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Abstract

In the 1990s, Bayesian modelling revolutionised archaeological chronology construc-

tion. It allowed for using relative and absolute dating evidence to improve the

precision of calendar dates for archaeological events. However, the process of building

such chronological models is time-consuming and labour-intensive, which means

often only one chronological model is considered. Furthermore, even if multiple

plausible chronological models are considered, there is currently a lack of suitable

statistical metrics for analysing such sets of models.

Within this research, we use mathematical graph theory to manage both strati-

graphic and chronological information during Bayesian chronology construction. Dye

and Buck (2015) developed a graph theoretic approach to representing archaeological

relative dating evidence, proposing that we might semi-automate chronology con-

struction by managing such archaeological dating evidence using graph theory. The

research presented in this thesis builds upon the initial theoretical work by Dye and

Buck (2015), showcasing novel software we have produced for the semi-automation

of chronology construction.

We present the result of research that sought to address three objectives. The

first was to quantify the quality and potential for reuse of digital dating evidence

obtained during excavation and then deposited to digital repositories. This review

demonstrated a distinct lack of reusable archaeological dating evidence within a

prominent digital archaeological archive in the United Kingdom. This absence of

reusable data is of particular concern in archaeology due to the non-repeatable nature

of excavation. The research presented in this chapter was published in a peer-

reviewed journal (Moody et al., 2021), in which we provide recommendations for

improving the reusability of digital dating evidence in archaeology.
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Following this initial research, we developed novel prototype software (using mathe-

matical graphs) to manage dating evidence that is required for Bayesian chrono-

logical modelling. Within the same software, users can visualise and manipulate

their dating evidence using point-and-click functionality. In addition, users can

automatically obtain calendar age estimates for archaeological events of interest

simply by loading in the required dating evidence into the software. Thus semi-

automating the process of chronology construction, something which is not possible

within existing software for Bayesian chronological modelling. Further, the prototype

software improves the process of saving the data and information used, and produced,

during the chronological building process, thus improving the potential for reusability

of such data and information following future archiving.

Further functionality of this software allows for the rapid semi-automated construc-

tion of multiple chronological models, which we demonstrate proof-of-concept results

for case studies based on existing dating evidence from archaeological excavations

carried out at various sites in Europe. Further, we explore a novel application of an

existing statistical methodology that allows us to collectively interpret the results of

fitting multiple chronological models, each of which we deem plausible (a priori) for

a given site within our analysis.

Finally, we discuss how we plan to develop our prototype software in the future,

ensuring that it is functional for the archaeological community. We seek to ensure

that all relevant dating evidence obtained during excavation can be managed and

interpreted within the software and that it enables efficient and reliable archiving

of models, methods, data and results thus facilitating improved repeatability and

usability of future chronology construction methods and data.

ii



Acknowledgements

I am very fortunate to have had a wonderful support system throughout this PhD.

Therefore I am afraid this list of acknowledgements is going to be a rather long one.

First, I would like to thank my supervisors, Caitlin Buck, Keith May and Gianna

Ayala, and our collaborator Tom Dye, for their continued support, feedback and

guidance during this PhD. In particular, I thank Caitlin for your initial encouragement,

without which I would not have had the confidence to pursue this PhD.

To my other half, Farhad, thank you for all your support and for always being willing

to listen to me claim that "my code is fixed for sure now" despite the fact it never

was. My friends, Carys, Alex, Keira and George, thank you for keeping me sane

during the write-up stage of this PhD. I would like to thank Carly and Rosie, our

lovely coffee dates and chats have been a constant treat during this whole process. To

Gemma and Matt, thank you for making what could have been a very stressful start

to this PhD so much better. To my family, thank you for always being supportive

and proud in my decade of being a student. To Bo, thank you for always being on

hand to provide helpful chats about writing and all computer-related issues. Thank

you to Kieran for being willing to spend your 10-hour coach journeys around South

America reading this thesis and telling me what you think.

I would also like to thank Danny and Cassie for introducing me to the world of Bayes

linear statistics and for always being willing to provide your time and such insightful

discussions about your research. Finally, would like to thank the staff of the ADS, in

particular Tim Evans, Jenny O’Brien, Holly Wright and Julian Richards, for their

generosity in giving their time and expertise, and especially to Holly, thank you

for always seeming to manage to find funding for me to present my work to the

community!

iii



This work was supported by the Arts and Humanities Research Council via funding

under their grants (ref AH/S001328/1 and AH/T002093/1), without which this

research could not have taken place.

iv



Nomenclature

Radiocarbon dating

t Time since death of an organic sample

A Number of 14C atoms at time t

A0 Number of 14C atoms at time t

λ Decay constant

T1/2 Half life of an organic material

x Laboratory estimate of the true radiocarbon age of a sample

σ Laboratory error for radiocarbon estimate x

Bayesian inference

θ True calendar age of a sample

r(θ) True radiocarbon age of a sample with true calendar age θ

r(·) True function that coverts calendar age to radiocarbon age
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NOMENCLATURE

µ(·) A calibration curve estimate which is an approximation of r(·)

δ(·) Uncertainty on the calibration curve estimate, corresponding to 1 standard

deviation from µ(·)

R interval of calendar ages

J number of archaeological groups

αj age of event that corresponds to start of group j for groups 1, ..., J

βj age of event that corresponds to end of group j for groups 1, ..., J

β Set of true calendar ages of the end event of all groups within a chronological

model

θ Set of true calendar ages of all contexts within a chronological model

α Set of true calendar ages of the start event of all groups within a chronological

model

x Set of all laboratory radiocarbon age estimates for all samples dated for a

chronological model

σ Set of all laboratory errors for radiocarbon age estimates x

Nj Number of contexts in group j

xi,j radiocarbon age estimate of sample found in context i of group j

σi,j laboratory error of radiocarbon determination for sample found in context i

of group j
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θi,j True calendar age of sample found in context i of group j

Xi,j Sample found in context i of group j

C Set of possible values for θ that satisfy the constraints within the stratigraphic

sequence

G Set of possible values for α and β that satisfy the constraints within the

stratigraphic sequence

P,Q Labels of archaeological groups

E,F Random events

s(α,β) Span of calibrated years between the oldest and youngest group boundaries

in a chronological model

MCMC methods

M Number of chronological models considered plausible

Vm Set of judgements for model m that encompasses all the prior knowledge,

modelling decisions and computational methods that result in model m

G A vector of estimated marginal posterior expectations parameters of interest,

for each of the M models we consider plausible

K Number of coexchangable classes

Hk Number of posterior expectations within kth coexchangable class
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NOMENCLATURE

M(Ck) Common posterior expectation of the parameters of interest for all models

within that class k

Rh(Ck) Residual term attributed to the hth expectation within class k, which accounts

for the difference between the common posterior expectation of the class,

M(Ck) and the actual posterior expectation of the parameters of interest for

model h
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Chapter 1

Introduction to chronology construction

A crucial aspect of archaeological research is the construction of archaeological

chronologies. These timelines of human activity allow for the historical interpretation

of a given geographical location (see Barker, 1993, Chapter 1). The first step of

constructing a chronology is excavating the site of interest. As defined by Carver

(2014), archaeological excavation is “the procedure by which archaeologists define,

retrieve, and record cultural and biological remains found in the ground”. During

this process, archaeologists remove evidence of human activity from an archaeo-

logical site in (approximately) the reverse order in which it was originally deposited,

thus obtaining some indication of (reverse) chronology as they do so. Following

excavation, archaeologists use their field observations, scientific (e.g. radioacarbon)

dates, and expert knowledge (such as a relative ordering of the human evidence

that has been excavated) alongside various tools, including a selection of statistical

methodologies, to reconstruct a chronological sequence for the site. These methods

are used to provide an interpretive framework that enables archaeologists to build a

timeline of human activity at a given site. The process from excavation to the final
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CHAPTER 1. INTRODUCTION

chronology is referred to within this research as chronology construction.

Chronological modelling is a subset of chronological construction that exclusively

utilises statistical methods to synthesise chronologies (see Buck and Millard, 2004)

and is the focus of the research within this thesis. A wealth of dating evidence is

obtained during excavation which can be used in chronological modelling. Such

evidence falls into one of two categories: relative or absolute. Relative dating

evidence provides an ordering of archaeological events relative to each other. Absolute

dating evidence, which typically derives from some scientific dating method or from

expert knowledge, allows archaeologists to anchor their chronology to the calendar

scale. However, the precision of most absolute date estimates is limited, leading to

associated uncertainty that must also be accounted for during the modelling process.

1.1 Goals of our research

The overarching aim of the PhD project that led to this thesis was to provide

prototype software for semi-automating the chronology construction process. The

project had three research goals to allow us to achieve this. The first was to

characterise the common types of relative and absolute dating evidence used in

chronological modelling and then review the reusability and availability of such data

in digital archaeological archives. This goal was essential to ensure any software we

wrote to semi-automate chronology construction would be suitable for managing and

modelling the common types of archaeological dating evidence available in archaeo-

logical archives and used in chronological modelling. A further focus of this first goal

was to consider which standards for digital archives (of excavation records) would

most readily allow for the reuse of dating evidence and thus be suitable for use in

this PhD research and the wider research community.
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A second research goal was to ensure that we provide software allowing users to

manage and interpret large volumes of complex dating evidence in a semi-automated

fashion. Due to the complex nature of the dating evidence observed during an

excavation, multiple chronologies may be considered plausible for any given site. As

a result, the final research outcome was to develop software allowing archaeologists

to construct multiple chronologies if they deem them plausible for their site. In

addition, we sought to explore options for the interpretation of multiple plausible

chronologies, seeking statistical methodologies that could aid in such interpretation.

1.2 Outline of thesis structure

Given the highly multidisciplinary nature of the research presented in this thesis and

the somewhat non-standard nature of the PhD, the structure of this thesis is also

non-standard. For example, rather than providing a single literature review chapter,

each chapter has a corresponding literature review relevant to the research area(s)

discussed within it. Furthermore, the archaeological and statistical background

relevant to this research is provided in dedicated background chapters, which we

now outline.

Chapter 2 introduces the relative dating evidence typically observed during an

excavation within the United Kingdom before Chapter 3 introduces radiocarbon

dating, a method of scientific dating which provides absolute dating evidence. In

Chapter 4, we present research by the author into the availability and reusability of

archaeological dating evidence within the UK’s digital archives. This data review

was an outcome stipulated by my funding body and the resulting formal report was

circulated to managers within Historic England. It was also expanded upon and

published in a peer-reviewed journal (see Moody et al., 2021).
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Within Chapters 5 and 6, we provide the relevant and established theory of Bayesian

chronology modelling, with Chapter 5 motivating the specific statistical method-

ology that is commonly used for chronological modelling. In addition, we offer an

example of a simple statistical model that might be used for chronological modell-

ing. Chapter 6 then outlines the formal structure of the statistical model used in this

research and routinely adopted for chronological modelling within the wider research

community. In addition, we provide illustrative case studies motivating the value

of chronological modelling in archaeology and specifically in considering multiple

plausible chronologies for a given site. Further, we introduce dating evidence from

archaeological sites used for case studies within the subsequent chapters.

Following this, Chapter 7 returns to the author’s research and introduces our novel

purpose-built prototype software that semi-automates chronology construction and

can rapidly construct multiple plausible models for a single archaeological site.

Subsequently, Chapter 8 explores a novel use of an existing statistical method-

ology, which would allow for the analysis of multiple plausible chronological models.

Finally, a summary of the results of this research and a discussion of further work

that could follow is provided in Chapter 9.
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Chapter 2

Relative dating evidence

The core goal of the research in this thesis is to improve the process of archaeo-

logical chronology construction. Two key components required for this are relative

and absolute dating evidence. This chapter provides an overview of archaeological

excavation methods that produce the former of these. A brief discussion of absolute

dating, specifically scientific dating, is provided in the next chapter. For technical

details relating to the scientific dating used in this research, see Chapter 5, Section

3.2.

2.1 Archaeological interventions

Broadly speaking, archaeological interventions comprise several stages including pre-

excavation investigation, physical excavation of the site, post-excavation analysis, the

publication of results and final archiving of data and documentation. We observe

relative and absolute dating evidence in the excavation and analysis stages. Thus,

we do not discuss pre-excavation strategies but refer the reader to Roskams (2002),
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Chapter 3. We focus on the practice of physically excavating a site and the methods

that allow us to infer relative dating information, primarily through stratigraphy.

2.1.1 Stratigraphy in archaeology

Geologists refer to layers of rock as strata, inferring the relative age of each layer

by utilising the fact that strata deposited deeper down must be older (Harris, 1989,

Chapter 1). This theory is also widely used in archaeology since the same principles

of stratigraphy hold for deposits (or layers) resulting from human activity as they

do for geological activity. In archaeology, stratigraphy can encompass any deposit

(such as the fill of a ditch), structure (such as a wall) or an interface between two

other deposits/structures. An interface (unit) represents an archaeological event for

which no physical depositional evidence can be observed. For example, when digging

a ditch, the layers of strata that the ditch was dug into, and the strata that later

filled the ditch are all deposits. In addition, the interface created by digging the

ditch through the other strata can be an important event in its own right and is

commonly called a cut. That cut interface is recognised as a distinct archaeological

event within the stratigraphy and should be recorded.

Harris (1989) sought to formalise the process of excavating deposits, structures

and interface units by recording their stratigraphic relationships during an arch-

aeological excavation, assuming that stratification occurs to some degree at all

archaeological sites. Just as Pitt-Rivers and Wheeler did before him (see Jensen,

2017, for a history of excavation methods), Harris (1989) argued that arbitrarily

digging holes as a method of excavation is only sufficient for recovering artefacts

and that key archaeological information is lost if one does not observe, excavate and

record the stratigraphy. Harris introduced a diagrammatic method for recording

and illustrating the stratigraphic relationships systematically. Such diagrams, now
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commonly referred to as Harris matrices, help archaeologists to visualise and under-

stand the complexity of the stratigraphic relationships they observe during excava-

tion.

Harris consolidated his archaeological stratigraphic principles in four laws of arch-

aeological stratigraphy, three of which correspond to geological laws of stratigraphy,

and the fourth is specific to archaeology (discussed in Section 2.1.3).

1. The law of original horizontally tells us that any archaeological strata will

have originally been deposited horizontally, with deposits conforming to the

shape of the strata directly below.

2. The law of superposition tells us that, for any given pairs of strata, the

strata below are older than the strata above. This law is fundamental to

building stratigraphic sequences since a full site stratification can be constructed

based on the pairwise above-below relationships between strata.

3. The law of continuity relates to strata that are not physically observed

together during excavation but where other evidence implies that they were

once physically one single strata. For example, digging a ditch may completely

remove a portion of a layer of strata, thus cutting it into two apparently

separate strata. To a trained archaeological eye, however, since a ditch has

been dug, the two now-separate strata must have once been whole (i.e. they

are once-whole strata)

2.1.2 Archaeological stratigraphic relationships

Three different relationships between archaeological strata can be used to summarise

the laws of archaeological stratigraphy: no direct stratigraphic relationship, strata

in superposition, and strata that were once whole or part of the same feature. These
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are demonstrated in Figure 2.1.

Figure 2.1: Section of an imagined archaeological site showing distinct archaeo-
logical strata, the strata labelled [7] is an interface unit (the cut edge of a ditch, and
all other strata are deposits. Three stratigraphic relationships are highlighted below
the section to demonstrate the three types of stratigraphic relationships.

By following these laws of stratigraphy and recording the relationships between

strata on site, a stratigraphic sequence can be constructed, which is a sequence of

the deposition or creation (for features) of strata through time (Harris, 1989, Chapter

10).

It is imperative to note here that the archaeological stratification of the site, that is,

the order of the strata as observed in the ground, does not always directly correspond

to the stratigraphic depth as it does for most geological strata deposited, which are

entirely by natural processes. This is because, due to human activity, strata can

often be removed completely and redeposited elsewhere or truncated by actions
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such as later building or construction. For example, when strata are dug out to

make a ditch, they may be cut through and/or redeposited on top of earlier layers

of strata. When excavating, archaeologists may recognise signs of human activity

and use them in conjunction with their other observations to build a record of the

overall stratigraphic sequence.

2.1.3 Single context recording and excavation

The technique now known by archaeologists as single-context excavation is accredited

to a range of practitioners working on various sites in Winchester and London over

the period 1975-1989 to implement the theoretical methods first published by Harris

(Harris et al., 1993). Its purpose is to remove the strata sequentially in the reverse

order of their deposition (Roskams, 2002, Chapter 6). Each layer of archaeological

strata is removed and recorded as a single stratigraphic unit called a context. Each

context is allocated a unique context number (or label) and is recorded, along with

its direct stratigraphic relationships observed on site according to the stratigraphic

principles defined by Harris and refined by many other archaeological practitioners

(e.g. Spence, 1990).

In addition to recording stratigraphic sequence, other recording methods are used,

including but not limited to plans and section drawings, which are drawn records

of part of an excavation in the horizontal and vertical plane, respectively. For

single-context excavations, drawings comprise individual stratigraphic units. Section

drawings often record the vertical sides of trenches or vertical cross-sections of specific

features and clearly show the stratigraphic relationships and the shape and scale of

strata observed on site. Such drawings can be useful when checking a stratigraphic

sequence. Post-excavation research is the continued analysis of evidence obtained

during an excavation after the excavation has finished.
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2.1.4 The Harris matrix

The Harris matrix diagram records each stratigraphic unit recorded during ex-

cavation and the stratigraphic relationships between stratigraphic units (contexts).

These diagrams consist of boxes representing contexts and edges to connect these

boxes, producing a diagram representing the stratigraphic relationships and showing

the collective stratigraphic sequence for the whole site. Contexts lower down in the

diagrams typically represent those that are older since they are lower down in the

stratigraphic sequence. However, the Harris matrix itself is only intended to show

physical stratigraphic relationships, which are later converted to temporal relation-

ships during post-excavation analysis.

Harris’ law of stratigraphic succession results from his observation that when

combining multiple partial stratigraphic sequences into a single record for a whole

site, the Harris matrix may initially include superfluous edges that should be removed.

We demonstrate the law of stratigraphic succession (and the removal of a superfluous

edge) for a small example in Figure 2.2.

Following excavation, the resulting stratigraphic sequence (recorded as a Harris

matrix diagram or a table of context pairs detailing their stratigraphic relation-

ships) gives us a record of relative dating evidence for the chronology we wish to

estimate. The process of building the stratigraphic sequence is more detailed and

nuanced than outlined in this section, and we refer the reader to Harris (1989), in

particular Chapters 10 and 11, for a detailed account. Further discussion is omitted

since we do not construct stratigraphic sequences ourselves.
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Figure 2.2: Toy example showing (a) two stratigraphic sequences constructed
according to the law of superposition, (b) how they are combined without taking into
account the law of stratigraphic succession, and (c) the final Harris matrix obtained
from applying the law of stratigraphic succession to remove the superfluous edge
between 1 and 3.

2.1.5 Representing stratigraphic sequences

Thus far, we have introduced the Harris matrix as a diagram comprising boxes rep-

resenting contexts, with edges connecting these boxes representing the relationships

between the contexts. To a mathematically trained reader, this sounds identical to

a mathematical graph. Such graphs comprise nodes (which can represent contexts,

just as the boxes on a Harris matrix) and edges connecting such nodes to represent a

specific relationship between them. To represent stratigraphic sequences in a mathe-

matical graph, each context would be represented as a node, with edges between

nodes representing that one node is above another in the stratigraphic sequence.

Therefore, the direction of the edge matters, so a specific type of mathematical

graph called a directed graph is required. Such a graph should not contain any

cycles since that would indicate that a context is older or younger than itself, which

is clearly nonsense. Thus, the type of mathematical graph required for representing

stratigraphic sequences is a directed acyclic graph (DAG).
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The benefit of representing stratigraphic sequences using DAGs (as opposed to Harris

matrices) is that they are widely used for representing other sequential relationships,

and so a wealth of algorithms and computer software also exist to allow manipulation

and analysis of such graphs. Indeed, using mathematical graphs to display a strati-

graphic sequence is not new (see Herzog and Scollar, 1990; Herzog, 1993). However,

it was Dye and Buck (2015) who first proposed using DAGs to aid in the automation

of chronology construction. We discuss their approach in detail in Chapter 7. For

the remainder of this section, we focus on why a Harris matrix is not a DAG and

how we can represent stratigraphic sequences as mathematical DAG.

Certain conventions in the drawing of Harris matrices prevent them from being

directly translated into mathematical graphs. For example, as first seen in Figure

2.1 and shown again on the left of Figure 2.3, the convention for representing once-

whole relationships in a Harris matrix is two parallel edges. Suppose we wanted

treat the Harris matrix on the left of Figure 2.3 as a DAG. All edges in the DAG

indicate that one context is older than the context it is connected to. Therefore, in

a DAG, the two parallel edges between contexts 1 and 3 would create one of two

possible relationships. Either, both edges are going in the same direction, which tells

us that one context is older than the other rather than once-whole. Alternatively, if

both edges go in opposite directions, this would imply a cyclic relationship which is

stratigraphically nonsensical and not permitted within a DAG.

To address this, Dye and Buck (2015) propose a simplification of the graphical

structure which we adopt in what follows. Nodes representing once-whole contexts

are combined into a single node since although they were not identified as a single

context during excavation, they are part of a once-whole context; we illustrate this on

the right of Figure 2.3. Further discussion of using mathematical graphs to manage
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Figure 2.3: left : Directed acyclic graph corresponding to the same stratigraphic
sequence as the Harris matrix on the left, but nodes representing 1 and 3 have been
merged to represent one single archaeological event. Note that in both panels older
contexts are below younger ones. right : Harris matrix representing a hypothetical
stratigraphic sequence such that contexts 1 and 3 are once-whole contexts and, as
such, represent events that happened at the same time.

relative dating evidence is provided in Chapter 6. However, to explore the potential

for using such mathematical graphs to automate chronology construction, additional

background and theory are required.

2.2 Grouping of contexts

Thus far, we have discussed relative dating evidence that derives from physical

relationships between archaeological strata. The physical relationships are then

converted into temporal relationships during post-excavation, we demonstrate this

conversion in Chapter 7 Section 6.3. In addition to recording stratigraphic sequences,

archaeologists infer additional relative dating information in the form of temporal
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relationships by grouping contexts based on the archaeological evidence observed on

site. These groups of contexts will be associated with distinct events in the past.

As such, a group will have an associated timespan corresponding to the duration

of the collection of events represented by that group. This grouping may happen

in a hierarchical nature, with subgroups being grouped inside other groups and so

on. Harris describes groups containing contexts as phases, which are grouped into

periods. However, as May (2020) describes, archaeologists do not consistently label

these groupings. Within this research, we only consider one grouping level, i.e. groups

can only contain contexts and not other groups. As such, we refer to any collection

of contexts as groups within this research and omit the use of the terms phase and

period.

Harris defines two stages to the grouping of contexts within the stratigraphic sequence.

The first is building the stratigraphic sequence, as discussed in the previous section,

and the next is grouping the contexts into distinct timespans. First, contexts are

grouped to represent a period of archaeological activity (Bayliss, 2009). One such

example of a period of archaeological activity is the occupation of a particular human

settlement.

Grouping of contexts may happen on-site, for example, grouping contexts that repre-

sent holes dug in a specific pattern as part of building construction. However, further

grouping or revisions of previous groups will most often happen in post-excavation

research. Post-excavation research comprises all of the work that follows the end

of physically excavating a site through to the publication or archiving of all data

and excavation reports. During this part of the process scientific dating occurs in

addition to further refining the stratigraphic sequence and grouping based on all

evidence observed on-site. Once all contexts have been grouped, then relationships
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between these groups should be defined.

2.2.1 Allen operators

Whereas stratigraphic contexts essentially have two relationships, above/below and

once-whole, the relationships between any given pair of groups could be one of

thirteen. These thirteen relationships correspond to the 13 operators as defined

by Allen (1983), which correspond to six temporal relationships, their corresponding

inverses and then an operator that defines two groups as equal. These encompass

all possible relationships between two temporal intervals (such as groups). These 13

relationships are provided in Table 2.1, alongside their abbreviations.

Abbreviation Relation Inverse abbreviation Inverse relation
> before < after
m meets mi is met by
o overlaps oi overlapped by
f finishes fi is finished by
d during di contains
s starts si started by
= equals

Table 2.1: Table of Allen operators that describe relationships between two blocks
of time as defined in Allen (1983). Their corresponding abbreviations are also
provided.

These ‘Allen algebras’ are adopted by some archaeologists as a foundation for modell-

ing archaeological groups (e.g. May, 2020; Lucas, 2015). In addition to pictorial

representations for each operator, we outline these relationships in Figure 2.4. Typi-

cally, archaeologists will define the relationship between groups as one of three:

abutting (meets), gap and overlap. These correspond to six of the Allen algebras

(including their inverses), and we refer to these as between-group relationships.

The remaining seven Allen algebras correspond to relationships between groups and
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subgroups contained within them, and as such, we define the remaining seven rela-

tionships as between-group relationships. In this research, we only utilise relative

dating evidence that uses groups and omit the use of subgroups. Thus, we only

utilise the between-group relationships when carrying out chronology construction.

Thus far, we have introduced the relevant methods of obtaining the relative dating

evidence that is used in archaeological chronology construction. Further, we intro-

duced the concept of using mathematical graphs, specifically DAGs, to represent

stratigraphic sequences. This idea is developed in greater detail in Chapters 6 and

7. The other key component we use in chronology construction is absolute dating

evidence which is the focus of the next chapter.
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Figure 2.4: A diagram showing the 13 different Allen algebras (to the left) with
a pictorial representation such that the rectangles represent blocks of time (middle)
and the corresponding relationship between archaeological groups 1 and 2 that each
Allen algebra represents (to the right) (Allen, 1983). Abbreviations used are defined
in 2.1.
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Chapter 3

Absolute dating evidence

Stratigraphic sequences, in addition to grouping, provide us with relative dating

evidence for a given excavation. However, we can gather additional information

from artefacts found during the excavation, commonly referred to as finds. Common

types of finds include bones, pottery and coins. During single-context excavation,

archaeologists excavate finds and artefacts and take samples as appropriate. Arch-

aeologists record the context, and often the precise 3D location, in which the finds

were discovered or where the sample was located. Certain types of finds and samples

can be dated by absolute dating methods, e.g. organic materials such as bone and

wood. Absolute dating gives a numerical estimate of the age of a sample or a find

and, thus, an approximation of the calendar age of the context from which the find

or sample originates, effectively anchoring the stratigraphic sequence to a point in

time. However, this is only true if the find dates the context in which it was found.

Note that this is not always the case, and how to address this problem is discussed

in Chapter 6.

