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Abstract 
 

 

 

Due to the high complexity of relationships between the various process parameters and the 

mechanical properties of the polylactide (PLA) components produced by the fused deposition 

modelling (FDM), predictions of their mechanical behaviour could be a complicated task to 

complete using the conventional approaches. Hence, alternative data-driven methodologies are 

adopted in the present investigation to serve this goal. 

The present research has included the development of two alternative frameworks: dependent 

on the user needs, “direct” and “inverse” schemes. The former could be used to estimate 

mechanical properties with given process parameters, whereas the latter could identify the optimal 

combination of the process parameter ensuring the required mechanical behaviour. The process 

parameters estimated from the inverse framework can be adjusted with respect to the 

specifications of the printer and the software. 

Three various data-driven methodologies were adopted in the present investigations, including 

the fuzzy inference system (FIS), artificial neural network (NN) and adaptive neural fuzzy 

inference system (ANFIS). The research has confirmed that with the priority being accuracy, the 

ANFIS is seen to be the most accurate approach, which requires particular computing power. 

However, FIS is reported to be the most efficient approach, which has a similar level of accuracy 

to the ANFIS approach. 

The intrinsic versatility of the analysed data-driven methodologies has proven that these 

approaches could be adopted not only for process and geometrical design parameters, but also 

they are successful in analysing cost-relevant parameters such as printing time and material 

consumption. It has been shown that data-driven methodologies could be an effective and robust 

decision-making tool in design and cost management problems. 
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Chapter 1 

Chapter 1 Introduction 

Introduction 
 

 

1.1 Additive manufacturing technology 

As modern society is entering the era of digital manufacturing, numerous innovative 

technologies have appeared and shown daily increasing competitiveness compared with 

conventional manufacturing solutions. Additive manufacturing (AM), which is one of these novel 

techniques, has raised a revolution in modern industries due to its unique characteristics. Different 

from the conventional manufacturing process such as machining, milling, shaping, etc., AM, also 

known as 3D-printing technologies, replaces “subtraction” with “addition”, which allows 

materials to be processed more efficiently without extra waste. Although it is not the main focus 

of the thesis, the AM technology will still be explained in detail in this chapter1 to fulfil the 

background knowledge of the 3D-printing techniques for readers. 

 

1.1.1 Working principle 

Based on the “additional” manufacturing strategy, various materials could be used for 3D 

printing, such as metals,1 ceramics,2 thermoplastics,3 etc., depending on the specific choice of the 

technique. In the present study, the experimental specimens are manufactured with the fused 

 
1 This chapter is partly adopted from: 

 

Tu R, Gitman I, Susmel L. Fuzzy inference system for failure strength estimation of plain and notched 3D-printed 

polylactide components. Fatigue Fract Eng Mater Struct. 2022;45: 1663–1677. 

 

Tu R, Gitman I, Susmel L. Fuzzy sets based methodology for manufacturing parameter determination of 3D-

printed PLA components: optimisation of strength, design and cost requirements. (under review) 
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deposition modelling (FDM) technique, which is an extrusion-based 3D-printing solution. Hence, 

the adopted material here is polylactide (PLA) which is a commonly used FDM material. 

PLA is an economical and biodegradable material as it can be manufactured at a low cost, 

particularly from renewable resources such as corn starch and sugarcane.4 Hence, it has been 

considered one of the environmentally sustainable materials. Another reason for PLA to become 

one of the common materials of FDM is that it is a thermoplastic which has a relatively low 

melting temperature of around 180℃5 and is suitable for the FDM processing of the material. 

Specifically, during the process of FDM, melted material filaments are extruded from a heated 

nozzle and then deposited selectively on a printing platform.6 Upon touching, melted materials 

start to cool down and solidify, eventually forming a layer of predetermined geometry. This could 

be achieved as the path of the nozzle is generated based on the layer geometry, which is the 

outcome of the part being sliced into super-thin layers with the help of computer-aided design 

(CAD) software packages.7 

After the layer geometry has been finished, the platform will be lowered so that the following 

materials can be bedded on top of the previously deposited ones. After this stage, layers of 

thermoplastic materials bond together and a three-dimensional part is eventually achieved as 

designed. 

 

1.1.2 Processing parameters 

During the manufacturing process, there are various processing parameters influencing the 

ultimate mechanical property of the printed object, such as infill density, manufacturing 

orientation and angle,8 temperatures,9 layer height,10 etc. Among all these parameters, infill 

density, which represents the inner volume occupied by filled materials, is reported to have a 

significant impact on the mechanical properties of printed parts.11–13 

The idea of the infill density is a compromise between a solid and a hollow object where the 

former is both material and time-consuming for FDM printing, and the latter is characterised by 

a strength which is too low.14 As such, the infill density is directly connected with the strength 

and the weight of an object as well as the printing duration, and all these parameters vary between 

a solid and a hollow object. 

It has been validated that the impact,15 flexural and ultimate tensile strength16 could peak at 

100% (maximum) infill density, whereas the optimum infill density still depends on the actual 

application. This is not only for material saving but also for other important criteria. For example, 

Porter et al.17 have found that 10% to 20% is the optimum range for infill percentage in order to 
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maximise the stiffness-to-mass for the 3D-printed object. However, a bit higher infill density is 

also suggested to avoid the reduction of flexural rigidity in their study. Similarly, Schmitt et al.18 

have also proven that various infill selections are necessary for regions with different stress 

situations, considering the prevailing trend of the light-weighting of components in the automotive 

industry. Therefore, the determination of the optimum infill density is definitely worth particular 

attention. 

Apart from the infill density, printing direction has proven to significantly impact the 

mechanical behaviour of the printed parts.19 In the present work, as far as the mechanical 

behaviour of 3D-printed polymers is concerned, much experimental evidence suggests that the 

anisotropy associated with the building direction plays a role of primary significance.20–23 

For instance, it is seen from the experiments that the ultimate tensile strength and the yield 

stress of 3D-printed PLA parts manufactured perpendicularly to the build plate are lower than the 

corresponding mechanical properties that are obtained when objects are manufactured either on-

edge or flat.20,21 Similarly, when components are fused-filament fabricated flat on the built plate, 

their mechanical response is influenced by the intrinsic anisotropy resulting from the value being 

set for the manufacturing raster angle.22,23 In more detail, the mechanical performance of 3D-

printed polymers is seen to be higher when the loading is applied along directions that are parallel 

to the 3D-printed filaments. It has also been investigated that the building orientation with a higher 

proportion of extruded filaments along the loading direction shows a better strength performance 

of the part than those with more offset.24 More specifically, Weake et al.25 found that the tensile 

strength of an Acrylonitrile Butadiene Styrene (ABS) part could be up to 150% higher when the 

applied force is parallel to the material filaments (manufacturing angle equals 0° ) than 

perpendicular (manufacturing angle equals 90°). 

The anisotropy of 3D printing is usually related to manufacturing factors. The evident level 

of anisotropy has been reported to affect the overall mechanical response of the printed parts,26 

with this holding true under both static27 and fatigue loading.28–30 This is because, under the above 

circumstances, the overall mechanical response of additively manufactured polymers mainly 

depends on the axial mechanical strength of the extruded filaments.20–23 In contrast, when the 

loading is applied along directions perpendicular to the 3D-printed filaments, the overall strength 

of the polymer under investigation markedly depends on the forces bonding together adjacent 

filaments/layers.31 Since, by their nature, these bonding forces result in a lower mechanical 

performance than the corresponding mechanical performance characterising the extruded 

filaments themselves, overall 3D-printed materials are seen to be weaker when the loading is 
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applied along a direction perpendicular to the direction of the filaments.21 Hence, it is seen from 

the above studies that the identification of the optimal manufacturing orientation for the 3D-

printing process is worth necessary investigations. 

 

1.2 Data-driven methodology 

It has been seen in numerous experimental studies that both infill density and manufacturing 

angle can simultaneously influence the mechanical behaviour of 3D-printed objects. Although the 

individual effect of these parameters was analysed,25,32 due to the complexity of the cross-

correlations between them, the estimation of the mechanical strength can be highly inaccurate 

where both infill density and manufacturing angle vary. Considering the large variety of the 

possible combinations of aforementioned parameters, the evident level of non-linearity between 

these parameters and the mechanical behaviour31 has become the main problem to be solved. 

Conventionally, the determination of the mechanical behaviour of a 3D-printed part relies on 

either numerous tests or empirical relations, which are, in any case, the outcome of comprehensive 

experimental investigations.33 Such investigations are normally costly and time-consuming for 

the required level of precision.34 Hence, it has become a priority to provide an alternative 

methodology requiring fewer experimental tests for formulating the relationship between the 

mechanical behaviour of a 3D-printed object and multiple manufacturing parameters. 

In recent years, the international scientific community has made a considerable effort to 

formulate alternative approaches, such as data-driven methods. Data-driven techniques have 

shown their capability of overcoming the above difficulties by gaining knowledge, recognising 

and creating patterns among the data directly. So far, data-driven methodologies have shown great 

potential to obtain knowledge as they learn the correlation between input and output parameters 

based on the provided data. Instead of developing various physical equations, data-driven 

methodologies aim to create patterns that could be used to map the non-linearity among 

parameters based on existing data. Thus, data-driven methods learn from a group of existing raw 

data and can estimate the behaviour of required variables based on this previous learning process.  

Typical data-driven methods, including artificial neural network (NN), fuzzy inference system 

(FIS), adaptive neural fuzzy inference system (ANFIS), design of experiments (DOE) and other 

techniques, are widely applied to study the mechanical behaviour of a 3D-printed object.25,35 The 

complexity caused by the joint effect of multiple parameters is seen to be effectively solved by 

the application of non-linear regression solutions included in the aforementioned techniques.36 In 
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the following sections, the common data-driven techniques to be adopted in the present work will 

be briefly introduced in order to compare both the estimation accuracy and efficiency of all 

adopted methods. 

 

1.2.1 Fuzzy inference system 

One of the data-driven approaches is known as fuzzy inference system (FIS), which is based 

on the theory of fuzzy sets. Fuzzy inference system is a methodology that formulates the non-

linear mapping from a given input to an output based on the theory of fuzzy logic.37 The inference 

of the method is similar to the human reasoning process, which helps make decisions based on 

the known fuzzy rules from the historical data.38 Details of the FIS methodology will be 

introduced in Chapter 2, whereas the background of the FIS application is mainly introduced here. 

FIS methodology has been reported to be used for the prediction of the wear rate in selective 

inhibition sintered high-density polyethene (HDPE) parts based on processing parameters, 

including layer thickness, heat energy, heater feed rate and printer feed rate.39 Note here that 

selective inhibition sintering (SIS) is another type of additive manufacturing technique. A 3-level 

& 3-parameter FIS has also been developed by Esakki et al.35 for the prediction of mechanical 

strength. Hence, it is seen that the FIS methodology could be a useful tool for the property 

prediction of 3D-printed parts. 

For the strength estimation with a fuzzy-based system, innovative studies have been carried 

out using a fuzzy-based methodology for the estimation of the strength properties of functional 

materials.40 The fuzzy rule setup strategy with the deterministic values in the present work is 

inspired by the previous study of Gitman et al.41 where the fuzzy relation is set up according to 

the adjacent values of the data. Successful predictions of strength and hardness have been 

observed by the FIS model in Gitman et al.41, indicating that the fuzzy system could be a useful 

modelling tool in strength estimation problems. 

In what follows, the FIS framework will be used to perform the failure strength assessment of 

3D-printed plain and notched components of PLA. It is the first time that the prediction will not 

only include the process parameters in the current study but also involve the geometrical design 

parameters as an additional criterion. After the strength prediction, an attempt will be made to 

use the FIS framework to identify the optimal manufacturing parameters, which is the inverse 

estimation of the aforementioned framework. 
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1.2.2 Artificial neural network 

Other data-driven methodologies, which are usually compared with FIS, include artificial 

neural network (NN) and adaptive neural fuzzy inference system (ANFIS). The NN model 

simulates the signal-transmitting pattern between biological neurons in human brains.42 The 

network is recursively updated in order to achieve the desired estimation accuracy. Due to the 

current enormous databases and computational resources, artificial neural network is under 

continuous development.43 Details of NN will be illustrated in the latter chapters, with the current 

research progress of NN introduced in this section. 

NN has been widely applied to various fields such as vocal recognition,44 self-governing 

driving,45 machine vision,46 etc. It has been used to estimate the stiffness and toughness of 

composites where NN was found to be 250 times faster than the finite element analysis (FEA).47 

Liang et al.48 have also demonstrated that NN could be a fast and accurate surrogate of FEA for 

stress analysis. For the particular application in the 3D-printing field, NN has also played a 

significant role in process monitoring and designing. 

Everton et al.49 have successfully applied NN in process monitoring during the printing 

process, aiming for quality supervision and control. Shevchik et al.50 have also investigated quality 

monitoring during the printing process by combining the acoustic emission sensor with the NN. 

Williams et al.51 reported that the convolutional neural network (CNN) was more accurate than 

the linear regression model when being used to estimate quantitative manufacturing metrics 

directly from voxel-based component geometries. Khadilkar et al.52 introduced an NN-based 

framework which was applied to predict the stress distribution on the curved layer of the 

stereolithography (SLA)-based printed part in real-time. 

Apart from the process monitoring and designing, it is necessary to point out that the NN has 

also been useful for the correlation between process parameters and printed parts’ characteristics. 

It is reported that NN has been used to predict compressive strength and sliding wear of FDM 

printed parts with layer thickness, positioning, raster angle and width, and air gap.53,54 Vahabli et 

al.55 have managed to estimate the surface roughness distribution of FDM printed parts with the 

NN approach with particularly optimised process parameters such as time, cost and quality. 

Mohamed et al.56 successfully predict the dynamic modulus of elasticity of 3D-printed parts with 

multiple common process parameters with better accuracy than the fractional factorial model. 

In what follows, NN will be used to formulate the prediction of the failure strength of the 3D-

printed parts based on not only the process parameters but also notch-relevant parameters, i.e., 

geometrical design characteristics. Furthermore, NN will also be applied to identify the optimal 
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combination of the process parameters with the particular requirement of geometrical design and 

strength. 

 

1.2.3 Adaptive neural fuzzy inference system 

With the above two methodologies proposed, an integrated methodology has been developed 

to combine FIS and NN methods, known in the field as the adaptive neural fuzzy inference system 

(ANFIS). The adaptive system inherits the idea of human reasoning and fuzzy rules from FIS but 

optimises the fuzzy rules with NN methods. Hence, with a particular emphasis on the accuracy of 

the fuzzy model in the adaptive system, ANFIS has been widely applied as a data-driven solution 

to various real-world problems, such as medical diagnosis,57 mobile learning,58 flammability 

parameter prediction,59 etc. 

The ANFIS methodology has also been used in 3D-printing areas. Raju et al.60 have 

successfully used the ANFIS model to predict the printing time, part thickness and surface 

roughness based on the infill density and printing speed. It is also reported that the surface 

roughness of the FDM PLA parts could be estimated using ANFIS based on the given building 

orientation, layer thickness and impact angle.61 Sedigh et al.62 applied ANFIS to estimate the 

scaffold line width for 3-dimensional bioprinting with provided inputs (gelatin concentration, 

bioink temperature, pressure and printing speed). 

Particularly for the strength prediction of 3D-printed parts, Yadav et al.63 have investigated 

the prediction of tensile strength of materials like PETG, ABS and multi-material (60% ABS + 

40% PETG) based on the given layer height and extrusion temperature. It is also reported that the 

flexural stress of the 3D-printed carbon fibre-based composites can be estimated with a high 

accuracy using ANFIS methodology as compensation for experimental work assessments.64 

There has yet to be a study using both process and design parameters to estimate the 

mechanical strength of FDM parts with ANFIS. Hence, in what follows, ANFIS will be applied 

to estimate the failure tensile strength of FDM parts based on the infill density, manufacturing 

angle and notch root radius. This strength-orientated estimation framework is referred to as direct 

estimation. An extensive study will also include using ANFIS methodology to identify the optimal 

combination of manufacturing parameters based on required strength performance, referred to 

as the inverse estimation. 

 

 



8                                                                                                CHAPTER 1.  INTRODUCTION 

 

1.2.4 Design of experiments 

Conventionally, experiments are conducted by holding certain factors constant and varying 

the value of another variable. Such the “one factor at a time” (OFAT) approach could be inefficient 

when each of the multiple factors has various levels, compared with varying factor levels 

simultaneously in DOE. 

Design of experiments is a statistical approach widely used in experiments planning, 

parameters analysis, etc. It has been used for analysing and interpreting data obtained from 

experiments.65 DOE is an effective systematic procedure carried out under controlled conditions 

to study the complex relationship between the multiple input and output parameters, with the 

particular capability of identifying the significance of each input parameter. Being itself an 

effective tool in decision-making process, DOE has played a significant role in not only 

engineering areas, but also in pharmaceutical,66 food industry,67 architecture and energy.68,69  

Although DOE has been applied in various areas, there are very few comparative studies 

regarding the estimation performance of DOE and other data-driven methods. In the research of 

Aengchuan and Phruksaphanrat,70 DOE was shown to be less accurate than FIS, but with the 

capability to identify the main factors and their interactions. Although reportedly less accurate, 

DOE method benefits from the high accessibility, as it is currently built into MS excel toolbox. 

Utilising the ease of use and ease of accessibility, the DOE is adopted here as a contrast method 

in later sections for comparing all the adopted data-driven methods. 

To help the readers’ understanding, a simple example is included here for illustration. Suppose 

there are three input parameters (𝑥1, 𝑥2 & 𝑥3) relevant to the output parameter (𝑦) of the problem, 

and each of the input parameters has three levels of value (Level 1, 2 & 3). According to the 

OFAT approach, there are supposed to be 33 = 27 tests to include all possible combinations. 

However, according to the Taguchi arrays for the DOE,71 only nine tests are needed for the 

problem, and the test setup is as shown in Table 1.1. 

Following the Taguchi design, a statistical model is proposed here to represent the relationship 

between the input and output parameters in Equation (1): 

 

 𝑦 = 𝑏 +𝑚1𝑥1 +𝑚2𝑥2 +𝑚3𝑥3 +𝑚4𝑥1𝑥2 +𝑚5𝑥1𝑥3 +𝑚6𝑥2𝑥3 +𝑚7𝑥1𝑥2𝑥3 , (1) 

 

where 𝑏  (to be determined) is the average 𝑦-value when all 𝑥  equal to zero;72 𝑚1  to 𝑚7  are 

coefficients to be determined by the regression. In the present investigation, the built-in data 

analysis tool of MS Excel is adopted for the regression calculations of the coefficients. Note that 
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with a user-defined confidence level of 95%, the generated analysis of variance (ANOVA) table 

directly shows the value of each coefficient. Finally, following the determination of the 

coefficients, extra data is required to validate the accuracy of the calculated regression model. 

Note here that the above test setup in Table 1.1 is only for model setup, similar to the data for 

setting up the fuzzy rules in FIS and the training data group in NN and ANFIS (to be introduced 

in following sections). Hence, in the following sections, the historical data for coefficient 

calculations with DOE method will be referred to as “training data” for clarification. 

 

Table 1.1 The Taguchi array for a 3-parameter and 3-level problem.71 

Tests No. 𝒙𝟏 𝒙𝟐 𝒙𝟑 𝒚 

1 1 1 1 𝑦1 

2 1 2 2 𝑦2 

3 1 3 3 𝑦3 

4 2 1 2 𝑦4 

5 2 2 3 𝑦5 

6 2 3 1 𝑦6 

7 3 1 3 𝑦7 

8 3 2 1 𝑦8 

9 3 3 2 𝑦9 

 

1.3 Summary of existing work 

After introducing the main methods adopted in this research, it is author’s pleasure to 

introduce the existing work done by Luca Susmel and Adnan A. Ahmed,73 which the current 

investigation is based on. Experimental specimens and relevant data are adopted from their past 

work. Specimens used in the present investigation, were manufactured with the FDM 3D-printing 

technique. Being in itself not the main part of the present investigation, some important 

terminology and necessary variables during the manufacturing process used in what follows will 

be introduced here. 
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1.3.1 Specimen geometry design 

In the present investigation, two different geometries will be analysed in the investigation: 

plain and notched (U-shape) components (see Figure 1.1A and Figure 1.1B for illustration). The 

particular choice of 3D-printed specimens’ geometries was dictated by: 

• extensive testing of the various data-driven methodologies on relatively simple 

geometry where the parameters of interest are only manufacturing process parameters 

(plain specimens in Figure 1.1A); 

• the desire to expand and test data-driven methodologies on mixed types of input 

parameters, i.e., manufacturing and geometrical/design parameters (U-notched 

specimens in Figure 1.1B). The latter, potentially, will pave the way to a class of 

design-related problems, which is particularly important in industrial applications. 

 

 

Figure 1.1 A) Geometrical design of the plain specimen; B) Geometrical design of the U-shape notched specimens with 

various notch root radius; C) Manufacturing angle 𝜃𝑝 is between the longitudinal axis L and the main printing direction 𝑦𝑝. 
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1.3.2 Parameters of interest 

Following the introduction of process parameters, infill density and manufacturing angle were 

the main processing parameters chosen to support the estimation of the mechanical property. The 

infill density quantifies the percentage of volume infilled with filaments, and it is normally larger 

than 0% and could be up to 100%. The unfilled space forms manufacturing voids, which could 

allow a considerable reduction of material consumption and object weight with tolerable sacrifice 

in general structural strength. In order to study the impact of infill density on failure tensile 

strength, nine levels of infill density were fabricated and used in this study73 (10% to 90% with a 

10% interval) for the plain specimens, whereas three levels of infill density (30%, 50% & 70%) 

were fabricated73 for the U-notched specimens. 

The manufacturing angle, denoted here as 𝜃𝑝, is defined as the angle between the printing 

direction 𝑦𝑝 (see Figure 1.1C) and the longitudinal axis 𝐿 of the specimen. Note that it is different 

from the raster angle, which is the angle between the path of the nozzle and the 𝑥-axis of the 

printing platform.74 In this study, the 3D printer used for manufacturing specimens always has a 

±45° angle between the nozzle path and the 𝑥-axis. Therefore changes in 𝜃𝑝 can effectively vary 

the raster angle with respect to the axial loading direction.73 The specimens shown in Figure 1.1 

were all manufactured flat on the build-plate where the manufacturing angle 𝜃𝑝 was set to be 0°, 

30° and 45°, respectively. 

For the U-notched specimens, each part had a U-shape notch on each longitudinal side. The 

notch root radius was taken as a geometrical design factor, which was equal to 0.5mm, 1mm and 

3mm for various specimens. In further analysis, it could also pave the way to the study of the 

fracture behaviour of FDM parts. 

 

1.3.3 Manufacturing and testing process 

Both plain and notched specimens were manufactured using 3D-printer Ultimaker 2+ 

Extended75 with PLA filaments having a diameter equal to 2.85 mm. The manufacturing 

parameters of the FDM parts were set as shown in Table 1.2, and all specimens were tested with 

a Shimadzu universal axial machine where the displacement rate was equal to 2mm/min.73 Both 

plain and U-notched specimens were tested up to complete breakage. 

As introduced in the previous section, process parameters can significantly impact various 

mechanical properties of a 3D-printed part. Being one of the important mechanical parameters of 

interest, tensile strength (TS) describes the ability of the printed component to resist fracture due 
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to tension. 

Hence, the failure tensile strength was evaluated in the present investigation. Apart from the 

importance of this parameter, the other reason for the tensile strength being evaluated was the 

adopted here experimental work of Luca Susmel and Adnan A. Ahmed.73 The only mechanical-

behaviour parameter available in the original work was the failure tensile strength. Last but not 

least, considering the intrinsic versatility of data-driven methodologies, other mechanical 

properties or even those material properties (surface finish, toughness, etc.) should work as 

successful as the TS if the application of methodologies and the proposed framework are proven 

to be applicable. 

 

Table 1.2 Predetermined manufacturing parameters for 3D-printing process.73 

Manufacturing parameters Values 

Layer height 0.1mm 

Shell thickness 0.4mm 

Build-plate temperature 60℃ 

Printing speed 30mm/s 

Nozzle size 0.4mm 

Nozzle temperature 240℃ 

 

The experimental results for the plain and U-notched specimens are shown in Table 1.3 and  

Table 1.4, respectively. Considering both plain and U-notched specimens, there are three 

manufacturing/design parameters related to the failure tensile strength. Hence, the total number 

of configurations should be 33 = 27, which can cover all possible configurations. Note that in the 

original study, three samples were manufactured and tested for any geometry/manufacturing 

configuration being investigated. Hence, there were 27 × 3 = 81 specimens tested in total for the 

original experimental data, which are shown in Table 1.3 and  

Table 1.4. Given the fact that data-driven methods need sole values for each parameter in the 

process of calculation, the three tested failure strengths for each configuration were averaged to a 

single value. Hence, the data to be used in later sections will only include 27 

specimens/configurations. It is worth mentioning that the above averaging process (81 specimens 

to 27 specimens) could have negatively influenced the final estimation result due to the 

uncertainty caused by numerical errors. Therefore, the actual performance of the framework and 
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methodologies could potentially be better than presented in later chapters. Note in following tables, 

the 𝑑𝑣 refers to effective size of manufacturing voids and Radius refers to the notch root radius, 

both of which will be introduced in detail in later chapters. 

 

Table 1.3 Summary of 81 experimental results for plain specimens.73 

Specimen 𝜃𝑝 (°) Infill density (%) 𝑑𝑣 (mm) 𝜎𝑓 (MPa) 

1-1 0 10 10.7 7.8 

1-2    8.7 

1-3    8.7 

2-1 0 20 4.98 9.4 

2-2    9.1 

2-3    9 

3-1 0 30 1.36 9.9 

3-2    10.7 

3-3    10.6 

4-1 0 40 0.88 12 

4-2    11.8 

4-3    12 

5-1 0 50 0.62 13.7 

5-2    13.9 

5-3    13.3 

6-1 0 60 0.45 15.9 

6-2    16.6 

6-3    16.7 

7-1 0 70 0.33 19.6 

7-2    20.4 

7-3    19.5 

8-1 0 80 0.24 22.3 

8-2    22.9 

8-3    22.4 

9-1 0 90 0.14 26 

9-2    26.2 

9-3    25.2 

10-1 30 10 10.72 8.7 

10-2    8.8 

10-3    8.7 

11-1 30 20 5.06 7.9 

11-2    7.9 

11-3    7.9 

12-1 30 30 1.39 9.8 

12-2    9.9 

12-3    9.8 

13-1 30 40 0.96 10.1 

13-2    10.1 

13-3    10.2 
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Table 1.3 (Continued) 

Specimen 𝜃𝑝 (°) Infill density (%) 𝑑𝑣 (mm) 𝜎𝑓 (MPa) 

14-1 30 50 0.66 14.3 

14-2    14 

14-3    13.6 

15-1 30 60 0.41 16.2 

15-2    16 

15-3    15.5 

16-1 30 70 0.29 18.5 

16-2    18.4 

16-3    18.5 

17-1 30 80 0.25 18.7 

17-2    19.6 

17-3    19.7 

18-1 30 90 0.11 23.6 

18-2    23.6 

18-3    23 

19-1 45 10 10.65 9.1 

19-2    7.6 

19-3    8.1 

20-1 45 20 5.12 10.7 

20-2    8.9 

20-3    8.9 

21-1 45 30 1.37 11.1 

21-2    10.6 

21-3    10.7 

22-1 45 40 0.93 12.7 

22-2    12.4 

22-3    12 

23-1 45 50 0.65 14.6 

23-2    14.3 

23-3    13.4 

24-1 45 60 0.43 16.6 

24-2    15.8 

24-3    15.2 

25-1 45 70 0.31 19.1 

25-2    17.8 

25-3    17.5 

26-1 45 80 0.22 20.8 

26-2    20.5 

26-3    20.3 

27-1 45 90 0.13 23.8 

27-2    22.4 

27-3    22.2 
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Table 1.4 Summary of 81 experimental results for U-notched specimens. 

