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Abstract

The policing approach known as Problem oriented policing (POP) was outlined

by Herman Goldstein in 1979. Despite POP being shown as an effective method

to reduce crime it is difficult to implement because of the high analytical burden

that accompanies it. This analytical burden is centred on understanding the

mechanism by which a crime took place. One of the factors that contributes

to this high burden is that a lot of the required information is stored in free-

text data, which has traditionally not been in a format suitable for aggregate

analysis. However, advances in machine learning, in particular natural language

processing, are lowering the barriers for extracting information from free-text

data.

This thesis explores the potential for pre-trained language models (PTMs) to

efficiently unlock the information in police crime free-text data. PTMs are

a new class of machine learning model that are ‘pre-trained’ to recognise the

meaning of language. This allows the PTM to interrogate large quantities of

free-text data. Thanks to this pre-training, PTMs can be adapted to specific

natural language processing tasks with much less effort. Efficiently unlocking

the information in the police free-text crime data should reduce the analytical

burden for POP. In turn, the lower analytical burden should facilitate the wider

adoption of POP. The thesis concludes that the evidence suggests PTMs are

potentially an efficient method for extracting useful information from police

free text data.
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Chapter 1

Introduction

1.1 Motivation

This research is located at the intersection of a well-established crime reduction

methodology, problem-oriented policing (POP), and a growing field in artificial

intelligence, natural language processing (NLP), which is increasingly making

it easier to draw information from unstructured data.

POP is a method of policing first introduced in 1979 by Herman Goldstein

(Goldstein, 1979) . POP replaces the traditional policing model, which focusses

on responding to single incidents as they occur. By contrast, POP seeks to

prevent problems ( problems are defined below but are essentially any issue

the police are expected to deal with) from reoccurring by analysing how they

occurred in the first place and then intervening in the generation process. In

this regard, an essential element for conducting POP is understanding the

conditions that allowed the problem to occur. Crimes are a subset of the

problems that police forces face, albeit a large and important one. POP’s focus

is on problems, not just crimes. However, the POP terminology sometimes

focusses on crimes only. Where the terminology does so, this is normally

without loss of generality of the effect of POP on all problems encountered

by the police.

POP seeks to tackle problems, which it defines as a “A cluster of similar

incidents, whether crimes or acts of disorder, that the police are expected to

3



1.1. Motivation Chapter 1. Introduction

handle” (Scott, Eck, Johannes, & Goldstein, 2016). Of immediate interest from

this definition is that problems should have similar incidents, which is related

not just to the outcomes but also to the processes and external factors that

occur leading up to, during and after the incident. As an example if a problem

is burglaries in an area, then an incident would be the individual burglaries.

Most of the analytical effort required in POP is expended in scanning for and

then grouping similar crimes, followed by analysing incidents to identify similar

factors influencing the incident occurrence.

This intersection between POP and NLP is important. Although POP works

(Hinkle, Weisburd, Telep, & Petersen, 2020), it is necessary, yet seemingly

difficult, to follow the POP framework correctly. Thus, although POP has

shown benefits, it has not realised its full potential (Sidebottom, Bullock,

et al., 2020). The impediment to POP that this body of research aims to

reduce is the analytical burden necessary to understand the specificity of the

problem or problems at hand. POP works best by attacking the mechanisms

of the problems so that the opportunities to commit the crime (or other

non-criminal activity) are significantly reduced (Clarke & Eck, 2003).This is

achieved by understanding the causes and mechanism of the problems and

then finding ameliorating strategies. Understanding problems so that they can

be attacked and grouping problems so that solutions can be used efficiently are

key components of POP. However, studies have shown that the analytical power

and data required to do this efficiently are difficult for police forces to muster

and coordinate (Sidebottom, Kirby, et al., 2020). This research will show how

NLP models can efficiently extract the required information to enable POP

interventions.

Although police forces have a mandate to record all crime (Home Office, 2020),

the bulk of the recorded information about crime is contained in textual data,

such as in police generated crime notes, witness statements or forensic reports.

Accessing this information is largely completed manually (Goldstein, 1990),

and as such, it is often a long and laborious task. Given the resource pressures,

the work must be completed selectively (Rogerson, 2016). Unlocking access to

this information would enable analysts and officers practical access to a much

wider source of information with which to do their job. Two sources of text

data are introduced next as potential sources of information.

MO data are relatively short sections of text of around three to eleven sentences

that describe what is initially known about the crime. The text is generally

4



Chapter 1. Introduction 1.1. Motivation

limited to the knowledge that can be gathered by the initial responding officers

from their provisional review of the crime scene and any victim or witness

statements. Further investigations, for instance by detectives or forensics, are

held in the case reports and are not detailed in the MO data. As such, they

offer a concise but limited view of the crime. Alongside the MO data, more

typical crime data is recorded in a structured way, with fields such as time,

date, location, crime classification and victim characteristics often included.

These more structured data have been exploited to a greater extent than

the unstructured MO data. See Braga, Papachristos, and Hureau (2014),

Johnson (2016), Ratcliffe and McCullagh (1998), Weisel (2016) for a selection

of methods.

A second source used in this thesis is police incident logs. These are usually

generated by a call operator who responds to emergency and nonemergency

calls from the public. Typically, they record the details of an incident as it is in

progress. More recently, incident logs have also started to encompass reports

from the public that have been logged electronically, through email or online

forms. Police incident logs differ from MO data in two important respects.

First, they are not generally edited, in that they provide multiple perspectives

over time rather than a single post-hoc view. Second, they cover both crime

and non-crime incidents, so they have a much broader reach than MO data.

The two data types are discussed more extensively in Chapter 8.

Recent advances in NLP (NLP is a sub-set of Machine Learning (ML) ), where

the basis of models has moved from a more logical and rules-based approach to

a more probabilistic approach, have allowed more powerful models to be applied

to free-text problems (Kumar, 2011). Improvements in processing power and

the availability of data have also pushed the boundaries of the state-of-the-art

(SOTA) models. The improvements in NLP have led to the development of

suites of generic open-source tools (Benoit et al., 2018; Loper & Bird, 2002;

Manning et al., 2014). These toolkits are designed so that they can be reused

on different sets of natural language texts to solve similar problems, such as

classification or question and answering, without the need to build models from

scratch each time a problem is encountered.

Pre-trained language models (PTMs) are an import class of these generic NLP

tools. PTMs are different to the normal classes of models because they are

built in two parts. The first part of the training is relatively generic and trains

the model to “understand” language. The second stage trains the model on a

5



1.2. Research Questions Chapter 1. Introduction

specific task. That is PTMs are firstly trained to understand a language eg.

English before they are fine-tuned on a specific task e.g. classifying burglary

MOs. PTMs will be explained more fully in the NLP chapter.

This research focuses on investigating the use of PTMs with police free text

data, in particular classifying short police texts to identify intra-crime variation.

While the PTMs have been found to work well in other domains, they have yet

to be tested on free text generated by the police on problems that are important

to the police. Can these PTMs be leveraged by the police and therefore taken

advantage of for their lower barriers to use? That is the fundamental question

of this thesis.

1.2 Research Questions

The research question and its supporting objectives are stated here with a brief

explanation to guide the reader through the next few sections. The research

questions are examined more thoroughly in relation to the literature outlined

in the rest of the document in Chapter 7. The main research question is as

follows:

Can PTMs be used efficiently to extract information from police free-text data,

and if so what practical applications for problem-oriented policing does this

approach have?

In this thesis extracting information will focus on automatically classifying

texts to understand if an event did or did not happen. For example Burglary

MO texts will be classified to understand if the burglar used force to enter a

property or not.

The research supporting objectives are:

1. Identify the extent of NLP usage with police data. This is largely

conducted in the literature survey, which is the focus of Chapter 6.

2. Evaluate how effective PTMs are with MO data. PTMs are

formally introduced and explained in Chapter 5. MO data is introduced

in Chapter 8. Study 1 investigates the use of PTMs to classify MO text

data.
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3. Evaluate how effective PTMs are with Police Incident data. As

mentioned above, police incident data is another source of information

on problems the police face. Using PTMs to classify police incident logs

is investigated in Study 2.

4. Evaluate how effective Active Learning is with police data.

Active learning is a method to reduce the amount of data that PTMs

need to learn. It has been found to work with other data types, but its

effectiveness with police data is unknown. Active learning is introduced

in Chapter 4 and studied in study 1.

5. Identify which parts of the POP process might be best

supported by the use of PTMs. The POP process is explained fully

in Chapter 3. It is likely that different parts of the process will find

differing uses and utility for PTMs. Lessons for POP are drawn from

both studies and outlined in Part 3.

6. Identify implementation barriers for PTMs. Any new process is

likely to have implementation barriers, which are important to identify

so that they can be minimised. Discussed in Part 3.

1.3 Thesis Structure

This thesis has three parts. Part 1 focusses on the introduction and background

to the research. Part 2 presents studies exploring the use of NLP with police free

text data. Part 3 draws on the research of Part 2 and explores the implications

for POP.

Part 1 begins with an introduction, which sets out the main ideas of the

research. The next chapters then explain the theoretical underpinnings of

POP, namely routine activity theory and situational crime theory. POP is

then discussed in more detail, identifying key problems with widespread usage.

After POP is explained, the focus switches to the more technical aspects of the

research. First, machine learning (ML) is introduced. Next, ML with free-text

data, namely NLP, is explored including the theory and use behind PTMs.

The penultimate chapter draws these POP and NLP together by conducting a

literature survey of the use of NLP with police generated free-text data.

Part 2 focuses on the two main study areas, which are delineated by the type

7
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of police free text data used. Both studies focus on the utility of PTMs with

police generated free text. Study 1 uses MO data. Study 2 uses police incident

log data. Study 1 is split into three parts. The first part, study 1a, investigates

the classification of MO texts in one police force area (known as PF1). Study

1b investigates the efficiency of active learning, using the data and models from

study 1a. Study 1c replicates and extends study 1a using data from a separate

police force (PF2). Study 2 only has one part and is focussed on classifying

police incident logs in a single police force (PF2). There is a table at the end

of Chapter 7 (7.1 that captures this detail).

The final section of the thesis, Part 3, summarises the lessons and implications

from the studies in Part 2 in light of the conclusions from Part 1. It does

so in two chapters. The first chapter discusses the implication of NLP usage

for POP, particularly how and where PTMs might be used to alleviate the

analytical burden. The second chapter takes a broader look at potential future

research directions of PTMs with police free text data.
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Chapter 2

Core Related Theoretical

Frameworks

This section introduces some especially relevant theories form the wider

research field of crime science that underpin the general approach of POP.

The routine activity theory (Cohen & Felson, 1979)and then situational crime

prevention (Clarke, 1997) are explored individually to help build the concepts

on which POP is based.

2.1 Routine Activity Theory

First introduced by Cohen and Felson in 1979, Routine Activity Theory was

proposed as a theory to help explain the increase in crime after WW2. The

change that the theory brought about was a shift from thinking about crime

purely as a social process to seeing it more as a socio-physical world (Felson,

2016). The focus was on the crime event itself and what conditions were

needed for the event to be created. This focus on the crime event has obvious

parallels with the focus on the problem in POP, and indeed, the theory has

been extended since its first inception to move beyond crime.

In their original article, (Cohen & Felson, 1979), Felson and Cohen sought to

explain the crime event through the convergence of three principle physical

aspects, that is 1) a likely offender, 2) a suitable target and 3) the absence of a
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Figure 2.1: Eck’s Crime Triangle, reproduced from Eck, 2003

capable guardian. These three elements, modified and extended by (Eck, 2003)

to form the problem triangle in Figure 2.1, demonstrate the close ties between

the two bodies of work. For instance, if a crime or problem opportunity is

generated through people’s movements and the types of activities they conduct,

then by extension, modifying these activities should also affect the prevalence

of crime opportunities.

Therefore, from a POP standpoint, thanks to routine activities theory, there are

now at least three broad opportunities to prevent crime. That is, by adapting

one of those three physical aspects outlined above, the problem triangle can be

broken, and the problem opportunity is lost. This contrasts with the traditional

model of policing, which concentrates on a narrow aspect of the offender,

namely dissuading him or her through a deterrent effect (police response is

likely to catch you) or a removal effect (locking them up prevents their ability

to commit crime outside of confinement).

The problem triangle in Figure 2.1, with its added outer layer, suggests

three broad means with which it can be broken to eradicate the opportunity.

The handler has an effect on the potential offender – perhaps their presence

physically or emotionally makes the offender less likely to commit an untoward

act. The guardian protects the target from would be offenders, and this can

vary from a person actively guarding their luggage to unintentional increased

footfall in residential areas reducing the opportunity for burglary (Halford,
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Dixon, Farrell, Malleson, & Tilley, 2020). Place managers govern how a place

functions (Scott et al., 2016). They may be bar managers, shop designers or

teachers. They play an important part in the opportunity structures that arise

through the way business is conducted and how the physical environment is

set out. Identifying problems and influencing this group of people to change

their environment is a good example of a strategy originating from the POP

framework.

2.2 Situational Crime Prevention

Situation crime prevention (SCP) rests on this claim “Reducing Opportunities

for specific forms of crime will reduce the overall amounts of crime”(Clarke,

2016). Like POP, this theory focusses on the target and the place of crime –

“It seeks to forestall the occurrence of crime, rather than to detect and sanction

offenders”(Clarke, 1997). focussing on what can be changed now to have an

almost immediate effect on the cause of crimes (Clarke, 1995). The principles

for situational crime prevention are very similar to POP, as explored below:

1. Focus on specific categories of crime. Situational crime prevention

works best by only attempting to tackle one type of crime at a time,

calling for specificity in defining how these crimes are conducted and

how the opportunities have been generated (Felson & Clarke, 1998).If

the categories are grouped too widely in the first instance, then common

patterns will not be found, and common solutions will be unlikely to

work.

2. Understand how the crime is committed. The focus is on how,

not why the crimes were committed – by understanding how they were

committed, the mechanism can be interrupted, and the crime can be

prevented. Again, any information that is related to how a crime is

committed will be useful in its prevention. It is important to note that

while some of this information may be found in police reports, they are

unlikely to reflect the full range of actions before and after the criminal

act.

3. Use an Action Research model. “Action research is an iterative

process involving researchers and practitioners acting together on
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a particular cycle of activities, including problem diagnosis, action

intervention, and reflective learning.” (Avison, Lau, Myers, & Nielsen,

1999). To most practitioners, this probably means doing what you

normally do, observing the problem, orientating to the problem, deciding

what to do and acting on that information, correcting as one proceeds by

continually cycling through these stages (the OODA loop as developed

by John Boyyd (Gray, 1999)). However, it may be useful to highlight the

importance of both deeply understanding a problem and acting on that

information to combat the crime, rather than using the two strands in

isolation.

4. Consider a variety of solutions. Be open to a whole host of solutions

in order to bring around the desired effect. A selection (twenty-five)

of generic solutions have been posited as a good starter from which to

initially pick and then adapt solutions to implement. Although too many

to list here the five groupings of situational crime prevention give a flavour

of the spread of solutions that are available. The groupings are as follows:

(a) Increase the effort. Make crimes harder to commit such as an

additional layer of security to overcome e.g. a steering lock on a car.

(b) Increase the risks. Generally increase the chance of being caught,

such as through increased surveillance.

(c) Reduce the rewards. Make the crime less attractive. For

example, by making stolen goods harder to sell, their value is

decreased, and the rewards reduced.

(d) Reduce the provocation. Lessen flash points. An example might

be to make bars less crowded to reduced unwelcome interactions.

(e) Remove excuses. Provide obvious information so that ignorance

can not be used as an excuse. Erect signs to remind potential

offenders of rules in specific areas.

Situational crime prevention has been criticised on a number of levels for being

a superficial technique for reducing crime (Wortley, 2010). Some of the more

relevant critiques to this research include:

1. Crime is not reduced only displaced. Some critics, especially

those who believe that the amount of crime is largely driven by people’s
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propensity to commit crime and not by situational factors, believe that

preventing crime in one area will result in a similar increase in crime in

another area – that is, the crime will be displaced rather than prevented.

However, a systematic review into this issue (Guerette & Bowers, 2009)

found that while there are some instances of crime moving to other

areas after an intervention, the net benefit was still a reduction in

crime. However, they do indicate that controlling in different areas

for displacement is difficult, as the displacement may manifest itself

temporally, spatially or even to different crimes altogether.Guerette and

Bowers (2009) also do not seem to control for publication bias, which may

have a detrimental effect on their results.

2. SCP doesn’t work for expressive crimes. Although critics accept

that high-volume acquisitive crimes can be reduced, they believe that

crimes that are more expressive or are irrational will not be as easily

affected by situational crime prevention techniques. Expressive crimes

include domestic violence, sexual offences or those committed in the

heat of the moment. However, within the toolkit of SCP, there

are efforts to reduce provocation that may prevent manifestation of

expressive crime conditions, and there are examples of situational crime

prevention projects hosted on the virtual problem orientated policing

centre. However, given that (Guerette & Bowers, 2009) do not explicitly

mention expressive crimes for the studies they used for the systematic

review, there is perhaps a practical deficit, if not a theoretical one.

2.3 Conclusion

This section has demonstrated that crimes can be prevented from occurring

by disrupting the process that create conditions for that crime. The processes

centre around the target of the crime, the place that the target is in and the

offender. Disrupting the conditions of any these three factors can be enough

to prevent the occurrence of a crime, in much the same way as preventing

the coming together of the fire triangle elements prevents a fire. Situational

crime prevention has been developed to exploit this principal and by doing

so has posited five main intervention types that can be used to reduce crime.

However, for these interventions to work, they need to be aligned to the crime

and its context. The next chapter builds on these theories by introducing POP
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in more detail.

14



Chapter 3

Problem Oriented Policing

As described previously, POP is a policing model introduced in 1979 to

ameliorate some of the shortcomings stemming from the traditional policing

model of response. The general aim is to tackle the factors that allow a crime

opportunity to occur so that it can no longer occur in the future. In this way,

the overall aim is crime (or problem) prevention. The next section explains in

more detail the core principles of POP. This is followed by a thorough exposition

of SARA, an analytical framework for the conduct of POP, to demonstrate how

it is conducted in practice. Finally, there is an evaluation of the utility of POP,

before assessing POPs weaknesses.

3.1 Overview of POP

Problem-oriented policing was introduced by Herman Goldstein in 1979

(Goldstein, 1979) as a new policing model to replace the traditional response

policing style. Since its introduction, POP has been widely utilised as a method

to reduce problems faced by police services across the world (Fairness and

Effectiveness in Policing: The Evidence, 2004; Goldstein, 2018).The central

thrust of POP is to focus on the ends of police activity (e.g., reductions in harm

to the public) rather than the means (e.g., number of convictions). Recognising

that the police have a wide variety of objectives to deal with, the focus should be

on the resolution of these problems, not on the means or the ways of addressing

these problems.
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Figure 3.1: A schematic for POP. Reproduced from Eck and Spelman (1987)

The mechanism for this prevention is demonstrated in the schematic at Figure

3.1. The incidents are generated from an underlying causes; however, in the

traditional response model, the incidents are responded to individually, and,

typically, due to resource constraints, not all incidents are known about or

can be resolved. The POP model takes the information from these responses

and the similar incidents and aims to tackle the underlying causes so that the

opportunity to create the problem no longer exists (Eck & Spelman, 1987). In

broad strokes, this is how POP aims to reduce harms, by using knowledge of

similar incidents and then altering the crime triangle so that the conditions are

no longer present for the problem to occur.

Police business is not just about crime, it is about all problems that the police

are responsible for or are thought to be responsible for. Problems can be

defined as “Problems are a cluster of harmful incidents that the public expects

the police to handle” (Scott et al., 2016). However, these problems should

have a common theme, so that they can be grouped and addressed together.

Although most of the focus may be on crimes, POP does not exclusively focus

on crime and recognises that the police remit is much wider than crime alone.

The next few sections introduce and explain some of the core principles

surrounding POP. When considering these principles, it is important to keep in

mind that “POP is a framework, or methodology, for addressing police problems

and not an intervention strategy per se” (Scott & Clarke, 2020). That is, not
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all of these principles are directly required for the solving of “a” problem, but

they are required to build a culture of problem solving in general.

3.1.1 Focus on Harm Reduction

POP places more emphasis on preventative responses rather than remedial

ones, enforcing the age-old heuristic that “prevention is better than cure”.

Remedial action – acts of immediate response, investigations and arrests – is the

staple diet for the traditional model of policing, and POP seeks to move away

from these defaults and to act before the crime or problem arises. This does

not mean that these elements do not have their place; rather, the emphasis is

on rebalancing the focus between remedial and preventative action (Goldstein,

1990).

This focus on harm prevention switches the measure of effectiveness of the

police, moving away from more managerial approaches of clear-up rates and

arrest statistics to a more considered view of the police’s effectiveness around

reducing problems (Goldstein, 1990). Eck and Spelman (1987) suggest that

there are several ways that effectiveness in POP can be measured, and that

it does not rest solely on problem elimination, but also on the reduction of

similar incidents, the seriousness of those incidents and how they are responded

to. The focus is squarely on the incidents and the characteristics of the future

occurrences, such as frequency and severity. The focus is not on the more

traditional metrics of police success, such as arrests or response times.

The focus of POP is not on catching criminals but preventing problems. If

problem opportunities are not presented, incidents cannot occur in the first

place, and criminals cannot cause harm to the population to be protected,

which situational crime theory shows to be a real possibility that must be

explored. However, as Figure 3.1 shows, grouping of incidents with the same

underlying cause is necessary for the efficiency of reducing many incidents from

a single intervention. This is the focus of the next principle.
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3.1.2 Specificity! Specificity! My Kingdom for some

specificity! 1

As shown above, the central idea behind POP is to reduce incidents of harm by

disrupting the underlying causes of the problem. This disruption is achieved

through the grouping of individual incidents into problems, understanding the

similar mechanisms that cause the problems and disrupting these mechanisms

so that the problem can no longer occur.

Identifying these groups or clusters of problems can be difficult and as Scott

and Kirby (2012) highlight, there is a tension between breadth and depth of

knowledge of problems in organisations. In short, the higher one goes up in the

organisational hierarchy, the wider one can see problem occurrences. Further,

one gains greater breadth of the situation, and therefore the efficiency of POP

can increase as more single incidents can be grouped. However, this increased

breadth comes at the expense of the detailed knowledge of each problem that

can be found lower in the hierarchical order, allowing each group of problems

to enjoy greater intrasimilarity. This tension between breadth and depth of

problem knowledge can inhibit the optimal implementation of preventative

measures (Maguire, Uchida, & Hassell, 2015).

Once the incidents have been grouped, it is necessary to understand them

separately. This examination is not necessarily about individual elements, but

about the similarities of mechanisms between the individual acts that make up

the problem set. The focus is more on the “why” than the “what” or “who” of

traditional policing. Why did this problem arise? How did the circumstances

around each problem set the conditions for the harmful act to occur? What

are the common factors between problems? Answering these questions with

fine-grained analysis leads to a deeper understanding of the problem itself.

Understanding the steps and conditions that lead to the problem means that

points can be identified and tackled to prevent the conditions for the harmful

act being realised, reflecting routine activity theory and the principles behind

situational crime prevention (Felson & Clarke, 1998).

As Felson and Clarke (1998) highlight, “crime opportunities are highly specific”,

that is, they should be understood and grouped by how they have been

committed and not necessarily by what the outcome of the problem was. The

1With apologies to Shakespeare’s Richard III.
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key element for POP, therefore, is specificity in fitting a solution to a well-

developed problem. Specificity is both the Achilles heel and the Herculean

strength (apologies to readers for the mixing of ancient metaphors) of POP.

So, although POP is effective, it is also difficult to achieve. Where effort in

specifying the problem falls short, this directly influences the effectiveness of

the solution and hence the final result (Maguire et al., 2015). Therefore, any

effort to make the analysis of a problem easier, more effective or more efficient

will have a disproportionate effect in the success of POP.

3.1.3 Tailored Responses

The microscopic evaluation of the problem allows a new approach to be taken

for each problem. Each problem will undoubtedly have its own set of conditions

and unique factors, and by understanding these a new and problem specific

strategy can be developed to tackle that particular problem. This is the main

thrust of the approach. Pick a solution that is effective for the problem set at

hand, which is achieved through understanding the problem thoroughly.

Set against a back drop of the traditional policing model of responding to

crime incidents, POP sought to expand the repertoire of police responses by

encouraging the use of tools other than the criminal justice system. Criminal

justice systems can be slow and inefficient, and may not do a good job of

ameliorating the harm that has occurred. With a focus on prevention it is

necessary to look outside the traditional toolbox of police responses to find a

new set of tools. This new set of tools will allow the leverage of other capabilities

in the public and private sectors that can be utilised to change the conditions

that allow problems to flourish. Reflecting on POP in 2018, Goldstein (2018),

reflects on the success and “enormous potential” of the use of non-police entities

to reduce crime by using their powers or resources.

Formulating tailored responses is resource intensive as the problems need to

be extensively detailed and a fitting solution found. In order to make the

formulation of the response less onerous there is a heavy emphasis on reporting

and logging results so that inspiration, though not exact solutions, can be used

to formulate tailored responses.
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3.1.4 Evaluate the results

With a rigorous focus on reducing harm, it is important that POP has within

its framework an emphasis on evaluating how well it is achieving its stated

aim. There needs to be an understanding of which POP implementations have

worked, which have not and why. This helps not only to ensure that the actions

are having the desired consequences, but also to make the implementation of the

process more efficient, by building a body of knowledge that can be used by all

practitioners. Proving that something has not happened, a counter-factual,

is always more difficult than demonstrating an occurrence. Additionally,

attributing that non-occurrence to a specific intervention can be even harder.

That is why the evidence for the utility (positive or negative) of POP must

be actively sought. The measurement must begin at the outset and may even

need to encompass an area much wider than the target zone. Measurement

will be difficult to achieve in retrospect alone. Identifying weak signals in

noisy environments is difficult, so the use of analytical techniques that are not

routinely found in the police organisations is likely to be necessary, thus adding

to the analytical burden (Scott et al., 2016).

In addition to understanding internally whether a POP intervention has been

effective, it is also necessary to publicise the results. As shown above, the

introduction of POP is a change to the norm. It is not the de facto style, and it

is not what most officers in police forces envisioned they would be doing when

they joined the organisation. Reporting the results is crucial to building an

understanding of whether POP works, and therefore is a worthwhile activity

for the police to engage in.

The results reported will help to build a body of knowledge about what works.

Given the focus on specificity of problems, solutions are unlikely to be ported

wholesale from one area to the next. However, building a body of knowledge is

important for two reasons. First, it will allow some of the analytical burden for

each round of problem solving to be completed more quickly, as drawing on the

experiences of others will allow adaptations of plans or a swifter understanding

of mechanisms that can then be adapted. Second, the body of knowledge will

act as a beacon for the effectiveness of POP and a fulcrum for the turning of

the tide of institutional resistance.
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3.1.5 POP Summary

Returning to Figure 3.1 the essence of POP is about changing the underlying

conditions that allow crimes or problems to flourish. These changes are brought

about by applying analytical power to first group problems and then analyse

their structure to find a suitably specific response. Once this response has been

implemented, there is further need to document the effect and report the results

to contribute to a wider body of knowledge to develop to the understanding

and efficient conduct of POP. This section was about what POP is. The next

section will take a deeper look at how POP is conducted.

3.2 SARA - An Analytical Framework for POP

Although POP can be implemented by police forces in several ways Scott

and Kirby (2012) suggests there are two broad implementations of POP in

a police force: either having all officers conduct POP, the generalist approach,

or building specific capability and units, using a more specialist approach. No

matter how POP is implemented, the broad analytical process follows tends

to be centred on what is known as the SARA process (Sidebottom, Bullock,

et al., 2020).

SARA stands for Scan-Analyse-Respond-Assess and the cycle is shown in

Figure 3.2. Clearly, the type of implementation for POP depends on the depth

to which the SARA process can be used. However, there is a general flexibility

within the model to account for those differences. The POP guide “Become

a problem-solving crime analyst in 55 steps” (Clarke & Eck, 2003) is a key

document for the implementation of POP in the UK, and sets out how the

SARA process should be followed. What follows is a brief look at the four

stages of SARA, as described in “55 Steps” and how they interact to form the

lifecycle of a problem solving process.

3.2.1 Scan For Problems

The first stage in the process is to scan for a problem, and here it is worth

remembering exactly what a problem is. In his book Goldstein (1990) Goldstein
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Figure 3.2: The SARA problem-solving process. Source Clarke and Eck (2003)

defines a problem as:

1. A cluster of similar, related, or recurring incidents rather than a single

incident.

2. A substantive community concern.

3. A unit of police business.

This definition is quite broad, but it does allow for an understanding to be

formed about what one should be looking for when searching for problems.

Particularly, the problem must be reoccurring and have a negative effect on the

community. The type of POP implementation in an organisation (generalist

or specialist) depends on what scanning horizons will be used. If POP is

disaggregated throughout the force (generalist), many sensors will pick up

on smaller collections of problems but in finer detail. Where POP is more

centralised (specialist), the view of the POP scan will be much wider, but will

suffer from a lack of detail, because either the information required is recorded

but is hard to access, or it is simply in the heads of the officers closest to the

problem (Goldstein, 1990). Such trade-offs are inevitable in large organisations,

but being able to either widen a scanning horizon or detail more information

about each problem is likely to move closer to lessening the severity of the

trade-off required.
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The scan in “55 steps” is focussed heavily on defining the problems once they

have been found in the scan phase - but this presumes that the problems have

already be identified. If the problem is a unit of police business then the

sub-element has to be a single incident (as seen in Figure 3.1). The scanning

phase identifies these incidents and characterises them to group them into a

single problem. Then, the job of more clearly defining the boundaries of the

problem can begin in the next stage. It is important to note at this stage that

although problems are focussed on harms to the community, Maguire et al.

(2015) highlights that most of the routes through which cases are nominated for

POP action involve police data (70%), meaning that extracting and stratifying

police data is likely to lead to improvements to problem identification and

formulation.

3.2.2 Analyse in Depth

The problem has been selected, and its boundaries have been broadly defined.

Now, it is time to fully understand the problem to refine development. It is

at this stage that specific details of the problem are developed, which sets it

apart from others and lays bare the underpinning processes that generate the

opportunity for the problem to exist.

This stage requires all aspects of the problem and its incidents to be

understood(Clarke & Eck, 2003). This will broadly involve trying to understand

all the actors involved in the problem, which include the more obvious examples

of victims and offenders but also other actors that might be identified from the

problem triangle, such as offender handlers and place managers. In addition to

understanding the actors, knowing the contexts of the incidents, including any

important physical or social factors that led up to or resulted in the problem,

will help to identify similarities and pinch points where preventions can be

directed.

To acquire the information to characterise the problem, POP practitioners

should consider a variety of information sources, which should include the

established literature. The POP centre 2 has a wide range of literature that

includes specific problem guides as well as academic articles on POP successes.

Police files, which include the full gambit of documents including witness

2https://popcenter.asu.edu
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statements and forensic reports, will be a vital source of information, though

they do have their drawbacks, as they often do not reflect the whole problem

process. In addition to these written sources, speaking with the original police

officers that dealt with the incidents, the victims, witnesses and the offenders

can be a rich source of information to enable problem understanding (Goldstein,

1990).

Understanding problems at this level of detail requires a concerted analytical

effort, which cannot easily be found in a police force that is not geared towards

an analytical approach. This analytical burden is reflected in the results

of a review into POP for England and Wales (Sidebottom, Bullock, et al.,

2020), where results showed that analysis in POP investigations frequently

only included one type of data, rather than the variety highlighted above. Most

investigations barely moved above a cursory exposition of simple crime count

data. To further highlight the problem, over half of the respondents said they

lacked enough analysts to complete this phase properly (Sidebottom, Bullock,

et al., 2020).

3.2.3 Respond

Once the problems have been found and analysed the conditions allowing for

problems to occur should be clear. These conditions can now be disrupted with

a response.

Find a practical response is how it is framed in “55 Steps” and they draw

heavily on the five methods of situational crime prevention - mentioned above

- to begin to systematically investigate responses. Of note here is the POP

centre webpage 3 which includes 74 problem solving guides, highlighting those

responses that have been used before and found to work. The responses need

to be appropriate and need to be aligned with the work found in the analysis

stage. POP puts an emphasis on non-enforcement activity and preventative

measures. These potential measures are not limited to those actions that the

police can conduct themselves but are part of a wider community approach.

3https://popcenter.asu.edu/all-problems
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3.2.4 Assess

As set out earlier, assessing the effectiveness of responses employed is beneficial

both for proving that POP works and for detecting success, which may

otherwise not be as obvious as traditional methods. It is also important to

look at any diffusion of benefits that may have occurred around the target

area or within the target area but of a different nature. Again, these metrics

can be hard to grip, and comparing them to other areas may be necessary

to highlight differences to the counterfactual situation where the intervention

did not occur. Noisy data may make it especially difficult to pick out weak

signals, and changes may not fall across existing recording criteria. All these

factors mean that thorough problem and technical knowledge will be required

before, during and after an intervention to ensure that the full impact of the

intervention is known.

The SARA framework is a cycle, and as practitioners come to this point in the

cycle, they should begin again from the beginning – building on their knowledge

of the problem by further refining the details and then any additional required

responses will make best use of the analytical framework.

3.3 Success of POP

POP is generally regarded as a successful method. There have been two

Campbell systematic reviews into the effectiveness of POP, and both have

shown that, overall, POP is successful in reducing the problems it has set

out to tackle.

The first review, (Weisburd, Telep, Hinkle, & Eck, 2010), showed a moderate

indication of success. Although only a strict meta-analysis was conducted

against ten studies, they found a small but positive effect in favour of POP.

The research papers did not compare directly against other policing models

such as intelligence led or community policing.

Additionally, because the reviewers found so few studies that met the criteria for

the systematic Campbell review, they also reviewed ‘before and after’ studies

that did not meet the full criteria. In reviewing the additional forty-five “before

and after” studies, they found reductions in problems of up to 35%; that is, if
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the standard model allowed 100 problem incidents to happen in a unit time,

then after a POP intervention, this may have been reduced to between 70 and

80 incidents. Of course, what this does not account for is the net benefit of

less problems, and this would be hard to quantify; however, if less incidents are

responded to, then more police resources are available for other tasks (perhaps

even more crime prevention). Further, if hypotheses such as the debut crime

hypothesis and the keystone crime hypothesis (Farrell, Laycock, & Tilley, 2015)

are true then the benefits over the longer term for some problems will almost

certainly be larger as the effects compound.

The second, updated, review, (Hinkle et al., 2020), was able to include many

more studies in the main analysis (34), as the quality of the formal evaluation

process has increased in the ten-year interval between the two studies. This

second review has found an even larger effect, using the stricter criteria, and

even managed to quantify the benefits in diffusion with no crime displacement

from POP activities. That is, areas surrounding the POP interventions

generally also saw a net decrease in those problems (known as a diffusion of

benefits).

Another review, this time into hot-spot policing, (Braga et al., 2014), also

found a further reduction in crime when problem solving techniques were used

alongside hot-spot techniques. As a control, the researchers used studies that

employed hotspot policing coupled with a more traditional approach.

We have demonstrated here that POP can be successful, and indeed generally

is. But what is represented by these studies amounts to an analysis on a “per-

protocol basis” where only those POP interventions that followed the protocol

(SARA) were measured in the study, and in practice a more thorough picture of

the merits of POP would be based on an “intention-to-treat basis” that would

highlight where POP could of been used or was partially used. This would add

additional knowledge around what works, but also what does not work or what

is impeding POP. What is known about impediments to POP is discussed in

the next section.
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3.4 Impediments to POP

Although POP has been shown to be effective in reducing crime, the fact that

only 34 effective surveys in 40 years of policing were available for the second

Campbell review can be seen as evidence of a lack of widespread and sustained

adoption. In fact, many studies and reviews of POP have found that although

POP reduces crime, it is difficult to implement. In an accompanying article to

the first Campbell review mentioned above, Tilley (2010) cites three reasons

for POP not working as well as people may have initially hoped. These three

areas are explored below.

3.4.1 Weakness 1 - The conduct of POP

The conduct of POP largely relates to adherence to the SARA procedure

and, in particular, the issue of analysis and specificity when dealing with the

problem at hand. In Scott and Kirby (2012), the need to both get and train

the right staff (Chapter 9), but also for enhanced analytical support (Chapter

17), is highlighted at great length. The conduct of POP requires appropriate

knowledge, skills and experience to be delivered effectively, but because these

skills are not required for the traditional response policing model, there is

currently a lack of these skills in police forces.

To chronologically bookend this point a lack of analytical skills was identified

by Goldstein as early as 1990, (Goldstein, 1990), and was still seen as an

issue in 2016 (Scott et al., 2016). The review of POP in England and Wales

(Sidebottom, Bullock, et al., 2020) concluded that “recurrent weaknesses in the

application of SARA...concerned the depth and quality of problem analysis.”.

Additionally they also found that “43% of survey respondents said they did

not have access to information necessary to perform effective problem-solving”.

That the crux of POP lies in the understanding of the problem at hand, yet the

police forces that want to implement POP do not have those skill sets available

in sufficient quantities, it is hardly surprising that the conduct of POP can

be sub-standard. However, it is encouraging to note that it would largely

appear to be a resourcing issue rather than a systemic POP problem, as where

analytical resourcing has been sufficient, largely as a result of collaborations

with academia, POP successes have been strong.
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If some analysis could be automated, or partially automated, then at least one

bottle neck to further implementation would be widened. As will be shown

later, modern NLP techniques combined with ML have the potential to allow

the rapid exploitation of police free text information. If this information can be

shown to have utility in the POP process, it is likely to contribute to lowering

the analytical burden for a successful POP implementation.

3.4.2 Weakness 2 - The Delivery of POP

Baldrick: But this is a sort of a war, isn’t it, sir?

Blackadder: That’s right. You see, there was a tiny flaw in the plan.

George: What was that, sir?

Blackadder: It was bollocks.

Blackadder Goes Forth: Goodbyee

Despite the best intentions of a plan and an analytical strategy, if they are not

thought through, formulated and tested against the practicality of delivery,

they are bound to fail even on seemingly mundane issues. This is shown in

Blackadder’s explanation to Baldrick about the precarious peace treaties built

before the First World war: they looked good, they sounded good, but had

anyone really stress tested the plan to ensure it would work? Were all parties

committed to the plan, especially those with influence? Were the available

resources made ready?

What is striking, to a former military planner, is that while the analysts seem

to be well catered for within the POP community, planners are not. SARA

is an analytical framework for POP. It is not a plan or an implementation

framework. If it was an implementation framework, there would be processes

for deciding how to judge and select responses, how and when to synchronise

events, resource planning stages, questions regarding control measures (not

comparison studies, but deconfliction in space and time), methods to test

the plan and communication strategies. These are all valuable and necessary

elements of a plan, but they are missing from the POP literature.

Hinkle et al. (2020) cites many implementation issues with third parties to

the process, but if these have not been carefully managed during the planning

process, and failure on their part understood, then the plan was never robust in
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the first place. That POP is not seen as mainstream policing is almost certain

to hamper the process, and the necessity to deal with immediate problems now

is hard to combat. Strong leadership, good plans and a cast iron belief that

slower burning strategies will eventually pay off are required for implementation

to be conducted effectively.

3.4.3 Weakness 3 - The requirements for evaluation

Evaluations are rarely sexy, and sometimes the resource or the impetus to

conduct the evaluations vanishes as the project advances. Pet projects that

aren’t producing the results can fade away, while other project outcomes are

so obvious that an official evaluation is not needed. Indeed, it is not in the

culture of many organisations, especially the police, to systematically review

their performance (Goldstein, 1990). Proper evaluation will make the process

much more efficient, and analytical products and expertise will have lasting

benefits if the real mechanism of change and benefit are realised. The jump in

robust studies between the two Campbell reviews is encouraging, and the focus

on evaluation in the POP awards in the UK and US will push it further along.

