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Abstract

This dissertation is a collection of three independent essays that explore novel econometric ap-

proaches for analyzing high-dimensional economic and financial data. A key commonality among

these essays is the use of a factor structure, which aims to capture the underlying latent factors

that drive the dynamics of the data. Moreover, each essay focuses on a unique aspect of the high-

dimensional factor model, delving into diverse areas such as high-frequency data analysis, network

analysis, and portfolio management in financial markets.

Chapter 1 studies high-frequency cross-sectional intraday stock returns which are contaminated

with microstructure noise and exhibit co-movements. A dual factor model is introduced to capture

the underlying dynamics of efficient prices and microstructure noise. Then a Double Principal

Component Analysis (DPCA) method is proposed for the estimation of common factors for both

efficient prices and microstructure noise.

Chapter 2 shifts the focus to network analysis for high-dimensional time series. Using a high-

dimensional time-varying factor-adjusted vector autoregressive (VAR) model framework, two types

of networks are investigated: a directed Granger causality network and an undirected partial corre-

lation network. To estimate the transition and precision matrices, a penalized local linear method

with a time-varying weighted group LASSO and a time-varying CLIME method is proposed.

Chapter 3 addresses the estimation of large dynamic precision matrices with multiple condi-

tioning variables. To overcome the challenges of high dimensionality and cross-dependence, an

approximate factor structure is introduced. A semiparametric method based on model averaging

marginal regression is employed to approximate the underlying dynamic covariance matrices of the

factors and the idiosyncratic components. The estimate of the dynamic precision matrices for the

original time series is then obtained by utilising the Sherman-Morrison-Woodbury formula, and is

applied in the construction of the minimum variance portfolio.

Throughout each chapter, asymptotic properties of the proposed estimates are established and

validated through extensive Monte Carlo simulations. These methods are further applied to stock

return datasets or a macroeconomic dataset to demonstrate their strong performance.
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Introduction

The exponential growth in data availability has sparked the development of data science, a multi-

disciplinary field that encompasses statistics, computer science, and econometrics. This data-driven

era presents unique challenges in handling complex datasets with intricate structures, a large num-

ber of variables, and diverse sources of noise. To effectively extract meaningful insights and capture

the underlying dynamics of the data, it is essential to employ robust methods that can handle high

dimensionality while accounting for cross-sectional dependence in the data.

The factor model has emerged as a powerful framework for analyzing high-dimensional data.

By assuming that the observed variables can be expressed as linear combinations of a few latent

factors plus an approximation error, the factor model provides a means of dimension reduction and

capturing the essential dynamics of the data. From a machine learning perspective, the factor model

can be viewed as a special case of the encoder-decoder framework in unsupervised learning. It aims

to learn a low-dimensional representation of the observed data by mapping it to a smaller set of

latent factors, which can then be used to reconstruct the original variables. From an econometric

standpoint, the factor model offers more than just dimension reduction. It also enhances the inter-

pretability of the underlying (economic and financial) phenomena, because the latent factors in the

factor model can be viewed as fundamental drivers that explain the common variation or trends

among the observed variables. By uncovering and examining these latent factors, economists and

researchers gain valuable insights into the economic mechanisms that govern the data dynamics.

Owing to the advantages mentioned above, the latent factor model has found widespread ap-

plications in various areas, especially in economics and finance (e.g., Chamberlain and Rothschild,

1983; Stock and Watson, 2002; Giglio et al., 2022). Recognizing the increasing importance of factor

models in high-dimensional data analysis, this PhD dissertation aims to contribute to the existing

literature by introducing novel econometric methods that use factor structures to address specific

challenges encountered in high-dimensional economic and financial data analysis.

• High-frequency high-dimensional time series analysis

1
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The increasing availability of high-frequency transaction data motivates applying factor models to

intraday stock prices. However, this setting raises certain theoretical and computational challenges.

Compared to the discrete-time factor model, new mathematical tools are required to deal with a

continuous-time setting, where long-span asymptotics (also called increasing domain asymptotics)

gives way to infill asymptotics (also called fixed domain asymptotics). Market microstructure is

an additional challenge that must be faced. The specifics of market organisation and market par-

ticipants’ behaviour induce certain short-run patterns in security prices. These patterns, such as

bid-ask bounce and price-discreteness, lead to a deviation from the fundamental values (also known

as efficient prices) of the securities. The security prices are thereby contaminated with market

microstructure noise, which affects the estimation of parameters of interest.

High-dimensional models with microstructure noise have been developed more recently. Wang

and Zou (2010) propose the first noise-robust estimators of the integrated volatility matrix and

establish an asymptotic theory that allows both the sample size and the number of assets to approach

infinity, see also Tao et al. (2011, 2013a,b), and Kim et al. (2016) for related results. However, these

papers assume that the integrated volatility matrix is sparse, which often contradicts our intuition

from low-frequency data analysis. To solve this problem, Pelger (2019) and Dai et al. (2019) develop

a continuous-time factor model with microstructure noise.

Bollerslev et al. (2019) investigate a continuous-time factor model and assume that microstruc-

ture noise can have a factor structure itself. To eliminate the influence of microstructure noise on

estimation, they employ the modulated realised volatility estimator proposed by Christensen et al.

(2010). Notably, their approach avoids explicitly estimating the factors for microstructure noise

and separating them from those corresponding to efficient prices. However, given that the factor

structure for microstructure noise can be of independent interest, Chapter 1 aims to separately

estimate these factors from the observed prices. To the best of our knowledge, this is the first work

to specifically look at common factors for microstructure noise.

Chapter 1 studies high-frequency cross-sectional intraday stock returns which are contaminated

with microstructure noise and exhibit co-movements. A dual factor model is introduced to capture

the underlying dynamics of efficient prices and microstructure noise. Then a Double Principal Com-

ponent Analysis (DPCA) method is proposed for the estimation of common factors for both efficient

prices and microstructure noise. The uniform consistency of these estimators is established as the

number of assets and sampling frequency increase. Moreover, a Monte Carlo exercise shows that

our DPCA method outperforms the PCA-VECM method. Lastly, an empirical analysis of intra-

day returns of S&P 500 Index constituents provides evidence of co-movement of the microstructure

noise, highlighting its distinguishing features from latent systematic risk factors.
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• Time-varying network analysis

The approximate factor model (e.g., Chamberlain and Rothschild, 1983) or its time-varying

version (e.g., Su andWang, 2017) is employed to accommodate the strong cross-sectional dependence

among a large number of time series. These models extend the standard factor model by taking

into account the weak dependence of the idiosyncratic errors. Chapter 2 aims to further study these

dependencies and unveil underlying relationships between variables via network analysis. Motivated

by the stable network time series analysis in Barigozzi and Brownlees (2019), time-varying Vector

autoregression (VAR) is used to construct two dynamic networks of interest: the Granger causality

network and the partial correlation network.

In recent years, there has been increasing interest in extending the finite-dimensional VAR to the

high-dimensional setting. Under appropriate sparsity restrictions on the transition (or autoregressive

coefficient) matrices, various regularised methods have been proposed to estimate high-dimensional

VARmodels and identify non-zero entries in the transition matrices (e.g., Basu and Michailidis, 2015;

Han et al., 2015; Kock and Callot, 2015; Davis et al., 2016). Moreover, to capture smooth structural

changes in the underlying data generating process, time-varying VAR models are developed (e.g.,

Ding et al., 2017; Xu et al., 2020; Safikhani and Shojaie, 2022). Chapter 2 reconsider the estimation

problem from a network perspective, combining the kernel smoothing with LASSO regularisation

in a preliminary estimation step and combining the kernel smoothing with weighted-group-LASSO

regularisation in a second step to construct the estimator of the Granger causality network.

Regarding the partial correlation network, the so-called graphical model is commonly used to

visualise the connectedness of a large panel with vertices representing variables in the panel and

the presence of an edge indicating appropriate (conditional) dependence between the variables. In

the past decades, most of the existing literature on statistical estimation and inference of network

data limits attention to the static network (e.g., Yuan and Lin, 2007; Fan et al., 2009; Loh and

Wainwright, 2013; Basu et al., 2015; Zhao et al., 2022), or dynamic network models with independent

data (e.g., Kolar et al., 2010; Zhou et al., 2010; Wang et al., 2021a). Chapter 2, on the other

hand, investigates the dynamic partial correlation network based on the time-varying error precision

matrix, considering the estimation error of both factor analysis and VAR estimation.

In Chapter 2, theoretical properties, including consistency and oracle properties, are derived

under the assumption of sparsity. In the case where the time series are highly cross-sectionally

correlated and the sparsity assumption is likely to be violated, we introduce a factor structure to

account for the cross-sectional dependencies so that the residual component follows a sparse network

structure, for which our methods are valid again. Simulation studies and an empirical application

to a large U.S. macroeconomic dataset demonstrate the good performance of our methods.
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• Large precision matrix estimation

The estimation of large covariance matrices or precision matrices is a prominent subject in high-

dimensional statistics. It not only plays a vital role in network analysis but also holds significance

in portfolio management within the field of finance. Existing literature often assumes that the

precision matrix of a high-dimensional random vector satisfies an approximate sparsity condition

similar to that often imposed on large covariance matrices (e.g., Bickel and Levina, 2008), and then

uses various techniques, such as penalised likelihood (Lam and Fan, 2009), graphical Danzig selector

(Yuan, 2010) and constrained ℓ1-minimisation for inverse matrix estimation (CLIME) (Cai et al.,

2011), to estimate it. A comprehensive review of recent developments in large precision matrix

estimation can be found in Cai et al. (2016) and Fan et al. (2016c).

Chapter 3 aims to estimate a large dynamic precision matrix with a latent factor structure,

avoiding both the static and the sparsity assumptions. As in Tang et al. (2020) and Wu et al.

(2017), a sparsity assumption is imposed on the error precision matrix, which leads to a “low-

rank plus sparse” structure for the precision matrix of the time series. To capture the dynamics,

conditioning variables are utilised in the estimation. To address the curse of dimensionality, an easy-

to-implement semiparametric method, known as Model Averaging MArginal Regression (MAMAR),

is used to estimate each entry of the conditional factor/error covariance matrices. Subsequently,

the CLIME method is employed to obtain the estimate of the dynamic error precision matrices and

the Sherman-Morrison-Woodbury formula is utilised to obtain the dynamic precision matrix for the

time series. Under mild assumptions, such as the approximate sparsity assumption of the precision

matrix of the error component, the uniform consistency of the proposed precision matrix estimator

is established. Extensive simulations show the advantage of the low-rank plus sparse structure for

covariance and precision matrices estimation. Furthermore, the developed methodology is applied

to the returns of S&P 500 constituents, to demonstrate its effectiveness in the portfolio selection

problem.

The dissertation is organised as follows. Chapter 1 focuses on high-frequency data analysis,

presenting novel econometric methods to tackle the challenges associated with continuous-time

factor models and market microstructure noise. Chapter 2 delves into network analysis, introducing

methodologies to model time-varying networks to study the dependencies among a large panel of

time series. Finally, Chapter 3 explores precision matrix estimation in high-dimensional settings,

proposing innovative approaches to estimate time-varying precision matrices with a “low-rank plus

sparse” structure. The dissertation concludes with a summary of the findings, contributions, and

potential avenues for future research.



Chapter 1

Estimation of Common Factors for

Microstructure Noise and Efficient Price

in a High-frequency Dual Factor Model

Abstract We develop the Double Principal Component Analysis (DPCA) based on a dual factor

structure for high-frequency intraday returns contaminated with microstructure noise. The dual

factor structure allows a factor structure for microstructure noise in addition to the factor struc-

ture for efficient log-prices. We construct estimators of factors for both efficient log-prices and

microstructure noise as well as their common components, and provide uniform consistency of these

estimators when the number of assets and the sampling frequency go to infinity. In a Monte Carlo

exercise, we compare our DPCA method to a PCA-VECM method. Finally, an empirical analysis of

intraday returns of S&P 500 Index constituents provides evidence of the existence of co-movement

in microstructure noise, and this co-movement is distinct from latent systematic risk factors.

Key Words: Cointegration, Factor model, High-frequency data, Microstructure noise, Non-

stationarity.
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1.1 Introduction 6

1.1 Introduction

Factor models are widely used in many scientific fields, and in particular in the study of financial

data. Their popularity is partly due to the easiness of their implementation and their effectiveness

in dimension reduction. More and more observable factors have been investigated and reported (see,

e.g., Ross (1976), Sharpe (1994), Fama and French (1993, 2015) and Carhart (1997)) as driving stock

returns. Researchers have also found common components in other attributes of financial assets

such as volatility and liquidity. For example, Chordia et al. (2000) document the commonality in

liquidity, which remains significant after controlling for volatility, volume, and price. The factor

structure is not found in isolation. Indeed, price and other attributes of stocks have been found

to have correlated common factors. Hasbrouck and Seppi (2001) use principal component analysis

to show that common factors exist in order flows and equity returns. In addition, using canonical

correlation analysis, they find that the common factor in returns is highly correlated with the

common factor in order flows. Hallin and Lǐska (2011) propose a two-step general dynamic factor

method to account for a joint factor structure of sub-panels, which is further developed by Barigozzi

and Hallin (2016) and Barigozzi and Hallin (2017) for extracting the market volatility shocks. They

find that returns and volatilities can be decomposed into four mutually orthogonal components: a

strongly idiosyncratic component, a strongly common component, a weakly common component,

and a weakly idiosyncratic component.

The increasing availability of high-frequency transaction data motivates applying this method-

ology to intraday stock prices. However, this setting raises certain theoretical and computational

challenges. Compared to the discrete-time factor model, new mathematical tools are required to

deal with a continuous-time setting, where long-span asymptotics (also called increasing domain

asymptotics) gives way to infill asymptotics (also called fixed domain asymptotics). For example,

Fan et al. (2016b) and Aı̈t-Sahalia and Xiu (2017) extend Fan et al. (2013)’s Principal Orthogonal

complEment Thresholding (POET) method to high-frequency factor models. Market microstruc-

ture is an additional challenge that must be faced. The specifics of market organisation and market

participants’ behaviour induce certain short-run patterns in security prices. These patterns, such as

bid-ask bounce and price-discreteness, lead to a deviation from the fundamental values (also known

as efficient prices) of the securities. The security prices are thereby contaminated with market

microstructure noise, which affects the estimation of parameters of interest such as volatility. Mar-

ket microstructure models have been used to capture a variety of frictions inherent in the trading

process. Roll (1984) is among the first to propose a dichotomous structure in which the observed

market price is the sum of the efficient price and an exogenous i.i.d. bid-ask spread. After that,

Hasbrouck and Ho (1987), Choi et al. (1988) and Hasbrouck (1993) consider extended models with
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positive dependence in the bid and ask transactions. More complicated price patterns arising from

microstructure noise, such as asynchronous trading, have been investigated by researchers under

the fundamental dichotomous structure.

High-dimensional models with microstructure noise have been developed more recently. Wang

and Zou (2010) propose the first noise-robust estimators of the integrated volatility matrix and

establish an asymptotic theory that allows both the sample size and the number of assets to approach

infinity, see also Tao et al. (2011, 2013a,b), and Kim et al. (2016) for related results. However,

these papers assume that the integrated volatility matrix is sparse, which often contradicts our

intuition from low-frequency data analysis. To solve this problem, Pelger (2019) and Dai et al.

(2019) develop a continuous-time factor model with microstructure noise. Likewise, Bollerslev et al.

(2019) investigate a continuous-time factor model and assume that microstructure noise can have

a factor structure itself. They use the modulated realised volatility estimator (henceforth MRC)

of Christensen et al. (2010) to eliminate the effect of the microstructure noise on the estimation

without explicitly estimating the factors for the microstructure noise and separating them from

those of the efficient prices. They establish the consistency and bound the rate of convergence of

the estimated integrated covolatility matrix of the efficient price process in the large dimensional

case. Related to this, Pelger (2019) classifies factors in a high-frequency factor model into jump

factors and continuous factors.

We consider the dual factor model of Bollerslev et al. (2019) but we take a different approach

to estimation. Our goal is to identify and separate the factors and common components from both

sources: the efficient price process and the microstructure noise process. Factors for the efficient

prices arise from information about future security cash flows and thereby are long-lasting, whereas

factors for the microstructure noise are transient and due to the nature of trading behaviour; both

are of interest. We develop a methodology that is inspired by Bai and Ng (2004), who propose a

test procedure called Panel Analysis of Non-stationarity in Idiosyncratic and Common Components

(PANIC), which can be used to identify non-stationary factors in discrete time series. We extend the

PANIC approach to our high-frequency dual factor model. Our methodology is in two parts. First,

we estimate the common factors and loadings of both signal and noise components simultaneously

from the observed returns via PCA. The PCA uses the eigen-decomposition of a sample variance-

covariance matrix to identify the common component and the idiosyncratic error. The second step

separates the return factors into efficient price factors and microstructure noise factors. This involves

a second PCA on the cumulative form of the factors found in the first step, following the approach

of Bai and Ng (2004). Intuitively, after cumulation, the efficient price common components are

nonstationary and thus have a larger magnitude than the stationary microstructure noise common
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components, which enables us to separate the two different types of factors. Another way to

obtain separate estimates of the factors is to: (i) first obtain a consistent estimate of the integrated

covolatility matrix of the efficient price using a noise-robust method (such as pre-averaging) and

an estimate of the covariance matrix of the microstructure noise; and (ii) apply PCA separately

to these estimated matrices to obtain estimates of their respective common factors. However, such

an approach may result in a loss of efficiency. By contrast, our approach does not suffer from this

problem. We establish the consistency of our procedures as the number of assets increases and

the number of infill observations for each asset increases. Our asymptotic framework allows for a

rich diversity in the relative size of the efficient price process and the microstructure noise process

and in the relative size of the common component of the microstructure noise and the idiosyncratic

components of the noise. This is important because a number of authors have documented that in

frequently traded assets, the microstructure noise component can be quite small. Also, the Epps

effect, whereby observed cross-asset correlations shrink with sampling frequency, can be captured in

our framework when the idiosyncratic component of the noise is larger element by element than the

common component. Our model allows the so-called “weak factors”, c.f., Briggs and MacCallum

(2003); Onatski (2010) and Freyaldenhoven (2022). We provide a full analysis of the convergence

rates of all our estimators, which are affected by the magnitudes of the microstructure noise. We

apply our method to the intraday returns of S&P 500 Index constituents. The empirical analysis

provides evidence of co-movement of the microstructure noise.

The rest of this chapter is organised as follows. Section 1.2 specifies the model and its as-

sumptions. Section 1.3 proposes the high-frequency PANIC estimation procedure and presents the

asymptotic properties for the estimators. Section 1.4 provides finite-sample simulation results and

Section 1.5 demonstrates the applicability of our proposed method through an empirical study.

Section 1.6 concludes. The proofs of our main results are relegated to Appendix A.

Throughout this chapter, we use || · ||2 to denote the Euclidean norm of a vector. For a real

symmetric matrix S, we denote its k-th largest eigenvalue and trace by µk(S) and tr(S), respectively.

For anym×nmatrixM = (mij), let ||M||O, ||M||1, ||M||∞, ||M||F and ||M||max denote the spectral

norm, the l1 norm, the l∞ norm, the Frobenius norm, and the max norm of M, respectively.

Specifically, ∥M∥O =
√

µ1(M
⊺M), ||M||1 = maxj

∑
i |mij |, ||M||∞ = maxi

∑
j |mij |, ∥M∥F =√

tr(M⊺M) =
√∑

i,j m
2
ij and ||M||max = maxi,j |mij |. Let 1n denote an n-dimensional vector of

1’s. Also let a ∨ b and a ∧ b denote max{a, b} and min{a, b}, and x+ and x− denote max{0, x} and

min{0, x}, respectively.
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1.2 Model setup and assumptions

1.2.1 Dual factor structure

Let Xit denote the observed log transaction price of stock i at time t, for i = 1, ..., d. We allow d to

diverge with n, although we have suppressed the subscript n for d. For the sake of simplicity, we

assume that price observations of all stocks are synchronously collected, and that price observations

for each stock are equidistantly collected in the fixed time interval [0, T ]. Thus we do not consider

non-synchronous trading explicitly. Without loss of generality, we let T = 1. Let n be the number

of observations and ∆ = 1/n. Then, the prices are observed at the time points t = 0,∆, 2∆, . . . , n∆.

We assume that the observed log transaction price, Xit, can be decomposed into the unobserved

efficient log-price X∗
it plus a noise component Zit, i.e.,

Xit = X∗
it + Zit or Xt = X∗

t +Zt, (1.2.1)

where X∗
t = (X∗

1t, . . . , X
∗
dt)

⊺
and Zt = (Z1t, . . . , Zdt)

⊺
. For each component of Xit, we introduce

a factor structure (see Assumptions 1.A and 1.B below) and therefore, name the model as a dual

factor model.

Assumption 1.A. (Factor Structure for Efficient Log-price)

(i) The efficient log-price X∗
t follows a factor model of the form,



dX∗
t = ΛFdFt + dUt,

dFt = σFtdB
F
t ,

dUt = σUtdB
U
t ,

where ΛF = (λF,ik)1≤i≤d,1≤k≤KF
denotes the d ×KF matrix of factor loadings, KF is the number

of factors, Ft = (F1t, ..., FKF t)
⊺
denotes latent factors, Ut = (U1t, ..., Udt)

⊺
is the idiosyncratic

component, σFt is a KF ×KF càd-làg spot volatility matrix for factors, σUt is a d× d càd-làg spot

volatility matrix for idiosyncratic errors, and BF
t = (BF

1t, . . . , B
F
KF t)

⊺
and BU

t = (BU
1t, . . . , B

U
dt)

⊺
are

independent Brownian motions.

(ii) There exists a locally bounded process Qt such that ∥σFtσ
⊺

Ft∥max and ∥σUtσ
⊺

Ut∥max are bounded
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by Qt for all paths. 1

We adopt the same high-frequency factor structure in Bollerslev et al. (2019). The existence

of uniform bounds on all volatility processes is natural in a continuous-time factor model (see, for

example, Aı̈t-Sahalia and Xiu (2017)), and is necessary to the development of the large dimensional

asymptotic results. Locally bounded processes are more general than uniformly bounded processes.

For example, Qt ≡ Q0, where Q0 follows a normal distribution, is not a uniformly bounded process

but is a locally bounded process.

Remark: Our model inherits several limitations from Bollerslev et al. (2019)’s factor structure,

which does not allow for drift terms or jump terms in the diffusion model. We refer to Dai et al.

(2019) and Aı̈t-Sahalia and Xiu (2019) for high-frequency factor models that both common factors

and idiosyncratic errors follow (continuous or general) Itô semimartingale processes. Moreover, our

model does not allow for time-varying loadings or an infinite number of factors. For these extensions,

we refer to Su and Wang (2017); Fan et al. (2011, 2016b); Kong (2017, 2018); Aı̈t-Sahalia et al.

(2020) and Kong et al. (2023), respectively.

Assumption 1.B. (Factor Structure for Market Microstructure Noise)

The microstructure noise Zt follows a factor model whose magnitude may depend on the sampling

frequency, that is

Zt = ΛGDGGt +DV Vt, (1.2.2)

where ΛG = (λG,ik)1≤i≤d,1≤k≤KG
denotes the d ×KG matrix of factor loadings with KG being the

number of factors for the microstructure noise, Gt = (G1t, ..., GKGt)
⊺
denotes the latent factors,

Vt = (V1t, ..., Vdt)
⊺
is the vector of idiosyncratic components, and DG and DV are two diagonal

matrices satisfying µ1(DG) = O(nτ̄⋄G), µ1(D
−1
G ) = O(n−τ⋄G) and µ1(DV ) = O(nτ̄⋄V ), where τ̄⋄G, τ

⋄
G,

and τ̄⋄V are constants, whose values may be positive, negative or zero.

In a stock market, microstructure noise can be much larger in magnitude than efficient prices

when sampling frequency is high. However, the observed prices are close to the efficient prices in

a long horizon due to the efficiency of the market. In other words, efficient returns accumulate

over time, but microstructure noise does not. Therefore, when the sampling frequency is low, the

1A process {Qt}t∈[0,1] is locally bounded if there exists a sequence of stopping times {τs}, with 0 ≤ τs ≤ τs+1 for
s = 1, 2, ..., and τs → ∞, a.s., as s → ∞, such that the stopped process 1{τs>0}Qt∧τs is a uniformly bounded process
for each s, where 1{·} is an indicator function.
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efficient prices will dominate microstructure noise in magnitude, while the reverse may happen when

sampling frequency is high. The introduction of DG and DV in (1.2.2) allows our model to capture

this phenomenon (see also Kalnina and Linton (2008) for a model where the microstructure noise

can be large or small, depending on the value of a magnitude parameter). With such a setup,

the magnitude of ΛG, Gt and Vt is independent of n. A similar treatment can be found in Kim

et al. (2016). Our model is an extension of the model of Bollerslev et al. (2019), who only consider

DG = IKG
and DV = Id, where IK denotes the K×K identity matrix. However, they use a similar

setting when generating simulation data (also see Section 1.4) without discussing the asymptotic

impacts of DG and DV .

To introduce the first-differenced form of the dual factor model, we use little letters to denote

the first-order differences of random variables. Specifically, define the return as xt = Xt −Xt−∆,

and the efficient return (or frictionless return) as x∗
t =

∫ t
t−∆ dX∗

s = X∗
t − X∗

t−∆. Denote ft =∫ t
t−∆ σfsdB

F
s = Ft − Ft−∆, gt = Gt −Gt−∆, zt = Zt − Zt−∆, ut =

∫ t
t−∆ σUsdB

U
s = Ut − Ut−∆,

and vt = Vt − Vt−∆. Then by (1.2.1)–(1.2.2), we can write the dual factor model as


xt = x∗

t + zt,

x∗
t = ΛFft + ut,

zt = ΛGDGgt +DV vt.

(1.2.3)

Combining the factor structures for x∗
t and zt, we have

xt = ΛFft + ut +ΛGDGgt +DV vt

= ΛHDHht +wt, (1.2.4)

where ht = (f
⊺

t , n
−1/2g

⊺

t )
⊺
, ΛH = (ΛF ,ΛG), wt = ut + DV vt and DH = diag(IKF

, n1/2DG).

This can be seen as a factor structure for xt with ht = (f
⊺

t , n
−1/2g

⊺

t )
⊺
being the factors and

ΛH = (ΛF ,ΛG) being the factor loadings. Note that gt is divided by n1/2 in ht so that both

components of ht are of the same magnitude. Consequently, the magnitude matrix DG is multiplied

by n1/2 in DH .

Define

τ̄+G = (τ̄G)+, τ−G = (τG)−, and τ̄+V = (τ̄V )+,

with

τ̄G = 1/2 + τ̄⋄G, τG = 1/2 + τ⋄G, and τ̄V = 1/2 + τ̄⋄V .
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Since the factors for efficient returns, ft, are of order n
−1/2 and the largest component of DGgt is of

order nτ̄⋄G , a positive value of τ̄+G indicates that the largest microstructure noise factor dominates the

efficient return factors. On the other hand, the smallest component of DGgt is of order n
τ⋄G , and a

negative value of τ−G indicates that the efficient return factors dominate the smallest microstructure

noise factor. Similarly, a positive value of τ̄+V indicates that the largest idiosyncratic microstructure

noise dominates the idiosyncratic efficient returns.

Remark: (Identification) First of all, a gap between the eigenvalues of the covariance matrices of

ΛHDHht and wt (see Assumption 5*) ensures the identifiability of the factor space spanned by ht.

Secondly, as in conventional factor models, the factors ht and factor loadings ΛH are not separately

identifiable. For identification up to a rotation matrix, a normalisation condition is imposed on

ΛH (see Assumption 4). Lastly, for the identifiability of the factor spaces spanned by ft and gt, it

requires another eigenvalue gap between the covariance matrices of the two types of factors but in

the cumulated form. This is implicit in Assumptions 1 and 2, as the types of processes for ft and

gt are different in nature, especially when they are cumulated.

Denote the number of independent factors in the factor model (1.2.4) as KH . If ft and gt are

collinear, KH will be less than KF +KG. In such a case, the efficient prices and the microstructure

noise are not separable and the dichotomous structure fails. Thus for identification purposes, we

exclude this situation and make the following assumptions.

Assumption 1.C. (Independence between efficient prices and microstructure noise) The discrete

time series Gt and Vt are independent of the continuous-time processes Ft and Ut.

Remark: It is prevalent to assume independence between price components due to fundamental

security value and noise attributable to market rules and trading mechanisms. The main reason for

the independence assumption is modelling simplicity, so that the two components can be identified

and interpreted. Recently, there has been some research that allows correlation between the efficient

price and the microstructure noise, such as Kunitomo and Kurisu (2021). But we will not pursue

this in the current chapter.

Assumption 1.D. (Factor loadings) The factor loadings matrix ΛH satisfies

∥ΛH∥max = O(1), and ∥Λ⊺

HΛH/d− IKH
∥ = o(1),

where IKH
denotes the KH ×KH identify matrix.
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As discussed in Aı̈t-Sahalia and Xiu (2017), the condition h
⊺
h = IKH

, where h = (h1, . . . ,hn)
⊺
,

is not appropriate in the high-frequency factor model setting because the probability limit of h
⊺
h

involves the volatility process σFt, which is path-dependent rather than deterministic. Thus, we

adopt the normalisation condition on ΛH in Assumption 1.D. This identification condition looks

like a classical strong factor assumption. However, since we have introduced the magnitude matrix

DH , our model allows for ‘weak factors’ in the sense that the divergence of µKH
(D

⊺

HΛ
⊺

HΛHDH)

can be at a slower rate than d (this is different from the usual weak factors which are defined as

being non-pervasive across cross-sections, see Onatski (2010); Fan and Liao (2022); Anatolyev and

Mikusheva (2022); Giglio et al. (2021); Uematsu and Yamagata (2023b,a); Freyaldenhoven (2022)).

Moreover, the theory can be extended to allow more general DH , especially for the first diagonal

block corresponding to ft. But this can introduce an identification issue that requires setting one of

the factors to have a unit magnitude. For simplicity, we do not introduce a non-identity magnitude

matrix for ft.

For easy reference, we summarise the notation used for variables and factors in Table 1.1.

We use different fonts to distinguish between matrices, vectors and scalars. For example, X =

(X∆, . . . ,Xn∆)
⊺
is an n× d matrix of observed prices, X

⊺

s∆ is its s-th row, and Xi,s∆ is the (s, i)-

entry of the matrix X. Following the same rule, other variables are defined analogously.

Table 1.1: Notations for variables/factors in the dual factor model

Variables Cumulation Form First-difference Form

Matrix Row Element Matrix Row Element
-wise -wise -wise -wise -wise -wise

Observed price X Xt Xit x xt xit
Efficient price (EP) X∗ X∗

t X∗
it x∗ x∗

t x∗it
Microstructure noise (MN) Z Zt Zit z zt zit
Factors for EP F Ft Fjt f ft fjt
Factors for MN G Gt Gjt g gt gjt
Total factors H Ht Hjt h ht hjt
Idiosyncratic errors for EP U Ut Uit u ut uit
Idiosyncratic errors for MN V Vt Vit v vt vit
Total idiosyncratic errors W Wt Wit w wt wit

1 The first dimension of the matrices in the table is set as time, while the second dimension is set as
a stock or a factor. We have t = ∆, · · · , n∆, 1 ≤ i ≤ d and 1 ≤ j ≤ K, where K = KF , KG, or KH ,
depending on the circumstance. Note that in the subscript of the element-wise notation, we write the
column index first.
2 Although when t = 0, Xt is observable, t starts from ∆ in the matrix-wise notation for both
cumulation form and first-difference form, for the sake of consistency.
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1.2.2 Covariance structure

Denote the integrated covolatility matrices of ft and ut as ΣF and ΣU , respectively. That is

ΣF =
∫ 1
0 σFtσ

⊺

Ftdt and ΣU =
∫ 1
0 σUtσ

⊺

Utdt. Then the factor structure for the efficient prices leads

to the following identity,

Σx∗ = ΛFΣFΛ
⊺

F +ΣU , (1.2.5)

where Σx∗ is the integrated covolatility matrix of x∗
t . For the microstructure noise, we will assume

that its components Gt and Vt are stationary. So its covariance matrix has the following identity,

Σz = ΛGDGΣgDGΛ
⊺

G +DV ΣvDV , (1.2.6)

where Σz = Var(zt), Σg = Var(gt), and Σv = Var(vt). Hence, for the integrated covolatility matrix

of observed prices, we combine (1.2.5) and (1.2.6) to obtain

Σx = ΛHDHΣhDHΛ
⊺

H +Σw, (1.2.7)

where 
Σx = Σx∗ + nΣz,

Σh = diag(ΣF ,Σg),

Σw = ΣU + nDV ΣvDV .

The matrix ΛHDHΣhDHΛ
⊺

H has KH positive eigenvalues, which follows from the positive definite-

ness of Σh and the full-column-rankness of ΛH under Assumption 1.D. The reason we multiply Σz

by n is to be consistent with its sample estimates. Note that Σ̂z = n−1
∑n

i=1 ztz
⊺

t is an approxima-

tion of Σz while Σ̂x∗ =
∑n

i=1(x
∗
t )(x

∗
t )

⊺
is an approximation of Σx∗ .

In order to identify the factor structure, we make some sparsity assumptions on the idiosyncratic

volatility matrices, as in Fan et al. (2013) and Aı̈t-Sahalia and Xiu (2017).

Assumption 1.E*. (Sparsity of idiosyncratic integrated covolatility matrices) There exist mU,d

and mv,d, which are bounded away from zero and may diverge as d goes to infinity, such that the

integrated covolatility matrices of the idiosyncratic components satisfy

∥ΣU∥1 = OP (mU,d), ∥Σv∥1 = O(mv,d), mw,nd/(dn
2τ−G) → 0 with mw,nd = mU,d + n2τ̄V mv,d.
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The sparsity conditions are more general than the bounded eigenvalue condition for the idiosyn-

cratic volatility matrix in approximate factor models, c.f., Chamberlain and Rothschild (1983), as

∥ΣU∥O ≤ ∥ΣU∥1, ∥Σv∥O ≤ ∥Σv∥1, and mU,d and mv,d may diverge as d goes to infinity. In addition,

it is worth pointing out that the condition mw,nd/(dn
2τ−G) → 0 is sufficient for the identification of

the factors. Specifically, under the condition mw,nd/(dn
2τ−G) → 0, the smallest positive eigenvalue of

ΛHDHΣhDHΛ
⊺

H has a lower bound of order dn2τ−G (see Lemma A.1.1), which is larger than mw,nd,

the order of the largest eigenvalue of Σw. In order to obtain consistent estimates, we further require

mw,nd/(d
1/2n2τ−G) → 0. This leads to the following stronger version of Assumption 1.E*.

Assumption 1.E. (Sparsity of idiosyncratic integrated covolatility matrices) The integrated co-

volatility matrices of the idiosyncratic components satisfy

∥ΣU∥1 = OP (mU,d), ∥Σv∥1 = O(mv,d), mw,nd/(d
1/2n2τ−G) → 0 with mw,nd = mU,d + n2τ̄V mv,d.

Assumption 1.E is a stronger version of Assumption 1.E*. That estimation of an approximate

factor model requires more strict sparsity conditions than identification is also observed in Aı̈t-

Sahalia and Xiu (2017).

We also make the following assumption on the stationarity of the microstructure noise compo-

nents.

Assumption 1.F. (Stationary and sub-Weibull microstructure noise)

(i) The series {Gt,Vt} is strictly stationary. In addition, the eigenvalues of ΣG and ΣV are

bounded away from zero, and E[Gjt] = E[Vit] = E[GjtVit] = 0 for all 1 ≤ i ≤ d, 1 ≤ j ≤ KG and

t = 0,∆, . . . , n∆.

(ii) There exist positive constants Cα > 0 and γ1 > 0 such that the strong mixing sequence α(·) of

the series {Gt,Vt} satisfies α(s∆) ≤ Cα exp(−sγ1).

(iii) There exist b1 > 0, γ2 > 0, with γ−1
1 + 3γ−1

2 > 1, such that for all c > 0, we have

max
1≤j≤KG

P (|Gjt| > c) ≤ exp(1− (c/b1)
γ2) (1.2.8)
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and

max
1≤i≤d

P (|Vit| > c) ≤ exp(1− (c/b1)
γ2), (1.2.9)

for t = 0,∆, . . . , n∆.

(iv) There exist b2 > 0, γ3 > 0, with γ−1
1 + 3γ−1

3 > 1, such that for all c > 0, we have

max
1≤j≤KH

P
(
d−1/2|λ⊺

H,·,jVt| > c
)
≤ exp(1− (c/b2)

γ3), (1.2.10)

for t = 0,∆, . . . , n∆, where λH,·,j is the j-th column of ΛH ;

(v) Let 1/γ = 1/γ1 + 3/(γ2 ∨ γ3). Then, (log d)2/γ−1 = o(n).

Assumptions 1.F(i) and (ii) are similar to Assumption 3.2(i) and Assumption 3.3 in Fan et al.

(2013). The strong mixing condition is more general than Assumptions 1 and 3 in Barigozzi et al.

(2021) in which the common component and the idiosyncratic component of the microstructure noise

are both assumed to be linear processes. The series Gt and Vt can be serially correlated, which

is more general than the assumption in Kim et al. (2016). Moreover, Vt can be cross-sectionally

dependent, in which case, (1.2.2) gives an approximate factor model for the microstructure noise.

More general assumptions can be found in Bai and Ng (2002), which permits weakly correlated

idiosyncratic errors. Assumption 1.F(iii) requires exponential-type tails for the distributions of

Gt and Vt, which allows us to apply the large deviation theory (see Lemma A.2.2) to facilitate our

proofs. It allows for sub-Gaussian tails, sub-exponential tails and even heavier tails when γ2, γ3 < 1,

and is commonly used in estimation of large-dimensional volatility matrices, c.f., Fan et al. (2013)

and Tao et al. (2013b). With lengthier proofs of the asymptotic results, this condition can be

weakened to a finite moment condition as in Bai and Ng (2002). However, the convergence rates for

the estimators would be slower (see Lemma D.2 of Li et al. (2023) for an example). On the other

hand, if the microstructure noise has a heavy tail that violates Assumption 1.F(iii), then robust

estimation can be used to mitigate the influence of heavy tails (see, for example, Fan and Kim

(2018)).

Assumption 1.F(iv) is an additional exponential tail condition, which guarantees that

∥∥∥∥∥(nd)−1
n∑

s=1

Λ
⊺

Hvs∆v
⊺

s∆ΛH − d−1Λ
⊺

HΣvΛH

∥∥∥∥∥
max

= OP ((log d/n)
1/2),

see Lemma A.2.2(iv). Like Assumption 1.F(iii), it can also be weakened to a finite moment condition
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(see Assumption F.3 of Bai (2003) and Assumption 3.4(iii) of Fan et al. (2013))

max
1≤j≤KH

E[(d−1/2|λ⊺

H,·,jvt|)4] < C, (1.2.11)

for some positive constant C. Assumption 1.F(v) presents a trade-off between the mixing and tail

conditions and the dimension d.

1.3 Estimation procedure and asymptotic results

In this section, we develop a two-step estimation procedure for the common factors, F and G, of

the dual factor model. The estimation procedure is based on two PCA procedures and so we call

it Double PCA or DPCA. The asymptotic results are presented step by step, so as to provide a

better understanding of what the intermediate estimators estimate. In the first step, the factors

and factor loadings for the combined factor model (1.2.4) in the first-difference form are estimated.

In the second step, we cumulate the normalised factors and separate the efficient price factors and

the microstructure noise factors. For the time being, we assume that the number of factors KF and

KG are known, and KH = KF +KG. We will discuss how to determine them in Section 1.4.1.

We also require the following assumption, which restricts the relation between n and d.

Assumption 1.G. (Relation between n and d) As n → ∞,

(i)

n1+4τ−G−4(τ̄+G∨τ̄+V )/(log d) → ∞,

and

(ii)

n1+4τ−G−4(τ̄+G∨τ̄+V )m2
w,nd/(d

2 log d) → 0.

When τ̄G = τG = τ̄V = 0 and mw,nd = O(1), Assumption 1.G degenerates to n/(log d) → ∞

and n/(d2 log d) → 0, which are similar to the corresponding condition in Theorem 3.1 of Fan et al.

(2013) and assumption A1 of Tao et al. (2013b).
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1.3.1 First step: PCA estimation in first-difference form

The first step in our estimation procedure is to apply PCA to the first-difference form of the dual

factor model to extract estimates of all the factors and factor loadings (for both the efficient price

and the microstructure noise).

There are two ways to implement PCA to obtain estimates of the factors and factor loadings.

If we normalise the factor loadings, the PCA estimator solves the following optimisation problem,


min
ΛH ,h

∥x−hΛ
⊺

H∥F ,

s.t. Λ
⊺

HΛH/d = IKH
.

(1.3.1)

Computationally, we conduct an eigen-decomposition of the d × d matrix x
⊺
x, and obtain Λ̂H =(

λ̂H1, . . . , λ̂Hd

)⊺

, which is the d×KH matrix consisting of the KH eigenvectors (multiplied by
√
d)

corresponding to the KH largest eigenvalues of x
⊺
x. We then obtain

ĥ = xΛ̂H/d =
(
ĥ∆, . . . , ĥn∆

)⊺

. (1.3.2)

The resulting Λ̂H and ĥ are the estimators of ΛH and DHh, respectively, up to a rotation.

Alternatively, if we normalise the factors, the PCA estimator solves the following optimisation

problem, 
min
ΛH ,h

∥x−hΛ
⊺

H∥F ,

s.t. h
⊺
h = IKH

.

Computationally, we conduct PCA⋆ (we add a star to distinguish it from the PCA in (1.3.1),

which is based on the normalisation of the factor loadings) on the n × n matrix xx
⊺
, and get

ĥ⋆ =
(
ĥ⋆
∆, . . . , ĥ

⋆
n∆

)⊺

denoting the n×KH matrix consisting of the KH eigenvectors corresponding

to the KH largest eigenvalues of xx
⊺
. Then we obtain

Λ̂⋆
H = x

⊺
ĥ⋆ =

(
λ̂⋆
H1, . . . , λ̂

⋆
Hd

)⊺

. (1.3.3)

The resulting Λ̂⋆
H and ĥ⋆ are the estimators of ΛHDH(h

⊺
h)1/2 and h(h

⊺
h)−1/2, respectively, up

to a rotation.

The two restrictions in the optimisation problems should be distinguished from the identification

conditions in Assumption 1.D. The restrictions are imposed on the estimators whereas the identi-

fication conditions are imposed on the true parameters. Moreover, it is easy to show that both ĥ
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and ĥ⋆ are eigenvectors of xx
⊺
, and thereby, they span the same space. Specifically, we can show

the following relation

ĥ⋆ = ĥ(ĥ
⊺
ĥ)−1/2 and Λ̂⋆

H = Λ̂H(ĥ
⊺
ĥ)1/2. (1.3.4)

In this sense, the two ways of PCA are equivalent. However, when d is much larger than n, it is

computationally more convenient to conduct PCA on the n× n matrix xx
⊺
, and vice versa. Then

the relation in (1.3.4) can be used to get the desired form of estimates. Bai and Li (2012) point out

that the analysis of one PCA representation will carry over to the other by switching the roles of n

and d and the role of the factor loadings and factors, and thus it is sufficient to carefully examine

the asymptotic properties of one representation.

In the second step of our estimation procedure, we will separate the efficient price factors and the

microstructure noise factors. The final estimators of ft and gt based on the above two ways of PCA

will not be equivalent. This is because the first-step factor estimators will be fed into the second step

in cumulative form for another PCA, and whether the factors from the first step are normalised will

affect the final results. In Section 1.4, we will compare the small-sample performance of estimators

based on the two different ways of PCA in the first step. We will see that PCA⋆ always outperforms

PCA. Hence, we will use PCA⋆ for our first step and derive the asymptotic theory based on it.

The following theorem shows the uniform rate of convergence for Λ̂⋆
H and ĥ⋆ of the dual factor

model. For ease of exposition, we denote

and = (log d)1/2
nτ̄+V +τ̄+G∨τ̄+V

n1/2
+

mw,nd

d
, (1.3.5)

ãnd = (log d)1/2
nτ̄+V +τ̄+G∨τ̄+V

n1/2
+

mw,nd

d1/2
, (1.3.6)

bnd = (log(nd))1/(γ2∧1) · n−2τ−G · and + (log n)1/(γ3∧1) · d−1/2, (1.3.7)

and

b̃nd = (log(nd))1/(γ2∧γ3∧1) · n−2τ−G · ãnd. (1.3.8)

It is easy to check that and < ãnd and bnd < b̃nd.

Theorem 1.3.1. Suppose that Assumptions 1.A–1.G are satisfied. We have

(i) ∥∥∥Λ̂⋆
H −ΛHDH(h

⊺
h)1/2R⋆

∥∥∥
max

= OP

(
n−τ−G · and

)
, (1.3.9)
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where the rotation matrix R⋆ is defined by

R⋆ = d1/2(h
⊺
h)−1/2Λ

⊺

HΛ̂HD̂
−1/2
x,KH

,

in which D̂x,KH
= dĥ

⊺
ĥ = Λ̂⋆⊺

H Λ̂⋆
H is a KH ×KH diagonal matrix with the diagonal elements being

the first KH largest eigenvalues of x
⊺
x arranged in a descending order;

(ii) ∥∥∥ĥ⋆⊺ − (R⋆)−1(h
⊺
h)−1/2h

⊺
∥∥∥
O
= OP

(
n−2τ−G · ãnd

)
, (1.3.10)

and ∥∥∥ĥ⋆⊺ − (R⋆)−1(h
⊺
h)−1/2h

⊺
∥∥∥
max

= OP

(
n−1/2+τ̄+V −τ−G · bnd

)
; (1.3.11)

(iii) ĥ⋆Λ̂⋆⊺

H = ĥΛ̂
⊺

H and

∥∥∥ĥ⋆Λ̂⋆⊺

H −hDHΛ
⊺

H

∥∥∥
max

= OP

(
n−1/2+τ̄+V · bnd

)
; (1.3.12)

(iv) R⋆ is an asymptotically orthogonal matrix, that is

∥R⋆⊺R⋆ − IKH
∥O = OP (n

−2τ−G · and). (1.3.13)

Part (i) of this theorem gives the uniform convergence rate of our factor loadings estimator.

Given the definition of and in (1.3.5), this convergence rate is close to the classic element-wise

convergence rate, n−1/2 + d−1, of factor loadings estimators (see Theorem 2 in Bai and Ng (2002)

for low-frequency factor models and Lemma K.7 in the Appendix of Pelger (2019) for high-frequency

factor models). When τ̄G = τG = 0 ≥ τ̄V , the convergence rate in (i) is (log d)1/2n−1/2 +mw,ndd
−1,

which is faster than the convergence rate, (log d)1/2n−1/2+mw,ndd
−1/2, in Theorem 5 of Aı̈t-Sahalia

and Xiu (2017).

Part (ii) of Theorem 1.3.1 shows that the estimator ĥ⋆ converges to the normalised factors

(h
⊺
h)−1/2h

⊺
up to an asymptotically orthogonal matrix. Unlike Aı̈t-Sahalia and Xiu (2017), in

which a uniform convergence rate of the factor estimator is given for both the max norm and the

spectral norm, we provide separate convergence rates under the two norms. When τ̄G = τG =
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0 ≥ τ̄V , the spectral-norm convergence rate is (log d)1/2n−1/2 + mw,ndd
−1/2, which is the same as

that in Theorem 5 of Aı̈t-Sahalia and Xiu (2017). This means that with the introduction of a

factor structure for microstructure noise which is of the same magnitude as the factor structure for

efficient returns, there is no loss in the convergence rates of factor estimators. Furthermore, when

τ̄G = τG = 0 ≥ τ̄V , the uniform convergence rate in (1.3.12) is close to the element-wise convergence

rate, n−1 + d−1, of the first-differenced factor estimator in high-frequency factor models, provided

by Lemma L.4 in the Appendix of Pelger (2019).

The introduction of the magnitude matrices provides insight into how a larger noise-to-signal

ratio can worsen the estimation. We can see from Theorem 1.3.1 (and Theorems 1.3.3 and 1.3.5

below) that the convergence rates of the estimators are affected by the magnitudes of both DG and

DV . We exemplify this by looking at the uniform convergence rates of the estimators of common

components in (1.3.12) under the following three cases with γ2 = γ3 ≥ 1 and mU,d = mv,d = O(1).

• (i) When τ̄G = τG = τ̄V = 0 (i.e., τ̄⋄G = τ⋄G = τ̄⋄V = −0.5), the efficient returns, the microstruc-

ture noise common component, and the microstructure idiosyncratic error are of the same mag-

nitude. In this case, the uniform convergence rate in (1.3.12) is log(nd)·n−1+(log n)·(nd)−1/2.

• (ii) When τ̄G = τG = τ̄V = −0.1 (i.e., τ̄⋄G = τ⋄G = τ̄⋄V = −0.6), the microstructure noise

common component and idiosyncratic error are of a smaller magnitude than efficient returns,

and the convergence rate in (1.3.12) becomes log(nd) ·n−0.8+(log n) ·(nd)−1/2, which is slower

than the convergence rate in case (i). This may be because the signals of the microstructure

noise common component now become weaker than the efficient return idiosyncratic errors,

making it more difficult to estimate.

• (iii) When τ̄G = τG = τ̄V = 0.1 (i.e., τ̄⋄G = τ⋄G = τ̄⋄V = −0.4), the microstructure noise common

component and idiosyncratic error are of a larger magnitude than efficient returns, and the

convergence rate becomes even slower at (log(nd)) · (n−0.7+n−0.2d−1)+n0.1(log n) · (nd)−1/2.

We will further compare the performance of our proposed method for cases (ii) and (iii) in the

simulation study.

1.3.2 Second step: PCA estimation in cumulative form

Denote β = (OKG×KF
, IKG

)
⊺
and β⊥ = (IKF

, OKF×KG
)
⊺
, whereOK1×K2 denotes aK1×K2 matrix

of zeros. Then g = n1/2hβ is the matrix of true factors for the first difference of microstructure

noise, and f = hβ⊥ is the matrix of true factors for efficient returns. However, by Theorem 3.1, the

estimated factors, ĥ⋆, from the first step are consistent only up to a rotation. In other words, each
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column of ĥ⋆ may converge to a linear combination of both factors for efficient returns and factors

for microstructure noise. Hence, instead of applying β and β⊥ directly on ĥ⋆ to obtain estimates

of g and f, we need to find proper rotations of β and β⊥ that achieve this goal. This will be the

aim of the second step.

