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Abstract

Turbulent transport of heat and particles significantly degrades the confine-

ment in tokamaks. Whilst the confinement improves in larger devices, these

are more expensive and the economic viability of future fusion power plants

depends upon understanding turbulence so that operating scenarios can be

optimised.

Gyrokinetic models are able to describe the plasma turbulence responsible

for transport. The assumption that the equilibrium varies slowly relative to the

radial width of the instability is often exploited to reduce the global gyrokinetic

system to a local one. The relation between the global and local systems is

a key topic in this thesis. It is shown that local solutions can only capture

the true global behaviour when freedoms in the system are treated correctly.

A procedure to reconstruct the global solution from the local one has been

developed and successfully tested.

The spontaneous transition to a regime of high confinement, observed on

many tokamaks, is associated with the suppression of turbulence in a narrow

region near the plasma edge, known as the pedestal, and is accompanied by

edge localised instabilities (ELMs) which can eject large amounts of energy in

a short time, damaging the confinement vessel. Understanding the ELM and

pedestal behaviour is crucial to predict the performance of future tokamaks, as

well as offering insight into techniques to reduce the threat of damage due to

ELMs. The application of gyrokinetics to study microinstabilities in the edge

region of MAST in the time between two ELMs is presented as part of this

thesis. This work finds kinetic ballooning modes to be unstable in the pedestal

whilst microtearing modes are unstable in the shallow gradient region towards

the core. The transition from MTMs to KBMs at the interface between the

two regions has been studied and may play an important role in the pedestal

evolution.
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Chapter 1

Supplying the world’s energy

demands

1.1 Global energy concerns

The world’s population increased by approximately 28% between 1990 and 2009,

equivalent to 1.5 billion people [5]. When coupled to the rising wealth and industri-

alisation of nations such as India, China and Brazil the increasing demand on the

finite energy resources available to the planet is enhancing the importance of widely

available, affordable energy. Figure 1.1 shows the annual total energy usage (in units

of million tonnes of oil equivalent) from different sources during the period 1965 to

2010, with the contribution from different energy sources illustrated by the shaded

regions [6].
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Figure 1.1: Annual total energy usage in the period between 1965 and 2010 meas-
ured in million tonnes of oil equivalent [6]. The contributions from
different energy sources are shown by the shaded regions.
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Chapter 1. Energy demands 1.1. Global energy concerns

Over this period fossil fuels (oil, gas and coal) have dominated usage, and energy

consumption has increased linearly such that net consumption has roughly tripled.

Whilst consumption from alternative sources (nuclear, hydro and renewables) has in-

creased over this period, the increased demand has been mostly met by higher fossil

fuel usage. Recent estimates of oil, coal and gas depletion times (based on predicted

fossil fuel demand, production and discovery obtained from British Petroleum and

the U.S. Energy Information Administration) predict that oil supplies will be fully

depleted by around 2043, coal will last until around 2115 and gas is somewhere in

between [7]. This highlights the importance of the development and deployment of

alternative energy sources and motivates research into enhancing existing technolo-

gies as well as developing new ones. Renewable sources such as wind, solar and tidal

offer the potential for a plentiful supply of low carbon energy but can suffer from

intermittent generation and geographical restrictions. Such sources have increased in

popularity in recent years due in part to government subsidies, the increasing cost of

fossil fuels and improvements in efficiency driven by research. Figure 1.2 shows the

increase in U.K. renewable energy usage between 1990 and 2009 as a percentage of

total energy consumption. This increase has been mostly due to increases in landfill

gas and wind energy [8].
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Figure 1.2: Renewable energy usage in the U.K. between 1990 and 2009 as a
percentage of total energy consumption [9].

Despite the improving efficiency and reducing cost, renewable energy sources remain

strongly dependent on local geographic conditions and hence are limited in scope.

Research being carried out into advanced batteries, energy stores (such as gener-

ating hydrogen) and long-distance electricity transmission hope to address some of

this limitation; ideally an alternative energy source which is globally abundant and

transportable is desired. This can be filled in some part by nuclear fission reactors,

where although the fuel can have high transportation and production costs and the

2



Chapter 1. Energy demands 1.2. Nuclear fusion as an energy source

known reserves are thought to be sufficient for only a few hundred years1 [10], the low

carbon and high energy density characteristics of fission energy make it an import-

ant consideration. With advanced fast fission and breeder reactors, fuel efficiency

increases significantly (by approximately 1-2 orders of magnitude) and existing fuel

reserves can offer around 30,000 years of energy based on current usage trends [11].

The problems of long term spent fuel usage, though reduced by the introduction of

advanced reactors, along with the negative public opinion associated with fission en-

ergy have limited its expansion. As fossil fuels become more expensive fission is likely

to play an increasing role in meeting energy demands despite current views.

1.2 Nuclear fusion as an energy source

It is clear that no current technology offers the sole route to global energy security

for extended periods of time; a complimentary approach is required where a range

of sources are used as available. This still leads to issues whereby renewable sources

may not be practical or efficient for a particular region and access to fission fuels

is restricted due to safety, security and storage concerns. An alternative clean fuel

based energy source which does not have the safety and security risks associated

with fission is highly desirable. Fusion is an alternative nuclear process to fission

which releases some of the binding energy stored in nuclei. In fission this energy

is released when heavy nuclei are split whereas in fusion this energy comes when

joining light nuclei. The average binding energy per nucleon is shown as a function

of the number of nucleons in the nucleus for the most common isotopes in figure 1.3.

It is important to note that due to convention an increase in the binding energy per

nucleon corresponds to lower stored energy in the nucleus and hence any nuclear

reaction which acts to increase the total binding energy is exothermic. Changing the

number of nucleons in a nucleus can alter the average binding energy, reducing the

system to a lower energy state. For heavy nuclei this can be achieved when a large

nucleus becomes deformed, due to neutron capture for example, weakening the net

effect of the strong nuclear force and hence allowing a group of nucleons to escape,

thereby splitting the original nucleus. If two light nuclei become close enough to

interact via the strong force they may fuse together resulting in a heavier nucleus,

releasing energy in the process.

Whilst fission occurs naturally on earth, fusion is rare. This is due to the Coulomb

repulsion between nuclei which acts as a barrier to spontaneous fusion; the nuclei

must have enough energy to approach sufficiently close for the strong force to take

effect. For this reason fusion is easiest to achieve between isotopes of hydrogen. This

1It is important to note that estimates of the lifetime of known reserves depend strongly on the
specific assumptions made such as the likely impact of new extraction technologies for example.
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Figure 1.3: The average binding energy per nucleon (MeV) against number of
nucleons in nucleus for the most abundant isotopes. The most stable
nucleus, iron, is shown by the green point.

barrier can be estimated by calculating the potential energy stored in the electric

field when two protons are brought close enough for the strong force to take over.

Taking this distance as the classical radius of hydrogen, r0 = 1.2 fm, then using

U =
qQ

4πǫ0r
(1.1)

with q = Q = e, the potential energy can be estimated to be around 0.6 MeV.

For singly charged nuclei with energy of 0.3 MeV fusion can occur spontaneously.

Such energies are easily obtainable using small particle accelerators (and have been

since the early 1930s) allowing individual fusion events to be initiated in the lab. To

obtain a reasonable reaction rate however, it is necessary to have a large number of

fuel nuclei with this energy. An energy of 0.3 MeV corresponds to a temperature of

around 3×109 K. After taking into account quantum tunnelling through the Coulomb

barrier, it can be shown that fuel held at ∼ 108 K gives a reasonable fusion reaction

rate. Several fusion reactions which can be considered are given below (if multiple

outcomes exist the probability of each branch is shown in brackets) [12].

D +D −→











T + p+ 4.03 MeV (50%)

T + p+ 3.27 MeV (50%)

D + T −→ 3He+ n+ 17.6 MeV

D + 3He −→ 4He+ p+ 18.3 MeV

T + 3He −→























4He+ p+ n+ 12.1 MeV (51%)

4He+D + 14.3 MeV (43%)

5He+ p+ 14.3 MeV (6%)
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Figure 1.4: The reaction rate averaged over a Maxwellian energy distribution,
σv, as a function of temperature for a range of possible fusion re-
actions involving deuterium, tritium and helium-3. Data obtained
from [12].

Figure 1.4 shows the reaction rates averaged over a Maxwellian velocity distribution,

σv, as a function of temperature for these fusion reactions [12]. It can be seen

that the deuterium-tritium, (D-T), reaction has the highest reaction rate in the

temperature range considered and also that this peak occurs at a relatively low

temperature (∼100 keV). This reaction also releases the second largest amount of

energy (17.6 MeV) of the reactions considered. These two properties make this

reaction appealing for commercial energy production as for a given reaction rate the

output power will be maximised. One potential set back is that the high energy

neutrons (∼14.1 MeV) can lead to the activation of materials near the reacting fuel

and indeed some research has been made into alternative aneutronic fusion reactions

[13, 14]. Such approaches are currently not being pursued on a large scale due in

part to the requirement for much larger heating and the rarity of the required fuels

(e.g. 3He). In contrast deuterium, a stable isotope of hydrogen, is in plentiful supply

on earth with around 1 deuterium atom for every 6500 hydrogen atoms in Vienna

standard mean ocean water [15]. Tritium is unstable and decays with a half life of

around 12.3 years [16] so is not readily available in nature; Tritium is produced as a

by-product in CANDU fission reactors, though at a low rate [17]. It can however, also

be produced through neutron activation of lithium in the following reactions:

6Li+ n −→ 4He+ T + 4.8MeV

7Li+ n −→ 4He+ T + n− 2.47MeV

As the D-T fusion reaction produces energetic neutrons it is feasible to use these to

5
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produce tritium from lithium, allowing a continual replenishment of tritium. Lithium

is relatively abundant with 60 parts per million (ppm) by weight in the earth’s crust

and 0.17 ppm in sea water [18]. Estimates for the amount of economically available
6Li predict enough to provide energy for the order of 20,000 years at current energy

consumption levels [10]. In this time period it can be anticipated that with increased

experience and research, alternative fusion reactions may become viable; in particular

if D-D is achievable the worlds oceans contain enough deuterium for around 109 years

of energy at current consumption rates [10].