Specimen 𝜃𝑝 (°) Infill density(%) Radius (mm) 𝜎𝑓 (MPa) 

1-1 0 30 0.5 11.58 

1-2    8.48 

1-3    9.06 

2-1 0 30 1 8.17 

2-2    8.81 

2-3    11.63 

3-1 0 30 3 11.63 

3-2    11.48 

3-3    9.51 

4-1 0 50 0.5 12.64 

4-2    12.7 

4-3    13.86 

5-1 0 50 1 13.25 

5-2    13.66 

5-3    14.35 

6-1 0 50 3 14.17 

6-2    13.83 

6-3    15.37 

7-1 0 70 0.5 19.17 

7-2    16.33 

7-3    16.61 

8-1 0 70 1 16.81 

8-2    15.06 

8-3    18.89 

9-1 0 70 3 19.55 

9-2    16.85 

9-3    19.39 

10-1 30 30 0.5 9.15 

10-2    7.83 

10-3    7.58 

11-1 30 30 1 8.23 

11-2    8.79 

11-3    8.33 

12-1 30 30 3 10.03 

12-2    10.22 

12-3    9.85 

13-1 30 50 0.5 12.74 

13-2    11.22 

13-3    10.43 
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Table 1.5 (Continued) 

Specimen 𝜃𝑝 (°) Infill density(%) Radius (mm) 𝜎𝑓 (MPa) 

14-1 30 50 1 12.02 

14-2    11.62 

14-3    12.31 

15-1 30 50 3 12.9 

15-2    12.47 

15-3    12.27 

16-1 30 70 0.5 14.52 

16-2    11.77 

16-3    10.26 

17-1 30 70 1 12.23 

17-2    11.7 

17-3    11.81 

18-1 30 70 3 13.78 

18-2    14.2 

18-3    13.78 

19-1 45 30 0.5 7.3 

19-2    7.26 

19-3    9.52 

20-1 45 30 1 8.76 

20-2    8.33 

20-3    7.22 

21-1 45 30 3 10.09 

21-2    9.78 

21-3    9.65 

22-1 45 50 0.5 13.15 

22-2    10.05 

22-3    9.81 

23-1 45 50 1 10.39 

23-2    11.5 

23-3    13.81 

24-1 45 50 3 13.96 

24-2    13.57 

24-3    12.84 

25-1 45 70 0.5 14.65 

25-2    13.75 

25-3    16.72 

26-1 45 70 1 15.66 

26-2    16.08 

26-3    13.79 

27-1 45 70 3 16.12 

27-2    17.11 

27-3    15.87 
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1.4 Main aim and objectives of the thesis 

The main aim of the present work is to evaluate the performance of data-driven methodologies 

used for estimating the mechanical behaviour of 3D-printed components based on given 

manufacturing parameters of the printing process and geometrical design characteristics of 

components, as well as the inverse: the identification of the optimal process parameters ensuring 

the desired mechanical characteristics of 3D-printed components. To achieve this aim, the 

objectives of this thesis are: 

• To develop a framework that could be used for the direct estimation of mechanical 

property with provided manufacturing and geometrical parameters. 

• To develop a framework that could be used for inverse estimation of optimal 

manufacturing parameters with given requirements of mechanical response and 

geometrical design. 

• To compare all the adopted data-driven methodologies with respect to their estimation 

accuracy and efficiency. 

The first objective will be applying the data-driven methodology to property prediction in the 

FDM 3D printing area. Then the second objective will be conducted with each methodology to 

achieve the optimal combination of manufacturing parameters. At this stage, in order to find out 

the full capability of the adopted method, various types of parameters will be included, such as 

manufacturing relevant, geometrical design relevant and cost-control relevant. Finally, following 

a comparative analysis, the best methodology regarding the estimation performance can be 

concluded . The present study is aimed to fill the lack of knowledge in evaluating the performance 

of FIS, NN and ANFIS methodologies being applied in FDM with geometrical and cost-relevant 

parameters included. Apart from the direct estimation framework, the development of inverse 

framework could potentially become an effective decision-making tool in modern industries. 

 

1.5 Outline of the thesis 

Chapter 2 will include the main aspects of the fuzzy inference system and the performance 

evaluation of the FIS methodology. Both direct and inverse estimation frameworks will be 

introduced here in detail. Chapter 3 will introduce the neural network, followed by the analysis of 

the NN methodology with respect to accuracy and efficiency. Chapter 4 will present the adaptive 
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neural fuzzy inference system with a particular analysis of its estimation performance. Then in 

Chapter 5, a comparative study will be illustrated with a contrast approach – design of experiments, 

for the analysis of all the adopted methodologies. Finally, Chapter 6 will list the goals achieved 

and the corresponding conclusions in the present investigation, and potential future work will also 

be illustrated. 
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Chapter 2 

Chapter 2 Fuzzy Inference System 

Fuzzy Inference System 
 

 

 

Starting from this chapter2, the topic will return to the aforementioned data-driven techniques. 

The main focus of the current chapter is the introduction and analysis of a data-driven approach, 

named fuzzy inference system, allowing the estimation of the strength performance of 3D-printed 

objects. In this section, the main aspects of fuzzy inference system methodology will be discussed 

in detail with a simplified illustrative example, with attention given to all necessary stages of 

building up FIS models. 

A fuzzy inference system (FIS) is based on the theory of fuzzy sets, which was first proposed 

by Zadeh.76 It can be used to model complicated systems with simple logic rules, similar to the 

human reasoning process. The term fuzzy refers to the indeterministic relationships between the 

input and the output of a FIS. In the first part of this study, the input relates to manufacturing and 

geometrical parameters, and the output refers to the object’s strength performance. Such a pattern 

(from manufacturing parameters to mechanical property) is referred to as the direct estimation 

framework, previously mentioned in Chapter 1. 

The main steps of FIS consist of (i) formulating aforementioned indeterministic relationships, 

in the form of fuzzy rules, between known input and output parameters (historical data) where the 

 
2 This chapter is partly adopted from: 

 

Tu R, Gitman I, Susmel L. Fuzzy inference system for failure strength estimation of plain and notched 3D-printed 

polylactide components. Fatigue Fract Eng Mater Struct. 2022;45: 1663–1677. 

 

Tu R, Gitman I, Susmel L. Fuzzy sets based methodology for manufacturing parameter determination of 3D-

printed PLA components: optimisation of strength, design and cost requirements. (under review) 
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process can be considered as the training of a FIS; and (ii) using this trained FIS to provide an 

estimation of an unknown output (strength performance) for the case of new inputs (manufacturing 

and geometrical parameters).  

Although there are alternative data-driven methodologies that can be used for estimation, such 

as artificial neural network (discussed later),77 the FIS is still popular due to its structural 

simplicity. As shown in Figure 2.1, a FIS is composed of 4 sections which are fuzzification, fuzzy 

rule base, fuzzy inference engine, and defuzzification. With the assistance of fuzzy rules, mapping 

can be performed between input and output variables, which aligns with human thoughts. The 

detailed setup of all four FIS components is illustrated in section 2.1 using, as an example, 

parameters of 3D printing. 

 

 
Figure 2.1 Illustration of a fuzzy inference system.36 

 

2.1 Structure of a Mamdani fuzzy inference system 

2.1.1 Fuzzification 

First of all, the inputs of a FIS have to be fuzzified before being fed into the system. In 

fuzzification, each input data is mapped according to its degree of membership, ranging from zero 

to one, and all these membership values together are defined as fuzzy sets. The membership value 

represents how much the data belongs partially to each subset of a universal set.78 Numerically, 

this mapping of each membership value is characterised by membership functions (MF), whose 

types and parameters are defined by users. 

There are several existing MFs such as triangular MF, Gaussian MF, Trapezoidal MF, etc. 

Zhao and Bose79 showed that the triangular MF, consisting of simple straight line segments, had 

the best performance in fuzzy control, compared with the Gaussian and trapezoidal MF. In the 

study of Harliana and Rahim,80 triangular MF has proven to be as good as the trapezoidal and 

Gaussian MF, but easier for taking parameter values due to its simple structure. Adil and Ali also 

proved that the triangular MF showed a better performance compared with other MFs in Antenna 

Azimuth Position control system.81 Hence, the triangular MF is adopted in the present 
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investigation. 

Being particularly known for its simplicity, the triangular MF can be expressed 

mathematically as Equation (2).82 Users can define the MF by changing parameters (𝑎, 𝑏 and 𝑐 in 

Equation (2)), or graphically in Figure 2.2. In Figure 2.2, line segments 𝑎A𝑐 represent the MF of 

𝑥 ranging from 𝑎 to 𝑐, where the lower limit (𝑎) and the upper limit (𝑐) both locate the “feet” of 

the triangle. The MF will reach the peak and be equal to 1 when 𝑥 is equal to 𝑏 (𝑎< 𝑏< 𝑐). 

 

 

 

 𝜇(𝑥) =

{
 
 
 
 

 
 
 
 

0 ,           𝑥 ≤ 𝑎

𝑥 − 𝑎

𝑏 − 𝑎
 ,      𝑎 < 𝑥 ≤ 𝑏

𝑐 − 𝑥

𝑐 − 𝑏
 ,      𝑏 < 𝑥 < 𝑐

0 ,           𝑥 ≥ 𝑐

 (2) 

 

 
Figure 2.2 Illustration of triangular membership function where x is the input of MF and 𝜇 is membership value.36 

 

To illustrate fuzzification, two 3D-printed parts with 10% and 90% infill densities separately 

are synthesised and considered. Here the infill density is treated as an input variable which will 

be fuzzified. Assuming the lowest and the highest possible infill densities (known from performed 

experiments) are 0% and 100%, both 10% and 90% are high infill densities to some extent. The 

term high here refers to the maximum known infill density of 100%. In this case, 90% infill density 

is significantly higher than 10%, i.e., it (90%) belongs to the category high significantly more 

than 10% infill density belongs to the same category. 
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Mathematically, the above phrase can be interpreted using membership values. Following the 

second row of Equation (2), membership values of 10% and 90% infill density can be calculated. 

The results of this simple calculation are presented in Figure 2.3A, showing 𝜇 (MF value) for 10% 

is 0.1 and 𝜇 for 90% is 0.9. Note that, for the simplicity of illustration, 𝑎 is set to be zero and 𝑏 is 

equal to 100% infill density in this example for the case of Figure 2.2. Note also that, in general, 

triangular MF has a triangular shape, but here only the left half of the triangle is considered (Figure 

2.3A). This is due to the high membership value being defined as 1 when the infill density reaches 

100% (i.e., the maximum infill density has the highest potential membership degree). Therefore, 

there is no need to show the other half of the function, which lies out of the range of interest (0-

100% infill density).  

 
Figure 2.3 Degree of membership vs infill density with triangular membership function for (A) high infill density and (B) 

low infill density.36 

 

Similarly, MFs can be formulated to describe how low the infill density is. The term low refers 

to the minimum known infill density, in our example, 0%. Considering again 10% and 90% infill 

densities in our 3D-printed parts, we can conclude that the former is considerably lower (and its 

new degree of membership, following the third row of Equation (2), is 𝜇 = 0.9) than the latter 

(with the new degree of membership 𝜇 = 0.1), see Figure 2.3B. Note that here only the right half 

of the triangle is considered because the highest potential membership value one can be achieved 

at the minimum (lowest) infill density 0%, and the membership value for 100% infill density is 

zero. 

 

2.1.2 Fuzzy rule base 

The fuzzy rule base contains all IF-THEN statements that build connections between inputs 

and outputs. With existing information or data, the mapping between input and output can be 

described as inference by these rules. A single rule consists of one or more antecedents and 
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consequents. For example, a fuzzy rule can be a sentence like “if the infill density is high 

(antecedent A) and the manufacturing angle is large (antecedent B), the failure strength is large 

(consequent)”. If the corresponding experimental data, including both manufacturing parameters 

and failure strength, is already known as deterministic values, the fuzzy rule can also use values 

directly, for example: “if the infill density is 10% (antecedent A) and the manufacturing angle is 

0° (antecedent B), the failure strength of a 3D-printed part is 1 MPa (consequent)”. This is an 

updated fuzzy rule that contains two antecedents and one consequent. If another 3D-printed part 

is known to have an infill density of 90%, a manufacturing angle of 40° and a failure strength of 

10 MPa, a second fuzzy rule can be written as “if the infill density is 90% and the manufacturing 

angle is 40° , the failure strength is 10 MPa”. The detailed parameters and values depend on 

existing historical data, and there are normally two or more rules in a fuzzy rule base. 

 

2.1.3 Fuzzy inference engine 

The input of a fuzzy inference engine is multiple membership values acquired from 

fuzzification, and the output is one fuzzy set which contains membership values for each output 

variable. The main body of a fuzzy inference engine contains multiple operations such as fuzzy 

operator, implication, and aggregation.  

To illustrate the working principle of fuzzy inference engine, a similar example (as discussed 

in section 2.1.2) will be used. Let us assume that for the two 3D-printed parts, infill densities, 

manufacturing angles and failure strengths are known and formulated as rules 1 and 2 (see Table 

2.1, top two rows); then, for a new third part, with the new infill density and the manufacturing 

angle 50% and 30° respectively, the failure strength is to be estimated using FIS (see Table 2.1, 

third row).  

 
Table 2.1 Synthetic fuzzy rules as illustrative examples. 

Specimen 

No. 

Infill density  

(%) 

Manufacturing angle 

(°) 

Failure strength 

(MPa) 

1  

(fuzzy rule 1) 
90 40 10 

2  

(fuzzy rule 2) 
10 0 1 

3  

(new) 
50 30 To be estimated 



26                              CHAPTER 2  FUZZY INFERENCE SYSTEM 

 

 

Fuzzy operator3. Following the fuzzification of input values, the degree of membership for 

each antecedent can be obtained. Generally, a single rule can have multiple input parameters (see 

Table 2.1, where the infill density and the manufacturing angle are present for each rule). In this 

step, a fuzzy operator is applied to combine information from the aforementioned multiple input 

parameters to a single value corresponding to a resulting consequence. The standard logical 

operator AND is used at this stage, resulting in a consequence being true only when all antecedents 

are true (i.e., when all input requirements are met).  

Mathematically, the logical operator AND refers here to the minimum (min) operator, so the 

output of this operation is the smaller membership value. With the input of the FIS in this example 

being 50% infill density and 30° manufacturing angle, corresponding membership values can be 

calculated using the second row of Equation (2) as follows: 

 

 𝜇(50%) =
50 − 10

90 − 10
= 0.5 , 𝜇(30°) =

30 − 0

40 − 0
= 0.75 ,  (3) 

 

where the smaller (min) membership value is 0.5 (see Figure 2.4, step 1 and 2, top row). Note that 

the infill density in Figure 2.4 ranges from 10% to 90%, not 0% to 100%, and that is due to the 

minimum and the maximum values for a MF here being taken directly from the known 

experimental data (see fuzzy rules in Table 2.1). The same comment holds for the manufacturing 

angle. 

Implication. The outcome of a fuzzy operator is a single membership value, and the next step 

is applying the implication method to each fuzzy rule and reshaping the output MF using the 

obtained single membership value. One of the commonly used implication methods is truncation, 

which is again based on AND (min) operator (see Figure 2.4, step 3 at first row). 

As introduced at the beginning of Section 2.1.2, the failure strength ranges from 1 to 10MPa, 

and the MF of failure strength is chosen to be triangular, similar to MFs of the infill density and 

the manufacturing angle.4 As a supplementary illustration for readers, note that here the MF for 

the output variable is still a triangular MF, which is a main characteristic of the Mamdani fuzzy 

system.83 

 

 
3 This step and the step below (implication) need to be performed for each fuzzy rule (rows in Table 2.1); however, 

for clarity of presentation, an example rule (rule 1) will be presented here. 
4 Note that although MFs in our example are all triangular for the simplicity of demonstration, both input and 

output parameters can have different types of membership functions in general cases and are determined by users. 
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Figure 2.4 Decomposition of a fuzzy inference system. 

 

Returning to the output variable in Figure 2.4, the term large for describing failure strength 

represents the maximum value which is 10MPa. Since 0.5 is the min membership value in fuzzy 

operator, the MF of failure strength is truncated by this single value (0.5), and with a simple step 

of bringing 0.5 back into Equation (2), the failure strength where the truncation starts can be 

calculated as 
𝑥−1

10−1
= 0.5, 𝑥 = 1 + 4.5 = 5.5MPa. Note that the input of implication is the single 

membership value, and the output of implication is a fuzzy set (see Figure 2.4, shadow area from 

step 3 at first row) relevant to consequent. It can be represented mathematically as {𝜇1/𝑥1, 

𝜇2/𝑥2 , …, 𝜇𝑛/𝑥𝑛 }, here a set of pairs 𝜇𝑖/𝑥𝑖  represents membership values 𝜇𝑖  of output 

parameters 𝑥𝑖 (values of failure strength). For our example, the fuzzy set can be represented as 

{0/1, 0.5/5.5, 0.5/10}. 

Aggregation. The final output of FIS is based on considering all rules together. In Figure 2.4, 

the first row represents fuzzy rule 1, and the second row represents fuzzy rule 2. The outcomes of 

each rule are aggregated so that the aggregation result is a single fuzzy set. One of the most 

common aggregation operations is maximum (max), which picks the maximum segments among 

all MFs and combines them (see Figure 2.4, step 4).  

In our example, for rule 1, see Equation (3), 𝜇(50%) = 0.5 and 𝜇(30°) = 0.75, resulting in 

𝜇1(50% & 30°) = min1(0.5,0.75) = 0.5. For the second rule, where the MF describes the low 

infill density and small manufacturing angle, as explained at the end of section 2.1.1, the 
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membership values for both infill density and manufacturing angle are calculated using the third 

row of Equation (2) as follows: 

 

 𝜇(50%) =
90 − 50

90 − 10
= 0.5 , 𝜇(30°) =

40 − 30

40 − 0
= 0.25 ,  (4) 

 

resulting in 𝜇2(50% & 30°) = 𝑚𝑖𝑛(0.5,0.25) = 0.25. 

Since the manufacturing angle has the smaller membership value in rule 2, the MF of failure 

strength for the second row is truncated at 0.25, where failure strength is calculated as 
𝑥−1

10−1
= 1 −

0.25, 𝑥 = 1 + 6.75 = 7.75MPa. Then the implication result of the second row in Figure 2.4 can 

be represented as {0.25/1, 0.25/7.75, 0/10}. 

The aggregation operation is essentially identifying the maximum membership value from 

both rules with various failure strength. Considering the implication result of both rules, the 

maximum membership value remains to be 0.25 from 𝑥 = 1MPa to 𝑥 = 3.25MPa (
𝑥−1

10−1
= 0.25, 

𝑥 = 1 + 2.25 = 3.25 ). Then the membership value increases from 0.25 (3.25MPa) to 0.5 

(5.5MPa) as previously calculated. Finally, from 5.5MPa to 10MPa, the membership value 

remains to be 0.5. 

Thus, the inputs of the aggregation process are two fuzzy sets acquired from individual 

implications (top two graphs in the fourth column, Figure 2.4), and the output is a single 

aggregated fuzzy set (bottom graph in the fourth column, Figure 2.4). The output fuzzy set after 

aggregation operation can be represented mathematically as {0.25/1, 0.25/3.25, 0.5/5.5, 0.5/10}. 

 

2.1.4 Defuzzification 

Since the output of the fuzzy inference engine is still a fuzzy set (or a number of fuzzy sets if 

there is more than one output parameter) for a Mamdani fuzzy system, it is not a “meaningful” 

value yet. Considering that defuzzification is the inverse operation of fuzzification, similar to 

encoding and decoding, the fuzzy sets can be turned into a meaningful value after being 

defuzzified. There are different types of defuzzification techniques, such as the centre of gravity 

(COG), mean of maxima, bisector of area etc.84 In this study, the centre-of-gravity technique is 

chosen since it is most commonly used in practical applications.85 The defuzzified value 𝑥∗ can 

then be expressed as Equation (5) if the fuzzy set is discrete or as Equation (6) if continuous:41 
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 𝑥∗ =
∑ 𝜇(𝑥𝑖)𝑥𝑖
𝑛
𝑖=1

∑ 𝜇(𝑥𝑖)
𝑛
𝑖=1

 ,  (5) 

 

 𝑥∗ =
∫𝜇(𝑥) ∙ 𝑥 𝑑𝑥

∫ 𝜇(𝑥) 𝑑𝑥
 ,  (6) 

 

where 𝜇(𝑥𝑖) refers to the membership value of the element 𝑥𝑖 (failure strengths), and 𝑛 is the total 

number of elements in the sample. In order to calculate the failure strength 𝑥∗ in our example (the 

most bottom right of Figure 2.4), three line equations from the image (ab, bc and cd) are calculated 

and listed in Table 2.2. Hence, the failure strength 𝑥∗ can be calculated based on Equation (6) as 

shown in Equation (7). In conclusion, the result of the defuzzification step is 6.13MPa which is 

the estimated failure strength for the 3D-printed part with an infill density of 50% and a 

manufacturing angle of 30°. 

 

Table 2.2 Summary of line equations 

Line Equation Range 

ab 𝑦 = 0.25 [1, 3.25] 

bc 𝑦 =
𝑥 − 1

10 − 1
 [3.25, 5.5] 

cd 𝑦 = 0.5 [5.5, 10] 

 

 𝑥∗ =
∫ (0.25)𝑥 𝑑𝑥 + ∫ (

𝑥 − 1
10 − 1

) 𝑥 𝑑𝑥 + ∫ 0.5𝑥 𝑑𝑥
10

5.5

5.5

3.25

3.25

1

∫ (0.25) 𝑑𝑥 + ∫ (
𝑥 − 1
10 − 1

)  𝑑𝑥 + ∫ 0.5 𝑑𝑥
10

5.5

5.5

3.25

3.25

1

= 6.13 (7) 

 

2.2 Various types of fuzzy inference systems 

After introducing the structure of fuzzy inference system, it is necessary to point out that there 

are two main types of fuzzy systems which are Mamdani and Sugeno systems. Mamdani fuzzy 

system was first proposed to imitate the performance of human operators in charge of controlling 

certain industrial processes.86 The aim was to integrate the operators’ experience into a set of IF-

THEN rules so that the industrial process can be controlled automatically by a machine. The main 
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characteristic of a Mamdani fuzzy system is that the output of each rule is a fuzzy set, calculated 

from the output MFs. Each set is then aggregated into a single fuzzy set, which is then defuzzified 

into a crisp output value (as introduced in the previous section). This type of fuzzy system is well 

suited to industrial control system where human experts’ experience are imperative.87 

Different from that of Mamdani system, the output MF Sugeno fuzzy system88 is either 

constant or a liner function of the input parameters. The defuzzification process of a Sugeno 

system is simply calculations of weighted average of previously calculated values, which is 

relatively more computationally efficient than calculating the centre of gravity for a 2D area in 

Mamdani system.87 In this case, Sugeno FIS is more suitable for the current research than 

Mamdani FIS as the latter has a requirement of transforming crisp output values into membership 

functions before defuzzification, which could generate a further numerical error if the parameters 

of MFs are not set to optimal. Sugeno FIS is suitable for certain mathematical analysis as each 

rule is linearly dependent on the input variables. For example, the failure tensile strength of a 3D-

printed part can vary depending on the infill density and the manufacturing angle. 

The Mamdani system is presented in the first half of this chapter for the plain specimens to 

demonstrate how the basic fuzzy system works, including membership function calculations. It is 

demonstrated here also because it was the very first fuzzy system that the author adopted at the 

beginning of this study. Since the Sugeno FIS is more suitable for the present investigation, it will 

be applied later as a solution to evaluate the U-notched specimens which includes an additional 

geometrical parameter – notch root radius. The results from the Sugeno system (U-notched 

specimens) will be compared with the results from other methodologies regarding the accuracy 

and efficiency. The calculation of the Sugeno fuzzy system will be explained in detail with an 

illustrative example in later sections in order to keep the Mamdani section clear in order. 

 

2.3 Experimental data and fuzzy inference system setup 

After introducing the main steps of a fuzzy system, the topic in this section will return to the 

actual work conducted using FIS to estimate the failure tensile strength of the 3D-printed parts. 

Besides, the discussion will also include the analysis of the experimental data obtained from 

manufacturing and testing the 3D-printed specimens being considered in this study (see Chapter 

1 for details). The construction and the performance of the FIS, following the methodology 

introduced in section 3.1, will then be evaluated using the data from the aforementioned 

experiments.  
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2.3.1 Manufacturing void size as an additional parameter 

As mentioned in Chapter 1, infill density and manufacturing angle are parameters commonly 

chosen to assess the strength of 3D-printed components. Another parameter frequently associated 

with assessing strength is the size of manufacturing voids.73 Note, however, that the 

manufacturing angle 𝜃𝑝  and infill density are independent variables that can be changed 

individually; contrary to that, the size of manufacturing voids (see Figure 2.5) depends on the 

infill density as void sizes will decrease if more internal space is infilled (higher infill density). 

Therefore, in order to demonstrate the performance of the FIS with multiple interconnected input 

parameters,89 the effective size of manufacturing voids, 𝑑𝑣 , is included in the research. In 

particular, parameter 𝑑𝑣 was measured using an optical microscope73 and the 𝑑𝑣 reported in Table 

2.3 is the calculated average value of measured void sizes with the same infill density. The 

analysis based on both infill density and 𝑑𝑣 will show how an additional interconnected parameter 

can influence the performance of the FIS and which of the two parameters can lead to better 

accuracy.  

 

 

Figure 2.5 Manufacturing voids of a 3D-printed object: grey lines are printed filaments, and blank areas are the 

manufacturing voids.36 
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Table 2.3 Summary of experimental results for plain specimens. 

 Input                      Output 

Specimen 𝜃𝑝 (°) Infill density (%) 𝑑𝑣 (mm) 𝜎𝑓 (MPa) 

1 0 10 10.7 8.6 

2 0 20 4.98 9.2 

3 0 30 1.36 10.4 

4 0 40 0.88 11.9 

5 0 50 0.62 13.6 

6 0 60 0.45 16.4 

7 0 70 0.33 19.8 

8 0 80 0.24 22.5 

9 0 90 0.14 25.8 
     

10 30 10 10.72 8.7 

11 30 20 5.06 7.9 

12 30 30 1.39 9.8 

13 30 40 0.96 10.1 

14 30 50 0.66 14 

15 30 60 0.41 15.9 

16 30 70 0.29 18.5 

17 30 80 0.25 19.4 

18 30 90 0.11 23.4 
     

19 45 10 10.65 8.3 

20 45 20 5.12 9.6 

21 45 30 1.37 10.8 

22 45 40 0.93 12.4 

23 45 50 0.65 14.1 

24 45 60 0.43 15.8 

25 45 70 0.31 18 

26 45 80 0.22 20.5 

27 45 90 0.13 22.8 

 

2.3.2 Experimental results for the plain 3D-printed specimens 

The experimental failure strength of plain specimens is calculated as the applied force upon 

breakage divided by the cross-sectional area of specimens. The calculation is based on the 

assumption that the mechanical strength of a 3D-printed part with infill density lower than 100% 

can be estimated via an equivalent material which is continuum, homogeneous, linear-elastic and 

isotropic.73 The experimental data are summarised in Table 2.3 (adapted from Ahmed and 

Susmel73), where: 𝜃𝑝 ( ° )-manufacturing angle, infill density (%), 𝑑𝑣  (mm)-the size of 

manufacturing voids and 𝜎𝑓 (MPa)-failure strength. According to the experimental investigation 

discussed in Ahmed and Susmel,73 27 combinations of input parameters were tested, with each 
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combination being based on three individual tests. For simplicity, in this chapter, an average value 

of the failure strength for these three tests is calculated and taken as the failure strength of the 

corresponding input parameter combination. Accordingly, 27 experimental results are presented 

in Table 2.3, each having a unique combination of manufacturing angle, infill density, 

manufacturing void size and failure strength. As introduced in section 1.3, 27 results are present 

as there are three input parameters, each of which has three levels. Hence, the total number of 

different configurations are 33 = 27, which is sufficient for evaluating the performance of the 

methodology and framework. 

 

2.3.3 Specimens for fuzzy rule base and validation 

For examining the performance of the FIS in estimating failure strength properties, a number 

of results in Table 2.3 are used for building the necessary fuzzy rules, and the remaining samples 

are used later to validate the estimation accuracy of the FIS. Note that, to minimise the 

experimental errors, more than one sample was used for validation purposes.  