There are different ways to estimate such rotations of β and β⊥. For example, Barigozzi

et al. (2021) use Johansen (1995)’s reduced rank estimation in a dynamic factor model to esti-

mate the cointegration coefficients of non-stationary factors (also see Section 1.4.2). However, their

method requires the specification of a finite-order vector autoregression (or a vector error correction

model) prior to estimation, which is not reasonable in our high-frequency setting. To avoid the

(mis)specification issue, we will use a second-step PCA on cumulated factors to estimate β and β⊥.

This is a high-frequency analogue of Bai and Ng (2004)’s PANIC and is in the same spirit as the

methods of Stock and Watson (1988); Harris (1997); Peña and Poncela (2006) and Zhang et al.

(2019) for identifying nonstationary factors or cointegration by eigenanalysis in the low-frequency

setting. The intuition for why the second-step PCA can separate the factors for efficient prices and

the factors for microstructure noise is as follows. In the first step we estimate ht = (f
⊺

t , n
−1/2g

⊺

t )
⊺
,

whose components are of the same magnitude. Upon cumulation of ht, we obtain

Hs∆ =

s∑
s1=1

hs1∆ =

((∫ s∆

0
σftdB

F
t

)⊺
, n−1/2(Gs∆ −G0)

⊺
)⊺

, 1 < s ≤ n.

As {Gt} is assumed to be a stationary time series, the second component of Hs∆ is dominated by

the first in magnitude, which would enable their separation. However, as the factors from the first-

step PCA are consistent only up to a rotation, a second PCA on the cumulated factors is needed.

The leading eigenvalues in the second PCA will correspond to the efficient price factors, whereas

the remaining eigenvalues will correspond to the microstructure noise factors. This separates out

the efficient price factors and the microstructure noise factors.

For 1 ≤ s ≤ n, let Ĥ⋆
s∆ =

s∑
s1=1

ĥ⋆
s1∆

be an estimator of Hs∆. Define the demeaned Ĥ⋆
s∆

as Ĥ⋆c
s∆ = Ĥ⋆

s∆ − Ĥ⋆, where Ĥ⋆ = n−1
n∑

s=1
Ĥ⋆

s∆. In the matrix form, this can be written as

Ĥ⋆c = Ĥ⋆ − Ĥ⋆, with Ĥ⋆c = (Ĥ⋆c
∆ , . . . , Ĥ⋆c

n∆)
⊺
, Ĥ⋆ = (Ĥ⋆

∆, . . . , Ĥ
⋆
n∆)

⊺
, and Ĥ⋆ = 1nĤ⋆

⊺

. Define

the KH ×KH matrix

ŜHH = n−1Ĥ⋆c⊺Ĥ⋆c.

Let β̂⊥ be the matrix of eigenvectors associated with the largest KF eigenvalues of ŜHH and let

β̂ be the matrix of eigenvectors associated with the rest of the KG eigenvalues. Then, β̂
⊺

⊥ĥ
⋆
t is an
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estimator of β
⊺

⊥ht = ft, and β̂
⊺
ĥ⋆
t is an estimator of β

⊺
ht = n−1/2gt.

Lemma 1.3.2. Under the assumptions of Theorem 1.3.1, β̂⊥ and β̂ are consistent in the sense

that:

β̂ −Ξ
⊺
βQβ = OP ((log n)n

−τ−G · bnd) (1.3.14)

and

β̂⊥ −Ξ−1β⊥Qβ⊥ = OP ((log n)n
−τ−G · bnd), (1.3.15)

where

Qβ = [β
⊺
ΞΞ

⊺
β]−1β

⊺
Ξβ̂, Qβ⊥ = [β

⊺

⊥(Ξ
⊺
)−1Ξ−1β⊥]

−1β
⊺

⊥(Ξ
⊺
)−1β̂⊥, and

Ξ = d1/2Λ
⊺

HΛ̂HD̂
−1/2
x,KH

= (h
⊺
h)1/2R⋆.

The lemma shows that β̂ estimates a basis for the space spanned by Ξ
⊺
β. Using Lemma 1.3.2

and Theorem 1.3.1, we can prove the following theorem, which gives the convergence rate of the

estimators of the microstructure noise factors, the efficient price factors and their factor loadings.

To this end, we define

f̂⋆ = ĥ⋆β̂⊥, ĝ⋆ = ĥ⋆β̂, Λ̂⋆
F = Λ̂⋆

H β̂⊥, Λ̂⋆
G = Λ̂⋆

H β̂, F̂⋆ = Ĥ⋆β̂⊥, and Ĝ⋆ = Ĥ⋆β̂.

Theorem 1.3.3. Suppose that Assumptions 1.A–1.G are satisfied. We have

(i) ∥∥∥f̂⋆ − fβ
⊺

⊥(Ξ
⊺
)−1β̂⊥

∥∥∥
O
= OP

(
(log n)n−τ−G · b̃nd

)
(1.3.16)

and ∥∥∥f̂⋆ − fβ
⊺

⊥(Ξ
⊺
)−1β̂⊥

∥∥∥
max

= OP

(
(log n)2/(γ2∧1)n−1/2+τ̄+V −τ−G · bnd

)
; (1.3.17)

(ii) ∥∥∥ĝ⋆ − n−1/2gQβ

∥∥∥
O
= OP

(
(log n)n−τ−G · b̃nd

)
(1.3.18)
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and ∥∥∥ĝ⋆ − n−1/2gQβ

∥∥∥
max

= OP

(
(log n)2/(γ2∧1)n−1/2+τ̄+V −τ−G · bnd

)
; (1.3.19)

(iii) ∥∥∥Λ̂⋆
F −ΛFQβ⊥

∥∥∥
max

= OP

(
n−2τ−G · and

)
; (1.3.20)

(iv) ∥∥∥Λ̂⋆
G − n1/2ΛGDGβ

⊺
Ξβ̂
∥∥∥
max

= OP

(
n−2τ−G · and

)
, (1.3.21)

where Qβ, Qβ⊥ and Ξ are defined in Lemma 1.3.2.

This theorem shows that f̂⋆ and ĝ⋆ are estimators of the factors for the first-differenced efficient

prices and the microstructure noise with rotations β
⊺

⊥(Ξ
⊺
)−1β̂⊥ and Qβ, respectively, and that Λ̂⋆

F

and Λ̂⋆
G are estimators of the factor loadings for the efficient prices and the microstructure noise

with rotations Qβ⊥ and β
⊺
Ξβ̂, respectively.

When we estimate the first-differenced common components of the microstructure noise and the

efficient prices (i.e., gΛ
⊺

G and fΛ
⊺

F ), the rotation matrices cancel out. Thus, we have the following

corollary.

Corollary 1.3.4. Suppose that Assumptions 1.A–1.G are satisfied. We have

(i) ∥∥∥f̂⋆Λ̂⋆⊺

F − fΛ
⊺

F

∥∥∥
max

= OP

(
(log n)2/(γ2∧1)n−1/2+τ̄+V −τ−G · bnd

)
; (1.3.22)

(ii) ∥∥∥ĝ⋆Λ̂⋆⊺

G − gDGΛ
⊺

G

∥∥∥
max

= OP

(
(log n)2/(γ2∧1)n−1/2+τ̄+V +τ̄G−τ−G · bnd

)
. (1.3.23)

In the following theorem, we provide the uniform convergence rates for the cumulated factors

and common components.

Theorem 1.3.5. Suppose that Assumptions 1.A–1.G are satisfied. Then,

(i) for factors, we have

∥∥∥Ĥ⋆ − (H − 1nH
⊺

0 )(Ξ
⊺
)−1
∥∥∥
max

= OP

(
n−τ−G · bnd

)
, (1.3.24)
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∥∥∥Ĝ⋆ − n−1/2(G − 1nG
⊺

0)Qβ

∥∥∥
max

= OP

(
(log n)2n−τ−G · bnd

)
, (1.3.25)

and

∥∥∥F̂⋆ − (F − 1nF
⊺

0 )β
⊺

⊥(Ξ
⊺
)−1β̂⊥

∥∥∥
max

= OP

(
(log n)2n−τ−G · bnd

)
; (1.3.26)

(ii) for common components, we have

∥∥∥Ĥ⋆Λ̂⋆⊺

H − (H − 1nH
⊺

0 )DHΛ
⊺

H

∥∥∥
max

= OP

(
n−τ−G+τ̄+G · bnd

)
, (1.3.27)

∥∥∥Ĝ⋆Λ̂⋆⊺

G − (G − 1nG
⊺

0)DGΛ
⊺

G

∥∥∥
max

= OP

(
(log n)2n−τ−G+τ̄G · bnd

)
, (1.3.28)

and ∥∥∥F̂⋆Λ̂⋆⊺

F − (F − 1nF
⊺

0 )Λ
⊺

F

∥∥∥
max

= OP

(
(log n)2n−τ−G · bnd

)
, (1.3.29)

where Qβ, Qβ⊥ and Ξ are defined in Lemma 1.3.2.

When τ̄G = τG = 0 ≥ τ̄V , γ2 = γ3 ≥ 1, and mw,nd = O(1), the uniform convergence rate of

Ĥ⋆ in Theorem 1.3.5(i) becomes (log(nd))(n−1/2 + d−1/2). In comparison, Pelger (2019) obtains

an element-wise convergence rate of n−1/2 + d−1/2 for the cumulated factor estimator (see Lemma

L.3 in the Appendix of Pelger (2019)). On the other hand, in a low-frequency factor model setting,

Bai and Ng (2004) obtain a uniform convergence rate of n−3/4 + d−1/2 (see Lemma 2 in Bai and

Ng (2004)). Our estimators have a slower convergence rate, which is mainly due to the different

settings.

Although in this chapter we do not consider estimation of the integrated covolatility, Σx∗ =

ΛFΣFΛ
⊺

F+ΣU , we can use the estimated common component of efficient price to estimateΛFΣFΛ
⊺

F

without the need to use noise-robust estimation methods (such as pre-averaging). This may lead to

efficiency gain. However, for the estimation of ΣU , since we do not separate the idiosyncratic errors

for the efficient price and the microstructure noise, methods like pre-averaging may still be needed.
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1.4 Monte-Carlo simulation

1.4.1 Number of factors

In this chapter, we apply the commonly-used information criterion proposed by Bai and Ng (2002)

to estimate the total number of factors. Then, we use the PANIC test procedure proposed by Bai

and Ng (2004) to determine the number of factors for the efficient prices.

To introduce Bai and Ng (2002)’s information criterion, we denote by Q a finite positive integer

that is no smaller than KH . For any 1 ≤ qH ≤ Q, we let ĥ⋆(qH) =
(
ĥ⋆
∆(qH), . . . , ĥ⋆

n∆(qH)
)⊺

be

the matrix of estimated factors when the total number of factors is assumed to be qH , and denote

by Λ̂⋆
H(qH) the corresponding loadings matrix. The information criterion is defined as

IC1(qH) = log [Vn(qH)] + qH · n+ d

nd
· log( nd

n+ d
), (1.4.1)

where Vn(qH) = ∥x− ĥ⋆(qH)(Λ̂⋆
H(qH))

⊺∥2F . The total number of factors is then estimated as

K̂H = argmin
0≤qH≤Q

IC1(qH), (1.4.2)

with IC1(0) = ∥x∥2F for convention. For consistency of K̂H , we refer to the asymptotic results given

in Theorem 2 of Bai and Ng (2002).

Bai and Ng (2004) propose two tests to determine the number of nonstationary factors. We

adopt the one that does not specify a finite order VAR representation. For any 1 ≤ qF ≤ K̂H ,

we let F̂⋆(qF ) = Ĥ⋆β̂⊥(qF ), when the number of factors for efficient prices is assumed to be qF .

Let ξ̂Ft (qF ) be the residuals from estimating a first-order VAR of F̂⋆(qF ), Σ̂S,ξ(qF ) be the sample

covariance matrix of ξ̂Ft , and Σ̂L,ξ(qF ) be the estimated long-run covariance matrix of ξ̂Ft . The test

statistic for H0 : KF = qF is defined by

MQ(qF ) = n(ν(qF )− 1), (1.4.3)

where ν(qF ) is the smallest eigenvalue of

[ n∑
s=2

1

2

(
F̂ ⋆
s∆(qF )F̂

⋆⊺

(s−1)∆(qF ) + F̂ ⋆
(s−1)∆(qF )F̂

⋆⊺

s∆(qF )
)

−n(Σ̂L,ξ(qF )− Σ̂S,ξ(qF ))
]
·
( n∑
s=2

F̂ ⋆
s∆(qF )F̂

⋆⊺

s∆(qF )
)−1

. (1.4.4)
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For a given significance level α, define

K̂F = max
0≤qF≤K̂H,

MQ(qF )<cα,MQ(qF )

qF , (1.4.5)

where cα,MQ(qF ) is the critical value of the test statistic MQ(qF ) at α significance level. For

convention, we define cα,MQ(0) = +∞. Following Bai and Ng (2004), we use simulation to calculate

the critical values. Specifically, we use a qF × 1 vector of demeaned standard Brownian motions to

replace F̂⋆
s∆(qF ) and a qF -dimensional identity matrix to replace Σ̂L,F (qF ) in (1.4.4), and then use

(1.4.3) to obtain a value of the MQ statistic. With 100,000 replications, we calculate the critical

values at 1%, 5%, and 10% significance levels. We refer the reader to Theorem 1 of Bai and Ng

(2004) for the asymptotic distribution of the test statistic.

1.4.2 Alternative approaches for comparison

We consider two alternative approaches for comparison. The first approach, denoted as DPCA,

estimates the factors as ĥ in (1.3.2) instead of ĥ⋆, and uses ĥ for the second-step PCA while

keeping the rest of the steps exactly the same. The second approach is proposed by Barigozzi et al.

(2020) and Barigozzi et al. (2021) and is denoted as PCA⋆-VECM. The PCA⋆-VECM uses ĥ⋆
t from

the first-step PCA⋆ to construct a Vector Error Correction Model (VECM) in order to estimate β

and β⊥, while in our method, we use a second-step PCA to estimate β and β⊥. We set the lag

of VECM to 1 for simplicity, and for a lag length larger than 1, we refer the reader to Chapter 6

of Johansen (1995). Specifically, the PCA⋆-VECM uses Johansen (1995)’s reduced rank regression

method to estimate a VECM for ĥ⋆
t :

Step 1: Implement OLS of ĥ⋆
t and Ĥ⋆

t−∆ on ĥ⋆
t−∆ to get residuals ê0,t and ê1,t, respectively.

Step 2: Let Ŝij = n−1
∑n

s=1 êi,s∆ê
⊺

j,s∆ for i, j = 0, 1. Then let β̂ = (β̂1, . . . , β̂KG
), where β̂l, l =

1, . . . ,KG, is the eigenvector belonging to the l-th largest eigenvalue of the matrix (Ŝ11−Ŝ10Ŝ
−1
00 Ŝ01).

Define β̂⊥ as the orthogonal complement matrix of β̂ such that β̂
⊺

⊥β̂ = OKF×KG
and β̂

⊺

⊥β̂⊥ = IKF
.

Note that even if the estimated factors are not normalised in Step 1, the residuals ê0,t and

ê1,t will not change and therefore the estimates of β̂⊥ and β̂ will not be affected. Also note that

the factors for the efficient prices follow a diffusion model and hence, are heteroskedastic. One

can implement more efficient estimation of VECM under heteroskedasticity (e.g., generalised least

squares estimation in Seo (2007) and Herwartz and Lütkepohl (2011)). But we do not pursue this

in our chapter.
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1.4.3 Data generating processes

The data generating process in our simulation is similar to that in Bollerslev et al. (2019). The

observable prices are the sum of the efficient prices and microstructure noise. The former has two

orthogonal factors and the latter has one factor.

The two factors in the efficient prices are independently generated from a GARCH diffusion

model as in Andersen and Bollerslev (1998),

 dFit = σf,itdB
F
it ,

dσ2
f,it = κfi(θfi − σ2

f,it)dt+ ιfiσ
2
f,itdW

F
it ,

(1.4.6)

for i = 1, 2, where BF
it and WF

it are dependent Brownian motions with corr(BF
it ,W

F
it ) = −0.5. The

parameters are set as κf1 = κf2 = 0.035, θf1 = 0.636, θf2 = 0.3, ιfi =
√

2κfiϕfi, ϕf1 = ϕf2 = 0.296,

and initial value (fi0, σ
2
f,i0) = (0, θfi). Then we draw the factor loadings of the efficient prices

independently from a normal distribution with mean zero and unit variance.

The idiosyncratic components of the efficient prices are generated as dUit = σu,itdB
U
it , where

BU
it is a Brownian motion, and σu,it is generated by three different volatility processes for different

stocks to allow for heterogeneity.

• For 1 ≤ i ≤ ⌊d/3⌋, the volatility process is generated by an exponential ARCH diffusion limit

model as in Nelson (1990):

d log(σ2
u,it) = −0.6(0.157− log(σ2

u,it))dt+ 0.25dWU
it

with initial value log(σ2
u,i0) = 0.157, where BU

it is a Brownian motion with corr(BU
it ,W

U
it ) =

−0.3.

• For ⌊d/3⌋+1 ≤ i ≤ ⌊2d/3⌋, the volatility process is generated by a GARCH-M diffusion limit

model as in Nelson (1990),

d(σ2
u,it) = (0.1− σ2

u,it)dt+ 0.2σ2
u,itdW

U
it

with initial value σ2
u,i0 = 0.1, where BU

it is a Brownian motion with corr(BU
it ,W

U
it ) = −0.3.

• For ⌊2d/3⌋+1 ≤ i ≤ d, the volatility process is generated by a GARCH diffusion model as in
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Andersen and Bollerslev (1998),

d(σ2
u,it) = 0.035(0.636− σ2

u,it)dt+ 0.2σ2
u,itdW

U
it ,

with initial value σ2
u,i0 = 0.636, where BU

it is a Brownian motion with corr(BU
it ,W

U
it ) = −0.3.

The two dimensional Brownian motion (BU
it ,W

U
it ) is independent over 1 ≤ i ≤ d and also

independent with the driving Brownian motions (BF
1t,W

F
1t) and (BF

2t,W
F
2t) for the efficient price

factors.

As for microstructure noise, we draw the factor loadings, λGi, i = 1, ..., d, independently from

a normal distribution with mean one and unit variance. Then we introduce the noise-to-signal

ξ2G and ξ2V as in Bollerslev et al. (2019), which take values n2τ̄⋄G and n2τ̄⋄V , respectively, with τ̄⋄G ∈

{−0.4,−0.6} and τ̄⋄V ∈ {−0.4,−0.6}. The variance of the factor for the microstructure noise satisfies

Var(Gt) = 0.5ξ2G(
1
nd

∑d
i=1

∑n
t=1 σ

4
∗,it)

1/2/c̄, and is thus time-invariant, where σ∗,it is the spot volatil-

ity of the efficient price process of asset i at time t, that is, σ2
∗,it = (λF,i1σf,1t)

2+(λF,i2σf,2t)
2+σ2

u,it,

and c̄ = 1
d

∑d
i=1 λ

2
Gi. The variance of idiosyncratic component Vit makes up 0.1ξ2V of the total

variance, that is Var(Vit) = 0.1ξ2V (
1
n

∑n
t=1 σ

4
∗,it)

1/2. We draw the factor Gt independently from

a normal distribution with mean zero and variance Var(Gt), and draw Vit independently from a

normal distribution with mean zero and variance Var(Vit).

We assume that the prices are synchronously recorded once every one or five minutes during 6.5

trading hours, that is n = 390 or 78. The number of assets is assumed to be d = 50, 100, 300 and

500. We present the simulation results based on 1000 Monte Carlo replications.

1.4.4 Simulation results

Firstly, we provide simulation results for the estimation of number of factors by the information

criteria described in Section 1.4.1, as well as by the PANIC test with different significance levels,

1%, 5%, and 10%. More specifically, we use Bai and Ng (2002)’s information criterion, IC1, to

estimate the total number of factors and then use the PANIC test to identify the number of efficient

price factors. For the PANIC test in (1.4.5), K̂H is determined by IC1.

Table 1.2 presents the average number of factors determined by each method (over 1000 repli-

cations) for n = 78 and n = 390, respectively. It can be seen that IC1 has excellent performance

in estimating the total number of factors in all scenarios. The PANIC tests using the MQ statistic

at different significance levels are denoted as MQ1%, MQ5%, and MQ10%. They are used to deter-

mine the number of efficient price factors and perform satisfactorily in all scenarios, in particular
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Table 1.2: Average estimated number of factors and standard deviation (in parentheses) for sam-
pling frequency=5 mins (n=78) or 1 min (n=390), true number of factors=2 (efficient prices)+1
(microstructure noise)

IC1 MQ1% MQ5% MQ10% IC1 MQ1% MQ5% MQ10%

n = 78, τ̄⋄
G = −0.4, τ̄⋄

V = −0.4 n = 390, τ̄⋄
G = −0.4, τ̄⋄

V = −0.4

d=50 3.026 1.998 1.931 1.855 d=50 3.035 1.989 1.901 1.815
(0.025) (0.030) (0.086) (0.150) (0.036) (0.027) (0.101) (0.177)

d=100 3.001 1.983 1.931 1.858 d=100 3.004 1.987 1.917 1.827
(0.001) (0.017) (0.072) (0.134) (0.004) (0.015) (0.080) (0.165)

d=300 3.000 1.986 1.942 1.871 d=300 3.000 1.987 1.920 1.850
(0.000) (0.014) (0.059) (0.122) (0.000) (0.013) (0.080) (0.144)

d=500 3.000 1.988 1.940 1.869 d=500 3.000 1.988 1.923 1.850
(0.000) (0.012) (0.062) (0.130) (0.000) (0.012) (0.071) (0.146)

n = 78, τ̄⋄
G = −0.6, τ̄⋄

V = −0.4 n = 390, τ̄⋄
G = −0.6, τ̄⋄

V = −0.4

d=50 3.026 2.015 1.939 1.861 d=50 3.035 1.991 1.909 1.818
(0.025) (0.047) (0.091) (0.156) (0.036) (0.027) (0.101) (0.175)

d=100 3.001 1.984 1.930 1.858 d=100 3.004 1.990 1.920 1.827
(0.001) (0.018) (0.073) (0.134) (0.004) (0.010) (0.078) (0.165)

d=300 3.000 1.987 1.943 1.873 d=300 3.000 1.989 1.920 1.851
(0.000) (0.013) (0.058) (0.121) (0.000) (0.011) (0.080) (0.143)

d=500 3.000 1.988 1.939 1.869 d=500 3.000 1.988 1.923 1.850
(0.000) (0.012) (0.063) (0.130) (0.000) (0.012) (0.071) (0.146)

n = 78, τ̄⋄
G = −0.4, τ̄⋄

V = −0.6 n = 390, τ̄⋄
G = −0.4, τ̄⋄

V = −0.6

d=50 3.001 1.991 1.949 1.884 d=50 3.000 1.993 1.931 1.847
(0.001) (0.011) (0.056) (0.117) (0.000) (0.007) (0.072) (0.154)

d=100 3.000 1.986 1.942 1.881 d=100 3.000 1.991 1.932 1.848
(0.000) (0.014) (0.063) (0.115) (0.000) (0.009) (0.067) (0.147)

d=300 3.000 1.991 1.951 1.890 d=300 3.000 1.989 1.926 1.863
(0.000) (0.009) (0.051) (0.108) (0.000) (0.011) (0.073) (0.132)

d=500 3.000 1.988 1.948 1.887 d=500 3.000 1.990 1.931 1.860
(0.000) (0.012) (0.055) (0.114) (0.000) (0.010) (0.064) (0.137)

n = 78, τ̄⋄
G = −0.6, τ̄⋄

V = −0.6 n = 390, τ̄⋄
G = −0.6, τ̄⋄

V = −0.6

d=50 3.001 2.008 1.956 1.892 d=50 3.000 1.995 1.935 1.852
(0.001) (0.028) (0.054) (0.114) (0.000) (0.007) (0.071) (0.150)

d=100 3.000 1.987 1.945 1.881 d=100 3.000 1.991 1.935 1.849
(0.000) (0.015) (0.060) (0.115) (0.000) (0.009) (0.065) (0.146)

d=300 3.000 1.992 1.951 1.890 d=300 3.000 1.990 1.927 1.863
(0.000) (0.008) (0.051) (0.108) (0.000) (0.010) (0.072) (0.132)

d=500 3.000 1.988 1.949 1.887 d=500 3.000 1.989 1.931 1.861
(0.000) (0.012) (0.054) (0.114) (0.000) (0.011) (0.064) (0.136)

for MQ1%. In summary, IC1 is very satisfactory in determining the number of total factors, and

the PANIC test with 1% significance level is the most robust method to determine the number of

efficient price factors.

Next, we compare the estimation of common components in the dual factor model. Our method

is denoted as DPCA⋆. For the alternative methods discussed in Section 1.4.2, we denote them as

DPCA and PCA⋆-VECM, respectively. We use the relative estimation error (REE) to measure the

performance of different methods. It is defined as

REE = ∥M− M̂∥/∥M∥,
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where ∥ · ∥ can be the Frobenius norm, the max norm or the spectral norm, and M̂ is an estimate

of the matrix M, which varies from place to place (depending on the quantity being estimated).

In Tables 1.3–1.6, “diff.total” refers to the total common component, hΛ
⊺

H . “EP” and “diff.EP”

refer to the common components of efficient prices and efficient returns. That is, EP = FΛ
⊺

F and

diff.EP = fΛ
⊺

F , respectively. Similarly, “MN” and “diff.MN” refer to the common components of

the microstructure noise and its first difference, i.e., MN = GΛ
⊺

G and diff.MN = gΛ
⊺

G, respectively.

To focus on the comparison of different methods in estimating the common components, we assume

that the true numbers of factors for the efficient price factors and the microstructure noise are

known. Otherwise, one can obtain correct estimates of the numbers of factors by IC1 and the

PANIC test in most cases (as can be seen from Table 1.2).

In the following study, we will only consider the cases τ̄⋄G = τ̄⋄V = −0.6 and τ̄⋄G = τ̄⋄V = −0.4.

To give a sense of the magnitudes of the different components in these two cases, we calculate the

average volatilities (averaged over stocks) of the common and idiosyncratic components of efficient

returns and the average sample variances of first differenced microstructure noise. We only provide

the results for d = 500, as the results for other values of d are similar. When n = 78, the average

volatilities of the common and idiosyncratic components for efficient returns are 0.01200 and 0.00684,

respectively, while the average variances of the common and idiosyncratic components for differenced

microstructure noise are 0.04523 and 0.00904 when τ̄⋄G = τ̄⋄V = −0.4 and decrease to 0.00788 and

0.00157 when τ̄⋄G = τ̄⋄V = −0.6. Similarly, when n = 390, the average volatilities of the common

and idiosyncratic components for efficient returns are 0.00240 and 0.00137, respectively, while the

average variances of the common and idiosyncratic components for differenced microstructure noise

are 0.01250 and 0.00249 when τ̄⋄G = τ̄⋄V = −0.4 and decrease to 0.00115 and 0.00023 when τ̄⋄G =

τ̄⋄V = −0.6. Hence, when τ̄⋄G = τ̄⋄V = −0.4, the common and idiosyncratic components of the

differenced microstructure noise dominate those of the efficient returns, while the reverse is true

when τ̄⋄G = τ̄⋄V = −0.6.

Table 1.3 gives the simulation results for n = 78, τ̄⋄G = −0.6, and τ̄⋄V = −0.6. In this case, the

factors for the first differenced microstructure noise are smaller than the efficient return factors and

idiosyncratic errors in magnitude and hence, are more difficult to detect and estimate. We can see

that the REE’s for “diff.MN” are generally larger than those for “diff.EP” for all the three methods.

The estimates of the total common component, hΛ
⊺

H , are the same for all the three methods, and

the corresponding REE values are listed under “diff.total”. Among the three estimation methods,

it can be seen that DPCA⋆ outperforms the rest of the methods. It can also be seen that the REE’s

for “MN” are always larger than those for “diff.MN”. On the contrary, the REE’s for “EP” are

always smaller than those for “diff.EP”. This may be due to the fact that the REE (calculated as
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∥M− M̂∥/∥M∥) for “EP” has a larger denominator value than the REE for “diff.EP”.

Table 1.4 presents the simulation results for n = 78, τ̄⋄G = −0.4, and τ̄⋄V = −0.4. In this case,

the first differenced microstructure noise factors and idiosyncratic errors are larger than the efficient

return factors in magnitude. The REE’s for “diff.MN” are now smaller than those for “diff.EP” for

all the three methods. DPCA⋆ still outperforms the other two methods, and DPCA performs the

poorest. The results for EP and diff.EP in Table 1.3 are better than their counterparts in Table

1.4, while the results for MN and diff.MN in Table 1.3 are worse than their counterparts in Table

1.4. This suggests that factors with larger magnitudes are estimated with smaller relative errors.

Table 1.5 gives the simulation results when n = 390, τ̄⋄G = −0.6, and τ̄⋄V = −0.6. When we

increase the sample size from 78 to 390, the REEs are smaller for “diff.total”, “diff.EP”, “diff.MN”,

and “EP”. However, all three methods have larger REEs for “MN”. When d = 50, the REEs are even

larger than 1, but they eventually decay when d becomes larger. Table 1.6 provides the simulation

results when n = 390, τ̄⋄G = −0.4, and τ̄⋄V = −0.4. The pattern is similar to that in Table 1.4, i.e.,

DPCA⋆ outperforms DPCA and PCA⋆-VECM.

In summary, the simulation results show that DPCA⋆ always outperforms DPCA, which means

that the eigen-decomposition of xx
⊺
gives better estimates than the eigen-decomposition of x

⊺
x

in finite samples. In addition, we can find that the difference between the average REEs of DPCA⋆

and DPCA is larger when the magnitude of the factors for microstructure noise is larger (see Tables

1.4 and 1.6) but smaller when the magnitude of the factors for microstructure noise is smaller (see

Tables 1.3 and 1.5). This may be due to the fact that the factors corresponding to the leading

eigenvalues in the second-step PCA may come from the microstructure noise when the factors are

not normalised in the first-step PCA, especially when the magnitude of the factors for microstructure

noise is larger. Misidentification of the two types of factors leads to large REEs. Even when the

magnitude of the factors for microstructure noise is smaller, estimation error in the first-step PCA

may still lead to the same problem, but with a lower probability.

1.5 An empirical application

We now apply the proposed method to 1-min and 5-min intraday returns of S&P 500 Index con-

stituents (505 stocks in total). The data were collected from the Thomson Reuters Eikon database

and cover a period from 29 March 2021 to 30 June 2021. For each day, the observed prices constitute

an (n + 1)-by-d matrix, X, with n ≤ 78 (for 5-min returns) or n ≤ 390 (for 1-min returns) and

d ≤ 505. The value of n (i.e., the number of observations) and d (i.e., the number of stocks) may

vary from day to day due to contemporaneous missing values at a time or suspension of trading in
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one day. For asynchronous missing data, we fill them using Next Observation Carried Backwards

(NOCB) if the missing data are at the beginning of the series, Last Observation Carried Forward

(LOCF) if they are at the end of the series, and linear interpolation otherwise.

Firstly, we determine the number of factors using IC1 and the PANIC tests for each of the

66 trading days within the sampling period. Figure 1.1 illustrates that the estimated number of

factors varies from day to day. Table 1.7 shows some summary statistics for the estimated numbers

of factors. The PANIC tests with different significance levels give similar estimates of the numbers

of factors for the microstructure noise and the efficient prices in each day, with a difference less than

1.5 on average. Since the PANIC test at 1% performs best in the simulation, it will be used as the

default PANIC test hereafter, unless specifically stated otherwise.

Table 1.7: Summary statistics for estimated numbers of factors over the sampling period

1-min data

mean median 1st quartile 3rd quartile min max s.d.

KH (IC1) 13.045 13 12 14 8 17 1.818
KF (PANIC 1%) 8.894 9 8 10 4 12 1.590
KF (PANIC 5%) 8.106 8 7 9 4 12 1.656
KF (PANIC 10%) 7.561 8 6 9 3 12 1.890
KG (PANIC 1%) 4.152 4 3 5 1 8 1.552
KG (PANIC 5%) 4.939 5 4 6 2 9 1.626
KG (PANIC 10%) 5.485 5 4 6.75 2 10 1.629

5-min data

mean median 1st quartile 3rd quartile min max s.d.

KH (IC1) 7.697 8 7 8.75 5 12 1.488
KF (PANIC 1%) 6.758 7 6 8 3 12 1.710
KF (PANIC 5%) 6.076 6 5 7 2 12 1.892
KF (PANIC 10% 5.500 5 4 7 2 10 1.774
KG (PANIC 1%) 0.939 1 0 2 0 3 0.990
KG (PANIC 5%) 1.621 2 0 2 0 5 1.274
KG (PANIC 10%) 2.197 2 2 3 0 6 1.268

We can see from Table 1.7 that the numbers of factors are larger for 1-min data than those

for 5-min data. The reason might be twofold. Firstly, the signal of the efficient returns increases

when 1-min data are cumulated to 5-min data. Thus the factors for the microstructure noise are

more difficult to detect. Secondly, due to the Epps effect (as evident in Table 1.9), the correlation

between stocks decreases as the sampling frequency increases, resulting in higher numbers of factors

for both the microstructure noise and the efficient prices of higher frequency data.

To see how the number of factors change during the sample period, we looked at whether there

is a relation between the number of factors and the following variables: the market excess return

(MKT), the size factor (SMB), the value factor (HML), the Momentum factor (MOM), the short-
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term Reversal factor (STREV), the long-term Reversal factor (LTREV), the CBOE Volatility Index

(VIX), the high low volatility on the S&P500 index (HLVOL) and the implied Roll measure of bid-

ask spread (ROLL, computed as 2
√
−
[
Cov(rt, rt−1) ∧ 0

]
using 5-min price changes rt and averaged

over all stocks with equal weights). The first 6 risk factors were downloaded from Kenneth R.

French’s data library2 and the VIX and S&P500 index were downloaded from Thomson Reuters

Eikon database.

We find from Table 1.8 that the contemporaneous correlations between the number of factors

and the above-mentioned risk variables are insignificant. However, some of these variables can

partially explain changes in the number of factors for efficient prices in the next day. Specifically,

the highest (in absolute value) correlation is between lag-1 SMB and 1-min KF , which is 0.329 with

a p-value of 0.007. Significant correlations are also found, at 10% significant level, between 1-min

KF and HLVOL at -0.240, between 1-min KF and MOM at 0.211, and between 1-min KF and

LTREV at 0.213. What is more, we also find a negative relation between the number of factors and

VIX (or HLVOL). Figure 1.2 shows this relation in a time series plot: when the S&P500 high-low

volatility peaks on 12 May 2021, the 1-min KH and 1-min KF drop in the next day. This indicates

that the co-movement of stocks increases during High VIX (or HLVOL) period, confirming the old

adage that diversification disappears when needed most.

Table 1.8: Correlation between number of factors and 9 risk variables. Panel A shows the contem-
poraneous correlation and Panel B shows the lagged correlation (the 9 risk variables are lagged by
1 day). P-values less than 0.1, 0.05 or 0.01 are flagged with one, two or three stars (*, **, ***),
respectively.

(Panel A) VIX HLVOL MKT SMB HML MOM STREV LTREV ROLL

KH(1-min) −0.193 −0.121 0.043 0.185 −0.038 0.178 0.141 0.153 −0.034
KF (1-min) −0.134 −0.033 0.004 0.159 −0.054 0.065 −0.010 0.094 −0.113
KG(1-min) −0.089 −0.108 0.047 0.055 0.010 0.142 0.175 0.083 0.075
KH(5-min) −0.008 0.123 0.042 0.107 0.115 0.086 0.090 0.205 0.083
KF (5-min) −0.010 0.093 0.009 0.004 −0.061 −0.011 −0.051 −0.005 0.010
KG(5-min) 0.004 0.025 0.048 0.155 0.279 0.149 0.223 0.317 0.106

(Panel B) VIX HLVOL MKT SMB HML MOM STREV LTREV ROLL

KH(1-min) −0.206∗ −0.191 0.157 0.292∗∗ 0.129 0.231∗ −0.184 0.254∗∗−0.132
KF (1-min) −0.131 −0.240∗ 0.144 0.329∗∗∗ 0.050 0.211∗ −0.027 0.213∗ 0.005
KG(1-min) −0.105 0.023 0.036 0.002 0.099 0.052 −0.187 0.078 −0.159
KH(5-min) 0.003 −0.088 0.110 0.026 0.041 −0.084 −0.072 −0.006 0.033
KF (5-min) −0.013 −0.076 0.183 −0.019 0.055 −0.085 −0.150 −0.032 −0.056
KG(5-min) 0.027 −0.003 −0.146 0.071 −0.032 0.019 0.146 0.046 0.144

For illustration purposes, we consider the results for 30 June 2021, i.e., the last day in the

sample period. For 1-min data, the estimated total number of factors is 13, among which 6 are

2http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data library.html.
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Table 1.9: Summary statistics for pairwise correlations between stock returns on 30 June 2021

Correlation

mean median 1st quartile 3rd quartile min max s.d.

1-min 0.083 0.075 -0.025 0.179 -0.471 0.925 0.160
5-min 0.097 0.097 -0.062 0.253 -0.674 0.960 0.229

Absolute value of correlation

mean median 1st quartile 3rd quartile min max s.d.

1-min 0.139 0.112 0.053 0.195 0.000 0.925 0.114
5-min 0.200 0.171 0.082 0.288 0.000 0.960 0.148

Table 1.10: Summary statistics for the variance ratio of the common component of the microstruc-
ture noise to that of the efficient price for each stock on 30 June 2021. Note that we define both
variance ratios based on V̂ar(λ̂⋆⊺

Fif̂
⋆
s∆), as the variance V̂ar(λ̂⋆⊺

FiF̂
⋆
s∆) is not meaningful.

Variance ratio of common components: V̂ar(λ̂⋆⊺

GiĜ
⋆
s∆)/V̂ar(λ̂

⋆⊺

Fif̂
⋆
s∆)

mean median 1st quartile 3rd quartile min max s.d.

1-min 4.116 2.541 1.302 5.451 0.030 48.788 4.875
5-min 0.148 0.048 0.013 0.138 0.000 4.228 0.325

Variance ratio of differenced common components: V̂ar(λ̂⋆⊺

Giĝ
⋆
s∆)/V̂ar(λ̂

⋆⊺

Fif̂
⋆
s∆)

mean median 1st quartile 3rd quartile min max s.d.

1-min 2.633 1.604 0.812 3.492 0.017 35.849 3.229
5-min 0.069 0.020 0.006 0.062 0.000 2.209 0.156

identified as factors for efficient prices by the PANIC test. Figure 1.3 shows the 13 estimated factors

in cumulative form, i.e.,
(
β̂⊥, β̂

)⊺
Ĥ⋆c

s∆, where
(
β̂⊥, β̂

)
is the matrix of eigenvectors of the matrix

n−1Ĥ⋆c⊺Ĥ⋆c, arranged in descending order of their corresponding eigenvalues. The first 6 factors

appear to be more variable than the last 7 factors.

We cannot tell from Figure 1.3 whether the microstructure noise factors dominate the efficient

price factors, as estimated factors have been standardised. Instead, we calculate the variance ratio

of the common component of the microstructure noise to that of efficient price for each stock, to

take the magnitude of factor loadings into consideration. We give the summary statistics in Table

1.10. We can see that on average, the common components for the microstructure noise domi-

nate the common components of efficient prices at 1-min frequency, while the relation reverses at

5-min frequency. For individual stocks, however, the contribution of the common component for

the microstructure noise may still be small even at the 1-min frequency. To show this, we look at

the decomposition of prices (cumulative returns) into three components: a common component of

efficient prices, ΛFFt (CC.EP), a common component of microstructure noise, ΛGDGGt (CC.MN),

and an idiosyncratic error component (Residuals). We illustrate with five randomly selected stocks

that have the stock ticker symbols — POOL, CHRW, AJG, CNP, and WM. Figure 1.4 shows the

decomposition for the cumulative 1-min returns of the five stocks on 30 June 2021. The correspond-
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ing numbers of factors are K̂F = 6 and K̂G = 7. Figure 1.5 shows the decomposition for 5-min data

with K̂F = 5 and K̂G = 1. The two figures show that the common component of the microstructure

noise can explain only a small amount of the variability of the prices.

In summary, our analysis finds existence of common components for the microstructure noise

of S&P 500 stocks, although their magnitude is small. The small magnitude is also consistent with

the expectation that there are very few arbitrage opportunities in a frictional market.

Figure 1.1: Estimated number of factors for each trading day from 29 March 2021 to 30 June 2021.
The y-axis represents the number of factors and the x-axis represents the dates (given in the format
mmdd). The y-coordinate of the top of each grey bar gives the estimated total number of factors,
K̂H , from IC1. The length of each grey bar represents the difference between K̂H and K̂F , which
is obtained from the PANIC test using 1% significance level. The length of each red bar represents
the difference between K̂F ’s obtained from the PANIC tests using 1% and 5% significance levels.
The length of each blue bar represents the difference between K̂F ’s obtained from the PANIC tests
using 5% and 10% significance levels. The y-coordinate of the bottom of each blue bar gives the
value of K̂F obtained from a 10% PANIC test.
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Figure 1.2: Time series plots of KH(1-min) and KF (1-min), VIX, and HLVOL over the sampling
period
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iĜ

⋆ s∆
)/
V̂
ar
(λ̂

⋆
⊺

F
if̂

⋆ s∆
)
fo
r
ea
ch

st
o
ck

is
0.
4
62

,
0
.9
8
0
,
0
.1
2
5
,
1
.2
8
2
,
a
n
d
6
.8
1
8
,
re
sp
ec
ti
ve
ly
.



1.5 An empirical application 44
F
ig
u
re

1
.5
:
D
ec
o
m
p
os
it
io
n
of

cu
m
u
la
ti
ve

5
-m

in
re
tu
rn
s
on

30
J
u
n
e
20

21
in
to

th
e
co
m
m
on

co
m
p
on

en
ts

o
f
effi

ci
en
t
p
ri
ce
s
(C

C
.E
P
),

th
e
co
m
m
o
n

co
m
p
on

en
ts

o
f
th
e
m
ic
ro
st
ru
ct
u
re

n
oi
se

(C
C
.M

N
),

a
n
d
th
e
id
io
sy
n
cr
at
ic

er
ro
rs

(R
es
id
u
al
s)

fo
r
th
e
st
o
ck
s
P
O
O
L
,
C
H
R
W

,
A
J
G
,
C
N
P
,
a
n
d
W

M
,

w
it
h
K̂

F
=

5
a
n
d
K̂

G
=

1
.
E
a
ch

ro
w

gi
v
es

th
e
d
ec
om

p
os
it
io
n
fo
r
ea
ch

st
o
ck
,
w
it
h
th
e
fi
rs
t
d
ia
gr
a
m

g
iv
in
g
th
e
cu

m
u
la
ti
ve

re
tu
rn
s,

fo
ll
ow

ed
b
y

C
C
.E
P
,
C
C
.M

N
,
a
n
d
R
es
id
u
al
s.

T
h
e
va
ri
an

ce
ra
ti
o
V̂
ar
(λ̂

⋆
⊺

G
iĜ
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1.6 Conclusion

We consider a dual factor model for high-frequency stock prices contaminated with microstructure

noise. We develop the Double Principle Component Analysis (DPCA⋆) to estimate the separate fac-

tor structures for efficient prices and microstructure noise. When comparing with the PCA-VECM

approach, the DPCA⋆ approach is free from the need to impose strong parametric assumptions on

the microstructure noise and applies instead to a broad class of stationary processes. The estimators

are proven to be consistent and perform well in simulations. The empirical analysis of intraday re-

turns of S&P 500 constituents provides some evidence of co-movement in the microstructure noise,

apart from co-movement of prices caused by common systematic risk factors.

Identifying and separating out the common component of microstructure noise from observed

prices are very useful for the study of properties of the microstructure noise and efficient price

processes. For example, once the common component of the microstructure noise are separated

out, the common component of the efficient prices are no longer contaminated by microstructure

noise and hence, can be used to obtain a more accurate estimate of the common part of realised

volatility. For the idiosyncratic part of realised volatility, one can use the estimated idiosyncratic

errors and apply the pre-averaging method of Jacod et al. (2009). Adding these two parts together,

we get an estimator of the realised volatility matrix. We may introduce sparsity or block structure

into idiosyncratic components like Dai et al. (2019) and Aı̈t-Sahalia and Xiu (2017), respectively.

However, since our main interests are the identification of common factors, we avoid introducing

these structures and leave the estimation of the realised volatility matrix to the future work.

The estimated common factors and loadings for microstructure noise provide useful tools for

portfolio management. With such estimates, portfolio managers can construct a new factor mim-

icking portfolio which is only exposed to microstructure noise factors. Such a portfolio can be used

to hedge risks from microstructure noise. Since the value of the portfolio is stationary, one can apply

the mean-reverting strategy to earn profits from the portfolio, once its volatility is large enough to

cover the cost. Even if its volatility is small, one can still time the market according to it, e.g.,

when adjusting the position of another portfolio, to lower the cost.



Chapter 2

Estimating Time-Varying Networks for

High-Dimensional Time Series

Abstract We explore time-varying networks for high-dimensional locally stationary time series, us-

ing the large VAR model framework with both the transition and (error) precision matrices evolving

smoothly over time. Two types of time-varying graphs are investigated: one containing directed

edges of Granger causality linkages, and the other containing undirected edges of partial correlation

linkages. Under the sparse structural assumption, we propose a penalised local linear method with

time-varying weighted group LASSO to jointly estimate the transition matrices and identify their

significant entries, and a time-varying CLIME method to estimate the precision matrices. The

estimated transition and precision matrices are then used to determine the time-varying network

structures. Under some mild conditions, we derive the theoretical properties of the proposed es-

timates including the consistency and oracle properties. In addition, we extend the methodology

and theory to cover highly-correlated large-scale time series, for which the sparsity assumption be-

comes invalid and we allow for common factors before estimating the factor-adjusted time-varying

networks. We provide extensive simulation studies and an empirical application to a large U.S.

macroeconomic dataset to illustrate the finite-sample performance of our methods.

Key Words: factor model, Granger causality, partial correlation, time-varying network, VAR.
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2.1 Introduction

In recent years, network analysis has become an effective tool to explore inter-connections among a

large number of variables, with applications to various disciplines such as: epidemiology, economics,

finance, and social networks (e.g., Newman, 2002; Burt et al., 2013; Diebold and Yılmaz, 2014, 2015;

Hautsch et al., 2014; Serrat, 2017; Barigozzi and Brownlees, 2019; Zhu et al., 2019). The so-called

graphical model is commonly used in network analysis to visualise the connectedness of a large panel

with vertices representing variables in the panel and the presence of an edge indicating appropriate

(conditional) dependence between the variables. In the past decades, most of the existing literature

on statistical estimation and inference of network data limits attention to the static network, which

is assumed to be invariant over time (e.g., Yuan and Lin, 2007; Fan et al., 2009; Loh and Wainwright,

2013; Basu et al., 2015; Zhao et al., 2022). However, such an assumption may be too restrictive and

often fails in practical applications where the underlying data generating mechanism is dynamic.

There have been some attempts in the recent literature to relax the static network assumption,

allowing the connectivity structure to exhibit time-varying features. For example, Kolar et al.

(2010) and Zhou et al. (2010) study dynamic network models with smooth time-varying structural

changes; whereas Wang et al. (2021a) consider change-point detection and estimation in dynamic

networks. However, most of the aforementioned literature typically assumes that the network data

are independent, which often becomes invalid in practice. We aim to relax this restrictive assumption

and model large-scale network data under a general temporal dependence structure.

Vector autoregression (VAR) is a fundamental modelling tool for multivariate time series data

(e.g., Lütkepohl, 2005). In recent years, there has been increasing interest in extending the finite-

dimensional VAR to the high-dimensional setting. Under appropriate sparsity restrictions on the

transition (or autoregressive coefficient) matrices, various regularised methods have been proposed

to estimate high-dimensional VAR models and identify non-zero entries in the transition matrices

(e.g., Basu and Michailidis, 2015; Han et al., 2015; Kock and Callot, 2015; Davis et al., 2016). Zhu

et al. (2017) introduce a network VAR model by incorporating the adjacency matrix to capture the

network effect and estimate the model via ordinary least squares. More recently, Chen et al. (2023)

and Miao et al. (2023) further study high-dimensional VAR and network VAR with latent common

factors, allowing strong cross-sectional dependence in large panel time series. The methodology and

theory developed in these papers heavily rely on the stationarity assumption with both transition

and volatility matrices being time-invariant.

The stable VAR model cannot capture smooth structural changes and breaks in the underlying

data generating process, two typical dynamic features in time series data collected over a long time

span. To address this problem, Ding et al. (2017) consider a time-varying VAR model for high-
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dimensional time series (allowing the number of variables to diverge at a sub-exponential rate of the

sample size), and estimate the time-varying transition matrices by combining the kernel smooth-

ing with ℓ1-regularisation, whereas Safikhani and Shojaie (2022) simultaneously detect breaks and

estimate transition matrices in high-dimensional VAR via a three-stage procedure using the total

variation penalty. Xu et al. (2020) detect structural breaks and estimate smooth changes (between

breaks) in the covariance and precision matrices of high-dimensional time series (covering VAR as a

special case). In this chapter, we aim to jointly estimate the time-varying transition and precision

matrices in the high-dimensional sparse VAR under the local stationarity framework. Motivated

by the stable network time series analysis in Barigozzi and Brownlees (2019), we use the estimated

transition and precision matrices to further construct two time-varying networks: one containing

directed edges of Granger causality linkages, and the other containing undirected edges of partial

correlation linkages.

The proposed time-varying network via VAR is naturally connected to the locally stationary

models, which have been systematically studied in the literature for low-dimensional time series.

Dahlhaus (1997) is among the first to introduce a locally stationary time series model via a time-

varying spectral representation. Dahlhaus and Subba Rao (2006) study a time-varying ARCH model

and propose a kernel-weighted quasi-maximum likelihood estimation method. Hafner and Linton

(2010) further consider a time-varying version of GARCH model and introduce a semiparametric

method to estimate both the parametric and nonparametric components involved. Vogt (2012)

and Zhang and Wu (2012) study nonparametric kernel-based estimation and inference in a general

class of locally stationary time series. Koo and Linton (2012) extend the locally stationary model

framework to the diffusion process. Yan et al. (2020) develop a kernel estimation method and theory

for time-varying vector moving average models. This chapter complements the locally stationary

time series literature by further exploring the high-dimensional dynamic network structure.

