
The Design of a Computer-Based Pedagogy for 
Teaching Calculator Representations

Andrew Gordon Harrop

Thesis submitted in accordance with the requirements for the degree of Doctor of Philosophy

Computer-Based Learning Unit 
School of Education 

The University of Leeds

November 2001

The Candidate confirms that the work submitted is his own and that appropriate credit 

has been given where reference has been made to the work o f others.



1

Abstract

This thesis demonstrates a novel method for improving the understanding of numerical 

structure in arithmetic through the use of computer-based multiple linked external 

representations. The system ENCAL exploits three representations: iconic, calculator 

and dataflow. Small-scale studies contributed to the design, and the results of a final 

evaluation study suggest that the approach can be usefully exploited in classroom 

mathematics education.

Cognitive science research has extended the concept of internal mental structures to 

include the interactions which take place between a person and the environment, such 

as technology-supported learning environments (Kozma, et al., 1996). The following 

thesis asserts that a computer-based learning environment facilitates the construction 

and use of mental models, particularly if one advocates the idea that cognition is viewed 

not as a purely mental process, but as a system which includes the individual, his/her 

social context, and the available cognitive tools - such as a computer (Dörfler, 1993). In 

addition, computer-based learning environments aid concrete to abstract thinking, 

because visually concrete objects can be linked to more formal and abstract 
mathematical representations (Kaput, 1989).

The mathematical problem solving ability of school children aged 12-13 years was 

assessed using the computer-based learning program ENCAL. The system helps 

children develop their concept of number and their skills with multiplication and 

addition with the help of a software calculator and some additional computer-based 

support. The aim of the evaluation was to ascertain the effectiveness of the software’s 

three equivalent and linked representations: iconic(concrete); datatree (intermediate)-, 

and calculator (abstract)-, with regard to helping pupils solve text-based arithmetic 

problems. Two groups of mixed ability children were tested, one group had use of the 
intermediate datatree whereas the other group did not.
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Overall, it was found that both high and low attainment pupils in the datatree group 

obtained a greater number of totally correct answers compared to the no-datatree group. 

Also, the low attainment pupils in the datatree group achieved notably more correct 

calculator answers for the most difficult question. In particular, those participants who 

did not have access to the datatree had operator and brackets (i.e. parentheses) problems 

in all three of the questions. However, the group who were able to use the datatree had 

no operator errors, and only two brackets errors with the most difficult question.
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Chapter 1

The Research Problem

1.1 Introduction

The relationship between teaching and learning is of fundamental importance with 

regard to children’s arithmetic understanding. This issue is highlighted by the research 

of Hiebert and Lefevre (1986) which was concerned with the association between the 

procedures children use during mathematical activities and the concepts they acquire. 

The correspondence between procedural activities and concept formation implies that 

the influence of representations (and their limitations -  O’Reilly, 1999) used during 

teaching are likely to have a significant impact on understanding. The following thesis 

asserts that an appropriately designed computer-based learning environment can 

provide an optimal approach to teaching and learning from both educational and 

psychological perspectives. The chapter initially explains computer-based learning in 

the context of the current research. The next section outlines using the computer as a 
medium. Word problems are considered next with particular reference to the difficulty 

children have of translating information from a problem statement to the solution. 

Computation is then referred to, emphasising the notion of operation hierarchy (i.e. 

order of operations). The behaviour of calculators is addressed next, with reference to 

the confusion caused during evaluations by the use of different logic systems. 

Calculator use in schools is then briefly introduced. A summary of the research problem 

is then given. Finally, an outline of the thesis chapters is set out.

1.2 Computer-Based Learning

Three important aspects of computer-based learning are the entities, metaphors, and 

icons used in the external representations. A computer-based environment may make
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use of entities, metaphors, and icons at the interface to enhance learning because the use 

of computers: (a) provides opportunities to stimulate cognitive processes during 

learning such as problem solving, and (b) enable children to participate in learning by 

discovery (Ainsa, 1999).Greeno (1983) refers to entities in a representation as being: 

“the cognitive objects that the system [i.e. human] can reason about in a relatively direct 

way, and that are included continuously in the representation” (p. 227). The implication 

being that entities can facilitate learning since they are easily distinguished from other 

abstract relations, and therefore may be used as cues in the problem solving process. 

With regard to metaphors, Carroll and Mack (1985) point out that providing pupils with 

comparisons can help learning. In addition, they state that metaphors (particularly 

concrete metaphors) stimulate the construction of mental models and thus enhance 

learning. Finally, an iconic interface uses images to represent actual physical objects. 

For example, as in this study - bookcases, shelves, and books. This type of icon is a 

representational icon (Benbasat and Todd, 1993). A fundamental advantage of using 

this type of icon is: firstly, the primary task of problem solving is less interfered with 

because minimal effort is required to interact with such icons compared to text-based 

information; secondly, representational icons give contextual significance to a problem 

through the use of familiar objects which in turn assist with the mapping or translation 

of information from problem to solution; thirdly, the use of metaphors (which enhance 

understanding) is facilitated through the use of representational icons.

Another important issue from an educational point of view is a construction process 

called reflective abstraction. This process helps with the acquisition of more abstract 

mathematical concepts through the use of entities and metaphors. According to Piaget, 

reflective abstraction is a means by which students construct abstract structures as a 

result of a student reflecting on: (a) his or her own activities; and (b) the arguments used 

in social interaction (i.e. pupil-teacher, and pupil-pupil interaction).

Lehtinen and Repo (1996) believe that: (a) computer-based learning environments 

facilitate learning activities that are optimal for reflective abstraction; and (b) such 

learning activities could not be carried out in traditional classroom environments. In 

other words, Lehtinen and Repo (1996) state that a computer-based learning 

environment provides a technology-rich setting appropriate for activities which support
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the construction of mathematical concepts. What is also fundamental to a computer- 

based design for Lehtinen and Repo (1996) is the use of multiple representations. 

Lehtinen and Repo (1996) hypothesise that the use of multiple representations, and the 

movement between them stimulates reflective abstraction in students. Furthermore, the 

use of different external representations serves to inspire learners towards reflection and 

social interaction.

According to Hiebert and Lefevre (1986), “relationships at the reflective level are less 

tied to specific contexts. They are often created by recognising similar core features in 

pieces of information that are superficially different” (p. 5). For example, if a learner is 

required to add fractions, a connection at the reflective level is made if he or she is able 

to step back and reflect on the information previously provided for adding decimals, 

and from this reflection, appreciate the general idea that you always add things that are 

alike in some significant way. Thus, thinking at the reflective level means that a person 

is able to generalise the knowledge he/she already has to other mathematical situations. 

With regard to generalisation, Greeno (1983) points out that the effect of mapping in 

relation to arithmetic problems brings about a generalisation of procedures learnt by the 

pupils. Thus, if blocks and numerals are used for a subtraction problem, the entities 

which are referred to “are quantitative concepts for which both the numerals and the 

blocks provide symbolic representations” (p. 237), thus facilitating the acquisition of 

representational knowledge of subtraction.

Hiebert and Lefevre (1986) also point out that the subsequent development of 

conceptual knowledge is brought about by the construction of relationships (i.e. linking) 

between pieces of information. This linking of information can occur between: (a) 

pieces of information that are already stored in a person’s memory; or (b) between 

existing knowledge in memory and knowledge which has been newly learnt. When 

previously unrelated items are suddenly seen as being related in some way, then there 

has been an increase in the conceptual knowledge of a learner (Hiebert, and Lefevre, 

1986). In effect, learning has occurred by discovery (Bruner, 1961, in Hiebert and 

Lefevre, 1986). However, it is not enough to just have various representational tools 

available (e.g. computer-based representational tools). Rather, effective learning is 

facilitated by tools that are related to the new mathematical concepts to be learned and
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an awareness of the previous knowledge of the students. In the current thesis, the 

concepts are associated with the solving of arithmetic word problems and the previous 

knowledge would be that of pupils who have mathematical ability of around 10-13 

years of age).

1.2.1 Problems With Current Software

With reference to computer-based tools, current computer software can create or solve 

arithmetic problems, however it appears that little or no computer-based research in the 

context of arithmetic word problems appears to address fundamental issues related to 

arithmetic understanding when solving problems. These are stated below:

• mappings to and from problem statements and arithmetic representations;

• conceptual and procedural understanding of multi-operator arithmetic computations 

using external representations;

• the use of an intermediate representation between the concrete and the abstract to 

facilitate understanding; and

• equivalent multiple linked representations to further enhance concrete, intermediate, 

and abstract understanding.

Thus, a way needs to be found which will improve software used for solving arithmetic 

word problems. Specifically, the software should facilitate the translation of 

information from the problem statement to the answer in the preferred sequence of 

concrete to abstract understanding. A child will therefore need computer-based support 

with mappings within and between the following: a problem statement, the subsequent 

arithmetic expression, and the computation of arithmetic expressions that involve order 

of operations, parentheses, and calculator use.
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1.3 Using the Computer as a Medium

Repenning, Ioannidou, and Ambach (1998), make the distinction between the use of the 

computer as a tool and the computer as a medium. The difference is crucial as described 

below when considering the design of a learning environment.

When used as a tool, the computer is simply viewed as a mechanism for doing 

something, such as word processing, or calculating values. However, considering the 

computer as a medium increases its educational value since the computer is now viewed 

as a collection of tools which communicate something (e.g. objects used at the interface 

within a computer-based learning environment, the world-wide web, email, video, text, 

pictures, etc.). In other words, when used as an educational medium, computers 

diversify and facilitate the ways in which communication takes place (e.g. from teacher 

to pupils through the use of software and from pupils to pupils in subsequent social 

learning situations) and provide alternative communication experiences that enhance the 

learning experience. Conceptualising the computer as a medium also emphasises the 

constructive learning process. This is because such learning is characterised (Simons, 

1993) as being:

active (i.e. a person interacts at the interface in a meaningful way)

cumulative (i.e. new learning is constructed based on prior knowledge) and

goal oriented (i.e. learning is more likely to occur if a learner is aware of the goal).

Although the use of a computer implies a one-to-one (sit alone) interaction between the 

learner and the computer, the theory of constructivism suggests that teaching and 

learning activities using a computer will promote reflective and meaningful thinking. 

This will involve subsequent social interaction both between pupils and pupils and 

between teachers and pupils. Hoyles, Sutherland, and Healy (1991), point out that such 

social interaction provides cognitive scaffolding during problem solving tasks.

The social nature of teaching and learning is further emphasised by the cognitive 

science theory of distributed cognition. Dörfler (1993) points out that cognition should 

be viewed as being distributed over a whole system rather than just being confined to an
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individual. The system being comprised of: (a) the individual; (b) his/her social context; 

and (c) available cognitive means (such as, other people, writing, numerals, 

representational systems, calculation tools like the abacus, slide rule, calculator, or 

computer). Therefore, cognitive development is not viewed as a purely mental process, 

but cognition is seen as being distributed over the tools that facilitate a person’s 

thinking and problem solving.

Similarly, the active nature of the constructive learning process and the social/cultural 

aspect of learning is fundamental to activity theory. The theory asserts that 

consciousness is not confined just to cognitive functions, such as decision making and 

memory. Instead, consciousness is associated with social interaction -  that is, what 

people do and the artefacts people interact with (Nardi, 1996). Thus, activity theorists 

argue that consciousness is constructed during development as a result of a person’s 

activity -  that is, there is an underlying unity between a person’s activity and his/her 

consciousness.

Constructivism, distributed cognition, and activity theory imply that learning is not 

simply a passive or a purely externally directed process, but is active, constructive, and 

self-directed in which a person builds up internal knowledge representations based on 

his or her learning experiences (Vermunt, 1998). Thus, learning is more under the 

control of the student, as opposed to being externally driven as in traditional 
instructional teaching -  where the emphasis is on transferring knowledge from an 

external agent to the learner. A study by Marton and Saljo (1984) found that 

instructional teaching did not induce a meaningful, deep approach to learning, because 

students were more preoccupied with answering the set questions, as opposed to 

engaging in a more in-depth approach to learning. That is, learning which would help a 

person construct a new knowledge representation to add to his or her existing 

knowledge - such as the understanding of a concept. Research by Vermunt (1998) 

supports this finding. In particular, the results indicate that high-quality learning is best 

achieved by transferring control over the learning process from teachers to pupils such 

that teaching influences more of a constructivist mode of learning. In other words, 

external regulation (such as directions for learning provided by teachers) has little



7

influence on students’ processing strategies during learning, but rather it is learners 

themselves who regulate their learning process.

Consequently, the rationale underlying the research in this thesis is as follows. Firstly, 

the computer is seen as an integrated constructive educational environment that 

facilitates the teaching and learning of mathematics (i.e. elementary arithmetic word 

problems) in the classroom setting. More specifically, the computer environment is 

viewed as facilitating the construction of pupils’ learning processes as described below.

1. By providing: primarily, a social learning environment based on self-regulated 

exploration, reflection, and collaborative learning; and secondarily, external 

regulation (such as problem setting and feedback) from the teacher to support 

learning.

2. Through the process of user interaction, the computing environment is seen as 

enabling (a) teaching and learning to be closely related in terms of being social, 

constructive, active, and meaningful (Shuell, 1996), (b) teaching and learning to 

occur with understanding (i.e. to facilitate mathematical mental representations to 

become part of a person’s existing knowledge network), (c) concrete to abstract 

correspondence to take place, since this process is a fundamental prerequisite to the 

teaching, learning and understanding of mathematical concepts and procedures 

regarding the solving of arithmetic word problems, and (d) the perception by 

learners of constructs/representations of the computer environment since these will 

receive individual meaning by users.

3. The influence of the computer-based learning environment is seen as leaving a 

“lasting cognitive residue” (Salomon, 1992) and as a result will serve to enhance 

both teaching and learning.

1.3.1 The use of Icons

A computer-based environment may make use of icons at the interface to enhance 

learning. This is because an iconic interface can uses images to represent actual physical 

objects. For example, the images might represent bookcases, shelves, and books. This
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type of icon is a representational icon (Benbasat and Todd, 1993). There are two 

fundamental advantages of using this type of icon. Firstly, the primary task of problem 

solving suffers from less interference because minimal effort is required to interact with 

such icons compared to text-based information. Secondly, representational icons give 

contextual significance to a problem through the use of familiar objects (e.g., book and 

shelf icons) that in turn assist with the mapping or translation of information from 

problem to solution. Thirdly, the use of metaphors (e.g., the use of rectangles to 

represent brackets) is facilitated through the use of representational icons.

1.4 Word Problems

A recurring fundamental difficulty encountered during the solving of arithmetic word 

problems lies in the translation of information from the problem text to mathematical 

language as pointed out by Nesher (1988).

In this thesis, emphasis is placed on the arithmetic required for solving a problem rather 

than with the textual interpretation. The type of problems considered in the following 

research are referred to as repeated addition. The reasons for focusing on this type of 

problem are firstly multiplication and addition operations are used which involve 

mappings between entities, secondly most confusion usually occurs when mixed 

operations are used which are not inverses of each other (e.g. + and x) as pointed out by 

Ecker (1989) and thirdly, it is considered to be the easiest type of “multiplicative” 

(Nesher, 1988, p. 21) word problem in terms of comprehension.

This type of word problem is characterised by the use of three propositions as follows:

There are m x’s (e.g. shelves) for which there are y’s (e.g. books).

For all x’s if there are y’s, then there are exactly ni y’s (books per shell). This describes 

a mapping between the shelves and books.

The final proposition asks how many y’s (books) are there for all the x’s (shelves).

Movement from a problem statement of the type described above to a mathematical 

solution is a complex process and involves concrete to abstract understanding. The



9

relationship between concrete and abstract in mathematics education can be difficult for 

teachers to convey and pupils to understand. In particular, De Corte and Verschaffel 

(1987) point out that a major difficulty during problem solving is the construction of a 

suitable problem representation. Greer (1992) points out that the competent solving of 

word problems requires a child to: (a) translate from the natural language representation 

of a problem to the mathematical language representation; and (b) use an “intermediate 

representation” (p. 285) to help with the construction of the appropriate mathematical 

formulation. Nesher (1980) refers to findings which suggest that students tend to move 

directly from a problem statement to the formulation of mathematical expressions based 

on “surface clues” or trial and error, without first considering some form of 

intermediate representation to assist in the problem solving process. An appropriately 

designed computer-based learning environment could be used to assist in the competent 

solving of word problems by providing an intermediate representation to conceptually 

“bridge” the concrete and the abstract.

Although much computer-based software has been directed at helping children plan and 

solve arithmetic word problems (e.g., SEMCALC, Schwarz, 1982; EDUCE, LeBlanc 

and Russell, 1989; ICE, Kaput, 1989; TAPS, Derry, Hawkes, Diefenbach, and 

Kegelmann, 1993; ANIMATE, Nathan and Resnick, 1993; PLANNER, Schwarz, 

Nathan, and Resnick, 1996), the use of specific intermediate representations to assist 

with the translation from natural language to mathematical expressions tends not to be 

addressed. However, some software has attempted to support concrete to abstract 

thinking or novice to expert understanding using multiple representations. For example, 

in the context of science, Kozma, Russell, Jones, Marx, and Davies (1996), used such 

representations to facilitate the understanding of chemical equilibrium. In the context of 

arithmetic word problem solving in primary school mathematics, Kaput (1989) 

developed a system to support the concrete to abstract thinking required during the 

multiplicative reasoning of problems such as: “How many apples will be needed 

altogether if four children are to get three apples each?” (Kaput, 1989, p. 38).
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1.5Computation

A further aspect of problem solving is the fact that once information has been elicited 

from the semantics of a word problem, a child will need to compute the answer. He or 

she will need to take into account: order of operations, parentheses, and calculator 

behaviour. These aspects of computation are referred to below.

To correctly compute an arithmetic function that results from a particular word 

problem, it is often first necessary to consider the order in which operations are to be 

carried out. Ecker (1989) highlights the computation problems of order of operations. 

For example, when considering 1 + 2 x 3, he states do you first add 1 and 2, and then 

multiply the result by 3, or do you multiply first, and then add? As mentioned 

previously, Ecker (1989) points out that most confusion usually occurs when mixed 

operations are used which are not inverses of each other (e.g. + and x). This ambiguity 

has been resolved without the use of parentheses by using an order of operations 

hierarchy. Priority is given to operators in the following hierarchy: 

division/multiplication, addition/subtraction. For example:

8 - 2 x 3 + 8 - 4 =

8 - 6 + 2 =

2 +  2 =

4

Where expressions use parentheses, then operations in the parentheses have top priority. 

When parentheses occur inside of parentheses, the innermost expressions are evaluated 

first. For example:

2 4 - ( 4 x ( 2 +  1)) =

24 + (4 x 3) =

2 4 -1 2  = 2
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Significant computation errors made by pupils occur through lack of understanding of 

parentheses (Demana and Osborne, 1988). For example, (3 + 5) x 4 is often thought to 

be equivalent to 3 + 5 x 4. Four-function (arithmetic) calculators contribute to such 

misunderstandings, and thus “fail to give correct values of mathematical expressions 

needed for appropriate pre-algebra experiences” (Demana and Osborne, 1988, p. 3). 

Typical problems associated with calculator use are outlined below.

1.6The Behaviour of Calculators

Children use calculators in both primary and secondary schools for the computation of 

arithmetic functions. An important aspect of calculator use is that it structures 

arithmetic expressions in specific ways dependent on the logic system used, and 

consequently the behaviour of a calculator is often at variance with the computational 

procedures pupils have been taught. For example, the distributive law states that (7 x 

10) + (6 x 7) = 70 + 42 = 112. However, if a four-function (arithmetic) calculator is 

used to compute this expression, then children who tend to have a strong left-to-right 

bias and who perhaps do not understand order of operations and the meaning of 

parentheses, could type in the data from left to right and get the answer of 532. 

Therefore, calculators could produce misinterpretations in children’s understanding of 

arithmetic. Wiebe (1989) points out that most pupils need help when using calculators, 

“especially if they are using them with problems involving more than one operation...” 

(p. 36). He states that different calculators and computer software tools use different 

internal algorithms for computing answers and thus different answers may be given to 

the same problem. For example, the sequence 4 + 5 x 3 =, if entered into a four-function 

(arithmetic) calculator and an algebraic notation (scientific) calculator will give the 

answers 27, and 19 respectively. As Wiebe (1989) points out, pupils are astonished that 

a calculator may produce incorrect answers - they usually assume that they have entered 

data incorrectly. The evaluation of expressions is a persistent problem. Even at college 

level, calculator users have trouble with premature commitment (Green and Petre, 

1996), in that they tend to work from left to right rather than manipulating an 

expression (Mayer and Bayman, 1981).
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Ruthven and Chaplin (1997) looked at the part played by calculators in children’s 

numerical learning who were aged 10/11 years. One aspect of the study analysed how 

pupils approached number problems with and without the use of calculators. The 

research showed that regardless of current teaching policies, outcomes of calculator use 

could be much influenced by the manner of introducing and using calculators in the 

classroom. The successful solution of arithmetic expressions requires mapping, and the 

study also highlighted the nature of the difficulties pupils had with mapping features of 

a word problem to and from the actions performed on a calculator. In particular, the 

findings showed that whether pupils used calculators or not, they were poor at 

representing and using intermediate results.

A fundamental problem is the fact that calculators look concrete, but they do not give 

perceptual representations to the underlying abstractions (i.e. the symbols and algebra 

used in expressions). Calculator teaching therefore needs a concrete graphical 

representation in order to support the conversion from concrete to abstract by using an 

intermediate view that gives a perceptual representation to the abstractions. 

Consequently, the use of intermediate results during calculations needs to be promoted 

(Ruthven and Chaplin, 1997), because calculators are poor at showing the intermediate 

stages of computations. Moreover, the step from concrete arithmetic understanding to 

the abstract order of operations used in calculations is probably too large. This further 

justifies the need for an intermediate representation to be adopted to address these 

issues.

1.7 Calculator Use in Schools

The use of calculators in schools is a controversial topic because they are widespread, 

powerful, and yet problematic.

Despite all the pedagogical debates, calculators are here to stay; and it would seem that 

teaching their use is desirable, as suggested by Fuson (1992). Still more relevant with 

regard to this thesis, is that they offer an excellent opportunity to investigate ways to 

teach the understanding of arithmetic structure. In particular, the fundamental 

importance of acquiring appropriate computational procedures as a basis for
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understanding the number system as put forward by Ohlsson (1987) and Bell, Costello, 

and Kiichemann (1983), and the order of operations using calculators (Ecker, 1989; 

Wiebe, 1989).

1.8Summary

Much computer-based research has been devoted to the comprehending, planning, and 

solving of elementary word problems. However, once information has been gleaned 

from a problem, abstract arithmetic understanding is a fundamental prerequisite for the 

subsequent formulation and evaluation of an arithmetic expression. A neglected issue 

appears to be finding a way which will improve not only concrete to abstract 

understanding but the mappings which are made between problem statements, 

arithmetic expressions and computational procedures (particularly those which involve 

the ordering of operations and the use of calculators). The requirements for optimal 

teaching and learning are the use of computer-based representations, (one of which 

should be an intermediate representation to facilitate such understanding) and a 

computer-based environment based on the constructivist perspective, such that the 

environment only becomes meaningful through the process of user-computer interface 

interaction.

1.9 Organisation of the Remainder of the Thesis

The remainder of the thesis will be organised as follows. Chapter Two considers some 

of the computer programs that have been designed and used for teaching arithmetic, and 

the limitations posed by such software. Based on the shortcomings of current software, 

this chapter addresses the pedagogical and computer-based usability requirements 

which will be needed for teaching and understanding abstract arithmetic 

representations, specifically those associated with calculator use. Chapter Three states 

the computer-based pedagogical solution that will be required for the teaching and 

learning of abstract arithmetic representations during elementary problem solving. Two 

design specifications (i.e. the intemal/external representations and the iconsworld 

language) are addressed from a conceptual perspective in Chapter 4. Storyboard version
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1 (i.e. design 1) for the computer-based learning system ENCAL is outlined in Chapter 

Five. The results of the usability pilot evaluation are also given for design 1. Design 

changes in the form of storyboard 2 (i.e. design 2) are then set out and are based on the 

pilot test results. Chapter Six recapitulates the theoretical grounds behind ENCAL. The 

final evaluation and the results are presented in Chapter Seven. Analysis of errors raised 

during the evaluation of the ENCAL system are addressed in Chapter 8. An overall 

discussion followed by the conclusions are then given in Chapter 9. Chapter 10 states 

the contributions made during this study, and future work which could be carried out to 

further improve ENCAL. The references are then listed. Finally, the appendices follow.
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Chapter 2
Pedagogical and Usability Considerations

2.1 Introduction

What is of concern are the difficulties pupils (around age 10-13 years) encounter with 

abstract arithmetic representations (i.e. notation used with calculators), and how such 

difficulties may be overcome in a teaching environment. Section 2.2 initially outlines 

the theories underlying meaningful learning, constructivism, mental models, and 

considerations of representation, all of which have significant implications for the 

learning of arithmetic, particularly with the understanding of abstract representations. 

Based on these theories, the potential problems encountered in understanding abstract 

representations - specifically calculator representations are then addressed. This is 

followed by the proposed pedagogical requirements needed to achieve an understanding 

of calculator representations. Section 2.3 reviews computer software used for teaching 

arithmetic, and the limitations such software poses for meeting the pedagogical 

requirements needed for teaching calculator representations. A possible solution to the 

inadequacies of current software is put forward in Section 2.4 through the use of 

multiple, equivalent, linked representations (MELRs). Usability requirements 

underlying the proposed teaching system are outlined in Section 2.5. Finally, Section

2.6 summarises the pedagogical and usability requirements.

2.2 Learning Using Representations

2.2.7 Pedagogy Required for Teaching/learning Arithmetic Representations

A fundamental aspect of learning arithmetic is understanding and becoming proficient 

in abstract representational systems that convey concepts, such as algebra. A way of
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helping learners to understand, particularly in the primary school, is to make 

connections between familiar concrete situations and more abstract symbolic concepts. 

This may be achieved through the use of objects that can be manipulated (e.g. base-10 

blocks, sticks, counters, and computer graphics). Piagetian analysis indicates that for 

young children, the use of concrete manipulatives is important for the eventual 

development of formal operations (Shuard, Walsh, Goodwin, and Worcester, 1991). 

Children around 7-12 years of age have the ability to think logically (i.e. like adults) if 

their thinking is guided by contact with real or familiar objects and situations. The 

physical activity of say moving blocks, eventually leads to similar actions being carried 

out entirely in the imagination, and so at around 11-12 years of age, mental activities 

come to dominate and take the form of mental images which are moved around in the 

mind. It is the construction of mental images that are fundamental to the development of 

logical thinking and thinking in terms of concepts.

Mayer and Wittrock (1996) refer to this learning process as being structure-based, 

meaningful, and active. Meaningful learning is particularly appropriate to abstract 

concept acquisition, since this is: (a) concerned more with understanding than just a 

change in procedures; and (b) influenced by situations and domains as opposed to being 

independent from them (Shuell, 1992). A related theory is Constructivism which asserts 

that both the active involvement in a situation by individuals, and the situation itself, 

affect cognitive growth (i.e. learning). Such constructive activity is based on Piaget’s 

notion of assimilation and accommodation. That is, new procedures may be assimilated 

prior to learning, but meaningful learning (i.e. the understanding of concepts) occurs 

only after the accommodation of new schemata (Steffe, 1988). Thus, a new concept 

may be added to concepts already formed (i.e. constructed) as long as the new concept 

is accommodated to the existing concept network through understanding. If 

understanding does not take place then an individual will simply assimilate new 

information and cognitive growth will not occur.

Cognitive psychology has grounded this analysis in the concept of mental models. For 

example, the theory of language understanding put forward by Johnson-Laird (1983) 

suggests that children construct concrete mental models which correspond to the entities 

(e.g. people, objects, events) which the language is about (as someone would do when
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listening to a story). A child then manipulates and mentally transforms the mental 

model, and this enables inferences concerning the language to be drawn.

