

The SPEC [81] algorithm is an extension for Laplacian score to make it more robust to

noise. In SPEC, given the affinity matrix A, the degree matrix D, and the normalized

Laplacian matrix L, three evaluation criteria are proposed for measuring feature relevance

in the following ways:

SCSpec,1(fi) = f̂i
T
γ(L)f̂i =

N∑
j=1

α2
jγ(λj) , (2.14)

SCSpec,2(fi) =
f̂i
T
γ(L)f̂i

1− (f̂i
T
ξj)2

=

∑N
j=1 α

2
jγ(λj)∑N

j=1 α
2
j

, (2.15)

SCSpec,3(fi) =
k∑
j=1

(γ(2)− γ(λj))α
2
j . (2.16)

In the above equations, f̂i = (D
1
2fi) · ‖(D

1
2fi)‖−1; (λj, ξj) is the j-th Eigen-pair of L;

αj = cos θj , where θj is the angle between f̂i and ξj; and γ(·) is an increasing function

which is used to re-scale the eigenvalues of L for de-noising. The top eigenvectors of L are

the optimal soft cluster indicators of the data [69]. By comparing with these eigenvectors,

SPEC selects features that assign similar values to instances that are similar according

to W. In [81], it is shown that Laplacian score is a special case of the second criterion,

SCSpec,2(·), defined is SPEC. Note that SPEC also evaluates feature independently.

2.2.3 Fisher Score

In contract to Laplacian score and SPEC, Fisher score is supervised with class label and it

seeks feature subsets which preserve the discriminative ability. Given class labels, Fisher
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score [12] selects features that assign similar values to data points from the same class

and different values to data points from different classes. Let µi,j and σ2
i,j be the mean

and variance of feature fi on class j, j = 1, . . . , C, respectively. µi is the mean of the

feature fi and nj is the number of samples in class j. Then the Fisher score of the i-th

feature can be formulated as

SCFs(fi) =

∑C
j=1 nj(µi,j − µi)2∑C

j=1 njσ
2
i,j

, (2.17)

After computing the Fisher score for each feature, it selects the top m ranked features

with large scores. Because the score of each feature is computed independently, the fea-

tures selected by the heuristic algorithm is suboptimal. More importantly, the heuristic

algorithm fails to select those features which have relatively low individual scores but a

very high score when they are combined together as a whole. In addition, it cannot handle

redundant features. In [73], it is shown that Fisher score is a special case of Laplacian

score, when the similarity matrix is defined as

Sij =

 1
nl
, yi = yj = l

0, otherwise.
(2.18)

where nl is the number of instances in the l-th class.

2.2.4 Trace Ratio

The trace ratio criterion [24] is proposed to locate a feature subset for which the within

class pairwise affinities are large, while the between class separation is large. In order to

discover both geometrical and discriminant structure of the data manifold, it constructs

two weighted graphs to capture the similarity structure of the data. The first is the intra-

class or within class similarity graphGw(X,Ww), while the second is the inter or between

class similarity graph Gb(X,Wb). The within-class similarity graph Gw is characterized

by the weight matrix Ww and reflects the interclass compactness of the data, while Gb
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can be regarded as a between class penalty graph, characterized by the weight matrix Wb

which reflects the intraclass separability. The two weight matrices (Ww)ij and (Wb)ij

are respectively determined by the within class and between class pairwise similarity of

instances. When (Ww)ij is large, this implies that data xi and data xj belong to same

class and a small value indicates they belong to different classes. Similarly, since (Wb)ij

represents the global between class affinity relationships in the data, it provides a heavy

penalty if data xi and xj belong to different classes. These features can be captured if the

weight matrices Ww and Wb are defined as follows

(Ww)ij =


1

Nc(i)
, if c(i) = c(j);

0, if c(i) 6= c(j).
(2.19)

(Wb)ij =


1
N
− 1

Nc(i)
, if c(i) = c(j);

1
N
, if c(i) 6= c(j).

(2.20)

where c(i) represents class label of data point xi, and Nc(i) dentes the number of data in

class i.

The trace ratio criterion works with the Laplacian matrices for the graphs Gw and

Gb. To this end let Db and Dw denote the diagonal matrices of Wb and Ww, where

(Db)ii =
∑N

k=1(Wb)ik and (Dw)ii =
∑N

k=1(Ww)ik. The weighted within-class degree of

node i, i.e. (Dw)ii provides a natural measure of the density of data in the proximity of

the data point xi. Since the more data points that are close to xi, the larger the weighted

degree (Dw)ii, the more important the point xi. From the weight matrices Wb and Ww,

and the degree matrices Db and Dw, the corresponding between class and within class

Laplacian matrices are Lb = Db −Wb and Lw = Dw −Ww respectively. The optimal

feature subsets should be the those for which the within class pairwise affinities are large,

while the between class separation is large. These features are captured by selecting the

set of features that minimize
∑

ij ‖xi − xj‖2(Ww)ij and while maximizing
∑

ij ‖xi −

xj‖2(Wb)ij . To achieve the above tow objective functions, the trace ratio criterion seeks
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the best selection matrix Φ by maximizing the following criterion:

Φ∗ = arg max

∑
i 6=j ‖ ΦT (xi − xj) ‖2 (Wb)ij∑
i 6=j ‖ ΦT (xi − xj) ‖2 (Ww)ij

= max
tr(ΦTXLbXTΦ)

tr(ΦTXLwXTΦ)
. (2.21)

For the sake of simplicity, we denote B = XLbXT and E = XLwXT . Suppose the

subset-level score in Equation (2.21) reaches the global maximum ζ∗ if Φ = Φ∗, that is to

say,

tr(Φ∗TBΦ∗)

tr(Φ∗TEΦ∗)
= ζ∗ . (2.22)

and
tr(ΦTBΦ)

tr(ΦTEΦ)
≤ ζ∗ . (2.23)

From Equation (2.23), we can derive that

max
Φ

tr(ΦT (B − ζ∗E)Φ) ≤ 0 . (2.24)

Note that tr(Φ∗T (B − ζ∗E)Φ∗) = 0 and let

f(ζ) = max tr(ΦT (B − ζE)Φ) . (2.25)

then we have f(ζ∗) = 0. As f(ζ) is a monotonically decreasing function, finding the

global optimal ζ∗ can be converted into the problem of locating the single root of equation

f(ζ) = 0. Here, we define score of the i-th feature as

SCTr(fi) = ΦT
i (B − ζE)Φi . (2.26)

The function f(ζ) can be rewritten as

f(ζ) = max
m∑
i=1

ΦT
i (B − ζE)Φi . (2.27)

18



Thus f(ζ) equals to the sum of the first m largest scores. The task of subset-level based

feature selection is to seek the feature subset with the maximum score according to Equa-

tion (2.22). The root can be located using an iterative procedure to update ζ and thus find

the root of equation f(ζ) = 0.

Although the trace ratio criterion evaluates a set of features jointly, it does not take

feature redundancy into account and is prone to selecting redundant or even duplicated

features.

2.3 Hypergraph Representation for Pattern Recognition

In many situations the graph representation for relational patterns can lead to substantial

loss of information. This is because in real-world problems objects and their features tend

to exhibit multiple relationships rather than simple pairwise ones. For example, consider

the problem of classifying faces which are under different lighting conditions. See Fig. 2.1

for an illustration. It is well known that images of the same objects may look drastically

different under different lighting conditions [78] [17]. In this scenario, pairwise similarity

measures for images of the same person may exhibit great variety. This misleading result

is due to the fact that the set of images of a Lambertian surface under arbitrary lighting lies

on a 3D liner subspace in the image space [54] where multiple relationships exist, and the

higher order relations cannot be suitably characterized by pairwise similarity measures.

A natural way of remedying the information loss described above is to represent the

data set as a hypergraph instead of a graph. Hypergraph representations allow vertices

to be multiply connected by hyperedges and can hence capture multiple or higher order

relationships between features. Due to their effectiveness in representing multiple re-

lationships, hypergraph based methods have been applied to various practical problems,

such as partitioning circuit netlists [38], clustering [62, 19], clustering categorial data [18],

and image segmentation [61]. For multi-label classification, Sun et al. [41] construct a
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Figure 2.1: Shown above are images of five persons under varying illumination condi-

tions. Is it possible to group them into clusters based on pairwise similarity measure?

hypergraph to exploit the correlation information contained in different labels. In this hy-

pergraph, instances correspond to the vertices and each hyperedge includes all instances

annotated with a common label. With this hypergraph representation, the higher-order

relations among multiple instances sharing the same label can be explored. Following the

theory of spectral graph embedding [21], they transform the data into a lower-dimensional

space through a linear transformation, which preserves the instance-label relations cap-

tured by the hypergraph. The projection is guided by the label information encoded in

the hypergraph and a linear Support Vector Machine (SVM) is used to handle the multi-

label classification problem. Huang et al. [79] used a hypergraph cut algorithm [19] to

solve the unsupervised image categorization problem, where a hypergraph is used to rep-

resent the complex relationship among unlabeled images based on shape and appearance

features. Specifically, they first extract the region of interest (ROI) of each image, and

then construct hyperedges among images based on shape and appearance features in their

ROIs. Hyperedges are defined as either a) a group formed by each vertex (image) or b)
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its k-nearest neighbors (based on shape or appearance descriptors). The weight of each

hyperedge is computed as the sum of the pairwise affinities within the hyperedge. In this

way, the task of image categorization is transferred into a hypergraph partition problem

which can be solved using the hypergraph cut algorithm [59].

One common feature of these existing hypergraph representations is that they exploit

domain specific and goal directed representations. Specifically, most of them are confined

to uniform hypergraphs and do not lend themselves to generalization. The reason for this

lies in the difficulty in formulating a nonuniform hypergraph in a mathematically neat

way for computation. These has yet to be a widely accepted and consistent way for rep-

resenting and characterizing nonuniform hypergraphs, and this remains an open problem

when exploiting hypergraphs for feature selection. Moreover, to be easily manipulated,

hypergraphs must be represented in a mathematically consistent form, using structures

such as matrices or vectors.

Since Chung’s [22] definition of the Laplacian matrix for K-uniform hypergraphs,

there have been several attempts to develop matrix representations of hypergraphs. To es-

tablish the adjacency matrix and Laplacian matrix for a hypergraph, an equivalent graph

representation is often required. Once the graph approximation is to hand, its graph rep-

resentation matrices are often referred to as the corresponding hypergraph representation

matrices. Based on these approximate matrix representations, subsequent hypergraph

processing (e.g., hypergraph embedding) is performed. In machine learning, Agarwal et

al. [62] have compared a number of alternative graph representations [47, 71, 34, 19] for

hypergraphs and also explained their interrelationships. One common feature for these

methods, as well as the method in [61], is that a weight is assumed to be associated with

each hyperedge. The available graph representations for a hypergraph can be classified

into two categories: a) the clique expansion [61, 47, 34], b) the star expansion [71, 19].
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Figure 2.2: Bipartite graph

2.3.1 Star Expansion

The star expansion represents a hypergraph by introducing a new vertex for every hy-

peredge, and then constructing a graph with those existing vertices within a hyperedge

connected to the newly introduced vertex. Specifically, for a hypergraph G = (V,E), the

star expansion constructs a graph G∗ = (V ∗, E∗) from the original hypergraph, where

V ∗ = V ∪E and E∗ = (u, e) : u ∈ e, e ∈ E. Thus each hyperedge in G is expanded into

a star in G∗, which is bipartite graph, see Fig. 2.2. The weight W∗(u, e) of an edge (u, e)

in G∗ is given by

W∗(u, e) =
W(e)

δ(e)
. (2.28)

where W(e) is the weight associated with the hyperedge e ∈ E and δ(e) is the degree of

hyperedge e which is the number of vertices in e.

2.3.2 Clique Expansion

The clique expansion assumes that the hyperedge weight and edge weights are equal to

each other. In the clique expansion, each hyperedge is expanded into a clique. Denote

by Gc = (Vc, Ec) the 2-graph expanded from hypergraph G = (V,E) using the clique

expansion. The relationship between a hyperedge and the edge weights in the clique is

given by

Wc(vi, vj) =
1

µ(n, k)

∑
vi,vj∈e

W(e) . (2.29)
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where µ(n, k) = (n−2
k−2) is the number of hyperedges that contain a particular pair of

vertices and k is the size of the hyperedge.

In the above two strategies, each edge in each individual graph representation is

weighted in a manner determined by the corresponding hyperedge weight in a task-

specific way. Moreover, these graph-based representations for hypergraphs are just ap-

proximations, and hence give rise to information loss. This deficiency may result in am-

biguities when approximation methods are used to distinguish structures with different

relational orders.

To address these shortcomings, an effective matrix representation for hypergraphs is

needed, such that the low-pass information loss in the process of averaging hypergraph

weights can be overcome. To this end, we use clique averaging [61] to approximate a hy-

pergraph. This is closely related to the clique expansion. However it is able to precisely

preserve information contained in the original hypergraph. According to this scheme, the

relationship between a hyperedge weight and its related simple graph weights is deter-

mined by a particular generative model F . How well the graph Gc captures the structure

of hypergraph G is now a function of F , i.e. the hyperedge weight is given by

W(e) = F (Wc(v1, v2), . . . ,Wc(vi, vj), . . . ,Wc(vk−1, vk)) . (2.30)

where the function F should satisfy three conditions, namely, i) positivity, ii) symmetry

and iii) monotonicity. We can now write Equation (2.30) as

W(e) =

 k

2

 ∑
vi,vj∈e,i<j

Wc(vi, vj) . (2.31)

The above equation states that the L1 norm for the clique weights is proportional to the hy-

peredge weight. Without loss of generality we will assume that the set of hyperedges has

been ordered in a lexicographic order based on the vertices incident on each hyperedge.

A similar ordering is done on the set of graph edges too. We can now define the zero-one

incidence matrix H, that represents the incidence relationship between a hyperedge in a
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hypergraph and the edge in the related simple graph.

Hi,j =

 1 if edge j is incident on hyperedge i

0 otherwise.
(2.32)

Denote by W2 the vector of graph edge weights of length (n2 ) and, denote by Wk the

vector of hyperedge weights. Then Equation (2.31) can be written in matrix form as k

2

HW2 = Wk . (2.33)

This equation assumes that W2 ≥ 0, i.e., each element of the vector W2 is non-negative.

If we enforce an upper bound W2 ≤ 1 also, the graph approximation of hypergraph is

given by the edge weight vector W2 that satisfies the following constrained minimization

problem:

min
W2

‖

 k

2

HW2 −Wk‖2
F , 0 ≤W2 ≤ 1 . (2.34)

This method is closely related to the clique expansion. Denote by We
2 the vector of

approximating graph edge weights, then we can derive the following equation from the

solution of Equation (2.29):

µ(n, k)HWe
2 = HHTWk . (2.35)

Neglecting the constants in Equation (2.33) and (2.35), which differ only in the right hand

side by a pre-multiplication by the matrix HHT . This is a symmetric matrix, the effect of

multiplying this matrix by Wk is equivalent to a convolution of the hyperedge weights by

a quadratically decreasing kernel [61]. Thus HHTWk is a low passed version of Wk. This

implies that the clique expansion solves the same approximation problem as clique

averaging. However, instead of operating on the original hypergraph it operates on a

low passed version of it.
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2.4 Conclusion

We have reviewed two dominant directions of research in filter-based feature selection.

We have analyzed the deficiencies of the existing feature selection methods and pointed

out our possible solutions for overcoming these shortcomings. This chapter can be sum-

marized as follows.

There is a substantial body of research on MI-based feature selection methods. As

we discuss above, there are four limitations for the existing MI-based feature selection

methods. Firstly, these methods do not provide a direct measure to judge whether to add

additional features or not, so the number of selected features need to be specified in ad-

vance. In real applications, it is hard to estimate the number of useful features before the

feature selection process. The second weakness is that they assume that each individual

relevant feature should be dependent with the target class. This means that if a single

feature is considered to be relevant it should be correlated with the target class, other-

wise the feature is irrelevant [28]. So only a small set of relevant features is selected,

and larger feature combinations are not considered. The third weakness is that most of

these methods focus on ranking features based on an information criterion and select the

best m features in a greedy way. Here, commencing from an empty feature pool, features

are added into the pool one by one until the user-defined number is reached. However,

several authors find that the optimal feature combinations do not give the best classifi-

cation performance [67] [66]. Finally, most of the methods simply consider pairwise

feature dependencies, and do not check for third or higher order dependencies between

the candidate features and the existing features. For example, there are four features

f1,f2,f3,f4, the existing selected feature subset is {f1,f4}. Assume I(f2, C) = I(f3, C),

I(f2, f1|C) = I(f3, f1|C), I(f2, f4|C) = I(f3, f4|C), I(f1, f4, f2) � I(f1, f4, f3) and

I(f1, f4, f2) � I(f1, f2) + I(f4, f2). This indicates that f2 has strong affinity with the

joint subset {f1,f4}, although it has smaller individual affinity to each of them. So in this

situation, f2 may be discarded, and f3 is selected, although the combination {f1,f4,f2}
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can produce a better cluster than {f1,f4,f3} [36].