We study the time-varying VAR and network models for large-scale time series, allowing the

number of variables to be much larger than the time series length. Under the sparsity assumption

on the transition and precision matrices with smooth structural changes, we introduce a three-stage

estimation procedure: (i) preliminary local linear estimation of the transition matrices and their

derivatives with time-varying LASSO; (ii) joint local linear estimation and feature selection of the

time-varying transition matrices with weighted group LASSO; (iii) estimation of the precision ma-

trix via time-varying CLIME. To guarantee the oracle property, the weights of LASSO in the second

estimation stage are constructed via a local linear approximation to the SCAD penalty (e.g., Zou and

Li, 2008) using the consistent preliminary estimates obtained in the first stage. Our penalised esti-

mation methodology for the time-varying transition matrices is connected to various nonparametric
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screening and shrinkage methods developed for high-dimensional functional-coefficient models (e.g.,

Wang and Xia, 2009; Lian, 2012; Fan et al., 2014a; Liu et al., 2014; Li et al., 2015a), whereas

the time-varying CLIME is a natural extension of the conventional CLIME for static precision

matrix estimation (e.g., Cai et al., 2011). The theoretical properties of the techniques developed

in the aforementioned literature (such as the oracle property and minimax optimal convergence

rates) rely on the independent data assumption. Extension of the methodology and theory to the

high-dimensional locally stationary time series is non-trivial, requiring new technical tools such

as the concentration inequality for time-varying VAR. Under some regularity conditions, we show

that the proposed local linear estimates with weighted group LASSO equal to the infeasible ora-

cle estimates with prior information on the significant entries of time-varying transition matrices,

and the precision matrix estimate with time-varying CLIME is uniformly consistent with sensible

convergence rates under various matrix norms. The estimated transition matrices are used to con-

sistently estimate the uniform network structure with directed Granger causality linkages, whereas

the estimated precision matrix is used to construct the network structure with undirected partial

correlation linkages.

We further consider highly-correlated large-scale time series, for which the sparsity model as-

sumption is no longer valid in which case the methodology and theory need to be substantially

modified. The approximate factor model (e.g., Chamberlain and Rothschild, 1983) or its time-

varying version (e.g., Su and Wang, 2017) is employed to accommodate the strong cross-sectional

dependence among a large number of time series. In particular, we assume that the high-dimensional

idiosyncratic error process in the approximate factor model satisfies the time-varying VAR structure

with the sparsity restriction imposed on its transition and precision matrices. The latent common

and idiosyncratic components need to be estimated consistently. With the approximated idiosyn-

cratic error vectors, the penalised local linear estimation method with weighted group LASSO and

time-varying CLIME are applied to estimate the time-varying transition and precision matrices.

Subsequently, the factor-adjusted time-varying network estimates with directed Granger causality

and undirected partial correlation linkages are obtained. This chapter thus substantially extends the

recent work on the factor-adjusted stable VAR model estimation (e.g., Fan et al., 2021; Barigozzi

et al., 2022; Krampe and Margaritella, 2021).

Our simulation studies demonstrate that the proposed methodology can accurately estimate the

time-varying Granger and partial correlation networks when the number of time series variables

is comparable to the sample size. In particular, for the time-varying transition matrix estimation,

the penalised local linear method with weighted group LASSO outperforms the conventional local

linear method (which often fails in the high-dimensional time series setting) and produces numerical
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results similar to those of the oracle estimation. For the time-varying error precision matrix esti-

mation, the numerical performance of the proposed time-varying CLIME is comparable to that of

the time-varying graphical LASSO. We further apply the developed methodology to the FRED-MD

macroeconomic dataset and estimate both the Granger causality and partial correlation networks

via the proposed time-varying VAR model.

The rest of this chapter is organised as follows. Section 2.2 introduces the time-varying VAR

and network model structures. Section 2.3 presents the estimation procedures for the time-varying

transition and precision matrices and Section 2.4 gives the asymptotic properties of the developed

estimates. Section 2.5 considers the factor-adjusted time-varying VAR model and network esti-

mation. Sections 2.6 and 2.7 report simulation studies and an empirical application, respectively.

Section 2.8 concludes this chapter. Appendix B contains proofs of the main theorems, some tech-

nical lemmas with proofs, verification of a key assumption and discussions on tuning parameter

selection. Throughout this chapter, we let | · |0, | · |1, ∥ · ∥ and | · |max denote the L0, L1, L2 (Eu-

clidean) and maximum norms of a vector, respectively. Let Id and Od×d be a d× d identity matrix

and null matrix, respectively. For a d× d matrix W = (wij)d×d, we let ∥W∥O = λ
1/2
max

(
W

⊺
W
)
be

the operator norm, ∥W∥F =
[
Tr
(
W

⊺
W
)]1/2

the Frobenius norm, ∥W∥1 = max1≤j≤d
∑d

i=1 |wij |,

∥W∥max = max1≤i≤dmax1≤j≤d |wij |, and |W|1 =
∑d

i=1

∑d
j=1 |wij |, where λmax(·) is the maximum

eigenvalue of a matrix and Tr(·) is the trace. Denote the determinant of a square matrix as det(·).

Let an ∼ bn, an ∝ bn and an ≫ bn denote that an/bn → 1, 0 < c ≤ an/bn ≤ c < ∞ and bn/an → 0,

respectively.

2.2 Time-varying VAR and network models

In this section, we first introduce a locally stationary VAR model with time-varying transition

and precision matrices, and then define two types of time-varying network structures with Granger

causality and partial correlation linkages, respectively. Section 2.5 will further generalise them to

the factor-adjusted time-varying VAR and network setting.

2.2.1 Time-varying VAR models

Suppose that (Xt : t = 1, . . ., n) with Xt = (xt,1, . . ., xt,d)
⊺
is a sequence of d-dimensional random

vectors generated by a time-varying VAR model of order p:

Xt =

p∑
k=1

At,kXt−k + et with et = Σ
1/2
t εt, t = 1, . . ., n, (2.2.1)
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where At,k = Ak(t/n), k = 1, . . ., p, are d×d time-varying transition matrices with each entry being

a smooth deterministic function of scaled times, Σt = Σ(t/n) is a d × d time-varying volatility

matrix, and (εt) is a sequence of independent and identically distributed (i.i.d.) d-dimensional

random vectors with zero mean and identity covariance matrix. Define Ωt = Ω(t/n) as the inverse

of Σt, the time-varying precision matrix. We consider the ultra large time series setting, i.e., the

dimension d is allowed to diverge at an exponential rate of the sample size n. The time-varying VAR

model (2.2.1) is a natural extension of the finite-dimensional time-varying VAR to high-dimensional

time series. If Σt is replaced by a time-invariant covariance matrix, (2.2.1) becomes the same model

as that considered by Ding et al. (2017). Furthermore, when both At,k, k = 1, . . ., p, and Σt are

time-invariant constant matrices, (2.2.1) becomes the high-dimensional stable VAR:

Xt =

p∑
k=1

AkXt−k +Σ1/2εt, (2.2.2)

which has been extensively studied in the recent literature (e.g., Basu and Michailidis, 2015; Han

et al., 2015; Kock and Callot, 2015; Barigozzi and Brownlees, 2019; Liu and Zhang, 2021). Through-

out this chapter, we assume that the following conditions are satisfied.

Assumption 2.A. (i) Uniformly over τ ∈ [0, 1], it holds that det
(
Id −

∑p
k=1Ak(τ)z

k
)
̸= 0 for any

z ∈ C with modulus no larger than one, where C denotes the set of complex numbers. Each entry

in Ak(·) is second-order continuously differentiable over [0, 1].

(ii) The precision matrix Ω(τ) is positive definite uniformly over τ ∈ [0, 1], and the operator

norm of Σ(τ) is uniformly bounded over τ ∈ [0, 1]. Furthermore, each entry in Σ(τ) and Ω(τ) is

second-order continuously differentiable over [0, 1].

(iii) For any d-dimensional vector u satisfying ∥u∥ = 1, E
[
exp

{
ι1(u

⊺
εt)

2
}]

≤ C0 < ∞, where ι1

and C0 are positive constants.

The first condition in Assumption 2.A(i) is a natural extension of the stability assumption

imposed on the constant transition matrices (e.g., Lütkepohl, 2005), indicating that the time-varying

VAR process is locally stationary/stable and leading to the following Wold representation

Xt =

∞∑
k=0

Φt,ket−k, (2.2.3)
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with the coefficient matrices Φt,k being absolutely summable (in an appropriate matrix norm). For

example, when p = 1, we have Φt,0 = Id and Φt,k = Πk
j=1At−j+1,1 for k ≥ 1. Assume that, for k

sufficiently large,

max
0≤t≤n

∥Φt,k∥O ≤ C1ρ
k, (2.2.4)

where C1 is a positive constant and 0 < ρ < 1. A similar assumption can be found in Ding

et al. (2017). In some special model settings, (2.2.4) may be violated, and we refer interested

readers to the discussions in Basu and Michailidis (2015) and Liu and Zhang (2021). In fact, the

condition (2.2.4) may be removed by imposing some high-level conditions (e.g., the sub-Gaussian

condition on xt,i proved in Lemma B.2.1). The smoothness conditions in Assumption 2.A(i)(ii) are

common in kernel-based local estimation method and theory. The sub-Gaussian moment condition

in Assumption 2.A(iii) is not uncommon in the literature of high-dimensional feature selection and

covariance/precision matrix estimation (e.g., Wainwright, 2019), and is weaker than the Gaussian

assumption frequently used in the high-dimensional VAR literature (e.g., Basu and Michailidis,

2015; Kock and Callot, 2015).

2.2.2 Time-varying network structures

Write At,k =
(
ak,ij|t

)
d×d

, Ωt =
(
ωij|t

)
d×d

, Ak(τ) = (ak,ij(τ))d×d and Ω(τ) = (ωij(τ))d×d, where

1 ≤ t ≤ n and 0 ≤ τ ≤ 1. We define the network structure via a time-varying graph Gt = (V,Et),

where V = {1, 2, . . ., d} denotes a set of vertices, and Et =
{
(i, j) ∈ V× V : cij|t ̸= 0, i ̸= j

}
denotes

a time-varying set of edges. The choice of cij|t is determined by the definition of linkage. The

construction of Gt is similar to that in Kolar et al. (2010) and Zhou et al. (2010) for independent

network data. Following the stable network analysis in Barigozzi and Brownlees (2019) and Barigozzi

et al. (2022), we next consider two types of time-varying linkages: the directed Granger causality

linkage and undirected partial correlation linkage.

The definition of Granger causality is first introduced by Granger (1969) to investigate the causal

relations in small economic time series systems. In the context of stable VAR (with order p), we say

that xt,j Granger causes xt,i if there exists k ∈ {1, 2, . . ., p} such that xt−k,j improves predictability

of xt,i by reducing the forecasting error. It is a natural idea to use the stable transition matrices

Ak = (ak,ij)d×d in (2.2.2) to determine the Granger causality structure, i.e., if there exists at least

one k such that ak,ij ̸= 0, then xt,j Granger causes xt,i. We may extend the stable Granger causality

structure to a more general time-varying version using (2.2.1). At a given time point t, we say that

lags of xt,j Granger cause xt,i if there exists at least one k such that ak,ij|t ̸= 0. Hence, for given
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τ ∈ (0, 1), we define the time-varying local graph GG
τ =

(
V,EG

τ

)
with

EG
τ = {(i, j) ∈ V× V : ∃ k ∈ {1, 2, . . ., p}, ak,ij(τ) ̸= 0} . (2.2.5)

The partial correlation is a commonly-used conditional dependence measure for network time

series. We next extend it to the time-varying setting using Ωt = Ω(t/n) in (2.2.1). Let ρij|t =

cor(et,i, et,j |et,k, k ̸= i, j) be the time-varying (contemporaneous) partial correlation between the

innovations et,i and et,j , where et,i is the i-th element of et. Following Dempster (1972), we may

show that ρij|t ̸= 0 is equivalent to ωij|t ̸= 0 for i ̸= j. Hence, we can construct the set of edges by

collecting the index pairs of the non-zero entries in the time-varying precision matrix. For τ ∈ (0, 1),

define the local graph GP
τ =

(
V,EP

τ

)
with

EP
τ = {(i, j) ∈ V× V : ωij(τ) ̸= 0, i ̸= j} . (2.2.6)

In practice, the primary interest often lies in the full network structures over the entire time

interval. This requires the construction of a uniform version of GG
τ and GP

τ . Denote the uniform

graphs by GG =
(
V,EG

)
and GP =

(
V,EP

)
, with

EG = {(i, j) ∈ V× V : ∃ k ∈ {1, 2, . . ., p} and τ ∈ (0, 1), ak,ij(τ) ̸= 0} (2.2.7)

and

EP = {(i, j) ∈ V× V : ∃ τ ∈ (0, 1), ωij(τ) ̸= 0, i ̸= j} . (2.2.8)

It is easy to verify that EG
τ ⊂ EG and EP

τ ⊂ EP for any τ ∈ (0, 1). Section 2.3.4 below defines the

discrete versions of the above uniform networks and provide their estimates.

2.3 Methodology

Let A
⊺

k,i(·) and C
⊺

i (·) be the i-th row of Ak(·) and Ω−1/2(·), respectively,

αi•(·) =
[
A

⊺

1,i(·), . . ., A
⊺

p,i(·)
]⊺

, Xt =
(
X

⊺

t , . . ., X
⊺

t−p+1

)⊺
, (2.3.1)
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and τt = t/n. The time-varying VAR model (2.2.1) can be equivalently written as

xt,i = α
⊺

i•(τt)Xt−1 + et,i with et,i = C
⊺

i (τt)εt, i = 1, . . ., d, (2.3.2)

which is a high-dimensional time-varying coefficient autoregressive model with a scalar response and

pd candidate predictors for each i. As the dimension of the predictors is allowed to be ultra large, we

need to impose an appropriate sparsity restriction on the vector of time-varying parameters αi•(·)

to limit the number of its significant elements. High-dimensional varying-coefficient models have

been systematically studied in the literature and various nonparametric screening and shrinkage

methods have been proposed to select the significant covariates, estimate the coefficient functions

and identify the model structure under the independent data assumption (e.g., Wang et al., 2008;

Wang and Xia, 2009; Lian, 2012; Cheng et al., 2014; Fan et al., 2014a; Liu et al., 2014; Li et al.,

2015a). In this section, under the high-dimensional locally stationary time series framework, we

propose a three-stage procedure to estimate the Granger causality and partial correlation network

structures: (i) first obtain preliminary local linear estimates of αi•(·) (and its derivatives) using

time-varying LASSO, which serves as a first-stage screening of the predictors in Xt−1; (ii) conduct

local linear estimation and feature selection using weighted group LASSO, where the weights are

constructed via a local linear approximation to the SCAD penalty using the preliminary estimates

of αi•(·) from Stage (i); (iii) estimate the error precision matrix Ω(·) via the time-varying CLIME

method. The estimated transition and precision matrices are finally used to construct the uniform

network structures.

2.3.1 Preliminary time-varying LASSO estimation

For τ ∈ (0, 1), under the smoothness condition on the transition matrices in Assumption 2.A(i), we

have the following local linear approximation to αi•(τt):

αi•(τt) ≈ αi•(τ) +α′
i•(τ)(τt − τ), i = 1, . . ., d,

when τt falls within a small neighbourhood of τ , where α′
i•(·) is a (pd)-dimensional vector of the first-

order derivatives of the elements in αi•(·). Hence, for each i ∈ {1, 2, . . ., d} and a given τ ∈ (0, 1),

we define the following local linear objective function (e.g., Fan and Gijbels, 1996):

Li(α,β | τ) = 1

n

n∑
t=1

{
xt,i − [α+ β(τt − τ)]

⊺
Xt−1

}2
Kh(τt − τ), (2.3.3)
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where Kh(·) = 1
hK(·/h) with K(·) being a kernel function and h being a bandwidth or smoothing

parameter. The estimates of αi•(τ) and α′
i•(τ) are obtained by minimising Li(α,β | τ) with

respect to α and β. However, this local linear estimation is only feasible when the dimension of the

predictors is fixed or significantly smaller than the sample size n (e.g., Cai, 2007; Li et al., 2011). In

our high-dimensional setting, as the number of predictors may exceed n, it is challenging to obtain

satisfactory estimation by directly minimising Li(α,β | τ). To address this issue, we assume that

the number of significant components in αi•(τ) is much smaller than n and then incorporate a

LASSO penalty term in the local linear objective function (2.3.3).

The LASSO estimation was first introduced by Tibshirani (1996) in the context of linear regres-

sion and has become one of the most commonly-used tools in high-dimensional variable and feature

selection. We next adopt a time-varying version of the LASSO estimation. Define

L∗
i (α,β | τ) = Li(α,β | τ) + λ1 (|α|1 + h|β|1) , (2.3.4)

where λ1 is a tuning parameter. Let α̃i•(τ) and α̃′
i•(τ) be the solution to the minimisation of

L∗
i (α,β | τ) with respect to α and β. We call them the preliminary time-varying LASSO estimates.

This LASSO estimation may not accurately identify the true significant predictors, but can remove a

large number of irrelevant predictors and hence, serves as a preliminary screening step. Furthermore,

the first-stage estimates will be used to construct weights in the weighted group LASSO in the second

stage to more precisely estimate the time-varying parameters and accurately select the significant

predictors.

2.3.2 Penalised local linear estimation with weighted group LASSO

In order to estimate the uniform Granger causality network, we next introduce a global penalised

method to simultaneously estimate the time-varying parameters at τt, t = 1, . . ., n, and identify the

non-zero index sets Ji =
⋃n

t=1 Ji(τt) and J′
i =

⋃n
t=1 J

′
i (τt), where

Ji(τ) = {1 ≤ j ≤ pd : αi,j(τ) ̸= 0} and J′
i (τ) =

{
1 ≤ j ≤ pd : α′

i,j(τ) ̸= 0
}

with αi,j(·) and α′
i,j(·) being the j-th element of αi•(·) and α′

i•(·), respectively. For each i, note that

identifying the zero elements in α′
i•(τt) (uniformly over t) is equivalent to identifying the indices j,
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1 ≤ j ≤ pd, such that Di,j = 0, where

D2
i,j =

n∑
t=1

[
αi,j(τt)−

1

n

n∑
s=1

αi,j(τs)

]2
.

In practice, D2
i,j can be estimated by

D̃2
i,j =

n∑
t=1

[
α̃i,j(τt)−

1

n

n∑
s=1

α̃i,j(τs)

]2
,

using the preliminary time-varying LASSO estimates α̃i,j(τt), t = 1, . . . , n. Let A = (α•1, . . .,α•n)
⊺

with α•t = (α1|t, . . ., αpd|t)
⊺
, and B = (β•1, . . .,β•n)

⊺
with β•t = (β1|t, . . ., βpd|t)

⊺
. We define a global

version of the penalised objective function with weighted group LASSO:

Qi(A,B) =
n∑

t=1

Li(α•t,β•t | τt) +
pd∑
j=1

p′λ2
(∥α̃i,j∥) ∥αj∥+

pd∑
j=1

p′λ2

(
D̃i,j

)
∥hβj∥, (2.3.5)

where

α̃i,j = [α̃i,j(τ1), . . ., α̃i,j(τn)]
⊺
, αj =

(
αj|1, . . ., αj|n

)⊺
, βj =

(
βj|1, . . ., βj|n

)⊺
,

while λ2 is a tuning parameter and p′λ(·) is the derivative of the SCAD penalty function:

p′λ(z) = λ

[
I(z ≤ λ) +

(a0λ− z)+
(a0 − 1)λ

I(z > λ)

]
,

with a0 = 3.7 as suggested in Fan and Li (2001) and I(·) being the indicator function. The penalty

terms in (2.3.5) are motivated by the local linear approximation to the SCAD penalty function

(Zou and Li, 2008). The terms p′λ2
(∥α̃i,j∥) and p′λ2

(
D̃i,j

)
in (2.3.5) serve as the weights for the

group LASSO, and their values are determined by the preliminary estimates in Section 2.3.1, i.e.,

the corresponding weight is heavy when ∥α̃i,j∥ or D̃i,j is close to zero, whereas it is light or equal

to zero when ∥α̃i,j∥ or D̃i,j is large. An advantage of using D̃i,j in the second penalty term over

the L2-norm of α̃′
j =

[
α̃′
i,j(τ1), . . ., α̃

′
i,j(τn)

]⊺
is that the estimates of the time-varying parameters

involved in D̃i,j often perform more stably than their derivative counterparts.

Let Âi and B̂i be the minimiser of Qi(A,B) with respect to A and B, where

Âi = (α̂i,1, . . ., α̂i,pd) with α̂i,j = [α̂i,j(τ1), . . ., α̂i,j(τn)]
⊺
,



2.3 Methodology 57

B̂i =
(
α̂′

i,1, . . ., α̂
′
i,pd

)
with α̂′

i,j =
[
α̂′
i,j(τ1), . . ., α̂

′
i,j(τn)

]⊺
.

The index set Ji is estimated by Ĵi = {j : α̂i,j ̸= 0n}, and J′
i is estimated by Ĵ′

i =
{
j : α̂′

i,j ̸= 0n

}
,

where 0k is a k-dimensional vector of zeros. A similar shrinkage estimation method is used by Li

et al. (2015a) and Chen et al. (2021a) to identify a high-dimensional semi-varying coefficient model

structure for independent data. So far as we know, there is no work on such a penalised technique

and its relevant theory for high-dimensional locally stationary time series data.

2.3.3 Estimation of the time-varying precision matrix

In this section, we study the estimation of Ω(·) in model (2.2.1), which is crucial to uncover the

time-varying and uniform network structures of partial correlations. Estimation of large static pre-

cision matrices has been extensively studied under the sparsity assumption, and various estimation

techniques, such as the penalised likelihood, graphical Danzig selector and CLIME, have been pro-

posed in the literature (e.g., Lam and Fan, 2009; Yuan, 2010; Cai et al., 2011). Xu et al. (2020)

further introduce a time-varying CLIME method for high-dimensional locally stationary time se-

ries which are observable. Note that in this chapter, Ω(·) is the time-varying precision matrix for

the high-dimensional unobservable error vector et and hence, its estimation requires substantial

modification of the time-varying CLIME methodology and theory.

With α̂i•(·), i = 1, . . ., d, from Section 2.3.2, we can then extract estimates of the time-varying

transition matrices, denoted by Âk(τt), t = 1, . . ., n, k = 1, . . ., p, and approximate et by

êt = (êt,1, . . ., êt,d)
⊺
= Xt −

p∑
k=1

Âk(τt)Xt−k, t = 1, . . ., n. (2.3.6)

The approximation accuracy depends on the uniform prediction rates of the time-varying weighted

group LASSO estimates. In order to apply the time-varying CLIME, we assume that Ω(·) satisfies

a uniform sparsity assumption, a natural extension of the classic sparsity assumption to the locally

stationary time series setting. Specifically, we assume {Ω(τ) : 0 ≤ τ ≤ 1} ∈ S(q, ξd), where

S(q, ξd) =

{
W(τ) = [wij(τ)]d×d , 0 ≤ τ ≤ 1 : W(τ) ≻ 0, sup

0≤τ≤1
∥W(τ)∥1 ≤ C2,

sup
0≤τ≤1

max
1≤i≤d

d∑
j=1

|wij(τ)|q ≤ ξd

}
,

(2.3.7)

where 0 ≤ q < 1, 00 is defined as 0, “W ≻ 0” denotes that W is positive definite, and C2 is a
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bounded positive constant. Define

Σ̂(τ) = [σ̂ij(τ)]d×d with σ̂ij(τ) =

n∑
t=1

ϖn,t(τ)êt,iêt,j/

n∑
t=1

ϖn,t(τ), (2.3.8)

where the weight function ϖn,t(·) is constructed via the local linear smoothing:

ϖn,t(τ) = K

(
τt − τ

b

)
sn,2(τ)−K1

(
τt − τ

b

)
sn,1(τ),

in which sn,j(τ) =
∑n

t=1Kj

(
τt−τ
b

)
, Kj(x) = xjK(x), and b is a bandwidth. With the uniform

sparsity assumption (2.3.7), we estimate Ω(τ) via the time-varying CLIME method:

Ω̃(τ) = [ω̃ij(τ)]d×d = argmin
Ω

|Ω|1 subject to
∥∥∥Σ̂(τ)Ω− Id

∥∥∥
max

≤ λ3, (2.3.9)

where λ3 is a tuning parameter. As the underlying time-varying precision matrix is symmetric, the

matrix estimate obtained from (2.3.9) needs to be symmetrised to obtain the final estimate, denoted

as Ω̂(τ) = [ω̂ij(τ)]d×d, where

ω̂ij(τ) = ω̂ji(τ) = ω̃ij(τ)I (|ω̃ij(τ)| ≤ |ω̃ji(τ)|) + ω̃ji(τ)I (|ω̃ij(τ)| > |ω̃ji(τ)|) . (2.3.10)

2.3.4 Estimation of uniform time-varying networks

In practice, when the sample size n is sufficiently large, it is often sensible to approximate the

uniform edge sets, EG and EP , by the following discrete versions:

EG
n = {(i, j) ∈ V× V : ∃ k ∈ {1, 2, . . ., p} and t ∈ {1, . . ., n}, ak,ij(τt) ̸= 0} (2.3.11)

and

EP
n = {(i, j) ∈ V× V : ∃ t ∈ {1, . . ., n}, ωij(τt) ̸= 0, i ̸= j} . (2.3.12)

Hence, we next estimate EG
n and EP

n instead of EG and EP . With the time-varying transition and

precision matrix estimates in Sections 2.3.2 and 2.3.3, we can estimate EG
n by

ÊG
n =

{
(i, j) ∈ V× V : ∃ k ∈ {1, 2, . . ., p},

n∑
t=1

â2k,ij(τt) > 0

}
, (2.3.13)
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where âk,ij(τt) is the (i, j)-entry of Âk(τt), and estimate EP
n by

ÊP
n = {(i, j) ∈ V× V : ∃ t ∈ {1, . . ., n}, |ω̂ij(τt)| ≥ λ3, i ̸= j} , (2.3.14)

where λ3 is the tuning parameter used in the time-varying CLIME.

2.4 Main theoretical results

To ease the notational burden, throughout this section, we focus on the time-varying VAR(1) model:

Xt = A(τt)Xt−1 +Σ
1/2
t εt, (2.4.1)

where A(τ) = [αij(τ)]d×d. For a general time-varying VAR(p) model (2.2.1), it can be equivalently

re-written as a (pd)-dimensional VAR(1) model as follows:

Xt = A∗
tXt−1 + et,

where Xt is defined in (2.3.1), et =
(
e
⊺

t , 0
⊺

d, . . ., 0
⊺

d

)⊺
, and A∗

t is a (pd)× (pd) time-varying transition

matrix:

A∗
t =


At,1 At,2 . . . At,p−1 At,p

Id Od×d . . . Od×d Od×d

...
...

...
...

...

Od×d Od×d . . . Id Od×d

 .

2.4.1 Uniform consistency of the time-varying LASSO estimates

Define

Ψ(τ) =

 Ψ0(τ) Ψ1(τ)

Ψ1(τ) Ψ2(τ)

 with Ψk(τ) =
1

n

n∑
t=1

(
τt − τ

h

)k

Xt−1X
⊺

t−1Kh(τt − τ), k = 0, 1, 2, (2.4.2)

and

Bi(τ) =

(u⊺

1, u
⊺

2

)⊺
: ∥u1∥2 + ∥u2∥2 = 1,

d∑
j=1

(|u1,j |+ |u2,j |) ≤ 3

 ∑
j∈Ji(τ)

|u1,j |+
∑

j∈J′
i (τ)

|u2,j |

 ,
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where Ji(τ) and J′
i (τ) are defined as in Section 2.3.2 but with p = 1. To derive the uniform

consistency property of the preliminary time-varying LASSO estimates defined in Section 2.3.1, we

need the following assumptions, some of which may be weakened at the cost of lengthier proofs.

Assumption 2.B. (i) The kernel K(·) is a bounded, continuous and symmetric probability density

function with a compact support [−1, 1].

(ii) The bandwidth h satisfies

nh/ log2(n ∨ d) → ∞ and sh2 log(n ∨ d) → 0,

where s = max1≤i≤d si with si being the cardinality of the index set Ji.

Assumption 2.C. (i) The tuning parameter λ1 satisfies

ζn,d := log(n ∨ d)
[
(nh)−1/2 + sh2

]
= o(λ1) and

√
sλ1/h → 0.

(ii) There exists a positive constant κ0 such that, with probability approaching one (w.p.a.1),

min
1≤i≤d

min
1≤t≤n

inf
u∈Bi(τt)

u
⊺
Ψ(τt)u ≥ κ0. (2.4.3)

Assumption 2.B(i) is a mild restriction which can be satisfied by some commonly-used ker-

nels such as the uniform kernel and the Epanechnikov kernel. The compact support assumption

on the kernel function is not essential and can be replaced by appropriate tail conditions. The

bandwidth conditions in Assumption 2.B(ii) are crucial for deriving the uniform convergence prop-

erties of the kernel-based quantities. When s is bounded and d diverges at a polynomial rate

of n, the conditions can be simplified to nh/ log2 n → ∞ and h2 log n → 0. Assumption 2.C(ii)

can be seen as a uniform version of the so-called restricted eigenvalue condition widely used in

high-dimensional linear regression models (e.g., Bickel et al., 2009; Basu and Michailidis, 2015).

Appendix B.4 provides sufficient conditions for the high-dimensional locally stationary Gaussian

time series to satisfy Assumption 2.C(ii). Furthermore, with the Hanson-Wright inequality for

time-varying (non-Gaussian) VAR processes (e.g., Proposition 6.2 in Zhang and Wu, 2021), we may

show that max1≤t≤n ∥Ψ(τt)− E[Ψ(τt)]∥max = OP

(√
log(n ∨ d)/(nh)

)
. Then, using Lemma B.4.1



2.4 Main theoretical results 61

in Appendix B.4 and assuming s
√
log(n ∨ d)/(nh) = o(1), a sufficient condition for (2.4.3) is

min
1≤i≤d

min
1≤t≤n

inf
u∈Bi(τt)

u
⊺
E [Ψ(τt)]u ≥ κ0.

Theorem 2.4.1. Suppose that Assumptions 2.A–2.C are satisfied. Then we have

max
1≤i≤d

max
1≤t≤n

∥α̃i•(τt)−αi•(τt)∥ = OP

(√
sλ1

)
. (2.4.4)

Theorem 2.4.1 shows that the preliminary time-varying LASSO estimates of the transition matri-

ces are uniformly consistent with the convergence rates relying on s and λ1. Although the dimension

of variates d is allowed to diverge at an exponential rate of n, the number of significant elements

in αi•(·) cannot diverge too fast in order to guarantee the consistency property. Furthermore, the

uniform convergence result (2.4.4) can be strengthened to

max
1≤i≤d

sup
0≤τ≤1

∥α̃i•(τ)−αi•(τ)∥ = OP

(√
sλ1

)
. (2.4.5)

A similar uniform convergence property holds for the first-order derivative function estimates, see

(B.1.1) in the proof of Theorem 2.4.1.

2.4.2 The oracle property of the weighted group LASSO estimates

Denote the complement of Ji and J′
i as Ji and J

′
i, respectively, i.e., Ji =

⋂n
t=1 {j : αi,j(τt) = 0}

and J
′
i =

⋂n
t=1

{
j : α′

i,j(τt) = 0
}
. Let Ao = (αo

•1, . . .,α
o
•n)

⊺
and Bo = (βo

•1, . . .,β
o
•n)

⊺
, where

αo
•t = (αo

1|t, . . ., α
o
d|t)

⊺
with αo

j|t = 0 for j ∈ Ji and βo
•t = (βo

1|t, . . ., β
o
d|t)

⊺
with βo

j|t = 0 for j ∈ J
′
i.

Define the (infeasible) oracle estimates:

Âo
i =

(
α̂o

i,1, . . ., α̂
o
i,d

)
with α̂o

i,j =
[
α̂o
i,j(τ1), . . ., α̂

o
i,j(τn)

]⊺
, (2.4.6)

B̂o
i =

(
α̂′o

i,1, . . ., α̂
′o
i,d

)
with α̂′o

i,j =
[
α̂′o
i,j(τ1), . . ., α̂

′o
i,j(τn)

]⊺
, (2.4.7)

as the values of Ao and Bo that minimise Qi(A
o,Bo). We need to impose the following condition

on the tuning parameter λ2 and the lower bounds for the significant time-varying coefficients in the

transition matrix.
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Assumption 2.D. (i) The tuning parameter λ2 satisfies

√
ns log(n ∨ d)ζn,d +

√
nsλ1 = o(λ2),

where ζn,d is defined in Assumption 2.C(i).

(ii) It holds that

min
1≤i≤d

min
j∈Ji

(
n∑

t=1

α2
i,j(τt)

) 1
2

≥ (a0 + 1)λ2 and min
1≤i≤d

min
j∈J′

i

Di,j ≥ (a0 + 1)λ2,

where a0 = 3.7 is defined in the SCAD penalty.

When s is a fixed positive integer, h ∝ n−1/5, λ1 ∝ n−2/5+η0 with 0 < η0 < 1/5, and d ∼

exp {nη1} with 0 < η1 < η0, it is easy to verify Assumption 2.D(i) by setting λ2 ∝ n1/2−η2 with

0 < η2 < 2/5 − [η0 ∨ (2η1)]. Assumption 2.D(ii) imposes restrictions on the lower bounds for

the time-varying coefficient functions and their deviations from the means. These restrictions are

weaker than Assumption 6(ii) in Li et al. (2015a) and Assumption 8 in Chen et al. (2021a), and

they ensure that the significant coefficient functions and derivatives can be detected w.p.a.1.

Theorem 2.4.2. Suppose that Assumptions 2.A–2.D are satisfied. The minimiser to the objective

function of the weighted group LASSO, Qi(A,B), exists and equals the oracle estimates defined in

(2.4.6) and (2.4.7) w.p.a.1. In addition, we have the following mean squared convergence result:

max
1≤i≤d

1

n

n∑
t=1

d∑
j=1

[α̂ij(τt)− αij(τt)]
2 = OP

(
sζ2n,d

)
, (2.4.8)

where s is defined in Assumption 2.B(ii) and ζn,d is defined in Assumption 2.C(i).

Since the penalised local linear estimates are identical to the infeasible oracle estimates defined

in (2.4.6) and (2.4.7) w.p.a.1, the sparsity property holds for the global model selection procedures

proposed in Section 2.3.2, i.e., the zero elements in the time-varying transition matrix can be

estimated exactly as zeros. Following the proof of Theorem 2.4.2, we may verify properties (i)–(iv)

for the folded concave penalty function discussed in Fan et al. (2014b) w.p.a.1. Hence, Theorem

2.4.2 may be regarded as a generalisation of Theorem 1 in Fan et al. (2014b) and Theorem 3.1 in

Li et al. (2015a) to high-dimensional locally stationary time series.
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With the oracle property in Theorem 2.4.2, it is straightforward to derive the following consis-

tency property of the network estimates for the directed edges of Granger causality linkages.

Corollary 2.4.3. Under the assumptions of Theorem 2.4.2, we have

P
(
ÊG
n = EG

n

)
→ 1. (2.4.9)

2.4.3 Uniform consistency of the time-varying CLIME estimates

To derive the uniform consistency property of the time-varying CLIME estimates, we need the

following conditions on the tuning parameters b and λ3.

Assumption 2.E. (i) The bandwidth b satisfies

b → 0 and nb/[log(n ∨ d)]3 → ∞.

In addition, sζn,d
√

log(n ∨ d) → 0, where ζn,d is defined in Assumption 2.C(i).

(ii) There exists a sufficiently large constant C3 such that λ3 = C3

(
ν⋄n,d + ν∗n,d

)
, where

ν⋄n,d =

[
log(n ∨ d)

nb

]1/2
+ b2 and ν∗n,d = sζn,d

√
log(n ∨ d).

The following theorem gives the uniform convergence rates of the time-varying precision matrix

estimate Ω̂(τ) under various matrix norms.

Theorem 2.4.4. Suppose Assumptions 2.A–2.E are satisfied and {Ω(τ) : 0 ≤ τ ≤ 1} ∈ S(q, ξd).

Then we have

sup
0≤τ≤1

∥∥∥Ω̂(τ)−Ω(τ)
∥∥∥
max

= OP

(
ν⋄n,d + ν∗n,d

)
, (2.4.10)

sup
0≤τ≤1

∥∥∥Ω̂(τ)−Ω(τ)
∥∥∥
O
= OP

(
ξd(ν

⋄
n,d + ν∗n,d)

1−q
)
, (2.4.11)

sup
0≤τ≤1

1

d

∥∥∥Ω̂(τ)−Ω(τ)
∥∥∥2
F
= OP

(
ξd(ν

⋄
n,d + ν∗n,d)

2−q
)
, (2.4.12)

where ξd is defined in (2.3.7), ν⋄n,d and ν∗n,d are defined in Assumption 2.E(ii).
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The uniform convergence rates in Theorem 2.4.4 rely on ν⋄n,d and ν∗n,d. The first rate ν⋄n,d is

the conventional uniform convergence rate for nonparametric kernel-based quantities, whereas the

second rate ν∗n,d is from the approximation errors of êt to the latent VAR errors et. Note that the

dimension d affects the uniform convergence rates via ξd and log(n∨d), and the uniform consistency

property holds in the ultra-high dimensional setting when d diverges at an exponential rate of n.

Theorem 2.4.4 can be seen as an extension of Theorem 1 in Cai et al. (2011) to the high-dimensional

locally stationary time series setting.

From Theorem 2.4.4, we readily have the following consistency property for the network esti-

mates of the undirected edges of partial correlation linkages.

Corollary 2.4.5. Under the assumptions of Theorem 2.4.4, if min(i,j)∈EP min1≤t≤n |ωij(τt)| ≫ λ3,

we have

P
(
ÊP
n = EP

n

)
→ 1. (2.4.13)

2.5 Factor-adjusted time-varying VAR and networks

In this section, we let (Zt : t = 1, . . ., n) with Zt = (zt,1, . . ., zt,d)
⊺
be an observed sequence of

d-dimensional random vectors. To accommodate strong cross-sectional dependence which is not

uncommon for large-scale time series collected in practice, we assume that Zt is generated by an

approximate factor model:

Zt = ΛFt +Xt, t = 1, . . ., n, (2.5.1)

where Λ = (Λ1, . . .,Λd)
⊺
is a d× k matrix of factor loadings, Ft is a k-dimensional vector of latent

factors and (Xt) is assumed to satisfy the time-varying VAR model (2.2.1). More generally, we may

assume the following time-varying factor model structure:

Zt = ΛtFt +Xt, t = 1, . . ., n, (2.5.2)

where Λt = Λ(t/n) is a time-varying factor loading matrix with each entry being a smooth function

of scaled time. The approximate factor model and its time-varying generalisation have been exten-

sively studied in the literature (e.g., Chamberlain and Rothschild, 1983; Bai and Ng, 2002; Stock

and Watson, 2002; Motta et al., 2011; Su and Wang, 2017). The primary interest of this section

is to estimate the time-varying networks for the idiosyncratic error vector Xt. Even though the

components of Zt may be highly correlated, those of Xt are often only weakly correlated. Hence, it
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is sensible to impose the sparsity assumption on the time-varying transition and precision matrices

of the idiosyncratic error process, making it possible to apply the estimation methodology proposed

in Section 2.3. However, this is non-trivial as neither the common components (ΛFt or ΛtFt) nor

the idiosyncratic error components are observable. Motivated by recent work on bridging factor and

sparse models for high-dimensional data (e.g., Fan et al., 2021; Krampe and Margaritella, 2021),

we next use the principal component analysis (PCA) or its localised version to remove the common

components driven by latent factors in the observed time series data.

Let Z = (Z1, . . ., Zn)
⊺
, F = (F1, . . ., Fn)

⊺
and X = (X1, . . ., Xn)

⊺
. For the conventional factor

model (2.5.1), we conduct an eigenanalysis on the n × n matrix ZZ
⊺
. The estimate of F, denoted

as F̂ =
(
F̂1, . . ., F̂n

)⊺

, is obtained as the n× k matrix consisting of the eigenvectors (multiplied by
√
n) corresponding to the k largest eigenvalues of ZZ

⊺
. The factor loading matrix is estimated by

Λ̂ =
(
Λ̂1, . . ., Λ̂d

)⊺

= Z
⊺
F̂/n. Consequently, the common component ΛFtis estimated by Λ̂F̂t and

the idiosyncratic error component Xt is estimated by

X̂t = Zt − Λ̂F̂t, t = 1, . . ., n. (2.5.3)

For the time-varying factor model (2.5.2), the above PCA estimation procedure needs some amend-

ments. Specifically, let

Kt,h∗(τ) =
Kh∗(τt − τ)∑n
s=1Kh∗(τs − τ)

, 0 < τ < 1,

where h∗ is a bandwidth and Kh∗(·) is defined as in Section 2.3.1, and define the localised data

matrix:

Z(τ) = [Z1(τ), . . ., Zn(τ)]
⊺

with Zt(τ) = ZtK
1/2
t,h∗

(τ).

Through an eigenanalysis on the matrix Z(τ)Z
⊺
(τ), we can obtain the local PCA estimates of the

factors and factor-loading matrix, denoted by F̂(τ) =
[
F̂1(τ), . . ., F̂n(τ)

]⊺
and Λ̂(τ), respectively.

Then, the idiosyncratic error vector Xt is approximated by

X̂t = Zt − Λ̂(τt)F̂ (τt), t = 1, . . ., n, (2.5.4)

where we’ve kept the same notation X̂t as in (2.5.3) to avoid notational burden.

As in Section 2.4, we only consider the time-varying VAR(1) model for the idiosyncratic error

vector. With the approximation X̂t, we can apply the three-stage estimation procedure proposed

in Section 2.3. Denote the preliminary time-varying LASSO estimate as α̃†
ij(·), the second-stage

weighted group LASSO estimate as α̂†
ij(·), and the factor-adjusted time-varying precision matrix
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estimate as Ω̂†(·) =
[
ω̂†
ij(·)

]
d×d

. Subsequently, we may construct the uniform network estimates

ÊG,†
n and ÊP,†

n , defined similarly to ÊG
n and ÊP

n in (2.3.13) and (2.3.14), but with α̂ij(·) and ω̂ij(·)

replaced by α̂†
ij(·) and ω̂†

ij(·), respectively. To derive the convergence properties of these factor-

adjusted estimates, we need the following assumption, which modifies Assumptions 2.C–2.E to

incorporate the approximation error of the idiosyncratic error components.

Assumption 2.F. (i) Denote δX = max1≤t≤n

∣∣∣X̂t −Xt

∣∣∣
max

. It holds that [log(n ∨ d)]1/2sδX =

oP (1).

(ii) Assumption 2.C(i) holds when ζn,d is replaced by ζ†n,d = ζn,d + [log(n ∨ d)]1/2sδX .

(iii) Assumption 2.D(i) holds when ζn,d is replaced by ζ†n,d.

(iv) Assumption 2.E holds when ζn,d and ν∗n,d are replaced by ζ†n,d and ν†n,d = sζ†n,d
√
log(n ∨ d),

respectively.

Assumption 2.F(i) imposes a high-level condition on the approximation of the latent Xt in the

factor model, i.e., the approximation error δX uniformly converges to zero with a rate faster than

s−1[log(n ∨ d)]−1/2. By Corollary 1 in Fan et al. (2013), a typical rate for the approximation error

from PCA estimation of the conventional factor model (2.5.1) is

δX = OP

(
(log n)1/2

[
(log d)1/2n−1/2 + n1/υd−1/2

])
, (2.5.5)

where υ > 2 is a positive number related to moment restrictions. From Theorem 3.5 in Su and

Wang (2017), we may obtain the typical uniform rate for δX under the time-varying factor model

(2.5.2) when the local PCA estimation is used. In Assumption 2.F(ii)–(iv), we amend Assumptions

2.C(i), 2.D(i) and 2.E(ii) to incorporate the approximation error δX . However, if we further assume

that h ∝ n−1/5 and d diverges at a polynomial rate of n satisfying d ≫ n1+2/υ, then the rate in

(2.5.5) can be simplified to δX = OP

(
(log d)n−1/2

)
= oP (h

2) and thus ζn,d ∝ ζ†n,d. Consequently, we

may remove Assumption 2.F(ii)–(iv) and δX would not be involved in the estimation convergence

rates under model (2.5.1).

The following two propositions extend the theoretical results in Section 2.4 to the factor-adjusted

time-varying VAR and networks.

Proposition 2.5.1. Suppose that the factor model (2.5.1) or (2.5.2), and Assumptions 2.A, 2.B

and 2.C(ii) are satisfied.



2.6 Monte-Carlo simulation 67

(i) Under Assumption 2.F(i)(ii), we have

max
1≤i≤d

max
1≤t≤n

d∑
j=1

[
α̃†
ij(τt)− αij(τt)

]2
= OP

(
sλ2

1

)
. (2.5.6)

(ii) Under Assumption 2.F(i)–(iii), the oracle property holds for the second-stage weighted group

LASSO estimates and furthermore,

max
1≤i≤d

1

n

n∑
t=1

d∑
j=1

[
α̂†
ij(τt)− αij(τt)

]2
= OP

(
s
(
ζ†n,d

)2)
. (2.5.7)

(iii) Under Assumption 2.F and the sparsity condition that {Ω(τ) : 0 ≤ τ ≤ 1} ∈ S(q, ξd), we

have

sup
0≤τ≤1

∥∥∥Ω̂†(τ)−Ω(τ)
∥∥∥
max

= OP

(
ν⋄n,d + ν†n,d

)
, (2.5.8)

sup
0≤τ≤1

∥∥∥Ω̂†(τ)−Ω(τ)
∥∥∥
O
= OP

(
ξd(ν

⋄
n,d + ν†n,d)

1−q
)
, (2.5.9)

sup
0≤τ≤1

1

d

∥∥∥Ω̂†(τ)−Ω(τ)
∥∥∥2
F
= OP

(
ξd(ν

⋄
n,d + ν†n,d)

2−q
)
. (2.5.10)

Proposition 2.5.2. (i) Under the assumptions of Proposition 2.5.1(ii), we have

P
(
ÊG,†
n = EG

n

)
→ 1. (2.5.11)

(ii) Under the assumptions of Proposition 2.5.1(iii) and min(i,j)∈EP min1≤t≤n |ωij(τt)| ≫ λ3, we

have

P
(
ÊP,†
n = EP

n

)
→ 1. (2.5.12)

2.6 Monte-Carlo simulation

In this section, we provide four simulated examples to examine the finite-sample numerical perfor-

mance of the proposed high-dimensional time-varying VAR and network estimates. Throughout this
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section, we denote the proposed time-varying weighted group LASSO method as tv-wgLASSO and

the time-varying CLIME method as tv-CLIME. We compare the performance of the tv-wgLASSO

with the (infeasible) time-varying oracle estimation, denoted as tv-Oracle, which estimates only

the true significant coefficient functions (assuming they were known), and the unpenalised full

time-varying estimation, denoted as tv-Full, which estimates all the coefficient functions without

penalisation. We compare the performance of tv-CLIME with the time-varying graphical LASSO

estimation, denoted as tv-GLASSO, which is implemented using the R package “glassoFast” on the

VAR residuals. In addition, to investigate the loss of estimation accuracy due to the VAR model

error approximation, we also report results from the infeasible tv-CLIME, which directly uses the

VAR errors (rather than residuals) in the estimation of the precision matrices.

In the simulation, we use the Epanechnikov kernel K(t) = 0.75(1 − t2)+ with bandwidth h =

b = 0.75[log(d)/n]1/5 as in Li et al. (2015a). The bandwidth for the local PCA is set as h∗ =

(2.35/
√
12)[

√
d/n]1/5 as in Su and Wang (2017). We set the sample size n as 200 and 400, and

the dimension d as 50 and 100. Although such dimensions are smaller than the sample size when

n = 200 and d = 100, the “effective sample size” used in each local linear estimation in (2.3.3)

is approximately 2nh ≈ 140, which is smaller than the combined number of unknown coefficient

functions and their derivatives, 2d = 200. Consequently, in this case, we fail to implement the naive

tv-Full estimation. There are three tuning parameters in the proposed estimation procedure: λ1

in the first stage of preliminary time-varying LASSO estimation, λ2 in the second stage of time-

varying weighted group LASSO, and λ3 in the third stage of time-varying CLIME. They are selected

by the Bayesian information criterion (BIC), the generalised information criterion (GIC), and the

extended Bayesian information criterion (EBIC), respectively. Appendix B.5 gives definitions of

these information criteria.

To evaluate whether the time-varying model structure is accurately estimated, we report the

false positive (FP), the false negative (FN), the true positive rate (TPR), the true negative rate

(TNR), the positive predictive value (PPV), the negative predictive value (NPV), the F1 score

(F1), and the Matthews correlation coefficient (MCC). Definitions of these measures are available

in Appendix B.5. To evaluate the performance of the coefficient estimators, we report the average R

square (average R2) over all the dimensions, the average scaled Frobenius norm of estimation errors

of coefficient functions (EEA), and the root-mean-squared error of the errors (RMSEe). Taking our

proposed tv-wgLASSO estimator for time-varying VAR(1) as an example,

EEA =
1

n
√
d

n∑
t=1

∥∥∥Â1(τt)−A1(τt)
∥∥∥
F

and RMSEe =

√√√√ 1

nd

d∑
i=1

n∑
t=1

(êt,i − et,i)2.
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To evaluate the performance of the precision matrix estimators, we report the average scaled Frobe-

nius norm of estimation error (EEΩ) defined as

EEΩ =
1

n
√
d

n∑
t=1

∥∥∥Ω̂(τt)−Ω(τt)
∥∥∥
F
.

All the above measures are calculated for each Monte Carlo replication and then averaged over 100

replications.

Example 2.1. The data is generated from a time-varying VAR(1) model with A1(τ) being a

diagonal matrix for all τ ∈ [0, 1]. Each diagonal entry of A1(τ) independently takes a value of

either 0.64Φ(5(τ − 1/2)) or 0.64 − 0.64Φ(5(τ − 1/2)) with an equal probability of 0.5, where Φ(·)

is the standard normal distribution function. We set Ω(τ) to be a block diagonal matrix: Ω(τ) =

Id/2 ⊗Ω∗(τ), where Ω∗(τ) = [ωij,∗(τ)]2×2 with ω11,∗(τ) = ω22,∗(τ) ≡ 1, and ω12,∗(τ) = ω21,∗(τ) =

1.4Φ(5(τ − 1/2)) − 0.7. The diagonal structure of A1(τ) implies that no Granger causality exists

between variables, whereas the block diagonal structure of Ω(τ) results in weak cross-sectional

dependence between the components of Xt.