In order to determine the specimens to be used for fuzzy rule base and validation, respectively, 

27 specimens are divided into three sections (see dotted lines in Table 2.3): specimen 1-9, 10-18 

& 19-27, respectively (9 specimens in each group). The groups are chosen so that, in each group, 

manufacturing angles are identical, and the infill density ranges from 10 to 90 in sequence. Every 

second, fourth, sixth and eighth specimens are chosen for validation in each group. For the 

representativeness of estimation results, the selected validation specimens are evenly distributed 

in each group. Note that this is not a unique way of choosing validation and FIS-building 

specimens, and it has been considered here for convenience reasons. All validation specimens are 

marked as grey rows in Table 2.3, and the rest of the specimens are used for building fuzzy rules 

of the FIS (see Figure 2.6). Thus, in our case, 𝑛 – the total number of specimens is equal to 27; 𝑥 

– the number of specimens used for validation is 12; the number of specimens used for building 

fuzzy rules is 𝑛 − 𝑥 = 15. 
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Figure 2.6 Classification of the validation and fuzzy rules specimens.36 

 

2.3.4 Fuzzy inference system construction 

As mentioned in section 2.1, one of the main stages in FIS construction is building a fuzzy 

rule base using historical data, and each rule can be presented in the form of “IF-THEN” 

statements. As discussed above, there are 27 data sets in total, where 15 of which are used for 

building the fuzzy rule base. The remaining 12 results are used to evaluate the estimation accuracy 

(as discussed in section 2.1.3). 

To illustrate an example of MFs, Figure 2.7 presents the triangle MFs of one of the 

manufacturing parameters - manufacturing angle, 𝜃𝑝. Rather than be in the adjective form of 

“Large, Medium & Small”, MFs are named with their corresponding parameter values for 

simplicity of establishing rules. 

 

 
Figure 2.7 (A) Triangular membership functions for the manufacturing angle 𝜃𝑝; (B), (C) & (D) Decomposition of 

membership functions for the manufacturing angle with respect to various membership terms.36 
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To clarify MFs presented in Figure 2.7A, Figure 2.7B-D show detailed MFs for all 

manufacturing angles separately: the MF of the manufacturing angle consists of three parts which 

are 0° (small), 30° (medium), 45° (large). For example, in Figure 2.7B, the manufacturing angle 

of 0°  has the largest membership value of describing a “small manufacturing angle”; hence, 

𝜇(𝑥) = 1. However, with the increasing manufacturing angle, it can hardly be represented by the 

“small angle” category; hence, the membership value drops to 0 at 30°. Finally, three MFs (from 

Figure 2.7B-D) constitute the general MF of the parameter (Figure 2.7A). Note that similar logic 

is applied for the other parameters: infill density, 𝑑𝑣 and 𝜎𝑓. 

It needs pointing out that the foot of the first triangular MF shares the same 𝑥 value with the 

adjacent triangular MF. For example, the right foot of the triangle in Figure 2.7B locates at the 

bottom of the tip of the adjacent triangle in Figure 2.7C. The author adopted this strategy to 

develop a standard for selecting the parameter of each MF from the experimental data. Note also 

here although there is available fuzzy inference toolbox in MATLAB, the author did code the MF 

determination strategy and the whole estimation process by himself in MATLAB instead. 

 

2.4 Estimation results of using fuzzy inference system 

After the FIS is built, the input parameters of validation specimens are fed to the FIS, and the 

corresponding output is the estimated failure strength. The estimated results are then used to 

evaluate the accuracy of the FIS, represented by the error calculated as: 

 

 𝐸𝑟𝑟𝑜𝑟 = |
𝜎𝑒 − 𝜎𝑓
𝜎𝑓

| × 100% ,  (8) 

 

where 𝜎𝑓 is the failure strength recorded in the experiment and 𝜎𝑒 is the estimated value obtained 

using the FIS. Errors for all validation specimens are then averaged, and this mean value is 

considered the estimation error of the FIS. 
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Table 2.4 Experimental and estimated results  with the error between both results 

 Input Output Estimation  

Spec 
𝜃𝑝 

(°) 

Infill 
density 

(%) 

𝑑𝑣 
(mm) 

𝜎𝑓 (MPa) 𝜎𝑒 (MPa) Error (%) 

2 0 20 4.98 9.2 9.9 7.2 

4 0 40 0.88 11.9 12.2 2.5 

6 0 60 0.45 16.4 17.3 5.5 

8 0 80 0.24 22.5 21.8 3.1 

11 30 20 5.06 9.3 9.45 1.6 

13 30 40 0.96 10.1 10.6 5 

15 30 60 0.41 15.9 17.9 12.6 

17 30 80 0.25 19.4 21.6 11.3 

20 45 20 5.12 9.6 11.4 18.8 

22 45 40 0.93 12.4 14 12.9 

24 45 60 0.43 15.8 16.3 3.2 

26 45 80 0.22 20.5 18.9 7.8 

    Average error 7.6 

 

The detailed experimental and estimation results, together with corresponding errors, are listed 

in Table 2.4, and the average error is calculated as 7.6%. As can be seen from Table 2.4, for the 

case of plain 3D-printed specimens, the FIS methodology can produce an accurate (with an 

average error of 7.6%) estimation result. 

It is worth pointing out that despite the estimation accuracy of specimen 20 appears to be large 

enough as an “outlier”, it is still acceptable in this case. Since the error calculation is based on the 

relative percentage, the estimation error of specimen 20 could be easily enlarged due to the 

significant fluctuation of experimental results (especially for the denominator). For example, on 

one hand, the absolute error between the estimation and experimental result for specimen 20 is 

11.4 − 9.6 = 1.8MPa. On the other hand, the absolute error for specimen 15 is 17.9 − 15.9 =

2MPa, which is larger than that of specimen 20, and the estimation performance is seen to be 

better for specimen 20. However, contrary to this indication, the relative error of specimen 20 

(18.8%) is much larger than that of specimen 15 (12.6%), which shows the estimation 

performance is seen to be better for specimen 15. Such contradiction is because the experimental 

𝜎𝑓 is the denominator in the calculation of relative error, and specifically, the experimental 𝜎𝑓 of 
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specimen 20 is smaller than that of specimen 15. Thus, the estimation of specimen 20 is still 

accurate in general, and the absolute error will also be adopted for specific cases in following 

chapters in order to evaluate the methodology. 

 

2.5 Analysis of estimation results 

Following the estimation results of the 3D-printed plain specimens presented above, this 

section includes discussions of the effect of specimen numbers and the key manufacturing 

parameter on estimation accuracy. 

 

2.5.1 The effect of the number of specimens on estimation accuracy 

In order to analyse the effect of experiment quantity “𝑛” on estimation accuracy, three groups 

of specimens are adapted from Table 2.3, where the composition of each group is also introduced. 

Group A has only 𝑛 = 9 specimens, group B has 𝑛 = 18, and group C has all 𝑛 = 27 specimens. 

The FIS is then separately applied to Groups A, B & C to estimate failure strength. The contrast 

of the outcome for all three groups explains the effect of the number of specimens on estimation 

accuracy. The estimation error for group A, B and C are found to be: 

 

A. 9 specimens (specimen 1-9): estimation error 10.3%; 

B. 18 specimens (specimen 1-18): estimation error 8.6%; 

C. 27 specimens (specimen 1-27): estimation error 7.6*%. 

As such, it can be concluded that, first of all, with the given experimental data, the FIS can 

provide satisfying outcomes for estimating failure strength based on manufacturing angle and 

infill density with reasonable accuracy. Furthermore, the estimation accuracy improves with the 

growing number of specimens. However, it has to be said that, from an industrial design point of 

view, the increment in accuracy from using 9 calibration specimens to using 27 calibration 

specimens is very little. This suggests that estimates that are accurate from an engineering point 

of view can be obtained using a limited number of calibration values. In this context, further study 

can be focused on the minimum number of experiments required for user-defined estimation 

accuracy. 
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2.5.2 Key manufacturing parameter to the best estimation result 

Next, an investigation of the key manufacturing parameters is performed. Following section 

2.5.1, for the best estimation accuracy, group C (with all 27 specimens) has been analysed. The 

significance of each manufacturing parameter is addressed by evaluating the change of error, 

while excluding a respectful input variable one at a time.90 It is important to recall here that the 

estimation error while considering all three parameters (manufacturing angle 𝜃𝑝, infill density and 

manufacturing void size), is found to be 7.6%. Next, without changing 𝜃𝑝, both infill density and 

𝑑𝑣 are excluded separately to study the importance of each parameter. The estimation error is 

found to be equal to 7.1% for considering 𝜃𝑝 & infill density and 8.2% for considering 𝜃𝑝 & 𝑑𝑣 

(see Table 2.5).  

It shows the error is smaller than previously reported when excluding 𝑑𝑣, i.e. the estimation 

could be more accurate without considering the manufacturing void size as an input parameter of 

the FIS. On the contrary, the estimation error increases when excluding the infill density, i.e. a 

more accurate estimation result could be achieved when considering the infill density. As 

mentioned previously, 𝑑𝑣 is a function of the infill density as it decreases while the infill density 

increases. So, it is recommended to consider only one of them as the input parameter of the FIS. 

Analysing the estimation errors, the infill density can be considered a slightly better choice. 

 

Table 2.5 Estimation error (%) vs various input variable combinations 

Parameters 

combination 

𝜃𝑝, Infill density 

& dv 

𝜃𝑝 & Infill 

density 
𝜃𝑝 & 𝑑𝑣  𝜃𝑝 Infill 

density 

Estimation error 

(%) 
7.6 7.1 8.2  40.8 9.3 

 

Next, the importance of the manufacturing angle and the infill density are compared. With 

only 𝜃𝑝, the FIS gives an estimation error of 40.8%, and with only the infill density, the FIS has 

an error of 9.3%. As it can be seen, both errors increase considerably, indicating that having only 

one input parameter could lead to an unaccepted accuracy. Note also that excluding the infill 

density leads to a much larger estimation error (40.8%); thus, it can be concluded that it is very 

important to record the infill density for estimating failure strength. 

Summarising the above outcomes, the manufacturing void size 𝑑𝑣 leads to a slightly worse 

estimation accuracy when using the FIS, whereas both the manufacturing angle, 𝜃𝑝, and the infill 

density lead to better estimation accuracy and, finally, the infill density has more significance on 
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the estimation result. 

 

2.6 Fuzzy inference system for U-notched specimens 

After analysing the effect of the number of specimens and the key parameters in the estimation 

process, this section we will take a further step in evaluating the performance of the FIS by 

considering two aspects: 

(i) the ability of the FIS to estimate fracture strength as a function of manufacturing and 

geometrical parameters; 

(ii) comparison of the FIS performance with the analytical method used in the literature.73  

 

 
Figure 2.8 The U-notched specimens with symmetrical U-notch on both longitudinal sides where the notch root radius is 

equal to 0.5mm, 1mm and 3mm, respectively. 

 

In order to address the first question, a new set of experimental data, namely data for U-

notched specimens (Figure 2.8), are analysed. Experimental results used in this study (adapted 

from Ahmed and Susmel73) are presented in Table 2.6. A particular choice of the aforementioned 

data set is dictated by an introduction of a qualitatively new parameter: so far, the discussion has 

circled around the manufacturing input parameters (i.e., the manufacturing angle, the infill density, 

the size of manufacturing voids), but the analysis of U-notched specimens will allow introducing 

geometrical input characteristics of samples as well. 
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For the second aim, the FIS performance is compared to the analytical method, based on the 

equivalent homogenised material concept and the theory of critical distances as proposed by 

Ahmed and Susmel.73 

Notched specimens have similar manufacturing and testing processes as discussed in chapter 

2, but the previously mentioned difference is in sample geometry: notched specimens have 

symmetrical U-shape notches on each longitudinal side (Figure 2.8). There are three different 

geometries of notched specimens considered and all of them have 5mm notch depth, but the notch 

radius are 0.5mm, 1mm and 3mm, respectively.  

Similar to the previously discussed plain specimens, notched specimens also have various 

combinations of manufacturing angles and infill densities. The varied radius of the notch is added 

as an extra (geometrical) input parameter. Therefore, for notched specimens, input parameters of 

the FIS are the manufacturing angle, the infill density and the radius of the notch, while the output 

remains failure strength (see Table 2.6). Note here that following section 2.6, manufacturing void 

size 𝑑𝑣 is excluded from input parameters in the current chapter. 

Experimental results of U-notched specimens (presented in Table 2.6), as mentioned before, 

are adapted from Ahmed and Susmel,73 which contain failure strength of tested parts for different 

infill density levels, manufacturing angles and radius of notches. Note the difference in infill 

density: for U-notched analysis, it ranges between 30% and 70% (10% to 90% for the case of 

plain specimens). As for the output, similar to plain specimens, failure strength is calculated as 

the applied force upon breakage divided by the cross-section area of the breakage.  
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Table 2.6 Summary of experimental results for U-notched specimens. 

 Input Output 

Specimen 𝜃𝑝 (°) Infill density(%) Radius (mm) 𝜎𝑓 (MPa) 

1 0 30 0.5 9.7 

2 0 30 1 9.5 

3 0 30 3 10.9 

4 0 50 0.5 13.1 

5 0 50 1 13.8 

6 0 50 3 14.4 

7 0 70 0.5 17.4 

8 0 70 1 16.9 

9 0 70 3 18.6 

10 30 30 0.5 8.2 

11 30 30 1 8.5 

12 30 30 3 10 

13 30 50 0.5 11.5 

14 30 50 1 12 

15 30 50 3 12.5 

16 30 70 0.5 12.2 

17 30 70 1 11.9 

18 30 70 3 13.9 

19 45 30 0.5 8 

20 45 30 1 8.1 

21 45 30 3 9.8 

22 45 50 0.5 11 

23 45 50 1 11.9 

24 45 50 3 13.5 

25 45 70 0.5 15.1 

26 45 70 1 15.2 

27 45 70 3 16.4 

 

The total number of 27 manufactured U-notched specimens is considered. The selection of 

fuzzy rules and validation specimens are chosen to be similar to the one discussed in section 2.3.3. 

Validation specimens are chosen to be specimens 2, 4, 6, 8, 11, 13, 15, 17, 20, 22, 24 and 26, i.e. 

12 validation specimens (marked as grey rows in Table 2.6). The remaining 15 specimens (1, 3, 

5, 7, 9, 10, 11, 12, 14, 16, 18, 19, 21, 23, 25 and 27) are taken to form fuzzy rules. 

The comparison between the analytical method and the FIS methodology is based on the 

accuracy of using both techniques to estimate the failure strength of U-notched specimens. FIS-

based estimation errors of failure strength for all 12 validation specimens are presented in Table 

2.7 (middle column). For the accuracy of the adapted analytical method, error values are directly 
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acquired from Ahmed and Susmel,73 these error values are also presented for readers’ benefit in 

Table 2.7 (most right column). It is necessary to point out that the analytical method used the same 

12 validation specimens mentioned above. 

 

Table 2.7 Error contrast between the fuzzy inference system and the adapted analytical method 

Specimen 
FIS Error 

(%) 
Analytical Method Error (%) 

2 0.1 12.5 

4 0.2 11.5 

6 8.6 15.5 

8 2.9 2.1 

11 8.7 0.9 

13 9 5.3 

15 7.6 3.6 

17 11.7 24.9 

20 10.3 5.7 

22 5.4 16.4 

24 8.6 9 

26 0.2 5.1 

Average 6.1 9.4 

 

As can be seen from Table 2.7, estimation errors lie within an interval of 11.7% for FIS and 

24.9% for the analytical method, respectively. Note that the maximum estimation error is almost 

halved while using the FIS methodology. Interesting to point out that the average estimation error 

also decreases from 9.4% (for the analytical method) to 6.1% (for FIS). As such, it can be 

concluded that the fuzzy inference system is at least as functional as analytical methods in 

estimating failure strength and, in the above cases, shows improved accuracy. 

As it has been mentioned above, a particular choice to analyse U-notched specimens has been 

made not only to validate the FIS using existing experimental data and to compare its performance 

to the existing methodologies but also to test its ability to perform on mixed types of data: 

manufacturing and geometrical input parameters. As can be seen, the FIS methodology reacts 

very well (with high accuracy) to the introduction of this new geometrical data. Notch root radius 

is an important geometrical characteristic, and the FIS approach has shown to be capable of 

estimating failure strength depending on the radius value (estimations show a similar trend in 

failure strength as a function of radius, as seen in experiments73). Considering the importance of 
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this geometrical characteristic as a possible design parameter, it can be concluded that the FIS has 

the potential to become a simple, robust and accurate methodology that can be expanded as a 

decision-making tool in design problems. 

After the analysis of using FIS in the so-called direct estimation (from manufacturing and 

geometrical parameters to the mechanical property), the study in the next section will focus on 

extending the current usage of the FIS methodology to an inverse estimation framework. Such an 

inverse framework could potentially be a solution to the identification of the optimal combination 

of manufacturing parameters, ensuring user-defined mechanical characteristics of a component. 

 

2.7 Inverse estimation of manufacturing parameters 

Previous studies reported in sections 2.3-2.6 and published in 36 have proven that FIS has the 

capability to estimate tensile strength with given manufacturing and geometrical parameters. 

However, a common industrial problem is that with both strength and geometrical design 

requirements set for a 3D-printed object, the optimal combination of manufacturing parameters 

can be impossible to be determined a priori. Hence, starting from this section, attempts will be 

made to solve such a problem of ambiguous conformity by estimating manufacturing angle and 

infill density with the provided requirement of strength and geometry. Besides, adjustments will 

be conducted to the acquired manufacturing parameters in order to meet specific industrial needs, 

for example, with time-saving or material-saving as a top priority. 

Due to the fact that the estimation here seeks manufacturing parameters which lead to required 

strength and geometry, it will be referred to as inverse estimation in the following sections and 

chapters, contrary to the direct estimation, which results in strength estimation based on the given 

manufacturing parameters reported in the previous section. 5 

  

 
5 Note that the choice of “direct/inverse” terminology is arbitrary and dictated here by convenience and the order 

of analysis. Other researchers may use “reverse” terminology. 
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Table 2.8 Summary of experimental data for testing U-notched specimens 

 Input Output 

Specimen Radius (mm) 𝜎𝑓 (MPa) 𝜃𝑝 (°) Infill density(%) 

1 0.5 9.7 0 30 

2 1 9.5 0 30 

3 3 10.9 0 30 

4 0.5 13.1 0 50 

5 1 13.8 0 50 

6 3 14.4 0 50 

7 0.5 17.4 0 70 

8 1 16.9 0 70 

9 3 18.6 0 70 

10 0.5 8.2 30 30 

11 1 8.5 30 30 

12 3 10 30 30 

13 0.5 11.5 30 50 

14 1 12 30 50 

15 3 12.5 30 50 

16 0.5 12.2 30 70 

17 1 11.9 30 70 

18 3 13.9 30 70 

19 0.5 8 45 30 

20 1 8.1 45 30 

21 3 9.8 45 30 

22 0.5 11 45 50 

23 1 11.9 45 50 

24 3 13.5 45 50 

25 0.5 15.1 45 70 

26 1 15.2 45 70 

27 3 16.4 45 70 

 

2.7.1 Inverse problem setup 

As mentioned previously, generally, the goal of an industrial process is to find the optimal 

solution of manufacturing parameters that ensures predetermined values of strength and geometry. 

Owing to the success of FIS in the previously investigated direct estimation (from manufacturing 

parameters to strength), the new input of the inverse FIS in the present investigation is set to be 

strength and geometrical parameters, i.e., tensile strength and notch root radius. Hence, the 

manufacturing angle and the infill density have become the output of this new inverse estimation. 
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2.7.2 Experimental data and classification for the inverse estimation 

After the inverse problem has been formulated, the introduction of experimental data for 

training and validating the inverse FIS is also of great importance. The experimental data used in 

the inverse estimation is identical to that used in the direct estimation, which is originally adopted 

from Ahmed and Susmel73 and reported in Table 2.8 but rearranged. There are 27 experimental 

data sets, each of which has a unique combination of 4 parameters. Relevant parameters in Table 

2.8 are referred to as: radius – notch root radius (mm), 𝜎𝑓 – failure tensile strength (MPa), 𝜃𝑝 – 

manufacturing angle (°) and infill density (%). 

To show the reliability of the FIS methodology, it is necessary to have not only enough data 

for defining the fuzzy rules but also a group of data needed exclusively for validation. In the 

following sections, a new classification principle is adopted where all specimens with a radius 

equal to 1mm are treated as unknown data and classified as a validation group. This is to evaluate 

the performance of FIS in dealing with the unseen value - i.e. how well FIS will deal with the 

unseen data with a notch root radius equal to 1mm if the system has only seen data with radius of 

0.5mm and 3mm. 

 

2.7.3 Sugeno fuzzy inference system 

As mentioned in previous sections, a more suitable Sugeno FIS is adopted in this section. 

Being in itself a recap and the introduction of the new Sugeno FIS, the general stages of setting 

up a Sugeno FIS are illustrated as follows. Initially, a group of historical data is fed to formulate 

the fuzzy rule base, which builds mappings between existing input and output. In order to make 

predictions of a new unknown output, the new known input data has to be first fuzzified into a 

membership value using MF. For consistency with the direct estimation, the triangular MF is still 

used here. 

For various fuzzy rules, the parameters of MF could be different, so the fuzzification of a FIS, 

which contains several rules, has a parallel data processing pattern. Note here that these fuzzy 

rules have only helped to generate parameters of MF while they have not interfered with input 

data yet. 

The derived membership values are then brought to the fuzzy inference engine, which contains 

a group of fuzzy calculus that can process the membership value with respect to fuzzy rules. The 

detailed calculus will be introduced in the later section, together with an illustrative example. The 

output of a Sugeno fuzzy inference engine is a combination of 2 values – 𝑚𝑖 and 𝑛𝑖, where 𝑚𝑖 
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refers to the processed membership value of the new input for the 𝑖th fuzzy rule and 𝑛𝑖 refers to 

the known output value (from training data) for the same rule. 

As mentioned previously, the Sugeno FIS does not include any membership function 

calculation in the output stage apart from a weighted average calculation, as shown below: 

 

 𝑊𝑎 =
∑ 𝑚𝑖 ∗ 𝑛𝑖
𝑘
1

∑ 𝑚𝑖
𝑘
1

 ,  (9) 

 

where 𝑘 refers to the total amount of fuzzy rules and 𝑊𝑎 refers to the calculated weighted average 

value. Eventually, the value of 𝑊𝑎 is the estimated output value for the new input. 

 

2.7.4 Sugeno fuzzy inference system with an illustrative example 

Since the general stages of constructing a Sugeno FIS have been introduced, it is possible now 

to illustrate the detailed calculation with a synthetic example. Figure 2.9 shows the decomposition 

of a Sugeno FIS calculation for some fabricated data. Note that in Figure 2.9, the calculation and 

setup of MF for input parameters have been partly simplified, aimed at helping the readers to 

understand better. 

 

 

Figure 2.9 Decomposition of a Sugeno fuzzy inference system. 
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The process starts from the definition of 2 fuzzy rules, formulated based on the existing 

experimental data shown in Table 2.8, which in the linguistic form are: 

Rule 1: “IF the radius is 3mm and strength is 8MPa, THEN infill density is 30%”; 

Rule 2: “IF the radius is 0.5mm and strength is 18MPa, THEN infill density is 70%”. 

As the next step, input parameters are fuzzified using triangular membership functions, 

resulting in membership values. For the first parameter of synthetic data, the radius ranges from 

0.5mm to 3mm, and the membership value ranges from 0 to 1. Therefore, membership functions 

for the radius (the most left column in Figure 2.9) can be calculated as: 

 

 𝜇(𝑥) =  

{
 

    
𝑥 − 0.5
3 − 0.5

  ,   if the radius is large (rule 1)

   
3− 𝑥
3− 0.5

  ,   if the radius is small (rule 2)
 , (10) 

 

With a new radius value equal to 1mm (𝑥 = 1mm) as input, the corresponding membership 

value of both rules can be found as 
1−0.5

3−0.5
= 0.2 and 

3−1

3−0.5
= 0.8. Similarly, membership values, 

14−8

18−8
= 0.6 and 

18−14

18−8
= 0.4, can be obtained for the second parameter - strength (the second 

column in Figure 2.9). 

Then the next step - the AND operation, mentioned in both rules above, refers to implication: 

e.g. for 30% infill density (consequent of rule 1), the outcome of this implication stage is a 

membership value (the product of radius and strength membership values) 0.2 × 0.6 = 0.12. 

Therefore, combined with the 30% infill density, the calculation result for the first row is 0.12/30% 

(0.12 for the calculated membership value and 30% for the consequent value). Similarly, the 

calculation result for the second row is 0.176/70%, where 0.176 is obtained from 0.8 × 0.22 =

0.176. 

Exercising all existing rules (two rules in our case), the weighted average of all outcomes is 

calculated as shown in Figure 2.9, resulting in the estimated infill density. Hence, in our 

illustrative example, with knowing data from rules 1 and 2, the estimated infill density for a new 

specimen (with “notch root radius - 1mm and tensile strength - 14Mpa”) is 
0.12×30%+0.176×70%

0.12+0.176
=

53.8%. Note that membership functions of output parameters are now in the form of constants 

rather than functions, thanks to Sugeno FIS. 
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2.8 Inverse estimation results and adjustments 

Returning to the original experimental data reported in Table 2.8, a new FIS can be constructed 

from all known (unshaded) specimens, following the procedure introduced in section 2.7. Then 

the new unknown data (shaded in Table 2.8) from the validation group is fed into the system, and 

the estimation results based on the validation group are noted in Table 2.9. The “experiment output” 

in Table 2.9 includes actual values of manufacturing angles and infill densities repeated from 

Table 2.8; they are eventually compared with the “estimation output”. 

 

2.8.1 Estimation error calculation 

In order to evaluate the accuracy of the proposed inverse FIS methodology, estimated outputs 

(𝑃𝑒𝑠𝑡) are compared with the actual experimental outputs (𝑃𝑒𝑥𝑝) see Table 2.9, where the absolute 

error is calculated according to: 

 

 𝐸𝑟𝑟𝑜𝑟 = |𝑃𝑒𝑠𝑡 − 𝑃𝑒𝑥𝑝| ,  (11) 

 

as the presence of “0” in the actual experimental manufacturing angle (and hence in a denominator 

for the case of relative error calculations) could cause numerical issues. 

It can be seen from Table 2.9 (“Abs error – Exp. & Est.” column) that the absolute estimation 

error between the experimental and the estimation results is 8.5° for 𝜽𝒑 and 4.6% for infill density. 

Such estimation error shows that the two manufacturing parameters (𝜽𝒑 and infill density) can be 

estimated accurately using the inverse estimation scheme. Section 2.8.2 will introduce some 

necessary adjustments of these estimated results considering some particular specifications. 
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Table 2.9 Experimental output together with the estimation output, the corresponding adjustments and the estimation error 

 
Experiment 

Output 
Estimation 

Output  

Abs error – Exp. 
& Est. 

Adjusted 
Estimation 

Abs error – Exp. 
& adjusted Est. 

Spec 
𝜽𝒑 

(°) 

Infill 
(%) 

𝜽𝒑 (°) 
Infill 
(%) 

Error 
𝜽𝒑  

(°) 

Error 
infill 
(%) 

𝜽𝒑  

(°) 

Infill 
(%) 

Error 
𝜽𝒑  

(°) 

Error 
infill 
(%) 

2 0 30 5.3 30 5.3 0 0 30 0 0 

5 0 50 33.7 60 33.7 10 30 60 30 10 

8 0 70 9 70 9 0 15 70 15 0 

11 30 30 24.1 30 5.9 0 30 30 0 0 

14 30 50 30 64.3 0 14.3 30 60 0 10 

17 30 70 30 61.4 0 8.6 30 60 0 10 

20 45 30 37.5 30 7.5 0 45 30 0 0 

23 45 50 30 61.4 15 8.6 30 60 15 10 

26 45 70 45 70 0 0 45 70 0 0 

  Average Error 8.5 4.6 Average Error 6.7 4.4 

 

2.8.2 Necessary adjustments regarding particular specifications 

Since the outcome of this inverse FIS is values of manufacturing parameters which are to be 

fed into 3D printers, it is very likely that the estimation results will be correct mathematically, but 

the values are somewhat meaningless to the printer due to possible printer specifications. Hence, 

the adjustments of results based on real applications (taking particular specifications of a 3D-

printer into account) are necessary in order to avoid meaningless values. To take an example of 

the adjustment of manufacturing angle, which follows the principle of “proximity”, if two 

estimated manufacturing angles are 4.3° and 12.9° for two different specimens, the adjusted 

estimation result will be 0° and 15°, respectively. Note here if the estimated value is equal to 7.5°, 

which is in the middle of the increment, the adjusted result will be rounded to 15° (see specimen 

20 in Table 2.9) and adjustments in following chapters have the same rule. 