Greeno (1991a) proposed an idea of mental models related to number sense similar to 

Johnson-Laird’s (1983) language theory. Greeno (1991a) suggests that number sense is 

a form of cognitive expertise - in other words, it is the ability of a person to construct 

and reason with mental models. Thus, understanding the language of mathematics (e.g. 

a word problem) depends on learners developing the ability to construct mathematical 

situations which include the concepts that the language is putting forward. Greeno 

(1991a) refers to this as situated cognition. His underlying assumptions concerning 

learning are that the capabilities which people have with regard to number sense involve 

more than just facts and procedures and that the activity of understanding and reasoning 

ultimately becomes internal (i.e. implicit) through the use of mental models.

The mental model theories above imply that when confronted with an abstract 

proposition, children need not think logically because they construct mental models of a 

situation by relating a proposition to the concrete or real world. Furthermore, since 

communication necessitates the use of external representations (e.g. with objects, 

symbols, and language), it may be assumed that internal representations (mental 

models) are influenced and constrained by external situations (situated cognition) and 

connections between internal representations may be achieved as a result of external 

activity, thus facilitating the construction of knowledge networks (Hiebert and 

Carpenter, 1992). Consequently, there should be decreased dependency on the use of 

physical aids (e.g. arithmetic blocks) to facilitate thinking. Thus, when attempting to 

solve a problem in the conceptual domain of numbers, a person’s reasoning will be 

guided by his/her internalised mental models as formed through previous interactions of 

external concrete situations.

A fundamental aspect associated with both internal mental states of mind and external 

concrete situations is the pedagogical considerations of representation. These will be 

addressed next.
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2.2.2 Pedagogical Considerations of Representation

Understanding mathematics is associated with the way information is presented and 

structured. The presentation of information should enable connections between ideas, 

facts, and procedures to be made. Cognitive science suggests that subsequent 

understanding will occur once a mental representation of a particular mathematical 

concept has become linked to a person’s existing network of representations (i.e. from a 

psychological perspective, information has been accommodated).

With regard to representations and understanding, Hiebert and Carpenter (1992) build 

on two assumptions from cognitive science research by suggesting the following. 

Firstly, an internal representation is influenced by the represented external situation. 

Thus, connections between internal representations are influenced by connections 

between corresponding external representations, and so external mathematical 

representations influence internal mathematical representations. Secondly, internal 

representations can be connected. Similarly, Anderson (1993) states that the mind is a 

reflection of the external environment. However, Zhang (1997) goes further by arguing 

that external representation based problem solving (e.g. arithmetic multiplication) is 

constrained both by the environment and by the mind of an individual. The fundamental 

assumption being that external representations do not have to be re-represented as 

internal representations in order for problem solving to be carried out. Zhang suggests 
that external representations can activate perceptual operations and provide perceptual 

information which may be used in conjunction with cognitive operations, such as 

existing internal representations (e.g. information recalled from memory).

Such theories are particularly useful when considering the design of learning 

environments in the field of arithmetic problem solving. Goldin (1987) describes the 

goal of mathematics education as being able to foster the development of cognitive (i.e. 

internal) representational systems. Consequently, Goldin points out that a teaching 

system needs to foster maximal development of pupils’ internal representations using 

external representations which facilitate transfer of learning. The above assumptions 

from cognitive science suggest that having the ability to select an action in one external 

representation which can then be translated to other connected external representations 

would be a powerful pedagogical tool for activating and providing perceptual
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information and also representing ideas mentally. In this respect, the computer is 

extremely useful, because several different external representations can both be linked 

and be structurally equivalent in order to facilitate the translation of actions carried out 

by pupils.

The distinction between internal and external representations helps understand why a 

particular technology may be better suited to the teaching and learning of arithmetic 

representations which involve the use of a calculator. Internal representations are the 

mental images people formulate in their minds which correspond to reality, whereas 

external representations are actual commodities which people can physically see and/or 

manipulate to depict reality, such as: symbols (e.g. algebra, diagrams, pictures); and real 

objects (e.g. arithmetic blocks, Cuisenaire rods, etc.). A representation may therefore be 

considered as being comprised of the three components: mental images, symbols, and 

real objects (Janvier, 1987).

Several different (i.e. multiple) types of external representation may be used to depict 

the same abstract concept that in turn could help to promote understanding. For 

example, different types of external representation typically used in classrooms include 

textbooks, writing/diagrams on white/black boards and manipulable objects. However, 

Dufour-Janvier, Bednarz, and Belanger (1987), point out that multiple external 

representations will only be useful if a child understands them. Where this occurs, a 

learner will also be expected to find one representation which best enables a given task 

to be completed, reject a representation because it is less effective than others in a given 

problem situation and move from one representation to another.

The movement between representations is problematic when considering how a solution 

is arrived at from a given problem statement. For example, Lesh, Post, and Behr (1987), 

found that pupils have “translation” (p. 36) difficulties associated with the re

representation of initial word problem information into ways of describing, illustrating, 

and manipulating ideas which may then be used for the solving of a problem. They 

point out that these difficulties arise not only within the context of word problems, but 

also with the translation to subsequent pencil and paper computations. Both the 

translation of information from word problem statements and the subsequent translation 

of information to computations are seen as significant factors in influencing
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mathematical learning. The translation difficulties highlighted by Lesh et al. will by 

implication also be apparent when considering the use of abstract calculator 

representations to facilitate computations.

The processes of mathematical thinking required to overcome such problems are based 

on complex relationships between the external representations encountered during 

learning, and internal mental processes (De Corte, Greer, and Verschaffel, 1996). A 

theoretical model that classifies the unobservable thinking behaviour (i.e. internal 

representations) taking place in individuals is Goldin’s (1992b) model of internal 

representational systems. The model depicts complex processes of interaction between 

the following five internal representational systems: verbal/syntactic; heuristic (e.g. 

planning, and monitoring); formal notation (i.e. symbolic); affective; and imagistic (i.e. 

visual, spatial, auditory, tactile).

Conventional teaching tends to place an emphasis on verbally mediated thinking during 

mathematics teaching (e.g. through explanations), and the use of formal types of 

notation (e.g. algebra). Consequently, De Corte, et al. (1996) point out that Goldin’s 

(1992b) model of mathematical thinking goes far beyond the presumed influence of 

verbal and formally written mathematics. Goldin’s model implies that mathematical 

understanding (and thus teaching) needs to address the influence on learning of non

verbal imagery (i.e. visually mediated thinking), as well as the use of verbal and formal 

notational systems. This implication supports Paivio’s (1986) dual-coding theory.

Having addressed relevant issues of learning and representation, the following section 

considers the pedagogical problems of teaching and learning using calculator 

representations.

2 . 2 . 3  Pedagogical Problems With Using Calculator Representations for 

Teaching/Learning Arithmetic

Previous research asserts that the construction of concepts should precede the use of 

skills (Kaput, 1987; Hiebert, 1988). However, calculator usage typically promotes skills 

before arithmetic understanding. This is evident when one considers the theories 

underlying: meaningful learning, constructivism, mental models, and internal/external
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representations, all of which suggest that calculators will be of little educational value 

unless pupils understand the fonnal/abstract representations used.

Children, particularly at primary school level, cannot easily relate abstract data on a 

calculator display to concrete or real-life situations, and this will serve to impede mental 

model formation and thus learning. More specifically, because internal representations 

are influenced and constrained by external situations and, since the external 

representations of calculators are themselves abstract, it may be assumed that 

calculators constrain the development of internal representations and thus conceptual 

networks. In addition, the symbols viewed on a calculator display refer to abstract 

entities which are likely to be absent from pupils’ cognitive structures (Greeno, 1991), 

and if this is the case, new information may be assimilated but not accommodated. 

Thus, if learning using calculators is to take place, it is important that number concepts 

are represented internally in a way that promotes understanding.

Unfortunately, conventional calculator representations do not lend themselves to mental 

model formation and thus conceptual or procedural understanding, for several reasons. 

Firstly, although calculators look concrete, they do not give perceptual representations 

to underlying abstractions (e.g. mappings between calculation steps, and evaluation 

sequences). In other words, data which is input remains abstract (i.e. in a symbolised 

format) which itself is unlikely to facilitate accommodation of knowledge and 
conceptual understanding. Secondly, calculators can cause confusion about procedural 

understanding (such as order of operations) due to the logic systems used to implement 

the calculation. Thirdly, calculators do not show intermediate stages of computations 

that could serve to support abstract understanding, and thus help with the construction 

of mental models and the accommodation of knowledge networks. For example, the 

reading of a word problem to the entering of data into a calculator is probably too large 

a step for the understanding of the entities involved, the relationships between the 

entities and the evaluation sequence of an arithmetic expression. Fourthly, calculators 

do not facilitate planning, in particular the editing and reorganisation of data.

The potential pedagogical difficulties with calculator usage affect both teaching and 

learning, and so the next section considers the subsequent pedagogical requirements 

which will be needed to overcome such problems.
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2.2.4 Pedagogical Requirements for Understanding Calculator 

Representations

What pedagogical requirements will be needed to facilitate the teaching and 

understanding of calculator representations? This is the fundamental question to be 

addressed. The specific pedagogical requirements will need to include the order in 

which information from a problem statement is both used and represented.

The logical order in which a user would need to consider information depicted in a 

problem statement when he/she uses calculator representations during problem solving 

is shown in points 1 to 7 below. Of course, users may depart from this order - e.g. 

revisiting earlier steps to remind themselves.

1. Identify the entities from a problem, and then represent them using a familiar 

concrete format

2. Identify the relationship between one entity from a set, with an entity from a different 

set (i.e. identify one entity per other entity - e.g. one book per shelf).

3. Identify a class of entities (e.g. several books) using the concrete format, and then 

assign a number to state how many (e.g. 4) using an intermediate representation which 

lies between the concrete format, and the abstract symbols used with the calculator.

4. Identify the relationships between the entities using the intermediate representation.

5. Convert the intermediate representation to the abstract notation used with the 

calculator.

6. Carry out computations with the calculator, and use the intermediate representation to 

assist with order of operations.

7. Scaffold the concrete format away over time.

The above pedagogical requirements should provide pupils with a teaching/learning 

situation that will facilitate arithmetic understanding when calculator representations are 

used. However, a remaining issue concerns the technology that can best meet these 

requirements. This is considered below.
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2.3 What Technology Can Be Used to Achieve the Above Pedagogical 
Requirements?

Computer-based representations offer a preferable means of meeting the above 

pedagogical requirements based on the psychological and educational theories referred 

to earlier (see Section 2.2), for three fundamental reasons. Firstly, a specific program 

architecture may be built, and a suitable interface designed, to optimise teaching and 

learning. Secondly, representations may be explored to enhance learning using 

visualisation, metaphors, and direct manipulation. Thirdly, representations can be 

exploited via the computer interface to facilitate: (a) the linking of visually concrete 

objects to abstract arithmetic expressions; and (b) the construction and use of mental 

models to promote understanding (Dörfler, 1993).

Having stated that computer-based technology offers an optimal means of teaching 

calculator representations, it will be argued that external representations used in current 

educational software do not lend themselves to the teaching and understanding of 

calculator representations for the solving of arithmetic expressions based on initial 

problem statements. The following section outlines the pedagogical problems with such 

software for teaching calculator representations in the domain of arithmetic.

2.4 Computer-Based Technology and its Pedagogical Problems

2.4.1 Software Which Focuses on Arithmetic Computations

Computer assisted Learning (CAL) programs tend to focus on the arithmetic 

computations required for the solving of numeric expressions. For example, a typical 

drill and practice (i.e. early CAL) program presents users with expressions such as: 9 *

5 = __(as described in Solomon, 1986). Feedback messages, such as TRY AGAIN are

shown if an incorrect answer is given. Some CAL programs provide more sophisticated 

feedback, such as: Good, and Now it’s right, in response to information input by users 

(e.g. Tait, Hartley, and Anderson, 1973). The CAL programs MUMATH (as described
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in Heid, 1990) and TOONTALK ARITHMETIC (Kahn, 1996), allow algebraic and 

simple arithmetic expressions respectively to be input and evaluated, but unlike their 

predecessors do not give written feedback regarding answers, since these systems 

perform computations automatically.

BUGGY (Brown and Burton, 1978), is an intelligent tutoring system (ITS) which goes 

further by diagnosing arithmetic performance. The program enables users to establish 

the procedural mistakes that could be made during numeric problem solving. Arithmetic 

expressions are presented vertically to make a pupil’s working environment as close as 

possible to the pencil and paper way of writing arithmetic. For example:

1 8

+ 6

23

The computer plays the part of the pupil, and produces feedback in the form of incorrect 

answers to arithmetic problems, as shown above. The user attempts to identify the 

procedural error or bug that resulted in the incorrect answer. Once the bug has been 

discovered, the computer asks the user to describe it. The learner is then given five 

problems to solve, but he/she has to answer them incorrectly by utilising the procedural 

bug that has just been found.

ITSs that provide more detailed feedback of computation procedures are those of 

Attisha and Yazdani (1983), and Attisha and Yazdani (1984). Users attempt to answer 

problems correctly, and the system feedback informs pupils whether answers are correct 

or incorrect and what the possible causes of error are. As with BUGGY above, the 

problems are presented in traditional column format. An example of the computer 

output for a subtraction problem (refer to Attisha and Yazdani, 1983) is shown below.

ENTER TOP NUMBER 730

ENTER BOTTOM NUMBER 185

730 IF NUMBERS CORRECT
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-185 TYPE Y ELSE TYPE N 

Y

TYPE YOUR ANSWER 

655

YOUR ANSWER IS WRONG 

POSSIBLE CAUSES OF ERROR:

YOU DID NOT BORROW, IN EACH COLUMN YOU SUBTRACTED THE 

SMALLER DIGIT FROM THE LARGER ONE.

WOULD YOU LIKE TO TRY AGAIN TYPE Y IF YES

Y

730 THESE ARE YOUR 

- 185 NUMBERS AGAIN

ENTER ANOTHER ANSWER 

545

YOUR ANSWER NOW IS CORRECT

More recent ITSs have concentrated on fraction computational procedures (e.g. the 

Fraction Intelligent Tutoring System, FITS - Nwana, 1993; and FRACT-2, referred to in 

Dumont, 1993). With the former system, questions (e.g. 'A + Vi) are presented, and 

computer feedback is provided through the use of hints (e.g. What operation do you 

want to perform?), or by prompting users to choose one of several options (e.g. Sum the 

whole numbers). The dialogue interaction between pupil and tutor continues until the 

answer is arrived at. The feedback used in the latter system provides remedial 

information that explains how an incorrect answer could have been arrived at by a user. 

Thus, if the wrong answer of 7/9 was given to the problem: 31/18 + 11/4, then the
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system would suggest that the incorrect numerator answer occurred by adding the 

numerators and dividing by 6. Similar mal-rules for incorrect denominator answers are 

also provided. The idea underlying the system is that similar errors may be avoided in 

the future.

2.4.2 Pedagogical Problems with the Above Software when Representations 

needed for Calculator Understanding are used to Solve Arithmetic Problems

Both the CAL and ITS software described above concentrate solely on arithmetic 

computation procedures. In addition, the systems either do not give users control over 

calculation procedures (i.e. the computer arrives at an answer without articulating its 

behaviour - “black-box” approach), or they emphasise traditional pencil and paper 

methods of computation as opposed to multi-operator calculator calculations. Such 

systems will not promote conceptual understanding largely because users are 

constrained to text-based representations that depict abstract mathematical symbols. 

Therefore, understanding a particular computation procedure (e.g. how to subtract 2- 

digit numbers from each other, or how to add two fractions) is not a sufficient 

requirement for solving arithmetic problems when: (a) they are presented in statements; 

and (b) a calculator is to be used for evaluations.

Although diagnosis of particular computation procedures is valuable, fundamental 

aspects of the pedagogical requirements outlined in Section 2.2 (points 1-7) are not met 

by this type of software. These are: identifying and representing entities from a problem 

statement in a concrete way (point 1); using an intermediate representation which lies 

between concrete graphics and abstract notation (point 3); identifying relationships 

between the entities (point 4); using an intermediate representation to facilitate the 

transition from concrete forms to abstract symbols (point 5); and using the calculator 

and intermediate representations to help with order of operations understanding during 

calculator computations (point 6).

Since the types of software described in this section neglect the above pedagogical 

requirements, such systems will not be considered further. Instead, the following
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sections will overview software that meets the pedagogical requirements of Section 2.2 

to a greater extent.

2.5 Software Which Helps Define Entities and Entity Relationships

Q-MOD (as described in Boohan, 1994), is a calculation program which conveys 

arithmetic understanding by using linked boxes and arithmetic operators to enable 

pupils to investigate modelling situations, such as the effect of exercise on body weight. 

Tools are provided which allow users to create, move, and delete boxes and links, and 

change the values of variables. Q-MOD visually represents the way in which the 

variables are related to each other. Therefore, with respect to the pedagogical 

requirements in Section 2.2, the program helps users identify and define entities from a 

problem (point 1), and identify relationships between the entities (point 4). 

NUMERATOR (as described in Boohan, 1994) achieves the pedagogical requirements 

(points 1 and 4) by using the metaphor of tanks (to represent storage) and pipes (to 

represent flow through the system) via arithmetic operators. A similar program WORD 

PROBLEM ANALYST (as described in Kaput, 1992), uses metaphors of “notecards” 

and arrows. Users input quantities on the notecards, and then the quantities are linked 

by literally drawing arrows from one notecard to another.

Software, such as: PLANNER (Schwarz, Nathan, and Resnick, 1996); and ANIMATE 

(Nathan and Resnick, 1993); help users plan and solve word problems. These systems 

meet two of the pedagogical requirements in Section 2.2. That is, the systems give users 

control over word problem entities (point 1) and allow relationships between them to be 

identified (point 4). This is achieved through the use of visual graphics that enable 

problem situations to be depicted in meaningful ways. An example of a word problem 

used with PLANNER is: “Five children were playing a game together. Three more 

children joined them in the middle of the game. How many children participated in the 

game?” (Schwarz, Nathan, and Resnick, 1996, p. 63). Other software which helps 

define word problem entities and entity relationships is EDUCE (LeBlanc, and Russell, 

1989), TAPS (Derry, Hawkes, and Diefenbach, 1993), and SEMCALC (Schwartz, 

1982).
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2.5.1 Pedagogical Problems with the Above Software when Representations 

needed for Calculator Understanding are used to Solve Arithmetic Problems

In a similar way to the author’s system described in Chapter 4, Q-MOD, 

NUMERATOR, and WORD PROBLEM ANALYST, are extremely useful systems 

insofar as they enable problem situations to be constructed and represented in concrete 

ways at the interface. However, with respect to the pedagogical requirements of Section 

2.2, there are two fundamental distinctions between the above systems and the author’s. 

Firstly, no intermediate representation is used to: (a) facilitate the transition from the 

concrete to the abstract (point 3 of the pedagogical requirements), (b) identify 

relationships between entities (point 4), and (c) help transfer from concrete graphics to 

abstract arithmetic notation (point 5). Secondly, calculation procedures - such as order 

of operations (point 6) are not addressed where multiple operators form part of an 

evaluation. This latter problem is highlighted by Kaput (1992), who states with 

reference to WORD PROBLEM ANALYST, that the “program...does all the computing 

and inferring...” (p. 536).

2.5.2 Software Which Uses Multiple Representations to Facilitate 

Understanding

DERIVE (as described in Kaput, 1992) serves as a computational aid for simple and 

complex expressions, and also makes use of graphing utilities, thereby providing 

different types of representation to facilitate learning. MATHCAD (Mathsoft Inc.,

1995) also uses more than one type of representation, since the system has the ability to 

compute the values of algebraic statements and then graph them. Such software 

therefore assists learning by showing abstract symbols in a different and more 

concretised format. Thus, the pedagogical requirement of converting representations 

from concrete to abstract (point 5) is met if graphs are considered as being an 

intermediate representation (i.e. they are neither familiar concrete forms nor abstract 

notation).

Some software provides a more interactive learning environment. For example, 

THEORIST (as described in Kaput, 1992) enables algebraic manoeuvres to be carried
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out via an interface where users are able directly to manipulate algebraic expressions. 

Thus, variables can be isolated by a user dragging-and-dropping parts of an expression. 

This system gives users greater control over algebraic manipulations, and could help 

with the identification of entities in a problem (point 1 of the pedagogical 

requirements), although the entities would not be represented in a familiar concrete 

form.

An arithmetic program designed for the early primary age range which utilises concrete 

visual graphics and direct manipulation, is BLOCKS (Thompson and Thompson, 1990). 

BLOCKS is a mathematical microworld which uses two notational systems (traditional 

numeral and Dienes base-ten blocks) as a means of concretising abstract arithmetic 

notation and subsequent computations. For example, the symbolic number 2462 may be 

represented in a more concrete way using the expanded blocks: 2 cubes, 4 flats, 6 longs, 

and 2 units. In order to carry out addition, the computer screen is split into two with a 

vertical dividing line. Using direct manipulation, various blocks are dragged using a 

mouse, and dropped in each of the two areas by a user. When Combine is clicked, the 

vertical dividing line is removed, and the blocks are considered as one collection, thus 

representing addition. This system of visualisation means that the abstract operator 

symbol (+) is not used, but inferred. The pedagogic requirements (see Section 2.2) of: 

identifying entities and representing them using a familiar concrete format (point 1); 
and identifying a class of entities using a concrete format (point 3); are therefore met 

with BLOCKS. The BLOCKS microworld makes the constraints of decimal numeration 

explicit because the constraining nature of the two notational systems serves to foster 

reflection. In other words, users are constrained to compare the actions of symbol 

notation with the actions using the base-ten blocks, thereby facilitating the building of 

new knowledge structures. Consequently, this design should enable the concrete blocks 

to be scaffolded away over time (point 7 of the pedagogical requirements).

Games software, such as WEST (Burton and Brown, 1982), provides both visual 

graphics and arithmetic notation to support learning. The playing pieces (a stagecoach 

and a train) race against each other, and through interaction with the game, pupils gain 

computation skills. A player makes up an arithmetic expression using three computer 

generated numbers, by inputting addition, subtraction, division, or multiplication
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operators, as well as parentheses. The user computes the result, and then types the 

completed statement into the computer (e.g. 3 x (5 + 2) = 21. If the result is correct, the 

computer moves the playing piece. Pupils gain knowledge regarding computation 

sequences and order of operations (point 6 of the pedagogical requirements). WEST is 

an ITS, and during user interaction the system coaches by offering suggestions 

regarding the computation of arithmetic expressions, so that play may be maximised. 

Burton and Brown (1982) point out that the computer coach follows a “glass box” 

approach, because a user’s poor move is compared with the requirements needed to 

make a better move. The coach then offers a better move together with an explanation. 

Thus, a user can see the association between the explanation and the move. Burton and 

Brown (1982) point out that WEST is based on a constructivist pedagogy, where the 

underlying approach is “guided discovery learning” (p. 80).

Other games programs which use concrete graphics and arithmetic notation, but do not 

employ coaching, include SUBTRACT WITH STICKS and RUBBER STAMP (as 

described and illustrated in Solomon, 1986). Such programs assist with the 

identification of entities through the use of concrete icons (point 1 of the pedagogical 

requirements), and also help with the correspondence between graphics and arithmetic 

notation.

2 . 5 . 3  Pedagogical Problems with the Above Software when Representations 

needed for Calculator Understanding are used to Solve Arithmetic Problems

A fundamental problem with THEORIST is that it does not provide a situated learning 

environment to promote meaningful learning, since direct manipulation is simply 

carried out with conventional abstract algebraic expressions. In addition, with 

BLOCKS, DERIVE, MATHCAD and THEORIST, entity relationships and arithmetic 

evaluation procedures with calculators are not addressed once appropriate information 

has been elicited from the semantics of a problem. Therefore, three fundamental 

pedagogical requirements of Section 2.2 are not met. Firstly, the relationships between 

entities (point 4). Secondly, the use of an intermediate representation which lies 

between the concrete and the abstract formats (point 3) and thirdly, computation 

procedures (point 6).
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The game WEST provides both a situated learning environment and useful feedback 

regarding computation procedures. However, the following pedagogical requirements 

are not met if information needs to be extracted from a problem statement prior to 

computation. Firstly, the identification of entities (point 1), secondly, the use of an 

intermediate representation which lies between the concrete visual graphics and the 

abstract arithmetic notation (point 3), thirdly, the relationships between entities (point 

4); and fourthly, the conversion of the intermediate representation to the abstract 

notation used with calculators (point 5). The fundamental problem with software such 

as, RUBBER STAMP and SUBTRACT WITH STICKS is the lack of an external 

intermediate representation to facilitate understanding between the use of the concrete 

visual representations (i.e. dots on stamps and bundles of sticks) and the equivalent 

abstract symbolic representations (e.g. 5 + 5 + 5 = 15 and 43 - 25, respectively). Thus, 

points 3 and 4 of the pedagogical requirements in Section 2.2 are not met.

2.5.4 Overall Pedagogical Problems with Current Software for Understanding 

Calculator Representations

Two fundamental problems remain to be resolved to support the teaching and learning 

of arithmetic calculator computations based on initial problem statements. Firstly, 

although current software has gone some way towards meeting the pedagogical 

requirement for an intermediate representation (e.g. through the use of visually concrete 

screen images), the fundamental requirement which is not fully met is an intermediate 

representation designed specifically to help with the transfer from word problem 

information to: (a) an arithmetic expression; (b) arithmetic computations; and (c) the 

abstract notation of calculators. Secondly, current software does not free users from 

order constraints with regard to the sequence in which computer procedures (e.g. 

movement between representations) at the interface have to be carried out.

Having considered the pedagogical requirements and the associated problems with 

educational software, the following section moves on to outline a solution which meets 

the pedagogical inadequacies of current software.



32

2.6 Multiple, Equivalent, Linked Representations (MELRs): an Approach 

to Satisfying the Pedagogical Requirements

MELRs are particularly suitable for learning and understanding concepts and 

procedures in the domain of arithmetic. This is because multiple representations present 

information in more than one form, with the intention that one representation should 

provide information that the others lack. If different representations are also equivalent 

and linked, then the computer-based learning environment becomes a powerful 

educational tool to facilitate pupils’ understanding. The terms multiple, equivalent, and 

linked are described below.

2.6.1 Multiple Representations

Having more than one representation enables information that is lacking in one to be 

supplied in the other(s) (e.g. a diagram could be used to support text). Thus, multiple 

systems of representation may be used to facilitate understanding as a result of the 

actions carried out in one representation being reflected in the other representations. 

Consequently, when learning arithmetic, if not all aspects of a concept can be 

adequately represented with a single notation system, other representations may be used 

to convey information. For example, PLANNER (Schwarz, Nathan, and Resnick, 1996) 
uses representations that depict concrete graphics and abstract arithmetic notation. The 

system helps pupils plan and solve arithmetic word problems of the type: “Five children 

were playing a game together. Three more children joined them in the middle of the 

game. How many children participated in the game?” (Schwarz, et al., 1996, p. 63). The 

above problem is represented by a train that is 5 units long (the number 5 is shown 

above the train). The train is then loaded with 3 units by a load machine (this is added to 

the end of the train, and + 3 is shown). The final number of children is then represented 

by a piece of track (on which the train is standing) which is 8 units long (i.e. the train 

and the added load combined).
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2.6.2 Equivalent Representations

In addition to using multiple representations, the conceptual equivalence of different 

types of representation also helps to promote understanding. Larkin and Simon (1987) 

distinguish between informational and computational equivalence of representations. 

Multiple representations are informationally equivalent when all the information in one 

is inferable from the others, and vice versa. Representations are computationally 

equivalent if the following two criteria are met: (a) they are informationally equivalent; 

and (b) inferences drawn from explicit information in one representation can be easily 

drawn from explicit information in the other representations, and vice versa. Since the 

information seen in each representation is structurally different (but equivalent), the 

information will be conveyed differently (but equivalently). This helps pupils make 

inferences within and between representations, and thus serves to enhance 

understanding.

An example of the use of equivalent representations is the study by Ainsworth, Wood, 

and Bibby (1996). They examined the effects of three informationally equivalent 

multiple representations to assess how the representations influenced the learning of 

estimation in primary school children aged 10/11 years. The multiple representations 

were also used to help children learn about their estimation accuracy. The computer- 

based environment CENTS was used with the following representation categories:

Mathematical (a histogram and numeric display)

Pictorial (a “splat wall” and archery target)

Mixed (archery target and numeric display)

Children in all experimental groups (i.e. mathematical, pictorial, mixed) showed 

significant improvement at performing estimation. However, children’s understanding 

of their estimation accuracy improved only with the mathematical and pictorial 

representations. The study concluded that computer-based learning environments 

should support the user co-ordination of multiple representations in order to promote 

deeper mathematical understanding.