The research literature on graph-based feature selection methods. In feature selection,

the attractive feature of graph representations is that they provide a universal and flexible

framework that reflects the underlying manifold structure and the relationships between

feature vectors. The idea underpinning graph-based feature selection methods is to se-

lect the features which best preserve the data similarity or a manifold structure derived

from the entire feature set. However, there are two limitations to the above graph-based

spectral feature selection methods. Firstly, they evaluate features individually, and hence

cannot handle redundant features. Redundant features increase the dimensionality unnec-

essarily, and worsen learning performance when faced with a shortage of data. It is also

shown empirically that removing redundant features can result in significant performance

improvement. The second weakness is that in many situations the graph representation

for relational patterns can lead to substantial loss of information. This is because in real-

world problems objects and their features tend to exhibit multiple relationships rather than

simple pairwise ones.

Research on hypergraph based learning algorithms is generally confined to tensor fac-

torization, which is a higher order extension of its pairwise counterpart. When hyper-

graphs are used for representing higher order structured data in structural pattern recogni-

tion, they are often approximated by a graph representation. Trivial graph approximations

may give rise to certain information loss and result in ambiguities in distinguishing dif-

ferent relational orders. To address these shortcomings in the existing hypergraph based

methods, we will employ more effective matrix for hypergraph representation.

Above all, the work in this thesis addresses the shortcomings in the research literature.

We will compare our proposed methods with the state of the art methods and discuss in

detail our contributions to the research literature in the subsequent chapters.
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Chapter 3

Graph based Information-theoretic
Feature Selection

In many data analysis tasks, one is often confronted with very high dimensional data.

As shown in Chapter 2, the feature selection problem is essentially a combinatorial op-

timization problem which is computationally expensive. To overcome this problem it is

frequently assumed either that features independently influence the class variable or do

so only involving pairwise feature interaction. However, several authors find that the op-

timal feature combinations do not give the best classification performance [66][67]. The

reason for this is that although individual features may have limited relevance to a par-

ticular class, when taken in combination with other features it can be strongly relevant to

the class. To tackle this problem, in this chapter, we propose a graph based information-

theoretic approach to feature selection. There are three novel ingredients. First, by incor-

porating mutual information (MI) for pairwise feature similarity measure, we establish a

novel feature graph framework which is used for characterizing the relevance between the

pair of features. Secondly, we locate the relevant feature subset (RFS) from the feature

graph by maximizing features’ average pairwise relevance. The RFS is expected to has

little redundancy and very strong discriminating power. This strategy reduces the optimal

search space from the original feature set to the relatively smaller relevant feature subset,

and thus enable an efficient computation. Finally, based on RFS, we evaluate the impor-

27



tance of unselected features by using a new information theoretic criterion referred to as

the multidimensional interaction information (MII). The advantage of MII is that it can go

beyond pairwise feature interaction and consider third or higher order feature interactions.

As a result, we can evaluate features jointly, and thus avoid the redundancies arising in

individual feature combinations. Experimental results demonstrate the effectiveness of

our feature selection method on a number of standard data-sets.

Contribution

In summary, there are three main contributions in this chapter. First we develop a graph

representation based on the attributes of feature vectors, i.e. a feature graph. Each edge

in the graph has a weight corresponding to the mutual information (MI) between features

connected by that edge. With this representation, the informativeness latent in the features

can be more effectively modeled. Second we use a new information theoretic criterion

referred to as MII to measure the significance of different feature combinations. The

advantage of MII is that it is sensitive to the relations between feature combinations. As a

result it can be used to seek third or even higher order dependencies between the relevant

features. Hence, we can evaluate features jointly rather than individually. Thus we are

able to handle feature redundancy. Third we extract the relevant feature subset (RFS)

from the initial features as a preprocessing step for ranking features. In doing so we can

limit the search space for higher order interactions.

Chapter outline

The outline of this chapter is as follows. Section 3.1 commences by reviewing the funda-

mental knowledge related to MII and describes how to apply this new criterion to discrim-

inating feature selection. Section 3.2 describes how to reduce the search space by locating

the relevant feature subset (RFS) as a preprocessing step and how to use MII criterion for

further feature selection. In Section 3.3, a detailed description of the feature evaluation
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indices is given. Experimental results on a number of standard data-sets are presented in

Section 3.4. Finally, conclusions and future work are presented in Section 3.5.

3.1 Feature Selection Criteria Based on Mutual Informa-

tion

This section describes how to develop a new feature selection criteria based on the con-

cepts about Mutual Information (MI). Instead of finding some feature low-order inter-

actions [6], our proposed new criterion can go beyond pairwise feature interaction and

consider third or higher order feature interactions. We commence by reviewing the rele-

vant information theory. We then derive multidimensional interaction information (MII)

for feature selection and describe how to estimate it in practical computation.

3.1.1 Definition of Mutual Information

In accordance with Shannon’s information theory [13], the uncertainty of a random vari-

able C can be measured by the entropyH(C). For two variables F and C, the conditional

entropy H(C|F ) measures the remaining uncertainty about C when F is known. The

mutual information (MI) represented by I(F ;C) quantifies the information gain about C

provided by variable F . The relationship between H(C), H(C|F ) and I(F ;C) can be

given by

I(F ;C) = H(C)−H(C|F ) . (3.1)

For training a classifier, we prefer features which can minimize the uncertainty on the

output class set C. If I(F ;C) is large, this implies that feature vector F and output class

set C are closely related. When F and C are independent, the MI of F and C goes to

zero, and this means that the feature F is irrelevant to class C. As defined by Shannon,

the initial uncertainty in the output class C is expressed as:
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H(C) = −
∑
c∈C

P (c) logP (c) . (3.2)

where P (c) is the prior probability over the set of class C. The remaining uncertainty

in the class set C if the feature vector F is known is defined by the conditional entropy

H(C|F )

H(C|F ) = −
∫
f

p(f){
∑
c∈C

p(c|f) log p(c|f)}df . (3.3)

where p(c|f) denotes the posterior probability for class c given the input feature vector f .

After observing the feature vector f , the amount of additional information gain is given

by the mutual information (MI)

I(F ;C) = H(C)−H(C|F ) =
∑
c∈C

∫
f

p(c, f) log
p(c, f)

p(c)p(f)
df . (3.4)

3.1.2 Conditional Mutual Information

Assume that S is the set of existing selected features, ~F is the set of candidate features,

S ∩ ~F = ∅, and C is the output class set. The next feature in ~F to be selected is the one

that maximizes I(C; fi|S), i.e. the conditional mutual information (CMI) which can be

represented as

I(C; fi|S) = H(C|S)−H(C|fi, S) . (3.5)

where C is the output class set, S is the selected feature subset, ~F is the candidate feature

subset, and fi ∈ ~F . From information theory, the conditional mutual information is the

expected value of the mutual information between the candidate feature fi and class set

C when the existing selected feature set S is known. It can be also rewritten as

I(C; fi|S) =
∑
S

∑
c∈C

∫
fi∈~F

P (fi, S, c) log
P (S)P (fi, S, c)

P (fi, S)P (S, c)
. (3.6)
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3.1.3 Multidimensional Interaction Information for Feature Selec-

tion

The conditioning on a third random variable may either increase or decrease the original

mutual information. That is, the difference I(X;Y |Z)− I(X;Y ), referred to as the inter-

action information and represented by I(X;Y ;Z), can measure the difference between

the original mutual information I(X;Y ) when a third random variable is taken into ac-

count or not. The difference may be positive, negative, or zero, but it is always true that

I(X;Y |Z)> 0 [72].

Given the existing selected feature set S, the interaction information between the out-

put class set and the next candidate feature fi can be defined as

I(C; fi;S) = I(C; fi|S)− I(C; fi) . (3.7)

From Equation (3.7), the interaction information measures the influence of the existing

selected feature set S on the amount of information shared between the candidate feature

fi and the output class set C, i.e. I(C, fi). A zero value of I(C; fi;S) means that the

information contained in the observation fi is not useful for determining the output class

set C, even when combined with the existing selected feature set S. A positive value

of I(C; fi;S) means that the observation fi is independent of the output class set C, so

I(C, fi) will be zero. However, once fi is combined with the existing selected feature set

S, then the observation fi immediately becomes relevant to the output class set C. As a

result I(C; fi|S) will be positive. As a result the positive interaction information implies

synergy between the existing selected feature set S and new feature fi, meaning that they

yield more information together than what could be expected from they individual interac-

tions with the label. Thus, it is capable of solvingXOR-gate type classification problems.

A negative value of I(C; fi;S) indicates redundancy between the existing selected fea-

ture set S and new feature fi, meaning that S can account for or explain the correlation

between I(C; fi). As a result the shared information between I(C; fi) is decreased due
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to the additional knowledge of the existing selected feature set S. Hence, negative inter-

actions offer opportunity for eliminating redundant feature, even if the feature is relevant

on its own.

According to the above definition, we propose the following multidimensional interac-

tion information for feature selection. Assume that S is the set of existing selected feature

sets, ~F is the set of candidate features, S ∩ ~F = ∅, and C is the output class set. The

objective of selecting the next feature is to maximize I(C; fi|S), defined by introducing

the multidimensional interaction information:

I(C; fi|S) = I(C; fi) + I({fi, S, C}) . (3.8)

where

I({fi, S, C}) = I(fi, s1, . . . , sm−1;C) =
∑

s1,...,sm−1

∑
c∈C

P (fi, s1, . . . , sm−1; c)

× log
P (fi, s1, . . . , sm−1; c)

P (fi, s1, . . . , sm−1)P (c)
. (3.9)

Consider the joint distribution P (fi, S) = P (fi, s1, . . . , sm−1). By the chain rule of prob-

ability, we expand P (fi, S), P (fi, S;C) as

P (fi, S) = P (s1)P (s2|s1)× P (s4|s3, s2, s1) · · ·P (xi|s1, s2 . . . sm−1) , (3.10)

P (fi, S;C) = P (C)p(s1|C)P (s2|s1, C)P (s3|s1, s2, C)

×P (s4|s1, s2, s3, C) · · ·P (fi|s1, . . . , sm−1, C) . (3.11)

There are two key properties of our proposed definition in Equation (3.8). The first is that

the interaction information term I({fi, S, C}) which can be zero, negative and positive.

It can deal with a variety of cluster classification problems including the XOR-gate when

the value is positive. When it taken on a negative value, it can help to eliminate redundant

features and thus select optimal feature sets. The second benefit is its multidimensional
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form, compared to most existing MI methods which only check for pairwise feature in-

teractions. Our definition can be used to check for third and higher order dependencies

among features.

However, in practice and as noted in Chapter 2, locating a feature subset that maxi-

mizes I({fi, S, C}) presents two problems: 1) it requires an exhaustive “combinatorial”

search over the feature space, and 2) it demands large training sample sizes to estimate

the higher order joint probability distribution in I({fi, S, C}) with a high dimensional

kernel [49]. Bearing these obstacles in mind, most of the existing related papers ap-

proximate I({fi, S, C}) based on the assumption of lower-order dependencies between

features. For example, the first-order class dependence assumption includes only first-

order interactions. That is it assumes that each feature independently influences the class

variable, so as to select the m-th feature, fi, P (fi|s1 . . . sm−1, C) = P (fi|C). A second-

order feature dependence assumption is proposed by Guo and Nixon [7] to approximate

I({fi, S, C}), and this is arguably the most simple yet effective evaluation criterion for

selecting features. The approximation is given as

I({fi, S, C}) ≈ Î({fi, S, C}) =
∑
i

I(fi;C)−
∑
i

∑
sj∈S

I(fi; sj)

+
∑
i

∑
sj∈S

I(fi; sj|C) . (3.12)

By using Î({fi, S, C}) instead of I({fi, S, C}), it is possible to locate a subset of in-

formative features by implementing a greedy “pick-one-feature-at-a-time” selection pro-

cedure. Given d features, out of which m are to be selected (m < d), this involves two

steps: 1) select the first feature f ′max that maximizes I(f ′;C), and 2) select the m − 1

subsequent features that maximize the criterion in Equation (3.12) , i.e., select the sec-

ond feature f ′′max that maximizes I(f ′′;C)− I(f ′′; f ′max) + I(f ′′; f ′max|C), select the third

feature f ′′′max that maximizes I(f ′′′;C)− I(f ′′′; f ′max)− I(f ′′′; f ′′max) + I(f ′′′; f ′max|C) +

I(f ′′′; f ′′max|C) and so on.

Although an MII based on the second-order feature dependence assumption can se-
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lect features that maximize class-separability and simultaneously minimize dependencies

between feature pairs, there is no reason to assume that the final optimal feature subset is

formed by pairwise interactions between features. In fact, it neglects the fact that third or

higher order dependencies can be lead to an optimal feature subset.

The primary reason for using the approximation Î({fi, S, C}) for feature selection

instead of directly using multidimensional interaction information I({fi, S, C}) is that

I({fi, S, C}) requires an exhaustive “combinatorial” search over the feature space.

To tackle the above problems, we establish a novel graph-based information-theoretic

framework for characterizing the feature correlations, where we employ mutual infor-

mation (MI) for measuring features relevance. We commence by extracting the relevant

feature subset (RFS) from the initial features, as a pre-processing step for ranking fea-

tures. This strategy reduces the optimal search space from the original feature set to

the relatively smaller relevant feature subset, and thus enable an efficient computation.

Therefore, we do not need to use the approximation Î(F ;C). Instead, we can use the

multidimensional interaction information I(F ;C) criterion directly for feature selection.

3.1.4 Estimation of MII

In the above definition of the MII measure, the class label takes on discrete values while

the input feature vectors are usually continuous random variables. In this case, one so-

lution to the high dimension of the feature vectors is to incorporate data discretization

as a preprocessing step. For some applications where it is unclear how to properly dis-

cretize the continuous data, an alternative solution is to use the density estimation method

(e.g., Parzen windows) to estimate the class conditional probability density function for

the feature vectors. Given N d-dimension samples X = {x1, x2, . . . , xN}, the probability

density estimation p(x) of a d-dimension continuous random vectors x is given by

p(x) =
1

N
φ(
x− xi
h

), (3.13)
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where xi is i-th d-dimensional sample,N is the number of samples, φ(x−xi
h

) is the window

function and h is the window width. Here, we use a Gaussian as the window function, so

φ(
x− xi
h

) =
1

(2π)
l
2hl|Σ| 12

exp(
(x− xTi )Σ−1(x− xi)

−2h2
) . (3.14)

where Σ is the covariance matrix for the feature vector and l is the length of vector x.

When l = 1, p(x) estimates the marginal density and when l = 3, p(x) estimates the joint

density of the feature vectors. We use the Parzen window method to estimate the con-

ditional entropy in Equation (3.3). From Bayesian a posterior rule, the class probability

p(c|x) can be written as

p(c|x) =
p(x|c)p(c)
p(x)

. (3.15)

If there are C classes, then, we obtain the class conditional probability density p(x|c) of

each class using the Parzen window estimation

p(x|c) =
1

Nc

Nc∑
i=1

φ(
x− xi
h

) . (3.16)

where c = 1, 2, · · · , C and Nc is the number of the training examples belonging to class

c. Because the conditional probability normalized, i.e.,
∑C

c=1 p(c|x) = 1, the conditional

probability p(c|x) is

p(c|x) =
p(c|x)∑C
c=1 p(c|x)

=
p(c)p(x|c)∑C
c=1 p(t)p(x|c)

. (3.17)

Using Equation (3.16), the estimate of the a posterior probability becomes

p(c|x) =

∑Nc

i=1 φ(x−xi
hc

)∑C
c=1

∑Nc

i=1 φ(x−xi
hc

)
. (3.18)

where hc is the class specific window width parameters.

3.2 The Proposed Feature Selection Scheme

To avoid the exhaustive “combinatorial” search over the feature space in using MII, our

proposed method works in two phases. In the first phase, we extract the relevant feature

35



subset (RFS) from the initial features as a preprocessing step and in doing so we can limit

the search space for higher order interactions. We commence by constructing a feature

relevance matrix R = (Rij) to characterize the relevance of features. Then, we employ a

coherence function on R for the purpose of identifying RFS. Second phase describes how

to rank the features based on MII criteria. Next we discuss these phases in detail.