19



CHAPTER 3. ABSOLUTE DATING

Scientific dates are often used to provide absolute dating evidence, but artefact

experts such as coin or pottery experts can also provide absolute dates based on

inspection of artefacts. Our research focuses on radiocarbon dating as a source

of absolute dating evidence due to the interesting statistical problems it leads to.

Radiocarbon dating provides an absolute date estimate for an organic sample and

is a method of scientific dating carried out by specialist laboratories.

However, the radiocarbon determinations provided by radiocarbon dating labor-

atories are not directly equivalent to calendar year estimates. Therefore, conversion

of such dates to the appropriate scale is required. Converting from the radiocarbon

scale to the calibrated scale (an approximation of the calendar scale), which we refer

to as calibration, requires a calibration curve that must be estimated. In this chapter,

we provide motivations for such a curve and outline the history of constructing such

calibration curves. Following these initial explanations, we outline the calibration of

a single radiocarbon determination.

3.1 The birth of radiocarbon dating

Willard Libby first suggested the existence of radioactive carbon in organic material

(Anderson and Libby, 1946) and used this to attempt to date organic samples

(Libby et al., 1949), subsequently developing radiocarbon dating as a method for

dating organic material (Libby, 1955). It is no exaggeration to call this discovery a

revolution (Bayliss, 2009), which earned Libby the Nobel prize for Chemistry in 1960

(NobelPrize.org, 2022). His work on the radioactivity of organic materials and the

development of radiocarbon dating theory had significant implications for archaeo-

logy. While stratigraphy allows us to construct a relative chronology, radiocarbon

dating provides an anchor for that chronology, placing it in an approximate absolute
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position on the calibrated scale.

3.1.1 Radioactive decay

To understand how radiocarbon dating works, we must introduce the concepts of

isotopes and radioactive decay. Every chemical element consists of atoms that have a

nucleus. The nucleus of an atom consists of positively charged protons and neutrons

with no charge. Though the number of protons in the nucleus of a specific element is

fixed and determines which element the atom comprises, the number of neutrons can

vary, leading to isotopes of an element. An isotope is represented using the chemical

symbol for its element, with a left-aligned superscript representing the combined

number of protons and neutrons. For example, the element carbon has 6 protons

in its nucleus and has three isotopes: 12C, 13C and 14C, with six, seven and eight

neutrons, respectively (see Bowman, 1990). Only a tiny part of a given sample of

carbon will be 14C, less than 10−12% (Bronk Ramsey, 2008) However, the relative

proportion of 14C to 12C in a particular sample can be estimated using methods

discussed in the following section.

Some isotopes are unstable due to the excess energy stored in the nucleus. Such

isotopes are termed radioactive and will decay over time into a more stable isotopic

form; 14C is an example of an unstable radioactive isotope (as such, it is frequently

referred to as radiocarbon, hence the name radiocarbon dating). The law of radio-

active decay, first proposed by (Rutherford and Soddy, 1903, Section 4) for all radio-

active elements, allows us to model the decay of 14C using the equation:

A = A0e
−λt, (3.1)

which gives us the number of 14C atoms A in a sample at time t, as defined in
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(Bowman, 1990, pg 11), such that A0 is the number of 14C atoms at time t = 0.

Further, we have the constant λ, which is unique for each isotope and corresponds

to the rate at which a sample decays. Each radioactive isotope has a half-life, T1/2,

which is a measure of how long it takes for half the atoms in a sample of radioactive

material to decay into a more stable atom. Section 3.1.4 discusses estimating the

radiocarbon’s half-life. The decay constant λ is proportional to the reciprocal of

the half-life such that λ = ln(2)/T1/2 (Bowman, 1990, pg 11). Consequently, given

Equation 3.1, provided we can obtain values for A,A0 and the half-life T1/2 (thus

giving us λ), we can calculate the time elapsed since a sample of radioactive material

began to decay. It was this theory that Willard Libby utilised when he proposed

using radiocarbon dating to date organic matter.

3.1.2 Radiocarbon in living organisms

Until death every living organism (such as humans, plants and animals) interacts

with the Earth’s life-sustaining biosphere (see Thompson et al., 2022). Libby sug-

gested that living organisms absorb the isotopes 12C, 13C and, most importantly, the

radioactive isotope 14C during this interaction (Libby, 1955). Libby further proposed

that while alive, the absorption and decay rates of 14C in an organism reach a state

of equilibrium with their environment, but that upon death, only the decay process

remains. Therefore, by calculating the extent of the decay of 14C within an organic

sample, using Equation 3.1 and letting the year of death of an organism correspond

to t = 0, we can determine the time elapsed since death. Thus, radiocarbon dating

was born.
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3.1.3 Measuring the number of radiocarbon atoms

Determining the age of a sample requires the half-life of 14C and being able to

estimate the number of 14C atoms both now and at death. The true number of 14C

atoms in a sample cannot be determined exactly, but experimental values can be

derived to estimate it, as discussed in Bowman (1990) Chapter 3. Libby et al. (1949)

utilised beta counting to detect 14C in a sample. When 14C decays into the stable

isotope 14N, it emits a beta particle which can be detected, allowing laboratories to

estimate the number of 14C atoms in a sample.

However, accelerator mass spectrometry (AMS) has since provided a far more precise

method for estimating the number of 14C atoms in a sample (Bronk Ramsey et al.,

2004), uses the fact that different isotopes have different atomic weights. When

applying a magnetic force to a carbon sample, lighter carbon isotopes are deflected

more than heavier ones allowing detectors to count the number of atoms of each

isotope.

Both AMS and beta counting have experimental errors. As Bowman (1990), Chapter

3 discusses, these errors are usually evaluated by repeating experiments a large

number of times and measuring the variation in the measurements of 14C atoms.

However, due to the cost of repeating experiments and limited sample sizes, this is

not feasible for radiocarbon dating. So instead, the laboratory errors are approximated.

An in-depth discussion of how this is done is provided in Scott et al. (2007).

An important point to highlight is that, strictly speaking, the laboratory error on

a radiocarbon determination is not symmetrical. However, for samples of most

material obtained during excavation, this asymmetry is small. Therefore, it is

standard practice for a laboratory to provide a radiocarbon determination as x± σ
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such that x is the estimated radiocarbon age of the sample, and σ is the laboratory

error assumed to be symmetrical about x and equivalent to 1 standard deviation.

Further details of the methods used to estimate the number of 14C atoms in a

sample (and the errors these methods produce) are omitted here but can be found

in (Bowman, 1990, Chapter 3). We outline the statistical relationship between a

radiocarbon determination x ± σ and the true number of 14C atoms in the sample

in Section 3.2.3, but some additional theory is required first.

Whilst we cannot directly measure A0, the number of 14C atoms in the sample at

death, Libby (1955) assumed that the concentration of 14C in the atmosphere and

biosphere of the earth had remained constant over time and space. Thus he proposed

using modern samples to estimate the number of 14C atoms in an organic sample at

death (Libby, 1955, see Equation 5). Therefore, all that remains to utilise the law

of radioactive decay for dating is to calculate the decay constant, which requires the

half-life of 14C.

3.1.4 Half-life of radiocarbon

To calculate the decay constant λ in Equation 3.1, Libby took the half-life of 14C to

be 5568±30 years (Johnson et al., 1951), and this half-life (known as Libby’s half-life)

was used for over a decade. Researchers have since proposed more accurate estimates

for the half-life of 14C, and the currently accepted value is 5700± 30 (Kondev et al.,

2021). However, using any half-life other than Libby’s half-life produces inconsistent

results compared to previously published radiocarbon ages. The research community

agreed that they would proceed with the less accurate but, importantly, consistent

half-life of 5568 ± 30 for continuity with previously dated samples (Godwin, 1962).

While it may seem odd for the radiocarbon dating community to do this it is, in fact,

of no consequence since we can correct the discrepancy in the half-life during the
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step that converts radiocarbon determinations (and their errors) to the calibrated

scale.

3.2 Calibration of radiocarbon determinations

The revolution of radiocarbon dating was not without its obstacles. Libby’s theory

relies on the concentration of 14C in the atmosphere and biosphere remaining approx-

imately constant over time so that we can estimate the number of 14C atoms at t = 0

(death) using modern samples. Libby acknowledged early on that this assumption

might not hold, and de Vries (1958) confirmed this by radiocarbon dating tree-

ring samples of known calendar ages. Further studies from various laboratories

provided further evidence (see Reimer, 2021, for details) of the variation of 14C in

the atmosphere and biosphere over time and space.

Due to the varying concentration of 14C in the atmosphere and biosphere a sample’s

radiocarbon age, i.e. the time elapsed since the organism died (equivalent to t in

equation 3.1), is not equivalent to the number of calendar years since death, which

is its calendar age. Therefore, to be able to interpret radiocarbon determinations, a

function is required to convert between the radiocarbon scale and the calendar scale.

Let θ denote the true calendar age of a given sample (cal BP) and r(θ) denote its

radiocarbon age (BP). A deterministic relationship exists between any given calendar

age and its true underlying radiocarbon age. This is because any number of samples

with the same calendar age will have experienced the same rate of 14C decay and,

therefore, will have the same radiocarbon age (Blackwell and Buck, 2008).

However, the factors that affect the concentration of 14C in earth’s biosphere are too

complex to determine the exact function r(·), such that r(·) denotes a function which

can calibrate any given value of θ to its true radiocarbon age r(θ) (see Bowman,
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1990, Chapter 2). Instead, data and statistical curve-fitting methods are used to

approximate r(θ). Estimates of the relationship between θ and r(θ) are known as

radiocarbon calibration curves, and we denote such calibration curves as µ(·), such

that µ(·) is an approximation of r(·).

3.2.1 Data used to construct calibration curves

To construct a calibration curve, dating methods that can provide reliable calendar

age estimates for an organic sample are required. That same sample can also be

radiocarbon dated, giving an associated radiocarbon determination. Hence, each

sample can be represented by a data pair. Datasets of these data pairs can then

be used as input for models to estimate calibration curves. Dendrochronology is

a commonly used method of obtaining calendar age estimates for organic samples.

This method compares the widths of tree rings resulting from annual growth patterns

to a master chronology to provide a calendar age often accurate to one calendar year,

for a sample of wood. For a comprehensive guide to dendrochronology, see Baillie

(1982).

Initially radiocarbon-dendrochronology data pairs were used to produce tables of

radiocarbon corrections (Stuiver and Suess, 1966). Following this, various local

short-scale calibration curves were formed by radiocarbon dating wood samples

that had been dendrochronologically dated and published as tables of corrections,

e.g. Suess (1967, 1970) and Switsur (1973). While the early calibration curves were

suitable for the Northern Hemisphere, further calibration curves were eventually

provided for the Southern Hemisphere (Lerman et al., 1970) and marine samples

(Stuiver et al., 1986) due to regional variations in atmospheric 14C concentration.

Reimer (2021) outlines the evolution of all the calibration curves over the past
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several decades. A critical development, however, was the first internationally

agreed-on calibration curve (Stuiver and Pearson, 1986; Pearson and Stuiver, 1986),

which led to the development of the IntCal working group (IWG). This group is

dedicated to modelling internationally-agreed calibration curves for marine samples

and Northern and Southern Hemispheres samples. These calibration curves are

continually updated and published when improved data or curve-fitting methods

become available, the most recent being the IntCal20 curve (Reimer et al., 2020),

SHCal20 (Hogg et al., 2020), and MarineCal20 (Heaton et al., 2020b).

3.2.2 Key details of IntCal calibration curves

The data used by IntCal to produce curve outputs are often referred to as IntCal

datasets. These datasets comprise pairs of calendar age estimates and radiocarbon

determinations. Sources for obtaining such data are many and varied, so inferring an

estimate of the curve from the resulting database is a major statistical undertaking

in its own right, (Buck and Blackwell, 2004; Heaton et al., 2020a), but such methods

are not discussed further here since we do not construct our own calibration curves

in this thesis. Instead, we use the latest Northern Hemisphere calibration curve

estimate, IntCal20 (Reimer et al., 2020).

It is important to note that for other sources of calendar age estimates, there are

errors on both the calendar age estimates and the radiocarbon determinations which

must be considered when estimating calibration curves. For initial estimates of the

calibration curves, error on the calendar scale was not included in the modelling

process. However, more recent curves have included errors from calendar age esti-

mates within the IntCal datasets, and now this is standard practice (Buck and

Blackwell, 2004; Reimer et al., 2004, 2013, 2020). Alternative methods for obtaining

calendar date estimates are not discussed here since we focus on radiocarbon dating
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but see Reimer (2021) for a discussion of other dating methods that are used to

provide data from which calibration curves can be estimated, and Reimer et al.

(2020) for a detailed discussion of the data used to construct the most recent

Northern hemisphere calibration curve.

The calibration curves published by IWG are our best available estimates of r(θ).

Strictly speaking, the Northern hemisphere, Southern hemisphere, and Marine cal-

ibration curve estimates correspond to approximations of distinct functions. We

might denote these estimations µN(θ), µSθ) and µM(θ) respectively. However, to

simplify notation, using µ(θ) to represent a chosen estimate of a particular cal-

ibration curve is standard practice. A further note of importance is that, due to

the uncertainty in the calendar age estimates in the IntCal data, the calibration

curve output that corresponds to the calendar scale is, in fact, an approximation

to the calendar scale which is why we refer to it as the calibrated scale. Since all

approximations of true calendar ages for the remainder of this thesis will be obtained

using a calibration curve, all future references to θ will refer to the true calibrated

age of a sample.

All IntCal calibration curves are published as five columns of model output, with the

first column consisting of selected calibrated radiocarbon ages on an irregular grid

for which the IntCal team have provided curve output. For IntCal20, these are in

the range of 55,000-0 cal BP and are yearly for the later part of the calibration curve

but become more sparse for the earlier parts of the curve. Two of the five columns in

the IntCal calibration curves correspond to curve output modelled in domains other

than radiocarbon or calibrated age domains. See Heaton et al. (2020a), Section

3.2.1 for definitions of these domains and details of such conversions. However, since

we work only in the radiocarbon age and calibrated age domains when calibrating
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archaeological radiocarbon determinations, further discussion of domains other than

radiocarbon and calibrated age is omitted.

For each calibrated age θ in the IntCal published curves, there are two columns

which are in the radiocarbon age domain. The first of these represents a pointwise

estimate of r(θ), µ(θ). The second provides a pointwise error δ(θ) for each µ(θ). The

pointwise error, assumed to be symmetric about µ(θ), accounts for the uncertainty

involved in estimating the calibration curves. This uncertainty is partly due to the

uncertainty in the data used to estimate the curve - in particular, the laboratory

error for radiocarbon dates, in addition to any errors on the calendar dates in the

IntCal20 datasets. There is further uncertainty due to the curve fitting meth-

ods being statistical. Finally, the most recent curve estimate, IntCal20, provides

variances that correspond to predictive intervals, as opposed to confidence intervals,

to account for the uncertainty not able to be quantified in the laboratory errors

(such as regional differences between samples used for data in the IntCal datasets)

and any additional unseen variation in radiocarbon determinations that will be cali-

brated by the IntCal20 curve. The pointwise means and variances are provided for

yearly intervals of θ for the early calibration curve and larger intervals for older parts

of the curve.

Using linear interpolation on the published IntCal20 curve outputs, for sections

where annual estimates are not provided, we obtained an interpolated output of

the pointwise estimates µ(θ) with error δ(θ) for each integer calibrated age between

55,000-0 cal BP as seen in Figure 3.1. Generally, users will use linear or cubic

interpolation on the IntCal curve outputs. We chose linear interpolation to avoid

over-smoothing the curve. When plotting the interpolated curve, we see a non-

monotonic relationship between the radiocarbon scale and the calibrated scale. This
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relationship was, in fact, observed in early estimates of calibration curves, with

Suess (1970) demonstrating what is referred to in the literature as ‘wiggles’ in the

structure. His lack of justification for constructing such a curve resulted in a failure

to convince early researchers. However, further dendrochronology dating confirmed

that Suess’ ‘wiggle’ structure was correct (Reimer, 2021).

Each true calibrated age θ has a deterministic relationship with its true radiocarbon

age µ(θ). However, due to the ‘wiggles’ in the calibration curve, a µ(θ) value does

not uniquely map to a value of θ on the calibrated scale. Figure 3.1 demonstrates a

section of the interpolated IntCal20 calibration curve estimate (Reimer, 2021). Note

that the inset in that figure highlights the lack of a one-to-one relationship between

the radiocarbon scale and calibrated scale for the radiocarbon age 5300 BP. We will

now discuss how to use the most recent calibration curve µ(·) (IntCal20) to calibrate

a single radiocarbon determination, taking into account the non-monotonic nature

of the calibration curve and the uncertainty on the curve.

3.2.3 Calibration of a single radiocarbon determination

The one-to-many relationship between the radiocarbon scale and the calibrated

scale complicates the calibration of radiocarbon determinations. However, it is

relatively simple due to the assumptions about the nature and the various sources

of uncertainty and by utilising likelihood functions. Given a sample with a true cali-

brated age of θ and true radiocarbon age of r(θ), a radiocarbon determination x±σ

is a realisation of a random variable X such that X is an approximation of r(θ).

Given that our best approximation to r(θ) is the calibration curve µ(θ), we must

also take into account the error on the curve δ(θ). Recall from Section 3.1.3, that the

laboratory error σ on a radiocarbon determination x is assumed to be symmetrical.

It is standard practice to assume that X is normally distributed, conditional on θ
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Figure 3.1: A section of the IntCal20 calibration curve µ(θ) (navy) ±2δ(θ) (light
grey) given for calibrated ages θ between 9000-4000 cal BP. Inset zooms in on the
calibration curve in the range 6400-5800 cal BP, showing a lack of unique mapping
for the radiocarbon age 5300 BP to the calibrated scale

with mean µ(θ) and variance σ2 + δ(θ)2 (Blaauw, 2010; Nicholls and Jones, 2001).

Given the assumptions mentioned above, we know that the probability distribution

of data x ± σ given parameter θ is the probability density function of a normal

distribution with mean µ(θ) and variance σ2 + δ(θ)2. However, we are interested in

the true value of θ. Therefore, we use the likelihood function L(θ;x), which gives us

the likelihood of each possible value of θ being the true value, given fixed data. Both

L(θ;x) and p(x|θ) are the same function up to proportionality. However, L(θ;x) is

a function of θ instead of a function of x. Using the probability density function of
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the normal distribution, we get

L(θ;x) ∝ exp

(
− (x− µ(θ))2

2(σ2 + δ(θ)2)

)
(3.2)

up to proportionality. Note that for simplicity of notation we avoid explicitly

conditioning of σ, µ(·) and δ(·) in the likelihood notation L(θ;x) as in Christen

(1994). However, in all notation from this point, the use of data x includes the

associated laboratory error σ and a calibration curve, i.e. µ(·) and δ(·).

Figure 3.2: Plot of the IntCal20 curve, showing calibration of the (normally distrib-
uted) radiocarbon determination 5300±50 BP (orange), to a probability distribution
on the calibrated scale (grey). Note, for both probability distributions, the curve’s
height represents probability density (with scale for probability not provided).
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Summary statistics for calibrated radiocarbon determinations

By evaluating the likelihood function for all integer calibrated ages in the range

50,000-0 cal BP and normalising, we can obtain a discrete approximation to p(θ|x).

However, calibrating the radiocarbon determination 5300 ± 50 BP, in Figure 3.2,

results in a probability distribution on the calibrated scale that is now multi-modal.

Therefore, summary statistics such as mean and variance are not particularly inform-

ative and should not be used.

Instead, we find the highest posterior density (HPD) interval R for the calibrated

age θ. An HPD interval is the interval, or set of intervals, such that for all θ ∈ R

and θ′ ̸∈ R,

p(θ|x) ≥ p(θ′|x),

meaning all calibrated ages within the interval(s) have a higher probability of being

the true value of θ than any outside the interval, and the cumulative probability of

all the values within the interval should sum to some limit set by the user. This

limit is usually 0.95, corresponding to 95%, as it is with confidence intervals. Thus,

calibrated ages are published after calibration as an HPD interval (or set of intervals)

instead of an estimate and error.

The availability of calibration curves solved the problem of calibrating radiocarbon

determinations to the calibrated scale. However, the HPD interval of the calibrated

radiocarbon determination can be rather large. This is particularly true for older

samples with larger errors or radiocarbon determinations calibrated by flatter parts

of the calibration curve. Fortunately, archaeologists can use more than absolute

dating evidence when constructing the chronology of a site. Chapter 5 introduces

how both absolute and relative dating evidence can be utilised in chronology con-

struction, which allows us to improve the precision of calibrated age estimates within
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a chronology using the method of statistical inference known as Bayesian inference.

Stratigraphic sequences, along with scientific dates and, ideally, grouping, are the

three components we required for the chronology construction carried out in our

research, as discussed in this chapter and the previous one. Despite single-context

excavations being standard in the UK and the widespread use of the Harris matrix

for displaying stratigraphic sequences, these components are not always archived

well, if at all, in digital archives. This lack of archived relative and absolute dating

evidence presented a problem for our research since we required such evidence for

testing and case studies. The following chapter explores the results of a data review

searching for such dating evidence in digital repositories within the UK and the data

that we proceeded to use for case studies.
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Chapter 4

Obtaining archaeological dating evidence

Archaeological excavation often produces large volumes of physical finds/samples

and data in analogue and digital formats. Increasingly, much of these data are

recorded and managed digitally (so-called born-digital data) or are archived in a

digital format when deposited in a repository. Relative and absolute dating evidence

and the associated data are produced and augmented at various stages in the excava-

tion and post-excavation process. Careful consideration is required upon archiving

to ensure the data will be suitable for reuse.

For all disciplines, it is imperative that data are reusable since it allows for the

reproducibility or reanalysis of results and data. However, the reusability of data is

of the utmost importance in archaeology. By and large, archaeological excavation

is destruction (Wheeler, 1956). Gathering data during an excavation predominantly

destroys the source of that data permanently. Even if the data source is not entirely

destroyed, such as samples used for scientific dating, any given sample is of finite size.

Therefore, only a limited amount of scientific dating or other destructive analysis
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can be carried out.

Many archaeologists in the research community urge that archived archaeological

data must adhere to the FAIR principles (Wilkinson et al., 2016), with FAIR referring

to data being Findable, Accessible, Interoperable and Reusable. Digital archives

put significant effort into ensuring data can be found within their repositories,

easily accessed from them, and that users can query metadata to ensure data are

interoperable. Nicholson et al. (2023) Table 1 discusses in detail how to ensure

data adhere to the FAIR principles. Nicholson et al. (2023) also discuss how the

archaeological community might improve the reuse of archaeological data in general.

In this chapter, we will examine how the process of ensuring digital archaeological

data are findable, accessible and interoperable does not, in itself, automatically

enable reusability. The resulting lack of reusable data in archaeology can prevent

advancements in software and methodologies since well-understood existing data are

needed for testing and case studies.

As discussed in Chapter 1, Section 1.2, the research undertaken for this thesis was

funded via a Collaborative Doctoral Partnership (CDP) between Historic England

and AHRC. One of the conditions of this funding was that we would carry out a

systematic data review of the quality and utility of resources in digital heritage repos-

itories in the UK. This data review complemented our research objectives well since

a key goal of the project was to semi-automate the complete chronology construc-

tion process from data gathering on an archaeological excavation through to Bayesian

chronology construction (see Figure 7.1 for an illustration of the process and Chapter

5 for theoretic details). We required case studies of previously excavated sites with

well-archived relative dating evidence and, ideally, absolute dating evidence such as

radiocarbon determinations to accomplish this. Since a wide-ranging and represent-
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ative sample of case-study data sets was sought for testing the models and methods

developed later in the research, it was decided that a systematic data review would

be undertaken to search for the required data rather than an ad-hoc approach. This

allowed us to provide a snapshot of the quality and quantity of the archaeological

data available in the archaeological digital archives, as Historic England required.

This extensive data review formed an internal report for Historic England and was

later published alongside additional case studies of digital archaeological data reuse

in Moody et al. (2021). This chapter briefly examines recent literature on the reuse

of digital data in archaeology, though a more detailed review is provided in Moody

et al. (2021). In addition, we signpost the reader to examples of other research where

the reuse of absolute and relative dating evidence has added value to an excavation.

Following this, we describe the methodologies used in our data review and highlight

key results from the report written for Historic England and the current author’s

contribution to Moody et al. (2021). Finally, we discuss how our research seeks to

mitigate some of the issues of digital data management and reuse encountered during

the data review.

4.1 Digital repositories in archaeology

Increased computing power has resulted in the ability to produce, manipulate and

store large volumes of digital data during excavation and post-excavation research.

All digital data would ideally be archived within private or public archives. However,

some data can be kept by the excavating organisation and never archived. Moreover,

the excavating organisation dictates when digital data are deposited, and they may

deposit data in stages or wait until the end of a project, if at all. Long-term digital

preservation is considered particularly important if excavation data is only recorded
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digitally. Data such as GIS plan drawings, CAD section drawings, numerical data,

spatial coordinates, or PDFs of archaeological reports are often recorded as digital

data and thus kept in digital repositories. For digital archiving to be practical, any

data should be secure, files should be in a format that is non-obsolescent, and it

should be readily accessible in the future if needed.

The Archaeology Data Service (ADS) is a public digital repository for heritage data;

they have continually worked to ensure digital archaeological data are archived to

ensure the longevity and access of the files (Richards, 2008). Since its formation

in 1996, the ADS has provided the leading public digital archive for archaeological

data in Great Britain. They accept a wide range of archaeological data, including

but not limited to databases, computer-generated images, photographs, audio files

and reports in PDF format (The Archaeology Data Service, 2020).

In addition to the ADS online repository, the ADS launched the OASIS project

in 2004. The OASIS (Online AccesS to the Index of archaeological investigationS)

project is managed by the ADS in partnership with public heritage bodies in England,

Scotland (and to lesser degrees Northern Ireland and Wales). It provides a central

digital repository for archaeological grey (unpublished) literature. Additional repos-

itories exist, such as DANS (Data Archiving and Networked Services) in Denmark

(Hollander, 2017), tDAR (the Digital Archaeological Record) in the US (McManamon

and Kintigh, 2017), and SND (Swedish National Data Service) in Sweden (Swedish

National Data Service, 2023), see Nicholson et al. (2023) Table 2 for an extensive

list of sources of digital archaeological data.

Despite making significant progress in preserving digital data, the ADS Director and

colleagues acknowledge that more work is needed to ensure such data are reusable.

Indeed, the ADS director, Richards (2017), describes how digital fieldwork archives
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seldom have all the required data for further analysis or reuse. Richards (2017) also

recognises that cost is a key factor in preventing the deposition of digital data with

the ADS. However, he argues that depositing a comprehensive digital archive should

be part of the standard workflow upon project completion. Since 2019, the SEADDA

(Saving European Archaeology from the Digital Dark Age) project has been working

on improving the archiving of digital archaeological data with partners, including

staff from the ADS in over 26 countries (SEADDA, 2023).