However, it is worth noting at this stage that just under a third of submissions

for a UK POP award4 did not include any formal evaluation (Sidebottom,

Bullock, et al., 2020). Again, in this area, as above, the necessity for skilled

practitioners to do the work and leaders to allow them to do the work (or even

mandate them) are keep elements for unlocking progress.

Three areas of weakness have been presented above: conduct, delivery and

evaluation of POP. However, in each of those, there can be identified cross

cutting themes that, if addressed, would lead to better POP outcomes.

Two of these themes are access to information and analysis (Sidebottom,

Bullock, et al., 2020). Access to information and analysis are also two areas

were computational power and modern information systems can alleviate the

workload. Information retrieval from document bases can be made much more

efficient (if in doubt, consider google and other web search engines (Manning,

Schütze, & Raghavan, 2008)) and the information within those documents can

now either be automatically extracted or summarised (Kumar, 2011). That is

to say that the underlying conditions that are creating these problem for POP

can be at least partially addressed by leveraging technological improvements.

4Tilley Awards
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3.5 POP Conclusions

It has been shown that POP is a successful practice for reducing crime and

broader harms to the public. Additionally, it has been shown that this success

comes down to understanding a problem in great detail, utilising all available

information to form a specific response. Although the process involves the

wider community, the practice is currently led and used almost exclusively by

police officers using police data while relying on their scarce civilian analysts for

support. POP is successful, but it is not a quick swap for traditional policing,

as the resources POP requires are not readily found in police forces in sufficient

quantity, and the culture of the organisation is not geared for its success.

In his article Tilley (2010) sets the agenda for the next round of improvements

for POP, saying that “The research and development agenda for POP is

now that of improving its efficiency and reliability in producing the intended

outcomes.” This is where the practical focus of this project lies. As shown

above, analysts and access to information are key for a successful POP

implementation, but they are often hampered by a lack of resources, either

in the form of analytical support or resources to review disparate information.

This piece of research attempts to leverage new but existing ML techniques to

partially automate the extraction of information from police crime notes in the

belief that, by doing so, the analytical burden for the scanning and analysis

phases of the SARA cycle can be alleviated to some degree.

30



Chapter 4

Machine Learning

“Machine Learning: Procedures for extracting algorithms, say for classification,

prediction or clustering from complex data” (Spiegelhalter, 2019)

“With Machine Learning, humans input data as well as the answers expected

from the data, and out come the rules” (Chollet & Allaire, 2018)

As shown in the quotes above, ML is about finding a set of rules or an algorithm

that allows one to understand the structure of the data. That is, the overarching

aim of ML is to discover a model or a set of algorithms or rules that assist in

explaining the data. However, the real goal for those who use ML is often to

take these rules and use the information that they provide against other sets

of data to make predictions about unknown quantities. A toy example, Figure

4.1, is predicting customer churn in a business (Provost & Fawcett, 2013).

Using historical data about customers, some known attributes like income and

age can be used to try and explain the object of interest i.e. whether they

have left the company. A ML algorithm can generate a set of rules to predict

whether those historical customers left. These discovered rules can then, if the

conditions are similar, be extrapolated to another set of data to predict who

will leave in the future.

As shown above, the core of ML is about learning rules from data; however,

the application of those rules to more data is generally where the main interest

lies in the utility of ML. Once trained, these machines produce algorithms and

rules that can then be used against unlabelled data to generate additional
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Figure 4.1: A diagram to show machine learning. The inputs into the machine
learning process are 1) the data and 2) the outcome of interest – commonly
referred to as the label. The output from the process is a set of rules that can
then be used to extrapolate to other, similar, data sets to make predictions.
The rules can also be used to understand relationships within the original data.
Adapted from Chollet and Allaire (2018) and Provost and Fawcett (2013)

labels at a reduced resource intensity but without, hopefully, a significant

reduction in accuracy. In this way, ML generates rules, which can then be

used to automatically extract information from wider sets of data. Extracting

information with ML algorithms can be classified into two broad categories

(though in truth, it is more of a continuum): 1) supervised and 2) unsupervised

learning (Chollet & Allaire, 2018). Along the continuum between supervised

and unsupervised learning is a process known as self-supervised learning, which

is used to generate the models that this research leverages.

The next sections explores supervised, unsupervised and semi-supervised

learning. With each type of ML highlighted with examples after each

explanation. After these explorations into types of ML then data labelling

will be explored, as labelling data is an important part of supervised learning.

Finally limitations to ML will be explored particularly bias and explainability

of ML models.
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4.1 Supervised Learning

The key component of supervised learning is that the input data has already

been labelled with information that puts the data into their desired class.

Figure 4.1 is an example of supervised learning. For instance, a dataset of

words may already have labels such as ’verb’ or ’noun’. These labels are then

used by the machine to being to build rules to classify the data inputs. The final

ingredient required for success in ML is a measure of whether the rules are doing

a good job or not. This can be a measure as simple as accuracy (what % were

correct) to more complex calculations that can account for some permissible

variation between given label and generated label. This success measure can

then be used by the algorithm to select correct decision points and rules to

improve the final rules. These final rules are then applied to unlabelled data,

and the hope is that they are able to label the new data with similar accuracy

(although almost certainly with lower accuracy). Chollet and Allaire (2018)

identify four basic approaches to supervised ML, which are discussed below

with examples:

Probabilistic Modelling. This style of model, of which Naive Bayes is

the most widespread, attempts to find the probability of each potential

classification given the data inputs. It is worth noting here that the input data

for ML typically consists of a set of attributes (akin to explanatory variables)

and, as previously mentioned, a data label (akin to a dependant variable).

There are no real restrictions on the type of data that these attributes or

labels can take. They can be discrete data, names or labels, or they can

be continuous data such as numbers. However, the style of data one has

will help to determine which algorithm to choose. Naive Bayes treats each

attribute as equally important and independent from the other attributes, and

using Bayes’ theorem will calculate a probability for each potential label. The

benefit with this algorithm is that the actual probability is not as important

as the probabilities in relation to each other. That is, it is the relative size

of the generated probabilities that is important, as the label with the largest

probability is selected as the prediction. Another popular method in this class

is logistic regression, which is also used to generate probabilities of a certain

classification.
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Figure 4.2: An example of a simple decision tree. The tree first splits on the
age of the customer, as that produces a homogenous grouping. The tree further
splits the left-hand grouping by income, so that all groups are now homogenous.
Source: Author generated

Divide and Conquer. This type of algorithm is typified by the decision tree.

Here, an attribute is first selected, normally at random, and then the attribute

is stratified to split the data with the aim of partitioning it as homogeneously

as possible into sub-groups based on the given labels. These sub-groups are

then further split by either the same attribute (but with different stratification)

or by other attributes. See Figure 4.2 for a toy example. This can continue

until certain conditions have been met, at which point the algorithm stops, and

a set of rules has been generated. If the algorithm goes on for too long, there

is a risk that each data point will have its own set of long and complicated

rules generated. These rules may define the training data well but may not

transfer well to other similar data that may need to be subsequently labelled.

This process is known as over-fitting and is a flaw in ML algorithms that needs

to be guarded against if the desire is to produce rules that are generalisable to

new data. Overfitting is explored further in the limitations section.

In the case of decision trees, the maximum depth (i.e. number of splits or

decisions) may be specified beforehand so that long and complicated rules can

be avoided. This specification is an example of a hyper-parameter – that is, an

additional guide to the formation of the algorithm that limits the possible set

of rules that can be generated. Hyper-parameters can have a dramatic effect on
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the end result of an algorithm, and it is usually good practice to try a variety of

hyperparameters when working through problems to explore result sensitivity.

More sophisticated models in this class include random forests, which use lots of

smaller, randomly generated decision tress and then combine them to produce

a single result. The benefit of this is that it can avoid local minima whereby

a normal decision tree is led by its procedure into a non-optimal path. More

sophisticated still are gradient boosting trees, which only try to predict the

actual data once, then spend the reminder of their time trying to minimise the

residuals from the previous models with additional trees.

Kernel Methods. The classic example in this class is the support vector

machine (SVM). This algorithm accepts the numeric data and maps the data

to find a distinction between the groupings. For instance, if each piece of data

consists only of two attributes, this can be graphed on a page (a 2-D vector

space). Once all the data points have been plotted, a decision boundary can be

formulated by finding a line that minimises the distance between itself and the

two groups of data. See Figure 4.3 for a graphical example. Data with more

than two attributes uses the same process but in higher dimensions of vector

space.

The name kernel comes from a statistical process that reduces the

computational power required by not requiring the plotting of all points in a

vector space, but rather by allowing the distance between all point to be directly

computed. This allows a swifter decision boundary formulation. SVMs can be

susceptible to overfitting, and they have hyper-parameters that can balance the

amount of misclassified instances with the simplicity of the computed boundary,

which again leads to better generalisability from the model.

Neural Networks and Deep Learning. All the above models are

considered shallow, meaning that they only carve the input space into very

simple regions and find it difficult to pick up on underlying features in the

data that should be invariant to simple changes. In the simpler shallow ML

algorithms, this means that quite often, features have to be extracted or

computed from the data, typically using expert domain knowledge. As an

example, a list of profanities can be used to judge if a comment is suitable to

be published or not.
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Figure 4.3: An example of a how a kernel method will split the data in a 2-
dimensional example. Examples with higher dimensions are much more difficult
to depict on paper but work in the same way. Source: Author generated.

With deep learning and neural networks, layers of models can be stacked that

automatically form features in the learning process, passing these features from

one layer to the next and therefore skipping the need for time consuming feature

engineering. Deep learning has produced some remarkable results across a

host of ML tasks in recent years and is seen as one of the most powerful

ML tools (LeCun, Bengio, & Hinton, 2015). However, for this remarkable

performance, a higher cost needs to be paid in 1) the availability of training data

(typically neural networks require more training data then simpler models),

2) computational power (they can often need specialist hardware to produce

timely results) and 3) model explainability (often the process of decision is

hidden within the model and can be difficult to extract). However, as these

models are further developed, some of these higher costs are inevitably lowered

as they become the focus of more research.

4.2 Unsupervised

Unsupervised learning works in a different way than supervised learning. The

algorithms attempt to ascertain the inherent structure of the data without

any data labels. Unsupervised learning essentially attempts to group separate
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pieces of data according to the similarity between individual data points. The

algorithms then split the data into similar groupings using these similarity

measures so that similarities within groups can be identified. Two important

methods of unsupervised learning are dimensionality reduction and clustering.

Dimensionality Reduction. Data can have many explanatory variables

and attributes, and their values are unlikely to be independent of one another.

Dimensionality reduction can combine variables using different weights to help

condense the amount of variables (or dimensions) in the data to make it clearer

what the most important ones are. Principal component analysis is a popular

method for dimensionality reduction that has its roots in the mathematical

community. Essentially, this technique recombines all the data in such a way

that its dimensions are newly aligned to explain the most variation. Thus, by

picking the most important new directions, the data set can be understood

in a smaller number of dimensions or variables without significant loss of

information. The trade-off is that not all the variation in the data is used,

but what is used can be more easily explained and so the underlying causes

understood.

Clustering. Perhaps the most popular unsupervised technique is clustering.

Clustering seeks to group the data into different regions given its attributes.

One of the most popular clustering algorithms is k-means clustering, which

seeks to cluster the data into k different clusters. The algorithm works by

selecting k random points in the vector space (the vector space dimensionality is

defined by the number of attributes or explanatory variables), then computing

distance measures to allocate each data point to a group. Group centres

are then recalculated, and distances remeasured, and this continues until the

tightest clusters are discovered. The k, how many clusters to use, must be

provided to the algorithm at the outset, but is typically not known. k can

either be found through running variants of k and finding the ’best’ one or by

using hierarchal clustering or expert knowledge. Once clusters have been found,

these are then explored to deduce statistical characteristics, or as mentioned

above, they can be combined with other data to provide a richer picture.
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4.3 Semi-supervised Learning.

In between supervised and unsupervised learning is semi-supervised learning.

This is a type of learning that uses labelled data, but the data has not been

labelled by humans. Typically, the label is known because it is inherent to the

data. For example, semi-supervised learning on text data can occur through

word prediction. A complete sentence has a word randomly chosen and masked,

the machine is then given the sentence, complete with the word gap. and it

must guess the masked word. The masked word has a label – its actual value

– and so it is supervised learning, but the label has not been generated by a

human, so it is a much less laborious process. Later, it is shown that semi-

supervised learning is one of the pillars that has led to the production of PTMs

by allowing models to efficiently learn from huge datasets with little human

intervention.

4.4 The Labelling Burden.

The key difference between the two main learning methods outlined above is

data labelling. Labelling data is not a trivial endeavour though it is often

worthwhile. Castelli and Cover (1995) have shown that labelled data examples

are worth exponentially more than unlabelled examples (that is, in certain

circumstances, they are able to reduce the probability of error exponentially

over the same number of unlabelled examples), so even though they are more

difficult to come by (they will almost certainly require resources to generate),

it is often worth labelling data to achieve a better outcome in the long run.

However, labelling requires an initial investment of resources, investment in a

model that may not work or produce the results wanted. Also problematic

is labelling data for fluid problems. What may seem like valid data labelling

initially may no longer be so after the problem has morphed. This problem

is not new, and many scholars and practitioners have been at work trying to

lower the labelling burden. As can be seen in Figure 4.4 there are a number

of strategies that can be employed to reduce the labelling burden, with trade

resource utilised for overall accuracy. These methods are explained below.
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Figure 4.4: A Summary of different labelling strategies. Source: Author
generated.

Brute Force. This is hand-labelling all the data required. This will include

the training set and the test set. It is normally done by humans, who can

be employed in a variety of ways. Depending on the subject matter expertise

required. The cost of labelling can vary considerably. The skills to label x-rays

of fusions in spinal surgeries are almost certainly rarer, and therefore more

expensive, than the ability to decide if a tweet is offensive or not. Humans

are also not infallible, and they can be subject to biases (Kahneman, 2011),

meaning that generally enough people need to be involved to gain a consensus

– typically, this means at least three, but some datasets have employed more.

However, the brute force system is generally the most accurate of all the

measures1 - a fine luxury if you have the resources.

Active Learning. “The key idea behind active learning is that a ML

algorithm can perform better with less training if it is allowed to choose the

data from which it learns.” (Settles, 2009). So how does a machine choose

which data to learn from? Essentially, the machine is fed a small amount

of labelled data, far less than one would hope to use in the normal run of

things. The machine learns from this seed data and then assigns a probability

to each unlabelled data point, and a decision boundary is formed. Those data

1This relates to “out of the box” functionality, some data sets have been more accurately
labelled by trained ML algorithms, (see https://rajpurkar.github.io/SQuAD-explorer/), but
of course the models were first trained on human labelled data.
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Figure 4.5: Panel (a) shows two 1D normal distributions with means 0.3 and
0.7. Panel (b) is the same distributions highlighting those labelled with a
random sampling strategy, and the thick black line is a plausible decision
boundary. Panel (c) is the same distributions, but now the labelling has been
completed in accordance with an active learning strategy. The thick black
line is a plausible decision boundary based on this method. Source: Author
generated

points that were difficult to decide upon, those that were close to the decision

boundary, are then chosen for labelling by a human, and the cycle is repeated.

See Figure 4.5 for a simple example. The benefit, as can be seen in Figure 4.5,

is that each actively labelled data point contributes much more information

to the formation of the decision boundary than those selected at random.

Selecting points far away from the boundary generally has little effect on the

decision boundary, and so for the same labelling resource, less information is

achieved. While this is a simple one-dimensional example, it can be scaled

to more complex environments with more sophisticated techniques, but the

principles remain largely the same.

Transfer Learning. “Transfer learning is used to improve a learner from

one domain by transferring information from a related domain.” (Weiss,

Khoshgoftaar, & Wang, 2016). Transfer learning is centred around using the

knowledge gained from one data set, usually in the form or algorithmic rules,

on a second, related data set. Typically, there is a resource hurdle for labelling

the second data set that can be lowered by utilising the information from a data
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set that has already been labelled or curated such that the accuracy is known

to be high. Examples of this include utilising language algorithms generated for

one police force to help label the training data to be used with a second police

force, or as we will come to see, transfer learning can also play an important

part in key NLP model steps such as PoS tagging and word embedding, where

a word is represented by a vector of numbers that reflects its similarity to other

words.

Data Programming. Data programming is a form of weak supervision

where knowledge is used to guide the labelling of data through the application

of heuristics or simple rules. Snorkel, (Ratner et al., 2017), is an example of this

type of modelling that takes simple rules developed by SMEs, then combines

and weights these rules to automatically produce labels for data points. An

example of a simple rule might be Text contains “victim knew offender” or

drawing on a dictionary of known relationships (dict:relationships) the rule

might be Text contains “Offender is victim’s ( word in dict:relationship)”.

These rules are not tested against labels, but each other to identify where there

is agreement and correlation ( too much correlation is bad as it essentially over

emphasises the same relationship), rules are then weighted and labels generated.

It was found in Ratner et al. (2017) that time spent generating rules was much

more efficient than time spent labelling data, but that did depend on subject

matter expertise and rule writing proficiency of the individual rule authors.

In summary, labelled data for ML algorithms is a good thing and can be

exponentially beneficial for providing the information sort. However, it is

difficult to come by, especially in niche fields where the skills needed to label

the data are scarce. Other fields where the questions are more fluid will also

encounter labelling issues as, potentially, the data set has to be re-labelled for

each purpose, unless the underlying representations can be unlocked. However,

a body of research that is developing techniques to lower the labelling burden,

without much reduction in overall accuracy, is encouraging. There will always

be a requirement to label some data – if only to test that the model is working

correctly – but speeding up the process and lowering the hurdle for entry will

enable more powerful ML techniques to be used.
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4.5 Predicting Performance

Once a ML model has been trained, it is generally then tested on unseen data to

understand how good it will be on unseen instances of data. For this research,

the models will be used for classification tasks, and so prediction performance

will be explored here in that context.

Accuracy =
(TP + TN)

(TP + TN + FP + FN)
(4.1)

Recall =
(TP )

(TP + FN)
(4.2)

Precision =
(TP )

(TP + FP )
(4.3)

F1 =
(2 ∗ TP )

(2 ∗ TP + FP + FN)
(4.4)

MCC =
(TP ∗ TN–FP ∗ FN)√

(TP + FP )(TP + FN)(TN + FP )(TN + FN)
(4.5)

Where: TP = True Positive, TN = True Negative, FP = False Positive and

FN = False Negative.

The simplest form of metric for predictive performance is Accuracy (a capital

“A” is used to differentiate the metric from the everyday usage). The equation

for Accuracy is given in Equation 4.1. Essentially, it is the percentage of all

correct predictions divided by the total number of elements to be predicted.

Accuracy is easy to understand but can sometimes conceal poor performance

when the dataset is imbalanced. An imbalanced data set is where one of the

classes to be predicted is rare in relation to the other class. For example,

imagine trying to predict a crime like domestic abuse when only 1 in 100 crimes

are domestic abuse. A classifier that pays no attention to the data and classifies

everything as not-domestic abuse would get an Accuracy of 99%, which is high,

but the model is poor, because it will never find any domestic abuse crimes.
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When the data has imbalanced classes then it is important to use other metrics

in place of Accuracy. Researchers have found two metrics that are useful to

tracking classification tasks, “Precision” and “Recall” (Witten, Frank, Hall, &

Pal, 2017, Chapter 5). Precision (Equation 4.3) is a measure of the relevant

instances amongst all the retrieved instances and Recall (Equation 4.2) is a

measure of how many relevant instances were retrieved. These two measures

typically tend to be inversely related as selecting more of the relevant instances

increases the chances of selecting irrelevant instances. For that reason the F1

measure was developed (Equation 4.4), this takes the harmonic mean of the

recall and the precision and is therefore a combined measure of both of those

metrics.

Further research (Chicco & Jurman, 2020) has shown however that the F1

measure can still be misleading and that a more intricate measure - The

Mathews Correlation Coefficient - can be more effective at discriminating

between classifiers. The major differences between MCC and the F1 score

is that MCC is invariant to class change (so if the classes are swapped there is

no change in the MCC metric) and secondly but relatedly the F1 score does

not account for True Negatives (classifying irrelevant instances as irrelevant).

For these reasons the MCC metric will be adopted throughout this research as

the primary means of assessing model performance.

4.6 A General Approach to ML

Having introduced the various aspects of ML this section will specify the general

approach for supervised ML as that will be the approach used throughout this

research. The approach is therefore as follows:

1. Split the data. The data is randomly split into three sets: train, validation

and test. The train set is the data that the model will be trained on. The

validation set is used to help select the correct hyper parameters for the

model. The test set is the data that the model performance is judged

upon after the final model selection.

2. Label the data. All data in each set are read and labelled by human

annotators.
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3. Train the model. The model is trained on the labelled training data.

Hyper parameters are selected, and the effects are judged using the

validation set. In a sense, the validation set is an intermediary test set

that helps select hyper parameters.

4. Test the model. Once the model has been trained with the final

hyper parameter selection, the test set is predicted, and the model-

generated labels are compared against the human labels to judge the

model performance.

4.7 ML Limitations

ML has seen a surge in utility in the last decade or so as processing power and

data sets have become increasingly available. However, it is not without some

drawbacks and issues that can hamper its effectiveness or utility in certain

scenarios. Some of these major limitations are explored below.

4.7.1 Overfitting.

“The fundamental issue in ML is the tension between optimization and

generalisation” (Chollet & Allaire, 2018). Overfitting in ML is where the

algorithms have been optimised for the training data, but in doing so have

over generalised their rules to the variation in the training data. By doing so

the ML model has therefore lost some of the prediction power on the data set

in general. Every data set has some natural variation, this natural variation

is variation in the data that is derived from explanatory variables that are

not in the model or interactions of existing variables that are not modelled

correctly. When a model over fits, it is essentially predicting this variation

from the existing model, but without the mechanisms or information to do so,

so it is learning incorrect relationships.

Figure 4.6 shows pictorially how this may occur, the distributions in panel

(a) are random samples from two different normal distributions with separate

means and standard deviations. Predictably, there is an overlap between the

points, but knowing the distributions makes it possible to mathematically

deduce, using probability theory, a decision boundary that will map a line
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Figure 4.6: Pictorial example of Overfitting. Panel (a) shows two 1D normal
distributions with means 0.3 and 0.7. Panel (b) is the same distributions with
an overfitted decision boundary (black line). Panel (c) is the same distributions,
but the thick black line is a plausible decision boundary based on the known
distributions (it is slightly left of 0.5 as the red class has a lower variance).
Source: Author generated.

whereby on one side of the line, the probability of a red data point is higher

than that of a blue, and on the other side, the converse is true. That is, the

optimal decision boundary is known. However, in general, the ML algorithms

do not have the specified distributions and have to fit on the data provided.

Therefore, depending on how much the algorithms value getting every data

point classified correctly over the simplicity or generalisability of the rules will

depend on how susceptible it is to overfitting. Some techniques to prevent

overfitting include the following:

1. Have a test set. It is best practice to split available data right at the

outset into a test set and a train set. The train set is set aside and is

only used at the end to evaluate performance on the chosen model. It is

not used to train models or select models.

2. Get more data. The more data one has, the more likely the true patterns

are to be found.

3. Divide the data. A typical technique here is cross-validation, whereby

the train data is randomly split into, typically, ten different groups, and
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then the model is trained on nine of these groups at a time (a different

group of data is left out on each occasion). The resulting models are then

tested on the left-out data group, and the results compared and analysed

to pick the best generalising model.

4. Restrict the model. Do not allow the model to form overly complex rules.

This can take the form of only allowing so many branches on a decision

tree or by requiring a certain smoothness to a decision boundary in a

probabilistic model.

4.7.2 Explainability.

“In general, humans are reticent to adopt techniques that are not directly

interpretable, tractable and trustworthy.” (Arrieta et al., 2020). Being able to

understand how an algorithm works is important for several reasons, primarily

among them being the trust that the end user will place in its predictions. The

ability to understand why a decision is made greatly increase the confidence in

it. Understanding how a decision was made can also have additional benefits,

including ensuring impartiality of decision making, robustness to new data and

identification of causality between the variables and the resulting class.

Explainability is relative to the audience: what might make sense to one person

may not make sense to another. In general, if a problem is complex, then

more complex algorithms lead to more accurate predictions (Arrieta et al.,

2020). This has obvious implications for those who wish to use ML, who have

complex problems but also a mandate to understand how the predictions were

formulated and what bias, if any, are in the system. A field called explainable

artificial intelligence (XAI) (Gunning et al., 2019) has developed to try and

quantify these questions and develop a suite of tools to aid the model builders

and the users in understanding their predictions better. However, as the

authors of Gunning et al. (2019) acknowledge, how to reliably and consistently

measure a good explanation is still an open research question, not least because

the standard and style of the explanation can differ between intended audiences

for the same model as well as across models and domains.

In his seminal paper on explanation in AI (Miller, 2019) Miller gives four

major factors for good explanations. First, explanations should be contrastive

– they should explain the output of a single instance by contrasting with
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hypothetical counterfactual cases. For text, this could be changing words within

the sentence. Second, the explanation should be selective: the explanation

should not try to list every cause of a generated output, just the most important.

Third and perhaps the most upsetting to a statistician, “probabilities probably

don’t matter” , referring to probabilities is less impactful than referring to

causes. Lastly, Miller states that explanations are social, and thus they are

contextual relative to the understanding and competence of the explainee.

A popular tool for interrogating ML models is LIME, (Ribeiro, Singh, &

Guestrin, 2016). LIME builds a simpler local model around a prediction to help

draw out the locally important factors for a single instance of data classification.

These individual models can then be aggregated to provide a view across a

larger dataset. LIME will be used in the studies within this research and is

explained more fully in the Methods chapter. This tool relies on the contrastive

model as set out by Miller (Miller, 2019). The output of the model can be

adjusted or presented in different ways so that the remaining elements of a

good explanation can be met, in particular tailoring the explanation to the

audience.

4.7.3 Bias

ML systems can have bias making them unfair, where unfairness is “prejudice

or favoritism toward an individual or group based on their inherent or acquired

characteristics.” (Mehrabi, Morstatter, Saxena, Lerman, & Galstyan, 2021).).

Clearly, bias in a ML system is sub-optimal, as it can lead to groups being

discriminated against and a reduction in trust in that model and other AI

systems. Bias in ML systems stems from two main areas: the data and the

algorithm. These two main areas are explored to see how they may introduce

bias.

Data Bias

Data bias can come from a number of different sources, the most important

being the following two.
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1. Representation bias. This can be where the sampling of the population

has not been completed in a representative way. Police data suffers from

this bias, as recorded crime is not recorded uniformly across victim and

crime types (baumer2002neighborhood ; tarling2010reporting ).

2. Omitted variable bias. This occurs when important variables are omitted

from the data. Within police text data, this could be observed if certain

events are not mentioned in the texts to be analysed.

Other sources include aggregation bias, where rare but distinct groups have

inferences drawn about them that are derived from population characteristics,

and measurement bias, where the quantity and quality of measurement can

vary between groups.

Algorithmic Bias

“Algorithmic bias is when the bias is not present in the input data and is

added purely by the algorithm ” (Mehrabi et al., 2021). That is the bias

is introduced by the choices the researchers makes in the selection of model

types and parameters (Hooker, 2021).Some models are better at some problems

than others. Tuning hyper parameters are also likely to bias in favour of

correctly predicting certain instances over others (Paiva, Moreno, Smith-Miles,

Valeriano, & Lorena, 2022). In relation to crime text data, there may be

rare words in certain crime types that may not be represented well with the

models chosen and therefore may lead to inappropriate classifications. This

could introduce bias with certain crime or victim types by the selection of the

algorithm.

Measuring bias

We have seen that bias can stem from two main areas, the data or the algorithm.

Similarly bias can present in two main areas (Chouldechova, 2017). Firstly

predictive accuracy, do the results from the ML system have the same accuracy

across different groups? Secondly when the ML system makes mistakes are

those errors equally likely across different groups of people.
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A well studied example of bias in the literature is that of COMPAS a system

used in the USA to predict recidivism rates. This example also allows a better

understanding of the two different biases (Chouldechova, 2017; Kleinberg,

Mullainathan, & Raghavan, 2016). ProPublica, an investigative journalism

group, produced research that showed that error rates with the COMPAS

system meant that members of the black population were more likely to

be misclassified as high-risk offenders, and white people were more likely to

be misclassified as low-risk offenders (Jeff Larson, 2016). Northpointe, the

providers of the tool, countered this claim with evidence that showed that the

accuracy for prediction across racial groups was similar, in that regardless of

racial group, the accuracy of predicting high or low recidivism rates was the

same.

Further research (Chouldechova, 2017; Kleinberg et al., 2016) not only showed

that both pieces of evidence were true, but that they were almost inevitable

in a system where the underlying rates are different between different groups

(in this case the data used (itself not without inherent biases), has different

recidivism rates for the white and black populations). Therefore, in one sense,

there was no bias, because the COMPAS system had the same accuracy across

racial groups. However, when looking at the second source of bias, the errors,

it was shown that the system was biased, as the direction of the errors was

different for the two racial groups, with black people being more likely to be

classified as high-risk offenders when they were not and therefore subject to

more punitive measures. However, as shown in Kleinberg et al. (2016), with

underlying differences in the recidivism rate for the two groups an unbiased

error rate is not possible (except in the case of a perfectly accurate system).

So what? First, measuring bias is not straightforward and looking at single

measures can skew interpretation. Second, understanding the impact of the

bias is also crucial, as inaccurate predictions in one direction can be more

costly than in another direction. Third, where different underlying rates are

recorded a perfectly unbiased system is not possible in practice (Kleinberg et

al., 2016). An excellent overview of this problem and its interpretation is given

in (Hellman, 2020). For this research and measuring the bias, I will therefore

measure both the bias in accuracy and the bias in error rates. The two metrics

are predictive parity and equality of outcome respectively. These metrics will

be formally introduced in the methods chapter.
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4.8 Summary

This chapter has introduced the broad concepts surrounding ML. The chapter

explored the main paradigms of ML, how they operate, what they require and

how success is measured. Important limitations for ML include overfitting to

the training data, the degree to which models can be explained and any biases

they may contain. The research in this thesis is largely based on supervised

learning and so requires labelled data. Active learning is used to label the data,

and performance is judged through the MCC metric. Further applicability of

the models is explored by using the LIME tool to explain how the models came

to their decisions, and bias metrics are used to explore bias in the system.

The next chapter moves on to a specific section of machine leaning, NLP. NLP

is used when the data to be analysed is textual data. The next chapter takes

the concepts explored here and shows how they can be built upon for analysing

free text data.
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Natural Language Processing

Natural Language Processing (NLP) is a branch of artificial intelligence that

seeks to extract information from text, principally free text. The main purpose

of NLP is to “make human language accessible to computers” (Eisenstein,

2018). This is generally accomplished by accepting data as words and then

representing them in the form of numbers. Once the data is in the form of

numbers it can then be manipulated by the ML processes outlined in Chapter

4.

Within NLP there is a tension between knowledge (trying to understand

the structure of language) and learning (using algorithms to efficiently code

representations with a focus only on the results) (Eisenstein, 2018). The

knowledge advocates have been working on language problems for some

time under the guise of computational linguistics. They have laid down

many important NLP foundations that can be used to automatically extract

information from text, such as part of speech tagging and parsing a sentence so

that the dependencies between words can be understood. As Manning (2015)

notes, there has been a shift in NLP more recently to those with more of a focus

on the learning. That is, they want to use modern machine learning processes,

and especially deep learning processes, to translate raw text directly into the

desired output (Eisenstein, 2018).

This research aims to leverage this shift in research focus and utilise the most

effective NLP models based on the learning construct. In particular to utilise

a class of models known as PTMs. PTMs, introduced earlier, are powerful
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NLP models because they already have an element of language understanding

built-in before they are used on a specific task.

The analogy used in the introduction was PTMs were like employing a graduate

and conducting job specific training, rather than earlier NLP models which

required full training in an area before they could be used. Most of these

PTMs have been pre-trained on edited text, such as news reports or other

structurally published material. For that reason, the models have been built

on text that is likely to have a different compositional structure than police

free text data, and so PTM utility with this data is not obvious.

Figure 5.1 gives a generic language processing pipeline that might be used

to gain information from free text. The focus of the previous chapter was

on the machine learning models to the right of the diagram. This chapter,

however, comes before machine learning in the process and is concerned with

the processing of the data – that is, finding an appropriate representation of

the text in the form of numbers.

A few notes on terminology. A token is an individual element of interest, which

generally will be a word, but it can be a piece of punctuation. It is the lowest

level of investigation. Tokens are collected to produce a document. A document

in this research is a single description of a MO for one crime; however, other

examples are a single tweet or, in certain cases, a whole book. A collection of

documents is called a corpus. In this research, the corpus will be a collection

of MO data, all from the same police force and of the same crime type.

This section begins with a note on different applications for NLP, then moves

onto techniques that can be used to harmonise and understand the individual

tokens in a document. The section then progresses to how these tokens can

be represented within a document and how the differences between documents

within the same corpus can be mapped. Finally pre-trained language models

(PTMs) will be introduced. PTMs are the most advanced kind of NLP model

and are the model that this research will be based upon.
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Figure 5.1: This figure demonstrates a generic machine learning task containing
NLP. The exact details of the tasks will be explored in this chapter. Source:
Author generated

5.1 Applications

Natural language processing has many applications, just like machine learning

in general. However some important applications are as follows:

• Classification. Classifying documents into one of several categories can

be general, such as a positive movie review, or more specific, such as a

MO where the offender has used a knife.

• Information Extraction. This may be to extract the disease from clinical

notes, without knowing exactly what disease it is you are searching for.

• Question and Answering. In this application questions are asked of a

specific corpus and the answer is returned. In this application both the

question and the corpus may need to be subjected to NLP techniques to

generate the answer.

• Translation. Translating form one language to another.

• Chatbots. Where computers are designed to respond to conversations

with humans.
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Figure 5.2: This figure demonstrates how a bag-of-words algorithm operates.
The tokens in each document are counted and a matrix is formed with a column
for each word in the corpus and a row for each document in the corpus. If
document 1 contains the word in col 2, then a 1 is placed in the cell (2,1). Two
techniques to provide a mores succinct output are also shown. Stemming, which
reduces word forms, and stop word removal which removes common words of
little value. Source: Author generated

For this research the focus will be centred around classification, as it is generally

considered a gateway task before moving onto more complex applications.

5.2 Text Normalisation

On of the most simplest forms of NLP output is what is known as the bag-of-

words modelling. This method produces, an unordered, representation of all

the words in a given document by producing a matrix with 1 if the word is

present and 0 if the word is not present, Figure 5.2 gives a toy example. This

matrix, called a word-document matrix, can then be used as input to machine

learning algorithms. Some elements to note here are that the order of words is

not kept, so some of the semantics of the language can be lost. Secondly, with

slight different variation in word forms, even a small selection of basic sentences

can give rise to a relatively large matrix, this makes it harder for the computer

to grasp the meaning of the words, is cat really that much different from cats

that they need separate columns? Reducing the size of the matrix will also
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make the computation more efficient as there is less matrix manipulation to

conduct. What follows is a brief exploration of the techniques to reduce the

variation in tokens within a document to help convey the same or very similar

meaning with less tokens.

5.2.1 Stemming

Stemming is the process of removing inflectional affixes from a word. Examples

of inflectional affixes include the plural marker s and the past tense marker ed

(Eisenstein, 2018). See Figure 5.2 for an example. Stemming groups words

with the same underlying concept and so reduces the total number of different

tokens in a document and corpus, allowing similarities between tokens to be

more easily identified. As an example horse, horses and horsed all become hors

once stemmed. Note the stem in this instance is not a real word, but this would

not affect the algorithm (Jivani et al., 2011). Stemming is conducted through

a rules based system, and so on some occasions, the stemming generated is not

correct. An error can either be over-stemmed, where two words of differing

meaning are given the same stem – for example, Williams to William – or it

can be under-stemmed, where two words with the same meaning have different

stems – for example, tooth and teeth.

5.2.2 Lemmatizing

Lemmatization is an additional step that can be used to reduce the amount of

individual tokens in a word-document matrix. It is similar to stemming but

attempts to avoid some of the pitfalls of the rule-based system by additionally

understanding the context of the word. One of the more popular lemmatizers,

WordNet (Miller, Beckwith, Fellbaum, Gross, & Miller, 1990), is a lexical

reference system, similar to a database or dictionary, which lists words and there

synonyms under a joint lemma, this means that WordNet can be interrogated

with a given word and its part of speech, such as noun or verb, and after a

look-up, a lemma will be returned. The system can make less mistakes than

stemming, as the rules are hardcoded; however, computationally it can be more

expensive.
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5.2.3 Stop words

Stop words are words that are so common (e.g. the, a and to) that they are

generally thought to play little role in the linguistic meaning of a document.

Stop words are corpus dependant, so while there are lists of common stop words

it is best practice to tailor each list to the text at hand. As an example we

can see that even after the removal of some classic stop words in Figure 5.2,

have appears in all documents. If this was a real example then there would be

serious consideration for including have as a stop word as it does not assist in

the discrimination between documents.

Normalising text can have its advantages. The meaning of a document can be

distilled to a smaller size, and additional rules and dictionaries can be leveraged

to clear some ambiguities. However, removal or changing of a token can reduce

the information that is left in a document, information which may be useful for

further discrimination of the NLP model. Bag-of-words models in general lose

all their semantic value as the word order is lost, and so these techniques are

particularly useful for those situations where semantic importance is not high.

5.3 Word Features

5.3.1 Part of Speech Tagging

Another method for enriching the data set is to understand what part of the

syntax of a document each token represents. That is, a part of speech (POS)

tagger will label each word as a noun, verb, etc. By labelling the words in this

way, some ambiguous meaning can be avoided. Take the following headline

as an example: “Dealers will hear car talk at noon”. If talk in this example

is a noun, then there are no surprises; however, if it is a verb, then we may

question what kind of dealers they are and what they have been doing with

their produce. A popular and effective (Zeman et al., 2018) open-source tagger

- UDPipe (Straka, 2018) – can label an English sentence with the correct POS

tags with around 90% accuracy. These models have been built using labelled

data from the universal dependencies treebank. In this tree bank 37,000 English

sentences have been hand-labelled with their POS tags. This labelled data has

then been used to generate the open-source model UDPipe. Part of speech
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tagging is useful for understanding text in general; however, it can have more

specific uses, such as finding entities like names or addresses, in a process known

as named entity recognition (NER). This is described next.

5.3.2 Named Entity Recognition

As the name suggests, NER helps to draw out information from text relating

to real world entities, be they people, places or organisations (Eisenstein,

2018).More recently, the types of subject entities have been widened to include

drugs, medical conditions and different types of biomedical items such as

protein types (Goyal, Gupta, & Kumar, 2018). NER is an important step

in many NLP applications because it helps to draw out salient information

between document types. These named entities, once discovered, can form

part of the feature engineering of a document and be linked across documents

as additional information. A popular open NER model is the Stanford NER

(Finkel, Grenager, & Manning, 2005). This model was trained on newspaper

reports that have been manually tagged. The data a model was trained on will

have implications for its use outside of that domain. As Prokofyev, Demartini,

and Cudré-Mauroux (2014) show models trained outside of highly specialised

domains show significant drops in their effectiveness, as such testing of open-

source models and possibly adaption is required on new styles of corpus.

5.3.3 Sentence Parsing

An additional measure that can be taken with sentences within documents is

to parse them so that the internal dependencies are understood. Dependency

parsing takes a sentence then produces a dependency for that sentence,

beginning at the root of the sentence and cascading to all words within it.