Table 2.1 reports the estimation results of the time-varying transition matrices and Granger

networks. For the proposed tv-wgLASSO, the FP and FN values are very small compared with

d2 (the total number of potential directed Granger causality linkages or entries of the transition

matrix). This leads to large values of the TPR, TNR, PPV, NPV, F1 and MCC measures, all of

which are close to 1. We can also see that the FP and FN values double when d increases from 50

to 100, but decrease substantially when n grows from 200 to 400. These results clearly show that

tv-wgLASSO can accurately recover the time-varying Granger network as long as the sample size is

moderately large. The average R2 of tv-wgLASSO is close to that of tv-Oracle, but the naive tv-Full

method tends to have large R2 due to model over-fitting. Although the EEA values of tv-wgLASSO

are larger than those of tv-Oracle when n = 200, they drop significantly and are even slightly smaller

than those of tv-Oracle when n = 400. A similar pattern can be observed in RMSEe, indicating

that the proposed tv-wgLASSO is capable of providing good approximations to VAR errors, which

are used in the subsequent time-varying precision matrix estimation. Unsurprisingly, the tv-Full

method fails to estimate the time-varying transition matrix when d = 100 and n = 200.

Table 2.2 reports the estimation results of the time-varying precision matrices and partial cor-

relation networks. When n = 200, both tv-CLIME and tv-GLASSO have zero FP values, whereas

tv-CLIME has smaller FN than tv-GLASSO. Hence, the proposed tv-CLIME performs better than

tv-GLASSO in terms of the F1 and MCC measures. When n = 400, both tv-CLIME and tv-

GLASSO correctly recover the time-varying partial correlation networks. In terms of the precision
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Table 2.1: Transition matrix and Granger network estimation in Example 2.1.

tv-wgLASSO tv-Oracle tv-Full
measure dimension n = 200 n = 400 n = 200 n = 400 n = 200 n = 400

FP d = 50 0.97 0.04 0 0 2450 2450
d = 100 1.73 0.08 0 0 - 9900

FN d = 50 3.53 0.08 0 0 0 0
d = 100 8.55 0.15 0 0 - 0

TPR d = 50 0.929 0.998 1 1 1 1
d = 100 0.915 0.999 1 1 - 1

TNR d = 50 1.000 1.000 1 1 0 0
d = 100 1.000 1.000 1 1 - 0

PPV d = 50 0.980 0.999 1 1 0.02 0.02
d = 100 0.982 0.999 1 1 - 0.01

NPV d = 50 0.999 1.000 1 1 1 1
d = 100 0.999 1.000 1 1 - 1

F1 d = 50 0.953 0.999 1 1 0.039 0.039
d = 100 0.947 0.999 1 1 - 0.020

MCC d = 50 0.953 0.999 1 1 0 0
d = 100 0.947 0.999 1 1 - 0

average R2 d = 50 0.289 0.296 0.296 0.297 0.933 0.721
d = 100 0.296 0.306 0.305 0.307 - 0.959

EEA d = 50 0.214 0.160 0.185 0.163 54.29 1.410
d = 100 0.224 0.163 0.189 0.166 - 112.8

RMSEe d = 50 0.203 0.115 0.162 0.120 1.119 0.876
d = 100 0.213 0.113 0.159 0.119 - 1.145

In all the tables, except for exact values of 0’s and 1’s, the FP and FN measures are rounded to 2
decimal places, while the others are rounded to 3 decimal places.

matrix estimation accuracy (EEΩ), tv-GLASSO performs slightly better than tv-CLIME. In addi-

tion, by comparing the tv-CLIME and the infeasible tv-CLIME, we may conclude that the VAR

error approximation has a negligible impact on the precision matrix and partial correlation network

estimation.

Example 2.2. The data is generated from a time-varying VAR(1) model withA1(τ) being an upper

triangular matrix for all τ ∈ [0, 1]. Each diagonal entry of A1(τ) takes the value of 0.7Φ(5(τ−1/2)),

each super-diagonal entry takes the value of 0.7− 0.7Φ(5(τ − 1/2)), and the remaining entries take

the value of 0. We set Ω(τ) = [ωij(τ)]d×d to be a banded symmetric matrix for all τ ∈ [0, 1] with

ωii(τ) ≡ 1, ωi,(i+1)(τ) = 0.7Φ(5(τ − 1/2))− 0.7, ωi,(i+2)(τ) = 0.7− 0.7Φ(5(τ − 1/2)), and ωi,j(τ) ≡ 0

if |i− j| > 2.

Table 2.3 reports the estimation results of the time-varying transition matrices and Granger

networks. Note that the time series variables in this example are more correlated to each other than

those in Example 2.1, which affects the network estimation accuracy. When d = 100 and n = 200,



2.6 Monte-Carlo simulation 71

Table 2.2: Precision matrix and partial correlation network estimation in Example 2.1.

tv-CLIME infeasible tv-CLIME tv-GLASSO
measure dimension n = 200 n = 400 n = 200 n = 400 n = 200 n = 400

FP d = 50 0 0.02 0 0.02 0 0
d = 100 0 0.03 0 0.01 0 0

FN d = 50 5.06 0 3.49 0 9.24 0
d = 100 13.25 0 9.01 0 28.31 0

TPR d = 50 0.798 1 0.860 1 0.630 0
d = 100 0.735 1 0.820 1 0.434 0

TNR d = 50 1 1.000 1 1.000 1 1
d = 100 1 1.000 1 1.000 1 1

PPV d = 50 1 0.999 1 0.999 1 1
d = 100 1 0.999 1 1.000 1 1

NPV d = 50 0.996 1 0.097 1 0.992 1
d = 100 0.997 1 0.998 1 0.994 1

F1 d = 50 0.884 1.000 0.922 1.000 0.768 1
d = 100 0.845 1.000 0.899 1.000 0.600 1

MCC d = 50 0.889 1.000 0.925 1.000 0.788 1
d = 100 0.855 1.000 0.904 1.000 0.653 1

EEΩ d = 50 0.510 0.436 0.503 0.435 0.451 0.407
d = 100 0.481 0.421 0.473 0.419 0.433 0.397

the FP and FN values of tv-wgLASSO reach their maximum at 20.73 and 37.55, respectively,

whereas the F1 and MCC values are around 0.85. As in Example 1.1, the F1 and MCC values

increase when n increases from 200 to 400, and again the average R2 of tv-wgLASSO is close to

that of tv-Oracle. However, tv-wgLASSO has much larger EEA and RMSEe than tv-Oracle.

Table 2.4 reports the estimation results of the time-varying precision matrices and partial cor-

relation networks. It follows from the EEA and RMSEe results in Table 2.3 that the VAR error

approximation is poorer than that in Example 2.1. Consequently, the proposed tv-CLIME performs

worse than the infeasible tv-CLIME using the true VAR errors directly in the estimation. In par-

ticular, FN of the tv-CLIME is much larger than that of the infeasible tv-CLIME when n = 200.

Due to the same reason, the infeasible tv-CLIME also outperforms the tv-GLASSO. In addition,

we find that the tv-CLIME is better than the tv-GLASSO in recovering the time-varying precision

network when n = 200, and they perform equally well when n = 400.

Example 2.3. The data is generated from a VAR(1) model with A1(τ) = [aij(τ)]d×d being a

Toeplitz matrix and aij(τ) = (0.4 − 0.1τ)|i−j|+1. We also set Ω(τ) = [ωij(τ)]d×d to be a Toeplitz

matrix with ωij(τ) = (0.8−0.1τ)|i−j|. In this example, both the transition and precision matrices are

non-sparse, and we aim to examine how our proposed methods perform when the (exact) sparsity

assumption fails.

Table 2.5 reports the estimation errors of the various methods considered. In this example, the
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Table 2.3: Transition matrix and Granger network estimation in Example 2.2.

tv-wgLASSO tv-Oracle tv-Full
measure dimension n = 200 n = 400 n = 200 n = 400 n = 200 n = 400

FP d = 50 13.53 12.75 0 0 2401 2401
d = 100 20.73 7.73 0 0 - 9801

FN d = 50 18.56 11.11 0 0 0 0
d = 100 37.55 13.90 0 0 - 0

TPR d = 50 0.813 0.888 1 1 1 1
d = 100 0.811 0.930 1 1 - 1

TNR d = 50 0.994 0.995 1 1 0 0
d = 100 0.998 0.999 1 1 - 0

PPV d = 50 0.859 0.875 1 1 0.040 0.040
d = 100 0.888 0.960 1 1 - 0.020

NPV d = 50 0.992 0.995 1 1 0 0
d = 100 0.996 0.999 1 1 - 0

F1 d = 50 0.834 0.881 1 1 0.076 0.076
d = 100 0.847 0.945 1 1 - 0.039

MCC d = 50 0.828 0.876 1 1 0 0
d = 100 0.846 0.943 1 1 - 0

average R2 d = 50 0.465 0.448 0.477 0.462 0.963 0.829
d = 100 0.473 0.467 0.483 0.471 - 0.978

EEA d = 50 0.328 0.250 0.171 0.122 58.44 1.510
d = 100 0.323 0.204 0.168 0.122 - 82.60

RMSEe d = 50 0.631 0.476 0.417 0.305 1.673 1.414
d = 100 0.613 0.390 0.414 0.309 - 1.720

Table 2.4: Precision matrix and partial correlation network estimation in Example 2.2.

tv-CLIME infeasible tv-CLIME tv-GLASSO
measure dimension n = 200 n = 400 n = 200 n = 400 n = 200 n = 400

FP d = 50 0.03 0.04 0.02 0.03 0 0.01
d = 100 0.01 0 0 0.01 0 0.01

FN d = 50 12.62 0.82 2.34 0 20.84 0.06
d = 100 24.71 0.23 6.21 0.01 49.73 0.43

TPR d = 50 0.742 0.983 0.952 1 0.575 0.997
d = 100 0.750 0.998 0.937 1.000 0.498 0.996

TNR d = 50 1.000 1.000 1.000 1.000 1 1.000
d = 100 1.000 1 1 1.000 1 1.000

PPV d = 50 0.999 0.999 1.000 0.999 1 1.000
d = 100 1.000 1 1 1.000 1 1.000

NPV d = 50 0.989 0.999 0.998 1 0.983 1.000
d = 100 0.995 1.000 0.999 1.000 0.990 1.000

F1 d = 50 0.850 0.991 0.975 1.000 0.725 0.998
d = 100 0.857 0.999 0.967 1.000 0.662 0.998

MCC d = 50 0.856 0.991 0.975 1.000 0.749 0.998
d = 100 0.864 0.999 0.967 1.000 0.701 0.998

EEΩ d = 50 0.598 0.533 0.526 0.485 0.560 0.514
d = 100 0.560 0.489 0.486 0.458 0.536 0.496
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Table 2.5: Estimation accuracy of dual networks in Example 2.3.

tv-wgLASSO tv-Oracle tv-Full
measure dimension n = 200 n = 400 n = 200 n = 400 n = 200 n = 400

average R2 d = 50 0.009 0.029 0.891 0.588 0.891 0.588
d = 100 0.005 0.020 - 0.930 - 0.930

EEA d = 50 0.383 0.348 56.66 1.927 56.66 1.927
d = 100 0.388 0.364 - 97.60 - 97.60

RMSEe d = 50 0.515 0.463 1.716 1.300 1.716 1.300
d = 100 0.523 0.486 - 1.776 - 1.776

tv-CLIME infeasible tv-CLIME tv-GLASSO
n = 200 n = 400 n = 200 n = 400 n = 200 n = 400

EEΩ d = 50 1.669 1.601 1.613 1.572 1.584 1.570
d = 100 1.674 1.615 1.616 1.580 1.587 1.588

tv-Oracle is equivalent to tv-Full and both suffer from the curse of dimensionality in the conventional

local linear estimation procedure for the time-varying transition matrices (in particular when d =

100 and n = 200). Consequently, the EEA and RMSEe of the tv-wgLASSO are much smaller

than those of the tv-Oracle. The EEΩ results of the tv-CLIME are very close to those of the

infeasible tv-CLIME, suggesting that the VAR error approximation has little impact on the tv-

CLIME performance as discussed in Example 2.1. In addition, the EEΩ results of the tv-CLIME

and Oracle tv-CLIME are generally close to those of tv-GLASSO. The simulation results show that

the proposed tv-wgLASSO and tv-CLIME perform reasonably well when the sparsity assumption

on transition and precision matrices is not satisfied.

Example 2.4. The data is generated from a factor-adjusted time-varying VAR model in the form

of (2.5.2). The idiosyncratic errors of the time-varying factor model are generated from a VAR(1)

model in Example 1.2. The two factors in Ft = (Ft,1, Ft,2)
⊺
are generated from two univariate

AR(1) processes: Ft,1 = 0.6Ft−1,1 +
√
1− 0.62uFt,1 and Ft,2 = 0.3Ft−1,2 +

√
1− 0.32uFt,2, where

uFt,1 and uFt,2 are independently drawn from a standard normal distribution. The factor-loading

matrix is defined as Λt = (Λt,1,Λt,2) where Λt,1 ≡ Λ1 is a time-invariant vector drawn from a

d-dimensional standard multivariate normal distribution and Λt,2 = (Λ1t,2, . . .,Λdt,2)
⊺
with Λit,2 =

2/ (1 + exp{−2[10(t/n)− 5(i/d)− 2]}) for i = 1, . . ., d.

Table 2.6 reports the estimation results of the time-varying transition matrices and Granger

networks for the idiosyncratic errors, and Table 2.7 reports the estimation results of the time-

varying precision matrices and partial correlation networks. Comparing with the results in Tables

2.3 and 2.4, we can observe that the factor-adjusted estimation introduces additional estimation

errors, leading to smaller values of F1 and MCC. The impact is more marked when n = 200 but

reduces substantially when n = 400. As in the previous examples, the F1 and MCC values increase

when n increases from 200 to 400. Thus we may conclude that, although the factor model estimation
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Table 2.6: Factor-adjusted transition matrix
and Granger network estimation in Example
2.4.

tv-wgLASSO
measure dimension n = 200 n = 400

FP d = 50 11.35 10.60
d = 100 20.40 10.41

FN d = 50 35.97 14.77
d = 100 65.45 20.68

TPR d = 50 0.637 0.851
d = 100 0.671 0.896

TNR d = 50 0.995 0.996
d = 100 0.998 0.999

PPV d = 50 0.852 0.890
d = 100 0.869 0.945

NPV d = 50 0.985 0.994
d = 100 0.993 0.998

F1 d = 50 0.725 0.869
d = 100 0.756 0.920

MCC d = 50 0.725 0.865
d = 100 0.759 0.919

average R2 d = 50 0.298 0.350
d = 100 0.339 0.389

EEA d = 50 0.413 0.283
d = 100 0.396 0.241

RMSEe d = 50 1.319 1.025
d = 100 1.230 0.856

Table 2.7: Factor-adjusted precision matrix
and partial correlation network estimation in
Example 2.4.

tv-CLIME
measure dimension n = 200 n = 400

FP d = 50 0.01 0.01
d = 100 0 0.02

FN d = 50 38.22 5.36
d = 100 65.99 2.21

TPR d = 50 0.220 0.891
d = 100 0.333 0.978

TNR d = 50 1.000 1.000
d = 100 1 1.000

PPV d = 50 0.999 1.000
d = 100 1 1.000

NPV d = 50 0.969 0.995
d = 100 0.987 1.000

F1 d = 50 0.349 0.941
d = 100 0.496 0.989

MCC d = 50 0.448 0.941
d = 100 0.570 0.988

EEΩ d = 50 0.670 0.585
d = 100 0.628 0.534

errors are passed onto the three-stage estimation procedure, their impact on the estimation of the

networks is not significant when the sample size is moderately large (n = 400).

2.7 An empirical application

In this section, we apply the proposed methods to estimate the Granger causality and partial

correlation networks using the FRED-MD macroeconomic dataset. The dataset, available on the

Fred-MD website1, consists of 127 U.S. macroeconomic variables observed monthly over the period

from January 1959 to July 2022. These macroeconomic variables can be classified into eight groups:

consumption, orders and inventories; housing; interest and exchange rates; labour market; money

and credit; output and income; prices; and the stock market. A more detailed description can be

found in McCracken and Ng (2016).

We follow McCracken and Ng (2016) and McCracken and Ng (2020) to remove outliers and fill

1https://research.stlouisfed.org/econ/mccracken/fred-databases/
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missing values. Each variable is standardised to have zero mean and unit variance. We consider the

two factor modelling methods in Section 2.5 to accommodate strong cross-sectional dependence: the

approximate factor model (2.5.1) with constant factor loadings, and the time-varying factor model

(2.5.2) with dynamic factor loadings. The information criteria proposed by Bai and Ng (2002) and

Su and Wang (2017) are used to determine the number of factors in these two models (see Appendix

B.5 for a description of the criteria). Seven factors are selected for the factor model with constant

loadings, whereas only four are selected for the time-varying factor model. Since the latter provides

a more parsimonious model specification, we hereafter report network estimation results only for

this model. The estimated idiosyncratic errors, denoted as x̂t,i, i = 1, . . ., 127, t = 1, . . ., 763, are

then used for our empirical analysis. Miao et al. (2023) suggest determining the optimal order of a

high-dimensional VAR model via a ratio criterion, comparing the Frobenius norms of the estimated

transition matrices over different lags. We extend their criterion to the time-varying VAR model

context (see Appendix B.5 for detail) and subsequently select the time-varying VAR(1) model for

X̂t = (x̂t,1, . . ., x̂t,127)
⊺
.

Figure 2.1 plots the estimated Granger networks from the static VAR(1) and the time-varying

VAR(1) models. From the estimated time-varying transition matrix, we uncover 190 directed link-

ages in the Granger causality network, among which 78 are self-linkages and 143 are linkages within

the same category. In particular, the self-linkages, which correspond to the significant diagonal

entries of the transition matrix, indicate that the macroeconomic variables in the following four

categories: consumption, orders and inventories; interest and exchange rates; money and credit;

and prices, are more persistent than the others, even though all the variables have been trans-

formed into stationary ones in the preliminary analysis. By contrast, we find 155 directed linkages

for the Granger network estimated via static VAR(1) and hence, our time-varying VAR(1) model

captures more linkages in the network estimation. Figure 2.2 plots the Granger networks estimated

without factor adjustment. Compared with the factor-adjusted version, the Granger network via

time-varying VAR(1) is more dense with 1118 directed linkages, among which 104 are self-linkages

and 432 are within categories. As pointed out by McCracken and Ng (2016), common factors,

which may be interpreted as business cycles, are the main sources of the Granger causalities be-

tween macroeconomic variables, leading to a rather dense network structure. On the other hand,

the estimated Granger network via static VAR(1) without factor adjustment has only 450 linkages.

We further explore the dynamic smooth structural changes of Gaussian causality linkages. Tak-

ing the logarithmic growth rate of S&P PE ratio (S&P PE ratio)2 as an example, there are four

2We show in the parentheses the variable names used in the FRED-MD dataset. The variable transformation is
conducted following the guideline in the dataset.
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Figure 2.1: The estimated Granger causality networks using the factor-adjusted static VAR(1)
model (left) and time-varying VAR(1) model (right).
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Figure 2.2: The estimated Granger causality networks using the static VAR(1) model (left) and time-varying

VAR(1) model (right) without factor-adjustment.
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directed linkages to this variable: acceleration of the logarithmic monetary base (BOGMBASE),

the logarithmic return of S&P 500 index (S&P 500), the logarithmic return of S&P 500 industrials

index (S&P: indust), and the logarithmic growth rate of the S&P PE ratio which is a self-linkage.

We re-estimate the corresponding time-varying coefficients using the nonparametric autoregression

model with only the four selected predictors, and draw the 90% confidence bands using the R pack-

age “tvReg”. Figure 2.3 plots the estimated curves of the four coefficient functions. We find that

the logarithmic growth rate of S&P PE ratio is generally persistent and positively correlated to

BOGMBASE in the most recent two decades. The estimated time-varying coefficient of the S&P

500 industrials index return is significant but close to zero. It is thus unsurprising that the static

VAR(1) model with classic LASSO penalty does not detect the Granger causality linkage from this

variable. In fact, LASSO tends to select only one variable in a group of highly-correlated predictors.

Due to high correlation between the two index returns, only the S&P 500 Index return is selected

in the static VAR(1) model. In contrast, the proposed time-varying LASSO selects both of the two

index returns at different time periods, and the second-stage weighted group LASSO aggregates the

information over time and selects both index returns.

Figure 2.3: The estimated time-varying coefficients linked to S&P PE ratio with 90% confident
bands.

We plot the estimated partial correlation networks in Figure 2.4, which are generally sparse.

Using the factor-adjusted time-varying CLIME, 234 undirected linkages are detected in the esti-

mated network, among which 205 linkages are within the same category. In contrast, the estimated

network without factor adjustment contains 236 linkages with 211 in the same category. Unlike

the Granger network estimation, it seems that whether to make factor adjustment or not has little

impact on the partial correlation network estimation.

We next examine the time-varying pattern of partial correlation linkages between S&P PE ratio

and four other variables: S&P 500, S&P: indust, S&P div yield (the increment of S&P composite

common stock: dividend yield), and BAAFFM (the spread between Moody’s seasoned baa corporate
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bond and effective federal funds rate). We re-estimate the relevant time-varying functions with a

200-month moving window (Janková and van de Geer, 2015), and draw the 90% confidence bands

using R package “SILGGM” in Figure 2.5. Note that the partial correlation has a sign opposite to

the corresponding entry in the precision matrix. We find that S&P PE ratio is positively (partially)

correlated with S&P 500 and S&P: indust, whilst negatively (partially) correlated with S&P div

yield. The confidence bands in Figure 2.5 suggest that time-invariant partial correlation linkages

are inappropriate to describe the network structure of the FRED-MD data.

Figure 2.4: The estimated partial correlation networks with (left) and without (right) factor ad-
justment.
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Figure 2.5: The estimated time-varying elements in the precision matrix linked to S&P PE ratio
with 90% confident bands.

2.8 Conclusion

In this chapter, we estimate a general time-varying VAR model for high-dimensional locally sta-

tionary time series. A three-stage estimation procedure combining time-varying LASSO, weighted

group LASSO and time-varying CLIME is developed to estimate both transition and error precision

matrices, allowing smooth structural changes over time. The estimated transition and precision ma-

trices are further used to construct dual network structures with directed Granger causality linkages

and undirected partial correlation linkages, respectively. Under the sparse structural assumption

and other technical conditions, we derive the uniform consistency and oracle properties for the

developed estimates. In order to accommodate high correlation among large-scale time series and

avoid directly imposing the sparsity assumption, we also extend the methodology and theory to a

more general factor-adjusted time-varying VAR and network structures. Both the simulation and

empirical studies show that the developed network model and methodology have reliable numerical

performance in finite samples.



Chapter 3

Estimation of Large Dynamic Precision

Matrices with a Latent Semiparametric

Structure

AbstractWe estimate large dynamic precision matrices for high-dimensional time series data where

the conditioning random variables are multivariate. To overcome the challenges posed by the curse

of dimensionality, we introduce the approximate factor structure and employ the semiparametric

MAMAR approximation to estimate the underlying dynamic covariance matrix of the factors and

the idiosyncratic components. By using the Sherman-Morrison-Woodbury formula, we obtain the

dynamic precision matrix for the time series. Under some mild conditions such as the approximate

sparsity assumption, the proposed precision matrix estimation is proved to be uniformly consistent.

The simulation highlights the advantage of utilising the factor structure when estimating large

dynamic precision matrices. In the empirical analysis, we apply the proposed method to the returns

of S&P 500 constituents. The results indicate that our method performs well in the portfolio

selection problem.

Keywords: Approximate factor model, Conditional sparsity, Large precision matrix, MAMAR,

Semiparametric estimation.
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3.1 Introduction

There has been increasing interest in recent decades on estimation of large precision matrices, which

have applications in various fields including discriminant analysis, network or graphical model es-

timation and optimal portfolio choice. Existing literature often assumes that the precision matrix

of a high-dimensional random vector (with dimension possibly much larger than the sample size) is

static, satisfying an approximate sparsity condition similar to that often imposed on large covariance

matrices (e.g., Bickel and Levina, 2008), and then uses various techniques, such as penalised likeli-

hood (Lam and Fan, 2009), graphical Danzig selector (Yuan, 2010) and constrained ℓ1-minimisation

for inverse matrix estimation (CLIME) (Cai et al., 2011), to estimate it. Under a high-dimensional

semiparametric Gaussian copula model framework, Liu et al. (2012) and Xue and Zou (2012) es-

timate the inverse of a correlation matrix by combining Spearman’s rho or Kendall’s tau with the

aforementioned techniques for large precision matrices. A comprehensive review of recent develop-

ments in large precision matrix estimation can be found in Cai et al. (2016) and Fan et al. (2016c).

The static and sparsity assumptions for precision matrices may be too restrictive to be realistic

for many practical applications. When considering large precision matrices over a long time span, the

static assumption is likely to be violated and hence, it is important to explore their dynamic/time-

evolving pattern to avoid misleading results from subsequent analysis. The sparsity assumption

is also often violated in reality. Hence, there have been some attempts to relax either of the

assumptions in recent years. For example, Kolar et al. (2010) and Zhou et al. (2010) relax the

static assumption by allowing smooth time-varying changes in large precision matrices of dynamic

network or graphical models, where observations are assumed to be either serially independent or

stationary weakly dependent; Qiu et al. (2016) estimate a large precision matrix which depends on

a subject-specific variable; and Xu et al. (2020) test structural breaks on a large precision matrix

and then estimate its smooth time-varying structure between breaks. For the sparsity assumption, a

popular approach to circumvent it is to make use of the fact that many economic and financial time

series variables often exhibit co-movements, possibly driven by some latent factors. Chandrasekaran

et al. (2012) is among the first to study a large precision matrix with latent variables involved. They

provide the graphical model identification conditions and propose a penalised likelihood estimation

method under the joint Gaussian assumption. By decomposing the large precision matrix into a

“low-rank plus sparse” structure under an approximate factor model assumption, Wu et al. (2017)

and Tang et al. (2020) introduce the IPOD (Inverting Principal Orthogonal Decomposition) and

LVD (Latent Variables graphical models via ℓ1 and penalised D-trace loss) approaches, respectively.

A similar technique is also used by Cai et al. (2020) to estimate large precision matrices for high-

dimensional and high-frequency financial data.

In this chapter, we aim to estimate a large dynamic precision matrix with a latent factor struc-

ture, avoiding both the static and the sparsity assumptions. Specifically, suppose that Xt =

(Xt,1, . . . , Xt,N )
⊺
is an N -dimensional random vector generated from the following approximate

factor model:

Xt = χt + εt with χt = ΛFt, t = 1, . . . , T, (3.1.1)

where Λ = (λij)N×K is an N×K matrix of factor loadings, Ft = (Ft,1, . . . , Ft,K)
⊺
is aK-dimensional

vector of latent factors, and ϵt = (εt,1, . . . , εt,N )
⊺
is an N -dimensional vector of idiosyncratic errors.
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The approximate factor model has become an effective tool in analysing high-dimensional economic

and financial time series (e.g., Chamberlain and Rothschild, 1983; Fama and French, 1992; Stock

and Watson, 2002; Bai and Ng, 2002). As in the large panel literature, we consider the setting

that both N and T diverge to infinity, making it feasible to consistently estimate the factor space

and factor loadings (up to an appropriate rotation). Let Ut = (Ut,1, · · · , Ut,d)
⊺
be a d-dimensional

vector of conditioning variables which may be chosen as the lagged terms of some components of

Xt or some low-dimensional observed factors (such as the Fama-French three factors). We assume

that K and d are fixed, Λ is deterministic, and Ft and εt are conditionally uncorrelated given the

past conditioning variables Us, s ≤ t − 1. The dynamic covariance matrix of Xt is defined and

computed as

ΣX(u) = Var (Xt+1|Ut = u) = ΛΣF (u)Λ
⊺
+Σε(u), (3.1.2)

where ΣF (u) = Var (Ft+1|Ut = u) and Σε(u) = Var (εt+1|Ut = u). It is worth noting that ΣF (u) is

a K×K dynamic covariance matrix, whereas Σε(u) is a large covariance matrix with size N×N . As

in Fan et al. (2013) and Wang et al. (2021b), we impose a sparsity assumption on Σε(u), resulting

in a “low-rank plus sparse” or conditionally sparse structure in (3.1.2), which makes it possible to

develop sensible estimation theory. Also note that it is not unreasonable to assume that Σε(u)

is sparse, as all the systematic and common pattern in Xt should have been accounted for by χt,

leaving only individual specific errors in εt.

The primary interest of this chapter is to estimate the dynamic precision matrix, denoted as

ΩX(u), which is the inverse of ΣX(u). Letting ΛF (u) = ΛΣ
1/2
F (u), by (3.1.2) and the Sherman-

Morrison-Woodbury formula, we readily have

ΩX(u) = Ωε(u)−Ωε(u)ΛF (u)
[
IK +ΛF (u)

⊺
Ωε(u)ΛF (u)

]−1
ΛF (u)

⊺
Ωε(u), (3.1.3)

where Ωε(u) = Σ−1
ε (u) and IK is the K×K identity matrix. As in Wu et al. (2017) and Tang et al.

(2020), we may impose a sparsity assumption on Ωε(u), which leads to a “low-rank plus sparse”

structure for the precision matrix, ΩX(u).

The rest of this chapter is organised as follows. Section 3.2 first introduces a semiparametric

Model Averaging MArginal Regression (MAMAR) approximation for ΩX(u) and then discusses the

estimation of this MAMAR approximation. It also discusses the construction of minimum-variance

portfolios using the MAMAR estimates of dynamic precision matrices. Section 3.3 provides uni-

form consistency results for the MAMAR estimators of the precision matrices. Sections 3.4 and

3.5 present Monte-Carlo simulation results and an empirical application showcasing the useful-

ness of our proposed method. Section 3.6 concludes. Proofs of the asymptotic results in Section

3.3 are relegated to Appendix C. Throughout this chapter, we use ∥ · ∥ to denote the Euclidean

norm of a vector; and λmax(·), λmin(·) and Tr(·) to denote the maximum eigenvalue, minimum

eigenvalue and trace of a square matrix, respectively. For a p × p matrix W = (wij)p×p, we let

∥W∥O = λ
1/2
max

(
W

⊺
W
)
be its operator (or spectral) norm, ∥W∥F = Tr1/2

(
W

⊺
W
)
its Frobenius

norm, |W|1 =
∑p

i=1

∑p
j=1 |wij |, ∥W∥1 = max1≤j≤p

∑p
i=1 |wij |, ∥W∥∞ = max1≤i≤p

∑p
j=1 |wij |, and

∥W∥max = max1≤i≤pmax1≤j≤p |wij |.
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3.2 Methodology

3.2.1 Semiparametric MAMAR approximation

It is clear from the decomposition (3.1.3) that two key dynamic components of ΩX(u) are Ωε(u) =

Σ−1
ε (u) and ΣF (u). Let σε,ij(u), 1 ≤ i, j ≤ N , and σF,ij(u), 1 ≤ i, j ≤ K, be the (i, j)-entry

of the matrices Σε(u) and ΣF (u), respectively. Throughout this chapter, we do not impose any

pre-specified parametric form on either σε,ij(u) or σF,ij(u). As Ut is assumed to be a multivariate

vector of conditioning variables, a direct application of classic nonparametric methods to estimate

σε,ij(u) and σF,ij(u) would suffer from the “curse of dimensionality” issue when the dimension of

u, i.e., d, is larger than three. To address this problem, we use a semiparametric approximation via

Model Averaging MArginal Regression (MAMAR). It is detailed below.

When E(εt+1,i|Ut) = 0, 1 ≤ i ≤ N , the MAMAR approximation for σε,ij(u) = E(εt+1,iεt+1,j |Ut

= u), 1 ≤ i, j ≤ N , is defined as

σε,ij(u) ≈ a0,ij +

d∑
k=1

ak,ijE(εt+1,iεt+1,j |Ut,k = uk) =: a0,ij +

d∑
k=1

ak,ijσε,k,ij(uk), (3.2.1)

where ak,ij , 0 ≤ k ≤ d, are unknown weights and σε,k,ij(uk), 1 ≤ k ≤ d, are univariate nonparametric

functions which can be easily estimated from commonly-used nonparametric methods (such as

kernel smoothing) without incurring the “curse of dimensionality”. The MAMAR approximation

is first introduced by Li et al. (2015b) in the context of semiparametric time series regression

estimation and forecasting, and is further generalised by Chen et al. (2018) to the ultra large

time series regression setting. This idea has been applied to semiparametric dynamic portfolio

choice (Chen et al., 2016), high-dimensional classification (Fan et al., 2016a) and high-dimensional

dynamic covariance matrix estimation (Chen et al., 2019). To write (3.2.1) in matrix form, denote

Ak = (ak,ij)N×N , k = 0, 1, . . . , d, and Σε,k(uk) = [σε,k,ij(uk)]N×N , k = 1, . . . , d. Then, the MAMAR

approximation for Σε(u) can be written as

Σε(u) ≈ A0 +

d∑
k=1

Ak ⊙Σε,k(uk), (3.2.2)

where ⊙ denotes the Hadamard product.

The weighting parameters ak,ij play a crucial role in the MAMAR approximation. We next

derive the theoretically optimal weights for the optimal MAMAR approximation of Σε(u). For

1 ≤ i, j ≤ N , the optimal weights aok,ij , k = 0, 1, . . . , d, are obtained by minimising

Q(a0,ij , a1,ij , . . . , ad,ij) = E

[
εt+1,iεt+1,j − a0,ij −

d∑
k=1

ak,ijσε,k,ij(Ut,k)

]2

with respect to ak,ij , k = 0, 1, . . . , d. Following standard calculations as in Li et al. (2015b), we have



3.2 Methodology 85

the following solution to the above minimisation problem:

(
ao1,ij , . . . , a

o
d,ij

)⊺
:= ∆∗−1

ε,ij W
∗
ε,ij , ao0,ij :=

(
1−

d∑
k=1

aok,ij

)
E(εt,iεt,j), (3.2.3)

where ∆∗
ε,ij is a d× d matrix with the (k, l)-entry being δ∗ε,ij,kl = Cov [σε,k,ij(Ut,k), σε,l,ij(Ut,l)], and

W∗
ε,ij is a d-dimensional vector with the k-th element being w∗

ε,ij,k = Cov [σε,k,ij(Ut,k), εt+1,iεt+1,j ] =

Var [σε,k,ij(Ut,k)]. Letting Ao
k =

(
aok,ij

)
N×N

and replacing Ak by Ao
k in (3.2.2), we obtain the

(theoretically) optimal MAMAR approximation to Σε(u):

Σo
ε(u) := Ao

0 +
d∑

k=1

Ao
k ⊙Σε,k(uk). (3.2.4)

Consequently, taking the inverse of Σo
ε(u), we have the following optimal MAMAR approximation

to the error precision matrix, Ωε(u),

Ωo
ε(u) :=

[
Ao

0 +

d∑
k=1

Ao
k ⊙Σε,k(uk)

]−1

. (3.2.5)

When E(εt+1,i|Ut) ̸= 0, 1 ≤ i ≤ N , note that

Σε(u) = E
(
εt+1ε

⊺

t+1|Ut = u
)
− E (εt+1|Ut = u)

[
E (εt+1|Ut = u)

]⊺
=: Cε(u)−Mε(u)Mε(u)

⊺
.

We can similarly apply MAMAR to both CF (u) and MF (u) and obtain their approximations,

denoted as Co
F (u) and Mo

F (u), respectively, and then obtain the optimal MAMAR approximation

to Σε(u):

Σo
ε(u) := Co

ε(u)−Mo
ε(u)M

o
ε(u)

⊺
.

For the component ΣF (u), we can similarly write

ΣF (u) = E
(
Ft+1F

⊺

t+1|Ut = u
)
− E (Ft+1|Ut = u)

[
E (Ft+1|Ut = u)

]⊺
=: CF (u)−MF (u)MF (u)

⊺
.

We can apply MAMAR to both CF (u) and MF (u) and obtain their approximations, denoted as

Co
F (u) and Mo

F (u), respectively, and then obtain the optimal MAMAR approximation to ΣF (u):

Σo
F (u) := Co

F (u)−Mo
F (u)M

o
F (u)

⊺
. (3.2.6)

Letting Λo
F (u) = Λ [Σo

F (u)]
1/2, by virtue of (3.1.3), we obtain

Ωo
X(u) := Ωo

ε(u)−Ωo
ε(u)Λ

o
F (u)

[
IK +Λo

F (u)
⊺
Ωo

ε(u)Λ
o
F (u)

]−1
Λo

F (u)
⊺
Ωo

ε(u), (3.2.7)

which is the theoretically optimal MAMAR approximation to ΩX(u).

Our main interest lies in estimating Ωo
ε(u) and Ωo

X(u), which can be seen as “proxies” for Ωε(u)

and ΩX(u), respectively. Chen et al. (2019) use a similar MAMAR approximation technique for

large dynamic covariance matrix estimation under a sparsity assumption. To relax the sparsity
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assumption, they also discuss, although very briefly, the estimation of the MAMAR approximation

for ΣX(u) under the factor structure (3.1.2), without providing rigorous theoretical derivation.

In this chapter, we focus on large precision matrices rather than covariance matrices. In order

to derive sensible estimation theory, we assume that Σo
F (u) ≻ 0 and Ωo

ε(u) satisfies the uniform

sparsity assumption, i.e., {Ωo
ε(u) : u ∈ U} ⊆ S(q,ϖN ,M,U), where S(q,ϖN ,M,U) is defined asΩ(u) = [ωij(u)]N×N ,u ∈ U
∣∣ Ω(u) ≻ 0, sup

u∈U
∥Ω(u)∥1 ≤ M, sup

u∈U
max
1≤i≤N

N∑
j=1

|ωij(u)|q ≤ ϖN

 ,

(3.2.8)

for some 0 ≤ q < 1, 0 < M < ∞, and ϖN > 0 (which may depend on N). The notation “Ω ≻ 0”

denotes that Ω is positive definite.

3.2.2 Factor model estimation

Before developing a feasible estimation procedure for Ωo
ε(u) and Ωo

X(u), we need to estimate the

latent components in the approximate factor model (3.1.1), i.e., the factor loadings matrix Λ,

common factors Ft, as well as the idiosyncratic errors εt. We will use the principal component

analysis (PCA) technique, which has been commonly used for factor model estimation (e.g., Bai

and Ng, 2002; Stock and Watson, 2002; Fan et al., 2013).

We first assume that the number of factors, K, is known, a priori, and will discuss its se-

lection later. Letting XN,T = (X1, . . . ,XT )
⊺
be the T × N matrix of observations and con-

ducting an eigenanalysis on the T × T matrix
(
XN,TX

⊺

N,T

)
/(NT ), we obtain a T × K matrix

F̂ =
(
F̂1, . . . , F̂T

)⊺

, whose columns are the K eigenvectors (multiplied by T 1/2) corresponding to

the K largest eigenvalues. Replacing Ft with F̂t in (3.1.1) and applying the least squares estima-

tion, we obtain, using the normalisation restriction on F̂, the following estimate of factor loadings

matrix: Λ̂ =
(
λ̂1, . . . , λ̂N

)⊺

= X⊺

N,T F̂/T . Finally, the idiosyncratic error εt can be approximated

by ε̂t = (ε̂t,1, . . . , ε̂t,N )
⊺
= Xt − Λ̂F̂t, t = 1, . . . , T.

We next give some regularity conditions which are sufficient for deriving the uniform consistency

results for F̂t, λ̂i, and ε̂t,i.

Assumption 3.A. (i) The process {(F⊺

t , ε
⊺

t )
⊺}∞t=1 is stationary and α-mixing with the mixing coef-

ficient αt satisfying αt = O
(
θt
)
, where θ is a constant that satisfies 0 < θ < 1.

(ii) The K×K matrix 1
NΛ

⊺
Λ is positive definite with its smallest eigenvalue bounded away from

zero, and ∥λi∥ is uniformly bounded over 1 ≤ i ≤ N , where λi is the i-th column of Λ
⊺
.

(iii) The covariance matrix Var(Ft) is positive definite. In addition, there exists a constant

c1 > 0 such that E
[
exp

(
c1∥Ft∥2

)]
< ∞.

(iv) The idiosyncratic errors satisfy

E[εt] = 0, E[εt,iFt] = 0, and max
1≤i≤N

max
1≤t≤T

E
[
exp

(
c1ε

2
t,i

)]
< ∞,

where c1 is defined in (iii).
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(v) There exist 0 < c2 < ∞ and δ > 2 such that

max
1≤t≤T

E

∥∥∥∥∥
N∑
i=1

λiεt,i

∥∥∥∥∥
δ
 ≤ c2N

δ/2, max
1≤s,t≤T

E

∣∣∣∣∣
N∑
i=1

[εs,iεt,i − E (εs,iεt,i)]

∣∣∣∣∣
δ
 ≤ c2N

δ/2.

Most of the above assumptions are standard in the approximate factor model estimation theory

(e.g., Bai and Ng, 2002; Fan et al., 2013; Chen et al., 2018). The sub-Gaussian moment conditions in

Assumption 3.A(iii) and (iv) are required to cover the ultra-high dimensional case where N diverges

at an exponential rate of T , and can be weakened if N diverges at a polynomial rate of T .

Define a K ×K rotation matrix

R := Λ−1
K

(
1

T

T∑
t=1

F̂tF
⊺

t

)(
1

N

N∑
i=1

λiλ
⊺

i

)
, (3.2.9)

where ΛK is a K × K diagonal matrix with the first K largest eigenvalues of XN,TX
⊺

NT /(NT )

(arranged in descending order) being the diagonal elements. The following proposition gives the

uniform consistency results for F̂t, λ̂i, and ε̂t,i, which are comparable to those obtained in the

existing literature (e.g., Bai and Ng, 2002; Fan et al., 2013; Chen et al., 2018; Li et al., 2023).

Proposition 3.2.1. Suppose that Assumption 3.A is satisfied, N ≫ T 4/δ with δ defined in As-

sumption 3.A(v), and N = O (exp{T ν}) with 0 < ν < 1/5. Then, we have the following uniform

consistency results:

(i)

max
1≤t≤T

∥∥∥F̂t −RFt

∥∥∥ = OP

(
1

T 1/2
+

T 2/δ

N1/2

)
; (3.2.10)

(ii)

max
1≤i≤N

∥∥∥λ̂i −
(
R−1

)⊺
λi

∥∥∥ = OP

((
logN

T

)1/2

+
T 2/δ

N1/2

)
; (3.2.11)

(iii)

max
1≤i≤N

max
1≤t≤T

|ε̂t,i − εt,i| = OP

(
(log T )1/2

[(
logN

T

)1/2

+
T 2/δ

N1/2

])
, (3.2.12)

where δ is defined in Assumption 3.A(v).

Proposition 3.2.1 shows that F̂t and Λ̂ are consistent estimators of the rotated latent factorsRFt

and rotated factor loadings matrix ΛR−1, respectively, rather than the factors and factor loadings

themselves (unless R = I). If, in addition, we assume that N ≫ T (2+δ)/δ, the rate T 2/δ/N1/2 would

disappear in (3.2.10)–(3.2.12). In practice, the number of factors, K, is usually unknown but can

be consistently estimated via an information criterion (Bai and Ng, 2002) or a simple ratio method

(Lam and Yao, 2012).

3.2.3 Large precision matrix estimation

With the estimates of Λ, Ft, and εt from Section 3.2.2, the estimation procedure for Ωo
ε(u) and

Ωo
X(u) includes the following steps: (i) use a semiparametric method to estimate Σo

ε(u) and Σo
F (u);
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(ii) apply the method of constrained ℓ1 minimisation for inverse matrix estimation (CLIME) to

estimate Ωo
ε(u); and (iii) with the estimates of Λ, Σo

F (u) and Ωo
ε(u), compute the estimate of

Ωo
X(u) using (3.1.3).

Let σo
ε,ij(u) be the (i, j)-entry of Σo

ε(u). We next describe a semiparametric method to estimate

σo
ε,ij(u). First, with the estimated idiosyncratic errors, ε̂t,i, constructed in Section 3.2.2, we estimate

the univariate nonparametric function σε,k,ij(uk) by kernel smoothing, i.e.,

σ̂ε,k,ij(uk) =

∑T−1
t=1 K

(
Ut,k−uk

h

)
ε̂t+1,iε̂t+1,j∑T−1

t=1 K
(
Ut,k−uk

h

) , 1 ≤ k ≤ d, 1 ≤ i, j ≤ N, (3.2.13)

where K(·) is a kernel function and h is a bandwidth that tends to zero as N,T increase. To

simplify the notation, we drop the dependence of h on N,T in its notation. Motivated by (3.2.1),

we consider the approximate linear regression models:

ε̂t+1,iε̂t+1,j ≈ a0,ij +

d∑
k=1

ak,ij σ̂ε,k,ij(Ut,k), 1 ≤ i, j ≤ N. (3.2.14)

Treating ε̂t+1,iε̂t+1,j and σ̂ε,k,ij(Ut,k) in (3.2.14) as the “response” and “regressors”, respectively,

and using the ordinary least squares, we can obtain the following estimate of the optimal weights

defined in (3.2.3):

(â1,ij , . . . , âd,ij)
⊺
= ∆̂−1

ε,ijŴε,ij (3.2.15)

and

â0,ij =
1

T − 1

T∑
t=2

ε̂t,iε̂t,j −
d∑

k=1

âk,ij

(
1

T − 1

T−1∑
t=1

σ̂ε,k,ij(Ut,k)

)
, (3.2.16)

where ∆̂ε,ij is a d× d matrix with the (k, l)-entry being

δ̂ij,kl =
1

T − 1

T−1∑
t=1

σ̂c
ε,k,ij(Ut,k)σ̂

c
ε,l,ij(Ut,l), σ̂c

ε,k,ij(Ut,k) = σ̂ε,k,ij(Ut,k)−
1

T − 1

T−1∑
s=1

σ̂ε,k,ij(Us,k),

and Ŵε,ij is a d-dimensional vector with the k-th element being

ŵij,k =
1

T − 1

T−1∑
t=1

σ̂c
ε,k,ij(Ut,k)ε̂

c
t+1,(i,j), ε̂ct+1,(i,j) = ε̂t+1,iε̂t+1,j −

1

T − 1

T∑
s=2

ε̂s,iε̂s,j .

Combining (3.2.1), (3.2.13), (3.2.15) and (3.2.16), we obtain

Σ̂ε(u) = [σ̂ε,ij(u)]N×N with σ̂ε,ij(u) = â0,ij +

p∑
k=1

âk,ij σ̂ε,k,ij(uk). (3.2.17)

Similarly, using the estimated factors, F̂t, and the same kernel function and bandwidth as in (3.2.13),

we can construct ĈF (u) and M̂F (u), which are semiparametric estimates of Co
F (u) and Mo

F (u)
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(subject to a rotation), and subsequently obtain

Σ̂F (u) = ĈF (u)− M̂F (u)M̂F (u)
⊺
. (3.2.18)

In light of (3.2.7), to estimate Ωo
X(u), we also need to have an estimate of the inverse of Σo

ε(u),

i.e., Ωo
ε(u). As the size of the matrix Σ̂ε(u) may be ultra large, it is often ill-conditioned and

computation of its inverse becomes very challenging. To alleviate this problem, we use the uniform

sparsity assumption (3.2.8) on Ωo
ε(u) and apply the CLIME method for estimating the inverse of a

large matrix. To this end, we define the estimator

Ω̃ε(u) = argmin
Ω

|Ω|1 subject to
∥∥∥Σ̂ε(u)Ω− IN

∥∥∥
max

≤ ρ, (3.2.19)

where ρ is a tuning parameter that tends to zero as N,T increase. As Ωo
ε(u) is symmetric, we

can modify the above estimator by symmetrising it. This leads to the final estimator of Ωo
ε(u),

Ω̂ε(u) = [ω̂ε,ij(u)]N×N , where

ω̂ε,ji(u) = ω̂ε,ij(u) = ω̃ε,ij(u)I (|ω̃ε,ij(u)| ≤ |ω̃ε,ji(u)|) + ω̃ε,ji(u)I (|ω̃ε,ij(u)| > |ω̃ε,ji(u)|) , (3.2.20)

where ω̃ε,ij(u) is the (i, j)-entry of Ω̃ε(u). Lastly, by the Sherman-Morrison-Woodbury formula

(3.2.7), we obtain the following estimate of Ωo
X(u):

Ω̂X(u) = Ω̂ε(u)− Ω̂ε(u)Λ̂F (u)
[
IK + Λ̂F (u)

⊺
Ω̂ε(u)Λ̂F (u)

]−1
Λ̂F (u)

⊺
Ω̂ε(u), (3.2.21)

where Λ̂F (u) = Λ̂Σ̂
1/2
F (u) with Λ̂ defined in Section 3.2.2.

3.2.4 Dynamic minimum variance portfolio

One of the most common uses of precision matrices is in financial portfolio choice. We next consider

an example of using the MAMAR approximation and the large dynamic precision matrix estimation

introduced in Sections 3.2.1 and 3.2.3 to construct a dynamic version of the minimum-variance

portfolio. To this end, let Xt+1 be a vector of N asset returns at time t+1 and Ut be a vector of d

conditioning variables, which can be chosen as style factors (such as returns on value stocks, returns

on large, small or medium cap stocks) and (macro)economic and financial variables (such as interest

rates, inflation rates, returns on market indices). Assume that Xt+1 satisfies the approximate factor

model structure (3.1.1). Recall that ΣX(u) = Var(Xt+1|Ut = u) and ΩX(u) = Σ−1
X (u). The

dynamic minimum-variance portfolio for time t+ 1, given Ut = u, can be obtained by solving

argmin
w

w
⊺
ΣX(u)w subject to w

⊺
1 = 1, (3.2.22)

where 1 is an N -dimensional vector of ones. The analytical solution to (3.2.22) can be written as

w∗(u) =
Σ−1

X (u)1

1⊺Σ−1
X (u)1

=
ΩX(u)1

1⊺ΩX(u)1
. (3.2.23)
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Note that we allow short sellings in the construction of the optimal portfolio, i.e., we allow elements

of w⋆(u) to be negative. We also assume that there are no transaction costs.