1.2.1 Heating requirements and energy gain

At temperatures of relevance for fusion, D and T will be fully ionised2 forming a

plasma. The D-T reaction generates 17.6 MeV which is shared between the 4He,

or α particle, (3.5 MeV) and neutron (14.1 MeV) produced in the reaction. Whilst

the uncharged neutrons will not strongly interact with the plasma, the charged α

particle will give up some of its energy to the fuel ions. This provides a heating

power per unit volume, Pα, which depends on the fuel density and reaction rates,

defined as

Pα =
n2

4
σvEα (1.2)

where Eα is the energy of the α particle and n is the fuel number density. To maintain

the fuel’s stored energy the total heating power must balance any losses. The loss

power is simply defined as the ratio of the stored energy per unit volume, W = 3nT ,

to some characteristic energy confinement time, τE. This leads to an expression for

power balance:

PH +
n2

4
σvEα =

3nT

τE

(1.3)

where PH is the externally supplied heating power per unit volume. For suitable

conditions it is possible to reduce the external heating power to 0 whilst maintaining

power balance, a state known as ignition. A simple condition for reaching ignition

can be derived from eqn. 1.3:

nτE ≥ 12

Eα

T

σv
(1.4)

The reaction rate is solely a function of T and in the region of interest is reasonably

approximated by σv = 1.1 × 10−24T 2 m−3keVs (with T in keV). Substituting this

into eqn. 1.4 and rearranging leads to a condition on the triple product nTτE:

nTτE & 3 × 1021 keVsm−3 (1.5)

2The ionisation energy of D and T is similar to that of H (13.6 eV). This is well below the
thermal energy which is of the order of keV.
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This is similar to the criterion developed by Lawson [19] though in that case the

direct α heating was neglected. Instead a reactor efficiency factor was introduced

for producing the external heating from the generated fusion energy3. A figure of

merit, Q, for the approach to ignition is often referenced and is simply defined as

Q = Pfus/PH , where Pfus is the fusion power. Q =1 is known as break-even, where

the total fusion power matches the applied heating power, whilst ignition corresponds

to Q = ∞.

Most research into fusion as an energy source is focused on controlling the para-

meters n, T and τE. At such high temperatures a major concern is how to confine

a sufficiently dense and hot fuel for long enough, and many different confinement

options have been considered. Most approaches can be split into two main groups;

inertial or magnetic confinement. In inertial confinement the fuel is compressed and

heated rapidly in an intense burst: the confinement time is low, but density and tem-

perature are high. Magnetic confinement is a steadier approach where τE is much

larger and exploits the fact that at the temperatures of relevance for fusion the fuel

will be fully ionised to control the resulting plasma with EM fields. The approach

studied in this thesis is that of magnetic confinement.

1.3 Magnetic confinement fusion

The ionised fuel, or plasma4, consists of a large number of charged particles which

must obey the Lorentz force law:

mv̇ = F = q (E + v ×B) (1.6)

where m and q are the particle’s mass and charge, B is the magnetic field, E is the

electric field and dot notation is used to denote time derivatives. Considering the

case with E = 0 and B = Bêz, the three components of eqn. 1.6 are

v̇x = ωcvy (1.7a)

v̇y = −ωcvx (1.7b)

v̇z = 0 (1.7c)

where ωc = qB/m is known as the gyrofrequency5. The equations in eqn. 1.7a-

eqn. 1.7c describe circular motion in the x-y plane about a central point known

3This efficiency was taken to be 30%, which is comparable with the 20% of fusion energy used
directly through α heating.

4The precise definition of a plasma is in fact stricter than simply a collection of ionised particles
see for example Ref [20].

5Alternatively known as the cyclotron frequency.
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as the gyrocentre, with angular frequency ωc. Such an effect on the perpendicular

motion essentially confines the particle in two dimensions; this forms the basis of all

magnetic confinement schemes. The radius of the particle’s orbit, ρL is known as

either the Larmor radius or gyroradius, and is

ρL =
mv⊥
qB

=
v⊥
ωc

(1.8)

where v⊥ is the particle’s perpendicular velocity. In this example the motion parallel

to the field line is unaffected by the magnetic field.

(a)

α
ρL

v⊥

R

(b)

Figure 1.5: The motion of a charged particle in the presence of a magnetic field
determined from the Lorentz force law eqn. 1.6. Figure 1.5(a) shows
the motion of a charged particle (black line) in the presence of a
magnetic field line (red line). The position of a charged particle can
be described in terms of the position of the “guiding centre”, R,
and the directed Larmor radius ρL as shown in figure 1.5(b). The
position of the particle around the gyroorbit can also be described
by the gyrophase angle, α.

1.3.1 Conserved quantities

According to Noether’s theorem [21] physical systems6 with symmetries leading to

periodic motion will contain conserved quantities. Taking the dot product of eqn. 1.6

with v for the case with E = 0 and using Newton’s 2nd law one finds that mv2/2 ≡ ε

is a conserved quantity7:

v · F = mv · v̇ = qv · (v ×B) ≡ 0 (1.9)

6The theorem is only strictly applicable to certain systems (those described by a Lagrangian or
Hamiltonian).

7If the electric field is retained then using E = −∇φ and v · ∇ = d/dt it is easy to show that it
is the total particle energy, mv2/2 + qφ, which is conserved.

8



Chapter 1. Energy demands 1.3. Magnetic confinement fusion

The gyromotion of a particle with charge, q, in a magnetic field leads to a ring

current, I:

I =
qv⊥

2πρL

(1.10)

The magnetic moment of such a current loop is given by µ = IS, where S is the

vector area. As such the magnetic moment of a charged particle in a magnetic field

is given by

µ = −mv2
⊥

2B
b (1.11)

with b = B/B.

Taking the dot product of eqn. 1.6 with v⊥ gives

m
dv2

⊥
dt

= qv⊥ · E = qE · dl
dt

(1.12)

where l is the position around the gyroorbit, l = ρL

(

êx cosα+ êy sinα
)

, with α

known as the gyrophase and E is the electric field induced by variations in the

magnetic field as the particle gyrates. Integrating eqn. 1.12 over one gyroperiod

(i.e. from t = 0 → 2π/ωc) gives the change in the perpendicular kinetic energy,

∆ε⊥:

∆ε⊥ = q
∫

E · dl (1.13)

Treating E to be slowly varying (spatially and temporally) the integral in eqn. 1.13

can be treated as closed and as such can be rewritten using Stokes’ theorem and the

Maxwell-Faraday relation to give

∆ε⊥ ≈ q
∮

C
E · dl = q

∮

S
∇ × E · dS = −q

∮

S
Ḃ · dS (1.14)

Taking Ḃ = ∆Bωc/2π, with ∆B the change in B in one gyroperiod, to be constant

over the surface of integration (which will be increasingly valid for small ρL), eqn. 1.14

leads to

∆ε⊥ = µ∆B (1.15)

As ε⊥ = µB the LHS of eqn. 1.15 can be expanded as ∆ε⊥ = µ∆B+B∆µ and hence

∆µ = 0, implying µ is conserved. It is important to note that this result only holds

for fields which do not vary at all on gyromotion scales. In practice this means that

the expression for µ used here is only conserved to the lowest order in ρL/L, where

L is the spatial scale of field variations8. It is possible to construct a magnetic

moment which is conserved to higher orders, see for example Ref [22].

8Temporal variations are also important and as such µ is also only conserved to order ω/ωc,
where ω is the characteristic frequency of field variations.
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1.3.2 Magnetic mirror confinement

As a consequence of the conservation of µ it is clear that as the magnetic field strength

increases the particle’s perpendicular velocity must also increase. The conservation

of energy then implies that the parallel velocity must decrease. For a sufficiently

large increase in field the parallel velocity is reduced to zero.

y

z

Figure 1.6: The direction of the Lorentz force (red arrows) at different positions
in a spatially varying magnetic field (black lines). It can be shown
that the flux through the surface defined by the particle’s gyromotion
(blue lines) is conserved as a consequence of the conservation of µ.

Figure 1.6 shows the Lorentz force on a charged particle moving in a spatially varying

magnetic field. A magnetic field predominantly in the êz direction with a strength

dependent on z, must in fact also have a component perpendicular to êz in order to

satisfy ∇ · B = 0. As the Lorentz force is directed perpendicular to the magnetic

field this implies that in the region of increasing field strength the Lorentz force has a

component in the −ve z direction. A particle with a low initial parallel velocity can

be reflected by this force. Particles with higher initial parallel velocity may traverse

the region of increasing field strength, though will be decelerated in the parallel

direction. This physics is the basis for a simple magnetic confinement scheme known

as the magnetic mirror. Such a scheme incorporates a magnetic field which has a

minimum in its strength. Consider two Helmholtz coils separated by some distance

along a common axis, such that the magnetic field strength along this axis has a

minimum between the coils as shown in figure 1.7. Charged particles in this central

region can be trapped due to the reflective effect of each of these coils restricting

motion along the common axis.