The root is decided by a set of deterministic rules dependant on the type

of sentence and the word types within it (Eisenstein, 2018). Two examples

of a dependancy tree, the result of sentence parsing, are shown in Figure

5.3. Knowing the dependencies between words is useful, both for information

extraction but also question and answering tasks, because understanding the

underlying dependencies in a sentence can help clear some of the ambiguities

that were introduced from the manner in which it was presented. The clarity

sentence parsing can bring is seen in Figure 5.3 where the two sentences,
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Figure 5.3: This figure demonstrates the dependancy parsing of two similar
sentences. Both parses produce a similar structure of dependancies despite the
difference in the wording. suspect and hammer both join to smash(ed) before
they reach the window in both parses. Source: Author generated

with essentially the same meaning, have very similar dependancies despite the

difference in wording. We see that both the suspect and the hammer have

to pass through smash(ed) before they reach the window in both cases. An

additional important application of sentence parsing is negation, whereby it is

important to tract where a negative clause is acting.

5.4 Word Representation Methods

You shall know a word by the company it keeps

J. R. Firth

In this section so far there has been an introduction to how to normalise the text

by reducing the amount of individual tokens in a document, then building on

that by understanding what features can be extracted by dependency parsing,

NER and POS tagging. Explored here is the meaning of the individual words,

how the meaning contributes to the totality of the document’s meaning and

how similar words can have similar meanings across documents.
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Token TF DF IDF TF-IDF

pet 1 10 1 1
dog 2 50 0.3 6.65
cat 2 100 0 0
Fido 1 1 2 0.5

Table 5.1: Example TF-IDF values for a 100 document corpus.

5.4.1 Frequency Methods

The bag-of-words model utilises the simplest representation of words, the words

presence or absence is noted by a binary marker (generally 1 or 0) see Figure

5.2. This method does not draw any explicit meaning from the word itself, it

only marks its presence. The next stage up from this is to change the binary

marker to a count maker, so that the number of times the token is present in a

document is now recorded, giving additional weight to multiple uses, although

as there is a tendency of words to cluster this method tends not to show much

improvement on the simple binary choice (Eisenstein, 2018), this is known as

term frequency.

An additional method utilising the same approach seeks to understand how

important a word is in that document, given its prevalence in the corpus as

a whole. This method is known as TF-IDF, which stands for term frequency

– inverse document frequency. The first part, term frequency, was outlined

above and is a count of the terms in that document. The second part, the

inverse document frequency, is a measure of the number of documents that the

word is mentioned in. It is inverted because words that are rare in the corpus

should have more discriminatory power (Manning et al., 2008). Typically a

logarithmic measure is used.

Each of the procedures outline above was demonstrated with single tokens;

however these procedures can be generalised to groups of tokens which represent

phrases. Groups of tokens are known as n-gramms where n relates to the

number of individual tokens in a phrase. An example of a tri-gram is New

York City. n-grams can either be used exclusively or alongside single tokens so

that common phrases can be extracted for greater fidelity, especially useful, if

as with the example above, the n-gram is a single entity.

The examples above have distilled the information from each token into a
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Figure 5.4: Left panel shows vector offsets for three word pairs illustrating
the gender relation. Right panel shows a different projection, and the
singular/plural relation for two words. In high-dimensional space, multiple
relations can be embedded for a single word. Source: Mikolov, Yih, and Zweig
(2013)

document down to a single number, and the presence or size of that number

contributes to the meaning of that document within that corpus, along with

the distribution of the other tokens. That single number represents that word.

What this process still not allow for, however, is the individual meanings of

words, as opposed to their mere presence, to contribute to the characterisation

of the document. For this reason, word embeddings were developed that would

more accurately contribute to the meaning of individual words. These are

discussed next.

5.4.2 Word Embeddings

The general idea behind word embeddings is to represent each word with a

vector of numbers (typically, they can go as high as 300 numbers for one word)

such that words with similar meanings have similar vectors. Either these

embeddings can be generated for individual corpuses, or previously derived

embeddings can be used. Typically, these derived embeddings have been

trained on a massive corpus, such as the whole of Wikipedia.

Embeddings are generated in a number of different ways, but in essence they
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exploit the same relationship given in the quote at the start of this section –

that is, a word is defined by those around it. A single word of interest may occur

in a corpus a number of times, but if it is conveying the same meaning, the

words surrounding it will be similar. Embeddings are created by investigating

the probability of seeing a neighbouring word, given the target word (Mikolov,

Chen, Corrado, & Dean, 2013). Those target words with similar property

distributions for the same neighbouring words, will have similar meaning. The

property distributions are encoded into the vectors of interest and relationships

and similarities can be easily found. Figure 5.4 demonstrates how these vectors

and their relationships can be explored visually. The main downside of these

vectors though is that they can not differentiate between homographs (words

that are spelled the same but have different meanings e.g. river bank and

money bank). Recently other models have been introduced that are able to

reduce this problem by modelling the context of the word. The most promising

of these models are BERT (Devlin, Chang, Lee, & Toutanova, 2018) and GPT-2

(Radford et al., 2019). These models are known as PTMs.

5.5 Pre-Trained Language Models

PTMs are a particular class of language models. They are also referred to

as Large Language Models (LLMs) or foundational models. As mentioned in

the introduction to the thesis and the introduction to this chapter, PTMs are

different to the normal classes of models that have been introduced so far.

The main difference with a PTM is that it has already been partially trained

to understand language. That is PTMs are firstly trained to understand a

language before they are fine-tuned on a specific task, for example classifying

burglary MOs.

A useful analogy for understanding PTMs is a university student embarking

on their first graduate job (PTM) compared to someone without education

(generic ML model). The training to be successful at the job will have two parts.

First, the trainee receives broad formal education, culminating in a university

degree. They have a lot of knowledge and understand broad concepts, but it

has taken many years and lots of effort to get them to that point. When they

reach their new job, they will need additional, job-specific training tailored to

the problems they need to solve for that role. The graduate needs additional

domain knowledge, which will build on the broad concepts that they already
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understand. However, this additional knowledge is quicker to impart because

of their already broad understanding of the underlying concepts. In the case

of humans the cost of the education is somewhat dependant on the amount

of people to be educated, however humans have a significant drawback that

computers models do not have - they can not be easily replicated. As PTMs

can easily be replicated (you can download a copy of one from the internet in

minutes) that upfront training cost is only bourne once.

Using a PTM is like employing a graduate for the first time. The model

already has some understanding, or knowledge, of the problem. In this case, the

problem is what English words mean. However, the model does not understand

the specific problem well. Therefore, the model must be given some on the

job training before it is released for work. Previously, one could not “employ

a graduate”, one had to do all the model training oneself. Now, with the

introduction of PTMs, one can “employ a graduate” and so skip most of the

training. This means that significant complexity and effort in using NLP models

has been removed from the end user. The first part of the training for PTMs is

called pre-training and the second part is called fine-tuning. In this work only

the fine-tuning will be conducted.

In addition to this two part training the PTMs also have a mechanism, called

attention, that allows the model to understand context. Broadly attention

allows the PTM to understand how the context of a word effects the meaning of

another word in the sentence or the overall meaning. For instance the presence

of “river” next to bank will lead the model to representing the sentence as a

waterway rather than a financial institution. Likewise the presence of “not”

near “good” is likely to lead to a more negative sentiment than a positive one.

PTMs are deep models, they are based on layers of neural networks that are

trained to modify the input to output the correct result. As mentioned in

Chapter 4, deep models are useful because they can reduce the need for feature

engineering. Feature engineering highlights the most important features of a

model input. The hard part of feature engineering is knowing which features

to engineer and then finding a suitable representation. Examples of feature

engineering were given above e.g. PoS tagging and NER. Feature engineering is

time consuming and so by using deeper models the effort to establish a model is

reduced. The downside to deep models however is that explaining why a model

has made a decision is more difficult. Expainability techniques are therefore

required to understand how and why deep learning models including PTMs are
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making decisions.

As PTMs offer the best performance across a range of NLP tasks they will be

the model type used in this research. The exact PTMs and how they are built

will be detailed in the methods chapter.

5.6 NLP Conclusions

This section has demonstrated that there are modern techniques available to

assist with the extraction of information from unstructured free text data.

These techniques have, for the most part, been developed into open-source

models (PTMs) that can produce state of the art results on the material

for which they were trained. These open models are coupled together into

a processing pipeline, which relies on the success of each step to produce a

numerical representation of the subject text that can then be explored through

the use of the aforementioned ML techniques.

However, when these models are used outside of the types of data they were

trained on, their efficiency drops. This is especially true if the underlying

structure or grammar, of the text changes. As the focus of this research will

be centred on police data, the next chapter will survey which and to what

extent NLP techniques in this section have utilised with police generated free

text data and what kind of benefits they produced. It will be shown that NLP

techniques have been used to good effect on police data - although the practice is

not widespread. The next chapter also highlights a gap in the research, in that

PTMs have not been used with police free text data, and so their performance

in this area is unknown.
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Chapter 6

Natural Language Processing

with Police Data

6.1 Literature Survey

Having demonstrated a need for enhanced analytical power for POP in Chapter

4 and the new techniques available for extracting information from text in

Chapters 5 and 6, this chapter now maps the extent of the current research in

the intersection of NLP and police generated free text data. This mapping

is conducted through a literature survey, which shows that despite some

utilisation of NLP techniques, there is a gap for the use of supervised learning

techniques built on open-source models to extract pertinent information for

crime prevention work. Additionally, few of the models found in the survey

have demonstrated extrinsic utility – that is, utility for the ultimate stated

purpose of crime prevention. Therefore, quantifying this extrinsic value is

key to judging the importance of NLP techniques to POP and other crime

prevention efforts.

Machine learning, text mining and data science have long been seen as useful

tools for crime science (Marshall & Townsley, 2006). However, as a recent

review into the intersection of crime and AI has shown (Campedelli, 2019),

although some methods of AI and machine learning are relatively prevalent in

the criminology literature, NLP and text mining are not that prevalent with

relation to crime data. Neither NLP nor text mining get a mention in the top
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ten keywords of those articles discovered by Campedelli (2019).

Much of the crime free-text analysis is currently dominated either by

non-supervised learning see - (Birks, Coleman, & Jackson, 2020; Kuang,

Brantingham, & Bertozzi, 2017; Seo et al., 2018) - and revolves around the

problem of crime linkage rather than crime reduction (Hassani, Huang, Silva, &

Ghodsi, 2016). Recently however the complexities of the models have increased

and there has been work to extract specific information directly from police free

text data, (Karystianis et al., 2019; Karystianis et al., 2018). What follows is

the results of a scoping review (Arksey & O’Malley, 2005) into the use of NLP

with police generated free text data.

The scoping review was conducted with the aim of establishing What is known

from the existing literature about the utility and extent of Natural Language

Processing with police generated free-text data. Although quite a narrow search

question, the previous two chapters have demonstrated that this research will

nest into much larger bodies of work that are well established and documented.

That is, the use of NLP techniques extend far beyond what will be discussed

in this literature survey, and many of the techniques explored in the previous

sections will be highly useful to this research to guide experimental design

and model selection. However, as an emerging field, it is useful to understand

exactly what has been achieved in the field of police generated free text data

and NLP.

The literature review was conducted in four steps in accordance with Arksey

and O’Malley (2005):

1. State research question. What is known from the existing literature about

the utility and extent of Natural Language Processing with police free-text

data

2. Identifying relevant studies. This was completed through searches of

online databases. Scopus and Web of Science for journal articles and

EThOS for Phd theses.

3. Study selection. Once identified the studies were read to ensure

suitability. If found suitable then the references were checked for further

studies.

4. Reporting the results. The results were synthesised and are reported
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below.

6.1.1 Identifying relevant studies

The search for journal articles and proceedings was conducted through Scopus

and Web of Science and the search of past PhD theses was conducted using

EThOS (administered by the British library). The details of the searches and

the number of items identified and found suitable are at Table 6.1. Although the

search terms varied slightly between databases, essentially, they were all made

of three components. The first was highlighting the need for a link to the police

or crime literature. The second search component related to the analytical

process of NLP and text mining, and the third component emphasised the focus

on text data. In total, the database search found 38 unique and provisionally

useful studies.

67



6.1. Literature Survey Chapter 6. Natural Language Processing with Police
Data

Database Search Terms
Number

of
Items

Number of
Relevant

Items

EThOS
”Modus Operandi” OR ”police” OR
”crime” AND ”text” OR ”analysis” OR
”data mining”

122 1

Web of Science

AB = ( ( police or policing or crime )
AND
( ”NLP” OR ”text mining”
OR “information extraction”
OR “entity extraction” OR “data
mining” OR ”topic modeling” OR
“classification)
AND
(text) )

126 19

Scopus

ABS( ( ( police OR polic-
ing OR crime )
AND
( ”NLP” OR ”text mining”
OR “information extraction”
OR “entity extraction” OR “data
mining” OR ”topic modeling” OR
“classification )
AND

( text ) ) )
AND
(LIMIT-TO (DOCTYPE , ”cp”) OR
LIMIT-TO (DOCTYPE , ”ar”) OR
LIMIT-TO (DOCTYPE , ”re”) )

199 34

Table 6.1: Database survey search parameters.
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6.1.2 Study selection

The studies from the searches above were investigated, and duplicates and

unsuitable studies were removed. From 38 unique studies, 11 were found

suitable on closer inspection. The selected studies were read and the references

investigated to gather further suitable studies. In addition, local subject matter

experts were consulted for additional references. At the end of the study

selection, there were 16 suitable items of research. Most of the studies that

were filtered out did not focus on police generated narrative data. Rather,

they were focussed on news articles describing crimes. The studies selected,

along with a brief overview, can be found in Table 6.2. Where the studies have

only used NLP models as part of a larger model, the description focusses on

the NLP element.

6.1.3 Reporting the results

During the investigation, no overarching review of the area in question was

found. That is, there was no review into the utility of NLP and police generated

free text data. Two reviews of a more general nature were identified (Hassani et

al., 2016; Krishnamurthy & Kumar, 2012).These reviews were of a more general

nature and did not concentrate on either police data or NLP. A good proportion

of the studies from these two reviews included free text data that was non-police

crime data, such as news reports, and so would not be subject to the same issues

that MO data has, such as poor grammar and dialect (Keyvanpour, Javideh,

& Ebrahimi, 2011). Neither review was systematic or identified specific search

criteria. The selected studies generated from all searches were analysed, and

the key observations from the studies are as follows:

Information extraction from police free text data is possible. There

has been widespread evidence that useful information can be sourced from

police free text data. The usage of police free text has been remarkable, with

utility ranging from quantifying road accident black spots,(Krause & Busch,

2019) to drafting prosecutors indictment statements (Chen & Chi, 2010).

Although most of the evidence comes from processing of the police narratives

some older studies, demonstrate that MO data has been systematically used

effectively for some time for crime prevention work Bowers and Johnson (2004)
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and (Adderley & Musgrove, 2003) albeit not using NLP.

One of the most intricate models has been used to produce a series of research

exploring police free text data to uncover domestic violence and mental health

issues in Australia (Hwang et al., 2020; Karystianis et al., 2019; Karystianis

et al., 2018). Utilising an off the shelf NLP framework, General Architecture

for Text Engineering (GATE), the researchers formulate (247) semantic rules

utilising additional medicine and diagnosis dictionaries to label the data. An

example of a rule is the following text would be in a document, continued to

X the victim where X is an assault type from one of the dictionaries. They

achieve results of up to 90% precision by only accessing 200 examples of data

for training. They complete this work for mental health, domestic violence and

an investigation into autism, extracting information that hitherto has been too

time consuming to extract.

However, the effort to produce the rules and dictionaries is not reflected in the

research, so the utility of this approach when dealing with changing information

requirements is difficult to quantify. Another weakness of this approach is the

changing nature of the terms used. These dictionaries and rules will need to

be kept up to date with modern terms, such as new drug names, if they are to

be used on a continuing basis. A further weakness that the authors identify is

that similar but unknown terms are not picked up by the rules. This problem

can be ameliorated by utilising word embeddings that allow similar words and

phrases to be identified.

Rogerson (2016) is a thorough exposition of British MO data including an

analysis of free text data, though they acknowledge none of the processes used

were automated. Importantly the thesis demonstrates that there is information

in the MO data that is useful for crime prevention work, though that the crimes

analysed do not fit neatly and exclusively into the crime codes given, drawing

similar conclusions to that of Birks et al. (2020) and Kuang et al. (2017), that

administrative codes hide crime variation.

Utility of NLP and crime data is not limited to Modus Operandi data. Helbich

et al. (2013) demonstrate that NLP techniques can be used across a variety of

documents, within one investigation, and the results drawn together to produce

“useful” insights. Though due to the sensitivity of the case what the insights

were or how effective they were can not be divulged. A separate studies (Cocx

& Kosters, 2006), focussed on crime linkage has shown that models can be
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used to identify links between crime incidents. This was achieved by reviewing

different documents from the same case, though there is little practical evidence

presented that the links have a real world practicality.

Most of work so far has been unsupervised learning. Notable examples

of this are Birks et al. (2020) and Kuang et al. (2017) who use unsupervised

NLP to understand how crimes may be grouped relative to how they were

committed rather than traditional crime classifications. Birks et al. (2020)

completes this within a crime classification and Kuang et al. (2017) conducted

this across multiple crime classifications. This is referred to a crime topic

modelling and seeks to understand crime from an ecological perspective. This

idea is extended further by Pandey and Mohler (2018) who investigate the

crime topics through spatial distribution, suggesting that as crime is also a

function of an environment then the spatial concentration of a crime topic can

be seen as a proxy measure for its coherence. In relation to problem solving they

were also able to successfully group sub-categories of crimes using clustering

techniques, which could then be used to identify interventions. However the

clusters did not partition along the same characteristic of the crimes, some

clusters were partitioned on the type of environment and some on the type of

objects involved in the crime. This means that only partial information about

each crime is being used to cluster the crimes, as the topics are predicated on

only the most likely words.

In addition to the previous studies there have been a pair of studies conducted

with police data from Brazil, (Basilio, Brum, & Pereira, 2020; Basilio et al.,

2019), that have used unsupervised NLP techniques to cluster crimes to begin

to understand what policing strategies will be suited to different areas of the

city. They clustered the crimes, then showed police officers a representative

sample of the clusters to name a suitable policing style ( traditional, POP etc).

They do not report if the styles were subsequently adopted or if they were

successful.

Unsupervised learning has presumably been popular because it can be

conducted in a computer lab, with minimal resources and/or input form

practitioners. The unsupervised research is very much exploratory, but as of

yet this research has yet to prove that those results found have utility for crime

prevention. Kuang et al. (2017) investigate their results and prove that they

have found partitions along violent and property crime, and separately between
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gun and non-gun crime, though presumably they would have been sorely

disappointed had these divisions been missing. Birks et al. (2020) investigate

their results through presentation of a dashboard however this, nor their topics,

are validated by practitioners as a useful crime prevention tool. Pandey and

Mohler (2018) utilise the idea of spatial coherence to strengthen the validity of

their crime topics, but fail to account for environmental descriptors or entities

in the data or the fact that police officers in the same areas may use similar

language. Additionally most of the unsupervised learning has yet to explore

more powerful methods of word embedding that may have strengthened their

results, word embeddings may have been able to link words of similar meaning

and thus overcome some of the choice of language that may be unnecessarily

partitioning the topics.

Prevalence of classification The results also show that classification of

incidents has been more prevalent than specific information extraction. As

noted in the earlier chapters, particularly Chapter 3, specific information

about an incident is required to group similar incidents with similar processes.

Classification of incidents is useful, and the research found has shown

that classification of incidents is possible (see next paragraph for evidence).

However, the focus on classification means that actual details from the text have

not been extracted. For example, a classification technique will classify if force

has been used in a burglary or not, whereas a more sophisticated technique for

information extraction may extract the type of force. For example, “smashed

window” or “jemmied door” will be extracted, instead of just being classified

as force used.

As an example of classification with extrinsic validation, police free text data

was used to better classify incidences of domestic violence that had previously

relied on officers tagging keywords. Utilising a machine learning technique,

Self Organising Maps, (Poelmans, Elzinga, Viaene, Van Hulle, & Dedene,

2009) were able to more accurately label those incidents that included domestic

violence, and with that information, they were able to better educate officers to

recognise domestic violence and also help to better define the issue. (Poelmans,

Elzinga, Viaene, & Dedene, 2009; Poelmans, Elzinga, Viaene, Van Hulle, &

Dedene, 2009; Poelmans, Van Hulle, Viaene, Elzinga, & Dedene, 2011).

Seo et al. (2018) takes a slightly different approach to classification by trying

to understand which crimes are gang-related. They use free text description
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as a narrative variable among a host of other structured variables to feed a

neural network. They find that of all the variables used, the narrative ones

were the most important for the model – highlighting the valuable information

contained in the narrative reports. However, as they only use an average of

the documents’ word vectors, most of the information in those documents will

have been lost.

Bache et al. (2010) use free text MO data (and keywords) to try and predict

offender characteristics such as ethnicity and employment status. This was

achieved through a bag of words approach, then a form of reverse topic

modelling with known topics, such as male or female. Once split into these

known topics, the defining words in the topics were used to understand the

characteristic unique to those topics.

Where supervised learning has been used feature engineering was key

to success. This was especially true using shallow models (i.e, nonneural

networks), as one would expect. This serves to further highlight the trade-

off that utilising machine learning will bring to police analysts. Shallower

models will require more input, and possibly longer to build as the features are

developed; however, they may offer greater insight into why classifications were

labelled. (Bachenko, Fitzpatrick, & Schonwetter, 2008; Ku & Leroy, 2013; van

de Putte et al., 2009). It is possible to partially automate feature engineering

through the use of neural networks; however, as explained above, this may lead

to a reduction in the explainability of the model.

Corpus generated word embeddings work better. Where word

embeddings have been mentioned, they have indicated that embeddings

generated from the data themselves have been better than pre-trained models

such as Word2Vec (Haleem et al., 2019; Schraagen & Bex, 2019). This again

reflects on the difference between police data and the more widely used (often

edited) data that is traditionally used for pre-training open-source models. This

evidence reinforces the need to ascertain how effective PTMs are and how they

can be tuned if necessary.
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6.1.4 Police and Algorithms

Although not specifically associated with NLP, Babuta, Oswald, and Rinik

(2018) is a RUSI publication that explores the use of algorithms in a UK police

context. However, the paper’s focus is on predictions of individuals’ proclivity

for future crime, rather than crime events themselves. The paper highlights

the lack of frameworks and direction from central policy makers in algorithmic

usage for UK police forces. However, there is one framework that has been

partly adopted by the National Police Chiefs Council that is currently filling

the policy void. This framework is ALGO-CARE.

ALGO-CARE

One tool that has been developed and partially adopted by the a police

governing body for UK police (National Police Chiefs Council) is ALGO-

CARE (Oswald, Grace, Urwin, & Barnes, 2018) . ALGO-CARE was developed

alongside an automatic risk assessment tool in Durham police force and is

a “decision-making guidance framework for the deployment of algorithmic

assessment tools in the policing context” (Oswald et al., 2018). In short,

ALGO-CARE is a mnemonic that has been developed to allow police leadership

to understand whether or not to deploy an algorithmic tool. The mnemonic is

explained below.

• Advisory. Is there a human in the loop? Or is the process or tool fully

automated between input and output.

• Lawful. Is the purpose necessary and legitimate for policing purposes?

• Granularity. This factor encompasses granularity of data and decisions

at all levels and is split into 6 sub-areas.

• Ownership. Who owns the algorithm and the data on which it is trained?

• Challengeable. What are the post-implementation oversight and audit

mechanisms to identify any bias?

• Accuracy. Covers all elements of performance fo the algorithm.

Essentially is the performance good enough for the intended usage.
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• Responsible.Covering such elements as a fair, accountable and ethical

approach.

• Explainable. Can appropriate information be given about how the

algorithm has come about each score?

Although ALGO-CARE was developed for risk assessment tools, it has wider

applicability. The most important message that the tool conveys is that good

performance (their Accuracy) is not the only consideration for implementation.

Other requirements, such as on what problem the tool is used, how officers use

the information and issues of fairness are all important factors for the utilisation

of modern NLP models. This spread of requirements is reflected in the Methods

chapter, where the performance of the PTMs is not just predicated on a measure

of correctness (the metric used will be MCC) but also explainability and bias.

6.2 NLP with Crime Conclusions

In summary, there has been a spread of use of NLP with police generated free

text or narrative data. Most of that presented in the literature survey has been

intrinsically successful; that is, the models built have generally been found

to have accurate results, giving confidence that using NLP with police free

text data is possible. Extrinsic validation has been less well shown, however,

meaning that the models built have not shown real utility for their intended

ultimate purpose. This, in part, may be due to most of the research emanating

from the computer science community, which may not benefit from the stronger

working relationships with police forces that the criminologists have. The NLP

success rate will of course have benefited from publication bias, but knowing the

relative recent success of NLP in the larger community, and against published

standardised data sets, it is not surprising that success has been found with

police free-text data.

Within the literature survey, no examples were found of models built using

PTMs. PTMs are the more modern style of models that were introduced in

Chapter 5. PTMs have already been partially trained on the English language

and just need additional fine-tuning on the NLP task required. As mentioned in

Chapter 5, PTMs can be more accessible to potential users as they require less

feature engineering and so can be used with less technical knowledge. The focus
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in this thesis is on understanding if PTMs can be used to generate information

from police free text data and thus offer insight into this research gap.

Given the additional burden required for labelling to enable supervised learning,

it is not surprising that most of the work has focused on unsupervised

techniques. However, when labelled data has been provided, it is clear to

see that more specific information has been extracted, indicating that labelling

data for police free-text is a worthwhile endeavour, and any activity that can

reduce this burden is going to have real practical significance.

The existing research demonstrates that useful information can be extracted

from police free-text data. The data extracted can have utility for crime

prevention strategies, but the practical application of NLP systems has not

been fully tested. However, particularly for UK police free-text data, there is

no example of an automated NLP solution for information extraction that has

proven portability across different crime types and police forces.

The next chapter restates and explores the research questions that will be

answered in this thesis. This will be the final chapter of this part of the thesis.
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Aims and Objectives

This chapter is the final chapter in the first part of the thesis. The main aim

of this chapter is to state the research question and the sub questions to set

the agenda for the rest of the thesis. Firstly the main research question and

the sub-questions will be stated. Then the main research question and the

sub-questions are individually explored. Finally a table is given to show where

each research question will be answered related to the studies in part 2 of the

thesis.

7.1 Primary Research Aim

The thesis will be motivated by the following overarching research question:

Can PTMs be used efficiently to extract information from police free-text data,

and if so what practical applications for problem-oriented policing does this

approach have?

With supporting objectives:

• Identify the extent of NLP usage with police data.

• Evaluate how effective PTMs are with MO data.

• Evaluate how effective PTMs are with police incident data.
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• Evaluate how effective active learning is with police data.

• Identify which parts of the POP process might be best supported by the

use of PTMs.

• Identify implementation barriers for PTMs.

The next section explores each of these research questions.

7.2 Primary Research Question

Can PTMs be used to extract information from police free-text data, and if

so what practical applications for problem-oriented policing does this approach

have?

7.2.1 Aim

The overarching aim of this study is to extend research into the effectiveness

of NLP methods at analysing police free text data. The focus will be on how

modern PTMs can be used to classify police texts. This classification will enable

a greater understanding of intra-crime variation and so may provide insights

into the specificity of problems, thus supporting the application of POP.

7.2.2 Discussion

The previous chapters have discussed how POP focuses on specificity

in identifying and understanding problems. Subsequently, the challenges

associated with conducting the POP process were discussed. It was highlighted

that free text data, while rich in content, was often underutilised in this process

due to a range of logistical challenges.

Chapter 5 discussed how a diverse range of NLP methods can be used to

extract meaningful insights from free text data and how fruitful applications of

these methods have been observed in a range of domains. More recently, NLP

techniques have developed to produce a class of models known as pretrained
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language models (PTMs). PTMs can analyse texts with little additional feature

engineering. These models have proven themselves useful with established

academic test sets, but they have not yet been knowingly tested against police

generated data. If the PTMs are able to effectively analyse police generated

data, it is likely that they will be able to alleviate some of the time-consuming

analytical processes in POP.

When considering if PTMs can be used to extract information from police

free text data, there are wider concerns than just the accuracy of the model.

Therefore, other factors that allow a technique, especially an AI technique, to

be used in a public service capacity will also be considered. The additional

factors will be model bias and explainability. These factors were introduced at

the end of Chapter 6 and were seen as important to track to understand if a

model was suitable for use.

The next sections introduces the supporting objectives, which will be explored

to answer the main research question.

7.3 Supporting Objectives

7.3.1 Identify the extent of NLP usage with police data.

This was already completed in the previous chapter by way of a literature

survey. As a brief recap, it was found that NLP techniques have been used

with police generated data, both academically and practically. However, the

NLP work is not extensive, and no work with PTMs has been recorded.

This sets the research objective of reviewing the performance of PTMs with

police generated data to understand how these PTMs can be used with little

additional manipulation and what results they will offer.

The next two objectives focus on the use of PTMs with two different text types.

The two different types are MO data and police incident logs. These data types

were briefly introduced in the Introduction and will be described more fully in

the Data chapter.
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7.3.2 Evaluate how effective PTMs are with MO data.

MO data is a short description of a crime. MO data records aspects of intra-

crime variation for each crime and so can be a useful source of information

for POP practitioners. This objective will investigate how well PTM models

can extract this intra-crime variation. The evaluation of this objective will be

conducted in Study 1. Study 1 will focus on MO data, in particular burglary

MO data. The data for this study will be drawn from two police forces known

as PF1 and PF2. These police forces will be described in the data chapter.

Model effectiveness will encompass performance, explainability and the

presence (or absence) of bias. In addition, where data availability

allows, performance over time and across police forces will be investigated.

Performance over time is important because effort spent building models that

last longer will be more resource efficient. Performance across police forces is

important because wider use of a single model means more efficient use of the

resources required to build the model.

7.3.3 Evaluate how effective PTMs are with police incident

data.

Police MO data is not the only data that describes police problems. Another

ubiquitous source of data is police incident logs. For this reason, PTM

effectiveness will also be judged against police incident logs, particularly police

incident logs describing anti-social behaviour (ASB). The police incident log

data is only drawn from PF2. Choosing another text type is important because

different texts are formed in different ways and can use different language.

These linguistic differences may mean that PTM effectiveness changes between

text types.

7.3.4 Evaluate how effective active learning is with police data.

Using PTMs generally requires labelled data. Labelled data, however, requires

resources to generate, resources which would otherwise be applied to POP

problem solving in other ways. One method that has been developed to reduce

this resource requirement is active learning. In keeping with lowering the
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burden on POP, active learning will be investigated to understand what kind

of efficiencies can be achieved by adopting the technique.

7.3.5 Identify which parts of the POP process might be best

supported by the use of PTMs.

The proceeding three supporting objectives will form the middle part of the

thesis. This final supporting objective will review what has been learned in

that middle part of the thesis and then suggest how the POP burden may

be lowered. This analysis will be achieved using the SARA framework. The

SARA framework is a framework for implementing POP that was introduced

in Chapter 3.

7.3.6 Identify implementation barriers for PTMs.

Introducing any new practice or software is likely to hit barriers. These barriers

can stop a new practice being implemented if they are not identified and

addressed. This supporting objective highlights the most important barriers,

suggesting how they may be overcome.

7.4 Conclusion

This chapter has set out the research question and sub questions that the

studies in this thesis will go onto address. The next part of this thesis relates

to the practical aspects of this thesis. Principally testing PTMs to see if they

perform well with police free-text data. After Part 2 the third and final part of

the thesis will draw together the results from Part 2 and use them to explore

how PTMs might be best used in assisting POP interventions.
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Data Study Focus Task details

Study 1a - Supporting Objective 2
Classification - Is force used?

MO (PF1) Information extraction
Classification - Is a car stolen?

Study 1b - Supporting Objective 4
MO (PF1) Active Learning Comparison of model metrics - Active

learning v random selection

Study 1c - Supporting Objective 2
Classification - Is force used?
Classification - Is a car stolen?Information extraction
Classification - Outbuilding only?

Comparison of model metrics - Over
time

MO (PF2)

Transfer learning
Comparison of model metrics - Across
police forces

Study 2 - Supporting Objective 3
Classification - Traditional ASB
Classification - Covid complaintLogs (PF2) Information extraction
Classification - Group present

Table 7.1: Study focus and objectives. This table breaks down what the focus
of each study within this thesis are and what data is used.
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Chapter 8

Data and Data Processing

8.1 Introduction

This chapter will introduce the data that have been used in the studies within

this thesis. This chapter will give background information on the text data

that is used with the language models, and how the composition of the data

may effect the performance of the models that are utilised. The data was from

two police forces, 1) PF1 and 2) PF2. Both police forces are located in the

North of England.

The PF1 data underwent screening by PF1 before being released to The

University of Leeds for a number of projects. PF2 data was primarily provided

to the University of Leeds for the previously mentioned Covid-19 ESRC funded

project. The author contributed extensively to screening of the PF2 data before

it was provided to the University.

As both data sources went through some form of screening to remove personally

identifiable information (de-identification) the data is not in the exact same

form as the police services would use it. Redaction may have a negative impact

on model accuracy, as information will have been removed, however it does

mean that if police forces were to further utilise the PTMs they should expect

better model performance as they will have access to the raw data.
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8.1.1 Chapter Outline

This chapter will first introduce police textual data before introducing the

datasets from PF1 and PF2 . The Chapter will then explain in greater detail

how the PF2 data were prepared and desensitised for analysis away from PF2

servers. This preparatory step is of interest because free text data is highly

likely to include personal data and so if researchers want to utilise the data

away from police servers then they will have to implement steps to reduce the

risk of personal data loss. Removing personal data references from the police

free text data also allowed the use of non-vetted personnel for data labelling, a

time consuming and laborious task, that nevertheless is critical for supervised

machine learning tasks. The use of non-vetted personnel allows for much more

flexibility in recruitment of the data labellers, and so greatly reduced the data

labelling burden.

8.2 Police Data

The data used in all studies were exclusively police generated data. In

particular the data was also sensitive police data, in that it originally held

personal information and so is not freely available to the public. The use of

sensitive police data generates two main problems. Firstly from a practicality

perspective the data had to be de-identified, as mentioned above. Secondly,

and more generally, as police data does not accurately reflect the totality of

crime that is committed (Tarling & Morris, 2010a), this will have implications

of bias, as introduced in the earlier NLP chapter. The next section introduces

the two types of police text data used in this study, MO texts and incident

logs. Weakness with the police data are returned to at the end of the chapter.

8.2.1 Modus Operandi Data

An MO text is usually a short text document of one to three sentences that

describes the main elements of a crime. The MO is but one element of

data recorded about a crime. MO data is not explicitly generated for crime

prevention work. MO data is designed to be a short description of a crime

that can be released to other agencies, typically still within the criminal justice
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system. This influences the content of the MO data, such that it should not

contain personally identifying information or excessive details such as lists of

stolen items. MO data makes up only a small portion of the data, including the

free text data, that is recorded about an individual crime. Underneath the MO

data sits a more detailled incident summary that contains more information as

well as more detailed incident descriptions from witnesses. Examples of MOs

can be seen in Table 8.1.

The selection of MO data had two benefits. Firstly the text passages were

a relatively short but condensed description of the crime - as text passages

become long they are much more computationally expensive to compute. Of

course the trade-off with short text is that it can lack details about the crimes

they describe. The second and perhaps more important was the lack of personal

data in the text, this gave the police forces more confidence to share the text

with us. Undoubtedly other sources of textual information, incident summaries

and witness statements for example, will have more information to extract, but

they are also riskier to share as they are likely to contain more identifiable

data. MO data was therefore a pragmatic compromise between data security

and data utility.

Typically the MO data for each crime is also accompanied by flags that help to

explain intra-crime variation. Intra-crime variation here means the variation

between crimes of the same administrative designation. As an example

residential burglary is an administrative crime classification, but within that

crime type there is variation such as the use of force or not to enter the property.

Flags help to systematically (i.e. not in free-text) record intra-crime variation

that is not otherwise recorded in the mandatory recording fields. Typically flags

are an additional field that the police officers select to record specific details

about a crime, such as the entry point of a burglary, or the use of a weapon

in an assault. They are the digital equivalent of a check box at the end of a

form. As the fields are not mandatory the completion rates can be poor, and

in the studies within this thesis we are able to compare the NLP models to the

Officer generated flags giving an indication of completion rate.

In summary, MO texts are short descriptions of the means by which crimes were

undertaken. Generally, this included the known key events of a crime. They

were designed to give a coherent overview of the crime. They may contain

identifiable information, and quite often they are complemented by a series of

flags that give further systematic detail on intra-crime variation.
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MO 1 Attacked property is a privately owned end terrece multi
occupancey dwelling. Between times stated suspect/s enter
through insecure ground floor window. Tidy search conducted
and vehicle keys removed from kitchen hooks. Suspect make
their escape through same and leave stealing vehicles. Vehicle
XXXXX found burnt out

MO 2 Modus operandi summary. . . ..Attacked property is a mid-
terraced property located on a quiet residential street. Between
times stated unknown suspect approaches the front of the
property and with bodily force kicks open the basement
window. Suspects gain entry to the property and untidy search
in conducted. Suspects exit property with stolen items and
make off in unknown direction

Table 8.1: Two example MOs from the PF1 data, complete with errors.
Reproduced from Birks et al 2020

8.2.2 Incident data

Incident data is collected by police on all issues that are reported centrally.

Typically these reports are made by members of the public verbally through the

use of emergency and non-emergency phone numbers to a central call station.

However, they are also increasingly made using other messaging techniques

such as email and online reporting tools. Examples of police incident logs are

at Table 8.2

Police incident logs are generated as the information is received. They are the

first record of an incident and they may or may not include a crime. For the

purposes of this study the textual log data received only included incidents that

were classified as anti-social behaviour (ASB - described later), so they were not

designated as crimes. Logs can include the initial report, the first interactions

of Officers as they attend the scene and subsequent reports. These subsequent

reports can contradict the original report or add explanatory detail. Generally

the logs are not edited, or rationalised to depict a single coherent narrative.

This can make comprehension of a log difficult. For instance a report may be

made that a Covid-19 rule was broken, but subsequent reporting from police

officers may confirm that no rules were broken.

As demonstrated below logs are generally longer and have more word variation

than MO texts. They also do not typically come with additional flags to help
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systematically record intra-incident variation.

8.3 PF1 Data

The PF1 data comprises crimes committed in a police force in the North of

England. Two years worth of crimes were provided. Though the years were

not specified. Crimes of a sexual nature and or related to domestic abuse were

also withheld. All of the data fields supplied with the data can be found in

Table 8.3. The MO texts came from the Crime Notes column and the flags

came from the MO Description column. The PF1 data went through processes

unknown to redact identifiable information from the MO texts before it was

given to the University of Leeds. Only the Burglary crimes from the PF1 data

were used for this study (the reason for this is explained at the beginning of

Study 1a). The burglary MO texts are described next.

8.3.1 Burglary MO Data

The PF1 data contained 9818 burglaries. As mentioned previously the year of

the crimes was not given but the day of the week and the month was given

(Table 8.3). The median number of words in a MO text is 65, with the inter-

quartile range being (48,88), see Table 8.6 for a comparison with the PF2 data.

The longest MO was 403 words long.

As the main PTM to be used was BERT, it is also worth exploring if BERT

will recognise the words used in the text. BERT can only recognise certain

words or tokens. If the words are not recognised then they are broken into

word pieces that are then recognised, although they may not have the same

meaning as the original word.