Using the semiparametric MAMAR approximation in Section 3.2.1, we can replace ΣX(u) and

ΩX(u) in (3.2.22) with Σo
X(u) := ΛΣo

F (u)Λ
⊺
+ Σo

ε(u) and Ωo
X(u) =

[
Σo

X(u)
]−1

. Consequently,

w∗(u) can be approximated by

wo(u) =
Ωo

X(u)1

1⊺Ωo
X(u)1

. (3.2.24)

Using the methods in Sections 3.2.2 and 3.2.3, we can estimate Ωo
X(u) by Ω̂X(u), which is defined

in (3.2.21). Hence, in practice we estimate wo(u) by

ŵ(u) =
Ω̂X(u)1

1⊺Ω̂X(u)1
. (3.2.25)

3.3 Main theoretical results

Define cF,k,ij(uk) = E (Ft+1,iFt+1,j |Ut,k = uk) and mF,k,i(uk) = E (Ft+1,i|Ut,k = uk), 1 ≤ i, j ≤
K, 1 ≤ k ≤ d. Let ∆∗

F,ij and ∆⋄
F,i be d × d matrices whose (k, l)-entries are δ∗F,ij,kl =

Cov[cF,k,ij(Ut,k), cF,l,ij(Ut,l)] and δ⋄F,i,kl = Cov [mF,k,i(Ut,k),mF,l,i(Ut,l)], respectively. We introduce

the following assumptions, which will be used for establishing uniform consistency results for Ω̂ε(u)

and Ω̂X(u).

Assumption 3.B. (i) The α-mixing dependence condition in Assumption 3.A(i) is satisfied for the

joint process {(U⊺

t ,F
⊺

t , ε
⊺

t )
⊺}∞t=1.

(ii) The d-dimensional random vector, Ut, has a compact support, U =
∏p

k=1Uk, where Uk =

[ak, bk] is the support of the k-th conditioning variable, Ut,k. The marginal density functions of Ut,k,

fk(·), 1 ≤ k ≤ d, have continuous second-order derivatives and satisfy

min
1≤k≤d

inf
ak≤uk≤bk

fk(uk) ≥ c3 > 0.

for some positive constant c3.

Assumption 3.C. (i) For each k, 1 ≤ k ≤ d, the univariate nonparametric functions σε,k,ij(·)
(1 ≤ i, j ≤ N), cF,k,ij(·) (1 ≤ i, j ≤ K), and mF,k,i(·) (1 ≤ i ≤ K) have continuous and uniformly

bounded derivatives up to the second order.

(ii) For all 1 ≤ i, j ≤ N , the d × d matrix ∆∗
ε,ij, defined in (3.2.3), is positive definite and

satisfies

0 < c4 ≤ min
1≤i,j≤N

λmin(∆
∗
ε,ij) ≤ max

1≤i,j≤N
λmax(∆

∗
ε,ij) ≤ c5 < ∞, (3.3.1)

where c4 and c5 are some positive constants. The same also holds for the matrices ∆∗
F,ij and ∆⋄

F,i.

Assumption 3.D. (i) The kernel function K(·) is symmetric and Lipschitz continuous and has a

compact support [−1, 1].

(ii) The bandwidth h and the dimension N satisfy

h → 0,
T 1−2ιh

log3(N ∨ T )
→ ∞, N ≫ T 4/δ, (NT ) exp{−c1T

ι} = o(1), (3.3.2)
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where 0 < ι < 1/2, c1 is defined in Assumption 3.A(iii) and δ is defined in Assumption 3.A(v).

(iii) The tuning parameter ρ in (3.2.19) satisfies ρ = c6(ζNT,1+ζNT,2), where c6 is a sufficiently

large positive constant,

ζNT,1 = (log T )1/2

[(
logN

T

)1/2

+
T 2/δ

N1/2

]
, ζNT,2 =

√
log(N ∨ T )/(Th) + h2.

The compact support restriction on the random vector Ut in Assumption 3.B(ii) is imposed

mainly to facilitate the proofs of our uniform consistency results and can be removed by using an

appropriate truncation technique (e.g., Remark 1 in Chen et al., 2018). A recent paper by Wang

et al. (2021b) derives the uniform consistency properties for the nonparametric large covariance

matrix estimation without the compact support assumption on Ut. We conjecture that a similar

extension can be achieved for the large precision matrix estimation in this chapter. The smoothness

condition on the univariate nonparametric functions in Assumption 3.C(i) is common when the

kernel smoothing method is applied. Assumption 3.C(ii) ensures that the optimal weights in the

MAMAR approximation are well defined (see, for example, (3.2.3)). The conditions in Assumption

3.D(ii) indicate that N can diverge exponentially fast with respect to T , thus covering the ultra-high

dimensional time series setting. There is also a trade-off between the bandwidth condition and the

divergence rate of N . The convergence rate for ρ in Assumption 3.D(iii) is partly from the uniform

convergence result in Proposition 3.3.1 below and is crucial for the validity of the CLIME method.

Proposition 3.3.1. Suppose that Assumptions 3.A–3.C and 3.D(i)-(ii) are satisfied. Then we have

max
1≤i,j≤N

sup
u∈Uh

∣∣σ̂ε,ij(u)− σo
ε,ij(u)

∣∣ = OP (ζNT,1 + ζNT,2) , (3.3.3)

where Uh =
∏d

k=1Uk,h with Uk,h = [ak + h, bk − h], ζNT,1 = (log T )1/2
[
(logN/T )1/2 + T 2/δ/N1/2

]
,

and ζNT,2 =
√
log(N ∨ T )/(Th) + h2.

Proposition 3.3.2. Suppose that Assumptions 3.A–3.C and 3.D(i)-(ii) are satisfied. Then we have

sup
u∈Uh

∥∥∥Σ̂F (u)−RΣo
F (u)R

⊺
∥∥∥ = OP (ζNT,1 + ζNT,2) , (3.3.4)

where R is the rotation matrix defined in (3.2.9), Σo
F (u) and Σ̂F (u) are defined in (3.2.6) and

(3.2.18), respectively.

Theorem 3.3.1. Suppose that Assumptions 3.A–3.D are satisfied and {Ωo
ε(u) : u ∈ U} ⊆

S(q,ϖN ,M,U), where S(q,ϖN ,M,U) is defined in (3.2.8). Then, we have the following uniform

consistency results:

(i)

sup
u∈Uh

∥∥∥Ω̂ε(u)−Ωo
ε(u)

∥∥∥
max

= OP (ζNT,1 + ζNT,2) ; (3.3.5)

(ii)

sup
u∈Uh

∥∥∥Ω̂ε(u)−Ωo
ε(u)

∥∥∥
O
= OP

(
ϖN (ζNT,1 + ζNT,2)

1−q
)
; (3.3.6)
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(iii)

sup
u∈Uh

1

N

∥∥∥Ω̂ε(u)−Ωo
ε(u)

∥∥∥2
F
= OP

(
ϖN (ζNT,1 + ζNT,2)

2−q
)
. (3.3.7)

If we assume that Σo
ε(·) is sufficiently close to Σε(·) in the sense that

sup
u∈U

∥Σo
ε(u)−Σε(u)∥max = O(bNT,1)

for some bNT,1 → 0, then by Proposition 3.3.1, we have

sup
u∈Uh

∥∥∥Σ̂ε(u)−Σε(u)
∥∥∥
max

= OP (ζNT,1 + ζNT,2 + bNT,1) .

If we further assume that the true dynamic precision matrix Ωε(u), u ∈ U, also belongs to

S(q,ϖN ,M,U), then by following the proof of Theorem 3.3.1 and setting ρ = c5(ζNT,1 + ζNT,2 +

bNT,1), we can show that

sup
u∈Uh

∥∥∥Ω̂ε(u)−Ωε(u)
∥∥∥
max

= OP (ζNT,1 + ζNT,2 + bNT,1) , (3.3.8)

sup
u∈Uh

∥∥∥Ω̂ε(u)−Ωε(u)
∥∥∥
O

≤ sup
u∈Uh

∥∥∥Ω̂ε(u)−Ωε(u)
∥∥∥
1

= OP

(
ϖN (ζNT,1 + ζNT,2 + bNT,1)

1−q
)
, (3.3.9)

and

sup
u∈Uh

1

N

∥∥∥Ω̂ε(u)−Ωε(u)
∥∥∥2
F

≤ sup
u∈Uh

∥∥∥Ω̂ε(u)−Ωε(u)
∥∥∥
max

∥∥∥Ω̂ε(u)−Ωε(u)
∥∥∥
1

= OP

(
ϖN (ζNT,1 + ζNT,2 + bNT,1)

2−q
)
. (3.3.10)

If the MAMAR approximation rate bNT,1 satisfies bNT,1 ≪ ζNT,1 + ζNT,2 , the uniform convergence

rates in (3.3.8)–(3.3.10) would be the same as those in (3.3.5)–(3.3.7).

Theorem 3.3.2. Suppose that the conditions of Theorem 3.3.1 are satisfied. Then, we have the

following uniform consistency results:

(i)

sup
u∈Uh

∥∥∥Ω̂X(u)−Ωo
X(u)

∥∥∥
O
= OP

(
ϖN (ζNT,1 + ζNT,2)

1−q
)
; (3.3.11)

(ii)

sup
u∈Uh

1

N

∥∥∥Ω̂X(u)−Ωo
X(u)

∥∥∥2
F
= OP

(
ϖN (ζNT,1 + ζNT,2)

2−q +
1

N
ϖ2

N (ζNT,1 + ζNT,2)
2−2q

)
.

(3.3.12)
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3.4 Monte-Carlo simulation

In this section, we conduct some Monte-Carlo experiments to examine the finite-sample performance

of the proposed methods for estimating large dynamic precision matrices. In order to provide a

comprehensive performance study, we examine factor models under four distinct settings. The

precision matrices of the idiosyncratic errors in the four factor models exhibit different structures:

a dynamic block-diagonal structure, a varying-sparsity structure, a dynamic banded structure, and

a dynamic non-sparse structure.

We compare the proposed method for precision matrix estimation with two alternatives, both

of which use MAMAR and CLIME in some way but disregard the factor structure to some extent.

Specifically, Method 1 uses formula (3.1.2) and the procedure in (3.2.13)–(3.2.18) to compute the

covariance matrice estimate Σ̂X(u), but applies CLIME directly to Σ̂X(u) to compute the precision

matrix Ω̂X(u) instead of utilising the factor structure and the Sherman-Morrison-Woodbury formula

(3.2.21). Method 2 completely ignores the factor structure and applies MAMAR directly to Xt to

obtain Σ̂X(u) and then CLIME directly to Σ̂X(u) to obtain Ω̂X(u). In all three methods, we use

the Epanechnikov kernel K(u) = 0.75(1−u2)+ with the rule-of-thumb bandwidths as the smoothing

parameters.

To determine the number of factors, K, we use a commonly-used information criterion proposed

by Bai and Ng (2002). For any 1 ≤ k ≤ K, where K is a predetermined positive number, we let

F̂(k) =
[
F̂1(k), · · · F̂T (k)

]⊺
be the estimated factors given K = k. Define

Vn(k) = min
Λ(k)

1

NT

T∑
t=1

[
Xt −Λ(k)F̂t(k)

]⊺ [
Xt −Λ(k)F̂t(k)

]
where Λ(k) = [λ1(k), · · · ,λN (k)]

⊺
is a N × k factor loading matrix. Consequently, we can choose

the following objective function:

IC(k) = log [Vn(k)] + k ·
(
N + T

NT

)
log(N ∧ T ), (3.4.1)

and obtain the estimate K̂ via

K̂ = argmin
0≤k≤K

IC(k). (3.4.2)

When K̂ = 0, the common components disappear and our method degenerates to Method 2.

3.4.1 KSIS + PMAMAR method

In this subsection, we introduce the KSIS + PMAMAR method, which combines the approach of

kernel sure independence screening (KSIS) and the Penalised Model Averaging MArginal Regression

(PMAMAR). This method is proposed by Chen et al. (2018), aiming to use KSIS to screen out the

unimportant marginal regression functions, and use PMAMAR to further select the most relevant

regression functions.

The feasibility of the MAMAR procedure in Section 3.2.3 depends on the positive definiteness

of ∆∗
F,ij , ∆

⋄
F,i, and ∆∗

ε,ij (see, for example, (3.2.3) and Assumption 3.C). However, when there are
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irrelevant conditioning variables and one or more of these matrices are near singular, the MAMAR

optimal weights become ill-defined. For instance, if Ut,k is irrelevant to εt+1,iεt+1,j in the sense

that σε,k,ij(Ut,k) = E
(
εt+1,iεt+1,j |Ut,k

)
= E

(
εt+1,iεt+1,j

)
, which is a constant that does not depend

on Ut,k, then δ∗ε,ij,kl = Cov [σε,k,ij(Ut,k), σε,l,ij(Ut,l)] = 0, for all 1 ≤ l ≤ d. Consequently, the kth

column and kth row of ∆∗
ε,ij are all 0’s and ∆∗

ε,ij is not positive definite. This issue will arise if any

of the matrices Σε,k(uk), 1 ≤ k ≤ d, is sparse (so that many of the elements σε,k,ij(uk) are zero)

and the sparsity does not depend on the conditioning variable.

The above highlights that in implementation, we need to properly deal with possible irrelevant

variables in each MAMAR regression such as (3.2.14). We use the KSIS+PMAMAR approach,

which implements a preliminary KSIS step before using a penalised MAMAR to eliminate irrelevant

variables and obtain estimates of optimal weights. Taking the regression in (3.2.14) as an example:

in the KSIS step, we calculate, for each (i, j) pair and 1 ≤ k ≤ K, the variances of the response

variable and the regressors as follows,

V̂ar(ε̂t,iε̂t,j) =
1

T

T∑
t=1

(ε̂t,iε̂t,j)
2 −

(
1

T

T∑
t=1

ε̂t,iε̂t,j

)2

(3.4.3)

and

V̂ar(σ̂ε,k,ij(Ut,k)) =
1

T

T∑
t=1

(σ̂ε,k,ij(Ut,k))
2 −

(
1

T

T∑
t=1

σ̂ε,k,ij(Ut,k)

)2

, (3.4.4)

and screen out those σ̂ε,k,ij(Ut,k)’s that satisfy V̂ar(σ̂ε,k,ij(Ut,k)) < κ · V̂ar(ε̂t,iε̂t,j), where κ is a

constant within the range of (0, 1). Subsequently, we perform a ridge regression of ε̂t,iε̂t,j on the

remaining σ̂ε,k,ij(Ut,k)’s to obtain estimates of the optimal weights. Similarly, we can apply the

KSIS+PMAMAR method to each entry of Co
F (u) and Mo

F (u). In the simulation and real data

application, we set κ = 0.2 and use cross-validation to determine the tuning parameter for each

ridge regression.

3.4.2 Data generating processes

Throughout this section, the dimension N takes one of the values of 100, 300, and 500. The sample

size T is fixed at 300. The conditioning variables Ut is defined as

Ut = (Ut1, Ut2, Ut3)
⊺
=
(
Φ(Ũt1/σŨ ),Φ(Ũt2/σŨ ),Φ(Ũt3/σŨ )

)⊺

,

where Φ(·) is the cumulative distribution function of the standard normal distribution, σ
Ũ
=
√

4/3,

Ũt =
(
Ũt1, Ũt2, Ũt3

)⊺

are drawn from a VAR(1) process:

Ũt = 0.5Ũt−1 + vt, t = 1, . . . , T

with Ũ0 = 0, vt are i.i.d. three-dimensional random vectors following the N (0,Σv) distribution

with Σv = {σv
ij}3×3 and σij = I(i = j) + 0.2I(|i− j| = 1) + 0.1I(|i− j| = 2), for i, j = 1, 2, and 3.

The dynamic precision matrix ΩX(u) is estimated at U = u ∈ {Φ(−0.5/σ
Ũ
),Φ(0/σ

Ũ
),Φ(0.5/σ

Ũ
)}3

or equivalently Ũ = ũ ∈ {−0.5, 0, 0.5}3, which are 27 grid points in total.
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Example 3.1 (Dynamic Block Diagonal Precision Matrix). For each t = 1, . . . , T , the

factor Ft is generated independently from a 3-dimensional multivariate Gaussian distribution

N (µF (Ut),ΣF (Ut)), where

µF (Ut) = (sin(2πŨ1), sin(2πŨ2), sin(2πŨ3))
⊺
,

ΣF (Ut) =
{
σF
ij (Ut)

}
3×3

with σF
ij (Ut) = 0.4ςFij

(
Ũt1

)
+ 0.3ςFij

(
Ũt2

)
+ 0.3ςFij

(
Ũt3

)
,

and

ςFij (v) = (2 + arctan(v/2)) {I(i = j) + (2.5v + 0.75)I(−0.3 ⩽ v ⩽ 0.1)I(|i− j| = 1)

+(2v − 0.4)I(0.2 ⩽ v ⩽ 0.4)I(|i− j| = 2)} .

The idiosyncratic error εt is independently generated from an N -dimensional multivariate Gaussian

distribution N (0,Σε (Ut)), where

Σε (Ut) = IN/5×N/5 ⊗ Σ̃ε (Ut) with Σ̃ε (Ut) =
{
σ̃ε
ij (Ut)

}
5×5

,

σ̃ε
ii (Ut) = ϕ(4Ũ1 + 3− i) + ϕ(4Ũ2) + ϕ(4Ũ3 + 3− i), for i = 1, ..., 5,

σ̃ε
ij (Ut) = 0.1

(
σ̃ε
ii

(
Ũt

)
σ̃ε
jj

(
Ũt

))1/2
, for i ̸= j,

and ϕ(·) is the probability density function of the standard normal distribution. In this example,

the dynamic covariance matrix of X is additive with respect to the elements of Ut.

Example 3.2 (Dynamic Precision Matrix with Varying Sparsity). For each t = 1, . . . , T ,

the factor Ft is generated independently from a 3-dimensional multivariate Gaussian distribution

N
(
µF (Ut) ,Ω

−1
F (Ut)

)
, where

µF (Ut) = (sin(Ũ1), sin(Ũ2), sin(Ũ3))
⊺
,

ΩF (Ut) =
{
ωF
ij (Ut)

}
3×3

with ωF
ij (Ut) = 0.3ςij

(
Ũt1

)
+ 0.3ςij

(
Ũt2

)
+ 0.4ςij

(
Ũt3

)
,

and

ςij(v) = exp(v/2)
{
I(i = j) + 0.5 exp

[
− (v−0.25)2

0.752−(v−0.25)2

]
I(−0.49 ⩽ v ⩽ 0.99)I(|i− j| = 1)

+0.4 exp
[
− (v−0.65)2

0.352−(v−0.65)2
I(0.31 ⩽ v ⩽ 0.99)I(|i− j| = 2)

]}
. (3.4.5)

The idiosyncratic error εt is independently generated from an N -dimensional multivariate Gaussian

distribution N
(
0,Ω−1

ε

(
Ũt

))
, where

Ωε (Ut) =
{
ωε
ij (Ut)

}
N×N

with ωε
ij (Ut) = 0.4ςij

(
Ũt1

)
+ 0.3ςij

(
Ũt2

)
+ 0.3ςij

(
Ũt3

)
.

Note that even if the conditional precision matrices have an additive structure, the conditional

covariance matrices do not maintain the additive structure. This example enables us to evaluate the

performance of the MAMAR method for approximating entries of a conditional covariance matrix
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that are non-additive.

Example 3.3 (Dynamic Banded Precision Matrix). For each t = 1, . . . , T , the factor Ft

is generated from an 3-dimensional multivariate Gaussian distribution N
(
0,Ω−1

F (Ut)
)
, and the

idiosyncratic error εt is generated from an N -dimensional multivariate Gaussian distribution

N
(
0,Ω−1

ε (Ut)
)
, where

ΩF (Ut) =
{
ωF
ij (Ut)

}
3×3

with ωF
ij (Ut) = (2 + arctan(|Ut|1/9))× ςij (|Ut|1) ,

Ωε (Ut) =
{
ωε
ij (Ut)

}
N×N

with ωε
ij (Ut) = (2 + arctan(|Ut|1/9))× ςij (|Ut|1) ,

and

ςij(v) = I(i = j) + [ϕ(v) + 0.1]I(|i− j| = 1) + ϕ(v)I(|i− j| = 2), (3.4.6)

in which ϕ(v) is the probability density function of the standard normal distribution.

Example 3.4 (Dynamic Non-Sparse Precision Matrix). For each t = 1, . . . , T , the fac-

tor Ft is generated independently from a 3-dimensional multivariate Gaussian distribution

N
(
µF (Ut) ,Ω

−1
F (Ut)

)
, where

µF (Ut) = (sin(Ũ1/2), sin(Ũ2/2), sin(Ũ3/2))
⊺
,

ΩF (Ut) =
{
ωF
ij (Ut)

}
3×3

with ωF
ij (Ut) = ςFij

(
Ũt1 + Ũt2 + Ũt3

)
,

and

ςFij (v) = (exp(v/4)) {I(i = j) + (0.1 + ϕ(v))I(|i− j| = 1)

+ϕ(v)I(|i− j| = 2)} .

The idiosyncratic error εt is independently generated from an N -dimensional multivariate Gaussian

distribution N
(
0,Ω−1

ε (Ut)
)
, where

Ωε (Ut) =
{
ωε
ij (Ut)

}
N×N

with ωε
ij (Ut) = ςεij

(
Ũt1 + Ũt2 + Ũt3

)
and

ςεij(v) = exp(v/4)ϕ(v)|i−j|.

This Toeplitz structure enables us to evaluate the performance of the MAMAR method for approx-

imating the precision matrix with non-sparse dynamic inverse.

3.4.3 Simulation results

To measure estimation accuracy, we consider the average value (averaged over the 27 grid points)

of the scaled estimation errors N−1/2
∥∥∥Σ̂X(u)−ΣX(u)

∥∥∥
F

and N−1/2
∥∥∥Ω̂X(u)−ΩX(u)

∥∥∥
F
. In ad-

dition, we report the relative estimation error of the portfolio weights ∥ŵ(u)−w(u)∥ / ∥w(u)∥ and

the volatility of the portfolio with weight ŵ(u), that is
√
ŵ⊺(u)ΣX(u)ŵ(u).

Table 3.1 reports estimation results for Example 3.1. Our method outperforms the other two
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methods in terms of the covariance matrix and precision matrix estimation, as evidenced by all four

performance measurements. Importantly, our method exhibits significantly lower relative estima-

tion error in portfolio weights and smaller portfolio volatility compared to the other two methods.

Method 1, while having the same estimated covariance matrix as our method, neglects the factor

structure during precision matrix estimation. Instead of utilising the Sherman-Morrison-Woodbury

formula, Method 1 directly calculates Ω̂X(u) from Σ̂X(u) using the CLIME method, resulting in a

sparse estimate of ΩX(u). However, since the true ΩX(u) is not sparse due to the factor structure,

this approach leads to poor performance of Method 1 in the estimation of the precision matrix.

Method 2 neglects the factor structure also in covariance estimation, leading to a less accurate

approximation of the covariance matrix. Similar to Method 1, the direct use of the CLIME method

for precision matrix estimation exacerbates the estimation performance.

Tables 3.2–3.4 report estimation results for Examples 3.2–3.4. The same pattern as in Table

3.1 is observed, where our method consistently outperforms the other two regardless of the form

of the precision matrix. Although Method 2 exhibits inferior performance compared to Method 1

in terms of estimation errors in the Frobenius norm for covariance and precision matrix estimation

in all four examples, this does not necessarily result in worse performance in the estimation of the

optimal portfolio weights. In other words, the approximation error and the estimation error in

large matrix estimation may accumulate non-linearly in the construction of estimators related to

optimal portfolio weights. As we can see from Example 3.1, Method 2 even yields a slightly superior

estimate of the portfolio weights than Method 1.

In summary, taking into account and utilising the factor structure in the estimation of the

covariance and precision matrices can lead to more accurate estimates, which can further lead to

better performance in portfolio choice.

3.5 An empirical application

We now apply the proposed method to daily returns of S&P 500 Index constituents in the construc-

tion of global minimum variance portfolios. The data are collected from the Thomson Reuters Eikon

database and cover a period from 1 Jan 2021 to 31 Dec 2022. As for the conditioning variables,

we use the one-day-before returns on the Fama–French three factors, which are downloaded from

Keneth French’s data library website 1.

We use a rolling window structure to test the performance of our model. Specifically, at the

beginning of each month, we re-estimate the model parameters using data from the most recent

12 months. At the beginning of each trading day, we calculate the weights of the assets using the

returns of the three factors in the previous trading day. Thus, the out-of-sample period is from 1

Jan 2022 to 31 Dec 2022.

After obtaining all the out-of-sample global minimum variance portfolio returns, we compute

their annualised average return (AVR), annualised standard deviation (STD) and the max draw-

down (MDD). These measures are used as measures of the performance of portfolios constructed

using the proposed method and Method 1 defined in Section 3.4. In addition, we construct a

1http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data-library.html
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Table 3.1: Average losses (standard error) for
Example 3.1.

Our Method Method 1 Method 2

N−1/2
∥∥∥Σ̂X(u)−ΣX(u)

∥∥∥
F

N = 100 47.193 47.193 56.750
(13.087) (13.087) (22.062)

N = 300 77.530 77.530 105.375
(20.932) (20.932) (62.907)

N = 500 107.032 107.032 145.094
(33.855) (33.855) (95.681)

N−1/2
∥∥∥Ω̂X(u)−ΩX(u)

∥∥∥
F

N = 100 3.119 4.006 4.217
(0.022) (0.052) (0.153)

N = 300 3.259 4.247 4.390
(0.026) (0.033) (0.110)

N = 500 3.325 4.348 4.469
(0.028) (0.031) (0.073)

∥ŵ(u)−w(u)∥ / ∥w(u)∥
N = 100 0.481 1.056 1.036

(0.016) (0.012) (0.047)
N = 300 0.484 1.096 1.067

(0.011) (0.010) (0.063)
N = 500 0.480 1.094 1.064

(0.011) (0.007) (0.060)√
ŵ⊺(u)ΣX(u)ŵ(u)

N = 100 0.632 4.864 4.777
(0.043) (0.086) (0.241)

N = 300 0.361 5.086 4.874
(0.012) (0.052) (0.271)

N = 500 0.278 5.059 4.840
(0.008) (0.036) (0.240)

Table 3.2: Average losses (standard error) for
Example 3.2.

Our Method Method 1 Method 2

N−1/2
∥∥∥Σ̂X(u)−ΣX(u)

∥∥∥
F

N = 100 8.261 8.261 12.654
(1.368) (1.368) (0.00)

N = 300 15.062 15.062 31.328
(2.048) (2.048) (8.338)

N = 500 19.233 19.233 47.491
(2.381) (2.381) (14.934)

N−1/2
∥∥∥Ω̂X(u)−ΩX(u)

∥∥∥
F

N = 100 0.583 0.633 1.030
(0.014) (0.014) (0.045)

N = 300 0.688 0.714 1.113
(0.013) (0.013) (0.025)

N = 500 0.745 0.755 1.131
(0.013) (0.014) (0.013)

∥ŵ(u)−w(u)∥ / ∥w(u)∥
N = 100 0.173 0.349 0.224

(0.024) (0.038) (0.068)
N = 300 0.127 0.387 0.137

(0.013) (0.032) (0.042)
N = 500 0.105 0.429 0.108

(0.010) (0.025) (0.030)√
ŵ⊺(u)ΣX(u)ŵ(u)

N = 100 0.080 0.151 0.151
(0.003) (0.050) (0.050)

N = 300 0.044 0.098 0.100
(0.001) (0.028) (0.033)

N = 500 0.034 0.083 0.079
(0.0004) (0.027) (0.029)
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Table 3.3: Average losses (standard error) for
Example 3.3.

Our Method Method 1 Method 2

N−1/2
∥∥∥Σ̂X(u)−ΣX(u)

∥∥∥
F

N = 100 3.365 3.365 3.416
(0.462) (0.462) (0.447)

N = 300 5.523 5.523 6.057
(0.717) (0.717) (1.178)

N = 500 7.182 7.182 8.337
(1.015) (1.015) (1.711)

N−1/2
∥∥∥Ω̂X(u)−ΩX(u)

∥∥∥
F

N = 100 1.614 1.723 1.931
(0.025) (0.023) (0.157)

N = 300 1.832 1.881 2.243
(0.022) (0.021) (0.097)

N = 500 1.929 1.963 2.322
(0.020) (0.019) (0.076)

∥ŵ(u)−w(u)∥ / ∥w(u)∥
N = 100 0.167 0.270 0.286

(0.051) (0.094) (0.102)
N = 300 0.124 0.291 0.206

(0.019) (0.021) (0.044)
N = 500 0.102 0.287 0.182

(0.015) (0.018) (0.042)√
ŵ⊺(u)ΣX(u)ŵ(u)

N = 100 0.051 0.094 0.102
(0.003) (0.032) (0.036)

N = 300 0.028 0.068 0.072
(0.0006) (0.023) (0.026)

N = 500 0.021 0.056 0.056
(0.0004) (0.019) (0.021)

Table 3.4: Average losses (standard error) for
Example 3.4.

Our Method Method 1 Method 2

N−1/2
∥∥∥Σ̂X(u)−ΣX(u)

∥∥∥
F

N = 100 7.979 7.979 15.215
(1.165) (1.165) (3.630)

N = 300 13.935 13.935 39.040
(1.979) (1.979) (9.760)

N = 500 17.946 17.946 61.546
(2.550) (2.550) (21.051)

N−1/2
∥∥∥Ω̂X(u)−ΩX(u)

∥∥∥
F

N = 100 0.640 0.682 1.044
(0.019) (0.019) (0.018)

N = 300 0.752 0.772 1.102
(0.020) (0.020) (0.008)

N = 500 0.805 0.814 1.114
(0.020) (0.022) (0.006)

∥ŵ(u)−w(u)∥ / ∥w(u)∥
N = 100 0.211 0.367 0.201

(0.020) (0.037) (0.020)
N = 300 0.146 0.393 0.125

(0.011) (0.037) (0.035)
N = 500 0.121 0.415 0.099

(0.010) (0.035) (0.027)√
ŵ⊺(u)ΣX(u)ŵ(u)

N = 100 0.079 0.158 0.158
(0.003) (0.055) (0.057)

N = 300 0.044 0.104 0.106
(0.001) (0.032) (0.038)

N = 500 0.033 0.086 0.084
(0.001) (0.029) (0.032)
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Table 3.5: Out-of-sample performance of the constructed minimum variance portfolios

Our Method Equal-weighted Static Method 1

AVR(%) -3.55 -16.0 -11.9 -14.1
STD(%) 14.8 23.2 20.7 22.0
MDD(%) 25.3 26.9 23.5 25.3

portfolio using (Static) sample covariance matrix and CLIME precision matrix estimate with the

same rolling window structure. As a benchmark, we also consider the equally-weighted portfolio

(Equally-weighted).

The results are summarised in Table 3.5. In 2022, all four portfolios experienced negative returns,

with the S&P 500 index recording a return of -18.11%. Among the four portfolios, our method

achieved the highest return of -3.55% and exhibited the lowest standard deviation. The equal-

weighted portfolio performed the worst, with a return of -16.0%. The Static model, which utilises

the information from the covariance matrix, performed slightly better. In contrast, our method

incorporated the information from the factor returns, which may explain its superior performance.

Regarding the maximum drawdown, the four portfolios exhibited behaved similarly, indicating that

they experienced comparable declines in value over the period.

3.6 Conclusion

In this chapter, we estimate large dynamic precision matrices for high-dimensional time series data

where the conditioning random variables are multivariate. To overcome the challenges posed by

the curse of dimensionality, we introduce the approximate factor structure and employ the semi-

parametric MAMAR approximation to estimate the underlying dynamic covariance matrix of the

factors and the idiosyncratic components. By using the Sherman-Morrison-Woodbury formula, we

obtain the dynamic precision matrix for the time series. Under some mild conditions such as the

approximate sparsity assumption, the proposed precision matrix estimation is proved to be uni-

formly consistent. The simulation highlights the importance of correctly specifying the low-rank

plus sparse structure. In the empirical analysis, we apply the proposed method to the returns of

S&P 500 constituents. The results indicate that our method performs well in the portfolio selection

problem.



Conclusions

This dissertation has made significant methodological contributions to the existing literature by

studying factor-model-based models and methods to analyse different types of data and data fea-

tures, such as high-frequency data analysis, network analysis, and precision matrix estimation. The

findings and contributions of each chapter are summarised below.

Chapter 1 contributes to the market microstructure literature by being the first study, to our

best knowledge, to examine and estimate common factors for microstructure noise. We develop

the Double Principle Component Analysis, which provides a robust method for estimating separate

factor structures for efficient prices and microstructure noise in high-frequency data. By avoiding

strong parametric assumptions, DPCA overcomes limitations of existing approaches such as the

PCA-VECM method. The consistent estimators obtained through DPCA enable the identification

of co-movements in both efficient prices and microstructure noise, offer tools for portfolio manage-

ment, and facilitate the construction of factor-mimicking portfolios to hedge risks associated with

microstructure noise.

Chapter 2 contributes to the high-dimensional VAR literature. Our contributions lie in the

development of a three-stage estimation procedure for modelling time-varying networks in high-

dimensional locally stationary time series. The proposed methodology, incorporating time-varying

LASSO, weighted group LASSO, and time-varying CLIME techniques, provides reliable estimators

of transition and error precision matrices. These estimators are used to construct directed Granger

causality networks and undirected partial correlation networks, revealing the dependencies among

a large panel of time series. The established uniform consistency and oracle properties under

sparsity assumptions validate the efficacy of the proposed estimates. Additionally, by extending the

methodology to factor-adjusted time-varying VAR, we account for high correlation among large-

scale time series, enhancing the applicability of the approach.

Chapter 3 contributes to the high-dimensional precision matrix estimation literature. By in-

troducing the approximate factor structure and employing the semiparametric Model Averaging

Marginal Regression approximation, we address the challenges posed by the curse of dimensional-

ity. By utilising the Sherman-Morrison-Woodbury formula and the CLIME method, the estimate

of the dynamic precision matrix for the original time series is then obtained. The resulting estima-

tors demonstrate uniform consistency under mild conditions. The simulation results highlight the

advantage of utilising the factor structure when estimating large dynamic precision matrices.

In addition to the methodological advancements, empirical contributions are made in each chap-

ter, further enhancing the practical relevance of this dissertation. In Chapter 1, empirical analysis

using intraday returns of S&P 500 constituents provides evidence of co-movement in both mi-
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crostructure noise and prices caused by common systematic risk factors. In Chapter 2, the devel-

oped methodology for modelling time-varying networks is applied to a large macro dataset. The

empirical analysis demonstrates the presence of time-varying Granger causal relations and dynamic

contemporaneous partial correlations. In Chapter 3, empirical analysis using returns of S&P 500

constituents showcases the performance of the proposed method for estimating large dynamic pre-

cision matrices. The results demonstrate the effectiveness of the approach in the portfolio selection

problem.

While this dissertation has made significant contributions to the literature on high-dimensional

methods, there are some directions for future research. First, the exploration of sparse factor

models (e.g., Uematsu and Yamagata, 2023b,a; Freyaldenhoven, 2022) and quantile factor models

(e.g., Ando and Bai, 2020; Chen et al., 2021b) presents two interesting directions for future research.

Moreover, high-dimensional inference techniques, such as debiased LASSO (e.g., Van de Geer et al.,

2014; Zhang and Zhang, 2014) could be incorporated into the factor analysis, and tuning-insensitive

approaches, such as scaled LASSO (e.g., Sun and Zhang, 2013; Liu and Wang, 2017), could be

more appealing in the precision matrix estimation. Finally, expanding the application domains

beyond finance, to areas such as health economics and environmental economics, would broaden the

empirical scope of this research.



Appendix A

Appendix to Chapter 1

In the subsequent proofs, we often make use of the following Weyl’s inequality, for two n × n

symmetric matrices M1 and M2, with eigenvalues µj(M1) and µj(M2):

|µj(M1)− µj(M2)| ≤ ∥M1 −M2∥O, (A.0.1)

for j = 1, ..., n. If M1 and M2 are invertible and ∥M1 −M2∥O∥M−1
2 ∥O < 1, we have

∥M−1
1 −M−1

2 ∥O ≤ ∥M−1
1 ∥O∥M1 −M2∥O∥M−1

2 ∥O

≤ ∥M−1
1 −M−1

2 ∥O∥M1 −M2∥O∥M−1
2 ∥O + ∥M−1

2 ∥O∥M1 −M2∥O∥M−1
2 ∥O

≤ ∥M−1
2 ∥O∥M1 −M2∥O∥M−1

2 ∥O
1− ∥M1 −M2∥O∥M−1

2 ∥O
. (A.0.2)

Note that the max norm is not sub-multiplicative, but we can use ∥M1M2∥max ≤

∥M1∥∞∥M2∥max or ∥M1M2∥max ≤ ∥M1∥max∥M2∥1.

A.1 Proofs of main results

We first provide some lemmas that will be useful in the proofs of the main results.

Lemma A.1.1. Under Assumptions 1.A–1.D, 1.E*, 1.F and 1.G(i), we have µKH
(x

⊺
x) ≥

Cdn2τ−G .

Proof. Recall that

Σx = ΛHDHΣhDHΛ
⊺

H +Σw.

By Weyl’s inequality,

|µKH
(x

⊺
x)− µKH

(Σx)| ≤ ∥x⊺
x−Σx∥O.
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Thus, we have

µKH
(x

⊺
x) ≥ µKH

(Σx)− ∥x⊺
x−Σx∥O

≥ µKH
(Σx)− ∥x⊺

x−ΛHDHh
⊺
hDHΛ

⊺

H∥O − ∥Σw∥O

−∥ΛHDHh
⊺
hDHΛ

⊺

H −ΛHDHΣhDHΛ
⊺

H∥O,

where Σw = ΣU + nDV ΣvDV . To prove the lemma, we only need to show that

µKH
(Σx) ≥ Cdn2τ−G , (A.1.3)

∥x⊺
x−ΛHDHh

⊺
hDHΛ

⊺

H∥O = oP (dn
2τ−G), (A.1.4)

and

∥ΛHDHh
⊺
hDHΛ

⊺

H −ΛHDHΣhDHΛ
⊺

H∥O = oP (dn
2τ−G). (A.1.5)

As for (A.1.3), let B = ΛHDHΣ
1/2
h Q = (b1, · · · , bKH

) with ∥bj∥2’s sorted in a descending

order, where Q is an orthogonal matrix such that Q
⊺
Σ

1/2
h DHΛ

⊺

HΛHDHΣ
1/2
h Q is a diagonal matrix.

Then ∥bj∥22, 1 ≤ j ≤ KH , are the non-zero eigenvalues of BB
⊺
= ΛHDHΣhDHΛ

⊺

H and also the

eigenvalues of B
⊺
B = Σ

1/2
h DHΛ

⊺

HΛHDHΣ
1/2
h . Therefore,

∥bj∥22 ≤ ∥b1∥22 = ∥Σ1/2
h DHΛ

⊺

HΛHDHΣ
1/2
h ∥O ≤ ∥DH∥2O∥Σh∥O · ∥Λ⊺

HΛH∥O = O(dn2τ̄+G ),

where the last equality holds by Assumptions 1.B and 1.D. On the other hand,

∥bKH
∥22 = µKH

(Σ
1/2
h DHΛ

⊺

HΛHDHΣ
1/2
h )

≥ µKH
(Σh)µ

2
KH

(DH)µKH
(Λ

⊺

HΛH) ≥ Cdn2τ−G . (A.1.6)

By Weyl’s inequality and triangle inequality, we have

|µj(Σx)− ∥bj∥22| ≤ ∥Σw∥O = O(mw,nd), (A.1.7)

for 1 ≤ j ≤ KH , where mw,nd = mU,d + n2τ̄V mv,d. Therefore by Assumption 1.E*, (A.1.6) and

(A.1.7), we have

µKH
(Σx) ≥ ∥bKH

∥22 −
∣∣∥bKH

∥22 − µKH
(Σx)

∣∣ ≥ Cdn2τ−G .

As for (A.1.4), using Lemma A.2.4, we have

∥x⊺
x−ΛHDHh

⊺
hDHΛ

⊺

H∥O ≤ 2∥ΛH∥O∥DHh
⊺
w∥O + ∥w⊺

w −Σw∥O + ∥Σw∥O

= OP (d(log d/n)
1/2 · nτ̄+V +τ̄+G )
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+OP (d(log d/n)
1/2 · n2τ̄+V ) +O(mw,nd), (A.1.8)

since ∥ΛH∥O = O(d1/2), ∥DHh
⊺
w∥O ≤ d1/2∥DHh

⊺
w∥1 and ∥w⊺

w −Σw∥O ≤ d∥w⊺
w −Σw∥max.

Then, under Assumptions 1.E* and 1.G(i),

∥x⊺
x−ΛHDHh

⊺
hDHΛ

⊺

H∥O = oP (dn
2τ−G),

if n1+4τ−G−2τ̄+V −2(τ̄+G∨τ̄+V )/(log d) → ∞ and mw,nd = o(dn2τ−G). As for (A.1.5), by Assumptions 1.D

and 1.G(i), we have

∥ΛHDHh
⊺
hDHΛ

⊺

H −ΛHDHΣhDHΛ
⊺

H∥O

≤ C0d∥DHh
⊺
hDH −DHΣhDH∥O

≤ C0KHd ·max
{
∥f⊺

f −ΣF ∥max, ∥DGg
⊺
gDG −DGΣgDG∥max, ∥f

⊺
gDG∥max

}
= OP (dn

2τ̄+G (log d/n)1/2) = oP (dn
2τ−G),

where C0 is a constant larger than 1, and the last line follows from Lemmas A.2.1(ii), A.2.2(ii) and

A.2.3(iv). Hence we complete the proof.

Although we use PCA⋆ in the first step of our estimation procedure, the n× n matrix xx
⊺
, on

which PCA⋆ is based, is conceptually more difficult to analyse (as the spot covariance matrices are

time-varying). It is easier to establish the asymptotic theory of ĥ than that of ĥ⋆. Therefore, we

first prove the consistency of ĥ (Lemma A.1.2 below) and then use the relations in (1.3.4) to prove

the consistency of ĥ⋆ in Theorem 1.3.1.

Lemma A.1.2. Suppose that Assumptions 1.A–1.G are satisfied. Define the rotation matrix

R = h
⊺
hDHΛ

⊺

HΛ̂HD̂−1
x,KH

, (A.1.9)

where D̂x,KH
is a KH ×KH diagonal matrix with the diagonal elements being the first KH largest

eigenvalues of x
⊺
x arranged in descending order. Then, we have

(i) ∥∥∥Λ̂H −ΛHDHR
∥∥∥
max

= OP

(
n−2τ−G · and

)
= oP (1), (A.1.10)

where

and = (log d)1/2
nτ̄+V +τ̄+G∨τ̄+V

n1/2
+

mw,nd

d
,

in which τ̄+G = (1/2 + τ̄⋄G)+, τ
−
G = (1/2 + τ⋄G)−, τ̄

+
V = (1/2 + τ̄⋄V )+, mw,nd = mU,d + n2τ̄V mv,d, and

τ̄V = 1/2 + τ̄⋄V .
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(ii)

∥(DHRR
⊺
DH)−1 − IKH

∥O = oP (1), ∥DHRR
⊺
DH − IKH

∥O = oP (1), (A.1.11)

and

d−1/2∥RD̂
1/2
x,KH

∥O = OP (1), d1/2∥(RD̂
1/2
x,KH

)−1∥O = OP (1). (A.1.12)

(iii) ∥∥∥ĥ ⊺ − (DHR)−1DHh
⊺
∥∥∥
O
= OP

(
n−τ−G · ãnd

)
, (A.1.13)

and ∥∥∥ĥ ⊺ − (DHR)−1DHh
⊺
∥∥∥
max

= OP

(
n−1/2+τ̄+V · bnd

)
, (A.1.14)

where

ãnd = (log d)1/2
nτ̄+V +τ̄+G∨τ̄+V

n1/2
+

mw,nd

d1/2

and

bnd = (log(nd))1/(γ2∧1) · n−2τ−G · and + (log n)1/(γ3∧1) · 1

d1/2
.

Proof of Lemma A.1.2. By the definition of PCA estimation, we may show that

(
Λ̂H −ΛHDHR

)
D̂x,KH

= (x
⊺
x−ΛHDHh

⊺
hDHΛ

⊺

H)Λ̂H

= ΛHDHh
⊺
wΛ̂H +w

⊺
hDHΛ

⊺

HΛ̂H

+ (w
⊺
w −Σw)Λ̂H +ΣwΛ̂H .

We can control the four terms with respect to max norm as follows,

∥ΛHDHh
⊺
wΛ̂H∥max ≤ ∥ΛH∥max∥DHh

⊺
w∥1∥Λ̂H∥1 = OP (d(log d/n)

1/2 · nτ̄+V +τ̄+G ), (A.1.15)

∥w⊺
hDHΛ

⊺

HΛ̂H∥max ≤ ∥w⊺
hDH∥max∥Λ

⊺

H∥1∥Λ̂H∥1 = OP (d(log d/n)
1/2 · nτ̄+V +τ̄+G ), (A.1.16)

∥(w⊺
w −Σw)Λ̂H∥max ≤ ∥w⊺

w −Σw∥max∥Λ̂H∥1 = OP (d(log d/n)
1/2 · n2τ̄+V ), (A.1.17)

and

∥ΣwΛ̂H∥max ≤ ∥Σw∥∞∥Λ̂H∥max = OP (d
1/2mw,nd), (A.1.18)

since ∥ΛH∥max = O(1),
∥∥h⊺

w
∥∥
1
≤ KH

∥∥h⊺
w
∥∥
max

= OP

(
(log d/n)1/2 · nτ̄+V +τ̄+G

)
by Lemma A.2.4,

∥Λ̂H∥1 ≤ d1/2∥Λ̂H∥F = dKH , and ∥Λ̂H∥max ≤ ∥Λ̂H∥F = d1/2KH . Therefore

∥∥∥(Λ̂H −ΛHDHR
)
D̂x,KH

∥∥∥
max

= OP

(
d(log d/n)1/2 · nτ̄+V +τ̄+G∨τ̄+V + d1/2mw,nd

)
= OP (d · ãnd).

(A.1.19)
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Since ∥D̂−1
x,KH

∥O = OP (d
−1n−2τ−G) by Lemma A.1.1, we can prove that

∥∥∥Λ̂H −ΛHDHR
∥∥∥
max

= OP

(
n−2τ−G · ãnd

)
= oP (1), (A.1.20)

by noting that

n−2τ−G · ãnd = oP (1)

when n1+4τ−G−2τ̄+V −2(τ̄+G∨τ̄+V )/(log d) → ∞ and mw,nd/(d
1/2n2τ−G) → 0. Note that (A.1.20) already

shows the consistency of the factor loading estimator, and we can following the argument of part

(ii) to prove ∥ΛHDHR∥max = OP (1). Since

∥Λ̂H∥max ≤ ∥ΛHDHR∥max +
∥∥∥Λ̂H −ΛHDHR

∥∥∥
max

,

we can improve the bound for ∥ΣwΛ̂H∥max in (A.1.18), that is

∥ΣwΛ̂H∥max ≤ ∥Σw∥∞∥Λ̂H∥max = OP (mw,nd). (A.1.21)

Combining (A.1.15)–(A.1.17) and (A.1.21), we prove the result.

For part (ii), noting that

d−1Λ̂
⊺

HΛ̂H = IKH
and

∥∥∥ΛHDHR− Λ̂H

∥∥∥
O
≤ (dKH)1/2

∥∥∥ΛHDHR− Λ̂H

∥∥∥
max

,

we have

∥d−1Λ
⊺

HΛH − (DHRR
⊺
DH)−1∥O = ∥d−1R

⊺
DHΛ

⊺

HΛHDHR− IKH
∥O

= d−1∥R⊺
DHΛ

⊺

HΛHDHR− Λ̂
⊺

HΛ̂H∥O

≤ 2d−1∥Λ̂H∥O∥ΛHDHR− Λ̂H∥O + d−1∥ΛHDHR− Λ̂H∥2O

= OP (n
−2τ−G · and) = oP (1). (A.1.22)

Then, by triangle inequality and Assumption 1.D, we have ∥(DHRR
⊺
DH)−1 − IKH

∥O = oP (1).

One the other hand, by (A.0.2) and (A.1.22),

∥(DHR)−1(
Λ

⊺

HΛH

d
)−1(R

⊺
DH)−1 − IKH

∥O ≤
∥d−1R

⊺
DHΛ

⊺

HΛHDHR− IKH
∥O

1− ∥d−1R⊺DHΛ
⊺

HΛHDHR− IKH
∥O

= oP (1).

Then following the same argument as in (A.1.22), we can prove ∥DHRR
⊺
DH − IKH

∥O = oP (1).

As for (A.1.12), since R
⊺
(h

⊺
h)−1RD̂x,KH

= R
⊺
DHΛ

⊺

HΛ̂H , by (A.1.10) and (A.1.22), we have

∥d−1D̂
1/2
x,KH

R
⊺
(h

⊺
h)−1RD̂

1/2
x,KH

− IKH
∥O
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= ∥d−1R
⊺
(h

⊺
h)−1RD̂x,KH

− IKH
∥O

≤ ∥d−1R
⊺
DHΛ

⊺

HΛHDHR− IKH
∥O + d−1∥R⊺

DHΛ
⊺

H∥O∥Λ̂H −ΛHDHR∥O

= OP (n
−2τ−G · and) = oP (1).

Then by Lemmas A.2.1 and A.2.2, we can prove ∥(h⊺
h)−1∥O = OP (1), and therefore we have

d−1/2∥RD̂
1/2
x,KH

∥O = OP (1).

Similarly, we can prove the second half of (A.1.12).

For part (iii), we use the following decomposition

ĥ
⊺ −R−1h

⊺
= d−1Λ̂

⊺

H

(
ΛHDHR− Λ̂H

)
R−1h

⊺ − d−1
(
ΛHDHR− Λ̂H

)⊺

w
⊺
+ d−1R

⊺
DHΛ

⊺

Hw
⊺
.