The minimum data required to allow for reuse depends on the data type. In section

4.2.1, we outline the type of data required when chronological modelling is the goal.

However, this is just one of an enormous range of post-excavation projects that might

seek to reuse data. What is clear is that defined standards for the management and

archiving of all types of digital archaeological data that can be produced during

excavation are required to ensure the potential reuse of such data. These standards

should consider all stages of the data cycle, as specified in Yakel et al. (2019), from

collecting and recording the data during excavation to management and reuse during

the post-excavation process.

4.1.1 Data management standards in archaeology

Additional research on digital data management in archaeology, such as Faniel et al.

(2013) and Huggett (2018), agree that although standards have been established for

storing and preserving digital data so that they are accessible in the future, reuse

issues still need to be addressed. The lack of standardisation in how digital archaeo-

logical data are recorded and managed presents substantial problems. Archaeology

in the UK is carried out in both the research and commercial sectors by at least ten

major archaeological contracting organisations, a multitude of smaller operators, and

many individual archaeological consultants and specialists. This results in widely
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varying excavation, post-excavation, analysis and publication practices. Further,

variation in data outputs is exacerbated by the many different types of archaeo-

logy encountered (e.g. the scale of excavation, the complexity of site stratigraphy,

investigation methods, project type, and resources available). As a result, despite

the ADS providing a central repository for depositing digital archaeological data,

the data are not always in an optimal format for reuse, if deposited at all.

Throughout the process, from the start of the excavation to the publication of

the final excavation report, there are multiple steps where data may be recorded,

managed or stored in a way that facilitates or hinders reuse. Faniel et al. (2018)

highlights a lack of formal archaeology database creation and management training.

There is little incentive to improve this since training can be costly and time-

consuming, with no immediate benefit to those working on an excavation. However,

without sufficient training, it is difficult for those collecting and recording data to

see how their decisions impact the usability and reusability of data.

Faniel et al. (2018) discusses the data management practices at two European excava-

tions. They find that the aforementioned issues were present in their case studies,

noting that a high staff turnover contributes to the lack of incentive to train staff

thoroughly in database management. They also comment that humans do not

“think like a database". As a result, it is difficult for them to understand how

data-gathering practices can cause problems with data reuse. For example, humans

can readily identify that the two identifiers “A203" and “a203" might relate to the

same thing. However, a digital search algorithm may interpret these as two unique

identifiers. Even if a human is interpreting the data, they may not be confident

that the identifiers represent the same thing if they are unfamiliar with the original

excavation. Typically, subtle issues like this accumulate and (taken together) result
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in data unsuitable for reuse without significant effort.

Guidelines, such as Historic England’s recording manual (Historic England, 2018),

seek to ensure data collection practices are uniform within excavations conducted by

their staff. However, those carrying out the excavations are responsible for deciding

how they wish to record and manage their digital data. Moreover, even if data are

collected and managed well on-site, management and manipulation of data during

post-excavation analysis can also prevent reuse if, at the very least, a record of

precisely how the data were used during the post-excavation process is not archived.

Ideally, the raw digital data (as collected on-site) would always be archived within

a digital repository, along with workflow summaries, models, algorithms, resulting

outputs and notes for future users linking archived materials to any formal reports

and/or grey literature.

Further, data stored in a proprietary format can prevent reuse, particularly if the

software required to access the data must be purchased. The ADS open standards

(The Archaeology Data Service, 2020) address this by allowing only specific file

formats to be deposited. However, if data are kept with a private organisation, they

may choose to store data in a proprietary format, even if they later make it publicly

available. Additionally, if all the necessary data are not publicly available, this can

also prevent reuse. These last issues particularly affect early-career researchers who

may not have the necessary personal contracts or funds to locate or read the required

data.

4.1.2 Value in reusing relative and absolute dating evidence

Although there are multiple scenarios in which it is useful to revisit archived digital

archaeological data, in the remainder of this thesis, we focus on the value of reusing
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chronological data, such as relative and absolute dating evidence. There are multiple

reasons why such reuse might be of value. For example, increased computing power,

or new statistical methodologies, can enable more complex analyses to be carried

out, resulting in revised or new models. We might also wish to revisit data from an

excavation if further scientific dating occurs, e.g. after new excavations have been

undertaken or when the research focus changes in a follow-up stage of excavation.

Any new dating augments the original data and might allow for a revised chronology

to be provided, such as in Marciniak et al. (2015), where a new dating program

changed the understanding of the Late Neolithic community of Çatalhöyük.

Furthermore, experts may disagree on the best chronological model for a given site.

Therefore, it is essential to have data, associated models, and methods available in

a trusted public digital repository to allow researchers to revise or revisit previous

work, see Discamps et al. (2015); Higham and Heep (2019). Bayliss et al. (2014)

remodelled the chronology of Buildings 1 and 5 from the north area of Çatalhöyük,

initially explored by Cessford et al. (2005). The Cessford and Bayliss models are

substantially different, resulting in quite different archaeological conclusions. Dye

and Buck (2015) used this scenario to illustrate why it is beneficial to consider

multiple chronological models for any given archaeological project (which is the focus

of the research presented in Chapter 6 onwards). They proposed using mathematical

graphs to represent and semi-automate the construction of such models. This work

by Dye and Buck (2015), followed by the timely interest in the topic from Keith May,

led to the research reported in this thesis being funded. The aim of this project is

to provide prototype software to improve the management and modelling of relative

and absolute dating evidence for use in Bayesian chronology construction.

We required data for testing our prototype software and for use in case studies
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presented later in this thesis. An initial search by Keith May for data that might be

useful for this PhD (during the project’s design phase) using the front-end web

page of ADS (https://archaeologydataservice.ac.uk/) proved slow, despite

knowledge of archaeological sites likely to be suitable. We thus approached ADS,

who generously spent time performing searches on their metadata to provide us with

a subset of the files stored with the ADS that were most likely to contain the required

data, which we systematically reviewed.

Figure 4.1: Diagram of the end-to-end process from collecting absolute and relative
dating evidence to completing Bayesian chronology construction. The blue and
yellow boxes represent the process of obtaining relative and absolute dating evidence,
respectively. The red boxes outline the process of Bayesian inference.

4.2 Utility of relative and absolute dating evidence

in ADS repositories

The primary objective for the data review described in this chapter was to seek

all absolute and relative dating evidence within the ADS archive and OASIS on-
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line repository that might be used to test prototype software being built as part of

our research. Specifically, we sought stratigraphy (and grouping if available) and

radiocarbon determination as examples of relative and absolute dating evidence,

respectively. A secondary aim was to review the potential for reusing digital arch-

aeological data stored within the ADS. It would not have been practical to review the

potential for the reuse of all types of archaeological data within the ADS. Instead,

the review provides a snapshot of the quality and quantity of data held by the ADS

that might be used or reused in chronology construction (Moody et al., 2021).

4.2.1 Data sought

To be potentially useful for our research, the absolute and relative dating evidence

needed (as a minimum) to consist of:

1. A table containing mutually consistent pairwise statements of the stratigraphic

relationships between contexts (stratigraphic units) as they were observed in

the field.

2. A table containing information about samples (or objects/finds) taken from

specified contexts on the site, which might be suitable for scientific dating or

that have already been dated.

3. A table containing groups and the contexts attributed to them. The relation-

ships between any groups, declared using some form of specified descriptors

such as Allen operators (Allen, 1983; May, 2020), was also desirable.

4.2.2 ADS files

To facilitate our exploration of the ADS Archive and OASIS repositories, Tim Evans

and Jenny O’Brien of the ADS first provided us with 4,820 digital files in varying
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formats deposited in the ADS archive. These files all had metadata containing at

least one of the key-phrases (text strings or combination of text strings) in Table 4.1

suggesting that absolute or relative dating evidence was present within them.

Type of data sought Key-phrase (combination of text strings)
Stratigraphy matr OR c14 OR context OR phas
Radiocarbon determinations radiocarbon OR c-14
Phasing phasing OR phase
Scientific dates dating OR date

Table 4.1: A list of the key-phrases used to search the metadata of files deposited
in the ADS archives to identify files that might contain the absolute and relative
dating evidence needed for our research. Stemmed words were used to search for
similar phrases with differing suffixes, such as phas being used to search for phase
and phasing.

ADS chose the specific text strings used as those most likely to filter files that

contained the following types of data: radiocarbon determinations, scientific dates,

stratigraphy and grouping since the combination of radiocarbon determinations and

either stratigraphy or grouping are the most common building blocks of a Bayesian

chronology construction. As a contingency, in case there was a lack of radiocarbon

determinations, we also requested files containing scientific dates.

Methodology

The methodology for searching the data in the archived files provided by ADS

consisted of two stages. First, the metadata stored at ADS was queried for specific

key-phrases as seen in Table 4.1, then the files identified were manually examined

to see if they contained the kind of data we were hoping to find. A metadata search

is only suitable if the files have appropriate metadata attached. Although ADS

routinely add such metadata, this may not be true with all digital repositories. As

such, anyone seeking to replicate our methodology should consider metadata quality
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Figure 4.2: A stacked bar chart showing the proportions of file type relating to
four categories (as indicated on the horizontal axis) held at ADS. The four categories
of files were formed by searching ADS metadata for the key-phrases given in Table
4.1.

if it exists. Furthermore, checking each file by hand, as the author had to do, may

not be plausible if there are many files or a strict time limit. If the volume of files is

too large, see the methodology in Section 4.2.3.

Replication of results should also be considered. It is the subjective opinion of the

person reading the files as to whether the content is reusable for their purpose.

Therefore, what constitutes useful data should be clearly defined before examining

files. For this research, it was defined that any stratigraphic information that was not

given as a stratigraphic diagram or a table of contexts with above/below relationships

would be deemed not useful. Even if files contained interpretations clearly derived

from stratigraphic information, to work out the stratigraphic relationships correctly
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from the interpretation would be extremely difficult and error-prone unless one were

very familiar with the excavation. Similarly, files containing groups of contexts

without reference to the archaeological contexts they contained were classed as not

useful since a grouping alone (without contexts) could not provide suitable case

studies for testing the software and models we were seeking to build.

In summary, the files deemed useful contained directly reusable relative and absolute

dating evidence. That is not to say that other documents did not contain absolute

and relative dating evidence. However, such evidence would have required additional

work, such as contacting those who originally produced the data, to be able to utilise

it. Thus, any results should only be interpreted as the volume of directly reusable

relative and absolute dating evidence.

Results

The results of classifying the files can be seen in Figure 4.3 and Table 4.2. The

current author manually classified the files provided to us by ADS in 3 ways: “useful

data”, “no useful data” and “not accessible”. We chose to do this for two reasons.

The first was that classifying the files allowed us to keep track of the files that might

be useful for case studies. The second reason, and the reason we included the “not

accessible” classification, was that we were seeking to quantify the volume of useful

files and felt we should be forthright about which files were actually searched for

data, in addition to which files contained useful data. Files that were not accessible

required additional software to access them. Useful files were defined as those with

directly reusable data, though additional work might be required first to convert

them into an appropriate format for analysis. More detailed descriptions of useful

data are available in Section 4.2.1.
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Not accessed

The only files that were not accessible were those containing computer-aided drawings.

These were provided as individual files and in zip files. Both the grouping and the

radiocarbon determination categories had a large proportion of the files classified

as not accessible as a result of the file formats being CAD and interchange files.

However, examination of the file names and discussions with ADS suggested that

the CAD files were plan and section drawings, which were unsuitable data for our

case studies. Furthermore, despite section drawings showing individual sections of

stratigraphy, it would not be feasible to obtain all section drawings and form a strati-

graphic sequence from them without additional help from those who excavated the

site. Therefore, as agreed with the ADS, they were not examined for relative or

absolute dating evidence as part of this data review.

Useful data

Of the ADS files manually examined by the current author that we expected to

contain scientific dating, grouping and stratigraphy, around half contained directly

reusable data. Most files in the radiocarbon determination category that the author

examined contained radiocarbon determinations with units. These were often given

in the form of PDFs provided by the dating laboratories containing radiocarbon

determinations along with other data (such as a laboratory reference number and

notes from the laboratory), which is an example of good practice with regard to the

data provided. However, since these documents were in PDF format, thus requiring

additional work to convert the data into plain text format ready for reuse.

Around a quarter of the data archived and directly reusable were held in plain

text files. For several reasons archiving data in plain text format, such as comma-

separated (CSV) files, is good practice. The first is the longevity of this format.
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Since it is so widely used, it is probable that software will be available to read these

files for the foreseeable future. In addition, almost all software packages can read and

produce text files, allowing for the interaction between multiple software packages.

Finally, plain text files are easy to view and edit, even with moderate computer

skills.

No useful data

Just under half of the files examined by the author, such that ADS’s initial search

on the files’ metadata suggested they should have contained stratigraphy, did not.

Further, half of those accessed, which we expected to contain grouping of contexts,

did not. For these files, it was often the case that the information in the file

would require additional interpretation to obtain the raw relative dating information,

such as interpreting section drawings to obtain our own stratigraphic sequences.

Furthermore, particularly for files where we expected to find stratigraphy, some files

were empty plain text files which may have been a result of file corruption. Others

were plain text files with table headings, suggesting that stratigraphic data would

eventually be added, but this never occurred.

Files with metadata suggesting they contained scientific dating or radiocarbon determ-

inations but which did not were often files that stated that scientific dating would

be done in the future or that insufficient samples were found to use scientific dating

methods. This was less common with files supposedly containing radiocarbon determ-

inations, only 10% not containing radiocarbon determinations with units. Whereas

44% of files supposedly containing scientific dates did not.

Overall, the files provided by ADS did not contain relevant data for our research.

Although some files contained grouping of contexts and stratigraphy, this relative

dating evidence was often in the form of interpretive discussion derived from the
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raw data obtained during an excavation or post-excavation research. However, the

raw data itself for relative dating evidence was not provided, thus limiting reuse.

Although sufficient radiocarbon determinations were available, they would not be

useful for this research without the corresponding stratigraphy from the site.

Number of files
Useful data No useful data Not accessed

Type of data
Stratigraphy 1797 1472 144
Radiocarbon determinations 120 38 184
Grouping 216 346 129
Scientific dates 193 166 15

Table 4.2: Results of categorising files from ADS. Files classified as not accessed
need propriety software to open, and useful data are all those that we found to be
directly reusable for our research purposes.

Figure 4.3: A stacked bar chart showing the number of files provided by ADS that
have either directly reusable (useful) data, no directly reusable data or were not
accessed. The data type that we expected to see in the files based on the metadata
search carried out by ADS is seen on the horizontal axis.
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4.2.3 OASIS reports

Despite a systematic search of the metadata by ADS, the files they provided from the

ADS repository did not contain sufficient absolute and relative dating evidence for

use in case studies. Discussions with ADS and Keith May suggested this might have

been because those archiving the excavation records deemed sufficient information

present in the text of the archaeological reports, and thus separately archiving digital

data was not necessary. As such, we conducted further searches for data on the

unpublished archaeological excavation reports held within OASIS.

Unpublished excavations reports, commonly referred to as grey literature, are common

in archaeology due to the large number of excavations carried out. Much of the arch-

aeology carried out in the UK is by private contractors as a result of government

policy introduced in recent decades which dictates archaeological investigation should

be carried out before developmental building work occurs (see Evans, 2015). Excava-

tion reports may not contain data and results worth publishing but should, under

this policy, be archived nonetheless. A report by Jones et al. (2003) stated that the

reuse of such reports was hampered since users did not know where to find them.

The purpose of OASIS is to provide a single online resource that enables access

to the large volume of unpublished archaeological reports produced as a result of

contract and research archaeology. The reports are made publicly available via

the local Historic Environment Records for the relevant area or for download at

https://archaeologydataservice.ac.uk/archsearch/browser.jsf.

The entire collection of unpublished (grey) literature stored in OASIS as of November

2018 was provided by ADS. As with the archived documents provided by ADS, the

aim was to source absolute and relative dating evidence that might be suitable for the

research in this thesis. However, due to the large volume of data (37,320 documents
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as of November 2018) we would require a different methodology since it would not

be feasible to check such a large volume of documents manually.

Methodology

Instead of searching the OASIS metadata for key-phrases as we did in the previous

section, we searched the documents’ text. We used a technique known as shell

scripting within the unix computer operating system. Such scripting involves writing

computer commands (in our case using the BASH shell (Free Software Foundation,

Inc, 2019)) in text format that, when executed, can search plain text files for key-

phrases (text strings or combination of strings) defined by the user and return a list

of documents that contain them.

Careful consideration was needed when choosing the key-phrases to prevent spurious

results. While searching the documents computationally for specific text strings

removes human error, it disregards the setting where the words were used within the

document. Consequently, documents may contain words used in a natural language

setting with specific meanings in archaeology. For example, the text string phase

is often used to describe a period in the timeline of excavation as well as a group

of contexts. For our research, we were only interested in documents in which the

term phase was used to refer to the grouping of archaeological contexts. Similarly,

searching for carbon did not guarantee that the documents highlighted would contain

radiocarbon determinations themselves as opposed to, for example, discussions of

the interpretation of radiocarbon determinations or of carbon-rich deposits in the

stratigraphy.

As with the key-phrases used to search the ADS metadata matches in Section 4.2.2,

using combinations of text strings proved useful in preventing spurious matches,
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especially for strings with multiple meanings. We first chose key-phrases closely

matching those used to search the ADS metadata. These were strat, phase, date

and carbon. However, since these text strings can have multiple meanings, we

adopted an iterative approach to choosing our key-phrases. At each stage key-

phrases were chosen, and a computational search of the documents was carried out.

Then, samples of the documents filtered by the search (around 20 per key-phrase)

were manually examined, and any false positives were identified, allowing the key-

phrases to be further refined. For example, even if one searches for a combination

of either radiocarbon, carbon date or carbon dating, one obtains 3300 documents.

However, when a sample of the documents was examined, it was found that some

discussed samples that were unsuitable for dating or the fact that dating would

be done in the future, much as we had found when searching the ADS metadata.

To reduce the occurrence of these false positives, we also searched documents for

the character ±, since radiocarbon determinations are reported as an estimate

plus/minus a laboratory standard error.

The full Bash scripts used to complete the computational search can be found at

Moody (2019), and the entire process of choosing the key-phrases are outlined in

Figure 4.4. The yellow boxes in Figure 4.4 and Table 4.3, alongside their key-phrase

labels, are given the final key-phrases. We have allocated labels (presented in bold)

to key-phrases to allow for their concise reference within this chapter.

Results

The results of the key-phrase search on the content of the OASIS files can be seen

in the Venn diagram in Figure 4.5. Of the 37,320 OASIS documents, 102 contained

all of the key-phrases given in Table 4.3, indicating they contained evidence of

stratigraphy, a stratigraphic diagram, radiocarbon determinations and grouping of
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Figure 4.4: Diagram showing the process of choosing key-phrases for use in an
automated key-phrase search on documents downloaded from the online repository
OASIS. Teal boxes contain key-phrases used early in the process. Red boxes describe
issues encountered, blue edges and their corresponding labels represent actions to
resolve those issues, and yellow boxes contain the final key-phrases.
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Key-phrase label Text string/combination of text strings
Stratigraphy stratigraph
Grouping phase OR phasing
Stratigraphic diagrams harris matrix OR stratigraphic matrix

EXCLUDING
watching brief OR matrix will

Radiocarbon determinations carbon date OR carbon dating OR radiocarbon
AND
Cal BP OR AD OR ± OR BC

Table 4.3: Table defining key-phrases and the text string/combination of text
strings they consist of. These key phrases were used to search the OASIS files as
provided by ADS in November 2018. Each key-phrase has a label that is used to
reference it in the main body of text.

contexts. These were examined, and most were indeed found to contain the kinds of

data that could potentially be useful for early-stage testing of our prototype software

but not complex enough for case studies. However, some were still false positives.

Most of the false positives were due to the text string phase being used to denote

the phase of an excavation rather than grouping contexts into archaeological phases

as part of the post-excavation process.

Initially filtering by Stratigraphy, as defined in Table 4.3, gives a total of 13,114

documents, of which, 9,260 contained only Stratigraphy, but not Stratigraphic

Diagrams, Radiocarbon determinations or Grouping. These results suggest

that although many documents contained discussion of stratigraphy, most of these

did not contain any formal diagrams to represent the stratigraphy. Nor do they

contain formal chronology construction of the type we wished to replicate since this

would usually require at least some radiocarbon determinations.

Most of the documents did, however, contain the data that the key-phrase search

suggested they would. The documents that did not contain the data we required,
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Figure 4.5: Venn diagram showing the total number of documents containing
each combination of key-phrases, with each segment label corresponding to key-
phrase labels as defined in table 4.3. Note that each total represents the number
of documents containing that single key-phrase or combination of key-phrases only
and none of the others.

despite containing all the key-phrases, often stated that the stratigraphy and inform-

ation about the grouping of contexts were contained in the “stratigraphic archive”

with no suggestion as to where we might find this archive.
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4.3 Summary of data review

A detailed discussion of the data review results and specific recommendations to

improve the reusability of digital chronological data are provided in Moody et al.

(2021), Section 5. As such, we only include the key points in this section.

The data review highlighted that insufficient chronological data are archived from

excavation projects to allow for reuse in further analysis. The incomplete or near-

empty files discovered when searching the ADS files were surprising, given the cost

of deposition. Further, we found a real lack of reusable stratigraphic evidence within

the ADS archives, and the data we found in the OASIS documents did not contain

stratigraphy complex enough for our requirements.

In addition, we had time generously given to us by the staff at the ADS to obtain

data for us, which is currently not feasible for the broader research community.

Even with the help of ADS, who could easily query the metadata of deposited

files, these documents often did not contain directly reusable data. Huggett (2018)

raised concerns that the FAIR principles fall short of providing plausible solutions for

increasing the reuse of archaeological data, highlighting that making data findable,

accessible and interoperable does not ensure the data are reusable. We found that

this was indeed the case.

This PhD research aims to provide software that automates at least parts of the

chronology construction process. The data review summarised in this chapter high-

lighted that we needed to ensure our software stored all the necessary data to

reproduce analyses once such data were archived. Whilst automating the process of

chronology construction was important, if a record of this process and all the data

used and produced cannot be easily and quickly archived, we would only exacerbate
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the problems highlighted in this chapter and Moody et al. (2021). Furthermore, it

indicated early on in our research that alternative sources of complex stratigraphic

data and associated grouping and radiocarbon determination for case studies were

required.

4.4 Alternative sources of case study data

To obtain the data we required, we turned to publications of well-known sites that we

knew had large stratigraphic sequences and for which extensive radiocarbon dating

had been carried out. The first was the site of the Danebury Iron Age hillfort within

the UK. Extensive excavations were carried out between 1969 and 1988 (Cunliffe

and Poole, 1991). Numerous monographs were published presenting the results of

the excavations. The Harris matrices for the stages of excavation were provided

in these monographs, albeit they were printed on microfiche. However, the lack

of other data sources meant the time required to convert the microfiche matrices

to PDF and then convert them to mathematical graphs was deemed necessary.

Furthermore, the volume of relative and absolute dating evidence was substantial,

and all data required for chronological modelling were published, thus allowing us

to test prototype software.

Further, we used data from excavations at Çatalhöyük (Marciniak et al., 2015) as

case studies for very much the same reasons, i.e. a large volume of data was published

with all the components required for archaeological dating. For smaller case studies,

we used a stratigraphic sequence from St Veit-Kliglberg as given in Buck et al.

(1996) Chapter 9. While having a more comprehensive range of datasets for case

studies would have been useful, the aforementioned data sources, alongside hypo-

thetical stratigraphic sequences, proved sufficient for testing that prototype software

58



for various stratigraphic sequences.

Up to this point, we have introduced the concept of chronology construction, the data

used to carry it out, and the current issues with archiving and reusing such digital

data. We will now detail the statistical theory behind chronology construction,

demonstrating how the relative and absolute dating evidence discussed so far is

utilised. Following this, we introduce the prototype software written for this research

and how it seeks to address some of the issues motivated in this chapter, alongside

the other purposes of the software, which are motivated in Chapter 6 and 7.
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Chapter 5

Bayesian chronological modelling

Bayliss (2009) describes three radiocarbon revolutions. So far, we have introduced

two of these: radiocarbon dating itself; and the introduction of calibration curves,

which allow us to calibrate radiocarbon determinations to the calibrated scale. The

third revolution she describes was the introduction of Bayesian inference in chrono-

logical modelling. In this section, we motivate why Bayesian inference is the obvious

choice for constructing archaeological chronologies. Then, we provide a summary of

the theory of Bayesian inference required before describing the history of Bayesian

chronology construction. Finally, we showcase the use of Bayesian inference for two

illustrative examples of chronological models.

In archaeology, we often obtain expert knowledge during an excavation from the

relative dating evidence, which takes the form of the stratigraphic sequence and

grouping of the contexts within the sequence. Such relative dating evidence is

inherently subjective. The interpretation of a site and the resulting stratigraphic

sequence and groupings may change depending on the expert, or indeed, an individual
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expert’s opinion may change over time following further excavation, analysis or

scientific dating. Alternatively, an expert may consider multiple chronologies to

be plausible but may be unable to pick a specific chronology to be the most likely.

Nonetheless, this subjective knowledge, though dependent upon the expert, provides

valuable information that informs our prior beliefs regarding the true chronology of

a site.

As discussed in Chapter 2, Harris (1975) argues that the finds and artefacts that

lead to absolute dates are only part of the information obtained when excavating.

Thus, ignoring stratigraphic and grouping information would exclude valuable data

from our inference. Since a stratigraphic sequence and grouping of contexts within

that sequence provide a prior ordering of the calibrated ages in our chronology that

we wish to estimate. Further, recall from Chapter 2 that the process of gathering

archaeological data is non-repeatable, we may carry out further excavations at a

site, but we can not re-excavate the same part of a site twice. It is essential that an

appropriate statistical methodology is chosen to allow for the use of subjective and

non-repeatable data in chronological models.

There are two main schools of thought in statistics: Bayesian and frequentist.

Despite depending on much of the same underlying probability theory, the two

methods of inference are opposing ways of thinking (Vallverdu, 2008). For example,

suppose we have a model representing a population we wish to learn about; this

model will have parameters. Frequentist statistics focuses on the probability of

observing specific values of repeatable data sampled from the population, given fixed

parameter(s) for the model. On the other hand, Bayesian inference treats param-

eters as random variables and, as such, allows us to make probabilistic statements

about them (O’Hagan, 2008). Thus, in Bayesian statistics, we instead focus on the
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probability of observing parameter values given fixed observed data and describe

our (often subjective) prior beliefs about the true values of such parameters using

probabilistic statements.