Similarly, for infill density, if two estimated infill densities are 67.6% and 61.4% for two 

different specimens, the adjusted estimation result will be 70% and 60%, respectively. Both 

adjusted estimation results have been included in Table 2.9. 

The average absolute error with adjustments is reported to be 6.7° and 4.4% for 𝜃𝑝 and infill 
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density, respectively. Compared with the estimation result without adjustments, the adjusted 

estimation has shown a decrease in absolute errors for both manufacturing parameters. Thus, it 

can be concluded that the adopted adjustments with respect to printer specifications are effective 

and can help reduce the estimation error. 

Furthermore, it is interesting to note a high estimation error for the manufacturing angle of 

specimen 5 (see 30° absolute error). The author attempted to analyse this relatively high value and 

came up with the following explanations: 

• the two adjacent rules influencing the estimation of specimen 5 are specimen 18 and 

24 (see Table 2.8) since the strength of specimen 5, which is 13.8MPa, lies between 

13.5MPa (specimen 24) and 13.9MPa (specimen 18);  

• infill densities are also relatively close to each other (identical in specimens 5 and 24) ;  

• therefore, intuitively, the estimated manufacturing angle of specimen 5 should lie 

somewhere between 30° (specimen 18) and 45° (specimen 24).  

Moreover, it is seen that although specimen 18 and 24 have the same radius (3mm) and very 

close values of strength, the experimental manufacturing parameters are quite different (30°/70% 

vs 45°/50%). Such ambiguity causes the estimation inaccuracy for specimen 5. Summarising the 

above: the estimation result of FIS depends on the provided experimental data or fuzzy rules 

where ambiguous conformity could cause extra estimation error. Such ambiguity will be discussed 

in section 2.10. 

 

2.9 Numerical validation 

It can be seen from Table 2.9 that the average estimation error for manufacturing angle and 

infill density is seen to be 6.7° and 4.4%, respectively. At this stage, a validation test is designed 

in order to demonstrate the full capability and accuracy of FIS methodology. The author 

appreciates the unconventional usage of the word “validation” in a numerical rather than 

traditionally experimental sense but offers readers to follow them. It needs pointing out here that 

the author’s original attempt was to accomplish such validation experimentally. However, 

specimens used in previous sections were manufactured during a specific time, after which the 

3D-printer has not yet been used for at least half a year. In such case, the consistency of 

manufactured specimens and potential validation specimens cannot be guaranteed. Hence, the 

numerical validation is chosen here as an alternative solution. 

In this numerical validation test, illustrated in Figure 2.10, the author starts from the inverse 

FIS (denoted  𝐹1) in order to estimate manufacturing parameters (manufacturing angle and infill 
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density) required to obtain the desired strength values and notch root radius. The author follows 

the process described above in section 2.7. These obtained manufacturing parameters, after 

adjustments, are then used together with the notch root radius in the next step – the direct FIS 

(denoted 𝐹2) to (re-)estimate values of the strength. Eventually, these new (re-)estimated values 

of the strength are compared to the original experimental failure strength values. The accuracy of 

the comparison will indicate whether FIS methodologies worked well from a comprehensive 

perspective. 

As shown in Table 2.10, the “manufacturing parameters” column presents the outcome of 𝐹1. 

These data are then used in the new direct estimation FIS 𝐹2, together with the radius, in order to 

(re-)estimate failure strength (presented in the “strength estimation” column). The new direct 

estimation still uses the aforementioned specimens to set up fuzzy rules, and the validation group 

is identical to that of inverse estimation. Estimated failure strength is then compared with 

experimental failure strength, and an absolute error is calculated. It can be seen (from Table 2.10) 

that the average absolute error is 0.55MPa, which is relatively small compared to actual strength 

values. To reiterate: this error refers to the difference in failure strength obtained from experiments 

and estimated using our inverse-adjusted-direct approach. It is noted that at the end of the direct 

estimation process, the estimation error already includes errors generated in both inverse and 

direct FIS. Therefore, it can be concluded that FIS has proven to show a good performance. 

 

 

Figure 2.10 Explanation of the inverse and direct estimation using FIS where F1 refers to the inverse estimation and F2 is 

the direct validation estimation. 
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 Table 2.10 Estimated manufacturing angle and infill density are brought back into the FIS direct estimation to estimate the 

failure strength, which is to be compared with the experimental failure strength for R=1 specimens. 

 Manufacturing 
parameters (adjusted) 

Strength Absolute error 

Specimens 
(R=1mm) 

𝜃𝑝 (°) Infill(%) 
Estimation 
𝝈𝒇(MPa) 

Experimental 
𝝈𝒇(MPa) 

𝝈𝒇 

2 0 30 9.94 9.5 0.44 

5 30 60 12.2 13.8 1.6 

8 15 70 15.2 16.9 1.7 

11 30 30 8.57 8.5 0.07 

14 30 60 12.2 12 0.2 

17 30 60 12.2 11.9 0.3 

20 45 30 8.37 8.1 0.27 

23 30 60 12.2 11.9 0.3 

26 45 70 15.3 15.2 0.1 

   Average Error 0.55 

 

2.10 Study of cost-control relevant parameters with fuzzy system 

As promised, in this section, the author would like to return to the ambiguity issue discussed 

in section 2.8. It is noted that specimen 23, for example, has a 45°/50% experimental setup, but 

the estimation result offers a preferred 30°/60% (see Table 2.9). The difference between both pairs 

cannot be disregarded; however, the 30°/60% provides a failure strength similar to 45°/50% (see 

Table 2.10). It can be referred to as the non-uniqueness of the 3D printing, i.e., different 

combinations of multiple parameters can lead to similar results.  

Assuming there are no restrictions on manufacturing angles with respect to cost, this 

ambiguity of results can also be controlled by, for example, the material cost of the printing, where 

the solution with less infill density could be preferred. Hence, it has raised the extensive interest 

of the author that from the above inference process, parameters such as printing period and 

material consumption are worth extra attention, especially for manufacturers. 

Table 2.11 presents the study, which includes not only strength and notch root radius but also 
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printing period and material consumption for the estimation of optimal manufacturing parameters. 

Both printing period and material consumption have been acquired from the software CURA with 

different design models loaded, where the assumption has been made that the estimated time and 

material usage shown in CURA is identical to reality.73 The printing period refers to the time 

(minutes) needed to complete the 3D printing, while material consumption can quantify the weight 

of the material being consumed (grams). Both of them can be categorised as cost-relevant 

parameters which represent special industrial needs rather than manufacturing settings or 

geometrical design. Thus, they are used together with radius and strength as inputs of a new 

inverse FIS. 

The setup of the new inverse FIS with two extra input parameters is similar to the one 

discussed in section 2.7. Table 2.11 reports that the new estimation error of recommended 

manufacturing angle is 8.3° (estimation with time and weight), which is larger than the error (6.7°) 

reported in Table 2.9 (estimation without time and weight). However, it is satisfying to see the 

new estimation error for infill density drops from 4.4% (without time and weight) to 0% (with 

time and weight). Such comparison leads to the following conclusions: 

• Including additional parameters (such as printing time and material consumption) can 

lead to better FIS estimation accuracy for infill density while it has negative impacts 

on the estimation of manufacturing angle. 

• Generalising further, it can be concluded that the manufacturing angle does not 

significantly influence the printing time and material consumption, contrary to infill 

density. 

Once again, the above result proves that the fuzzy inference system is a useful tool that can be 

used to estimate manufacturing angles and infill densities with not only requirements of failure 

strength and notch root radius but also cost-control parameters such as printing time and material 

consumption. Additional relevant parameters can contribute to better estimation accuracy using 

FIS. 
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Table 2.11 Inverse FIS estimation of manufacturing parameters with printing time and material weight included. 

 Input 
Experiment 

output 

Estimated 
adjusted 
output 

Error without 
time and weight 
(from Table 2.9) 

Error including 
time and weight 

No. 
Radius 
(mm) 

𝝈𝒇 

(Mpa) 

Time 
(mins) 

Weight 
(g) 

𝜽𝒑 

(°) 

Infill 
(%) 

𝜽𝒑 (°) 
Infill 
(%) 

ABS 
error 
𝜽𝒑 

ABS 
error 
infill 

ABS 
error 
𝜽𝒑 

ABS 
error 
infill 

1 0.5 9.7 93 8 0 30       

2 1 9.5 94 8 0 30 0 30 0 0 0 0 

3 3 10.9 97 8 0 30       

4 0.5 13.1 101 9 0 50       

5 1 13.8 102 9 0 50 45 50 30 10 45 0 

6 3 14.4 105 9 0 50       

7 0.5 17.4 109 10 0 70       

8 1 16.9 110 10 0 70 0 70 15 0 0 0 

9 3 18.6 113 10 0 70       

10 0.5 8.2 93 8 30 30       

11 1 8.5 94 8 30 30 30 30 0 0 0 0 

12 3 10 96 8 30 30       

13 0.5 11.5 101 9 30 50       

14 1 12 102 9 30 50 30 50 0 10 0 0 

15 3 12.5 105 9 30 50       

16 0.5 12.2 109 10 30 70       

17 1 11.9 110 10 30 70 30 70 0 10 0 0 

18 3 13.9 113 10 30 70       

19 0.5 8 92 8 45 30       

20 1 8.1 93 8 45 30 30 30 0 0 15 0 

21 3 9.8 96 8 45 30       

22 0.5 11 100 9 45 50       

23 1 11.9 101 9 45 50 30 50 15 10 15 0 

24 3 13.5 104 9 45 50       

25 0.5 15.1 108 10 45 70       

26 1 15.2 109 10 45 70 45 70 0 0 0 0 

27 3 16.4 112 10 45 70       

 Average error 6.7 4.4 8.3 0 
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2.11 Conclusion 

In this chapter, the key steps of setting up a Mamdani fuzzy inference system and a Sugeno 

fuzzy inference system has been presented and discussed. The FIS-based methodology is then 

used to estimate the failure strength of polylactide 3D-printed parts as a direct framework. Then, 

it also reports that FIS has the capability of inverse estimation. 

For the direct estimation, by making use of a large number of experimental data, the performed 

validation exercise allows us to demonstrate that the use of this methodology leads to reliable and 

accurate estimations of the failure tensile strength. It is concluded that more experimental data 

improve the estimation accuracy markedly. Further studies can be conducted to find out the 

minimum number of experimental data that are required to reach the wanted estimation accuracy 

while the costs associated with the calibration process are minimised. 

It is important to highlight that, thanks to its intrinsic versatility, the FIS methodology is 

expected to be equally successful in predicting other mechanical properties such as, for instance, 

strength under fatigue as well as under dynamic loading. Given the FIS methodology’s modus 

operandi, the accuracy in estimating other mechanical responses is obviously expected to increase 

as the size of the data population used to train the method itself increases.  

For the inverse estimation, FIS has shown its capability of estimating manufacturing angle 

and infill density with provided requirements of tensile strength and geometrical characteristic 

(notch root radius) in the 3D printing application. The necessity of having adjustments for 

estimation results has been discussed due to the specification of 3D printers, and it has been shown 

that adjustments are effective and not resulting in an evident reduction of the estimation accuracy. 

It was concluded that FIS has a highly accurate inverse estimation potential. 

FIS has also shown its capability of dealing with not only manufacturing parameters but also 

cost-relevant parameters such as printing period and material consumption. Hence, it is a 

comprehensive solution which allows manufacturers to find the optimal manufacturing 

parameters and have a cost-control tool at the same time. 

The FIS methodology is tested on different types of input parameters (i.e., manufacturing and 

geometrical variables) and is seen to be a simple, robust tool that can produce highly accurate 

estimations. Accordingly, the FIS approach has great potential as a decision-making tool for 

design problems. In particular, the FIS approach is expected to be very successful when used 

together with big data for its calibration. Potentially, in the near future, this approach could be 

effectively coupled with 5G, real-time data acquisition technologies, big data streams, artificial 
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intelligence and automated machine learning to model and predict the mechanical 

behaviour/strength of engineering components and structures. As a strong competitor of the FIS 

methodology in the above areas, the artificial neural network, which is famous for its self-learning 

capability, will be introduced in Chapter 3.  

  



CHAPTER 2  FUZZY INFERENCE SYSTEM                                  57 

 

 

 

  



 

 

 

Chapter 3 

Chapter 3 Artificial Neural Network 

Artificial Neural Network 
 

 

 

The main focus of the present investigation is to introduce and analyse alternative data-driven 

methodologies in order to achieve the best data-driven methodology by comparing their 

estimation performance. Hence, as a strong competitor of the discussed in Chapter 2 FIS 

methodology, the artificial neural network has become one of the most commonly used algorithms 

in artificial intelligence, which has gained prevalent attention in all fields.91 In this chapter, the 

main aspects of artificial neural network (NN) will be discussed in detail, including all necessary 

steps for building NN models. 

Artificial intelligence (AI) is a popular idea in both academia and industry as it refers to the 

idea of allowing machines to make decisions based on predetermined rules. As a subset of AI, 

machine learning (ML) aims to build models based on existing data and patterns for the prediction 

of new data. NN is one of the machine learning models, and it is essentially a network of 

mathematical equations. The network processes the input variables with mathematical equations 

and then returns the prediction of the output variables, which are normally compared with the 

targeted output values for further network adjustment. 
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Figure 3.1 Decomposition of an artificial neural network. 

 

3.1 Introduction of the artificial neural network 

3.1.1 The main parameter of a neural network 

The term neural refers to the artificial neurons in the structure of an NN as a neural network 

(NN) consists of an interconnected group of neurons and processes information similar to 

biological neurons in human brains. The typical structure of an NN is shown in Figure 3.1 in the 

form of a simplified network. The network includes two input variables - 𝑥1, 𝑥2 and one output 

variable - 𝑌5. The structure of the network consists of three different layers – (i) an input layer, (ii) 

a hidden layer, and (iii) an output layer.92 There are two neurons in the input layer, two in the 

hidden layer, and one in the output layer, and these neurons connect to other neurons in adjacent 

layers. The required number of neurons in both input and output layers depends on the number of 

variables in the particular problem. However, various studies have suggested that the optimum 

number of neurons in hidden layers is preferably between 5 and 10.93,94 

Being itself the main parameter of a NN, the weight connecting two neurons refers to the 

connection magnitude. To take an example of Figure 3.1, neuron 1 and 2 both contribute to neuron 

3, while 𝜔13 and 𝜔23 represent individual importance that they have on neuron 3. Therefore, the 

value of neuron 3 can be calculated as follows: 

 

 𝑍3 = (𝜔13𝑥1 + 𝜔23𝑥2)  +  𝑏𝑖𝑎𝑠 , (12) 
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where 𝑍3  is the value of neuron 3 and bias is an extra input to neuron 3 in the form of a 

trainable/changeable constant, which allows the better fit of prediction results with respect to 

training data. To help the readers’ understanding, bias is somehow similar to the constant in a 

linear equation. As such, the universal calculation of the neuron value can be expressed as: 

 

 𝑍 =  ∑(𝜔𝑥) + 𝑏𝑖𝑎𝑠 .  (13) 

 

For the simplicity of calculation and illustration, bias will be omitted in the following section as 

the main focus here is to introduce the determination process of weights. 

At the beginning, there is no deterministic knowledge of these connection weights, so they are 

initialised randomly. Then the inputs of training data are fed into the NN, together with initialised 

weights, which returns a predicted output value. The outputs in the training data (actual target 

values) are then compared with the predicted ones, where the error between both values indicates 

the estimation accuracy of the current NN. After being brought to a particular training algorithm, 

the error results in a group of updated weights, i.e., an updated network. Note here that the training 

algorithm (to be introduced in detail) constrains the initial random weights and upgrades them 

based on the error values. Once again, the training data is then fed into the updated network to 

start another upgrading iteration, and such an iterative upgrading process continues until a 

tolerable error is achieved. In general, the basic idea of NN is to minimise the error between the 

predicted and targeted values by upgrading weights in the network iteratively. This process is also 

recognised as the training process of a network, and once the error is within the tolerance, the 

network will be accurate enough to accept new inputs in order to make new predictions. 

 

3.1.2 Activation function 

After introducing the iterative calculations of NN, the topic in this section will return to the 

signal processing within the single neuron. Similar to biological neurons, after all signals are 

received and processed by the current neuron, it is necessary to determine whether and how much 

the current neuron is activated. This is where activation functions step in, as it is capable of helping 

the network learn various complicated patterns and avoid potential computational difficulties. 

As introduced in Equation (13), the signal of a universal neuron includes a group of weighted 

sums of inputs, which are in the form of linear transformations. Despite there being multiple layers 
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of neurons attached, the superimposed transformations are still linear in nature. Such a network 

only behaves as a linear regression model, which cannot handle complicated non-linear 

problems.95 Thus, the capability of adding non-linearity to a NN is a necessary characteristic of 

activation functions. 

The necessity of activation functions is also reflected in computational expense. As inputs of 

the neuron consist of multiple functions of 𝜔𝑥 + 𝑏, it could result in computational difficulties, 

particularly for a complicated network with a large number of layers. Therefore, the activation 

function is desired to restrict the value of a neuron and should be computationally inexpensive as 

it needs calculating with every neuron. 

 

 

Figure 3.2 A) Sigmoid transfer function with x refers to the input signal; B) Tansig transfer function with x refers to the 

input signal; C) Cost function based on the Mean Squared Error; D) A example of more complex cost functions where the local 

minima is not optima. 

 

There are various activation functions, such as the conventional Sigmoid function (Figure 

3.2A), Sigmoid/Tanh-based functions (Tansig), exponential-based functions, rectified linear 

functions (ReLU), etc.96 However, in the present research, in order to meet all requirements 

mentioned previously, the activation function adopted for the hidden layer is the Tansig transfer 

function which can be expressed in Equation (14) and Figure 3.2B. The selection of the Tansig 

function over the Sigmoid function will be explained in the section 3.1.5. 
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 𝑇𝑎𝑛𝑠𝑖𝑔(𝑥) =  
2

1 + 𝑒−2𝑥
 –  1 . (14) 

 

As such, combined with Equation (12), the output of neuron 3, for example, becomes as 

follows (with bias omitted for simplicity): 

 

 𝑌3 = 𝑓(𝑍3) = 𝑇𝑎𝑛𝑠𝑖𝑔(𝜔13𝑥1 + 𝜔23𝑥2) . (15) 

 

Note here that 𝑍3 is the signal received by the neuron in the form of a weighted sum, whereas 

𝑌3 is the activation signal of the neuron, which is to be weighted and transmitted to the next neuron. 

As for the output layer, since there are few calculations here and the main purpose is to output 

the derived results from the hidden layer, the pure linear function is sufficient for regression 

problems, although other activation functions could also be appropriate depending on the 

particular problem. Therefore, the signal transformation at the fifth neuron is as follows: 

 

 𝑌5 = 𝑓(𝑍5) = 𝑍5 = 𝜔35𝑌3 + 𝜔45𝑌4 .  (16) 

 

3.1.3 Loss function 

As mentioned in section 3.1.1, every predicted value from a network will be compared with 

the target value in order to update weights based on generated errors. Updated weights are then 

used for further predictions, and such iteration continues until an acceptable error is achieved. In 

this iterative process, the information is forwarded along the network, whereas the training 

feedback is then sent back to the system for adjusting the weights. Such a process could be referred 

to as feed-forward backpropagation. 

The error between the prediction and the target can simply be calculated using the loss function, 

also known as the cost function: 

 

 𝐶𝑜𝑠𝑡 = (𝑌5 − 𝑌𝑡) 
2 ,  (17) 

 

where 𝑌5  is the predicted output of each iteration and 𝑌𝑡  is the actual target value. The 

performance judgement of the network is based on the above equation as the network will be more 

accurate if 𝑌5 and 𝑌𝑡 are closer to each other, i.e., the less cost, the better. Cost/error derived from 
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such a function normally refers to the mean squared error (MSE), and the square here is for 

preventing positive and negative errors from cancelling out. 

Based on Equation (13), Equation (15) and the linear activation function in the output layer, 

the cost function can be further extended as: 

 

 

𝐶𝑜𝑠𝑡 = (𝜔35𝑌3 + 𝜔45𝑌4 − 𝑌𝑡) 
2

= [𝜔35𝑇𝑎𝑛𝑠𝑖𝑔(𝜔13𝑥1 + 𝜔23𝑥2) + 𝜔45𝑇𝑎𝑛𝑠𝑖𝑔(𝜔14𝑥1 + 𝜔24𝑥2) − 𝑌𝑡]
2 .

 (18) 

 

Essentially, the cost function is relevant to all weights. In order to study how each weight 

should be adjusted, suppose the cost function in Equation (18) is a function only relevant to 𝜔35. 

Thus, a quadratic function can be formed, as shown in Figure 3.2C, where the minimum value of 

the function is equal to zero when 𝜔35 is equal to 𝜔0. At this point, the derivative of the cost 

function (slope of the curve) is also equal to zero, so the general question to answer has become 

how to locate 𝜔0. To take an example of Figure 3.2C, slope 𝑙1 is negative and has to grow up to 

0, whereas slope 𝑙2 is positive, which has to drop to 0. 

 

3.1.4 Gradient descent 

Since the derivative of the cost function has become the main focus at this stage, with the 

assistance of the chain rule, the derivative can be expressed as: 

 

 

𝐶𝑜𝑠𝑡′ =
𝜕𝐶𝑜𝑠𝑡

𝜕𝜔35
=
𝜕𝐶𝑜𝑠𝑡

𝜕𝑌5
×
𝜕𝑌5
𝜕𝑍5

×
𝜕𝑍5
𝜕𝜔35

= 2(𝑌5 − 𝑌𝑡) × 1 × 𝑌3

= 2[𝜔35𝑇𝑎𝑛𝑠𝑖𝑔(𝜔13𝑥1 + 𝜔23𝑥2) + 𝜔45𝑇𝑎𝑛𝑠𝑖𝑔(𝜔14𝑥1 + 𝜔24𝑥2) − 𝑌𝑡] ×

𝑇𝑎𝑛𝑠𝑖𝑔(𝜔13𝑥1 + 𝜔23𝑥2) ,

 (19) 

 

where 𝐶𝑜𝑠𝑡′  is the first derivative of the cost function, and 𝑌5 , 𝑌3  & 𝑌𝑡  are all known with 

initialised weights given previous equations. Now that the gradient of the cost function with 

respect to 𝜔35 is known, it is good timing to apply the gradient descent algorithm to optimise 𝜔35 

for the sake of minimum cost. 
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Gradient descent (GD) iteratively calculates the gradient at the current point and subtracts it 

from the current point after the gradient is scaled with a learning rate. The calculation result is the 

next point of interest, based on which GD keeps being executed. Based on Equation (19), the 

process can be written as follows: 

 

 𝜔35
𝑛𝑒𝑤 = 𝜔35 − 𝐿

𝜕𝐶𝑜𝑠𝑡

𝜕𝜔35
 ,  (20) 

 

where 𝜔35 is the current weight value and 𝜔35
𝑛𝑒𝑤 is the new 𝜔35 and is the feedback from the 

training algorithm. Together with other new weights, 𝜔35
𝑛𝑒𝑤 updates the old network.  

The 𝐿 refers to as learning rate in Equation (20), and it is a predetermined parameter that scales 

the gradient. It influences the learning step size in each iteration and determines the overall 

training period. For example, small learning rates lead to more precision at the cost of lower 

overall training efficiency, whereas large learning rates result in larger steps at the cost of risking 

overshooting the local minima. Therefore in the present investigation, the learning rate is set to 

be equal to 0.01, which is the common value in most past studies.97,98 

 

3.1.5 Vanishing gradient problem 

Now that the idea of gradient descent has been introduced, one of the typical problems with 

gradients in neural network is vanishing gradients. For particular activation functions, for example, 

the sigmoid function (see Figure 3.2A) could squish a large input into a small one which is 

between 0 and 1. Particularly for negative inputs with large absolute values, |𝑥|, the change of 

output 𝑆𝑖𝑔𝑚𝑜𝑖𝑑(𝑥) could be close to 0 even with a large input change. Correspondingly, the cost 

function becomes irresponsive, and the gradient descent iteration is extremely slow. This is often 

referred to as “Vanishing” gradient. 

Vanishing gradient particularly influences deep networks where multiple layers of the 

structure are included. According to the chain rule, the derivatives of the initial layers are 

dependent on the multiplication of derivatives of the latter layers, so the gradient could 

exponentially decrease from the latter layers to the initial layers. Thus, such irresponsiveness in 

the training stage has a negative impact on both the efficiency and accuracy of the network. 

One of the effective solutions to the vanishing gradient problem is to choose alternative 

activation functions, such as the Tansig activation function (see Figure 3.2B). With a large 

negative input, the output of a Tansig function is -1, which avoids the vanishment of the gradients. 
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Meanwhile, considering the NN used in the present investigation is a shallow network (only one 

hidden layer), the Tansig function is sufficient without causing a significant gradient vanishment 

problem. Therefore, it is another reason for choosing the Tansig activation function over the 

Sigmoid previously mentioned in section 3.1.2. 

 

3.1.6 Gradient descent with momentum 

Although the problem of vanishing gradients can be solved with an alternative activation 

function, the potential drawback of the conventional gradient descent method still needs a better 

solution, which will be illustrated in this section.  

As introduced in section 3.1.4, GD is an optimisation algorithm for weights and biases based 

on their first derivatives with respect to the cost function. Figure 3.2C shows a simplified example 

of the cost function in which the local minima are normally the global minima, i.e., optima. 

However, for a more complicated function in real life, the local minima might not be the optima. 

A good example is shown in Figure 3.2D, where a fabricated complex function has a plateau 

where the derivative of the cost function is equal to 0 here. If the initial weight starts from the 

right side of the plateau, the GD (short-dotted arcs) might cause no weight updates or changes at 

this point because 
𝜕𝐶𝑜𝑠𝑡

𝜕𝜔35
 is equal to 0. Consequently, the network could be “fooled” by the GD 

algorithm to believe the local minima is optima and, therefore, the iterations stop, returning 𝜔𝑙 

rather than 𝜔0. In this case, the prediction accuracy is negatively influenced by this drawback of 

GD. 

One of the solutions to this problem is to update GD with momentum. The idea of GD with 

momentum is to accumulate gradients in previous iterations before the local minima. So that even 

if there is no gradient change at the local minima, the accumulated gradients still “push” the 

algorithm to pass this plateau and eventually locate the global minima. Another benefit of 

momentum is its capability of speeding up and smoothing the convergency of Equation (20), 

particularly at the “low curvature” area because of the accumulated gradients. 