34

2.6.3 Linked Representations

Having links between multiple equivalent representations facilitates translation between 

them and thus serves to further enhance understanding. Linked representations enable 

an action (either on command or automatically) in one representation to be reflected in 

another linked representation. Representations which are linked, enable users to transfer 

between equivalent, but structurally different multiple representations. Kaput (1992) 

points out that a computer enables a dynamic, interactive medium to operate between 

linked representations, whereas with other static media, e.g. text and diagrams in books) 

there are no linkages between actions except cognitive ones. Therefore, with 

conventional teaching resources, it is not possible to dynamically link representations 

during learning. Kaput (1989) developed a computer-based learning environment to 

support multiplicative reasoning in primary school mathematics. The system facilitates 

concrete to abstract thinking through the use of multiple, linked representations which 

include familiar icons, text and digits. The concrete icons (e.g. apples) are linked to 

abstract arithmetic expressions, thus providing a “bridge” to promote understanding. An 

example of a problem that can be used with the system is: “How many apples will be 

needed altogether if four children are to get three apples each?” (Kaput, 1989, p. 38).

2.7 Usability Requirements

Usability will be assessed in two ways:

2 .7 .1 Design Issues Raised from a Cognitive Walkthrough

A cognitive walkthrough is a formalised way of imagining users’ thoughts and actions 

when they use an interface for the first time. It is a methodology for performing theory- 

based evaluations of interface design (Poison, Lewis, Rieman, and Wharton, 1992). 

Reasons for evaluating a design without users are:

The design should be problem free. In other words, users should not have to waste time 

on trivial bugs - these should have been caught earlier - hence the cognitive 

walkthrough.
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A good evaluation (i.e. a cognitive walkthrough) can help catch problems that may not 

be revealed by only a few users.

Shortcomings in the design specification may be uncovered.

Appendix 1 gives further information concerning cognitive walkthroughs. The results of 

the cognitive walkthrough during the design of ENCAL are given in Chapter 4.

2.7.2 Usability Requirements Using Cognitive Dimensions

The above descriptions indicate that MELRs have the potential for meeting the 

pedagogical requirements detailed in Section 2.2. To this end, the use of information 

technology to develop an approach to teaching about number using calculators via the 

use of MELRs is appropriate. Consequently, in the next chapter a specific MELR 

approach is developed with the aim of satisfying the pedagogical requirements. 

However, before this there is a need to address what the usability requirements of the 

system are.

The usability of the interface is crucial because a well-designed pedagogy will be no 

use unless it enables pupils to interact in an appropriate way to support learning. Since 

MELRs are more complex than single representation systems, usability is a much more 

important issue. The Cognitive Dimensions (Green, 1989; Green and Petre, 1996; Green 

and Blackwell, 1998) approach is particularly appropriate when considering user- 

system relationships. This is because cognitive dimensions provide a set of terms (i.e., a 

checklist) that enable the structure of the software to be considered, the pattern of user 

activity to be described and subsequent improvements to be made. In addition, 

cognitive dimensions provide a “lightweight” approach to usability, as opposed to more 

“heavyweight” methods such as GOMS (i.e. Goals, Operators, Methods, and Selection 

rules). For further information concerning cognitive dimensions refer to Appendix 2.

Green and Petre (1996) discuss cognitive dimensions in the context of visual 

programming language design when considering the programming operations needed to 

achieve specific user goals. However, the cognitive dimensions approach applies to all 

information artefacts (Green, 1989) and is therefore relevant to computer-based learning 

environments.
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The five cognitive dimensions below are particularly relevant to the usability of the 

software designed by the author in this thesis. They have been considered with regard to 

(a) user actions carried out at the interface and (b) subsequent system behaviour.

Closeness o f Mapping. To support understanding whilst using an interface, mapping 

between the problem world and the world of the computer-based environment should be 

as close as possible. According to Green and Petre, the closer the mapping, the easier 

the problem solving ought to be. The games software SUBTRACT WITH STICKS and 

RUBBER STAMP provide some closeness of mapping between problem statements 

and subsequent computer-based problem solving through the use of concrete visual 

images and abstract arithmetic notation. The TAPS system gives some closeness of 

mapping, but to a lesser extent since only abstract tree constructions and text are used at 

the interface. The system in this thesis uses an intermediate representation to facilitate 

the transition from concrete to abstract representations, and vice versa. The intermediate 

representation serves to provide a closeness of mapping between problem entities 

depicted in the concrete representation, and subsequent calculator calculation 

procedures carried out in the abstract representation. A detailed description of the 

concrete, intermediate, and abstract representations is given in Chapter 3. The approach 

outlined in Chapter 3 seeks to maintain a close mapping.

A b s tr a c tio n  B a rr ie r . Abstractions used at an interface may vary in their comprehension 

difficulty. The abstraction barrier is determined by the least number of new abstractions 

that must be understood before a system can be used. Notation, text and graphics used 

at a computer-based learning interface should be easily understandable (i.e. meanings 

should be more or less self-evident) and require little mental effort to comprehend them. 

Some of the text output of the Attisha and Yazdani (1984) software is abstract, since 

unfamiliar terms such as multiplicand and multiplier are used, thus raising the 

abstraction barrier. In the author’s system, the abstraction barrier is reduced because: (a) 

the interface enables open-ended exploration (i.e. users are not overly constrained); (b) 

if part of a representation is not well-formed (i.e. an incomplete or incorrect expression 

has been input), users will be prompted by a graphic to change the existing input; and 

(c) unfamiliar or complicated text is not used.
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Premature Commitment. A user will make a premature commitment at the interface 

when he/she is forced to make a decision before a required piece of information is 

available. For example, with the program TOONTALK ARITHMETIC, to add 2 + 3, a 

user at the interface places the + 3 on top of the 2, and then a mouse runs over to the 

numbers and smashes them together with a big hammer. The sum of the two numbers is 

left behind. This system commits learners to enter data in a given order and direction 

(i.e. towards evaluation) and in a way which may be unfamiliar to their current 

understanding. Similarly, the use of parentheses with a calculator commits pupils early 

on to a specific evaluation sequence. The author’s system reduces premature 

commitment by giving users a wider scope of decision-making opportunities regarding 

evaluations. Thus, users may translate actions at the interface either forwards towards 

evaluation, or backwards towards the problem statement. In addition, parentheses may 

or may not be used either early or late in calculation procedures.

Viscosity. Viscosity is resistance to change, and refers to the amount of work a learner 

has to input at the interface to bring about a small change in the system’s behaviour. 

Thus, the lower the viscosity, the easier it is for pupils to interact and learn. Intelligent 

software which uses dialogue as the interactive medium (e.g. FITS) tends to have a high 

viscosity because a list of options or dialogue has to be read, a selection has then to be 

made or text has to be entered, and then an action is carried out. However, in the 

author’s unintelligent system, viscosity has been reduced at the interface: (a) through 

the use of multiple, equivalent, linked representations - which means that a single move 

(e.g. either entering a digit or a graphic) in one representation results in equivalent 

moves in the other two representations; (b) by allowing users to perform direct 

manipulation (e.g. a single mouse click will produce a graphic at a required location); 

and (c) due to user actions being readily reversed.

Hidden Dependencies. A hidden dependency refers to a relationship that exists between 

two components seen at the computer interface (e.g. text and graphics), where one 

component is dependent on the other, but the dependency is not flilly visible or 

apparent. For example, MUMATH has hidden dependencies in the computation 

procedures. Thus, although an answer is dependent on the expression input, the hidden 

computer algorithm does not explain how the answer is arrived at, and so there is a

LEED S  UNIVERSITY LIBRARY
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hidden dependency. Ideally, a system should have no hidden dependencies, since they 

can hinder comprehension either within a single representation, or between multiple 

representations. However, a possible drawback of making all dependencies visible is 

that this may lead to an increase in viscosity (see point 4 above). Within a computer- 

based learning environment, a trade-off has to be achieved between having too few and 

too many hidden dependencies if the system is to meet specific educational 

requirements. In the author’s system, hidden dependencies are reduced between the 

three equivalent representations as a result of dynamic linking and concurrent 

presentation. This enhances usability by facilitating the comparing and subsequent 

understanding of information between each representation - which needs to be clear 

from the outset. However, there are some hidden dependencies within representations, 

such as the sequence of computations and the use of parentheses. This has been done in 

order to foster reflective thinking and/or teacher-pupil collaboration whilst teaching 

order of operations. That is, these hidden dependencies may be described as follows: a 

calculation sequence depends upon parentheses if input, but if parentheses are not 

shown, there is a hidden dependency in terms of what the calculation sequence depends 

upon.

2.8 Summary

The pedagogical requirements that form the basis of the computer-based learning

system are:

• Identify the entities from a problem, and then represent them using a familiar 

concrete format.

• Identify the relationship between one entity from a set, with an entity from a 

different set.

• Identify a class of entities using the concrete format, and then assign a number to 

state how many using an intermediate representation which lies between the 

concrete format, and the abstract symbols used with the calculator.

Identify the relationships between the entities using the intermediate representation.
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• Convert the intermediate representation to the abstract notation used with the 

calculator.

• Carry out computations with the calculator, and use the intermediate representation 

to assist with order of operations.

• Scaffold the concrete format away over time.

The corresponding usability requirements gleaned from a Cognitive Dimensions

analysis are:

• A closeness of mapping is provided between a problem and the computer-based 

environment.

• The abstraction barrier is reduced at the interface thereby enhancing user-computer 

interaction.

• Where feasible, premature commitment is prevented with regard to decision 

making.

• Viscosity is reduced at the interface to facilitate usability.

• Hidden dependencies are omitted between representations, but have been input 

within representations during computations.

• Usability will also be assessed using a cognitive walkthrough.

In the next chapter, the specific usability of the MELRs is developed with regard to the 

computer-based learning system.
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Chapter 3

The Specific Pedagogical Solution

3.1 Introduction

In Chapter 2 it was pointed out that the general pedagogical solution to the difficulties 

of understanding abstract calculator representations will best be addressed by providing 

an interface which uses multiple, equivalent, linked representations (MELRs). In this 

chapter, the specific solution is addressed with regard to the pedagogical and usability 

requirements. To this end, Section 3.2 refers to how the author’s computer-based 

learning system - Entities, Notation, Calculator (ENCAL), specifically meets the 

pedagogical requirements. Section 3.3 outlines two further issues crucial to the learning 

process. These are user control of the system and the rationale underlying the term 

computer-based environment. Finally, Section 3.4 summarises the chapter.

3.2 Specific Solution to the Pedagogical Requirements

It was stated in Section 2.2 that understanding in individuals is influenced by external 

situations, and that computers provide a powerful learning medium for using external 

representations. This is primarily because with a computer, specific representations may 

be built to suit the educational requirement and thus optimise teaching and learning. 

This versatility is apparent during problem solving when computer-based 

representations may be explored to enhance learning using three methods. Firstly, 

visualisation, since computer graphics enhance our ability to think visually. Secondly, 

metaphors to promote abstract understanding and thirdly, direct manipulation to 

simulate the real world through the movement of concrete graphics. Thus, the 

representations used at the interface can facilitate the linking of visually concrete 

objects to abstract arithmetic expressions and the construction and use of mental models
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to promote understanding. Computer-based multiple, equivalent, linked representations 

(MELRs) are particularly useful in this respect for the teaching and learning of 

arithmetic, as described below.

3.2.1 Using MELRs to Meet the Pedagogical Requirements

Based on what has been stated in the above paragraph, specific MELRs will be used to 

meet the pedagogical requirements outlined in Section 2.2. The MELRs will facilitate: 

(a) the translation of problem information to subsequent computations; (b) the 

conceptual understanding of an arithmetic expression; (c) the procedures required for 

calculator evaluations; and (d) the mapping of symbolic information to the formation of 

mental schema particularly where a user constructs a representation. To achieve these, a 

problem statement or an arithmetic expression will be depicted using the following 

three equivalent and linked representational styles:

• iconic (real - world, concrete) representation;

• dataflow (intermediate) representation (also referred to as the datatree);

• calculator (abstract arithmetic) representation.

Readers from other backgrounds (e.g. psychology or computing) may describe the 

above representations using analogous taxonomies. For example, the representations 

may be restated in terms of pictures or icons, structure diagrams (e.g. decision trees), 

and graphs or tables. Whichever taxonomy is used, the appropriate goals should be 

achievable (according to the research) in order to predict any limitations of the current 

visual representations.

In addition, a teacher will need to demonstrate and explain the use and significance of 

each representation.
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3.2.2 Problem Solving Using the Three MELRs

Icon ic R epresentation  (M eeting P ed agog ica l Requirem ents I, 2, 3, and  7, Section 2.2)

Real-world icons are used to represent entities from problem statements and the 

corresponding arithmetic expressions in a more concrete and familiar way. This has 

been done because psychological theory suggests that individuals construct concrete 

mental models of entities, and then elaborate these models by manipulating and 

mentally transforming them (Johnson-Laird, 1983). In other words, a problem statement 

is related to the real world to facilitate understanding in the minds of children (refer to 

Section 2.2. for an explanation of mental models). For example, moving book icons to 

shelf icons simulates the manipulation of objects (i.e. books to shelves) in the real 

world. This direct manipulation of computer graphics serves three fundamental 

purposes during learning: (a) it acts as a spatial metaphor; (b) it enables problem entities 

to be concretised in the minds of individuals; and (c) it enhances the understanding of 

abstract concepts.

The following specific problem statement highlights the use of the iconic 
representation.

John has a collection o f books. There are many bookshelves in his room.

John chooses three shelves and puts four red books on each. John is then 

given two blue books which he later places on another shelf. How many 

books has he in his room?
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The corresponding iconic representation is shown in Figure 3.1 below.

Figure 3.1. Iconic (Concrete) Representation

The 4 x 3 is shown 

as repeated 

addition.

The bookcase 

metaphor simulates 

the grouping action of 

parentheses: namely, 

that 4x3 is evaluated 

separately from +2.

Figure 3.1 indicates how pupils may directly relate the entities described in the problem 

statement to the computer graphics tools provided at the interface (pedagogical 

requirement 1). The iconic representation also helps users identify the relationships 
between sets of entities. In this example, 4x3 (four red books per three shelves) and +2 

(two blue books) are shown in separate bookcases indicating separate groupings or sets 

(pedagogical requirement 2). A user may freely explore with the book and shelf icons to 

create a concrete picture of the problem. This concrete format may then be used to help 

construct the intermediate representation (pedagogical requirement 3). Furthermore, the 

scaffolding provided by the concrete format may be faded over time as users become 

more proficient with the intermediate and calculator representations (Pedagogical 

Requirement 7).

D ataflow  R epresentation  (M eeting P ed a g o g ica l R equirem ents 3, 4, a n d  5, Section  2.2)

The dataflow representation facilitates conceptual and procedural understanding 

between the concrete (iconic) and the abstract (calculator) representations. This is 

because the dataflow is an intermediate representation that serves as a pedagogic link
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due to the fact that it is neither wholly concrete nor wholly abstract. The intermediate 

dataflow representation is designed to help a user more easily translate information both 

towards evaluation and, if necessary, from evaluation back to the problem. The datatree 

does this by providing a conceptual bridge (or pedagogical link) between the concrete 

icons and the abstract symbols that will be used during calculator data-entry. In 

addition, the datatree enables users to carry out arithmetic manipulations prior to using 

the calculator for evaluations. Figure 3.2 shows the intermediate representation for the 

problem given in the iconic representation.
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Figure 3.2. Dataflow (Intermediate) Representation

The rectangle is 
equivalent to the 
bookcase used in the 
iconic representation.

users to appreciate the 
calculation direction and

The use of arrows enables

sequence.

It can be seen from Figure 3.2 that numbers have now been assigned to replace the 

concrete books and shelves (pedagogical requirement 3). The relationship between 

entities is also shown using directional arrows (pedagogical requirement 4). In addition, 

a rectangle is now used in place of the bookcases. Rectangles are more abstract in their 

meaning than the grouping metaphor depicted by the bookcases in the iconic 

representation. Specifically, the rectangle shown around the 4x3 in Figure 3.2 indicates 

two concepts: (a) that this is a calculation step; and (b) this step takes priority in the 

evaluation sequence. Even if the rectangle metaphor is not used, the 4x3 is grouped on 

one side of the datatree to help clarify that the multiplication operation needs to be treat 

separately from the addition operation. This semi-concrete representation may then be 

used as an aid when the dataflow information needs to be converted to abstract 

arithmetic notation for calculator data entry (pedagogical requirement 5). It will be 

noticed from Figure 3.2 that answers are shown for each calculation step (i.e. 12 and

1 Figure 3.2 is an early version of the system, and it was later decided not to show answers following each 
calculation step. The reason for this was that users could take computer generated answers literally 
despite them being incorrect with regard to a question statement.
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C alcu la tor R epresentation  (M eeting P edagog ica l Requirem ent 6, Section  2.2)

This is the most abstract of the three representations, and enables the formal system of 

mathematics notation to be depicted using a calculator. The calculator may be used 

either in arithmetic (four-function) or scientific (algebraic) format. The calculator 

syntax can be compared concurrently with the equivalent dataflow and iconic 

representations to facilitate the understanding of calculation procedures. In addition, the 

behaviour of the calculator in terms of calculation sequence and answers to individual 

calculation steps, in either the arithmetic or scientific mode, is displayed and recorded 

next to the calculator. Users may then return to particular calculation steps to scrutinise 

possible sources of confusion with a calculation sequence. The calculator representation 

for the above problem is shown in Figure 3.3.

The abstract arithmetic notation is shown above the calculator in Figure 3.3. The 

calculator is in the scientific mode, and it can be seen that the complete expression is 

broken into two calculation steps for the evaluation: (i) 4x3 and (ii) 12+2. This record 

of events is designed to help users appreciate the logic system used by the calculator in 

either the scientific or the arithmetic mode. The use of the dataflow representation in 

conjunction with the calculator is designed to assist with the computation sequence 

when parentheses are used and the order of operations when no parentheses are used 

(Pedagogical Requirement 6).
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Figure 3.3. Calculator (Abstract) Representation

The parentheses 

are equivalent to 

the bookcases and 

rectangle used in 

the other two 

representations.

A record of the 

calculation 

sequence is shown 

below the 
calculator.

Pupils may count the book icons in the iconic representation to arrive at an answer, and 

may not resort to the use of the intermediate or calculator representations. However, the 

system is designed to be an exploratory, open-ended teaching and learning environment 

which provides the opportunity to discover how abstract arithmetic expressions are: (a) 

arrived at from problem statements; and (b) evaluated with a calculator.

3.3. Two Issues Crucial to the Learning Process

Although MELRs are used to meet the pedagogical requirements, two further issues 
have also been taken into account in order to enhance learning. These are concerned 

with the amount of control a user has when interacting with the system, and the 

influence on learning imposed by the computer-based environment. These two issues 

are described below.
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1. U ser C ontrol o f  the C om puter-B ased Learning System

ENCAL attempts to overcome the constraints of user control imposed by other 

computer-based systems (refer to Section 2.3 for pedagogical problems of other 

systems). In particular, users are free to explore the learning environment without being 

constrained to carrying out actions in a pre-determined order. For example, learners 

may consider entities first using the concrete icons at the beginning of problem solving 

if desired, or go directly to the calculation sequence using the intermediate and/or 

calculator representations. Furthermore, both user control and understanding are 

enhanced due to the three representations being dynamically linked. This enables users 

to translate their actions either from familiar concrete icons to abstract arithmetic 

symbols or from abstract symbols to concrete icons (i.e. in both directions). The system 

is thus b i-d ir e c t io n a l  as opposed to being uni-directional (i.e. a user is constrained to 
move from a problem to the solution).

User control has also been enhanced as a result of interface changes based on the 

cognitive walkthrough described in Chapter 4.

2. The R ationale U nderlying the C om puter-B ased E nvironm ent

The philosophy behind ENCAL is based on the c o n s tr u c tiv is t  perspective. Therefore, 
the computer environment only becomes m e a n in g fu l through the process of interaction 

between a human cognitive system (i.e. user) and the environment. Thus, during 

interaction users are able to perceive representations/constructs of the environment 

since these will receive individual meaning by users. Consequently, the environment 

will influence the learning process.

The learning process is s itu a te d . Thus, a learner’s experience is contained (i.e. situated) 

within the computer-based environment. Such situated learning provides a more optimal 

environment for the construction of schema. In other words, what is b e in g  le a r n e d  (e.g. 

an evaluation sequence) is supported by the le a rn in g  c o n te x t (i.e. the arithmetic world 

of the computer-based learning environment).

Within the learning environment, e n titie s  are used as cognitive objects (Greeno, 1983) 

to facilitate understanding. In addition, the environment facilitates r e f le c t iv e  a b s tra c tio n
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(e.g. arguments during pupil-teacher interaction) which helps the construction of 

abstract mental structures, mapping between representations, and generalisation of 

procedures during problem solving.

External multiple representations are used within the learning environment and the 

movement between them stimulates reflective abstraction (Lehtinen and Repo, 1996). 

Information in the external representations is linked and this helps the development of 

conceptual knowledge (Hiebert and Lefevre, 1986).

3.4. Summary

Chapter 2 states several pedagogical requirements for understanding abstract symbolic 

information (i.e. calculator usage) during problem solving. The best solution to meeting 

these requirements is a computer-based pedagogy specifically involving the use of 

multiple equivalent, linked representations (MELRs).

Two further issues that are fundamental to the learning process are user control of the 

computer-based environment; and the specific learning environment (i.e. the interface) 

with which a user interacts.

Chapter 4 considers the design specifications of ENCAL.
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Chapter 4

Design Specifications of ENCAL and Design issues

4.1 Introduction

The design of the computer-based learning environment ENCAL is based on the 

theoretical assumption that people learn by constructing and reasoning through the use 

of mental models, whereby understanding and reasoning ultimately become internalised 

(i.e. implicit). Arithmetic understanding is therefore seen as being a form of cognitive 

expertise (Greeno, 1991a) which develops through interaction with the computer-based 

environment. Consequently, the underlying design aim of ENCAL is to maximise the 

quality of learning (Somekh, 1996) as a result of individuals constructing mental 

schema which will influence future thinking. In addition, the system is designed to 

promote learning within a social (as opposed to an individual) context by facilitating:

meaningful user-interface interactions;

active thinking (i.e. the actions needed to explore arithmetic concepts and procedures); 

interface feedback (using tones and text) during problem solving; and 

reflection (individually, with the teacher, and with peers).

Design considerations from a conceptual perspective are set out in the following chapter 

in order to support understanding of the computer-based system design. The conceptual 

design considerations stated below reflect the computer program architecture, and are 

based on the rationale of the above design aim. Initially, Chapter 4 outlines design 

specification 1 of ENCAL. This is associated with the design of the external and 

internal representations. The internal representation is described and illustrated from a 

conceptual perspective in order to highlight its operation despite the fact that the 

programming used to create this part of the system does not exactly match the idea
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depicted. The use of iconsworld language is then explained together with conceptual 

design specification 2. This is concerned with users’ movement of icons at the interface. 

Again, this design is conceptual since it provides an outline of the thinking behind the 

design for the movement of icons, even though the actual programming procedure does 

not exactly match the underlying design as shown. An example of iconsworld language 

is given. The design issues which were considered during the development of ENCAL 

are then stated including the recommendations following a cognitive walkthrough. 

Finally, the chapter is summarised.

4.2 Design Specification 1: External and Internal Representations

4.2.1 The External Representations

There are three external representational styles (iconic, dataflow, and calculator) each of 

which uses its own code taken from the Multimedia ToolBook programming language. 

Consequently, an arithmetic expression resulting from a word problem may be 

expressed in three equivalent ways: concrete (icons), intermediate (dataflow), and 
abstract (calculator). The three representations enable information to be presented in 

static equivalent and dynamic equivalent ways. Static equivalence means that a change 

in one representation (e.g. the addition of two book icons) will be reflected in the other 

two representations, such that the end-state of all three is equivalent. Dynamic 

equivalence implies that any action (i.e. the static state is altered) which occurs in one 

representation will be reflected in the other two representations, such that there is a 

correspondence between actions in the three representations. For example, dragging and 

dropping two books onto one shelf in the iconic representation will result in 

corresponding actions in the dataflow and the expression above the calculator. Dynamic 

changes may be unobservable in all three representations concurrently at the interface, 

however such changes do occur as may be seen in the resulting static states. Static and 

dynamic equivalence form part of the underlying architecture of the ENCAL computer- 

based learning system.
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4.2.2 The use of Multiple Equivalent Linked Representations (MELRs)

The interface makes use of MELRs (multiple equivalent external computer-based 

representations) which are linked . From an educational point of view, the use of 

MELRs will enable users to transfer between equivalent, but structurally different 

representations, and since the information seen in each representation will be 

structurally different (but equivalent), the data will be conveyed differently (but 

equivalently), and this will serve to enhance understanding.

Concurrent Views and Order o f use

A user will be able to have concurrent views of all three external representations. This 

will facilitate understanding concerning the translation of information from problem 

statements to evaluation, the mappings between representations and the sequence 

required for data entry into the calculator. In addition, the representations may be used 

in any order. The order used will depend on the way a user thinks, and also on his/her 

ability. For example, some users may have no need to use the iconic representation, 

whereas others may use it to acquire a more explicit understanding.

Design o f the Concrete Iconic Representation

The benefit of using icons from an educational perspective is that icons represent 

objects and their actions that can be manipulated by a user. The design of the iconic 

representation uses a strong and familiar metaphor of books, shelves and bookcases as a 

means of providing users with the opportunity to represent problem entities (e.g. 

selecting three red books, eight blue books, and four shelves) concretely before 

considering the relationships between them. Thus, the way a pupil approaches a 

problem is not constrained by abstract operators which connect numbers as is the case 

with an algebraic expression.

However, a design and educational drawback with using such a concrete representation 

is that it is not recursive. That is to say, bookcases cannot contain other bookcases. The

2 Refer to Chapter 2 for an explanation of multiple equivalent linked representations.
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icons are therefore unable to represent such expressions as 2x3x5 in a literal format. 

This is because 2x3 is represented as two books on each of three shelves (repeated 

addition) in one bookcase. The x5 cannot be shown within the same or an adjoining 

bookcase since only five shelf icons are stated. Consequently, the use of icons can 

constrain arithmetic expressiveness due to their concreteness. The advantage of using 

icons on the other hand is that they enable relationships to be seen between the entities 

of expressions such as: (2x(3+5)). Currently, the iconic representation enables 

relationships to be shown where expressions include multiplication and/or addition 

operators. The iconic metaphor therefore supports operations that are not inverses of 

each other. This is because most confusion occurs during evaluations when mixed 

operations are used which are not inverses of each other (e.g. + and x) (Ecker, 1989). 

Some users may decide to represent entities, but not show relationships between them 

using the icons. Therefore, a less concrete (i.e. intermediate dataflow) representation 

has been used to overcome the constraints of icon use. The intermediate representation 

is described next.

Design o f the Intermediate Dataflow Representation

The dataflow representation is a recursive tree structure, and has been designed to 

provide a conceptual bridge between the concrete icons and the abstract algebra used 
during calculator calculations. The datatree is more recursive than the concrete icons, 

and enables relationships between entities to be achieved more readily through the use 

of connectors. As with the iconic representation, the datatree enables entities to be 

selected before the relationships are added. However, the advantage of the datatree is 

that there is less constraint on the relationships which may be achieved between entities 

due to the fact that the trees are less concrete.

A “box” metaphor is used to represent the hierarchy in which operations are carried out. 

The reason being that such comparisons help pupils to learn (Carroll and Mack, 1985). 

The box or boxes (i.e. transparent rectangles) positioned over parts of an expression 

indicate the order in which an expression should be evaluated. Thus, users should enter 

data into the calculator representation according to the rules of arithmetic, and not 

simply from left to right. Although the box metaphor does not provide any more 

information than parentheses themselves, it enables transparent boxes to be used
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initially to “dress-up” an expression to get across its meaning. Initially, transparent 

boxes were to be used for immediate attention, and the use of opaque boxes was 

considered for parts of an expression that required delayed attention. However, the use 

of opaque boxes was ruled out because users would be unable to see a whole 

expression, and this could inhibit learners’ interpretations and understanding during 

arithmetic evaluations.