In chronology construction, our parameters of interest are the true calibrated dates

of specific archaeological events, for which we often have a wealth of prior knowledge.

As seen in Chapter 3, the likelihood L(θ;x) expresses (once normalised) the prob-

ability of any given calibrated age being the true calibrated age of a sample given

our fixed data (a radiocarbon determination for the sample). Utilising Bayesian

inference, we are able to formalise relative dating evidence as probabilistic statements,

known as prior knowledge, about our parameters of interest (details of how to do so

are provided in Section 5.3.2). This allows us to improve our estimate of the true

calibrated age of a sample and use all available data obtained during an excavation.

Bayesian inference has, in fact, been adopted in many areas of archaeology, as

discussed by Otárola-Castillo et al. (2023). Further, it has been widely accepted

as the methodology of choice for archaeological chronology construction, Buck et al.

(1996); Bronk Ramsey (2009); Bayliss and Bronk Ramsey (2004) motivates in detail

the appropriateness and advantages of utilising Bayesian inference in chronology con-

struction. Thus, further justification of our use of Bayesian chronology construction

is omitted here and we refer the reader to the aforementioned publications for further

detail. We now introduce the theoretical details of Bayesian inference for readers

who are not familiar before discussing the development of Bayesian chronology con-

struction.
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5.1 Theory behind Bayesian inference

The simplest Bayesian chronological model would only consider the stratigraphic

sequence as our prior knowledge and omit grouping. For such a model, our param-

eters are the set of N true calibrated ages we wish to estimate, which we denote as

θ = {θ1, ..., θi, ..., θN}. Assuming we have radiocarbon determinations for every

calibrated age we wish to estimate, these parameters will have associated data

in the form of N radiocarbon determinations x = {x1, ..., x1, ..., xN} with errors

σ = {σ1, ..., σ1, ..., σN}. Note that, just as all use of x in all previous notation

implies conditioning on error σ, all use of x implies conditioning on σ.

As seen in Chapter 3 Section 3.2.3, for a single radiocarbon determination, we have

the likelihood function L(θ;x) as a statistical function which defines the relationships

between observed radiocarbon determinations x and unknown calibrated ages θ,

as provided in Buck et al. (1992). Our prior beliefs about θ, derived from the

stratigraphy and grouping, are expressed as the prior density function p(θ). By

taking the product of the prior and the likelihood, we obtain up to proportionality the

posterior as outlined in Figure 5.1. The posterior p(θ|x) is a probability distribution

that gives us our updated beliefs about the parameters we wish to estimate, having

taken into account prior knowledge and data.

The exact relationship between the prior, likelihood and posterior derives from Bayes

theorem (see e.g. Gelman et al., 2004, Chapter 1)

P (E|F ) =
P (F |E)P (E)

P (F )
,
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and can be expressed as

p(θ|x) = p(θ)L(x|θ)
p(x)

. (5.1)

.

Figure 5.1: Illustration showing the relationship between prior, likelihood and
posterior in Bayesian chronology construction

The denominator in Equation 5.1 is known as the normalising constant and is equal

to:

p(x) =

∫
p(θ)p(x|θ)dθ. (5.2)

However, given that it is a constant and the data are fixed, it is often omitted for

ease of calculation. Therefore, we often consider our posterior up to proportionality

as

p(θ|x) ∝ p(θ)L(θ|x), (5.3)

and renormalise later if needed. For a more in-depth introduction to probability

theory and Bayesian inference for chronology construction, we refer the reader to

Buck et al. (1996). However, since the theory introduced in this section is well-

established and routinely utilised, we omit further theoretical detail here.
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5.2 History of Bayesian chronology construction

Naylor and Smith (1988) first proposed using Bayesian inference to estimate the

calibrated ages for samples of interest using radiocarbon determinations. They

sought to compute the posterior of their parameters of interest exactly, requiring

calculation of the integral defined in Equation 5.2, as well as any required summary

descriptions. They did so using numerical methods (see Naylor and Smith, 1988,

Section 3). However, as the number of parameters in the model increases, so does the

complexity of the integral calculation and the numerical evaluation quickly becomes

intractable.

Litton and Leese (1991) outlined the process of calibrating sequences of radiocarbon

determinations when using Bayesian inference to incorporate prior information and

sought to address some concerns the community had regarding the initial work

by Naylor and Smith (1988). Further, they highlighted that the computational

limitations that Naylor and Smith (1988) had encountered might be addressed by

utilising advancements (at the time) in sampling methods used to approximate prob-

ability distributions such as Gibbs sampling (Geman and Geman, 1984), which

had been shown to aid in the analysis of high-dimensional Bayesian models (see

Gelfand and Smith, 1991). Such sampling methods only require us to sample from

densities proportional to the posteriors distributions of interest and are part of a

class of sampling methods called Markov Chain Monte Carlo (MCMC) methods

(see Appendix A Section A.1 if unfamiliar with MCMC methods). These samples

can then be used to obtain summary statistics, omitting the need to evaluate the

high-dimensional integrals.

Buck et al. (1991) provided further illustrative examples of utilising Bayesian inference
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in chronology construction before developing upon that work in Buck et al. (1992),

which introduced for the first time the use of Gibbs sampling methods for approx-

imating the posterior distributions of chronological models. In the subsequent years,

further illustrative examples of sampling-based Bayesian inference for chronology

construction were produced (see Buck et al., 1994; Christen, 1994; Zeidler et al.,

1998, for some examples).

During this time, Buck et al. (1996) was published, which provided an in-depth

introduction to Bayesian inference in archaeology, written for an archaeological

audience. Buck et al. (1996) Chapter 9 focuses on using Bayesian inference in

chronology construction with various case studies, such as the excavation at St. Veit-

Klinglberg in Austria. Buck et al. (1996) demonstrated the processes of including the

stratigraphic relationships observed on-site as prior knowledge when estimating the

true calibrated ages of ten samples. They showed that there was a 35% reduction on

average in the number of plausible calibrated ages included in the 95% HPD interval

for the true calibrated age of ten samples when compared to simply calibrating the

radiocarbon determinations for the samples alone. Software for Bayesian chronology

construction followed these initial publications, for example OxCal (Bronk Ramsey,

1995) and BCal (Buck et al., 1999). We extensively review the available software in

Chapter 7 but omit further discussion here.

Decades on, the chronological modelling community has widely adopted Bayesian

inference. This is particularly true in the UK where as shown in Bayliss (2009),

Figure 11, 73% of radiocarbon determinations obtained by Historic England between

1993 and 2009 were analysed within a Bayesian framework. This uptake of Bayesian

chronological modelling has also been seen in the research community as a whole, as

seen in Bayliss (2015), Figure 2, which demonstrates an upward trend of published
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papers utilising Bayesian chronology construction between 1991 and 2014.

So far, we have provided a general introduction to Bayesian inference and outlined

the history of Bayesian chronological modelling. The remainder of this chapter

will outline precisely the form of the prior, likelihood and posterior for a model

that only utilises stratigraphy as prior knowledge (without any grouping). We then

demonstrate the value of Bayesian inference for a slightly more extensive case study.

More complex chronological models incorporating grouping are discussed in Chapter

6.

5.3 A Bayesian model for chronology construction

To carry out Bayesian inference requires two components, the prior and the likelihood,

to obtain a posterior up to proportionality and thus derive posterior estimates for

our parameters of interest. Within this section we define the well-established form

of these components as motivated in detail in Buck et al. (1996) Chapter 9.

5.3.1 Likelihood

The joint likelihood function L(θ;x) is simply the product of the individual likelihood

functions for each radiocarbon determination, as defined in Chapter 3 Section 3.2.

Thus, in a stratigraphic sequence with N archaeological contexts, we have:

L(θ;x) ∝
N∏
i=1

exp

(
− (xi − µ(θi))

2

2(σ2
i + δ(θi)2)

)
. (5.4)

Note that this differs slightly from the likelihood provided in Buck et al. (1996)

Chapter 9, with the inclusion of δ(θi). This is because, at the time Buck et al. (1996)

were writing, the errors on the calibration curve estimates were comparatively small
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relative to the standard errors on the radiocarbon determinations for archaeological

samples. However, this is no longer the case due to advancements such as AMS and

also to improved estimates of the uncertainties on the calibration curve estimates,

so both σi and δ(θi) are now conventionally modelled.

5.3.2 Prior knowledge about true calibrated ages

The next component we require is the prior p(θ), which is the function that represents

our prior knowledge about the parameters in θ, which for the type of models

considered in this chapter, derives from the stratigraphic relationships. The strati-

graphic relationships provide an a priori chronological ordering for contexts. As

such, assuming a radiocarbon sample dates the context in which it was found, the

stratigraphic sequence allows us to impose an ordering on the true calibrated ages

of the samples. For example, suppose we have two contexts for which we have

radiocarbon-dated samples and that the samples from context 1 and context 2 have

true calibrated ages θ1 and θ2 cal BP, respectively. If the stratigraphic sequence

tells us that context 1 is below context 2 and so is older, we can infer that θ1 > θ2

since older ages are larger on the cal BP scale (see Section A.2 for an implemented

example of such a model).

To express the stratigraphic relationships as probabilistic statements, let C be the

set of all possible values for θ such that the ordering of the true calibrated ages

satisfies the stratigraphic constraints recorded on site, then we define the indicator

function

IC(θ) =

1 θ ∈ C

0 otherwise,
(5.5)

which sets to zero the probability of θ equal to any set of calibrated ages that do
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not satisfy the stratigraphic constraints. Therefore, we simply set our prior as this

indicator function, giving p(θ) = IC(θ).

5.3.3 Posterior

To obtain our posterior, up to proportionality, we take the following product,

p(θ|x) ∝ L(θ;x)p(θ) =
N∏
i=1

exp

(
− (xi − µ(θi))

2

2(σ2
i + δ(θi)2)

)
IC(θ) (5.6)

using the likelihood defined in Equation 5.4 and an indicator function as our prior. To

calculate the joint posterior distribution p(θ|x) exactly would require us to calculate

the normalising constant

p(x) =

∫
IC(θ)

N∏
i=1

exp

(
− (xi − µ(θi))

2

2(σ2
i + δ(θi)2)

)
dθ. (5.7)

To obtain a posterior estimate for a single calibrated age estimate is simple. Since

it only requires integration in one dimension. However, as we begin to consider

more parameters and, as such, begin to include prior knowledge, we must evaluate

multidimensional integrals. As discussed, Naylor and Smith (1988) used numerical

integration to accomplish this, but as Ghosh et al. (2006), Chapter 7 discusses,

numerical integration becomes unstable as the dimensions of the integral get larger.

As a result, statisticians now routinely use sampling methods to approximate prob-

ability distributions of interest.

We discuss the sampling methods used in this research, following the introduction

of more complex chronological models in Chapter 6. However, for the illustrative

example that follows, we utilised Gibbs sampling to obtain posterior results. Buck
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et al. (1996) Chapter 9 describes the use of Gibbs sampling (see Geman and Geman,

1984) to approximate the posteriors of parameters of interest, providing a detailed

algorithm for implementation. Since Gibbs sampling for chronological models is

discussed in detail in the aforementioned research and is only used for the following

example, we omit methodological details here. However, for readers unfamiliar with

Gibbs sampling, pseudo-code and an example of the use of Gibbs sampling for a

chronological model with two parameters are provided in Appendix A Section A.2.

5.4 Effect of plateaus in the calibration curve on

posterior estimates

We now examine the results of estimating calibrated age estimates for seven hypo-

thetical samples, which, without prior knowledge, have wide HPD intervals following

calibration. Such results are obtained using Gibbs sampling, as discussed in the

previous section.

5.4.1 Hallstatt Plateau

The width of the HPD intervals of calibrated radiocarbon determinations is influenced

by the part of the calibration curve on which they lie, as well as the laboratory error

on the radiocarbon date. In addition to the calibration curve being non-monotonic,

calibration is also further complicated by the general trend of the curve in specific

places on the calibrated scale. For example, in places on the curve where the general

trend is very flat, radiocarbon determinations will often have very wide calibrated

age ranges, even if they have a small laboratory error. One such example is the

so-called Hallstatt plateau which is an area on the calibration curve between 2750
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cal BP and 2350 cal BP, as seen in Figure 5.2

Figure 5.2: Section of the IntCal20 calibration curve (Reimer et al., 2020) from
3000 to 2000 cal BP. Inset highlights the Hallstatt plateau, which is a flat part of
the calibration curve between 2750 and 2350 cal BP.

By including a priori relative dating evidence when calibrating determinations whose

likelihoods lie on flatter parts of the calibration curve, we can improve the precision of

the posterior calendar age estimates. For example, suppose we have seven contexts

h1 to h7 and radiocarbon determinations for samples found in these contexts, as

outlined in Table 5.1. Further, we have a stratigraphic sequence that provides us

with the relationships for contexts h1 to h7 shown in the mathematical graph in

Figure 5.3.

When calibrating the radiocarbon determinations for samples from contexts h1 to

h7 without including prior knowledge, as seen in Table 5.1 column 3, the 95% HPD

intervals for the posterior calibrated age estimate of each determination are identical,
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Figure 5.3: Mathematical graph showing the stratigraphic sequence of a hypothet-
ical site.

despite the radiocarbon estimates for the sample spanning 35 years. Furthermore,

the HPD intervals span 350 years (cal BP) for each calibrated radiocarbon deter-

mination. The inclusion of prior knowledge in the form,

θ1 > θ2 > θ3 > θ4 > θ5 > θ6 > θ7,

as provided by the stratigraphic sequence seen in Figure 5.3, provides the HPD

intervals shown in Table 5.1 column 4. As we can see, such prior knowledge reduces

the span of all the HPD intervals of the posterior calibrated age estimates. In

particular, the HPD intervals for the true calibrated age of contexts h1 and h2 are

considerably shorter once prior knowledge is included. Presented in Figure 5.3 is

a comparison between the marginal posterior distributions for true calibrated ages

of contexts h1 to h7 when prior knowledge is and is not included, where a notable

change to the marginal posterior is observed for all parameters when prior knowledge

is included.
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CHAPTER 5. BAYESIAN CHRONOLOGY MODELLING

Figure 5.4: Comparison of the estimated marginal posterior densities for the cali-
brated ages (cal BP) of 7 samples when ordering is included as prior knowledge (blue
histograms) and when it is not (yellow histograms).

Thus far, all the Bayesian chronological modelling theory and examples we have

introduced have only considered stratigraphy as prior knowledge. However, grouping

also provides informative prior knowledge. As such, the following chapter expands

upon the theory introduced in this chapter and introduces the established theory

used routinely in the chronological modelling community to include grouping in

Bayesian chronological models.
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Chapter 6

Hierarchical Bayesian chronological models

Thus far, we have focused on estimating the true calibrated age of archaeological

organic samples obtained during excavation using Bayesian chronological models.

Each archaeological sample is attributed to a context, as discussed in Chapter 2,

Section 2.2. These contexts are often grouped, representing distinct periods of time

in the chronology. In addition to estimating the age of specific samples, archaeo-

logists are also interested in the true calibrated age of the archaeological events

representing the start and end of these periods of time, which we refer to as group

boundaries. This is despite not having absolute dating evidence for such boundaries.

This chapter introduces the structure of the Bayesian chronological model that is

commonly used when grouping is considered and demonstrates how such models

are implemented. Following this, we examine a variety of case studies showcasing

a selection of chronological models that one might encounter when carrying out

chronological modelling.

The very early work on Bayesian chronological modelling by Naylor and Smith (1988)
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included grouping. They assumed that the true calibrated ages of unordered arch-

aeological samples within a group were uniformly distributed, thus expressing the

prior knowledge that the true calibrated ages are contained within a specific group,

but we have no knowledge of where in that group they lie. This creates a hierarchical

structure between the true calibrated ages of samples and their group boundaries,

formally defined in Section 6.1. Such hierarchical models can also be used for groups

with ordered calibrated ages of samples (such that the ordering derives from the

stratigraphic sequence).

The following section formally defines the structure of the hierarchical Bayesian

model used for chronology construction in this thesis which predominantly follows

the model introduced in Nicholls and Jones (2001). We discuss how the model has

changed from early definitions, such as Naylor and Smith (1988), and the sampling

methods now routinely used for implementation.

6.1 Bayesian model for chronology construction

Consider an archaeological site such that the contexts (and, therefore, the true cali-

brated ages of the samples from those contexts) have been grouped into J groups;

we define the group boundaries αj and βj for j = 1, .., J as the calibrated age of the

start and end of group j, respectively. For such a chronology, we are interested in

estimating the sets of parameters α = {α1, ..., αJ} and β = {β1, ..., βJ}, in addition

to θ.

The introduction of grouping requires a slight change in the notation for the true

calibrated ages for a set of samples θ. Suppose each group j contains Nj contexts,

then we define θi,j to be the true calibrated age of the sample found in the ith context

of the jth group, which has a radiocarbon determination of xi,j ±σi,j for i = 1, .., Nj
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and j = 1, ..., J .

6.1.1 Likelihood for hierarchical model

Following the approach taken in the previous chapter with redefined notation, given

J groups with the jth group containing Nj archaeological contexts, the likelihood is

given by:

L(θ;x) ∝
J∏

j=1

Nj∏
i=1

exp

(
− (xi,j − µ(θi,j))

2

2(σ2
i,j + δ(θi,j)2)

)
. (6.1)

Since we have no direct scientific dating evidence for group boundaries, all strati-

graphic information regarding their relative or absolute dates is considered prior

knowledge.

6.1.2 Prior for the hierarchical model

The prior p(θ,α,β) can be broken down into its hierarchical components. Our prior

knowledge of the group boundaries is independent, a priori, of the calibrated age of

the samples within the model. However, θ is conditional on the group boundaries

α and β. As such, we use conditional probability to express the prior as

p(θ,α,β) = p(θ|α,β)p(α,β), (6.2)

where p(θ|α,β) is our prior knowledge about θ, given the groupings and p(α,β)

represents our prior knowledge of the group boundary ages only.

Prior knowledge about true calibrated ages of our samples

First, we define our prior on θ, p(θ|α,β). Our prior knowledge for θ now derives

from the stratigraphic relationships and the grouping of the contexts. In addition to
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the prior knowledge on θ based on the stratigraphic sequence, we now have additional

prior knowledge about θ conditional on α and β since we know that any date θi,j

is constrained by the ages of the boundaries of the group that it is in. Therefore,

as first suggested by Naylor and Smith (1988) and defined in Buck et al. (1996)

Chapter 9, we assume θi,j is uniformly distributed with respect to αj and βj since

each true calibrated age within the group boundaries is equally likely to be the true

calibrated age for all samples. Thus, we have

θi,j|αj, βj ∼ U(βj, αj) for j in 1, ..., Nj

As with the previous chapter, we use the indicator function IC(θ) to express strati-

graphic relationships as probabilistic statements. In addition, another indicator

function is required to ensure each θi,j is contained by its group boundaries within

the model. Following notation in Buck et al. (1996), we thus define

I(βj ,αj)(θi,j) =

1 βj ≤ θi,j ≤ αj

0 otherwise,
(6.3)

which sets to zero the probability of θi,j taking a value outside the calibrated ages

of the group boundaries for group j. As such, our prior knowledge of θ can be

expressed as

p(θ|α,β) = IC(θ)
J∏

j=1

(αj − βj)
−Nj

Nj∏
i=1

I(βj ,αj)(θi,j). (6.4)

Prior knowledge of the group boundaries for hierarchical model

As seen in Chapter 2, Section 2.2, archaeologists not only group contexts, they

also provide ordering information for these groups using the between-group Allen
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algebras. Much like the stratigraphic relationships for contexts, these between-group

relationships impose ordering on the group boundaries, as illustrated in Table 6.1.

Allen
algebra

Group
relationship Diagram Logical statement

P > Q
Q < P

P before Q
Q after P

P
Q

αP > βP > αQ > βQ

P m Q
Q mi P

P meets Q
Q is met by P

P
Q αP > βP = αQ > βQ

P o Q
Q oi Q

P overlaps Q
Q overlapped by P

P
Q αP > αQ > βP > βQ

Table 6.1: Table shows 6 of 13 Allen algebras (Allen, 1983) in the first column,
and how these translate to archaeological group relationships for groups P and Q
(columns two and three). Column four shows the logical statements implied by
the prior knowledge in column two, which is then used to construct IG(α,β) (see
equation 6.5).

Given such group relationships, this prior knowledge about group boundaries is

expressed using the indicator function

IG(α,β) =

1 α,β ∈ G

0 otherwise,
(6.5)

such that G is the set of values of α and β that satisfy the logical constraints imposed

on the group boundaries by the Allen algebra relationships.

Naylor and Smith (1988) set p(α,β) = IG(α,β) such that all group relationships

were assumed to be abutting (equivalent to the ‘meets’ Allen algebra), which was

intended to imply that the only information we have about the group boundary

ages is the group orderings and abutting relationships between them. However,

Nicholls and Jones (2001) later argued that while setting p(α,β) = IG(α,β) might
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represent no prior knowledge about the individual group boundary ages other than

their orderings, it inadvertently imposes a non-uniform prior on the span of the

chronology for their case study on a model containing 6 groups and 7 unordered

contexts. Nicholls and Jones (2001) define the span as s(α,β) = max(α)−min(β).

They demonstrated that the prior p(α,β) = IG(α,β) imposes a preference in the

model for a span of length 2s by a factor of 30 when compared to a span of length

s. This results from the marginal prior of s(α,β) is equal to s(α,β)d−2R− s(α,β).

Thus, there is a favouring of larger spans when we set p(α,β) = IG(α,β). Therefore,

they proposed an alternative prior,

p(α,β) ∝ s(α,β)2−d

R− s(α,β)
, (6.6)

such that d is the number of group boundary parameters and R = P − A is some

span defined by the chronological modeller that is larger than the plausible span

of the chronology. For example, a cautious modeller using IntCal20 (Reimer et al.,

2020) might set P = 55, 000 and A = 0, thus setting R to be 55, 000, representing

the whole span of the calibration curve.

The changes to p(α,β) provided in Nicholls and Jones (2001) were widely accepted

by the chronological modelling community and implemented in BCal and OxCal

(Millard, 2015). Thus in the remainder of this thesis, we also define our prior on the

group boundaries to be

p(α,β) ∝ s(α,β)2−d

R− s(α,β)
IG(α,β). (6.7)
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6.1.3 Posterior for the hierarchical model

To obtain our posterior p(θ,α,β|x), up to proportionality, we take the following

product,

L(θ;x)p(θ,α,β) ∝ s(α,β)2−d

R− s(α,β)
IG(α,β)IC(θ)×

J∏
j=1

(αj − βj)
−Nj

Nj∏
i=1

I(βj ,αj)(θi,j) exp

(
− (xi,j − µ(θi,j))

2

2(σ2
i,j + δ(θi,j)2)

)
. (6.8)

The structure of this hierarchical model is provided in DAG format in Figure 6.1.

Note that this is a graphical representation of the overall hierarchical model structure

and not a graphical representation of prior knowledge as seen in this thesis thus far.

IG(α,β)

αj

βj

θi,j

IC(θ)

Iβj ,αj
(θi,j)

i = 1 : Nj

j = 1 : M

Figure 6.1: DAG representation of a Bayesian chronological model such that
grouping, group relationships, and stratigraphic relationships are included as prior
knowledge for N groups such that group j contains Nj contexts.
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6.2 Sampling methods for hierarchical models

We utilise sampling methods to estimate the parameters’ marginal posterior distrib-

utions in θ, α and β. However, Gibbs sampling requires us to express the conditional

posterior distributions for each parameter within our model. Alternatively, another

type of MCMC algorithm called Metropolis-Hastings only requires the use of the

full joint density distribution for a given chronological model. Since we wanted to

automate the process of chronology construction, it was preferable only to have to

automate the calculations required to use one density distribution as opposed to the

multiple conditional densities required for Gibbs sampling.

Furthermore, Nicholls and Jones (2001) provides pseudo-code for a Metropolis-

Hastings algorithm that scales well for large models. Thus, we chose to implement

their algorithm within this research. Since the algorithm closely follows the work

of Nicholls and Jones (2001), we omit discussion from the main text. However, we

include details of the algorithm in Appendix A Section A.3, where we outline subtle

changes made to our algorithm to account for ordering samples within groups, which

was not included in the original Nicholls and Jones (2001) model.

Further details of the computational process of Bayesian chronology construction

are provided in Chapter 7. First, the remainder of this chapter demonstrates how

DAGs can be used to represent chronological models and how a variety of plausible

chronological models can arise from a single stratigraphic sequence.
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6.3 Representing prior knowledge as mathematical

graphs

Graph theory lends itself rather nicely to the purpose of representing stratigraphic

data. As previously mentioned in Chapter 2, mathematical graphs comprise nodes

and edges that connect some or all of the nodes. Although a relatively simple

premise, the ability to impose specific conditions on mathematical graphs means we

can represent complex data in a rigorous and logical format.

Recall also from Chapter 2 that, for this research, there are two conditions that the

mathematical graphs we use must satisfy: that they are directed (because time flows

in only one direction) and that they have no cycles (i.e. are acyclic). Consequently,

all graphical representations of chronological models must be directed acyclic graphs

(DAGs). Representing a stratigraphic sequence as a DAG is straightforward (see

Chapter 2) but conveys only the prior knowledge contained in IC(θ). Dye and

Buck (2015) noted the importance of also including information from IG(α,β) and

Iαj ,βj
(θi,j) to create a complete prior chronological DAG that might be suitable to

aid in the semi-automation of Bayesian chronology construction.

To automate chronology construction, we have to formalise precisely when in the

modelling process, different components of the prior knowledge are introduced and

ensure archiving is facilitated at each step. To do this, we decided that first, all

prior knowledge pertaining to physical relationships (i.e. the stratigraphic relation-

ships) would be represented in a DAG (which we define as a stratigraphic DAG).

Following this, the stratigraphic DAG would be converted into a chronological DAG,

which would represent the temporal relationships implied by the stratigraphy and

thus provide us with the prior for chronological modelling. From the chronological
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Figure 6.2: A diagram showing the conversion of a simple stratigraphic DAG with
three contexts (far left) to chronological DAG (far right). The first step comprises
converting the graph to temporal space rather than physical. In the second step,
nodes are added to represent group boundaries (represented as diamond-shaped
nodes to distinguish them from contexts), and edges are added to represent their
relationship with the contexts in the original stratigraphic DAG.

DAG, we can then computationally extract the prior knowledge to pass to an MCMC

algorithm and, thus, ultimately obtain posterior estimates for chronological param-

eters of interest.