The quantity, λt, gives the ratio of the parallel and perpendicular velocity compon-

ents for the particle at the position of the minimum field strength, Bmin. It is defined

as λt = cot (θ) where θ is the angle between v and B, known as the pitch angle, lead-
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Current carrying coil

Trapped region

Figure 1.7: A simple cartoon of a magnetic mirror confinement device. Current
is sent through two coils to generate a magnetic field. The strength
is largest in the centre of each coil resulting in a well in between the
coils where particles can be trapped.

ing to λt being labelled the pitch angle variable. Using the conserved quantities, ε

and µ, it is simple to derive the condition for particles to be trapped. Particles with

λt satisfying

λt =
v‖0

v⊥0

≤
√

Bmax

Bmin

− 1 (1.16)

will be trapped, all other particles can be considered untrapped and will immediately

leave the device. This leads to the idea of a loss cone in velocity space illustrated

in figure 1.8, whereby particles which enter the loss region will be immediately lost

from the device.

v⊥

Loss cone

v‖

v

Slope=
√

Bmax
Bmin

− 1

Figure 1.8: Diagram showing the trapped and untrapped regions of velocity

space with the boundary set by the lines with gradient ±
√

Bmax

Bmin
− 1.

Particles in the shaded region, known as the loss cone, are not
trapped and will be lost from the magnetic mirror machine.

Collisions between the trapped particles will scatter particles in velocity space such

that the distribution relaxes to a Maxwellian. As such trapped particles will be

11
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scattered into the loss cone and will then be lost9. The result is that all particles

will eventually be lost from any magnetic mirror device provided the loss cone has

non-zero area (i.e. Bmax 6= ∞). This proves to be a challenge for the use of magnetic

mirror devices as a confinement system for use in a fusion reactor. The focus has gen-

erally moved away from mirror confinement with developments in alternative mag-

netic confinement schemes, the most popular of which will now be discussed.

1.3.3 Tokamaks

Whilst charged particles in a magnetic field are confined in the two directions per-

pendicular to the field line they are free to move in the parallel direction. Magnetic

mirror devices attempt to restrict this motion using a field with a strength that varies

along the field line. An alternative magnetic confinement system attempts to over-

come the “end-losses” of traditional mirror machines by using closed field lines such

that whilst the particles are free to move along the field line they cannot leave a finite

volume. This basic design principle led to the development of the main magnetic

confinement device used currently, known as the tokamak. Starting from a simple

toroidal magnetic field such as that produced by the current in an infinite straight

conductor, as shown in figure 1.9, the essential ingredients for magnetic confinement

of a tokamak plasma will now be discussed.

Current

Figure 1.9: Diagram showing the toroidal magnetic field (black) produced by a
straight current (blue). The field strength drops off as B ∼ 1/R,
resulting in a radially directed gradient.

9In fact µ is not exactly conserved for ρL 6= 0, and particles can enter the loss cone without the
need for collisions.
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1.3.3.1 Particle drifts

Now that the magnetic field is curved additional factors become important in de-

termining the particle’s true motion and it will no longer be given solely by simple

gyromotion as shown in figure 1.5. The simple circular magnetic field illustrated

in figure 1.9 for example will necessarily have a gradient in field strength directed

towards the centre of the circle. Treating the particle as a magnetic dipole, there is

an additional force due to the interaction with the magnetic moment and the field

of the form F = −∇ (µ ·B). Furthermore as B is curved the frame following the

particle motion along B is not an inertial frame, and thus in this frame the particle

experiences a centrifugal force. This force is given by −mv2
‖Rc/R

2
c = −mv2

‖ (b · ∇) b,

where Rc is the radius of curvature. The resulting force equation including these two

geometrical terms is then

mv̇ = qE + q (v ×B) − ∇ (µ ·B) −mv2
‖b · ∇b (1.17)

Assuming static fields and using the conservation of µ the time derivative of eqn. 1.17

is
d2v

dt2
=

[

q2

m2
(v ×B) +

q2

m2
E − qµ

m2
∇B −

qv2
‖

m
b · ∇b

]

×B (1.18)

The 1st term on the RHS of eqn. 1.18 simply gives the gyromotion as in the case

with a homogeneous magnetic field. Taking the perpendicular component of eqn. 1.18

yields

d2v⊥
dt2

= −ωc
2

(

v⊥ − E ×B

B2
+

µ

qB2
∇B ×B +

mv2
‖

qB
[(b · ∇) b] × b

)

(1.19)

Noting that the 2nd, 3rd and 4th terms on the RHS of eqn. 1.19 are independent of

time (under the static field assumption and noting that |v⊥| and v‖ are independent

of time) it is convenient to make the substitution v⊥ = vg + c where c = vE×B +

v∇B + vcurv represents the three constant terms, with vE×B, v∇B and vcurv defined

by

vE×B =
E × b

B
(1.20)

v∇B =
µ

ωcm
b× ∇B (1.21)

vcurv =
v2

‖
ωc

b× [(b · ∇) b] =
v2

‖
ωc

b× ∇b (1.22)

Under this substitution eqn. 1.19 reduces to

v̈g = −ωc
2vg (1.23)
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which has the solution

v⊥ = vg exp (iωct) + vE×B + v∇B + vcurv (1.24)

The 1st term on the RHS of eqn. 1.24 simply gives the gyromotion around the field

line whereas the 2nd, 3rd and 4th terms give the drift of the gyrocentre relative to the

field line.

1.3.3.2 The need for a poloidal magnetic field

The drift velocities due to the magnetic geometry, v∇B and vcurv, for the simple

toroidal field case shown in figure 1.9 are in the vertical direction as both ∇B and

Rc are in the radial direction. The sign depends upon the charge of the particle

involved and hence electrons and ions drift in opposite directions. This generates a

vertical electric field which then results in a non-zero vE×B in the radial direction.

Whilst the geometrical drifts give a vertical motion, the resulting charge separation

driven drift is in the radial direction, as illustrated in figure 1.10. This radial drift

is charge independent and will cause all confined particles to leave the confinement

device for any finite sized machine.

v∇B

v∇B

(a)

E

∇B

B

(b)

vE×B

vE×B

(c)

Figure 1.10: Step by step illustration of losses due to the ∇B (or equivalently
curvature) drift. The ∇B drift causes particles of opposite charge
to drift in opposite directions as in figure 1.10(a). This leads to an
electric field as given in figure 1.10(b), resulting in a radial drift
shown in figure 1.10(c).

To overcome this problem a technique to cancel out this vertical drift is required.

In practice this can be achieved by incorporating an additional magnetic field which

acts to move particles from one vertical limit to the other. Such a magnetic field is

shown in figure 1.11 and is in the poloidal direction.

The combination of toroidal and poloidal magnetic fields results in a helical field

which connects the upper and lower regions. As the charged particles are free to flow

parallel to the field line this connection essentially short circuits the upper and lower

regions, preventing an electric field building up and hence avoiding the associated
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Poloidal field

Toroidal field

Helical field

ϕ

Symmetry axis

Rθ r
R0

a

Figure 1.11: Poloidal (blue) and toroidal (red) magnetic fields. The resultant
helical (green) field allows particles which have drifted to one ver-
tical limit to move to the other through their parallel motion,
thereby cancelling out the electric field and removing the radial
E ×B drift. The minor and major radii, a and R0, are shown in
yellow and purple respectively.

radial E ×B drift. In tokamaks this poloidal field is generated by currents flowing

within the plasma in the toroidal direction10. These currents are driven by an

induced toroidal voltage produced by changing the current through a solenoid aligned

with the symmetry axis at the centre of the torus. The available solenoid current

and flux swing limits the duration over which the poloidal field can be sustained and

hence the duration of confinement. Advanced tokamak designs often incorporate

a large fraction of self-generated currents and alternative current drives which can

provide sufficient poloidal field without relying on external induction and indeed such

current sources are crucial in conceptual designs for future steady state reactors [23].

A simple schematic of a tokamak is shown in figure 1.12 which illustrates the various

fields and their sources.

The pitch of the helical magnetic field depends upon the relative strength of the

poloidal and toroidal magnetic fields, Bθ and Bϕ. Typically in standard tokamaks

Bϕ is much larger than Bθ (by around an order of magnitude [25]) although in a class

of tokamak designs known as spherical tokamaks (STs), Bθ and Bϕ are comparable.

It is useful to define the inverse aspect ratio ǫ = a/R0, where a is the distance from

the centre of the plasma to the edge and R0 is the distance from the symmetry axis

to the centre of the plasma, known as the magnetic axis, as illustrated in figure 1.11.

STs have ǫ ∼ 1 whereas in “standard” tokamaks ǫ < 1 (typically referred to as large

aspect ratio devices). A parameter known as the safety factor, denoted q, gives a

10An alternative toroidal MCF scheme known as a stellarator uses precisely shaped magnetic
coils to create the helical field directly, but these will not be discussed here.
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Poloidal field

Toroidal field

Field coil

Inner poloidal field
coils/solonoid

Plasma current

Toroidal field coilHelical field

Outer poloidal

Figure 1.12: A simple tokamak layout including a central solenoid to drive tor-
oidal current giving a polodial field and current carrying coils used
to produce the toroidal field. Reproduced with permission from
Ref [24]

measure of the twist or pitch of the field line and is defined:

q (r) =
1

2π

∮ r

R

Bϕ

Bθ

dθ (1.25)

with the minor radius r and major radiusR as defined in figure 1.11. The safety factor

can be thought of as the number of toroidal traversals along the field line required to

travel 2π in θ. Considering the magnetic field coils to be toroidally symmetric 11 it is

clear that a field line starting at a specified location in the poloidal cross section, r-θ,

will have the same value of q no matter the initial toroidal angle and hence these field

lines define surfaces of constant q. Due to the typical magnetic field structure in a

tokamak the toroidally symmetric surfaces of constant q are nested and centred on

the magnetic axis, as shown in figure 1.13. Special surfaces exist, known as rational

surfaces, where after an integer number of toroidal rotations, m, the field line joins

with itself having undergone an integer number of poloidal rotations, n12.