With the ENCAL design, the third and most abstract way of representing a problem 

statement is through the use of algebra and a calculator. The calculator representation is 

considered next.

Design o f the Calculator (Abstract) Representation

With an algebraic (in this case arithmetic) expression, the entities and relationships 

between the entities cannot be represented separately because of the constraining format 

of the written expression. This format provides little information regarding the 

relationships between entities, the translation of information from problem statement to 

arithmetic expression, and the concepts and procedures required to evaluate an 

expression. Algebraic expressions are shown above the calculator, as may be seen in 

Chapter 3. In order to assist understanding, prior to the entering of algebraic data into 
the calculator representation, users will have represented a problem using the icons 

and/or datatree so that the entities have been selected, and relationships between the 

entities have been established. Consequently, the sequence with which abstract algebra 

is to be entered into the calculator, and the relationship between numbers and operators, 

should be better understood. Whilst concurrently viewing the dataflow and calculator 

representations, users can thus input data into the calculator based on arithmetic order 

of operation procedures.

Two types of calculator logic (i.e. four-function (arithmetic) and algebraic notation 

(scientific) have been programmed for use at the interface depending on the educational 

requirement. A switch is provided at the interface to allow the user or experimenter to 

choose.
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4.2.3 Conceptualisation of the Internal Core Representation

ENCAL has been programmed using Multimedia ToolBook. From a conceptual point 

of view, the system works such that an internal core representation serves as the general 

manager of the system in that it interprets data from, and relays data back, to the three 

external representations (i.e. iconic, dataflow, and calculator). The internal core 

representation ensures that the information which comes from the external 

representations is translated into a language they can all read. The primary aim of the 

internal core representation is to ensure that static and dynamic equivalence is 

maintained in the three external representations. The relationship between the internal 

core and the external representations is shown in Figure 4.1.

Figure 4.1. Relationship between the Internal and the External Representations

External Representations at the 

User Interface

REPRESENTATION

Used to interpret and relay 
information from and to the 
external representations.
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Figure 4.1 indicates that users can read and manipulate any of the three external 

representations (i.e. iconic, dataflow, calculator) at the interface, whilst at the same time 

the internal representation ensures that concurrent static and dynamic equivalence is 

maintained between the external representations during user input.

4.3 Design Specification 2. The use of Iconsworld Language

To enable information in the concrete iconic representation to be translated equivalently 

to the other two representations, a language (iconsworld) was developed for describing 

the book and shelf icons.

4.3.1 Conceptualisation for User Actions in Iconsworld

The following design specification was provided in order to devise the iconsworld 

language. The specification below provides a conceptual framework of how the system 

operates, despite the fact that the actual design of the computer program does not 

exactly reflect this outline.

SHELVES:

the interface is divided into columns;

releasing a shelf into a column causes it to snap into place, adding l to the number of 

shelves in that column;

removing a shelf decreases the number;

all the shelves in one column are neatly distributed;

shelves may be moved by dragging and dropping;

shelves may be deleted with a button click.

BOOKS:

books cannot be in a column with no shelf;
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releasing a book onto an empty shelf in a column makes it sit at the left side -  

successive books go side by side in that column;

in a column with a missing shelf, a book snaps to the next shelf down and goes next to 

the previous book;

when a shelf is full, a message is displayed or a warning tone is emitted; 

books may be moved by dragging and dropping;

books cannot be deleted, but may be removed from a shelf and placed in an area outside 

the bookcases.

WELL-FORMED COLUMNS

During user interaction in the iconic representation, the books and shelves placed into 

bookcases must be well-formed if the system is to read the input and translate the 

information to the dataflow and calculator representations. It was therefore decided a 

column is well-formed only if:

• it has one shelf, and all books are either the same colour (i.e. blue or green) or some 

books on the shelf may be blue and some books may be green;

• if more than one shelf is used, the number of books of each colour on each shelf is 

the same.

Example: Figure 4.2 shows books and shelves as may be input by a user in the iconic 

representation.

If unequal numbers of books are placed on shelves in a bookcase, then remedial action 

will need to be taken by a user. In some cases it is expected that teacher support will be 

required in order to assist with this re-forming of books and shelves.
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4.3.2 Iconsworld Language for Describing Icons

The language that describes the icons in Figure 4.2 is stated below. The programming 

utilised does not conform exactly to the procedure outlined below, however this is a 

conceptualisation of how the system has been designed to operate.

Figure 4.2. Books and Shelves Language in the Iconic Representation

[Number of columns:] 2 

[For column 1:]

[Number of shelves:] 1 

[For Shelf 1:]

[Number of books:] 2

[Colour for book 1:] green

[Colour for book 2:] green

[For column 2:]

[Number of shelves:] 3 

[For shelf 1:]

[Number of books:] 3

[Colour for book 1:] blue

[Colour for book 2:] blue
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[Colour for book 3:] green

[For shelf 2:]

[Number of books:] 3

[Colour for book 1:] blue

[Colour for book 2:] blue

[Colour for book 3:] green

[For shelf 3:]

[Number of books:] 3

[Colour for book 1:] blue

[Colour for book 2:] blue

[Colour for book 3:] green

The iconsworld language therefore reads as follows:

2, 1,2, green, green, 3, 3, blue, blue, green, 3, blue, blue, green, 3, blue, blue, green.

4.4 Design Issues

The following design issues were considered during the development of the ENCAL 

system.
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/. Which A rithm etic O perators should  b e  used?

The choice of arithmetic operators is an issue that arose during the design of the system. 

So far, only addition and multiplication operators have been considered for use in the 

design. This is because:

Most confusion occurs during evaluations when mixed operations are used which are 

not inverses of each other (e.g. + and x) (as mentioned above - Ecker, 1989).

The + and x operators can be represented using the book and shelf icons. Subtraction 

and division would be much more difficult to represent in a literal format using the 

icons. A possible solution is that a different icon world could be used to represent each 

of the four operators separately. Thus, relationships could be shown between entities 

which involve one or more operators which are the same (i.e. either all ■*-, or all x, or all 

+, or all -).

Although the restriction of using only addition and multiplication is significant, the 

aims of the study can nevertheless be evaluated using these operators. This issue will be 

considered further in Chapter 10.

2. H ow  M any R epresen tations w ill be  Shown a t O ne Time?

OPTIONS: 

only one; 

any two;

controlled two (e.g. always dataflow and one other); 

all three.

CRITERIA CONSIDERED:

It was thought that:

Controlled two would encourage the use of dataflow as a translation medium.
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All three may lead to cognitive overload (i.e. too much choice may obscure (Plowman, 

1992) and interfere with the learning experience since the underlying structure may be 

inappropriate for a person’s existing schema, and thus the adoption of new schema and 

learning will not take place).

Ease of use needs to be a fundamental consideration.

It was decided that all three representations would be user active and shown 

concurrently because it was felt this would be of greater educational value during 

problem solving. However, bearing in mind the need for a balance between information 

presented and choice, users have been given the option of working with only one 

representation at a time. In this case, all three representations are shown, but hatching is 

placed over the two not in use. Concurrent information is still displayed, but the two 

representations not used are user inactive.

3. The use o f  the Book, Shelf, an d  B ookcase Icons

A choice has been made as to whether 3x4 is represented by 3 shelves, 4 books, or vice 

versa. It was decided to represent the number that precedes a multiplication operator by 

using shelf icons. The number after a multiplication operator is represented by the book 

icons. Thus, with the expression: 1x5, the 1 is represented by one shelf, and the five 

books represent the 5. The book and shelf icons have been used in this way because if 

2x5 is subsequently input, the number of books would remain the same, but the number 

of shelves would change to two. This avoids the confusion of the five books on one 

shelf changing to two books on five shelves. Further comments about this arrangement 

are given in Chapter 5.

The bookcase icons represent and simulate the grouping function of parentheses used in 

arithmetic expressions. The action of the system will depend on which calculator has 

been selected (i.e. arithmetic or scientific). For example, in the scientific mode, the 

expression 2x(3+4) if input directly would be represented by two shelves each with 

seven books split into two sets (e.g. four blue books and three green books), in one 

bookcase. The expression 2x(3+4) would thus be grouped within one bookcase to 

signify that this bookcase is evaluated separately from any books and shelves in other 

bookcases. The bookcases do not indicate the priority for evaluating parts of an
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expression, because at this stage there is no need since users can count the books in 

bookcases to determine an answer. Similarly, if 2x3+4 is input while in the scientific 

mode, the expression is represented by two books on each of three shelves in one 

bookcase, and four books on one shelf in the next bookcase. The fact that two 

bookcases are used indicates that 2x3 is grouped and thus evaluated separately from +4, 

thus following the order of operations rule. A user may count the total number of books 

in the two bookcases that would reveal the answer of ten. As a further example, if 

2+4x3 or (2+4)x3 is entered while in the arithmetic mode, the system reads the 

expression from left to right. Consequently, 2 green books and 4 blue books are 

grouped on each of three shelves in one bookcase giving the answer of 18. However, 

2+(4x3) would result in 2 books appearing in one bookcase, and 4 books on each of 3 

shelves appearing in another bookcase, giving the answer of 14.

4. Two P o ssib le  D a ta tree  D esigns

DESIGN 1. When a datatree is constructed, the rectangle metaphors that simulate 

parentheses could be input automatically by the computer. With this design, a user 

would not be required to “dress up” an expression (i.e. decide which part to evaluate 

first).

DESIGN 2. A variation of design 1 would enable greater user interaction. That is, users 

could select one or more parts of an expression and input rectangles to represent 

parentheses.

WHY DESIGN 2 IS PREFERRED. Design 2 is considered to be better than design 1 

because it will help users to: (a) think before carrying out actions; (b) generate 

questions by themselves, to teachers, or to peers; and (c) facilitate the implicit learning 

of concepts and procedures associated with order of operations.

5. Should A nsw ers be shown A fter Each C alculation  S tep in the D a ta tree?

It was decided not to show answers after each calculation step in the datatree because:

Answers would appear automatically even before data had been entered into the 

calculator and the equals key pressed.
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Equivalence between the three representations would not be maintained since the 

datatree only would show answers.

Showing answers early could be potentially confusing and perhaps wrongly influence 

user thinking.

It was thought that pupils could assume that equals as shown would signify “makes” 

something.
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6. The use of one or two Separate Activity Areas

A fundamental design decision was whether a shelf should be input by the system with 

expressions of the type: 3+2. If not, then books would stand at the bottom of bookcases 

instead of on a shelf or shelves. Consequently, with the expression: 3+2, three books 

would sit at the bottom of one bookcase, and two books would be in another. Therefore, 

from a user’s point of view, the bottoms of bookcases would behave like shelves and 

this could be potentially confusing. This raised another question. Should books that are 

not on shelves be placed in a separate area outside the bookcases (e.g. as with 3+2), or 

should all books be placed on shelves in the bookcases area, so 3+2 becomes lx(3+2)? 

It was decided that all books would appear on shelves when in bookcases. However, it 

was also decided to give users the freedom to play around with and place “loose” books 

outside the bookcases on a carpet area if desired, but these books would not affect 

calculations until placed in bookcases. Thus, only books and shelves within bookcases 

would affect calculation outcomes.

A possible drawback with having two separate areas is that pupils may wonder why 

some books are placed outside bookcases and others are placed inside bookcases. 

However, the benefit of this design is that pupils can select and manipulate books 

without shelves prior to placing books in a bookcase. A benefit of having a carpet area 

is that it provides a space where users can place books, thus avoiding the confusion of 

books being placed at the bottom of bookcases. Another benefit of the carpet area is that 

it gives users the freedom to interact with problem entities in any order - that is, books 

before shelves, or shelves before books. The fundamental benefit of this decision being 

that the constraints of user interaction are reduced. The advantages of placing all books 

on shelves in the bookcase area are as follows:

• to assist the understanding and evaluation of calculations;

• the confusion of having separate activity areas (i.e. carpet and bookcases) for 

calculation purposes is avoided;
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• the bookcases, books, and shelves can be used to represent the actions of 

parentheses or order of operations, whereas the use of the carpet area would be less 

effective and more confusing;

• the layout of arithmetic expressions within the single bookcase area provides greater 

consistency for conceptual understanding.

7. Translation of Information from Icons to the Datatree

It was thought that users would have difficulty translating information from the iconic 

representation to the dataflow representation. Consequently, the following solution was 

considered for the dataflow representation. Firstly, the number of books could be shown 

over a book icon, and the number of shelves could be displayed on a shelf icon. 

Secondly, bookcases could be shown behind the dataflow calculation steps of an 

expression. Thus, for the expression: 2+3x4, a bookcase would be shown behind the 2, 

and another bookcase would be placed behind the 3x4. The + operator would be 

displayed between the two bookcases. Thirdly, there would be a large bookcase behind 

the two bookcases and the + operator. It was thought this could help signify addition. 

This is because the user would see that the two smaller bookcases need to be combined 

(by adding) to make the larger bookcase. Fourthly, multiplication could be signified by 
duplicating the contents of a bookcase. For example, with (2+3)x4, the x represents 

copy, and the bookcase containing the 2+3 would be duplicated four times.

Despite the possibility that translation between the iconic and dataflow representations 

would be more easily understood, it was decided not to implement the above changes to 

the dataflow representation. The fundamental reason being that the different 

representations should not overlap, but instead signify independent aspects of 

arithmetic. This would allow each representation to be understood in its own right and 

so avoid being confused with parts of another representation. However, it was thought 

that the operator and the number “boxes” in the dataflow representation should be a 

different shape and/or colour to signify that there is a difference between their actions. 

Thus, it was decided that the operators should be enclosed in red-filled rectangles, and 

the numbers would remain in white-filled rectangles. As a result of changing the 

dataflow symbols, the operator buttons on the calculator were coloured red to
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correspond to the red rectangles used in the dataflow. In addition, green (as opposed to 

red) books were used.

8. S evera l design  issues ra ised  fo llo w in g  a cogn itive  walkthrough o f  ENCAL

(a) AVOIDING THE USE OF ZERO IN THE DATATREE AND THE COLOUR

CODING OF SHELVES AND BOOKS. It was suggested that the books and shelves 

could be colour-coded in the dataflow representation. This would then avoid the need to 

show zero in the datatree. For example, 2x0 in the iconic representation is depicted by 

two shelves with no books on them in one bookcase. The 2 represents the shelves, and 

the 0 represents the books. 2x0 in datatree format is represented in Figure 4.3 below.

Figure 4.3. 2x0 in Datatree Format

In addition, if only one bookshelf is placed in a bookcase, currently a zero is shown in 

the datatree. In other words, no value is depicted for one shelf in a bookcase. The reason 

for this is because of programming difficulties encountered using ToolBook software. 

However, the ideal situation is described below following the cognitive walkthrough.

Two modifications were suggested. Firstly, the shelf “box” showing 2 could be 

coloured black with the 2 shown inside, as above. Secondly, the book “box” could be 

coloured green or blue depending on which coloured books had been selected, but 

would be empty (i.e. no zero would be shown) since no books were selected. It would 

then be more obvious and meaningful that there are no books if the appropriate
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coloured book “box” was empty. This would correspond more closely to the iconic 

representation that would show no books, but two empty shelves in this example.

A further problem that arises in the datatree representation when there are zero books, is 

the background colour of the boxes. Ideally, they should not be either green or blue 

since these colours are used to represent sets (i.e. numbers) of books. Therefore, in 

order to provide a visual distinction between numbers of books and no books, a unique 

colour for a box with zero books needs to be adopted, such as yellow and black stripes.

(b) UNDO. A button is needed which when clicked will undo or restore previous 

actions in all three representations.

(c) TICKS AND CROSSES. The use of ticks and crosses to represent well-formed in 

each representation should be changed to different graphics (i.e. more user-friendly, 

such as happy/sad faces). In addition, users may confuse the ticks and crosses with 

work marked as being correct or incorrect.

(d) DRAGGING, DROPPING, AND BUTTON CLICKING. Users drag and drop 

books from the icons above the bookcases to and from bookcases. However, users 

cannot drag and drop shelves as yet. The shelf icon above the bookcases gives the 

impression that you can drag a shelf. Instead, users have to place the mouse pointer in a 

bookcase and do a left button click of the mouse for a shelf to appear.

(e) HIGHLIGHT BOOKCASES. When the mouse pointer is positioned in a bookcase, 

the bookcase could be highlighted to signify the object in use - currently this does not 

happen.

Issues (c) and (d) were implemented prior to the pilot test because these clearly needed 

alteration in order to avoid confusion at the interface. The remaining design issues were 

considered, and in some cases implemented, only after the pilot test had been carried 

out. This gave the opportunity for the existing design to be user tested thus enabling 

more informed decisions to be made based on the results.

The rationale underlying cognitive walkthroughs in the design process is described in 

Appendix 1.
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4.5 Summary

The design specification of ENCAL has two aspects to its underlying architecture. The 

first is associated with the three external representations: iconic (concrete), dataflow 

(intermediate), and calculator (abstract). These three representations: (a) are linked; (b) 

enable information in each to be depicted equivalently; and (c) are viewed concurrently 

to facilitate understanding. The second is the internal core representation which ensures 

static and dynamic equivalence is maintained in the three external representations. To 

achieve equivalence, iconsworld language was developed to enable Multimedia 

ToolBook to read and carry out actions when icons are used at the interface. 

Throughout the design process several design issues have been considered. These have 

had a major influence on the design outcome, and include the following:

How many representations will be shown at one time?

Which arithmetic operators should be used?

The use of the book, shelf, and bookcase icons.

Two possible datatree designs.

Should answers be shown after each calculation step in the datatree?

The use of one or two separate activity areas.

Translation of information from icons to the datatree.

Design issues raised from a cognitive walkthrough.

Chapter 5 considers the design process and the pilot evaluation of the initial version of 

ENCAL. Conclusions of the pilot test and subsequent design changes are stated.
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Chapter 5

Design Process: Storyboards, Pilot Evaluation, and Redesign

5.1 Introduction

It is assumed that there is a close relationship between interface design and learning as 

suggested by Schär (1996). The subsequent effects on learning and understanding are 

therefore seen as being determined as a result of users interacting with a particular 

design of computer-based environment. The design specifications covered in Chapter 4 

will influence user interaction and thus learning. Instead of concentrating on design 

specifications and issues raised, the following chapter describes the design process in 

the form of storyboards, testing and redesign. Initially, storyboard version 1 is set out 

which includes explanations and drawings concerning the interface design (i.e. the three 

external representations). The ENCAL system was subsequently programmed to reflect 

this storyboard (see Figure 5.5). The pilot study is then outlined including the results. 

The pilot study was carried out using the interface that resulted from storyboard version

1. Based on the results of the pilot study, storyboard version 2 and the revised 

computer-based environment were developed. The explanations and drawings regarding 

storyboard version 2 are outlined. Finally, a summary is given.
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5.2 Storyboard Version 1

5.2.1 Movement Between Representations

To enhance understanding of problems, it is expected that a user’s preferred movement 

between the three representational styles at the interface would be from concrete to 

abstract as follows:

1. icons (concrete shapes) to dataflow;

2. dataflow (intermediate structure) to calculator;

3. calculator (abstract notation) to dataflow (the dataflow representation depicts what 

happens inside the calculator during key presses - so this will serve as the calculator 

mental model).

However, progression between the representations need not always proceed from 

concrete to intermediate to abstract. Instead, movement may for example be concrete to 

abstract to intermediate. In fact, users may employ any order to suit their understanding.

A user is able to depict a problem statement starting with: (a) icons (coloured 
rectangles), (b) datatree (connecting arrows, “boxes”, numbers, and rectangles), or (c) 

calculator (algebra). In the iconic and datatree representations, a user constructs a two- 

dimensional diagram using the tools provided. Whichever of the three representations is 

used to construct and depict a problem, the remaining two representations will 

automatically be constructed and shown at the interface. This is because all three 

representations are equivalent and linked, and therefore changes in one will be reflected 

in the other two. This helps promote concrete to abstract understanding. Each of the 

three representations is illustrated below using the following example problem:

There is one shelf in one bookcase in John’s room.

There are three books on the shelf.

In another bookcase there are five shelves of books.
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On each shelf there are four books.

How many books are there in John’s room?

5.2.2. The Iconic Representation Version 1

Interacting With the Iconic Representation. Four bookcases have been pre-programmed 

to appear at the interface when a user enters the learning environment. The book and 

shelf icon dispensers also appear and are situated above the bookcases (see Figure 5.5). 

Book and shelf icons may be dragged from the dispensers and dropped in the 

bookcases. A user places the mouse pointer on the required icon and holds down the left 

mouse button in order to drag. Book but not shelf icons may also be dragged from 

bookcase to bookcase. This enables a person to rearrange books on shelves. Shelf icons 

have to be placed in a bookcase before book icons will be accepted.

Assume a student decides to represent the above problem using icons. The appropriate 

number of shelf icons first needs to be dragged and dropped into the two bookcases. 

This is shown in Figure 5.1.

Figure 5.1. The Iconic Representation Version 1 (i)

Shelf-----

Bookcase
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The book icons may be used to split an expression into sets with the use of different 

colours. To achieve this, the multiplication step first needs to be transformed into 

repeated addition. The above expression would therefore be arranged in the iconic 

representation as shown in Figure 5.2.

Figure 5.2. The Iconic Representation Version 1 (ii)

The book icons are dragged and dropped into the bookcases as indicated in Figure 5.2. 

Using the icons in this way, a concrete representation of the problem statement is 

established.

5.2.3 The Dataflow Representation Version 1

Interacting With the Dataflow Representation. Users may construct a datatree (see 

Figure 5.5) and to a limited extent edit it. A user is constrained to building a tree in the 

following sequence: input rectangles (i.e. “boxes” to take numbers and operators), input 

connecting arrows between the “boxes”; enter numbers and operators into the “boxes”; 

add parentheses (i.e. rectangles which enclose numbers and operators). Numbers and/or 

operators may be changed, and parentheses may be added or removed. However, 

connecting arrows and “boxes” cannot be moved. Menus at the interface and the 

left/right mouse buttons enable dataflow construction and editing.
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The above problem statement may initially be represented by constructing a datatree as 

opposed to using icons. However, in order to construct a datatree representation of the 

above problem, a user will first need to form the appropriate arithmetic expression 

which in this case is 3+(5x4). As previously stated, the underlying rationale is to 

facilitate concrete to abstract understanding. Therefore, the preferred approach is to 

construct the icons as above and then observe the automatic construction of the 

corresponding datatree. The datatree thus serves as the intermediate representation since 

it has structure but is neither wholly concrete (familiar shapes) nor wholly abstract 

(arithmetic notation). A user is thus provided with a conceptual bridge between the 

icons and the calculator algebra. The equivalent dataflow representation for the above 

problem statement is shown in Figure 5.3.

Figure 5.3. The Dataflow Representation Version 1

The dataflow representation in Figure 5.3 is shown concurrently with the iconic 

representation to assist users’ interpretation.

5.2.4 The Calculator Representation Version 1

Interacting With the Calculator Representation. A calculator keypad automatically 

appears at the interface (see Figure 5.5) once a user has entered the representational 

environment. A four-function (arithmetic) or an algebraic notation (scientific) calculator 

is linked to the iconic and dataflow representations. The equivalent algebraic expression 

may be shown above the calculator and this is based on the calculator logic and the 

initial user construction using the icons or datatree. Thus, the arithmetic expression
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shown above the calculator corresponds to user input. That is, either the calculator keys 

clicked by a user or the equivalent expressions resulting from the iconic or datatree 

constructions. If the Look Inside button is clicked, the calculation steps with 

corresponding answers are shown. An arithmetic expression may be deleted symbol by 

symbol using the cancel button. New symbols including parentheses may be input using 

the calculator keypad.

With regard to the problem statement given above, the answer is achieved by pressing 

the "equals" key on the keypad. A user can count the books in the iconic representation 

to check the calculator answer. The calculator answer may differ from the total number 

of book icons if the calculator behaviour (i.e. either four-function or algebraic notation) 

is inappropriate for evaluating a given problem. The calculator representation is shown 

in Figure 5.4.

Figure 5.4. The Calculator Representation Version 1

3+(5x4)

23

Keypad

A user may refer to the datatree (see Figure 5.3) to appreciate the calculation sequence 

of the calculator.

Figure 5.5 shows the three representations of storyboard 1 (iconic, datatree, and 

calculator) as seen at the computer interface. All three representations are shown 

concurrently.
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Figure 5.5. ENCAL Interface Version 1

Not

obvious 

whether 

books or 

shelves.

Faces

The smiling faces below each bookcase in the iconic representation indicate that each 

column is well-formed (refer to Chapter 4 for an explanation of well-formed columns). 

The smiling face next to the datatree representation shows that the numbers and 

operators in the “boxes” and the connecting arrows are correctly formed. The smiling 

face in the calculator representation informs a user that the expression above the 

calculator is algebraically well-formed. A sad face prompts a user to amend a 

representation since it is not well-formed. The feedback provided by the smiling/sad 

faces may not always be apparent to users. This is because they could be overlooked. In 

some instances, individuals may not understand the meaning of the faces. In such cases, 

teacher assistance will be required in order to explain: (a) how the relevant icons are not 

well-formed; and (b) what action needs to be taken in order to make the representation 

well-formed.
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Carpet

A user may store books on the carpet area, and then reuse them. Whilst books are on the 

carpet they do not affect a calculation.

Look Inside Calculator

Users can check the calculation sequence carried out by the calculator by clicking on 

Look Inside. Each calculation step is shown and evaluated according to the behaviour 

of either the arithmetic or scientific calculator.

A subsequent pilot study was carried out based on storyboard version 1, and this is 

reported next.

5.3 Pilot Evaluation of ENCAL Version 1

5.3.1 Introduction

A pilot test of the ENCAL computer-based learning system was carried out over two 

school half-term days (08/02/99 and 10/02/99) at the Computer-Based Learning Unit, 

University of Leeds. The primary purpose of the pilot test was to assess the usability of 

the system as described in the aims below, and make subsequent changes to the 

interface where applicable.

5.3.1.1 Aims of the Pilot Evaluation

The pilot Evaluation had two fundamental aims. Firstly, to assess whether or not 

children could understand and use the system effectively to solve arithmetic word 

problems. Secondly, through user interactions, identify learnability problems including
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possible confusion due to the interface design that could hinder the learning of 

arithmetic.

5.3.2 Method

5.3.2.1 Design

The principal method of data collection for the pilot test was through informal direct 

observations of user/interface interactions. During the pilot test, the usability of the 

ENCAL system was evaluated using the idea of evolutionary prototyping (Dix, Finlay, 

Abowd, and Beale, 1993). In other words, the designed prototype was evaluated with 

the intention of it not being discarded afterwards, but instead serving as a basis for the 

next iteration of the design, assuming this to be necessary. Four aspects of usability 

were evaluated together with associated problems that could affect learning. The four 

usability aspects are listed below:

• whether users could map problem information to individual representations and 

vice-versa;

• whether users could map information within and between the iconic, dataflow, and 

calculator representations;

• whether the use of the datatree “box” metaphor and the spatial metaphor of moving 

book and shelf icons would be understood by users;

• whether users would take notice of all the representations, in particular the datatree.

5.3.3 Apparatus/Materials

Worksheets were provided on which were written four problem statements (see 

Appendix 3). A PC, monitor, and keyboard were used. The ENCAL system was 

programmed using Multimedia ToolBook software. For the purposes of the pilot study, 

only the arithmetic (i.e. four-function) calculator needed to be used during problem
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solving. In addition, ENCAL was set up to enable users to interact with only one of the 

three representations at a time. The reasoning behind this was to constrain the 

participants to use the representations (iconic, datatree, and calculator) in the preferred 

concrete-to-abstract sequence in order to facilitate understanding of problem solving. 

Thus, if the iconic representation was selected at set-up, it was only that representation 

with which the user could interact. The other two representations had a light hatching 

over them, but were still visible. A video camera was set up on a tripod and used to 

record the user and interface interaction. In addition, observational notes were taken 

during the pilot test by a person situated behind the participant.