As discussed in Chapter 2, physical stratigraphic relationships between contexts

do not always directly correspond to temporal relationships between the true cali-

brated ages of samples found within those contexts. Therefore, to semi-automate the

process of chronology construction, we had to clearly define when we are working in

physical space or temporal space, to ensure the correct information is used to form

a chronological model automatically and that the conversion from the stratigraphic

record is clearly and consistently documented.
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In its simplest form, this conversion comprises two steps, as demonstrated in Figure

6.2. In the first step, we convert from working with physical relationships to temporal

relationships. Thus, the nodes no longer represent contexts that are physically above

and below each other but the true calibrated ages of the samples found within

these contexts. Furthermore, the edges no longer represent above-below relation-

ships in physical space. In a chronological DAG, they now represent a before-after

relationship in time. For example, in Figure 6.2, the stratigraphic DAG presents

the information that context 1 is above context 2. Whereas the chronological DAG

conveys that θ1 < θ2 (i.e. the sample in context 1 is younger than the one in context

2). Because of this change in what the edges represent, it is imperative that the

samples date the contexts in which they were found. If this is not the case, then this

must be represented in the chronological DAG. We demonstrate how to do this and

discuss such examples in Section 6.4.1.

The second stage of conversion to the chronological DAG requires adding new nodes

since a DAG that includes all the information provided by the aforementioned

indicator functions requires nodes for all parameters in θ, α and β. In this thesis

(as suggested by Dye and Buck, 2015), we represent group boundary parameters

as diamond shapes nodes to distinguish them from nodes that represent calibrated

ages of samples found in contexts (which are presented as rectangles and referred

to henceforth as context nodes for brevity). An example of a chronological graph

is provided on the right of Figure 6.2. Thus far, we have shown a simple example

of obtaining a single chronological DAG from a stratigraphic DAG with grouping

information. However, multiple chronological graphs can arise from any given strati-

graphic DAG, depending on the prior information available.
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6.4 Examples of hierarchical Bayesian chronological

models

We will demonstrate how multiple chronological DAGs (which each represent a

different plausible chronological model) can arise from a single small stratigraphic

sequence. While archaeologists typically proceed with a single chronological model,

these case studies demonstrate the impact on the results (and thus the archaeological

interpretation) that can result from small changes to the chronological model. This

is a form of sensitivity analysis, which is the practice of constructing alternative

models and examining the impact on the posterior density estimates (see Bayliss

and Marshall, 2022, Chapter 2). By doing this sensitivity analysis, we motivate the

need to consider multiple plausible chronological models when there is uncertainty

in how the archaeological record might be interpreted.

The stratigraphic and chronological DAGs shown in Figure 6.3 are taken from a

stratigraphic sequence observed during excavations at St Veit-Klinglberg in Austria

(Buck et al., 1994). This stratigraphic sequence will be used for the remainder of

this chapter to showcase different hypothetical chronological DAGs that may arise

from the same stratigraphic sequence. Larger sites (and thus larger stratigraphic

sequences) are examined in Chapter 7. We chose this small stratigraphic sequence

so that changes within the chronological DAG can be easily observed in diagrams.

Note that in the chronological DAG in Figure 6.3, and indeed all chronological DAGs

for the remainder of this thesis, nodes representing θ parameters are now represented

by their context labels. It is important to note that in a chronological DAG any given

rectangular node with label c still represents the parameter θc as it did in Figure 6.2.

The use of context labels only is to aid in the visualisation of larger chronological
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Figure 6.3: left : stratigraphic DAG representing the physical stratigraphic rela-
tionships in a sequence from excavations at St Veit-Klinglberg (see Buck et al.,
1996, Chapter 9); right : chronological DAG representing the chronological sequence
implied by the stratigraphy as well as grouping information for the contexts. Note
diamond-shaped nodes represent group boundary parameters, and rectangular nodes
represent calibrated ages of samples found in contexts. For any given context c in a
chronological DAG, the node represents the parameter θc.
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models (as we will see in Chapter 7). Chronological DAGs can be distinguished

from stratigraphic DAGs within this thesis by the inclusion of diamond shape group

boundary nodes in chronological DAGs.

6.4.1 Case study one: residual and intrusive samples

In Figure 6.2, we demonstrated the conversion of physical relationships in a strati-

graphic DAG to temporal relationships in a chronological DAG, such that each

physical above-below relationship directly corresponded to a temporal before-after

relationship. A key assumption of using the stratigraphic sequence to infer the

ordering of the true calibrated ages of samples is that the sample dates the contexts

in which it was found. However, this is not always true. There are two reasons why

a sample might not date the context in which it was found; either it is older than the

context or younger. Older samples that contaminate younger contexts are referred to

by archaeologists as residual samples, and younger samples that contaminate older

contexts are called intrusive samples. Though residual and intrusive samples cannot

be used directly to estimate the calibrated age of the contexts in which they were

found, they still provide useful dating evidence.

For example, a radiocarbon determination for an organic sample that is deemed

residual provides the oldest possible calibrated age of that context. Indeed, the

true age of the context must be younger than the sample found within the context.

The age of an intrusive sample provides what is referred to as terminus ante quem

(TAQ), an age which is the youngest possible calibrated age of a context. Similarly,

residual samples provide us with a terminus post quem (TPQ), which gives the oldest

possible calibrated age for the context in which it was found, these in turn lead to

changes in the edges in the chronological DAG. Incorrectly assuming a sample within

a context is not residual/intrusive can lead to constraints on other parameters within
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the chronological model that are not supported by archaeological evidence and thus

lead to erroneous posterior density estimates.

Archaeologists take great care to avoid carrying out scientific dating on residual and

intrusive samples. For some samples, it is clear when excavating that the sample

might be residual or intrusive. For example, the ‘old wood’ problem (Schiffer, 1986)

is a problem encountered by archaeologists when trying to radiocarbon date charcoal

samples that originate from the burning of old wood. Radiocarbon dating such a

sample will result in an estimate for the calibrated age of the tree. If this happened

long before it was used for fuel, then the charcoal sample cannot reliably date the

context in which it was found and is, therefore, residual. However, it is not always the

case the samples are identified as potentially residual or intrusive on-site. Instead,

this may be suspected after scientific dating is carried out (as discussed in Dye and

Buck, 2015, Section 5).

Intrusive sample in St Veit-Klinglberg stratigraphic sequence

Buck et al. (1994) postulated that two contexts in the St Veit-Klinglberg sequence

contained intrusive samples, contexts 1168 and 493. In this example, we examine

the impact on our posterior estimate of the true calibrated age of context 1168 if it is

indeed intrusive. While the stratigraphic DAG remains the same (since context 1168

is stratigraphically below context 358), in the chronological DAG, we cannot be sure

the age of the sample found in context 1168 is older than context 358. Therefore,

θ1158, the true calibrated age of the sample found in context 1158, is only constrained

in the Bayesian model by α1, which is older than it and cannot be constrained by

parameters below it according to the stratigraphic sequence. This can be seen in

Figure 6.4 by the removal of all edges connecting 1158 (θ1158) to any parameters

other than α1.
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Figure 6.4: left : stratigraphic DAG representing the physical stratigraphic rela-
tionships in a sequence from excavations at St Veit-Klinglberg (Buck et al., 1994);
right chronological DAG representing the chronological sequence implied by the
stratigraphy as well as grouping information for the contexts when the sample found
in context 1168 is considered intrusive. Note that diamond-shaped nodes repre-
sent group boundary parameters, and rectangular nodes represent calibrated ages
of samples found in contexts. For any given context c in a chronological DAG, the
node represents the parameter θc.
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We obtain two marginal posterior estimates for θ1168, using a model when θ1168 is

considered residual and one where it is not, using the Metropolis-Hastings algorithm

outlined in Appendix A Section A.3. The posterior probability densities of these

estimates are provided in Figure 6.5. As shown by plots in that figure, the posterior

estimate of θ1168 tends towards the younger calibrated ages supported by the likelihood

when it is treated as intrusive as opposed to when it is not. Further, the marg-

inal posterior estimate for θ1168 is notably more precise when it is not considered

intrusive. The change observed in the results in Figure 6.5 exemplifies the impact

residual/intrusive samples can have on the results of the Bayesian chronological

modelling. Thus, if there is uncertainty as to whether a sample is intrusive/residual

or not, we argue that both models should be produced and documented.

6.4.2 Case study two: Different type of group relationships

In addition to residual and intrusive samples, different chronological DAGs (rep-

resenting different chronological models) may arise from the same stratigraphic DAG,

depending on the Allen algebra relationships between the groups in the model. Recall

from Table 6.1 that we consider three types of group relationships: abutting (meets),

gap and overlapping. The contexts in the St Veit-Klinglberg stratigraphic sequence

were separated into groups 1 and 2 such that group 1 is older than group 2. Buck

et al. (1994) defined the relationship between the two groups as abutting. However,

as an illustrative example, we now investigate the impact on the posterior results

if alternative group relationships are considered. The chronological DAGs for the

three possible Allen algebra group relationships between groups 1 and 2 are provided

in Figure 6.6.

To examine the impact of different group relationships on our results, demonstrating

that our choice of model is important, we consider the group boundary parameter for
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Figure 6.5: Estimated marginal posterior density plots (blue histograms) for the
true calibrated age of a sample found in context 1168 at St Veit-Klinglberg with
radiocarbon determination 3435 ± 60 BP. (top): if the sample is not considered
intrusive, and (bottom) if the sample is considered intrusive. A marginal posterior
density when no prior knowledge is included (yellow plots) for the true calibrated
age of the sample is provided in both plots for reference.

94



Figure 6.6: Three chronological DAGs showing the possible relationships between
groups 1 and 2 for St Veit-Klingberg chronological model presented in Buck et al.
(1994) Chapter 9. Relationships shown are when groups 1 and 2 are left: abutting,
middle: gap, right: overlap. Note that diamond-shaped nodes represent group
boundary parameters, and rectangular nodes represent calibrated ages of samples
found in contexts. For any given context node c in a chronological DAG, the node
represents the parameter θc.

95



CHAPTER 6. HIERARCHICAL MODELS

the start of group 2 α2. Plots of the posterior marginal densities for this parameter

for the three different models are provided in Figure 6.7. As can be seen in the

plots, when group 2 is considered to overlap with group 1, this leads to older

ages on the calibrated scale being deemed plausible for α2. Just as the previous

case study showed how intrusive samples affect posterior results for a chronological

model, different group relationships can change the results of the marginal posterior

estimates of specific parameters on the calibrated scale by order of 100 years, a

considerable change to the results, especially if there is no (or weak) archaeological

evidence to support one type of group relationship over another.

Though the indicator functions in the prior allow us to include useful relative dating

evidence in our Bayesian chronological models, they impose strict orderings on the

parameters in the model, with no accounting for uncertainty. If such uncertainty

exists, producing and documenting all chronological models that an archaeologist

considers plausible for a given site provides a record of that uncertainty.

6.5 Conclusion

In this chapter, we have introduced all of the remaining established theory required

for the interdisciplinary research discussed in this thesis. So far, we have intro-

duced the concepts of stratigraphy and grouping and how they provide relative

dating evidence. Further, we have introduced radiocarbon dating and how to take

a radiocarbon determination and convert it to the calibrated scale. Following this,

we introduced research (carried out by the author) into the quality and utility of

relative dating evidence within digital repositories at ADS. Next, we discussed using

Bayesian inference in chronology construction and the various components required

to implement it: a calibration curve, expert knowledge and radiocarbon determ-
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Figure 6.7: Plots showing estimated posterior density plots for the marginal dist-
ribution of α1 for three different chronological models when the two groups in the
model are considered to top graph: have a gap between them, middle graph: be
abutting, bottom graph: have an overlap
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inations. Finally, the concept of using mathematical graphs to represent relative

dating evidence has been introduced. We have shown how multiple chronological

models can arise from a single small stratigraphic sequence. For the remainder of

this thesis, we use all the previous theory to demonstrate how we can automate the

process of chronology construction from site records to final chronological interp-

retation, allowing for the production and analysis of multiple plausible chronological

models.

98



Chapter 7

PolyChron

Following the results shown in the case studies in Chapter 6, we argue that when

carrying out chronological modelling, we should document any uncertainty pertaining

to which chronological models are most appropriate and formally archive any plausible

models along with the results of any analysis of these models. However, when

the research in this thesis commenced, no software existed to allow for the semi-

automated construction of multiple Bayesian chronological models for a given site.

Therefore, in this chapter, we extend upon the theory in Chapter 6, Section 6.3 and

demonstrate that we have successfully implemented the formalisation of the process

of handling relative dating evidence using DAGs in prototype software.

When semi-automating the process of building chronological models, a fundamental

choice was whether to produce new purpose-built software or produce code to connect

existing (but disconnected) software for different parts of the chronological modell-

ing process. We chose the former writing software in Python (Van Rossum and

Drake, 2009), including writing the underlying Python code that runs the MCMC
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algorithm needed to obtain our calibrated age estimates for the parameters within

our chronological model, as seen in Chapter 6 Section 6.2. Recall that we wrote

the code for that algorithm, utilising pseudo-code from Nicholls and Jones (2001),

despite other off-the-shelf software being available to carry out Bayesian analysis for

chronological models.

We do not wish to reinvent the wheel (or wheels in this case), and we are aware

of various types of software for chronological modelling and managing relative and

absolute dating evidence. However, as we demonstrate in this chapter, our research

is akin to proving that we can use all the wheels together to build a vehicle for

end-to-end chronological modelling. Metaphors aside, as demonstrated in Figure

7.1, there are many stages in the process of chronology construction. We sought to

demonstrate that it is possible to manage relative and absolute dating evidence (from

revising relative dating evidence post-excavation to obtaining posterior calibrated

estimates) in a singular piece of software or by connecting existing software. As it

is increasingly seen as best practice in research (Open Research Data Task Force,

2019), it was important that any new or existing software was open-source. Further,

we wanted the software to be free as we felt this would allow archaeologists to utilise

it within the strict budget constraints that excavations and post-excavation research

are often subject to.

In this chapter, we review the existing software for building Bayesian chronological

models alongside software for managing stratigraphic data and motivate why new

purpose-built software that manages the whole process of chronological modelling

was required. From this, we introduce our prototype software, PolyChron, which

provides a graphical user interface to our MCMC algorithm and thus allows users to

manage stratigraphic data and automatically render the results of Bayesian chrono-
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logical modelling with no further data input required by the user. Finally, we discuss

the benefits and limitations of PolyChron and how we hope to develop it.

Figure 7.1: Overview of the process of building multiple plausible Bayesian chrono-
logical models. The dotted arrows highlight the part of the process that PolyChron
automates as demonstrated in Section 7.3. All parts of the process that are carried
out in PolyChron lie in the grey box.

7.1 A history of chronological modelling software

Before the introduction of chronology construction in radiocarbon dating in the

late 1990s, there were two types of software for chronology construction. The first

was for calibrating single radiocarbon determinations using the calibration curves

introduced in Chapter 3, and the second was for managing and visualising relative

dating evidence.

Following the development of radiocarbon calibration curves, software was developed

in the 1980s to calibrate radiocarbon determinations. The first widely used piece of

software was CALIB (Stuiver and Reimer, 1993), which allowed users to calibrate

radiocarbon determinations, produce probability distribution plots and carry out
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statistical tests for contemporaneity of radiocarbon determinations (using the meth-

ods of Ward and Wilson, 1978). Following the introduction of Bayesian chronological

modelling as discussed in Chapter 5, the calibration of radiocarbon determinations

was subsequently incorporated into Bayesian chronology construction software such

as OxCal (Bronk Ramsey, 2023) and BCal (Buck et al., 1999).

Software for managing relative dating evidence

Following the introduction of the Harris matrix (Harris, 1975) in the early 90s, the

community developed various programs to display stratigraphic data as a Harris

matrix; see Herzog (2006) for a detailed summary. However, as Herzog (2006) high-

lighted, most of these are no longer maintained. Currently, the most commonly

referenced software for managing stratigraphic data are:

• ArchEd which is available at https://arched.software.informer.com/,

• jnet, which was previously known as gnet (Ryan, 2001),

• Harris Matrix Composer (Traxler and Neubauer, 2008),

• and Stratify (Herzog, 2006).

Additionally, as discussed in Chapter 4, commercial and academic units may also

use their in-house software or general software, such as Microsoft Excel, to produce

diagrams of stratigraphic sequences stored as PDFs. The Museum of London Arch-

aeology (MOLA) use the Bonn Archaeological Software Package (BASP) (Herzog,

1993), which allows the user to construct large stratigraphic sequences. However,

this software is not open source and, thus, would not have provided the flexibility

required for this project.

ArchEd and jnet allow users to construct a Harris matrix and manipulate the
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diagram before exporting the resulting image. However, it is unclear if jnet is still

maintained since previously published links to the software are now broken. ArchEd

is still being maintained, but its functionality is limited to producing Harris Matrix

diagrams. Further, the user manually enters stratigraphic relationships individually,

which we felt would have proved too time-consuming when visualising large strati-

graphic sequences.

Stratify has additional functionality, allowing users to define phases, check for

cycles in their stratigraphic relationships, and produce stratigraphic diagrams. A

particular strength of Stratify is that the user can incorporate additional site

data, such as site photographs and drawings. However, despite having additional

functionality, Stratify does not have point-and-click functionality to allow the user

to produce multiple stratigraphic sequences quickly and easily, upon which the later

work in this thesis relies.

The Harris Matrix Composer provides similar functionality to Stratify and is

scalable for larger sites. However, the free version of this software is limited to 50

contexts. As such, this was not conducive to our aim of free, open-source software

since we sought to be able to automate the chronology construction process for

stratigraphic sequences of all sizes. Therefore, it was important that any software

used be free and open-source for all parts of the chronology construction process,

whether we used one singular new piece of software or a combination of existing

software with new code to connect them.

In addition to the previously mentioned software, there exists hm (Dye, 2019), which

is purpose build command line software that allows the user to display stratigraphic

and chronological DAGs (as seen in Chapter 6 Section 6.3). This software scales very

well for large stratigraphic sequences, results of which are demonstrated in Dye and
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Buck (2015). However, we wished for the software we chose to be suitable for the

whole chronological community rather than just those comfortable with command-

line programming. Thus, we decided software with a graphical user interface would

be more appropriate.

Keith May is currently leading a team that is working on software PHASER that

allows users to manage a wealth of archaeological dating evidence using a graphical

user interface (May et al., 2023). This software was not available at the start of this

PhD project, but the authors do seek to investigate the potential and benefits of

interfacing PHASER with PolyChron in the future.

All of the programs previously mentioned provided certain functionality that we

required and provided inspiration for our work. However, none allowed us to produce

stratigraphic and chronological DAGs visualisations while providing point-and-click

functionality to adjust such mathematical graphs, thus producing varying plausible

chronological models. Therefore, we decided early in the project that we would

produce a graphical user interface (GUI) that allows the user to import relative and

absolute dating evidence, with the goal of displaying and manipulating stratigraphic

and chronological DAGs. In addition, due to the lack of reusable data found in the

ADS archives (as discussed in Chapter 4), we felt that building a purpose-built GUI

would allow us to write code that would support users in the archiving on their work

once complete.

Review of Bayesian archaeological chronology construction software

Purpose-built software for chronology construction is not limited to archaeological

chronology construction. Packages such as BChron (Haslett and Parnell, 2008) and

BACON (Blaauw and Christen, 2011) also allow for the calibration of radiocarbon
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determinations and the statistical modelling of the true calibrated ages of samples.

However, these packages are used for paleo-environmental modelling and primarily

focus on modelling the relationship between the calibrated age of samples and their

depth in a vertical sediment profile (Blaauw and Christen, 2011). In archaeology,

we obtain radiocarbon determinations when datable organic samples are found in

archaeological deposits that are removed in the reverse order of their deposition.

Thus, although the depth of contexts is recorded during excavation, only the relative

depth of archaeological deposits with respect to other deposits is used in the modell-

ing process, rather than the absolute depth value for any given sample. Thus, in

what follows, we only discuss software and packages used for Bayesian archaeological

chronology construction.

OxCal is the most commonly used software for Bayesian archaeological chronology

construction and is the software of choice by Historic England (Bayliss and Marshall,

2022). As acknowledged in the user manual (Bronk Ramsey, 2023), OxCal requires

the user to have a reasonable understanding of the implications of their modelling

decisions. They state in their manual that there is the potential for accidentally

introducing bias if the user is not experienced in statistical modelling. BCal (Buck

et al., 1999), on the other hand, has reduced functionality when compared to OxCal,

following a more linear approach as it guides the user through the GUI to build their

model. As a result, there is less opportunity for the user to produce statistically

implausible models.

OxCal and BCal enable the user to calibrate a single radiocarbon determination

and produce the corresponding probability density plots on the calibrated scale,

effectively replacing the functionality of CALIB. In addition, they allow the user to

build Bayesian chronological models. Other software such as DateLab (Jones and
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Nicholls, 2002) and, more recently ChronoModel (Lanos and Philippe, 2018) have

also been developed for Bayesian chronological modelling. Though, as discussed

in Chapter 5, the Bayesian model introduced in Jones and Nicholls (2002) is now

implemented in BCal and OxCal. Further, DateLab itself does not appear to be

maintained any longer. On the other hand, ChronoModel is maintained and available

for download on some variants of all major desktop operating systems. However, they

assume a uniform prior on the calibrated ages conditional on the ages of the group

boundaries (see Lanos and Philippe, 2018, Equation 5). As previously discussed, this

assumption produces an artificially wide time span between the group boundaries.

Thus, only OxCal and BCal are discussed in what follows.

OxCal formalises the construction of chronological models using its own chronological

query language (CQL). This formal language allows users to define what type of

absolute dating evidence they use and the relationships between the true calibrated

dates of the samples used to obtain such evidence. See Bronk Ramsey (1997) Table

1 for an outline of the main functions one can use when writing in CQL. OxCal

implements a GUI so that users do not have to be able to program directly in

CQL. However, users still require sufficient statistical knowledge to understand the

implications of the model they are building for the results they obtain.

Levy et al. (2020) utilise mathematical graphs in their CHRONOLOG software, which

provides a GUI that can construct CQL scripts for interpretation by OxCal. Much

like our research, this CHRONOLOG uses mathematical graphs to manage chronological

information, allowing the user to visualise their relative and absolute dating evidence

and run algorithms to check for logical inconsistencies in the information provided.

A useful feature for chronology construction CHRONOLOG provides is their tightening

function, which allows the user to put in all prior information regarding the start,
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end and duration of periods of archaeological activity in calendar years. According

to prior information, the software calculates more accurate start and end calendar

ages for such periods. However, the tightening function relies on written historical

records that can provide a duration for archaeological events or start and end ages

for such events. Much of British pre-history does not have such records. As such, we

sought to provide a GUI focusing on managing relative and absolute dating evidence

of the type seen in Chapter 2 and 3, where evidence in the form of written historical

records are seldom used.

BCal also guides users through the chronological modelling process via a GUI within

a web browser, providing questions specific to their project, which prompt the user to

input their relative and absolute dating evidence (Buck et al., 1999). Once this has

been done, BCal takes that information and automatically converts it to a format

that can be interpreted by the Bayesian radiocarbon calibration software mexcal

(written in C++). BCal does not require the user to directly construct the input

to mexcal, and the linear method of inputting data makes it challenging to build

implausible statistical models and thus may be more suitable for users with limited

programming or statistics experience. However, it is limited compared to OxCal with

respect to the types of absolute and relative dating evidence that can be incorporated

into the model. Furthermore, users can only build a single chronological model at a

time in both OxCal and BCal.

Despite both OxCal and BCal being well-established and utilised by the archaeo-

logical community, we chose to write our algorithm (utilising the algorithm provided

in Nicholls and Jones (2001)) to build Bayesian chronological models automatically.

Of all the issues previously discussed, our primary research motivation for doing this

was to be able to build multiple chronological models automatically from user input.
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To achieve this in OxCal or BCal would have required converting user input into CQL

or mexcal, respectively. Whilst this would have been possible as Levy et al. (2020)

have demonstrated, it would have limited all future development of PolyChron to

use the functionality available in OxCal or BCal. Furthermore, neither OxCal nor

BCal is open-source. Therefore, our end-to-end implementation of semi-automated

chronological construction would not have been fully open source. Further discussion

of the functionality of BCal and OxCal is reserved for Section 7.6, where we compare

the functionality of OxCal, BCal and PolyChron.

7.2 Motivation for building PolyChron

PolyChron is prototype software required to be installed locally on a user’s machine,

written entirely by the author, allowing users to produce multiple chronological

models. In addition, it allows the user to obtain graph theoretic representations

of their stratigraphic sequences and prior knowledge within a given hierarchical

Bayesian chronological model and save the raw digital data (as collected on-site)

along with graph theoretic representations of their models, resulting outputs and

supplementary notes produced during such modelling on their machine, thus facil-

itating future archiving of a complete site archive. In the following sections, we

will explore the specific motivations for building the software the way we did and

introduce the functionality of PolyChron. We also outline the software’s layout,

demonstrating its modular structure and why such structure is essential for the

function and longevity of PolyChron. This section specifically discusses the goals

we sought to achieve when producing PolyChron and how they correspond to this

project’s research objectives.
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Improved archiving of relative and absolute dating evidence

A key goal when building PolyChron was to produce software that allowed for

better archiving of all aforementioned data and information produced during the

process of chronological modelling. It was particularly important that the software

would enable us to address at least some of the issues with archiving the data

(and supplementary information about the data) used and produced when building

chronological models. As motivated in Chapter 4, issues such as incomplete site

archives or lack of contextual information as to how or why dating evidence may

have been augmented from its original form during the modelling process prevent

the reuse of such dating evidence.

Figure 7.2 outlines a hierarchy of the importance we ascribe to digital archaeological

data specific to chronology construction in archaeology. We classify the context label

(or identifier) as the primary data since chronological modelling cannot be carried out

without a set of contexts. Each context then has supplementary data, which together

constitutes the complete information pertinent to chronological modelling, such as

radiocarbon determinations, contexts, grouping, and group relationships. Within

PolyChron, we seek to ensure that all of the data types outlined in Figure 7.2 are

automatically saved to the user’s machines as and when they are produced/input

by the user. Further, it is important that it is clear what supplementary data

corresponds to a given context so that following subsequent archiving of site data,

there is the potential for the reuse of such data for further chronological modelling

or other purposes.

Further, we wanted changes from the physical stratigraphic relationships in the

stratigraphic sequence to the temporal relationships that comprise part of the chrono-

logical model to be a distinct and recorded step in the chronological modelling process
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Figure 7.2: Diagram showing the types of data and supplementary data we seek in
order to carry out chronological modelling. The hierarchical structure indicates the
relative importance of each data type for the reusability of the information below.
*Textual descriptor should be a brief description of the context using controlled
vocabularies such as those defined by Historic England (2021).
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as outlined in Chapter 6 Section 6.3. As such, a given site’s stratigraphic DAG and

chronological DAG needed to be archived as a record of specific steps in the chrono-

logical modelling process.