3.2.1 Relevant Feature Subset Extraction

According to the properties of interaction information described in 3.1.3, straightfor-

wardly identifying a feature subset that maximizes I({fi, S, C}) in (3.9) requires an ex-

haustive “combinatorial” search over the feature space. Furthermore, a high dimensional

kernel should be computed through estimate the higher order joint probability distribution

in I({fi, S, C}) [49]. To address these obstacles, we aim to reduce the search space from

the initial feature set to a smaller relevant feature subset (RFS), which is expected to have

little redundancy and very strong discriminating power.

From Section 3.1, we can see that mutual information quantifies the information which

is shared by two variables X and Y . When I(X;Y ) is large, this implies that variable

X and variable Y are closely related. Otherwise, when I(X;Y ) is equal to 0, this means

that two variables are totally unrelated. Therefore, in our method, the relevance of pairs

of feature vectors is captured using mutual information. For a feature pair {fi, fj}, the

relevance degree between the feature vectors can be defined as

Ri,j =
1

2
I(fi;C) +

1

2
I(fj;C)− [I(fi; fj)− I(fi; fj|C)] . (3.19)

The above degree relevance definition consists of three terms. The first term I(fi;C)

referred to as relevancy indicates individual feature’s relevance with the class set C. The

third term of the form I(fi; fj) is used to measure the redundancy between features. The

fourth term I(fi; fj|C) measures the influence of the features combination on the class
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set C. We refer to this as the class-conditional redundancy. Therefore, a large value of

R(fi,fj) means that both I(fi;C) and I(fi; fj|C) are large (indicating features {fi, fj} are

relevant with respect to the class set C) and I(fi; fj) is small (indicating features {fi, fj}

are less redundant).

Supposed the cardinality of the initial feature set is d. Given a d-dimensional indicator

vector a with ai representing the i-th element, we employ a coherence function as the

objective function for the purpose of identifying the most homogenous subset of the initial

feature set

max f(a) =
d∑
i=1

d∑
j=1

aiajRi,j . (3.20)

subject to a ∈ 4, where the multidimensional solution vector a fall on the simplex 4 =

{a ∈ Rd : a ≥ 0 and
∑d

i=1 ai = 1} and Rii = 0, i.e., all diagonal entries of R are

set to zero. Our idea is motivated by the the graph-based clustering method which group

the most dominant vertices into cluster. On the other hand, in our work, the feature

subset {fi|1 ≤ i ≤ d, ai > 0} is the most coherent subset of the initial feature set, with

maximum internal homogeneity of the feature relevance (3.19). According to the value

of a, all features F fall into two disjoint subsets, S1(a) = {fi|ai = 0} and S2(a) =

{fi|ai > 0}. We refer to the set of nonzero variables S2(a) as the relevant feature subset

(RFS), because the objective function (3.20) selects RFS by maximizing features’ average

pairwise relevance.

In fact, the main property of RFS is that the overall relevance among the internal fea-

tures is greater than that between the external features and the internal features. From

graph theory, RFS turns out to be equivalent to maximal cliques [42]. The definition

of RFS simultaneously emphasizes internal homogeneity together with external inhomo-

geneity. Thus it is can be used as a general definition of a ”cluster”. To provide an

example, assume there are N training samples, each having 5 feature vectors. In order to

capture the RFS from these 5 features (represented as F1, . . . , F5), we construct a graph
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G = (V,E) with node-set V , edge-set E ⊆ V × V and edge weight matrix W whose

elements are in the interval [0, 1]. Each vertex represents a feature and the edge between

two features represents their pairwise relationship. The weight on the edge reflects the

degree of relevance between two features. Therefore, we represent the graph G with the

corresponding edge-weight or weighted relevance matrix. Let S ⊆ V be a non-empty

subset of vertices and i ∈ S. The average weighted degree of i w.r.t S is defined as

awdegS(i) =
1

|S|
∑
j∈S

Ri,j . (3.21)

if j /∈ S, we have the following definition: φS(i, j) = Ri,j − awdegS(i) which measures

the similarity between nodes j and i, with respect to the average similarity between node

i and its neighbors S. The weight of i w.r.t. (S) is

WS(i) =

 1, if |S| = 1∑
j∈S\{i} φS\{i}(j, i)WS\{i}(j), otherwise.

(3.22)

Moreover, the total weight of S is defined to be W (S) =
∑

i∈SWS(i). Inspired from

the recent work on graph partition [43], for the constructed feature graph, a feature subset

S is said to be RFS if: 1) WS(i) > 0, for all i ∈ S, 2) WS∪{i}(i) < 0, for all i /∈ S.

In our example, in Fig. 3.1, features {F1, F2, F3} form the RFS, since the edge weights

“internal” to that set (0.6, 0.7 and 0.9) are larger than the sum of those between the internal

and external features (which is between 0.05 and 0.25).

The objective function (3.20) is typical quadratic program, and here we apply discrete-

time first-order replicator equation [35] to approximating the solution for the RFS.

anewi =
ai
∑d

j=1 ajRi,j∑d
i=1

∑d
j=1 aiajRi,j

. (3.23)

where anewi corresponded to the i-th feature vector after the update process. The complex-

ity of finding the RFS is O(t|E|), where |E| is the number of edges of the feature graph

constructed above and t is the average number of iteration needed to converge.
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Figure 3.1: The subset of features {F1, F2, F3} is RFS

3.2.2 Feature Ranking using MII criterion

The features inside RFS have both little redundancy and very strong discriminating power.

Based on the RFS, we can evaluate the importance of features contained in the unselected

feature set S1(a) = {fi|ai = 0} using MII criterion. Consequently, we can obtain a

complete feature ranking list.

The multidimensional interaction information between feature vectorF = {f1, . . . , fm}

and class variable C is:

I(F ;C) = I(f1, . . . , fm;C) =
∑

f1,...,fm

∑
c∈C

P (f1, . . . , fm; c)

× log
P (f1, . . . , fm; c)

P (f1, . . . , fm)P (c)
. (3.24)

For the unselected features in S1(a) = {fi|ai = 0}, we use MII to rank the features

and record the incremental gain (IG) score for each feature. Assume the existing selected

relevant feature subset is SRFS , for the unselected feature j, we define the IG score for

the feature as

IG(j) = I(fj;C)− [I(SRFS; fj)− I(SRFS;C|fj)] . (3.25)
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Figure 3.2: Illustration the IG score

The above definition of the IG score consists of three terms. The first term I(fj;C)

is referred to as relevance. The second term of the form I(SRFS; fj) is referred to as

redundancy. The third term I(SRFS;C|fj) is referred to as conditional redundancy. We

sort the features in descending order according to their IG scores. Equation (3.25) has an

intuitive geometric explanation as shown in Figure 3.2. This example contains 4 variables

in a diamond configuration and C is our target. We generate a very simple dependence

in which f1, f2, f3 and C are normally distributed variables. Our target C, is a noisy

observation of f1 and f2 is correlated with f1. f3 is correlated with the target C and f2.

We rank the features f1, f2, f3 using the MII criterion and record the incremental gain

(IG) score for each feature in Table 3.1.

Rank IG Score Relevance Redundancy Conditional redundancy

f1 0.1794 0.1794 0 0

f3 0.0697 0.1617 0.1416 0.0495

f2 0.0006 0.0879 0.2662 0.1789

Table 3.1: The IG score for each feature

As Table 3.1 shows, since f3 depends on f2 as well, f1 receives a higher score. Clearly,

due to the common dependency, f2 bears some mutual information on the target C. Note,

however, how this is outweighed by the interaction term (redundancy - conditional redun-

dancy): In fact, once we know f1, f2 cannot provide any additional information about the
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target C.

In order to evaluate the effectiveness in finding interacting features by using MII, we

ran experiments on three synthetic data sets with known feature interactions. The first data

set is Corral [26], which contains six boolean features A0, A1, B0, B1, irrelevant feature I

and redundant feature R. The target concept C is defined by C = (A0

∧
A1)

∨
(B0

∧
B1)

and feature A0, A1, B0, B1 are independent of each other. The irrelevant feature I is

uniformly random and the redundant feature R matches the class label 75% of the time

(for specific instances). This is an example of data sets in which if a redundant feature

like R is removed, a more accurate result will be obtained. The other two data sets are

taken from MONK’s problem [65]. They have six features. Their target concepts are

defined by three features: (1) MONK1, (A1 = A2) or (A5 = 1); Here A1 and A2 are two

interacting features. Consider individually, the correlation betweenA1 and the target class

C (similarly for A2 and C) is zero, measured by mutual information. Hence, A1 or A2 is

irrelevant when each is individually evaluated. However, if we combine A1 and A2, they

are strongly relevant in defining the target concept. (2) MONK3, (A5 = 3 and A4 = 1)

or (A5 6= 4 and A2 6= 3) (5% class noise added to the training data ). We apply three

alternative MI-based criterion methods to the synthetic data sets for comparison. These

methods are the MRMR algorithm [27], the MIFS algorithm [55] and the JMI algorithm

[29].

Table 3.2 shows the comparative feature ranking results of MII criterion with other

three alternative MI-based feature selection algorithms. For Corral, because the redundant

feature R is highly correlated with the class label, MRMR, MIFS and JMI pick it as

the best one. Our proposed method MII, on the other hand, discover that the feature R

is hurting performance after the evaluation of higher order feature interactions and thus

avoid selecting it. Features A0, A1 and B0, B1 interact with each other to determine the

class label of an instance. For the two MONKs data sets, only two features out the three

relevant ones are selected by MRMR and MIFS. Both of them missed A2 for MONK1
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MII MRMR MIFS JMI

Corral A0, A1, B0, R,A0, A1, R,A0, A1, R,A0, A1,

B1, R, I B0, B1, I B0, B1, I B0, B1, I

Monk1 A5, A1, A2, A5, A1, A4, A5, A1, A3, A5, A1, A2,

A4, A6, A3 A3, A6, A2 A4, A6, A2 A4, A6, A3

Monk3 A2, A5, A4, A2, A5, A6, A2, A5, A6, A2, A5, A4,

A1, A6, A3 A1, A3, A4 A3, A1, A4 A1, A3, A6

Table 3.2: Feature ranked by different algorithms on synthetic data

and A4 for MONK3 respectively. As seen in Table 3.2, MII and JMI perform similarly

for the MONKs data sets. However, as an exhaustive search algorithm, JMI is impractical

because finding moderately high-order interactions can be too expensive.

The sequence of steps shown in Algorithm 1 illustrates our method in detail.

Algorithm 1: A graph based information-theoretic framework for feature selection
Input: Dataset X with all features d

Output: The selected relevant feature subset (RFS) according to the non-zero

elements of a and unselected features are ranked by IG score

1) Compute the feature mutual relevance using Equation (3.19) ;

2) Extract the relevant feature subset (RFS) by using Equation (3.20) and Equation

(3.23) ;

3) Using MII criterion (see Equation (3.24)) to rank the unselected features based

on RFS and record the IG score for each feature according to Equation (3.25);

4) rank features according to their IG scores.
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3.3 Feature Evaluation Indices

Our proposed feature selection method (referred to as the RFS+MII method) (which uti-

lizes the multidimensional interaction information criterion and relevant feature subset

for feature selection) involves extracting the relevant feature subset (RFS) form the initial

features as a pre-processing step and using MII for further feature selection. In order to

examine the performance of our proposed method RFS+MII, we need to assess the qual-

ity of the relevant feature subset obtained together with its useful information content.

In view of this, we would like to measure the performance of our proposed algorithm

using three different indices, namely, (1) Relevant Feature Subset Evaluation, (2)

Classification Accuracy and (3) Redundancy Rate. Assume S is the set of se-

lected features, the redundancy rate can be defined as follow:

RED(S) =
1

m(m− 1)

∑
fi,fj∈S,i>j

ρi,j . (3.26)

where ρi,j returns the Pearson correlation between two features fi and fj . The measure-

ment assesses the averaged correlation among all feature pairs, and a large value indicates

that many selected features are strongly correlated and thus redundancy is expected to

exist in S.

3.4 Experiments and Comparisons

The data sets used to test the performance of our proposed algorithm are benchmark data

sets from the UCI Machine Learning Repository. Table. 3.3 summarizes the extents and

properties of the six data-sets.
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Data-set Training data Testing data Features Classes

Wine 100 78 13 3

Pendigits 7494 3498 16 10

Vowel 528 462 10 11

Letter 15000 5000 16 26

Satimage 4435 2000 36 6

Dna 2000 1186 180 3

Table 3.3: Summary of UCI benchmark data sets

3.4.1 Relevant Feature Subset Evaluation

We compare the classification result from the features captured by the relevant feature

subset (RFS) with those obtained using both alternative MI-based criterion methods and

graph-based methods. These methods are the MRMR algorithm [27], the MIFS algorithm

[55], the JMI algorithm [29], the Laplacian score (LS) [73] and the subset-level based

Fisher score (S-FS) [24]. We use 5-fold cross-validation for the SVM classifier on the

feature subsets obtained by the feature selection algorithms to verify their classification

performance. Here we use the linear SVM with LIBSVM [14].

We summarize the classification accuracy rate of different methods in Table. 3.4. In

the last row, the classification accuracy for the features from the relevant feature subset

which referred as RFS and the automatically determined size of RFS are reported. Sup-

pose that the determined size of RFS is k. To make a fair comparison, for each alternative

method, we measure the classification accuracy for k − 1, k and k + 1 features, and take

the best result as the baseline performance. As shown by the results in Table. 3.4, our

extracted RFS consistently outperforms other feature subsets obtained by the alternative

methods on all six multi class data sets. The results verify that our proposed method is ef-

fective to locate the relevant feature subset. There are two reasons for this improvement in
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Dataset Pendigits Letter Wine Vowel Satimage Dna

MRMR 68.1% 78.3% 98.3% 49.6% 85% 92.7%

MIFS 73.2% 71.9% 97.2% 49.6% 85.2% 90.6%

JMI 70.2% 78.3% 97.8% 51.3% 85% 94.1%

LS 69% 73% 97.8% 49.6% 84.9% 90.6%

S-FS 65.2% 68% 96.1% 52.2% 84.9% 92.4%

RFS 75.6%(3) 80%(10) 98.9%(4) 53.6%(3) 86%(15) 95.6%(16)

Table 3.4: Performance comparison of accuracy rate around the size of features in RFS

selected by different methods on the multi class data sets

performance. First, the mutual information is applied to measure the features relevance,

and this can capture the effects of pairwise dependencies between the features and the

class. Second, the extraction of the relevant feature subset simultaneously considers the

information-contribution for each feature together with the correlation between features.

Thus structural information latent in the data can be effectively identified. As a result the

optimal feature combinations can be located so as to group the greatest number of relevant

features into homogenous subset. On the other hand, other graph-based methods (i.e. LS

and S-FS) fail to locate the most discriminative features. This may be explained by our ob-

servation that both methods employ distance based methods for similarity measurement.

Their selected features are proximity only in values. There are positively correlated, neg-

atively correlated, and interdependent segments which are not accounted for. As a result,

they are not able to discover meaningful feature structure latent in the graph.
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(a) Pendigits (b) Letter

(c) Wine (d) Vowel

(e) Satimage (f) Dna

Figure 3.3: Accuracy rate vs. the number of selected features on multi class data sets.
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3.4.2 Classification Accuracy

The classification accuracies obtained with different feature subsets are shown in Fig. 3.3.

As shown by the results, it is clear that our proposed method RFS+MII is, by and large,

superior to the alternative feature selection methods. Specifically, it selects a both smaller

and better performing (in terms of classification accuracy) set of discriminative features

on all the six multi class data sets. Moreover, RFS+MII rapidly converges to the best

results, with typically smaller size of features. Each of the alternative methods, usually

require more features achieve a comparable result. This may be explained by the fact that

the MII criterion is sensitive to the relations among features combinations, and as a result

can be used to seek third or even higher order dependencies among the relevant features.

As a result the optimal feature combinations can be located so as to remove redundant

features.

Our RFS+MII algorithm consistently outperforms the alternative MI-based feature

selection algorithms (e.g. MRMR, MIFS and JMI) in all cases. Our algorithm performs

especially well when the number of selected features is small (see Fig. 3.3(b, d, f)). The

reason for this is that the alternative MI-based methods (i.e. MRMR and MIFS) select

features in a greedy way. Commencing from an empty feature pool, features are added

into the pool one by one until the user-defined number is reached. As a result, they may

neglect the possible correlation between different features (referred to the conditional re-

dundancy term I(S;C|fi)). As a result, there is a tendency to overestimate the redundancy

between features. Thus some important features can be discarded, which in turn leads to

information loss.