Comparing the MO words with the BERT vocabulary shows that BERT

recognises 96% of the MO words (by volume). The remaining 4% of words are

broken into word pieces which the BERT model recognises. As BERT is trained

on books and Wikipedia text, not police records, it is worth exploring which of

the words in the MO text that BERT does not recognise. Table 8.7, shows the

top ten unrecognised words. The table shows that there are unrecognised words,

for example ‘insecure’, that may have an important bearing on describing the
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Incident
text 1

brother is throwing bricks at the window xxxxx he has mh
issues - he is called xxxxx xxxxx xxxxx this has happened after
an argument xxxxx xxxxx is outside the property now xxxxx
xxxxx is shouting outside the house xxxxx no damage caused
at the moment but is now throwing stones at the top floor flat
given out xxxxx dob - xxxxx last name xxxxx xxxxx first name
xxxxx xxxxx xxxxx birth date xxxxx relation type xxxxx 06
crime intelligence xxxxx xxxxx has anger management xxxxx .
house is locked and secure xxxxx xxxxx xxxxx desc - white male
, medium build , 5 ft , 9 , xxxxx brown hair , dark blue jacket
xxxxx , light grey pants xxxxx still screaming xxxxx xxxxx
symptoms of covid or xxxxx in xxxxx xxxxx xxxxx xxxxx had
left prior to our arrival . there is no damage and no trace of
him . no reports . cdit review - no ammendments to log as no
offences disclosed .

Incident
text 2

an email request has been made . default email notification
has been made to xxxxx xxxxx . com . email received in
fcm 22/10/2020 at 07 xxxxx 36 reference number xxxxx xxxxx
incident relates to xxxxx individual location address xxxxx 1
xxxxx xxxxx street name of persons involved if known xxxxx
xxxxx and her son is the subject displaying any covid 19
symptoms xxxxx yes time of incident xxxxx 07 xxxxx 30 date of
incident xxxxx additional information xxxxx its every weekend
now she is constantly breaking the rules but it doesn’t matter
her because she doesn’t work anyway she’s a xxxxx xxxxx and
its really not fair now and she goes mixing with household with
her sons it needs to stop but she won’t listen and has been told
by neighbours please cross refer into op talla master log log can
be closed with thanks further email from the INFORMANT -
15 xxxxx hi that’s fine thanks , please could you not mention
any names as i don’t want is causing any problems thanks

Table 8.2: Two example incident texts from the PF2 data. Note “xxxxx” are
redacted words.
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Crime Data Fields

URN Crime Type OccType
Day Month PartialPostCode
MODescription CrimeNotes* HOClass
OffenceRec DomViol

Table 8.3: A table of all the data fields for the PF1 crime data.* Indicates a
free text field.

crime. Although they will be broken into word pieces and not removed, this

disassembling of the word may be a source of error that prevents the BERT

language models from classifying the texts correctly.

8.4 PF2 Data

The second source of data was from PF2. PF2 is also a police force in the North

of England. PF1 borders PF2. The main difference between the PF1 data and

the PF2 data is that the PF2 data included crime data and police incident data.

The transfer of data from PF2 to the University of Leeds was also more closely

controlled by the author. The data extract specifications was built alongside

the PF2 police analysts and the data was extracted as a joint effort. In addition

the author built the de-identification process, described in detail in the next

section, that was used to de-identify the free-text data. The PF2 data contained

both structured and unstructured data fields. The initial data was transferred

in January 2021, followed by a secondary data transfer, in February 2022 that

allowed additional fields to be extracted for model verification purposes.

All crime data fields are shown in Table 8.4, incident data fields are shown in

Table 8.5. The review of the data in this section will focus on two data types.

PF2 burglary MO data, which was used to replicate analysis of the PF1 data

used in study 1 and secondly anti-social behaviour (ASB) police incident logs

that was used to investigate the use of PTMs on police incident logs. Each

data type is now reviewed in more detail.
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8.4.1 PF2 Burglary MO Data

The PF2 burglary data consisted of just over twelve thousand reported crimes.

It includes all residential burglaries and attempted residential burglaries

committed from 1st January 2018 to 31 December 2020. Each reported crime

contained an MO text. The median number of words for an MO text is 31

(IQR 22,46). Comparing the PF2 burglary data to the PF1 data we find that

it is generally shorter and more homogeneous, see Table 8.6, so possibly less

descriptive. We would therefore expect models to be poorer as there is less

variation in the data on which to discriminate.

After the modelling was complete PF2 released additional data to help quantify

the effectiveness of the classification model built to identify when a car was

also stolen. PF2 provided the results from a data search that showed when a

vehicle had been linked to a burglary, and the link of association was “stolen”.

Typically they expect this field to be more complete than text references in the

MO data to a stolen vehicle - so it can not be used as a direct metric as the

language models can only analyse information stored in the free text data. That

is given the selective nature of free-text data a car maybe stolen and logged as

linked to the burglary but not mentioned in the free-text MO description, and

thus the information is not available to extract. For a complete list of fields

provided see Table 8.4.

As with the PF1 data PF2 MOs were explored to see what percentage of words

are contained within the BERT model vocabulary. By comparing the MO text

with the BERT word list it can be seen that BERT recognised 96% of the words

(by volume), the remaining 4% of words are broken into word pieces which the

BERT model recognised. This is the same percentage as PF1. Table 8.7 shows

the top ten unrecognised words. The top ten unrecognised does vary across

police forces, although there is some overlap in meaning.

8.4.2 PF2 ASB Incident Logs

As described earlier incident logs are different to MO data in that they are

generated primarily through reports made by members of the public. Incidents

do not have to be crimes, and indeed the incidents that text data was received

for were not classified as crimes. The incident logs had all been classified as
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Crime Data Fields

Investigation number Call origin Crown victim

Storm ref Outcome Town

Committed from date Status Postcode

Committed from time Offence Easting

Committed to date Primary offence Northing

Committed to time Included offences MO keywords

Reported date Victim age Factors

Reported time Gender MO Text*

Recorded date Occupation Relationship type†

Recorded time Ethnicity Linked vehicle†

Table 8.4: A table of all the data fields exported from PF2 for the crime data.*
Indicates a free text field. † Indicates a field sent post analysis.

anti-social behaviour. Incident logs are typically much longer than MO data, as

can be seen from Table 8.6 the median words in a document is over fives times

greater than that of the burglary data standing at 166 for an ASB incident log.

The inter-quartile range of word counts is also much larger at (100-290).

Table 8.7 shows the most common words from the ASB documents that are not

recognised by the BERT model. Most of the words are abbreviations. Of note

here is that “covid” is not recognised, this is because when the BERT model

was trained (2018) covid was not quite as infamous as it is now. In total 11.1%

of words in the incident logs are not recognised in their complete form by the

BERT model. This is higher than the MO data, but not unexpected as the

ASB log uses more place names, abbreviations and telephone numbers. The

incident data has a smaller subset of data fields than the MO data, the fields

provided are listed in Table 8.5.
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Incident Data Fields

Incident number Complainant Disposed time

Initial theme Priority Postcode

Final Theme Origin Easting

Initial Input date Northing

Final Input time Covid 19

External ref Disposed date Incident text*

Table 8.5: A table of all the data fields exported from PF2 for the Incident
data.* Indicates a free text field.

8.5 Data cleaning and de-identification

This sections sets out the steps for the de-indentification the PF2 data. This

was required to meet data protection requirements and took place before the

data could be transferred from the PF2 servers to the secure University of Leeds

servers.

Whitelisting was used as the method to de-identify the data. De-identification

is the process of removing personally identifying information from the data.

For structured data this is generally a trivial task, for example removing the

second half of a postcode generalises the data sufficiently such that individuals

can not be identified even in sparsely populated areas. Free text however is

different. For the police staff who input text there are essentially no limits

on what information can be included. Full names, addresses, date of births

can all be entered into a free text box without technical issue, even though

procedurally they should not be entered. In some instances, for example the

incident data, personal information is expected and a necessary part of the data

being logged. However, MO data is designed from the outset to be released to

third parties, though principally still within the criminal justice system, and

so should not routinely contain personal identifying information.

Medical research has studied the issue of de-indentifying data extensively.

Models built for this task range from simple rule based models to more
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Median Words per
document

IQR Words per
document

PF1 Burglary MO 65 (48,88)

PF2 Burglary MO 31 (22,46)

PF2 ASB Logs 166 (100,290)

Table 8.6: This table contains descriptive statistics on the different text corpus
used in the thesis. Median was used as the average as the distribution of
words is skewed. IQR stands for inter quartile range and is the 25th and 75th
percentiles.

intricate NLP based models (Meystre, Friedlin, South, Shen, & Samore, 2010).

However there is no consensus that these models work perfectly in all situations

(Narayanan & Felten, 2014). Each de-identification model style has downsides,

the machine learning models require a lot of labelled data to train, and tend to

be difficult to explain. The rule based models require extensive knowledge of

the data and are not robust against unseen phrases within the data. For this

research the most important characteristics for the de-identification process

where easily explainable rules (to be explained to and understood by police

staff) and a risk adverse approach (to avoid any data protection issues arising).

For this reason a whitelisting approach was chosen.

Whitelisting is a well known, conceptually straightforward and safe approach.

Whitelist methods uses a list of safe words. If a word in the police free text

data is on the safe list then it is kept, if it is not on the list it is redacted. The

resulting text is therefore only constructed from the words on the safe list. This

is a simple de-identification method, which is easy to explain and deterministic,

but has the downside of potentially redacting rare but important words.

The next section will explain the whitelist procedure in more detail. Data

cleaning was used alongside this process to homogenise the text and improve

the retention rate. Data cleaning is explained in the next section before the

de-identification process in detail.
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Data Set Top Ten Non-BERT Words

PF1 Burglary MO egress, insecure, untidy, complainant,
upvc, terraced, semi-detactched,
occupant, jemmy, comp

PF2 Burglary MO XXXXX, undetected, insecure, untidy,
aggrieved, terraced, burglary,
trespasser, UPVC, unoccupied

PF2 ASB Incident text XXXXX , inf , covid, npt , cctv ,
nuisance , informants , pls , pcso , fcm

Table 8.7: This table contains words that are not in the BERT language model
list but are in the police data used. Only the top ten missing words by volume
are listed. The words that do not appear in that list will be broken down into
word pieces and so meaning may be lost. XXXXX is the symbol for redacted
words.

8.5.1 Data Cleaning

In addition to screening the data for de-identification there was also data

cleaning to homogenise the text so that information was not lost when certain

words or tokens were removed. This included spelling correction, replacing

jargon and replacing detailed information with a representative placeholder.

The different aspects of this process are discussed below:

1. Misspellings. Common misspelling were identified. These were added

to a misspellings list. This misspelling list was then used to correct

words in the MO text before it was de-identified. There were just over

900 common misspellings and typography’s identified that were then

corrected. Misspellings were identified by hand.

2. Jargon. Although jargon would be identified through other processes

later, some of the words or phrase were changed to represent words that

were more likely to be recognised by the PTMs. An example was changing

m/v to motor-vehicle. Again this list was generated through reading

representative samples of texts.

3. Placeholders. Some information was replaced with generic placeholders

denoting the type of information while removing personal identifiers. An
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example was UK vehicle license plates that follow known formats which

were replaced with the token ‘NUMBER PLATE’.

8.5.2 De-identification Process Overview

The de-indentification process used a white list approach. Words were removed

from the text if they were not on the list of approved words, referred to here as

the safe list. The safe list was built in an iterative manner. It was seeded

with a list of frequently used English words (detailed further below) that

were compared to the text. Those words not on the safe list were arranged

in frequency order (most common at the top). This list was then reviewed

and words deemed safe were added to the safe list. Common misspellings were

identified and added to a data cleaning list. The process is shown in Figure 8.1.

The outputs of the process were a list of safe words plus a list of transformations

for common misspellings or abbreviations.

Figure 8.1: This depicts the cycle to generate the whitelist. The cycle also
includes data cleaning to remove spelling and typographic errors. First the
whitelist was seeded with an existing list of 5000 common English words. This
list was then compared against the police free text and those words that were
not on the safe word list were counted and presented in a frequency table.
Words in the frequency table are reviewed and those that were not names are
added to the safe word list.
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8.5.3 Base word list

In order to seed the process of generating the safe word list a base list of

common English words is required. There are numerous word lists that have

been created, however they tend to have a flaw for this usage, and that is that

they have been generated from data, for example Wikipedia, that contains

names. What was required was a word list that was not just generated through

simple frequency lists, and so was unlikely to have common names.

The Oxford 5000 1 is a list of what are thought to be the most important words

to learn for those learning English, as it is not based on word frequency it did

not contain common names, therefore this list was used as the base for the

list of safe words. As part of forming the base word list, the Oxford 5000 was

compared against name lists, principally name lists from the Office for National

statistics 2 that contain all forenames and surnames used in England and Wales,

to see if words that could be names were used in the list. Throughout this

process, because of the variety of names that can be used, there needs to be a

balance of risk. As an example in the ONS list of forenames the name “A” is

given, clearly because “A” is such a popular word and a very rare name then

most, if not all, usages of the word “A” in the MO text are not likely to be

referring to an individual.

Therefore all words from the Oxford 5000 base list were checked against the

name lists and a judgement made as to whether the word should remain in the

safe list or not. Although 220 of the words were also in the ONS names lists

no words were removed from the base list as they were all deemed relatively

obscure names.

8.5.4 Developing the safe word list

The safe word list was further developed by comparing the safe word list with

all unique words in the police free text see Figure 8.1 with a minimum frequency

greater than 10. 10 was chosen primarily due to time available to clean the

data. If the word from the police text was not in the safe word list then it

was manually reviewed by the author. If the word was deemed sufficiently

1https://www.oup.com.cn/test/oxford-3000-and-5000-position-paper.pdf
2https://www.ons.gov.uk/peoplepopulationandcommunity/birthsdeathsandmarriages

/livebirths/adhocs/008710babynames1996to2016
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safe i.e was not likely to impart personal information then it was added to the

safe word list. This allowed more of the free-text through the de-identifcation

process.

The unique words generated from the police text will contain normal English

words, police jargon and misspellings. Additional words that were added to

the safe word list were called police words , as they had been generated directly

from the police free text data. Examples of police words include “complainant”,

“stated” and “suspects”. 5205 additional police words were added to the base

word list.

This process of adding additional words to the safe word list was only completed

with, and therefore tailored to, the MO data. There was insufficient time to

tailor the process or the resulting word lists to the police incident data. When

the police incident data was de-identified it was completed using the wordlists

generated from the MO free text data. The effect of this is to remove more text

from the incident logs than is necessary. As an example the “:” symbol was

not used in the MO texts and so was not added to the safe word list along with

other standard punctuation, whereas it is used in almost every incident log.

Therefore every incident log now has the redacted symbol “XXXXX” instead

of every “:”.

Once the safe word list was generated it was then used to de-identify the police

text. This step is explained below.

8.5.5 De-Identification Process

Once the safe word list had been produced the final data cleaning and de-

identification process was completed in the following steps, see Table 8.8 for an

example output:

1. Homogenise text. Tidy the text to remove unnecessary pluralisation’s,

change jargon and correct common spellings.

2. Replace Information. Use pattern identification to replace known data

types with their category so for example replace an actual number plate

value with ’NUMBER PLATE’
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Example MO Suspect(s) unknown steal zebra pattern clothes and hit
vctim. They leave in a car vl51pld towards big hill.
Hitting Donald Trump as they flee.

De-Identified
MO

Suspect unknown steal XXXXX pattern clothes and hit
victim. They leave in a car NUMBER PLATE towards
big hill. Hitting XXXXX XXXXX as they flee.

Table 8.8: This table depicts a single example MO, not real, before and after
the de-identification process.

3. Whitelist the text. Check every word in the text with the safe list. The

safe list is made of the original base word list and the police words. If

the word is in the safe list it is allowed to remain. If the word is not on

the whitelist then it is replaced with ’XXXXX’

8.5.6 Data Security

Despite best efforts, the possibility remains that a person’s name will slip

through the net if it is made up of normal words e.g. May Summer. However,

an additional procedural control was used to reduce such risk. This measure

was the data infrastructure used to secure the data and procedural process.

This data infrastructure heavily restricted data export and only allowed access

to the data by named members of the research team.

8.5.7 De-identification Results

The de-identification process was not formally tested with the MO data. That

is, the MO data was not systematically searched for personal data to determine

what percentage of personal data remained after whitelisting. What is known

however is how much of the original text data was recovered. This metric

is of interest because significant effort is made to develop more sophisticated

techniques principally to reduce the result of false-positives i.e. removing non-

personal data. For example in Table 8.8 it can be seen that the word zebra

is removed because in the context of police MO text “zebra” is a rare word.

However, arguably there is no need to remove this word and to do so can
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unnecessarily lose information on which to fine-tune the PTMs.

For police MO texts the data recovery rate was 97%, that is 97% of the words,

by volume, used in the police MO texts were not redacted. The police incident

log text was lower at 92%. The police incident data was expected to have a

lower recovery rate for two reasons, firstly the word lists were not optimised

on the police incident text and secondly the police incident text is expected

to contain personal data and so more text is expected to be removed. The

MO data retrieval rate was high, and anecdotally from the those researchers

that read the texts, comprehension was not overly affected by the redaction

of words. The police incident data redaction rate was higher, because the

incident text was already noisy and unedited, the impact on comprehension is

difficult to judge, but was certainly thought to have had a greater impact on

comprehension than the loss of words for the MO data did.

8.6 Data Limitations

The data used in this thesis was limited in a number of key ways. The

limitations are generated throughout the data generating process right up to

and including the choice of language model used. The key limitations are

highlighted below:

1. Police Data Coverage. Police data does not cover all crimes committed

and the paucity of coverage is non-random. This non-random coverage

is not new and is well documented (Tarling & Morris, 2010a). However

it does mean that any patterns or insights drawn through using these

techniques with police recorded crime will be subject to these same biases.

This is a well known problem and is also a problem when using police

structured information.

2. Information completeness. The texts that are provided are not complete

representations of the crimes or incidents that they describe. This

incompleteness is in some ways deliberate, the police officers or staff only

report positively not negatively e.g. they do not generally report on

what doesn’t happen. Secondly the completeness may be non-deliberate

through bias, Officers can only report what they know and as it is

widely reported that certain sections of the community to do not engage
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as fully with Police Officers as others (Buil-Gil, Moretti, & Langton,

2021). It is entirely plausible that police crime descriptions, and therefore

the information that they contain are biased. A future area of study

would be to analyse crime descriptions across victim and geographical

characteristics to ascertain if they are systematically different in their

percentage coverage of the key facts.

3. De-identification. The de-identification process will have removed

information from the police texts. this was an unavoidable step for this

research in order to provide a reasonable level of data security. The

information removed will also have been biased towards rarer words, as

the de-identification process was biased to keeping more popular words.

Although it is worth noting again that police staff using these models on

their own data within their own systems would not have to complete this

step.

4. Model compatibility. PTMs have a list of words that they are trained

to recognise. If a word is used that is not on that list then it is broken

down into word pieces that can then be recognised. As PTMs were not

built on police data there are certain words (see Table 8.7) that are not

recognised by the language model but are frequently used by the police

to convey information. As these words will be broken down into pieces

it is plausible that meaning will be lost. The impact of breaking down

specific informative words is unknown and is important issue for future

research.

All of the factors above will have contributed to limitations within the data.

Some of those factors are inherent to police data and have been well studied

for examples issues surrounding data coverage, however other issues such as

biases in police textual data are not well studied and will require further study

to understand the extent of the bias and errors that they may introduce.

8.7 Conclusion

This chapter has introduced the data that is to be used in the resulting studies.

All of the data to some extent was changed in order to facilitate research access.

As discussed, the changes are likely to have a relatively minor detrimental
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affect on the ability of the language models. The next chapter will explore the

methods that were used across each study with the data presented here.
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Chapter 9

Methods

9.1 Introduction

This chapter explains the methods used to extract information from the text

data and understand how well the PTMs worked. It will focus on three

stages of building and checking the language models. Firstly the approach

for labelling the data, active learning, will be explained. Labelled data is

required as supervised language models require example texts with the correct

label to be presented in order for the model to learn the patterns. Secondly,

once the data is labelled the model is fine-tuned on the police data so that

it can discriminate between texts and classify them appropriately, this will be

the focus of the second part of this chapter. Finally the chapter will address

methods to understand how well the models have performed, using the ALGO-

CARE framework, introduced earlier, to guide the selection of metrics. Within

each study chapter variations from methods explained in this chapter will be

stated.

9.2 Data Labelling

In order to use supervised machine learning techniques a portion of the data

has to be read and assigned the correct label so that the PTMs can be fine-

tuned. Deciding which data to consider for labelling is an important process
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and a technique to assist with this, called active learning, was introduced in the

Chapter 3. Active learning relies on labelling small batches of data then using

the PTM in question to find those unlabelled data that it is most uncertain

about for the next batch of labelling. This section will explain the labelling

and active learning processes used to label the data for the different studies

explained in the forthcoming chapters.

9.2.1 Labels

Throughout this thesis language models are going to be used to classify texts,

and so the labels that must be given to the data are generally labels that either

include or exclude a text from a particular classification. As an example of

labelling a burglary MO was read and it was labelled either as having a car

stolen or not having a car stolen, thus the classification was “car stolen” and

within that classification texts were either labelled “1” if they had a car stolen

or “0” if they had not. If it was unclear if an event had happened then it was

assumed that it hadn’t happened. The same MO text would also be labelled

for other events such as the use of force. Each set of classification label e.g.

car stolen labels, had to cover all eventualities that could be contained within

the text. For the PF1 data only the author labelled the data. For the PF2

data two data labellers were employed, both labellers labelled the same data.

Where there were disagreements between the labellers the author adjudicated.

What To Label For?

For both sets of data the following process was generally followed for

establishing what subject to label for and how to assign labels. Firstly labels

were suggested based on the hypothesis to be investigated or the problem at

hand. Once the first suggestion of labels was made a random selection of texts

were read. This first pass of the data was to ensure that the text covered the

event of interest and secondly to form labels that would cover all eventualities

for that event. Once this was completed a practice session was then held with

all labellers to run through and discuss a random sample of texts. For the ASB

practice sessions, the practice session also had a former Detective Inspector

present to assist with the discussion and decisions.
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Labelling Implementation

Once the practice sessions were completed the labellers would then label the

texts in batches of one hundred texts for MO data and fifty for police incident

data. Labelling was completed online and in isolation. Occasionally there

was feedback to the labellers if the need for clarification arose as a result of

unforeseen results within the text. For both batch types (MO texts of 100 and

incident texts of 50) it would generally take around 1 hour to label a single

batch. The data labelling was completed asynchronously, which meant that

labelers were free to label at a time convenient for them - however this had

the effect of elongating the labelling cycle as moving onto the next stage can

only be completed when all labelling of each batch was complete. Labelling

was conducted in Excel sheets with conditional formatting that only allowed

pre-allocated responses to be selected.

The first few sets of texts were randomly chosen for labelling, after which an

active learning strategy was then used to choose the most important texts to

label from a modelling perspective. The next section explains in more detail

how the active learning strategy was used to select the texts for labelling.

9.2.2 Active Learning

Active learning was introduced earlier in Chapter 3 and is a technique to reduce

the labelling burden required for training a model by seeking out examples that

will help the model improve the most. As labelling texts is a resource intensive

procedure, active learning was used to reduce that burden by more intelligently

select texts to be labelled to help improve the model accuracy more quickly than

by random selection.

General Process.

Figure 11.1 depicts the general process for the active learning strategy. Starting

in the top left corner. As a reminder three data sets have to be built for the

modelling process. These are:

1. Test set. Picked randomly. Used to estimate the effectiveness of the
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trained PTM. This data set is never seen by the model during training

and so the data is new to the model at test time.

2. Validation set. Picked randomly. Used to help tune parameters for the

PTM. This data is used during the training of the model to gauge progress

but it not used directly by the model for fine tuning, but rather to prevent

overfitting.

3. Train set. Selected through active learning. Used to train the PTM.

This is the actual data that the language model will be fine tuned on and

directly influence the models classifications.

Figure 9.1: Active Learning Process. Start by randomly selecting n data and
labelling. Steps 1 and 2 randomly label Test and Validations sets. Step 3 uses
randomly labelled data to train a model and to classify all unlabelled data.
The texts with the most uncertain scores are then labelled and added to the
train set to further fine-tune the model. Data is iteratively added to the data
set until the model has satisfactory performance.

The first to steps in the process are preparatory and they are to randomly select

data to be labelled for the test and validation sets. The third step is the final

random selection, and this random selection selects the first batch of texts for

the train set. Once selected these samples are labelled and used to fine-tune a

model. The trained model is then used to predict all MO texts that have yet

to be labelled. Once completed the results of the model predictions are then

used to discover which of the MO texts the model was most uncertain about.
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Quantifying model uncertainty was achieved by ordering of differences in output

probabilities. PTMs output log-probabilities for each class. The absolute value

of the difference in log-probabilities are then ordered and the MO text relating

to the smallest values are selected. This process finds the texts that the model

is most unsure about. These selected samples are labelled and then the train,

predict, select cycle is repeated. This cycle selects the hardest to label texts on

each occasion until the decision is made that the model no longer needs to be

fine-tuned. Once this decision is made the active learning process stops.

Batch size

The first decision for an active learning strategy is to decided the batch size, how

many texts will be labelled in each sitting. Active learning can be completed

with a batch size of 1 allowing for a selection after each text has been labelled.

however as the labelling in this research was being completed asynchronously

and generally by more than one person this would have led to a very slow

labelling rate. For this study the active learning was conducted in batches of

100 texts. 100 texts were selected because it translated into a suitable length of

time to devote to labelling data - around 1 hour. Much longer and concentration

and accuracy may have been degraded, any shorter and the overall labelling

rate will have been degraded.

9.3 Pre-trained Language Models

In all three studies in this work the modelling utilised PTMs that were

introduced in the first part of this thesis. PTMs have been trained on large

volumes of generic texts to give them a broad understanding of language. These

language models are then further fine-tuned by exposure to police texts so that

they are then able to classify the police texts as required. Each classification

type requires a different fine-tuned PTM, so although all of the burglary texts

were classified using a PTM, there was a separate model fine-tuned for each

classification type or question. So for example there is a PTM fine-tuned

for classifying if a motor vehicle was stolen and a separate PTM fine-tuned

for if force was used. As previously mentioned PTMs can be useful in the

context of the analysis of police free text data, because they can be utilised
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with little feature engineering effort as they already have a general language

understanding, this is in contrast to other general machine learning models that

do not have this understanding pre-built and would therefore require extensive

feature engineering thereby increasing the time and technical burden on the

police analytical staff.

Throughout the studies completed here the modelling was classification

modelling, that is take a single piece of text, for example a MO text and classify

it as either belonging to a labelled group or not. For example the label could be

car stolen and each text would either be classed as having a car stolen or not.

The type of language modelling task that is required to be completed influences

the selection of PTM. For classification tasks encoder models, of which BERT

is the most widely used, are the most appropriate selection as they are able to

encode the information from the text into a single output - the classification

(Qiu et al., 2020).

PTM were utilised through the Transformers package (Wolf et al., 2019) in

python. The Transformers software package allows modern transformer PTMs

to be used within a simple interface. The package includes the language

models as well as the surrounding architecture to utilise the models such as

the tokenisers to prepare the text and interfaces to quantify the performance

of the models.

Within this thesis two PTMs were used. Firstly BERT was picked as at the time

of commencement of this study it represented the most advanced encoder style

PTM of its class and was widely regarded as the most capable PTM (Qiu et al.,

2020). One weakness of BERT however is that it cannot handle long texts, so

for the police incident texts another PTM had to be utilised that specialised

in computing longer texts. For this reason the Longformer PTM was selected

for use with the police incident text. The next sections will introduce these

models and explain how they were used.

9.3.1 BERT

BERT was first introduced in 2018 (Devlin et al., 2018) and immediately made

an impact in the field of NLP by providing new state of the art scores in a

set of benchmark NLP standards, known as the GLUE (General Language

Understanding Evaluation) tests (Wang et al., 2018).
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This section will first describe BERT, how it is built and the inputs it uses and

the outputs it generates. Since inception there have been different varieties of

BERT (Rogers, Kovaleva, & Rumshisky, 2020), essentially different parameter

arrangements, although there are many similarities between the models for ease

this chapter will focus on BERT-large, an original BERT model. BERT stands

for Bidirectional Encoder Representations from Transformers. Transformers

will be discussed briefly below, but the bidirectional element of the name refers

to the fact that BERT can understand context from left to right and right to

left, meaning that words can influence the meaning of those words before and

after them, just as they do for humans.

This next section will describe BERT the model, how it is trained, the inputs

required, the outputs produced and finally how it was utilised for this research.

Model Description

BERT is a deep learning model that has been pre-trained to understand the

English language (other languages are available). This PTM can then be further

fine-tuned on specific tasks across a spread of varied natural language problems.

Unlike other machine learning models that have been discussed this model has

two stages for its use, pre-training and fine tuning. Both elements use the

same model architecture but the first stage, the pre-training, is much more

expensive and time consuming than the second which is why it is fixed. The

original BERT model was pre-trained on 16 specialist computers for 4 days,

with an approximate cost of $7000 (Devlin et al., 2018). For this reason the

pre-train phase of a PTM is not a trivial process. Once the pre-training has

been completed the PTM is then fine-tuned on representative labelled data

from the target NLP task - in this case police text data.

Training

This section explains in more detail the training phases, pre-training and fine-

tuning. It then concludes with a review of the inputs and outputs of the model.

Pre-training The pre-training for BERT is conducted in two parts, recall the

purpose of the pre-training is to train the model to “understand English”. To
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train BERT two representative language tasks were used so that the parameters

in the model could be adjusted to correctly encode the information from the

input text. Both parts are self-supervised, in that they don’t require human

labelled data, this means that huge amounts of data can be used without the

need for costly human intervention to label parts of the data. The data used

for both parts of the training was the BooksCorpus (800M words) and English

Wikipedia (2,500M words). The two training tasks were:

1. Masked Language Model. 15% of the tokens from a sentence that is input

are randomly masked, these masked tokens are then predicted from the

remainder of the sentence. One of the strengths of this procedure is that

the model can see both the words left and right of the original masked

word, so it can predict the word from all of the context contained within

the sentence. This is where the B from BERT comes - because the model

can use two directions - bidirectional - to understand each word.

2. Next Sentence Prediction. Sentences were paired from the training data.

Half of the time the sentences followed on from each other in the training

data, for the other half the sentences were paired at random and so

were not semantically paired. The model had to predict, given the first

sentence, whether the second sentence actually followed the first. This has

the benefit of training the model to understand the relationships between

sentences as groups of words.

Fine-tuning Fine-tuning is used to adapt BERT to different and specific

NLP problems. This can encompass a wide variety of problems such as

question-answering or Named Entity Recognition. For our purposes the fine

tuning is for classification, and for each classification task a separate instance

of BERT was tuned. In order to fine-tune a BERT model for classification

an additional classification layer is added as the new final layer in the BERT

model. The weights for this final layer are then adjusted as the model learns

from the training data presented to the model. Data is presented to the model

in batches, a total presentation of all the training data is known as an epoch.

There can be multiple epochs in each training cycle. Too many epochs though

and the risk is that the model over fits to the training data. A model that

has over-fitted to the training data does not generalise well to unseen data.

Validation data is used, as a way of detecting the over fitting, and therefore

to gauge the number of epochs to use. After fine-tuning the model is ready
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to be used on unseen instances. The next section explains the inputs of the

fine-tuning process and the resulting outputs.

Inputs and Outputs

BERT does not directly take words as inputs it takes tokens after the texts

have been through a tokeniser. A tokeniser takes a sentence as an input and

breaks that sentence down into words that can then be converted to numerical

embedding. Not all words are recognised by BERT, in fact BERT only has

a vocabulary of 30522 words (Nayak, Timmapathini, Ponnalagu, & Gopalan

Venkoparao, 2020). If a word is not in the BERT vocabulary then the tokeniser

will break the word down into recognisable tokens which can in fact be word

pieces like “int” or “un” as well as words. This process helps to make BERT

robust to previously unseen words. For instance untidy is not in the BERT

vocabulary so it is broken into wordpieces “un” and “tidy”. This can be a

problem because the summation of the word pieces does not always equate to

the semantics of the original word and so meaning can be lost (Nayak et al.,

2020). Once the tokenisation has occurred the words are converted into word

embeddings that are vectors 768 numbers in length. As mentioned previously

these word embeddings have been built to numerically encode the semantic

meaning of each word. It is these embeddings that are then fed to the BERT

PTM as the inputs.

Once BERT has been trained and fine tuned the area of interest is the output,

as this generally contains the information of interest for the task at hand. For

each NLP task there is a different model added to the PTM. For classification a

classification model is added to the PTM. The model takes the final information

from the BERT model (encoded into a single classification token) and uses a

linear classifier model to change the output into probabilities for each potential

classification. The final classification is selected by picking the classification

with the largest probability. The output from the BERT PTM is a probability

for each possible classification.
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Utilising BERT.

The first step of the utilising the model is to tokenise the input text. This

tokenisation takes the input text e.g. MO text and splits the text into tokens.

Most of these tokens will be the words, but as mentioned above BERT only

recognises 30,522 words and so some words will not be known. These unknown

words are split into word pieces that are known. Unlike other NLP models

there is no standardisation of the language through shortening words to their

lemma, or removing stop (high frequency) words. One choice that is available

is either to keep using cased words or transform all letters to lower case. As

these documents are typically not edited the tokeniser was set to change all

letters to lower case.

Before initiating the BERT model hyperparameters that govern the models

behaviour have to be selected. Essentially hyperparameters exist because there

is no proven way to optimise how a PTM learns given the data it is to be trained

on. As mentioned earlier these hyperparameters include the size of the data

batches as the data is fed to the model, the learning rate, how quickly the model

changes adjusts to the data it has seen and the amount of times the model sees

each piece of data (number of epochs). The batch size was set at 16 the lower

of the two recommendations in the original paper (Devlin et al., 2018). For the

learning rate we again choose the smaller recommended value (2e-5) the tuning

of which is governed by the recommended Adam optimiser. To compensate

for the lower learning rate we choose a larger value for the number of epochs

than that suggested to ensure the models do not stop training short of a good

solution. Initially the number of epochs was 8 but that is reduced on a per

model basis as necessary with feedback from the validation data.

For each epoch the validation data was used to compute model metrics. This

allowed a view of when the model had stopped showing general improvement

and was then overfitting to the training data. Once the training was finished

the validation set labels were computed by the model to produce classifications

for each text in the validation set, typically 200 MO texts or 100 incident logs.

Theses classifications were then used to compute model metrics. As discussed

in part 1 the metric selected was the Mathews Correlation Coefficient (MCC)

which is robust to imbalanced class problems. As an additional step for the

active learning sequence the model that had just been trained would then also

label all of the remaining unlabelled data so that the next batch for labelling

120



Chapter 9. Methods 9.3. Pre-trained Language Models

could be selected.

Models can then be saved to a hard drive much like other files for later reuse

if required. Typically only the model weights are saved not the entire model

framework.

Once the active learning had finished, and no more data labelling was to be

completed, the model was ran ten times on the final training set. BERT models,

as with all deep learning models, have random elements to the training process

so the results can be slightly different on each training run. Therefore the final

training was completed 10 times with the best model being selected by the

resulting MCC metrics.

9.3.2 Longformer

BERT models are powerful, but they do not scale well for longer pieces of

text, for that reason the BERT model is designed to only take up to 512

tokens as an input. Some researchers have previously circumvented this limit

by splitting longer pieces of text into two documents, running the model for

the two documents then combining the output, however as context from one

part of the document may no longer affect the second this approach is seen as

sub-standard (Beltagy, Peters, & Cohan, 2020a). For this reason BERT models

were not suitable for the longer police incident log text which as we have seen

can be over three times longer than the MO text.

The Longformer model (Beltagy et al., 2020a) was therefore chosen to classify

the police incident text as this architecture is designed for longer pieces

of text. The Longformer models use a very similar architecture to the

BERT models, in that they are both based on the transformer architecture.

The Longformer models, however, have modified the method for calculating

Attention. Attention is the method for identifying contextual information

across the whole text sequence. Calculating Attention in BERT is quadratic to

sequence length, but in the Longformer architecture the model architects were

able to modify the calculations so that it can now be calculated linearly with

sequence length, though with some loss of specificity (Beltagy et al., 2020a).

Thus they are able to accept longer sequences of texts. The Longfomer models

were used in the same way as the BERT models, with a separate tokeiniser

provided by the transformers package for data preparation.
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Even though the Longformer architecture is designed for longer pieces of text

the models are still computationally expense to run. In order to minimise the

computational expense the batch size was reduced to 8 to reduce the amount

of texts that the model would consider at anyone time. The remainder of the

models hyperparameters remained the same as the BERT model.

All of the PTMs used in this research have now been introduced and an

explanation of how they were utilised given. The next section reviews how the

models performance was judged after they had been trained on the training

data set with hyper parameters selected with the validation data.

9.4 Model Performance

The previous sections have explained how the data was labelled and how the

NLP models were trained. This section will now explain how, with a trained

model, the performance of that model was explored. Typically performance,

especially in computer science, is heavily predicated on how correct the model

was. In essence consideration is only given to accuracy and similar metrics

such as MCC. Here though we recognise that for a model to be used in service

with the police, and most likely all public service settings, the model needs to

be more than just accurate. Using the ALGO-CARE mnemonic introduced

earlier, we see that accuracy is only one factor in a list of eight factors that are

described for using algorthims in a police context. As before we highlight

the two additional factors described in ALGO-CARE that pertain to the

implementation of these models. Firstly the framework asks “Is appropriate

information available about the decision-making rule(s) and the impact that

each factor has on the final score or outcome?” in relation to how explainable

the results are and secondly “What are the post-implementation oversight and

audit mechanisms e.g. to identify any bias?” as the results should be challenge-

able. With these factors in mind the performance of the models will be further

explored through explainability and bias. These investiagtions are discussed in

more detail below.

Throughout the research model performance will be judged on a randomly

selected test set. Test sets were randomly selected from the data before any

data was removed for training. None of the test set will have been used for

either the training or the validation of the model fine-tuning. This means that
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during performance assessments the test set is new to the model. Therefore,

metrics from the test set provide a reasonable assessment of how the model will

perform on unseen texts.

MCC =
(TP ∗ TN–FP ∗ FN)√

(TP + FP )(TP + FN)(TN + FP )(TN + FN)
(9.1)

Where: TP = True Positive, TN = True Negative, FP = False Positive and

FN = False Negative.

9.4.1 Metrics

As mentioned in the first part of this thesis, there are a multitude of different

model metrics that can be used to judge a models performance. Selection of the

model metrics should be based on the type of problem and dataset used. In this

instance the problem was one of classification with an imbalanced data set i.e.

one of the potential classifications was much rarer than the other. As outlined

earlier Mathews Correlation Coefficient (MCC) is a good metric for this type

of problem as it gives a standard score between 0 and 1 independent of the

number of classification categories i.e binary or across more than 2 possibilities.

Secondly unlike more basic metrics such as Accuracy the metric is able to

account for imbalanced classes where rare instances may be difficult to predict.

MCC was calculated using the scikit-learn package in python (Pedregosa et

al., 2011), the equation for MCC is given in Equation 9.1. This metric is the

primary metric for understanding how well the PTM got the classifications

right overall. However, also of interest is how did the PTM came about its

classifications (explainability) and how well did the PTM do across groups of

instances within the dataset (bias).

9.4.2 Explainability

As explained earlier in Chapter 4 how a model came about its predictions is just

as important as if it got the predictions correct, as being able to explain how

a model is making decisions builds trust in the model. To be explainable the

model must be able to explain or show why certain classifications were given.

As mentioned in Chapter 4 these can either be global explanations, where the
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model can be explained for every possible input, or local explanations where

the explanation is centred on the individual instances to be classified. For deep

learning and in particular NLP it is very difficult to produce global explanations

because of the vast array of possible inputs, for this reason we focus on local

explanations using the LIME package introduced earlier.