At this stage, it is noted that all past gradients are equally weighted based on the above 

definition; however, the most recent gradient is almost always distinguished from the accumulated 

gradients due to various weights. This can be solved by giving the accumulated gradients a 

specific weightage/coefficient, as shown below. 
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The application of momentum starts from replacing the partial derivative in Equation (20) 

with a new term, 𝑉𝑡 and, therefore, leading to a new Equation (22), which is also known as the 

Exponentially Moving Average (EMA) in statistics: 

 

 𝜔𝑡 = 𝜔𝑡−1 − 𝐿𝑉𝑡 ,  (21) 

 

 𝑉𝑡 = 𝛽𝑉𝑡−1 + (1 − 𝛽)
𝜕𝐶𝑜𝑠𝑡

𝜕𝜔𝑡−1
 , (22) 

 

where 𝜔𝑡  and 𝜔𝑡−1  are the updated weight linking the same neurons but in (𝑡 − 1)𝑡ℎ  and 

(𝑡 − 2)𝑡ℎ iterations, respectively. Note here that the first iteration occurs when 𝑡 is equal to 2, and 

when 𝑡 is equal to 1, 𝜔1 is the initialised weight which is not applicable for Equation (21). L is 

still the learning rate defined previously. The momentum constant 𝛽  controls the weight 

distribution between the accumulated gradients and the most recent gradient, and it is between 0 

and 1.99 It can be easily found that smaller 𝛽 can lead to reduced importance of older gradients 

and eventually, Equation (21) is identical to the calculation of GD in Equation (20) when 𝛽 is 

equal to 0. As such, 𝛽  is set to 0.9 in the present investigation, the same as in many other 

cases.100,101 The new term 𝑉𝑡 includes both the scaled most recent gradient and all the previous 

accumulated gradients. An example of some basic calculations of 𝑉𝑡 is shown in the following 

equations for readers’ better comprehension: 

  

 𝑉1 = 0 ,  (23) 

 

 𝑉2 = 𝛽𝑉1 + (1 − 𝛽)
𝜕𝐶𝑜𝑠𝑡

𝜕𝜔1
= (1 − 𝛽)

𝜕𝐶𝑜𝑠𝑡

𝜕𝜔1
 , (24) 

 

 𝑉3 = 𝛽𝑉2 + (1 − 𝛽)
𝜕𝐶𝑜𝑠𝑡

𝜕𝜔2
 .  (25) 

 

Summarising, the problem of plateau points can be effectively solved by adding momentum 

to the existing GD, including the past and accumulated gradients. With respect to the prediction 

accuracy and efficiency, the comparison of both GD and GD with momentum will be analysed in 

section 3.2. 
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3.1.7 Adjusting network with multiple training data 

The above optimisation of weights is desired to be applied to each weight and bias (if 

applicable) so that a group of upgraded weights and biases are returned to the network. So far, 

such iteration is completed and is normally referred to as one epoch or one iteration in NN. As a 

result of finishing one epoch, the updated network can now make predictions closer to the target 

value compared with the previous network. However, the new predictions might still not meet 

expectations, so the training process continues until the error between the prediction and the target 

is within the predetermined tolerance. 

Now that the process of adjusting a NN based on a single training dataset (𝑥1, 𝑥2, 𝑌𝑡) has been 

introduced, it is time to step into the network training with multiple training data. Suppose the 

group number of training data is 𝑛, each group of the training data shares the same initialised 

random weights with other groups at the beginning of the first feed-forward backpropagation 

iteration. In that case, the cost function is adjusted to: 

 

 𝐶𝑜𝑠𝑡 =
1

𝑛
∑(𝑌5𝑖 − 𝑌𝑡𝑖)

2
𝑛

𝑖=1

 ,  (26) 

 

where 𝑛 is the total group number of training data, 𝑌5𝑖 refers to the network-predicted value based 

on the 𝑖th group of training data input, and 𝑌𝑡𝑖 is the actual target value of the 𝑖th group of training 

data. Note here that the Mean in MSE is particularly interpreted in Equation (26), compared with 

that in Equation (17). 

Correspondingly, the derivative of the cost function will be the mean result, where all groups 

of training data are brought into the network to formulate the mean 
𝜕𝐶𝑜𝑠𝑡

𝜕𝜔𝑡
. The GD with momentum 

for multiple training data is identical to the one demonstrated in Equation (21). It is important to 

point out that after the weights are initialised or updated after an epoch, they remain the same until 

the end of the new epoch, no matter how much training data there are. 

 

3.2 Artificial neural network for 3D-printed notched specimens 

With the basis of NN introduced in section 3.1, in the following sections, the discussion will 

return to the analysis of experimental data obtained from testing the specimens previously 

presented in Chapter 1. The classification of the mentioned data will be introduced, and then the 

artificial neural network will be evaluated using the same data with respect to both direct and 
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inverse estimations. 

 

3.2.1 Direct and inverse problems setup 

To remind the reader, in the present study, the direct problem refers to estimating failure 

tensile strength based on the given infill density, manufacturing angle and notch root radius, as 

introduced in previous chapters. However, one of the industrial problems it to identify the optimal 

combination of manufacturing parameters provided the requirement of strength performance and 

geometrical design. Typically there is more than one solution to industrial problems, whereas the 

selection of the optimal one requires extra considerations on other criteria such as material-saving, 

timesaving, environment-friendly, etc. Thus, NN will be applied first to the direct estimation for 

the evaluation of NN performance in dealing with both types of parameters and then to the inverse 

problem for solving the aforementioned industrial problem. The outcome for both types of 

applications will be compared with other methodologies later in order to analyse accuracy and 

efficiency. 

 

3.2.2 Experimental data and classification for the direct estimation 

As a recap for the reader here, the experimental data demonstrated in Table 3.1 (similar to 

Table 2.6 in section 2.6) was originally adopted from Ahmed and Susmel73 from which each three 

repeating tested results have been averaged for simplicity in the present investigation. Eventually, 

there are 27 groups of testing results here, the failure tensile strength 𝜎𝑓 , together with the 

corresponding manufacturing angle 𝜃𝑝, the infill density and the geometrical notch root radius. 

Each data group is designed to have a unique combination of manufacturing and geometrical 

parameters. 

For a typical neural network, past studies have concluded that the proportion between the 

amount of training data and testing data is empirically determined to be 70% vs 30% or 80% vs 

20%.102 Another particular consideration here is the attempt to evaluate the performance of NN 

to deal with the unseen values of data. For example, the notch root radius in Table 3.1 has three 

different levels of value, which are 0.5mm, 1mm and 3mm. All specimens with a radius equal to 

1mm are assumed to be unknown, composing the validation group, so that the system does not 

have any chances to be trained based on those data with 1mm radius. As such, the validation group 

consists of results from the second, fifth, eighth, eleventh, fourteenth, seventeenth, twentieth, 
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twenty-third and twenty-sixth specimens (shaded in Table 3.1), and the rest data from 18 

specimens compose the training group. 

 
Table 3.1 Summary of experimental data for testing U-notched specimens (direct estimation) 

 Input Output 

Specimen 
𝜃𝑝  

(°) 

Infill 
(%) 

Radius 
(mm) 

𝜎𝑓 (MPa) 

1 0 30 0.5 9.7 

2 0 30 1 9.5 

3 0 30 3 10.9 

4 0 50 0.5 13.1 

5 0 50 1 13.8 

6 0 50 3 14.4 

7 0 70 0.5 17.4 

8 0 70 1 16.9 

9 0 70 3 18.6 

10 30 30 0.5 8.2 

11 30 30 1 8.5 

12 30 30 3 10 

13 30 50 0.5 11.5 

14 30 50 1 12 

15 30 50 3 12.5 

16 30 70 0.5 12.2 

17 30 70 1 11.9 

18 30 70 3 13.9 

19 45 30 0.5 8 

20 45 30 1 8.1 

21 45 30 3 9.8 

22 45 50 0.5 11 

23 45 50 1 11.9 

24 45 50 3 13.5 

25 45 70 0.5 15.1 

26 45 70 1 15.2 

27 45 70 3 16.4 
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3.3 Neural network setup for direct estimation 

After the introduction of estimation problem setup and the classification of the data, this 

section will explain the detailed settings of the NN used for the direct estimation for readers’ 

comprehensive understanding, although a part of the NN setup has previously been introduced in 

section 3.1. The network type for the direct estimation is feed-forward backpropagation, and the 

training function is determined to be GD and GD with momentum for further comparison with 

respect to their estimation accuracy and efficiency. Note here that the selection of the training 

functions has no impact on other setups of the network. As detailed in the previous section, the 

function used for performance judgement of the network is selected to be Mean Squared Error 

(MSE). 

Apart from the input and output layer, there is one hidden layer in the network. Such choice 

is based on the conclusion from past studies: although increasing number of hidden layers can 

lead to great accuracy, but both the complexity and the training time of the network are also 

multiplied. Besides, a “too accurate” network can be messed up with redundant details (noises) 

during the training process and the overall performance, therefore, becomes worse (also known 

as “overfitting”).103 Considering the database in the presented study is relatively simple, one 

hidden layer is sufficient here. 

In the hidden layer, there are five neurons, each of which has a Tansig activation function. 

Such choice is based on empirical decisions from past studies. Paola and Schowengerdt104 

reported that with six hidden-layer neurons, their network had the fastest classification. Xing and 

Li105 also reported that the optimal number of hidden-layer neurons was five in order to achieve 

the best accuracy of their network. Hence, the number of neurons in hidden layer here is 

determined to be five. 

Different from the Tansig activation function of hidden-layer neurons, the activation function 

of the output layer neuron is determined to be PURELIN which refers to the pure linear function. 

This is because the NN here is applied to solve a regression problem (not binary classification 

where the sigmoid function is more suitable) and the output values are unbounded. Therefore, the 

linear activation function is sufficient here. 

As for the learning rate, it is determined to be 0.01 in the present investigation as it has been 

reported by Wilson and Martinez106 that 0.01 is the learning rate which leads to the maximum of 

estimation accuracy and the minimum of training time. Moreover, since the default epoch number 

has been set to 1000 in the “nntool” of MATLAB, author keeps this hyperparameter as default 
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after trying other epoch numbers. Hence the network with both GD and GD with momentum are 

designed to be executed for 1000 epochs. 

After the configuration of the neural network has been confirmed, weights and biases are then 

initialised to new values in preparation for training. The initialisation is based on generating a 

random number from the standard normal distribution (with unit standard deviation and zero 

mean).107 One of benefits of using the standard normal distribution here is that all weights and 

biases closer to zero (but not too close) could avoid numerical instabilities, particularly for initial 

layers after a few layers of multiplications. 

 

3.4 Direct estimation results 

The input of the training data specified in the previous classification is first fed into the 

network for fitting the weights and biases. The estimated output, in this case, failure tensile 

strength, is then compared with the targeted output values in the training group. The comparison 

indicates the estimation accuracy of the generated network, which is in the form of estimation 

relative percentage error (similar to Equation (8) in section 2.4), calculated as: 

 

 𝐸𝑟𝑟𝑜𝑟 = |
𝜎𝑒 − 𝜎𝑓
𝜎𝑓

| × 100% ,  (27) 

 

where 𝜎𝑒 is the estimated failure strength, and 𝜎𝑓 is the targeted failure strength from training data. 

Errors for all validation data are then averaged as a general estimation error which represents the 

estimation accuracy of the network. 
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Table 3.2 Estimation and experimental results with the comparison of the estimation errors for both GD and GDM. 

 Strength Relative error 

Specimens 
(R=1mm) 

Estimation 
𝝈𝒇 (GD) 

(MPa) 

Estimation 
𝝈𝒇 (GDM) 

(MPa) 

Experimental 
𝝈𝒇 (MPa) 

𝝈𝒇 (%) for GD 𝝈𝒇 (%) for GDM 

2 9.63 9.76 9.5 1.37 2.74 

5 13.34 13 13.8 3.33 5.8 

8 17.68 17.35 16.9 4.62 2.66 

11 9.2 8.26 8.5 8.24 2.82 

14 11.16 11.67 12 7 2.75 

17 15.2 11.7 11.9 27.73 1.68 

20 8.52 8.49 8.1 5.19 4.81 

23 10.85 11.12 11.9 8.82 6.55 

26 15.16 14.77 15.2 0.26 2.83 

  Average Error 7.4 3.6 

 

Table 3.2 presents the estimation results for the network using gradient descent (GD) and 

gradient descent with momentum (GDM) training functions, respectively. It is reported that the 

neural network with either training function has shown a satisfying performance with respect to 

estimation accuracy. It has proven that the artificial neural network can effectively be applied to 

estimate the failure tensile strength with not only manufacturing parameters but also geometrical 

design parameters. 

With respect to individual accuracy, the general estimation error for GDM is 3.6% which is 

less than half of that for GD (7.4%). So it is seen that the gradient descent with momentum training 

function leads to a better estimation accuracy. It is noted that there is an error spike (27.73%) for 

the GD algorithm, 𝜎𝑓 of specimen 17. It could be because both specimen 17 and 23 share the same 

experimental failure strength (11.9MPa) while they have completely different manufacturing 

angles and infill densities. Compared with GD, GDM appears to be more robust when the training 

group contains these types of “ambiguous” data. 
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Figure 3.3 NN for the direct estimation (A) Regression result of GD; (B) Regression result of GDM; (C) Training 

performance of GD; (D) Training performance of GDM; (E) Gradient training state of GD; (F) Gradient training state of 

GDM. 
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Figure 3.3A and Figure 3.3B are the regression results of the network with respect to 18 

training data with GD and GDM training functions, respectively. The 𝑥 axis here refers to the 

target value (experimental data) and the 𝑦 axis represents the estimated value using NN. Ideally, 

if the network can produce perfectly accurate estimations, estimated values are supposed to be 

equal to target values. The correlation of these both values indicates the strength of linear 

relationship between them, which is quantified using an R-value here, also known as coefficient 

of correlation.108 So in other words, the R-value shows how well the training data fit the regression 

network model. One of the typical formulas to calculate the R-value can be expressed as: 

 

 
𝑅 =

𝑛(∑𝑥𝑦) − (∑𝑥)(∑𝑦)

√[𝑛∑(𝑥2) − (∑𝑥)
2
][𝑛 ∑(𝑦2) − (∑𝑦)

2
]

 , 
(28) 

 

where  𝑛 refers to the number of elements. As such, both GD and GDM have shown a good 

regression performance in Figure 3.3A and Figure 3.3B. The R-value for GDM is reported to be 

0.97, which is slightly larger than that of GD (0.95). The result indicates that the network with 

GDM algorithm can produce estimations with higher accuracy. This conclusion is in accordance 

with the error comparison result shown in Table 3.2, i.e., GDM is more accurate. 

As for the efficiency of both training functions, Figure 3.3C and Figure 3.3D show the change 

in MSE with respect to epoch numbers. With increasing epoch numbers, the MSE decreases for 

both GD and GDM, whereas when it comes to the 1000th epoch, the final MSE is approximately 

at 10−5 for GD and 10−7 for GDM. Therefore, with the same amount of iteration, the difference 

between the estimated value and the actual targeted value is smaller for GDM than for GD. In 

other words, the GDM training function leads to the faster convergence of the cost function. 

Different from the criterion of MSE, the efficiency for using both training functions is 

compared in Figure 3.3E and Figure 3.3F. Both gradients decrease as the epoch number increases; 

however, the final gradient at the 1000th epoch is at 10−3 for GD, and the gradient for GDM is at 

10−4. Note here that the smaller gradient means the network is closer to convergence. Hence, the 

comparison once again indicates that the application of the GDM function leads to a better 

estimation efficiency than the GD function. 

Summarising, the artificial neural network has shown a great performance with respect to the 

direct estimation of failure tensile strength of a 3D-printed part based on the given manufacturing 

angle, infill density and notch root radius. The application of the gradient descent with momentum 
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training function effectively improves the estimation accuracy and efficiency of the neural 

network. 

 

3.5 Inverse estimation with the artificial neural network 

As mentioned in section 3.2.1, the current industrial problem is to identify the optimal 

manufacturing parameters (the manufacturing angle and the infill density) with the given 

requirement of strength and design (the failure tensile strength and the notch root radius). 

Dwelling on the success of NN in direct estimation, this section will introduce the application of 

NN in inverse estimation. As the mathematical basis of a NN has been illustrated in previous 

sections, it will not be explained here. 

The experimental data is then classified as shown in Table 3.3, similar to Table 2.8 in section 

2.7.1, which includes experimental data repeated from Table 3.1 but rearranged, and both training 

and validation group classifications are identical to the ones used in the previous direct estimation. 

The neural network used for the inverse estimation is also a feed-forward backpropagation 

network which uses both GD and GDM algorithms as training functions. Although in the direct 

estimation, GDM has proven to be better than GD, it is still worth the comparison in the inverse 

estimation in order to check the consistency with the previous conclusion (GDM has shown to 

have better accuracy and efficiency). Identical to the configuration of NN in the direct estimation, 

there is one input layer, one hidden layer and one output layer. The hidden layer has five neurons 

with the Tansig activation function, and the output layer has one output neuron whose activation 

function is the pure linear function. 
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Table 3.3 Summary of experimental data for the inverse estimation. 

 Input Output 

Specimen Radius (mm) 𝜎𝑓 (MPa) 𝜃𝑝 (°) Infill density(%) 

1 0.5 9.7 0 30 

2 1 9.5 0 30 

3 3 10.9 0 30 

4 0.5 13.1 0 50 

5 1 13.8 0 50 

6 3 14.4 0 50 

7 0.5 17.4 0 70 

8 1 16.9 0 70 

9 3 18.6 0 70 

10 0.5 8.2 30 30 

11 1 8.5 30 30 

12 3 10 30 30 

13 0.5 11.5 30 50 

14 1 12 30 50 

15 3 12.5 30 50 

16 0.5 12.2 30 70 

17 1 11.9 30 70 

18 3 13.9 30 70 

19 0.5 8 45 30 

20 1 8.1 45 30 

21 3 9.8 45 30 

22 0.5 11 45 50 

23 1 11.9 45 50 

24 3 13.5 45 50 

25 0.5 15.1 45 70 

26 1 15.2 45 70 

27 3 16.4 45 70 

 

3.6 Inverse estimation results and adjustments 

With the data classification and the configuration of the adopted NN introduced in the last 

section, the topic of this section will focus on the inverse estimation results and their adjustments. 

The rearranged inputs shown in Table 3.3 are fed into the network for the inverse estimation. 

Initially, with the same configuration used in the direct estimation, the network is reported not to 

lead to a convergency. This could be due to the more non-linearity in the inverse estimation (from 

failure tensile strength and notch root radius to manufacturing parameters). After the learning rate 
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has been changed from 0.01 (used in direct estimation) to 0.0001 for more precision, the network 

succeeds in producing convergent results with both GD and GDM algorithms. Correspondingly, 

with a lower learning rate, the total epoch number is now redesigned up to 30000 for a complete 

convergency process. 

The estimation results in the inverse estimation are values of the manufacturing parameters to 

be applied to machines and devices. Therefore, it is possible that the estimation results are 

mathematically correct, but the values are meaningless to 3D printers. Similar effects have been 

noted in section 2.8. As such, similar to the adjustment steps in the FIS chapter, it is of great 

necessity to adjust the inverse estimated results with respect to the specifications of the software 

and printing.  Thus, the adjustment of the manufacturing angle is based on the “proximity” 

principle. Mathematically, to take an example of adjustments between 0° and 15°, the proximity 

principle can be expressed as follows: 

 

𝐼𝑓 0° ≤ 𝜃𝑝 < 7.5°, 𝜃𝑝 = 0° ;  

 

𝐼𝑓 7.5° ≤ 𝜃𝑝 < 15°, 𝜃𝑝 = 15° . 

 

Similarly, according to the particular specification, the infill density has an increment of 10%, and 

it follows the same principle of proximity. 

Table 3.4 and Table 3.5 present the inverse estimation results from the generated neural 

network using both GD and GDM algorithms, respectively. The estimated results have been 

adjusted with respect to the specifications of the aforementioned 3D printer and software. The 

experiment output in both tables refers to the actual targeted values of the manufacturing angles 

and infill densities and is eventually compared with adjusted estimation results. 
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Table 3.4 Summary of estimation results from the network using the gradient descent algorithm. 

 Estimation Output Adjusted Estimation Experiment Output Absolute Error 

Spec 𝜽𝒑 (°) Infill(%) 𝜽𝒑 (°) infill(%) 𝜽𝒑 (°) infill(%) 
Error 𝜽𝒑 

(°) 

Error 
infill(%) 

2 38.21 30.25 45 30 0 30 45 0 

5 11.71 61.88 15 60 0 50 15 10 

8 1.71 67.59 0 70 0 70 0 0 

11 39.57 28.43 45 30 30 30 15 0 

14 24.48 46.72 30 50 30 50 0 0 

17 25.12 45.96 30 50 30 70 0 20 

20 39.78 28.14 45 30 45 30 0 0 

23 25.17 45.91 30 50 45 50 15 0 

26 7.66 66.41 15 70 45 70 30 0 

     Average Error 13.3 3.3 

 

Table 3.5 Summary of estimation results from the network using the gradient descent with momentum algorithm. 

 Estimation Output Adjusted Estimation Experiment Output Absolute Error  

Spec 𝜽𝒑 (°) Infill(%) 𝜽𝒑 (°) infill(%) 𝜽𝒑 (°) infill(%) 
Error 𝜽𝒑 

(°) 

Error 
infill(%) 

2 18.53 31.88 15 30 0 30 15 0 

5 14.03 60.14 15 60 0 50 15 10 

8 -0.06 69.49 0 70 0 70 0 0 

11 38.79 28.4 45 30 30 30 15 0 

14 32.87 50.92 30 50 30 50 0 0 

17 32.62 50.41 30 50 30 70 0 20 

20 60 30.46 60 30 45 30 15 0 

23 32.60 50.37 30 50 45 50 15 0 

26 -1.1 65.25 0 70 45 70 45 0 

     Average Error 13.3 3.3 
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It is interesting to point out in Table 3.5, both specimens 8 and 26 have negative manufacturing 

angles. Note that in fuzzy inference system (FIS), the estimation result is constrained by the 

existing knowledge or expert experience; therefore, it is unlikely to have negative values for 𝜃𝑝. 

However, as a universal approximator, neural network does not have such boundary restrictions; 

hence, it is possible to have negative values in this investigation. Particularly for 𝜃𝑝, negative 

values are still “achievable” in the manufacturing of 3D-printed components. Same negative 

values will appear in later chapters as well. 

Different from the relative percentage error calculated in Equation (27), the inverse estimation 

accuracy is evaluated in the form of absolute error, as shown in Equation (29). Due to the presence 

of “0” at 𝜃𝑝  of the experiment output, the relative error calculation could cause a meaningless 

value. As such, the absolute error calculation is adopted here based on the estimated outputs (𝑃𝑒𝑠𝑡) 

and targeted experiment outputs (𝑃𝑒𝑥𝑝). 

 

 𝐸𝑟𝑟𝑜𝑟 = |𝑃𝑒𝑠𝑡 − 𝑃𝑒𝑥𝑝| .  (29) 

 

As to the comparison between GD and GDM algorithms, it is noted that the inverse estimation 

network with GD and GDM share the same absolute error after the results adjustments. However, 

the absolute error of using GDM has a smaller standard deviation of the estimation errors for 𝜃𝑝  

(calculated as 13.12°)  than that of using GD (calculated as 14.91°). Since the smaller standard 

deviation means data are more clustered around the mean, the estimation results of using GDM 

are considered to be more concentrated. Hence, the GDM training algorithm is considered to have 

better estimation accuracy than GD in inverse estimation. 

It is noted here that the error spike talked in the direct estimation shows up again here, this 

time not for specimen 17 but for specimen 26 for both GD and GDM and specimen 2 for GD. The 

error spike mainly happens to the estimation of manufacturing angle as the infill density is more 

dominant in determining failure strength. Hence, the estimation of the less dominant parameter, 

manufacturing angle, in this case, could sometimes be inaccurate. Particularly, such inaccuracy 

tends to happen to the boundary data as there are no more “outer” data helping constrain both 

boundary data. In this case, both boundary data are similar to the extrapolation points with respect 

to the rest data points. Therefore, the estimation accuracy could decrease, particularly at both 

boundaries. 
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Figure 3.4 NN for inverse estimation (A) Regression with GD; (B) Regression with GDM; (C) Training performance with 

GD; (D) Training performance with GDM; (E) Gradient training state with GD; (F) Gradient training state with GDM. 
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As for the estimation efficiency, Figure 3.4A and Figure 3.4B are the regression results of the 

network with GD and GDM algorithms, respectively. The R-value for inverse estimation is 

reported to be 0.78 for GD and 0.82 for GDM, respectively, from which once again, GDM has 

shown better regression fitting than GD. Figure 3.4C and Figure 3.4D show the change of MSE 

with all epochs, and both GD and GDM have a final MSE at approximately 101. However, in 

detail, it can be seen that the MSE in Figure 3.4D is still smaller than that in Figure 3.4C, which 

means the convergence of using GDM is faster than GD, and the final estimation accuracy of 

using GDM could be slightly better. According to Figure 3.4E and Figure 3.4F, the GDM has a 

smaller final gradient value (reported to be 0.58) than that of GD (reported to be 0.71) at 30000 

epochs, which once again shows a consistent conclusion to the previous ones. 

Generally, the generated network has shown good estimation performance with respect to both 

the efficiency and accuracy of the inverse estimations. However, the current estimated and 

adjusted results are to be validated once more for whether these manufacturing parameters could 

lead to the desired mechanical property of the printed parts. 

 

3.7 Numerical validation 

As the NN methodology has successfully given accurate adjusted estimation results for the 

inverse estimation, it is now suggested to have a validation test to evaluate the adjustments in 

inverse estimations and the full capability of the NN methodology. Similar “numerical” validation 

test has been conducted in previous sections of FIS, and for the sake of completeness, it is here 

conducted again for NN. Considering the high accuracy of the estimation results for the direct 

problem, the “validation” here refers to the unconventional usage in a numerical rather than 

traditionally experimental sense. 

For a recap for readers, the idea of such a validation test is explained here again. The numerical 

validation process is illustrated in Figure 3.5 seen in Chapter 2, which starts from using the inverse 

estimation of NN (denoted  𝐹1) to inversely estimate manufacturing parameters based on required 

failure strength and geometrical design. The inverse estimation follows the aforementioned 

process in this chapter. From the inverse estimation, the estimated manufacturing angle and infill 

density are then brought into the direct estimation of NN (denoted  𝐹2), together with the notch 

root radius, to (re-)estimate the corresponding failure strength. Note that at the start of this chapter, 

for the introduction of NN, the actual manufacturing parameters from the validation group were 

used instead of the inversely estimated ones in the direct NN. 



82                                                              CHAPTER 3  ARTIFICIAL NEURAL NETWORK 

 

The newly estimated strength values from 𝐹2 are then compared with those of the original 

experimental values (target value), i.e. product design requirements. The comparison indicates the 

estimation performance of the NN framework and the effect of the adopted adjustments. 

 

 
Figure 3.5 Explanation of inverse and direct estimation using NN where F1 refers to the inverse estimation and F2 is the 

direct validation estimation. 

 

The re-estimated results are shown in Table 3.6, which contains the comparison between the 

numerical validated and experimental failure tensile strength. It is calculated that the average 

absolute error between the estimated and experimental strength is 0.58MPa, which is relatively 

small compared with experimental results. It is noted here that this 0.58MPa have already included 

the intrinsic estimation error from both inverse and adjusted-direct estimations. Therefore, it can 

be concluded here that the inverse estimation and adjustments using the NN are effective, and the 

estimated manufacturing parameters with NN can be applied to 3D printers with high accuracy. 

Note that the comparison of these numerically validated results of using NN with other 

methodologies will be illustrated in later chapters. 
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Table 3.6 Estimated manufacturing angle and infill density are brought back into the NN direct estimation to estimate the 

failure strength, which is to be compared with the experimental failure strength for R=1 specimens. 

 Manufacturing 
parameters (adjusted) 

Strength Absolute error 

Specimens 
(R=1mm) 

𝜽𝒑 (°) Infill(%) 
Estimation 

𝝈𝒇 
Experimental 

𝝈𝒇 
𝝈𝒇 (abs) 

2 15 30 9.94 9.5 0.44 

5 15 60 12.2 13.8 1.6 

8 0 70 15.2 16.9 1.7 

11 45 30 8.57 8.5 0.07 

14 30 50 12.2 12 0.2 

17 30 50 12.2 11.9 0.3 

20 60 30 8.57 8.1 0.47 

23 30 50 12.2 11.9 0.3 

26 0 70 15.3 15.2 0.1 

   Average Error 0.58 

 

 

3.8 Study of cost-control relevant parameters with neural network 

In the previous chapter, studies have been conducted, including printing period and material 

weight/consumption as additional cost-relevant inputs for the inverse estimations. It has 

previously been proven that the addition of both cost-relevant parameters can lead to better 

estimation accuracy of using FIS. As such, for the sake of completeness and contrast, experimental 

data with additional parameters are here fed to the existing NN model. Considering the better 

accuracy and efficiency of using the GDM algorithm, an study is conducted based on the NN 

model with the GDM algorithm. Note here that the configuration of the network is identical to the 

previous network used for inverse estimation except for including two extra input parameters. 
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Table 3.7 Inverse NN estimation of manufacturing parameters with printing period and material weight included. 