Automating the initial construction of chronological models

We have referenced the automation of chronology construction (precisely the steps

highlighted in Figure 7.1) throughout this thesis as a specific goal of the PhD. More

precisely, however, we wanted to be able to read into the software any given record

of a stratigraphic sequence (provided as a table of pairs of contexts and their above-

below relationships), grouping data and radiocarbon determinations and construct

the chronological model (and obtain posterior estimates for all parameters within

the model) automatically, regardless of the complexity or size of the stratigraphic

sequence. This, in turn, leads to a large combination of possible stratigraphic

sequences, numbers of groups and combinations of group relationships. Moreover,

this is before one considers additional factors that can change the chronological

model, such as residual and intrusive samples.

However, though the stratigraphic and group relationships expressed by the prior

knowledge can vary widely, the hierarchical structure of the Bayesian model stays

the same. Refer back to Chapter 6 Figure 6.1 for a graphical representation of the

hierarchical Bayesian model defined in Chapter 6 Section 6.1.3.

In any given model, the true calibrated ages of contexts are constrained by their

respective group boundaries and the ordering imposed by the stratigraphic sequence.

Therefore, to be able to automate the construction of Bayesian chronological models

given the fixed structure of the hierarchical model, the potential changes we need to

consider are the number of parameters and the information that defines the indicator
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functions Iαj ,βj
(θi,j), IG(α,β), and IC(θ).

Since the indicator functions comprise collections of logical statements between the

parameters in the model, we can extract that information from DAG representations

of the stratigraphic sequence by automating the conversion of the relationships

between the nodes into ‘less than’, ‘greater than’, or ‘equals’ relationships, as demon-

strated in Chapter 6, Figure 6.2.

More specifically, to automate the construction of Bayesian chronological models,

the goal was to find a way to consistently and reliably convert user input to a

stratigraphic DAG and then subsequently convert the information represented by

the stratigraphic DAG, in conjunction with further user input about residual and

intrusive samples and group relationships, to logical statements for use in a purpose-

built MCMC algorithm for Bayesian chronology construction.

Rapid implementation of multiple plausible models for a given site

A further goal was to allow for the rapid construction of multiple plausible Bayesian

chronological models with little to no extra input or work required from the user.

In particular, we wanted to ensure that this automation would work for large and

complex stratigraphic sequences for which, with existing software, considering more

than one plausible chronological model would not be feasible. As with automatically

constructing a single model, we also wanted to ensure that all data, model output

and supplementary notes for each plausible chronological model are saved in an

appropriate format and that it is clear which models correspond to the same project.
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Ability to develop and improve the software in future

It was important for PolyChron to have the potential for development in the future,

such as adding other types of statistical models or additional data management

functionality. Within the time constraints of the PhD, we were aware that we

could not implement all possible Bayesian chronological models within the software

that users may require, nor all desirable components of the GUI. However, we

wanted to ensure that we built the software using a modular structure and that

each component provided output in a standardised format that could be used as

input to other components. As a result, adding new functionality to the software

would be relatively simple by introducing new modular components and removing

or replacing less functional or redundant components.

7.3 PolyChron structure

This section outlines the modular structure of PolyChron. We separate this structure

into four components labelled: project loading, prior elicitation, MCMC algorithm,

and post-MCMC analysis, which each correspond to a subsection within this section.

Figure 7.3 outlines the functionality of each component and how they interact

with one another, and a link to a video demonstration is provided in Appendix

B Section B.1. In this section, we highlight the key functionality of each component,

the structure of the information between them, and define terminology specific to

PolyChron, which is used throughout the supplementary video demonstration.
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Figure 7.3: Diagram showing a simplified version of PolyChron’s structure and
the user’s process to obtain results for a Bayesian chronological model. Boxes with
green and white borders are stages where data are automatically saved locally to the
user’s machine by PolyChron without the user needing to save project progress.
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7.3.1 Project loading

The project loading module is the smallest of the four, and this part of the GUI is

presented to the user upon loading PolyChron. Here, they set up their initial data

structures. The highest level data structure that a user can make is a project, which is

a directory that holds all files and directories containing data or information specific

to a given archaeological site. Within each project, the user can set up models, where

here, a model refers to the data structure that holds all the data and information

for a single chronological model. Users can produce as many models as they require

and all model directories are stored within the project directory. Note that all use

of terminology such as project and model, which refer to specific data structures

or functionality in PolyChron, will be presented in italics for the remainder of this

thesis.

The project loading component allows the user to load new or existing projects, and

within each project, they can load new or existing models. At present, the GUI only

supports the display of one model at a time. Once the user has chosen the project

and model to work on within the GUI, they can load the prior elicitation component

of PolyChron. Upon doing this, for new projects, the software will create a project

directory within the directory containing PolyChron. Within the project directory

will be a directory for any existing models. Each model directory contains four

folders that store data and information from various parts of the modelling process,

as presented in Figure 7.3. We now introduce the other components of PolyChron

before returning to discuss the file structure and data-saving process in more detail.
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Figure 7.4: Directory structure that PolyChron builds when a user forms a new
project. Directories are given in orange, folders in blue and individual files of various
types in red. A pickle file is a file used to store Python objects in a single file that
can be loaded back into Python at some future point.

7.3.2 Prior elicitation component

The prior elicitation component of PolyChron is part of the GUI, where the user

reads in plain text files containing all the absolute and relative dating evidence they

wish to use for their Bayesian chronological modelling. All functionality for this

component is provided on a single page in the GUI. To build a Bayesian chronological

model in PolyChron, users must load the following four types of data:

1. stratigraphic relationships,

2. context grouping,

3. group orderings,

4. and radiocarbon determinations.
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We define these four files together as input data that provide the minimum inform-

ation that PolyChron requires to allow users to construct a Bayesian chronological

model. Users can also optionally load a file that outlines any contexts that have been

deemed equal or contemporary. The required data format is provided in Appendix

B Section B.2 and shown in the supplementary video demonstration.

Users must load the stratigraphic relationships file first, which PolyChron then

converts to a stratigraphic DAG which is then displayed in the GUI. All data manage-

ment in the prior elicitation component is done via mathematical graphs, specifically

DAGs, using the NetworkX package (Hagberg et al., 2008). Once the file defining the

stratigraphic relationships is loaded, PolyChron converts that data to a stratigraphic

DAG. For DAGs constructed using the NetworkX package, each node (context) has

an associated dictionary. A dictionary in Python is a data structure that can store

any data type within Python. Data in the Python dictionary are attributed to labels

called keys. In our case, the keys are the context identifiers. Any associated data for

each context that have been input by the user, such as radiocarbon determinations

and stratigraphic relationships, are stored in the dictionary for each key (context

label).

Context grouping and radiocarbon determinations can be loaded in any relative

order, but only after the file that provides the stratigraphic relationships has been

read into PolyChron. Users can only include one level of grouping at present, though

it is not uncommon for subgrouping to be available in the stratigraphic record and

there is the possibility of adding this to PolyChron in the future.
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Visualisation and manipulation of stratigraphic DAGs

Once the stratigraphic relationship file has been read into PolyChron, a stratigraphic

DAG is automatically displayed on the GUI, users can then manipulate the strati-

graphic DAG using point-and-click functionality on the PolyChron GUI. They can

visualise and adjust the stratigraphic DAG as required by zooming in on the DAG

and moving it around, which allows for easy visualisation of large stratigraphic

sequences.

At present, the layout of the stratigraphic DAG (and indeed all DAGs displayed in

PolyChron) is determined by a layout algorithm in the NetworkX package which seeks

to minimise the crossing of edges. However, suppose the stratigraphic sequence that

has been read into PolyChron is, in fact, made up of multiple disjoint stratigraphic

sequences (and thus disjoint stratigraphic DAGs). In that case, this can lead to

a given context in one stratigraphic sequence being placed higher than contexts in

a disjoint stratigraphic sequence such that archaeological evidence suggests those

contexts come from a younger group. The user can force PolyChron to display the

stratigraphic DAG so that any given context must be displayed below all contexts

in a group younger than that context. However, forcing the formatting in this way

can lead to cluttered placement of edges, so we avoid using that functionality for all

examples displayed within this thesis and seek to improve this functionality in the

future.

Users can also query or make changes to the stratigraphic DAG by right-clicking on

a specific context and choosing from the following functionalities in the drop-down

menu:

• adding new contexts or deleting existing contexts in the stratigraphic DAG,
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• adding or removing stratigraphic relationships by adding or removing edges in

the stratigraphic DAG,

• setting contexts to be equal to each other (if they are once-whole or contemporary),

• and querying or changing supplementary data (as defined in Figure 7.2).

The user must save any changes to the stratigraphic DAG, which can either be

saved as a new model or by overwriting the existing model by using the file menu

on the GUI toolbar. When the user makes a change to the stratigraphic DAG,

PolyChron loads a text box in which the user is required to input the reason for

making the changes before they can progress. This data is automatically saved to

the user’s machine when they save their model, thus ensuring any changes to the

data originally read into the software are accounted for. An example of this process

is provided in the supplementary video that is provided in Appendix B Section B.1.

Converting to the chronological graph

In chapter 6 Figure 6.2, we outlined the process of converting a stratigraphic DAG to

a chronological DAG, such that all physical relationships are converted to temporal

relationships, any residual/intrusive samples are accounted for, and nodes for group

boundary parameters are then added. PolyChron follows the same process, requiring

additional data input from the user, which we now outline.

When the user chooses to load the chronological DAG, they are prompted with a

message querying if any of the samples from the contexts in the stratigraphic DAG

are residual or intrusive. If they click yes, they are taken to a new page where they

can input which contexts are residual and intrusive and whether to include them

in the modelling using point-and-click functionality on the stratigraphic DAG to

allow for easy and efficient input of information. Once the users have highlighted

119



CHAPTER 7. POLYCHRON

all appropriate contexts as residual/intrusive, the GUI requires the user to classify

residual or intrusive contexts as either terminus post quem (TPQ) or terminus ante

quem (TAQ), respectively or exclude them from the modelling entirely. If they

choose TPQ or TAQ, the appropriate edges are removed from the chronological

DAG to account for the sample potentially being younger or older than the context

for intrusive and residual samples, respectively.

The user is then taken to the part of the GUI where they can input any group rela-

tionships; they are also taken straight to this screen if they click no at the message

prompt regarding residual/intrusive samples. Whereas the group relationships that

the user loads at the start are strictly before and after in time, the group relation-

ships GUI allows the user to expand on this by declaring whether the before-after

relationship between adjacent groups is abutting, has a gap, or overlaps. To do this,

the user is shown a canvas on the GUI with rectangles representing all the groups

within the model. The user can then place the rectangles in different positions on

the horizontal axis to show any combination of gap, overlap or abutting relation-

ships between the groups within the model (selecting them, of course, based on

archaeological evidence). The group relationships are then stored automatically by

PolyChron, ready to pass to the posterior inference module, and the chronological

DAG is loaded on the post-MCMC analysis screen within the GUI.

Changing the model

Just as the user can save changes to the stratigraphic DAG in the form of different

models, any changes to the chronological DAG prompts the user to save such changes

as a new plausible model, rather than overwriting the existing one. Changes to

the chronological DAG occur because additional prior knowledge is elicited when

rendering the chronological graph (in the form of residual/intrusive samples and/or
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Figure 7.5: Three different chronological graphs from the same stratigraphic DAG,
using data from a small stratigraphic sequence at Danebury (Cunliffe and Poole,
1991). to the left Context is ph3624 residual and removed, middle Context ph3624
is residual but kept in the model and treated at TPQ, (to the right No contexts are
residual.

changes in the group relationship types); one stratigraphic DAG may lead to multiple

chronological models (that are represented by distinct chronological DAGs) that the

user may deem plausible as demonstrated in the previous section. Any changes to

the chronological DAG, even for the same stratigraphic DAG, should be saved as a

new model within PolyChron since the final chronological model differs. There are

two ways the user can do this. The first is to rerender the chronological DAG, which

forces the user to either overwrite the existing chronological DAG in the current

model directory, resulting in only one model and the loss of all the data attributed

to the original model. The preferred method is to save the changes in a new model

directory, thus recording both models that the user considered plausible.
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Users are able to produce multiple plausible chronological models rapidly, using the

same initial input files. For example, we were able to produce the chronological DAGs

in Figure 7.5 for a single stratigraphic sequence from the same input files. To do this,

we simply rerendered the chronological DAG three times, inputting that: context

ph3624 is residual and should be treated as TPQ, that ph3624 is residual and should

be removed from the modelling, and that ph3624 is not residual. Each time we saved

the changes as a new model for which PolyChron creates a new directory. Producing

these three distinct chronological DAGs took around five minutes in PolyChron. As

they are loaded, PolyChron saves all the required data ready to pass to the MCMC

algorithm (see Table 7.1 for details), requiring no additional effort from the user to

obtain posterior results.

7.3.3 Posterior inference module

Once the user has loaded the chronological DAG for a given model and is sure it

represents the chronological model they intended to build, they simply click the

Render MCMC option and PolyChron will compute joint posterior estimates for all

parameters in their model using our purpose built Python module which automates

the construction of the input required for the MCMC algorithm (which we introduced

in Chapter 6 and provide details of in Appendix A Section A.3). The input to the

MCMC algorithm is automatically constructed from the data that has been stored

during the process of rendering the stratigraphic and chronological DAGs in the GUI.

The input, specifically the ten Python variables required for the MCMC algorithm,

is defined in Table 7.1. These variables are then input to a single function within the

posterior inference module. Thus, for any additional Bayesian chronological models

to be implemented in PolyChron in future, the code for producing such a model

would simply need to take in some collection of these ten variables to be connected
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to the GUI.

Users are able to obtain posterior results for a single model or all models in a project

for which a chronological DAG was previously rendered. If they choose the option

to render multiple models, PolyChron automatically checks which model directories

have a chronological DAG rendered (and all the required input data for the MCMC

algorithm already exists) and asks the user which of these models they wish to run.

The software then sequentially obtains results for all models the user selects.

At present, running multiple models is done sequentially. Thus, the time taken to

run a model scales linearly with the number of models. There is the possibility

of exploring other options for improving the efficiency of this process. However,

the time taken to obtain posterior estimates is computational time and not the

additional time required from the user and so speeding this process has not been a

priority during this PhD project.

The automated construction of the input to the MCMC algorithm is made possible

by storing all information for a given archaeological site in a dictionary which we

refer to as the site dictionary. This dictionary stores all data required for sampling

within the MCMC algorithm in a standardised format as outlined in Figure 7.6.

Additional prior information can be easily added to the site dictionary if required

for future development of PolyChron. For example, Heaton et al. (2020a) discusses

how covariance estimates between calendar years are available as model output for

IntCal20. Though this does not affect the calibration of single radiocarbon determ-

inations, such model output may potentially be used when calibrating multiple

determinations together as a Bayesian chronological model. The IntCal team has

planned work to explore how best to include this information in calibration software,

and this information could easily be added to the site dictionary if required.
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Figure 7.6: Structure of a site dictionary within PolyChron. The colours of the
boxes correspond to the Python data types in which the data are stored. Arrows
indicate nested data. For example, the dictionary on the left-hand side has j keys
(representing group labels), which correspond to j nested dictionaries containing
further data about contexts within each group and that group’s relationships with
its adjacent groups.

7.3.4 Viewing dating results

Once the posterior inference module has run the MCMC algorithm and reached the

minimum number of samples (set to 50,000 by default) and had checked that the

sampler has reached convergence using the checks outlined in Appendix A Section

A.5, PolyChron moves to the next component in the software, post-MCMC analysis.

This loads a new window in PolyChron, which allows users to use point-and-click

functionality to choose which contexts they wish to view posterior results for. This

allows for efficient viewing of marginal HPD intervals and posterior probability

density plots for any parameters (or collection of parameters) within the chrono-
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logical model.

Users can also view HPD intervals and posterior probability density plots for the

time elapsed between any two parameters in a chronological model. As previously

discussed in Chapter 2 Section 2.2, archaeologists are often more interested in the

time elapsed between two archaeological events than they are in the dates of the

events themselves. For example, they might want to know the time elapsed between

αj and βj to estimate the archaeological activity duration for group j.

7.4 PolyChron: Case studies

Thus far, we have motivated PolyChron and discussed functionality included in the

software which allows for the semi-automated construction of chronological models

and require very little manual input from the user once the initial input data has

been loaded into the software. This section provides two case studies of PolyChron

being used in practice, demonstrating how we have utilised PolyChron to further

our research.

7.4.1 Rendering larger models in PolyChron

A key focus when building PolyChron was scalability. We sought to ensure that

stratigraphic sequences of all sizes and complexity could be rendered in the software

and posterior results produced for their corresponding Bayesian chronological models.

Within the software, there were two features that we anticipated might cause issues

for scalability. The first was the point-and-click functionality for the stratigraphic

DAG, and the second was the conversion of the chronological DAG into the input

format for the MCMC algorithm.
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Due to the lack of complete data archives available for larger stratigraphic sequences

than those utilised thus far, we opted to test the scalability of PolyChron using

a stratigraphic sequence from Danebury (Cunliffe and Poole, 1991). The sequence

we used was the stratigraphic sequence for the 1984-1985 southeast quadrant at

Danebury. This stratigraphic sequence was published as an image on microfiche,

and so considerable work was required to convert the relative dating evidence within

this diagram to the required format of the stratigraphic relationships input file for

PolyChron, as outlined in Appendix B Section B.2. It consists of 142 contexts which

have been grouped into nine groups. Absolute dating evidence was unavailable for

most of the contexts in the stratigraphic sequence. Instead, we used simulated

radiocarbon determinations (see Appendix B Section B.3 for details) to test how

reliably PolyChron can covert the data stored in a stratigraphic DAG into a chrono-

logical model and subsequent posterior density estimates for the parameters within

the model.

Using a larger stratigraphic sequence as input data to PolyChron than those demon-

strated previously did not impact the functionality or speed of the project loading

component of the software. Within the prior elicitation component of the software,

we observed that the images of the stratigraphic and chronological DAGs render

slightly slower (taking around a second rather than a perceived instant result).

However, the stratigraphic DAG’s zooming, panning and point-and-click functionality

were not impacted. See Figure 7.7 for the stratigraphic DAG for the Danebury strati-

graphic sequence.

Further, the conversion of the data represented in the chronological DAG into

variables required for the MCMC algorithm (see Table 7.1) showed no difference

in speed or functionality. Manual inspection of the variables produced for input
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Figure 7.7: Stratigraphic DAG rendered in PolyChron for the 1984-1985 South-
East quadrant stratigraphic sequence (Cunliffe and Poole, 1991).

into the MCMC algorithm confirmed that all variables had been correctly converted

from the chronological DAG. We obtained posterior density estimates for all 152

parameters (10 group boundaries and 142 simulated radiocarbon determinations),

which corresponds to obtaining a minimum of 20,000 samples for each parameter

for two runs of the MCMC algorithms before running the appropriate convergence

checks (see Appendix A Section A.5). Running the MCMC algorithm for this

model took around 17 minutes on the author’s laptop. Given the size of the strati-
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graphic sequence, we felt this time was acceptable for proof-of-concept software and

that it demonstrated PolyChron’s ability to handle larger stratigraphic sequences.

In addition, it confirmed the posterior inference module’s ability to reliably and

automatically covert chronological DAGs to model output, even for complex models

with many parameters.

7.4.2 Multiple plausible chronological diagrams

Initial development work on PolyChron confirmed that DAG could be used to

semi-automate chronology construction. Following this, we sought to investigate if

existing algorithms for analysing mathematical graphs could provide us with inform-

ation about the importance of a given context (and its associated sample) within

the chronological model.

Among the wealth of algorithms that exist for analysing mathematical graphs, a

subset of algorithms highlight ‘nodes of influence’ in a mathematical graph i.e. nodes

that have the highest influence on the other nodes in the graph. A crude measure

of this might be the degree of a node, which is a measure of many nodes any given

node is connected to via edges (see Zhan et al., 2017). This would correspond

to the number of parameters in a chronological model that a given parameter is

directly connected to in the chronological DAG for that model. However, more

complex measures also exist, such as eigenvector centrality (see Zaki and Meira,

2014, Chapter 4) and Katz centrality measures (Katz, 1953). These measures take

into account not only the number of nodes a given node is connected to but also

how influential the nodes are that a given node is connected to. Katz centrality in

particular is recommended for directed graphs (see Zhan et al., 2017).

As part of the research within this PhD, we sought to investigate if such algorithms
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could indicate which contexts have the most influence within a chronological DAG for

a given model and the subsequent impact on the posterior results of that Bayesian

chronological model. We wanted to investigate if this could highlight the most

appropriate organic samples to be sent for radiocarbon dating if there are more

samples than the budget allows dating for. Existing research into sample selection

for choosing a subset of optimal samples, not based on the quality of the samples,

(Christen, 1994, see) utilises computationally intensive simulation methods. Thus,

we wanted to explore if graph theory algorithms could achieve this without requiring

simulation methods.

For this case study, we again used the Danebury stratigraphic sequence (presented

in Figure 7.7) to maximise the data points we had, to allow us to investigate if there

was a relationship between node importance and change to posterior results. To test

this theory, a node’s influence on the original stratigraphic DAG was calculated using

Katz centrality (see Appendix B Section B.4 for details). Following the initial work to

produce the input data as discussed in Section 7.4.1, the author wrote additional code

which, for each node parameter in the chronological graph automatically rendered

a new chronological DAG with that specific parameter node removed but with all

other temporal relationships between parameters preserved and saved this to a new

project directory on the user’s machine. The results of the chronological model

were then automatically passed to the posterior inference module in PolyChron for

each new chronological DAG, which for the Danebury site produced 142 plausible

chronological models corresponding to 142 contexts that could be removed.

Once the posterior results had been obtained for each model, we then measured

the similarity between marginal posteriors of each parameter in a given model when

compared to the original chronological model with no parameters removed and then
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found the average of this measure for the whole chronological model. Thus giving a

measure of how different, on average, the posterior results were when each parameter

was removed from the model.

Measuring the similarity between probability distributions is not trivial, and there

are a wealth of metrics that seek to quantify such similarity. To ensure our results

were not influenced by the specific metrics we used, we considered four potential

metrics: Kullback–Leibler divergence (see Joyce, 2011), Bhattacharyya distance

(Bhattacharyya, 1943), Hellinger distance (Enclyclopedia of Mathematics, 2020) and

an overlapping metric proposed by Pastore and Calcagnì (2019). These metrics

are formally defined in Appendix B B.5 and are some variation of a calculation

summing a measurement of the difference between two probability distributions for

each plausible value for a given parameter.

There was no evidence of a relationship between the influence of a node within

the stratigraphic DAG and a change in posterior results of the model when the

context corresponding to that node is no longer included in the model. However,

the key point is that 142 plausible chronological models were able to be rendered

by PolyChron, allowing us to test the aforementioned theory pertaining to node

importance without any additional time being required from the user once the initial

chronological model had been rendered. These 142 plausible chronological models

were rendered over the course of three days while the author continued with other

tasks.

Despite obtaining negative results, very little time had to be invested by the author

to test this theory. Therefore, we were able to investigate other avenues of research

for analysing multiple plausible chronological graphs as discussed in Chapter 8. The

automatic rendering of posterior results for Bayesian chronological models from the
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chronological DAG exemplified that future research questions can be explored simply

by the user producing the appropriate stratigraphic and chronological DAGs within

PolyChron, or by adding additional functionality that automates the production of a

large number of plausible chronological DAGs, as we did to test the aforementioned

hypothesis.

7.5 Limitations of PolyChron

Though PolyChron is now a fully functioning prototype, several areas for improvement

should be addressed in future work before the wider community utilises it. Currently,

the main limitation is that the GUI is written in Python, specifically in Tkinter,

which means the user is required to download Python all appropriate modules and

only then, PolyChron can be used on the user’s machine. However, due to the

modular nature of the software, it is possible to convert the GUI into a different

format, say HTML and keep the posterior inference module written in Python. A

benefit of this is that it would allow users to load PolyChron in their web browser

without needing to download Python and all the required packages to their machine,

which could prove difficult for users with little to no programming experience.

Further, the current method of running the MCMC algorithm sequentially for all

the models the user wishes to evaluate could be improved. Other options could be

explored, such as parallel programming. For the author’s use, parallel programming

would have been a suitable solution since their device had multiple cores. However,

since this is prototype software and may yet migrate to web-based software as

opposed to desktop software, we chose not to explore this route at present. Since

if PolyChron did remain as desktop software, potential users may not have devices

with multiple cores. Thus, a more elegant solution may be required.
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CHAPTER 7. POLYCHRON

At present, PolyChron has limited functionality compared to other software such as

OxCal, BCal or Stratify with regards to the type of absolute and relative dating

evidence that can be managed within the software. However, the goal when building

PolyChron was not to replicate all functionality for chronological data management

software and Bayesian chronological modelling software. Instead, we wanted to show

that prototype software can be written to manage the whole process. However,

additional functionality will certainly benefit users of PolyChron, and we now move

to discuss what functionality is missing when compared to existing software and

which functionality could be included in future.

7.6 Future development of PolyChron

The planned development of the functionality of PolyChron is broadly split into two

categories: managing relative dating evidence and the Bayesian modelling capability

of the software. At present, additional site data, such as plans and section drawings,

photographs etc. (which can be included in software such as Stratify), cannot be

included in PolyChron. Consequently, data archived from PolyChron at present can

not provide a complete site archive. Therefore, future development should ensure

that all data pertaining to a given stratigraphic sequence can be elegantly managed

and subsequently archived from PolyChron.

The development of the Bayesian modelling capability of the software will seek to

incorporate much of the functionality seen in OxCal and BCal. At present, the only

absolute dating evidence that can be included is radiocarbon determinations. Future

development would seek to allow for other absolute dating, such as luminescence

dates and dendrochronology dates and dating evidence derived from cultural finds

experts (e.g ceramicists). Though we must note that further work to formalise
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the prior elicitation of dating evidence from finds experts is required before such

information can be included in automated chronology construction.

In addition, we would like to add functionality to the GUI to allow users to include

subgrouping in their model if desired. At present, this is possible to do in BCal using

their ‘floating parameters’ option or in OcxCal by defining a ‘boundary()’ event in a

CQL script. OxCal also allows for a variety of potential probability distributions for

modelling a priori knowledge about the deposition of datable material within a given

group, conditional on the group boundary parameters. Within PolyChron, we only

consider the probability function in Chapter 6 Equation 6.7 to represent such prior

knowledge. Other potential distributions could be added to the posterior inference

module in the future, such as those outlined in Table Table 1 Bronk Ramsey (2008).