These surfaces in which the field lines lie can be labelled by a quantity ψ where

B ·∇ψ = 0 such that ψ is constant on a given surface. A common label is the poloidal

11This is commonly referred to as axisymmetry. In practice the finite number of magnetic coils
used to produce the field leads to some degree of asymmetry.

12Elsewhere the flux surfaces are referred to as irrational and here one may consider a single field
line to cover the entire surface. Clearly there are an infinite number of potential rational surfaces
however the term rational surface typically refers to low order rational numbers. A rough cut-off
criteria could be that if the length of the field line before it joins back onto itself is larger than the
parallel coherence length then the surface is considered irrational.
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ψN

Figure 1.13: Illustration of the nested flux surface structure found in tokamaks.
They can be labelled by the normalised flux, ψN .

flux, ψ, which can be calculated by integrating Bθ over one of these surfaces:

ψ =
∫

S
BθdS (1.26)

As such these nested surfaces are referred to as flux surfaces13.

Particles are relatively free to flow rapidly along field lines and as such any local

density or temperature perturbation can be rapidly equilibrated. This leads to the

idea that certain parameters will remain roughly constant along a field line. Such

quantities are often referred to as flux functions as they are expected to be (roughly)

constant over the whole flux surface in which the field line lies. Various other pro-

cesses can prevent such quantities being true flux functions14 but it is often a useful

0th order approximation. For a typical current generation tokamak the Larmor ra-

dius for protons can be of the order of 5 mm, which is much smaller than the minor

radius of the plasma, a ∼ 1 m . As such it is reasonable to consider the particles to

lie on the flux surface to the lowest order. In practice, however, various physical pro-

cesses can lead to significant excursions from the flux surface, which can significantly

degrade the confinement efficiency. This confinement efficiency is of key importance

to the viability and success of commercial fusion reactors, as discussed previously.

The progress made in the study of magnetic confinement fusion can be characterised

somewhat by the improvement in the triple product achieved over the years. The

diagram in figure 1.14, reproduced from Ref [26], illustrates the vast advances made

towards reactor relevant conditions, due in large part to the efforts devoted to the

13The flux is often normalised to the value on the last closed flux surface (LCFS), ψN = ψ/ψLCF S .
14One example is that a strong toroidal rotation of the plasma can lead to a higher density on

the side of the flux surface at largest major radius.
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study of confinement limiting processes, as discussed in chapter 2.
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Chapter 2

Understanding magnetic

confinement

2.1 Diffusive losses

The Lawson criterion given in eqn. 1.5 highlights the need for optimising the product

of density, temperature and energy confinement time, in order to achieve a net energy

gain. It was shown in figure 1.4 that the fusion reaction rate peaks at a certain

optimal temperature. Further to this, various operational density limits have been

observed [27–29] which place an upper (and a lower1) limit on the achievable densities

in a tokamak plasma. As the maximum density and optimal temperature are

essentially fixed, improving the energy confinement time provides the main route to

increasing the triple product. For this reason it is useful to understand what controls

τE and to be able to predict its value. The study of confinement forms a large part

of current day research into tokamaks and fusion plasma physics.

The energy confinement time, τE, can be given the simple definition of the ratio of

stored energy to power loss. Hence in a toroidal confinement device τE is set by the

radial flux of heat and particles, i.e. transport across flux surfaces. The simplest

picture is to consider this flux as a 1D diffusive process caused by particle collisions,

and described by Fick’s 2nd law [31] (in the absence of sources):

∂A

∂t
= D

∂2A

∂x2
(2.1)

where A is the diffusing quantity, such as n or T , and D is the diffusion coefficient2

1Low density plasmas are particularly susceptible to instabilities known as locked modes which
severely limit operation [30].
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given by

D =
∆x2

∆t
(2.2)

with ∆x the radial step size and ∆t the decorrelation time (such as the time between

collisions). In such a 1D system eqn. 2.1 is satisfied by

A(x, t) =
1√

4πDt
exp

(

− x2

4Dt

)

(2.3)

This was used by Einstein when considering Brownian particles to show [32] that in

1D the averaged distance travelled by such a particle after time t is given by

〈

x2
〉

= 2Dt (2.4)

2.2 Classical estimates

In 1946 a patent for a toroidal fusion reactor3 was submitted by two members of

Imperial College, Thomson and Blackman [33]. In this patent the minor radius is

given as being 30 cm and the resulting τE is estimated at 65 s. With an estimated

density of ∼ 3.5 × 1020 m−3 and ion temperature of 400 keV [34] it was predicted

that the fusion power would be around 9 MW for an input heating power of only

2 MW giving Q ∼4.5. Considering this was based upon the D-D fusion reaction it’s

clear that if such figures could indeed have been achieved then commercial fusion

production should not be a significant challenge. Such high confinement times were

not however achievable in this device, with the overestimate due to the choice of

step size and decorrelation time used in the calculation of D and the subsequent

evaluation of eqn. 2.3. Thomson and Blackman chose the step size for species j to

be the particles gyroradius, ρL,j, and the time step to be given by the collision time,

1/νj, leading to what is referred to as classical diffusion. Limiting the calculation

of the diffusion coefficient to the lower electron value due to ambipolarity4 [35] and

substituting expressions for ρL,e and νe one finds the expression for the classical

diffusion coefficient, Dc, to be:

Dc =
ρL

2

ν
=

ne2

8B2πǫ2
0

√

me

Te

ln Λ (2.5)

2Throughout the literature and in this document, the symbol D is taken to refer to particle
diffusion whereas χ is used for thermal diffusivities.

3This device was not in fact a tokamak but a class of device known as a “z-pinch”.
4If ions and electrons diffused at different rates an electric field would be created, retarding the

faster motion.
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Substituting the parameters specified in the original patent5 into eqn. 2.5 and as-

suming a typical value of the Coloumb logarithm, ln Λ, of 15 one finds Dc ∼
6.9 × 10−4 m2 s−1. Using this value with eqn. 2.4 it can be seen that the mean time

taken for a particle to travel 0.3 m is ∼65 s, in agreement with the patent. In practice

a confinement time several orders lower than this prediction was achieved, indicating

that the physics model used in making this prediction is incomplete.

2.3 Neoclassical estimates

In chapter 1 it was seen that the toroidal geometry of the magnetic field resulted

in additional terms in the Lorentz equation, leading to a drift of the gyrocentre.

The magnetic geometry of a tokamak also modifies the particle orbits, affecting

the calculation of the diffusion coefficient. Taking these effects into account gives

the neoclassical diffusion coefficient, Dn. In a tokamak the magnetic field strength

is (approximately) inversely proportional to the major radius, R. This results in

trapping of some particles due to the magnetic mirror effect as they move along

a helical field line; other particles have sufficient parallel motion to avoid being

reflected and are called passing particles. Trapped particles will bounce back and

forth along magnetic field lines between the two poloidal angles where B (θ) = Bcrit

whilst passing particles move through all poloidal angles. The ∇B and curvature

drifts cause the gyrocentre to drift continuously vertically; the effect of this is to shift

the gyrocentre relative to the flux surface. The poloidal projection of such orbits are

shown in figure 2.1 for passing6 and trapped particles.
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Figure 2.1: Poloidal projection of passing [2.1(a)] and trapped [2.1(b)] particle
orbits (blue). Drifts due to the magnetic geometry shift orbits from
the flux surface (black).

5The actual parameters used are ne = 3.5 × 1020 m−3, B = 1 T and Te = 55 keV.
6The direction of the shift for passed particles can be either towards or away from the centre

column dependent upon whether the particles are travelling in the positive or negative toroidal
direction, corresponding to co and counter passing particle orbits respectively.
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The trapped particle orbits are often referred to as banana orbits due to their shape.

Given the time between bounces, it is possible to estimate the width of these orbits,

and hence the radial excursion. A barely trapped particle, when Bcrit = B (π),

travels a distance 2πqR between bounce points and hence the time taken for half a

banana orbit is approximated by

tb ≈ 2πqR

vth

√
ǫ

(2.6)

assuming a parallel velocity v‖ ≈ vth

√
ǫ, where vth is the thermal velocity,

√

2T/m.

The drift velocity due to geometrical factors can be approximated by

vD ≈ mv2

eBR
(2.7)

and the width of the banana orbit, wb, is given by [25]

wb = tbvD ≈ qρL√
ǫ

(2.8)

Using the approximation q ≈ ǫB/Bθ (suitable at large aspect ratio) it is possible

to write wb ≈ √
ǫρθ where ρθ is known as the poloidal Larmor radius. The banana

width will typically be much larger than the Larmor radius (as q/
√
ǫ > 1), giving

a significant increase in the estimate of the diffusion coefficient. Collisions cause

trapped particles to diffuse through velocity space, resulting in detrapping after

diffusing an angle in velocity space ∼ √
ǫ. Hence the relevant collision frequency will

be modified, giving an effective collision frequency νeff = ν/ǫ. Combining these step

sizes and multiplying by
√
ǫ to account for the fraction of particles that are trapped,

the neoclassical diffusion coefficient can be found. This estimate is given by

Dn ≈
√
ǫ

(

(qρL)√
ǫ

)2
ν

ǫ
=

q2

ǫ3/2
Dc (2.9)

and is larger than the classical value by a factor q2/ǫ3/2.

For the neoclassical argument presented here to be valid, the collisionality must be

low enough such that a trapped particle can undergo at least one banana orbit be-

fore colliding (so roughly ν < 1/tb). This regime of low collisionality is known as

the banana regime; for high collisionality, known as the Pfirsch-Schlüter regime, the

diffusion coefficient is yet larger. In between high and low collisionality the plasma is

said to be in the plateau regime and the diffusion coefficient is insensitive to the col-

lisionality [36]. Figure 2.2 shows a cartoon of the classical and neoclassical diffusion

coefficients as a function of collisionality, highlighting the three main regimes.
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Figure 2.2: A cartoon of the neoclassical diffusion coefficient as a function of
collisionality (solid line). Three distinct regimes can be identified
at low, medium and high collisionality known as banana, plateau
and Pfirsch-Schlüter respectively. The classical value is also shown
(dashed line).