LIME

LIME (Local Interpretable Model-agnostic Explanations) (Ribeiro et al., 2016)

is an algorithm that is used to explain why a model has made a certain

prediction. In essence the model takes a real individual instance to be predicted

then modifies that instance slightly, in the case of texts it removes one or more

words. The model of interest is then re-ran on the modified instance and the

new output noted. Recall that in classifications models the output is a set

of probabilities for all classifications and not just a single classification. So

even if the final classification has not changed, it is likely that the underlying

probability of that classification will have changed. Modifications (of the same

instance but modified in a different way) are repeatedly selected on a number

of occasions so that a local representation of a number of similar but distinct

instances can be built. With these modified instances and their resulting

probabilities a simpler local model, such as a linear regression, can be built that

is then more easily interpretable. The coefficients of the resulting regression

can be used to understand the effects of the modifications and therefore of the

feature modified on the final probability. Thus at a local level the prediction

can be explained by how much a particular feature (or word) is responsible

for changing the probability. See Figure 9.2 for a simplified pictorial example,

where the bold red cross is a whole MO text, and the smaller red crosses would

be the text with some of the words removed. The black dashed line is then the

linear model from which the coefficients of the removed words can be deduced

and their impacts understood.

LIME Implementation.

In order to get a view of explainability the LIME model was ran on all of the test

set after the final classification model for each problem. For each MO or incident

text random perturbations were conducted 100 times ( selected based on trials,
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Figure 9.2: Toy LIME example. The bold red cross is the original unmodified
instance ( original text) , smaller red crosses are the modified instances (texts
with a word removed). The resulting black line is from the regression and is
the learned explanation that is locally faithful i.e built on a single text. The
true complex decision boundary is represented by the pink/blue background
and is true globally, although generally unknown. Reproduced from (Ribeiro,
Singh, & Guestrin, 2016)
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there was little variation in output at 100). This 100 iterations produced a

single linear model for each MO text. Once complete the coefficients from each

of the resulting linear models were pooled across the entire test set so that a

broader view could be taken on the words that were most important for the

classifications. This data is then presented in a word cloud, where the size of

the word is related to the how important that word is for the final classification

in the whole of the test set. The larger the word in the visualisation the more

important it was for classification of the police text in that problem. If the

words make sense to a human for the classification, then it is likely that the

model is using the words to form a judgement in a similar manner to how

a human would use them. However, if the larger words don’t seem sensible

for a classification then it maybe that the model has picked up on a spurious

correlation in the training set. These visualisations then allow a judgement

to be formed on how the model is working - if this is is inline with human

expectations then the model can be considered more trustworthy than had it

not been.

9.4.3 Bias

In Chapter 4, three broad areas were identified as sources of bias. i)Data

coverage relating to the inconsistencies of reporting crime to the police. (ii)

Data completeness - where the police may or may not systematically record

different levels of detail about certain crimes or from certain sections of the

community. (iii) Finally algorithmic bias was introduced, which given the data,

was the algorithm making more or less errors in certain parts of the data.

The first two are difficult to quantify in the study because the only data

available is the police data. We do not have access to the totality of crimes

conducted, nor do we have access to perfect descriptions of the crime to

understand if there are important elements systematically missing from the

police descriptions. The final type of bias, algorithmic bias is within the gift of

this research to identify and is an important element for consideration.

Algorithmic bias typically occurs in PTMs because of the data that was used

in the pre-training phase and how that relates to the data being analysed.

For instance if certain police texts are very dissimilar to the pre-training data

then they may not be classified well, additionally if there is bias within the pre-
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training data, that may be carried through to classifications biases of police text

data. For the purposes of this research we split this bias into two categories

those relating to the text and those relating to the crime or incident being

described.

Firstly there are qualities of the texts themselves that can be described through

statistical variables - statistics that are produced from the texts that the PTM

is used with. Examples are the length of the text and the amount of out-

of-vocabulary words. Secondly there are characteristic variables of the crime

being described that the model may or may not be able to deduce from the

text that is used to train the model. For instance the location of the crime or

the gender of the victim. Of course these two types of variables may not be

independent of each other, for instance it is possible, though not evidenced,

that certain victims groups may have shorter crime descriptions because of the

relationship they have with the police. These two variable types are used to

explore potential biases with using PTMs.

In the literature bias is often measured through metrics such as extrinsic bias

(Goldfarb-Tarrant, Marchant, Sánchez, Pandya, & Lopez, 2020). Extrinsic bias

will be used to explore characteristic variables, these metrics are introduced and

explored below.

Extrinsic Bias

“Extrinsic bias metrics measure bias in applications, via some variant of

performance disparity, or performance gap between groups.” (Goldfarb-Tarrant

et al., 2020). As an example of potential extrinsic bias from this research, if a

burglary classifier had higher error rates for male victims than female victims

then this would be an example of an extrinsic bias. Goldfarb-Tarrant et al.

(2020) identifies the two most popular metrics for investigating extrinsic bias,

these are listed and explained below.

But before getting to those definitions we need to remind ourselves of two more

basic definitions, Recall and Precision. Recall can take a value between 0 and 1

and represents the percentage of positive instances that have been returned by

the model. Precision can also take a value between 0 and 1 but in this instance

it represents the percentage that were actually positive from those identified as
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positive by the model. Now the two extrinsic bias metrics are explored.

P (Ŷ = 1|A = x, Y = 1) = P (Ŷ = 1|A = y, Y = 1) (9.2)

Recallx − Recally (9.3)

P (Ŷ = 1|A = x, Y = 0) = P (Ŷ = 1|A = y, Y = 0) (9.4)

Precisionx − Precisiony (9.5)

• Equality of opportunity. Equality of opportunity occurs when

Equation 9.2 is satisfied (Goldfarb-Tarrant et al., 2020). That is where the

probability of being classified as positive (Ŷ = 1), given that the sample

is positive (Y = 1), is the same regardless of what group the sample is

drawn from ( A = x or A = y). Equation 9.2 is based upon recall and

therefore Equality of Opportunity can be measured through Equation 9.3.

Where Recallx represents the recall from the reference group ( sometimes

considered the privileged group) and Recally represents the group of

interest (sometimes referred to as the underprivileged group.(Hardt,

Price, & Srebro, 2016)

• Predictive parity (Verma & Rubin, 2018). Predictive parity is similar

to equality of opportunity above, but relates to the probability of incorrect

predictions as seen in Equation 9.4. In this case parity occurs when the

precision from each group is the same, that is the probability of being

identified, given that it wasn’t a positive instance is the same regardless of

the group the sample is drawn from. Again a simplified form to calculate

the metric is given at Equation 9.5

These extrinsic bias metrics were calculated for each test set. However the

weakness with this approach is that only a single data point is obtained on

which to judge bias. In order to provide more evidence, rather than just

a single metric, a cross-validation process was implemented to provide a

bias estimate with confidence interval. This cross-validation process is

explained next.

For the cross validation process 20% of the available labelled data

was randomly selected (available includes all data labelled for the test,

validation and train data sets). This 20% was used as the test set. The
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remaining 80% was used as the train set. There was no validation set

as the hyper parameters were fixed. A PTM was fine-tuned using the

80% train set then used to label the 20% test set. Bias metrics EoO and

PP were then calculated on the 20% test set. This whole process was

repeated 10 times so that there were 10 sets of bias metrics.

For each bias metric a non-parametric hypothesis test of equal means was

conducted for each metric, testing if the mean of the metric was 0 or not

using all ten data points. A significant p value would indicate bias at a

statistically significant level across the experiment. The mean of the ten

metrics indicates the direction and the size of the bias.

9.5 Summary

In this chapter the main elements of the method have been set out. These

methods will be used in each study and form the basis for the analytical

approach. In summary the main steps are:

1. Label the data. The data will be labelled through an active learning

strategy. The labelled data will then be used to fine-tune and test the

language model.

2. Fine-tune a PTM. The data labelled will be used to fine-tune a PTM,

either BERT or Longfomer. This approach has proven to be quicker

than building a NLP model from first principles which entails feature

engineering.

3. Test. The language model will be tested for performance (using MCC)

, explainability (using LIME) and bias (using extrinsic bias metrics)

to investigate whether the performance of the models is sufficient for

utilisation in a police and POP context.

The next chapters will now introduce each study in turn. Within each study

will be a problem introduction, a review of the methods, the results then a

discussion of what the results mean. There will be four chapters covering the

studies. These chapters will be broken down as follows:

1. Study 1a - Burglary MO data (data - PF1)
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2. Study 1b - Active learning

3. Study 1c - Replication study - Burglary MO data (data - PF2)

4. Study 2 - Police Incident texts (data - PF2)

After the studies the final part will be a broader discussion of the results from

the PTMs and how or if they might be implemented to assist with POP.
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Study 1a: PF1 Burglary MO

10.1 Introduction

The preceding chapters laid the groundwork for this study. Firstly, the rationale

of the study was set out – it is intended to enable POP by identifying intra-

crime variation through the use of free-text data. Thereafter, general theories

of machine learning and NLP were laid out so as to preface the methods chapter

and the general introduction to the data that are employed in the study. This

chapter presents the first study of the thesis, and it focuses on the classification

of burglary MO texts from the PF1 data. The study sets out to classify burglary

MOs by reference to three factors. The first is car-key burglaries, the second is

burglaries in which force is used, and the third is burglaries in which only an

outbuilding is targeted.

The last category was not examined because there were no outbuilding

burglaries in the PF1 data. However, it is explored in the replication study

(Study 1c). The next two chapters are also related to the present study. They

cover 1) the effectiveness of the active learning strategy that is employed here

(Study 1b) and 2) the replication of this study with data from a different police

force (Study 1c).

The primary focus of this chapter is on the utility of PTMs for MO data. Utility

is examined in the context of three questions. Firstly, can PTMs produce

accurate results with police MO data? Secondly, can these results be achieved
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within a reasonable resource envelope? Thirdly, are the models acceptable for

use, that is, are they explainable or affected by bias?

This chapter begins with an overview of the problems and the process by which

they were selected. The use of data is explained, and methods are reviewed

briefly. One method is added to those that were introduced in the methods

chapter, namely the keyword method. This addition facilitates a comparison

between the PTM and current police practice. Finally, the results are presented

and discussed.

10.1.1 Problem overview

In order to test the utility of the PTMs a selection of representative problems

had to be selected. Previous work in the field has focused on burglary data

(Birks et al., 2020; Sheard, 2020) in order to explore effectiveness of NLP. This

study follows that approach and again utilises burglary data to explore NLP

effectiveness. The following sections set out the three classification problems

that were identified as suitable for this study.

1. The first classification problem follows on from the work of (Sheard,

2020). In her thesis Sheard states that “this thesis presents empirical

evidence that failure to disaggregate beyond official crime classifications

risks neglecting heterogeneity of offence characteristics within these. A

potential implication of this is that the spatio-temporal parameters on

which some prevailing crime modelling techniques are based might not

apply to all offences, meaning that any related decision-making could

be misinformed”. Sheard investigated this matter by showing that car-

key burglaries have a different spatial-temporal pattern from non-car-key

burglaries. However, in the process, Sheard observed that differentiating

between the two types of burglary is laborious and time consuming. She

needed much time to complete the process because there were no encoded

variables (flags) in the police data that would enable the crimes to be

differentiated. More formally, this classification task entailed highlighting

burglaries in which a motor vehicle had been stolen. The category of

motor vehicles includes cars, vans, and motorbikes. Although the crimes

in question are often called “car-key burglaries”, if only the keys are

stolen. In this thesis the focus was on the the theft of the motor vehicle
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as the defining characteristic, not solely the keys.

2. The second classification task originated from a discussion between

Dr Daniel Birks and a Detective Chief Inspector (DCI) from Durham

Constabulary. Burglaries in an area of Durham had spiked suddenly.

A preliminary review of the problem led the DCI to believe that the

spike could be attributed to an increase in the incidence of outbuilding

burglaries. However, there were insufficient resources to test this

hypothesis comprehensively because it would have been necessary to read

the available textual information on all burglaries in order to establish a

baseline and to identify a recent trend. This problem is representative of

the tasks that a police force may wish to undertake. Burglaries of entire

homes may be considered more harmful than burglaries that only target

outbuildings. Consequently, police forces may wish to understand intra-

crime variation and to allocate resources accordingly. The classification

task, therefore, was to highlight burglaries in which only an outbuilding

(and not a home) had been broken into; burglaries that had targeted both

an outbuilding and a home had to be excluded.

3. The final classification task was designed to complement the first two.

Both outbuilding burglaries and car-key burglaries are relatively rare

(approximately 9% of burglaries in the PF1 data involved theft of a motor

vehicle), leading to imbalanced classes within the data. A complementary

classification with more balanced classes is needed, that is, one in which

the act is mentioned much more frequently than the theft of a motor

vehicle. A review of a selection of MO texts resulted in the use of force

to enter a building being chosen because almost every text appears to

contain such information. Use of force is present in approximately 60% of

the MO texts, yielding a much more balanced problem. This classification

task, therefore, focuses on the method of entry into a building and the

use of force. The use of force within the home, for example to destroy

furniture, is not included.

The three classification tasks are intended to yield a superior understanding

of intra-crime variation within the burglary MO data. These problems are

representative of the tasks that an analyst or a police officer may wish to

undertake. The next section summarises the data that are used to explore

these classification tasks.
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MO 1 “Attacked property is mid town house with driveway to the front
along with gardens to both front and rear located within a residential
area. At time stated person/s unknown go to front door and open letter
box and using unknown instrument hook door key from a shelf in the
porch. Use same keys to open front door and gain entry remove two
sets of car keys from the porch area. Go to a XXXX parked on the drive
gain access using keys. Make off at speed with both vehicles direction
of travel towsrds XXXX having been disturbed by the occupant.”

MO 2 “Attacked property is a large detached dwelling on a busy road.
Property is surrounded by large fences, gates and bushes. Between
times stated suspect approach rear patio doors at locus and attempt
to gain entry by using mole grip type implement to snap lock. Lock
snapped however unable to gain entry. Suspects then use molegrip
type implement to snap lock on front porch door. Lock snapped, door
opened and house alarm sounds. Suspects jump over wall at front of
dwelling, get into vehicle parked opposite and make off down XXXXX
in direction of XXXXX.”

Table 10.1: An example of MO texts from PF1 Burglary data. Reproduced
from Birks, Coleman, and Jackson (2020).

10.2 Data

The data were introduced in Chapter 8. For this study only the burglary data

from the PF1 data was used. The text data was taken from the Crimenotes

column. Examples of the MO texts can be found in Table 10.1. The PF1 data

had already been processed, exact mechanisms unknown, to replace identifiable

information with ’XXXXX’. No other data processing was undertaken. There

were 9,961 burglary MO texts in total, spanning two years of data.

The data was split into three sets as previously mentioned. The test set was 200

randomly selected texts. The validation set was 200 randomly selected texts.

The training set was selected using an active learning strategy. Active learning

is explained in the methods chapter and the effectiveness explored separately

in the next chapter. In total 1200 MO texts were labelled manually for the test

sets.
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10.3 Methods

The methods of all of the studies were introduced in the methods chapter.

Accordingly, this section only presents a brief outline and highlights points of

divergence the stated method.

10.3.1 Labelling

The data were labelled by a single individual, the author. Data selection for

the labelling of the test set was completed by using an active learning strategy.

The batch size for active learning was 100. Each model (“use-of-force”, “motor

vehicle stolen”, and “outbuilding”) was labelled according to a separate active

learning strategy. However, in order to generate more labelled instances and

because the additional time cost was marginal, every MO that the author read

was labelled for all catergories, independently of the applicable active learning

strategy. For example, when running the active learning model for the use of

force, the MO texts were selected by finetuning the force model. However, each

MO text was labelled as “force”, “outbuilding”, or “motor vehicle stolen” when

the author read it.

After several hundred MO texts had been read, it became clear that burglaries

of outbuildings were not mentioned in any of the MO texts. For this reason,

the analysis of that category was discontinued, and no models were finetuned.

In total, 900 MO texts were labelled for the motor-vehicle model by using the

active learning process, and 700 MO texts were labelled for the use-of-force

model. In total, 1,500 burglary MOs were labelled (1500 = 900 + 700 - 100

(because both sets were based on same initial random selection)). The active

learning process, and therefore data labelling, were terminated when the MCC

for the validation set exceeded 0.9.

10.3.2 Fine-tuning the PTM

Modelling was completed by using the BERT-large-uncased model. The model

was utilised through the transformers package on Python, as explained in

the methods section. All hyperparameters were set in the manner that was

described in the methods Chapter. The hyperparameters were not tuned,
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except for the selection of epochs (5) for the final fine-tune. A total of 200 MO

texts were used for the test set, and another 200 were used for the validation

set.

10.3.3 Performance

As described in the methods chapter, three aspects of performance are

examined here. MCC is used for overall performance, LIME is used for

explainability, and extrinsic metrics are employed to examine bias. Since no

victim data are available, the statistical properties of the MO are used to

determine whether its length and style of composition have implications for

model classification.

In addition to these performance metrics, a fourth aspect was added for the

purposes of this particular study. That addition entails comparing the PTM to

the workflow that analysts use at present. To that end, a basic keyword search

was conducted. The search could be completed relatively easily on readily

accessible software such as Microsoft Excel. This keyword modelling process is

explained below.

Keyword Model.

The keyword model is based on simple searches for keywords that are likely to

feature in the MOs. The model is designed to represent methods that police

analysts and/or police officers use at present. Accordingly, it is designed to be

relatively simple. The keyword model does not use complex rules in which

words can be chained or their presence negated to develop more intricate

searches. In essence, if an MO text contains a keyword, the model labels it

as a positive example.

The keyword model was developed after reading a substantial number of MOs.

Therefore the keyword search may be relatively good compared to one that

would have been produced without that experience. The model reflects the

manner in which a police analyst may approach their tasks - and so it should

be assumed that they will have had some previous exposure to MO texts. The

keyword list was built from words that were associated with burglaries where a
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motor vehicle had been stolen e.g. (car, motorbike). The keyword list was also

made more robust to unseen data by adding in a list of popular car brands1,

as the vehicle can often be referred to by brand name alone. The final list of

keywords for the motor vehicle model can be found in Table 10.2, A similar

process was used for the force model, and the final keywords for that model can

be found in Table 10.3. The model was built in R, and it searches each MO

description for all of the words on a list. If any of the keywords are present, the

MO is labelled as being in the positive class for the corresponding classification

model.

Although it was built in R, the model could easily have been created in Excel or

through the use of SQL queries (SQL is a database manipulation language with

which police analysts are often familiar). In order to fully explore the differences

between the keyword model and the PTMs, it was important to track another

metric, which is called “recall”. Recall was introduced in Chapter 4 and is

also explained below. Time was also used as a proxy for effort in order to

understand how the burden that analysts must shoulder varies between PTMs

and traditional keyword models.

Recall = TP/(TP + FN) (10.1)

Where TP = True Positive and FN = False negative.

Recall.

Recall is graded from 0 to 1, and it is related to the proportion of examples

that are labelled as positives 10.1. A score of 1 means that all of the examples

are positive. Recall was selected because it is assumed that the police analysts

are interested in finding all ipositive outcomes of a given theme. The downside

of using recall alone is that a trivial strategy of labelling all cases as positive

would yield a recall value of 1 but would not reflect progress in the eyes of

the analysts, who would still be faced with the original sample and all of the

negative instances. However, to the present ends, the metric is adequate for

exploring the differences between the keyword model and the PTMs.

1https://yougov.co.uk/ratings/transport/fame/car-brands/all
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Time

Analysts are busy, and the models that they use must not be too time intensive,

relative to the results that they offer. Time is used here to understand, at a

relatively high level, how much effort an analyst must expend in order to use

a model. It is assumed that test and validation sets are required for each

model. The training sets need only be utilised by the ML models. During

the labelling process, it took the author approximately one hour to read 100

examples. When time is used as a metric, it is important to distinguish between

elapsed time and user time. For instance, reading an MO text makes demands

on the schedule of the analyst, but waiting for a model to run does not – the

analyst can perform another task. Thus, labelling time (user time) is not the

same as model training time (elapsed time).

Bias

This section explains how the PTMs were explored for bias. The PF1 data were

not accompanied by victim characteristics. Therefore, the investigation of bias

in this data set is limited. The PF2 data did include victim characteristics.

Accordingly, bias is explored more thoroughly in the following chapters.

However, it is useful to inquire whether any of the characteristics of the text

data influence the ability of the model to arrive at the correct classification

systematically. Three properties were investigated for bias in this study. The

first was the length of the MO text. Longer MO texts may contain more

information and thus be easier to classify. Recall that BERT can only recognise

certain words. Words that are not recognised in their entirety are broken

down into pieces until the process can be ran successfully. For example, untidy

becomes “un, ti and dy”. Pieces of words are investigated by reference to count

per MO and as a proportion of the length of the MO text.

The metric of interest is the Pearson correlation coefficient, which allows for

the identification of correlations between a statistical property (e.g., length of

text) and the accuracy of the classification of each MO text within the test

set. Accuracy of classification was defined by reference to the accuracy of the

model probability of classification. For example, if the model predicts that an

MO text is a positive example with probability of 0.7 and the text is in fact a

positive example, then the error is 0.3. Conversely, if the MO text in question
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car dacia lamborghini nissan toyota

alfa romeo ferrari land rover opel van

aston martin fiat lexus peugeot vauxhall

astra focus lotus porsche vehicle

audi ford maserati renault vehicles

audi general motors mazda rolls-royce vespa

bentley honda mercedes saab volkswagen

bmw hummer mg seat volvo

bugatti hyundai mini skoda vw

cadillac isuzu mitsubishi smart

chevrolet jaguar motor subaru

chrysler jeep motorbike suzuki

cireon kia motorcycle tesla

Table 10.2: List of keywords used to populate the keyword model for motor
vehicle stolen.

is, in fact, a negative example, then the error is 0.7.

As noted in the methods chapter, in order to arrive at a robust estimate of bias

rather than a single value of a metric, a multiple random selection approach

was employed to generate a spread – 20% of the labelled data were randomly

selected into the test set. The remaining 80% were used to train the model.

Once the model had been trained, the 20% test set was used to generate the

required metrics. This process was repeated 10 times with different random

selections of the test and training sets. Each selection would produce a different

value for the metric. Therefore, 10 values were produced for each metric over

the course of the experiment.
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smash prized jemm forc

kick break attack damage

broken snap removed shattered

Table 10.3: A list of keywords used to populate the keyword model for force
used.

10.4 Results

This section will discuss the findings from experimentation of the BERT model

with the PF1 burglary data. The section presents findings that pertain to the

three main areas of analysis, namely performance, explainability, and bias. The

impact of the active learning strategy is discussed in the next chapter. After the

findings have been described, their interpretation is presented in the discussion

section.

10.4.1 MCC

Table 10.4 displays the results for the force model and the motor-vehicle model.

The outbuilding model was not used because of the lack of suitable labels.

These results were generated by using the data from the active learning process

for the corresponding models. The table includes performance metrics from the

PTM and the keyword model. Since separate active learning processes were

used for each model, there was an opportunity to combine the data from each

active learning strategy to finetune a model on a larger set of inputs. The

results from the use of all labelled data (1,500 MO texts) are displayed in

Table 10.5. That table has 10 entries because the model was built 10 times in

order to obtain an accurate spread of results. Recall that the models were built

with an element of randomness; they can be different on each occasion.

Motor Vehicle Model. The BERT model has an MCC of 0.97 and a recall

of 0.94 when using only the active learning data (900 texts) are used(Table

10.4). This increases to an MCC of 0.97 and recall of 1.0 when all labelled data

are used (1500 texts) (Table 10.5.). In comparison the keyword model achieves

an MCC of 0.81 and a recall of 1.0. It is worth noting that the keyword test set
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Motor vehicle Force

Recall MCC Recall MCC

Keyword (Validation) 1 0.65 1 0.56

Keyword (Test) 1 0.81 0.96 0.51

Keyword (Train) 0.97 0.62 0.94 0.45

BERT (Validation) 0.94 0.85 0.94 0.89

BERT (Test) 0.94 0.97 0.94 0.86

BERT (Train) NA NA NA NA

Table 10.4: Selected metrics from the results of Study 1a. These results are
generated only from the MO text that was labeled within the active learning
strategy for that model.

result was unusually satisfactory - the validation set and the train set which

were used to create the model actually had lower MCC scores than the test

set. This is the reverse of what one would expect because the model is usually

always better at classifying the data on which it was built.

Force Model. The results for the use-of-force model are similar. BERT has

an MMC of 0.86 for the model that is built only on the active learning data

(700 texts). When all data (1,500 texts) are utilised, MCC increases to an

average of 0.91. The keyword model, when applied to the use-of-force model,

yields an MCC of 0.51, which is significantly inferior than that of the PTM.

The recall values from the two models, however, are closer to each other. The

keyword model has a recall of 0.96, and BERT has a recall of 0.94.

10.4.2 Time.

This subsection compares the time that it takes to build and run each model

successfully. In particular, a comparison is made between the PTM and the

keyword models. In each case, it is assumed that the test data and the

validation data need to be labelled for the purposes of model development.
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Therefore, they are not be included in the comparisons. It is assumed that

labelling 100 MO texts takes an hour. Additional modelling time within the

active learning process is accounted for, as discussed in the next chapter.

Motor Vehicle Model The motor vehicle PTM uses 900 texts. Labelling

thus took 9 hours. Fine-tuning the model took an additional 7 hours, although

this activity does not call for any human input once initiated – it can be

completed overnight or while an analyst is engaged in other tasks. Only 100

MO texts had to be labelled for the keyword PTM. The knowledge that was

gained from reading the test set, the validation set, and the initial training set

was sufficient to produce a suitable keyword recall model from the validation

set. The keyword model therefore required an hour of labelling and an hour of

research (to expand the list of keywords so as to include plausible alternatives).

Therefore, the keyword model can be built and implemented much more rapidly

– user time is 2 hours. Conversely, PTM demands 9 hours of user time and 7

hours of training.

Force Model. Similarly, the PTMs for the use-of-force model took much

longer to build. In this case, 7 hours of labelling were followed by 6 hours of

finetuning. The keyword model was complete after 90 minutes.

10.4.3 Explainability

LIME was used to examine the PTMs in order to understand which words had

the strongest effect on the classifications. Figure 10.1 is an example of the

LIME output from a single MO text; only the 10 most influential words are

highlighted. The prediction is for a burglary with theft of a motor vehicle. The

words that are highlighted in orange contribute the most to the corresponding

classification; the words that are highlighted in blue count against it. In this

case, the three most important words for the decision were all “Vehicle”.

Although the LIME output that is displayed in Figure 10.1 provides an

adequate visual representation of the operation of the model with a single

MO text, that style of visualisation does not scale well to multiple texts.

Accordingly, a different approach was adopted in order to arrive at a more

general representation of the LIME output from several texts. The general
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Force Model Motor vehicle model

Run MCC Recall MCC Recall

1 0.97 0.99 0.97 1.0

2 0.92 0.96 1.0 1.0

3 0.92 0.96 0.97 1.0

4 0.90 0.94 0.97 1.0

5 0.90 0.94 0.97 1.0

6 0.90 0.94 0.97 1.0

7 0.88 0.93 0.97 1.0

8 0.89 0.94 0.97 1.0

9 0.90 0.94 0.97 1.0

10 0.90 0.94 0.97 1.0

Mean(CI) 0.908 (0.89-0.92) 0.948 (0.94-0.96) 0.973 (0.97-0.98) 1.0 (1.0-1.0)

Best Run 0.97 0.99 1.0 1.0

Table 10.5: Each run represents the fine-tuning of a single model using all the
labelled data. Each run is independent. Results are different between runs as
there are random aspects to fine-tuning that can alter the end result.
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Figure 10.1: Lime Output for a single MO text for the motor vehicle theft
during a burglary model. The model correctly predicts that a vehicle was
stolen. Words highlighted with orange contributed to the positive prediction.
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motor vehicle Force

MO Length 0.092 (0.150 to 0.009) - 0.01 (0.071 to -0.099)

Number of Word pieces 0.007 (0.060 to -0.085) 0.001 (0.065 to -0.067)

Ratio MO Length to Word pieces 0.066 (0.141 to -0.042) -0.004 (0.089 to -0.069)

Table 10.6: This table gives the mean Pearson correlation coefficients between
the probability of classification from the NLP model and the metrics listed
in the first column. The value in the table is the mean of the ten Pearson
coefficients. Figures in bracket are the range.

approach was to run the LIME algorithm for every MO text in the test set. The

coefficients from the local models that were generated for each MO text were

stored, and the word clouds in Figure 10.2 and Figure 10.3 were generated. The

size of a word in the word cloud reflects how important it is for the classification

of all MO texts in the test set. Word sizes cannot be compared across word

clouds.

10.4.4 Bias

Table 10.6 highlights the mean of the Pearson correlation coefficients for the

metric in the first column. The mean was calculated from 10 randomly initiated

model builds, as described in Section 10.3.3. It is clear from the table that there

are no linear correlations between the accuracy of the classifications and the

statistical properties of the MO texts. All correlations are very close to zero,

as are their ranges.

10.5 Discussion

This section discusses the results that were presented in the preceding one. The

section is structured around the questions that were outlined in Chapter 7.
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(a) Words that contributed to a positive classification

(b) Words that contributed to a negative classification

Figure 10.2: Wordclouds from motor vehicle classification model. PF1 data.
These wordclouds were generated using a fine-tuned BERT model on the PF1
data. The larger a word the more important it is for a classification. Words size
is derived from a summation of the coefficients from individual LIME models.
Word sizes are not comparable across figures.

146



Chapter 10. Study 1a: PF1 Burglary MO 10.5. Discussion

(a) Words that contributed to a positive classification

(b) Words that contributed to a negative classification

Figure 10.3: Wordclouds from force classification model. PF1 data. These
wordclouds were generated using a fine-tuned BERT model on the PF1 data.
The larger a word the more important it is for a classification. Words size is
derived from a summation of the coefficients from individual LIME models.
Word sizes are not comparable across figures.
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10.5.1 Can PTMs Classify MO Texts Accurately?

The results in Table 10.5 demonstrate that, in the limited classification tasks

that are explored here, PTMs can classify MO texts accurately. High MCC

scores indicate that the models learn the relevant patterns well and can classify

unseen texts with a high degree of accuracy.

10.5.2 Are PTM better than the basic keyword method?

The results from the PTM and the keyword method are compared in Table

10.4. The keyword model and the PTM have similar recall values, and they

both perform adequately when tasked with finding positive instances. The

MCC values, however, are different. This difference shows that the PTMs are

much more efficient on the whole. Although the keyword models find most of

the positive instances of a classification, they also include many FPs. In other

words, the keyword models classify more negative instances as positive than

they should.

How problematic is this FP issue? The answer to that question depends on

the problem and the number of texts that are overidentified. The absolute

number of overclassifications might be manageable for rare classes because,

even if one takes a large proportion of a small absolute value, the total number

of false positives would be low. However, for more balanced classes, even the

moderate overclassification of a large number of instances may result in the

misclassification of a large absolute number of texts. It is this issue that affected

the keyword model and the different classification problems, as explained in

the section that follows. In the training data set, the number of MO texts

that the keyword method labels as instances of theft of a motor vehicle is

approximately 40% higher than the actual number of such thefts. Sometimes,

for example, the MO describes the vehicle that was used to leave the scene of

a crime, irrespective of whether it was stolen or not. Although the keyword

search exhibits appropriate recall, in that it is likely to discover all of the

burglaries that involved the theft of a motor vehicle, it also mislabels many

other MO texts. Consequently, a thorough check of all labelled MO texts is

necessary for a reliable labelling scheme to be produced. This requirement

causes model building to take longer than previously argued. For example,

there are 9,961 burglary texts, with an underlying base rate of vehicular theft
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of 9% (as estimated from the test and validation sets). The expected number

of vehicular thefts within the burglary texts would therefore be 897. However,

the keyword model classifies 1,727 texts as referring to a stolen vehicle. These

1,727 texts must then all be read for the FPs to be filtered. The estimated time

that this task would consume is 17 hours, based on the earlier assumption of

a reading speed of 100 texts per hour. Therefore, although the keyword model

is much quicker to build initially (2 hours), approximating the performance of

the PTM requires more time (19 hours).

The motor-vehicle classification that was presented above concerns an

imbalanced data class. Accordingly, the keyword model could reduce the

search space to a relatively small size, with an 80% reduction of the set of all

burglary texts (from 9,961 to 1,727). However, since the force model concerns

a more balanced classification problem (the estimated split between instances

in which force is used and instances in which force is not used is 60-40), the

keyword model cannot truncate the search space to the same extent as in the

motor-vehicle classification problem. The use-of-force model can only shrink

the search space by 17% (from 9,961 to 8,268) because the incidence of FP

classifications is too high. For the remaining 8,268 texts, approximately 82

hours of labelling would be necessary to eliminate classification errors so as to

approach the performance of the PTM.

The evidence indicates that the PTMs perform better than the basic keyword

model when tasked with classifying MO texts. Although building PTMs and

labelling texts takes longer initially, the results, as measured by MCC, are far

superior than those of using the basic keyword models for a comparably shorter

period of time. Two issues that have not been explored yet are that PTMs

require specialist skills to operate and that keyword models can be made more

intricate. That PTMs are complex is not in dispute. However, it is possible that

they can be packaged for simple operation by nonspecialists so that there is no

requirement to understand their complexities. However, at this stage, it would

be unwise to dismiss the difficulty of implementing PTMs at police forces.

This problem is discussed further in the final part of the thesis. Secondly,

keyword models can be made more intricate, which would undoubtedly result

in higher MCC scores. This said, PTMs emerged because probabilistic models

were proven to be more robust than intricate rule-based ones – they are easier

to maintain and generally exhibit superior performance when fed with unseen

data.
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10.5.3 Are PTMs explainable?

The evidence from the LIME models indicates that the PTMs use words that

are consistent with human explanations for the classification of MO texts. This

said, it is worth reiterating that the LIME models investigate local models of

a selection of MO texts and that they are not explaining the model in a global

context – not all words will have the same effect in every MO text.

The LIME output from the motor vehicle model (Figure 10.2a) shows that

words such as “vehicle” and “car” are important for the classification of texts.

This tendency is similar to that which humans exhibit and indicates that the

model is operating similarly to a human tasked with classifying the texts. The

model highlights meaningful words rather than ones with spurious correlations.

The words that contribute negatively to the motor-vehicle classification are also

of interest (Figure 10.2b). The words that are selected are more evenly sized

and therefore of similar importance. Most of the words are common, which

indicates that there are no particular patterns in the negation of the positive

classification of motor-vehicle burglaries. This result was expected because

past experiences with MO texts indicate that there are no instances of negative

reporting. For example, no MO text states that a motor vehicle was not stolen.

This, however, is not true of the use-of-force model. The application of force

or its absence is generally noted in those texts.

Similarly to the motor-vehicle model, the LIME output from the use-of-

force model is commensurate to the expected output of a human tasked with

classifying one of the MO texts. “Force” and “smash” are prominent examples.

In contrast to the motor-vehicle model, however, there is also a strong pattern

in the words that contribute to negative classifications. The word “insecure”

is prominent in the negative word cloud.

Although the explanations are local, the LIME output offers an adequate

explanation of the classificatory choices. The “Explainable” section of the

ALGO-CARE framework contains the following question: “Is appropriate

information available about the decision-making rule(s) and the impact that

each factor has on the final score or outcome?”. Arguably, the output is

sufficiently explainable for the classification of each text to be justified. At

the individual level, the texts are explainable, and a justification can be given

for each classification by reference to the LIME explanations. At a global level,
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however, the model is not wholly explainable. If one takes the word “factor”

from the quotation above to denote a word in the MO texts, then the factor

in question cannot be said to have the same effect on the final classification

in all instances. This difference results from the tendency of the model to use

the surrounding context of a word as well as individual words to compute final

effects. This tendency is problematic for all models in which strong interaction

effects between factors are present, not just for text data.

The problem of explainability is unlikely to be settled on these pages. Tests

would need to be conducted with a number of different stakeholders, including

members of the public and police officers. However, the LIME output shows

that the models work as expected, and classificatory decisions are made for

appropriate reasons, that is, they are not based on spurious correlations.

10.5.4 Are PTMs Biased?

Models are biased if their performance differs systematically across types of

instances. As noted previously, the PF1 is accompanied by limited metadata.

There are no victim data on which to test bias. Therefore, only bias against text

statistics is investigated here. Is there any bias that is related to the statistical

properties of the texts, such as length or wording? The limited investigation

did not detect any biases or systematic failings in relation to certain types of

the text, as shown by the Pearson correlation coefficients. This finding has an

important implication – if there is bias against certain victim characteristics

which impacts, say, the length of an MO text, then that bias may not manifest

itself as a degradation in probability accuracy. Therefore, a lack of correlation

between victim characteristic and probability accuracy is not proof of absence

of bias in the recording of the data, only of a lack of bias in model performance.

10.5.5 Limitations

The general limitations are discussed in the final part of the thesis. This section

covers the limitations that are specific to the present study. In general, it has

two main limitations. The first has to do with the number of classification

tasks, and the second has to do with the investigation of bias:
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• Classification Tasks. Only two classifications tasks were selected, and

both are related to burglary. Although the two tasks concern problems

of different types, that is, balanced and imbalanced classes, and although

the results are satisfactory, the generalisability of the results to all types

of crime is limited. The same is true of the applicability of the results

to other classification tasks, such as the identification of burglaries that

only target outbuildings. However, it is clear that there are problems for

which PTMs can be a useful means of classifying MO texts.

• Bias. The bias investigation was severely limited by the lack of victim

data within the data set. Study 1c compensates, for this shortcoming

partially because it draws on victim data from which it is possible to

assess classificatory bias.

10.6 Conclusion

In this narrowly focused study, PTMs were found to classify MO texts

adequately across balanced and imbalanced classes. The tasks were to detect

burglaries that involve the theft of a motor vehicle and burglaries in which

force is used. In addition, the PTMs were found to perform better than simpler

keyword models because they could discriminate more accurately in order to

reduce the incidence of FPs. Despite the longer setup time and, in particular,

the length of the process of labelling training data, PTMs are more efficient than

keyword models. LIME was employed to understand how the models arrived

at the classifications. In all cases, there appeared to be a sound rationale

for the decisions of the models. The words that were more influential in the

classificatory problems were also words that would have been important if a

human had completed the classification tasks. Bias was only examined partially

due to a lack of victim data. There did not appear to be any significant bias

against texts of particular lengths or out-of-vocabulary words. This first study

provides a solid basis for the use of PTMs. However, the use of active learning

was not studied, and the applicability of the results is relatively narrow.

If applicability is to be expanded, it is important to discover whether the

models work satisfactorily when used with other types of police free texts.

Do they work when applied to different crimes? Only burglary was studied

here. Do they work in other police areas, and can they facilitate the processing
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of other types of police data? These questions are answered, in part, in the

subsequent chapters, in particular in the replication study that re-examines the

classification problems that were explored here. That study concerns another

police force. Before the replication study is presented, however, the next

chapter investigates the use of active learning and its usefulness in reducing

the burden of labelling.
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Chapter 11

Study 1b: PF1 Active

Learning

11.1 Introduction

The first study demonstrated that a large proportion of the user time that

fine-tuning PTMs requires is taken up by the creation of labelled data from

which the PTM can learn. Active learning was introduced in Chapter 4. It is a

technique for reducing the labelling burden of training a model. Active learning

is intended to reduce that labelling burden by highlighting the examples that

are most helpful for improving the model. Active learning finds the texts that

are most difficult to classify by using the PTM that has recently been fine-

tuned to classify all unlabelled data. Once all of the data have been labelled,

the instances with the closest individual classification probabilities are selected

for labelling. This study explores active learning in order to determine whether

its expected benefits materialise when it is employed with police data as well

as the extent to which the additional processes slow the modelling process.