5.3.4 Participants

Six children (one female and five males) took part in the pilot test - four on the first day, 

and two on the second day. The children were volunteers from a local primary school; 

the only selection criterion being that they were of the appropriate age required for the 

pilot test. The age of the six participants was chosen so that they ranged between nine 

and thirteen years. The sex and age of each child is shown in Table 5.1.

Table 5.1. Sex and Age of Participants

Sex Age

Female 10

Male 9, 11, 11, 12, 13

Each child immediately prior to starting the pilot test was given a demonstration of the 

use of the three representations: iconic; dataflow; and calculator. Each child was then 

allowed time to practice interacting with each of the three representations. Thus, each 

child had the opportunity to drag and drop book and shelf icons into bookcases (iconic



79

representation), construct a datatree (datatree representation) and enter data into the 

calculator (calculator representation).

5.3.5 Procedure

Each of the six children was seen individually for the pilot test. After the training 

period, but just before the start of the pilot test, the video camera was set to record. Four 

written questions were given to each child on a worksheet (see Appendix 2) at the start 

of the test. The questions increased in complexity from question one to question four. In 

addition, for solving each of the four problems, the participants were constrained to 

using the ENCAL representations in the following sequence: iconic; dataflow; 

calculator. After reading each question, the interface was used by the child in order to 

arrive at the required solutions. Prompts and help both with the arithmetic and use of 

the interface tools were provided by the experimenter where children were having 

difficulty. Each child recorded his/her answers on the worksheet.

5.4 Results of the Pilot Test

5.4.1 Affective Response

The children enjoyed using the system and commented on how useful they found it for 

learning in terms of the concrete, intermediate, and abstract representations.

5.4.2 Usability Snags

As expected, a few flaws were found in the initial design. These are referred to in the 

section Detailed Usability Results.
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5.4.3 Success of the Approach

The pilot test showed that the ENCAL system worked in terms of participants being 

able to use the system and being able to solve given arithmetic problems. However, 

little use was made of the carpet area. This suggests that design decisions might be 

reconsidered during further versions of such environments. Nevertheless, the initial 

results are an overall reflection of the success of the design approach.

5.4.4 Detailed Usability Results

Three usability problems and their corresponding learning implications were identified 

with the interface as a result of the pilot test. The three problems were based on the four 

aspects of usability (refer to Section 5.3.2.1) which were focused on during the study. 

Comparisons between the youngest and the oldest participants during problem solving 

were also highlighted since these could have potential implications for the usability of 

the system. The three interface problems and the comparison between the youngest and 

oldest participants are described below.

5.4.5 Usability Problem One (refer to usability aspects 1, 2, and 3, Section

5.3.2.1)

The first problem was concerned with the mapping from: (a) the iconic representation to 

the datatree representation; (b) the datatree representation to the iconic representation; 

and (c) the iconic representation back to the problem statement. For example, it was not 

clear to all the children that three red books and three blue books on one shelf 

represented 3+3 as seen in the equivalent datatree (question 2), and four blue books on 

each of two shelves represented 2x4 (question 4) as opposed to 4x2. In addition, when 

constructing a datatree, the left-hand “box” represented shelves, but if the number of 

books was entered into this box, the corresponding iconic representation was incorrect 

and did not map back to the problem statement. This was a source of confusion to the 

participants.
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5.4.6 Usability Problem two (refer to usability aspects 2, 3 and 4, Section

5.3.2.1)

The second problem was concerned with mapping from the calculator to a datatree. For 

example, with question 4, when children entered the expression 2x4+3x2 directly into 

the calculator without parentheses, the answer given was 22. Based on the problem 

statement, the children had previously counted the books in the iconic representation, 

and knew that the number of books was 14. This was a further source of confusion. The 

children did not check the datatree -  this was largely ignored at this stage, to see if the 

tree construction reflected the expression needed to determine the total number of 

books. This problem was associated mostly with arithmetic understanding, but also with 

interface usability concerning datatrees.

5.4. 7  Usability Problem three (refer to usability aspect 2, Section 5.3.2.1)

Referring to usability problem 2 and the expression 2x4+3x2, it was noted that if a 

datatree was input which did not correspond to the behaviour of the calculator, then 

when the calculator equals key was clicked, the datatree rebuilt itself to conform to the 

calculator logic. The arithmetic calculator (i.e. left-to-right convention) was selected 
throughout the pilot test. Therefore, when the expression 2x4+3x2 was constructed 

omitting parentheses using the datatree representation, then the tree rebuilt itself and 

gave the incorrect answer of 22 based on the left-to-right calculator logic (i.e. 2x4 = 8+3 

= 11x2-22).

5.4.8 The Youngest and the Oldest Participants

The youngest participant (nine years of age) was familiar with parentheses, and 

therefore their use in the datatree and calculator representations was not alien to him. 

However, he had some difficulty understanding the wording of question 4. He was not 

sure how many books to put on each shelf. When prompted as to the meaning, he then 

carried on with answering the question. In addition, he had difficulty appreciating that 

to represent the total number of books using the datatree, the left and right subtree 

constructions (which represented the books and shelves in the left and right bookcases)
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would need to be connected by an addition operator. He had correctly constructed the 

datatree to represent the left and right bookcases, but omitted to connect them with an 

addition operator to determine the total number of books. When it was explained that an 

addition operator was needed, he did not know where to place the operator on the 

datatree. This resulted in a sad face appearing indicating that the tree was not well- 

formed. The concept behind the happy and sad faces had to be explained, and he then 

used them as a reference whilst attempting to construct the datatree. However, he 

needed further prompting to produce a well-formed datatree.

With question 4, the oldest participant (the thirteen-year-old) immediately realised that 

an addition operator was needed to find the total number of books. Furthermore, he had 

no trouble either: (a) in positioning the operator (i.e. between the left and right 

subtrees); or (b) in knowing where to make the connections to the addition operator (i.e. 

from the multiplication operator in each of the left and right subtrees).

5.5 Discussion and Conclusions of the Pilot Test

5.5.1 Discussion

U s a b il i ty  P r o b le m  O n e

With regard to usability problem one (refer to usability aspects 1, 2, and 3, Section

5.3.2.1) outlined in the results, confusion occurred with question 4 because the 2 

represents two shelves and the 4 represents four books. However, with question 2, the 

number 3 plus the other number 3 both represent books and shelves are not represented 

at all. This result suggests that the number of shelves should be indicated in all cases. 

Therefore, question two may be better represented as 1x3+3 in order to avoid confusion. 

This consistency in arithmetic expressions could be important to facilitate learning in 

younger children. Having stated this, with the expression: 2x(3+5)+lx2, the lx 

unnecessarily complicates the expression and would be better omitted. In other words, 

in one bookcase there are 8 books on each of two shelves [2x(3+5)], and in another
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bookcase there are 2 books on one shelf [1x2]. Therefore, in some problem statements, 

shelves will have to be represented in the datatree, as with 2x(3+5). However, in other 

cases, showing shelf numbers in the datatree will not be essential and will probably 

cause confusion (as with 1x2), when all that has happened in the latter case is the 

addition of 2 books in a bookcase. Consequently, it may be better not to show shelf 

numbers in the datatree when only one shelf is used.

It was found that most children (apart from the 12 and 13 year olds in particular) 

entered the number of books into the left datatree box as opposed to the number of 

shelves. This was probably because the books had a more dominant presence on the 

interface, and the number of books were stated in questions before the number of 

shelves. The result was an incorrect equivalent iconic representation. So, three blue 

books on each of two shelves would be represented as 2x3 in the datatree and not 3x2. 

However, the children knew that 2x3 = 3x2, and so from their point of view the 

arithmetic order was not of importance, and so the only confusion was associated with 

the iconic representation not mapping back to and thus matching the problem statement. 

Essentially, the system constrained users to entering data in a sequence. From the point 

of view of mathematical pedagogy this was felt to be unsound, but the finding 

nevertheless highlighted the need to use the datatree as an intermediary check to see if 
the equivalent iconic representation correctly represented the problem statement.

Based on the above discussion of problem one, it was decided to alter the interface in 

order to avoid confusion between book and shelf representations when mapping from:

(a) the icons to the datatree; (b) the datatree to the icons; and (c) the icons back to the 

problem statement. Thus, in the datatree representation, a menu could appear next to the 

datatree “boxes” which would allow users to clarify whether book or shelf numbers are 

to be entered. In addition, a datatree “box” which contains numbers should be 

appropriately coloured to represent book or shelf icons as seen in the iconic 

representation. It was also noted prior to the pilot test that the red book icons were the 

same colour as the operator keys on the calculator. Consequently, the colour of the book 

icons was amended in order to avoid any potential confusion.
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Usability Problem Two

With regard to usability problem two (refer to usability aspects 2, 3 and 4, Section

5.3.2.1), the pilot test highlighted the facts that: (a) understanding a datatree 

construction is crucial to appreciating calculator behaviour; and (b) the datatree 

representation should not be overlooked. The thirteen-year-old child immediately 

noticed that the calculator answer did not match the number of books counted 

previously. Having entered 2x4+3x2 into the calculator, the equivalent datatree which 

resulted (i.e. based on left-to-right evaluation) was incorrect (i.e. the tree did not map 

back to the problem statement). However, the thirteen-year-old child did not scrutinise 

the tree to ascertain: (a) why it was structured differently to the tree he had constructed 

earlier to represent the problem; or (b) why the iconic representation was incorrect (i.e. 

it did not match the problem statement). Eventually, the tree was re-constructed with 

rectangles added to represent the bookcases, giving the expression shown in Figure 5.6 

below.

Figure 5.6. Pilot Test Datatree Construction

Thus, 2x4 in the datatree represented the left bookcase, and 3x2 represented the right 

bookcase. 2x4 and 3x2 were then evaluated separately by the calculator and added 

together as follows: 8 (i.e. the number of books in the first bookcase) + 6 (i.e. the 

number of books in the second bookcase) = 14.

The discussion of Problem Two suggests that children will require a deeper 

understanding of how different tree structures can be constructed and how subtrees can
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be linked. Additionally, the children will need to know how the datatrees may be 

interpreted and compared to the iconic and calculator representations for checking 

mappings and evaluation procedures respectively. The need for more in-depth training 

of datatree usage would be a fundamental prerequisite if more detailed datatree 

construction and interpretation were to be achieved. Once users can construct and 

interpret datatrees effectively, an important implication of the pilot study is that if trees 

are checked after calculator entries, then this would be a useful guide to: (a) the 

behaviour of the calculator; and (b) remedial action for calculator data entry.

Usability Problem Three

With regard to usability problem three (refer to usability aspect 2, Section 5.3.2.1), on 

the one hand the changing tree structure was not associated with the canonical format of 

the datatree, but with a user’s mental model of left-to-right calculator behaviour. 

However, on the other hand, the tree structure was correctly constructed by the user 

based on the problem, yet the tree structure changed when the calculator equals key was 

clicked. The sudden change was a source of confusion largely because the new datatree 

was not subsequently checked in order to ascertain the disparity between it and the 
required arithmetic expression. It was noted that if parentheses (i.e. rectangles) were 

input in the datatree, the tree structure did not alter. This emphasises the fact that the 

canonical format of the datatree is sound, and the problem lies more with users’ 

understanding of calculator behaviour and the use of parentheses.

With regard to the youngest child, the wording of question 4 was on reflection 

unnecessarily complicated. The wording of problems would usually be carried out by 

teachers on work sheets and should reflect both the age and the ability of pupils. 

Although the ENCAL system was intended for use in the age range of 9-13 years, the 

pilot test results suggest that subsequent evaluations/testing of hypotheses would best 

involve pupils in the 11-13 age range. This is because such pupils will be sure to have 

been introduced to calculators and order of operations at the start of Key Stage 3 

Mathematics, and in addition they will understand the more complex wording used in 

problems.
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5.5.2 Conclusions

The participants enjoyed using the ENCAL system, and were able to interact 

successfully with the three representations both in terms of achieving results 

educationally, and handling the interface tools.

The interface needed to be modified to avoid confusion occurring with mappings 

between iconic representations, datatrees, and problem statements.

Datatrees tended to be ignored during calculator data entry, but this may be rectified if 

users are given more detailed instruction as to their construction and interpretation.

Further evaluation/testing of hypotheses would best be carried out with pupils in the 

upper primary, early secondary school age ranges (i.e. 11-13 years).

Since incorrect final answers using a calculator (i.e. with regard to the keying in 

procedures based on what a problem asked for) occurred and were not checked, 

hypotheses for future testing could include the comparison of calculator usage alone 

with the use of all three representations of the ENCAL system.

5.6Storyboard Version 2

5.6.1 The Iconic and Datatree Representations in More Detail

Based on the results of the pilot study, storyboard 2 was developed with the aim of 

improving both the usability and the educational value of the system. Only the iconic 

and dataflow representations have been revised in order to meet the requirements of the 

pilot test results. The changes to the two representations are described below.
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Interface Changes Which Address Problem One

Assume the expression 3+(2x4) is to be represented using the icons. A user will have 

the option of selecting either a group of books or shelves to be the multiplicand (i.e. 2). 

The number 4 is the multiplier and represents the number in the group (i.e. 4 blue/green 

books or 4 black shelves). It was decided to use a set-up menu that will appear prior to 

the representations being shown, as opposed to using a menu in each of the 

representations. Users may therefore select books or shelves as the multiplicand prior to 

interacting with any of the three representations. This is shown in Figure 5.7.

5.6.2 The Iconic Representation Version 2

Figure 5.7. The Icons Setup Menu

O Shelves First 

0  Books First

An initial start up screen will appear as shown above. A user will be required to button 

click either on the books button or the shelves button to select either as the 

multiplicand. In Figure 5.7, books have been selected. It was decided to place this menu 

at the start (i.e. prior to using the three representations). This is because: (a) children 

would be more likely to forget to select books or shelves at a later stage during problem 

solving; and (b) the menu in Figure 5.7 would not have to be placed in each of the three 

representations.

The two options of book or shelf icons as the multiplicand for the expression 3+(2x4) 

are shown in Figures 5.8 and 5.9.
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3+(2x4), With Books as the Multiplicand

Figure 5.8. The Iconic Representation Version 2(i)

M—
nn
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As can be seen in Figure 5.8, there are two books (multiplicand) on each of four shelves 

(multiplier).

Figure 5.9 below shows the reverse situation.

nnn

Figure 5.9. The Iconic Representation Version 2(ii)

3+(2x4), With Shelves as the Multiplicand
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nnnn
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In Figure 5.9, two shelves are now the multiplicand and four books are the multiplier.

5.6.3 The Dataflow Representation Version 2

Interface Changes Which Address Problem Two

In order to avoid confusion between the multiplicand and multiplier, the datatree 

•‘boxes” which contain the multiplicand and multiplier will be coloured to match the 

book and shelf icons. This is shown in Figure 5.10 below with shelves as the 

multiplicand. Compare with Figure 5.9 above.

Figure 5.10. The Dataflow Representation Version 2

3+(2x4), With Shelves as the Multiplicand

Notice the blue box that indicates that the number contained represents the multiplier.

The “box” containing the number 2 in Figure 5.10 is the multiplicand (i.e. two shelves), 

and the “box” coloured blue represents the multiplier (i.e. four books).

In addition to the above “box” change, to facilitate mapping between calculator and 

datatree, and to encourage users to check a datatree, the revised dataflow system will be 

editable to a greater degree. Thus, a user will be able to do at least the following with a 

tree construction:

move a “box” containing a number or operator to a new location;
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• delete a connecting arrow;

• insert a new connecting arrow from a number or operator “box” to an operator 

“box”;

• put into “boxes” numbers or operators before having to connect arrows between 

“boxes”.

Interface Changes Which Address Problem Three

Finally, to overcome the potential confusion caused by a datatree altering its structure 

based on calculator logic (refer to section 5.3.3.4), it was decided that a datatree should 

not rebuild itself following construction if the calculator logic is changed from left to 

right to BODMAS (i.e. Brackets, Of, Divide, Multiply, Add, Subtract) or vice versa. 

The datatree will still alter when data is input to the calculator directly. In this situation, 

if the calculator logic is subsequently changed and then the equals key is pressed, the 

datatree will alter its shape. The problem then is that the calculator and datatree 

representations are no longer equivalent. For this reason, it was decided to hide the 

algebraic expression above the calculator. Therefore, only the last number entered or the 

final answer will be visible on the calculator display.

It was decided to give children the option (using the set up tools) of choosing to use 

either the arithmetic (i.e. left-to-right) or the scientific (i.e. BODMAS) calculator prior 

to the solving of a problem whilst using any of the three representations. This was in 

order to lessen the likelihood of a datatree altering its structure during user interaction. 

In addition, the set-up interface was redesigned to enable users to alter settings during 

problem solving without losing current work.

The set up menu for calculator usage is shown in Figure 5.11.
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Figure 5.11. The Calculator Setup Menu

£  Left-to-right evaluation 

Q  BODMAS evaluation

In Figure 5.11, the arithmetic (i.e. left-to-right) calculator has been selected.

Figure 5.12 illustrates the procedure for returning to the set up menu while problem 

solving.

Figure 5.12. Procedure for Returning to the Setup Menu

Setup

What do you want to do?

Start again Change the settings Nothing

Continue

In Figure 5.12, the set up button is first clicked. If Nothing is selected, the system 

returns to the three representations (i.e. the problem-solving mode). Continue appears
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once the set up has been altered. If Start again is selected, a user clicks on the Start 

button that appears.

5.7 Summary

The ENCAL interface design (i.e. the computer graphics and text with which a user 

interacts) is an iterative process based on: (a) storyboard version 1; (b) the pilot 

usability evaluation and the results; and (c) storyboard version 2 (i.e. changes to 

storyboard version 1 based on the pilot test results).

Chapter 6 introduces the issues in evaluating the learning effectiveness of ENCAL.
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Chapter 6

The Theoretical Grounds Behind ENCAL: Recapitulation

6.1 Introduction

The pilot evaluation highlighted problems of usability of the ENCAL system. These 

were concerned with mappings o f equivalent information between representations. 

Linked to these problems are also evaluation issues associated with the learning process 

(i.e. the learnability of the system). In order to evaluate the learning effectiveness, we 

need first to restate the theoretical groundwork, and from this it may be possible to 

decide what observations need to be made in the final evaluation. Consequently, the 

following two sections explain: (a) the learning theory which underpins the design of 

ENCAL; and (b) the cognitive tools used with ENCAL to facilitate the learning process. 

Subsequently, evaluation issues concerning learning effectiveness are restated. The 

translatability of information is then referred to. Finally, a summary of the chapter is 

given.

(a) The T heory U n derlyin g  L earn ab ility  U sing E N C A L

The fundamental learning theory of the computer-based environment ENCAL is based 

upon the Vygotskian idea that knowledge is a process which is constructed by a person 

through:

experiences;

reflection;

social interaction (e.g. discussion).
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In other words, the theory states that an individual develops mental schemata which 

influence future thinking.

(b) Two C ogn itive  Tools U sed to  F a cilita te  th e  L ea rn in g  P rocess

ENCAL provides the scaffolding (specifically, the two cognitive tools of metaphors and 

representations) to facilitate the learning process (i.e. the development of mental 

schemata) - namely, the constructive learning of concepts associated with arithmetic 

problem solving.

Another aspect of the learning process is that it is situated. Thus, a learner’s experience 

is contained (i.e. situated) within the computer-based environment, because such 

situated learning provides a better (i.e. more optimal) environment for the construction 

of schemata. In other words, what is being learned (e.g. an evaluation sequence) is 

supported by the learning context (i.e. the arithmetic world of the computer-based 

learning environment - ENCAL).

6.2 Evaluation Issues Concerning Learning Effectiveness

Two fundamental evaluation issues of ENCAL as an educational medium are 

consequently concerned with the principle means by which learning is achieved with 

the system. These are through: (a) the use of metaphors; and (b) the situated concrete to 

abstract translation (i.e. mapping) of concepts between the three representations.

(a) M eta p h o rs

Although the use of metaphors was addressed during the pilot test in terms of their 

usability during the solving of the given problems, a more detailed evaluation could be 

undertaken later on in order to assess more directly the effectiveness of the metaphors 

for understanding during certain aspects of problem solving. The metaphors used in 

ENCAL are:

iconic bookcases to simulate evaluation steps;
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datatree nodes and lines to simulate operation steps; 

datatree rectangles to simulate parentheses; 

calculator to simulate both four-function and scientific logics; 

spatial movement of entities to simulate real-life objects.

The above metaphors control the content of the computer-based environment, and they 

contribute to learning effectiveness.

(b) The S itu a ted  Translation  o f  C oncepts F rom  R epresen ta tion s to  U n derstan d in g

The translation from the symbol systems used in each representation into understanding 

may cause fundamental difficulties for children during the learning process. This is 

because the symbol systems used in each representation may or may not be readily or 

easily translated by individuals into meaningful mental schemata which will inform 

future thinking. Consequently, the use of one or more representation(s) -  especially the 

intermediate representation (datatree), during problem solving needs to be evaluated in 

order to assess the translatability of information from each symbol system to 

understanding and thus learning. It is expected that the datatree will serve as a bridge 
between the concrete and the abstract. The next section describes how this is achieved.

6.3 How Translatability of Information is Achieved

The translatability of information (in particular, concepts) is made possible due to the 

interactive and constructive design nature of ENCAL. In other words, learners are not 

faced with understanding large amounts of text, but with being actively involved in 

constructing (i.e. building) diagrammatic representations. The computer-based graphics 

help users translate abstract problem text into meaningful and interactive diagrams. 

Information is translated from each representation (i.e. symbol system) progressively 

from concrete (icons) to intermediate (datatree) to abstract (calculator). It is this 

concrete to abstract translation process with the aid of the three graphical 

representations which supports understanding and thus learning.
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6.4 Summary

The learning effectiveness of ENCAL is directly associated with the construction of 

knowledge via Vygotskian educational theory, and the interactive cognitive tools used 

at the interface. The use of metaphors, and the concrete to abstract movement between 

specifically designed representations, are the principle means by which learning is 

achieved. The translatability of information from the ENCAL interface to understanding 

is anticipated to be beneficial with the use of the intermediate datatree representation.

The next chapter describes the final evaluation including the results.
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Chapter 7

The Final Evaluation

7.1 Specific Evaluation Aim

The general evaluation aim was to determine whether the three computer-based 

representations (iconic - concrete, datatree -  intermediate, and calculator - abstract) 

helped both low and high attainment pupils solve mathematical problems. The iconic 

and calculator representations would by themselves be sufficient to achieve this, since 

concrete to abstract progression is evident at the interface. However, the intennediate 

datatree is particularly crucial since it enhances mathematical understanding by 

connecting the concrete and abstract extremes. Consequently, the specific evaluation 

aim was to assess the value of the datatree representation for problem solving. The 

experimenter (who was not the author) was naïve with respect to this specific evaluation 

aim.

7.2 Method

7.2.1 Design

The design was comparison-based in order to determine the effectiveness of the datatree 

computer-based representation. Two groups took part. One group had access to the 

iconic, calculator, and datatree representations, whereas the other group had access 

only to the iconic and calculator representations. User and interface interactive 

information was collected through direct observations which were based on 

participants’ responses to set questions. A between-subject design was chosen because: 

(a) each group of participants only had to carry out the experiment once; (b) each 

student would only have one exposure to the experiment in either the datatree or no
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datatree conditions; and (c) a more realistic comparison between the two groups could 

ultimately be made since none of the individuals had prior exposure to ENCAL.

7 . 2 . 2  Apparatus/Materials

A desktop PC, monitor, and keyboard were used along with a modified version of the 

piloted ENCAL system. This was programmed using Multimedia ToolBook software. 

Only the arithmetic (i.e. four-function) software calculator was used during problem 

solving since this was sufficient to meet the evaluation aim. In addition, ENCAL was 

set up to enable users to interact with: (a) the iconic, datatree, and calculator 

representations; or (b) the iconic and calculator representations only. A video camera 

recorded the user and interface interactions. Observational notes were also taken during 

the evaluation by the experimenter. Questionnaires were provided on which were 

written two demonstration questions and three test problem statements (see Appendix 

4). The children in group 1 did not have access to the datatree representation at the 

computer interface, and so their questionnaires had the datatree questions omitted. The 

children in group 2 had access to the datatree, and so these questions were included in 

their questionnaires. The test problems increased in complexity from question one to 

question three. Prior to the evaluation, the experimenter referred to the notes shown in 
Appendix 5 in order to familiarise herself with the situation since she is not the author 

of the thesis.

7 . 2 . 3  Participants

Twelve children took part in the evaluation. Six children were of high mathematical 

attainment and six children were of low mathematical attainment. Attainment was 

determined by the class teacher based on the children’s prior accomplishment in class. 

Three high attainment participants and three low attainment participants were assigned 

to both group 1 (no datatree) and group 2 (datatree). Thus, two matched (as opposed to 

random) groups were produced based on their mathematical abilities. The children 

came from a local secondary (i.e. high) school, the only selection criteria being that they 

were of appropriate age and achievement required for the evaluation. The participants 

were chosen so that they were 12-13 years of age (i.e. 2nd year of high school), The
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group, sex, age and mathematical attainment (i.e. high or low) of each child is shown in 

Table 7.1.

Tabic 7.1. Group, Sex, Age, and Mathematical Attainment of Participants

Group Number of Sex Age and Mathematical Attainment

1 or 2
Participants

Male/Female High (H) or Low (L)

Group 1 1 Female 12 (L)

No Datatree 5 Male 12 (H),12 (H), 12 (H), 12 (L), 12 (L)

Group 2 3 Female 12 (H),12 (L), 13 (L)

Datatree 3 Male 13(H) 13(H), 12 (L)

7.2.4 Procedure

The evaluation took place in the Computer Based Learning Unit at the University of 

Leeds. Each of the twelve children was seen individually in the same room, and each 

child used the same PC on which was the pre-loaded ENCAL software. The children in 

group 1 were constrained to interacting with the iconic and calculator representations 

when using ENCAL, whereas the children in group 2 had access to all three 

representations (iconic, datatree, and calculator). A participant’s session lasted 

approximately thirty minutes. Prompts and help with the use of the interface tools were 

provided by the experimenter during both the demonstration and test questions. 

Throughout the demonstration questions pupils were: (a) shown how to solve problems 

using ENCAL; and (b) provided with mathematical help. However, no mathematical 

assistance was given during the test questions. The separation of mathematical and 

interface help are somewhat tied together in ENCAL. During the test questions the 

experimenter minimised mathematical help during any interventions. Instead of 

providing direct help with questions, she attempted to calm participants who were
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experiencing difficulty. However, if pupils encountered an impasse during the test 

questions, they were told that in a normal classroom situation they should ask the 

teacher or perhaps friends for help. The children not being tested were given 

background activities in the computer suite by their class teacher.

Once in the evaluation room, a child sat side-by-side with the experimenter and was 

then given either a group 1 or group 2 questionnaire. The video camera was set to 

record before starting the demonstration and test questions. When the demonstration 

was complete, a child began the three test questions. After reading a test question, 

ENCAL was used by a child in order to arrive at the required solution. Each child 

recorded answers to the test questions on his/her questionnaire. When the evaluation 

was finished, the video camera was switched off, and ENCAL was reset for the next 

participant.