The best results for each method together with their corresponding size of selected

feature subset cardinality are shown in Table. 3.5. In the table, the classification accu-

racy is shown followed by the optimal number of features selected in brackets. From

Table. 3.5, it is clear that RFS+MII outperforms the alternative methods. However, in the

Letter and Satimage data sets, although the alternative methods can obtain the best per-
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Dataset Pendigits Letter Wine Vowel Satimage Dna

MRMR 68.1%(3) 82.7%(16) 98.3%(3) 52%(5) 87.2%(36) 94.8%(27)

MIFS 73.2%(3) 82.7%(16) 97.2%(3) 49.6%(2) 87.2%(36) 90.8%(26)

JMI 70.2%(4) 82.7%(16) 97.8%(3) 52%(5) 87.2%(36) 94.7%(27)

LS 69.6%(5) 82.7%(16) 97.8%(3) 49.6%(2) 87.2%(36) 90.8%(17)

S-FS 65.4%(5) 82.7%(16) 96.1%(4) 52.2%(3) 87.2%(36) 94.9%(26)

RFS+MII 75.6%(3) 82.7%(12) 98.9%(4) 55%(4) 87.2%(28) 95.6%(16)

Table 3.5: The best result of all methods and their corresponding size of selected feature

subset on the multi class data sets

formance using the entire feature-set, our proposed method RFS+MII achieves the same

classification accuracy with much smaller number of features, (i.e., only 12 features for

the Letter data set and 28 features for the Satimage data set). This implies that the dis-

criminative information exists in a small set of features, which can be effectively selected

by RFS+MII and then those features can be used to construct classifiers effectively.

3.4.3 Redundancy Rate

Table. 3.6 shows the comparative results of our proposed method with the alternative

feature selection methods using the top t features. In the table, the boldfaced values are

the lowest redundancy rates. The subset obtained by our proposed scheme has the least

redundant. This further verifier that our propose algorithm is able to remove redundant

features.

The results from the accuracy rate in Table. 3.5 and redundancy rate in Table. 3.6

together indicate that RFS+MII both contains the least redundancy, and result in highest

accuracy. They also underline necessity of removing redundant features for improving

learning performance. It should also be observed that the MRMR algorithm also produces
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Dataset Pendigits Letter Wine Vowel Satimage Dna

MRMR 0.5420 0.2549 0.2398 0.1820 0.2099 0.1467

MIFS 0.4441 0.2774 0.2463 0.1847 0.2151 0.1537

JMI 0.4597 0.2549 0.2428 0.1820 0.2175 0.1490

LS 0.6145 0.3075 0.2512 0.1872 0.2261 0.1730

S-FS 0.7681 0.3199 0.2482 0.1861 0.2261 0.1510

RFS+MII 0.3365 0.2320 0.2398 0.1792 0.2044 0.1450

Table 3.6: Averaged redundancy rate of subsets selected using different algorithms

low redundancy rates. However, it does not perform as well in the terms of classification

accuracy. This can be explained by the observation that: in MRMR, feature contributions

to classification is considered individually by evaluating the correlation between each

feature and the class label. However, the class label may be jointly determined by a set of

features. This interaction among features is not considered by MRMR.

3.5 Conclusion

In this chapter, we have presented a new graph based information theoretic approach to

feature selection. The proposed feature selection method offers three major advantages.

First, by incorporating mutual information for pairwise feature similarity measure, we

establish a novel feature graph. With this representation, the informativeness latent in the

features can be more effectively modeled. Second, we have reduced the optimal search

space from the original feature set to a relatively smaller relevant feature subset subject

to the cohesiveness in feature mutual information. Thirdly, we have preserved features

associated with the greatest amount of joint information through refining the relevant

feature subset based on the multidimensional interaction information (MII). All these
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advantages enable an effective performance of our framework in feature selection.

There are a number of directions in which the research described in this chapter can

be extended. In the following chapter, we will use hypergraphs to represent higher order

feature relationships. This will provide a natural way of measuring the representation

power of the RFS extracting process.

50



Chapter 4

Hypergraph based
Information-theoretic Feature Selection

In many situations the graph representation for relational patterns can lead to substantial

loss of information. This is because in real-world problems objects and their features tend

to exhibit multiple relationships rather than simple pairwise ones. A natural way of rem-

edying the information loss described above is to represent the data set as a hypergraph

instead of a graph. Hypergraph representations allow vertices to be multiply connected by

hyperedges and can hence capture multiple or higher order relationships among features.

Due to their effectiveness in representing multiple relationships, in this chapter, we draw

on recent work on hypergraph clustering to select the most informative feature subset

(mIFS) from a set of objects using high-order (rather than pairwise) similarities. There

are two novel ingredients. First, we use a new information theoretic criterion referred to

as the multidimensional interaction information (MII) to measure the significance of dif-

ferent feature combinations with respect to the class labels. Secondly, we use hypergraph

clustering to select the most informative feature subset (mIFS), which has both low redun-

dancy and strong discriminating power. The advantage of MII is that it incorporates third

or higher order feature interactions. Hypergraph clustering, which extracts the most in-

formative features. The size of the most informative feature subset (mIFS) is determined

automatically. Experimental results demonstrate the effectiveness of our feature selection
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method on a number of standard data-sets.

Contributions

In summary, there are three main contributions in this chapter. The first is that we de-

velop a hypergraph representation based on the attributes of feature vectors, i.e. a feature

hypergraph. With this representation, the structural information latent in the data can be

more effectively modeled. The second is that unlike most existing graph or hypergraph

methods, which use distance metrics (i.e. Euclidean distance or Pearson’s correlation co-

efficient) to represent the weight of edge or hyperedge, here we determine the weight of

the hyperedges using an information measure referred to as multidimensional interaction

information (MII). There are two advantages of MII. First, it effectively reflects functional

similarity, such as the positive or negative correlation and interdependency among fea-

tures. Second, it is sensitive to the relations between feature combinations, and as a result

can be used to seek third or even higher order dependencies between the relevant features.

Thirdly, we can use the method to locate the most informative feature subset (mIFS) by

hypergraph cluster analysis. In contrast with existing feature selection methods, our pro-

posed methods is able to determine the number of relevant features automatically.

Chapter outline

The remainder of this chapter is organized as follows. Section 4.1 describes the rele-

vant background on hypergraph. Section 4.2 describes how to combine MII criterion and

hypergraph cluster analysis to locate most informative feature subset (mIFS). The classi-

fication methods are presented in Section 4.3. In Section 4.4, we first give a description

of the real-world benchmark data sets. We then examine the performance of our proposed

hypergraph based information-theoretic feature selection method, and compare the clas-

sification results with those obtained by alternative feature selection methods. Finally,

conclusions are presented in Section 4.5.
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4.1 Hypergraph Fundamentals

A hypergraph is defined as a triplet H = (V,E,W), where V = {1, . . . , n} is the node-

set, E is a set of non-empty subsets of V or hyperedges and W is a weight function

which associates a real value with each edge. A hypergraph is a generalization of a graph.

Unlike graph edges which consist of pairs of vertices, hyperedges can be arbitrarily sized

sets of vertices. Examples of a hypergraph are shown in Fig. 4.1. For the hypergraph,

the vertex set is V = {v1, v2, v3, v4, v5}, where each vertex represents a feature, and the

hyperedge set is E = {e1 = {v1, v3}, e2 = {v1, v2}, e3 = {v2, v4, v5}, e4 = {v3, v4, v5}}.

The number of vertices constituting each hyperedge represent the order of the relationship

between features.

Figure 4.1: Hypergraph example

Hypergraph clustering is an extension of graph-based clustering to the hypergraph

domain. In graph-based clustering, the aim is to find sets of nodes that exhibit strong

within cluster inter-connectivity and weak between cluster connectivity. This is usually

expressed in terms of a clustering criterion defined over the edges of the graph represent-

ing pairwise relationships between the objects to be clustered. Examples of such criteria

include the normalized cut [33] and the dominant set [43]. In hypergraphs, the relation-

ships between objects are higher order, and the concept of the cluster must be extended to

reflect this. In a hypergraph, an edge represents a set of nodes participating in a mutual
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high order relation. Thus hypergraph clustering, must be expressed in terms of a criterion

reflecting overlapping sets of nodes participating in different hyperedges.

4.2 Feature Selection Using Hypergraph Cluster Analy-

sis

In this section we aim to utilize the hypergraph cluster analysis to perform feature se-

lection. Using a hypergraph representation of the features, there are two steps to the

algorithm, namely a) computing the weight matrix W based on the multidimensional in-

teraction information (MII) among feature vectors, b) hypergraph cluster analysis to select

the most informative feature subset (mIFS). In the remainder of this chapter we describe

these elements of our feature selection algorithm in more detail.

4.2.1 Computing Weight Matrix

Instead of using the Euclidean distance or Pearson’s correlation coefficient, our similarity

measure employs a new information measure referred to as multidimensional interaction

information criterion to evaluate the interdependence of features to reflect functional sim-

ilarity such as positive and negative correlation and interdependency among features. The

use of this information measure allows hypergraph cluster analysis to locate the most

informative feature subset (mIFS) using higher-order interaction information reflecting

similarity.

According to the definition of MII in Chapter 3, we propose to use the following

multidimensional interaction information to measure the high-order relevance of features.

For a set of features F = {f1, . . . , fk}, the relevance degree among these feature vectors

54



can be defined as

W(f1:k;C) =
k∑
i=1

I(fi;C)−
∑
f⊆F

I({f}) +
∑
f⊆F

I({f}|C) . (4.1)

The above relevance degree definition consists of three terms. The first
∑k

i=1 I(fi;C)

referred to as relevancy is the sum of each individual feature’s relevance with the class

set C. The second term of the form
∑

f⊆F I({f}) referred to as redundancy is used

to measure the redundant among features. The third term
∑

f⊆F I({f}|C) measures

the influence of the features combination on the class set C. We refer to this as the

class-conditional correlations. Therefore, a large value of W(f1:k;C) means that both∑k
i=1 I(fi;C) and

∑
f⊆F I({f}|C) are large (indicating features F = {f1, . . . , fk} are

informative with respect to the class set C) and
∑

f⊆F I({f}) is small (indicating features

F = {f1, . . . , fk} are less redundant).

4.2.2 Most Informative Feature Subset Selection

Let H = (V,E,W) be a hypergraph. We can locate the most informative feature subset

(mIFS) by finding the solutions of the following non-linear optimization problem that

maximizes the functional [64]

f(a) =
∑
e∈E

W(e)
∏
i∈e

ai . (4.2)

subject to a ∈ 4, where the multidimensional solution vector a fall on the simplex 4 =

{a ∈ Rd : a ≥ 0,
∑d

i=1 ai = 1}. The set E represents the set of hyperedges, so each

e ∈ E is a hyperedge, i.e. a set of k vertices. The solution vector a is d-dimensional where

d is the number of vertices (features), representing a probability distribution over the set of

vertices (features). In other words, a is an d-dimensional indicator vector such that ai > 0

if i-th feature belongs to the dominant cluster which corresponds to the most informative

feature subset (mIFS). A feature fi is selected if and only if the i-th component of a
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is positive, i.e. ai > 0. Consequently, the number of selected informative features m

(m < d) is determined by the number of positive components of a. The function W is a

weight function which associates a real value of weight with each hyperedge. The local

maximum of f(a) can be solved using the Baum-Eagon inequality equation [39] and leads

to the iterative update:

zi =
ai∂if(a)∑d
j=1 aj∂jf(a)

, i = 1, . . . , d . (4.3)

where f(a) is a homogeneous polynomial in the variables ai and z = M(a) is a growth

transformation of a. The Baum-Eagon inequality f(M(a)) > f(a) provides an effective

iterative means for maximizing polynomial functions are probability domains. By taking

the support of a, we can locate the mIFS under our framework. The complexity of finding

mIFS is thus O(t|E|), where |E| is the number of hyperedges of the hypergraph and t is

the average number of iteration needed to converge. Note that t never exceeded 100 in

our experiments.

The Baum-Eagon inequality only can be used on polynomials with non-negative coef-

ficients, whereas our weight function (see Equation (4.1)) could lead to negative weights.

In order to solve this problem, we convert the polynomial with negative coefficients into

a polynomial with nonnegative coefficients by adding a term β ∗ (
∑d

j=1 aj)
k with arbi-

trarily large positive β. This does not affect the maximizers, and since
∑d

j=1 aj = 1 it is

equivalent to adding a constant to the objective function. According to the value of a, all

features F fall into two disjoint subsets, S1(a) = {fi|ai = 0} and S2(a) = {fi|ai > 0}.

The set of nonzero variables S2(a) is our selected most informative feature subset (mIFS).

The sequence of steps shown in Algorithm 2 illustrates our algorithm in detail.

4.2.3 Complete Feature Ranking

According to the value of a, all features F fall into two disjoint subsets, S1(a) = {fi|ai =

0} and S2(a) = {fi|ai > 0}. The set of positive variables S2(a) is our selected most in-
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Algorithm 2: Hypergraph based information-theoretic feature selection algorithm
Input: Dataset X with all features d

Output: The selected feature subset corresponding to the non-zero elements of

d-dimensional indicator vector a

1) Construct a hypergraph in which each node corresponds to a feature, the weight

matrix W for the hyperedges is computed using Equation (4.1) ;

2) Compute a based on W by Equation (4.2) and iteratively update a by Equation

(4.3) ;

3) Select the most informative feature subset (mIFS) from the non-zero elements of

d-dimensional indicator vector a.

formative feature subset (mIFS). We rank the features contained in the unselected feature

set S1(a) = {fi|ai = 0} using feature selection algorithm MRMR [27]. Consequently, we

can obtain a complete feature ranking list, which starts from the size of most informative

feature subset (mIFS) and ends at any user-specified fixed number.

4.3 Classification Strategy

After finding the discriminating features, we then run classification experiments on them

by two classifiers. For multi class data set, we use the linear SVM with LIBSVM [14].

However, for binary class data set, we apply the variational EM (VBEM) algorithm [11] to

fit a mixture of Gaussians model to the selected feature subset. After learning the mixture

model, we use the a class posteriori probabilities, see Equation (4.4), to classify one of

testing sample data. Given a sample, we first compute its selected feature vector b through

feature selection. Then we compute its a posteriori probabilities rc, the mean vectors b̂c,

and the precision matrices Λc, where c ∈ c1, . . . , cl and l is the number of class for the

data. For example, in binary classification, if rc1 > rc2 then the sample is classified as
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class c1. Otherwise, the sample is classified as c2. The posterior probabilities are given by

rnk ∝ πk|Λk|
−1
2 exp{1

2
(xn − µk)TΛk(xn − µk)} . (4.4)

where k = 1, . . . , C are the mixture components and n = 1, . . . , N denotes the data in-

dex. The model parameters πk, µk and Λk are respectively the a priori probability, the

mean of selected feature vectors and the precision matrices of the k-th component. In the

variational Bayesian EM (VBEM) algorithm, all of these model parameters are charac-

terized by distributions, each of which has hyper-parameters, which take into account the

uncertainty in the parameter estimation. The parameters rnk represent the responsibility

the k-th component takes in explaining the n-th observation. The posteriori probabil-

ity can be arranged into a matrix R = (rnk) and where it had to satisfy the condition:

0 ≤ rnk ≤ 1.

4.4 Experiments and Comparisons

The data sets used to test the performance of our proposed algorithm are benchmark data

sets from the UCI Machine Learning Repository and Statlog. Table. 4.1 summarizes the

extents and properties of the ten data-sets.

Our proposed feature selection method (referred to as the MII+HG) utilizes the mul-

tidimensional interaction information criterion and hypergraph cluster analysis for fea-

ture selection. It involves applying the MII criterion as the weight measure and then

using hypergraph cluster analysis to locate the most informative feature subset (mIFS).

We compare the classification results from our proposed method MII+HG with those

obtained using both alternative MI-based criterion methods and graph-based methods.

These methods are the MRMR algorithm [27], the MIFS algorithm [55], the JMI algo-

rithm [29], the Laplacian score (LS) [73] and the subset-level based Fisher score (S-FS)

[24]. The evaluation scheme is depicted in Fig. 4.2. We first explore the discriminating
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Data-set From Training data Testing data Features Classes

Ion UCI 200 151 32 2

Breast cancer UCI 399 300 10 2

Sonar UCI 108 100 60 2

Pima UCI 468 300 8 2

Wine UCI 100 78 13 3

Pendigits UCI 7494 3498 16 10

Vowel UCI 528 462 10 11

Letter Statlog 15000 5000 16 26

Satimage Statlog 4435 2000 36 6

Dna Statlog 2000 1186 180 3

Table 4.1: Summary of UCI and Statlog benchmark data sets

features using the different methods on binary classification and clustering problems (i.e.