 Input 
Experiment 

output 

Estimated 
adjusted 
output 

Error without 
time and 

weight (from 
Table 3.5) 

Error including 
time and 
weight 

No. 
Radius 
(mm) 

𝝈𝒇 

(Mpa) 

Time 
(mins) 

Weight 
(g) 

𝜽𝒑 

(°) 

Infill 
(%) 

𝜽𝒑 

(°) 

Infill 
(%) 

ABS 
error 
𝜽𝒑 

ABS 
error 
infill 

ABS 
error 
𝜽𝒑 

ABS 
error 
infill 

1 0.5 9.7 93 8 0 30       

2 1 9.5 94 8 0 30 0 30 15 0 0 0 

3 3 10.9 97 8 0 30       

4 0.5 13.1 101 9 0 50       

5 1 13.8 102 9 0 50 15 50 15 10 15 0 

6 3 14.4 105 9 0 50       

7 0.5 17.4 109 10 0 70       

8 1 16.9 110 10 0 70 15 70 0 0 15 0 

9 3 18.6 113 10 0 70       

10 0.5 8.2 93 8 30 30       

11 1 8.5 94 8 30 30 30 30 15 0 0 0 

12 3 10 96 8 30 30       

13 0.5 11.5 101 9 30 50       

14 1 12 102 9 30 50 30 50 0 0 0 0 

15 3 12.5 105 9 30 50       

16 0.5 12.2 109 10 30 70       

17 1 11.9 110 10 30 70 45 70 0 20 15 0 

18 3 13.9 113 10 30 70       

19 0.5 8 92 8 45 30       

20 1 8.1 93 8 45 30 45 30 15 0 0 0 

21 3 9.8 96 8 45 30       

22 0.5 11.0 100 9 45 50       

23 1 11.9 101 9 45 50 45 50 15 0 0 0 

24 3 13.5 104 9 45 50       

25 0.5 15.1 108 10 45 70       

26 1 15.2 109 10 45 70 30 70 45 0 15 0 

27 3 16.4 112 10 45 70       

 Average error 13.3 3.3 6.7 0 

 

Table 3.7 presents the inverse estimation results of the manufacturing angle and infill density 

based on the “new” inputs, which are notch root radius, failure tensile strength, printing period 

and material weight. The acquisition of the printing period and material weight data has been 
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introduced in the FIS chapter. The printing period refers to the overall time in minutes it takes for 

the printing process, and the material weight is the weight of filaments consumed for the printing 

process. Both parameters are directly linked with manufacturing cost, so they are also considered 

cost-relevant. Once again, the hypothesis here is that the printing period and the material weighted 

acquired from the software CURA are identical to the actual experimental values. 

It can be seen from Table 3.7 that the addition of both cost-relevant parameters leads to an 

obvious decrease in absolute estimation error: from 13.3°  to 6.7° for manufacturing and from 

3.3% to 0% for infill density, respectively. Once again, it proves that for both FIS and NN 

methodologies, including both cost-relevant parameters could generally lead to better estimation 

accuracy. Generalising further, as the error of the manufacturing angle had no change in the study 

in the FIS chapter, it can be concluded that there is more estimation accuracy improvement for 

the manufacturing angle, particularly for the NN model. 

 

3.9 Conclusion 

In the present investigation, key steps of artificial neural network setup have been discussed 

and demonstrated. Gradient descent with moment algorithm has shown improvements in both 

estimation accuracy and efficiency of the artificial neural network methodology, compared with 

the conventional gradient descent algorithm. 

Generally, NN has provided a great estimation accuracy both in the direct problem and the 

inverse problem. It is also a comprehensive solution which can be applied with various types of 

parameters. Including the cost-relevant parameters when using NN has shown a positive influence 

on the estimation accuracy for both manufacturing angle and infill density. Hence, manufacturers 

could find the optimal manufacturing parameters and have a cost-control tool at the same time by 

adopting NN models. 

Summarising, The NN methodology has appeared to be a robust and precise prediction tool. 

NN methodology not only has the potential to become a decision-making tool in design problems 

but also could be particularly effective in control systems due to its self-governing factor. 

Considering the computation pattern the NN has, it is expected to be very successful when used 

together with big data for parameter calibration. This, at the same time, is also a requirement of 

computing power. Accordingly, the results calculated from the NN approach could be highly 

accurate when large groups of data are included. Apart from the capability of modelling and 

predicting the mechanical behaviour/strength of engineering components and structures, the NN 
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approach will also play a significant role in the real-time control system, big data streams, artificial 

intelligence, automated driving, etc. 

Although NN has shown great potential as a precise and robust data-driven technique, the 

time-consuming training process can sometimes compromise its advantages of precision when the 

efficiency of the technique is a priority. Hence, in Chapter 4, a combination of the previous two 

methodologies will be introduced, known as the adaptive fuzzy inference system, which takes 

advantage of both previous approaches. 
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Chapter 4 

Chapter 4 Adaptive Neural Fuzzy Inference System 

Adaptive Neural Fuzzy Inference System 
 

 

 

After introducing both FIS and NN methodologies in the previous chapters, it is seen that both 

methodologies have their advantages and disadvantages. FIS is able to handle inaccurate or 

indeterministic inputs by including engineering uncertainties in the form of membership values. 

Prior knowledge, expert opinions and intuitions could provide a flexible and tuneable simple-

structured system for interpretations. However, some aspects of the FIS approach still need a 

better understanding, such as there are no effective standard solutions to transform human 

knowledge or expert intuition into fuzzy rules and data. As such, aimed at using the recursive 

learning capability of NN to determine the MF parameters, Jang first proposed an integrated 

approach named adaptive neural fuzzy inference system (ANFIS).109 

This chapter first introduces the architecture and the training process of ANFIS. The main 

aspects of the adaptive neural fuzzy inference system (ANFIS) will be discussed in detail, 

including all necessary steps for building up ANFIS models. Furthermore, as one of the main 

focuses of the present investigation, ANFIS will be adopted for both previously introduced direct 

and inverse estimations, and the performance of the methodology will be evaluated with respect 

to the estimation accuracy and efficiency. 
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Figure 4.1 Decomposition of an adaptive neural fuzzy inference system. 

 

4.1 Architecture 

ANFIS is an integration of Sugeno FIS and NN methodologies, as it includes the uncertainty 

reasoning process of FIS and the iterative learning and connection pattern of NN. As shown in 

Figure 4.1, the structure of a typical ANFIS is similar to that of a feed-forward and 

backpropagation NN. 

Note here that although it is the main purpose to introduce the architecture of ANFIS, it is also 

necessary to introduce the basic FIS in the adaptive network. The FIS involved in the ANFIS 

shown in Figure 4.1 has two inputs, 𝑋 and 𝑌, and one output, 𝑍. Suppose there are two fuzzy rules 

in the adopted FIS: 

 

Rule 1: If 𝑋 is 𝐴1 and 𝑌 is 𝐵1, then 𝑓1 = 𝑝1𝑥 + 𝑞1𝑦 + 𝑟1 ; 

Rule 2: If 𝑋 is 𝐴2 and 𝑌 is 𝐵2, then 𝑓2 = 𝑝2𝑥 + 𝑞2𝑦 + 𝑟2 ; 

 

where 𝐴1 , 𝐴2 , 𝐵1  & 𝐵2  are linguistic labels or specific values of the input variable 𝑋  and 𝑌 , 

respectively; 𝑓1 and 𝑓2 are output MFs, and are selected as linear equation here. 𝑥 and 𝑦 are values 

from input 1 and input 2, respectively; 𝑝𝑖 , 𝑞𝑖  & 𝑟𝑖  are constant coefficients ensuring the 

establishment of both rules. Note that linear equations are used here as the iterative calculation 
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process (thanks to the neural-like structure) can help identify these unknown parameters. However, 

there is no such calculation scheme back in the fuzzy inference system (FIS) chapter, which used 

constant as MF outputs. 

As far as the structure is concerned, it is seen in Figure 4.1 that there are five layers of nodes 

which are similar to the neurons used in conventional NN. Each of these layers is interpreted as 

follows: 

Layer 1 – The first layer is a fuzzification layer where each node holds the fuzzified 

membership value of the crisp input. The output of the nodes at this layer can be represented as: 

 

 𝑂𝑖
1 = {

𝜇𝐴𝑖(𝑥),         ∀𝑖 = 1, 2,
  

𝜇𝐵𝑖(𝑦),         ∀𝑖 = 1, 2,
 (30) 

 

where 𝜇(𝑥) is the membership function which fuzzifies the crisp inputs into membership values. 

In order for completeness and comparison with the previously introduced FIS approach, here, the 

membership function is still selected as triangular MF due to its simplicity. As a recap here for 

readers, the triangular MF can be expressed as Equation (31) or in a simplified form as Equation 

(32): 

 

 𝜇(𝑥) =

{
 
 
 
 

 
 
 
 

 

0,           𝑥 ≤ 𝑎

    
𝑥 − 𝑎
𝑏 − 𝑎

 ,      𝑎 < 𝑥 ≤ 𝑏

 
    
𝑐 − 𝑥
𝑐 − 𝑏

 ,      𝑏 < 𝑥 < 𝑐

0,           𝑥 ≥ 𝑐

 , (31) 

 

 𝜇(𝑥) = max (min (
𝑥 − 𝑎

𝑏 − 𝑎
,
𝑐 − 𝑥

𝑐 − 𝑏
) , 0) ,  (32) 

 

where 𝑎, 𝑏 & 𝑐 are the MF parameters for the ANFIS. Parameters in this layer are referred to as 

premise parameters, as the fuzzification of inputs is dependent on these premise parameters before 

the fuzzified data is transmitted to other nodes. Note here that these MF parameters are adaptive 

(square nodes in Figure 4.1) and equivalent to the weights in NN, which will be updated 

recursively during the system training process. The update of these parameters will be introduced 

in the next section, together with the training strategy. 
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Layer 2 – This layer contains the implication of the acquired membership values from the first 

layer. The product of input signals (membership values) is the output of the nodes at this layer, 

and the implication process is similar to the introduction of implication in the FIS chapter. The 

node output can be calculated as follows: 

 

 𝑂𝑖
2 = 𝜔𝑖 = 𝜇𝐴𝑖(𝑥) × 𝜇𝐵𝑖(𝑦) ,        ∀𝑖 = 1, 2,  (33) 

 

where 𝜔𝑖 refers to the firing strength of the node, i.e., the product of both relevant membership 

values acquired from the previous layer. 

Layer 3 – Layer 3 is known as the normalisation layer, where the previously acquired firing 

strength is normalised with respect to each fuzzy rule. The normalisation result, which is also the 

output of the nodes at this layer, is calculated by the ratio of the specific firing strength for the 𝑖th 

rule to the sum of all firing strengths, as shown in Equation (34). 

 

 𝑂𝑖
3 = 𝜔𝑖 =

𝜔𝑖
∑𝜔𝑖

 ,        ∀𝑖 = 1, 2, (34) 

 

where 𝜔𝑖̅̅ ̅ is the normalised firing strength of the node. The normalisation process aims to avoid 

the negative impact that a possible extremely large or small firing strength could have on further 

calculations. The ratio in Equation (34) represents the importance of each fuzzy rule, i.e., which 

rule is activated more significantly. 

Layer 4 – This is the layer where the previously acquired normalised firing strength is added 

to the existing rules, more specifically, the output MF (𝑓1 & 𝑓2) of the existing rules. The product 

of the normalised firing strength and the output MF is the output of the nodes at this layer as 

follows: 

 

 𝑂𝑖
4 = 𝜔𝑖𝑓𝑖 = 𝜔𝑖(𝑝𝑖𝑥 + 𝑞𝑖𝑦 + 𝑟𝑖),        ∀𝑖 = 1,2.  (35) 

 

As a reminder, 𝑓𝑖 = 𝑝𝑖𝑥 + 𝑞𝑖𝑦 + 𝑟𝑖  is the previously mentioned fuzzy rule in the present 

investigation, and 𝑝𝑖 , 𝑞𝑖  & 𝑟𝑖  here are noted as consequent parameters as they are the last 

parameters within the system that could determine the final estimation results. The consequent 

parameters are also adaptive (square nodes) and will be updated during the training of the system. 
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Layer 5 – This layer is known as the output layer or the defuzzification layer, where the signals 

from the previous nodes are aggregated and defuzzified. The output of the node is the estimation 

result of the adaptive system and can be represented as Equation (36). It is noted that the expansion 

of the equation is identical to the weighted average calculations previously introduced as a 

defuzzification technique in the FIS chapter. 

 

 𝑂𝑖
5 =∑𝜔𝑖𝑓𝑖

𝑖

=
∑ 𝜔𝑖𝑓𝑖𝑖

∑ 𝜔𝑖𝑖
 ,        ∀𝑖 = 1,2. (36) 

 

4.2 Learning strategy of ANFIS 

As previously mentioned, ANFIS has a similar architecture to NN due to the benefit of 

recursive calculations. Therefore, the basic learning strategy of the adaptive system is similar to 

that of NN. The term “adaptive” here refers to the relevant parameters that are tuneable and 

supposed to be updated based on the specific training strategy in order to minimise the estimation 

error between the estimated results and the actual target results. Suppose there are 𝑃 entries in the 

existing training data set, the estimation error for the 𝑝th entry can be represented as:  

 

 𝐸𝑝 = (𝑍𝑝 − 𝑍𝑡𝑝)
2
 ,        1 ≤ 𝑝 ≤ 𝑃, (37) 

 

where 𝐸𝑝 refers to the squared error for the 𝑝th training data; 𝑍𝑝 and 𝑍𝑡𝑝 are the estimation results 

and actual target value of results for the 𝑝th training data, respectively. Note here that for an 

ANFIS model, the update of parameters occur after all training data have been fed into the system, 

i.e., after each epoch or iteration. Hence, the general estimation error 𝐸 can be expressed as: 

 

 𝐸 = ∑𝐸𝑝

𝑃

𝑝=1

.  (38) 

 

As mentioned previously, the training process of ANFIS is similar to that of NN, so the 

gradient descent training algorithm is adopted here for the update of relevant parameters. The 

estimated output 𝑍𝑝  is a function relevant to both premise and consequent parameters (see 

Equation (39)). As such, according to the calculation of the cost function in Equation (19), the 
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partial derivative of the error function with respect to each of the relevant parameters can be 

calculated using the chain rule, as shown in Equation (40): 

 

 𝑍𝑝 =
𝜔1𝑟1 +𝜔2𝑟2
𝜔1 + 𝜔2

=
𝜇𝐴1𝜇𝐵1𝑟1 + 𝜇𝐴2𝜇𝐵2𝑟2

𝜇𝐴1𝜇𝐵1 + 𝜇𝐴2𝜇𝐵2
 , (39) 

 

 

 
𝜕𝐸𝑝
𝜕𝑎

= ∑
𝜕𝐸𝑝
𝜕𝑍∗

×
𝜕𝑍∗

𝜕𝑎
𝑍∗∈𝑆

 ,  (40) 

 

where 𝑆  refers to the set of nodes whose outputs are dependent on 𝑎 . Here 𝑎  is one of the 

parameters of the network. As the update of the corresponding parameter occur after all training 

data entries, the derivative of the general estimation error can be written as: 

 

 
𝜕𝐸

𝜕𝑎
= ∑

𝜕𝐸𝑝
𝜕𝑎

𝑃

𝑝=1

 .  (41) 

 

Thus, according to the previous application of the gradient descent algorithm in NN, the 

update function of the parameter 𝑎 can be summarised as: 

 

 𝑎𝑛𝑒𝑤 = 𝑎 − 𝐿
𝜕𝐸

𝜕𝑎
 ,  (42) 

 

where 𝐿 is the learning rate of the gradient descent algorithm and 𝑎𝑛𝑒𝑤 is the updated parameter. 

Note here that in the present investigation, the update of the relevant parameter happens after 

every epoch or iteration, normally known as batch learning or offline learning.110 However, there 

is another learning paradigm for parameter update, named pattern learning or online learning. In 

the former case, since the update happens after all training data entries for batch learning, the 

derivative calculation is particularly dependent on Equation (41). In the latter case, parameters are 

updated immediately after a training data entry to the system with the online learning, so the 

update formula is particularly dependent on the derivative calculated in Equation (40). 

Considering the nature of pattern learning, if the calculation happens for every training data entry, 

the pattern learning will have relatively more computations, leading to worse computation 

efficiency. Thus, for the computational efficiency and completeness of the paradigm adopted in 
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the NN chapter, batch learning is selected in the investigation of ANFIS. 

 

4.3 Hybrid learning strategy in ANFIS 

As the basic learning strategy of ANFIS is still a gradient descent algorithm, it is desired to 

accomplish the parameter update in the adaptive system effectively. However, the high 

computational cost (even with momentum) of the GD algorithm has become one of its main 

drawbacks, especially when there are numerous parameters in the current system. Hence, a hybrid 

learning rule, first proposed by Jang,111 could be an alternative and more efficient solution here. 

The hybrid learning rule is a combination of the gradient descent algorithm and the least squares 

estimate (LSE) approach for identifying relevant parameters, which will be introduced in the 

following section. Generally, in the hybrid learning strategy, the GD algorithm is applied to 

identify the premise parameters and the LSE is used to calculated consequent parameters. 

 

4.3.1 Least squares estimation 

For the complete introduction of the hybrid learning algorithm, the least squares estimate will 

be introduced in detail with a simplified example in this section. LSE is a methodology for 

estimating parameters by minimising the overall difference between the observed data points. 

Suppose there is a collection of observed data points (𝑑𝑖 , 𝑦𝑖) where 𝑖 = 1,2,… , 𝑙. In order to fit a 

straight line to these data points, a synthetic function is defined as: 

 

 𝑦𝑖 = 𝛽0 + 𝛽1𝑑𝑖 + 𝑛𝑖 ,  (43) 

 

where 𝛽0 and 𝛽1 refer to the intercept and the slope of the straight line, respectively, and they are 

both the parameters of interest in this problem. 𝑛𝑖 here is referred to as a disturbance term, which 

represents the distance from the observed data point to the point on the straight line which shares 

the same 𝑑𝑖. 

The difference between 𝑦𝑖 of the aforementioned data points and 𝑦 of the point on the straight 

line with the same 𝑑𝑖 is taken as residual. Such a definition leads to an expression similar to an 

error term, noted as: 

 

 𝑅𝑖 = 𝑦𝑖 − 𝑓(𝑑𝑖 , 𝛽̃) ,        ∀𝑖 = 1,2,… , 𝑙, (44) 
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where 𝑅𝑖 is the residual and 𝛽̃ refers to a column vector whose elements are 𝛽0 and 𝛽1. Here the 

term “least squares” indicates that the goal of the LSE approach is to identify the optimal 𝛽̃ that 

leads to the least squares of the residual. Hence, a more general equation can be written as follows: 

 

 𝑦̃ = 𝐻̿𝑥̃ + 𝑛 ̃,  (45) 

 

where 𝑦̃, 𝑥̃ and 𝑛̃ are all column vectors, and 𝐻̿ is a matrix. Here since the 𝛽̃ is the vector of 

interest, it is equivalent to the 𝑥̃ in Equation (45); and the matrix of 𝐷̿, which contains all known 

𝑑𝑖, is equivalent to 𝐻̿ here. To rewrite Equation (43) in a consistent form of Equation (45): 

 

 𝑦̃ = (

1      𝑑1
1      𝑑2
⋮         ⋮
1      𝑑𝑙

) 𝛽̃ + 𝑛̃ = 𝐷̿𝛽̃ + 𝑛 ̃. (46) 

 

Returning to the term “least squares”, based on Equation (45), the 𝑥̃, which minimises the 

residual squares, can be defined as follows: 

 

 𝑥̂ = 𝑎𝑟𝑔𝑚𝑖𝑛‖𝑦̃ − 𝐻̿𝑥̃‖
2
,  (47) 

 

where 𝑥̂ refers to the least square estimate given by the argument that minimises the residual 

function. In order to solve Equation (47), a partial derivative of the function with respect to 𝑥̃ can 

be rewritten, as shown in Equation (48), and the partial derivative has to be equal to 0 in order to 

locate the minimum. 

 

 
𝜕

𝜕𝑥̃
(𝑦̃ − 𝐻̿𝑥̃)

𝑇
(𝑦̃ − 𝐻̿𝑥̃) = 0̃𝑇 , (48) 

 

where 𝑇 refers to the transpose of the vector and matrix. As mentioned earlier, 𝑥̃ and 𝑦̃ are column 

vectors, so (𝑦̃ − 𝐻̿𝑥̃)  is still a column vector, with its transpose being a row vector. Thus, 

(𝑦̃ − 𝐻̿𝑥̃)
𝑇
(𝑦̃ − 𝐻̿𝑥̃) is now a scalar, and the derivative of a scalar with respect to a column vector 

should be a row vector, which is represented as 0̃𝑇. Now the partial derivative can be expanded 

and solved as follows: 
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𝜕

𝜕𝑥̃
(𝑦̃𝑇𝑦̃  −  𝑥̃𝑇𝐻̿𝑇𝑦̃  −  𝑦̃𝑇𝐻̿𝑥̃  +  𝑥̃𝑇𝐻̿𝑇𝐻̿𝑥̃)

=
𝜕

𝜕𝑥̃
(− 2𝑦̃𝑇𝐻̿𝑇𝑥̃  +   𝑥̃𝑇𝐻̿𝑇𝐻̿𝑥̃)

= − 2𝑦̃𝑇𝐻̿ + 2 𝑥̃𝑇𝐻̿𝑇𝐻̿ ,

 (49) 

 

where 𝑦̃𝑇𝑦̃ is not dependent on 𝑥̃, so the partial derivative of this term is 0 and omitted. The term 

𝑥̃𝑇𝐻̿𝑇𝑦̃ is scalar, which is equal to its transpose, 𝑦̃𝑇𝐻̿𝑥̃. The calculation of the partial derivative 

𝜕

𝜕𝑥̃
( 𝑥̃𝑇𝐻̿𝑇𝐻̿𝑥̃) = 2𝑥̃𝑇𝐻̿𝑇𝐻̿ is further explained below. 

Suppose the row vector 𝑥̃𝑇 and the column vector 𝑥̃ are (𝑥1 𝑥2) and (
𝑥1
𝑥2
), respectively, and a 

new matrix is adopted here, which satisfies: 𝐴̿ = 𝐻̿𝑇𝐻̿ = (
𝑎11  𝑎12
𝑎21  𝑎22

). Hence, 𝑥̃𝑇𝐻̿𝑇𝐻̿𝑥̃ can be 

further expanded as: 

 

 

𝛼 = 𝑥̃𝑇𝐻̿𝑇𝐻̿𝑥̃  =  𝑥̃𝑇𝐴̿𝑥̃ = (𝑥1 𝑥2) (
𝑎11  𝑎12
𝑎21  𝑎22

) (
𝑥1
𝑥2
)

= (𝑥1𝑎11 + 𝑥2𝑎21    𝑥1𝑎12 + 𝑥2𝑎22) (
𝑥1
𝑥2
)

= 𝑥1
2𝑎11 + 𝑥1𝑥2𝑎21 + 𝑥1𝑥2𝑎12 + 𝑥2

2𝑎22 ,

 (50) 

 

 
𝜕𝛼

𝜕𝑥1
= 2𝑥1𝑎11 + 𝑥2𝑎21 + 𝑥2𝑎12 , (51) 

 

 
𝜕𝛼

𝜕𝑥2
= 𝑥1𝑎21 + 𝑥1𝑎12 + 2𝑥2𝑎22 . (52) 

 

Both derivatives of 𝛼 with respect to 𝑥1 and 𝑥2 are calculated in Equation (51) and (52), and 

it is noticed that due to its definition and nature, 𝐴̿ is a symmetric matrix in this case. As such, 

𝑎21 is identical to 𝑎12, and both derivatives can now be rewritten as: 

 

 
𝜕𝛼

𝜕𝑥1
= 2𝑥1𝑎11 + 2𝑥2𝑎21 ,  (53) 
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𝜕𝛼

𝜕𝑥2
= 2𝑥1𝑎21 + 2𝑥2𝑎22 .  (54) 

 

At this stage, it is easy to find that both Equation (53) and (54) together formulate the two 

times of the expansion of (𝑥1 𝑥2) (
𝑎11  𝑎12
𝑎21  𝑎22

) in Equation (50). Summarising, the partial derivative 

of 𝛼 with respect to 𝑥̃ can be represented as: 

 

 
𝜕𝛼

𝜕𝑥̃ 
= 2 𝑥̃𝑇𝐴̿ = 2 𝑥̃𝑇𝐻̿𝑇𝐻 ,  (55) 

 

Thus, the calculation of the partial derivative 
𝜕

𝜕𝑥̃
( 𝑥̃𝑇𝐻̿𝑇𝐻𝑥̃) = 2𝑥̃𝑇𝐻̿𝑇𝐻̿ ends here. Returning 

to the end of Equation (49), the partial derivative is equal to zero row vector so that the 𝑥̂ leading 

to the least squares can be further calculated as: 

 

 
𝜕

𝜕𝑥̃
= − 2𝑦̃𝑇𝐻̿ + 2 𝑥̃𝑇𝐻̿𝑇𝐻̿ ,  (56) 

 

 − 2𝑦̃𝑇𝐻̿ + 2𝑥̂𝑇𝐻̿𝑇𝐻̿ = 0̃𝑇 ,  (57) 

 

 𝑥̂ = (𝐻̿𝑇𝐻̿)
−1
𝐻̿𝑇𝑦 ̃.  (58) 

 

Therefore, the least square estimate of the proposed synthetic function in Equation (43) can 

be acquired, and it is necessary to point out that the final matrix shown in Equation (58) is also 

known as pseudo inverse. Note here that it needs pointing out that a particular hypothesis for 

Equation (58) is that 𝐻̿𝑇𝐻̿ is non-singular, i.e., 𝐻̿𝑇𝐻̿ is an invertible matrix. After the introduction 

of the LSE approach, the topic of the next section will return to applying the LSE approach to 

identify the parameters in ANFIS. 

 

4.3.2 Calculation of consequent parameters in ANFIS 

Now that the computation process of the LSE approach has been illustrated in section 4.3.1, 

consequent parameters can be calculated using the above equations. Note that with Equation (58) 

applied to the ANFIS, a more general calculation of consequent parameters can be given as: 
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 𝑉𝑋 = 𝑌 ,  (59) 

 

where 𝑉 is a matrix, each row vector of which represents a pattern of the training data set. 𝑋 is 

the vector of all consequent parameters, and 𝑌 is the vector of targeted output values from the 

training data.112 For an easier understanding, 𝑥̂ from Equation (58) is equivalent to 𝑋 in Equation 

(59), 𝐻̿ is 𝑉, and 𝑦̃ is 𝑌. Thus, Equation (59) can be further written as: 

 

 𝑋 = (𝑉𝑇𝑉)−1𝑉𝑇𝑌 .  (60) 

 

At this stage, Equation (60) is sufficient for the calculation of consequent parameters. 

However, considering the expensiveness in computation with the matrix inverse, a sequential 

formula of LSE is suggested here for the better efficiency of the system. Suppose the 𝑖th row 

vector of matrix 𝑉 is noted as 𝑣𝑖 and the 𝑖th element of vector 𝑌 is 𝑦𝑖; then 𝑋 can be calculated 

iteratively using the following formulas:113 

 

 

𝑋𝑖+1 = 𝑋𝑖 + 𝑆𝑖+1𝑣𝑖+1(𝑦𝑖+1
𝑇 − 𝑣𝑖+1

𝑇 𝑋𝑖)

𝑆𝑖+1 = 𝑆𝑖 −
𝑆𝑖𝑣𝑖+1𝑣𝑖+1

𝑇 𝑆𝑖
1 + 𝑣𝑖+1

𝑇 𝑆𝑖𝑣𝑖+1
,        𝑖 = 0,1, … , 𝑛 − 1  

}
 
 

 
 

 ,  (61) 

 

where 𝑆𝑖  normally refers to the covariance matrix, and the final LSE result of consequent 

parameters is 𝑋𝑛. The initial condition of Equation (61), as introduced previously, is as follows: 

 

 𝑋0 = 0 𝑎𝑛𝑑 𝑆0 =  𝛾𝐼 ,  (62) 

 

where 𝛾 is a positive big number, and 𝐼 is the identity matrix of 𝑀 ×𝑀 (𝑀 is the number of linear 

parameters in 𝑓, see Figure 4.1). 