7.3 Results

A coded summary of the results and the performance coding meanings from the 

ENCAL evaluation is shown below in Tables 7.2 and 7.3 respectively. Following the 

coded summary, the principal results within this are described. Then several tables 

highlight the major findings. All the results are depicted with respect to the evaluation 

aim (i.e. to determine the helpfulness of the datatree). Appendix 6 shows examples of 

the coding scheme used whilst classifying behaviours.
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Table 7.2. Coded Summary of the Results

C alcu la tor A n sw e r  

C o rrec t (CT) o r  

In co rrec t (IT) P e rfo rm a n c e  C o d in g  f o r  th e  T h ree  Test Q u estio n s

P a r tic ip a n ts ’ In itia ls A tta in m e n t S e x A g e G roup Q l Q 2 Q 3 Q i Q 2 Q3

R.L. LOW M 12 1 CT IT IT QCT UP/OP/BP/ICU OP/BP

D.P. HIGH M 12 1 CT CT IT MRI OP/BP OP/BP

D.F. HIGH M 12 1 CT IT IT QCT UP/BP/MRC UP/BP/ICU

C.S. LOW M 12 1 CT CT IT WT WT WNB/MUW/ICU

L.A. LOW F 12 1 IT IT IT QNA/WNB/OP QNAAVNB/OP/BP QNAAVNB/OP/BP

A.G. HIGH M 12 1 CT CT CT QCT OP/BP/WT OP/BP/WT

H.P. LOW F 12 2 CT IT CT QCT MRC/FW/WT FW/ICU

T.M. LOW M 12 2 CT CT CT QCT QCT WNB

R.W. HIGH F 12 2 CT CT IT QCT QCT BP

N.J. HIGH M 13 2 CT CT CT QCT QCT QCT

L.D. HIGH M 13 2 CT CT CT QCT QCT MRD

E.B. LOW F 13 2 CT IT* IT QCT WNB WNB/ICU/BP/ID
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Table 7.3. Performance Coding Meanings

P erfo rm a n ce  C oding  M ea n in g s

QCT Q uestion  C orrect A question was answered correctly using calculator and icons with appropriate working.

UP U n d erstan d ing  P ro b lem Calculator answer wrong, but iconic answer right indicating failure to understand problem, maths or calculator.

OP O perator P rob lem The multiplication or addition operators were omitted or not used appropriately.

BP B rackets P rob lem Brackets were either not used or were used incorrectly.

ID In terpretin g  D a ta tree Users incorrectly translate bracket information from a datatree to an expression.

WT W ron g T h in k in g A person gives the correct answer but has not used the calculator “look inside” information for the working.

QNA Q uestion  N ot A n sw ered An individual has not addressed a problem statement.

WNB W ron g N u m b er o f  B ook s A wrong answer is given due to books mis-counted or incorrect books on shelves.

MUW M ade-U p W o rk in g Working has been made-up to fit an answer.

MRC M is-R ead C a lcu la to r An incorrect calculator answer was written down despite the working being correct.

MRI M is-R ead In fo rm a tio n The final answer is correct, but a user has mis-read the calculator “look inside” information for the working.

FW F ragm ents o f  W o rk in g Fragments of working visible on screen from the datatree.

ICU In com p lete C a lcu la to r  U se Got part way through a question, but never finished.

MRD M is-R ead D ata tree Some datatree number, operator, or bracket was read incorrectly, but most of it was correct.
* Slip Incorrect only because of a slip (i.e. in number, operator, or problem with reading).
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P ossib le  G radings Correct, correct by luck.

Incorrect because of a slip.

Incorrect because of a bracket misplacement.

Incorrect where a user had significant mathematical problems and/or difficulty in understanding questions.
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When considering high and low attainment pupils together, the summary of coded 

results referred to in Table 7.2, shows that the two most frequent performance errors in 

group 1 (no datatree) per participant and per question were: OP, and BP. The error UP 

was also present in questions two and three, but to a lesser extent. In comparison, group 

2 (datatree), had no OP or UP performance errors, and only two BP performance errors 

with question 3. Two pupils from each group had ICU errors with question three. In 

group 1, four out of the six participants had performance errors with question one, but all 

the participants had errors with questions two and three. By comparison, none of the 

participants in group 2 had a performance error with question one. Two pupils had errors 

with question two, and one of the six pupils achieved a completely correct answer with 

question three.

The number of wholly correct answers (i.e. using both icons and calculator) for high and 

low attainment participants in groups 1 and 2 is shown in Table 7.4.

Table 7.4. Comparison Between Groups (With or Without the Datatree) of Wholly 

Correct Answers for High and Low Attainment Pupils

Wholly Correct Answers 

High Attainment Pupils

Wholly Correct Answers 

Low Attainment Pupils

Group 1 (No Datatree) 2 1

Group 2 (Datatree) 6 4

Table 7.4 indicates that both high and low attainment pupils in the datatree group 

obtained a greater number of completely correct answers compared to pupils who did not 

use the datatree.

The number of wholly correct answers for each question for high and low attainment 

participants in groups 1 and 2 is shown in Table 7.5.
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Table 7.5. Comparison Between Groups (With or Without the Datatree) of Wholly 

Correct Answers per Question for High and Low Attainment Pupils

Wholly Correct Answers 

High Attainment Pupils

Wholly Correct Answers 

Low Attainment Pupils

The Three Test Ql Q2 Q3 Q l Q2 Q3

Questions

Group 1 (No Datatree) 2 0 0 l 0 0

Group 2 (Datatree) 3 3 1 3 1 0

When analysing each question, Table 7.5 shows that question 2 was answered entirely 

correctly (i.e. using both icons and calculator) by all three high attainment pupils and by 

one low attainment pupil in the datatree group. None of the pupils in group 1 (no datatree) 

answered question 2 correctly. Question 3 (the most difficult) was answered correctly by 

one high attainment participant in the datatree group, however no participant in the low 

attainment datatree group achieved a wholly correct answer. In addition, none of the pupils 

in the no datatree group (either high or low attainment) answered this question correctly.

Table 7.6 displays the overall number of correct and incorrect calculator answers for high 

and low attainment pupils in each group.
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Table 7.6. Comparison Between Groups (With or Without the Datatree) of Correct 

Calculator Answers for High and Low Attainment Pupils

Correct Calculator Correct Calculator

Answers Answers

High Attainment Pupils Low Attainment Pupils

Group 1 (No Datatree) 6 3

Group 2 (Datatree) 8 6

Table 7.6 indicates that high and low attainment pupils in the datatree group performed 

better in terms of correct calculator answers compared to the no datatree group. The low 

attainment pupils in the datatree group showed a markedly higher number of correct 

answers compared to pupils in the no datatree group.

The number of correct calculator answers for each question for high and low attainment 

participants in groups 1 and 2 is shown in Table 7.7.
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Table 7.7. Comparison Between Groups (With or Without the Datatree) of Correct 
Calculator Answers per Question for High and Low Attainment Pupils

Correct Calculator 

Answers

High Attainment Pupils

Correct Calculator 

Answers

Low Attainment Pupils

The Three Test Questions Q1 Q2 Q3 Q1 Q2 Q3

Group 1 (No Datatree) 3 2 1 2 1 0

Group 2 (Datatree) 3 3 2 3 1,1* 2

A noteworthy result in Table 7.7 is that two low attainment pupils in the datatree group 

answered question three correctly with the calculator, compared with zero low attainment 

pupils in the no datatree group. Two high attainment pupils in the datatree group answered 

question three correctly. In addition, all three high attainment pupils in the datatree group 

answered questions one and two correctly. All three pupils in the low attainment datatree 

group answered question one correctly. Also, one person answered question two correctly, 

and one other pupil would have given a correct answer but for a slip with a number.

7.4 Summary of Results

When considering high and low attainment pupils collectively, the coded summary of 

results reveal that group 1 (no datatree) had numerous performance errors in all three 

questions, notably OP, BP, and UP. However, group 2 (datatree) had no OP or UP errors, 

and only one BP error in question 3. With regard to the tables of results, the high and low 

attainment pupils in the datatree group obtained: (a) a greater number of completely correct 

answers (i.e using both the iconic and the calculator representations); and (b) a superior 

number of correct calculator answers. In addition, the low attainment pupils in the datatree
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group achieved notably more correct calculator answers for question 3 (the hardest 

question) compared to the low attainment pupils in the no datatree group.

A summary of these results is shown as two tables in Appendix 7.

The next chapter discusses the implications of the results.
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Chapter 8

Analysis of Errors

8.1 Introduction

Although both high and low attainment pupils from groups 1 and 2 demonstrated beneficial 

performance using ENCAL, some errors nevertheless occurred. In this chapter we consider 

the errors in detail. Performance errors with operators and brackets were particularly 

evident with group 1 (no datatree). In particular, group 1 participants found difficulty with 

questions two and three, although a single pupil had similar problems with question one. 

Initially therefore, analysis of the operator problems (OP) and brackets problems (BP) from 

group 1 are described below. There were no operator errors in group 2 (datatree). 

Following this, the brackets problems of the only two pupils in group 2 with this error are 

examined. The feedback provided by the experimenter is then considered in order to gain a 
teacher’s/researcher’s point of view in contrast to the participants’ perspectives.

8.2 Analysis of Operator Problems

Two low and two high attainment pupils (L.A., R.L. and D.P., A.G. respectively) from 

group 1 (no datatree) had operator problems with questions two and three when using the 

software calculator. In addition, a low attainment pupil found difficulty with question one. 

Analysis of just one participant from the high attainment pupils was carried out since their 

errors were similar. Thus, looking at both pupils would not have added to the discussion. 

Participant D.P. was chosen, because as well as the operator uncertainty, he neglected to 

answer the second half of question three. With regard to the two low attainment pupils, 

L.A. used an incorrect operator with question one, and R.L. missed out an operator in 

question two. Thus, the mathematical mistakes made by L.A. (Ql), R.L. (Q2) and D.P. 

(Q3) are discussed below.
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L.A. (Low Attainment Pupil Group 1) Q1

Prior to using the calculator, L.A. had operator difficulties. Instead of counting (as the 

question asked) the two green books and three blue books (i.e. 2 + 3 = 5) which she had 

positioned correctly in the iconic representation, she multiplied the two sets of books and 

obtained an answer of 2 x 3 = 6. The experimenter said: “What does it say then?” When 

using the calculator to determine the total number of books in the bookcase, she pressed the 

keys 6 x 1 =. Consequently, six books on one shelf appeared in the iconic representation.

L.A. appeared to guess what to do which suggests she did not have a clear mental model of 

the problem. The visualisation of the problem was not apparent to her. Why did she use 

multiplication rather than addition? Two observations may provide a partial answer. Firstly, 

the very first demonstration question involved multiplication only, and the second question 

involved addition and multiplication. So since both had multiplication, she could have felt 

that this problem ought to have multiplication too. Secondly, added to this is the 

observation by the experimenter that this particular participant went into a state of panic 

when confronted by the research situation. She was more evidently panic stricken during 

the ordeal of the test questions, but it would appear that even in the demonstration 

questions she was in a similar state. During the demonstration, the experimenter attempted 

to put this person at ease. For example, she said: “Ok, very good. All it wants you to do is 

write that bit down there. Press CA to clear the screen and then turn over and do another 

little one.” It is therefore suggested that this child was responding to the situation in the 

best way she knew how, but she was unable to muster the cognitive resources to manage 

the task. In this case, even a much simpler interface may have induced the same response, 

and so it would seem this participant adds little to our understanding of the cognitive 

effects of ENCAL, other than to indicate the importance of participants being at ease with 

the context. More practice and guidance may well have helped L.A. overcome her 

difficulties.
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The iconic and calculator representations by themselves did not appear to help L.A. choose 

the correct operator, which might indicate insufficient feedback from ENCAL. In fact, the 

experimenter ended up by saying: “Just write it down, because that’s alright.” In other 

words, she attempted to put the pupil at ease. A primary problem associated with this issue 

is therefore the design of ENCAL. Currently, the system does not allow users to look back 

and compare an earlier iconic version with a newer form. In other words, a pupil has to 

remember his/her initial input because any later version completely replaces what already 

exists. Also related to this issue is the facility for appropriate teacher feedback, as opposed 

to just relying on ENCAL’s feedback. A teacher’s input would have shown L.A. her iconic 

error. If L.A.’s iconic representation and the teacher’s version were then enabled to be 

compared using the computer-based interface, L.A. would have been better informed prior 

to using the calculator. It must also be remembered that the system was not designed to be 

completely intelligent. Rather, a supporting datatree is used to link the iconic and calculator 

extremes, this and the pupil-teacher iconic comparisons would have helped enhance L.A.’s 

performance.

Significance o f This Result. Having access to previous and current iconic representations as 

well as the more complex, but helpful datatree, might further assist understanding 

especially with low attainment pupils.

R.L. (Low Attainment Pupil Group 1) Q2

Part (b) of question 2 requires use of the calculator to solve the problem. Pupil R.L. 

correctly answered part (a) with the icons, but stated on the question sheet reference part

(b) “I got a bit confused”. This indicates that he did not understand one or more of the 

following: how to solve question 2 (b); the mathematics; or the calculator.
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The formal expression needed prior to data input to the calculator was: 3 + 3 + (2 x 2), 

however this was not apparent to R.L. from the iconic representation or from his own 

mental model of the problem. He entered the following calculator key presses: (3 + 3 = ). 

The resulting ENCAL screen is shown in Figure 8.1. The blank section at the top of the 

display hides the equivalent datatree representation. Also shown is the “Look inside” 

information -  i.e. the calculator steps which R.L. has carried out so far.

Figure 8.1. R.L. Q2 (b)

Directly following (3 + 3 = ), R.L. entered 2 + 26. He missed out the operator between the 

2 and the 6, consequently the calculator display showed 26, and the message “Too many 

books to fit on a shelf’ appeared in the iconic representation (the maximum number of
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books allowed on a shelf is nine). Therefore, the iconic representation disappeared because 

the icons were no longer well-formed’. Equivalence between representations was thus lost, 

and this could have caused confusion. To further add to the confusion, as soon as 2 + 26 

was input, 3 + 3 = 6  disappeared from the “Look inside” information, because the bracket 

was placed after the equals sign. Thus, 2 + 26 = 28 only is shown (see Figure 8.2.).

Figure 8.2. R.L. Q2 (b) Continued

Without ENCAL, R.L. would most likely have been unaware of his operator error. The 

ensuing uncertainty at least caused him to think about the situation he was now in with 

regard to the question, the mathematics, and ENCAL. The entry of number 26 presented a

3 Chapter 4 explains what is meant by the term well-formed.
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problem for R.L. in particular, because it showed he did not know how to enter data into 

the calculator. This appears to be the reason why the calculator answer was grossly wrong, 

but the iconic answer was correct. After pressing the CA (Clear All) key, he then entered: 3 

+ 3 (2 + 2, but failed to close the bracket (this is a general problem). The message “Can’t 

show in bookcases” appeared because R.L. did not place an operator between the steps 3 + 

3 and 2 + 2. This is shown in Figure 8.3.

Figure 8.3. R.L. Q2 (b) Continued

The reason for omitting the closing bracket may have been due to the experimenter’s verbal 

intervention who realised that R.L. was struggling. She said: “It doesn’t matter...do you 

want to leave that one and go on to the next one?” The final calculator steps which R.L. 

wrote on the question sheet from the “Look Inside” calculator information after completing 

part (b) were: 2 + 2 = 4; 3 + 3 = 6; and 6 x 4 = 24. The calculator assumed the product of 

the two steps was required, i.e. 3 + 3 (2+  2 = 6 x 4  = 24, due to the bracket input by R.L. 

which precedes the first 2.
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Significance o f This Result. Losing the iconic view creates confusion and leads to 

misunderstanding because current screen information and equivalence between 

representations disappears. This result accentuates the need for possible future design 

improvements, and teacher feedback in order to promote learning.

D.P. (High Attainment Pupil Group 1) Q3

Only half the question was answered (i.e. the contents of the first bookcase) for both the 

iconic and the calculator representations. Both his partly completed iconic representation 

and his corresponding answer of 12 (the number of books) were correct, as shown in Figure

8.4.

Figure 8.4. D.P. Q3 (a)
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The video tape showed that D.P. went straight to the calculator after completing the icons 

for the first bookcase. He entered the following expression: 4 + 4 + 2 + 2. This was 

obtained as a result of D.P. transforming the iconic representation to suit his understanding. 

In other words, he added the four blue books on the first and second shelves (i.e. 4 + 4), 

and then he added the two green books from the two shelves (i.e. 2 + 2). D.P. then added 

the expressions to give 4 + 4 + 2 + 2. See Figure 8.5.

Figure 8.5. D.P. Q3 (b)

The equivalent iconic representation in Figure 8.5 is different from the one in Figure 8.4 

due to D.P.’s calculator entry. In response, the experimenter said the following: “Do you 

have a calculator at school? Is that a BODMAS calculator?’ The pupil said: “I’m not sure.”
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The experimenter then asked: “Is it one of these scientific ones?” The pupil answered: 

“Yes.” The experimenter then commented: “That’s really interesting, thanks.” The answer 

is correct, and is a demonstration of his cognitive resources being used in a way which is 

appropriate to his mathematical mental model of the problem. His strategy negates the use 

of multiplication -  i.e. 4 + 2 x 2, but yet it expresses creative thinking with the addition 

operator through his transformation of the iconic representation. With suitable teacher 

intervention, he could see how: (a) multiplication may be used as well; and (b) the answer 

can be obtained in one bookcase instead of three. D.P. wrote down the “Look inside” 

calculator information as shown in Figure 8.5. After completing this part, D.P. pressed the 

Clear All (CA) button and did no further work with the question - specifically addressing 

the contents of the second bookcase.

Significance o f This Result. The iconic representation may be transformed by an individual 

to match his or her way of thinking and thus understanding. In order to avoid the sole use 

of the addition operator, teachers could show how multiplication can be used with the aid 

of the icons.

8.3 Analysis of Brackets Problems

Five out of the six participants in group 1 (no datatree) had brackets difficulties with both 

questions 2 and 3, whereas only two pupils in group 2 (datatree) had such problems and 

with just question 3. One of the latter group 2 pupils also failed to translate bracket 

information from the datatree to her subsequent mathematical expression. The performance 

errors of two pupils from each of group 1 and group 2 are analysed next (D.P. Q2, R.L. Q3, 

R.W. Q3, and E.B. Q3 respectively).
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D.P. (High Attainment Pupil Group 1) Q2

D.P.’s iconic representation of the problem statement was correct, and this is depicted in 

Figure 8.6.

Figure 8.6. D.P. Q2

However, when he used the calculator, D.P. initially entered the following: 

as shown in Figure 8.7.

x.
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Figure 8.7. D.P. Q2

D.P. comprehended that this was wrong since there was no equivalent iconic 

representation. The screen message “Can’t show in bookcases” appeared when he 

inappropriately used the multiplication operator. The experimenter said “Don’t worry about 

that”. He then tried again, and entered 3 + 3 + 2 + 2. The resulting equivalent iconic display 

did not correspond with Figure 8.6, but he counted the books and wrote down the correct 

answer of 10 on the question sheet. Figure 8.8 shows the calculator steps and the equivalent 

iconic representation which resulted from D.P.’s calculator entry.
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Figure 8.8. D.P. Q2 Continued

It can be seen from Figure 8.8, that the number of book icons is the same as in Figure 8.6, 

thus enabling the right answer to be achieved. However, the iconic structure in Figure 8.8 is 

different from that in Figure 8.6, which indicates that a disparate equivalence occurred due 

to D.P.’s calculator procedure. It is unclear as to whether D.P. noticed the difference in 

iconic structure between his calculator procedure (Figure 8.8) and his initial iconic 

representation (Figure 8.6). If he did not realise there was a discrepancy, then teacher input 

would need to refer to the question and point out that the icons need to be placed in two 

bookcases instead of three. To achieve this, the teacher would need to explain the use of the 

multiplication operator. However, if D.P. was aware of the inconsistency, then the teacher 

would not need to refer back to the problem, but draw his attention to the use of the 

multiplication operator and brackets. Thus, the focus would be less on understanding the 

problem requirement, but more on achieving the correct mathematical procedure.
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Again, D.P. only used the addition operator. He also failed to exploit multiplication and 

brackets, appropriate use of which would have enabled him to achieve the iconic 

representation in Figure 8.6 (i.e. ten books in two bookcases as opposed to three). As stated 

above, teacher feedback at this stage would therefore have been useful in order to achieve 

correct mapping between the problem statement, calculator key presses, and equivalent 

iconic construction.

Significance o f This Result. The iconic representation can provide a helpful teaching aid for 

lessons in the use of multiplication and brackets.

R.L. (Low Attainment Pupil Group 1) QS

R.L. did not achieve the correct iconic representation for the problem statement. His 

dragging of books was unsystematic which resulted in book colours being mixed. This 

could have caused confusion, since the number of blue books was incorrect in the second 

bookcase (i.e. two instead of three). In addition, he placed two instead of three shelves in 
the second bookcase. Consequently, R.L. failed to translate the problem statement to the 

iconic representation. In other words, his structural mapping was muddled. See Figure 8.9.
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Figure 8.9. RX.’s Iconic Representation for Q3

R.L. wrote down the answer of 20 for the number of books in the bookcases, and then 

pressed Clear All (CA) and used the calculator to answer the next part of the question as 

instructed on the question sheet. He selected 2 on the key pad after which the equivalent 

iconic representation displayed two books on a shelf. He discontinued this approach, and 

cleared all. He then pressed 1 x 2  + 4 x 2  + + 2, followed by CA. R.L. continued by 

selecting: 2 + 3 - ; 4  + 4 + 2 + 2 + 2=.

As R.L. input the mathematical sequence of this problem, the equivalent iconic display 

generated by ENCAL was different from his own iconic display, and this caused more 

confusion. In addition, R.L. made no attempt to use the brackets from the calculator 

because they were beyond his mathematics knowledge. Moreover, he was not confident 

with multiplication because his answers involved only the addition operator. R.L.’s 

calculator working for question three is shown in Figure 8.10.
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Figure 8.10. RX.’s Calculator Representation for Q3

There is a distinct mismatch between R.L.’s iconic representation in Figure 8.9 and his 

subsequent calculator input. Figure 8.10 does not have an equivalent iconic display, 

because more bookcases would be needed (as indicated in Figure 8.10) to accommodate the 

latter two steps, 15 + 2 and 17 + 2. Despite no iconic representation after the fourth step 

(i.e. 13 + 2 = 15), R.L. carried on with the calculator as shown above. It might be that R.L. 

continued to use the calculator so as to arrive at an answer, in this case 19, which was as 

close as possible to his iconic answer of 20. Perhaps therefore, R.L. made up the calculator 

working to compensate for his lack of understanding of the problem. In addition, his iconic 

representation in Figure 8.9 does not show three books of one colour grouped together. 

Therefore, he may have read the problem again and formed a mental model of the books 

and shelves in the two bookcases, and as a result he then entered the calculator numbers 

shown in Figure 8.10 -  i.e. 2, 3, 4, 4, 2, 2, 2. There could be other reasons for his working, 

but insufficient evidence is available from the results.
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Significance o f This Result.

Incorrect calculator use becomes evident via the iconic display. It is much easier especially 

for a low ability pupil, to compare concrete icons with a question statement than abstract 

algebra. For this reason, the icons (or lack of icons) should be used to check progress. A 

teacher’s help may be sought where there is a discrepancy between icons and calculator 

output. If a pupil does not have an adequate mental model or iconic construction of the 

problem, then attempting the question will be difficult. As a result, he/she may resort to 

guessing or some other obscure strategy. It is possible that the numbers and symbols 

located on, and/or generated from, the calculator keypad during an evaluation may cause a 

distraction and also confuse pupils. Consequently, if a datatree is present, it could further 

support the iconic structure and overall comprehension -  especially an unstable mental 

model, particularly since there are fewer distracting numbers with a datatree compared to a 

calculator. Figure 8.11 demonstrates this.

Figure 8.11. Comparison of R.L.’s Calculator and Datatree Representations for Q3

(a) Calculator



125

R. W. (High Attainment Pupil Group 2) Q3

R.W.’s iconic representation for Q3 (a) was correct, as was her answer of 27 for the total 

number of books. ENCAL generated the equivalent datatree representation as shown in 

Figure 8.12.



126

Figure 8.12. RVV.’s Iconic and Equivalent Datatree Representations for Q3

R.W. interpreted the datatree correctly, because her equation in answer to Q3 (b) was 
correct -  i.e. (2 x (4 + 2)) + (3 x (3 + 2)). However, her subsequent calculation went wrong 

in the latter stages. She rightly evaluated the inner brackets first - i.e. (4 + 2) = 6 and (3 + 2) 

= 5, and then accurately positioned the set of outer brackets -  i.e. (2 x 6) + (3 x 5). In spite 

of this, R.W. evaluated 2 x 6 = 12, but then added the 12 to the 3 in the next set of brackets. 

Consequently, her equation became (12 + 3) x 5 = 15 x 5 -  75. Thus, R.W. completely 

ignored the second set of outer brackets, indicating that the nested brackets perhaps caused 

confusion or carelessness. The experimenter commented: “I think you’ve stuck an extra 

bracket in there, and there. That’s interesting, I’m not just sure how we got that. Well, just 

for the moment, write that all down for me in there (the experimenter was pointing to look 

inside the calculator). Write what the answer came to because that’s interesting. We’ll redo 

it to check why it did that. Just write the answer down and write those workings.”
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Since R.W. obtained the correct mathematical expression using the datatree, but did not 

attain the required answer, it would seem that her mathematical knowledge was 

insufficient. Her particular problem was dealing with the evaluation sequence. Hence, even 

though ENCAL helped her write the appropriate equation, it did not help her calculate it. 

However, ENCAL was not designed to be an intelligent “stand-alone” system. Instead, it is 

meant to enhance learning by promoting reflection, and discourse amongst pupils-pupils, 

and/or pupils-teachers. There is the possibility that nested brackets and the resulting 

expression complexity brought about the calculation error, which endorses the need for 

tutorial mediation in order to bring knowledge to a higher level (Vygotsky, 1978). The 

experimenter pointed out that showing brackets on the calculator would help users 

remember their input sequence, because apart from the equivalent datatree rectangles, they 

presently have no visual record of calculator bracket key presses.

Significance o f This Result.

Despite ENCAL enabling a user to obtain the correct mathematical expression, the use of 

nested brackets impaired the subsequent calculation sequence. In such a case, teacher 
mediation is essential to further an individual’s knowledge. However, ENCAL does 

support understanding by providing visual representations, the intermediate datatree being 

crucial. Perhaps showing brackets during calculator calculations would also be helpful.

E.B. (Low Attainment Pupil Group 2) Q3

The first bookcase was completed correctly, however E.B. mixed the book colours which 

may reflect unsystematic thinking. Her random dragging of books is shown in Figure 8.13. 

Since there was a long pause between finishing the first bookcase and starting the second, 

the equivalent datatree appeared for the books and shelves present,
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Figure 8.13. E.B.’s Initial Iconic and Equivalent Datatree Representations for Q3

The book colours were also mixed in the next bookcase as shown in Figure 8.14. However, 

the pattern was regular which tends to reflect more systematic thinking. Also, while 

completing the second bookcase, E.B. accidentally dropped one blue book on shelf one of 

the first bookcase. This resulted in an unhappy face because the books were no longer well- 

formed (i.e. there were more books on shelf one than shelf two). Figure 8.14 demonstrates 

this.
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Figure 8.14. E.B.’s Later Iconic and Equivalent Datatree Représentations for Q3

The equivalent datatree did not form due to unequal books in the first bookcase. This is 

represented by the unhappy face. However, E.B. did not realise this was the reason why the 

datatree was missing. She then read part (b) of question three and stated: “The datatree is 

gone...what happened to it?” Although appreciating this, it was not clear whether E.B. 

understood the relationship between the datatree and forming the mathematical expression. 

She did not know how to rectify the extra book problem, so the experimenter pointed out 

that the unwanted book needed to be removed. E.B. then cleared all and started the 

question again. Alternatively, she could have moved the redundant book to the carpet area 

and continued. There could be several reasons why she did not do this. Firstly, she did not 

know. Secondly, she knew, but forgot. Thirdly, she followed the easier option of pressing 

Clear All (CA). E.B.’s second attempt at question three is shown in Figure 8.15.
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Figure 8.15. E.B.’s Second Iconic and Equivalent Datatree Representations for Q3

E.B. initially wrote down the answer of 27 in answer to Q3 (a) which is correct, but then 

she recounted and changed her response to 26. Her iconic display is correct, however the 

books colours on the first two shelves of the second bookcase are haphazardly positioned.