11.1.1 Problem Overview

This chapter concerns the fourth supporting objective - Evaluate how effective

active learning is with police data. Effectiveness is judged by observing the

MCC coefficient. If active learning is a better to an alternative (i.e. random)
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labelling strategy, its MCC score for an equivalent number of labelled data

would be higher. This difference in MCC is also considered in view of the

additional process that is required to enact the active learning strategy.

11.2 Active Learning Process.

Figure 11.1 depicts the general process of the active learning strategy. The

first two steps of the process (the top left corner of the figure) are preparatory.

Data are randomly selected and labelled for the test and validation sets. The

third step is the final random selection. This third random selection yields 100

samples for the training set. Once selected, these samples are labelled by hand

and used to fine-tune a model. The fine-tuned model is then used to predict

the classification of all MO texts that are yet to be labelled. Once complete,

the results of the model predictions are used to discover which of the MO texts

the model was most uncertain about. Those texts are then labelled and added

to the training set.

In practice, the output of the BERT model comprises log-probabilities for each

potential classification, be it positive or negative. The absolute values of the

differences in these log-probabilities are then ordered, and the MO texts that

are associated with the 100 smallest values are selected. These 100 texts are

labelled by hand to enable further fine-tuning. The train-predict-select cycle

is repeated until it is decided that no further fine-tuning is necessary. At that

point, the active learning process ceases.

The active learning process in this study was conducted in batches of 100.

The number of 100 was selected because it results in an appropriate labelling

time of around 1 hour. A longer process could have caused the concentration

and the accuracy of the labeller to deteriorate. Selecting smaller batches may

accelerated the convergence of the model predictions because the model would

have adjudicated more often on the texts that were to be labelled. The benefits

of convergence, however, would have been offset by the additional procedural

overheads for each cycle, that is, the time that would have been necessary to

find new data to label, to fine-tune the PTM, and to label all of the unlabelled

data in accordance with the latest model.
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Figure 11.1: Active learning process, Step 1 and Step 2 – random labelling for
test and validation sets. Subsequent steps entail using data that are initially
labelled at random to train a model iteratively and selecting labels on the basis
of model predictions.

11.3 Data and Method

11.3.1 Data

The data that are used in this chapter are the same as in Study 1a. They cover

the burglary MOs from PF1. The classification problems are the use-of-force

and motor-vehicle tasks from the preceding chapter.

11.3.2 Method

MCC scores are compared across models that are finetuned on data from

the active learning process and models that are finetuned on pseudorandomly

selected data. If higher MCC scores are obtained more rapidly with the active

learning method, then active learning is assumed to have been beneficial. The

difference in the number of batches that is required to reach an equivalent MCC

score gives an indication of the utility of active learning.

The ideal method would be to compare the MCC scores from the active learning

strategy with the MCC scores from the models that are based on a random
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approach to data selection. However, the random sampling approach was not

adopted during the labelling of the MO texts. Instead, the active learning

approach was compared to a pseudorandom sampling approach. Random

sampling was not conducted in the course of data labelling because the available

resources were insufficient to employ both the active learning technique and the

random approach.

The pseudorandom sampling was generated by using the labelled text from an

active learning approach that had not been applied to the model of interest. In

this case, the data that were generated through active learning for the purposes

of the use-of-force model served as a pseudorandom comparator for the motor-

vehicle active learning approach. The following paragraphs focus on two issues

that affect this approach and the manner in which they were investigated.

11.3.3 Potential Pseudo-random Problems

The first potential problem with the pseudorandom approach is that properties

inherent in the MO text that make it difficult to classify. Accordingly, the

pseudorandom approach may result in the selection of difficult-to-classify texts,

regardless of the outcome, because it is based on an active learning strategy

rather than on the correct active learning strategy. A random selection of

data would not be of average difficulty because it would be truly random.

Consequently, the perceived effect of the active learning strategy would be

reduced. If this problem genuinely affects the data, there would be a significant

overlap between the MOs that are selected by the use-of-force and the motor-

vehicle active learning strategies.

In addition, and more importantly, there may be a correlation between the

probability of selecting a positive use-of-force MO text and a positive motor-

vehicle MO text through active learning processes. If this is the case, then the

pseudorandom generation would be correlated with the model of interest. For

example, the proportion of motor-vehicle labelled data in the force model would

be higher than what one would expect from a truly random selection. This issue

can be examined by comparing the proportion of active learning subjects (e.g.

motor-vehicle theft) in the pseudorandom data (the data that are selected by

using the use-of-force model). A proportion of active learning subjects that is

close to expectations (i.e., the underlying random base rate) furnishes evidence
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against correlation. Such a finding can be verified by plotting the proportions

of each classification in the selected data.

11.3.4 Pseudo-randomness Checks

The first check entails determining whether there is a large overlap between

the MO texts that are actively selected for both models. To that end, a count

of MOs that have been selected for the two models was completed. To be

counted, an MO had to have been selected through the active learning strategy

for both models in the first n selections, where n is the minimum of the two

active learning pool sizes. A total of 22 MOs were selected for both models from

a pool of 600. Therefore, 3.6% of the two active learning selections overlap.

From this value, it may be inferred that the overlap is not large and that the

inherent difficulty of the texts is not a significant factor in the results.

For the second test, which investigates the potential correlation between the

two model types, plots that depict the proportion of each type of classification

relative to the approach to selection are reviewed. These plots are displayed in

Figures 11.2 and 11.3. The individual plots are explored below. Panel (b) of

each plot is of particular interest for the second test.

Each plot has three lines. The red line denotes the expected random proportion,

that is, the proportion that is calculated from the test and validation sets (400

samples). Assuming that they are randomly selected, this proportion should be

an accurate estimate of the true-population proportion. For the motor-vehicle

model, this proportion is 9%. The grey line denotes the cumulative proportion.

It was calculated at each stage and for each sample, and its value is equal to

the total number of positive samples divided by the total number of samples

at a given stage. The black line is the batch proportion, that is, the proportion

of positively labelled samples in a batch of 100.

Panel (b) plots the proportion of data with a positive classification for one

model against the active learning selection of a different model. Therefore,

Panel (b) in Figure 11.2 plots the proportion of positive classifications of

theft of a motor vehicle with the active selection process of the use-of-force

model. If the lines in Panel (b) are in close proximity, then the pseudorandom

selection approximates a fully random one. The chapter now turns to a

detailed exploration of the individual plots, which should indicate whether the
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pseudorandom data selection is a sufficiently close approximation of a random

selection.

Motor vehicle plot We interrogate the lower plot of Figure 11.2 to see if

the lines batch and cumulative proportions are close to the random proportion.

Indeed we find that all lines are very close. This gives confidence that the data

generated for the force model can be thought of as random with respect to the

motor vehicle model.

Figure 11.2: Active labelling - Motor vehicle model. The plots show the
proportion of positively labelled burglary MO texts that were selected based on
the theft of a motor vehicle classification. The labelled index (x-axis) indicates
the order in which the data were selected and labelled. Panel (a) reflects the
proportion of MOs selected that had a motor-vehicle stolen i.e in the second
batch, 42% had motor vehicle stolen. Panel (b) This reflects the proportion of
motor vehicle stolen MOs that were selected during the Force active learning.

Force plot The same procedure was employed to study the bottom plot

in Figure 11.3. That plot covers the data that were selected by the motor-

vehicle model but tested for the proportion of use-of-force cases. As with the
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motor-vehicle plot, the cumulative and the batch proportions are close to the

random-proportion line. Once more, one can be reasonably confident that this

use of the data represents a pseudorandom selection.

The results from the two plots and the investigation of the selection overlap

indicates that the pseudorandom approach is sufficiently random to test the

hypothesis that active learning would be an improvement on random selection

to be tested. The next step entails comparing the MCC scores for each batch

to determine whether the employment of the active learning approach has any

benefits.

Figure 11.3: Active labelling - Force model. Plots showing the proportion
of positively labelled MO notes for a burglary where Force was reported as
being used. The labelled index (x-axis) indicates the order in which the data
was selected and labelled. Panel (a) is for active learning based on Force model
probabilities. Panel (b) is for selection using probabilities based upon the motor
vehicle models.

161



11.4. Results Chapter 11. Study 1b: PF1 Active Learning

11.4 Results

The results are explained for each model separately and then aggregated in

the discussion section. The MCC scores for the active learning data and the

pseudorandom data were compared as outlined above. The MCC scores were

generated by using the validation dataset after each fine-tune. Recall that

labelling ceased when the MCC of the validation set reached 0.9, with 1 being

a perfect score. Active learning for the use-of-force model ceased after seven

batches. Nine batches were needed for the motor-vehicle model.

11.4.1 Motor vehicle model.

Table 11.1 displays the MCC and recall metrics for each of the nine batches of

active learning data. As expected, MCC generally increases as more data are

labelled and peaks at 0.91 with 900 MO texts labelled. The final column in

Table 11.1 displays the score that results from the use of all pseudorandomly

selected data. This MCC score reflects the data that were generated from

seven iterations of the use-of-force model. For a fair comparison, this MCC

score should be contrasted to the seventh batch of the active learning-generated

data. Active learning therefore has an MCC of 0.88, which is higher than the

MCC value for the pseudorandom selection, which is 0.80. If one compares

the score of the pseudorandom selection to all of the active learning values, it

becomes evident that it falls between the scores for the fifth and the sixth sets.

Therefore, the gain in model performance is equivalent to that of labelling 100

additional MO texts.

11.4.2 Force model.

The MCC values for the use-of-force model are presented in Table 11.2 . The

last column of that table represents the MCC score for the seventh batch of the

data that were generated from the motor-vehicle model. The final MCC of the

active learning model is 0.92; the comparable MCC from the pseudorandomly

generated data is 0.89. Once more, the active learning method produces a

higher MCC score than the pseudorandom approach for a comparable number

of labelled data. When compared to the MCC scores for active learning, the

MCC of the pseudorandom selection falls between the fifth and the sixth set,
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Batch 1 2 3 4 5 6 7 8 9 Force (7)

MCC 0 0.38 0 0.66 0.78 0.86 0.88 0.85 0.91 0.80

Table 11.1: MCC metrics for the motor vehicle model with the data selected
through active learning. Each entry is the MCC metric after that batch. The
final column refers to data that was selected using the alternative model (force
model), the number seven in brackets refers to that data being the seventh
batch and for most similar comparisons should be compared to the seventh
active learning batch

Batch 1 2 3 4 5 6 7 Motor (7)

MCC 0.52 0.70 0.82 0.55 0.83 0.91 0.92 0.89

Table 11.2: MCC metrics for the force model with the data selected through
active learning. The final column refers to data that was selected using the
alternative model (motor vehicle), the number seven in brackets refers to that
data being the seventh batch and for most similar comparisons should be
compared to the seventh active learning batch

indicating a gain in performance that is equivalent to that which would result

from labelling 100 additional MO texts.

11.5 Discussion

Active learning has been proven to be successful when used with police MO

data. For both the use-of-force and the motor-vehicle model, the data that were

selected through the active learning approach resulted in higher MCC scores

than the pseudorandomly generated data. In essence, the benefit of active

learning seems to be equal to that of labelling an additional 100 examples, a

14% decrease in the burden of labelling.

Clearly, the active learning approach has certain benefits. However, its use

is not costless. Additional PTM finetuning is required. The model must be

trained and allowed to label each of the texts. Exact training time varies

with the time that it is allocated to finetuning and the generation of model

predictions. For a deep learning model, this amount of time is not negligible.
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For example, at the end of the active learning process, training the BERT

model would take approximately 4 hours. A further hour would be needed to

label the remaining data, contributing significantly to elapsed time.

Active learning also causes the process to become more complex. With several

labellers, the process is delayed considerably because labelling must be co-

ordinated in batches. This additional co-ordination period can also be lengthy.

In practice, subsequent studies with multiple labellers showed that a single

batch of texts is labelled in a 48-hour rhythm, which eases the burden on the

labellers. What could have been achieved in a matter of days took a fortnight.

Additionally it is possible that the size of the batch (100) was too large. Perhaps

labelling at a much reduced rate, say batches of 10 to 50, may have seen

a greater reduction in overall labelling. This is because the model gets the

opportunity to pick out the texts that it finds difficult to classify more often.

Again though this reduction in batch size is likely to introduce proportionally

more time lost to coordination and model building.

Therefore, the desirability of using active labelling is not self-evident. The

decision must reflect a balance between the ease of adopting a more complex

system and the time (both elapsed time and user time) that is available for a

given task. If user time is limited, then active learning can save between 1 and

2 hours per project. It is also likely to result in more positive identifications of

rare classes, providing the labeller with more exposure to MO texts of interest.

However, if results must be obtained rapidly, that is, if elapsed time is of

interest, and if the user can allocate more time to the task, active learning may

be undesirable.

11.6 Conclusion

Active learning is a technique for reducing the amount of data that need to

be labelled for the process of supervised learning to occur. The technique

was used with PF1 data and applied to both the use-of-force and the motor-

vehicle models. In both cases, the active learning strategy produced results

that were superior to those that emerged in consequence of the adoption

of a pseudorandom data selection strategy. However, the reduction in data

labelling was only 14%. In practice, given the additional co-ordination costs
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that the active learning strategy entails, the resource savings are likely to be

insignificant.
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Chapter 12

Study 1c: PF2 Burglary MO

12.1 Introduction

The primary aim of this chapter is to examine the potential for replication of the

work that has been presented so far. Replication is fundamentally important

if work is to be undertaken on a large scale. Police forces in the UK can have

different processes and training standards. Therefore, what works in one force

area would not necessarily also work in another. The main rationale of this

study is to provide further evidence for the purposes of Supporting Objective

2, “Evaluate how effective PTMs are with MO data”.

In addition to replication, this chapter extends the analytic approach in four

respects that reflect the different types of available data. First, the data allowed

for an exploration of bias against victims with certain characteristics. Secondly,

the data allowed for the completion of an additional classification task, namely

an examination of burglaries that involve only entering an outbuilding. Third,

it was possible to use the models that were developed for the PF1 data to

label the PF2 data. This provides insights into the applicability of sharing

the models across different police forces. Fourth, the models were fine-tuned

on data from one year and used to label data from a subsequent year. This

procedure sheds light on the decay of analytic performance over time.

The main finding of this chapter is that the results from PF1 are largely

replicated with PF2, with no significant decline in performance. Accordingly,
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the key conclusion of this chapter is that PTMs are likely to be applicable at

police forces other than the ones that are tested here.

12.1.1 Research Questions

This chapter aims to answer three research questions:

Can the results in Study 1a, the PF1 burglary study, be replicated

in a different police force?

Study 1a inquired whether PTMs can be used to classify burglary MO texts in

two different scenarios, which have to do with the use of force and the theft of

motor vehicles. In each case, the PTMs were finetuned on PF1 data, resulting

in appropriate accuracy. In this study, the PTMs are fine-tuned on the same

problems but with PF2 data. In addition, it was also possible to build a model

for the outbuilding only model. The outbuilding only model was introduced

in Study 1a, but it was not completed because the PF1 data did not contain

references to that type of burglary. The outbuilding only model is intended to

detect whether a burglary targeted only an outbuilding, such as a shed, without

the main home of the victim being breached.

Can models trained with data from one police force be used in

another force?

Fine-tuning PTMs on the same task at two different police forces enables the

models to be used across areas. It also becomes possible to ascertain whether

they are generalisable. If their applicability is indeed broad, then large benefits

are likely to result from the dissemination of the models across police forces,

which would reduce the resource burden of model creation. This problem is

outside of the scope of the first question, which presupposes that the models

are built from data for a particular police force. In this second question, the

models are built with PF1 data then used on PF2 data.
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Are models accurate over time?

Language changes both through the introduction of new words and as a result

of changes in the usage of existing lexical units. In policing contexts, officers

can also be encouraged to record different facts over time. These changes could

potentially change the form or the wording of an MO text. If the language of

MO texts changes so as to differ from the language that the PTMs are finetuned

on, then one can expect performance to deteriorate. Although only two years’

worth of data are used here, this hypothesis is tested by finetuning a model

on data from one period and testing it on data from a subsequent period.

Understanding how or when the performance of a model may deteriorate is

important for ensuring that the model that is being used has been trained

correctly.

12.2 Data

The data that are used in this study are from PF2. They were described

comprehensively in Chapter 8. The PF2 data were whitelisted by the project

team in order to remove personally identifying information. This process was

also described in Chapter 8. The main difference from the PF1 data results from

the addition of victim characteristics, namely ethnicity and sex, as metadata.

This addition is conducive to a more profound investigation of the potential

biases that the PTMs produce.

Beyond victim characteristics, additional details were provided after the models

had been built for validation purposes. Links to stolen vehicles were added in

order to facilitate the validation of the vehicular theft model. A link is an

entry in the police database that indicates whether a vehicle was stolen during

a given burglary. This provides an additional verification that enables the

performance of the finetuned PTM to be assessed. The completion of the

database link results in structured data that is easy to search. PF2 analysts

expect “stolen” links to have higher completion rates than flags (the structured

data that were introduced earlier). A “stolen” link is therefore an appropriate

structured indication of whether a vehicle was stolen. It can be compared to

the model classification of the text data.

The PF2 data also contained more details about the date and time of the
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offences that had been committed. The PF2 data included details on the

years, months, days, and times of offences, whereas the PF1 data included only

months. Consequently, the data on dates can be analysed in greater detail. As

an interesting aside, the PF2 data also cover the period of the initial Covid-19

pandemic in the UK, including the first lockdown. The effects of that lockdown

on intra-crime variation for burglary can also be observed.

12.3 Methods

The methods of this study were introduced in Chapter 9 and recapped in

Chapter 10, which is on Study 1a. The general process is similar to that

which was explained previously. The deviations from the approach that was

described in the general introduction are listed below.

12.3.1 Labelling

As in Study 1a, the fine-tuning of the PTMs is a supervised learning process.

Therefore, labelled data are required for the models. The data were labelled

by two researchers, with the author holding the casting vote in the event of

disagreement. The MO text was selected through an active learning strategy,

as detailed in Chapter 9. On this occasion, the labelling data pool was limited to

burglaries committed between October 2018 and the end of 2019 (as mentioned

in the data chapter, October 2018 coincides with the introduction of the new

data-recording system for PF2). This restriction was introduced in order to

facilitate the investigation of the accuracy of the model over time, that is,

to enable the third research question of the study to be answered. Active

learning was only conducted for the motor-vehicle model (reason explained

later). Accordingly, all PTMs were fine-tuned on data that had been selected

for the motor-vehicle model through active learning. In total, 1,982 MO texts

were read and labelled for the burglary classification models.

Fine-tuning Models

There were no significant differences between the fine-tuning methods that were

applied to the PTMs in this study. Fine-tuning was completed by using the

170



Chapter 12. Study 1c: PF2 Burglary MO 12.3. Methods

same methods as those that were outlined in Chapter 9. The BERT-large model

was used. The hyperparameters were all set in the manner that is described in

Chapter 9.

Performance

The additional data fields that are provided with the PF2 data allowed for a

deeper investigation into bias than had been possible with the PF1 data. Bias

against individuals of certain sexes and ethnicities was explored by comparing

PTMs across different victim characteristics. Bias was explored by using the

metrics Equality of Opportunity (EoO) and Predictive Parity (PP), both of

which were introduced in the methods chapter. EoO is based on recall and

measures the disparity of the probability of a true positive (TP) across groups.

For example, given that a classification is positive, what is the probability of

finding it? PP is based on precision and is a measure of the disparity of the

probability of false positives (FPs) across groups. For example, given that the

model finds that a classification is positive, what is the likelihood that the

classification is correct?

These metrics were calculated for each test set, and a cross-validation

experiment was completed. As noted earlier, a reference group was selected

for each bias in order to determine whether there is a difference between the

reference group and the remainder of the population. The reference groups

were “white European” and “male”, and they were compared to the groups

“all other ethnicities” and “females”, respectively. Unknown and missing values

were excluded from the analysis. 1.

No comparison to a basic keyword model was conducted. The advantages

of the PTMs over the keyword approach were explained in Chapter 5 and

demonstrated in Study 1a. However, it was possible to make a comparison

with another method that police forces may use. Police forces often record

some aspects of intra-crime variation as flags. Flags are typically key words

or phrases that a police officer can select to describe a crime. In the PF2

data, these flags had been selected from a series of dropdown menus on the

crime-recording software. These flags are much easier to search than free-

text data because they are structured and are therefore be used often to find

1The analysis was also conducted with these missing values included in the comparison
groups and there was no significant difference in the result.
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Classification Flags

Motor vehicle

Instrument Used, Key Used, Stolen

Instrument Used, Key Used, Key Used

Property, Conveyance, Car

Property, Conveyance, Motorcycle

Force
Trademarks- Attack Method Premises

Entry Method, Attack Method Premises

Outbuilding
Location, Garage - Includes premises for sale
and repair but does not include petrol station

Domestic—location, Garden - Driveway, Shed

Table 12.1: The keywords used to filter the MO Keywords data column in the
PF2 Burglary data.

crimes of interest. The following process was followed in order to compare the

flags to the model: firstly, a decision was made about the flags that describe

classification types accurately. For example, it was determined which flags

highlight burglaries in which force was used. The list of flags that were used

for each classification is displayed in Table 12.1. Secondly, the monthly counts

of crimes that do and do not meet the criteria of the classification were summed.

This step was completed for both the crimes that were selected by reference to

flags and to the crimes that were selected through the use of the NLP model.

It was possible to compute monthly percentages of positive classifications from

the sums of the positive and the negative classifications. Finally, the percentage

of positive classifications was plotted as a time-series line, and the line plots

were compared.

As mentioned in the data section, there was an additional validity check on

the motor-vehicle classification, namely for the presence of a link between a

stolen vehicle and the crime. These data were also used to check the validity

of the vehicular theft model and were added to the monthly time-series plots

that were described in the previous paragraph. The calculation method was

the same.
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Model Performance Over Time.

Model performance over time was investigated by fine-tuning the model on data

from one period and testing it on data from a subsequent period. All PTMs

were fine-tuned and initially tested on data from the period between late 2018

and the end of 2019. For the replication element of this study, all MCC metrics

were gathered from a test set that was randomly selected from the same set of

dates. However, a separate test set was also built for 2020, which allowed the

model from the earlier time period to be tested on the 2020 data. It is possible

that the 2020 data are not ideal for comparative purposes due to the Covid-

19 pandemic. The pandemic resulted in severe mobility restrictions as the

government tried to curtail the spread of the virus, and it expanded the lexicon

of the general public. However the effect of the pandemic on burglary MO texts

may have been less severe because it is not immediately clear how the pandemic

would change burglary methods and, therefore, the words that the police use

to describe burglaries. However, if there is a significant degradation in model

performance over the years, then the Covid-19-induced variation would be one

source of change that would require further investigation.

PTM transfer-ability

PTMs that were fine-tuned on PF1 data were used to label the PF2 test sets.

MCC scores were calculated and directly compared to the MCC scores from

the models that were built from the PF2 data. For example, the force model

that was built from the PF1 data was used to label the PF2 test set, and the

labels that were generated were compared to the force labels. Comparing the

two MCC scores indicates how accurate a model that is generated by one police

force can be when it is employed by another police force.

12.4 Results

The results of the replication study are presented first. The MCC scores and

explainability are directly comparable to the earlier study of the PF1 data

because the two studies are based on the exact same methods. The estimates of

bias are different because the PF2 data cover victim characteristics. Therefore,
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the metrics of extrinsic bias for the sex and ethnicity groupings were examined.

The comparison with the NLP labels for which the police recorded keywords

are displayed as line plots after the bias results. Thereafter, the exposition

turns to the MCC results for the change in time period and the reuse of models

across forces.

12.4.1 MCC

The MCC results are presented in Table 12.3. The table refers to the test sets

from 2018–2019 and from 2020–2021. However, before these sets are explored,

it is necessary to explain, in brief, how much data were labelled and why.

As detailed in the methods chapter, when the active learning strategy was

used, labelling for the validation set would cease when MCC exceeded 0.9. The

motor-vehicle model, which was selected for labelling first, never achieved this

value (see Table 12.2). For the reasons that are given in the next paragraph,

additional labelling was unlikely to result in increases in MCC. Consequently,

all labelling ceased after the 16th active learning batch.

The motor-vehicle task was selected for labelling first. However, all tasks (i.e.

the use-of-force and outbuilding only tasks) were labelled at the same time. At

Batch 16, enough texts had been labelled to gauge the necessity of additional

labelling for the two other classification tasks. The use-of-force classification

task had achieved an MCC of 0.92 by Batch 5 (see Table 12.2). Therefore, no

further labelling was necessary.

The outbuilding task did not reach an MCC of 0.9 by Batch 16; the MCC scores

stabilised at approximately 0.85 at Batch 5 (see Figure 12.1.). It was therefore

unlikely that additional labelling would increase the MCC score. However, a

single batch of additional active learning was conducted, with a fine-tuned

outbuilding model applied to the final selection. The MCC of the model

(tuned on 16 batches of motor-vehicle and one batch of selected outbuilding

data) did not increase as a result. Therefore, the author determined that no

further labelling was necessary. The data from this 17th batch are omitted for

simplicity.

The MCC scores for the models are reported in the subsections that follow.

An MCC score of 1 is optimal, while a score of 0 is equivalent to a finding of
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Batch 1 2 3 4 5 6 7 8

Motor vehicle 0 0.48 0.65 0.73 0.56 0.82 0.8 0.82

Force 0.52 0.71 0.82 0.88 0.92 0.93 0.88 0.92

Outbuilding 0.33 0.23 0.72 0.84 0.87 0.85 0.85 0.86

Batch 9 10 11 12 13 14 15 16

Motor vehicle 0.75 0.72 0.88 0.86 0.82 0.75 0.82 0.72

Force 0.88 0.92 0.92 0.9 0.92 0.91 0.93 0.91

Outbuilding 0.85 0.86 0.85 0.84 0.86 0.84 0.85 0.86

Table 12.2: MCC values (based on the validation set) for models fine-tuned
on PF2 Burglary data. Batch refers to the active learning batch e.g. after 5
batches of labelling (500 MO texts) the motor vehicle model had an MCC of
0.56

randomness. The results that are discussed below are confined to the 2018-2019

test set. The 2020-2021 test set scores are discussed at a later stage.

Motor Vehicle model

As explained previously, the motor-vehicle model was selected as the first model

for labelling via the active learning strategy. The values of MCC after each

active learning batch, which were calculated by using the validation data, are

displayed in Figure 12.1 and in Table 12.2. The highest value that was attained

was 0.88, which is below the requirement of the stop condition (0.9). Labelling

ceased after the 16th batch because it had become apparent that there were

no further positive classifications within the pool of potential training data.

In other words, the active learning strategy had already selected all MO texts

that refer to the theft of a motor vehicle into the training data, and there were

no more positive examples that could be used for learning. In fact, the last

positive example had been found in Batch 11. It is clear from the plot in Figure

12.1 that the additional negative examples, which formed Batches 12–16, did

not facilitate the fine-tuning of the model. Therefore, further fine-tuning was
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Figure 12.1: MCC scores for the PF2 burglary models. MCC scores are shown
after each iteration of the active learning strategy. The Force and Outbuilding
models peak relatively early on at batch 5 and 6. Whereas the motor vehicle
model peaks at 11. Some of the variation will be attributable to the random
initialisation of the models. Source: Author generated.

deemed unnecessary. Consequently, the fine-tuning stopped after 16 batches,

and the model was tested on the test set.

The MCC scores for the test set can be found in Table 12.3. The model that

was finetuned over 10 runs had a mean MCC score of 0.98, which is indicative

of near-perfect performance. In half of the runs, the model classified each of

the 200 MO texts in the test set correctly. The MCC metrics for the motor-

vehicle model are comparable to the scores from the motor-vehicle model that

was built on and applied to the PF1 data (mean of 0.97).

Force model

The use-of-force model was applied to the same data that were labelled during

the active learning for the motor-vehicle model. The mean MCC score from

the 10 final initialisations on the 2018-2019 test set was 0.93. These scores are

higher than the MCC score for the validation set, indicating that the validation

set may have made the classification of the MO texts more difficult. These MCC

results are comparable to the models that were finetuned and tested on the PF1
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data (mean of 0.91).

Outbuilding Model

The MCC scores for the application of the outbuilding model to the test data

are also better than the validation set scores. The mean of the 10 initialisations

on the entire 2018-2019 test set is 0.90. This is the lowest score across all three

models. The outbuilding model was not built with the PF1 data because they

are not suitable for its purposes. Therefore, the outbuilding results that are

presented in this study cannot be replicated directly.

12.4.2 Explainability

LIME was used once more to understand how the words in the texts contribute

to the final classification. By way of reminder, BERT uses words and their

surrounding context. Therefore, it is difficult to form a global understanding

of the workings of the model. LIME provides a local understanding of each

MO text by deleting words randomly to enable their effect on the final

classification to be discerned. This approach is scaled up in this thesis through

the application of LIME to all MOs in the test set and through the use of word

clouds to highlight the most important words, as identified by the individual

LIME model coefficients. The word clouds for the motor-vehicle, use-of-force,

and outbuilding models are displayed in Figure 12.2 , Figure12.3 and Figure

12.4 respectively.

The word clouds for the motor vehicle model exhibit a similar pattern to those

from the PF1 data, see Figure 12.2. Firstly the most prominent words in

the word cloud for a positive classifications (i.e., a motor vehicle was stolen)

are words that a human might expect to use when completing the same

classification task. The three most important words are “car”, “vehicle”,

and “keys”. It should also be noted that these words are disproportionately

important, which is why their size in the figure is much larger than that of other

words. In contrast, the word cloud for words that contribute to a negative

classification (Panel B in Figure 12.2) contains words that are much more

similar in size. There is no observable theme, likely because the absence of

car theft is not explicitly recorded in the MO texts.
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Motorvehicle Force Outbuilding

Run 18/19 20/21 18/19 20/21 18/19 20/21

1 1.00 0.89 0.93 0.92 0.91 0.94

2 1.00 0.93 0.94 0.93 0.90 0.93

3 0.94 0.88 0.93 0.94 0.90 0.94

4 0.97 0.93 0.93 0.95 0.89 0.93

5 0.94 0.88 0.94 0.96 0.92 0.94

6 1.00 0.91 0.90 0.93 0.91 0.94

7 0.97 0.88 0.90 0.94 0.85 0.96

8 1.00 0.91 0.92 0.95 0.90 0.92

9 0.97 0.90 0.92 0.96 0.91 0.94

10 1.00 0.90 0.95 0.96 0.89 0.92

Mean 0.98 0.90 0.93 0.94 0.90 0.94

Best Run 1.00 0.93 0.94 0.96 0.92 0.96

Table 12.3: MCC values (based on the test sets) for models fine-tuned on PF2
Burglary data. Scores are generated from 10 separate fine-tunes based on all
labelled data. 18/19 refers to the test set from only the years 2018 and 2019,
similarly 20/21 refers to the years 2020 and 2021.
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(a) Words that contributed to a positive classification

(b) Words that contributed to a negative classification

Figure 12.2: Wordclouds from motor-vehicle classification model. PF2 data.
These wordclouds were generated using a fine-tuned BERT model on the PF2
data. The larger a word the more important it is for a classification. Words size
is derived from a summation of the coefficients from individual LIME models.
Word sizes are not comparable across figures. Source: Author generated.
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(a) Words that contributed to a positive classification

(b) Words that contributed to a negative classification

Figure 12.3: Wordclouds from force classification model. PF2 data. These
wordclouds were generated using a fine-tuned BERT model on the PF2 data.
The larger a word the more important it is for a classification. Words size is
derived from a summation of the coefficients from individual LIME models.
Word sizes are not comparable across figures. Source: Author generated.
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(a) Words that contributed to a positive classification

(b) Words that contributed to a negative classification

Figure 12.4: Wordclouds from outbuilding classification model. PF2 data.
These wordclouds were generated using a fine-tuned BERT model on the PF2
data. The larger a word the more important it is for a classification. Words size
is derived from a summation of the coefficients from individual LIME models.
Word sizes are not comparable across figures. Source: Author generated.
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The word clouds for the use-of-force model are similar in the positive

classification case (i.e., force was used). The model uses words that are similar

to the ones that a human might use if entrusted with the same classification

task. However, some of the more important verbs are less prominent, and there

appears to be a stronger focus on nouns, in comparison to the word clouds for

the PF1 data. On the whole, the pattern of the important words is clear

and logical. Unlike the motor-vehicle model, the negative classification, “no

force used”, is often reported, and there is a clear pattern in the second word

cloud (Panel B in Figure 12.3). The word “insecure” is the most important,

for obvious reasons. “Unknown” is also prominent because it is often used to

indicate that the method of entry is unknown, reflecting lack of clear evidence

of use of force.

The outbuilding word cloud is similar in structure to the motor-vehicle

word cloud. The positive classification cloud contains a smaller number of

disproportionately important words. “Shed”, “Garage”, and “garden” are the

most important among them. The negative classification word cloud contains

words that are closer in size and, in general, words that are encountered

throughout all burglary MO texts. Again, this tendency is likely the result

of failure to report on negative classifications explicitly.

Each of the pairs of word clouds indicates that the model uses words that a

human would also rely on in determining the classification of a text. It may

thus be inferred that the models focus on the most appropriate features of the

text and not on spurious correlations. The next section investigates the biases

that the models may exhibit in relation to sex and ethnicity.

12.4.3 Bias

Bias within the models was investigated by reference to the characteristics “sex”

and “ethnicity”. The reference groups were “males” and “white Europeans”.

The models were investigated by exploring metrics of extrinsic bias, EoO, and

PP. Table 12.4 displays the results from the two models that were built from the

active learning data and from the tenfold cross-validation experiment models.

The results are described in relation to the partition of the data, that is, by

reference to sex and ethnicity rather than to specific models. The reader will

recall that 0 is indicative of no bias, that a positive number is indicative of
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bias in favour of the reference group, and that a negative number is indicative

of bias against the reference group. The theoretical maximum and minimum

values are 1 and -1, respectively.

Ethnicity

Two significant p values emerged from the cross-validation experimentation,

and they are both for ethnicity. One is for EoO in the motor-vehicle model,

and the other is for PP in the use-of-force model. In both cases, the mean

shows that there is a slight bias against the reference group, that is, that the

models may discriminate against white Europeans.

A review of the results from the model that was built from the active learning

data indicates that most values for EoO and PP are close to zero, indicating

little bias. Four out of the six EoO metrics are negative; the same is true of five

of the six PP metrics. Once more, both findings indicate that there is slight

discrimination against white Europeans. The results across the models are

mixed. The direction of the bias is only consistent in the outbuilding model.

However, even then, the bias in that model does not produce a statistically

significant result in the cross-validation experiment. In summary, the values

that reflect bias are small, but the results are not sufficiently consistent to

indicate that the PTMs that classify MO texts in the PF2 data are systemically

biased.

Sex

The evidence for bias on the basis of sex is weaker still, and no statistically

significant results emerged from the cross-validation experiments. For PP, the

number of negative values is equal to the number of positive values. For EoO,

the number of positive values exceeds the number of negative ones by one. In

conclusion, there is no evidence that the PTMs that classify MO texts from

the PF2 data exhibit bias against either sex.
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Equality Of Outcome

Model Partition Test set 18/19 Test set 20/21 CV Mean CV p value

Motor vehicle Ethnicity 0.000 -0.040 -0.049 0.001*

Motor vehicle Gender 0.000 -0.129 0.002 0.902

Force Ethnicity -0.022 0.056 0.004 0.593

Force Gender 0.048 0.014 0.004 0.530

Outbuilding Ethnicity -0.012 -0.017 -0.005 0.462

Outbuilding Gender -0.017 0.001 -0.004 0.147

Predictive Parity

Model Partition Actual 18/19 Actual 20/21 CV Mean CV p value

Motor vehicle Ethnicity 0.000 -0.077 0.155 0.078

Motor vehicle Gender 0.000 -0.005 0.045 0.060

Force Ethnicity -0.040 -0.040 -0.108 0.024*

Force Gender 0.091 -0.120 0.001 0.948

Outbuilding Ethnicity -0.012 -0.017 -0.003 0.821

Outbuilding Gender -0.032 0.009 0.000 0.989

Table 12.4: Extrinsic bias metrics for the Lancashire Burglary models. AL
refers to the model built with data selected by active learning, the following
digits represent the year of the test set. The mean refers to the mean result from
the 10 cross-fold validation experiment. The p value relates to the hypothesis
test that the mean, from the cross-fold experiment, is not zero. * is for a p
value that is significant.
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12.4.4 Flag Comparison

This section compares the NLP-generated labels for the three models with the

flags that the police may search in order to identify an intracrime variation of

interest. In addition, the presence of links between stolen vehicles and burglary

is explored.

Motor Vehicle Model

The time-series plot for the motor-vehicle model is displayed in Figure 12.5.

The police-generated labels “Linked vehicle” and “Flagged” should only be fully

considered after 2019 because of the aforementioned change in data-recording

systems. The two striking elements of the plot are that the NLP labels and the

linked-vehicle labels are very well matched (the Pearson correlation coefficient

is 0.94) and that the flags cover much fewer crimes. The latter tendency is

observed across the classifications. In a discussion, the analysts from PF2

recognised that the flags do not have a high completion rate. However, based on

their experience, they thought that the linked-vehicles data would be completed

to a high standard.

An error analysis was conducted in order to explore the differences between

the NLP model and the linked stolen vehicles. The error analysis reviewed 100

MO texts in which the NLP model had identified references to a stolen motor

vehicle but for which there was no linked vehicle. In total, there were 432

errors of this kind. Of the 100 MO texts that were examined, 63 did refer to

a stolen vehicle. Therefore, the classification from the NLP model was correct.

The remainder (37) had been labelled incorrectly by the PTM. The majority

of these errors (21) occurred when only vehicle keys had been stolen. These

erroneous classifications may be useful in the context of vehicular theft because

keys can be used to steal a vehicle after a burglary, but they do not reflect the

purpose for which the model was trained.

Force Model

The use-of-force model only compares flags to PTM labels. The plot is displayed

in Figure 12.6. As with the previous time-series plots, the most notable finding
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Figure 12.5: A time series plot of the motor vehicle classification. Showing
data generated form the PTM model (NLP), linked vehicles and flags. Source:
Author generated.

is that the PTM finds many more burglaries that involved the use of force

than the police officers who use the flag system. Once more, this finding is

consistent with the analysts’ view that the flag system is not used appropriately

in practice. The other notable finding is that the PTM labels appear to be

seasonable – the proportion of crimes in which force is used to enter a building

is consistently higher in the winter months than in the summer months.

Outbuilding Model

The outbuilding model plot displays the PTM-generated labels alongside the

police-generated flags. The plot is displayed in Figure 12.7. Like in the case of

the other two plots, the PTM returns more crimes with a positive classification.

However, the numbers that are returned here are closer than in the other plots.

The early 2020 spike in the two time series coincides with the first Covid-19

lockdown in the UK. This spike may indicate that the lockdown policies resulted

in a proportional shift in burglary types.
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Figure 12.6: A time series plot of the force used classification. Showing data
generated form the PTM model (NLP) and flags. Source: Author generated.

Figure 12.7: A time series plot of the outbuilding only classification. Showing
data generated form the PTM model (NLP) and flags. Source: Author
generated.
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Test Set Model PF2 Model PF1 Data PF1 Model PF1 Data

18/19 Motor vehicle 0.93 0.98

20/21 Motor vehicle 0.80 0.90

18/19 Force 0.91 0.93

20/21 Force 0.90 0.94

Table 12.5: MCC scores for the use of models built with PF1 data and used
to classify PF2 data. PF2 metrics included for comparison.

12.4.5 Model transfer-ability

This subsection reports on the usage of models from one police-force area in

another police-force area. The results are for the use of the PF1 models on

the PF2 data; the reverse analysis could not be conducted for data security

reasons. The MCC results in Table 12.5 show that the models are reasonably

transferable. In each case, the MCC of the transferred model is lower, which

accords with expectations. However, the drop is not particularly significant in

all cases. This finding demonstrates that models that are built with data from

one area can be useful in another area.