 

4.3.3 General parameters identification process 

For a more transparent illustration, the process of a hybrid learning will be explained in this 

section: at the beginning, with inputs of training data (18 combinations of 𝜃𝑝, infill density and 

notch root radius) being fed into the ANFIS, the value range of each input parameter is identified 
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(for example in our case, [0,45] for 𝜃𝑝, [30,70] for infill density and [0.5,3] for notch root radius). 

Users then need to specify the number and type of MFs (number of triangles in case of triangular 

MF) for each input parameter. Next, the initial premise parameters, i.e., both feet and peak of the 

triangle MF – 𝑎, 𝑏 & 𝑐 in Equation (31), are determined based on the user-defined information. In 

this process, for the consistency, the initial premise MF parameters used here are identical to the 

ones used in Chapter 2 with fuzzy inference system (FIS) (see details in section 2.3.4). 

With initial premise parameters being determined, the inputs of the training data are fed into 

the system, fuzzified and transmitted from one node to the other until the consequent parameters 

in the defuzzification layer. As stated in Equation (62), the initial consequent parameters are all 

equal to 0 (𝑝𝑖 = 𝑞𝑖 = 𝑟𝑖 = 0 ), although it is inaccurate due to both initialised premise and 

consequent parameters. 

At this stage, a simple example will be presented to show how the consequent parameters are 

calculated. Suppose there is only one training data entry, also the single fuzzy rule: 𝐼𝐹 𝜃𝑝 = 0
° & 

infill density = 30% 𝑇𝐻𝐸𝑁 𝜎𝑓 = 9.7MPa (notch root radius will not be included in the simplified 

example). Vectors 𝑋 and 𝑉 in Equation (59) can now be represented as:114 

 

𝑉 = ( 𝜔1𝑥   𝜔1𝑦   𝜔1   …   𝜔4   𝜔4𝑥   𝜔4𝑦 ) 

 

𝑋 = ( 𝑝1   𝑞1   𝑟1   …   𝑝4   𝑞4   𝑟4 ) 

 

To just look at  𝜔1  and (𝑝1   𝑞1   𝑟1) first, 𝑉 = ( 𝜔1𝑥   𝜔1𝑦   𝜔1 ) and 𝑋 = ( 𝑝1   𝑞1   𝑟1 ) are 

brought back to Equation (61) (in this case, 𝑥 = 0 and 𝑦 = 30). Note that now with the input of 

0° and 30%, the existing rule is the only fuzzy rule activated; thus,  𝜔1 is equal to one (both 

antecedents are 100% activated – 0°  and 30%). Therefore, Equation (61) can now be further 

represented as: 
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𝑆1 = 𝑆0 −
𝑆0𝑣1𝑣1

𝑇𝑆0
1 + 𝑣1

𝑇𝑆0𝑣1

= 𝑆0 −

𝑆0[0 30 1] [
0
30
1
] 𝑆0

1 + [
0
30
1
] 𝑆0[0 30 1]

= 𝑆0 −
901

1 + 901
≈ 1 − 0.99889

= 0.00111 

(63) 

 

 

𝑋1 = 𝑋0 + 𝑆1𝑣1(𝑦1
𝑇 − 𝑣1

𝑇𝑋0)

= 0 + 0.00111 × [0 30 1] × (9.7 − 0)

= 0.00111 × [0 30 1] × 9.7

= [0 0.32301 0.010767] 

(64) 

 

Thus, the first group of consequent parameters can be calculated as 𝑝1 = 0, 𝑞1 = 0.32301 & 

𝑟1 = 0.010767 . The same calculation will be conducted for the rest of rules if applicable. 

Following the consequent parameters, there is no more unknown parameters in the forward pass 

of the adaptive network and the estimated result can be calculated with all input data being fed 

into the network. 

At this stage, the first half of the hybrid learning has been finished; then, the error between the 

estimated results and the outputs of training data is calculated, noted as 𝐸𝑝 (introduced in section 

4.2). Similarly, the rest of the training data are fed into the system, with the same initial premise 

and consequent parameters, to calculate each estimation error. Eventually, the general estimation 

error 𝐸 can be calculated using Equation (40) and (41). Accordingly, with the help of the gradient 

descent algorithm, a new pair of premise parameters can be calculated with Equation (42). The 

calculation of gradient descent has been introduced in Chapter 3 and the only difference is that in 

Chapter 3, it was the weight value to be updated whereas it is MF parameters (𝑎, 𝑏 & 𝑐) here to 

be updated in ANFIS. So far, the first epoch of the hybrid learning has finished. 

Based on the updated premise parameters from the first epoch, the inputs are again fed into 

the system, fuzzified with the updated MFs. With all parameters updated and calculations repeated, 

a new pair of consequent parameters are calculated using Equation (61), leading to a new 

estimation result. Correspondingly, a new error is then calculated for the next gradient descent 

operation. 
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Summarising, as shown in Table 4.1, in the forward pass, input data are fed forward to 

calculate each node output until consequent parameters are identified, and eventually, an error 

function is calculated. In the backward pass, the error function propagates from the output of the 

system to the input, and the updated premise parameters are acquired using the gradient descent 

approach. 

 

Table 4.1 Various passes in the hybrid learning strategy for ANFIS 

 Forward Pass Backward Pass 

Premise parameters Fixed Gradient descent (GD) 

Consequent parameters 
Least Squares Estimate 

(LSE) 
Fixed 

Signals Node outputs Error function 

 

4.4 Adaptive neural fuzzy inference system for 3D-printed notched 

specimens (Direct estimation) 

Starting from this section, the discussion will return to the application of the ANFIS model to 

formulate the relationship between various parameters of fused deposition modelling (FDM). The 

estimation performance of the adopted ANFIS approach will be evaluated with respect to the 

experimental results. The data used in this chapter with ANFIS is identical to the ones used in the 

NN and FIS chapters. For readers’ convenience, the complete data sets will be presented again in 

later sections. 

With the provided manufacturing angle (𝜃𝑝), infill density and notch root radius, ANFIS is 

applied directly to estimate the failure tensile strength (𝜎𝑓) of FDM parts. As shown in Table 4.2, 

shaded data sets are classified as validation data since testing the ANFIS model with unseen data 

(all specimens with a radius equal to 1mm) is still one of the research objectives for this chapter. 

Correspondingly, the rest of the data in the table are taken as training data. 

It can be seen from Table 4.2 that there are three levels of inputs for 𝜃𝑝 (0°, 30° & 45°) and infill 

(30%, 50% & 70%), whereas there are two levels of radius (0.5mm & 3mm). Hence, at the 

beginning of setting up the MFs for ANFIS, the number of MFs for all three input parameters is 
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3 for 𝜃𝑝, 3 for infill and 2 for radius. The type of MF for all input parameters, similar to previous 

chapters, is determined to be triangle MF. The output MF is selected as constant since all data are 

deterministic in the present investigation. 

The training method is determined to be hybrid learning instead of pure backpropagation, as 

it is more computation-efficient (illustrated in section 4.3). The training epochs are initially set to 

100, and it is reported that the training error converges at approximately 40 epochs. 

 

Table 4.2 Summary of experimental data for testing U-notched specimens (direct estimation). 

 Input Output 

Specimen 𝜃𝑝 (°) Infill (%) Radius (mm) 𝜎𝑓 (MPa) 

1 0 30 0.5 9.7 

2 0 30 1 9.5 

3 0 30 3 10.9 

4 0 50 0.5 13.1 

5 0 50 1 13.8 

6 0 50 3 14.4 

7 0 70 0.5 17.4 

8 0 70 1 16.9 

9 0 70 3 18.6 

10 30 30 0.5 8.2 

11 30 30 1 8.5 

12 30 30 3 10 

13 30 50 0.5 11.5 

14 30 50 1 12 

15 30 50 3 12.5 

16 30 70 0.5 12.2 

17 30 70 1 11.9 

18 30 70 3 13.9 

19 45 30 0.5 8 

20 45 30 1 8.1 

21 45 30 3 9.8 

22 45 50 0.5 11 

23 45 50 1 11.9 

24 45 50 3 13.5 

25 45 70 0.5 15.1 

26 45 70 1 15.2 

27 45 70 3 16.4 
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Table 4.3 Estimation and experimental results, together with the estimation error in the form of relative percentage error 

for using ANFIS to estimate the failure tensile strength of 3D-printed parts. 

Specimens 
(R=1mm) 

 Estimated  
𝝈𝒇 (MPa) 

Experimental  
𝝈𝒇 (MPa) 

Relative 
Percentage Error 

(%) 

2 9.93 9.5 4.53 

5 13.4 13.8 2.9 

8 17.6 16.9 4.14 

11 8.55 8.5 0.59 

14 11.7 12 2.5 

17 12.5 11.9 5.04 

20 8.36 8.1 3.21 

23 11.5 11.9 3.36 

26 15.4 15.2 1.32 

  
Average Error 3.06 

 

With the premise MF parameters and consequence parameters being identified, the inputs of 

the validation data are then fed into the system for the estimation results. The results are shown 

in Table 4.3, which compares the estimated and the actual targeted results. The estimation 

accuracy is evaluated in the form of the relative percentage error. The average error for direct 

estimation using ANFIS is calculated as 3.06%, and the maximum estimation error is less than 

5%, which both prove that the ANFIS has great estimation accuracy and stability for direct 

estimation. 

As for the efficiency of the ANFIS model, with the hybrid learning approach, the convergency 

happens approximately at 40 epochs with an error value of 1.324 × 10−5. However, a simple 

comparative test is conducted with a pure backpropagation training approach and the result reports 

that the least error term is approximately equal to 2.58 × 10−3 at 100 epochs where the error 

function is not convergent yet. Therefore, it has been proven that the hybrid learning approach 

improves computational efficiency, as promised. 
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4.5 Inverse estimation with ANFIS 

As previously introduced, both FIS and NN can be used to solve the problem of identifying 

the optimal manufacturing parameters with specific requirements of mechanical property and 

geometrical design. Owing to the success of ANFIS in direct estimation, it is another objective to 

evaluate the performance of applying ANFIS on inverse estimation. Similar to the previous 

inverse problem setup, both notch root radius and failure tensile strength are taken as new inputs, 

and the manufacturing angle and infill density are marked as outputs. Experimental data are 

rearranged as shown in Table 4.4 (similar approach as in previous chapters), particularly for the 

inverse estimation. The shaded data sets belong to the validation group, with the rest of the data 

sets being the training group. 

During the setup of the ANFIS model for the inverse estimation, both radius and 𝜎𝑓 become 

new inputs, so the number of MFs for initial MFs is 2 for radius (0.5mm & 3mm) and 18 for 𝜎𝑓 

(18 different values/levels of 𝜎𝑓). Note here that there are 18 deterministic training data sets, so 

18 fuzzy rules have been established for the adaptive system. The training approach remains the 

same, which is the aforementioned hybrid learning process for consistency with direct estimation. 

The training epoch is initially set equal to 100 epochs. 

It needs to be pointed out that the ANFIS-estimated manufacturing angles are adjusted based 

on a “proximity” principle to the nearest 15°  increment, similar to adjustments in previous 

chapters. The adjustment of the infill density follows the same principle, whereas the increment 

is 10%. The estimation accuracy of the ANFIS model is evaluated in the form of absolute 

estimation errors to avoid numerical issues related to 0° manufacturing angle. 
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Table 4.4 Summary of experimental data for testing U-notched specimens (inverse estimation) 

 Input Output 

Specimen Radius (mm) 𝜎𝑓 (MPa) 𝜃𝑝 (°) Infill density(%) 

1 0.5 9.7 0 30 

2 1 9.5 0 30 

3 3 10.9 0 30 

4 0.5 13.1 0 50 

5 1 13.8 0 50 

6 3 14.4 0 50 

7 0.5 17.4 0 70 

8 1 16.9 0 70 

9 3 18.6 0 70 

10 0.5 8.2 30 30 

11 1 8.5 30 30 

12 3 10 30 30 

13 0.5 11.5 30 50 

14 1 12 30 50 

15 3 12.5 30 50 

16 0.5 12.2 30 70 

17 1 11.9 30 70 

18 3 13.9 30 70 

19 0.5 8 45 30 

20 1 8.1 45 30 

21 3 9.8 45 30 

22 0.5 11 45 50 

23 1 11.9 45 50 

24 3 13.5 45 50 

25 0.5 15.1 45 70 

26 1 15.2 45 70 

27 3 16.4 45 70 
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Table 4.5 Summary of the adjusted inverse estimation results from ANFIS. 

 Estimation Output Adjusted Estimation 
Experiment 

Output 
Absolute Error 

Spec 
(R=1m

m) 

𝜽𝒑 (°) Infill (%) 𝜽𝒑 (°) Infill (%) 𝜽𝒑 (°) 
Infill 
(%) 

Error 𝜽𝒑 

(°) 

Error 
infill (%) 

2 4.03 29.6 0 30 0 30 0 0 

5 7.59 54.4 15 50 0 50 15 0 

8 6 63.2 0 60 0 70 0 10 

11 14.4 25.9 15 30 30 30 15 0 

14 23.3 58 30 60 30 50 0 10 

17 22.6 55.1 30 60 30 70 0 10 

20 31.7 24.5 30 20 45 30 15 10 

23 22.6 55.1 30 60 45 50 15 10 

26 33.7 66 30 70 45 70 15 0 

     Average Error 8.3 5.6 

 

Table 4.5 presents the estimated and adjusted results for the inverse estimation using the 

ANFIS model. It can be seen from the table that the absolute estimation error for 𝜃𝑝 and infill 

density are 8.3° and 5.6%, respectively. It is noted that both absolute error values are 

approximately equal to half of the value of increments (7.5° for 𝜃𝑝 and 5% for infill). Hence, both 

inverse estimation errors have shown that the ANFIS model has a good estimation performance 

for the inverse estimation. It is also seen that there is no sudden error spike for ANFIS, which 

once again proves the stability and robustness of the approach. 

As for the efficiency of using the ANFIS model in the inverse estimation, it is reported that 

the error function of the manufacturing angle converges at approximately 55 epochs and 65 epochs 

for the error function of infill density. The convergency in the inverse estimation needs more 

epochs compared with that in the direct estimation, which was approximately 40 epochs. Hence, 

the efficiency of using the ANFIS model for the inverse estimation is seen to be good but not as 

good as that for the direct estimation. 

At this stage, ANFIS has shown good performance in both direct and inverse estimations, and 

both the estimation accuracy and efficiency are satisfying. For the consistency and comparison 

with the previous FIS and NN study, a numerical validation test is still needed to identify whether 
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the inversely estimated results could eventually lead to an appropriate outcome, which is desired 

mechanical property in this case. 

  

4.6 Numerical validation 

As seen in Table 4.5, the absolute estimation error for both manufacturing angle and infill 

density is 8.3° and 5.6%, respectively. For the numerical validation test process shown in Figure 

4.2 (similar to previous chapters), ANFIS is used first to estimate the optimal manufacturing 

parameters with the given requirement of mechanical property and geometrical design (denoted 

as 𝐹1). With the adjusted results, ANFIS is then used for the direct estimation from inversely 

estimated manufacturing angle, infill density, and notch root radius to the failure tensile strength 

(denoted as 𝐹2). 

 

 

Figure 4.2 Explanation of inverse and direct estimation using ANFIS where F1 refers to the inverse estimation and F2 is 

the direct validation estimation. 

 

As listed in Table 4.6, the “manufacturing parameters” column contains the estimated and 

adjusted results from the inverse estimation 𝐹1. These inversely estimated parameters are then 

taken as new inputs in the direct estimation F2. With the training data remaining the same, the 

difference between the direct estimation in the numerical validation and the previously introduced 

vanilla direct problem is that the inputs of the testing data are inversely estimated manufacturing 

parameters for the former. 

The final average absolute estimation error for the numerical validation is calculated as 

0.85MPa, which is relatively small compared with the actual failure tensile strength. Since this 

error value already includes the calculation error generated previously in both inverse and direct 



108                               CHAPTER 4  ADAPTIVE NEURAL FUZZY INFERENCE SYSTEM 

 

estimations, such validation result has proven that the inverse estimation with the ANFIS model 

can provide effective manufacturing parameters to be used by the software and the 3D printer. 

 

Table 4.6 Estimated manufacturing angle and infill density are brought back into the ANFIS direct estimation to estimate 

the failure tensile strength, which is to be compared with the experimental failure strength for R=1 specimens. 

 Manufacturing 
parameters (adjusted) 

Strength Absolute error 

Specimens 
(R=1mm) 

θp(°) Infill(%) 
Estimation 
𝝈𝒇(MPa) 

Experimental 
𝝈𝒇(MPa) 

𝝈𝒇 (MPa) 

2 0 30 9.92 9.5 0.42 

5 15 50 12.2 13.8 1.6 

8 0 60 15.5 16.9 1.4 

11 15 30 9.06 8.5 0.56 

14 30 60 12.1 12 0.1 

17 30 60 12.1 11.9 0.2 

20 30 20 8.53 8.1 0.43 

23 30 60 12.1 11.9 0.2 

26 30 70 12.5 15.2 2.7 

   Average Error 0.85 

 

4.7 Study of cost-control relevant parameters with adaptive neural 

fuzzy inference system 

After analysing the full capability of ANFIS, this section will evaluate the performance of 

ANFIS dealing with cost-control parameters, i.e., printing period and material consumption as 

additional industrial requirements. Since both parameters are industrial-concerned, they are 

considered industrial requirements, together with the mechanical property. The data of the printing 

period and the material consumption are once again extracted from the CURA software115 with 

different design models loaded. For the completeness and consistency of the investigation of the 

cost-control parameters, the training and testing specimens remain in the same classification in 

both direct and inverse estimation. 
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Table 4.7 Inverse ANFIS estimation of manufacturing parameters with printing period and material weight included. 

 Input 
Experiment 

output 

Estimated 
adjusted 
output 

Absolute error 
without time 
and weight 
(from Table 

4.5) 

Absolute error 
including time 

and weight 

No. 
Radius 
(mm) 

𝝈𝒇 

(Mpa) 

Time 
(mins) 

Weight 
(g) 

𝜽𝒑 

(°) 

Infill 
(%) 

𝜽𝒑 

(°) 

Infill 
(%) 

ABS 
error 
𝜽𝒑 

ABS 
error 
infill 

ABS 
error 
𝜽𝒑 

ABS 
error 
infill 

1 0.5 9.7 93 8 0 30       

2 1 9.5 94 8 0 30 0 30 0 0 0 0 

3 3 10.9 97 8 0 30       

4 0.5 13.1 101 9 0 50       

5 1 13.8 102 9 0 50 15 50 15 0 15 0 

6 3 14.4 105 9 0 50       

7 0.5 17.4 109 10 0 70       

8 1 16.9 110 10 0 70 15 70 0 10 15 0 

9 3 18.6 113 10 0 70       

10 0.5 8.2 93 8 30 30       

11 1 8.5 94 8 30 30 30 30 15 0 0 0 

12 3 10 96 8 30 30       

13 0.5 11.5 101 9 30 50       

14 1 12 102 9 30 50 30 50 0 10 0 0 

15 3 12.5 105 9 30 50       

16 0.5 12.2 109 10 30 70       

17 1 11.9 110 10 30 70 15 70 0 10 15 0 

18 3 13.9 113 10 30 70       

19 0.5 8 92 8 45 30       

20 1 8.1 93 8 45 30 30 30 15 10 15 0 

21 3 9.8 96 8 45 30       

22 0.5 11 100 9 45 50       

23 1 11.9 101 9 45 50 30 50 15 10 15 0 

24 3 13.5 104 9 45 50       

25 0.5 15.1 108 10 45 70       

26 1 15.2 109 10 45 70 45 70 15 0 0 0 

27 3 16.4 112 10 45 70       

 Average error 8.3 5.6 8.3 0 
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Table 4.7 reports that with printing period and material consumption as new inputs to the 

inverse ANFIS, the new estimation error for the manufacturing angle and infill density are 8.3° 

and 0%, respectively. It is seen that including both cost-relevant parameters does not influence 

the estimation accuracy of the manufacturing angle but has a significantly positive influence on 

the infill density (from 5.6% average error to 0%). 

As for the efficiency of using ANFIS with two extra cost-relevant parameters, it is reported 

that the final error of the manufacturing angle (10−2) is much higher than that of infill density 

(10−4). Moreover, even if it takes only approximately 65 epochs for the error function to converge 

with infill density, it takes more time for the computation in each epoch due to the additional input 

parameters (more parameter calculations). Hence, the calculation for the extra-parameter study is 

even more time-consuming than using the NN in the previous chapter. More specifically, the 

overall time it takes for the error function to converge for infill density in the extra-parameter 

study is approximately twice the time it takes for the original inverse estimation with only two 

input parameters. This is due to the additional input parameters, together with their MFs, could 

lead to a dramatic increase in computations, which makes the whole computation process much 

slower than the previous inverse estimation with only two inputs (𝜃𝑝 and infill density). 

Summarising, including the cost-relevant parameters improves the infill density estimation 

accuracy of ANFIS, but the manufacturing angle has little impact from including the printing 

period and the material consumption. Moreover, with the increasing number of inputs for the 

ANFIS, it could lead to expensive computations since, correspondingly, the number of premise 

parameters will increase dramatically. 

 

4.8 Conclusion 

In the present investigation, the main aspects of ANFIS and the steps of setting up an adaptive 

system have been discussed and analysed, with particular attention paid to the iterative calculation 

in the system. Here ANFIS has shown its capability of both direct and inverse estimations, where 

the direct estimation using ANFIS has a better estimation accuracy than the inverse. The 

adjustment of the ANFIS inverse estimation results, i.e., manufacturing parameters, has proven 

effective for achieving the desired mechanical property. 

Due to the fact that ANFIS is a combination approach of both FIS and NN, ANFIS is seen to 

deal with not only mechanical parameters but also geometrical and cost-control relevant ones, 

with a recursive computation process assuring the general estimation accuracy. Hence, it can be 

concluded that ANFIS is a comprehensive data-driven methodology that can be widely applied in 
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engineering fields, particularly for problems such as manufacturing parameters optimisation, 

mechanical property prediction, etc. 

Summarising, The ANFIS methodology has appeared to be a precise and robust prediction 

tool. Potentially, the ANFIS methodology could become an effective decision-making tool in 

design problems and a self-governing control system. Considering the computation process of the 

ANFIS, it is expected to be very successful when used together with big data but also requires 

computing power at the same time, considering the potential expensive computation of MF 

parameters. Accordingly, ANFIS could give a highly accurate estimation and appears to be the 

most accurate methodology compared with FIS and NN, which will be illustrated in detail in the 

next chapter. In addition to the modelling and prediction of the mechanical behaviour/strength of 

engineering components and structures, ANFIS methodology could also play an essential role in 

various applications such as real-time control systems, artificial intelligence, automated driving, 

etc. 
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Chapter 5 

Chapter 5 Comparative Study of All Adopted Methodologies 

Comparative Study of All Adopted 

Methodologies 
 

 

 

After introducing the main aspects of FIS, NN and ANFIS methodologies, a comparative 

study is introduced in this chapter for all previous approaches with respect to their estimation 

efficiency, accuracy and other criteria. It is desired to achieve the conclusion of which 

methodology is optimal, but it is also expected that each of these methodologies might have its 

advantages and disadvantages in different cases. 

 

5.1 Design of Experiments 

Before comparing both the estimation accuracy and efficiency of FIS, NN and ANFIS, as 

discussed in Chapter 1, it is the author’s attempt to present a comparative study of another 

statistical approach as a contrast method here, which is known as the design of experiments (DOE). 

 

5.1.1 Direct estimation with design of experiments 

The basis of DOE has been introduced in section 1.2.4 and the DOE approach will be used in 

this section for direct estimation. For consistency, the training and validation data classification 

here is identical to the previous pattern for the other methodologies. According to the MS Excel 

built-in data analysis tool, the coefficients for the direct estimation are calculated as shown in 

Table 5.1. 
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Table 5.1 The MS Excel analysed ANOVA results which include both the coefficients and the corresponding P-values for 

the direct estimation. 

 Coefficients P-value 

Intercept, b 4.915952 0.000268 

𝜃𝑝 -0.04524 0.007479 

Infill 0.154167 2.31 × 10−7 

Radius 0.613333 0.013386 

 

Therefore, the statistical model of the direct estimation can be expressed as follows: 

 

 𝜎𝑓 = 4.915952 − 0.04524𝜃𝑝 + 0.154167𝐼𝑛𝑓𝑖𝑙𝑙 + 0.613333𝑅𝑎𝑑𝑖𝑢𝑠 ,  (65) 

 

Note here that together with the coefficients, P-value is also included in Table 5.1, and it 

normally indicates how incompatible the data are with a null hypothesis.116 Here, the null 

hypothesis suggests that no statistical relationship exists between the observed variables (inputs) 

and the observed phenomena (outputs). The null hypothesis presumes to be valid until existing 

evidence indicates otherwise.117 Hence, in other words, the smaller P-value means there is a 

greater statistical incompatibility of the data with the null hypothesis.118 

It can be found in Table 5.1 that all P-values are smaller than 0.05, which is typically 

considered a threshold of the P-value with respect to statistical incompatibility. So all input 

variables are significant to some extent, whereas the infill density appears to have the largest 

incompatibility among all variables, including the intercept, b. Therefore, it is consistent with the 

previous conclusion that the infill density is the most dominant variable with respect to the failure 

tensile strength in the present investigation. According to the DOE model, the intercept is the 

second significant variable, while the manufacturing angle and the notch root radius are dividedly 

third and least important variables. 
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Table 5.2 Estimation results vs experimental results, together with the relative percentage error of the estimation. 

Spec 
Estimated 

outputs 
Experimental 

outputs 
Error (%) 

2 10.2 9.5 6.51 

5 13.2 13.8 3.75 

8 16.3 16.9 3.48 

11 8.8 8.5 4.07 

14 11.9 12 0.85 

17 15 11.9 25.64 

20 8.1 8.1 0.15 

23 11.2 11.9 5.9 

26 14.3 15.2 5.83 

  Average 6.2 

 

Returning to Equation (66), after the determination of relevant coefficients, the inputs of the 

validation data are fed into the equation, and the corresponding 𝜎𝑓 are calculated. These estimated 

results, together with estimation errors (relative percentage error), are shown in Table 5.2. It is 

reported that the average estimation error for using DOE is 6.2% in the direct estimation. It is 

interesting to point out that the estimation error of specimen 17 is significantly larger than others, 

which could be because of the identical experimental results (11.9MPa) in specimen 23. 

 

5.1.2 Inverse estimation with design of experiments 

Following the direct estimation results of using DOE, the inverse estimation results will be 

presented in this section. With the same classification of the training and validation data group, 

the inverse estimation using DOE has a similar parameter setup to the previous inverse estimations: 

both manufacturing angle and infill density are to be estimated as unknown manufacturing 

parameters while notch root radius and failure tensile strength are taken as input parameters. Since 

the statistical model introduced in the last section is for a single output variable, there will be two 

models to be identified for both manufacturing parameters in this section. 

As shown in Table 5.3, the coefficients of manufacturing angle and infill density are calculated, 

and the corresponding statistical models can be expressed as follows: 
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 𝜃𝑝 = 47.51581 + 1.20154𝑅𝑎𝑑𝑖𝑢𝑠 − 1.95903𝜎𝑓 , (66) 

 

 𝐼𝑛𝑓𝑖𝑙𝑙 = −8.4621 − 3.11979𝑅𝑎𝑑𝑖𝑢𝑠 + 5.08661𝜎𝑓 , (67) 

 

where Equation (67) and (66) are for modelling the manufacturing angle and the infill density, 

respectively. 