Despite having the correct equivalent datatree, E.B.’s expression for Q3 (b) was:

(4 + 2) (2 x ) + (3 x ) (2 + 3. The experimenter pointed out that E.B. said she could not do 

it, and so she just wrote the expression in the same way as she would work it out. This 

suggests that E.B. did not notice the significance of the datatree, and therefore teacher input 

at this juncture would be needed. Predictably, she did not have the correct number of 

brackets for the required expression and she also missed the closing bracket from her final 

step. Having said this, the expression reveals the logic behind her thinking as follows. The 

4 + 2 represents the four blue books and the two green books. The 2 x indicates that 4 + 2 

has to be multiplied by 2 since there are two sets of four blue books and two green books.
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Similarly, E.B. realises that there are three sets (i.e. 3 x ) of two green books and three blue 

books (i.e. 2 + 3). Since E.B.’s interpretation of the problem requirement was correct, her 

difficulty seemed to lie in translating her thoughts into proper mathematical notation. The 

datatree should assist with this process. Nevertheless, E.B. appeared not use the datatree 

because she did not: (a) notice it; and/or (b) know how to use it. This resulted in her 

brackets being misplaced within the expression and her evaluation sequence being written 

in the wrong order. In addition, she did not realise that a number must follow an operator 

before a bracket is closed. These are situations where teacher input is essential in order to 

further learning and thus knowledge. In fact the experimenter reminded the pupil: “Using 

the connected rectangles, write down the equation. Remember that the rectangles are the 

brackets.”

E.B. clicked on the CA button, and thus cleared the screen. In answer to Q3 (c) she entered 

the data as given in Q3 (b) into the calculator: (4 + 2) (2 x ) + (3 x ) (2 + 3. She omitted the 

final bracket. The resulting ENCAL screen is shown in Figure 8.16. The experimenter 

urged E.B. to use Look inside the calculator, and write down her sequence of key presses. 

E.B. entered the mathematical expression exactly the same as she had written it down in 

answer to Q3 (b). This is the reason why: (a) the calculator Look inside display was 

erroneous (e.g. the # symbols); and (b) the iconic representation did not appear.
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Figure 8.16. E.B.’s Calculator Input and Equivalent Datatree Representation for Q3

©
A llo n g e

S e t u p

C l e * i

Significance o f This Result.

The datatree does not help with the formulation of an expression where prior mathematical 

knowledge of this topic is weak. Mediated learning is therefore necessary (i.e. teacher 

intervention), which highlights the fact that ENCAL is a pupil-teacher system.

8.4 Experimenter’s Feedback

Group 1
The experimenter pointed out that the wording of question three was problematic. 

Consequently, difficulty with understanding was compounded where participants did not 

read very well, as with pupil L.A. It was also noted down by the experimenter, that whilst 

R.L. answered the second demonstration question, he clicked on the calculator addition key 

instead of the multiplication key which resulted in a variety of incorrect answers. However,
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when the experimenter mentioned brackets, R.L. achieved the correct answer. Yet in test 

question two, R.L. used the brackets in an incorrect order. He tried again but still got it 

wrong, and then said to the experimenter: at school we only use calculators later on. 

Another participant, D.P., stated that pupils use scientific calculators in school. The 

implication of these statements is: where calculators are used, not all school students 

understand their behaviour. Reference this issue, the experimenter emphasized that use of 

ENCAL’s four-function (i.e. arithmetic) calculator may have confused the pupils since they 

were used to scientific calculators.

Group 2

Concerning group 2, the experimenter stressed that one pupil in particular found the 

datatree representation daunting. E.B. said she could not do it (i.e. use the datatree) and lost 

her confidence. Conversely, other pupils -  as documented by the experimenter, used the 

datatree and obtained the correct mathematical expression. Further interesting comments 

from the experimenter are: the changing shape of the datatree might have been misleading; 

the slowness of the software may have affected students’ thought processes; the connecting 
arrows were probably confusing; and the momentary disappearance of rectangles during 

datatree construction could be a problem.

The experimenter’s comments regarding the datatree in particular, highlight areas of the 

ENCAL design which require further attention. A way of overcoming the changing shape 

of the datatree is to keep the existing structure intact and then form a new tree 

independently. This would also prevent the perplexing temporary removal of rectangles 

from the screen. The connecting arrows could be confusing to pupils, and a way of 

alleviating this difficulty would be to have a teacher explain their significance.
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8.5 Summary/Conclusion

The results in Chapter 7 and the analysis of errors in this chapter suggest that two important 

factors are beneficial to learning when carrying out mathematics involving order of 

operations and brackets: (a) the datatree; and (b) a more complicated but informative (i.e. 

educational) interface which arises because of the datatree -  that is, a more enlightening 

learning structure which is comprised of “boxes” for symbols and connecting arrows. 

Superior accomplishment when using the datatree was evident due to the fewer operator 

and brackets errors. Specifically, it was found that neither low nor high attainment pupils in 

group 2 (datatree) had operator errors, whereas pupils in group 1 (no datatree) did have 

these errors. In addition, only two group 2 pupils had brackets errors, but five group 1 

pupils had such errors. These results suggest that ENCAL has a very beneficial effect on 

performance. This seems to be due to the addition of the linked datatree representation. 

Exactly how this additional feature might be of assistance to the learners is one of the 

topics for discussion in the next chapter.

Additionally, we can ask whether the participants have learned anything. Since the study is 

not a longitudinal one we cannot demonstrate retention of information, nor can we show 

improved performance on a post test. However we have argued already that this would take 

us into territory that lies outside the main focus of the work. What we can say is that we 

have an outcome that may well be relevant to effective learning that can be pursued in later 

work. This again will be raised in a later chapter.

Some design issues which need further consideration were also identified during the 

analysis of errors. These issues were associated with the datatree, and with the nature of 

MELR’s themselves. These points are discussed in the next chapter.
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Chapter 9 

Discussion

9.1 Introduction

Greeno (1991) points out that “students who adapt successfully to the requirements of the 

mathematics classroom learn to listen, watch, and mimic effectively. If we believe that 

these receptive forms of activity are insufficient as outcomes of mathematics education, we 

may be forced to consider fundamental changes in the kinds of activity that students engage 

in as they learn mathematics.” (P. 76). The ENCAL software put forward in this thesis has 

been designed not only to help overcome such limiting learning activities, but to encourage 

enquiry. In Chapter 8 the participants’ analysis of errors regarding the final evaluation were 

considered. With these in mind, this chapter provides a general discussion of the 

effectiveness and shortcomings of ENCAL. Initially, a summary of the original design 

ideas is given. This is followed by sections on what ENCAL does deliver and what 

ENCAL does not deliver. Some implications for other interactive systems are discussed 

next. Then consideration is given to how the current version of ENCAL is an improvement 

on earlier representations. Learning and translation issues using ENCAL are discussed 

next. Finally, the chapter is summarised and conclusions are given.

9.2 Summary of Original Design Ideas

Firstly, the underlying design aim of ENCAL is to influence individuals’ construction of 

mental schema and thus mathematical thinking, by means of three computer-based 

representational styles. Refer to Chapter 4 for a complete description of the design aim.

Secondly, the system is designed to promote learning within a social context, as opposed to 

an individual context, by offering students: meaningful interaction -  including teacher
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interaction, peer interaction, and interaction with the system itself; active thinking; 

reflective thinking; and partial interface feedback (Chapter 4 gives further details).

Thirdly, ENCAL was designed around multiple, equivalent, linked representations 

(MELRs). This is because they are particularly suitable for learning and understanding 

concepts and procedures in the domain of arithmetic, as outlined in Chapter 2.

Fourthly, the three representational styles designed for ENCAL may be used in any 

sequence. However, as stated in Chapter 5, in order to enhance understanding it is assumed 

that users’ preferred movement between the three representations is from concrete to 

abstract as follows:

1. icons (concrete) to dataflow;

2. dataflow (intermediate structure) to calculator;

3. calculator (abstract) back to dataflow.

9.3 What Does ENCAL Deliver?

The underlying design aim given in Section 9.1 is an implicit (i.e. hidden/intemal 

mental/cognitive) process. However, the results of the final evaluation demonstrate 

explicitly (i.e. openly) that the use of all three computer-based representations influenced 

group 2 participants’ thinking. Therefore, conceivably over time and with teacher 

intervention, the three representations will facilitate the growth of appropriate mental 

schema with this type of mathematics. The three representations in the ENCAL system are 

designed to be open-ended (i.e. exploratory) and not wholly explicit. This provides the 

opportunity to promote active thinking, and facilitates learning via reflective abstraction 
and social interaction.

Since the evaluation questions were answered by participants without teacher support or 

peer interaction, learning within a social context was not apparent. However, it was evident 

from the pupil and experimenter discourse (as highlighted on the video analysis) that
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questions were often asked or statements made by students in order to seek clarification. 

This indicates that interaction with ENCAL resulted in an open-ended (i.e. unconstrained) 

outcome, which offers support to the second design idea of users being active and 

reflective.

The better results of group 2 (who had a datatree) compared to group 1 (who had no 

datatree) demonstrate the pedagogical effectiveness of the use of all three representations, 

especially the intermediate datatree. This was particularly apparent with answers to 

question 3 (b), where the datatree proved to be a necessary source of information to 

achieving the required expression. Such a result lends support to the notion that MELRs 

facilitate the understanding of mathematical concepts and procedures, particularly where 

users move through the representations from concrete to abstract (see Section 5.2). It was 

noted however that one or two children went into a state of panic when confronted with the 

datatree. This shows that not only did these children have trouble with the problem, but the 

datatree representation created anxiety.

9.4 What Does ENCAL not Deliver?

The final evaluation highlighted the need to keep previous states of users’ ENCAL 

interactions. This is because users were not given the opportunity to retain an existing 

representation once it had been changed, and it was felt that this would have provided a 

further means of assisting learning. That is, currently, the history of an initial representation 

disappears as soon as any modification takes place, so comparison between the two states 

(i.e. old and new) is not easy since the new view diverts a student’s attention and thus his 

or her short-term memory. The point of MELRs is that students do different kinds of 

reasoning in each of the three representational states in order to help with understanding. 

ENCAL was designed to encourage users to move (i.e. translate) between the three 

representations from iconic to datatree to calculator (i.e. concrete to abstract). In order to 

maintain equivalence throughout when working is later modified, earlier states change. 

Unfortunately, it is then impossible for individuals to revisit their thinking by reviewing
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older versions of the representations. So the problem is how to maintain enough history of 

earlier states so that they can be revisited while: (a) keeping the linked property; and (b) not 

overwhelming users with clutter.

Also, when users handle nested brackets with ENCAL, teacher support was found to be 

crucial. This is due to the system being unintelligent and to some extent unrestricted in 

terms of user actions. In other words, ENCAL on its own was not designed to be a tutor for 

handling nested brackets -  particularly, the positioning of brackets in an equation and the 

subsequent calculation sequence. Although the current state of ENCAL is in accordance 

with the original design ideas (in particular, being open-ended to stimulate thinking, and 

the need for pupil-teacher interaction), some users found nested brackets confusing. 

Therefore, in order to avoid users being in a helpless situation, perhaps ENCAL should 

address this issue and offer some guidance, for example only if sought by users. However, 

it must be emphasised that ENCAL is not designed to simplify the learning process in some 

way, or to weaken the role of the teacher.

Even though datatree construction was not included in the final evaluation, the pilot test 

showed that this activity was difficult for users, since ENCAL does not offer support for 
this task. As with nested brackets, ENCAL should ideally provide early help, but much 

hands-on experience would be required in order for users to become proficient and thus 

gain maximum benefit. However, in line with the above original design idea, meaningful 

interaction through teacher support will ultimately be needed, particularly in the early 

stages of building datatrees.

Following the pilot test, it was decided that a datatree and its equivalent book and shelf 

icons would not alter their structure when switching between the left-to-right and the 

BODMAS calculators following datatree construction. This was done in order to avoid 

confusion. The calculator logic selected by a user (e.g. BODMAS) is therefore not re

represented by the datatree or the icons. Instead, the original calculator logic (i.e. left-to- 

right) remains in the initial left-to-right state. However, when the equals key on the 

calculator is clicked, the answer displayed changes accordingly. On reflection, if the
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calculator answer changes due to a different logic, the icons and datatree should change 

also in order to maintain equivalence between the representations. Nevertheless, such a 

move will be feasible only if the original representations can be maintained. Therefore, two 

ongoing problems with ENCAL which require attention are: (a) updating iconic and 

datatree structures so that they conform to the current calculator logic; and (b) preserving 

the previous iconic, datatree, and calculator states for comparison purposes.

9.5 Some Implications for Other Interactive Learning Systems

Based on the findings from ENCAL, suggestions for other interactive learning 

environments are put forward in this section.

Firstly, all representations at the interface should be editable. The reasons for editing are to:

(a) support understanding; (b) ensure that mistakes made during user input (which for 

ENCAL involved iconic and datatree construction and calculator data entry), are easy to 

change so as to assist learning and avoid user frustration; and (c) make building difficult 

structures (such as datatrees in ENCAL) achievable.

Secondly, the intermediate datatree was designed to make the cognitive process of 

translating between different representations easier, but not too easy, so that a little thinking 

is required by a user. Consequently, the datatree is a necessary but complicated 

representation. It therefore has a set order o f allowed actions with the operators and entities 

to facilitate construction. A similar procedure could be adopted with other complex 

interactive environments. Nevertheless, tree building is still quite difficult, and therefore 

teacher support would be required until a user becomes proficient.

Thirdly, the structure and functionality of multiple representations should preferably be 

equivalent and linked so that comparisons between concrete and abstract forms are readily 

observable in order to assist learning.
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9.6 How the Current ENCAL Improves on Previous Representations

Some of the problems with earlier ENCAL representations are listed below. The 

representations did not work from educational or usability perspectives due to the reasons 

given. ENCAL was subsequently amended to the current form.

Iconic

In order to avoid confusion, a textual prompt was needed in the iconic representation to 

state that the number of books and/or shelves selected by an individual was too great to be 

shown.

Shelf icons could not be dragged and dropped like the book icons. This meant that there 

was a disparity between different icons and their movement.

It was thought that with 5+2 (for example), there should be no need to have 5 books in one 

bookcase, and 2 books in another bookcase to represent addition. Instead, it was decided 

that the sets of 5 and 2 could be represented with different colours in one bookcase. 

Consequently, there could be 5 blue books and 2 green books on one shelf in one bookcase. 
In this case, zero would be represented by omitting books alongside other books on a shelf 

- so 5+0 is represented by 5 blue books, and no green books are shown.

Dataflow

Parentheses (i.e. rectangles -  “boxes”) could not be inserted around specific numbers and 

operators in the dataflow representation after it had been constructed, such as with: 

(4+2)x3+(2+l)x2.

Users did not have the freedom to be able to clear boxes during tree construction in the 

dataflow representation. The UNDO key did not allow users to delete a box once it had 

been inserted, instead the whole tree would clear.

To overcome these problems, a datatree editing system was incorporated, where a user 

should at least be able to:



141

• move a “box” containing a number or operator to a new location;

• delete a connecting arrow;

• insert a new connecting arrow from a number or operator “box” to an operator or 

number “box” respectively.

• put numbers or operators into “boxes” before having to connect arrows between the 

“boxes”.

Calculator

The record o f calculation steps was permanently shown at the side of the calculator. 

However, it was decided to incorporate a button so as to hide or show this if desired.

All Three Representations

A tick and a cross were changed to happy and sad faces to signify a user’s well-formed or 

not well-formed representations. It was felt that a tick and a cross could be mistaken for a 

correct or an incorrect answer, as opposed to representations being well-formed or not. 

However, it was noted during the evaluation sessions that pupils tended not to refer to these 

prompts, and so they seemed to be of little help. Having said this, with further experience 

of ENCAL, it is assumed that users would rely more on their presence.

9.7 Translation and Learning Issues Using ENCAL

“One of the main problems in any learning is the need to ‘translate’ concepts from a 

symbol system, such as language or numbers or graphical representations/models into 

meaningful mental schema” (Somekh, 1996, p.12). ENCAL has been designed to facilitate 

translation (i.e. re-representation) from textual word problems to iconic, datatree, and 

calculator graphical representations and thus overcome the translation problems highlighted 

by Lesh, et al. (1987) -  see Chapter 2. Information from the three external representations 

is then translated into meaningful internal mental schema helped by the computer-based



142

learning environment (this combined process is referred to as distributed cognition since 

cognitive tasks are distributed across both the internal and the external representations). 

This translation process is helped due to the learning being situated. In other words, 

ENCAL provides a microworld or simulation within which particular mathematical 

experiences (i.e. order of operations and use of parentheses) take place. In order to achieve 

translation, the rationale behind learning using ENCAL is discussed below.

ENCAL provides three external representations comprised of various symbols to facilitate 

the transfer of learning to internal/cognitive representations. However, user translation 

between the different external representations is a complicated cognitive process. This is 

pointed out by Van Labeke and Ainsworth (2001), but they state that even young children 

can benefit (i.e. learn) from multiple representations provided that they are given suitable 

illustrations. Van Labeke’s and Ainsworth’s quest it is to learn and identify more about the 

actions of students (in particular, the translation issue) from a cognitive perspective, 

whereas here this aspect is considered with education as the main focus. The design of 

representations in their study and in ENCAL tend to reflect these differing approaches, as 

explained below.

The external representations in ENCAL are based on the philosophy of constructivism 

(refer to Chapter 1 for further information) in order to assist and maximise both the 

learning process and the development of internal representations. In other words, users 

have the opportunity to become actively involved in building (i.e. constructing) concrete 

icons, intermediate datatrees, or abstract mathematical expressions. It is this active, 

constructive process which supports: (a) cognitive development during the learning 

process; (b) translation between linked but structurally different external representations; 

and (c) reading-off information. In contrast, the external representations put forward by 

Van Labeke and Ainsworth (2001) are not actively constructed by users. Instead, students 

input values and parameters (e.g. to forecast predator and prey relationships up to a 

particular year), and consequently three external representations (a graph, a table, and a 

phase-plot) are updated. An individual then reads-off the changes and considers the 

connection between the representations.
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Despite the efficacy of such multiple representational systems, Cox (1999) states that the 

“process of constructing and interacting with an external representation is a crucial 

component of learning” (p. 347). He points out that the construction of external 

representations can assist problem solving by: (a) re-ordering the information in ways 

useful for solutions; (b) laying out the range of possible uses of the information; (c) making 

missing information explicit; (d) representing implicit information explicitly; and (e) 

facilitating translation between representations. However, he also indicates that external 

representations must be appropriate to the requirements of a given task, particularly to 

facilitate read-off. In addition, Reisberg (1987) refers to the process of constructing an 

external representation as being a procedure for enlarging a person’s understanding. 

Grossen and Carnine (1990) also state that the process of constructing a representation 

helps transform students’ understanding of a problem. The ENCAL system endorses this 

statement. For example, ENCAL allows users to construct concrete icons in order to 

represent familiar real-world objects. The icons are a means of re-representing textual 

information. A student then progresses to constructing a datatree which re-represents the 

iconic information. Finally, the formal calculator expression is input which re-represents 

the intermediate datatree. Related to this issue are the concepts of modality and capturing 

abstraction. According to Cox, Stenning & Oberlander, (1995), the ability of an external 

representation to depict abstract information contained within analytical word problems is 

more important than the modality (i.e. type) of an external representation. However within 

ENCAL, both a representation’s ability to depict abstract information and its modality are 

significant factors. This is because word problems are introduced first, followed by the 

three external representations - icons, datatree, and mathematical calculator notation 

(modality). A representation’s modality is crucial to ENCAL’s environment since it is the 

modality which helps guide users through the subsequent learning process from concrete to 

abstract (ability to convey abstract information). Nevertheless, the expressiveness of the 

iconic modality is limited. In addition, datatree representations do not give products of 

operations, whereas either of the calculators do. This was due to iterative design decisions, 

having taken leamability issues into account. Consequently, it may be seen that ENCAL’s 

three external representations are not exactly informationally equivalent.
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The fewer hidden dependencies (refer to Chapter 2) in ENCAL reinforce the constructivist 

approach. For example, a user builds the graphics so that parentheses are represented as 

bookcases (concrete), dotted rectangles (intermediate), or algebraic brackets (abstract). 

Thus, a calculation sequence does not have to be inferred since this is dependent upon the 

information present. However, the three representations in the read-off simulation 

described above are not user constructed, and as such will be less familiar. Consequently, a 

certain amount of user inference will inevitably take place. In this case, dependencies both 

within and between the representations tend to be hidden, and thus have to be inferred.

With a read-off only interface, it may be assumed that users are passive since they observe 

as opposed to construct. However, Brna, Cox, and Good (2001), point out that observation 

is not inevitably passive, since a person may interpret a diagram without having to 

physically manipulate it. Such interpretation may be difficult though if the representation is 

not constructed. This seems to be particularly important in a learning environment. For 

example when using ENCAL, entering + on the calculator results in + appearing on the 

datatree. This constructive activity gives a user the expectation that as well as addition, 

another number is required, and therefore indicates that + has a dual function.

Although constructivism may be beneficial to learning, Brna, et al. (2001) state that there is 

a tension between learning unfamiliar diagram systems (i.e. representations) and learning a 

new educational topic, because students are concurrently formulating mental models of the 

domain knowledge and the representations. In this thesis students had knowledge of the 

mathematical subject (i.e. it was not new), yet they may have had incomplete conceptions 

or misconceptions. Nevertheless, the results of the experiment (see Chapters 7 and 8) 

showed that interacting with unknown representations created some confusion, but 

translation between them was evident due to the beneficial results of the datatree group. 

Despite these results supporting learning, Lowe (1994) points out that specific 

representation systems do not help students, but make the task of understanding much 

harder since he or she is struggling with both learning knowledge and the representation(s). 

Ainsworth, et al. (1996) endorsed this finding by demonstrating that providing multiple 

representations does not necessarily guarantee learning success.
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However, the explicit provision of domain knowledge in ENCAL helps both the translation 

and the learning processes. For example, in the iconic representation different book sets are 

represented using different colours, and multiplicand and multiplier are distinguished using 

books and shelves. With the datatree, the operator and number “boxes” are connected by 

arrows in order to highlight the direction of a calculation, and dotted rectangles represent 

parentheses. Finally, the calculator has the operator keys marked in red in order to 

distinguish them from the other keys. It must be remembered that the provision of such 

domain knowledge has been designed not to be overly explicit. This is because the 

environment is purposely open-ended to achieve the desired learning process of 

encouraging reflection, discussion, and question-asking.

The results of an experiment by Cox and Bma (1995) also found that multiple external 

representations are effective, despite students’ reasoning behind external representation 

selection being heterogeneous (i.e. varied). In fact, Schnotz, Picard, and Hron (1993), 

argues that diagrammatic representations are fundamental to the development of 

appropriate mental models. He found that unsuccessful students tended to use graphic 

information to a lesser extent, whilst successful students constructed mental models using 

the diagrammatic representations. The results of the ENCAL experiment tended to reflect 

this position. That is, high attainment pupils successfully read datatree information (in 

particular, question three) which implies that they built appropriate schemata of the 

situation. In other words, pupils translated the iconic diagram into an appropriate datatree 

representation, and then formulated the correct mathematical expression. This demonstrates 

that actions were translated between the three connected external representations, and also 

shows that mathematical thinking was assisted by non-verbal imagery (Goldin, 1992b).

Cox (in Brna 2001) believes that graphical representations compared to textual information 

helps reflective students consider more than one model of the information present, although 

he does state that it is still unclear as to the way in which diagrams play a part in this 

process. It is possible however that interactive software such as ENCAL provides mental 

scaffolding due to the representations, which gives students the encouragement to reflect. 

On this issue, Somekh (1996) states that at the lowest level, such scaffolding provides the
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motivation to work on tasks for longer periods. Furthermore, it must not be forgotten that 

ENCAL provides a social learning situation. This is because use is made of cognitive tools 

(e.g. text, language, the three representations, and teacher/pupil interaction). According to 

Vygotsky (1986), learners have limits to their current level of knowledge (this is known as 

the “zone of proximal development”, p. 187), and they are unable to proceed beyond this 

without teacher or peer intervention. The idea being that the next time the person comes 

across a similar learning situation, he or she will be able to proceed without such social 

scaffolding.

9.8 Summary

The ENCAL design promotes learning via three external computer-based representations. 

Distributed cognition is fundamental to the underlying rationale of the system since the 

multiple, equivalent, linked external representations (i.e. iconic - concrete, datatree - 

intermediate, and calculator - abstract) have been designed to influence individuals’ 

internal representations (i.e. mental/cognitive processes). The results of the final evaluation 

showed that the intermediate datatree was particularly beneficial to participants’ 

performance. However, ENCAL does not keep previous representational states for 

reference once a representation has been modified by a user. In addition, the ENCAL 

unintelligent system does not offer assistance with nested brackets, and it was evident that 

in such circumstances teacher support is essential. It was also found that teacher help will 

be needed for early attempts at datatree construction. It is recommended that: (a) all 

representations should be editable; (b) complex constructions have a set order of allowable 

actions; and (c) multiple representations are equivalent and linked. Various iterative 

improvements were made to the ENCAL interface throughout the design process.

ENCAL enables users to translate (i.e. re-represent) information: (a) between the three 

external representations; and (b) from the external representations into meaningful mental 

schema. The ENCAL microworld has been designed to assist this process and thus 

maximise learning based on the thinking behind constructivism. Although the unknown
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representations caused some confusion, translation between them was evident particularly 

with those participants provided with the intermediate datatree. In addition, the explicit 

provision of domain knowledge in the three representations facilitated the translation 

process. The ENCAL computer-based interactive environment also affords both mental 

scaffolding which encourages reflection, and a social learning environment through the use 

of cognitive tools (i.e. text, language, the external representations, teacher-pupil, and 

pupil-pupil interaction).

9.9 Conclusions

The use of all three graphical multiple equivalent linked representations (i.e. icons, 

datatree, and calculator) have beneficial effects on participants’ mathematical performance. 

The intermediate datatree serves as a crucial connection between the concrete icons and the 

abstract calculator notation. The unintelligent (i.e. open-ended) behaviour of ENCAL 

promotes learning by means of reflective abstraction and social interaction. Constructivism 

is central to the learning process which is provided through ENCAL, since activity (i.e. 

user construction of iconic and datatree diagrams) appears to be an important factor in 

understanding, and thus the formation of mental models. In general, the ENCAL computer- 

based learning environment offers an effective link - enabling translation of information, 

between its three external representations and subsequent knowledge which develops in the 

form of individuals’ schemata.

The next chapter considers future work concerning ENCAL, and the contributions made 

regarding computer-based learning research.
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Chapter 10
Contributions and Future Work

10.1 Introduction

The following chapter presents contributions made during this research, and the possible 

future work which may be carried out to further improve the ENCAL computer-based 

learning system. Initially, the contributions are stated specifically with regard to design. 

Future work is then considered concerning constructivism issues. Finally, further 

suggestions associated with future work are put forward.

10.2 Contributions

(a) The Design and effectiveness o f the Multiple Equivalent Linked Representations 

(MELRs)

The result of the study has shown that it is possible to design a successful system (i.e. 

ENCAL) based on a combination of educational and cognitive theories. The educational 

theories included: constructivism, meaningful interaction, reflective abstraction, and pupil- 

teacher/pupil-pupil discourse. The cognitive theories were based on: (i) external 

representations influencing internal schemata -  i.e. the translation of information between 

different external representations was assumed to influence individuals’ mental models, 

where concrete to abstract translation and thus understanding during learning was 

facilitated using three external graphical diagrams (icons, datatree, calculator); and (ii) the 

cognitive dimensions method of evaluation which was used for the interface design.
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Individuals had a choice of graphical constructs. Firstly, the icons enabled word problems 

to be represented diagrammatically. However, the book and shelf icons behaved differently 

at the interface. In particular, the method of removing shelves and books from bookcases 

completely differed. Such inconsistencies were problematic and caused confusion to some 

users. Nevertheless, this type of problem has alerted the need to ensure consistency 

throughout icon use. Secondly, the datatree -  in particular the “boxes” and the dotted 

rectangles, were new to users. Also, the mapping of recursive datatree constructs 

(expressed as parentheses in calculator notation) onto graphical representations (e.g. 

“boxes”) was only partially successful. Consequently, future work concerning datatree 

design and its use is needed.

Despite these reservations, the research provides a significant contribution to the growing 

number of studies on the use of multiple linked external representations in educational 

contexts. In particular, this study shows an effect which has potentially significant 

implications for further research in the value of multiple representations.

(b) The Use of Calculators

A significant contribution has also been made to the ways in which the teaching of number 

can make use of calculators. Specifically, the ENCAL system provides an original way of 

working with calculators, which has the potential for helping children learn about both 

number and how calculators work.