12.4.6 Performance over time

Even though the training data only cover the 2018-2019 period, the test sets

were built for both 2018–2019 and 2020–2021 so as to enable observation of

the variation in model performance over time. The results in Table 12.3 show

the results from the 10 model initialisations in which the active learning data

were used to fine-tune the PTM. The mean result for the 10 initialisations is

reported here. There is a sizeable drop in the performance of the motor-vehicle

model, from 0.98 to 0.90. This said, 0.9 may still be adequate, depending on

usage. The performance of the use-of-force model improves slightly, from 0.93

to 0.94 (note that the highest-scoring run of the 2020-2021 set is superior to

that of the 2018-2019 set). The performance of the outbuilding model also

improves. The improvement is larger, with the relevant score increasing from

0.90 to 0.94.
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12.5 Discussion

This section synthesises the results that were presented in the preceding one in

the context of the main research questions that were described at the start of

the chapter. Each question is explored in turn, and the results are compared

to those from the original study, which draws on PF1 data.

12.5.1 Can the results in Study 1a be replicated in a different

police force?

Study 1a set out to determine whether PTMs can be utilised to classify

MO texts. The two classification tasks were 1) “Was a motor vehicle stolen

during the burglary?” and 2) “Was force used to enter the building during the

burglary?”. In addition, Study 1a inquired whether the PTMs are explainable

and whether they work in the way that a human might do, that is, without

relying on potentially spurious correlations in the data. In Study 1a, bias was

examined to a limited extent due to a lack of data on victim characteristics.

The performance results in the replication study were equivalent to the results

from the original study. Both resulted in high MCC scores, indicating that high-

performing models can emerge from the fine-tuning of PTMs. An additional

classification problem was explored in the replication study, namely that of

outbuilding-only burglaries. A model was also fine-tuned for this problem, and

it exhibits appropriate performance and a high MCC score.

If one compares the labels that were generated from the PTMs to the police-

generated flags, one finds that the PTMs return a much higher number of

crimes. Combined with the high MCC scores and the error analysis of the

linked data, this finding suggests strongly that the PTM pattern in question is

a more accurate reflection of intra-crime variation. Again, this result highlights

the advantages of PTMs over existing police processes for exploring intra-crime

variation.

Explainability was tested by having the LIME model generate word clouds

which showed the most important words for each classification model. As with

the PF1 models, the replication study produced word clouds that enhance

trustworthiness. The important words that are highlighted in these clouds are
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entirely consistent with the words that a human may use to make a classificatory

judgement. Therefore, they indicate that the model classifies similarly to a

human.

More data on victim characteristics were available in the replication study

than in the original study. Therefore, the models could be explored so as to

detect bias against individuals of certain ethnicities and sexes. The results

show that there is no evidence of systematic bias in the classifications of the

fine-tuned PTMs. It should be noted that the text seldom made reference to

the characteristics in question.

Therefore, bias was only likely to be introduced indirectly through systematic

variation in the language and/or quality of the MO rather than through explicit

references. It emerged from the bias investigation in the original study, Study

1a, that the length of the texts and the percentage of BERT words were not

correlated with either of the bias metrics. In consequence, even if the MO texts

on, say, Asian victims, had been short, the model would not have necessarily

performed poorly in classifying them. There may be a number of different ways

in which biases can be introduced into the chain that leads from a crime being

committed to the formulation of an MO text and its subsequent classification.

Firstly, the crime may not be recorded because the victim may prefer not to

interact with the police; in such cases, there is no MO text. If the victim

does interact with the police, the interaction might be suboptimal (e.g., due to

language barriers). Consequently, the information that is available might not be

sufficient for an accurate and comprehensive description of the crime. Finally,

a PTM is built on data that are scraped from the Internet. These data are

almost assured to reflect common biases in society and may perpetuate them

through the classifications. The bias investigation in this study only concerns

the last problem, that is, the use of the PTM. The first two channels by which

bias is transmitted are beyond the scope of the study, as explained previously.

The results here indicate that the biases that are inherent in the PTM do not

affect the classification of burglary MO texts in the context of the particular

classification tasks under observation.

In summary, this study replicated the satisfactory results from the original

and extended them, proving that PTMs perform well when tasked with the

classification of burglary MO texts. In addition, the models classify the texts

by using words that are similar to the ones that humans would use, offering

evidence in favour of the proposition that the models are trustworthy. The
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limited investigations revealed no evidence of systematic bias in the model

classifications.

12.5.2 Can models trained in one police force area be used in

another force?

Replicating the first study with data from a second police-force area highlights

opportunities for transplantation. If model performance is unaffected by

transposition, then the utility of the model is higher because models can be

reused across forces without the need to share data. The results have shown

that models can be transferred from one police force to another while retaining

a reasonable level of performance. One implication is that forces can share

models for direct use or seed the start of the fine-tuning of a separate model

and therefore reduce the labelling burden. The practical implications may be

significant, for example if the knowledge that is needed to classify a model is

relatively specialised, as in the case of modern-day slavery crimes.

That models can be reused across forces also has implications for the

implementation of PTMs. In the UK, for instance, there are 43 police forces,

all with similar crime-recording techniques, a common language, and similar

resource pressures. A central repository of models would be useful to all

forces. Such a repository would allow sharing to be maximised and result in

a commensurate reduction in the labelling burden. In addition, the technical

aspects of model running and finetuning could also be conducted centrally,

reducing the training burden across the 43 forces. Expanding the sharing of

models to such an extent would require much more extensive experimentation

than what this study, with its sample size of 2, can offer. Nevertheless, the

results that were presented on the preceding pages are encouraging.

12.5.3 Are fine-tuned PTMs accurate over time?

As language use changes, so does the performance of models. The language

of an MO text reflects intracrime variation. If that variation changes, for

instance in response to the adoption of a new security technique, then so does

the language of the MO texts. Models therefore have to be examined in order

to ensure that they remain relevant to the language that is used. The models
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in the study were trained on data from one year then tested on data from a

subsequent year. There was no perceptible drop in performance in either of

the three classifications tasks. It appears that the models are robust to some

changes that occur over time and even to significant disruptions such as the

Covid-19 pandemic. However, despite the general decline in burglary, there

is no evidence to suggest that a new type of intra-crime variation emerged.

Variation that may have changed the language being used in the second time

period used for this experiment. The evidence of the robustness of the models

to the passage of time is limited, and there is no evidence of robustness to new

criminal techniques and the resultant changes in language. Changes such as

these need to be monitored, and the findings that were presented here certainly

do not imply that the validity of finetuned PTMs does not need to be re-

examined as time passes.

12.6 Conclusions

This replication study provided additional evidence for the proposition that

PTMs can classify police MO texts effectively by extending the problems of the

original to another police-force area and to an additional classification task. In

addition, it was shown that there is no evidence of classificatory bias on the

basis of either sex or ethnicity. The replication study also investigated the

performance of models over time, finding no perceptible drop in classificatory

power. This indicates the models will remain useful over extended periods of

time. However, the study was relatively weak, and a more thorough study

would be required for a definitive assessment of the rate at which models ought

to be refreshed.

The models were also shown to be effective in solving the same problems

with data from different police forces. This finding suggests that it may

be possible for forces to share models. Model sharing would reduce the

labelling, computational, and skills burden of using PTMs considerably. This

may prove important in the practical implementation of PTMs because it

would significantly reduce costs. It could also indicate that the centralised

co-ordination and, perhaps, the development of some aspects of the relevant

labour would be efficient.

These studies showed that PTMs can be effective when used with MO text data
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and across a number of different classification problems. However, MO texts

are not the only texts that police forces generate. Police incident logs contain

both crime and non-crime data. The next case study builds on this work by

using PTMs to classify antisocial behaviour incident logs.
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Chapter 13

Study 2: PF2 ASB Incident

Logs

13.1 Introduction

The last study explored MO data and the use of PTMs to classify texts.

This study investigates the applicability of PTMs to the classification of police

incident logs. Police incident logs are text documents that are generally written

by call handlers as they manage calls for service from the public. Incident logs

are important because police forces do not only tackle crime. In fact, up to

90% of calls for service are not related to crime (Boulton, McManus, Metcalfe,

Brian, & Dawson, 2017) and may therefore only be recorded as incident logs.

By way of reminder, POP is also not limited to crime prevention; it is intended

to reduce all types of harm for which the police can be deemed responsible. An

investigation of the automatic analysis of incident data is therefore important

because it can provide insights into a wide array of problems that police forces

encounter.

This chapter explores the classification of antisocial behaviour (ASB) incident

logs. These logs are a subset of incident logs that have been deemed to represent

ASB. The remainder of this introduction briefly defines ASB before introducing

a research article that influenced then applied the results of this study to

investigate ASB during the pandemic in the UK.
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13.1.1 ASB Definition

A recent briefing paper that was published by the House of Commons Library

(Brown & Sturge, 2021) defined ASB as follows: “Anti-social behaviour

(ASB) encompasses criminal and nuisance behaviour that causes distress to

others. Typical examples include: noisy neighbours, vandalism, graffiti, public

drunkenness, littering, fly tipping and street drug dealing.” Legally, ASB has

also been defined in two different contexts, namely the residential and the

public. In both cases, the definitions are broad and revolve around the impact

of the actions in question instead of defining them. Therefore, ASB is difficult

to define precisely. In essence, it involves activities that have a negative impact

on others but fall short of being crimes.

13.1.2 Published work

This study overlaps with the work that the author completed as part of the

ESRC project Reducing the Crime Harms of the Covid-19 Pandemic. The

author was part of a small team that published a related journal article

(Halford, Dixon, & Farrell, 2022). It explored the effects of lockdowns on

reports of ASB. The results from the present study were used directly in that

article. The PTMs and the classification tasks that were used in this study were

likewise directly influenced by the demands of that article. Therefore, the work

behind this study was driven by two high-level questions. 1) Are PTMs useful

for classifying police incident text? 2) How did ASB reports change during the

Covid-19 pandemic? The first of these high-level questions reflects the true

purpose of the study and forms the subject matter of this chapter. The second

question facilitated the formulation of the question set for the first objective

and is therefore explained in the next section in order to provide context.

I conducted all of the analysis that is presented in the journal article (Halford

et al., 2022), of which the NLP work constituted approximately a third. In

particular, I was the author of the data section, the methods section, and the

NLP appendix.
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13.1.3 Problem overview

The first Covid-19 cases in the UK were confirmed in January 2020, and they

marked the start of the Covid-19 pandemic in the country. Shortly thereafter,

in March 2020, the UK government imposed a national lockdown that restricted

movement across the country and confined its citizens to their homes for long

periods of time. Much has been published about the effects of the lockdowns

on crime (see (Halford et al., 2020) for an initial review on an area in Northern

England and (Langton, Dixon, & Farrell, 2021) for a longer-term perspective

on the impacts in England and Wales). Against the general backdrop of a

decline in crime during the pandemic, the police recorded a significant increase

in reports of ASB. The increase in ASB was initially thought to be due to

lockdown breaches being recorded as incidents of ASB.

The aim of the research paper was to investigate the cause of the increase

in reports of ASB. In particular, the research question that animated the

Covid-19 project was “Were reports of people breaching Covid-19 legislation

the main cause of an increase in ASB reports?”. The alternative theory was

that traditional forms of ASB, such as excessive noise, became more widespread

in consequence of the de facto increase in population density.

Since ASB is not a crime, recording practices are not as rigorous as for crime

data. Consequently, the ASB data that were available were unstructured and

did not enable an examination of intra-incident variation or its variance during

the lockdowns. An additional structured data field was introduced during the

lockdowns, namely a ”Covid” marker that the call handlers could use if an

incident was related to the coronavirus. However, the police analysts were not

confident that this marker had been used consistently or comprehensively due

to the speed with which it had been introduced. Therefore, NLP models were

used to classify the data, and the changes in these classifications were observed

over time. These classifications are explored in the next section.

13.1.4 Classification Tasks

Like the previous studies, this one focuses on the use of PTMs to classify police

texts. The three classification tasks for this study were picked with a view to

answering the questions that are related to the effects of the Covid-19 lockdowns
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on ASB. Those classification tasks are explained below. Examples that enable

the classifications to be differentiated are given in Table 13.1.

1. Traditional ASB. The first question was whether an incident was a form of

traditional ASB or not. ASB can encompass a wide variety of activities.

Another formulation of this question runs as follows: “Could this ASB

incident have happened before the pandemic?”. If it was related only to

a Covid-19 incident, then it could not have occurred before the pandemic

had started. However, if it was a party or a noise complaint, then it

could have happened before the pandemic as long as the complaint did

not focus solely breaches of the Covid-19 regulations.

2. Covid Complaints. The second category is only related to the presence of

a specific complaint about a breach of the Covid-19 regulations. Reports

of failing to wear a face mask is a possible example.

3. Groups. This final category is also related to whether the ASB log

contains a complaint about a group. Groups were assumed to comprise

three or more individuals. References to families were excluded. For

example, the text “Four adults having a party in a garden” would be

assumed to refer to a group.

13.1.5 Article Conclusion

The conclusion of the article is that ASB reports did increase and that

the increase was due in part to reports of Covid-19-realted infringements.

Approximately half of these additional complaints also referred to a traditional

ASB (e.g., noise complaints). Figure 13.1 is taken from (Halford et al., 2022)

and provides a graphical summary of the results from the NLP analysis. The

blue bars represent reports of traditional ASB, and the black line is a forecast

of the ASB levels that would have been expected had there been no pandemic.

They were generated through the use of a time-series forecast. The purple bars

are ASB reports that refer both to traditional ASB and to Covid-19-related

complaints (e.g., failure to wear a mask). The red bars are ASB incident logs

that only refer to Covid-19-related matters. In general, the level of conventional

ASB was consistent with expectations, and the additional reports included

references to Covid-19 regulation breaches. One question that could not be
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Example Text Traditional
ASB

Covid
Complaint

Group

an email request has been made . default
email notification has been made to xxxxx
. com . email received xxxxx xxxxx
22/10/2020 22 xxxxx 12 incident relates
to xxxxx group time of incident xxxxx 22
xxxxx 05 date of incident xxxxx additional
information xxxxx i believe my neighbours
are currently having a party with people
outside of their household . i also believe
that they have done this a few times
recently . location address xxxxx flat xxxx
, the village , xxxx xxxxx road , xxxxx
xxxxx name of persons involved if known
xxxxx is the subject displaying any covid
19 symptoms xxxxx unknown

N Y Y

- INFORMANT reporting there are 6 young
men on motorbikes on the xxxxx way ,
riding round - INFORMANT said he cant
see regs and DOESN’T want to get up close
to them , - INFORMANT said they are
right to the xxxxx way - xxxxx to covid-
19 this is low asb and

Y N Y

Table 13.1: Examples of ASB incident logs and the labelled classifications
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Figure 13.1: A plot showing recorded ASB for one northern police force during
the covid-19 pandemic. Reproduced from Halford, Dixon, and Farrell (2022)

answered, however, was whether the increase in reports of traditional ASB

was attributable to additional ASB or too the lower reporting threshold (the

reporters had an additional reason to call the police, namely the Covid-19

infringement).

The remainder of this chapter follows the same format as the earlier studies that

explored the utility of PTMs when they are applied to free text. The specific

research questions for this chapter were set out above in the classification tasks

Section. Next will be a review of the data, then the methods, the results, and,

finally, a discussion and a conclusion.

13.2 Data

The data that were used for this study consist of ASB incident logs from PF2

for 2020. There are 93,809 logs in total. Incident logs were only included if

their final classification was ASB. A detailed description of the ASB data was

provided in Chapter 8. To reiterate, there are three main differences between

the MO data that were used in the earlier studies and the incident log data

that are analysed here. The first difference is of length – the incident logs are

much longer than the MO texts. The median word count for the MO texts

is 31, and the median word count for the incident logs is 166. Secondly, the

police incident logs are also generated differently. They are ongoing logs of the
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events that transpire in the course of an incident. The logs are rarely edited;

instead, they are generated by operators in control rooms as incidents unfold.

Incident logs are intended only for internal use, whereas MO texts are generally

written post hoc by police officers and intended for external use. Accordingly,

the names of suspects and other forms of personal information are not used

routinely. Thirdly, although the same whitelisting procedure was applied to

texts of both types, that process was tailored to the redaction of MO data

and not to the redaction of ASB logs. Coupled with the different generation

process, this feature of the problem means that a higher proportion of words

were redacted in the ASB logs (8%) than in the MO texts (2%). Close to one

in every 12 words in the ASB logs was redacted.

13.3 Method

13.3.1 Data Labelling

The data were labelled by two researchers according to the classifications that

were outlined earlier. Disagreements between the two labellers were settled by

the author. The data were selected by using active learning and on the basis

of the Covid-19 complaint classification task. As before, a test and validation

set were randomly selected before the training set was developed. The batch

size for active learning was set to 50. Again, this is roughly equal to 1 hour of

labelling for each batch of texts. A total of 900 incident logs were labelled, with

200 logs labelled for both the validation and the test sets and an additional 500

logs labelled for the training set. Labelling ceased when the resources of the

researcher had been expended.

13.3.2 Fine-tuning the PTM

Since the incident texts are generally longer than the MO texts, it was not

possible to use the BERT model from the previous studies. As mentioned

in Chapter 9, the Longformer PTM (Beltagy, Peters, & Cohan, 2020b), a

similar model, was designed for longer texts. The Longformer model was used

throughout the study for the classification of police incident logs. The length

of the text still posed problems for the computing facilities that were available,
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particularly computer memory. For this reason, the hyperparameters of the

model were adjusted to avoid memory problems (i.e., attempting to use more

memory than was available) rather than optimised for model accuracy. Even

after the adjustment of the hyperparameters, the maximum text length had to

be set to 1,500, meaning that the final words of some (< 1%) of the incident

logs would have to be removed when the logs were entered into the model.

In addition, during the fine-tuning of the model, it was discovered that removing

the “xxxxx”token from the incident logs improved classification performance.

In the whitelisting process, the “xxxxx” token replaces words that are not on

the safe list, typically nouns. Therefore, all model fine-tuning was conducted

with the “xxxxx” token removed from the logs.

13.3.3 Performance

Like in the previous studies, performance is measured by reference to MCC

metrics in order to determine the accuracy of the model. Explainability is

explored through the use of the LIME tool. Word clouds were generated.

They contain the most important words for each classification. No metadata

on victim or offender characteristics can be extracted from the police incident

logs. Therefore, the investigations of bias are limited once more. However, as

will be shown later, the investigation of explainability indicates that the word

“Default” may have had an undue influence on the model classifications. On

further inspection, it emerged that the word “Default” is used when an incident

log is generated from a complaint that is submitted via electronic means, that

is, when a member of the public files their complaint through the online system

or via email. For this reason, the partition for the bias investigation is based

on request method.

The term “request method”refers to the channel by which a request is received.

Typically, requests are received by phone or electronically (through online forms

or by email). The data were split into three categories, namely “telephone”

(including emergency and nonemergency calls), “electronic” (including online

forms and email), and “other”(including logs generated by officers). Since the

bias investigation is limited to binary splits of the data, two partitions were

required for each classification. The two partitions are 1) “telephone” versus

“electronic” and “other”, and 2) “electronic” versus “telephone” and “other”.
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These two partitions were examined for each classification type. Therefore,

there are six bias values for each metric. As before, the test set was investigated

and a separate tenfold cross-validation experiment was used to understand the

potential range of values from 10 different models that were trained on different

and randomly selected data, as explained in Chapter 8.

13.4 Results

13.4.1 MCC

The MCC metrics for the ASB police incident logs are generally lower than

in the earlier studies. No classification model achieved an MCC of more

than 0.9. As in the earlier studies, each model was built 10 times in order

to explore variation due to randomness. There was considerable variation

across model builds. Variation occurs due to the random initialisation of the

models. The Groups classification of police incident logs that had the highest

MCC score (0.83). It was followed by the Covid classification (0.81) and then

the Traditional ASB (0.71) classification. The F1 scores were recorded for

comparison. The F1 scores are comparable to but lower (≈ 0.05) than the

scores from the Longformer models that were fine-tuned on standard academic

NLP tests (see Table 7 of Beltagy et al. (2020b)).

13.4.2 Explainability

As in the previous studies, the results for explainability are presented as word

clouds. A satisfactory result is recorded if the larger words within the cloud

have an intuitive bearing on the classification type. Unlike in previous studies,

there is only one word cloud for each classification type. Producing word clouds

for the police incident data required a temporary increase in computer memory.

However, the idea of producing both negative and positive word clouds for each

classification was only implemented after that temporary increase had ended.

Accordingly, only the positive word clouds are available.

The word cloud for the traditional ASB classification is displayed in Figure

13.2. Compared to previous word clouds and other ASB word clouds, there are
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Run Trad ASB Covid Groups

1 0.59 0 0.78

2 0.63 0.78 0.79

3 0.67 0.62 0.8

4 0.68 0.73 0.8

5 0.66 0.81 0.81

6 0.52 0.81 0.77

7 0.59 0.75 0.83

8 0.64 0 0.81

9 0.71 0.74 0.79

10 0.67 0.73 0.77

Mean 0.636 0.597 0.795

Best Run 0.71 0.81 0.83

Table 13.2: Table of ASB model metrics MCC scores for the three ASB
classification problems. Each model was trained 10 times with the same data.

not a few select words that influence the prediction. The word cloud contains

many words of a similar size, indicating that the words in question have similar

impacts on classification. This was analogous to the word clouds in Study 1,

in which there was no direct mention of the nonoccurrence of events (such as

cars not being stolen; see Figures 10.2b and 12.2b).

Figure 13.3 displays the word cloud for the classification of Covid complaints.

This word cloud contains the most important words for determining whether an

ASB log contains a Covid-19-related complaint. The largest word is “Covid”.

This is not surprising, and it indicates that the model is working as expected.

Another notable word is “Default”. There is no obvious connection between

a Covid-19-related complaint and the word “Default”. Though as explained

earlier it is revealed how the model uses that word.

204



Chapter 13. Study 2: PF2 ASB Incident Logs 13.4. Results

Figure 13.2: Word cloud for traditional ASB classification. The top 100 words
that contributed to a positive classification of traditional ASB. Source: Author
generated.

The third word cloud is related to the Groups classification. This word cloud

is displayed in Figure 13.3. The largest words are “group”, “party”, and

“groups”. These words are clearly related to groups or gatherings and indicate

that the model is working on words as expected. another significant though

less prominent word is “males”. This is possibly prominent because most

gatherings that are related to ASB are primarily or exclusively attended by

males. However, if the model seeks male groups exclusively, female groups

may be more difficult to identify. In other words, there may be a bias towards

males being identified as members of groups. Unfortunately, without data

on the sex of the (potential) offenders, this potential bias cannot be explored

systematically here.
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Figure 13.3: Word cloud for Covid ASB classificationWords that contributed
to a positive classification. Source: Author generated.

13.4.3 Bias

Table 13.3 displays the results from the bias investigation. The bias

investigation focuses on complaint transmission methods (by telephone or

electronically). This investigation revealed evidence of bias. The results

are explored by classification type. In each case, the electronic partition is

approximately the negative value of the telephone partition. This finding is not

unexpected because the “other” category is smaller than these two categories.

It was included in order to ensure that it would not have a strong effect, which

it appears not to have had. The result is that the results can be described

exclusively by reference to the “electronic” partition.

The first classification type is “traditional ASB”. The p values for the

tenfold cross-validation experiment indicate that there is bias at a statistically

significant level of both EoO and PP. However, there is a disparity in the

sizes of the bias between the value of the metric from the test set and the

mean value from the CV set. For EoO, the bias is larger in the test set; for

PP, the bias is larger in the CV set. For EoO, which has a negative value
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Figure 13.4: Wordcloud for group ASB classification. Words that contributed
to a positive classification. Source: Author generated.

for the electronic partition, the foregoing supplies evidence of bias against

requests that are submitted by electronic means. In other words, the recall

power for the electronic methods of making requests is lower than that of the

telephone methods. The PTM finds it harder to classify positive instances

of traditional ASB reports that are submitted electronically than to classify

telephone reports. The values for PP are also negative, indicating that the

electronic requests are subject to more errors. As far as PP is concerned, the

equivalent result, formulated in words, would be as follows: among the positive

instances that the PTM found, the accuracy of the positive classifications was

lower if a request had been made electronically.

The next classification type is Covid complaint. The results for EoO and

PP are similar. The test set produces larger absolute-sized metrics than the

CV set. All CV metrics are statistically significant. However, unlike for

the Traditional ASB classification, the signs of the metrics are reversed. In

this case, the bias is against the telephone request method. The size of the

biases for the Covid complaints are larger than the equivalent metrics for the

traditional ASB classification. The EoO outcome is as follows: the PTM finds
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it easier to classify positive instances of Covid complaints correctly when they

are submitted electronically rather than by telephone. The PP outcome, in

words, is as follows: among the positive instances of Covid-19 complaints that

the PTM found, the accuracy of the positive classifications was higher if the

request had been made electronically.

The final classification type was the Groups classification. The group

classification has the smallest bias metrics. Unlike for the other two

classifications, the directions of the bias are not consistent, and not all of the

metrics are statistically significant. The evidence of bias is therefore weaker for

this classification than for the other two. The EoO has mixed signs across the

test set and the CV set results. The CV set results are statistically significant.

The values of the metrics are the smallest across all three classifications; if

there is bias, its effect is small. The evidence of PP bias is weaker still, with

the CV mean no longer statistically significant. The conclusion is that there is

no strong evidence of EoO or PP bias in the group classification.

13.5 Discussion

This section discusses the results that were presented in the preceding one,

particularly by reference to the previous studies that explored the MO data.

The findings of the two sets of studies (MO and Logs) are consistent. However,

there are some important differences that are explored on the pages that follow.

13.5.1 Performance

The MCC metrics for the incident data were lower than the metrics for the MO

data. The models classified incident texts less successfully than MO texts. This

finding is likely attributable to three causes. Firstly, the incident texts were not

edited, and so were contradictory in places. Reading and comprehending such

texts is often difficult for humans. Secondly, less training data were available.

Only 500 texts were used to train the models for the incident texts, whereas

more data (700 and 900 texts) were used to train the models in Study 1a.

Thirdly, the model architecture was different. Recall that the Longformer

model was preferred over the BERT model for the incident texts. The next

paragraphs explore each of these matters in turn and then inquires whether
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Equality Of Outcome

Model Partition Test Set CV Mean CV p value

Traditional ASB Electronic -0.128 -0.067 0.005*

Traditional ASB Telephone 0.103 0.060 0.003*

Covid complaint Electronic 0.264 0.190 0.002*

Covid Complaint Telephone -0.264 -0.175 0.002*

Group Electronic -0.023 0.039 0.007*

Group Telephone 0.018 -0.037 0.006*

Predictive Parity

Model Partition Test Set CV Mean CV p value

Traditional ASB Electronic -0.007 -0.151 0.002*

Traditional ASB Telephone 0.000 0.139 0.002*

Covid complaint Electronic 0.435 0.166 0.003*

Covid Complaint Telephone -0.375 -0.160 0.008*

Group Electronic 0.049 0.014 0.610

Group Telephone -0.004 -0.009 0.754

Table 13.3: Extrinsic bias metrics for the PF2 ASB models. The model is
denoted by the classification task. The partition is the factor used to split the
data. The test set metric is calculated from the original test set. CV refers
to cross validation. CV mean is the mean of metrics from the 10 fold cross
validation experiment. CV p value is the p value for the hypothesis that the
CV mean value is not zero. * indicates a p value that is significant.
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the models are suitable for use.

The data

The incident texts were not edited documents. They contain boilerplate text,

and they were redacted. All of these factors mean that the data to be predicted

(the incident texts) were dissimilar to the original training data on which the

PTMs were first trained (the pretraining data). When the data to be predicted

are different from the pretraining data, models become less powerful because

they do not learn the representations of that language well.

In broad terms, there are two solutions to this problem. Firstly, the model can

be pretrained on similar data from the outset. In this case, incident log data

can be used much earlier than Wikipedia data. However, such a solution would

require vast amounts of data and computing power.

Secondly, if the model can not be changed then perhaps the data can. Can the

incident texts be changed so that they become more like the training data?If

so, how? Words can be added to the model dictionaries to enable the model to

represent more words. Jargon within the incident texts can be translated into

more widely understood words. The data cannot be redacted, meaning that

security needs to be met in other ways. Boilerplate text can be removed. Every

transformation of the data would require additional effort. If the quantities of

data are large, then the transformations would need to be automated, limiting

the scope of the changes. Which solution works best – changing the data or

changing the model? This remains an open question that ought to be tackled

in future research.

Labelling

Fewer data were labelled for these classifications than in the earlier studies,

which may have resulted in a lower MCC score. In addition, the larger variation

in MCC score across the 10 random initialisations also indicates that the model

did not converge on the optimal solution. More data were required because the

of the larger variation within the texts. Therefore, future researchers, when

confronted with longer unedited texts, may wish to allocate more resources too
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labelling.

Computing power

Although the computing power that was available for the modelling task was

adequate, in that the models could be run, it was suboptimal because the

hyperparameters had to be adapted to in order ensure that the amount of

memory required for modelling would be lower. Unfortunately, this limitation

is a factor when PTMs are used with long texts. Machines with access to larger

amounts of memory do exist, but they are not typically desktop computers.

Longer texts are problematic because such computing facilities are not routinely

available to police forces. This said, the development of cloud technology may

make access to more powerful computers less difficult over time.

When is a model good enough?

“All Models are wrong, but some are useful1 ”.When is a model good enough

for use? In other words, what MCC score needs to be achieved for a model to

be useful? This is an open question that has no definitive answer, but a decision

can be made by considering three questions. Firstly, at what scale is the model

intended to be used? In this instance, the models were used to track the change

in ASB over time. Relative rather than absolute changes were observed, and the

correctness of single instances was not excessively important relative to overall

consistency. However, if the response to an individual instance does matter,

then a higher MCC score is clearly better. Secondly, how good is the model

when compared to an existing process? Typically, the existing process is that

of humans reading texts. Humans are not infallible. They suffer from fatigue,

and they are generally expensive. A total of 93,000 texts were classified. As

a conservative estimate, a single individual would need 124 working days, that

is, 24 working weeks (or approximately half of the working year), to read those

texts. In short, without the PTM, the work would not have been completed.

Thirdly and lastly, what is the cost of an error? There are two possible ways to

commit an error, a false positive and a false negative. The costs of the two may

differ. For instance, the cost of missing a domestic abuse crime may be larger

than the cost of expending resources on a crime that is not domestic abuse.

1Attributed to George E.P. Box.
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Each problem entails specific cost-related trade-offs, and these trade-offs affect

the robustness requirements for the model.

In short, although the performance metrics that were used here can point to

models that are superior to others and quantify the likely errors, they cannot

be used in isolation to determine whether a model should be used. Important

considerations also emerge from the investigations of explainability and bias

that follow.

13.5.2 Explainability

The explainability results for the incident text models are similar to those for

the MO models in Study 1. Specific mentions of a classification, such as a Covid-

19 complaint, were associated with related words that were more prominent.

The traditional ASB classification, which is not related to a specific type of

incident, produced a more homogenous word cloud, reflecting the wider spread

of possible descriptions.

One notable exception emerged from the explainability investigation. It was

highlighted by the word clouds. This exception was the prominence of the word

“Default” in the Covid classification. The word “Default” is used primarily

when an email or an online complaint is added automatically to the police

incident logs. The word thus denotes the channel by which the complaint

was received. On the whole, 64% of online and email reports contain Covid-

19 complaints. The corresponding figure for the telephone reports is 22% (see

Figure 13.5 for all percentages). Therefore, a complaint made by email or online

was much more likely to have been a Covid-19 complaint than one made over

the telephone. This can be seen further in the bias statistics. For the Covid

classification, the misclassification rates differ between the electronic and the

telephone delivery methods.

This is a good example of of the importance of explainability investigations and

of their usefulness for improving predictive accuracy. In this case, removing the

standard text that is added to the electronic forms of incident logs is likely to

improve classification because the model cannot use a proxy for logging type.

This text was not removed here, which opens an avenue for future research.
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Figure 13.5: ASB positive classifications by request type. The proportion
of each positive classification by request type. For example 89% of telephone
requests contained traditional ASB. Percentages calculated from all of the hand
labelled data. Source: Author generated

13.5.3 Bias

Although the data could not be examined for bias against victims or offenders

with particular characteristics, it could be examined for bias against particular

request methods. The results contain evidence of bias for two of the

classification types. For traditional ASB, the PTMs were less accurate when

classifying electronic requests. For Covid-19 complaints, the PTMs were less

accurate when classifying telephone requests.

As shown in the explainability section, it was found that the Covid-19

classification method drew on the elements of the automatically generated text

to make predictions about Covid-19-related complaints. This was reinforced

with the bias metrics – the Covid-19 classifier made more mistakes when applied

to the electronic data because it relied on automatically generated text (e.g.,

“Default”) that does not contain information about Covid-19 complaints but

213



13.6. Conclusion Chapter 13. Study 2: PF2 ASB Incident Logs

instead reflects correlations.

The traditional ASB classifier made more errors when applied to the telephone

data. It is evident from Figure 13.5 that the telephone data predominantly

contain logs that are related to traditional ASB. On this occasion, the

explainability section supplies no evidence of words being misused. Therefore,

it is not clear whether this bias is based on the same mechanism, that is, it is

not clear whether there are words or phrases that distinguish the telephone data

from the electronic data. A more profound investigation of the error analysis of

individual logs and the word clouds for the negative classifications is necessary

to understand the mechanisms of bias more adequately.

13.6 Conclusion

In conclusion, the results from using PTMs with police incident texts are

encouraging, even if they are less satisfactory than the results for MO text.

The inferior results are unsurprising. Before modelling, the length of the

unedited texts and the larger loss from whitelisting were noted as factors

that could contribute to inferior outcomes. These factors, coupled with the

suboptimal computing power and the lower volumes of training data that were

available, contributed to the lower MCC scores. Some of these issues may be

overcome in future research, enabling the power of PTMs to be harnessed more

effectively. Whitelisting can be tailored and perhaps even eradicated if data

are kept on police servers. Text data can be modified to remove automatically

generated text. More computing power can be resourced through the adoption

of more adequate research plans. However, absent substantial developments in

transformer model architecture, the length of the incident logs may continue

to be problematic. This issue has implications for other long texts, such as

witness statements, that police forces may wish to analyse. The next section

summarises the whole chapter.

13.7 Summary

This chapter introduced and tested the use of PTMs with police incident data.

The main difference between this study and the previous ones lies in the type
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of data that were analysed and the model that was used.

This study examined police incident data, which is both longer and less

structured than the MO data that were used previously. More words were

removed from the incident data through whitelisting, and the data constitute

unedited logs that were written as situations were developing. The incident

data also include stock phrases from online and email reports. The incident

logs are generally longer than the MO texts.

The length of the data meant that the BERT model from the previous studies

was unsuitable to the present ends. Therefore, the Longformer model was

used. It is designed for longer texts. The length of the texts also meant

that fine-tuning placed more significant demands on the available computer

memory. Due to the limited memory at the disposal of the researcher, the

hyperparameters were set so as to lower memory requirements rather than to

optimise performance.

Three classification tasks were completed. These tasks were developed in order

to answer questions about breaches of the Covid-19 legislation during the 2020

lockdowns. The classifications revolved around the presence of traditional ASB,

around Covid-19 complaints, and around mentions of groups of individuals

in incident logs. The data were labelled by using active learning, and the

Longformer model was fine-tuned on these tasks. The performance metrics were

lower than for the MO data. They were nonetheless comparable to standard

benchmark tests. This is partly due to the scarcity of computing power and

labelled data for model tuning.

The word clouds from the explainability investigation pointed to an anomalous

word for the Covid-19 classifications, namely “Default”. Further investigation

revealed that the word in question is predominantly used in incident logs that

are based on electronic requests. The PTM used “Default” as a proxy for online

reports, which contained a much higher proportion of Covid-19 complaints than

others. This tendency generated bias against certain reporting channels in the

classification of the incident texts. Victim bias could not be analysed due to a

lack of metadata.

This study showed that PTMs can be used to analyse police incident logs at

a large scale. More powerful computers would be needed to explore the full

potential of PTMs. Biases will also have to be mitigated, especially if the data
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contain phrases that can be used as proxies for external variables.

This was the final case study in this thesis. The next chapter summarises the

results from all of the studies that were conducted.
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Chapter 14

Summary of Study Results.

14.1 Introduction

This chapter concludes the second part of this thesis. Its aim is to draw

the lessons from the previous studies together by reference to the supporting

objectives that were set out in Part 1. The research question is as follows:

Can PTMs be used efficiently to extract information from police free-

text data, and if so what practical applications for problem-oriented

policing does this approach have?

The supporting objectives are

1. Identify the extent of NLP usage with police data.

2. Evaluate how effective PTMs are with MO data. .

3. Evaluate how effective PTMs are with Police Incident data.

4. Evaluate how effective Active Learning is with police data.

5. Identify which parts of the POP process might be best

supported by the use of PTMs.

6. Identify implementation barriers for PTMs.
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14.2 Summary of Study Results.

This section refers to the supporting objectives to explore the cross-cutting

issues that were identified in the studies, as outlined in the preceding parts of

this thesis.

14.2.1 Extent of NLP usage with police data.

This was conducted in the literature survey in Chapter 6. The main findings

from that chapter was that, despite the sporadic use of NLP models to analysis

police-generated data in research, PTMs had not been studied previously. The

study of the PTMs that are applied to police data is important because PTMs

are currently the most powerful NLP models, as judged by academic NLP

benchmarks, and their performance may therefore be superior to that of the

methods that are currently employed to treat police data. In addition, Chapter

6 also indicates that, when they use algorithms and NLP models, the police

are concerned about factors other than performance, such as bias within the

models and explainability. These factors were examined in the studies and in

the performance assessments, which also refer to bias and explainability as well

as to the performance metric MCC.

14.2.2 Evaluate how effective PTMs are with MO data.

The evaluation of the application of PTMs to MO data was the subject of

Study 1a and Study 1c. Study 1a investigated two different classifications by

reference to PF1 MO data. Study 1c investigated three different classification

tasks by reference to PF2 MO data. In addition, Study 1a compared the

PTM models to a simple keyword approach, and Study 1c compared PTMs to

an existing flag method. Study 1c also investigated the application of PTMs

across police forces and over time. The results from the classifications of the

two studies are discussed first, which is followed by an examination of the minor

experimentations.

In Study 1a, two classification tasks were undertaken with burglary MO data.

The first task entailed determining whether motor vehicles had been stolen

during burglaries. The second classification task was to determine whether
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force had been used to enter buildings during burglaries. In both classifications,

the fine-tuned PTMs exhibited high performance, with MCC scores above 0.97.

In the motor-vehicle model, one fine-tuned model labelled every MO text in the

test set correctly. The downside to these PTMs has to do with the labelled data

that are required. PTMs are supervised learning models, which means that they

require labelled data from which to learn. Approximately 900 labelled examples

were needed, equal to approximately 9 hours, or 1.5 days, of labour. In the

case of the PF1 data, there were 9,961 burglaries. Labelling 900 examples by

hand takes less time than reading 9,961 MO texts. However, if the amount of

burglaries of interest is smaller, for example because the area that is subject

to a POP intervention is not large, then spending time on labelling data and

fine-tuning a PTM may be inefficient.

Both studies also investigated the explainability of the models. Explainability

is important because it is conducive to the formation of trust in the models

and because police officers might need to explain how results are generated to

interested parties, including the public. Explainability was investigated though

the LIME tool. The investigation culminated in word clouds that highlight

the most important words for each classification. The word clouds that were

generated from the MO data contained words that a human might use to

complete the same tasks. For example, the word “smash” is prominent in

the use-of-force world cloud, indicating, as one would expect, that if the word

“smash” is used, then a property was broken into. However, when an omission,

such as not stealing a car, is not described, the word cloud can be inconclusive.