2.4 Fluctuation driven transport

Confinement time predictions made using neoclassical estimates of the diffusion coef-

ficient are an improvement on classical values but are still typically much higher than

experimentally observed levels7. This additional observed transport is often referred

to in the literature as anomalous and its existence has provided a significant chal-

lenge to the production of economic fusion energy. It is thought that this anomalous

transport is due to fluctuations in the plasma parameters and the EM fields caused

by turbulence [37], leading to the preferred name turbulent transport. This turbu-

lence is thought to be due to the nonlinear interaction of small scale instabilities,

known as microinstabilities, which are driven by gradients in the equilibrium plasma

parameters. Experimental measurements and theoretical studies suggest that a class

of microinstabilities known as drift modes are of particular importance.

2.4.1 A picture of fluctuation driven transport

Fluctuations in the EM fields modify the Lorentz equation and perturb the particle

motion. Any perturbation of the velocity perpendicular to the equilibrium flux sur-

face can result in a radial excursion and hence lead to a flow of energy and particles

across the surface.

Consider the case of a cuboid slab of plasma, periodic in the êy and êz directions,

with an equilibrium magnetic field B = Bêz and no electric field. Connection with

toroidal geometry can be made using the mapping, (x, y, z) → (ψN , θ, ϕ), and as

7Up to two orders of magnitude for electrons! Despite this, in certain regimes observed ion
transport can occasionally be in good agreement with neoclassical predictions.
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such it is the transport of particles in the êx direction that is of most interest.

Introducing a perturbation to the electric field, E1 = −∇φ1, results in an E ×B

motion perpendicular to the equilibrium field lines. The component of this velocity

in the êx direction gives a flow of particles across the y-z plane and is given by

v1
E×B
x =

E1y

B
=

(−∇φ1)y

B
(2.10)

Introducing a magnetic perturbation perpendicular to the equilibrium field line leads

to a perturbed field line which no longer lies purely in the êz direction and can cross

the y-z plane if B1x 6= 0. Particle motion along the perturbed field line can then

have a component in the direction perpendicular to the equilibrium surface, with the

component in the êx direction given by

v1
mag
x = v‖

B1x

B
= v‖

(∇ × A1)x

B
(2.11)

Whilst the net velocity perpendicular to the y-z plane is given by the sum v1
E×B
x +

v1
mag
x , it is important to note that the amplitude of φ1 and A1 will vary with time and

space and as such this perpendicular velocity is not constant. Indeed the existence

of a perturbation will provoke a response from the particles, which will affect this

initial perturbation. This can be seen as a consequence of the ease of motion along

field lines; a local electrostatic potential perturbation corresponding to a local ion

density perturbation will rapidly draw in electrons from along the field line, for

example. Fluctuations have a wave like character and it is useful to use a Fourier

representation for a fluctuating quantity f1:

f1 =
∑

k

fk exp (i [k · r] − iΩkt) (2.12)

where each Fourier component has a unique wavenumber, k, an associated complex

frequency, Ωk = ωk + iγk and amplitude fk. Considering the case where one Fourier

component is dominant, the perpendicular velocity, v1x, is:

v1x =
ky

B

(

φ1 + v‖A1‖
)

(2.13)

2.4.2 Diffusive estimates

A characteristic length scale for such perturbations is 1/ky whilst the characteristic

time scale is 1/ωk. These characteristic scales can be used to give a simple estim-

ate for the diffusion coefficient as for the classical and neoclassical cases, i.e. Dt ∼
ωk/k

2
y.
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The most important microinstabilities are believed to belong to a class known as

drift modes8. These modes have a characteristic frequency known as the electron

diamagnetic frequency9, ωn
∗e, defined for this system as

ωn
∗e = − kyTe

eBLn

(2.14)

where 1/Ln = (1/n) (dn/dx). The most important microinstabilities are generally

considered to have wavelengths on the order of either ρLi or ρLe, such that kyρL ∼ 1

(these are said to be ion scale and electron scale respectively). Using this along with

eqn. 2.14 an estimate for the diffusion coefficient, known as the gyroBohm value, can

be made:

Dt = DgB ≈ ωn
∗e/k

2
y ≈ ρL

2 v2
th

ρLωcLn

≈ ρ∗ρL
2ωc (2.15)

with ρ∗ = ρL/Ln. More generally Ln can be replaced with some generic equilibrium

length scale, Leq, such as the minor radius, a. In the nonlinear phase different

modes can couple together to form extended coherent structures with characteristic

length scales that can exceed that suggested by the relation kyρL ∼ 1. If the previous

analysis is repeated using a characteristic length scale ∼ Leq then the Bohm diffusion

coefficient, DB = ρL
2ωc = DgB/ρ∗, is found.

Two machines operating with identical ρL and ωc but different minor radius will have

the same value of DB but different values of DgB. The question as to whether D

scales like Bohm or gyroBohm estimates is immensely important to the success of

future fusion power plants, as on next step devices one of the largest extrapolations

is in the parameter ρ∗.

2.4.3 Transport calculations

A fluid model expression for the flux of particles due to turbulent fluctuations, Γ =

nv, can be obtained from the continuity equation:

ṅ+ ∇ · Γ = S (2.16)

where S represents the net particle source/sink. The density and velocity can be

linearised by expanding as sums of a time averaged component and a fluctuating

piece (the long time average of which is zero), i.e. n = n0 + n1 and vx = 0 + v1x

(i.e. no equilibrium flows). Under this substitution the particle flux in the êx direction

becomes Γx = n0v1x + n1v1x, which can be time averaged to give 〈Γx〉t = 〈n1v1x〉t

8These modes will be discussed in more detail in chapter 3.
9Frequencies with the same sign as ωn

∗e are said to be in the electron direction whilst those with
opposite sign are in the ion direction.
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where the operator 〈· · · 〉t is defined as

〈f〉t =
1

τ

∫ τ

0
fdt (2.17)

with τ some time significantly larger than the characteristic time of the fluctuations.

The average flux per unit area can then be calculated by averaging over the y-z plane

and the resulting expression is

〈Γx〉t,S = 〈n1v1x〉t,S =
1

S

∫

S

〈

n1E1y

B

〉

t
dS +

1

S

∫

S

〈

n1v‖B1x

B

〉

t

dS (2.18)

In the case where the density and potential fluctuations are in phase, 〈Γx〉t,S will be

exactly 0. Knowledge of the phase relationship between these quantities is therefore

essential for quantitative estimates of 〈Γ〉t,S. Whilst measurements of fluctuation

amplitudes have been possible in experiment for some time (as discussed in the

next section) the task of precisely measuring phase relations is challenging and not

routinely feasible. Despite this, experimental measurements are important in helping

to characterise the fluctuations, providing useful information for testing theories and

developing predictive models.

2.5 Turbulent fluctuations in experiment

Small scale fluctuations have been studied throughout the history of experimental

tokamak research and a range of diagnostic techniques have been developed. Fluctu-

ations near the edge of the plasma can be measured directly using probes, e.g. Lang-

muir probes can provide data on φ1, n1e and T1e in the outer regions of plasma

[38, 39]. Magnetic fluctuations near the edge can be measured using magnetic pickup

coils known as Mirnov coils. To obtain fluctuation measurements deeper into the

plasma, probes can no longer be used, due to both the damage to the probe by the

hot plasma and the impurities introduced into the plasma. Techniques using EM

radiation, both active and passive, offer the potential to obtain information across

the entire plasma without interacting significantly with it. A range of techniques

are used on current tokamaks which can provide spatially and temporally resolved

measurements of temperature and density fluctuations. These include10 microwave

scattering [40], beam emission spectroscopy (BES) [41, 42] and electron cyclotron

emission (ECE) [43, 44].

10Interested readers are directed to an early overview of various techniques included in Ref [45]
and some results obtained in Ref [46]. For a more detailed discussion see Ref [47]
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2.5.1 Fluctuation characteristics

Measurements made using Langmuir probes have allowed correlations between n1

and φ1 [48–50]. Such measurements can be used to calculate the electrostatic fluc-

tuation induced transport following an approach similar to that in section 2.4.3.

Such measurements are challenging and limited to the very edge of the plasma but

do suggest fluctuation induced transport is significant. More commonly, fluctuation

diagnostics yield fluctuation amplitude as a function of position, which can be com-

pared with the local transport properties inferred from other sources. The normalised

fluctuations qφ1/T , n1/n and T1/T are typically seen to vary from O (1%) in the core

to O (80%) nearer the edge [51]. The normalised magnetic field fluctuations are typ-

ically observed to be O (0.01%), although as v‖ can be large the radial transport

due to magnetic perturbations can still be significant. By operating over a range of

parameters the correlation between the fluctuation amplitude behaviour and that of

the local transport can be probed. Figure 2.3(a) shows measurements of normalised

fluctuation amplitudes from the TEXT tokamak [52] as a function of radius. This

can be compared with figure 2.3(b) which shows the calculated particle fluxes as a

function of radius. It can be seen that both the particle flux and φ1 peak at the same

radial position and drop off at a similar rate.
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Figure 2.3: Radial profiles of normalised fluctuation amplitudes [figure 2.3(a)]
and particle flux [figure 2.3(b)] measured on the TEXT tokamak
[52]. The electrostatic particle flux measured by Langmuir probes
(solid points) and a heavy ion bean probe (open points) is seen to
peak at the same position as the normalised potential fluctuations.
Reprinted with permission from Ref [45]. Copyright 1990, American
Institute of Physics.