(c) Cognitive Dimensions

ENCAL was designed with the help of cognitive dimensions, which should be of value to 

those seeking to develop the notion of cognitive dimensions further, especially in an 

educational context.



150

10.3 Future Work

Although ENCAL is currently a viable computer based learning environment, further 

modifications to the system would enhance learnability. In addition to the ENCAL 

problems outlined in Section 9.4, two areas of future work based on the above 

contributions are described below. Further suggestions are then given concerning possible 

future work.

Constructivism

The reasoning behind the constructivist design of ENCAL is to gradually fade the 

scaffolding provided by the icon, datatree, and software calculator constructs. Thus, the aim 

is for individuals to interact with a normal hand-held calculator over time and understand 

both the mathematical input and the calculator behaviour. A long-term study would 

therefore be appropriate in order to investigate whether the graphical representations could 

indeed be faded out.

Icons and Datatrees

Previous research indicates that the construction of computer graphics (which in ENCAL 

are iconic and datatree representations) by a user better facilitates the translation (i.e. 

mapping) of symbolic information to the formation of mental schemata and thus learning.

In view of this, the book and shelf icons need to be redesigned so that they allow similar 

user actions during construction and editing. In addition, future work should be involved 

with: (a) developing a less complicated yet editable means of constructing datatrees; and 

(b) ensuring that the construction of icons and/or datatrees form an integral part of the 

interactive process. This pedagogy will help reinforce the structuring of knowledge, and 

would be the preferred learning process, as opposed to having students read off information 

from automatically constructed graphics.

ENCAL should also be modified to include -  and + as well as the existing + and x. This 

would only require an extended concrete iconic representation, e.g. sharing out a pile of
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books, since the underlying mechanism is already able to handle the arithmetic of all four 

operators via the datatree and the calculator.

10.4 Further Suggestions

Question Text

In order to facilitate understanding, ENCAL could update question text to match user 

actions when interacting with the iconic, dataflow, and calculator representations. 

However, the problem then would be that the original question text would have to be stored 

somewhere so that it could be referred to by users.

The Use of Representations

The use of all three representations concurrently may be confusing. In such a circumstance, 

it may be useful if any one representation is temporarily negated. A user could then choose 

which two representations to interact with.

Calculator Modes

The two calculator modes (i.e arithmetic, and scientific) could be made accessible in the 

calculator representation. Currently, a user has to return to the set up menu to change 

calculator logic, and consequently all current information is lost and so the learning process 

is interrupted. An operator hierarchy in a tree format could be shown on the screen 

concurrently for each calculator logic. Thus, a user would be able to see at a glance the 

sequence the calculator will use to evaluate an expression. Whichever calculator logic is 

chosen will be reflected in the other two representations, thus maintaining equivalence.

Operators

Currently only addition and multiplication are used in the ENCAL design. The 

development of subtraction and division would be a next step for upgrading the design to
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include all four arithmetic operations. However, further icons would have to be 

incorporated into the iconic representation to make the system versatile enough to cope 

with this situation.

The Provision of Additional Teacher Material

In order to gain maximum benefit from ENCAL, students will require frequent teacher 

support, e.g. with the construction of datatrees. Therefore, it is recommended that teachers 

should be provided with a workbook or a resource-pack so that they are able to make the 

best use of ENCAL in class.

Hypothesis Testing

Hypotheses testing could also be carried out. For example, the use of a four-function (i.e. 

arithmetic) calculator could be compared with the use of multiple, equivalent, linked 

representations to solve particular problems. A relevant hypothesis could be as follows.

The use of a four-function (arithmetic) calculator causes confusion 

when evaluating arithmetic expressions, compared to the use of 

multiple, equivalent, linked representations of the ENCAL computer- 

based learning system.

The independent variable would be the interface style. The dependent variable would be 

the number of errors made in terms of incorrect final answers to calculations. The 

experimental group would have only the calculator representation to work with (i.e. the 

interface would be manipulated to show only the calculator), whilst the control group 

would not have this manipulation, but would have access to the complete ENCAL system. 

Thus, it would be the interface manipulation which is responsible for any differences found 

between the groups.

In addition, the following hypothesis may be tested in order to confirm the assumption of 

Hiebert and Lefevre (1986), that procedures (i.e. calculation sequences and order of 

operations) may or may not be learned with meaning.
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The evaluation of an arithmetic expression may be successfully 

performed even before achieving a full interpretation of the meaning of 

an expression.

Comparative hypotheses testing may also be carried out. For example, the 

usefulness/effectiveness of one or more of the three representations could be compared 

with each other. Also, the usefulness of one or more representations of the system could be 

compared to traditional calculator and paper and pencil methods.

History

It is considered essential that the history of a representation is maintained for future 

reference once any modification has taken place (Section 9.4 gives further details). If this 

occurs, then constructed iconic and datatree representations may be updated following a 

change of calculator logic. The representation of history (preferably in editable form) is 

being explored within the Human Computer Interaction community, but has made little 

headway within Computer Based Learning. Such work could also include the use of role 

back execution. This could be incorporated into the calculator representation so that a user 

has the opportunity to return and edit his or her input.

10.5 Summary

The two fundamental contributions were: (a) the design of ENCAL which was based on an 

amalgamation of educational and cognitive theories; and (b) the helpful and constructive 

use of multiple equivalent linked representations. Future work should include: (a) a long

term study to assess the effectiveness of fading the constructivist scaffolding (i.e. the three 

computer-based representations) over time; (b) the redesign of the construction and editing 

of icons and datatrees. Further suggestions for future work are stated, and specifically 

should focus on the need to develop a means of maintaining the history of work previously 

carried out but subsequently changed.
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Appendix 1

The Cognitive Walkthrough

The extract below was taken from the internet and provides relevant information regarding 

cognitive walkthroughs.

Theory Underlying The Walkthrough

Rieman, et.al (1995) state the following. "The cognitive walkthrough is a practical 

evaluation technique grounded in Lewis and Poison's CE+ theory of exploratory learning 

[3,4,5]. The CE+ theory is an information-processing model of human cognition that 

describes human-computer interaction in terms four steps:

1) The user sets a goal to be accomplished with the system (for example, "check spelling of 

this document").

2) The user searches the interface for currently available actions (menu items, buttons, 

command-line inputs, etc.).

3) The user selects the action that seems likely to make progress toward the goal.

4) The user performs the selected action and evaluates the system's feedback for evidence 

that progress is being made toward the current goal.

For most realistic tasks that a user would attempt with a system, these four steps are 

repeated many times to achieve a series of subgoals that define the complete task. The 

cognitive walkthrough examines each of the correct actions needed to accomplish a task, 

and evaluates whether the four cognitive steps will accurately lead to those actions.
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The Walkthrough Procedure

Prerequisites to the walkthrough include: (1) a general description of who the users will be 

and what relevant knowledge they possess, (2) a specific description of one or more 

representative tasks to be performed with the system, and (3) a list of the correct actions 

required to complete each of these tasks with the interface being evaluated.

The walkthrough is typically performed by the interface designer and a group of his or her 

peers. Small-scale walkthroughs of parts of an interface can also be done by individual 

designers as they consider alternative designs. In a group situation, one of the evaluators 

usually takes on the duties of "scribe," recording the results of the evaluation as it proceeds, 

and another group member acts as facilitator, to keep the evaluation moving.

With the prerequisites assembled and duties assigned, the walkthrough process involves 

examining each individual step in the correct action sequence and trying to tell a believable 

story about why the prospective user would choose that action. Note that this is not an open 

forum approach of predicting what activities the user might engage in, given this interface 

and task. It is specifically limited to considering whether the user will select each of the 
correct actions along the solution path.

In many cases, the group of evaluators will readily agree that the user will select the correct 

action, and no further analysis is required. For example, the first action in using a 

Macintosh program may be to double-click its icon; the evaluators could readily agree that 

experienced Mac users would have little trouble with this step. Other cases, however, may 

be less clear. To assess the ease with which the correct action will be selected, the 

walkthrough process suggests four criteria for evaluating the stories told about the users' 

actions.

The four criteria for evaluating the stories directly reflect the information-processing model 

that underlies the walkthrough. They ask the evaluators to consider the user's goal, the 

accessibility of the of the correct control, the quality of the match between the control's 

label and the goal, and the feedback provided after the control is acted on” (pp. 2-3).
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Appendix 2

Cognitive Dimensions

Cognitive Dimensions

Cognitive dimensions is a method designed to help evaluate the usability of systems which 

store, manipulate and display information (Green and Blackwell, 1998). The systems may 

be either interactive (e.g. word-processors, software environments, mobile telephones), or 

non-interactive (e.g. tables, graphs, programming languages). The cognitive dimensions 

approach uses a set of terms which serve as a checklist to ensure that potential problems or 

improvements in usability (e.g. software design) are not overlooked.

The dimensions are actually a list of fourteen descriptors which help focus attention on 

usability issues, and thus may be used to provide a means by which design alternatives can 

be compared (Green, 1999). The dimensions are listed below in Table Al.

Table A l.l The Dimensions

Abstraction (usability difficulties) Mechanisms which result in abstraction 

during the usability of an artefact.

Closeness of mapping Mapping between the problem world 

(domain) and an artefact’s usability (i.e. its 

representations) should be as close as
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possible.

Consistency The semantics of text are expressed using 

similar grammatical forms.

Diffuseness (i.e. spread out) Using tautologous, redundant, or over 

wordiness in language.

Error-proneness The use of notation tends to lead to 

mistakes.

Hard mental operations There is a high demand on cognitive 

resources.

Hidden dependencies A relationship between two components 

(e.g. text and graphics) at an interface, 

where one component which is dependent 

on the other is not apparent but hidden.

Premature Commitment A user will make a premature commitment 

at an interface when he/she is forced to 

make a decision before a required piece of 

information is available.

Progressive Evaluation A system enables work to be checked at 

any time.

Provisionality A user has to meet certain requirements 

(provisions) in order to carry out actions at 

an interface. Provisionality refers to the 

degree of commitment a user makes to 

actions.
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Role-expressiveness The ease with which syntax is understood 

such that: (a) notation can be split into its 

components parts; and (b) the relationships 

between the components can be identified 

(e.g. Prolog programs make little use of 

role-expressiveness).

Secondary notation Extra notation (e.g. circuit diagrams used 

by engineers ) is provided in order to 

supplement role -expressiveness.

Viscosity This is resistance to change. In other 

words, it is the amount of work a person 

has to input at an interface in order to bring 

about a small change in the system’s 

behaviour. Thus, the lower the viscosity, 

the easier it is for a person to interact.

Visibility Does a system enable its component parts 

(e.g. Prolog programs) to be viewed easily.

Since the dimensions are not themselves evaluative, two other components within the 

cognitive dimensions framework are used. These are activity types and environment.

Four types of activity

1. Incrementation: adding information (e.g. adding a formula to a spreadsheet).

2. Transcription: copying or converting information (e.g. converting a formula into a 

spreadsheet).
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3. Modification: changing or modifying information (e.g. changing the layout of a 

spreadsheet or modifying it to compute a different problem).

4. Exploratory design: where a final product cannot be envisaged, but is formulated 

through sketches and other means.

The Environment

Green (1999) points out that cognitive dimensions are not only properties of the notation 

used (e.g. as with Prolog), but they are also properties of the environment (e.g. as with a 

designed computer-based learning or Prolog environment). Thus, a particular notation may 

be viscous (i.e. hard to change) where it is simply part of many lines of programming code, 

yet the same notation may be quite fluid when used in an environment which has 

appropriate editing tools.

Final Comments

Green (1999) states that despite cognitive dimensions offering a useful framework for 

analysis, the framework needs further development. In particular, with regard to Prolog, 

computer programmers at all levels of experience could be helped by having an editing 

enviroment which manages abstractions thereby reducing the viscosity of Prolog. However, 

this is not easy but is a way forward for improving the cognitive dimensions system.
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Appendix 3

The Pilot Test Questions

Please attempt to answer the following questions using the computer based learning system 
ENCAL.

1. Jill has two red books and three blue books on one shelf in a bookcase.

Iconic Representation

(a) Use the book, shelf, and bookcase icons to represent the items in Jill’s room.

(b) Count how many books Jill has in her room altogether. Write down your answer.

[CLEAR SCREEN WHEN FINISHED]
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2. John places three red books on one shelf in one of the bookcases. He later adds 

three blue books to the shelf.

Iconic Representation

(a) Use the book, shelf, and bookcase icons to represent the items in John’s room.

[CLEAR SCREEN WHEN FINISHED]

Dataflow Representation

(b) Construct a dataflow tree which represents the items in John’s room.

(c) Write down the arithmetic expression from the dataflow tree which represents the 

number of books in John’s room.

[CLEAR SCREEN WHEN FINISHED]
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3. Jill has three red books on each of five shelves in one bookcase.

Iconic Representation

(a) Use the book, shelf, and bookcase icons to represent the items in Jill’s room.

[CLEAR SCREEN WHEN FINISHED]

Dataflow Representation

(b) Construct a dataflow tree to represent the items in 

Jill’s room.

(c) Write down the arithmetic expression from the dataflow tree.

(d) Check that the dataflow tree numbers match with the book and shelf icons.

[CLEAR SCREEN WHEN FINISHED]

Calculator Representation

(e) Use the calculator to determine how many books there are altogether in Jill’s room. 

Check that the numbers match the book and shelf icons. Write down your answer.

[CLEAR SCREEN WHEN FINISHED]



172

4. John puts four blue books on each of two shelves in one bookcase. He then puts 

two blue books on each of three shelves in another bookcase.

Iconic Representation

(a) Represent the items in John’s room using the book, shelf, and bookcase icons.

[CLEAR SCREEN WHEN FINISHED]

Dataflow Representation

(b) Construct a dataflow tree to represent the items in John’s room.

(c) Write down the arithmetic expression from the dataflow.

[CLEAR SCREEN WHEN FINISHED]

Calculator Representation

(d) Use the calculator to determine how many books there are altogether in John’s room.
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Write down your answer.

(e) Check that the calculator answer matches the total number of books in the iconic 

representation.

[CLEAR SCREEN WHEN FINISHED]

Dataflow Representation

(f) Reconstruct the dataflow tree which represents the items in John’s room.

(g) Place a rectangle around 2x4 and 3x2 by selecting [] from the menu.

(h) Write down the arithmetic expression from the dataflow. Use brackets to represent 

each rectangle.

Calculator Representation

(i) Use the calculator again to determine how many books there are altogether in John’s

room. Write down your answer.
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(j) Which answer do you think is correct, (d) or (h)? Write (d) or (h) below.

THANK YOU FOR YOUR HELP
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Appendix 4

Questions for the Evaluation of ENCAL

B a c k g r o u n d  I n f o r m a t i o n

The aim of ENCAL - a computer-based learning system, is to help you develop your 

concept of number and your multiplication and addition skills with the help of an on-screen 

calculator and some additional computer-based support.

Translating a written problem to a mathematical calculation is hard, in particular the use of 

brackets; and the way in which calculators behave is not clear. So how can we help you 

with this?

The ENCAL program helps to show what the calculator is doing. Let’s see if it works! Try 

the problems.



176

HOW TO USE THE SYSTEM: SOME DEMONSTRATIONS 

Q1 Place three blue books on each of five shelves in one bookcase.

(a) Count how many books there are in the bookcase.

Write down the answer................................................................

PRESS THE CA BUTTON ON THE CALCULATOR TO CLEAR THE SCREEN

(b) Use the calculator and the information in question 1 to find how many books 

there are in the bookcase.

Write down the answer.................................................................

Double check this answer by counting the number of books in the bookcase. 

Are both answers the same, yes/no?..................................................................

P R E S S  T H E  C A  B U T T O N  O N  T H E  C A L C U L A T O R  T O  C L E A R  T H E  S C R E E N
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Q2 Place two shelves in one bookcase, and put four blue books and two green books 

on each shelf.

(a) Count how many books there are in the bookcase.

Write down the answer................................................................

PRESS THE CA BUTTON ON THE CALCULATOR TO CLEAR THE SCREEN

(b) Use the calculator and the information in question 2 to find how many books there are 

in the bookcase.

Write down the answer.................................................................

Double check this answer by counting the number of books in the bookcase.

Are both answers the same, yes/no?....................................................................

P R E S S  T H E  C A  B U T T O N  O N  T H E  C A L C U L A T O R  T O  C L E A R  T H E  S C R E E N

E X IT  A N D  R E S T A R T  E N C A L
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HOW TO USE THE SYSTEM: SOME DEMONSTRATIONS

Q1 Place five shelves in one bookcase, and on each shelf place three books.

(a) Count how many books there are in the bookcase

Write down the answer................................................................

(b) Using the boxes on the top half of the screen to help you, write down the equation that 

represents the problem in question 1 (the dotted rectangles represent the brackets 

normally used in maths).

PRESS THE CA BUTTON ON THE CALCULATOR TO CLEAR THE SCREEN

(c) Use the calculator and the information in question 1 to find how many books there are 

in the bookcase.

Write down the answer.................................................................

Double check this answer by counting t he number of books in the bookcase.

Are both answers the same, yes/no?....................................................................

P R E S S  T H E  C A  B U T T O N  O N  T H E  C A L C U L A T O R  T O  C L E A R  T H E  S C R E E N
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Q2 Place two shelves in one bookcase, then on each shelf place four blue books and 

two green books.

(a) Count how many books there are in the bookcase

Write down the answer................................................................

(b) Using the boxes on the top half of the screen to help you, write down the equation that 

represents the problem in question 2 (the dotted rectangles represent the brackets 

normally used in maths).

PRESS THE CA BUTTON ON THE CALCULATOR TO CLEAR THE SCREEN

(c) Use the calculator and the information in question 2 to find how many books there are 

in the bookcase.

Write down the answer.................................................................

Double check this answer by counting the number of books in the bookcase.

Are both answers the same, yes/no?....................................................................

P R E S S  T H E  C A  B U T T O N  O N  T H E  C A L C U L A T O R  T O  C L E A R  T H E  S C R E E N

E X IT  A N D  R E S T A R T  E N C A L
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THE TEST QUESTIONS 

GROUP 1

Q1 Place one shelf in a bookcase, then on it place two green books and three blue 

books.

(a) Count how many books there are in the bookcase.

Write down the answer................................................................

PRESS THE CA BUTTON ON THE CALCULATOR TO CLEAR THE SCREEN

(b) Use the calculator and the information in question 2 to find how many books there are 

in the bookcase.

Write down the answer.................................................................

Double check this answer by counting the number of books in the bookcase.

Are both answers the same, yes/no?....................................................................

P R E S S  T H E  C A  B U T T O N  O N  T H E  C A L C U L A T O R  T O  C L E A R  T H E  S C R E E N
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Q2 Place one shelf in one bookcase, and two shelves in another bookcase. On the 

first shelf place three green books and three blue books, and on the second 

two shelves place two blue books.

(a) Count how many books there are in the bookcase.

Write down the answer................................................................

PRESS THE CA BUTTON ON THE CALCULATOR TO CLEAR THE SCREEN

(b) Use the calculator and the information in question 2 to find how many books there are 

in the bookcase.

Write down the answer.................................................................

P R E S S  T H E  C A  B U T T O N  O N  T H E  C A L C U L A T O R  T O  C L E A R  T H E  S C R E E N
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Q3 Place two shelves in one bookcase, then place four blue books and two green 

books on each shelf. In another bookcase place three shelves, then place 

three blue books and two green books on each of these shelves.

(a) Count how many books there are in the bookcase

Write down the answer................................................................

PRESS THE CA BUTTON ON THE CALCULATOR TO CLEAR THE SCREEN

(b) Use the calculator and the information in question 1 to find how many books there are 

in the bookcase.

Write down the answer.................................................................

Click on “look inside” on the calculator and write down the contents below

P R E S S  T H E  C A  B U T T O N  O N  T H E  C A L C U L A T O R  T O  C L E A R  T H E  S C R E E N

EXIT AND RESTART ENCAL
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T H E  TE ST Q U ESTIO N S  

G RO UP 2

Q1 Place one shelf in a bookcase, and on it place two green books and three blue 

books.

(a) Count how many books there are in the bookcase

Write down the answer................................................................

(b) Using the boxes on the top half of the screen to help you, write down the equation that 

represents the problem in question 1 (the dotted rectangles represent the brackets 

normally used in maths).

PRESS THE CA BUTTON ON THE CALCULATOR TO CLEAR THE SCREEN

(c) Use the calculator and the information in question 2 to find how many books there are 

in the bookcase.

Write down the answer.....................................................................

P R E S S  T H E  C A  B U T T O N  O N  T H E  C A L C U L A T O R  T O  C L E A R  T H E  S C R E E N
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Q2 Place one shelf in a bookcase and on it place three green books and three 

blue books. Place two shelves in another bookcase, and on each of these 

shelves place two blue books.

(a) Count how many books there are in the bookcase

Write down the answer................................................................

(b) Using the connected rectangles on the top half of the screen to help you, write down the 

equation that represents the problem in question 2 (the rectangles represent brackets).

PRESS THE CA BUTTON ON THE CALCULATOR TO CLEAR THE SCREEN

(c) Use the calculator and the information in question 2 to find how many books there are 

in the bookcase.

Write down the answer.................................................................

P R E S S  T H E  C A  B U T T O N  O N  T H E  C A L C U L A T O R  T O  C L E A R  T H E  S C R E E N
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Q3 Place two shelves in one bookcase, and on it place four blue books and two 

green books. Then place three shelves in another bookcase, and on each of these 

shelves place three blue books and two green books.

(a) Count how many books there are in the bookcase

Write down the answer................................................................

(b) Using the boxes on the top half of the screen to help you, write down the equation that 

represents the problem in question 3 (the dotted rectangles represent the brackets 

normally used in maths).

PRESS THE CA BUTTON ON THE CALCULATOR TO CLEAR THE SCREEN

(c) Use the calculator and the information in question 3 to find how many books there are 

in the bookcase.

Write down the answer.................................................................

PRESS THE CA BUTTON ON THE CALCULATOR TO CLEAR THE SCREEN

THANK YOU FOR YOUR PARTICIPATION
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Appendix 5

Helpers’ Notes During the Evaluation of ENCAL

The general mathematical aims and objectives of ENCAL together include helping: (a) 

evaluation sequences, (b) the correct use of parentheses, and (c) appropriate mental model 

development for calculator use. Participants should use the L -  R calculator in order to: 

appreciate the inadequacies of calculator behaviour; and gain maximum benefit from the 

datatree.

ENCAL consists of three representations: iconic, datatree, and calculator. The words iconic 

and datatree may be confusing to participants. Consequently, the following words: books, 

shelves, bookcases (icons), and connected rectangles (datatree) should be used.

The datatree is a crucial aspect of ENCAL, because this provides intermediary help during 

problem solving. You’ll see that there are demonstration questions followed by the test 

questions. Group 1 will not be trained in the use of the datatree, so group 2 only will be 

prompted to use the datatree in the test questions. The aim is to compare the performance 

of the two groups.

The demonstration questions are to be directive (i.e. incremental). In other words, pupils should be 

directed and shown:

• how to use a specific representation;

• how to use representations during the stages of problem solving;

• which representations to use and the appropriate order of use during problem solving.
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The test questions are to be less directive (i.e. open-ended). In other words, pupils should not be 
directed or shown, but may be reminded if necessary:

• how to use a specific representation;

• how to use representations during the stages of problem solving;

• which representations to use and the appropriate order of use during problem solving.

A video camera will be used to record each participant’s interaction at the computer. The 

helper who sits with participants at the computer will have to switch the camera on/off at 

the start/end of each participant’s turn. In addition to the helper sat beside a participant, 

another helper should be sat behind taking notes of each participant’s actions. The notes 

should include:

• the name, age, and sex of each participant;

• whether group 1 or group 2, and whether the demonstration or the test questions;

• which representations were used when during the solving of each problem;

• what a participant did at the computer when difficulties were encountered.
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Appendix 6

Examples of the Coding Scheme When Classifying Behaviours

Operator Problem (OP)

Example 1

Question 2(b). Participant R. L. answered this incorrectly. That is, he entered 2 + 26 into 

the calculator. He missed out the operator between the 2 and the 6. This was then classified 

as an operator problem (OP).

Example 2

Question 3(b). Participant D. P. used the addition operator only, instead of combining 

addition and multiplication. He entered 4 + 4 + 2 + 2 instead of 2 x 4 + 2. Therefore, this 

was classified as an operator problem (OP).

Brackets Problem (BP)

Example 3

Question 3(a). Participant R. W. was confused by the use of nested brackets, and she 

obtained the incorrect answer. As she evaluated the expression (2 x (4 + 2)) + (3 x (3 + 2)) 

she ended up with (12 + 3) x 5 = 15 x 5 = 75. This was classified as a brackets problem 

(BP).
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Understanding Problem (UP)

Example 4

Question 2(b). Participant R. L. became confused and appeared to invent working. 

Therefore, this was classified as understanding the problem (UP).

Mis-Read Calculator (MRC)

Example 5

Question 2(b). Participant D. F. obtained the correct number of books on the shelves (i.e. 

10), however he mis-read the calculator and wrote down the answer of 70. This was 

classified as mis-read calculator (MRC).

Incomplete Calculator Use (ICU)

E xam ple 6

Question 3(b). Participant D. F. only partially finished the question using the calculator. 

Thus, instead of computing the mathematical expressions for both bookcases, he only did 

one bookcase. Thus, the problem was classified as incomplete calculator use (ICU).

Wrong Thinking (WT)

Example 7

Question 1(b). Participant C. S. achieved the correct number of books, however instead of 

having 2 + 3 for his calculator entry, he had 1 + 4. This was therefore classified as wrong 

thinking (WT).
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Wrong Number of Books (WNB)

Example 8

Question 1(a). Participant L. A. wrote down the answer of 6 books despite placing 5 books 

on the shelf. This was classified as the wrong number of books (WNB).

Question Correct (QCT)

Example 9

Question 3(a, b, c). Participant N. J. correctly answered each part of question 3. 

Consequently, this was classified as question correct (QCT).

Fragments of Working (FW)

Example 10

Question 2(b). Participant H. P. failed to obtain all the necessary information from the 

datatree. Thus, only fragments of working were visible (i.e. only parts of the mathematical 

expression were written down). Hence, this was classified as fragments of working (FW).

Mis-Read Datatree (MRD)

Example 11

Question 3(b). Participant L. D. wrote down the wrong mathematical expression despite 

having the datatree on the screen. In particular, the brackets (i.e. the dotted rectangles) were 

read incorrectly. This was classified as mis-read datatree (MRD).
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Interpreting Datatree (ID)

Example 12

Question 3(b). Participant E. B incorrectly translated the dotted rectangle information from 

the datatree to the mathematical expression. For example, she wrote (4 + 2) (2x) + (x3) + 2 

instead of (2 x (4 + 2)) + (3 x (3 + 2)). This was classified as interpreting datatree (ID).

Made-Up Working (MUW)

Example 13

Question 3(c). Participant C. S. simply wrote down his own working in answer to this part 

of the question (i.e. 2 x 1 1 =  22). This was obviously made-up, and so was classified as 

made-up working (MUW).

Mis-Read Information (MRI)

Example 14

Question l(b). Participant D. P. obtained the correct answer of 5, but mis-read the 

calculation steps from the calculator representation, using the “look-inside” facility. He 

thus wrote 3 + 5 instead of 3 + 2. This was classified as mis-read information (MRI).

Question Not Answered (QNA)

Example 15

Questions 1(a), 2(a), and 3(a). Participant L. A. failed to address these problem statements, 

and in each case wrote down the wrong number of books. This was classified as question 

not answered (QNA).
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slip n

Example 16

Question 2(a). Participant E. B. obtained the incorrect answer only because of a slip with a 

number. That is, she incorrectly read the total number of books in the bookcases as 9 

instead of 10.
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Appendix 7

Summary of Results From the ENCAL Evaluation

Table A6.1. Summary of Major Performance Errors

Major Performance Errors

Operator Errors Parentheses Errors Understanding 
Word Problems

Datatree Group 0 1 0

No Datatree Group 9 10 3

Table A6.2. Summary of Overall Correct Calculator Answers

Correct Calculator 

Answers

Incorrect Calculator 

Answers

Datatree Group 14 4

No Datatree Group 9 9