An inconclusive word cloud is one in which the words are of a similar size and

in which no words are prominent. This, however, is generally a reflection of the

structure of the MO data.

Bias was also investigated in both studies. The bias examinations used two

metrics, namely 1) EoO, which measures the disparity of the probability of

TPs across groups, and 2) PP, which measures disparity of the probability of

FPs across groups. These metrics were calculated for the test set and then for

10 cross-validation test sets.

Due to the differences in data availability across police forces, bias was

investigated by using different factors for PF1 and PF2. For PF1, bias was

investigated by reference to the statistical characteristics of the MO texts,

namely 1) length and 2) the number of word pieces. Word pieces are important

because they are a measure of how many out-of-vocabulary words are used in
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an MO text. An out-of-vocabulary word is a word that is not included in its

entirety into the predetermined vocabulary of the PTM. For this reason, it is

broken down into multiple pieces that are accessible to the model. For example,

PTM vocabularies do not include the word “untidy” in their vocabulary. It is

broken down into “un” and “tidy”. The bias investigation drew on the Pearson

correlation coefficient to determine whether there was a relationship between

the accuracy of model predictions and statistical properties. No evidence of a

relationship between PTM performance and the number of word pieces or the

length of an MO text was found – there was no evidence of bias. For PF2,

the bias investigation was conducted by using victim characteristics, namely

gender and ethnicity. There was no strong or consistent evidence of bias on the

basis of either characteristic.

In addition, Study 1c investigated the use of PTM models over time and across

police forces. There was no significant drop in performance over time, and

PTMs that are fine-tuned for one force can be used by another. However,

performance deteriorates across forces.

14.2.3 Evaluate how effective PTMs are with Police Incident

data.

Police incident data are different from MO data. The main differences are

that police incident data are longer and less well edited than MO data. The

incident data also contain more words that are redacted in the course of the

whitelisting process. Each of these differences may contribute to inferior PTM

performance. Importantly, due to the length of the incident texts, a different

PTM, Longformer, was used for the analysis.

The police incident data were explored in a similar manner to the MO data

but only for one police force, PF2. Three classification tasks were used to

explore the use of PTMs. These classification tasks were analysed in terms of

performance (by using MC), explainability (by using LIME and word clouds),

and bias (by using the bias metrics EoO and PP). The bias investigation

focused on the method by which complaints are received (electronically or by

telephone).

The performance of the PTMs when applied to police incident data was not as

strong as their performance on the MO data. This said, the results from the

220



Chapter 14. Summary of Study Results. 14.2. Summary of Study Results.

police incident data were comparable to the performance of PTMs when applied

to recognised benchmark datasets from the literature. Some, but certainly

not all, of this decrease in performance may be attributed to factors that are

specific to this study. These factors include 1) the need to redact text and 2)

suboptimal computing power. Data redaction entails some loss of information.

The redaction rate of the police incident texts (8%) was higher than that of the

MO texts (2%). However, the police would not need to make such redactions.

Therefore, if the PTMs had been used by the police, then performance would

not have been hampered by redaction. Secondly, the computing power that

was available for this study was suboptimal. Consequently, the PTMs could

not be fine-tuned optimally, and maximum performance may not have been

attained.

The investigation into explainability revealed that the PTMs were using system-

generated text to aid prediction. System-generated text is text that is generated

by the police computer systems as they process complaints that are submitted

electronically, for example by email. This reliance on system-generated text

was reflected in the investigation of bias.

Since there were no data on victim or offender characteristics, the bias

investigation focused on the channel through which the reports were received.

In broad terms, there are two methods – the public can make telephone calls

(emergency and nonemergency numbers) or rely on electronic means (email or

online forms). The investigation revealed that the PTMs were biased when

classifying incident texts. The bias was consistent with the underlying base

rates of the classification types in the delivery method types. For example,

since a high percentage of Covid-19 complaints had been made electronically,

the PTM was more likely to over classify logs as Covid-19 complaints if they

had been delivered by such means. It is likely that this bias was due, in part,

to the system-generated text, which effectively identified a given log as having

been received electronically.

14.2.4 Evaluate how effective Active Learning is with police

data.

Active learning is a method that is designed to reduce the overall volume of

data that require labelling. Active learning achieves this objective through
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the incremental fine-tuning of a PTM and the use of the resultant model to

select the next set of data to be labelled. The results from Study 1a show

that there was, on average, a reduction of approximately 14% in the volume

of data that had to be labelled. However, this efficiency was partially offset

by the additional processing time that was needed to fine-tune the PTM in

each round of active learning. Therefore, the results are not conclusive, and

the desirability of using active learning depends, in part, on the time that an

analyst has at their disposal (if time is short, active learning is useful because

there are fewer data to label) and the relevant deadline (if close, then active

learning with PTMs may take too long due to the additional processing time).

14.3 Study Limitations

This section reviews the limitations of the studies that were presented in this

part of the thesis. The limitations are reviewed by reference to the aims of the

study.

14.3.1 Problems

In general, the results from the studies are encouraging. However, the problems

that were identified and used to guide the construction of the models are highly

limiting. Only one type of crime, burglary, and one type of incident, ASB, were

examined. Each of these problem areas only has three factors, yielding six

different problem-incident combinations in total from what could be an infinite

combinatorial space. In short, the sample is small. The PTMs were only proven

to be useful for a small set of problems.

14.3.2 Data Types

Similarly, the diversity and the volume of the data were also limited. Only

MO texts and incident logs were considered. Police forces have more document

types in their data stores, including crime summaries and witness statements.

Some of these documents can be long. The documents that were examined here

are relatively short. PTMs were only shown to be useful when applied to data
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in which short documents predominate. Further investigations are required

to determine whether this performance can be repeated with documents of

different types, particularly longer ones.

14.3.3 Explainability.

Although explainability tools were employed, the results were not trialled

robustly. Explanations are context and audience specific, and the explanations

that were generated here were not trialled with those who might use them.

In addition, the explanations that were generated rely on local models; the

global effects of words are not fully understood. However, this deficiency was

mitigated by the use of the LIME tool across 200 texts and the aggregation of

the findings.

14.3.4 Bias.

Three important areas were specified for bias in Chapter 8. The three are data

coverage, data selection bias, and algorithmic bias. Each type of bias can have

an impact on the final results. The bias investigations in this study focus on

algorithmic bias. The other two types of bias were beyond the scope of the

research, but could have affected the results. In the case of POP, prevention

resources can be allocated inequitably. Bias against victims with certain

characteristics could only be investigated by reference to the PF2 MO data.

This area would certainly need to be explored more thoroughly for individual

models to be used operationally.

14.3.5 Conclusion

In conclusion, the use of PTMs with police data was successful. Performance

was proven to be satisfactory, especially with MO texts. Limited evidence

of bias was found; importantly, none of it revealed bias against victims with

certain characteristics. In addition, the explainability tools showed that, for the

most part, the PTMs complete classification tasks by using words that would

make sense to a human reader.
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The conclusion from these studies is that PTMs are useful for classifying police

data. How might this classification be used for POP? Where in the SARA cycle

could it have the strongest impact? These questions are answered in the next

chapter, which applies the results and examines their limitations in the context

of POP and the SARA framework.
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Chapter 15

Implications for POP

15.1 Introduction

This is the first chapter of the third and final part of the thesis. The aim of this

part of the thesis is to draw together the lessons from the previous two parts

and to explain their meaning for the future of POP and NLP. This chapter

synthesises the results from the previous studies in order to meet Supporting

Objective 5, “Identify which parts of the POP process might be best supported

by the use of PTMs.” The next and final chapter focuses on avenues for future

research on the use of NLP with police data.

This chapter has three sections. The first section refers to the SARA framework

for POP and identifies areas of the framework where PTMs may be useful. The

second section concerns two additional matters that are related to the use of

PTMs, namely 1) the implementation style of POP in police forces and 2) the

sharing of fine-tuned PTMs. The concluding section overviews the technical

and physical barriers to the implementation of PTMs in the POP cycle.

15.2 POP Applications

Part 1 explored POP. A POP framework, SARA, was introduced as part of that

exploration (see Figure 3.2). SARA is a four point framework, the elements of

the framework are - Scanning, Analysis, Response and Assessment. Although
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there is a natural order to the framework, it should be stressed that moving

back and forth is encouraged because it enables the process to be refined.

The following sections briefly restates the aims of the elements of the SARA

framework and explores the potential applicability of PTMs.

15.2.1 Scan for Problems

Scanning is the first stage of the process, and it revolves around finding and

defining the problem that is to be solved. By way of reminder, a problem is a

cluster of similar and related incidents that cause harm to the public and can

be considered to be a police responsibility. Problems are not necessarily crimes.

In fact, the ASB from Study 2 is an example of a serious non-crime problem.

Generally, scans are conducted on the basis of prior information, that is, the

individual who scans already has an idea about, for instance, the type of

incident and the variation that they are looking to identify. In this instance,

an attempt is made to confirm or rule out that variation and to find other

problems with the same characteristics. Alternatively, the scan may focus on

problems of unknown form and variation, such as high-harm or novel problems.

This second type of scan is examined at the end of this section.

The scan is conducted with a general idea in mind about the problem type.

As an example we can use the second problem identified in Chapter 10

(10.1.1). The problem was to determine whether an outbuilding or a home

had been burgled in each recorded burglary. The detective was aware of

a spate of burglaries but believed that it had been the result of a high

proportion of outbuilding-only burglaries. In this instance, the suitability

of PTMs can be determined by answering two questions. 1) Are the data

available in a structured format? 2) Is the problem large enough to justify the

labelling burden? The first question is whether there are enough suitable and

structured data to answer the question. Structured data are much easier to

handle and analyse than unstructured data and should always be prioritised.

If structured data are found, then their suitability should be tested, for

example for completeness and accuracy. In the example, some structured

data were available. For instance, crimes are classified as burglaries. These

structured data enable the search space to be reduced but do not enable a

detailed scan of the variation within burglaries. It is known that information
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about the variation of interest (outbuilding or not) is not accessible from the

structured data. Therefore, PTMs are useful for extracting information from

the unstructured data source and for presenting it in a structured manner.

Accordingly, in this thesis, burglaries were classified depending on whether

they only targetted an outbuilding.

The second consideration has to do with the volume of potential incidents that

need to be scanned. All of the studies in this thesis show that PTMs, being

a form of supervised learning, require labelled data for fine-tuning. For PTMs

to be accurate when applied to the data that were used in this thesis, it was

necessary to read and label between 700 and 900 MO texts. This impacted

the utility of the PTMs. For the labelling exercise to be efficient, the pool

of potential incidents must be sufficiently large. If the area of interest had

only had 100 burglaries in the previous year, then the PTMs would not have

been efficient. However, if an area, and perhaps a comparison area, have had

thousands of burglaries, then it becomes more likely that the PTMs would be

efficient.

PTMs are likely to be useful at the scanning stage. Their usefulness depends

on there being a gap in the knowledge that is generated from the structured

data and sufficiently serious potential problems that would justify the effort of

using PTMs (primarily labelling costs). This is predicated on a known problem.

There can be occasions on which the exact nature of a problem is not known, as

alluded at the start of the section. In that case, PTMs and NLP techniques can

be used, but not in the way (supervised) in which they were employed in the

studies here. For unknown problems PTMs must be used unsupervised. In the

unsupervised case, the machine learning algorithm clusters the data according

to the variation that the PTM finds. A similar method was used by Birks et al.

(2020). They clustered burglaries without using prior information about the

desired themes of the clusters. This highlights a key limitation of the use of

PTMs in the way that is explored in this thesis (supervised) – one must know

what problem variation one is looking for in order to explore it.

In summary, PTMs can be useful for the scanning phase of the POP process

because they allow additional information to be unearthed from unstructured

data sources (Study 1a demonstrated how PTMs outperformed current keyword

searches). That information can then be used to solve group problems. Once

grouped, the problems need to be analysed in order to determine how they

occur. This issue forms the subject matter of the next section.
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15.2.2 Analyse in Depth

This part of the framework entails arriving at a more complete understanding

of the causes of problems. What underlying mechanisms generate a given

problem? Although there are some variations between problems, it is important

to identify key areas of overlap. POP practitioners must delve deeper into

problems than in the scanning phase. They must gain more information about

the problems in order to understand developments. This deeper analysis is

likely to involve more unstructured data, and PTMs can facilitate its systematic

analysis. The set of relevant data sources is likely to be expanded. Although

only high-level overviews of the problem may be utilised, the analysis phase is

likely to involve work with more detailed and therefore lengthier documents,

such as witness statements and other police reports.

This thesis showed that as documents become longer, the ability of PTMs

to analyse them efficiently becomes more limited. The structure of PTMs

does not allow computations to be scaled linearly with the length of the

document. Consequently, the PTM analysis of longer documents requires more

computational resources. Study 2 introduced a PTM, Longformer, which is

designed for longer texts. The texts in Study 2, although larger than MO

texts, were not particularly long, in terms of word count, especially if compared

to witness statements. The median length of the police incident logs was 166

words. Witness statements can run to several pages. With each page containing

up to 500 words, they are likely to be longer than police incident logs and

therefore to require more computational resources. The use of existing PTMs

for texts of this length has not been studied extensively. However, one paper

from the medical literature (Gao et al., 2021) indicates that current models

loose some of their effectiveness when applied to long texts (circa 2,000 words).

This loss of effectiveness, coupled with the high computational costs, may mean

that, at this stage of their development, PTMs are not suitable for the more

detailed work that the analysis phase requires. Other NLP models may be

appropriate, depending on the exact nature of the problem and the texts, but

that issue is not investigated here. For instance question-and-answering models

may allow a more detailed extraction of information.

In short, the analysis phase of the SARA framework is not likely to be the most

appropriate for the exploitation of PTMs due to model limitations that have

to do with the lengths of texts. Long texts are required in this phase of SARA
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because of the additional detail required for each incident.

15.2.3 Respond

The response stage is about designing and implementing a response. This

phase is about considering the evidence that has been amassed in the course

of the two preceding stages and about designing a strategy for eliminating the

conditions that cause problems to occur. Ideally, a response should not lean

on enforcement activity and should account for previous solutions to similar

problems. Unlike the first two stages, the third one does not entail reading

similar descriptions of problems and trying to extract information from the

texts. Therefore, this phase is unlikely to benefit from the use of PTMs. PTMs

are most useful when used to complete repetitive tasks. Once a response has

been implemented it should then be assessed to see if it has made the desired

impact.

15.2.4 Assessment

The final stage of the POP framework is assessment. The assessment of

a POP response determines 1) whether it solved the problem at hand and

2) what mechanism caused it to be effective. Assessment normally revolves

around count data and statistical tools that can identify changes. This can

be somewhat limiting because the count methodology is constrained by the

predetermined categories that the police use to record crime. Relying on count

data in this manner can cause variation in crimes within the same classification

to be obscured.

Intra-crime variation might mask the success of a POP implementation. For

example, a popular response to burglaries is to make targets (typically houses)

more difficult to breach. Offenders may then begin to only break into the (less

protected) outbuildings or to rely on open windows and doors (i.e., not forcing

entry). Neither of these changes in variation would manifest in a typical count-

led evaluation strategy because both still constitute burglary. Undoubtedly,

however, if offenders change their techniques, then the POP response may

be said to have affected them. PTMs can identify this intra-crime variation

and thus supplement the count-led assessments of a POP response. It may
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be difficult to determine what variation one must seek. Therefore, additional

consideration of the possible contexts, mechanisms, and observations is required

(Pawson & Tilley, 1997) to prepare the PTMs.

PTMs can enrich POP assessments considerably. A PTM can enable a more

thorough assessment of intracrime variation with the same set of resources.

15.2.5 PTMs in the SARA framework

The analysis above, which is based on the results from the studies that were

presented in this thesis, implies that PTMs can be useful for POP practitioners.

The utility of PTMs is most apparent in the initial and the final stages of the

framework. In both instances, the PTMs are useful for exploring intra-crime (or

intra-problem) variation. At the beginning of the application of the framework,

PTMs are useful for categorising similar problems. At the end of the POP

cycle, PTMs can be used to explore how criminal activity has changed even if

the number of crimes that are classified in the same way remains unchanged.

The utility of PTMs in the response phase is not immediately obvious. PTM

usage in the assessment phase could be expanded if PTMs are improved so as

to work with longer text documents.

The next section reviews the two additional questions that have a bearing on

the utility of PTM usage. How is POP implemented by the police forces that

hope to use PTMs? Can the labelling burden( i.e. the burden associated with

manually labelling text data for the purposes of a supervised model) be reduced

through the sharing of PTMs across police forces?

15.3 Additional Considerations

15.3.1 POP implementation

Chapter 3 introduced two broad approaches to the implementations of POP

– the generalist and the specialist approach. Under a generalist approach,

individual officers are allowed to complete POP cycles. The specialist approach

involves the building of specialist capacity within a police force and within

the unit that conducts large-scale POP interventions. Can PTMs be used for
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each type of implementation? Can PTMs support both the generalist and the

specialist POP approaches?

Two key factors emerge from the research that was presented on these pages.

The two are problem size (i.e., the number of problems to be tackled) and

technical capacity. Problem size is important because PTMs require a certain

amount of sample data to learn. For example, in the PF1 burglary data,

the PTMs required between 700 and 900 MOs texts to learn the classification

accurately. The model could then label thousands of crimes, thus saving time.

However, if the problem is small, for instance because the area of interest is

not large, then the number of problem texts may be insufficient for the training

and use of PTMs. Under the generalist approach, which has individual officers

complete POP cycles, the number of problems may not be large. Consequently,

PTMs may not be useful to such officers. Specialist teams, which might be

operating on a larger scale, are more likely to face problems of an appropriate

size. Therefore, the efficiencies of PTMs are more likely to be realised by

specialist teams.

Secondly, and relatedly, is the resources that are required to utilise a PTM.

These resources include the effort that must be expended to label the texts, the

know-how that is necessary to use PTMs, and computing power. Generalist

implementations may be affected by a lack of resources, whereas specifically

resourced teams are more likely to be able to call on the necessary competence

and hardware. Some of these issues can be overcome through more accessible

tooling. Tooling can automate some of the implementation measures, and

cloud-based solutions can supply additional computing power for short projects.

However, these tools were not investigated in this thesis.

It is likely that, at least in the short term, PTMs will be more useful to

specialised POP units that possess sufficient and appropriate data and the

resources that are needed to implement them correctly.

15.3.2 Model sharing

POP is traditionally associated with the development of centres of excellence

and the dissemination of best practices. This approach could be transplanted

to encompass fine-tuned PTMs. The results from Study 1c demonstrate that

models that are trained in one police-force area can be useful in another, albeit

233



15.4. Implementation Issues Chapter 15. Implications for POP

with inferior performance. Model sharing could reduce the labelling burden

that the use of PTMs entails. Even PTMs that exhibit lower performance

are useful because they can be fine-tuned further on the data of the new police

force and reach the desired performance level. Therefore, the transfer of models

across police forces can be used as a shortcut, effectively reducing the labelling

burden.

The models that are shared should target a specific problem. The problems

that different police forces must solve are likely to overlap. These overlaps mean

that the PTMs that are fine-tuned by one police force are likely to be useful to

another police force. A certain amount of documentation must accompany the

PTMs. That documentation should define the original classification task of the

PTM precisely. For example, in the case of the vehicular theft classification task

from Study 1a and Study 1c, the following details would need to be included

in the documentation:

• The PTM was only fine-tuned on residential burglary data.

• Only data from 2018/19 was used.

• A motor vehicle included cars, vans , motorbikes and quadbikes. But not

mobility scooters.

• The vehicle, not just the car keys, had to be stolen (Some forces are also

interested in the targeting of car keys).

• The vehicle had to be removed from the property to classify as stolen.

The intricacies that emerge in the course of the labelling process as cases at

the boundary of a classification are revealed indicate that there can be subtle

variations in the problems on which a PTM is finetuned. If PTMs are to be

shared, these subtleties must be captured and described alongside the models.

To ensure that the receiving force do not misinterpret the purpose of the model.

15.4 Implementation Issues

This section investigates some cross-cutting issues that may prevent or delay

the use of PTMs in police forces. Most of these issues were mentioned in
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the previous sections, but they are described here as well for completeness.

The implementation issues are explored in three subsections, which concern 1)

physical barriers to implementation, such as infrastructure; 2) technical barriers

to implementation, which are based largely on gaps in knowledge; and 3) ethical

barriers to implementation, which have less to do with the possibility of using

PTMs and are more intimately connected to the desirability of their application.

15.4.1 Physical

This section is related to the physical barriers to using PTMs. These barriers

emerged primarily from work and discussions with PF2. The physical barriers

are generally related to the infrastructure that is required to run the PTMs.

These physical barriers come in two forms, namely hardware and software.

PTMs, especially the ones that are used with longer texts, require higher-

specification hardware than what is generally available to police analysts.

This specialist hardware includes additional computer memory (RAM) and

computing power. The required change, to meet the bare minimum

requirements, is not dramatic – the costs are unlikely to exceed £1,000 per

machine. In short, such an upgrade would be easy to implement if desired.

Upgrading software is more difficult because the police use secure systems.

Software is subjected to a rigorous process for preventing cyberattacks and

data leaks. The work that is presented in this thesis relied heavily on open-

source models and applications from the Internet. At present, they cannot be

used on police computers (at least in the UK). Although as demonstrated by

this work they can be used in a secure working environment.

There are two overarching solutions to these problems – centralisation and

localisation. Centralisation would involve creating a central hub of excellence

where the PTMs would run. Police forces would send their data, some of which

would be labelled, and their queries to the hub. The central hub would then

run the PTMs, conduct explainability and bias checks, and return the results

to the police forces. Localisation would entail providing individual analysts

with more powerful machines and bespoke software, which is yet to be created,

enabling them to run the PTMs and analyse the data. Both solutions have

numerous advantages and disadvantages, some of which are explored in the

technical section that follows.
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15.4.2 Technical knowledge

Technical knowledge is related to the technical know-how that is needed to

implement a solution. One of the reasons for using PTMs is that they do not

require extensive knowledge. Previously, the main hurdle to utilising similar

NLP techniques was the implementation of feature extraction. Since the PTMs

are pretrained, feature extraction is no longer necessary. The main effort that

must be expended is that of labelling the data, which requires subject-matter

expertise that police forces already possess. Knowledge of other technical

matters, such as hyperparameter tuning and tests for explainability and bias,

can be grasped easily by a competent police analyst. Therefore, the use of

PTMs in the manner in which they were employed here entails a technical

burden, but police analysts are generally capable of shouldering it, especially

if provided with specific training.

Implementing PTMs can be simplified further by automating solutions in

order to produce the desired results. Software applications can be built so

as to abstract the intricacies of the implementation of these solutions. This

abstraction requires more initial effort but would enable PTMs to be used more

widely with less training. The interpretation of results, especially results on

bias and explainability, would still require subject-matter knowledge, but this

is a relatively light burden. As with any abstraction, a decrease in flexibility

is to be expected – if a PTM performs poorly, over-reliance on automated

applications may make it difficult to modify the model and/or the data.

15.4.3 Ethical

There are two main categories of ethical considerations. Firstly, there are the

ethical considerations that have to do with bias and explainability. They were

covered in the thesis and are captured, among other issues, by the ALGO-

CARE framework (Oswald et al., 2018). The second category has to do with

the data that are being analysed. The penultimate section of the data chapter

discussed limitations and their implications for bias. The second part of the

present section focuses on the impact of those limitations, specifically those of

data coverage and information completeness.
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Model Implications

The ALGO-CARE framework that was introduced in Chapter 6 allows the

leadership of the police to decide whether it would be appropriate to deploy

an algorithmic tool such as a PTM. The ethical implications that are derived

from ALGO-CARE and which the studies explored are bias and explainability.

Algorithmic tools are often biased toward certain segments of the data. This

bias can manifest in the resource allocations that these tools might influence.

Explainability is important because it generates trust. The model should

produce outcomes on the basis of correct information and not on the basis

of spurious correlations.

These issues were partly addressed in this thesis through the introduction

of methods for the conduct of the analysis and through the presentation of

results on both bias and explainability. In both respects, the results, which are

limited, are promising. In particular, in the cases in which it was possible to

analyse the sex and ethnicity of victims, no evidence of bias was found. The

explainability results were also promising. However, there were some issues

with the automatically generated text (which reflected how the complaint was

made to the please i.e. either electronically or by telephone) that would need

to be addressed further.

The investigations that are presented in this thesis are limited. The studies only

address one type of crime, one type of incident, and a limited set of classification

tasks. In short, this thesis does not present a comprehensive investigation of

bias in the use of PTMs. Therefore, bias remains a valid ground for ethical

concerns about the use of PTMs with police data. These ethical concerns can

be mitigated by conducting bias checks on a case-by-case basis and by utilising

the results from the PTMs only if it is established that they do not raise ethical

issues.

Data Implications

Chapter 3 introduced two limitations of the data that were used in this thesis.

These limitations also extend to the use of PTMs for POP. The first issue is

police data coverage. The police do not learn about many crimes. As explained

in Chapter 3, the resultant gaps are systematic and not random. Nonrandom
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gaps mean that if the police only combat the crimes that they are aware of,

then their resources are not applied equitably. If a biased process becomes more

efficient, it is likely to exacerbate inequality further. If PTMs make POP more

efficient, then POP efforts may be directed to crimes for which appropriate

textual descriptions are available. The resultant pattern would be nonrandom

and would likely causes POP implementations to focus on areas with more

complete crime records to the detriment of others.

The second implication, which is related, concerns the completeness of the

recorded crime data. If it is known that the recording of crimes is influenced

by social and economic factors, then it conceivable that the comprehensiveness

of the information that the police receive varies. One might also reasonably

expect that the relationship between a police officer and a citizen may influence

the amount of information that the latter is prepared to share with the former.

Other factors, such as the absence of a common language, may also reduce

the quality of crime reports. To the best of the author’s knowledge, the

completeness of MO descriptions has not been researched. Likewise, the

influence of victim characteristics on the completeness of police texts has not

been explored. Such studies would be important because PTMs, similarly to

other NLP techniques, rely exclusively on the textual descriptions that are

presented to them. If those descriptions are biased in any way, then so are the

results.

These considerations may affect implementation. As highlighted by the ALGO-

CARE algorithm, the police are required to ensure that PTMs are used

responsibly. These ethical considerations need not prevent the use of PTMs

– the variable quality of police data does not obstruct other crime prevention

efforts – but they must be examined in order to ensure that biases are not

further exacerbated.

15.5 Conclusion

In summary, it has been shown that PTMs can be useful for POP practitioners.

In particular, the PTMs can be used in the scanning phase to search for similar

problems and in the assessment phase to understand how intra-crime variation

may have changed as a result of a POP response. In each case, the PTMs are

used to extract structured information from unstructured text, thus making
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intra-crime variation easier to quantify. In the near term, PTMs are more likely

to be used by specialist POP teams because they tend to face more widespread

problems and to possess the resources that are required to efficiently leverage

PTMs.

There are physical, technical, and ethical barriers to the use of PTMs. The

physical and technical problems can largely be overcome through the provision

of additional computational resources and training. The ethical considerations

are likely to prove less tractable. More research is needed to ensure that the

models do not perpetuate known biases.

The next chapter concludes the thesis by indicating how PTMs can be used

more broadly with police data and what other areas of research would benefit

from the implementation of PTMs for POP practitioners.
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Chapter 16

Conclusions

16.1 Introduction

This is the final chapter of the thesis. It consists of two sections. The first

section explores potential further study to the research that was presented in

this thesis. There are three main avenues for further study. The first avenue

is general next steps, improving the models that were used in this thesis in

the way that they were used in this thesis. The second avenue explore a how

PTMs can be applied in other ways rather than just classifying passages of

texts as done here. The final avenue explores how other text data types might

be available to be analysed with PTMs. The second section of this chapter

summarises the thesis and presents some concluding thoughts.

16.2 Future Research

Research on the use of NLP models with police data is likely to expand

considerably. The field of NLP is growing continuously, and NLP models

are continually improving. The application of NLP to police data is and will

continue to be dynamic research area as NLP techniques improve. This section

is split into three sub-sections. Firstly, there is a section on models. This

section focuses broadly on potential improvements to the study that are beyond

its present scope. The applications section is a brief description of the manner
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in which NLP models can be used more widely and the third explores additional

data types.

16.2.1 Models

This section focuses on the manner in which future research can improve the

models that were presented here. The focus is on the use of PTMs to classify

short texts.

Further replication

The studies that were presented here are narrow in scope. Only one type of

crime (plus ASB) and three types of classification were examined. Although

this was partially replicated across two different police forces, the study should

be expanded to include additional crimes, different classifications, and other

police forces. The replication of the use cases at different police forces would

produce a much more refined understanding of their potential for reuse. If

models can be reused across police forces, the labelling burden would decrease

– only a single model, rather than 43 separate ones (one for each force in the

UK), would need to be produced.

Type

This thesis is based on the BERT model. Other PTMs have been produced

since BERT was first released, and they are available for free use. Each of

these PTMs has distinct characteristics, capabilities, and focal linguistic areas.

By experimenting with different kinds of PTMs, one can discover which one

works best for a specific uses case. For example, ROBERTA (Liu et al., 2019),

a popular PTM, uses a different method to define the words that are used.

It handles previously unseen words more robustly. Police data that contain

numerous acronyms or obscure words may be represented more accurately

by a model of this kind. Consequently, the classifications may become more

accurate. Other models have larger architectures, that is, they enable more

parameters to be tuned. Such models can represent more intricate nuances in

texts and therefore yield more accurate classifications. Model types are likely
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to evolve. The identification of the models that are most suitable for police

data is likely to be a continuous process.

Hyperparameter tuning

Hyperparameters were introduced in an earlier part of the exposition.

Hyperparameters are variables in model formulations that alter the training

of the model slightly. An example of a hyperparameter is the number of

epochs, that is, the number of instances on which the whole training set

is used to train the model. Three epochs were used in this study – the

model saw each piece of training data on three separate occasions. The

tuning of hyperparameters involves adjusting their values in order to optimise

performance. This tuning can be a time-consuming process, but it is important

because an appropriate combination of hyperparameters can improve model

performance. Hyperparameters were not tuned in the studies that were

presented here because the thesis is driven by a desire to use simplified processes

for text classification that can be implemented easily by a police force. The

results from the thesis indicate that default, that is, untuned, hyperparameters

produce satisfactory models. Hyperparameter tuning could lead to more

accurate classifications or to lower requirements for labelled data. In any event,

hyperparameter tuning produce an improvement in model performance and is

thus a suitable avenue for further research.

Outcome weighting

In this research, misclassifications and correct classifications were weighted

equally. Therefore, the models were trained to reduce the number of

incorrect classifications. However, as explored in the conclusion to Study 2,

misclassification is not equal in all instances. For instance, missing a burglary

in which a car is stolen may be less desirable than the misclassification of a

burglary in which no car is stolen. More vividly, missing a vulnerable victim

may be more costly than misclassifying a nonvulnerable victim.

A technique that is called “outcome weighting” is used in machine learning

to adjust the importance of different outcomes in classification problems. For

example, missing a vulnerable victim might be deemed to be twice as costly as
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classifying a nonvulnerable victim as vulnerable. This cost function must be

built with the end user so that their understanding of the problem and the costs

of misclassification can be coded into the training of the model. Typically, this

weighting can be encoded into the loss function, changing the training of the

model. Alternatively, the model outputs can be used in a more sophisticated

way so as to deliver the desired outcome.

Vocabulary

BERT recognises a set of words. This set is called a vocabulary. The benefit

of a word being in the vocabulary is that it has a clearly defined numerical

representation. If a word is not in the vocabulary, then it is broken down

into word pieces until it is recognised. In extreme cases, some words can be

classified as “unknown”. Breaking a word into pieces can destroy some of its

meaning because it is not represented as a single entity. In texts with many

out-of-vocabulary words, the meaning of those words may not be represented

accurately. Consequently, the classification models may become less accurate.

There are two ways to overcome this problem. Firstly, the vocabulary of

BERT can be extended. The most popular unknown words can be added

to the vocabulary, thus preventing words form being broken down into pieces.

Secondly, unknown words can be changed to words that are already within

the BERT vocabulary. For instance, “untidy” was not recognised by BERT

and can be replaced with “messy” or “not tidy”, which are both recognised by

BERT.

Overall, aligning texts and BERT vocabularies can help to improve the

performance of PTMs on specific tasks by increasing the extent to which the

models understand the domains in question.

Pre-train

As mentioned previously, there are two stages to utilising a BERT model. There

is the pretraining element, which is resource intensive and equips the model

with a general understanding of language, and there is also the pretraining

that is conducted for each specific task. Pretraining was not completed in the
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studies that are presented here, but scholars in other domains who have accessed

sufficient data have completed it. When this pretraining is conducted, it is

possible to build new variants of BERT. For instance, Legal-BERT was built

to understand legal documents (Chalkidis, Fergadiotis, Malakasiotis, Aletras,

& Androutsopoulos, 2020). Another variation, which is trained on medical

data, is called med-BERT (Rasmy, Xiang, Xie, Tao, & Zhi, 2020).

Pretraining a BERT model on police data, perhaps exclusively MO data

from several different forces, in order to produce an MO-BERT would be an

interesting avenue for future research. Given the successes that have been

achieved in other domains, this new model is likely to perform better at

classifying MO texts than the regular BERT. This approach may save time

and resources that would otherwise need to be allocated to fine-tuning for each

additional task as it would possess a superior understanding of the domain-

specific language from the outset.

This section demonstrated that there are a number of interesting avenues

for additional research that would enhance the classification work that was

described in this thesis. The next section takes this further by exploring other

NLP techniques that are not intended for the classification of text passages and

their potential for enhancing POP.

16.2.2 Applications

This next section introduces additional applications of PTMs above the

classification type that was used in this research. Additional applications

are important because they allow information to be extratcted from the

data in different ways or enable access to the key elements of the data (e.g.

summarisation).

Question and Answer

Question answering (Q&A) is an NLP task that involves using a PTM to answer

questions that are posed in natural language, given a text which contains the

answer. For example, a police officer may obtain one or more documents. These

documents are then submitted to the PTM along with a question. The PTM
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generates a response by only using the text of the documents. Q&A systems can

be designed to answer a wide range of questions, including factual questions,

questions about definitions, and queries about individuals. However, they have

not been trialled with crime documents, and their performance in this domain

is unknown. This may be more useful when the incidence of a crime is low or

when a specific response, rather than a binary classification, is needed.

Named Entity Recognition

Named entity recognition (NER) is another NLP task that is based on

classification. Instead of classifying a passage of text, it classifies every word

within it. The typical task is to extract the names of organisations, people,

and places from a passage. The PTM labels each word as either “nothing”,

“a person”, “an organisation“, or “a place”. For example, in the sentence

”Boris Johnson was born in New York on 19 June 1964”, the named entities

are “Boris Johnson”, “New York”, and “19 June 1964”. When words are

identified positively, they can be extracted from the text. The PTM uses both

the word and the context in which it appears to arrive at a classification.

Therefore, names or places that do not feature in the training material can still

be extracted correctly because they are used in similar contexts. In policing,

the words of interest may not be people or places, but, for example, weapons

that are used in assaults.

Summarisation

Text summarisation involves the production of short synopses from longer

documents or collections of documents. The idea is to retain the most

important information from the original documents so that the summarisation

can be read in isolation. This task is well understood in the NLP field, but

it is hard to generalise across different language domains because 1) it is

inherently difficult to measure an appropriate summary and because 2) different

facts matter in different domains. Since the quality of a summary is difficult

to quantify, human intervention in the modelling process is necessary, which

makes text summarisation more resource intensive than other NLP tasks. The

importance of text summarising for the police domain is that it could enable

cases to be reviewed more rapidly and easily.
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This section introduced three methods beyond classification that could be

leveraged to support the analysis of free text data. The next section moves

beyond models and explores that data types that can be analysed.

16.2.3 Data

Document types

Police forces use many text documents that are not MO descriptions and

incident logs. Police forces generate a large volume of text data when they

conduct their operations. These data include case summaries, witness reports,

communication logs, and arrest reports. The underlying characteristics of these

documents vary and, potentially, so do the techniques that are applicable to

them. As mentioned previously, longer documents are difficult to analyse with

PTMs because of the additional memory that is required to track the entire

document. Shorter documents, such as communication logs, may contain large

numbers of abbreviations or irregular grammar, especially if they have been

recorded hastily or if they are verbatim reports. These different document

types therefore entail different challenges that must be overcome in different

ways. Researching PTMs with the different document types would be conducive

to a more extensive understanding of the effectiveness of PTMs in the police

domain.

Languages

The studies that were presented here concern texts in English, but similar

models exist for other languages e.g. (Scao et al., 2022). Translation models

make it possible to translate non-English text into English in order to use

English-language models. Further research on the use of non-English models

to prove that similar tasks are conceivable in languages other than English

would also be useful in proving that the approaches that were explored here

can be used widely.
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Bias

The results from the bias investigations that were presented here are

encouraging, but they only reflect one part of the journey from data creation

to model output. In particular, the studies that were presented here focus on

algorithmic bias. To the best of the author’s knowledge, little is known about

the biases that affect the comprehensiveness of textual crime records. This

section of the data journey merits additional research.

16.2.4 Explainability

Although explainability was introduced and explored in the thesis, the

visualisations that were provided were not tested formally for effectiveness.

Explainability, as outlined in Chapter 6, is specific to audiences. Accordingly,

visualisations and methods should be tested with all intended audiences. This

testing should include members of the public (e.g., victims who have suffered

crimes that may be classified), the police officers who use the outputs, and the

individuals who authorise the use of the models.

16.2.5 Summary

In summary, there are many potential avenues for research, particularly those

that have been shown to work in other domains. However, two general problems

may restrict the use of NLP with police data. Firstly, long texts are problematic

because computational requirements increase quadratically with text length –

very long texts require considerably more computational power and memory

than what is generally feasible. Secondly, around 1,000 labelled texts were

required for each problem in this thesis. In some instances, resource demands

may be disproportionate to the gravity of the problem that has to be solved.

These challenges, however, are being tackled actively, and it is likely that

the restrictions that were outlined will become less stringent in the future.

Consequently, NLP techniques will become applicable to a wide variety of police

data and police requirements for interrogating free-text data.
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16.3 Concluding Remarks

This thesis set out to determine whether modern NLP methods, namely PTMs,

can be employed effectively within the POP methodology. The author hoped

that the analytical burden of the POP process would be reduced. The analytical

requirements were previously thought to obstruct the successful completion

of POP projects. The use of PTM was explored by exploring intra-incident

variation experimentally in relation to descriptions of burglary and ASB. In

each case, intra-incident variation was specified by using PTMs to arrive at

classifications on the basis of a predetermined characteristic. The robustness

of the results was explored by reference to model transparency and bias. The

results for burglary were also replicated with data from different police forces.

The results of the experiments were then analysed in the context of the POP

cycle, and they were found to be particularly useful in the initial (scanning)

and the latter (Assessment) phases of the POP cycle. PTMs can reduce the

analytical burdens of that cycle. Issues of implementation were also discussed,

and areas for future work were explored. In conclusion, police forces can

benefit considerably from the use of NLP techniques and models. PTMs, in

particular, are highly useful for extracting information from free-text material.

This information can then be used for a variety of purposes, including the

formulation of crime prevention strategies.

As technologies advance there is considerable scope for the ways in which PTMs

and other aligned technologies may deliver new efficiencies for policing. As this

thesis finishes there have been huge advances in NLP technologies typified by

the release of Chat-GPT (Vallance, 2022). Although not perfect these new

technologies are likely to allow police forces to access their data in a much

more efficient manner. Making police force themselves much more efficient. In

conclusion there is a significant possibility that NLP can have a real impact on

a police forces ability to combat crime.
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