Diagnostics using EM radiation often make measurements that resolve separate Four-

ier components (individual wavevectors, k) which allows the amplitude spectra to

be determined over some range. Such studies have been performed on a range of

large aspect ratio tokamaks [46] using a variety of techniques. The general obser-

vations from these studies is that the measured amplitude spectra tends to peak

27



Chapter 2. Understanding mag. confinement 2.5. Turb. fluct. in experiment

for 0.2 ≤ kθρs ≤ 0.6 (where ρs = vth/ωci), which is consistent with ion scale drift

wave instabilities. The frequency spectrum can generally also be obtained for a given

wavevector. Measurements show that the observed amplitude frequency spectra peak

at frequencies of about ωn
∗e (∼ 100 kHz) [40]. The width of the observed frequency

spectrum is typically of the same order as the frequency with peak amplitude, mean-

ing the fluctuations are often referred to as broadband [53]. This has been used as

evidence for the nonlinear nature of the turbulence causing these fluctuations11 [54].

2.5.2 Transport barriers

Experiments in the early 80s on the ASDEX tokamak [55] found plasmas with large

core density and temperature [56]. This regime of operation, known as H-mode, was

an unexpected consequence of operating with higher levels of auxiliary heating12.

Pressure profiles in H-mode exhibit a steep pressure gradient near the edge of the

plasma, known as the pedestal, whilst the gradient in the core region remains similar

to that seen in the standard mode of operation, known as L-mode. A comparison

of typical H-mode and L-mode pressure profiles is shown for the spherical tokamak

MAST [57] in figure 2.4. This local steepening is a sign that the transport near the

edge has been reduced, forming an edge transport barrier (ETB).

The amplitude of the edge density fluctuations decrease by around 50% after the

transition to H-mode [59, 60]. In addition, the light radiated from the edge due to

electron-neutral interactions, known as Dα light, undergoes a significant reduction

at the transition from L-mode to H-mode. This is further evidence to suggest that

the particle transport has been severely reduced in H-mode as it implies a reduction

in electron density outside the outer flux surface. Access to H-mode is available on

most major tokamaks13 and experimental recipes for obtaining H-mode are fairly

well developed. The transition from L-mode to H-mode has been associated with

a threshold power input, PLH , and using existing results it is possible to predict the

threshold power based on an empirical scaling. Despite this, the precise cause of

the transition remains unclear and is a topic of current research with many different

proposed explanations [62]. Many theories identify sheared plasma flows as playing a

part in suppressing fluctuations near the edge. This is somewhat consistent with the

observation of the development of a sheared radial electric field near the pedestal14

11Linear drift modes have a well defined frequency related to the poloidal wavenumber. A system
resulting from the superposition of several drift modes would be expected to exhibit a frequency
spectrum involving narrow peaks representative of a linear sum of spectra corresponding to different
poloidal wavenumbers. This picture of linear superposition is not consistent with the data shown
in Ref [54] which shows the frequency spectra at fixed wavenumber to be broad.

12This refers to heating applied in addition to “natural” Ohmic heating.
13High confinement modes can also be found in stellarators [61].
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Figure 2.4: Experimentally measured pressure profiles from the spherical toka-
mak MAST. Data for L-mode (black) is from shot 24763 [3] at
0.1787s, data from H-mode (blue) is from the same shot but at
0.2533s whilst the ITB data (green) is from shot 24600 at time
0.2707s [58]. The H-mode and L-mode comparison shows the sig-
nificant increase in stored plasma energy achieved in H-mode.

which is associated with a sheared E ×B flow.

The steepening of the edge pressure gradient leads to a much larger stored energy

and τE is seen to increase by approximately a factor 2 relative to L-mode. The lower

transport and higher stored energy in H-mode make it an appealing operational

regime; unfortunately it does not come without cost. Periodic magnetohydrodynamic

(MHD) instabilities are commonly observed near the edge of H-mode plasmas [63, 64].

These edge localised modes, or ELMs, are observed as filamentary structures which

expand radially outwards [65], leading to a rapid loss of particles and energy. The

energy lost in an ELM can account for ∼ 5 − 20% of the energy stored in the

pedestal [66] and will be deposited on the machine walls, which can result in large,

localised transient heat loads and thereby limit the operational lifetime of plasma

facing components (PFCs). A more detailed discussion of ELM behaviour will be

provided in chapter 6.

2.5.2.1 Internal transport barriers

More recently, regions of suppressed transport have been observed in the core region,

indicating the formation of internal transport barriers (ITBs) and resulting in steep

14Separating cause from effect can be challenging experimentally, creating difficulty in making
conclusive statements about the cause of the fluctuation suppression.
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pressure gradient regions in the core [67–69] as shown in figure 2.4. The formation of

ITBs is thought to have some similarity to that of ETBs, for example sheared flows

are thought to be important for ITB formation [58]. Differences are however appar-

ent; the role of neutral particles is often considered to be important in ETBs but

will be less relevant for ITBs. The development of ITBs appears to be strongly de-

pendent on the q profile and the associated magnetic shear, ŝ = (r/q)(dq/dr), whilst

this appears to be less relevant for ETBs. These ITBs can offer similar increases to

the confinement time as ETBs and provide other potential benefits such as enhanced

self generated currents associated with the resulting steep pressure gradient15. Like

ETBs, ITBs are associated with instabilities which lead to the (partial) collapse of

the barrier [70]. These instabilities can in themselves be less damaging than ELMs,

though often the large pressure gradients associated with these internal barriers can

destabilise MHD modes which trigger a plasma disruption leading to the rapid de-

position of the plasma stored energy on the vessel walls [71]. These disruptions can

be significantly more damaging than single ELMs and as such pose a great threat to

large tokamaks which operate with high plasma stored energy. By careful current

drive and heating control it has been possible to develop scenarios which avoid the

MHD activity which leads to these disruptions, and relatively stable ITBs have been

demonstrated on the JET tokamak which survive for several energy confinement

times [72, 73]. Scenarios combining an ITB with a H-mode pedestal offer the po-

tential for improved performance and there has been some evidence to suggest that

these double barrier scenarios can in some cases offer improved stability [74, 75].

A large amount of experimental and modelling focus is given to developing various

advanced operating regimes suitable for next generation tokamaks. These advanced

scenarios can be broadly split into two main categories [76]; so called “steady-state”

which utilise reversed shear profiles to trigger ITBs thereby providing a large non-

inductive current drive and “hybrid” scenarios which have a flat shear profile in the

core allowing operation at lower plasma current16 (thereby extending the maximum

duration of inductively driven pulses) [77].

2.6 Empirical scaling laws

Whilst the measurement of fluctuation amplitudes is a useful indicator to what’s

happening in a given experiment, it is useful to be able to compare and quantify the

performance of different tokamaks and individual discharges. As such it is useful

15These currents are often referred to as bootstrap currents and form an important role in designs
for steady state operation where non-inductive currents are essential [23].

16Whilst the absence of the non-inductively driven current due to an ITB may seem like a major
downside to the hybrid scenario it poses much less of a control challenge. In addition these hybrid
scenarios can avoid limits imposed by certain large scale instabilities, such as tearing modes, allowing
high performance operation.
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Chapter 2. Understanding mag. confinement 2.6. Empirical scaling laws

to be able to make consistent measurements and predictions across machines of a

parameter indicative of performance, such as the global energy confinement time, τE.

This can be determined indirectly through measurement of the total plasma stored

energy, W , and the applied heating power, PH , and then applying energy balance

[78]:

Ẇ = PH − W

τE

(2.19)

The stored energy is a relatively simple measurement [79] allowing the global energy

confinement to be calculated and compared across a large range of tokamaks. This

provides a large database with which to study any dependencies τE may have on vari-

ous operating and machine parameters. Such studies have allowed the development

of empirical scaling laws such that τE can be estimated for a tokamak operating with

a given set of dimensionless parameters. This can provide predictions of the basic

confinement properties of discharges yet to be performed.

The most commonly used empirical scalings [25, 80] take the general form:

τE = CIαIBαBPαPnαnAαARαRǫαǫκακ (2.20)

where C is a constant, αx are the fitted coefficients, I is the plasma current in MA,

P is the applied heating power in MW, B is the toroidal magnetic field, n is the

density in units of 1019m−3, A is the average atomic mass, R is the major radius, ǫ is

the inverse aspect ratio and κ is known as the elongation (a measure of the plasma’s

cross-sectional shape). These are known as engineering parameters, an alternative

representation is also used and is given in terms of physical parameters:

τE ∝ τBρ∗
αρ∗ναν∗∗ βαβAαAqαqc

c ǫαǫκακ (2.21)

Here τB = ea2B/T is known as the Bohm time, ν∗ is the normalised collisionality,

β ∼ ne (Te + Ti) /B
2 is the normalised plasma pressure, and qc ∼ ǫ2RB/µ0I is known

as the cylindrical safety factor.

As different modes of operation behave somewhat differently, separate coefficients

are found for Ohmic, L-mode and H-mode discharges, resulting in several scalings.

The data in table 2.1 shows the fitted engineering coefficients for Ohmic operation

[25], the commonly used coefficients for L-mode plasmas [81] and two scalings for

H-mode depending on whether ELMs are present or not (IPB98(y,2) and ELM free

respectively).

Representing the H-mode and L-mode data in terms of physical values leads to the

coefficients given in table 2.2. It is clear from these physical coefficients that τE for

L-mode plasmas is roughly independent of ρ∗ whereas for H-mode it is approximately

inversely proportional. These findings are consistent with previous observations of
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Name C αI αB αP αn αA αR αǫ ακ

Ohmic 0.35 -1.0 1.0 0.0 1.0 0.0 4.0 3.0 1.0
L-mode 0.023 0.96 0.03 -0.73 0.4 0.2 1.83 -0.06 0.64

IPB98(y,2) 0.056 0.93 0.15 -0.69 0.41 0.19 1.97 0.58 0.78
ELM free 0.0314 0.94 0.27 -0.68 0.34 0.43 1.98 0.1 0.68

Table 2.1: Coefficients for use in τE empirical scaling laws of the form given
in eqn. 2.20 (engineering) for Ohmic, L-mode and H-mode plasmas
(IPB98(y,2) and ELM free).