Ion, Sonar, Pima and Breast cancer dataset). For performance comparison, we apply the

VBEM algorithm to the selected feature subset for the purpose of classification. Next, we

extend our attention from the binary to the multi class case and compare the classification

performance for the different methods using an SVM classifier with the features selected

by these methods. Here we use the linear SVM with LIBSVM [14].

Using the feature selection algorithms outlined above, we first examine the classifica-

tion performance on binary classification and clustering problems (i.e. Ion, Sonar, Pima

and Breast cancer dataset). The classification accuracies obtained on different feature

subsets are shown in Fig. 4.3. From the figure, it is clear that using the most informative

feature subset (mIFS), MII+HG achieves the best classification accuracy. This is higher

than that obtained using alternatively sized feature subsets. Adding some highly ranked

features from outside the mIFS results in a deterioration of accuracy. Moreover, MII+HG
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Figure 4.2: The scheme for evaluating the classificatory effectiveness of selected features

is, by and large, superior to the alternative feature selection methods. This implies that

our proposed method is able to locate both the optimal size of feature subset and performs

accurate classification of samples based on a very few of the most important features.

However, for the alternative feature selection methods, user input is required to supply

the number of features to be selected in advance. This is because they focus on ranking

features based on their scores. In other word, they select the best m features in a greedy

way. Commencing from an empty feature pool, features are added into the pool one by

one until the user-defined number is reached. As a result, they may neglect the possible

correlation between different features and thus can not produce an optimal feature subset.

To make a detailed comparison, we summarize the classification accuracy on binary

class data sets for the different methods in Table. 4.2. In the last row, the classification

accuracy for MII+HG and the automatically determined size of most informative feature

subset (mIFS) are reported. To make a fair comparison, suppose that the determined size

of most informative feature subset (mIFS) is m. For each alternative method, we measure

the classification accuracy for m − 1, m and m + 1 features, and take the best result as

the baseline performance. As shown by the results in Table. 4.2, at small dimensionality
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(a) Ion (b) Breast cancer

(c) Sonar (d) Pima

Figure 4.3: Accuracy rate vs. the number of selected features on binary class data sets.

(i.e. Pima data set) there is little difference between our proposed method and the alter-

native MI-based methods. However, at higher dimensionality, the features subset located

by MII+HG clearly has a higher discriminability power than the features selected by the

alternative feature selection methods. This may be explained by the fact that the tradi-

tional feature selection methods may work well on low dimensional binary classification

and clustering problem. However, they are very likely to fail in high dimensional binary

or multi classification and clustering problems. The reason for this is that the alternative

MI-based methods (i.e. MRMR and MIFS) select features in a greedy way and neglect the
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Dataset Ion Breast cancer Sonar Pima

MRMR 74.93% 88.84% 66.35% 75.91%

MIFS 75.21% 88.84% 56% 75.91%

JMI 83.4% 88.84% 53.37% 75.91%

LS 79.77% 88.84% 55.98% 58.46%

S-FS 85.63% 91.7% 56.9% 64.32%

MII+HG 89.19%(23) 96.3%(3) 70.56%(7) 75.91%(3)

Table 4.2: The Performance of VBEM at the given number of features selected by differ-

ent methods on the binary class data sets

conditional redundancy term I(xi, S|C). As a result, there is a tendency to overestimate

the redundancy between features. Thus some important features can be discarded, which

in turn leads to information loss. In order to further verify this assertion, in the following

experiments, we extend our attention from the binary to the multi class case and compare

the performance of different methods.

The best result for each method together with their corresponding size of selected fea-

ture subset cardinality are shown in Table. 4.3. In the table, the classification accuracy is

shown first and the optimal number of features selected is reported in brackets. Overall,

MII+HG achieves the highest degree of dimensionality reduction, i.e. it selects a smaller

feature subset compared with those obtained by the alternative methods. For example, in

the Sonar data set, the best result obtained by the alternative feature selection methods is

68.5% on the S-FS algorithm with 24 features. However, our proposed method MII+HG

gives a better accuracy 70.56% when only 7 features are used. The results further verify

that our feature selection method can guarantee the optimal size of feature subset, as it

not only achieves a higher degree of dimensionality reduction but it also gives a better

discriminability power. We also observe that in most cases (i.e. the Ion, Breast cancer and
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Dataset Ion Breast cancer Sonar Pima

MRMR 80.34%(32) 91.7%(9) 66.87%(27) 75.91%(3)

MIFS 82.62%(20) 90.84%(8) 65%(25) 75.91%(3)

JMI 84.33%(26) 91.7%(9) 66.34%(29) 75.91%(3)

LS 84.05%(17) 91.7%(9) 60%(28) 63.41%(6)

S-FS 85.63%(21) 92.13%(4) 68.5%(24) 66.01%(6)

MII+HG 89.19%(23) 96.3%(3) 70.56%(7) 75.91%(3)

Table 4.3: The best result of all methods and their corresponding size of selected feature

subset on on the binary class data sets

Sonar data set), S-FS (subset-level Fisher score) gives a better result than the alternative

methods. The reason is that unlike traditional methods which treat each feature individ-

ually and hence are suboptimal, the S-FS method directly optimizes the score over the

entire selected feature subset. As a result, a better feature subset can be obtained. In the

following experiments, we extend our study from the binary to the multi class case and

compare the performance of the alternative methods.

Fig. 4.4 shows the plots of the classification accuracy versus the number of selected

features on multi class data sets. Our proposed MII+HG algorithm consistently outper-

forms the alternative methods on all six multi class data sets by selecting a smaller set of

discriminative features than the alternatives. This is reflected by the classification results.

There are two reasons for this improvement in performance. First, the multidimensional

interaction information (MII) criterion is applied to measure the hyperedge weight, and

this can capture the effects of multiple or higher order dependencies between the fea-

tures and the class. Second, hypergraph clustering analysis simultaneously considers the

information-contribution for each feature together with the correlation between features.

Thus structural information latent in the data can be effectively identified. As a result the
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optimal feature combinations can be located so as to guarantee an optimal feature subset.

On the other hand, the graph-based methods (i.e. LS and S-FS) fail to locate the most

discriminative features, as shown in Fig. 4.4(a, b, c, d). This may be explained by our ob-

servation that both methods employ distance based methods for similarity measurement.

Their selected features are proximity only in values. There are positively correlated, neg-

atively correlated, and interdependent segments which are not accounted for. As a result,

they are not able to discover meaningful feature structure latent in the graph.

Dataset Pendigits Letter Wine Vowel Satimage Dna

MRMR 68.1% 78.3% 98.3% 49.6% 85% 92.7%

MIFS 73.2% 71.9% 97.2% 49.6% 85.2% 90.6%

JMI 70.2% 78.3% 97.8% 51.3% 85% 94.1%

LS 69% 73% 97.8% 49.6% 84.9% 90.6%

S-FS 65.2% 68% 96.1% 52.2% 84.9% 92.4%

MII+HG 76.2%(3) 82.7%(10) 98.9%(4) 56.7%(3) 87.2%(17) 96.3%(15)

Table 4.4: The Performance of LIBSVM at the given number of features selected by

different methods on the multi class data sets

We summarize the classification accuracy on multi class data sets for the different

methods in Table. 4.4. Again, MII+HG is, by and large, superior to the alternative meth-

ods, giving the optimal size of feature subset. The best results for each method together

with their corresponding size of selected feature subset cardinality are shown in Table. 4.5.

In the table, the classification accuracy is shown followed by the optimal number of fea-

tures selected in brackets. From Table. 4.5, it is clear that MII+HG outperforms the

alternative methods. However, in the Letter and Satimage data sets, although the alterna-

tive methods can obtain the best performance using the entire feature-set, our proposed

method MII+HG achieves the same classification accuracy with much smaller number
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Dataset Pendigits Letter Wine Vowel Satimage Dna

MRMR 68.1%(3) 82.7%(16) 98.3%(3) 52%(5) 87.2%(36) 94.8%(27)

MIFS 73.2%(3) 82.7%(16) 97.2%(3) 49.6%(2) 87.2%(36) 90.8%(26)

JMI 70.2%(4) 82.7%(16) 97.8%(3) 52%(5) 87.2%(36) 94.7%(27)

LS 69.6%(5) 82.7%(16) 97.8%(3) 49.6%(2) 87.2%(36) 90.8%(17)

S-FS 65.4%(5) 82.7%(16) 96.1%(4) 52.2%(3) 87.2%(36) 94.9%(26)

MII+HG 76.2%(3) 82.7%(10) 98.9%(4) 56.7%(3) 87.2%(17) 96.3%(15)

Table 4.5: The best result of all methods and their corresponding size of selected feature

subset on the multi class data sets

of features, (i.e., only 10 features for the Letter data set and 17 features for the Satim-

age data set). This implies that the discriminative information exists in a small set of

features, which can be effectively selected by MII+HG and then those features can be

used to construct classifiers effectively. The results from the accuracy rate in Table. 3.4

and Table. 4.4 together reveal the significance of feature hypergraph representation over

feature graph representation for relevant feature subset extraction. As shown by the re-

sults, the feature hypergraph based method is, by and large, superior to the feature graph

based method. Specifically, it selects a both a smaller and better performing (in terms of

classification accuracy) set of relevant feature subset on most of the data sets.

4.5 Conclusions

In this chapter, we have presented a new hypergraph based information theoretic approach

to feature selection. The proposed feature selection method offers three major advantages.

First, the MII criteria is applied to measure the weight of hyperedges, which takes into

account high-order feature interactions, overcoming the problem of overselected feature
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redundancy. As a result the features associated with the greatest amount of joint infor-

mation can be preserved. Second, hypergraph clustering analysis is used to locate the

most informative feature subset (mIFS), therefore, the optimal size of feature subset can

be automatically determined. Third, the variational EM (VBEM) algorithm and a Gaus-

sian mixture model are applied to the selected feature subset. This improves the overall

classification accuracies by automatically determining the number of clusters present in

the data during the learning process.

The proposed feature selection methods above are supervised feature selection meth-

ods. While the labeled data required by supervised feature selection can be scarce, there is

usually no shortage of unlabeled data. Hence, there are obvious attractions in developing

unsupervised feature selection algorithms which can utilize this data. Therefore, in the

following two chapters (Chapter 5 and Chapter 6), we extend our attention to unsuper-

vised feature selection methods.
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(a) Pendigits (b) Letter

(c) Wine (d) Vowel

(e) Satimage (f) Dna

Figure 4.4: Accuracy rate vs. the number of selected features on multi class data sets.
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Chapter 5

Kernel Entropy Analysis for
Unsupervised Feature Selection

Most existing feature selection methods focus on ranking individual features based on

a utility criterion, and select the optimal feature set in a greedy manner. However, the

feature combinations found in this way do not give optimal classification performance,

since they neglect the correlations among features. In an attempt to overcome this prob-

lem, in this chapter, we develop a novel feature selection technique using the spectral

data transformation and by using `1-norm regularized models for subset selection. In

this chapter, we propose a new two-step spectral regression technique for unsupervised

feature selection. In the first step, we use kernel entropy component analysis (kECA) to

transform the data into a lower-dimensional space so as to improve classes separation.

Second, we use `1-norm regularization to select the features that best align with the data

embedding resulting from kECA. The advantage of kECA is that dimensionality reducing

data transformation maximally preserves entropy estimates for the input data whilst also

best preserving the cluster structure of the data. Using `1-norm regularization, we cast

feature discriminant analysis into a regression framework which accommodates the cor-

relations among features. As a result, we can evaluate joint feature combinations, rather

than being confined to consider them individually. Experimental results demonstrate the

effectiveness of our feature selection method on a number of standard face data-sets.
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Chapter outline

The outline of this chapter is as follows. In Section 5.1 and Section 5.2, we respectively

describe the two different strategies (kernel PCA and kernel ECA) used to transform the

data into a lower-dimensional space. Section 5.3 presents the robust feature selection

based on `1-norms. A detailed description of the feature evaluation indices is given in

Section 5.4. In Section 5.5, we first give a description of the real-world benchmark face

data sets. We then examine the performance of our proposed method, and compare the

classification results with those obtained by alternative feature selection methods. Finally,

Section 5.6 concludes this chapter.

5.1 Kernel PCA

One of the best known non-linear data transformation methods for similarity data is

the kernel principal components analysis technique of Schölkopf et al. [10]. Sup-

pose the original high-dimensional data is represented by X = [x1, x2, . . . , xN ], where

xi ∈ Rd, i = 1, . . . , N and the number of features (dimensions) of the data set is d. The

basic idea underpinning kernel PCA is that by using a nonlinear mapping Φ, we implicitly

perform PCA in a possibly high-dimensional space F which is related to the input space

in a non-linear way.

The non-linear map from input space to feature space is given by Φ : Rd → F such

that xt → Φ(xt), t = 1, . . . , N . Let Φ = [Φ(x1),Φ(x2), . . . ,Φ(xN)]. To perform PCA

in F , we need to find an expression for the projection Pαi
Φ of Φ onto a feature space

principal axes αi, or onto a subspace El spanned by the leading l eigenvectors. This

projection is achieved implicitly via the kernel function.

The estimated covariance matrix of the mapped data Φ(xi) in kernel PCA is defined
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as

CΦ(x) =
1

N

N∑
i=1

Φ(xi) · Φ(xi)
T . (5.1)

By analyzing with PCA, we solve the eigenvector problem:

λwΦ = CΦ(x)wΦ = (
1

N

N∑
i=1

Φ(xi) · Φ(xi)
T )wΦ

=
1

N

N∑
i=1

(Φ(xi)
T · wΦ)Φ(xi) . (5.2)

From Equation (5.2), we can see that all solutions wΦ with λ 6= 0 lie in the span of

Φ(x1),Φ(x2), . . . ,Φ(xN), i.e. the coefficients αi(i = 1, . . . , N) exist such that

wΦ =
N∑
i=1

αiΦ(xi) . (5.3)

By multiplying Equation (5.2) with Φ(xt)
T from the left and substituting from Equation

(5.3), we obtain

λ
N∑
i=1

αi(Φ(xt)
T · Φ(xi)) =

1

N

N∑
i=1

αi{Φ(xi) · Φ(xi)
T

N∑
j=1

Φ(xt)
TΦ(xj)} . (5.4)

where t ∈ [1, N ]. Defining the N × N kernel matrix K by Kij = k(xi, xj) = Φ(xi)
T ·

Φ(xj), the above equation turns reduces to an eigenvalue problem,

Nλα = Kα . (5.5)

For the non-zero eigenvalues λi and eigenvectors αi = (α1, . . . , αN)′ subject to the nor-

malization condition NλαTα = 1.

Note that kernel PCA performs dimensionality reduction by selecting the top αl eigen-

vectors solely associated with the l largest eigenvalues. From an information theoretic

perspective, the resulting transformation may be based on uninformative eigenvectors.
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5.2 Kernel Entropy Component Analysis

Although kernel Entropy Component Analysis, provides a means of overcoming this

problem and is similar to kernel PCA in terms of solving an eigenvector equation, the

underlying data transformation is based on the information content of the eigenvectors

and eigenvalues. As a result it is not necessarily the leading eigenvalues and eigenvectors

of the kernel matrix that are selected.

The Renyi quadratic entropy is given by [3]

H(p) = − log

∫
p2(x)dx . (5.6)

where p(x) is the probability density function generating the data set, or sample, X =

x1, x2, . . . , xN . Because of the monotonic nature of the logarithmic function, one can

work instead with the quantity

V (p) =

∫
p2(x)dx . (5.7)

The Parzen estimate of V (p) can be effected using the window density estimator with

either a Gaussian or Radial Basis Function (RBF) as suggested in [20], and is given by

p̂(x) =
1

N

∑
xt∈S

kσ(x, xt) . (5.8)

where kσ(x, xt) is the kernel centered at xt with width governed by the parameter σ.

Hence,

V̂ (p) =
1

N

∑
xt∈S

p̂(xt) =
1

N

∑
xt∈S

1

N

∑
x
t
′∈S

kσ(xt, xt′ )

=
1

N2
1TK1 . (5.9)

where, the element (t, t
′
) of the N ×N kernel matrix K is kσ(xt, xt′ ) and 1 is an N × 1

vector containing all ones.