(A.1.23)

For the first term on the right hand side (RHS) of (A.1.23), we have

∥Λ̂⊺

H

(
ΛHDHR− Λ̂H

)
R−1h

⊺∥O

≤ ∥Λ̂⊺

H∥O
∥∥∥(ΛHDHR− Λ̂H

)
D̂x,KH

∥∥∥
O

∥∥∥D̂−1/2
x,KH

∥∥∥
O

∥∥∥(RD̂
1/2
x,KH

)−1
∥∥∥
O
∥h⊺∥O

= OP (d
1/2) ·OP (d

3/2 · and) ·OP (d
−1/2n−τ−G) ·OP (d

−1/2) ·OP (1)

= OP (dn
−τ−Gand). (A.1.24)

For the second term on the RHS of (A.1.23), when n1+4τ−G−4τ̄+V / log d → ∞, we have∥∥∥∥(ΛHDHR− Λ̂H

)⊺

w
⊺

∥∥∥∥
O

≤
∥∥∥ΛHDHR− Λ̂H

∥∥∥
O
∥w∥O

= OP (d
1/2n−2τ−Gand) ·OP (d

1/2(log d/n)1/4 · nτ̄+V +m
1/2
w,nd)

= OP (dn
−τ−Gand) ·OP (n

−τ−G(log d/n)1/4 · nτ̄+V +m
1/2
w,ndd

−1/2)

= oP (dn
−τ−Gand). (A.1.25)

For the last term on the RHS of (A.1.23), by (A.1.11), Lemma A.2.4(v), and Assumption 1.G(ii),

we have

d−1∥R⊺
DHΛ

⊺

Hw
⊺∥O ≤ d−1∥R⊺

DH∥O∥Λ
⊺

Hw
⊺∥O

= d−1 ·OP (1) ·OP

(
d1/2(log d/n)1/4 · nτ̄+V m

1/2
w,nd + d1/2m

1/2
w,nd

)
= oP (n

−τ−Gand), (A.1.26)

when d−1/2(log d/n)1/4 · nτ̄+V m
1/2
w,nd = o((log d/n)1/2 · nτ̄+V +τ̄+G∨τ̄+V −τ−G), or equivalently,

n1−4(τ̄+G∨τ̄+V )+4τ−G = o(d2 log d/m2
w,nd). Combing (A.1.24)–(A.1.26), we have ∥ĥ ⊺ − R−1h

⊺∥O =
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OP (n
−τ−Gand), which completes the proof of (A.1.13).

Now we consider (A.1.14) and use the decomposition (A.1.23) again. For the first term on the

RHS of (A.1.23), we have

∥Λ̂⊺

H

(
ΛHDHR− Λ̂H

)
R−1h

⊺∥max

≤ ∥Λ̂⊺

H

(
ΛHDHR− Λ̂H

)
R−1∥∞∥h⊺∥max

≤ K
1/2
H · ∥Λ̂⊺

H∥O
∥∥∥(ΛHDHR− Λ̂H

)
D̂x,KH

∥∥∥
O

∥∥∥D̂−1/2
x,KH

∥∥∥
O

∥∥∥(RD̂
1/2
x,KH

)−1
∥∥∥
O
∥h⊺∥max

= OP (d
1/2) ·OP (d

3/2 · and) ·OP (d
−1/2n−τ−G) ·OP (d

−1/2) ·OP (n
−1/2(log n)1/(γ2∧1))

= OP (d(log n)
1/(γ2∧1)n−1/2−τ−Gand), (A.1.27)

since

∥h⊺∥max ≤ ∥f∥max + ∥n−1/2g∥max = OP (n
−1/2(log n)) +OP (n

−1/2(log n)1/γ2)

by Lemma A.2.7.

For the second term on the RHS of (A.1.23), we have∥∥∥∥(ΛHDHR− Λ̂H

)⊺

w
⊺

∥∥∥∥
max

≤ d ·
∥∥∥ΛHDHR− Λ̂H

∥∥∥
max

∥w∥max

= d ·OP (n
−2τ−Gand) ·OP (n

−1/2+τ̄+V (log(nd))1/(γ2∧1))

= OP (d(log(nd))
1/(γ2∧1)n−1/2+τ̄+V −2τ−Gand), (A.1.28)

since

∥w∥max ≤ ∥u∥max + ∥DV v∥max = OP (n
−1/2(log(nd))) +OP (n

τ̄⋄V (log(nd))1/γ2)

by Lemma A.2.7.

For the last term on the RHS of (A.1.23), using Lemma A.2.7(v) and (vi), we have

∥R⊺
DHΛ

⊺

Hw
⊺∥max ≤ KH∥R⊺

DH∥max∥Λ
⊺

Hw
⊺∥max = OP

(
d1/2n−1/2+τ̄+V log(n)1/(γ3∧1)

)
. (A.1.29)

Combing (A.1.27)–(A.1.29), we have

∥ĥ⊺ −R−1h
⊺∥max = OP ((log(nd))

1/(γ2∧1)n−1/2+τ̄+V −2τ−Gand) +OP

(
d−1/2n−1/2+τ̄+V log(n)1/(γ3∧1)

)
,

which completes the proof of Lemma A.1.2. ■

Proof of Theorem 1.3.1. (i) Following (A.1.19) and noting that

Λ̂⋆
H = Λ̂H(ĥ

⊺
ĥ)1/2 = d−1/2Λ̂HD̂

1/2
x,KH

,
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we have ∥∥∥Λ̂⋆
H − d−1/2ΛHDHRD̂

1/2
x,KH

∥∥∥
max

= OP

(
n−τ−G · and

)
.

Using the notation of R⋆, it can be equivalently written as

∥∥∥Λ̂⋆
H −ΛHDH(h

⊺
h)1/2R⋆

∥∥∥
max

= OP

(
n−τ−G · and

)
.

(ii) Note that ĥ⋆ = ĥ(ĥ
⊺
ĥ)−1/2 = d1/2ĥD̂

−1/2
x,KH

and

(R⋆)−1 = d1/2D̂
−1/2
x,KH

R−1(h
⊺
h)1/2. (A.1.30)

By Lemma A.1.2(iii), we have

∥∥∥ĥ⋆⊺ − (R⋆)−1(h
⊺
h)−1/2h

⊺
∥∥∥
O

= d1/2∥D̂−1/2
x,KH

(ĥ
⊺ −R−1h

⊺
)∥O

= OP

(
n−2τ−G · ãnd

)
and

∥∥∥ĥ⋆⊺ − (R⋆)−1(h
⊺
h)−1/2h

⊺
∥∥∥
max

= d1/2∥D̂−1/2
x,KH

(ĥ
⊺ −R−1h

⊺
)∥max

= OP

(
n−1/2+τ̄+V −τ−G · bnd

)
.

(iii) For the first part, it is obvious that ĥ⋆Λ̂⋆⊺

H = ĥΛ̂
⊺

H . For the second part, we have

∥∥∥ĥ⋆Λ̂⋆⊺

H −hDHΛ
⊺

H

∥∥∥
max

≤ KH

∥∥∥ĥ⊺ − (DHR)−1DHh
⊺
∥∥∥
max

∥ΛHDHR∥max

+KH

∥∥∥D̂−1
x,KH

(DHR)−1DHh
⊺
∥∥∥
max

∥∥∥(Λ̂H −ΛHDHR)D̂x,KH

∥∥∥
max

+KH

∥∥∥ĥ⊺ − (DHR)−1DHh
⊺
∥∥∥
max

∥∥∥Λ̂H −ΛHDHR
∥∥∥
max

= OP

(
n−1/2+τ̄+V · bnd

)
·OP (1) +OP (d

−1(log d)1/(γ2∧1)n−1/2−τ−G) ·OP (d · and)

= OP

(
n−1/2+τ̄+V · bnd

)
,

as ∥∥∥D̂−1
x,KH

(DHR)−1DH

∥∥∥
O
=
∥∥∥(D̂1/2

x,KH
R)−1D̂

−1/2
x,KH

(DHR)−1DHR
∥∥∥
O
= OP

(
d−1n−τ−G

)
by (A.1.11) and (A.1.12). Thus, we obtain the uniformly convergence rate for the common compo-

nents.

(iv) We next prove that R⋆ is an asymptotically orthogonal matrix. By (A.1.30), we have

R⋆⊺R⋆ = d−1D̂
1/2
x,KH

R
⊺
(h

⊺
h)−1RD̂

1/2
x,KH

= d−1D̂
1/2
x,KH

R
⊺
DHΛ

⊺

HΛ̂HD̂
−1/2
x,KH

.
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Thus by (A.1.10) and (A.1.22), we have

∥R⋆⊺R⋆ − IKH
∥O

≤ ∥d−1D̂
1/2
x,KH

R
⊺
DHΛ

⊺

HΛ̂HD̂
−1/2
x,KH

− d−1D̂
1/2
x,KH

R
⊺
DHΛ

⊺

HΛHDHRD̂
−1/2
x,KH

∥O

+∥d−1D̂
1/2
x,KH

R
⊺
DHΛ

⊺

HΛHDHRD̂
−1/2
x,KH

− IKH
∥O

= ∥d−1R
⊺
DHΛ

⊺

HΛ̂H − d−1R
⊺
DHΛ

⊺

HΛHDHR∥O

+∥d−1R
⊺
DHΛ

⊺

HΛHDHR− IKH
∥O

= OP (n
−2τ−Gand).

We thus complete the proof of Theorem 1.3.1. ■

Next, we prove 1.3.2. For this, we need some intermediate estimators or infeasible estimators

related to β̂ and β̂⊥. Recall that β̂⊥ is the matrix of eigenvectors associated with the largest KF

eigenvalues of ŜHH = n−1Ĥ⋆c⊺Ĥ⋆c, and β̂ is the matrix of eigenvectors associated with the rest

of the KG eigenvalues. For a KH × KH matrix, Ξ, we define SΞ
HH := n−1ΞHc⊺HcΞ

⊺
, where

Hc = H −H and H = n−11n
∑n

s=1H
⊺

s∆. Replacing ŜHH with SΞ
HH in the second-step PCA, we

can obtain the infeasible estimators, βΞ
⊥ and βΞ. For simplicity, we use SHH to denote S

IKH
HH . Later

on, we will determine a proper choice of Ξ.

Lemma A.1.3. Suppose that Assumptions 1.A, 1.C and 1.F are satisfied. If the eigenvalues of

ΞΞ
⊺
are bounded away from zero and infinity uniformly with probability approaching one, then βΞ

⊥

and βΞ are super-consistent in the sense that

βΞ −Ξ
⊺
β[β

⊺
ΞΞ

⊺
β]−1β

⊺
ΞβΞ = OP (n

−1), (A.1.31)

and

βΞ
⊥ −Ξ−1β⊥[β

⊺

⊥(Ξ
⊺
)−1Ξ−1β⊥]

−1β
⊺

⊥(Ξ
⊺
)−1βΞ

⊥ = OP (n
−1). (A.1.32)

Proof. We decompose βΞ in the directions of Ξ
⊺
β and Ξ−1β⊥ (which are orthogonal) as

βΞ = Ξ
⊺
β[β

⊺
ΞΞ

⊺
β]−1β

⊺
ΞβΞ

+Ξ−1β⊥[β
⊺

⊥(Ξ
⊺
)−1Ξ−1β⊥]

−1β
⊺

⊥(Ξ
⊺
)−1βΞ. (A.1.33)

Note that βΞ satisfies Ξ−1SHH(Ξ
⊺
)−1βΞ = βΞDΞ

S , where DΞ
S is a KG ×KG diagonal matrix with

the diagonal elements being theKG smallest eigenvalues of Ξ−1SHH(Ξ
⊺
)−1 arranged in a descending
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order. Using (A.1.33) and the equality IKH
= β⊥β

⊺

⊥ + ββ
⊺
, we have

β
⊺

⊥Ξ
−1βΞDΞ

S =β
⊺

⊥ΞΞ−1SHH(Ξ
⊺
)−1βΞ

=β
⊺

⊥SHHβ[β
⊺
ΞΞ

⊺
β]−1β

⊺
ΞβΞ

+ β
⊺

⊥SHHIKH
(Ξ

⊺
)−1Ξ−1β⊥[β

⊺

⊥(Ξ
⊺
)−1Ξ−1β⊥]

−1β
⊺

⊥Ξ
−1βΞ

=β
⊺

⊥SHHβ[β
⊺
ΞΞ

⊺
β]−1β

⊺
ΞβΞ

+ β
⊺

⊥SHHββ
⊺
(Ξ

⊺
)−1Ξ−1β⊥[β

⊺

⊥(Ξ
⊺
)−1Ξ−1β⊥]

−1β
⊺

⊥Ξ
−1βΞ

+ β
⊺

⊥SHHβ⊥β
⊺

⊥(Ξ
⊺
)−1Ξ−1β⊥[β

⊺

⊥(Ξ
⊺
)−1Ξ−1β⊥]

−1β
⊺

⊥Ξ
−1βΞ,

=β
⊺

⊥SHHβ[β
⊺
ΞΞ

⊺
β]−1β

⊺
ΞβΞ

+ β
⊺

⊥SHHββ
⊺
(Ξ

⊺
)−1Ξ−1β⊥[β

⊺

⊥(Ξ
⊺
)−1Ξ−1β⊥]

−1β
⊺

⊥Ξ
−1βΞ

+ β
⊺

⊥SHHβ⊥β
⊺

⊥Ξ
−1βΞ.

Vectorising this expression, we have

vec(β
⊺

⊥Ξ
−1βΞ) =

{
DΞ

S ⊗ IKF
− IKG

⊗ β
⊺

⊥SHHβ⊥

−IKG
⊗ β

⊺

⊥SHHββ
⊺
(Ξ

⊺
)−1Ξ−1β⊥[β

⊺

⊥(Ξ
⊺
)−1Ξ−1β⊥]

−1
}−1

·vec
(
β

⊺

⊥SHHβ[β
⊺
ΞΞ

⊺
β]−1β

⊺
ΞβΞ

)
. (A.1.34)

Recall that β = (OKG×KF
IKG

)
⊺
and β⊥ = (IKF

OKF×KG
)
⊺
. By Lemma A.2.5, we have

β
⊺
SHHβ = n−2

n∑
s=1

Gc
s∆G

c⊺

s∆ = OP (n
−1),

β
⊺

⊥SHHβ⊥ = n−1
n∑

s=1

F c
s∆F

c⊺

s∆ is bounded away from zero,

β
⊺
SHHβ⊥ = n−3/2

n∑
s=1

Gc
s∆F

c⊺

s∆ = OP (n
−1),

where Gc
s∆ = Gs∆ − n−1

∑n
s=1Gs∆ and F c

s∆ = Fs∆ − n−1
∑n

s=1 Fs∆. Thus, only the first block,

β
⊺

⊥SHHβ⊥, of the matrix SHH =

[
β

⊺

⊥SHHβ⊥ β
⊺

⊥SHHβ

β
⊺
SHHβ⊥ β

⊺
SHHβ

]
does not converge to zero. Therefore,

DΞ
S = oP (1), and we have β

⊺

⊥Ξ
−1βΞ = OP (n

−1). Then using (A.1.33) again, we can prove the

consistency of βΞ. Using the same argument, we can prove the consistency of βΞ
⊥.

When Ξ = IKH
, the results in Lemma A.1.3 degenerate to Lemma 1 of Harris (1997). When

Ξ = (h
⊺
h)1/2(R⋆), and replacing SHH with ΞŜHHΞ

⊺
, we can prove 1.3.2.

Proof of 1.3.2. Note that β̂ satisfies ŜHH β̂ = β̂D̂S , where D̂S is a KG ×KG diagonal matrix

with the diagonal elements being the KG smallest eigenvalues of ŜHH arranged in a descending
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order. Let Ξ = (h
⊺
h)1/2(R⋆)

⊺
. Following similar arguments in the proof of Lemma A.1.3, we have

vec(β
⊺

⊥Ξ
−1β̂) =

{
D̂Ξ

S ⊗ IKF
− IKG

⊗ β
⊺

⊥[ΞŜHHΞ
⊺
]β⊥

−IKG
⊗ β

⊺

⊥[ΞŜHHΞ
⊺
]ββ

⊺
(Ξ

⊺
)−1Ξ−1β⊥[β

⊺

⊥(Ξ
⊺
)−1Ξ−1β⊥]

−1
}−1

· vec
(
β

⊺

⊥[ΞŜHHΞ
⊺
]β[β

⊺
ΞΞ

⊺
β]−1β

⊺
Ξβ̂
)
. (A.1.35)

Using the convergence results in Lemma A.2.6 and ∥D̂S∥O ≤ ∥DΞ
S ∥O+∥ŜHH−Ξ−1SHH(Ξ

⊺
)−1∥O =

oP (1), we can prove β
⊺

⊥Ξ
−1β̂ = OP

(
β

⊺

⊥[ΞŜHHΞ
⊺
]β
)
= OP ((log n)n

−τ−G · bnd).

Then following the same arguments as in the proof of Lemma A.1.3, we can prove the results.

■

Proof of Theorem 1.3.5. (ii) and (iii) follow directly from Theorem 1.3.1 and 1.3.2.

As for (i), by Theorem 1.3.1 and 1.3.2, we have

∥∥∥ĥ⋆β̂⊥ −h(Ξ
⊺
)−1Ξ−1β⊥Qβ⊥

∥∥∥
O

= OP

(∥∥∥ĥ⋆ −h(Ξ
⊺
)−1
∥∥∥
O

∥∥Ξ−1β⊥Qβ⊥

∥∥
O
+
∥∥h(Ξ

⊺
)−1
∥∥
O

∥∥∥β̂⊥ −Ξ−1β⊥Qβ⊥

∥∥∥
O

)
= OP

(
n−2τ−G · ãnd

)
·OP (1) +OP (1) ·OP

(
(log n)n−τ−G · bnd

)
= OP

(
(log n)n−τ−G · b̃nd

)
. (A.1.36)

Using (β⊥β
⊺

⊥ + ββ
⊺
) = IKH

, we have

h(Ξ
⊺
)−1Ξ−1β⊥Qβ⊥ = h(β⊥β

⊺

⊥ + ββ
⊺
)(Ξ

⊺
)−1Ξ−1β⊥[β

⊺

⊥(Ξ
⊺
)−1Ξ−1β⊥]

−1β
⊺

⊥(Ξ
⊺
)−1β̂⊥

= fβ
⊺

⊥(Ξ
⊺
)−1β̂⊥ + n−1/2gβ

⊺
(Ξ

⊺
)−1Ξ−1β⊥[β

⊺

⊥(Ξ
⊺
)−1Ξ−1β⊥]

−1β
⊺

⊥(Ξ
⊺
)−1β̂⊥.

(A.1.37)

Therefore, we only need to prove that the second term on the RHS of the second equality of (A.1.37)

is OP (n
−2τ−Gand). Indeed, ∥n−1/2g∥O = OP (1) and

β
⊺
(Ξ

⊺
)−1Ξ−1β⊥ = β

⊺
(h

⊺
h)−1/2(R⋆⊺R⋆)−1(h

⊺
h)−1/2β⊥

= β
⊺
(h

⊺
h)−1β⊥ · (1 +OP (n

−2τ−Gand)) = OP (n
−2τ−Gand),

where the last two equalities follow from (1.3.13) and the result that h
⊺
h converges to a block

diagonal matrix at rate (log d/n)1/2 using Lemmas A.2.1–A.2.3. Thus we complete the proof of (i)

under the spectral norm.

As for the max norm convergence, by Theorem 1.3.1 and 1.3.2, we have

∥∥∥ĥ⋆β̂⊥ −h(Ξ
⊺
)−1Ξ−1β⊥Qβ⊥

∥∥∥
max
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= OP

(∥∥∥ĥ⋆ −h(Ξ
⊺
)−1
∥∥∥
max

∥∥Ξ−1β⊥Qβ⊥

∥∥
max

+
∥∥h(Ξ

⊺
)−1
∥∥
max

∥∥∥β̂⊥ −Ξ−1β⊥Qβ⊥

∥∥∥
max

)
= OP

(
n−1/2+τ̄+V −τ−G · bnd

)
·OP (1) +OP (n

−1/2(log n)1/(γ2∧1)) ·OP

(
(log n)n−τ−G · bnd

)
= OP

(
(log n)2/(γ2∧1)n−1/2+τ̄+V −τ−G · bnd

)
. (A.1.38)

Using (A.1.37) again, and noting that ∥n−1/2g∥max = OP (n
−1/2(log n)1/γ2) by Lemma A.2.7(ii), we

can prove the result.

As for (iv), by Theorem 1.3.1 and 1.3.2, we have

∥∥∥Λ̂⋆
H β̂ −ΛHDHΞΞ

⊺
βQβ

∥∥∥
max

= OP

(
n−2τ−G · and

)
. (A.1.39)

Following similar arguments to the proof of part (i), we can show that β
⊺

⊥ΞΞ
⊺
β = OP (n

−2τ−Gand)

and that ∥∥∥ΛHDHΞΞ
⊺
βQβ −ΛGDGβ

⊺
Ξβ̂
∥∥∥
max

= OP

(
n−2τ−G · and

)
. (A.1.40)

Combining (A.1.39) and (A.1.40), we complete the proof. ■

Proof of Corollary 1.3.4

The result is a direct consequence of Theorem 1.3.5 by noting that

β
⊺

⊥(Ξ
⊺
)−1β̂⊥Q

⊺

β⊥
= IKF

and Qβ(β
⊺
Ξβ̂)

⊺
= IKG

.

■

Proof of Theorem 1.3.5. We first prove the uniform consistency of Ĥ, and then, following a

similar argument as in the proof of Theorem 1.3.1(ii), we can prove the uniform consistency of Ĥ⋆.

We use the following decomposition

Ĥ
⊺ −R−1(H

⊺ −H01
⊺

n) = d−1Λ̂
⊺

H

(
ΛHDHR− Λ̂H

)
R−1(H

⊺ −H01
⊺

n)

−d−1
(
ΛHDHR− Λ̂H

)⊺

(W
⊺ −W01

⊺

n)

+d−1R
⊺
DHΛ

⊺

H(W
⊺ −W01

⊺

n). (A.1.41)

and follow the similar arguments as in (A.1.27)–(A.1.29). The first term on the right hand side

(RHS) of (A.1.41) can be bounded as follows,

∥Λ̂⊺

H

(
ΛHDHR− Λ̂H

)
R−1(H

⊺ −H01
⊺

n)∥max

≤ ∥Λ̂⊺

H

(
ΛHDHR− Λ̂H

)
R−1∥∞∥H⊺ −H01

⊺

n∥max

≤ K
1/2
H · ∥Λ̂⊺

H∥O
∥∥∥(ΛHDHR− Λ̂H

)
D̂x,KH

∥∥∥
O

∥∥∥D̂−1/2
x,KH

∥∥∥
O

∥∥∥(RD̂
1/2
x,KH

)−1
∥∥∥
O
∥H⊺ −H01

⊺

n∥max
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= OP (d
1/2) ·OP (d · and) ·OP (d

−1/2n−τ−G) ·OP (1) ·OP (log n)

= OP (d(log n)n
−τ−Gand), (A.1.42)

since

∥H⊺ −H01
⊺

n∥max ≤ ∥F−F01
⊺

n∥max+ ∥n−1/2(G−G01
⊺

n)∥max = OP ((log n))+OP (n
−1/2(log n)1/γ2)

by Lemma A.2.8.

For the second term on the RHS of (A.1.41), we have∥∥∥∥(ΛHDHR− Λ̂H

)⊺

(W
⊺ −W01

⊺

n)

∥∥∥∥
max

≤ d ·
∥∥∥ΛHDHR− Λ̂H

∥∥∥
max

∥W⊺ −W01
⊺

n∥max

= d ·OP (n
−2τ−Gand) ·OP (log(nd))

= OP (d(log(nd))n
−2τ−Gand), (A.1.43)

since

∥W⊺−W01
⊺

n∥max ≤ ∥U−U01
⊺

n∥max+∥DV (V−V01
⊺

n)∥max = OP ((log(nd)))+OP (n
τ⋄V (log(nd))1/γ2)

by Lemma A.2.8 and τ⋄V < −1/4 by Assumption 1.G(i).

For the last term on the RHS of (A.1.41), by (A.1.11) and Lemma A.2.8(v) and (vi), we have

∥R⊺
DHΛ

⊺

H(W
⊺ −W01

⊺

n)∥max ≤ KH∥R⊺
DH∥max∥Λ

⊺

H(W
⊺ −W01

⊺

n)∥max

= OP

(
d1/2(log n)

)
. (A.1.44)

Combing (A.1.42)–(A.1.44), we have

∥Ĥ⊺ −R−1(H
⊺ −H01

⊺

n)∥max = OP ((log(nd))n
−2τ−Gand) +OP

(
d−1/2(log n)

)
,

which completes the proof of the uniform consistency of Ĥ. Note that Ĥ⋆ = d1/2ĤD̂
−1/2
x,KH

and

∥D̂−1
x,KH

∥O = OP (d
−1n−2τ−G) by Lemma A.1.1, we can prove the uniform consistency of Ĥ⋆.

Then following a similar argument as in the proof of Theorem 1.3.5, we can prove the uniform

consistency of Ĝ⋆ and F̂⋆.

As for part (ii), it is a direct consequence of part (i). ■
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A.2 Auxiliary lemmas

This appendix provides some auxiliary lemmas, which are used in the proofs in Appendix A.

Recall that ft and ut are increments of continuous-time processes, between t and t −∆, while

gt and vt are the first-order differences of stationary time series, Gt and Vt, for t = 0,∆, . . . , n∆.

Lemmas A.2.1–A.2.3 give the large deviation theory for them. Specially, Lemma A.2.1 is for ft and

ut only, Lemma A.2.2 for gt and vt only, and Lemma A.2.3 for mixtures of the continuous-time

processes and the discrete-time processes. In addition, Lemma A.2.4 provides bounds for quantities

related to w. Lemmas A.2.5 and A.2.6 provide bounds for quantities related to the demeaned

cumulated factors. Lemmas A.2.7 and A.2.8 provide uniform bounds for the common factors and

the idiosyncratic errors.

Lemma A.2.1. Under Assumption 1.A, we have

(i)
∥∥∑n

s=1 us∆u
⊺

s∆ −ΣU

∥∥
max

= OP ((log d/n)
1/2);

(ii)
∥∥∑n

s=1 fs∆f
⊺

s∆ −ΣF

∥∥
max

= OP ((log d/n)
1/2);

(iii)
∥∥∑n

s=1 us∆f
⊺

s∆

∥∥
max

= OP ((log d/n)
1/2).

(iv) In addition, if Assumptions 1.D and 1.E hold, we have∥∥d−1
∑n

s=1Λ
⊺

Hus∆u
⊺

s∆ΛH − d−1Λ
⊺

HΣUΛH

∥∥
max

= OP (mU,d(log d/n)
1/2).

Proof. Parts (i)–(iii) are the same as Lemma 1 in Aı̈t-Sahalia and Xiu (2017). We only prove part

(iv), as parts (i)–(iii) can be proved similarly. By Bonferroni inequality and Lemma 10 of Tao et al.

(2013b), we have

P

(∥∥∥∥∥
n∑

s=1

d−1Λ
⊺

Hus∆u
⊺

s∆ΛH − d−1Λ
⊺

HΣUΛH

∥∥∥∥∥
max

> c

)
≤ K2

h · 4 exp(−nc2/(64C1))

for all 0 ≤ c ≤ µ2
d(d

−1Λ
⊺

HΣUΛH) · n1/2, where C1 = 8∥d−1Λ
⊺

HΣUΛH∥2max is obtained from Lemma

3 of Fan et al. (2012). By Assumptions 1.A and 1.D, we have that µ2
d(d

−1Λ
⊺

HΣUΛH) is bounded

away from zero, and C1 ≤ 8∥d−1Λ
⊺

HΣUΛH∥2O = O(m2
U,d). Then using the exponential inequality

and taking c = mU,d(log d/n)
1/2, we can prove the result.

Lemma A.2.2. Under Assumption 1.F, we have

(i)
∥∥n−1

∑n
s=1 vs∆v

⊺

s∆ −Σv

∥∥
max

= OP ((log d/n)
1/2);

(ii)
∥∥n−1

∑n
s=1 gs∆g

⊺

s∆ −Σg

∥∥
max

= OP ((log d/n)
1/2);

(iii)
∥∥n−1

∑n
s=1 vs∆g

⊺

s∆

∥∥
max

= OP ((log d/n)
1/2).

(iv) In addition, if Assumptions 1.D and 1.E hold, we have∥∥(nd)−1
∑n

s=1Λ
⊺

Hvs∆v
⊺

s∆ΛH − d−1Λ
⊺

HΣvΛH

∥∥
max

= OP ((log d/n)
1/2).
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Proof. Parts (i)–(iii) are the same as Lemma C.3 in Fan et al. (2013). Note that, under Assumption

1.D(i), the mixing coefficient of {vs∆} is bounded by C ′
α exp(−sγ2), for some positive constant C ′

α.

Also note that vi,s∆ still satisfies the exponential-type tail condition, since

max
1≤i≤d

P (|vi,s∆| > c) ≤ max
1≤i≤d

2P (|Vi,s∆| > c/2)

≤ 2 exp(1− (c/(2b1))
γ2) ≤ exp(1− (c/b3)

γ4), (A.2.1)

for 1 ≤ i ≤ d, s = 1, · · · , n, and c > 0, where γ4 ∈ (0, γ2) and b3 > 2b1max{(γ4/γ2)1/γ2 , (1 +

log 2)1/γ2}, and the last inequality is shown in the proof of Lemma C.2 of Fan et al. (2011). Again

by Lemma C.2 of Fan et al. (2011), |vi1,s∆vi2,s∆| still satisfies the exponential-type tail condition,

max
1≤i≤d

P (|vi1,s∆vi2,s∆ − E[vi1,s∆vi2,s∆]| > c) ≤ exp(1− (c/b4)
γ5), (A.2.2)

for 1 ≤ i1, i2 ≤ d, s = 1, · · · , n, c > 0, some b4, and γ5 ∈ (0, γ4/2). Therefore, using the arguments

in the proof of Lemma A.3 in Fan et al. (2011), we can show that

P

(∥∥∥∥∥n−1
n∑

s=1

vs∆v
⊺

s∆ −Σv

∥∥∥∥∥
max

> C2

√
log d

n

)
= O

(
1

d2

)

for some positive constant C2, which proves part (i). Parts (ii) and (iii) are similar to part (i) and

can be obtained from the inequalities derived in Lemma B.1 of Fan et al. (2011). As for part (iv),

we have

P

(∥∥∥∥∥n−1
n∑

s=1

Λ
⊺

Hvs∆v
⊺

s∆ΛH −Λ
⊺

HΣvΛH

∥∥∥∥∥
max

> d · x

)

≤ K2
H max

1≤j1,j2≤KH

P

(∣∣∣∣∣n−1
n∑

s=1

λ
⊺

H,j1vs∆v
⊺

s∆λH,j2 − λ
⊺

H,j1ΣvλH,j2

∣∣∣∣∣ > d · x

)
. (A.2.3)

Applying similar arguments in (A.2.1) and (A.2.2) and using Lemma C.2 of Fan et al. (2011) under

Assumption 1.E(iv), we have

max
1≤j1,j2≤KH

P
(
d−1|λ⊺

H,j1vs∆v
⊺

s∆λH,j2 − E[λ
⊺

H,j1vs∆v
⊺

s∆λH,j2 ]| > c
)
≤ exp(1− (c/b5)

γ6), (A.2.4)

for γ6 ∈ (0, γ2γ3/(γ2 + γ3)), c > 0, and some b5 > 0 which does not depend on n and d. Since

|λ⊺

H,j1
vs∆v

⊺

s∆λH,j2 | satisfies the strong mixing condition, we can follow the same arguments as the

proof of Lemma B.1 in Fan et al. (2011) by applying the Bernstein’s inequality in Theorem 1 of

Merlevède et al. (2011) to obtain

P

(
d−1

∣∣∣∣∣n−1
n∑

s=1

λ
⊺

H,j1vs∆v
⊺

s∆λH,j2 − λ
⊺

H,j1ΣvλH,j2

∣∣∣∣∣ > C3

√
log d

n

)
= O

(
1

d2

)
, (A.2.5)
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for some positive constant C3, which only depends on γ1, γ6 and b5. Then by (A.2.3) and (A.2.5),

we can complete the proof of part (iv).

Lemma A.2.3. Under Assumptions 1.A, 1.C and 1.F, we have

(i)
∥∥n−1/2

∑n
s=1 us∆v

⊺

s∆

∥∥
max

= OP ((log d/n)
1/2);

(ii)
∥∥n−1/2

∑n
s=1 us∆g

⊺

s∆

∥∥
max

= OP ((log d/n)
1/2);

(iii)
∥∥n−1/2

∑n
s=1 vs∆f

⊺

s∆

∥∥
max

= OP ((log d/n)
1/2);

(iv)
∥∥n−1/2

∑n
s=1 gs∆f

⊺

s∆

∥∥
max

= OP ((1/n)
1/2);

(v)
∥∥n−1/2

∑n
s=1Gs∆(n

−1/2F
⊺

s∆)
∥∥
max

= OP ((1/n)
1/2).

Proof. (i) The proof is similar to that of Lemma 11 in Tao et al. (2013b). Since
∑n

s=1 us∆v
⊺

s∆ =∑n
s=1 us∆V

⊺

s∆ −
∑n

s=1 us∆V
⊺

(s−1)∆, we only need to prove

n−1/2
n∑

s=1

us∆V
⊺

s∆ = OP ((log d/n)
1/2) (A.2.6)

and

n−1/2
n∑

s=1

us∆V
⊺

(s−1)∆ = OP ((log d/n)
1/2). (A.2.7)

The proofs of (A.2.6) and (A.2.7) are similar, so we only provide the former. Denote

Ω0 = {max
1≤i≤d

max
1≤s≤n

|ui,s∆| ≤ 1}.

Using the Bonferroni and Markov inequalities, we have

P(Ωc
0) = P

(
max
1≤i≤d

max
1≤s≤n

|ui,s∆| > 1

)
≤ ndeCσ/2−n. (A.2.8)

Note that Ut and Vt are independent. Conditional on the whole path of Ut, we have

P

(∥∥∥∥∥n−1/2
n∑

s=1

us∆V
⊺

s∆

∥∥∥∥∥
max

> c(log d/n)1/2

)

≤ P

(∥∥∥∥∥n−1/2
n∑

s=1

us∆V
⊺

s∆

∥∥∥∥∥
max

> c(log d/n)1/2,Ω0

)
+ P (Ωc

0)

≤ E

[
P

(∥∥∥∥∥n−1/2
n∑

s=1

us∆V
⊺

s∆

∥∥∥∥∥
max

> c(log d/n)1/2,Ω0

∣∣∣∣Ut, t ∈ [0, 1]

)]
+O(nde−n)

= E

[
P

(∥∥∥∥∥n−1/2
n∑

s=1

us∆V
⊺

s∆

∥∥∥∥∥
max

> c(log d/n)1/2
∣∣∣∣Ω0,Ut, t ∈ [0, 1]

)]
+O(nde−n).

(A.2.9)

Note that conditional on the path of Ut and Ω0, us∆V
⊺

s∆ satisfies the same mixing condition and
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exponential-tail condition for Vs∆, and the coefficients in these conditions only depend on γ1, γ2,

and b1. Thus we can apply the Bernstein’s inequality in Theorem 1 of Merlevède et al. (2011) to

obtain (letting c̄ = c(log d/n)1/2)

P

(∥∥∥∥∥n−1/2
n∑

s=1

us∆V
⊺

s∆

∥∥∥∥∥
max

> c̄

∣∣∣∣Ω0,Ut, t ∈ [0, 1]

)

≤ nd2 exp

(
− c̄γ

C4

)
+ d2 exp

(
− c̄2

C5(1 + C6n)

)
+ d2 exp

(
− c̄2

C7n
exp

(
c̄γ(1−γ)

C8((log c̄)γ)

))
= O(1/d2), (A.2.10)

when (log d)2/γ−1 = o(n) and c is large enough, where γ = 1/γ1+1/γ2, and C4–C8 only depends on

γ1, γ2, and b1. Therefore (A.2.10) holds true uniformly for all path of Ut satisfying Ω0. Combining

(A.2.9) and (A.2.10), we can prove (A.2.6). The proofs of (ii)–(v) are similar to that of (i) by

choosing proper c̄. So we omit them to save space.

Lemma A.2.4. Under Assumptions 1.A–1.F, we have

(i)
∥∥w⊺

w −Σw

∥∥
max

= OP ((log d/n)
1/2 · n2τ̄+V );

(ii)
∥∥w⊺

hDH

∥∥
max

= OP

(
(log d/n)1/2 · nτ̄+V +τ̄+G

)
;

(iii)
∥∥DHh

⊺
w
∥∥
1
= OP

(
(log d/n)1/2 · nτ̄+V +τ̄+G

)
;

(iv) ∥w∥O = OP (d
1/2(log d/n)1/4 · nτ̄+V +m

1/2
U,d + nτ̄V m

1/2
v,d );

(v) ∥Λ⊺

Hw
⊺∥O = OP

(
d1/2(m

1/2
U,d + nτ̄V m

1/2
v,d )(1 + nτ̄+V (log d/n)1/4)

)
;

where τ̄+G = (1/2 + τ̄⋄G)+, τ̄V = 1/2 + τ̄⋄V , and τ̄+V = (1/2 + τ̄⋄V )+.

Proof. For part (i), recall that ww
⊺
=
∑n

s=1(us∆ + DV vs∆)
⊺
(us∆ + DV vs∆) and Σw = ΣU +

nDV ΣvDV . By Lemmas A.2.1(i), A.2.2(i) and A.2.3(i), we have

∥∥w⊺
w −Σw

∥∥
max

≤

∥∥∥∥∥
n∑

s=1

us∆u
⊺

s∆ −ΣU

∥∥∥∥∥
max

+ 2n1/2∥DV ∥

∥∥∥∥∥n−1/2
n∑

s=1

us∆v
⊺

s∆

∥∥∥∥∥
max

+n∥DV ∥2O

∥∥∥∥∥n−1
n∑

s=1

vs∆v
⊺

s∆ −Σv

∥∥∥∥∥
max

= OP

(
(log d/n)1/2 · n2τ+V

)
.

For part (ii), by Lemmas A.2.1(iii), A.2.2(iii), A.2.3(ii) and A.2.3(iii), we have

∥∥w⊺
hDH

∥∥
max

≤

∥∥∥∥∥
n∑

s=1

us∆f
⊺

s∆

∥∥∥∥∥
max

+ n∥DV ∥O

∥∥∥∥∥n−1
n∑

s=1

vs∆g
⊺

s∆

∥∥∥∥∥
max

∥DG∥O

+n1/2

∥∥∥∥∥n−1/2
n∑

s=1

us∆g
⊺

s∆

∥∥∥∥∥
max

∥DG∥O + ∥DV ∥O

∥∥∥∥∥
n∑

s=1

vs∆f
⊺

s∆

∥∥∥∥∥
max

= OP

(
(log d/n)1/2 · (1 + n1+τ̄⋄V +τ̄⋄G + n1/2+τ̄⋄G + n1/2+τ̄⋄V )

)
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= OP

(
(log d/n)1/2 · (1 + n1/2+τ̄⋄V )(1 + n1/2+τ̄⋄G)

)
= OP

(
(log d/n)1/2 · nτ̄+V +τ̄+G

)
.

Part (iii) follows from part (ii) as
∥∥h⊺

w
∥∥
1
≤ KH

∥∥h⊺
w
∥∥
max

. Part (iv) follows from ∥w∥O =∥∥w⊺
w
∥∥1/2
O

≤ (d
∥∥w⊺

w −Σw

∥∥
max

+ ∥Σw∥O)1/2 and ∥Σw∥O ≤ (∥Σw∥1 ∥Σw∥∞)1/2 = ∥Σw∥1 =

O(mU,d + n2τV mv,d). Lastly, we consider part (v). By Lemmas A.2.1(iv) and A.2.2(iv), we have

∥Λ⊺

Hw
⊺∥O = ∥Λ⊺

Hw
⊺
wΛH∥1/2O

≤ (∥Λ⊺

H(w
⊺
w −Σw)ΛH∥O + ∥Λ⊺

HΣwΛH∥1)1/2

≤ (KH∥Λ⊺

H(w
⊺
w −Σw)ΛH∥max + ∥Λ⊺

H∥1∥Σw∥1∥ΛH∥1)1/2

= OP

(
d1/2(m

1/2
U,d + nτ̄V )(log d/n)1/4 · nτ̄+V + d1/2(m

1/2
U,d + nτ̄V m

1/2
v,d )

)
= OP

(
d1/2(m

1/2
U,d + nτ̄V m

1/2
v,d )(1 + nτ̄+V (log d/n)1/4)

)
.

Lemma A.2.5. Under Assumptions 1.A, 1.C and 1.F, we have

(i)
∥∥n−1

∑n
s=1(n

−1/2Gc
s∆)(n

−1/2Gc⊺

s∆)
∥∥
max

= OP (n
−1);

(ii) n−1
∑n

s=1 F
c
s∆F

c⊺

s∆
d→
∫ 1
0 (
∫ t
0 σfudB

F
u −

∫ 1
0 σfudB

F
u )(
∫ t
0 σfudB

F
u −

∫ 1
0 σfudB

F
u )

⊺
dt;

(iii)
∥∥n−1

∑n
s=1(n

−1/2Gc
s∆)F

c⊺

s∆

∥∥
max

= OP (n
−1);

where Gc
s∆ = Gs∆ −G, F c

s∆ = Fs∆ − F , G = n−1
∑n

s=1Gs∆, and F = n−1
∑n

s=1 Fs∆.

Proof. Parts (i) and (ii) are trivial. For part (iii), by Lemma A.2.3(v), we have∥∥∥∥∥n−3/2
n∑

s=1

Gc
s∆F

c⊺

s∆

∥∥∥∥∥
max

= n−1/2

∥∥∥∥∥n−1
n∑

s=1

Gs∆F
⊺

s∆ −G F
⊺

∥∥∥∥∥
max

= OP (n
−1).

Lemma A.2.6. Under Assumptions 1.A–1.G, we have

(i) ∥n−1H⋆c⊺H⋆c∥O = OP (1);

(ii)
∥∥∥Ĥ⋆cΞ

⊺ −Hc
∥∥∥
max

= OP

(
n−1/2−τ−G · bnd

)
;

(iii) n−1∥ΞĤ⋆c⊺Ĥ⋆cΞ
⊺ −H⋆c⊺H⋆c∥O = OP

(
(log n)n−τ−G · bnd

)
;

(iv) n−1∥β⊺

⊥(ΞĤ
⋆c⊺Ĥ⋆cΞ

⊺
)β∥O = OP ((log n)n

−τ−G · bnd),

where Ξ is defined in 1.3.2.

Proof. (i) By Lemma A.2.4, the dominate term is n−1
∑n

s=1 F
c
s∆F

c⊺

s∆, which is of order OP (1).

(ii) By Theorem 1.3.5, we have

∥∥∥Ĥ⋆ − (H − 1nH
⊺

0 )(Ξ
⊺
)−1
∥∥∥
max

= OP

(
n−τ−G · bnd

)
.
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Since Ĥ⋆cΞ
⊺
= (In − 1n1

⊺

n/n)ĤΞ
⊺
, HcΞ

⊺
= (In − 1n1

⊺

n/n)(H − 1nh
⊺

0) and ∥In − 1n1
⊺

n/n∥O = 1,

we then have
∥∥∥Ĥ⋆cΞ

⊺ −Hc
∥∥∥
max

= OP

(
n−τ−G · bnd

)
.

(iii) The result follows by noticing that

n−1∥ΞĤ⋆c⊺Ĥ⋆cΞ
⊺ −Hc⊺H⋆c∥max

≤ 2
∥∥∥Ĥ⋆cΞ

⊺ −Hc
∥∥∥
max

∥Hc∥max +
∥∥∥Ĥ⋆cΞ

⊺ −Hc
∥∥∥2
max

= OP

(
n−τ−G · bnd

)
·OP (log n).

(iv) is an immediate consequence of (iii).

Lemma A.2.7. (i) Under Assumption 1.A, we have ∥f∥max = OP (n
−1/2(log n));

(ii) Under Assumption 1.F, we have ∥g∥max = OP ((log n)
1/γ2);

(iii) Under Assumptions 1.A and 1.E, we have ∥u∥max = OP (n
−1/2 log(nd));

(iv) Under Assumptions 1.E and 1.F, we have ∥v∥max = OP (log(nd)
1/γ2);

(v) Under Assumptions 1.A, 1.D and 1.E, we have d−1/2∥uΛH∥max = OP (n
−1/2(log(nd)));

(vi) Under Assumptions 1.D–1.F, we have d−1/2∥vΛH∥max = OP ((log n)
1/γ3).

Proof. (i) Denote the (i, j)-th entry of σFt as σFt,ij . We can prove that

P(|fit| > C9n
−1/2 log(n)) = 2P

KF∑
j=1

∫ (t+1)/n

t/n
σFs,ijdB

F
js > C9n

−1/2 log(n)


≤ 2P

KF∑
j=1

∫ (t+1)/n

t/n
σF,s∧τ,ijdB

F
js > C9n

−1/2 log(n), τ ≥ 1

+ 2P(τ < 1)

where C9 is a positive constant and the stopping time τ reduces Qt to a local bounded process

defined in Assumption 1.A. By the local (super)martingale property of stochastic exponential of∑KF
j=1

∫ (t+1)/n
t/n σFt,ijdB

F
js, we have

E

exp
KF∑

j=1

∫ (t+1)/n

t/n

√
nσF,t∧τ,ijdB

F
js −

1

2

KF∑
j=1

∫ (t+1)/n

t/n
(
√
nσF,s∧τ,ij)

2ds

 ≤ 1,

and thus

E

exp
KF∑

j=1

∫ (t+1)/n

t/n

√
nσF,s∧τ,ijdB

F
js

 ≤ E

exp
n

2

∫ (t+1)/n

t/n

KF∑
j=1

σ2
F,s∧τ,ijds


≤ E

[
exp

(
n

2

∫ (t+1)/n

t/n
Qs∧τds

)]
< ∞.
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By Bonferroni and Markov inequalities and note that τ → ∞, we have

P(∥f∥max > C9n
−1/2 log(n)) ≤

n∑
t=1

KF∑
j=1

P(|fit| > C9n
−1/2 log(n)) = O(n1−C9),

which converge to 0 when C9 is large enough.

The proofs of (ii)–(iv) are similar to that of (i) so we omit them to save space.

(v) Denote the (i, j)-th entry of σUt as σUt,ij . Following the same argument as in the proof of

part (i), we have

E

exp
 d∑

i=1

d∑
j=1

λH,ik

∫ (t+1)/n

t/n
(n/d)1/2σU,s∧τ,ijdB

U
js


≤ E

exp
 n

2d

∫ (t+1)/n

t/n

d∑
i=1

d∑
j=1

λH,ikσ
2
U,s∧τ,ijds


≤ E

[
exp

(
n∥ΛH∥max

2

∫ (t+1)/n

t/n
Qs∧τds

)]
< ∞,

for k = 1, ...,KH . Then using Bonferroni and Markov inequalities again, we can prove the result.

(vi) It can be proved by using Markov inequality and (1.2.10).

Lemma A.2.8. (i) Under Assumption 1.A, we have ∥F − 1nF
⊺

0 ∥max = OP (log n);

(ii) Under Assumption 1.F, we have and ∥G − 1nG
⊺

0∥max = OP ((log n)
1/γ2);

(iii) Under Assumptions 1.A and 1.E, we have ∥U − 1nU
⊺

0 ∥max = OP (log(nd));

(iv) Under Assumptions 1.E and 1.F, we have ∥V − 1nV
⊺

0 ∥max = OP (log(nd)
1/γ2);

(v) Under Assumptions 1.A, 1.D and 1.E, we have d−1/2∥(U − 1nU
⊺

0 )ΛH∥max = OP ((log(nd));

(vi) Under Assumptions 1.D–1.F, we have d−1/2∥(V − 1nV
⊺

0 )ΛH∥max = OP ((log n)
1/γ3).

Proof. The proof is similar to Lemma A.2.7 so we omit the proof.
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Appendix to Chapter 2

B.1 Proofs of Theorems 2.4.1–2.4.4

Proof of Theorem 2.4.1. The main idea to be used in this proof is similar to that in Bickel

et al. (2009), Lian (2012) and Li et al. (2015a) which study high-dimensional data under the classic

independence assumption. In the following proof, we need to use the uniform convergence properties

of the kernel-weighted quantities for time-varying VAR (say, Lemma B.2.3 in Appendix B.2). In

fact, we next prove a strengthened version of (2.4.4) which also includes a uniform consistency of

the derivative function estimates:

max
1≤i≤d

max
1≤t≤n

(
∥α̃i•(τt)−αi•(τt)∥+ h

∥∥α̃′
i•(τt)−α′

i•(τt)
∥∥) = OP

(√
sλ1

)
. (B.1.1)

As we only consider the time-varying VAR (1) model,

αi•(τt) = [αi,1(τt), αi,2(τt), · · · , αi,d(τt)]
⊺

and α′
i•(τt) =

[
α′
i,1(τt), α

′
i,2(τt), · · · , α′

i,d(τt)
]⊺

.

Recall that Ji(τt) = {j : αi,j(τt) ̸= 0} and define J′
i (τt) =

{
j : α′

i,j(τt) ̸= 0
}
. We first prove that

for any i = 1, · · · , d and t = 1, · · · , n,

∑
j /∈Ji(τt)

|δi,j(τt)|+
∑

j /∈J′
i (τt)

|δ′i,j(τt)| ≤ 2

 ∑
j∈Ji(τt)

|δi,j(τt)|+
∑

j∈J′
i (τt)

|δ′i,j(τt)|

 , (B.1.2)

where δi,j(τt) = α̃i,j(τt)− αi,j(τt) and δ′i,j(τt) = h
[
α̃′
i,j(τt)− α′

i,j(τt)
]
.

By the definition of the preliminary time-varying LASSO, we have

L∗
i

(
α̃i•(τt), α̃

′
i•(τt) | τt

)
≤ L∗

i

(
αi•(τt),α

′
i•(τt) | τt

)
for any i = 1, · · · , d and t = 1, · · · , n, where L∗

i (α,β | τt) is defined in (2.3.4). Then, we readily
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have that

Li

(
αi•(τt),α

′
i•(τt) | τt

)
−Li

(
α̃i•(τt), α̃

′
i•(τt) | τt

)
≥ λ1

 d∑
j=1

|α̃i,j(τt)|+ h
d∑

j=1

|α̃′
i,j(τt)| −

d∑
j=1

|αi,j(τt)| − h
d∑

j=1

|α′
i,j(τt)|

 . (B.1.3)

Let

δi(τt) = [δi,1(τt), · · · , δi,d(τt)]
⊺

and δ′i(τt) =
[
δ′i,1(τt), · · · , δ′i,d(τt)

]⊺
.

Note that

Li

(
αi•(τt),α

′
i•(τt) | τt

)
−Li

(
α̃i•(τt), α̃

′
i•(τt) | τt

)
= 2

[
L

⊺

i,0(τt)δi(τt) + L
⊺

i,1(τt)δ
′
i(τt)

]
− 1

n

n∑
s=1

{[
δi(τt) + δ′i(τt)

(
τs − τt

h

)]⊺
Xs−1

}2

Kh(τs − τt)

≤ 2
[
L

⊺

i,0(τt)δi(τt) + L
⊺

i,1(τt)δ
′
i(τt)

]
, (B.1.4)

where Li,0(τt) and Li,1(τt) are defined in Appendix B.2. By Lemma B.2.3, we may show that

∣∣L⊺

i,0(τt)δi(τt) + L
⊺

i,1(τt)δ
′
i(τt)

∣∣ ≤ OP (ζn,d) ·

 d∑
j=1

|δi,j(τt)|+
d∑

j=1

|δ′i,j(τt)|

 (B.1.5)

uniformly over i = 1, · · · , d and t = 1, · · · , n.