Bohm type scaling in L-mode [82] but suggests gyroBohm scaling for H-mode. This

highlights the importance of H-mode operation for future larger tokamaks to exploit

the expected gyroBohm scaling.

Name αρ∗ αν∗ αβ αA αqc
αǫ ακ

L-mode 0.15 0.19 -1.41 0.67 -3.47 -0.09 3.22
IPB98(y,2) -0.7 -0.01 -0.9 0.96 -3.0 0.73 2.3
ELM free -0.89 -0.13 -0.92 1.78 -2.77 -1.17 2.9

Table 2.2: Coefficients for use in τE empirical scaling laws of the form given in
eqn. 2.21 (physical) for L-mode and H-mode plasmas (IPB98(y,2) and
ELM free).

The difference in coefficients for L-mode and H-mode highlight the weakness of such

an empirical scaling approach: reliable predictions can only be expected when re-

maining within the sampled parameter regimes. Despite this, extrapolation using

these empirical laws should be reasonable provided there are no significant changes

to the plasma’s behaviour. Figure 2.5 shows a comparison of experimental measure-

ments of τE and scaling law predictions for a large range of tokamaks; the agreement

is fairly good. A prediction for the next generation tokamak ITER, (discussed in

more detail in section 2.8) made using this scaling is also shown in this figure. The

difference in dimensionless parameters between current devices and ITER is signi-

ficant and as a result such empirical scalings should only hold a limited weight. By

pushing existing tokamaks into new parameter regimes the scope of these empirical

scalings can be improved and statistical significance enhanced.

2.7 One dimensional transport models

Predictions of τE can be used to estimate the fusion power that will be achieved,

which is of course a crucial parameter for future fusion reactors. Such an approach

however, neglects the radial profiles of the temperature and density which will result

in a spatially varying fusion reaction rate. An alternative is to take some simple

parameterisation for these profiles, the parameters for which can then be fitted to

an experimental database, giving an empirical estimate of the profiles. The ideal
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Figure 2.5: Comparison of empirical predictions of τE in H-mode using the
IPB98(y) scaling compared to measurements across a large range
of tokamaks. Reproduced with permission from Ref [80].

approach however, is to be able to determine the profiles from first principles without

relying on experimental fitting.

A common technique currently used to predict profiles, known as one dimensional

transport modelling, typically predicts temperature and density profiles given spe-

cified sources and sinks, allowing various parameters, including the fusion power,

to be predicted. To do this requires a way to estimate or calculate the transport

levels across the plasma and here 1D transport models can be categorised into two

main groups. The first of these are “semi-empirical” models which often involve us-

ing diffusivity profiles with magnitudes informed by experiment. These approaches

suffer the same restrictions as empirical scaling laws as they rely on fitting and

trends based on experimental observations and hence are somewhat restricted to

the sampled parameter ranges. The second class of models are known as “physics-

based” and use theoretically based models for estimating the transport levels expec-

ted. Clearly physics-based models offer more scope for extrapolation, provided the

physics model is suitably complete. Indeed, sufficiently complete models should be

able to extend to entirely new regimes of operation. It should be noted however,

that these physics-based models can still contain fitting parameters which will affect

the results; these parameters may or may not be determined from experiment17.

17A simple example of this can be demonstrated by recalling eqn. 2.18 and assuming a linear fluid
simulation is performed to determine the phase between the perturbations. It is still necessary to
define the amplitude of these perturbations in order to calculate the flux. This information could
be provided either by experimental observations or a more complete nonlinear theory.
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These physics-based models can automatically contain some effects whilst others,

such as transport barriers, may need to be imposed as in the semi-empirical case.

Such missing elements can be incorporated into these models as understanding and

theory improves, reducing the required inputs and hence increasing the confidence

in the predictions made.

As the transition to H-mode and subsequent edge transport behaviour is not well

understood these transport models do not usually treat the pedestal region and

instead take the temperature and density at the top of the pedestal as a boundary

condition. The prediction of these models can be sensitive to this pedestal height,

making predictive models for the pedestal an important area of research, which will

be discussed in more detail later.

In Ref [80] a number of different one dimensional transport models are discussed

and compared for a common database of discharges across a range of tokamaks.

The physics-based models considered in this reference can be split into two main

categories; those based on models for various different instabilities and those taking

a “gyrofluid” approach. The multi-mode-model (MMM) is a widely used model which

describes several different instabilities thought to be relevant for tokamak anomalous

transport. The gyrofluid models involve a system of equations derived by taking

moments of a kinetic description of the plasma, suitable for strongly magnetised

plasmas, known as gyrokinetics (discussed in chapter 3). The resulting system of

equations can then be solved numerically to determine the fluxes of the various

quantities of interest. These gyrofluid models should be capable of describing a large

range of operating regimes and automatically incorporating a number of relevant

effects. Despite this these gyrofluid models approximate the full gyrokinetic system,

specifically velocity dependent effects, using fluid closures and as such cannot be

considered complete.

As computational power has increased it has become possible to treat more com-

plex models numerically. Indeed, solutions of the nonlinear gyrokinetic equation

can be obtained routinely (albeit at relatively large computational expense). This

has allowed comparisons of gyrofluid model predictions with those obtained from

gyrokinetic solutions [83–85]. This allows gyrofluid models to be tuned against these

gyrokinetic results, providing the opportunity to construct gyrofluid models entirely

independent of experiment18. Recent computational advances have allowed the de-

velopment of transport models based upon full gyrokinetic simulations which would

have previously been unfeasible. The frameworks TRINITY [86] and TGYRO [87]

have been developed to allow one dimensional transport analysis given local fluxes on

a range of surfaces. These fluxes can be calculated from a range of sources including

18This in turn allows gyrofluid models to be compared to experiment without biasing the com-
parison through experimental tuning.
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gyrofluid and gyrokinetic simulations. Such an approach offers a route to predictive

transport studies leveraging the full physics model contained in gyrokinetics. Even

with the computational power currently available such an approach is not practical

for routine analysis and gyrofluid models, such as TGLF [84], provide a useful, fast,

model which can be used to perform inter-experiment analysis. It is important to

note that such models typically require information on the nonlinear saturated amp-

litude of the fluctuations; in the case of TGLF this information is derived from a fit

to a database of nonlinear gyrokinetic simulations and hence its applicability outside

the regimes covered by these simulations are not well known.

The field of gyrokinetics is clearly of large importance to the predictions made by a

number of one dimensional transport models and offers a direct method to obtain

nonlinearly saturated fluctuation amplitudes and the associated fluxes, albeit at large

computational expense. As such it is important to consider how well gyrokinetics

represents the physical system of interest. The study and refinement of gyrokinetics

is a topic of great interest for tokamak research.

2.8 Predictions for ITER

In 1997 the Joint European Torus (JET) tokamak achieved a record fusion power of

16.1MW, corresponding to a Q of 0.62 [88]. Whilst the development of advanced op-

erating scenarios incorporating transport barriers has provided significant improve-

ments to the obtainable confinement times over the past few decades, achieving

significantly higher Pfus and Q is out of the reach of current generation tokamaks.

This limits the ability to study reactor relevant issues, including the demonstration

of significant net energy production. The need for a next generation tokamak to

address these issues was identified by the international fusion community and led

to an agreement, finalised in 200619, for the joint design and construction of such

a machine. This tokamak, known as ITER, is a joint collaboration between the

European Union, India, the Russian Federation, Japan, the People’s republic of

China, South Korea and the USA, and is currently under construction in Cadarache,

France. Several of the key machine parameters for the final ITER design [89] are

given in table 2.3, and are compared with JET, currently the largest tokamak.

The main aims of ITER are [90]:

• To demonstrate large Q operation (Q = 10 is the desired target).

• Achieve high performance, long time scale discharges (∼1000 s) through ex-

ternal current drive.

19The original discussions first took place in 1985, involving a subset of the current participants.
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Name ITER JET
Major radius 6.2 m 2.96 m
Minor radius 2.0 m 0.93 m

Plasma volume ∼837 m3 ∼85 m3

Plasma current 15 MA 6 MA
Toroidal field 5.3 T 4.0 T

Table 2.3: A summary of the key machine parameters for ITER and JET.

• Investigate and develop techniques for tritium breeding.

• Demonstrate and refine technologies required for future reactors such as remote

handling capabilities.

A large portion of theoretical and experimental work in the past two decades has

been targeted towards optimising the ITER design and making predictions for the

expected performance properties. Clearly to obtain Q = 10 will require significant

improvements to the τE achieved on current generation machines.

It can be seen from figure 2.5 that the ELMy H-mode empirical scaling predicts

a confinement time of 5 − 6 s for ITER. If ITER where to operate in L-mode the

confinement time is predicted to be about 2 s which is not sufficient to achieve

Q = 10. It is important to note that these empirical scalings involve extrapolating a

large distance beyond the currently achievable parameter range and as such should

be accompanied by large uncertainties.