Were we to do so, to ensure adequate archiving, we would require the user to provide

the rationale for such modelling choices, which would then be saved within the model

directory as supplementary information.

Further development of PolyChron would not seek to exactly replicate either BCal or

OxCal. At present, PolyChron provides more flexibility for the user to visualise and

alter their model than OxCal or BCal due to the point-and-click functionality and use

of DAGs to present information, but it is currently missing some of the modelling

options that OxCal and BCal provide. Any of the extra functionality added to

PolyChron in the future must be done in such a way as to avoid users producing

statically implausible models or allowing users to make modelling choices without

understanding the implications of the overall model. For example, adding too many

subgroups that are only useful for visualisation purposes (for which calibrated date

estimates are not required) can lead to overparametisation of the model and result

in inefficient computation of posterior distributions.

133



CHAPTER 7. POLYCHRON

7.7 Summary of Chapter

Within this chapter, we have motivated a need for and described the functionality of

our prototype software, PolyChron. This software demonstrates that directed acyclic

graphs can be used in practice to visualise and manage relative dating evidence and to

structure data resulting from such evidence in a format suitable for input to Bayesian

chronological modelling algorithms. As demonstrated in our case studies and in the

supplementary video, PolyChron can be used to semi-automate the construction of

a variety of Bayesian models, including those with complex stratigraphic sequences

or those with residual/intrusive samples. Further, it can reliably produce multiple

plausible Bayesian chronological models, allowing users to document any models they

deem plausible rather than proceeding with a single chronological model simply due

to time or software constraints.
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CHAPTER 7. POLYCHRON

Figure 7.8: Chronological DAG rendered in PolyChron from the stratigraphic DAG
in Figure 7.8 for the 1984-1985 South-East quadrant stratigraphic sequence (Cunliffe
and Poole, 1991), such that all group relationships are assumed to be abutting.
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Chapter 8

Additional analysis of chronological models

In the previous chapter and the supplementary video demonstration provided with

the thesis, we demonstrated PolyChron’s ability to rapidly produce multiple plausible

chronological models, even for large models. The discussion now turns to obtaining

posterior estimates for parameters of interest when considering multiple plausible

chronological models, in such a way that the results make statistical and archaeo-

logical sense.

At present, unlike the established theory underlying the process of building Bayesian

chronological models discussed in Chapter 5, there is not a single standard method-

ology for analysing multiple chronological models. Nonetheless, others have considered

it. For example, it is discussed at length in Buck and Millard (2004), with Chapter

5 (Sahu, 2004) in particular focusing on model choice (albeit for a type of arch-

aeological chronology construction not examined in this thesis). Broadly speaking,

previous analysis of multiple models in archaeological chronology construction fit

into three categories: model selection/comparison, model averaging and sensitivity
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CHAPTER 8. ADDITIONAL ANALYSIS

analysis.

Model selection/comparison methods use varying statistical methodologies to provide

metrics to allow users to compare competing statistical models. Model selection is

used in both frequentist and Bayesian statistics. However, the metrics used differ. As

described by Wasserman (2000), model selection methods in Bayesian inference seek

to use the data to select a single model from a set of plausible models. A commonly

used metric for model selection is the Bayes factor (Kass and Raftery, 1995), which

is the ratio of the posterior to prior odds ratios (see Bernardo and Smith, 1994,

Defintion 6.1). However, for improper priors (i.e. priors that are statistical functions

but not probability distribution functions and thus do not integrate to 1), Bayes

factors are not well defined. Further, for complex Bayesian models, Bayes factors are

often hard to compute since they require integrating over high dimensions (though

increasingly MCMC methods are used to approximate Bayes factors, just as they

are used to approximate posterior distributions). Both the aforementioned situations

that complicate the calculation of Bayes factors arise commonly for Bayesian chrono-

logical models. OxCal provides a model comparison metric in the form of their

agreement indices, which they refer to as a type of pseudo-Bayes factor, though

Karlsberg (2006) argues they are a ratio of posterior predictive densities 1 (see

Karlsberg, 2006, page 57 for a formal proof of this).

However, a more pressing issue is that Bayes factors, the OxCal agreement indices,

and indeed other model selection metrics we might have considered within this

research all assume that a true model exists for any given problem and that the true

model is contained within a set of specified models. As occasionally discussed in

the literature, however, this assumption does not commonly hold for sets of chrono-

1A posterior predictive density is a distribution of future observations, dependent upon the data
we have already observed (Gelman et al., 2004, Chapter 2)
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logical models. For example, Bayliss and Bronk Ramsey (2004) states that there

is no ‘right’ model for any given chronological site. The current author is also not

willing to assume that a given set of Bayesian chronological models contains a single

true model for several reasons. First, one can never fully excavate a site. Therefore

a chronological model can only ever represent a partial representation of the true

stratigraphic sequence of a site. Further, given the wealth of factors that can affect

the reliability of both the prior and the likelihood, such as residuality, intrusiveness

or contaminated samples, even if one were to excavate a site fully, we deem it highly

unlikely that one would obtain the true model.

The assumption that the true model is within a given set of models is also made for

model averaging methods. Given this, no further discussion of model averaging is

provided here, but we refer the reader to Hoeting et al. (1999) for further details.

Sensitivity analysis is not a method of model comparison but is instead used to

assess how sensitive a given posterior inference might be to changes in the prior or

likelihood (see Bayliss and Marshall, 2022, Chapter 2 for a discussion with respect

to chronology construction). As outlined in Chapter 6, Sections 6.4.1 and 6.4.2,

this is an important step in the Bayesian modelling process and can be carried out

in PolyChron. However, sensitivity analysis only informs us about how robust a

model’s posterior results are to changes in the parameters or structure of our prior

or likelihood and does not provide information about the reliability of the posterior

results themselves.

In this chapter, we explore a rather different approach to analysing multiple plausible

chronological models and present the results of a simple application before discussing

more complex applications of the methodology, which we seek to explore in the

future.
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CHAPTER 8. ADDITIONAL ANALYSIS

8.1 Quantifying uncertainty in archaeological dating

evidence

Thus far, we have expressed our subjective prior chronological knowledge as probab-

ilistic statements, primarily in the form of indicator functions. For example, the

indicator functions IG(α,β), IC(θ) and Iαj ,βj
(θi,j) defined in Chapter 6 Section 6.1.3

ensure that our posterior results satisfy the ordering imposed by stratigraphic and

grouping information from the excavation.

Proceeding with a single model based on one such set of indicator functions omits

the uncertainty pertaining to the prior knowledge derived from the relative dating

evidence. As discussed in Bayliss and Bronk Ramsey (2004) Section 2.3.3, relative

chronological relationships represented by the indicator functions are definitive. For

example, a context either has a stratigraphic relationship with another or does not.

However, as previously discussed, such definitive statements rarely hold up to much

scrutiny.

In most other applications of Bayesian inference, we account for uncertainty in prior

knowledge using a carefully chosen probability distribution. However, as Bayliss and

Bronk Ramsey (2004) section 2.3.4 remarks, it is not clear that an archaeologist (even

those who are highly numerate) could provide adequate prior knowledge to express

uncertainty about stratigraphic and group relationships as a probability distribution.

Indeed, this problem was encountered in the early research on Bayesian chronological

modelling, where a seemingly suitable choice of a uniform distribution to represent

a uniform prior knowledge about group boundary parameters led to unintentionally

informative prior knowledge being implied with regard to the time elapsed between

group boundaries (see Chapter 6 Section 6.1.2).
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Williamson and Goldstein (2015) argue that in situations like ours, where we have

several plausible models with quite different structures, Bayes linear methods (Goldstein

and Wooff, 2007) can be used to quantify our posterior uncertainty more coherently

that the methods discussed in the previous section. Bayes linear methods use

summary statistics such as expectation, variance and covariance to quantify prior

beliefs about quantities for which defining a full probability distribution (or probab-

ilistic functions) is not feasible or is impractical. Discussion and motivation of the

theory behind Bayes linear methods are beyond the scope of this thesis, but we refer

the reader to Goldstein and Wooff (2007) for a comprehensive account. Here we

only discuss the theory directly relevant to our own application.

We must first introduce the concept of parameters of interest. Within a Bayesian

model, we may have multiple parameters that are used to obtain the most informat-

ive posterior estimates possible. Often, however, it is only a subset of these param-

eters that we are, in fact, interested in. For example, within Bayesian chronological

modelling, θ parameters are incredibly important for obtaining the most informative

posterior estimates of the group boundary parameters α, β, since it is the θ param-

eters that have associated absolute dating evidence. However, in practice, it is not

uncommon for the posterior estimates of the group boundaries to be the parameters

that the archaeologists are ultimately interested in.

An additional concept we must motivate is that of judgements, as defined in Williamson

and Goldstein (2015). Suppose we have a set of M plausible chronological models,

for which we have carried out a full Bayesian analysis (as detailed in Chapter 6)

and obtained marginal posterior estimates for each of the parameters in our M

models, then Vm is the set of judgements for model m that encompasses all the prior

knowledge, modelling decisions and computational methods that result in model
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m. Typically, in chronological modelling, we proceed with a single model and thus

only consider one set of judgements, V0, to be correct. However, Williamson and

Goldstein (2015) argues that for complex models (such as those studies considered in

this thesis), it is unlikely that those carrying out the analysis truly believe that the

V0 is the only set of judgements that can adequately represent our scientific insights

and beliefs about a given problem. Given this, they propose a method that they call

posterior belief assessment (PBA).

8.1.1 Overview of posterior belief assessment

Posterior belief assessment, proposed by (Williamson and Goldstein, 2015), involves

expressing prior beliefs in two stages. First, we make probabilistic statements that

comprise the set of judgements, Vm, for model m, which correspond (in chronological

modelling) to the prior beliefs discussed in Chapters 5 and 6 that are used to form

the prior p(θ,α,β|x). These prior beliefs are expressed for all model parameters

and used to carry out the Bayesian inference seen in Chapter 6. The second step

in PBA is to represent prior knowledge about the parameter(s) of interest; these

are the parameters for which we are most interested in posterior estimates for. The

prior knowledge in this step should represent our true beliefs with respect to our

parameter(s) of interest and do not require the specification of full probability dist-

ributions, only expectations and variances.

When carrying out Bayesian inference, our judgements must be sufficiently rep-

resentative of the situation one is trying to model. However, it is not unusual for

certain modelling decisions to be made, not because the model best represents our

prior beliefs but because it results in computationally efficient posteriors for which to

calculate estimates. Williamson and Goldstein (2015) argues that Bayes linear meth-

ods, which focus only on summary statistics such as (expectation and variance) are
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more suited to quantifying our prior beliefs about parameters within more complex

models and do not require such simplifications of our prior beliefs.

We now define PBA for a single arbitrary parameter of interest, a group boundary

parameter αj, for which we have M Bayesian chronological models we consider

plausible. Given αj, let G be the vector of estimated marginal posterior expectations

of αj for each of the M models we consider plausible,

G = (E [αj|x;V1] ,E [αj|x;V1] , ...,E [αj|x;VM ]), (8.1)

then Williamson and Goldstein (2015) defines the posterior belief assessment for α

as:

EG [αj] = E [αj] + Cov [αj,G] Var [G]−1 (G − E [G]). (8.2)

Here, the quantity EG [αj] (referred to forthright as our adjusted beliefs) is at least

as close to αj (according to our prior beliefs and the Bayesian inference carried out

to obtain the set G) as the posterior expectation E [αj|x;Vi] for i in 1, ...,m. For

proof of this, please see Williamson and Goldstein (2015) Theorem 1. An important

distinction here is that posterior belief assessment provides a framework to allow

statisticians to assess a given expert’s uncertainty in the Bayesian inference they

have carried out, and the above result strictly holds conditional upon the expert’s

beliefs.

PBA for Bayesian chronological models

An important assumption of PBA is that it does not require that the set of M

Bayesian chronological models that we consider contains the true model. Instead,

it only requires that we believe each model m is plausible for the situation we are

trying to represent. Furthermore, within the posterior belief assessment framework,
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it is possible to consider an infinite number of plausible models. While we do not

consider large numbers of plausible models within the initial investigation presented

within this chapter, this could readily occur in archaeology, and so should be the

subject of future work.

To carry out posterior belief analysis on a given parameter or set of parameters

within a Bayesian chronological model, we focus on their posterior expectations and

variances of posterior estimates, as defined in Equation 8.2. For parameters with

multimodal distributions such as those relating to the likelihood component of the

posterior distribution for θ parameters in Chapters 5 and 6, expectations are not

informative summary statistics with respect to the true value of the parameter, as

discussed in Chapter 3 Section 3.2.3. Group boundary parameters, by contrast, typi-

cally have unimodal likelihoods, so (despite their hierarchical relationships with the

θ parameters) their posterior distributions are commonly unimodal. Thus, we chose

to proceed with investigating the use of PBA for Bayesian chronological models but

restricted such research to carrying out PBA on group boundary parameters. Indeed,

much of the published literature on Bayesian chronology construction includes a

focus on the posterior estimates of the calibrated ages of group boundary param-

eters (see Bayliss et al., 2015; Krus et al., 2015, for examples).

8.2 Case study - Posterior belief assessment in arch-

aeology

To investigate the use of PBA on parameters within a chronological model, we

utilised part of the relative and absolute dating evidence obtained during excavations

at Çatalhöyük, in particular, the East Mound (Bayliss et al., 2015). Since 1961,
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various periods of excavations have been carried out at Çatalhöyük. As discussed

in Bayliss et al. (2015), excavations at the East Mound focused on estimating the

start date of the occupation of Çatalhöyük, to examine the temporal relationship

between the settlement at Çatalhöyük and the occupation of a nearby settlement

Boncuklu Höyük. Further, Bayliss et al. (2015) wanted to investigate the early

use of pottery within the Middle East for which a start date for the settlement at

Çatalhöyük is informative. Given the focus on a specific parameter within a larger

chronological model, namely the oldest phase boundary within the model, we felt

this was a suitable case study to examine the use of PBA for a single parameter.

East Mound

The DAG in Figure 8.1 is derived from the stratigraphic sequence provided in Bayliss

et al. (2015) Figure 3. Within the stratigraphic DAG, there are 31 contexts divided

into 7 groups. Bayliss et al. (2015) discuss in detail which dates correspond to

samples that do not necessarily date the contexts in which they were found. For

demonstrative purposes (since the number of plausible models increases the more of

such contexts we consider) we focused on two of these contexts:

• 5328, which contained a sample that was considered likely to be a statistical

outlier due to a laboratory error,

• and 4826, which contained a sample that was considered to be residual poten-

tially.

Within this case study, we consider multiple plausible chronological models that arise

from the fact that the samples from contexts 5328 and 4826 do not necessarily date

the contexts in which they were found. For the potentially residual sample found in

context 4826, there are three courses of action: assume it dates the context, assume
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it is residual and remove it from the chronological models, or assume it is residual

and treat it as terminus post quem (TPQ). For each of those three courses of action,

there are two options for the sample from context 5328: assume the sample is not

a statistical outlier or assume that it is and remove it from the modelling (though

for such outliers, we recognise that removing the sample from the modelling process

is a rather drastic course of action and not ideal). This resulted in six plausible

chronological models that are illustrated in Figure 8.3 and outlined in Table 8.1.

The very oldest phase boundary parameter in all six models is αX_11D, which is

the parameter we focus on for the PBA in the following section. For neatness of

notation, we refer to αX_11D simply as αX , for the remainder of this thesis.
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Figure 8.1: Chronological DAG constructed using part of the relative and absolute
dating evidence obtained during excavations at the East Mound, Çatalhöyük (Bayliss
et al., 2015). Note that the node at the bottom of the DAG is the parameter for
which we are carrying out PBA on.
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Figure 8.2: Estimated posterior density of αX under the model illustrated in Figure
8.1. Note that though the distribution is not strictly unimodal, it does not exhibit
multiple distinct modes as is observed for marginal posterior estimates of param-
eters with likelihoods derived directly from radiocarbon determination. As such, we
deemed the marginal posterior expectation to be an adequate numerical summary
to allow us to proceed with PBA of αX .

8.2.1 Prior belief specification for oldest boundary parameter

In order to carry out PBA for αX and thus obtain our posterior belief assessment

EG[αX ], as defined in Equation 8.2, we must evaluate the following quantities: E[G],

Var[G] and Cov[y,G]. Further, we must obtain the set of posterior expectations

G = (E [αX |x;V1] ,E [αX |x;V2] , ...,E [αX |x;V6]),

that result from carrying out Bayesian inference for our six plausible models.

In what follows, we present a hypothetical elicitation of E[G], Var[G] and Cov[y,G],

as proof of concepts, but in future seek to elicit them from experts.
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Model Sample from
context 4826

Sample from
context 5328

1 excluded excluded
2 excluded included
3 TPQ excluded
4 TPQ included
5 included excluded
6 included included

Table 8.1: Summary of the combinations of how prior knowledge pertaining to
contexts 4826 and 5328 are included in the chronological model.

Elicitation of key prior quantities

To elicit E[G], Var[G] and Cov[αX ,G] requires two further quantities E[αX ] and

Var[αX ]. and we obtain these values using a hypothetical process of elicitation which

is referred to as prior belief specification. Thus, to carry out PBA for αX requires

elicitation of the following key quantities:

• E[αX ]: the prior expected value of αX according to the experts beliefs,

• Var[αX ] : the measure of spread about E[αX ] according to the experts beliefs,

• E[G]: the prior expected value of the posterior expectations of αX according

to the expert’s beliefs, prior to Bayesian inference being carried out,

• Var[G] : the prior measure of spread about E[G] according to the expert’s

beliefs,

• Cov[αX ,G] : the prior measure of the relationship between the expert’s prior

knowledge of αX and their prior knowledge pertaining to the set of posterior

expectations G which results from the Bayesian inference the expert has carried

out.

Elicitation of E[αX ] and Var[αX ] from experts would require formal protocols to be
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established and training provided so that knowledge could be reliably elicited. This

was not feasible in the timeframe of this PhD project and so for proof of concept, we

chose a value for E[αX ] that was equal to the estimate of αX in the literature prior

to the additional dating being carried out by Bayliss and Bronk Ramsey (2004),

which was around 9250 calibrated years as given in Cessford et al. (2005). Following

this, we set the value of Var[αX ] to be equal to the square of the maximum error of

the radiocarbon determinations used within the analysis which gave Var[αX ] = 9604

calibrated years. We acknowledge that this seems a somewhat large and arbitrary

value for the variance. However, we do seek to elicit such values within future

research and examine the use of PBA for differing values of Var[αX ] in Section 8.3.

Since we have already defined E[αX ], and we do not believe that the M plausible

models within set G are biased, i.e. we expect the posterior expectations within G

to on average, accurately predict αX , we set E[G] = E[αX ] = 9250 cal BP. When

determining a suitable value of Var[G] for testing purposes, we set Var[G] to be greater

than Var[αX ], since we felt there was additional uncertainty due to the data (our set

of radiocarbon determinations) that we needed to account for. Such uncertainty can

arise for a number of reasons, such as contamination of samples used for radiocarbon

dating or uncertainty in our prior knowledge, as previously discussed. Thus we set

Var[G] = 10000 cal BP. We would like to remind the reader that when determining

the values of these key quantities, we were simply seeking to obtain feasible values

for such quantities that would allow us to test the use of PBA on archaeological

chronological models. However, future research would need to ensure that these

values are formally elicited from experts.

Finally, we needed to determine a value for Cov[αX ,G]. It is difficult for anyone,

even those who are highly numerate, to reliably quantify covariance between two
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variables. Thus, we instead (upon the advice of Prof Daniel Williamson) chose to

exploit the following relationship:

Var[αX − G] = Var[αX ] + Var[G]− 2Cov[αX ,G], (8.3)

since it is considerably easier to quantify the variance of the difference between two

variables than to quantify the covariance between two variables. Furthermore, we

have already obtained values for Var[αX ] and Var[G].

However, we must ensure that the value we (hypothetically) elicit for Cov[αX − G]

does not result in a value of Cov[αX ,G] that does not reliably represent our prior

beliefs. By the definition of covariance,

Cov[αX ,G] = Cor(αX ,G)
√
Var[αX ]Var[G].

We expect Cor(αX ,G), the correlation between our beliefs regarding the true value

of αX and the output of the Bayesian inference provided in G, to be positive, and so

we obtain the following inequality:

0 ≤ Cov[αX ,G] ≤
√
Var[αX ]Var[G]. (8.4)

Substituting the information held in Equation 8.4 into Equation 8.3 gives,

Var[αX ] + Var[G]− 2
√
Var[αX ]Var[G] ≤ Var[αX − G] ≤ Var[αX ] + Var[G] (8.5)

In practice, we expect the interval of plausible values for Var[αX − G] to be even

smaller than that defined above. For example, a correlation of either 0 or 1 between

αX and G is highly unlikely. Indeed, a correlation of 0 would result in our adjusted
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expectation EG[αX ] being equal to E[αX ], from the definition of PBA given in

Equation 8.2 which can be seen in the practice in Figure 8.5.

For this case study, using the inequality defined in Equation 8.5 we determined that

4 ≤ Var[αX − G] ≤ 19, 604,

as calculated using Equation 8.5. Note that these are simply limits and we need to

obtain an expectation of Var[αX −G] to calculate Cov[αX ,G] Thus, we decided that

for proof of concept, we would take the variance of the difference between αX and G

to be 502 which is approximately the square of the average error of the radiocarbon

determinations within the model and lies between the two limits of the equality given

in Equation 8.5. Thus, this results in us setting Cov[αX ,G] = 8852.

The set of posterior expectations G was obtained by building the six plausible chrono-

logical models detailed in Table 8.1 within PolyChron, then calculating the posterior

expectation of αX from the marginal posterior distribution of αX for each model.

8.3 Results of PBA for a single parameter

Now that we have obtained values for the key quantities of interest, we can carry

out the posterior belief assessment for the parameter αX . We utilise existing code,

written in R by Astfalck (2022), which calculates adjusted expectations and variances

for our prior belief specification which has then been updated by G. This code only

requires specification of the key quantities outlined in Section 8.2.1 to allow the user

to obtain adjusted beliefs for key quantities of interest. Within this section, we

present the results of carrying out PBA using the quantities outlined in the section

above. Following that, we carry out a form of sensitivity analysis, exploring how the
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results of PBA change as we change the elicited values of key quantities.

In Figure 8.4 we illustrate the adjusted beliefs that result from the posterior belief

assessment observing a notable reduction in variance about the expectation of αX

when compared to the posterior expectation for the same parameter from each of

our plausible models, despite the fact our variance in the prior belief specification

was rather large in comparison to the posterior variances of each of the models.

Though the initial result of carrying out PBA for a single parameter was promising,

since our key values of interest were not formally elicited from an expert, and were

rather arbitrarily chosen, we sought to explore how sensitive the results of PBA were

to changes in the prior belief specification.

Poor prior specification of E[αX ]

First, we consider the impact on the adjusted beliefs when the elicited value of E[αX ]

is in poor agreement with the data. As mentioned in the previous section, when the

elicited value of Cov[αX ,G] tends towards 0, EG[αX ] becomes E[αX ] as seen in the

bottom plot of Figure 8.5. Consequently, for poor estimates of E[αX ], a covariance

equal to 0 results in a value of EG[αX ] = E[αX ] which is consequently also in poor

agreement with the data.

Alternatively, high values of Cov[αX ,G] result in adjusted beliefs that are closer to

the posterior results observed in G. However, the variance of the adjusted beliefs

is unrealistically small as observed in the top plot of Figure 8.5. When setting

the covariance to a small value, but not the limit of
√
Var[αX ]Var[G] we obtain

adjusted beliefs that are in agreement with the posterior expectations in G, as seen

in the middle plot of Figure 8.5. However, the variance of the adjusted beliefs is

considerably smaller than we would expect for prior beliefs and model outputs that
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disagree with each other so much, which we suspect to be due to the contrary prior

information that we believe αj is highly correlated with G, as implied by a value of

Cov(αj, G) close to
√

Var[αX ]Var[G], despite our values of E[αj] and E[G] being so

far apart.

In summary, PBA is sensitive to any prior belief specification that results in a

value of E[αX ] that is in poor agreement with the data, regardless of the choice

of covariance. Thus, it should only be used on Bayesian chronological models when

tangible archaeological evidence can be used to inform elicitation of E(αX), such as

dating evidence from previous excavations.

Prior specification of variance

PBA performed better when E(αX) was in good agreement with the data. We have

seen in this section thus far that ‘extreme’ values of Cov[αX ,G] affect the results of

PBA. Now we turn our attention to the impact on the results of PBA when E(αX)

is in good agreement with the data and when the value of Var[αX ] increases or

decreases, representing more or less certainty from the expert in their specified value

of E[αX ].

As illustrated in Figure 8.6, smaller elicited values of variance, such as Var[αX ] =

2604 and Var[G] = 3000 have a high influence on the variance of the adjusted beliefs,

suggesting that small values of Var[αX ] should be avoided unless they are supported

by strong archaeological evidence. Whereas larger variances such as Var[αX ] =

29604 and Var[G] = 30000 did not lead to exceedingly large variances for adjusted

beliefs when compared to the initial values Var[αX ] = 9604 and Var[G] = 10000, as

demonstrated in the top plot of Figure 8.6.
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8.4 Discussion and future work

Within this chapter, we have presented an initial exploration into the use of posterior

belief assessment for parameters in a chronological model. We believe that PBA

might be a potential methodology for allowing the consideration of multiple plausible

chronological models, thus allowing further quantification of uncertainty in prior

knowledge that is not well handled presently. However, considerable additional

research would be required before it could be used in practice.

A limitation of PBA, specific to chronology construction, is that this method can

allow us to carry out an analysis which utilises multiple plausible chronological

models, but only when an informative prior belief structure can be elicited. While

experts working at sites that have had previous dating carried out may have a wealth

of prior knowledge suitable for this, more work is needed to explore other sources of

prior knowledge and whether such knowledge can be reliably elicited.

8.4.1 Future work

Future work exploring the use of PBA for Bayesian chronological models will focus

on three objectives. The first will be to investigate the use of PBA for multiple

parameters. In the case study demonstrated in this chapter, the research focus

was a specific parameter within the chronological model. However, archaeologists

are often interested in the duration (or span) of a specific period of archaeological

activity. In such situations, we would need to examine the use of PBA on at least

pairs of parameters and their differences.

The second avenue of future research would focus on considering a larger volume of

plausible models. There are two scenarios to consider. The first would be a large
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number of plausible models, for which we believe, a priori, that all have similar

expectations for the parameters of interest. The second would be a large number

of plausible models for which the expert believes certain subsets of models lead

to different estimations for the parameters of interest. For example, uncertainty

about the Allen algebra relationships between groups may result in multiple plausible

models that we believe, a priori, lead to differing posterior expectations for group

boundary parameters.