On the other hand, by the triangle inequality, we may prove that

λ1

 d∑
j=1

|α̃i,j(τt)|+ h

d∑
j=1

|α̃′
i,j(τt)| −

d∑
j=1

|αi,j(τt)| − h

d∑
j=1

|α′
i,j(τt)|


= λ1

 ∑
j∈Ji(τt)

(|α̃i,j(τt)| − |αi,j(τt)|) + h
∑

j∈J′
i (τt)

(
|α̃′

i,j(τt)| − |α′
i,j(τt)|

)+

λ1

 ∑
j /∈Ji(τt)

|α̃i,j(τt)|+ h
∑

j /∈J′
i (τt)

|α̃′
i,j(τt)|


≥ −λ1

 ∑
j∈Ji(τt)

|δi,j(τt)|+
∑

j∈J′
i (τt)

|δ′i,j(τt)|

+ λ1

 ∑
j /∈Ji(τt)

|δi,j(τt)|+
∑

j /∈J′
i (τt)

|δ′i,j(τt)|

 .

(B.1.6)

By (B.1.3)–(B.1.6) and the condition ζn,d = o(λ1) in Assumption 2.C(i), we complete the proof of

(B.1.2).
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Let u1 = (u1,1, · · · , u1,d)
⊺
and u2 = (u2,1, · · · , u2,d)

⊺
be two d-dimensional vectors and

Bi(τt;M) =

{
u =

(
u

⊺

1, u
⊺

2

)⊺
: ∥u1∥2 + ∥u2∥2 = M,

d∑
j=1

(|u1,j |+ |u2,j |) ≤ 3

 ∑
j∈Ji(τt)

|u1,j |+
∑

j∈J′
i (τt)

|u2,j |

},
where M is a positive constant which may be sufficiently large. Note that for any i = 1, · · · , d,

t = 1, · · · , n, and u ∈ Bi(τt;M),

L∗
i

(
αi•(τt) +

√
sλ1u1,α

′
i•(τt) +

√
sλ1u2/h | τt

)
−L∗

i

(
αi•(τt),α

′
i•(τt) | τt

)
=

3∑
k=1

Ξi,k(τt), (B.1.7)

where

Ξi,1(τt) = Li

(
αi•(τt) +

√
sλ1u1,αi•(τt) +

√
sλ1u2/h | τt

)
−Li

(
αi•(τt),α

′
i•(τt) | τt

)
,

Ξi,2(τt) = λ1

 d∑
j=1

|αi,j(τt) +
√
sλ1u1,j | −

d∑
j=1

|αi,j(τt)|

 ,

Ξi,3(τt) = λ1

 d∑
j=1

|hα′
i,j(τt) +

√
sλ1u2,j | −

d∑
j=1

|hα′
i,j(τt)|

 .

For Ξi,1(τt), it can be written as

Ξi,1(τt) = −2
√
sλ1u

⊺
Li(τt) + sλ2

1u
⊺
Ψ(τt)u, (B.1.8)

where Li(τ) =
[
L

⊺

i,0(τ), L
⊺

i,1(τ)
]⊺
, and Ψ(τ) is defined in (2.4.2). By the definition of Bi(τt;M),

Lemma B.2.3 and the Cauchy-Schwarz inequality, we have

max
1≤i≤d

∣∣√sλ1u
⊺
Li(τt)

∣∣ = oP
(
sλ2

1

)
· ∥u∥. (B.1.9)

By (B.1.8), (B.1.9) and the uniform restricted eigenvalue condition (2.4.3), when n is sufficiently

large and M is chosen to be large enough, we have

min
1≤i≤d

min
1≤t≤n

inf
u∈Bi(τt;M)

u
⊺
Ξi,1(τt) = sλ2

1u
⊺
Ψ(τt)u(1 + oP (1)) >

1

2
κ0sλ

2
1∥u∥2, w.p.a.1. (B.1.10)

We next consider Ξi,2(τt) and Ξi,3(τt). It is easy to show that

Ξi,2(τt) = λ1

 d∑
j=1

|αi,j(τt) +
√
sλ1u1,j | −

d∑
j=1

|αi,j(τt)|


= λ1

∑
j∈Ji(τt)

[
|αi,j(τt) +

√
sλ1u1,j | − |αi,j(τt)|

]
+ λ1

∑
j /∈Ji(τt)

|
√
sλ1u1,j |
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= O
(
sλ2

1

)
· ∥u1∥+ λ1

∑
j /∈Ji(τt)

|
√
sλ1u1,j | = O

(
sλ2

1

)
· ∥u1∥, (B.1.11)

and similarly,

Ξi,3(τt) = O
(
sλ2

1

)
· ∥u2∥+ λ1

∑
j /∈J′

i (τt)

|
√
sλ1u2,j | = O

(
sλ2

1

)
· ∥u2∥, (B.1.12)

uniformly over i = 1, · · · , d and t = 1, · · · , n.

With (B.1.7) and (B.1.10)–(B.1.12), letting M be large enough, we can prove that the leading

term of

L∗
i

(
αi•(τt) +

√
sλ1u1,α

′
i•(τt) +

√
sλ1u2/h | τt

)
−L∗

i

(
αi•(τt),α

′
i•(τt) | τt

)
is positive uniformly over i = 1, · · · , d and t = 1, · · · , n. Hence, we may find a local minimiser to

L∗
i (α,β | τt), denoted by [α̃i•(τt), hα̃

′
i•(τt)], in the interior of

{(
αi•(τt) +

√
sλ1u1, hα

′
i•(τt) +

√
sλ1u2

)
: u ∈ Bi(τt;M)

}
,

which, together with (B.1.2), completes the proof of (B.1.1). ■

Proof of Theorem 2.4.2. Define

Lα
i,j =

[
lαi,j(α•1,β•1 | τ1), · · · , lαi,j(α•n,β•n | τn)

]⊺
,

Lβ
i,j =

[
lβi,j(α•1,β•1 | τ1), · · · , lβi,j(α•n,β•n | τn)

]⊺
,

Pα
i,j =

[
p′λ2

(∥α̃i,j∥)
αj|1

∥αj∥
, · · · , p′λ2

(∥α̃i,j∥)
αj|n

∥αj∥

]⊺
,

Pβ
i,j =

[
p′λ2

(
D̃i,j

) βj|1

∥βj∥
, · · · , p′λ2

(
D̃i,j

) βj|n

∥βj∥

]⊺
,

where

lαi,j(α,β | τ) =
1

n

n∑
t=1

{
xt,i − [α+ β(τt − τ)]

⊺
Xt−1

}
xt−1,jKh(τt − τ),

lβi,j(α,β | τ) =
1

n

n∑
t=1

{
xt,i − [α+ β(τt − τ)]

⊺
Xt−1

}
xt−1,j

(
τt − τ

h

)
Kh(τt − τ).

From the KKT condition (e.g., Fan and Lv, 2011; Fan et al., 2014b; Li et al., 2015a), the oracle

estimate
(
Âo

i , B̂
o
i

)
is the unique minimiser to the objective function Qi(A,B) if

Lα
i,j −Pα

i,j = 0n for j ∈ Ji, Lβ
i,j −Pβ

i,j = 0n for j ∈ J′
i , (B.1.13)

max
j∈Ji

∥∥Lα
i,j

∥∥ < min
j∈Ji

p′λ2
(∥α̃i,j∥) , max

j∈Ji

∥∥∥Lβ
i,j

∥∥∥ < min
j∈Ji

p′λ2

(
D̃i,j

)
, (B.1.14)
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hold at A = Âo
i and B = B̂o

i , where 0n is an n-dimensional vector of zeros.

Note that the equalities in (B.1.13) automatically hold by the definition of the oracle estimates

Âo
i and B̂o

i . It remains to prove (B.1.14). We next only show the proof of the first assertion

in (B.1.14) as the proof of the second one is analogous. By Theorem 2.4.1 and the condition of

(ns)1/2λ1 = o(λ2) in Assumption 2.D(i), we may show that minj∈Ji
p′λ2

(∥α̃i,j∥) = λ2 w.p.a.1.

Meanwhile, by Lemmas B.2.3 and B.2.4 as well as Assumption 2.D(i), we may prove that

max
j∈Ji

∥∥Lα
i,j

∥∥ = OP

(√
ns log(n ∨ d)ζn,d

)
= oP (λ2)

when A = Âo
i and B = B̂o

i , leading to the first assertion in (B.1.14). Then, the mean squared

convergence result (2.4.8) follows from Lemma B.2.4. ■

Proof of Corollary 2.4.3. By Theorem 2.4.2 and Assumption 2.D(ii), we may show that

P

(
min

(i,j)∈EG
n

n∑
t=1

â2ij(τt) ≥ a0λ2 > 0

)
→ 1

and

P

(
n∑

t=1

â2ij(τt) = 0, ∀ (i, j) /∈ EG
n

)
→ 1,

leading to (2.4.9). ■

Proof of Theorem 2.4.4. By Lemma B.2.5 in Appendix B.2, we have

sup
0≤τ≤1

∥∥∥Σ̂(τ)−Σ(τ)
∥∥∥
max

= OP

(
ν⋄n,d + ν∗n,d

)
. (B.1.15)

By (B.1.15), the sparsity assumption (2.3.7) and the inequality: ∥W1W2∥max ≤ ∥W1∥1∥W2∥max

for any two square matrices W1 and W2 with the same size,

sup
0≤τ≤1

∥∥∥Id − Σ̂(τ)Ω(τ)
∥∥∥
max

= sup
0≤τ≤1

∥∥∥Σ(τ)Ω(τ)− Σ̂(τ)Ω(τ)
∥∥∥
max

≤ sup
0≤τ≤1

∥Ω(τ)∥1
∥∥∥Σ̂(τ)−Σ(τ)

∥∥∥
max

≤ C2 sup
0≤τ≤1

∥∥∥Σ̂(τ)−Σ(τ)
∥∥∥
max

= OP

(
ν⋄n,d + ν∗n,d

)
, (B.1.16)

where C2 is defined in (2.3.7). By (B.1.16), the triangle inequality, Assumption 2.E(ii) and the

definition of the time-varying CLIME estimate, we readily have that

sup
0≤τ≤1

∥∥∥Σ̂(τ)
[
Ω̃(τ)−Ω(τ)

]∥∥∥
max
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≤ sup
0≤τ≤1

∥∥∥Σ̂(τ)Ω̃(τ)− Id

∥∥∥
max

+ sup
0≤τ≤1

∥∥∥Id − Σ̂(τ)Ω(τ)
∥∥∥
max

≤ λ3 +OP

(
ν⋄n,d + ν∗n,d

)
= OP

(
ν⋄n,d + ν∗n,d

)
. (B.1.17)

By Lemma 1 in Cai et al. (2011),
∥∥∥Ω̃(τ)

∥∥∥
1
≤ ∥Ω(τ)∥1 ≤ C2 uniformly over 0 ≤ τ ≤ 1. Then, by

(B.1.16) and (B.1.17), we readily have that

sup
0≤τ≤1

∥∥∥Σ(τ)
[
Ω̃(τ)−Ω(τ)

]∥∥∥
max

≤ sup
0≤τ≤1

∥∥∥Σ̂(τ)
[
Ω̃(τ)−Ω(τ)

]∥∥∥
max

+ sup
0≤τ≤1

∥∥∥[Σ̂(τ)−Σ(τ)
] [

Ω̃(τ)−Ω(τ)
]∥∥∥

max

≤ OP

(
ν⋄n,d + ν∗n,d

)
+ 2C2 sup

0≤τ≤1

∥∥∥Σ̂(τ)−Σ(τ)
∥∥∥
max

= OP

(
ν⋄n,d + ν∗n,d

)
. (B.1.18)

Using the assumption ∥Ω(τ)∥1 ≤ C2 again and (B.1.18), we have

sup
0≤τ≤1

∥∥∥Ω̃(τ)−Ω(τ)
∥∥∥
max

≤ sup
0≤τ≤1

∥Ω(τ)∥1
∥∥∥Σ(τ)

[
Ω̃(τ)−Ω(τ)

]∥∥∥
max

= OP

(
ν∗n,d + ν⋄n,d

)
. (B.1.19)

By (B.1.19) and the definition of Ω̂(τ) in (2.3.10), we prove (2.4.10).

We next give the proof of (2.4.11). By Lemma 1 in Cai et al. (2011), we have

d∑
i=1

|ω̂ij(τ)| ≤
d∑

i=1

|ω̃ij(τ)| ≤
d∑

i=1

|ωij(τ)| .

Noting that

d∑
j=1

|ω̂ij(τ)| I (|ω̂ij(τ)| ≤ λ3) =

d∑
j=1

|ω̂ij(τ)| −
d∑

j=1

|ω̂ij(τ)| I (|ω̂ij(τ)| > λ3)

≤
d∑

j=1

|ω̂ij(τ)| −
d∑

j=1

|ωij(τ)|+
d∑

j=1

|ω̂ij(τ)I (|ω̂ij(τ)| > λ3)− ωij(τ)|

≤
d∑

j=1

|ω̂ij(τ)I (|ω̂ij(τ)| > λ3)− ωij(τ)| ,

we have

sup
0≤τ≤1

∥∥∥Ω̂(τ)−Ω(τ)
∥∥∥
O

≤ sup
0≤τ≤1

max
1≤i≤d

d∑
j=1

|ω̂ij(τ)− ωij(τ)|

≤ 2 sup
0≤τ≤1

max
1≤i≤d

d∑
j=1

|ω̂ij(τ)− ωij(τ)| I (|ω̂ij(τ)| > λ3) +

2 sup
0≤τ≤1

max
1≤i≤d

d∑
j=1

|ωij(τ)| I (|ω̂ij(τ)| ≤ λ3)
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=: ∆1 +∆2. (B.1.20)

Define an event

Eϵ =

{
sup

0≤τ≤1

∥∥∥Ω̂(τ)−Ω(τ)
∥∥∥
max

≤ cϵ
(
ν⋄n,d + ν∗n,d

)}
,

where cϵ is a positive constant such that P (Eϵ) ≥ 1− ϵ with any ϵ > 0. Conditional on Eϵ,

∆1 ≤ cϵ(ν
⋄
n,d + ν∗n,d) sup

0≤τ≤1

max
1≤i≤d

d∑
j=1

I (|ω̂ij(τ)| > λ3)

 . (B.1.21)

Note that on Eϵ,

|ω̂ij(τ)| ≤ |ωij(τ)|+ |ω̂ij(τ)− ωij(τ)| ≤ |ωij(τ)|+ cϵ
(
ν⋄n,d + ν∗n,d

)
.

Choosing C3 = 2cϵ in Assumption 2.E(ii), the event {|ω̂ij(τ)| > λ3} implies that{
|ωij(τ)| > cϵ

(
ν⋄n,d + ν∗n,d

)}
holds. Then, by (2.3.7) and (B.1.21), we may show that on Eϵ,

∆1 ≤ cϵ
(
ν⋄n,d + ν∗n,d

) sup
0≤τ≤1

max
1≤i≤d

d∑
j=1

I
(
|ωij(τ)| > cϵ

(
ν⋄n,d + ν∗n,d

))
≤ cϵ

(
ν⋄n,d + ν∗n,d

) sup
0≤τ≤1

max
1≤i≤d

d∑
j=1

|ωij(τ)|q

cqϵ
(
ν⋄n,d + ν∗n,d

)q


= OP

(
ξd ·

(
ν⋄n,d + ν∗n,d

)1−q
)
. (B.1.22)

On the other hand, by the triangle inequality,

|ω̂ij(τ)| ≥ |ωij(τ)| − |ω̂ij(τ)− ωij(τ)| ≥ |ωij(τ)| − cϵ
(
ν⋄n,d + ν∗n,d

)
on Eϵ. Hence, we readily show that {|ω̂ij(τ)| ≤ λ3} indicates

{
|ωij(τ)| ≤ 3cϵ

(
ν⋄n,d + ν∗n,d

)}
. Then,

by (2.3.7) again, we have

∆2 ≤ sup
0≤τ≤1

max
1≤i≤d

d∑
j=1

|ωij(τ)| I
(
|ωij(τ)| ≤ 3cϵ

(
ν⋄n,d + ν∗n,d

))
≤ (3cϵ)

1−q
(
ν⋄n,d + ν∗n,d

)1−q
sup

0≤τ≤1
max
1≤i≤d

d∑
j=1

|ωij(τ)|q

= OP

(
ξd
(
ν⋄n,d + ν∗n,d

)1−q
)
. (B.1.23)

The proof of (2.4.11) can be completed by (B.1.20), (B.1.22) and (B.1.23).
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Following the proof of (2.4.11), we also have

sup
0≤τ≤1

∥∥∥Ω̂(τ)−Ω(τ)
∥∥∥
1
= OP

(
ξd
(
ν⋄n,d + ν∗n,d

)1−q
)
,

which, together with the following inequalities:

1

d

∥∥∥Ω̂(τ)−Ω(τ)
∥∥∥2
F
≤
∥∥∥Ω̂(τ)−Ω(τ)

∥∥∥
max

∥∥∥Ω̂(τ)−Ω(τ)
∥∥∥
1
,

leads to (2.4.12). The proof of Theorem 2.4.4 is completed. ■

Proof of Corollary 2.4.5. By (2.4.10) in Theorem 2.4.4 and the condition of

min(i,j)∈EP min1≤t≤n |ωij(τt)| ≫ λ3, we have

P

(
min

(i,j)∈EP
n

min
1≤t≤n

|ω̂ij(τt)| ≥ λ3 > 0

)
→ 1. (B.1.24)

Letting Eϵ and cϵ be defined as in the proof of Theorem2.4.4 and choosing C3 = 2cϵ in Assumption

2.E(ii), we may prove that

max
(i,j)/∈EP

n

max
1≤t≤n

|ω̂ij(τt)| ≤ cϵ(ν
∗
n,d + ν⋄n,d) < λ3 (B.1.25)

conditional on Eϵ. By virtue of (B.1.24) and (B.1.25), letting ϵ → 0, we prove (2.4.13). ■

B.2 Technical lemmas

In this appendix, we give some technical lemmas which are crucial to proofs of the main theoretical

results in Appendix B.1. Without loss of generality, we focus on the time-varying VAR (1) model

framework. Throughout the proofs, we let M denote a generic positive constant whose value may

change from line to line.

Lemma B.2.1. Suppose that Assumption 2.A is satisfied. Let

ι2 = ι1/C∗, ι3 = ι1(1− ρ)/(C2
1C∗), C∗ = max

1≤t≤n
∥Σt∥O < ∞

where ι1 and ρ are defined in Assumption 2.A, and C1 is defined in (2.2.4). For any d-dimensional

vector u satisfying ∥u∥ = 1,

max
1≤t≤n

E
[
exp

{
ι2
(
u

⊺
et
)2}] ≤ C0 < ∞, (B.2.1)

and

max
1≤t≤n

max
1≤i≤d

E
[
exp

{
ι3x

2
t,i

}]
≤ C

1/(1−ρ)
0 < ∞, (B.2.2)
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where C0 is a positive constant defined in Assumption 2.A(iii).

Proof of Lemma B.2.1. Writing u
⊺

t = u
⊺
Σ

1/2
t and using Assumption 2.A(ii)(iii), we may show

that

max
1≤t≤n

E
[
exp

{
ι2
(
u

⊺
et
)2}]

= max
1≤t≤n

E

[
exp

{
ι2

(
u

⊺
Σ

1/2
t εt

)2}]
= max

1≤t≤n
E
[
exp

{
ι2∥ut∥2

(
u

⊺

t εt/∥ut∥
)2}]

≤ max
1≤t≤n

E
[
exp

{
ι2C∗

(
u

⊺

t εt/∥ut∥
)2}]

= max
1≤t≤n

E
[
exp

{
ι1
(
u

⊺

t εt/∥ut∥
)2}] ≤ C0,

completing the proof of (B.2.1).

By the time-varying linear process representation (2.2.3), we have

x2t,i =
∞∑

k1=0

∞∑
k2=0

(
Φ

⊺

t,k1,iet−k1

) (
Φ

⊺

t,k2,iet−k2

)
where Φ

⊺

t,k,i is the i-th row vector of Φt,k. Without loss of generality, assume (2.2.4) for all k ≥ 0.

Letting ut,k,i = Φt,k,i/∥Φt,k,i∥ and noting that

max
1≤t≤n

max
1≤i≤d

∥Φt,k,i∥ ≤ max
1≤t≤n

∥Φt,k∥O ≤ C1ρ
k,

we may show that

x2t,i ≤ C2
1

∞∑
k1=0

ρk1
∞∑

k2=0

ρk2
∣∣(u⊺

t,k1,iet−k1

) (
u

⊺

t,k2,iet−k2

)∣∣
≤ C2

1

∞∑
k1=0

ρk1
∞∑

k2=0

ρk2
(
u

⊺

t,k2,iet−k2

)2
=

C2
1

1− ρ

∞∑
k=0

ρk
(
u

⊺

t,k,iet−k

)2
,

which, together with the independence assumption over et and (B.2.1), indicates that

max
1≤t≤n

max
1≤i≤d

E
[
exp

{
ι3x

2
t,i

}]
≤ max

1≤t≤n
max
1≤i≤d

E

[
exp

{
ι3C

2
1

1− ρ

∞∑
k=0

ρk
(
u

⊺

t,k,iet−k

)2}]

= max
1≤t≤n

max
1≤i≤d

∞∏
k=0

E

[
exp

{
ι3C

2
1

1− ρ
ρk
(
u

⊺

t,k,iet−k

)2}]

= max
1≤t≤n

max
1≤i≤d

∞∏
k=0

E
[
exp

{
ι2ρ

k
(
u

⊺

t,k,iet−k

)2}]
≤

∞∏
k=0

(
max
1≤t≤n

max
1≤i≤d

E
[
exp

{
ι2
(
u

⊺

t,k,iet−k

)2}])ρk
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≤
∞∏
k=0

Cρk

0 = C
1/(1−ρ)
0 ,

completing the proof of (B.2.2). ■

The following lemma is a well-known Bernstein-type inequality for martingale differences (e.g.,

Freedman, 1975; de la Peña, 1999).

Lemma B.2.2. Let (zt,Ft)t≥1 be a sequence of martingale differences and σ2
n =

∑n
t=1 E(z

2
t |Ft−1).

Suppose that there exists a constant a > 0 such that P(|zt| ≤ a|Ft−1) = 1 for all t ≥ 2. Then, for

all x, y > 0,

P

(
n∑

t=1

zt > x, σ2
n ≤ y

)
≤ exp

{
− x2

2(y + ax)

}
.

Define

Li,0(τ) =
1

n

n∑
t=1

et,i(τ)Xt−1Kh(τt − τ) and Li,1(τ) =
1

n

n∑
t=1

et,i(τ)Xt−1

(
τt − τ

h

)
Kh(τt − τ),

where et,i(τ) = xt,i− [αi•(τ) +α′
i•(τ)(τt − τ)]

⊺
Xt−1. Lemma B.2.3 below gives the uniform asymp-

totic orders for the kernel-weighted quantities Li,k(·), k = 0, 1.

Lemma B.2.3. Suppose that Assumptions 2.A and 2.B are satisfied. Then we have

max
1≤i≤d

max
1≤t≤n

|Li,k(τt)|max = OP (ζn,d) , k = 0, 1, (B.2.3)

where ζn,d = log(n ∨ d)
[
(nh)−1/2 + sh2

]
as in Assumption 2.C(i).

Proof of Lemma B.2.3. We only prove (B.2.3) for k = 0 as the proof is analogous for k = 1.

Noting that

el,i(τt) = el,i +
[
αi•(τl)−αi•(τt)−α′

i•(τt)(τl − τt)
]⊺

Xl−1 =: el,i + b
⊺

l,i(τt)Xl−1,

we write

Li,0(τt) =
1

n

n∑
l=1

el,iXl−1Kh(τl − τt) +
1

n

n∑
l=1

b
⊺

l,i(τt)Xl−1Xl−1Kh(τl − τt).

In order to prove (B.2.3) with k = 0, it is sufficient to show that

max
1≤i≤d

max
1≤j≤d

max
1≤t≤n

∣∣∣∣∣ 1n
n∑

l=1

el,ixl−1,jKh(τl − τt)

∣∣∣∣∣ = OP

(
(nh)−1/2 log(n ∨ d)

)
(B.2.4)

and

max
1≤i≤d

max
1≤j≤d

max
1≤t≤n

∣∣∣∣∣ 1n
n∑

l=1

b
⊺

l,i(τt)Xl−1xl−1,jKh(τl − τt)

∣∣∣∣∣ = OP

(
sh2 log(n ∨ d)

)
. (B.2.5)
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Define

el,i = el,iI

(
|el,i| ≤ 2

√
ι−1
2 log(n ∨ d)

)
, ẽl,i = el,i − el,i,

and

xl,i = xl,iI

(
|xl,i| ≤ 2

√
ι−1
3 log(n ∨ d)

)
, x̃l,i = xl,i − xl,i,

where ι2 and ι3 are defined in Lemma B.2.1. Then, we have the following decomposition:

1

n

n∑
l=1

el,ixl−1,jKh(τl − τt) =
1

n

n∑
l=1

el,ixl−1,jKh(τl − τt) +
1

n

n∑
l=1

el,ix̃l−1,jKh(τl − τt) +

1

n

n∑
l=1

ẽl,ixl−1,jKh(τl − τt) +
1

n

n∑
l=1

ẽl,ix̃l−1,jKh(τl − τt).

By the Bonferroni and Markov inequalities as well as (B.2.1), for any ϵ > 0, we have

P

(
max
1≤i≤d

max
1≤j≤d

max
1≤t≤n

∣∣∣∣∣ 1n
n∑

l=1

ẽl,ixl−1,jKh(τl − τt)

∣∣∣∣∣ > ϵ(nh)−1/2 log(n ∨ d)

)

≤ P

(
max
1≤i≤d

max
1≤t≤n

|et,i| > 2

√
ι−1
2 log(n ∨ d)

)
≤

d∑
i=1

n∑
t=1

P

(
|et,i| > 2

√
ι−1
2 log(n ∨ d)

)

≤
d∑

i=1

n∑
t=1

(n ∨ d)−4E
(
exp

{
ι2e

2
t,i

})
≤ M(n ∨ d)−2 = o(1). (B.2.6)

Hence, we have

max
1≤i≤d

max
1≤j≤d

max
1≤t≤n

∣∣∣∣∣ 1n
n∑

l=1

ẽl,ixl−1,jKh(τt − τt)

∣∣∣∣∣ = oP

(
(nh)−1/2 log(n ∨ d)

)
. (B.2.7)

Following the proof of (B.2.7), we also have

max
1≤i≤d

max
1≤j≤d

max
1≤t≤n

∣∣∣∣∣ 1n
n∑

l=1

el,ix̃l−1,jKh(τl − τt)

∣∣∣∣∣ = oP

(
(nh)−1/2 log(n ∨ d)

)
(B.2.8)

and

max
1≤i≤d

max
1≤j≤d

max
1≤t≤n

∣∣∣∣∣ 1n
n∑

l=1

ẽl,ix̃l−1,jKh(τl − τt)

∣∣∣∣∣ = oP

(
(nh)−1/2 log(n ∨ d)

)
. (B.2.9)

By the Cauchy-Schwarz and Markov inequalities and (B.2.1), we may show that

E (|ẽl,i|) ≤
[
E
(
|el,i|2

)]1/2 [
P

(
|el,i| > 2

√
ι−1
2 log(n ∨ d)

)]1/2
=

[
E
(
|el,i|2

)]1/2 [
P
(
exp

{
ι2e

2
l,i

}
> (n ∨ d)4

)]1/2
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≤
[
E
(
|el,i|2

)]1/2 [
E
(
exp

{
ι2e

2
l,i

})]1/2
(n ∨ d)−2

≤ M(n ∨ d)−2,

which, together with the definition of xl−1,j and the condition on the kernel function, indicates that∣∣∣∣∣ 1n
n∑

l=1

E
[
el,ixl−1,jKh(τl − τt)

∣∣Fl−1(X)
]∣∣∣∣∣ =

∣∣∣∣∣ 1n
n∑

l=1

E
[
ẽl,ixl−1,jKh(τl − τt)

∣∣Fl−1(X)
]∣∣∣∣∣

= OP

(
(n ∨ d)−2

√
log(n ∨ d)

)
= oP

(
(nh)−1/2 log(n ∨ d)

)
, (B.2.10)

where Fl(X) = σ(Xt : t ≤ l). With (B.2.7)–(B.2.10), we readily have that

1

n

n∑
l=1

el,ixl−1,jKh(τl − τt) =
1

n

n∑
l=1

{el,i − E [el,i|Fl−1(X)]}xl−1,jKh(τl − τt) + oP

(
(nh)−1/2 log(n ∨ d)

)
.

(B.2.11)

By the Bonferroni inequality and the Bernstein inequality in Lemma B.2.2, we prove that

P

(
max
1≤i≤d

max
1≤j≤d

max
1≤t≤n

∣∣∣∣∣ 1n
n∑

l=1

{el,i − E [el,i|Fl−1(X)]}xl−1,jKh(τl − τt)

∣∣∣∣∣ > M0(nh)
−1/2 log(n ∨ d)

)

≤
d∑

i=1

d∑
j=1

n∑
t=1

P

(∣∣∣∣∣ 1n
n∑

l=1

{el,i − E [el,i|Fl−1(X)]}xl−1,jKh(τl − τt)

∣∣∣∣∣ > M0(nh)
−1/2 log(n ∨ d)

)

≤
d∑

i=1

d∑
j=1

n∑
t=1

exp {−g0(M0) log(n ∨ d)} = O
(
nd2(n ∨ d)−g0(M0)

)
= o(1),

letting M0 > 0 be sufficiently large, where g0(·) is a positive function satisfying g0(z) → ∞ as

z → +∞. Consequently, we have

max
1≤i≤d

max
1≤j≤d

max
1≤t≤n

∣∣∣∣∣ 1n
n∑

l=1

{el,i − E [el,i|Fl−1(X)]}xl−1,jKh(τl − τt)

∣∣∣∣∣ = OP

(
(nh)−1/2 log(n ∨ d)

)
.

(B.2.12)

By virtue of (B.2.11) and (B.2.12), we complete the proof of (B.2.4).

Letting X l = (xl,1, · · · , xl,d)
⊺
and X̃l = (x̃l,1, · · · , x̃l,d)

⊺
, we have the following decomposition:

1

n

n∑
l=1

b
⊺

l,i(τt)Xl−1xl−1,jKh(τl − τt)

=
1

n

n∑
l=1

b
⊺

l,i(τt)X l−1xl−1,jKh(τl − τt) +
1

n

n∑
l=1

b
⊺

l,i(τt)X l−1x̃l−1,jKh(τl − τt)

1

n

n∑
l=1

b
⊺

l,i(τt)X̃l−1xl−1,jKh(τl − τt) +
1

n

n∑
l=1

b
⊺

l,i(τt)X̃l−1x̃l−1,jKh(τl − τt). (B.2.13)

Similarly to the proof of (B.2.11), we may show that the last three terms on the right side of (B.2.13)

are of order oP
(
h2 log(n ∨ d)

)
. By Assumption 2.A(i) and the Taylor expansion of αi•(·), we can
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prove that the first term on the right side of (B.2.13) is of order OP

(
sh2 log(n ∨ d)

)
uniformly over

i, j, t. The proof of (B.2.5) is completed. ■

Lemma B.2.4 below gives the mean squared convergence rates of the infeasible oracle estimates

Âo
i and B̂o

i defined in (2.4.6) and (2.4.7) of Section 2.4.2.

Lemma B.2.4. Suppose Assumptions 2.A–2.D are satisfied. Then we have

max
1≤i≤d

1

n

n∑
t=1

d∑
j=1

∥∥α̂o
i,j(τt)− αi,j(τt)

∥∥2 = OP

(
sζ2n,d

)
, (B.2.14)

and

max
1≤i≤d

1

n

n∑
t=1

d∑
j=1

∥∥α̂′o
i,j(τt)− α′

i,j(τt)
∥∥2 = OP

(
sζ2n,dh

−2
)
. (B.2.15)

Proof of Lemma B.2.4. For any 1 ≤ i ≤ d, let

Uo =
[
(vo1)

⊺
, (wo

1)
⊺
, (vo2)

⊺
, (wo

2)
⊺
, · · · , (von)

⊺
, (wo

n)
⊺]⊺

,

where vot =
(
vo1|t, · · · , v

o
d|t

)⊺

with voj|t = 0 for j ∈ Ji, and wo
t =

(
wo
1|t, · · · , w

o
d|t

)⊺

with wo
j|t = 0 for

j ∈ J
′
i. Define

B∗
i (M∗) =

{
Uo :

n∑
t=1

(
∥vot ∥2 + ∥wo

t ∥
2
)
= ∥Vo∥2 + ∥Wo∥2 = nM∗

}
,

where M∗ is a positive constant which can be sufficiently large,

Vo =
[
(vo1)

⊺
, (vo2)

⊺
, · · · , (von)

⊺]⊺
and Wo =

[
(wo

1)
⊺
, (wo

2)
⊺
, · · · , (wo

n)
⊺]⊺

.

Write

Ai = (αi,1, · · · ,αi,d) with αi,j = [αi,j(τ1), · · · , αi,j(τn)]
⊺
,

Bi =
(
α′

i,1, · · · ,α′
i,d

)
with α′

i,j =
[
α′
i,j(τ1), · · · , α′

i,j(τn)
]⊺

,

as the matrices of true time-varying parameters. Observe that

Qi

(
Ai +

√
ζ∗n,dV

o,Bi +
√

ζ∗n,dW
o/h
)
−Qi (Ai,Bi) = Πo

i,1 +Πo
i,2 +Πo

n,3, (B.2.16)

where ζ∗n,d = sζ2n,d,

Πo
i,1 =

n∑
t=1

[
Li

(
αi•(τt) +

√
ζ∗n,dv

o
t ,α

′
i•(τt) +

√
ζ∗n,dw

o
t /h | τt

)
−Li

(
αi•(τt),α

′
i•(τt) | τt

)]
,
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Πo
i,2 =

d∑
j=1

p′λ2
(∥α̃i,j∥)

(∥∥∥αi,j +
√

ζ∗n,dv
o
j

∥∥∥− ∥αi,j∥
)
,

Πo
i,3 =

d∑
j=1

p′λ2

(
D̃i,j

)(∥∥∥hα′
i,j +

√
ζ∗n,dw

o
j

∥∥∥− ∥∥hα′
i,j

∥∥) ,
in which vo

j =
(
voj|1, · · · , v

o
j|n

)⊺

and wo
j =

(
wo
j|1, · · · , w

o
j|n

)⊺

.

By the definition of the local linear objective function, we readily have

Πo
i,1 = −2

√
ζ∗n,d

n∑
t=1

[
(vot )

⊺
, (wo

t )
⊺]

Li(τt) + ζ∗n,d

n∑
t=1

[
(vot )

⊺
, (wo

t )
⊺]

Ψ(τt)
[
(vot )

⊺
, (wo

t )
⊺]⊺

. (B.2.17)

By the definition of B∗
i (M∗), Lemma B.2.3 and the Cauchy-Schwarz inequality, we prove∣∣∣∣∣

n∑
t=1

[
(vot )

⊺
, (wo

t )
⊺]

Li(τt)

∣∣∣∣∣ = OP

(√
ζ∗n,dn

1/2
)
· ∥Uo∥ (B.2.18)

uniformly over i. By the uniform restricted eigenvalue condition in Assumption 2.C(ii), we have

n∑
t=1

[
(vot )

⊺
, (wo

t )
⊺]

Ψ(τt)
[
(vot )

⊺
, (wo

t )
⊺]⊺ ≥ κ0

n∑
t=1

(
∥vot ∥2 + ∥wo

t ∥2
)
= nκ0M∗ (B.2.19)

for Uo ∈ B∗
i (M∗). Combining (B.2.17)–(B.2.19) and letting M∗ > 0 be sufficiently large, we have

min
1≤i≤d

Πo
i,1 ≥ κ0ζ

∗
n,d∥Uo∥2 +OP

(
ζ∗n,dn

1/2
)
· ∥Uo∥ >

κ0
2
ζ∗n,d∥Uo∥2 w.p.a.1. (B.2.20)

On the other hand, by Theorem 2.4.1 and Assumption 2.D(ii), we have

P

(
min
1≤i≤d

min
j∈Ji

∥α̃i,j∥ > a0λ2

)
→ 1,

and

P

(
min
1≤i≤d

min
j∈J′

i

D̃i,j > a0λ2

)
→ 1.

As αi,j(τt) = 0 and uo1,j = 0 for j ∈ Ji(τt), we thus have

Πi,2(τt) =
∑

j∈Ji(τt)

p′λ2
(|α̃i,j(τt)|)

(∣∣∣αi,j(τt) +
√
ζ∗n,d(τt)u

o
1,j

∣∣∣− |αi,j(τt)|
)
= 0 w.p.a.1, (B.2.21)

and similarly

Πi,3(τt) =
∑

j∈Ji(τt)

p′λ2

(∣∣α̃′
i,j(τt)

∣∣) (∣∣∣hα′
i,j(τt) +

√
ζ∗n,d(τt)u

o
2,j

∣∣∣− ∣∣hα′
i,j(τt)

∣∣) = 0 w.p.a.1. (B.2.22)
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Hence, by (B.2.20)–(B.2.22), letting M∗ > 0 be large enough, we can prove that

min
1≤i≤d

[
sup

Uo∈B∗
i (M∗)

Qi

(
Ai +

√
ζ∗n,dV

o,Bi +
√
ζ∗n,dW

o/h
)
−Qi (Ai,Bi)

]
> 0 w.p.a.1,

indicating that there exists a local minimiser
(
Âo

i , B̂
o
i

)
in the interior of

{(
Ai +

√
ζ∗n,dV

o,Bi +
√
ζ∗n,dW

o/h
)
: Uo ∈ B∗

i (c1)
}

for any 1 ≤ i ≤ d. The proof of Lemma B.2.4 is completed. ■

Lemma B.2.5 below gives the uniform convergence rates for the time-varying volatility function

estimates, a crucial result to prove uniform consistency of the time-varying CLIME estimates.

Lemma B.2.5. Suppose that Assumptions 2.A–2.D are satisfied. Then we have

max
1≤i,j≤d

sup
0≤τ≤1

|σ̂ij(τ)− σij(τ)| = OP

(
ν⋄n,d + ν∗n,d

)
, (B.2.23)

where σij(τ) is the (i, j)-entry of Σ(τ), ν⋄n,d and ν∗n,d are defined in Assumption 2.E(ii).

Proof of Lemma B.2.5. By the definition of σ̂ij(τ) in (2.3.8), we have

σ̂ij(τ)− σij(τ) =

{∑n
t=1ϖn,t(τ)et,iet,j∑n

t=1ϖn,t(τ)
− σij(τ)

}
+

{∑n
t=1ϖn,t(τ) (êt,i − et,i) et,j∑n

t=1ϖn,t(τ)
+∑n

t=1ϖn,t(τ)et,i (êt,j − et,j)∑n
t=1ϖn,t(τ)

+

∑n
t=1ϖn,t(τ) (êt,i − et,i) (êt,j − et,j)∑n

t=1ϖn,t(τ)

}
=: χ⋄

ij(τ) + χ∗
ij(τ). (B.2.24)

We first prove that

max
1≤i,j≤d

sup
0≤τ≤1

∣∣χ⋄
ij(τ)

∣∣ = OP

(
ν⋄n,d

)
. (B.2.25)

Note that

χ⋄
ij(τ) =

∑n
t=1ϖn,t(τ) [et,iet,j − σij(τt)]∑n

t=1ϖn,t(τ)
+

∑n
t=1ϖn,t(τ)σij(τt)∑n

t=1ϖn,t(τ)
− σij(τ).

By the Taylor expansion of σij(·) and the definition of the local linear weights ϖn,t(τ), we have

max
1≤i,j≤d

sup
0≤τ≤1

∣∣∣∣∑n
t=1ϖn,t(τ)σij(τt)∑n

t=1ϖn,t(τ)
− σij(τ)

∣∣∣∣
≤ max

1≤i,j≤d
sup

0≤τ≤1

∣∣σ′′
ij(τ)

∣∣ · ∣∣∣∣∑n
t=1(τt − τ)2ϖn,t(τ)∑n

t=1ϖn,t(τ)

∣∣∣∣
≤ M sup

0≤τ≤1

∣∣∣∣∑n
t=1(τt − τ)2ϖn,t(τ)∑n

t=1ϖn,t(τ)

∣∣∣∣ = O
(
b2
)
. (B.2.26)
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Let et,i and ẽt,j be defined as in the proof of Lemma B.2.3. Then, we have

n∑
t=1

K

(
τt − τ

b

)
et,iet,j =

n∑
t=1

K

(
τt − τ

b

)
et,iet,j +

n∑
t=1

K

(
τt − τ

b

)
et,iẽt,j +

n∑
t=1

K

(
τt − τ

b

)
ẽt,iet,j +

n∑
t=1

K

(
τt − τ

b

)
ẽt,iẽt,j . (B.2.27)

Following the proof of (B.2.11), the first term on the right side of (B.2.27) is the asymptotic leading

term. Consider covering the closed interval [0, 1] by some disjoint intervals Ik, k = 1, · · · , N , with

the center τ∗k and length b2[nb log(n ∨ d)]−1/2. By the Lipschitz continuity of K(·) in Assumption

2.B(i), we have

max
1≤i,j≤d

sup
0≤τ≤1

∣∣∣∣∣ 1nb
n∑

t=1

K

(
τt − τ

b

)
[et,iet,j − E (et,iet,j)]

∣∣∣∣∣
≤ max

1≤i,j≤d
max

1≤k≤N

∣∣∣∣∣ 1nb
n∑

t=1

K

(
τt − τ∗k

b

)
[et,iet,j − E (et,iet,j)]

∣∣∣∣∣+
max

1≤i,j≤d
max

1≤k≤N
sup
τ∈Ik

∣∣∣∣∣ 1nb
n∑

k=1

[
K

(
τt − τ

b

)
−K

(
τt − τ∗k

b

)]
[et,iet,j − E (et,iet,j)]

∣∣∣∣∣
≤ max

1≤i,j≤d
max

1≤k≤N

∣∣∣∣∣ 1nb
n∑

t=1

K

(
τt − τ∗k

b

)
[et,iet,j − E (et,iet,j)]

∣∣∣∣∣+OP

([
log(n ∨ d)

nb

]1/2)
.

(B.2.28)

By the Bonferroni inequality and Lemma B.2.2 as well as the condition nb/[log(n ∨ d)]3 → ∞ in

Assumption 2.E(i), we may show that

P

(
max

1≤i,j≤d
max

1≤k≤N

∣∣∣∣∣ 1nb
n∑

t=1

K

(
τt − τ∗k

b

)
[et,iet,j − E (et,iet,j)]

∣∣∣∣∣ > M1

[
log(n ∨ d)

nb

]1/2)

≤
d∑

i=1

d∑
j=1

N∑
k=1

P

(∣∣∣∣∣
n∑

t=1

K

(
τt − τ∗k

b

)
[et,iet,j − E (et,iet,j)]

∣∣∣∣∣ > M1 [nb log(n ∨ d)]1/2
)

= O
(
d2N exp {−g1(M1) log(n ∨ d)}

)
= O

(
d2N(n ∨ d)g1(M1)

)
= o(1),

where M1 > 0 is sufficiently large and g1(·) is a positive function satisfying that g1(z) → ∞ as

z → +∞. Therefore, we have

max
1≤i,j≤d

max
1≤k≤N

∣∣∣∣∣ 1nb
n∑

t=1

K

(
τt − τ∗k

b

)
[et,iet,j − E (et,iet,j)]

∣∣∣∣∣ = OP

([
log(n ∨ d)

nb

]1/2)
. (B.2.29)

Combining (B.2.28) and (B.2.29), we can prove that

max
1≤i,j≤d

sup
0≤τ≤1

∣∣∣∣∣ 1nb
n∑

t=1

K

(
τt − τ

b

)
[et,iet,j − E (et,iet,j)]

∣∣∣∣∣ = OP

([
log(n ∨ d)

nb

]1/2)
. (B.2.30)
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By the definitions of et,i and ẽt,i, we have

E (et,iet,j)− σij(τt) = E (ẽt,iẽt,j)− E (et,iẽt,j)− E (ẽt,iet,j) .

Meanwhile, by the Cauchy-Schwarz and Markov inequalities and (B.2.1) in Lemma B.2.1,

E (|et,iẽt,j |) ≤ M
[
E
(
ẽ2t,j
)]1/2

≤ M
[
E
(
|et,i|4

)]1/4 [
P

(
|et,i| > 2

√
ι−1
2 log(n ∨ d)

)]1/4
≤ M

[
P
(
exp

{
ι2e

2
t,i

}
> (n ∨ d)4

)]1/4
≤ M

[
E
(
exp

{
ι2e

2
t,i

})]1/4
(n ∨ d)−1

≤ O
(
(n ∨ d)−1

)
= o

([
log(n ∨ d)

nb

]1/2)
,

and similarly,

E (|ẽt,iet,j |) + E (|ẽt,iẽt,j |) = o

([
log(n ∨ d)

nb

]1/2)
.

Hence, we can prove that

max
1≤i,j≤d

sup
0≤τ≤1

∣∣∣∣∣ 1nb
n∑

t=1

K

(
τt − τ

b

)
[E (et,iet,j)− σij(τt)]

∣∣∣∣∣ = oP

([
log(n ∨ d)

nb

]1/2)
. (B.2.31)

With (B.2.27), (B.2.30) and (B.2.31), we can prove that

max
1≤i,j≤d

sup
0≤τ≤1

∣∣∣∣∣ 1nb
n∑

t=1

K

(
τt − τ

b

)
[et,iet,j − σij(τt)]

∣∣∣∣∣ = OP

([
log(n ∨ d)

nb

]1/2)
. (B.2.32)

Analogously, we also have

max
1≤i,j≤d

sup
0≤τ≤1

∣∣∣∣∣ 1nb
n∑

t=1

K1

(
τt − τ

b

)
[et,iet,j − σij(τt)]

∣∣∣∣∣ = OP

([
log(n ∨ d)

nb

]1/2)
. (B.2.33)

Using (B.2.32), (B.2.33) and the definition of ϖn,t(τ), we may show that

max
1≤i,j≤d

sup
0≤τ≤1

∣∣∣∣∑n
t=1ϖn,t(τ) [et,iet,j − σij(τt)]∑n

t=1ϖn,t(τ)

∣∣∣∣ = OP

([
log(n ∨ d)

nb

]1/2)
, (B.2.34)

which, together with (B.2.26), leads to (B.2.25).

Using the arguments in the proof of Lemma B.2.4, we may prove that

max
1≤i≤d

max
1≤t≤n

∥α̂o
i•(τt)−αi•(τt)∥ = OP

(√
sζn,d

)
, (B.2.35)
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which, together with (B.2.2) in Lemma B.2.1, indicates that

max
1≤i≤d

max
1≤t≤n

|êt,i − et,i| = OP

(
sζn,d

√
log(n ∨ d)

)
. (B.2.36)

By (B.2.25), (B.2.36) and the Cauchy-Schwarz inequality, letting ϖ∗
n,t(τ) = ϖn,t(τ)/

∑n
t=1ϖn,t(τ),

we can prove that

max
1≤i,j≤d

sup
0≤τ≤1

∣∣∣∣∣
n∑

t=1

ϖ∗
n,t(τ) (êt,i − et,i) et,j

∣∣∣∣∣
≤ max

1≤j≤d
sup

0≤τ≤1

(
n∑

t=1

∣∣ϖ∗
n,t(τ)

∣∣ e2t,j
)1/2

max
1≤i≤d

sup
0≤τ≤1

(
n∑

t=1

∣∣ϖ∗
n,t(τ)

∣∣ (êt,i − et,i)
2

)1/2

= OP

(
sζn,d

√
log(n ∨ d)

)
= OP

(
ν∗n,d

)
. (B.2.37)

Similarly, we can also show that

max
1≤i,j≤d

sup
0≤τ≤1

∣∣∣∣∣
n∑

t=1

ϖ∗
n,t(τ)et,i (êt,j − et,j)

∣∣∣∣∣ = OP

(
ν∗n,d

)
(B.2.38)

and

max
1≤i,j≤d

sup
0≤τ≤1

∣∣∣∣∣
n∑

t=1

ϖ∗
n,t(τ) (êt,i − et,i) (êt,j − et,j)

∣∣∣∣∣ = OP

([
ν∗n,d

]2)
= oP

(
ν∗n,d

)
. (B.2.39)

From (B.2.37)–(B.2.39), we readily have that

max
1≤i,j≤d

sup
0≤τ≤1

∣∣χ∗
ij(τ)

∣∣ = OP

(
ν∗n,d

)
,

which, together with (B.2.24) and (B.2.25), completes the proof of Lemma B.2.5. ■

B.3 Proofs of Propositions 2.5.1 and 2.5.2

In this appendix, we provide proofs of the convergence properties for the factor-adjusted estimators

stated in Propositions 2.5.1 and 2.5.2. Define

L̂i,0(τ) =
1

n

n∑
t=1

êt,i(τ)X̂t−1Kh(τt − τ) and L̂i,1(τ) =
1

n

n∑
t=1

êt,i(τ)X̂t−1

(
τt − τ

h

)
Kh(τt − τ),

where X̂t = (x̂t,1, · · · , x̂t,d)
⊺

is defined in (2.5.3) or (2.5.4), and êt,i(τ) = x̂t,i −

[αi•(τ) +α′
i•(τ)(τt − τ)]

⊺
X̂t−1. The following lemma extends Lemma B.2.3 to the factor-adjusted

kernel-weighted quantities.
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Lemma B.3.1. Suppose that Assumptions 2.A, 2.B and 2.F(i) are satisfied. Then we have

max
1≤i≤d

max
1≤t≤n

∣∣∣L̂i,k(τt)
∣∣∣
max

= OP

(
ζ†n,d

)
, k = 0, 1, (B.3.1)

where ζ†n,d = ζn,d + [log(n ∨ d)]1/2sδX as in Assumption 2.F(ii).