Hence, the Renyi entropy estimator may be expressed in terms of the eigenvalues and

eigenvectors of the kernel matrix, which may be decomposed as K = EDET , where D is
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the diagonal matrix containing the eigenvalues λ1, λ2, . . . , λN and E is a matrix with the

corresponding eigenvectors α1, α2, . . . , αN as columns. Rewriting the above, we have

V̂ (p) =
1

N2

N∑
i=1

(
√
λiα

T
i 1)2 . (5.10)

From the above expression indicates, kernel ECA is the projection of Φ onto those feature-

space principal axes that maximally preserve the entropy estimate for the input data set

(contributions
√
λiα

T
i 1). These axes will, in general, not necessarily correspond to the

leading eigenvalues λi since αTi 1 also contributes to the entropy estimate. Hence, kernel

ECA is defined as anm-dimensional data transformation technique which projects Φ onto

a subspace Em spanned by those m kernel PCA axes contributing most significantly to

the Renyi entropy estimate for the data. Hence Em is composed of a subset of kernel

PCA axes but not necessarily those corresponding to the leading m eigenvalues. Hence

in kernel ECA, the selected transformation features best preserve the cluster structure of

the data.

5.3 Robust Feature Selection Based on L1-Norms

Suppose the original high-dimensional data X ∈ RN×d, that is, the number of samples

is N and the number of features (dimensions) of the data is d. The task of kernel ECA

is to find a low-dimensional embedding space Y such that the clusters are more “obvi-

ous” or separate. Specifically, Y = [y1, . . . , yC ], y1 is the embedding eigenvector which

contributes most to Equation (5.10), correspondingly, the projection onto the kernel PCA

axes that maximally preserve the entropy estimate for the input space data set. The intrin-

sic dimensionality of the data is C and each vector yk reflects the data distribution along

the corresponding dimension [44]. When one tries to perform cluster analysis of the data,

each yk can reflect the data distribution on the corresponding cluster. Thus, the C is set

to be equal to the number of clusters [2]. For feature selection, we can evaluate features
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jointly that align well along each intrinsic dimension (each column of Y), correspond-

ingly, the contribution of each feature for differentiating each cluster. That is, given yk, a

column of Y, we propose to find a set of m features, such that their linear span is close to

yk. This idea can be formulated as the minimization problem:

min
ΦM,k,M

‖yk −XMΦM,k‖2 . (5.11)

where M = {i1, . . . , im} ⊆ {1, . . . , d}, XM = (fi1 , . . . , fim) ∈ RN×m and ΦM,k is

corresponding to a transformation vector that measures the importance of different fea-

tures in approximating yk. When all yk are considered, their joint optimization can be

formulated as:

argmin
ΦM,k,M

C∑
k=1

‖yk −XMΦM,k‖2 = ‖Y −XMΦM‖2 . (5.12)

In the above equation, ΦM = [ΦM,1, · · · ,ΦM,k, · · · ,ΦM,C ]. Note, when ΦM contains

only one feature, the formulation reduces to searching for features that maximize the

Equation (5.12).

Given Y and XM, ΦM can be obtained in a closed form. However, feature selection

needs to locate a optimal subset of features fM that are close to Y. This is a combinatorial

problem which is NP-hard [60]. We approximate the problem, as the minimization

min
Φk,γ
‖yk −XΦk‖2 (5.13)

s.t.|Φk| ≤ γ

where |Φk| is the `1-norm which is defined in the following way:

|Φk| =
d∑
i=1

|Φi,k|. (5.14)

where Φk is a d dimensional vector that contains the combination coefficients required to

compute for different features in approximating yk. When applied in regression, the `1-

norm constraint is equivalent to applying a Laplace prior [46] on Φk. This tends to force
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many rows of Φ to be zero, resulting in a sparse solution. Therefore, the representation is

generated by using only a small set of selected features.

There are three advantages of the formulation presented in Equation (5.13). First, it

can find a set of features that jointly preserve the cluster structure resulting from kECA.

Second, it can handle redundant features. Traditional feature selection methods always

treat each feature individually which may repeatedly select highly correlated features in

the selection process and thus being unable to handle feature redundancy. In our algo-

rithm, by jointly evaluating a set of features, we tend to select non-redundant features. As

a result combinations of several “irrelevant” features may create stronger discriminating

power. This can improve the global optimality of feature selection. Thirdly and finally,

our algorithm is tractable. Given a value for γ, the solution of Equation (5.13) can be

found by applying a general solver [1]. Given the number of selected features m, an ap-

propriate γ value, which results in the selection of about m features, can be found. This

is done by applying either a) a grid search or b) a binary search based on the observation

that, a smaller γ value usually results in selecting fewer features. However, for a given

m, this approach may require us to run a solver many times to locate the best value of γ

value, and this is computationally inefficient.

In order to efficiently solve the optimization problem in Equation (5.13), we use the

Least Angle Regression (LARs) algorithm [9]. Instead of setting the parameter γ, LARs

allows to control the sparseness of Φk. This is done by specifying the cardinality (the

number of non-zero entries) of Φk, which is particularly convenient for feature selection.

We consider selecting m features from the d feature candidates. For a data set con-

taining C clusters, we can compute C selection vectors {Φk}Ck=1 ∈ Rd. The cardinality

of each Φk is m and each entry in Φk corresponds to a feature. Here, we use the fol-

lowing computationally effective method for selecting exactly m features based on the C

selection vectors.
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For every feature j, we define the KECAR score for the feature as

KECAR(j) = max
k
|Φj,k| . (5.15)

where Φj,k is the j-th element of vector Φk. We then sort the features in descending order

according to their KECAR scores, and then select the top m features. The sequence of

steps shown in Algorithm 3 illustrates our method in detail.

Algorithm 3: Regression-based Feature Selection Framework Under Kernel ECA
Input: Dataset XN×d

Output: m selected features

1: Using kernel entropy component analysis (kernel ECA) for data transformation

and dimensionality reduction, we get the top C embedding space Y = [y1, . . . , yC ]

with respect to the most entropy estimate, see Equation (5.10);

2: Solve the regression problem in Equation (5.13) using the LARs algorithm with

the cardinality constraint set to m. We obtain C sparse coefficient vectors

{Φk}Ck=1 ∈ Rd;

3: Compute the KECAR score for each feature according to Equation (5.15);

4: Return the top m features according to their KECAR scores.

5.4 Feature Evaluation Indices

Our proposed unsupervised feature selection method (referred to as kECA+LARs) uti-

lizes kernel entropy component analysis (kECA) and the Least Angle Regression (LARs)

algorithm for unsupervised feature selection. It involves applying kECA to embed the

data into another space and then uses LARs to select features that align well to the em-

bedded data resulting from kECA. In order to examine the performance of our proposed
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method kECA+LARs, we need to assess the data transformation obtained and its useful

information content it. In view of this, we would like to measure the performance of our

proposed algorithm using three different indices, namely, (1) data transformation, (2)

classification accuracy and (3) redundancy rate. Assume S is the set of selected

features, the redundancy rate can be defined as follow:

RED(S) =
1

m(m− 1)

∑
fi,fj∈S,i>j

ρi,j . (5.16)

where ρi,j returns the Pearson correlation between two features fi and fj . The measure-

ment assesses the averaged correlation among all feature pairs, and a large value indicates

that many selected features are strongly correlated and thus redundancy is expected to

exist in S.

5.5 Experiments and Comparisons

5.5.1 Data sets

The data sets used to test the performance of our proposed algorithm are publicly available

face-recognition benchmarks. Table. 5.1 summarizes the coverage and properties of the

three data-sets. In all of experiments performed, face location preprocessing was applied.

The original images were normalized (in scale and orientation) such that the two eyes

were aligned at the same position. Then, the facial areas were cropped to give images for

matching. The size of each cropped image is 32×32 pixels, with 256 grey levels per pixel.

Thus, each image is represented by a 1024-dimensional vector. In Fig. 5.1, we show the

closely cropped images and these all contain facial structure.

The Yale face dataset contains 165 images of 15 individuals that include variations

in facial expression and lighting conditions, together with subjects both with and without

glasses. A random subset with 7 images per individual (hence, 105 images in total) was
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Data-set Examples Features Classes

Yale 165 1024 15

ORL 400 1024 40

PIE 1428 1024 68

Table 5.1: Summary of benchmark face data sets

taken to form the training set. The remainder of the dataset was used as the test-set. The

training samples were used to learn the relevant feature subset. The test samples were

then represented by the relevant extracted features.

The ORL face dataset contains 40 distinct individuals with ten images per person. The

images are taken at different time instances, and include variations in facial expression and

facial detail (glasses/no glasses). A random subset with 6 images per individual (hence,

240 images in total) was used as the training set. The remainder of the dataset was used

as the test set.

The PIE is a multiview face dataset, consisting of 41,368 images of 68 people. The

views cover a wide range of poses from profile to frontal views, varying illumination and

expression. In this experiment, we fixed the pose and expression. Thus, for each person,

we have 21 images obtained under different lighting conditions, We got 14 of these images

for training and the remaining 7 for testing.

5.5.2 Data Transformation

we compare the data transformation performance of our proposed method using kECA

with alternative methods, including kernel PCA [10], the Laplacian eigenmap [44] and

LPP [74]. In order to visualize the results, we have used five randomly selected subjects

from each dataset, and these are shown in Fig. 5.2, Fig. 5.3 and Fig. 5.4. In each figure,

we have shown the projections onto the leading two most significant eigenmodes from
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(a) Yale dataset

(b) ORL dataset

(c) PIE dataset

Figure 5.1: The sample cropped face images of two individual form three face dataset.

the kernel PCA, Laplacian eigenmaps and LPP respectively, ordered according to their

eigenvalues. This provides a low-dimensional representation for the images. We also have

shown the projections onto the leading two principal components extracted using kernel

ECA. From the above figures, it is clear that the kernel ECA based clustering of the face

samples represents a significant improvement over that obtained using the alternative data

transformation methods. This implies that the entropy based principal component vectors

selection is more appropriate than selecting principal component vectors based only on

magnitude of eigenvalues.

5.5.3 Classification Accuracy

In order to explore the discriminative capabilities of the information captured by our

method, we use the selected features for further classification. We compare the classi-

fication results from our proposed method kECA+LARs with six representative feature
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(a) Kernel ECA (b) Kernel PCA

(c) Laplacian eigenmaps (d) LPP

Figure 5.2: Distribution of samples of five subjects in Yale dataset.

selection algorithms. For unsupervised learning, four alternative feature selection algo-

rithms are selected as baselines. These methods are the Laplacian score [73], SPEC [81],

MCFS [16] and UDFS [77]. We also compare our obtained results with two supervised

feature selection methods, namely a) the Fisher score [24] and b) the MRMR algorithm

[27]. We use 5-fold cross-validation for the SVM classifier on the feature subsets obtained

by the feature selection algorithms to verify their classification performance. Here we use

the linear SVM with LIBSVM [14].

The classification accuracies obtained with different feature subsets are shown in

Fig. 5.5. From the figure, it is clear that our proposed method kECA+LARs is, by and
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(a) Kernel ECA (b) Kernel PCA

(c) Laplacian eigenmaps (d) LPP

Figure 5.3: Distribution of samples of five subjects in ORL dataset.

large, superior to the alternative unsupervised feature selection methods. Specifically, it

selects a both a smaller and better performing (in terms of classification accuracy) set

of discriminative features on all the three data sets. Moreover, kECA+LARs rapidly

converges to the best results, with typically around 80 features. Each of the alternative

unsupervised methods, usually require more than 100 features to achieve a comparable

result. There are two reasons for this improvement in performance. First, the kernel-based

methodology is integrated together with entropy-based analysis to select the best principal

component vectors. Thus both structural and the entropy (complexity-based) information

latent in the data can be effectively preserved. Second, the LARs algorithm is applied to
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(a) Kernel ECA (b) Kernel PCA

(c) Laplacian eigenmaps (d) LPP

Figure 5.4: Distribution of samples of five subjects in PIE dataset.

select features that align well to the embedded data resulting from kECA. As a result the

optimal feature combinations can be located so as to remove redundant features.

Compared with the supervised feature selection algorithms, kECA+LARs outper-

forms the Fisher score algorithm in all cases. On the Yale dataset, even though MRMR

gives the best classification performance of 86.67% with 100 features, kECA+LARs

achieves a comparable result with a much smaller number of features, i.e., only 86 fea-

tures. This implies that our proposed method is able to locate both the optimal size of the

feature subset and perform accurate classification of the samples based on just a few of

the most important features.
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Dataset Yale ORL PIE

MRMR 86.67%(100) 83.5%(95) 99.15%(99)

Fisher score 75.15%(92) 80%(99) 99.37%(97)

Laplacian score 65.45%(100) 65.25%(99) 71.43%(99)

SPEC 70.91%(100) 64.5%(95) 89.64%(100)

UDFS 66.06%(99) 76.5%(99) 96%(98)

MCFS 83.64%(86) 87.75%(88) 99.85%(98)

kECA+LARs 84.24%(86) 93%(74) 100%(84)

Table 5.2: The best result of all methods and their corresponding size of selected feature

subset on the three face datasets

It is interesting to note that on the ORL dataset, the classification results obtained by

the unsupervised spectral regression based methods (kECA+LARs and MCFS) are even

better than those obtained using the supervised feature selection methods (Fisher score

and MRMR). Our proposed kECA+LARs algorithm achieves the best classification accu-

racy, which is higher than that obtained using the alternative supervised and unsupervised

feature selection algorithms. This implies that spectral regression based methods are a

better way to analyze data features jointly. Moreover, kECA+LARs performs better than

the MCFS algorithm, although they are both belong to the spectral regression framework.

The reason is that the MCFS algorithm uses the Lapalacian eigenmap [44] to reveal the

data manifold structure. On one hand, the Laplacian eigenmap performs dimensional-

ity reduction by selecting l eigenvalues (spectrum) and eigenvectors solely based on the

magnitude of the eigenvalues, and the resulting transformation may be based on unin-

formative eigenvectors from an entropy perspective which can lead to substantial loss of

information. On the other hand, the Laplacian eigenmap only provides an approximation

solution of the ratio cut clustering [52], which cannot guarantee have the clear cluster
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structure, hence usually further clustering algorithm such as K-means need to be applied

to obtain the final clustering result [25]. Our proposed kECA+LARs algorithm is funda-

mentally different from other spectral methods, where the kernel-based methodology is

combined with entropy analysis for data transformation. Thus it is capable of revealing

more “obvious” or accurate data structure.

The best result for each method together with the corresponding size of the selected

feature subset are shown in Table. 5.2. In the table, the classification accuracy is shown

first and the optimal number of features selected is reported in brackets. Overall, our

proposed method kECA+LARs achieves the highest degree of dimensionality reduction,

i.e. it selects a smaller feature subset compared with those obtained by the alternative

methods. For example, in the ORL data set, the best result obtained by the alternative

feature selection methods is 87.75% with the MCFS algorithm and 88 features. However,

our proposed method kECA+LARs gives a better accuracy 93% when only 74 features

are used. The results further verify that our feature selection method can guarantee the

optimal size of feature subset, as it not only achieves a higher degree of dimensionality re-

duction but it also gives better discriminability. We also observe that the UDFS algorithm

gives a better result than the alternative unsupervised methods (i.e. the Laplacian score

and the SPEC). The reason for this is that unlike traditional methods which treat each fea-

ture individually and which hence are suboptimal, the UDFS method directly optimizes

the score over the entire selected feature subset. As a result, a better feature subset can be

obtained. On the other hand, the alternative unsupervised feature selection method, i.e.

the Laplacian score and SPEC, fail to locate the most discriminative features. This may

be explained by our observation that they are unable to handle feature redundancy. For

instance, they may repeatedly select highly correlated features in the selection process.

And It has been known that redundant features can adversely affect the performance of

classification and clustering.
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Dataset Yale ORL PIE

MRMR 0.58 1.47 0.51

Fisher score 0.62 1.72 0.53

Laplacian score 0.73 1.68 0.67

SPEC 0.72 1.65 0.66

UDFS 0.71 1.62 0.63

MCFS 0.66 1.52 0.64

kECA+LARs 0.65 1.37 0.49

Table 5.3: Averaged Redundancy Rate of Subsets Selected using Different Algorithms

5.5.4 Redundancy Rate

Table. 5.3 shows the comparative results of our proposed method with the alternative

feature selection methods using the top n features, where n is the instance number of

the training data. We chose n, since when the number of selected features is larger than

n, any feature can be expressed by a linear combination of the remaining ones, which

will introduce unnecessary redundancy in the evaluation stage. In the table, the boldfaced

values are the lowest redundancy rates. The subset obtained by our proposed scheme has

the least redundancy in two of the three datasets. This further verifier that our propose

algorithm is able to remove redundant features.