It is seen from Table 5.3 that, on the one hand, for the manufacturing angle, P-values for the 

radius and the strength are much larger than 0.05, which means the manufacturing angle could be 

less significant to the notch root radius and the failure tensile strength. On the other hand, for the 

infill density, P-values for the radius and the strength are both less than those of the manufacturing 

angle. Meanwhile, the P-value for the failure strength is much smaller than that of the radius. 

Therefore, such contrast indicates that the infill density is more dominant in determining the 

geometrical and strength parameters. Furthermore, the infill density appears to be more directly 

relevant to the failure tensile strength compared with the notch root radius. 

 

Table 5.3 The MS Excel analysed ANOVA results which include both the coefficients and the corresponding P-values for 

the inverse estimation. 

 𝜽𝒑 Infill 

 Coefficients P-value Coefficients P-value 

Intercept, b 47.51581 0.033188 -8.4621 0.341068 

radius 1.20154 0.757503 -3.11979 0.073775 

𝜎𝑓  -1.95903 0.24585 5.08661 2.28E-06 

  

Table 5.4 reports the estimation results of using DOE, together with the adjusted results 

according to the CURA software specifications. Due to the presence of “0” manufacturing angle, 

the absolute error is used here to evaluate the inverse estimation accuracy of using DOE. It is 

reported that the average absolute error for the manufacturing angle and the infill density is 13.3° 

and 4.4%, respectively. 
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Table 5.4 Summary of the adjusted inverse estimation results of using DOE. 

 Estimation Output 
Adjusted 

Estimation 
Experiment Output Absolute Error 

Specimen 
(R=1mm) 

𝜽𝒑 (°) Infill (%) 𝜽𝒑 (°) Infill (%) 𝜽𝒑 (°) Infill (%) 
Error 𝜽𝒑 

(°) 

Error 
infill (%) 

2 30 36.9 30 40 0 30 30 10 

5 21.8 58.4 15 60 0 50 15 10 

8 15.6 74.4 15 70 0 70 15 0 

11 32.2 31.4 30 30 30 30 0 0 

14 25.2 49.4 30 50 30 50 0 0 

17 25.4 49 30 50 30 70 0 20 

20 32.8 29.7 30 30 45 30 15 0 

23 25.4 49 30 50 45 50 15 0 

26 19 65.6 15 70 45 70 30 0 

     Average Error 13.3 4.4 

 

Table 5.5 Estimated manufacturing angle and infill density are brought back into the DOE direct estimation to estimate the 

failure strength, which is compared with the experimental failure strength for R=1 specimens. 

 Manufacturing 
parameters (adjusted) 

Strength Absolute error 

Specimens 
(R=1mm) 

θp(°) Infill(%) 
Estimation 
𝝈𝒇(MPa) 

Experimental 
𝝈𝒇(MPa) 

𝝈𝒇 (MPa) 

2 30 40 10.3 9.5 1.4 

5 15 60 14.2 13.8 1.0 

8 15 70 15.9 16.9 0.4 

11 30 30 8.8 8.5 0.7 

14 30 50 11.9 12 0.7 

17 30 50 11.9 11.9 0.8 

20 30 30 8.8 8.1 1.1 

23 30 50 11.9 11.9 0.8 

26 15 70 15.9 15.2 1.3 

   Average Error 0.9 
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As explained in previous chapters, a numerical validation is applied here to demonstrate the 

accuracy of the inverse estimation and also for further comparison with the results from other 

methods. The estimated manufacturing angle and infill density from the inverse estimation are 

brought back to the direct estimation framework for the newly estimated failure strength. The final 

average absolute estimation error between the estimated and experimental results is 0.9MPa (see 

Table 5.5) and it will be further compared with the results of other methods regarding the 

estimation accuracy. 

 

5.1.3 Conclusion of using the design of experiments 

It is reported from the previous sections that with the DOE methodology, the average direct 

estimation accuracy is equal to 6.2% (failure tensile strength), and the average inverse estimation 

accuracies are 13.3° for the manufacturing angle and 4.4% for the infill density, respectively. The 

results indicate that the DOE has a good estimation accuracy in both direct and inverse estimations. 

They will also be compared with the results of using other three methodologies in following 

sections regarding the estimation performance. 

 

5.2 Comparison of all methodologies with respect to the estimation 

accuracy 

5.2.1 Accuracy of direct estimations 

As one of the main statistical characteristics, the estimation accuracy of the adopted 

methodologies is of great importance for the investigation. Table 5.6 reports the previously 

calculated relative percentage estimation error for direct problems. Each of the five columns 

represents the calculated error for the corresponding methodology, including FIS (Sugeno), NN 

(GD algorithm), NN (GDM algorithm) and ANFIS. 

Note that in the initial study of the direct estimation using FIS (section 2.6), the validation 

group includes 12 specimens (specimen 2, 4, 6, 8, 11, 13, 15, 17, 20, 22, 24 & 26). However, for 

investigating the performance of all methodologies to deal with the unseen value (radius equal to 

1mm), the validation group has then been updated to have nine specimens (specimen 2, 5, 8, 11, 

14, 17, 20, 23 & 26) in the inverse estimation. Hence, for the consistency of the validation 

specimens in various methodologies, the validation group in the direct estimation of using FIS 

has been amended to the latest nine specimens. 
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Table 5.6 Comparison of the direct estimation relative percentage error using all adopted methodologies. 

Spec 

FIS 
Sugeno 

Error 
(%) 

NN GD 
Error 
(%) 

NN 
GDM 
Error 
(%) 

ANFIS 
Error 
(%) 

DOE 
Error 
(%) 

FIS ABS 
Error 
(MPa) 

NN GD 
ABS 

Error 
(MPa) 

NN 
GDM 
ABS 

Error 
(MPa) 

ANFIS 
ABS 

Error 
(MPa) 

DOE 
ABS 

Error 
(MPa) 

2 4.63 1.02 2.37 4.53 6.51 0.44 0.1 0.23 0.43 0.62 

5 2.9 3.36 5.77 2.9 3.75 0.4 0.46 0.8 0.4 0.52 

8 4.14 4.63 2.66 4.14 3.48 0.7 0.78 0.45 0.7 0.59 

11 0.82 8.23 3.23 0.59 4.07 0.07 0.7 0.27 0.05 0.34 

14 4.17 6.96 2.77 2.5 0.85 0.5 0.84 0.33 0.3 0.1 

17 5.04 27.73 1.69 5.04 25.64 0.6 3.30 0.2 0.6 3.05 

20 3.33 5.22 4.85 3.21 0.15 0.27 0.42 0.39 0.26 0.01 

23 3.36 8.86 6.59 3.36 5.9 0.4 1.05 0.78 0.4 0.7 

26 0.66 0.29 2.82 1.32 5.83 0.1 0.04 0.43 0.2 0.88 

AVE 3.2 7.4 3.6 3.06 6.2 0.39 0.86 0.43 0.37 0.76 

 

Apart from the update in the validation group, the type of FIS is also updated in the 

comparative study. Considering the Sugeno fuzzy system adopted for the inverse estimation is 

more suitable with deterministic output values, the Sugeno FIS is applied in this chapter for both 

direct and inverse FIS estimation for consistency. As such, new estimation results (with new 

Sugeno FIS and updated validation group) are calculated, and their estimation errors are also 

presented in the “FIS Sugeno” column, Table 5.6. 

It is seen that the NN with GD method has the worst estimation error, equal to 7.4% but 

replacing the GD with GDM for the NN leads to a significant drop in error from 7.4% to 3.6%. 

Meanwhile, the estimation error is 6.1% for the DOE method, 3.2% for the Sugeno FIS method 

separately, following the least estimation error of the ANFIS, which is equal to 3.06%. It is also 

reported that apart from specimen 17 for NN with the GD algorithm and specimen 17 for DOE, 

the rest of the three methodologies have been shown to provide accurate results with stable error 

fluctuations. 

Hence, with the same training and testing setup, it can be concluded that the FIS, NN and 

ANFIS are all effective methodologies for the prediction of mechanical property with given 

manufacturing and geometrical parameters. The ANFIS has the best estimation accuracy for direct 

estimation, although the FIS and the NN with the GDM algorithm both lead to a similar level of 
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estimation error to that of ANFIS with little deduction in estimation accuracy. 

Note that Table 5.6 also includes the absolute error for the direct estimation, which is because 

the direct estimations are evaluated in the form of relative percentage error, whereas the inverse 

estimations are evaluated by absolute errors. In order to compare both direct and inverse 

estimation results with respect to the estimation accuracy,  the absolute errors for the direct 

estimations are also calculated in Table 5.6. 

5.2.2 Accuracy for inverse estimations 

Table 5.7 reports the absolute error for the inverse estimations of using all three methodologies, 

together with each corresponding numerical validation result. Note that in the direct estimation, 

the GDM has shown a significantly better performance than the GD algorithm. Hence, the NN 

with the GD algorithm is not included in Table 5.7 for the simplicity of comparison. Note here 

that the term “Num valid ABS error” in the table refers to the absolute error of comparing the 

numerical validated failure strength and the actual experimental one. 

It is seen that ANFIS lead to an 8.3° of absolute error for the manufacturing angle, whereas 

both NN with GDM and DOE lead to an absolute error of 13.3°. The FIS methodology gives the 

least absolute error or manufacturing angle, which is 6.7°. Therefore, compared with other two 

methodologies, the FIS methodology gives the better estimation result of the manufacturing angle. 

As for the infill density, Table 5.7 reports that the ANFIS approach gives an estimation error 

of 5.6MPa, while the general estimation error for DOE, FIS and NN are calculated as 4.4MPa, 

4.4MPa and 3.3MPa, respectively. Thus, although the FIS and ANFIS both have good estimations, 

NN has the best estimation accuracy with respect to the infill density of the 3D printing. 

Since the conclusion of the analysis of the manufacturing angle and the infill density are 

different, it is necessary to have a comprehensive conclusion which takes both variables into 

account. Hence, as previously introduced, the estimated values of both variables are fed into 

corresponding direct systems (numerical validation) to generate a new estimation of the failure 

tensile strength. The absolute estimation error between the actual experimental tensile strength 

and this newly estimated failure strength is calculated, which is the outcome of the numerical 

validation process shown in Table 5.7. The outcome error of the numerical validation can be 

interpreted as the comprehensive inverse estimation error. In order to evaluate the inverse 

estimation process, the error from the numerical validation is then compared with the error of the 

single direct estimation in Table 5.6. Note that the comprehensive estimation error here already 

includes the intrinsic error generated during the adjustments with respect to the specifications of 

CURA software. Hence, it is expected that the comprehensive errors are slightly larger than those 
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from the direct estimations. 

 

Table 5.7 Comparison of the inverse estimation absolute error using all adopted methodologies. 

Spec 

FIS 
angle 
ABS 

error 

FIS 
Infill 
ABS 

error 

FIS 
Num 
valid 
ABS 

error 

NN 
angle 
ABS 

error 

NN 
infill 
ABS 

error 

NN 
Num 
valid 
ABS 

error 

ANFIS 
angle 
ABS 

error 

ANFIS 
infill 
ABS 

error 

ANFIS 
Num 
valid 
ABS 

error 

DOE 
angle 
ABS 

error 

DOE 
infill 
ABS 

error 

DOE 
Num
valid 
ABS 

error 

2 0 0 0.44 15 0 0.44 0 0 0.42 30 10 1.4 

5 30 10 1.6 15 10 1.6 15 0 1.6 15 10 1.0 

8 15 0 1.7 0 0 1.7 0 10 1.4 15 0 0.4 

11 0 0 0.07 15 0 0.07 15 0 0.56 0 0 0.7 

14 0 10 0.2 0 0 0.2 0 10 0.1 0 0 0.7 

17 0 10 0.3 0 20 0.3 0 10 0.2 0 20 0.8 

20 15 0 0.27 15 0 0.47 15 10 0.43 15 0 1.1 

23 0 10 0.3 15 0 0.3 15 10 0.2 15 0 0.8 

26 0 0 0.1 45 0 0.1 15 0 2.7 30 0 1.3 

AVE 6.7 4.4 0.55 13.3 3.3 0.58 8.3 5.6 0.85 13.3 4.4 0.9 

 

It is seen that from Table 5.6, the absolute direct estimation error for FIS, NN-GDM, ANFIS 

and DOE are equal to 0.39MPa, 0.43MPa, 0.37MPa and 0.76MPa, respectively, in the direct 

estimation. In the inverse estimation, the error acquired from the numerical validation for FIS, 

NN-GDM, ANFIS and DOE is equal to 0.55MPa, 0.58MPa, 0.85MPa and 0.9MPa, respectively. 

Hence, it can be concluded from the above comparison that: 

• The estimation errors of the inverse-validation operation are higher than those of the 

direct estimations for all three methodologies, i.e., the direct estimation framework is 

always more accurate compared with the inverse estimation framework; 

• The ANFIS methodology has the best estimation accuracy in direct estimation, 

whereas the FIS methodology has the best accuracy in inverse-validation estimation; 

• Although all methodologies can give accurate estimation results, DOE appears to have 

the least estimation accuracy for both direct and inverse estimations. It is consistent 

with the existing studies comparing DOE with other approaches in other 

applications.70,119 
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To summarise, in the single direct estimation problems, ANFIS is able to give the best 

estimation results, whereas in the inverse problems, FIS appears to give better estimation results. 

Both differences are non-neglectable but within the acceptable fluctuation range. 

 

5.3 Estimation efficiency 

In the present investigation of using the FIS methodology, the determination of the 

membership functions is based on i) the type of the adopted MF (triangle MF in this case); ii) 

historical data which has been used for generating fuzzy rules (training group). After the 

determination of the MFs, each membership value is calculated with respect to inputs from the 

validation group and then processed with product operation and implication process. Finally, the 

desired estimation result is calculated with the weighted average of the previously calculated 

membership values. 

Generally, FIS is a computationally cheap methodology without a recursive calculation 

process. Based on the code developed by the author, the return of both direct and inverse 

estimations results are instant and the estimation time is within seconds even with additional cost-

relevant parameters. Conventionally, tuning the membership parameters could have been time-

consuming as they depend on the user’s intuition and knowledge. However, due to the parameters 

of MF in the present investigation depending on the existing historical data, the tuning process 

has been integrated with the historical data. Hence, the FIS methodology is efficient without a 

redundant calculation process. 

As for the neural network, the recursive updates of weight values and partial derivatives both 

add more computations to the system. As illustrated in Chapter 3, the total number of epochs for 

an NN could be up to 104 in order to reach the convergence of the cost function, which could take 

1min for the author’s computer to accomplish in the present investigation. With additional cost-

relevant parameters included, it took 2mins for the author’s computer to accomplish the estimation. 

For the recursive calculations of the ANFIS approach, the weight updates in NN are replaced 

by the updates of the MFs parameters. Meanwhile, the parameters of output MF needs further 

calculations, which in this case are linear parameters to be determined, 𝑝𝑖, 𝑞𝑖 & 𝑟𝑖. In this case, 

there are more parameters to be determined compared with NN. Hence, although it is reported in 

Chapter 5 that it takes approximately only 60 epochs for the cost function to converge, the 

calculation of each epoch for ANIFS actually takes much more time compared with that of NN. 

According to the author’s tests, the general time it takes for the convergency of the cost function 

could be up to 1.5mins. With additional cost-relevant parameters included, it took 3.5mins for the 
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estimation on author’s computer. Considering the influence of the increasing number of 

parameters in the recursive calculations on the overall efficiency, the time consumption of the 

ANFIS methodology will increase exponentially if more parameters are included in the system. 

Last but not least, as a MS Excel built-in data analysis tool, DOE is a quick and accessible 

method. Without the recursive calculation process, DOE is relatively computational cheap and 

has little requirements of computational power. Hence, DOE estimation is an efficient estimation 

method, benefiting from its simple calculations and low study cost, compared to other methods. 

 

5.4 Comparison of FIS, NN and ANFIS methodologies 

After both estimation accuracy and the efficiency of all methodologies have been compared, 

the present section will include a general comparison and conclusion. The FIS approach appears 

to be the most efficient methodology with the parallel data processing pattern. In the present 

investigation, MF parameter tunning process has been changed to an integrated process thanks to 

the deterministic historical data. This saves the time which could have been spent on tuning the 

MF parameters for optimisation purposes. 

NN and ANFIS have good estimation performance with respect to the accuracy, but they are 

computationally expensive due to the nature of the recursive calculations. In the present 

investigation, the calculation time for both methodologies appears to be acceptable, thanks to the 

simplicity of the test setup. However, note that both methodologies could become more time-

consuming when applied with big-data tests or with the increasing number of parameters. 

Although the DOE methodology is not accurate as FIS, NN and ANFIS methodologies, it is 

still a quick, easy and effective MS Excel built-in tool for some modelling problems, especially 

for those who had no experience in other data-driven methodologies. Besides, DOE has a unique 

capability (also an advantage) of identifying the main factors and quantifying the significance of 

each input variable through a few parameters, such as the P-value in the present investigation. 

Hence, instead of being used alone, it is suggested that the design of experiments could be used 

together with other more accurate data-driven methodologies to reach a better estimation accuracy 

and identify main factors simultaneously. 

Therefore, when it comes to the actual cases, the factors of applications and methodologies, 

such as the number of available data, time limit, estimation accuracy and hardware capability, 

may require further considerations and compromises for the selection of the methodology. 

Generally, for the current stage, with estimation accuracy as the priority, the FIS methodology 

could be an efficient choice. However, when an extensive database is available, and the computing 
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power is not a compromising factor, the ANFIS methodology could help achieve the most 

accurate estimation results. 
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Chapter 6 

Chapter 6 Conclusion and Future Work 

Conclusion and Future Work 
 

 

 

In the present study, addressing the lack of knowledge of the complex physical relationship 

between the manufacturing parameters and the mechanical property of FDM 3D-printed parts, 

multiple data-driven methodologies have been adopted and applied to formulate the mathematical 

relationship. The manufacturing parameters here refer to the manufacturing angle and the infill 

density of the FDM process, while the mechanical property in this study particularly refers to the 

failure tensile strength of the printed parts. 

First of all, the 27 specimens in previous chapters have proven to be sufficient for evaluating 

the performance of the frameworks and methodologies as it covers all possible configurations of 

manufacturing and geometrical parameters. Based on that, two frameworks – direct and inverse 

have been developed. The direct estimation framework is designed to estimate the failure tensile 

strength of the FDM parts with the provided manufacturing angle and infill density. With the aim 

of extending the methodology applications, the inputs of the direct estimation include the notch 

root radius as a geometrical design characteristic. The results of all adopted methodologies have 

proven that the data-driven approaches can be applied with not only manufacturing parameters 

but also geometrical design parameters for the prediction of tensile strength with good accuracy. 

The inverse estimation framework is designed to identify the optimal combinations of the 

various manufacturing parameters ensuring given requirements of strength and geometry. In this 

case, the inputs of the inverse estimation system are the failure tensile strength and the notch root 

radius, and the outputs of the system are the manufacturing angle and the infill density. The 

inverse estimation results for all analysed methodologies are adjusted according to the 

specifications of the CURA software for meaningful and usable values, and the inverse-estimated 

results have been validated with a numerical validation process. Generally, it has been proven that 



CHAPTER 6  CONCLUSION AND FUTURE WORK                                                        127 

 

all the adopted data-driven methodologies could support the inverse estimation framework. 

Since the aim of the inverse estimation is to help industries identify the optimal manufacturing 

parameters, a study has been conducted to include cost-control relevant parameters as extra inputs 

for the inverse estimation framework. It has been reported that including additional cost-relevant 

parameters, such as printing time and material consumption, could lead to a more accurate 

estimation of process parameters with all the adopted methodologies. In the following sections, a 

summary of achieved goals and conclusions from previous chapters will be summarised. 

 

6.1 Fuzzy inference system 

The main aspects of a fuzzy inference system have been illustrated where the conventional 

linguistic labels are replaced by deterministic values. Hence, it has saved much time for the 

determination and the tunning process of the membership function parameters. FIS has shown 

good estimation accuracy for both direct and inverse estimations. 

It has been reported that the additional data for the system could effectively lower the 

estimation error. Furthermore, by excluding each input parameter at a time, the key parameter that 

leads to the best estimation results is reported to be the infill density, followed by the 

manufacturing angle. Meanwhile, the additional input parameter – manufacturing void size 𝑑𝑣, 

interconnected with the infill density, is reported to cause worse estimation accuracy. Hence, the 

presence of repeating or interconnected parameters should be avoided for FIS methodology. 

By including the notch root radius as an additional geometrical parameter, the supportive study 

has reported that FIS can be applied with not only manufacturing parameters but also geometrical 

design parameters for the prediction of tensile strength. As such, FIS is seen to have great potential 

as a decision-making tool in design and fracture-related problems. 

The Sugeno FIS adopted in the inverse estimation has been illustrated with particular emphasis 

on the difference between the Sugeno FIS and the previously adopted Mamdani FIS. The 

performance of the FIS approach in dealing with unseen data has been evaluated with a good 

estimation result. The corresponding inverse estimation results are adjusted according to the 

specifications of the compatible 3D-printing software, and the estimated results have been 

validated with a numerical validation process. Although the inverse estimation accuracy of using 

FIS is less than that of direct estimation, the developed inverse framework is still trustworthy, 

considering its satisfying accuracy. 

With the additional cost-relevant parameters, such as printing time and material consumption, 

a better FIS estimation accuracy has been achieved, particularly in estimating the infill density. 
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Hence, it can be concluded in general that the FIS methodology is a precise and efficient tool for 

problems such as property predictions. 

 

6.2 Artificial neural network 

The main aspects of the artificial neural network have been illustrated with particular emphasis 

on comparing both the gradient descent and the gradient descent with momentum algorithms with 

respect to their estimation accuracy and efficiency. It has been reported that the accuracy of using 

GDM is higher than that of using GD for direct estimation. Meanwhile, the convergence of the 

cost function with GDM is faster than that with GD, which means the GDM algorithm is relatively 

more efficient. Hence, the NN with GDM algorithm is reported to be a generally better solution 

concerning accuracy and efficiency than the NN with GD. 

It has been reported that the inverse estimation of using NN with both GDM and GD has a 

good performance with respect to accuracy. Considering the final gradient value, the GDM is seen 

to be more efficient than the GD algorithm. With the extra cost-relevant parameters included as 

inputs, the estimation accuracy of both manufacturing parameters is seen to improve. 

Summarising, comparing both the direct and inverse estimations of using NN, the estimation 

accuracy of the direct estimation is better than that of the inverse estimation, which is also 

consistent with that of the FIS methodology. As for the efficiency, considering the number of 

epochs and the overall time it takes for the cost function convergency, the NN is a precise 

methodology but has requirements of computation power. Due to the nature of the recursive 

calculations, NN could be time-consuming depending on the number of parameters and the 

configurations of the network. 

 

6.3 Adaptive neural fuzzy inference system 

The previous chapter has illustrated the main aspects of the adaptive neural fuzzy inference 

system with particular introductions of the hybrid learning strategy. It has been reported that the 

direct estimation results of using the ANFIS approach have the best accuracy among all three 

adopted methodologies. For the inverse estimation, the estimation accuracy of using ANFIS is 

still good and at the same level as that for the FIS approach. 

Meanwhile, generally the number of epochs it takes for ANFIS computation is less than that 

of NN and the overall time it takes for ANFIS in the direct estimation is similar to that for NN. It 

is noted that although it takes fewer epochs for ANFIS to achieve the best estimation system, 
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ANFIS methodology could still be more time-consuming and computing-power-consuming than 

NN. This is because, for the ANFIS methodology, there are more parameters to calculate in each 

epoch, especially when a big data group or multiple input parameters are included. 

Similar to FIS, with additional cost-relevant parameters as inputs, the ANFIS methodology is 

seen to have an estimation accuracy improvement in the infill density, with no change to the 

manufacturing angle. Hence, it is seen that the ANFIS approach is a highly accurate methodology 

with requirements of relatively more computing power, compared with FIS and NN methods. 

 

6.4 Design of experiments 

In the previous chapter, the main aspects of the design of experiments have been illustrated, 

and the DOE methodology has been used for both direct and inverse estimations. Although it has 

the least accuracy among all the adopted methodologies, DOE is seen to still provide accurate 

estimation results as a contrast approach. 

Note that DOE might not be the most accurate methodology but considering its MS built-in 

and ease-to-use feature, it is still a quick and efficient beginner-friendly tool, particularly for 

simpler problems without the requirement of deep learning. However, due to the same MS built-

in feature, the calculation process is less transparent than the FIS methodology. Hence, users 

might have less control over the general calculation process, which makes it like one of the “Black 

Box” solutions. 

 

6.5 Comparison of all the adopted data-driven methodologies 

Generally, all the adopted methodologies have shown a good estimation performance of being 

applied to formulate the relationships between the various manufacturing/geometrical parameters 

and the failure tensile strength of FDM 3D-printed parts. It is important to point out that the FIS 

methodology is seen to be simple and accurate without high requirements of computing power. 

However, for unseen data which lies outside of the input range, it becomes impossible to predict 

with these “outliers” due to the nature of the fuzzy system. 

For big data or self-adaptive/self-learning applications, NN has been reported to be the best 

solution, although it requires a large amount of training data and a relatively high computing 

power. It is important to point out that due to the recursive computation pattern, NN is capable of 

dealing with the “outliers” mentioned above, which is one of its main advantages. 

The ANFIS is a combination of the previous two methodologies and has been reported to have 
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the best estimation accuracy. ANFIS is the prior choice if the most significant criterion is 

estimation accuracy. However, it might be less efficient than the FIS approach due to its expensive 

computations. 

Last but not least, the DOE methodology has the advantage of identifying and quantifying the 

significance of each input variable, and the MS built-in characteristic makes it easy to use in 

simpler predictions or shallow learning with less non-linearity. It is an efficient beginner-friendly 

tool for those who have yet to gain experience in other data-driven methodologies. 

 

6.6 Future work 

Specifically, considering the advantage of the DOE approach in identifying and quantifying 

the significance of each input parameter, in the future, it is expected to have an efficient hybrid 

method which is a combination of both FIS and DOE methodology. Such a hybrid methodology 

is expected to select the main factors in the problem with the benefit of the DOE approach in the 

first step. Then the FIS approach could be applied with main factors for a more accurate estimation 

result. 

Generally, the existing data-driven methodologies have shown good estimations of the tensile 

strength of FDM 3D-printed parts based on the manufacturing angle and the infill density. Hence, 

future work could be conducted by including more process parameters of the FDM process, such 

as layer thickness, temperatures, etc., together with the identification of the significance of each 

parameter. The optimisation of the printing process could produce high-quality parts with minimal 

defects, improved accuracy and consistency. This could also be particularly useful in applications 

where the FDM process is sensitive to variations in temperature, humidity and other 

environmental factors. 

As for the properties to be estimated, other important properties can be taken into account, but 

other properties, such as the surface finish and the fracture behaviour under dynamic loading, 

could also be analysed with the same framework. Due to the intrinsic versatility of the data-driven 

methodology, all the considered methodologies are expected to be the same success. This could 

potentially lead to the application of developing smart materials that can adapt their properties in 

response to changes in their environment. For example, a material with a controlled thermal 

expansion coefficient could compensate for warping or distortion during the printing process, 

leading to more accurate and reliable printed parts. 

Another potential avenue of investigation is the application of the proposed methodologies to 

other 3D printing fields, such as Laser Sintering systems. In this case, the inputs of interest could 
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be laser power, laser speed, laser scan spacing, etc., and the outputs of interest could be tensile 

modulus, ultimate tensile strength, elongation at break (ductility), the size difference between the 

nominal and actual sizes, etc. 

Summarising, it has been proven that data-driven methodologies are robust tools that can 

produce highly accurate estimations even with various variables. Hence, it can be foreseen that 

these methodologies could be effective decision-making tools in not only 3D printing but also 

other fields as long as there are data to be used to formulate the relationships. Accordingly, it can 

be expected that data-driven methodologies will be increasingly important to human society, 

particularly in the digital era.  
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