Proof of Lemma B.3.1. As in the proof of Lemma B.2.3, we only consider k = 0. As

êt,i(τ) = et,i(τ) + (x̂t,i − xt,i) +
[
αi•(τ) +α′

i•(τ)(τt − τ)
]⊺ (

Xt−1 − X̂t−1

)
,

by Assumption 2.F(i), we may show that

L̂i,0(τ) = Li,0(τ) +
1

n

n∑
t=1

(x̂t,i − xt,i) X̂t−1Kh(τt − τ) +

1

n

n∑
t=1

[
αi•(τ) +α′

i•(τ)(τt − τ)
]⊺ (

Xt−1 − X̂t−1

)
X̂t−1Kh(τt − τ)−

1

n

n∑
t=1

et,i(τ)
(
Xt−1 − X̂t−1

)
Kh(τt − τ)

= Li,0(τ) +OP

(
[log(n ∨ d)]1/2sδX

)
.

Then, by Lemma B.2.3, we complete the proof of (B.3.1) for k = 0. ■

Write

ê†t =
(
ê†t,1, · · · , ê

†
t,d

)⊺

= X̂t − Â†
1(τt)X̂t−1, Â†

1(τt) =
[
α̂†
ij(τt)

]
d×d

.

Let σ̂†
ij(τ) be the factor-adjusted local linear estimate σij(τ), i.e., replace êt,i by ê†t,i in (2.3.8). The

following lemma extends Lemma B.2.5 to the factor-adjusted volatility function estimate.

Lemma B.3.2. Suppose that the assumptions of Proposition 2.5.1(iii) are satisfied. Then we have

max
1≤i,j≤d

sup
0≤τ≤1

∣∣∣σ̂†
ij(τ)− σij(τ)

∣∣∣ = OP

(
ν⋄n,d + ν†n,d

)
, (B.3.2)

where ν⋄n,d is defined in Assumption 2.E(ii) and ν†n,d is defined in Assumption 2.F(iv).

Proof of Lemma B.3.2. As in (B.2.24), we have

σ̂†
ij(τ)− σij(τ) =

{∑n
t=1ϖn,t(τ)et,iet,j∑n

t=1ϖn,t(τ)
− σij(τ)

}
+


∑n

t=1ϖn,t(τ)
(
ê†t,i − et,i

)
et,j∑n

t=1ϖn,t(τ)
+

∑n
t=1ϖn,t(τ)et,i

(
ê†t,j − et,j

)
∑n

t=1ϖn,t(τ)
+

∑n
t=1ϖn,t(τ)

(
ê†t,i − et,i

)(
ê†t,j − et,j

)
∑n

t=1ϖn,t(τ)


=: χ⋄

ij(τ) + χ†
ij(τ). (B.3.3)
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By (B.2.25), we only need to show

max
1≤i,j≤d

sup
0≤τ≤1

∣∣∣χ†
ij(τ)

∣∣∣ = OP

(
ν†n,d

)
. (B.3.4)

Following the proof of (B.2.36), we have

max
1≤i≤d

max
1≤t≤n

∣∣∣ê†t,i − et,i

∣∣∣ = OP

(
sζ†n,d

√
log(n ∨ d)

)
. (B.3.5)

By (B.2.25), (B.3.5) and the Cauchy-Schwarz inequality, we can prove that

max
1≤i,j≤d

sup
0≤τ≤1

∣∣∣∣∣
n∑

t=1

ϖ∗
n,t(τ)

(
ê†t,i − et,i

)
et,j

∣∣∣∣∣ = OP

(
sζ†n,d

√
log(n ∨ d)

)
= OP

(
ν†n,d

)
,(B.3.6)

max
1≤i,j≤d

sup
0≤τ≤1

∣∣∣∣∣
n∑

t=1

ϖ∗
n,t(τ)et,i

(
ê†t,j − et,j

)∣∣∣∣∣ = OP

(
ν†n,d

)
, (B.3.7)

max
1≤i,j≤d

sup
0≤τ≤1

∣∣∣∣∣
n∑

t=1

ϖ∗
n,t(τ)

(
ê†t,i − et,i

)(
ê†t,j − et,j

)∣∣∣∣∣ = oP

(
ν†n,d

)
. (B.3.8)

With (B.3.6)–(B.3.8), we complete the proof of (B.3.4). ■

Define

Ψ̂(τ) =

[
Ψ̂0(τ) Ψ̂1(τ)

Ψ̂1(τ) Ψ̂2(τ)

]
with Ψ̂k(τ) =

1

n

n∑
t=1

(
τt − τ

h

)k

X̂t−1X̂
⊺

t−1Kh(τt − τ), k = 0, 1, 2.

Proof of Proposition 2.5.1. We start with the proof of

min
1≤i≤d

min
1≤t≤n

inf
u∈Bi(τt)

u
⊺
Ψ̂(τt)u ≥ κ0/2, w.p.a.1, (B.3.9)

where Bi(τ) is defined as in (2.4.2). In fact, combining Assumption 2.F(i) with the arguments in

the proofs of Lemmas B.2.3 and B.3.1, we may show that

max
1≤t≤n

∥∥∥Ψ̂(τt)−Ψ(τt)
∥∥∥
max

= OP

(
[log(n ∨ d)]1/2δX

)
. (B.3.10)

Then, using (B.3.10) and the arguments in the proof of Lemma B.4.1, we have

min
1≤i≤d

min
1≤t≤n

inf
u∈Bi(τt)

u
⊺
Ψ̂(τt)u ≥ min

1≤i≤d
min
1≤t≤n

inf
u∈Bi(τt)

u
⊺
Ψ(τt)u+OP

(
[log(n ∨ d)]1/2sδX

)
,

which, together with Assumptions 2.C(ii) and 2.F(i), completes the proof of (B.3.9).

The proofs of (2.5.6) and (2.5.7) are similar to the proofs of Theorems 2.4.1 and 2.4.2 but with

Lemma B.2.3 and (2.4.3) replaced by Lemma B.3.1 and (B.3.9), respectively. The proof of (2.5.8)

is similar to the proof of Theorem 2.4.4 but with Lemma B.2.5 replaced by Lemma B.3.2. Details

are omitted here to save space. ■
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Proof of Proposition 2.5.2. With Proposition 5.1(ii), the proof of (2.5.9) is similar to the proof

of Corollary 4.1. With Proposition 5.1(iii), the proof of (2.5.10) is similar to the proof of Corollary

4.2. ■

B.4 Verification of Assumption 2.C(ii)

In this appendix, we verify the uniform restricted eigenvalue condition (2.4.3) for the time-varying

VAR under the Gaussian assumption, i.e., et ∼ N(0d,Σt). Recall that

Ψ(τ) =

[
Ψ0(τ) Ψ1(τ)

Ψ1(τ) Ψ2(τ)

]
with Ψk(τ) =

1

n

n∑
t=1

(
τt − τ

h

)k

Xt−1X
⊺

t−1Kh(τt − τ), k = 0, 1, 2.

We first give some technical lemmas together with their proofs.

Lemma B.4.1. Conditional on the event that

EΨ(δ) =

{
max
1≤t≤n

∥Ψ(τt)− E[Ψ(τt)]∥max ≤ δ

}
,

we have

min
1≤i≤d

min
1≤t≤n

inf
u∈Bi(τt)

u
⊺
Ψ(τt)u ≥ min

1≤i≤d
min
1≤t≤n

inf
u∈Bi(τt)

u
⊺
E[Ψ(τt)]u− 18δs,

where Bi(τ) is defined in Section 2.4.1 and s is defined in Assumption 2.B(ii).

Proof of Lemma B.4.1. The proof is similar to Lemma 6 in Kock and Callot (2015). Write

Ji,t = Ji(τt) and J′
i,t = J′

i (τt). For u =
(
u

⊺

1, u
⊺

2

)⊺
∈ Bi(τt) and given EΨ(δ), we have

u
⊺
E[Ψ(τt)]u− u

⊺
Ψ(τt)u ≤

∣∣u⊺
E[Ψ(τt)]u− u

⊺
Ψ(τt)u

∣∣ = ∣∣u⊺
(Ψ(τt)− E[Ψ(τt)])u

∣∣
≤ δ|u|21 ≤ 9δ

(
|u1(Ji,t)|1 +

∣∣u2(J′
i,t)
∣∣
1

)2
≤ 18δs

(
∥u1(Ji,t)∥2 +

∥∥u2(J′
i,t)
∥∥2) ≤ 18δs,

where u(J) denotes the vector consisting only the elements of u index by J. This indicates that

u
⊺
Ψ(τt)u ≥ u

⊺
E[Ψ(τt)]u− 18δs.

Taking min1≤i≤dmin1≤t≤n infu∈Bi(τt) on both sides of the above inequality, we complete the proof

of Lemma B.4.1. ■

Letting

Xt(τ) =

[
Xt

Xt

(
τt−τ
h

) ] and XK,t(τ) = K1/2

(
τt − τ

h

)
Xt(τ),
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we may re-write

(nh)u
⊺
Ψ(τ)u =

n∑
t=1

u
⊺
[
XK,t(τ)X

⊺

K,t(τ)
]
u = ∥Xu(τ)∥2,

with Xu(τ) = [u
⊺
XK,1(τ), · · · , u

⊺
XK,n(τ)]

⊺
. Since XK,t(τ) is a Gaussian random vector, we can

adopt the following lemma (e.g., Lemma 7 of Kock and Callot, 2015).

Lemma B.4.2. Let Z be an n× 1 vector with Z ∼ N (0n,Q). Then, for any δ,m > 0,

P
(
∥Z∥2 − E∥Z∥2 > δ

)
≤ 2 exp

(
−δ2

8n∥Q∥2∞m2

)
+ n exp

(
−m2/2

)
.

The inequality in Lemma B.4.2 is crucial to derive the probability of the event EΨ(δ) defined in

Lemma B.4.1, as shown in the following lemma.

Lemma B.4.3. Suppose that Assumptions 2.A and 2.B(i) are satisfied. Then, for any δ,m > 0,

we have

P (EΨ(δ)) ≤ 4nd2
[
6 exp

(
−δ2nh

64C2
⋄m

2

)
+ 6nh exp

(
−m2/2

)]
, (B.4.1)

where C⋄ =
2C∗CKC2

1
(1−ρ)(1−ρ2)

, C∗ is defined in Lemma B.2.1, CK is the upper bound of the kernel function

K(·), and C1 and ρ are defined in (2.2.4).

Proof of Lemma B.4.3. Let the (i, j)-entry of Ψ(τt) be Ψi,j(τt). For any δ > 0, we note that

P

(
max
1≤t≤n

max
1≤i,j≤2d

|Ψi,j(τt)− E[Ψi,j(τt)]| > δ

)
≤

n∑
t=1

2d∑
i=1

2d∑
j=1

P (|Ψi,j(τt)− E[Ψi,j(τt)]| > δ) .

Hence, it suffices to show

P (|Ψi,j(τt)− E[Ψi,j(τt)]| > δ) ≤ 6 exp

(
−δ2nh

64C2
⋄m

2

)
+ 6nh exp

(
−m2/2

)
. (B.4.2)

By removing the zero elements of Xu(τ), we define a sub-vector X̃u(τ) which only contains

the non-zero elements. We apply Lemma B.4.2 with Z = X̃u(τt) and Q = Q(τt) = Cov(X̃u(τt)).

Consider a typical entry inQ(τt): Cov
(
u

⊺
XK,l1(τt), u

⊺
XK,l2(τt)

)
when |τl1−τt| ≤ h and |τl2−τt| ≤ h,

where u =
(
u

⊺

1, u
⊺

2

)⊺
is an appropriately selected vector with dimension 2d and ∥u∥ = 1. Letting

uτ,l = (u1 +
τl−τ
h u2)/∥u1 + τl−τ

h u2∥, we have

Cov
(
u

⊺
XK,l1(τt), u

⊺
XK,l2(τt)

)
= E

[(
u1 +

τl1 − τt
h

u2

)⊺

Xl1X
⊺

l2

(
u1 +

τl2 − τt
h

u2

)]
K1/2

(
τl1 − τt

h

)
K1/2

(
τl2 − τt

h

)
≤

∣∣E (uτt,l1Xl1X
⊺

l2uτt,l2
)∣∣ ∥∥∥∥(u1 + τl − τ

h
u2

∥∥∥∥∥∥∥∥(u1 + τt − τ

h
u2

∥∥∥∥K1/2

(
τl1 − τt

h

)
K1/2

(
τl2 − τt

h

)
≤

∣∣E (uτt,l1Xl1X
⊺

l2uτt,l2
)∣∣K1/2

(
τl1 − τt

h

)
K1/2

(
τl2 − τt

h

)
.
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For 1 ≤ l1, l2 ≤ n with |τl1 − τt| ≤ h and |τl2 − τt| ≤ h, by (2.2.3) and (2.2.4),

∣∣E (uτt,l1Xl1X
⊺

l2uτt,l2
)∣∣ =

∣∣∣∣∣∣E
 ∞∑
k1=0

∞∑
k2=0

(
u

⊺

τt,l1Φl1,k1el1−k1

) (
u

⊺

τt,l2Φl2,k2el2−k2

)⊺∣∣∣∣∣∣
≤ C∗C

2
1

∞∑
k1=0

ρk1ρ|l2−l1|+k1 =
C∗C

2
1ρ

|l2−l1|

1− ρ2
.

Hence,

max
1≤t≤n

∥Q(τt)∥∞ ≤ C∗C
2
1

1− ρ2
max

1≤l1≤n

n∑
l2=1

ρ|l2−l1|
[
max
1≤t≤n

K1/2

(
τl1 − τt

h

)
K1/2

(
τl2 − τt

h

)]

≤ 2C∗C2
1CK

1− ρ2

∞∑
k=0

ρk ≤ 2C∗C2
1CK

(1− ρ)(1− ρ2)
= C⋄.

Using Lemma 7 in Kock and Callot (2015) and noting that the dimension of X̃u(τt) is (2nh), we

obtain that for any δ,m > 0,

P

(∥∥∥X̃u(τt)
∥∥∥2 − E

∥∥∥X̃u(τt)
∥∥∥2 > δ

)
≤ 2 exp

(
−δ2

16C2
⋄m

2(nh)

)
+ 2nh exp

(
−m2/2

)
,

indicating that

P
(
u

⊺
Ψ(τt)u− E

[
u

⊺
Ψ(τt)u

]
> δ
)
≤ 2 exp

(
−δ2(nh)

16C2
⋄m

2

)
+ 2nh exp

(
−m2/2

)
. (B.4.3)

Choosing u as a vector with the i-th element being one and the others being zeros, by (B.4.3),

we have

P (|Ψi,i(τt)− E[Ψi,i(τt)]| > δ) ≤ 2 exp

(
−δ2(nh)

16C2
⋄m

2

)
+ 2nh exp

(
−m2/2

)
(B.4.4)

for i = 1, · · · , 2d. Analogously, we may further show that, for 1 ≤ i ̸= j ≤ 2d,

P (|Ψi,j(τt)− E[Ψi,j(τt)]| > δ)

≤ P (|Ψi,i(τt)− 2Ψi,j(τt) + Ψj,j(τt)− E[Ψi,i(τt)− 2Ψi,j(τt) + Ψj,j(τt)]| /2 > δ/2) +

P (|Ψi,i(τt) + Ψj,j(τt)− E[Ψi,i(τt) + Ψj,j(τt)]| /2 > δ/2)

≤ P (|Ψi,i(τt) + 2Ψi,j(τt) + Ψj,j(τt)− E[Ψi,i(τt) + 2Ψi,j(τt) + Ψj,j(τt)]| > δ) +

P (|Ψi,i(τt)− E[Ψi,i(τt)]| > δ/2) + P (|Ψj,j(τt)− E[Ψj,j(τt)]| > δ/2)

≤ 6 exp

(
−δ2nh

64C2
⋄m

2

)
+ 6nh exp

(
−m2/2

)
. (B.4.5)

By virtue of (B.4.4) and (B.4.5), we complete the proof of (B.4.2). ■

The following proposition verifies the uniform restricted eigenvalue condition.
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Proposition B.4.1. Suppose that Assumptions 2.A and 2.B(i) are satisfied. If

min
1≤t≤n

inf
u∈B

u
⊺
E[XtX

⊺

t ]u ≥ 2κ0, (B.4.6)

where B = {u : ∥u∥ = 1, |u|1 ≤ 3|uJ|1}, J is any index set satisfying J ⊂ {1, · · · , d} with

cardinality

s = o
(
(nh)1/2/ log(ndh1/2)

)
,

we have (2.4.3) w.p.a.1.

Proof of Proposition B.4.1. Taking δ = c◦/s and m2 =
(

c2◦nh
32C2

⋄s2

)1/2
in Lemma B.4.3 with c◦

being a proper constant to be determined later, we have

P

(
max
1≤t≤n

∥Ψ(τt)− E[Ψ(τt)]∥max >
c◦
s

)
≤ 4nd2

[
6 exp

(
−c2◦nh

64C2
⋄s

2m2

)
+ 6nh exp

(
−m2/2

)]
≤ 48 exp

(
log(n2d2h)− c◦(nh)

1/2

16C⋄s

)
,

which converges to 0 if s = o
(
(nh)1/2/ log(ndh1/2)

)
. By Lemma B.4.1, we then have

min
1≤i≤d

min
1≤t≤n

inf
u∈Bi(τt)

u
⊺
Ψ(τt)u ≥ min

1≤i≤d
min
1≤t≤n

inf
u∈Bi(τt)

u
⊺
E[Ψ(τt)]u− 18c◦ w.p.a.1. (B.4.7)

It remains to prove that the first term on the right side of (B.4.7) has a lower bound and to find

a proper value for c◦. In fact, by (B.4.6), we have

min
1≤i≤d

min
1≤t≤n

inf
u∈Bi(τt)

u
⊺
E[Ψ(τt)]u

= min
1≤i≤d

min
1≤t≤n

inf
u∈Bi(τt)

1

nh

n∑
l=1

E

[(
u1 +

τl − τt
h

u2

)⊺

XlX
⊺

l

(
u1 +

τl − τt
h

u2

)]
K

(
τl − τt

h

)

≥ 2κ0 min
1≤t≤n

1

nh

n∑
l=1

K

(
τl − τt

h

)
= 2κ0 − ϵ,

where ϵ is an arbitrary small number. Choosing c < (κ0 − ϵ)/18 in (B.4.7), we can complete the

proof of (2.4.3). ■

B.5 Tuning parameter selection

The numerical performance of the proposed three-state shrinkage estimation procedure depends

on a careful selection of the three tuning parameters: λ1 in the preliminary time-varying LASSO

estimation, λ2 in the time-varying weighted group LASSO, and λ3 in the time-varying CLIME.

They are selected by the Bayesian information criterion (BIC), the generalised information criterion
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(GIC), and the extended Bayesian information criterion (EBIC), respectively. We next briefly

introduce these three criteria.

The local linear regression smoothing in (2.3.3) is essentially the weighted least squares with

kernel weights Kh(τt − τ). The BIC objective function is thus defined as

BICi(λ1; τ) = log

[
Li (α̃i•(τ | λ1), α̃

′
i•(τ | λ1))∑n

t=1Kh(τt − τ)

]
+

log(ne)

ne
·
[
|α̃i•(τ | λ1)|0 +

∣∣α̃′
i•(τ | λ1)

∣∣
0

]
,

(B.5.1)

where α̃i•(τ | λ1) and α̃′
i•(τ | λ1) are the local linear estimates using the tuning parameter λ1 at the

point τ , and the effective sample size ne is defined as
∑n

t=1Kh(τt − τ)/maxt{Kh(τt−τ)}. We select

the tuning parameter in the preliminary time-varying LASSO by minimising BICi(λ1; τ) defined in

(B.5.1) with respect to λ1. The selected tuning parameter depends on both the index i and the

(scaled) time point τ .

The GIC is introduced by Fan and Tang (2013) in the context of high-dimensional penalised

likelihood estimation. As our model involves unknown time-varying coefficients and the estimation

procedure involves local linear smoothing, we need to modify the GIC as in Li et al. (2015a). For

example, Cheng et al. (2009) suggest that each unknown functional parameter would amount to

36/(35h) unknown constant parameters when the Epanechnikov kernel is used. Hence, we define

the GIC objective function as

GICi(λ2) = log

[
1

n

n∑
t=1

{
xt,i − α̂

⊺

i•(τt | λ2)Xt−1

}2
]
+

γn,d
n

· 36si(λ2)

35h
, (B.5.2)

where γn,d is a function of n and d, α̂i•(τ | λ2) is the time-varying weighted group LASSO estimate

using the tuning parameter λ2 and si(λ2) is the number of selected time-varying coefficients using λ2.

We choose γn,d = γ log(log(n)) log(36d/(35h)) with γ ∈ (0, 1]. We determine the tuning parameter

by minimising GICi(λ2) defined in (B.5.2) with respect to λ2. The selected tuning parameter depends

on the index i. A smaller γ leads to denser network estimation. The intuition to select a γ less

than 1 is that when a functional parameter is zero in most of the sampling period and non-zero

otherwise, the marginal contribution to the sum of squared error by including the corresponding

variable is small, and a smaller γ adjusts the the information criterion to be more adaptive and

sensitive. For example, when we want to select variables whose functional parameter is not zero in

at least 10% of the sampling period, we can choose γ = 0.1. We choose γ = 1 in the simulation and

γ = 0.1 in the empirical study.

The EBIC is proposed by Chen and Chen (2008) and has been applied to Gaussian graphical

model estimation by Foygel and Drton (2010). The EBIC objective function is defined as

EBIC(λ3; τ) = − log
(
det(Ω̂(τ | λ3))

)
+ Tr(Ω̂(τ | λ3)Σ̂(τ)) +

log(ne)

ne
·
∑
i<j

I(|ω̂ij(τ | λ3)| > 0),

(B.5.3)
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where Ω̂(τ | λ3) = [ω̂ij(τ | λ3)]d×d denotes the time-varying CLIME estimate obtained using the

tuning parameter λ3. We determine the tuning parameter by minimising EBIC(λ3; τ) defined in

(B.5.3) with respect to λ3. Note that the selected tuning parameter changes with τ .

The numerical performance of the factor-adjusted VAR model and methodology depends on

a careful selection of the factor number. Let X̂t(q) be the estimated idiosyncratic component in

(2.5.3) or (2.5.4), when the number of factors is set to be q, and define the sum of squared residuals

as Vn(q) =
∑n

t=1 |X̂t(q)|22. When we consider the approximate factor model (2.5.1), we select the

factor number by the information criterion developed by Bai and Ng (2002), i.e., maximise the

following objective function with respect to q

IC(q) = log [Vn(q)] + q ·
(
n+ d

nd

)
log(n ∧ d),

and obtain q̂ as the estimated number of factors. When we consider the time-varying factor model

(2.5.2), we adopt Su and Wang (2017)’s information criterion, i.e., maximise the following objective

function with respect to q

IC(q) = log [Vn(q)] + q ·
(
nh∗ + d

nh∗d

)
log(nh∗ ∧ d),

and obtain q̂ as the estimated number of factors, where h∗ is the bandwidth used in the local PCA.

The above two criteria are used in the empirical data analysis to determine the factor numbers.

In practice, we need to select an appropriate order for the time-varying VAR model. For the

high-dimensional VAR model with constant transition matrices, Miao et al. (2023) introduces a

ratio criterion which compares Frobenius norms of the estimated transition matrices over different

lags. We next extend their criterion to the time-varying VAR model context. Define

R(k) =

∑2kmax
l=k

∑n
t=1(∥Ât,l∥F ∨ ξA)∑2kmax

l=k+1

∑n
t=1(∥Ât,k∥F ∨ ξA)

,

where kmax and ξA are user-specified. In Section 2.7 of the main document, we set kmax = 10 and

ξA = 0.1 and use the estimated transition matrices of time-varying VAR(20) in computing R(k).

The order of the time-varying VAR is selected by the integer which maximises R(k), 1 ≤ k ≤ kmax.

In the empirical analysis, we use the above criterion to select the time-varying VAR(1).

In Tables 1–7 of the main document, in order to evaluate the accuracy of the estimated time-

varying VAR and network structures, we report the false positive (FP), the false negative (FN),

the true positive rate (TPR), the true negative rate (TNR), the positive predictive value (PPV),

the negative predictive value (NPV), the F1 score (F1), and the Matthews correlation coefficient

(MCC). The FP is defined as the number of insignificant predictor variables falsely identified as the
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significant ones; FN is defined as the number of significant predictor variables falsely identified as

the insignificant ones; TPR and TNR are defined by

TPR =
TP

TP + FN
and TNR =

TN

TN+ FP

with TP denoting true positive whereas TN denoting true negative; PPV and NPV are defined by

PPV =
TP

TP + FP
and NPV =

TN

TN+ FN
;

the F1 score is the harmonic mean of precision and sensitivity defined by

F1 = 2× PPV × TPR

PPV + TPR
;

and MCC is defined as

MCC =
TP× TN− FP× FN√

(TP + FP)(TP + FN)(TN + FP)(TN + FN)
.
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Appendix to Chapter 3

C.1 Proofs of the asymptotic theorems

Proof of Proposition 3.2.1. The uniform consistency results in (3.2.10) and (3.2.11) follow from

Theorem 4 in Fan et al. (2013), Theorem 3(i) in Chen et al. (2018) and Lemma D.1 in Li et al.

(2023). It remains to prove (3.2.12). Note that

ε̂t,i − εt,i = −
(
λ̂

⊺

i F̂t −
[(
R−1

)⊺
λi

]⊺[
RFt

])
= −

(
λ̂i −

(
R−1

)⊺
λi

)⊺ (
F̂t −RFt

)
−
[(
R−1

)⊺
λi

]⊺ (
F̂t −RFt

)
−
(
λ̂i −

(
R−1

)⊺
λi

)⊺

RFt. (C.1.1)

By (3.2.10), (3.2.11), Assumption 3.A and the Cauchy-Schwarz inequality, we have

max
1≤i≤N

max
1≤t≤T

∣∣∣∣(λ̂i −
(
R−1

)⊺
λi

)⊺ (
F̂t −RFt

)∣∣∣∣ ≤ max
1≤i≤N

∥∥∥λ̂i −
(
R−1

)⊺
λi

∥∥∥ max
1≤t≤T

∥∥∥F̂t −RFt

∥∥∥
= oP

((
logN

T

)1/2

+
T 2/δ

N1/2

)
(C.1.2)

and

max
1≤i≤N

max
1≤t≤T

∣∣∣[(R−1
)⊺
λi

]⊺ (
F̂t −RFt

)∣∣∣ ≤ max
1≤i≤N

∥∥∥(R−1
)⊺
λi

∥∥∥ max
1≤t≤T

∥∥∥F̂t −RFt

∥∥∥
= OP

(
1

T 1/2
+

T 2/δ

N1/2

)
. (C.1.3)

By the sub-Gaussian moment condition on Ft in Assumption 3.A(iii), the Bonferroni and Markov

inequalities, we have max1≤t≤T ∥Ft∥ = OP

(
(log T )1/2

)
, which together with (3.2.11), leads to

max
1≤i≤N

max
1≤t≤T

∣∣∣∣(λ̂i −
(
R−1

)⊺
λi

)⊺

RFt

∣∣∣∣ ≤ max
1≤i≤N

∥∥∥λ̂i −
(
R−1

)⊺
λi

∥∥∥ max
1≤t≤T

∥RFt∥
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= OP

(
(log T )1/2

[(
logN

T

)1/2

+
T 2/δ

N1/2

])
. (C.1.4)

With (C.1.1)–(C.1.4), we complete the proof of (3.2.12). ■

Proof of Proposition 3.3.1. Let

wt,k(uk) = K

(
Ut,k − uk

h

)/{
T−1∑
t=1

K

(
Ut,k − uk

h

)}
,

and note that

σ̂ε,k,ij(uk)− σε,k,ij(uk) =
T−1∑
t=1

wt,k(uk) [ε̂t+1,iε̂t+1,j − σε,k,ij(uk)]

=
T−1∑
t=1

wt,k(uk) (ε̂t+1,iε̂t+1,j − εt+1,iεt+1,j)

+
T−1∑
t=1

wt,k(uk) [εt+1,iεt+1,j − σε,k,ij(uk)] .

By Lemma 1 in Chen et al. (2019), we have

max
1≤i,j≤N

max
1≤k≤d

sup
uk∈Uk,h

∣∣∣∣∣
T−1∑
t=1

wt,k(uk) [εt+1,iεt+1,j − σε,k,ij(uk)]

∣∣∣∣∣ = OP (ζNT,2) . (C.1.5)

By (3.2.12) in Proposition 3.2.1, we can show that

max
1≤i,j≤N

max
1≤k≤d

sup
uk∈Uk,h

∣∣∣∣∣
T−1∑
t=1

wt,k(uk) (ε̂t+1,iε̂t+1,j − εt+1,iεt+1,j)

∣∣∣∣∣ = OP (ζNT,1) . (C.1.6)

Combining (C.1.5) and (C.1.6), we have

max
1≤i,j≤N

max
1≤k≤d

sup
uk∈Uk,h

|σ̂ε,k,ij(uk)− σε,k,ij(uk)| = OP (ζNT,1 + ζNT,2) . (C.1.7)

Then following the proof of Lemma 2 in Chen et al. (2019), we can show that

max
1≤i,j≤N

max
0≤k≤d

∣∣âk,ij − aok,ij
∣∣ = OP (ζNT,1 + ζNT,2) . (C.1.8)

Finally, by (C.1.7) and (C.1.8), we have

σ̂ε,ij(u)− σo
ε,ij(u) =

[
â0,ij +

d∑
k=1

âk,ij σ̂ε,k,ij(uk)

]
−

[
ao0,ij +

d∑
k=1

aok,ijσε,k,ij(uk)

]

=
(
â0,ij − ao0,ij

)
+

d∑
k=1

(
âk,ij − aok,ij

)
σε,k,ij(uk) +

d∑
k=1

aok,ij [σ̂ε,k,ij(uk)− σε,k,ij(uk)]

+

d∑
k=1

(
âk,ij − aok,ij

)
[σ̂ε,k,ij(uk)− σε,k,ij(uk)]



152

= OP (ζNT,1 + ζNT,2)

uniformly for 1 ≤ i, j ≤ N and u ∈ Uh. This completes the proof of Proposition 3.3.1. ■

Proof of Proposition 3.3.2. The proof of this proposition is analogous to that of Proposition

3.3.1, but with (3.2.10) replacing the role of (3.2.12). Details are omitted here to save space. ■

Proof of Theorem 3.3.1. By (3.3.3) in Proposition 3.3.1, we have

sup
u∈Uh

∥∥∥Σ̂ε(u)−Σo
ε(u)

∥∥∥
max

= OP (ζNT,1 + ζNT,2) . (C.1.9)

By (C.1.9), the uniform sparsity assumption (3.2.8), and the inequality ∥A1A2∥max ≤

∥A1∥max∥A2∥1 for any two conformable matrices A1 and A2, we have

sup
u∈Uh

∥∥∥IN − Σ̂ε(u)Ω
o
ε(u)

∥∥∥
max

≤ sup
u∈Uh

∥∥∥Σ̂ε(u)−Σo
ε(u)

∥∥∥
max

∥Ωo
ε(u)∥1 = OP (ζNT,1 + ζNT,2) .

This together with Assumption 3.D(iii) and the constraint the CLIME estimator satisfies (see

(3.2.19)), implies

sup
u∈Uh

∥∥∥Σ̂ε(u)
[
Ω̃ε(u)−Ωo

ε(u)
]∥∥∥

max

≤ sup
u∈Uh

∥∥∥Σ̂ε(u)Ω̃ε(u)− IN

∥∥∥
max

+ sup
u∈Uh

∥∥∥IN − Σ̂ε(u)Ω
o
ε(u)

∥∥∥
max

≤ ρ+OP (ζNT,1 + ζNT,2) = OP (ζNT,1 + ζNT,2) . (C.1.10)

It follows from the definition of the CLIME estimator and Lemma 1 in Cai et al. (2011) that∥∥∥Ω̃ε(u)
∥∥∥
1
≤ ∥Ωo

ε(u)∥1 ≤ M uniformly over u ∈ Uh. Then, by (C.1.9) and (C.1.10), we have

sup
u∈Uh

∥∥∥Σo
ε(u)

[
Ω̃ε(u)−Ωo

ε(u)
]∥∥∥

max

≤ sup
u∈Uh

∥∥∥Σ̂ε(u)
[
Ω̃ε(u)−Ωo

ε(u)
]∥∥∥

max
+ sup

u∈Uh

∥∥∥[Σ̂ε(u)−Σo
ε(u)

] [
Ω̃ε(u)−Ωo

ε(u)
]∥∥∥

max

≤ sup
u∈Uh

∥∥∥Σ̂ε(u)
[
Ω̃ε(u)−Ωo

ε(u)
]∥∥∥

max
+ sup

u∈Uh

∥∥∥Σ̂ε(u)−Σo
ε(u)

∥∥∥
max

∥∥∥Ω̃ε(u)−Ωo
ε(u)

∥∥∥
1

= OP (ζNT,1 + ζNT,2) . (C.1.11)

By (C.1.11) and the relation ∥A1A2∥max ≤ ∥A1∥∞∥A2∥max = ∥A1∥1∥A2∥max for any symmetric

matrix A1 and a conformable matrix A2, we have

sup
u∈Uh

∥∥∥Ω̃ε(u)−Ωo
ε(u)

∥∥∥
max

≤ sup
u∈Uh

∥Ωo
ε(u)∥1

∥∥∥Σo
ε(u)

[
Ω̃ε(u)−Ωo

ε(u)
]∥∥∥

max

= OP (ζNT,1 + ζNT,2) . (C.1.12)

By (C.1.12) and noting that Ω̂ε(u) is the symmetrisation of Ω̃ε(u) via (3.2.20), we prove (3.3.5).
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We next turn to the proof of (3.3.6). Let ωo
ε,ij(u) be the (i, j)-entry of Ωo

ε(u). Then by the

definition of ω̂ε,ij(u) in (3.2.20) and Lemma 1 in Cai et al. (2011), we have, for any u ∈ Uh and

1 ≤ j ≤ N ,
N∑
i=1

|ω̂ε,ij(u)| ≤
N∑
i=1

|ω̃ε,ij(u)| ≤
N∑
i=1

∣∣ωo
ε,ij(u)

∣∣ .
Then, as ω̂ε,ij(u) = ω̂ε,ji(u) and ωo

ε,ij(u) = ωo
ε,ji(u), we have

N∑
j=1

|ω̂ε,ij(u)| I (|ω̂ε,ij(u)| ≤ ρ)

=
N∑
j=1

|ω̂ε,ij(u)| −
N∑
j=1

|ω̂ε,ij(u)| I (|ω̂ε,ij(u)| > ρ)

≤
N∑
j=1

|ω̂ε,ij(u)| −
N∑
j=1

∣∣ωo
ε,ij(u)

∣∣+ N∑
j=1

∣∣ω̂ε,ij(u)I (|ω̂ε,ij(u)| > ρ)− ωo
ε,ij(u)

∣∣
≤

N∑
j=1

∣∣ω̂ε,ij(u)I (|ω̂ε,ij(u)| > ρ)− ωo
ε,ij(u)

∣∣ .
Further noticing that ∥A∥o ≤

√
∥A∥1∥A∥∞ = ∥A∥1 = ∥A∥∞ for any symmetric matrix A, we have

sup
u∈Uh

∥∥∥Ω̂ε(u)−Ωo
ε(u)

∥∥∥
O

≤ sup
u∈Uh

max
1≤i≤N

N∑
j=1

∣∣ω̂ε,ij(u)− ωo
ε,ij(u)

∣∣
≤ 2 sup

u∈Uh

max
1≤i≤N

N∑
j=1

∣∣ω̂ε,ij(u)I (|ω̂ε,ij(u)| > ρ)− ωo
ε,ij(u)

∣∣
≤ 2 sup

u∈Uh

max
1≤i≤N

N∑
j=1

∣∣ω̂ε,ij(u)− ωo
ε,ij(u)

∣∣ I (|ω̂ε,ij(u)| > ρ)

+2 sup
u∈Uh

max
1≤i≤N

N∑
j=1

∣∣ωo
ε,ij(u)

∣∣ I (|ω̂ε,ij(u)| ≤ ρ)

=: Π1 +Π2. (C.1.13)

Define the event

E =

{
sup
u∈Uh

∥∥∥Ω̂ε(u)−Ωo
ε(u)

∥∥∥
max

≤ Mη(ζNT,1 + ζNT,2)

}
,

where Mη is a positive constant such that P (E) ≥ 1− η for any η > 0. Then, conditional on E,

Π1 ≤ 2Mη(ζNT,1 + ζNT,2) sup
u∈Uh

 max
1≤i≤N

N∑
j=1

I (|ω̂ε,ij(u)| > ρ)

 (C.1.14)

and

|ω̂ε,ij(u)| ≤ |ωo
ε,ij(u)|+ |ω̂ε,ij(u)− ωo

ε,ij(u)| ≤ |ωo
ε,ij(u)|+Mη(ζNT,1 + ζNT,2).
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Recall that ρ = c5(ζNT,1 + ζNT,2) in Assumption 3.D(iii). By choosing c5 = 2Mη, we can verify

that, on E, the event {|ω̂ε,ij(u)| > ρ} implies {|ωo
ε,ij(u)| > Mη(ζNT,1 + ζNT,2)}. Consequently, by

(C.1.14), we have, on E,

Π1 ≤ Mη(ζNT,1 + ζNT,2)

 sup
u∈Uh

max
1≤i≤N

N∑
j=1

I
(
|ωo

ε,ij(u)| > Mη(ζNT,1 + ζNT,2)
)

≤ Mη(ζNT,1 + ζNT,2)

sup
u∈U

max
1≤i≤N

N∑
j=1

∣∣∣ωo
ε,ij(u)

∣∣∣q
M q

η (ζNT,1 + ζNT,2)q


= O

(
ϖN · (ζNT,1 + ζNT,2)

1−q
)
. (C.1.15)

On the other hand, by the triangle inequality, for any u ∈ Uh, we have

|ω̂ε,ij(u)| ≥ |ωo
ε,ij(u)| − |ω̂ε,ij(u)− ωo

ε,ij(u)| ≥ |ωo
ε,ij(u)| −Mη(ζNT,1 + ζNT,2)

on E. Then it is easy to see that {|ω̂ε,ij(u)| ≤ ρ} implies

{
|ωo

ε,ij(u)| ≤ (c5 +Mη) (ζNT,1 + ζNT,2)
}
.

Hence, for Π2, by (3.2.8) and Assumption 3.D(iii), we have

Π2 ≤ 2 sup
u∈Uh

max
1≤i≤N

N∑
j=1

∣∣ωo
ε,ij(u)

∣∣ I (|ωo
ε,ij(u)| ≤ (c5 +Mη) (ζNT,1 + ζNT,2)

)
≤ 2(c5 +Mη)

1−q(ζNT,1 + ζNT,2)
1−q sup

u∈U
max
1≤i≤N

N∑
j=1

∣∣ωo
ε,ij(u)

∣∣q
= OP

(
ϖN (ζNT,1 + ζNT,2)

1−q
)
. (C.1.16)

The proof of (3.3.6) can be completed by (C.1.13), (C.1.15) and (C.1.16).

Finally, (3.3.7) is proved by (3.3.5), the proof of (3.3.6)1 and noting that

1

N

∥∥∥Ω̂ε(u)−Ωo
ε(u)

∥∥∥2
F
≤
∥∥∥Ω̂ε(u)−Ωo

ε(u)
∥∥∥
max

∥∥∥Ω̂ε(u)−Ωo
ε(u)

∥∥∥
1
.

■

Proof of Theorem 3.3.2. We first re-write

Ω̂X(u) = Ω̂ε(u)− Ω̂ε(u)Λ̂
[
Ω̂F (u) + Λ̂

⊺
Ω̂ε(u)Λ̂

]−1
Λ̂

⊺
Ω̂ε(u) (C.1.17)

1Note that we proved (3.3.6) by showing that supu∈Uh

∥∥∥Ω̂ε(u)−Ωo
ε(u)

∥∥∥
O

≤ supu∈Uh

∥∥∥Ω̂ε(u)−Ωo
ε(u)

∥∥∥
1

=

supu∈Uh

∥∥∥Ω̂ε(u)−Ωo
ε(u)

∥∥∥
∞

= OP

(
ϖN (ζNT,1 + ζNT,2)

1−q
)
(see (C.1.13), (C.1.15), and (C.1.16)).
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and

Ωo
X(u) = Ωo

ε(u)−Ωo
ε(u)ΛR

[
Ωo

F,R(u) +Λ
⊺

RΩ
o
ε(u)ΛR

]−1
Λ

⊺

RΩ
o
ε(u), (C.1.18)

where Ω̂F (u) =
[
Σ̂F (u)

]−1
, Ωo

F,R(u) =
[
RΣo

F (u)R
⊺]−1

and ΛR = ΛR−1. By (C.1.17), (C.1.18)

as well as some standard arguments, we may show that

Ω̂X(u)−Ωo
X(u) = −

6∑
k=1

Ξk(u),

where

Ξ1(u) = Ωo
ε(u)− Ω̂ε(u),

Ξ2(u) =
[
Ω̂ε(u)−Ωo

ε(u)
]
Λ̂
[
Ω̂F (u) + Λ̂

⊺
Ω̂ε(u)Λ̂

]−1
Λ̂

⊺
Ω̂ε(u),

Ξ3(u) = Ωo
ε(u)Λ̂

[
Ω̂F (u) + Λ̂

⊺
Ω̂ε(u)Λ̂

]−1
Λ̂

⊺
[
Ω̂ε(u)−Ωo

ε(u)
]
,

Ξ4(u) = Ωo
ε(u)

(
Λ̂−ΛR

) [
Ω̂F (u) + Λ̂

⊺
Ω̂ε(u)Λ̂

]−1
Λ̂

⊺
Ωo

ε(u),

Ξ5(u) = Ωo
ε(u)ΛR

[
Ω̂F (u) + Λ̂

⊺
Ω̂ε(u)Λ̂

]−1 (
Λ̂−ΛR

)⊺

Ωo
ε(u),

Ξ6(u) = Ωo
ε(u)ΛRD(u)Λ

⊺

RΩ
o
ε(u)

with

D(u) =
[
Ω̂F (u) + Λ̂

⊺
Ω̂ε(u)Λ̂

]−1
−
[
Ωo

F,R(u) +Λ
⊺

RΩ
o
ε(u)ΛR

]−1
=:
[
Ω̂F,ε(u)

]−1
−
[
Ωo

F,ε(u)
]−1

.

By Theorem 3.3.1(ii), we have

sup
u∈Uh

∥Ξ1(u)∥O = OP

(
ϖN (ζNT,1 + ζNT,2)

1−q
)
. (C.1.19)

Note that, with probability approaching one, λmin

(
Ω̂F (u)

)
=
[
λmax

(
Σ̂F (u)

)]−1
is uniformly

bounded away from zero on Uh. Furthermore, following the proof of Lemma 15 in Fan

et al. (2013) and by Assumption 3.A(ii), we can show that, with probability approaching one,

λmin

(
Λ̂

⊺
Ω̂ε(u)Λ̂

)
≥ c0N uniformly over u ∈ Uh, where c0 is a positive constant. Combining these

facts, we have

sup
u∈Uh

∥∥∥∥[Ω̂F (u) + Λ̂
⊺
Ω̂ε(u)Λ̂

]−1
∥∥∥∥
O

= OP (1/N). (C.1.20)

Then by Theorem 3.3.1(ii), Assumption 3.A and the uniform sparsity assumption (3.2.8), we readily

have

sup
u∈Uh

∥Ξ2(u)∥O ≤ sup
u∈Uh

{∥∥∥Ωo
ε(u)− Ω̂ε(u)

∥∥∥
O

∥∥∥∥Λ̂ [Ω̂F (u) + Λ̂
⊺
Ω̂ε(u)Λ̂

]−1
Λ̂

⊺

∥∥∥∥
O

∥∥∥Ω̂ε(u)
∥∥∥
O

}
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= OP

(
ϖN (ζNT,1 + ζNT,2)

1−q
)
, (C.1.21)

and similarly,

sup
u∈Uh

∥Ξ3(u)∥O = OP

(
ϖN (ζNT,1 + ζNT,2)

1−q
)
. (C.1.22)

On the other hand, by (3.2.11) in Proposition 3.2.1(ii), we have

∥∥∥Ωo
ε(u)

(
Λ̂−ΛR

)∥∥∥
O
≤∥Ωo

ε(u)∥O
∥∥∥Λ̂−ΛR

∥∥∥
O
≤ ∥Ωo

ε(u)∥1N
1/2
∥∥∥Λ̂−ΛR

∥∥∥
∞

=OP

(
N1/2

[(
logN

T

)1/2

+
T 2/δ

N1/2

])
,

and further by Assumption 3.A,

∥∥∥Λ̂⊺
Ωo

ε(u)
∥∥∥
O
≤
∥∥∥Λ̂⊺

∥∥∥
O
∥Ωo

ε(u)∥O ≤ N1/2
∥∥∥Λ̂∥∥∥

∞
∥Ωo

ε(u)∥1 = OP (N
1/2).

Combining the above results with (C.1.20), we have

sup
u∈Uh

∥Ξ4(u)∥O ≤ sup
u∈Uh

{∥∥∥Ωo
ε(u)

(
Λ̂−ΛR

)∥∥∥
O

∥∥∥∥[Ω̂F (u) + Λ̂
⊺
Ω̂ε(u)Λ̂

]−1
∥∥∥∥
O

∥∥∥Λ̂⊺
Ωo

ε(u)
∥∥∥
O

}
= OP

((
logN

T

)1/2

+
T 2/δ

N1/2

)
= oP

(
ϖN (ζNT,1 + ζNT,2)

1−q
)
, (C.1.23)

and similarly,

sup
u∈Uh

∥Ξ5(u)∥O = oP

(
ϖN (ζNT,1 + ζNT,2)

1−q
)
. (C.1.24)

We next consider Ξ6(u). Note that

∥D(u)∥O =

∥∥∥∥[Ω̂F,ε(u)
]−1 [

Ωo
F,ε(u)− Ω̂F,ε(u)

] [
Ωo

F,ε(u)
]−1
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O

≤
(∥∥∥∥[Ω̂F,ε(u)

]−1
−
[
Ωo

F,ε(u)
]−1
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O

+
∥∥∥[Ωo

F,ε(u)
]−1
∥∥∥
O

)
×
∥∥∥Ωo

F,ε(u)− Ω̂F,ε(u)
∥∥∥
O

∥∥∥[Ωo
F,ε(u)

]−1
∥∥∥
O
.

Further, notice that

−
(∥∥∥∥[Ω̂F,ε(u)

]−1

−
[
Ωo

F,ε(u)
]−1
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O

+
∥∥∥[Ωo

F,ε(u)
]−1
∥∥∥
O

)∥∥∥Ωo
F,ε(u)− Ω̂F,ε(u)

∥∥∥
O

∥∥∥[Ωo
F,ε(u)

]−1
∥∥∥
O

≤ −
(∥∥∥∥2I− [Ω̂F,ε(u)

]−1

Ωo
F,ε(u)−

[
Ωo

F,ε(u)
]−1

Ω̂F,ε(u)
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O

+
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F,ε(u)
]−1

Ω̂F,ε(u)− I
∥∥∥
O

)
×
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F,ε(u)
]−1
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O

≤ −
(∥∥∥∥I− [Ω̂F,ε(u)

]−1
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F,ε(u)
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O
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F,ε(u)

]−1
∥∥∥
O

≤ −
∥∥∥∥[Ω̂F,ε(u)

]−1

−
[
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Hence,

∥D(u)∥O
[
1−

∥∥∥Ω̂F,ε(u)−Ωo
F,ε(u)

∥∥∥
O

∥∥∥[Ωo
F,ε(u)

]−1
∥∥∥
O

]
≤

∥∥∥[Ωo
F,ε(u)

]−1
∥∥∥
O

∥∥∥Ωo
F,ε(u)− Ω̂F,ε(u)

∥∥∥
O

∥∥∥[Ωo
F,ε(u)

]−1
∥∥∥
O
.

This implies

∥D(u)∥O ≤

∥∥∥Ω̂F,ε(u)−Ωo
F,ε(u)

∥∥∥
O
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F,ε(u)
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O
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O

. (C.1.25)

By Proposition 3.2.1(ii), Proposition 3.3.2 and Theorem 3.3.1(ii), we can show that

sup
u∈Uh

∥∥∥Ω̂F,ε(u)−Ωo
F,ε(u)

∥∥∥
O
= OP

(
NϖN (ζNT,1 + ζNT,2)

1−q
)
. (C.1.26)

Similar to (C.1.20), we have

sup
u∈Uh

∥∥∥[Ωo
F,ε(u)

]−1
∥∥∥
O
= OP (1/N). (C.1.27)

By virtue of (C.1.25)–(C.1.27), we can prove that

sup
u∈Uh

∥D(u)∥O = OP

(
N−1ϖN (ζNT,1 + ζNT,2)

1−q
)
. (C.1.28)

By (3.2.8) and Assumption 3.A, ∥Ωo
ε(u)ΛR∥O = OP (N

1/2) uniformly over u ∈ Uh, which together

with (C.1.28), implies

sup
u∈Uh

∥Ξ6(u)∥O = OP

(
ϖN (ζNT,1 + ζNT,2)

1−q
)
. (C.1.29)

With (C.1.19), (C.1.21)–(C.1.24) and (C.1.29), we complete the proof of (3.3.11).

We next prove (3.3.12). By Theorem 3.3.1(iii), we have

sup
u∈Uh

1

N
∥Ξ1(u)∥2F = OP

(
ϖN (ζNT,1 + ζNT,2)

2−q
)
. (C.1.30)

Notice that for any two compatible matrices A1 and A2, it holds that

∥A1A2∥F ≤ ∥A1∥F ∥A2∥O, ∥A1A2∥F ≤ ∥A1∥O∥A2∥F . (C.1.31)

Then by (C.1.20) and (C.1.30), we can show that

sup
u∈Uh

1

N

(
∥Ξ2(u)∥2F + ∥Ξ3(u)∥2F

)
= OP

(
ϖN (ζNT,1 + ζNT,2)

2−q
)
. (C.1.32)
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By (C.1.31), (3.2.8), (C.1.20), Proposition 3.2.1(ii) and Assumption 3.A, we have
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and similarly,

sup
u∈Uh

1

N
∥Ξ5(u)∥2F = oP
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ϖN (ζNT,1 + ζNT,2)

2−q
)
. (C.1.34)

For Ξ6(u), by (3.2.8), (C.1.28), and Assumption 3.A, we have

sup
u∈Uh
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. (C.1.35)

Combining (C.1.30) and (C.1.32)–(C.1.35), we prove (3.3.12). ■
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