The results from the accuracy rate in Table. 5.2 and redundancy rate in Table. 5.3 to-

gether indicate that kECA+LARs both contains the least redundancy, and result in high-

est accuracy. They also underline necessity of removing redundant features for improving

learning performance. It should also be observed that the MRMR algorithm also produces

low redundancy rates. However, it does not perform as well in the terms of classification

accuracy. This can be explained by the observation that: in MRMR, feature contributions

to classification is considered individually by evaluating the correlation between each fea-
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ture and the class label. However, the class label may be jointly determined by a set of

features. This interaction among features is not considered by MRMR.

5.6 Conclusion

In this chapter, we have presented a new spectral regression technique for unsupervised

feature selection. The proposed feature selection method offers two major advantages.

First, a kernel-based methodology is combined with entropy analysis for data transfor-

mation, which reflects the cluster structure of the data. It is fundamentally different from

most existing spectral methods, which are only based on the magnitude of eigenvalues of

specially constructed data matrices. Second, using `1-norm regularization, casts the fea-

ture discriminant analysis into a regression framework which considers the correlations

among features. Therefore, we can evaluate features jointly rather than individually. Thus

the method is able to handle redundant features.
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(a) Yale dataset (b) ORL dataset

(c) PIE dataset

Figure 5.5: Accuracy rate vs. the number of selected features on three face dataset.
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Chapter 6

Hypergraph Spectral Analysis for
Unsupervised Feature Selection

In this chapter, by incorporating multidimensional interaction information (MII) for higher

order similarities measure, we establish a novel hypergraph framework which is used for

characterizing the multiple relationships within a set of samples (e.g. face samples un-

der varying illumination conditions). Thus, the structural information latent in the data

can be more effectively modeled. Then an unsupervised method is proposed to find the

discriminating feature subset on the basis of hypergraph representation. For the unsuper-

vised learning, we derive a hypergraph embedding view of feature selection, where the

projection matrix is constrained to be a selection matrix designed to select the optimal

feature subset. Experimental results demonstrate the effectiveness of our feature selection

methods on a number of standard image datasets.

Contribution

We establish a novel hypergraph framework which can be more effective capture the high-

order relations among samples rather than approximating them in terms of pairwise inter-

actions can lead to substantia loss of information. Specifically, we construct a hypergraph

in which each node corresponds to a sample, and each hyperedge has a weight correspond-

ing to the multidimensional interaction information (MII) among samples connected by
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that hyperedge. The advantage of MII is that it is sensitive to the relations between sample

combinations, and as a result can be used to seek third or even higher order dependen-

cies between the relevant samples. Thus, the structural information latent in the data can

be more effectively modeled. Different from representing the hypergraph by the clique

expansion or the star expansion in traditional hypergraph based learning methods, we em-

ploy a more effective matrix representation for hypergraphs. With this representation the

low-pass information loss in the process of averaging hypergraph weights can be over-

come.

On the basis of hypergraph representation, we explore the discriminating features in

an unsupervised way. Specifically, we describe a new feature selection strategy through

hypergraph embedding, which casts the feature discriminant analysis into a regression

framework that considers the correlations among features. As a result, we can evaluate

joint feature combinations, rather than being confined to consider them individually, thus

it is able to handle feature redundancy. Experimental results demonstrate the effectiveness

of our unsupervised feature selection method on a number of standard image data-sets.

Chapter outline

The remainder of this chapter is organized as follows. Section 6.1 describes how to con-

struct the hypergraph. Section 6.2 presents how to approximate the hypergraph. The

unsupervised feature selection method and its experimental results on a number of stan-

dard image data-sets are respectively presented in Section 6.3 and Section 6.4. Finally,

conclusions are presented in Section 6.5.

6.1 Hypergraph Construction

In this section, we establish a novel hypergraph framework which is used for character-

izing the multiple relationships within a set of samples. To this end, we commence by
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applying a new method for measuring higher order similarities among samples based on

multidimensional interaction information. The generalization of Interaction Information

to K variables is defined recursively as follow

I({X1, · · · , XK}) = I({X2, · · · , XK}|X1)− I({X2, · · · , XK}) . (6.1)

Based on the higher order similarity measure, we establish a hypergraph framework

for characterizing a set of high dimensional samples. A hypergraph is defined as a triplet

H = (V,E,W). Here V denotes the vertex set, E denotes the hyperedge set in which

each hyperedge e ∈ E represents a subset of V , and W is a weight function which assigns

a real value W(e) to each hyperedge e ∈ E. We only consider K-uniform hypergraphs

(i.e. those for which the hyperedges have identical cardinality K) in our work. Given a

set of high dimensional samples X = [x1, · · ·xN ]T where xi ∈ Rd, we establish a K-

uniform hypergraph, with each hypergraph vertex representing an individual sample and

each hyperedge representing the K-th order relations among a K-tuple of participating

samples. A K-uniform hypergraph can be represented in terms of K-th order matrix, i.e.

a tensorW of order K, whose element Wi1,··· ,iK is the hyperedge weight associated with

the K-tuple of participating vertices {vi1 , · · · , viK}. In our work, the hyperedge weight

associating with {xi1 , xi2 , · · · , xiK} is computed as follows

Wi1,··· ,iK = K
I(xi1 , xi2 , · · · , xiK )

H(xi1) +H(xi2) + · · ·H(xiK )
. (6.2)

It is clear that Wi1,··· ,iK is a normalized version ofK-th order Interaction Information.

The greater the value of Wi1,··· ,iK is, the more relevant the K samples are. On the other

hand, if Wi1,··· ,iK = 0, the K samples are totally unrelated.

6.2 Hypergraph Representation

Unlike matrix eigen-decomposition, there has not yet been a widely accepted method for

spanning a rational eigen-space for a tensor [68]. Therefore, it is hard to directly embed
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a hypergraph into a feature space spanned by its tensor representation through eigen-

decomposition. In our work, we consider the transformation of a K-uniform hypergraph

into a graph. Accordingly, the associated hypergraph tensorW is transformed to a graph

adjacency matrix A, and the higher order information exhibited in the original hypergraph

can be encoded in an embedding space spanned by the related matrix representation. In

this scenario, one straightforward way for the transformation is marginalization which

computes the arithmetical average over all the hyperedge weights Wi1,··· ,iK−2,i,j associ-

ated with the edge weight Ai,j

Ãi,j =

|V |∑
i1=1

· · ·
|V |∑

iK−2=1

Wi1,··· ,iK−2,i,j (6.3)

The edge weight Ãi,j for edge ij is generated by a uniformly weighted sum of hyper-

edge weights Wi1,··· ,iK−2,i,j . However, the form appearing in (6.3) behaves as a low pass

filter, and thus results in information loss through marginalization.

To make the process of marginalization more comprehensive, we use marginalization

to constrain the sum of edge weights and then estimate their values through solving an

over-constrained system of linear equations. Our idea is motivated by the so called clique

average introduced in the higher order clustering literature [61]. We characterize the

relationships between A andW as follows

Wi1,··· ,iK =
∑

{i,j}⊆{i1,··· ,iK}

Ai,j (6.4)

Fig. 6.1 is an example illustrating the relationship between a 3-uniform hypergraph

and its graph representation resulted from (6.4). The cube on the right illustrates the

tensorW for the 3-uniform hypergraph, and the square on the left illustrates the adjacency

matrix A for the graph representation. Here i1, i2 and i3 denote the indices of boldly

selected entries ofW and A. It is clear that the hyperedge weight Wi1,i2,i3 is the sum of

the involved graph edge weights Ai1,i2 , Ai1,i3 and Ai2,i3 .
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Figure 6.1: An example for hypergraph representation.

There are
(|V |

2

)
variables and

(|V |
K

)
equations in the system of equations described in

(6.3). When K > 2, the linear system (6.3) is over-determined and cannot be solved

analytically. We thus approximate the solution to (6.3) by minimizing the least squares

error

Â = argmin
A

∑
i1,··· ,iK

 ∑
{i,j}⊆{i1,··· ,iK}

Ai,j −Wi1,··· ,iK

2

(6.5)

In practical computation, we normalize the compatibility tensor W by using the ex-

tended Sinkhorn normalization scheme [4], and constrain the element of A to be in the

interval [0, 1] to avoid unexpected infinities. The effective iterative numerical method

based on Gram-Schmidt decompositions is used to compute the approximated solutions

[5].

The adjacency matrix A computed through (6.5) is one effective representation for a

K-uniform hypergraph, because it naturally avoids the operation of arithmetic average

and thus to a certain degree overcomes the low pass information loss arising in (6.3).

Furthermore, the Laplacian matrix L for a hypergraph can be defined as L = D − A,

where D is the diagonal matrix with its i-th diagonal element being Aii =
∑

j Aij . In
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this context, a hypergraph can be easily embedded into a feature space spanned by its

Laplacian matrix, which will be explained in detail in the next section of this chapter.

6.3 Unsupervised Feature Selection through Hypergraph

Embedding

In this section, we formulate the procedure of feature extraction on a basis of hypergraph

spectral embedding. One goal of spectral embedding is to represent the high dimen-

sional data X ∈ RN×d by a low dimensional representation Y ∈ RN×C (C � d) in

the low dimensional feature space such that the structural characteristics of the high di-

mensional data are well preserved or even emphasized. Here we use the representations

X = [x1, · · · xN ]T and Y = [y1, · · · , yk, · · · , yC ], where yk is a N -dimensional vector

and its N elements represent the N samples x1, · · ·xN separately in the k-th dimension

of the low dimensional feature space [69].

Based on the hypergraph transformation described in Section 6.2 and using Laplacian

eigen-decomposition [44], the hypergraph spectral embedding can be formulated as

D−1LY = λY . (6.6)

where D is diagonal matrix with its entries are column (or row, since A is symmetric)

sums of A. Let y0, y1, . . . , yC be the eigenvector solutions of Equation (6.6), ordered

according to their eigenvalues (0 = λ0 ≤ λ1 ≤ · · · ≤ λC). We leave out the eigenvector

y0 corresponding to eigenvalue 0 and use the next C eigenvectors for embedding in C-

dimensional Euclidean space. For example, for the data point xi, its embedding space can

be represented as follow

xi −→ (y1(i), . . . , yC(i)) . (6.7)
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The hypergraph embedding procedure can be viewed as feature extraction, and can be

expressed as Y = XΦ where Φ ∈ Rd×C is a column-full-rank projection matrix. How-

ever, unlike feature extraction, feature selection attempts to select the optimal feature sub-

set in the original feature space. Therefore, for the task of feature selection, the projection

matrix Φ = [Φ1, . . .ΦC ] can be constrained to be a selection matrix which contains the

combination coefficients for different features in approximating Y = [y1, . . . , yC ]. That

is, given the k-th column of Y, i.e yk, we aim to find a subset of features, such that their

linear span is close to yk. This idea can be formulated as the minimization problem

Φ̂ = argmin
Φ

C∑
k=1

‖yk −XΦk‖2 . (6.8)

where Φ = [Φ1, · · · ,Φk, · · · ,ΦC ] and Φk is a d-dimensional vector that containing the

combination coefficients required to compute for different features in approximating yk.

However, feature selection requires us to locate an optimal subset of features that are

close to yk. This is a combinatorial problem which is NP-hard. Thus we approximate the

problem in (6.8) subject to the constraint

|Φk| ≤ γ (6.9)

where |Φk| is the `1-norm and |Φk| =
∑d

j=1 |Φj,k|. When applied in regression, the `1-

norm constraint is equivalent to applying a Laplace prior [46] on Φk. This tends to force

some entries in Φk to be zero, resulting in a sparse solution. Therefore, the representation

Y is generated by using only a small set of selected features in X.

In order to efficiently solve the optimization problem in Equations (6.8) and (6.9), we

use the Least Angle Regression (LARs) algorithm [9]. Instead of setting the parameter γ,

LARs allows us to control the sparseness of Φk. This is done by specifying the cardinal-

ity of the number of nonzero subsets of Φk, which is particularly convenient for feature

selection.

We consider selecting m features from the d feature candidates. For a dataset con-

taining C clusters, we can compute C selection vectors {Φk}Ck=1 ∈ Rd. The cardinality
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of each Φk is m and each entry in Φk corresponds to a feature. Here, we use the fol-

lowing computationally effective method for selecting exactly m features based on the C

selection vectors. For every feature j, we define the HG score for the feature as

HG(j) = max
k
|Φj,k| . (6.10)

where Φj,k is the j-th element of vector Φk. We then sort the features in descending order

according to their HG scores, and then select the top m features. The sequence of steps

shown in Algorithm 4 illustrates our method in detail.

Algorithm 4: Unsupervised Feature Selection through Hypergraph Embedding
Input: Dataset XN×d

Output: m selected features

1: Constructing a hypergraph representation of the data where weights are

computed by Equation (6.2), that takes into higher order interactions as opposed to

only pairwise ones, measuring how related multiple samples are.

2. Converting the hypergraph representation into an adjacency matrix A through

Equation (6.5)

3: Using hypergraph spectral learning for data transformation and dimensionality

reduction, we get the top C embedding space Y = [y1, . . . , yC ] with respect to the

eigenvectors of Equation (6.6) ;

4: Solve the regression problem in Equation (6.9) using the LARs algorithm with

the cardinality constraint set to m. We obtain C sparse coefficient vectors

{Φk}Ck=1 ∈ Rd;

5: Compute the HG score for each feature according to Equation (6.10) ;

6: Return the top m features according to their HG scores.
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6.4 Experiments and Comparisons

6.4.1 Data sets

(a) ORL dataset

(b) CMU PIE dataset

(c) MPEG-7 dataset

(d) USPS dataset

(e) MNIST dataset

Figure 6.2: The sample of cropped face images and other three benchmark image datasets.

We test the performance of our proposed algorithm on two publicly available face

database (ORL, CMU PIE), one shape image database (MPEG-7), and two handwritten
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digit database (USPS, MNIST). Table. 6.1 summarizes the coverage and properties of the

five benchmark data-sets. For the face dataset, face location preprocessing was applied.

The original images were normalized (in scale and orientation) such that the two eyes

were aligned at the same position. Then, the facial areas were cropped to give images for

matching. The size of each cropped image is 32×32 pixels, with 256 grey levels per pixel.

Thus, each image is represented by a 1024-dimensional vector. In Fig. 6.2, we show the

closely cropped face images and other three benchmark image samples.

Data-set Examples Features Classes

ORL 400 1024 40

CMU PIE 1428 1024 68

MPEG-7 1400 6000 70

USPS 9298 256 10

MNIST 4000 784 10

Table 6.1: Summary of benchmark data sets

ORL dataset: it contains 40 distinct individuals with ten images per person. The

images are taken at different time instances, and include variations in facial expression

and facial detail (glasses/no glasses).

CMU PIE dataset: it is a multiview face dataset, consisting of 41,368 images of 68

people. The views cover a wide range of poses from profile to frontal views, varying

illumination and expression. In this experiment, we fixed the pose and expression. Thus,

for each person, we have 21 images obtained under different lighting conditions.

MPEG-7 dataset: it consists of 1,400 silhouette images grouped into 70 classes.

Each class has 20 different shapes.

USPS dataset: this handwritten digits database contains 9,298 images of handwritten

digits. The digits 0 to 9 have 1553, 1269, 929, 824, 852, 716, 834, 792, 708, and 821
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(a) Hypergraph Embedding (b) Kernel PCA

(c) Laplacian eigenmaps (d) LPP

Figure 6.3: Distribution of samples of five subjects in ORL dataset.

samples respectively. The USPS digits data were gathered at the Center of Excellence

in Document Analysis and Recognition (CEDAR) at SUNY Buffalo, as part of a project

sponsored by the US postal Service. The size of each image is 16×16 pixels, with 256

grey levels per pixel. Thus, each image is represented by a 256-dimensional vector.

MNIST dataset: this handwritten digit database has a training set of 60,000 samples

(denoted as set A) and a test set of 10,000 samples (denoted as set B). In our experiment,

we take the first 2,000 samples from set A as our training set and the first 2,000 samples

from set B as our test set. Each digit image is of size 28×28, there are around 200 samples

of each digit in both the training and test sets.
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(a) Hypergraph Embedding (b) Kernel PCA

(c) Laplacian eigenmaps (d) LPP

Figure 6.4: Distribution of samples of five subjects in CMU PIE dataset.