The PBA methodology Williamson and Goldstein (2015) utilises the concept of

coexchangeable classes. Given we have K coexchangable classes, the kth coexchangable

class is a set of Hk posterior expectations,

Ck = (E [α|x;Vk,1] ,E [α|x;Vk,2] , ...,E [α|x;Vk,Hk
]),

such that we believe that any given posterior expectation within the class can be

expressed as

E [α|x;Vk,h] = M(Ck) +Rh(Ck),

such that M(Ck) is the common posterior expectation of the parameters of interest

for all models within that class k and Rh(Ck) is a residual term attributed to the hth

expectation within class k, which accounts for the difference between the common

posterior expectation of the class, M(Ck) and the actual posterior expectation of

the parameters of interest for model h (Astfalck et al., 2021). We are interested in

investigating the use of coexchangable classes when carrying out PBA since it would

allow us to group large numbers of plausible models into classes that we believe,

a priori will provide the same adjusted beliefs of the parameter (or parameters) of

interest.
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The final objective, given research from the two aforementioned objectives proves

successful, would be to establish protocols and training for the elicitation of prior

beliefs about the parameters for which we are carrying out PBA. A particular focus

would be on incorporating prior knowledge that may previously have been excluded

since it was not possible to elicit a formal probability distribution from such expert

knowledge, but eliciting expectations and variances from such knowledge seems

plausible. An example of such prior knowledge might be calendar ages for cultural

finds such as coins and pottery, for which approximate calendar ages can be inferred

from inscriptions and cultural style respectively. We wish to explore whether formal

elicitation processes can be determined to elicit such prior knowledge.
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Figure 8.4: Results of carrying out PBA for αX , as seen in Figure 8.1, such that
the prior belief specification gives E[αX ] = 9250 and Var[αX ] = 9604. G is the set of
six posterior expectations for αX corresponding to the six models seen in Figure 8.3.
Further, E[G] = 9250, Var[G] = 10000 and Cov[αX ,G] = 8852. A 76% reduction is
seen in the variance of the prior beliefs for the adjusted beliefs
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Figure 8.5: Results of carrying out PBA for αX , as seen in Figure 8.1, such that
the prior belief specification gives E[αX ] = 9600 and Var[αX ] = 9604. G is the
set of six posterior expectations for αX corresponding to the six models seen in
Figure 8.3. Further, E[G] = 9600, and Var[G] = 10000 and we vary Cov[αX ,G].
top: A unrealistically negligible variance for the adjusted beliefs is observed for
Cov[αX ,G] =

√
Var[αX ]Var[G], middle: A Cov[αX ,G] = 8852 suggests that αX and

G are highly correlated which is in disagreement with their expectations, resulting
in an unrealistically small variance of the adjusted beliefs. bottom: Cov[αX ,G] = 0
which results in the adjusted beliefs being set equal to the prior belief specification.
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Figure 8.6: Results of carrying out PBA for αX , as seen in Figure 8.1, such that
the prior belief specification gives E[αX ] = 9250 and Cov[αX ,G] = 8852. G is the
set of six posterior expectations for αX corresponding to the six models seen in
Figure 8.3. We vary Var[αX ] and Var[G]. top: Results of setting Var[αX ] = 29604
and Var[G] = 30000 with a notable reduction in the variance of our adjusted beliefs
still observed, middle: results of setting Var[αX ] = 9960 and Var[G] = 10000 as
seen in Figure 8.4 and provided here for comparison, bottom: Results of setting
Var[αX ] = 2604 and Var[G] = 3000 which shows a very small variance for our
adjusted beliefs.
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Chapter 9

Conclusions and future work

Within this thesis, we have demonstrated research that built upon initial work

by Dye and Buck (2015), who first suggested the use of graph theory to semi-

automate the management and modelling of absolute and relative dating evidence.

We have demonstrated that utilising directed acyclic graphs allows for the efficient

transfer of digital information pertaining to absolute and relative dating evidence

throughout the chronology construction process. In particular, we have demon-

strated how our novel software, PolyChron can reliably manage a large volume of

complex stratigraphic relationships and grouping, in addition to radiocarbon determ-

inations. Thus, enabling the semi-automation of chronology construction.

In this chapter, we provide conclusions about the novel research carried out for

this thesis, before outlining future work that will improve upon the aforementioned

research.

163



CHAPTER 9. CONCLUSIONS AND FUTURE WORK

9.1 Conclusions for novel research

In Chapter 4, we presented the author’s research into the quality and utility of

digital archaeological dating evidence within UK digital repositories (Moody et al.,

2021). We focused on digital archaeological data archived at ADS, since this is the

archive predominately used by both academic and commercial archaeologists in the

UK. What we observed as a result of the data review was insufficient archiving of

the digital dating evidence used and produced during the chronological modelling

process, thus hindering future reuse of such data.

In particular, we found a lack of data pertaining to large and complex stratigraphic

sequences, which we postulated (following discussion with the user community)

was due to such data being held in paper format due to a lack of appropriate

software. This research has been widely disseminated within the archaeological

research community, including at international meetings organised by the SEADDA

(Saving European Archaeology from the Digital Dark Age) project.

In Chapter 7, we reviewed existing software for both managing relative dating

evidence and for Bayesian chronology modelling, demonstrating that in order for

the novel software we used/wrote to be open-source and free to use, it required us

to write new purposed-built software for the automation of chronology construc-

tion. We then highlighted key features of our novel software PolyChron, which are

expanded upon in the supplementary video. We demonstrated the different stages

of building a Bayesian chronological model within PolyChron and discussed the

management of data at each stage.

We demonstrated the (largely) automated saving of data and supplementary inform-

ation pertaining to Bayesian chronological modelling to the user’s machine, which we
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hope would improve archiving of such data in digital repositories when PolyChron is

introduced to the user community. Further, we showcased the use of directed acyclic

graphs for the rapid building of Bayesian chronological models and provide input to

appropriate implementation algorithms with very little user input and effort.

Further, we introduced the modular format of PolyChron, highlighting how this

format will allow us to continually improve and change the software as required by

any advances in the statistical or computational theory utilised.

This chapter also provided case studies showing how we used PolyChron to semi-

automate the construction of multiple plausible chronological models for both small

and large stratigraphic sequences. These case studies demonstrated that DAGs can

be used to manage dating evidence within PolyChron and reliably provide input to

the posterior inference module, thus obtaining posterior estimates for models with

varying features and prior knowledge, such as:

• removed contexts,

• contexts with residual/intrusive samples,

• and a variety of group relationships.

In particular, our case study demonstrating the use of PolyChron to build multiple

Bayesian chronological models for relative dating evidence from Cunliffe and Poole

(1991) exemplified the potential for the user community to use PolyChron to manage

large stratigraphic sequences and all other associated dating evidence.

Chapter 8 built upon this research and showcases a novel use of an existing statistical

methodology called posterior belief assessment, which allowed us to incorporate

multiple plausible chronological models into our analysis and thus obtain posterior

estimates that better represent our prior knowledge and uncertainty for a hypothet-
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ical parameter of interest within the chronological model, taken from an existing

chronological model from excavations at the East Mound of Çatalhöyük.

We found that provided sufficient prior knowledge was available to allow us to obtain

informative prior expectations and variances for a subset of parameters of interest

within a chronological model, PBA provided a suitable methodological framework for

quantifying uncertainty in our Bayesian analysis when we consider multiple chrono-

logical models plausible, for a single parameter of interest. Further work is required,

however, to investigate the use of PBA on multiple parameters of interest.

9.2 Future work

Future planned work in this thesis has been discussed in detail in Chapter 7 Section

7.6 and Chapter 8 Section 8.4.1. Here, we highlight the immediate focus of our

future research.

The primary avenue of future research is the conversion of PolyChron to a format

that could be considered a minimal viable product. The focus with this would be on

error handling, in particular, on providing the user with informative error messages

when problems occur. Further, the graphical user interface for PolyChron will likely

require conversion to an online interface to improve usability.

In addition, we would like to improve the capacity for PolyChron to handle additional

data and information obtained during excavation and post-excavation research. This

includes, but is not limited to:

• supplementary data for radiocarbon determinations (at a minimum providing

the data that satisfies conventions 4-6 for reporting radiocarbon determinations

provided by Millard (2014)),
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• sub-grouping of contexts, as discussed in Chapter 2 Section 2.2,

• additional sources of scientific dating,

• and dates deriving from cultural finds (e.g. pottery and coins).

We seek to ensure that, in addition to allowing users to rapidly semi-automate

the construction of multiple Bayesian chronological models, all required data and

supplementary information used and produced during this process is automatically

saved to the user’s machine. As a result, this would provide all data required for

a complete site archive for a given archaeological site, thus improving the potential

for the reuse of such data.
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Appendix A

A.1 Sampling methods for approximating posterior

distributions

Monte Carlo methods are sampling methods that allow the approximation of integrals

by sampling from an appropriate function, which for large samples will approximate

an integral of interest (Robert and Casella, 1999, Chapter 3). In Bayesian inference,

this requires being able to sample from a function proportional to the posterior.

However, as Ghosh et al. (2006) Chapter 7, Page 215 highlights often in Bayesian

inference, we cannot explicitly state and sample from the exact form of the posterior.

As a result, it is common practice to use a specific class of Monte Carlo meth-

ods called Monte Carlo Markov Chain (MCMC) methods instead. For detailed

theoretical background on Markov chains, for the underlying theory of MCMC meth-

ods, see Robert and Casella (1999) Chapter 4 and Chapters 6-7, respectively.

One such method of MCMC simulation is Gibbs sampling. We demonstrate the
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use numerical integration and Gibbs sampling to approximate two calibrated ages

of interest below for users unfamiliar with Gibbs sampling.

A.2 Bayesian chronology construction with two param-

eters

Suppose we have a sample from each of context 1 and context 2, and these samples

have true calibrated ages θ1 and θ2. Further, the samples from contexts 1 and 2 have

radiocarbon determinations x1±σ1 = 1100±50 and x2±σ = 1000±50, respectively.

Prior information tells us that θ1 is below θ2 in the stratigraphic sequence and,

therefore, θ1 > θ2 on the calibrated scale.

Therefore, our prior is

IC(θ1, θ2) =

1 θ1, θ2 ∈ C

0 otherwise
. (A.1)

such that C = {θ1, θ2|θ1 > θ2} and our posterior becomes

p(θ1, θ2|x1, x2) ∝ IC(θ1, θ2) exp

(
− (x1 − µ(θ1))

2

2(σ2
1 + δ(θ1)2)

)
exp

(
− (x2 − µ(θ2))

2

2(σ2
2 + δ(θ2)2)

)
(A.2)

with normalising constant

∫ ∫
IC(θ1, θ2) exp

(
− (x1 − µ(θ1))

2

2(σ2
1 + δ(θ1)2)

)
exp

(
− (x2 − µ(θ2))

2

2(σ2
2 + δ(θ2)2)

)
dθ1dθ2, (A.3)

which follows directly from Equation 5.6.
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A.2.1 Numerical integration

Calculating the posterior exactly for the two-sample example requires calculating

the integral outlined in Equation A.3. This can be done using numerical integration,

which evaluates the integral for a given function over a set number of points to

approximate the integral. The more points used, the more accurate the approximation

(Gelman et al., 2004, Chapter 10). Using the integrate package within the SciPy

library in Python (The SciPy community, 2023), we calculated our normalising

constant. Following this, obtaining the probability distribution for a single parameter

requires finding the posterior marginal distribution of that parameter. We calculate

this by integrating the joint posterior distribution over all other parameters within

the distribution. For θ1 and θ2 the posterior marginal distributions are equal to

p(θ1|x1) =

∫
p(θ1, θ2|x1, x2)dθ2 (A.4)

p(θ2|x2) =

∫
p(θ1, θ2|x1, x2)dθ1 (A.5)

respectively. Plots of exact posterior marginal distributions p(θ1|x1) and p(θ2|x2)

can be seen in Figure A.1. However, as previously discussed, numerical integration

becomes unreliable for larger dimensions. As a result, Gibbs sampling or other

MCMC sampling methods are used to obtain posterior marginal distributions.

A.2.2 Sampling algorithm for a model with two parameters

Gibbs sampling comprises a sampling scheme in which we sample from the condition

distributions of each parameter. A conditional distribution gives the probability

distribution for a parameter, conditional on observed values of all other parameters
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and data within the model. For θ1 and θ2, these are

p(θ1|θ2, x1) = IC1(θ1) exp

(
− (x1 − µ(θ1))

2

2(σ2
1 + δ(θ1)2)

)
(A.6)

p(θ2|θ1, x2) = IC2(θ2) exp

(
− (x2 − µ(θ2))

2

2(σ2
2 + δ(θ2)2)

)
(A.7)

respectively, such that C1 = {θ1|θ2 < θ1 < 50, 000} and C2 = {θ2|0 < θ2 < θ1}.

By iteratively sampling from the conditional distributions of the parameters for a

large number of iterations, we obtain an approximation to the marginal posterior

distributions for our parameters of interest.

To carry out Gibbs sampling, we need initial values for our parameters. For our

current example this requires initial values θ
(0)
1 and θ

(0)
2 that satisfy the condition

θ1 > θ2. These are usually sampled from the respective likelihood of the param-

eters subject to ordering, which ensures the starting values for each parameter are

plausible given our data. To remove the influence of the initial values on our final

samples, we discard the first b samples, called a burn-in period (see Gelman et al.,

2004, Chapter 11).

Algorithm 1 Gibbs sampler for estimating two true calibrated ages

1: sample θ
(0)
1 and θ

(0)
2

2: select sample size N
3: for k in 1 to N do
4: sample θk1 from p(θ1|θk−1

2 , x1)
5: sample θk2 from p(θ2|θk1 , x2)
6: end for
7: select burn in period b
8: return last b+ 1 to N samples

We obtained approximations to the marginal posteriors for θ1 and θ2 using the

Gibbs sampler described in Algorithm 1. The results of which can be seen in
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Figure A.1, demonstrating that the Gibbs sampler (which is easily extended to large

numbers of parameters unlike numerical integration) very closely estimates the marg-

inal posteriors of θ1 and θ2 (see yellow histograms in Figure A.1) in comparison to

the results from numerical integration (see blue curves in Figure A.1).

A.3 Metropolis Hastings algorithm

Metropolis-Hastings algorithms are also a type of MCMC simulation, and are a

form of rejection sampling which allow us to form a sequence of random samples

which, for each parameter, approximates the marginal posterior. We add to the

sequence for each parameter by sampling values for that parameter from a proposal

distribution (an appropriately chosen probability distribution) and then accepting

or rejecting the sampled value based on a pre-defined acceptance probability (see

Robert and Casella, 1999, Chapter 6 Section 6.2) This process is repeated, creating

a sequence of accepted random samples for each parameter. For a large enough

number of samples, given appropriate starting values for each parameter, this will

provide posterior estimates for our parameters. Metropolis-Hastings algorithms have

many variations, and we now outline the sampling process for the specific algorithm

we use in this research which closely follows the pseudocode outlined in Nicholls and

Jones (2001).

The Metropolis-Hastings algorithm we use, as detailed by Nicholls and Jones (2001),

consists of four update steps, with distinct proposal distributions q1 and q2 for steps

1 and 2 and steps 3 and 4 consist of translating and scaling the previous samples

on the calibrated scale, respectively. Steps 3 and 4 improve the acceptance rate

of the algorithm overall. Let Np denote the minimum number of samples accepted

for a parameter p in the combined set of all parameters θ, α and β, and t denote

193



APPENDIX A.

Figure A.1: Marginal posterior probability density plots for the true calibrated ages
of samples found in contexts 1 and 2, with radiocarbon determinations of 1100± 50
and 1000±50, respectively. The blue curves show exact calculations of the marginal
posterior distributions using numerical integration, and the yellow histograms show
the same marginal posterior densities that were obtained using Gibbs sampling.

the number of samples generated in total. In addition, let lθi,j and uθi,j be the

sets of θ in θ immediately younger and older than θi,j, respectively, according to

IC(θ). Similarly, let lαi,j
and uαj

represent the set of parameters within the model
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that are directly younger and older than αj respectively, according to IG(α,β) and

I(βj ,αj)(θi,j).

Following this notation, the complete algorithm for running the initial steps before

the Metropolis-Hastings algorithm is provided in Algorithm 2. The four sampling

steps for the algorithm itself (following closely the algorithm for models with only

grouping and no stratigraphy introduced by Nicholls and Jones (2001)) are provided

in algorithms 2-6, with acceptance probabilities av and proposal distributions q1 and

q2 are defined.

A.4 Pseudo-code for Metropolis-Hastings algorithm

Algorithm 2 Initial steps for Metropolis-Hastings algorithm
A = max(x) + 10 · max(σ)
P = min(x)− 10 · max(σ)
R = P − A
for 1 < j < J , 1 < i < Nj do

sample θ
(0)
i,j from L(θi,j;xi,j)IC(θ)

end for
for j = 1 do

sample α
(0)
j uniformly at random in [P, max(θ(0)i,j )]

sample β
(0)
j uniformly at random in [min(θ(0)i,j ), max(θ(0)i,j+1, A)]

end for
for j = J do

sample α
(0)
j uniformly at random in [min(θ(0)i,j−1, P ), max(θ(0)i,j )]

sample β
(0)
j uniformly at random in [min(θ(0)i,j ),A]

end for
for 2 < j < J − 1 do

sample α
(0)
j uniformly at random in [min(θ(0)i,j−1, P ), max(θ(0)i,j )]

sample β
(0)
j uniformly at random in [min(θ(0)i,j ), max(θ(0)i,j+1, A)]

end for
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Algorithm 3 Sampling step 1
1: select θi,j uniformly at random in θ

2: q1: sample θ∗i,j uniformly at random in
[
max

(
l
(t−1)
θi,j

, β
(t−1)
j

)
, min

(
u
(t−1)
θi,j

, α
(t−1)
j

)]
3: θ∗ =

{
θ
(t−1)
1,1 , ...θ∗i,j, ...θ

(t−1)
J,Nj

}
4: sample h ∼ U(0, 1)

5: a1 = min
{
1,

p(θ∗,α(t−1) ,β(t−1)|x)
p(θ(t−1),α(t−1),β(t−1)|x)

}
6: if a1 > h then
7: θ(t) = θ∗

8: Ns = Ns + 1
9: else

10: θ(t) = θ(t−1)

11: end if
12: α(t) = α(t−1)

13: β(t) = β(t−1)

14: t = t+ 1

A.5 Convergence checks

When using MCMC algorithms such as Metropolis Hastings, it is important to check

the output for convergence. This can be done manually by plotting sample values for

a given parameter on the vertical axis and iteration number t on the horizontal axis.

If the sample for a parameter has converged to its marginal posterior distribution,

we expect to see a plot showing random movement around a central value (Spade,

2020). An example of a trace plot that shows convergence is provided in Figure A.2.

Given that trace plots have to be manually inspected, we also utilised other conver-

gence checks that could be easily automated within our MCMC algorithm. The first

convergence check we use when running the algorithm is, for every 10, 000 samples

(i.e. every 10, 000th value of t), we calculate the acceptance rate Np/t for all param-

eters to ensure that for all parameters, the acceptance rate is greater than 0.1. This
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Algorithm 4 Sampling step 2
1: select αj or βj uniformly at random in Φ = α ∪ β
2: if αj selected then
3: q2: Sample α∗

j uniformly at random in
[
max

(
l
(t−1)
αj

)
, min

(
u
(t−1)
αj

)]
4: α∗ =

{
α
(t−1)
1 , ...α∗

j , ...α
(t−1)
J

}
5: Sample h ∼ U(0, 1)

6: a2 = min
{
1,

p(θ(t−1),α∗ ,β(t−1)|x)
p(θ(t−1),α(t−1),β(t−1)|x)

}
7: if a2 > h then
8: α(t) = α∗

9: Ns = Ns + 1
10: else
11: α(t) = α(t−1)

12: end if
13: end if
14: if βj selected then
15: q2: sample β∗

j uniformly at random in
[
max

(
l
(t−1)
βj

)
, min

(
u
(t−1)
βj

)]
16: β∗ =

{
β
(t−1)
1 , ...β∗

j , ...β
(t−1)
J

}
17: sample h ∼ U(0, 1) a2 = min

{
1,

p(θ(t−1),α(t−1) ,β∗|x)
p(θ(t−1),α(t−1),β(t−1)|x)

}
18: if a1 > h then
19: β(t) = β∗

20: Ns = Ns + 1
21: else
22: β(t) = β(t−1)

23: end if
24: end if
25: θ(t) = θ(t−1)

26: t = t+ 1
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Algorithm 5 Sampling step 3
1: sample s uniformly at random in [0, max(σ)]
2: α∗ = {α + s for all α ∈ α(t−1)}
3: β∗ = {β + s for all β ∈ β(t−1)}
4: θ∗ = {θ + s for all θ ∈ θ(t−1)}
5: sample h ∼ U(0, 1)

6: a3 = min
{
1,

p(θ∗,α∗ ,β∗|x)
p(θ(t−1),α(t−1),β(t−1)|x)

}
7: if a3 > h then
8: θ(t) = θ∗

9: α(t) = α∗

10: β(t) = β∗

11: Ns = Ns + 1
12: else
13: θ(t) = θ(t−1)

14: α(t) = α(t−1)

15: β(t) = β(t−1)

16: end if
17: t = t+ 1

threshold is slightly lower than the recommended threshold of 0.234 (Bédard, 2008).

However, for models with many parameters, the acceptance rate lowers, and manual

testing (checking trace plots) showed an acceptance rate of 0.1 to be sufficient for

models of this size. If the acceptance rate is lower than 0.1, the code halts the

MCMC algorithm and restarts the algorithm with new initial values for the param-

eters. Again, testing showed this to improve the acceptance rate effectively.

Once 50, 000 accepted samples have been obtained for all parameters, we re-run the

MCMC algorithm again for the same model and use the two sequences of random

samples obtained for each parameter to calculate the Gelman-Rubin convergence

diagnostic, accepting a value lower than 1.1 as an indication of convergence which is

the threshold defined in Gelman and Rubin (1992). (see Gelman and Rubin, 1992,

Section 2.2 specifically for details of how to calculate the diagnostic value).
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Algorithm 6 Sampling step 4
1: sample ρ uniformly at random in [2/3, 3/2]
2: α∗ = {ρα− (ρ− 1)av(α(t−1),β(t−1),θ(t−1)) for all α ∈ α(t−1)}
3: β∗ = {ρβ − (ρ− 1)av(α(t−1),β(t−1),θ(t−1)) for all β ∈ β(t−1)}
4: θ∗ = {ρθ − (ρ− 1)av(α(t−1),β(t−1),θ(t−1)) for all θ ∈ θ(t−1)}
5: sample h ∼ U(0, 1)

6: a4 = min
{
1,

L(θ∗;x)

L(θ(t−1);x)
× R− (max(α∗)− min(β∗))

R− ρ(max(α(t−1))− min(β(t−1))
× 1

ρ

}
7: if a4 > h then
8: θ(t) = θ∗

9: α(t) = α∗

10: β(t) = β∗

11: Ns = Ns + 1
12: else
13: θ(t) = θ(t−1)

14: α(t) = α(t−1)

15: β(t) = β(t−1)

16: Ns = Ns + 1
17: end if
18: t = t+ 1
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Figure A.2: An example of a trace plot for the sample of an arbitrary parameter
obtained using a Metropolis-Hastings algorithm, which shows convergence.
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Appendix B

B.1 Link to PolyChron video

The following link provides a demonstration of the use of PolyChron version 1.0, to

aid in the examination of this thesis.

https://youtu.be/2IrcGBix6I8

B.2 Required format of input files

PolyChron requires four files as input as a minimum to allow users to construct a

chronological model. We outline the file structure for each file below:
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above below
814 758
1235 814
358 1235
813 358
1210 813
358 493
923 925
358 923
358 1168
758
925
493
1168

Table B.1: Example of stratigraphic relationships input file. Contexts in the left
column are stratigraphically above the contexts in right.

context date error
758 3275 75
814 3270 80
1235 3400 75
493 3190 75
925 3420 65
923 3435 60
1168 3160 70
358 3340 85
813 3270 75
1210 3200 70

Table B.2: Example of radiocarbon determination input file. Column 1 contains
context labels, column 2 contains radiocarbon determination estimates and column
3 contains the corresponding laboratory error for each estimate.
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context group
758 1
814 1
1235 1
493 1
925 1
923 1
1168 1
358 2
813 2
1210 2

Table B.3: Example of context grouping input file. Column 1 contains context
labels and column 2 contains each contexts corresponding group.

above below
2 1

Table B.4: Example of group ordering input file. Column 1 contains groups that
are older than the corresponding group in context 2.

B.3 Simulating radiocarbon determinations

To simulate radiocarbon determinations for n contexts within a chronological model,

we utilised the following algorithm:

Algorithm 7 Initial steps for Metropolis-Hastings algorithm
sample n calibrated ages uniformly at random between A and P
sort the n calibrated ages into descending order
sort the n contexts using a topological sorting algorithm

for each calibrated age in ascending order do
Back-calibrate each calibrated age to the radiocarbon scale to obtain a

simulated radiocarbon estimate
Add an error of 50 BP

end for
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B.4 Katz centrality and variants of this measure

Katz centrality is a measure used in graph theory to quantify the importance of the

nodes within a mathematical graph. Centrality measures are determined by both

the number of nodes a given node is connected to and the importance of those nodes.

The Katz centrality measure can be expressed using the following formula:

C(i) = α
∑

(A(i, j)C(j)) + β

such that:

• C(i) is the Katz centrality score for node i,

• A(i, j) is the element in the adjacency matrix of the graph. It takes the value

of 1 if there is an edge between nodes i and j and 0 otherwise,

• C(j) is the Katz centrality score for node j, which is a neighbour of node i.

• α is called the attenuation factor and it reduces the weight of the centrality

the further away we are in the graph from the node of interest

• β is a constant term which ensures that nodes in a directed graph with no

incoming edges are not given a score of 0.

This formula is iteratively applied, with all nodes being given an initial centrality

score of 1 and will eventually converge to the centrality score for each node in the

network. The centrality scores reflect the relative importance of nodes, with higher

scores indicating higher importance within the graph.
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B.5 Metrics for measuring overlap of two probabil-

ity distributions

Below are four measures for measuring the difference between two distributions p

and q for parameter θ.

Kullback–Leibler divergence:

∫
p(θ) log

(
p(θ)

q(θ)

)
dθ

Bhattacharyya distance: ∫ √(
p(θ)q(θ)dθ

Hellinger distance:
1√
2

√∫ (√
p(θ)−

√
q(θ)

)2
dθ

Overlapping metric proposed by Pastore and Calcagnì (2019):

∫
min(p(θ), q(θ))dθ
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