6.4.2 Data Transformation

We compare the data transformation performance of our proposed method using hyper-

graph spectral learning with alternative methods, including kernel PCA [10], the Lapla-

cian eigenmap [44] and LPP [74]. In order to visualize the results, we have used five ran-

domly selected subjects from each dataset, and these are shown from Fig. 6.3 to Fig. 6.7.

In each figure, we have shown the projections onto the leading two most significant eigen-

modes from different spectral embedding methods, ordered according to their eigenval-

ues. This provides a low-dimensional representation for the images. From the above

figures, it is clear that our hypergraph spectral embedding method demonstrates much
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(a) Hypergraph Embedding (b) Kernel PCA

(c) Laplacian eigenmaps (d) LPP

Figure 6.5: Distribution of samples of five subjects in MPEG-7 dataset.

clearer cluster structure than that by traditional spectral clustering method. Therefore, our

method can perform clustering task directly by using the embedded result, while tradi-

tional spectral clustering (e.g., Laplacian eigenmap) need additional clustering algorithm

(e.g., k-means) on the embedded result to obtain the final clustering result. This implies

that the hypergraph representation is more appropriated and completeness in describing

feature relations and structures.
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(a) Hypergraph Embedding (b) Kernel PCA

(c) Laplacian eigenmaps (d) LPP

Figure 6.6: Distribution of samples of five subjects in USPS dataset.

6.4.3 Classification Accuracy

In order to explore the discriminative capabilities of the information captured by our

method, we use the selected features for further classification. We compare the clas-

sification results from our proposed method HG+LARs with five representative feature

selection algorithms. For unsupervised learning, three alternative feature selection algo-

rithms are selected as baselines. These methods are the Laplacian score [73], SPEC [81]

and UDFS [77]. We also compare our obtained results with two state-of-art supervised

feature selection methods, namely a) the Fisher score [24] and b) the MRMR algorithm

[27]. We use 5-fold cross-validation for the SVM classifier on the feature subsets obtained
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(a) Hypergraph Embedding (b) Kernel PCA

(c) Laplacian eigenmaps (d) LPP

Figure 6.7: Distribution of samples of five subjects in MNIST dataset.

by the feature selection algorithms to verify their classification performance. Here we use

the linear SVM with LIBSVM [14].

The classification accuracies obtained with different feature subsets are shown in

Fig. 6.8. From the figure, it is clear that our proposed method HG+LARs is, by and

large, superior to the alternative feature selection methods. Specifically, it selects a both

a smaller and better performing (in terms of classification accuracy) set of discriminative

features on all the five data sets. Moreover, HG+LARs rapidly converges to the good

results, with typically around 30 features (see Fig. 6.8(a),(b),(d) and (e)). Each of the

alternative unsupervised methods, usually require more than 100 features to achieve a

comparable result. There are two reasons for this improvement in performance. First,
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Dataset ORL CMU PIE MPEG-7 USPS MNIST

MRMR 83.5%(95) 99.15%(99) 80.83%(194) 95.75%(143) 82.5%(284)

Fisher Score 80%(99) 99.37%(100) 77.83%(200) 95.8%(103) 81.25%(293)

Laplacian Score 65.25%(99) 71.43%(99) 76.5%(198) 94.05%(165) 82.05%(291)

SPEC 64.5%(95) 89.64%(100) 63.67%(200) 94.2%(198) 82.1%(292)

UDFS 76.5%(99) 96%(98) 75.17%(190) 95.65%(161) 81.3%(293)

HG+LARs 91%(75) 100%(70) 82.33%(151) 98.8%(59) 84.33%(90)

Table 6.2: The best result of all methods and their corresponding size of selected feature

subset on five benchmark image datasets.

the hypergraph representation is effective in capturing the high-order relations among

samples rather than approximating them in terms of pairwise interactions can lead to

substantial loss of information. Thus the structural information latent in the data can be

effectively preserved. Second, the LARs algorithm is applied to select features that align

well to the embedded data resulting from hypergraph spectral embedding. As a result the

optimal feature combinations can be located so as to remove redundant features.

Compared with two the-state-of-art supervised feature selection algorithms, our pro-

posed unsupervised method HG+LARs outperforms the MRMR algorithm and Fisher

score in all cases. On the USPS dataset (see Fig. 6.8(d)), even though MRMR and Fisher

score can give good classification performance when more than 100 features are selected,

HG+LARs achieves a better result with a much smaller number of features, i.e., less than

60 features. This implies that our proposed method is able to locate both the optimal size

of the feature subset and perform accurate classification of the samples based on just a

few of the most important features.

From Fig. 6.8(a)-(c), it is interesting to note that that the UDFS algorithm gives a

better result than the alternative unsupervised methods (i.e. the Laplacian score and the
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SPEC) when the number of selected features is small. The reason for this is that unlike

traditional methods which treat each feature individually and which hence are suboptimal,

the UDFS method directly optimizes the score over the entire selected feature subset.

As a result, a better feature subset can be obtained. On the other hand, the alternative

unsupervised feature selection method, i.e. the Laplacian score and SPEC, fail to locate

the most discriminative features. This may be explained by our observation that they

are unable to handle feature redundancy. For instance, they may repeatedly select highly

correlated features in the selection process. And It has been known that redundant features

can adversely affect the performance of classification and clustering.

The best result for each method together with the corresponding size of the selected

feature subset are shown in Table. 6.2. In the table, the classification accuracy is shown

first and the optimal number of features selected is reported in brackets. Overall, HG+LARs

achieves the highest degree of dimensionality reduction, i.e. it selects a smaller feature

subset compared with those obtained by the alternative methods. For example, in the

MNIST data set, the best result obtained by the alternative feature selection methods

is 82.5% with the MRMR algorithm and 284 features. However, our proposed method

HG+LARs gives a better accuracy 84.33% when only 90 features are used. The results

further verify that our feature selection method can guarantee the optimal size of feature

subset, as it not only achieves a higher degree of dimensionality reduction but it also gives

better discriminability.

From the accuracy rate in Table. 5.2 and Table. 6.2, we also notice that the hypergraph

representation based method HG+LARs does not outperform the graph representation

based method kECA+LARs on ORL dataset. The reason is that, although hypergraph

representations allow vertices to be multiply connected by hyperedges and hence capture

multiple or higher order relationships, our method is confined to uniform hypergraph and

does not lend itself to generalization. The reason for this lies in the difficulty in formu-

lation a nonuniform hypergraph in a mathematically neat way for computation. These
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have yet to be a widely accepted and consistent way for representing and characterizing

nonuniform hypergraph, and this remains an open problem when exploiting hypergraph

for feature selection.

Dataset ORL CMU PIE MPEG-7 USPS MNIST

MRMR 1.47 0.51 0.0839 1.1830 0.2112

Fisher Score 1.72 0.53 0.1508 1.0920 0.2304

Laplacian Score 1.68 0.67 0.1221 1.3540 0.2587

SPEC 1.65 0.66 0.2310 1.5600 0.2431

UDFS 1.62 0.63 0.0920 1.4200 0.3123

HG+LARs 1.37 0.47 0.0906 0.9825 0.1373

Table 6.3: Averaged Redundancy rate of Subsets Selected Using Different Algorithms.

6.4.4 Redundancy Rate

Table. 6.3 shows the comparative results of our proposed method with the alternative

feature selection methods using the top n features, where n is the instance number of

the training data. We chose n, since when the number of selected features is larger than

n, any feature can be expressed by a linear combination of the remaining ones, which

will introduce unnecessary redundancy in the evaluation stage. In the table, the boldfaced

values are the lowest redundancy rates. The subset obtained by our proposed scheme has

the least redundant. This further verifier that our propose algorithm is able to remove

redundant features.
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6.5 Conclusion

In this chapter, we have presented an unsupervised feature selection method based on

a novel hypergraph representation framework. There are two main advantages can be

drawn from this work. The first is that by incorporating MII for higher order similarities

measure, we establish a novel hypergraph framework which is used for characterizing the

multiple relationships within a set of samples. Thus, the structural information latent in

the data can be more effectively modeled. Secondly, we derive a hypergraph embedding

view of feature selection which casting the feature discriminant analysis into a regression

framework that considers the correlations among features. As a result, we can evalu-

ate joint feature combinations, rather than being confined to consider them individually.

These properties enable our method to be able to handle feature redundancy effectively.
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(a) ORL dataset (b) CMU PIE dataset

(c) MPEG-7 dataset (d) USPS dataset

(e) MNIST dataset

Figure 6.8: Accuracy rate vs. the number of selected features on five benchmark image

datasets.
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Chapter 7

Conclusions and Future Work

In this chapter, we first summarize the main contributions of this thesis, and then ana-

lyze the limitations of the developed methods. Following the analysis, we discuss some

possible solutions and give suggestions for future feature selection.

7.1 Summary of Contributions

To select features from higher order correlations, we have firstly proposed a new informa-

tion theoretic criterion referred to as the multidimensional interaction information (MII)

to measure the significance of different feature combinations. The advantage of MII is

that it is sensitive to the relations between feature combinations. As a result it can be used

to seek third or even higher order dependencies between the relevant features. Hence,

we can evaluate features jointly rather than individually. Thus we are able to handle fea-

ture redundancy. However, MII involves evaluating all possible interactions among the

selected features which has two problems. The first is that it requires an exhaustive “com-

binatorial” search over the feature space. The second is that it demands large training

sample sizes to estimate the higher order joint probability distribution in MII with a high

dimensional kernel. In Chapter 3, we take into account above problems, and develop

a filter-based approaches named Graph based Information-theoretic Feature Selection,
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which is capable of reducing the search space for higher order interactions. Specifically,

by incorporating mutual information for pairwise feature similarity measure, we first es-

tablish a novel feature graph framework which is used for characterizing the informative-

ness between the pair of features. We then locate the relevant feature subset (RFS) from

the feature graph by maximizing features’ average pairwise relevance. The RFS is ex-

pected to has little redundancy and very strong discriminating power. In doing so we can

limit the search space in using MII for further feature selection.

However, in some situations the graph representation for relational patterns can lead to

substantial loss of information. Therefore, in Chapter 4, we construct a feature hypergraph

in which each node corresponds to a feature, and each edge has a weight corresponding to

the MII among features connected by that edge. Then, we apply hypergraph clustering to

the hypergraph in order to locate the most informative feature subset (mIFS), which has

both low redundancy and strong discriminating power. In contrast with existing feature

selection methods, our proposed methods is able to determine the number of relevant

features automatically.

Furthermore, we develop two regularization based unsupervised feature selection meth-

ods, which on one hand can utilize the unlabeled data, on the other hand can evaluate

features jointly rather than individually. In this case, larger feature combinations are

considered. The reason for this is that although an individual feature may have limited

relevance to a particular class, when taken in combination with other features it may be

strongly relevant to the class. The idea underpinning these two methods is to select the

features which best preserve the manifold structure derived from the entire feature set.

Specifically, in Chapter 5, we propose a new two-step spectral regression technique for

unsupervised feature selection. In the first step, we use kernel entropy component analysis

(kECA) to transform the data into a lower-dimensional space so as to improve class sep-

aration. Second, we use `1-norm regularization to select the features that best align with

the data embedding resulting from kECA. The advantage of kECA is that dimensionality
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reducing data transformation maximally preserves entropy estimates for the input data

whilst also best preserving the cluster structure of the data. Using `1-norm regularization,

we cast feature discriminant analysis into a regression framework which accommodates

the correlations among features. As a result, we can evaluate joint feature combinations,

rather than being confined to consider them individually. In Chapter 6, by incorporating

MII for higher order similarities measure, we establish a novel hypergraph framework

which is used for characterizing the multiple relationships within a set of samples (e.g.

face samples under varying illumination conditions). Thus, the structural information

latent in the data can be more effectively modeled. Then an unsupervised method is pro-

posed to find the discriminating feature subset on the basis of hypergraph representation.

For the unsupervised learning, we derive a hypergraph embedding view of feature selec-

tion, where the projection matrix is constrained to be a selection matrix designed to select

the optimal feature subset.

7.2 Limitations

Although the methods described in this thesis outperform the state of the art methods,

there are still some limitations to be noted. Some of these weaknesses could be addressed

in future work.

Limitations of Selecting Global Feature Subset

The greatest limitation of our proposed methods is their attempt to select a global feature

subset for all the clusters present in the data. However, in doing so we neglect the fact

that different clusters may exist in different feature subset which is referred to as local

features. Fig. 7.1 shows an intuitive example. Traditional feature selection methods may

select a global relevant feature subset {X1, X2, X3}, which is obviously unable to work

well, as different clusters exists in different subspaces. As shown in Fig. 7.1a, C1 and C2
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Figure 7.1: a-c show the projections of four clusters on the plane of two joint features,

respectively. (a) in X1 and X2, (b) in X2 and X3, (c) in X1 and X3

can only be separated in {X1, X2} after removing X3 while shown in Fig. 7.1b C3 and C4

can only be separated in {X2, X3} after removing X1.

Limitations of Hypergraph Construction

Although we have described how to construct a hypergraph to abstract higher order feature

relations, the problem of how to mathematically represent the underpinning hypergraph

remains an open problem. In this thesis, we only consider those hypergraphs whose hy-

peredges have the same number of vertices, which are referred to as uniform hypergraphs.

It would be more interesting to generate the problem to non-uniform hypergraphs (i.e. hy-

pergraphs with varying hyperedge cardinalities). In addition, the similarity measure for

hyperedge plays an important role in establishing the compatibility tensor and has a great

influence on the subsequent hypergraph representation. In this thesis, we have use MII

as a higher order similarity measure for point tuples. Although this measure has already

been used in algorithms for various pattern recognition problems, there is still no the-

oretical evidence to prove it to be optimal options. Therefore, the choice of similarity

measures in this work is heuristic, and we need to carry out a further investigation on how

to define a reasonable similarity measure that is capable of reflecting structural features

more convincingly.
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Restrictions on Separating Data Structure Learning and Feature Selection

In Chapter 6, we apply hypergraph embedding and lasso penalized regression for fea-

ture discriminant analysis. We have shown both theoretically and experimentally that this

method outperform the alternative feature selection methods. However, the performance

of feature selection is largely determined by the effectiveness of data transformation ob-

tained by hypergraph embedding. The reason for this limitation is that the process of

hypergraph embedding is independent with feature selection. Once the hypergraph is de-

termined to characterize data structure, it is fixed in the subsequent feature selection or

regression steps. It would be more interesting the hypergraph embedding and feature se-

lection could be performed in an integrated fashion. That is to say that if the hypergraph

embedding can adaptively change w.r.t. the subsequent feature selection or regression

procedures, i.e., the hypergraph not only can characterize data structure, but also indicate

the requirements of regression, this method would perform better.

7.3 Future Work

To address the shortcomings described in the preceding section, we suggest some possible

approaches to overcome them in future work.

Localized Feature Selection

In order to select the local feature subset, we would like to associate different classes with

different feature subsets. One possible solution is to develop a localized graph-based fea-

ture selection algorithm consisting of two steps, namely, i) based on the label information,

we first construct a graph for each class of dataset in which each node corresponds to a

feature, and each edge has a weight corresponding to the mutual information between

features connected by that edge, ii) we then perform dominant set clustering analysis for
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the graphs to locate the informative feature subset for each class.

Non-uniform Hypergraph

In this thesis, we only consider the case where all the hyperedges have the same number

of vertices, which is referred to uniform hypergraph. It would be more interesting to de-

velop the non-uniform hypergraph (i.e. the hyperedge cardinality varies). Furthermore,

we will investigate how the new hypergraph models can be used to encode more complex

multiple relationships so that more effective feature selection strategies can be developed.

Since the method of similarity measure for hyperedge plays important part in determin-

ing the representational power of hypergraph construction, it might be interesting for us

to adopt some more sophisticated strategies (e.g. Mahalanobis distance matric) to identify

the similarity among data. Moreover, we may introduce more feature descriptors (such

as texture information, shape information) into our frameworks to construct more hyper-

edges to further improve the expressive power of hypergraph based models. We also plan

to introduce prior information into the hypergraph framework for real-world problems

including video segmentation and information retrieval.
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Glossary of Notation

G(V,E) Graph with vertex set V and edge set E

H(V,E) Hypergraph with vertex set V and edge set E

A Adjacency matrix

L Laplacian matrix

H Incidence matrix

D Degree matrix

W Weight matrix

Y Low dimensional embedding matrix

Φ Projection matrix

K Kernel matrix

a Indicator vector

X Dataset

N The number of samples

d The dimension of dataset

C Class labels

S Selected feature subset

fi The i-th feature

α Eigenvector

λ Eigenvalue
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