Recent predictions for the obtainable fusion power in the ITER H-mode made using

the gyrofluid code GLF23 suggest an achievable fusion power of around 400 MW for

a pedestal temperature ∼4 keV [91]. Such performance corresponds to Q ∼ 8-12,

suggesting ITER should achieve near its target using the H-mode baseline scen-

ario. An earlier comparison between GLF23 and other transport models [92] shows

reasonable agreement between the models although the discrepancies can still be

significant. The predictions of such transport models can be very sensitive to the

physics models included and other assumptions made. By investigating the under-

lying mechanisms driving the transport the most important elements in transport

models can be identified.
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Chapter 3

Theoretical study of fluctuations

3.1 The need for theory

The previous chapter introduced the concept of fluctuation driven transport and

highlighted its importance in achieving high fusion power and Q, making it a highly

significant topic for ITER and future reactors. Whilst various empirical methods

such as scaling laws allow predictions to be made for the confinement properties of

ITER, such extrapolations may not correctly represent all the relevant physics due

to the limited parameter regime sampled in current experiments. By developing a

theoretical model that is able to approximate the most relevant physics, it should

be possible not only to produce predictions with much higher confidence but also to

gain insight into the most important underlying processes. Such physical insight can

be invaluable in interpreting experimental observations and can be used to direct

experiments towards optimal operation.

The expected level of agreement between theoretical predictions and experimental

observations depends upon how well the relevant physics has been captured by the

theoretical model. Iteration from simple models to more complex ones allows more

detailed comparisons between theory and experiment. Analytical theory usually re-

quires approximations which may or may not be valid in the regimes of interest. With

the rapid increase in computational power it has become possible to exploit more

complete descriptions of the system and over the decades it has become more feas-

ible to attempt direct numerical solution using more sophisticated models, helping

to reduce the number of approximations required.

It has already been mentioned that drift wave microinstabilities are thought to be

responsible for the observed fluctuations, and they have been the focus of a range of

studies. This chapter will introduce the theoretical framework, known as gyrokin-

etics, widely used in the study of microinstabilities. First, however, a simpler fluid
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Chapter 3. Theoretical study of fluctuations 3.2. Two fluid drift instabilities

drift wave model will be discussed to illustrate some of the underlying physics of

drift modes.

3.2 Two fluid drift instabilities in shearless slab

geometry

Due to the large difference in mass between ions and electrons their thermal velocity

differs by a factor ∼ 60 (for Deuterium plasmas) and the ions have a much larger

inertia. The two species’ parallel motion is different and it is often important to use

models which treat ions and electrons separately. One approach is known as the two

fluid model, whereby the ions and electrons are treated as two separate fluids which

interact through EM fields. Each is then described by a set of fluid equations such

as the continuity and momentum (or force-balance) equations:

ṅs + ∇ · (nsvs) = 0 (3.1)

msns (v̇s + (vs · ∇) vs) = −∇ · P
s

+ nsF s + C (3.2)

Here the subscript s is a species label, n is the density, P is the pressure tensor1,

F is the Lorentz force and C is the rate of change of momentum due to collisions.

These fluid equations can be derived rigorously from a full kinetic model (discussed

in the next section, see appendix A for more details). Approximations are required

to obtain a closed set of equations.

Such models can be of varying complexity depending on the physics of interest and

indeed the electron drift wave, from which drift instabilities develop, can be described

by a fairly simple form.

3.2.1 The electron drift wave

There are a range of drift instabilities that can develop in a tokamak plasma related

to a specific wave known as the electron drift wave. These drift waves are contained in

simple two fluid models using a slab geometry such as that introduced in section 2.4.1

with a uniform magnetic field in the êz direction.

Consider such a slab with uniform electron temperature, cold ions (Ti ∼ 0), no

equilibrium flows and an equilibrium density gradient in the êx direction. If an ion

density perturbation, ni1 ∼ exp (i [kyy + kzz − Ωt]) (with wavevector, k = kyêy +

kz êz, and complex frequency, Ω = ω + iγ), is introduced a small charge imbalance

1This reduces to the standard scalar pressure for an isotropic system.
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will exist and an electric field will be generated in both the êy and êz directions.

This situation is illustrated in figure 3.1 which shows that after the perturbation is

introduced the contours of constant ni no longer lie purely in the y-z plane. The

electric field which is generated will result in an E ×B motion in the êx direction

which acts to increase the density in rarefied regions and decrease it in compressed

regions. This sets up an oscillation which is the electron drift wave.

x
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z

Unperturbed
density contour

Perturbed density contour

Wave velocity

∇n

n1 > 0

n1 < 0

E ×B flow

E ×B flow

B

E

E

Figure 3.1: A simple cartoon of the slab electron drift wave. A perturbation
to the equilibrium density (shown by the blue contour) results in an
electric field (shown by the green lines) perpendicular to the magnetic
field and the density gradient. The resulting E ×B motion causes
the perturbation to propagate in the y direction but does not alter
its amplitude in this simple case.

To describe this mathematically the two fluid approach can be applied with suitable

assumptions. Electrons are assumed to respond rapidly along the field line relative

to the modes’ characteristic time2, i.e. kzvthe
≫ Ω, whilst, due to the disparate

masses, the ions are assumed to be stationary. The electron parallel force balance

neglecting electron inertia, assuming a scalar pressure and in the absence of collisions,

is obtained from eqn. 3.2 to give:

neqeEz − (∇Pe)z = 0 (3.3)

Substituting ne = n0+ne1 into eqn. 3.3 and linearising, assuming no equilibrium tem-

perature gradient, leads to an expression for the perturbed electron density, ne1:

ne1 = −n0
qeφ1

Te

(3.4)

This is typically referred to as the adiabatic or Boltzmann response and is a com-

2The use of this ordering prohibits taking kz = 0 at any point but it will still be possible to
consider the limit kz → 0.
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mon approximation valid when kzvthe
≫ Ω. Assuming cold ions (such that the ion

pressure is negligble) and linearising the ion momentum equation leads to

− imiΩv1 = qi (v1 ×B − ∇φ1) (3.5)

where v1 = vi1. Using a suitable vector relation3 this can be solved for v1 to give

v1 =
1

1 − x2

(

x

B

)

[

−i∇φ1 + x
∇φ1 ×B

B
+ ix2 (b · ∇φ1) b

]

(3.6)

with x = ωc/Ω. The ion cyclotron frequency, ωc, is O (100MHz) which is large

relative to that of the observed fluctuations and hence we make the assumption that

Ω ≪ ωc and hence 1/x ≪ 1. This allows eqn. 3.6 to be simplified to

v1 ≈ −∇φ1 ×B

B2
+ i

1

xB
∇⊥φ1 − i

x

B
∇‖φ1 (3.7)

where the first term is simply the E ×B velocity and the other terms can be as-

sociated with the polarisation drift. The linearised ion continuity equation, using

v0 = 0, is

iΩni1 = n0∇ · v1 + v1 · ∇n0 (3.8)

By substituting eqn. 3.7 into eqn. 3.8 and noting that the parallel and perpendicular

gradients of φ1 are perpendicular to ∇n0 and that the divergence of the E ×B flow

is zero for uniform B, one finds

ni1

n0

=
1

ωcB
∆⊥φ1 − qi

Ω2mi

∆‖φ1 − i
1

Ωn0B2
(∇n0 ×B) · ∇φ1 (3.9)

where ∆‖ = ∇ · ∇‖ and ∆⊥ = ∇ · ∇⊥. Now applying quasi-neutrality, i.e. enforcing

ni1 = ne1, the perturbed densities can be eliminated. After taking advantage of

the plane-wave form for φ1 to evaluate the gradient terms, the dispersion relation is

found:
(

1 + k2
yρs

2
)

Ω2 − Ωωn
∗e − ωs

2 = 0 (3.10)

Here ωs = kzcs is the sound frequency, cs =
√

Te/mi is the sound speed, ρs =

cs/ωci and v∗e and ωn
∗e are the electron diamagnetic velocity and frequency respect-

ively:

v∗e =
Te

qeB2n0

∇n0 ×B (3.11)

ωn
∗e = v∗e · k = − kyTe

eBLn

(3.12)

3It is possible to show x = a+ x× b ⇒ x = (a+ a× b+ [a.b] b) /
(

1 + b2
)
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The two solutions of the quadratic equation in eqn. 3.10 are:

Ω =
ωn

∗e ±
√

ωn
∗e

2 + 4
(

1 + k2
yρs

2
)

ωs
2

2
(

1 + k2
yρs

2
) (3.13)

Different waves can be identified in various situations, for example in the case without

an equilibrium density gradient and kyρs ≪ 1 the solution reduces to Ω = ω = ±kzcs

which is simply the relation for an ion sound wave (note γ = 0 so there is no growth

or decay of the wave). In the more relevant case where there is an equilibrium density

gradient and kzcs ≪ ωn
∗e, the result Ω ≈ ωn

∗e can be obtained, which describes the

electron drift wave.

In the model described the mode frequency, Ω, is purely real and hence these waves

neither grow nor decay. This is a consequence of the density and potential perturb-

ations being exactly in phase. By breaking this phase relation Ω can develop an

imaginary component and the wave becomes unstable (or stable). There are a vari-

ety of processes, such as collisions [93], which can introduce a phase shift, leading to

a range of different instabilities which can develop from the electron drift wave. One

example is that in the derivation of the electron response, the effect of collisions and

non-isotropic pressure were neglected. Including these dissipative effects the electron

response can gain a non-adiabatic component which results in a phase shift4.

The introduction of other equilibrium gradients can also destabilise the drift wave.

The resulting instabilities are often referred to as reactive in order to distinguish them

from the dissipative instabilities. One such instability which results from the presence

of ion temperature gradients will now be discussed in the two fluid picture.

3.2.2 Ion temperature gradient mode

The instability driven by the ion temperature gradient, known as the ITG mode, is

widely understood to limit performance in the core of large aspect ratio tokamaks

[94, 95], and the impact of ITG driven fluctuations forms the basis for a number of 1D

transport models5. The basic physics required to describe some of the main features

of ITG modes are included in the simple two fluid model of section section 3.2 which

can also be used to derive the slab ITG dispersion relation, providing some insight

into the mode.

4This can be considered as introducing a friction which prevents the electrons from responding
instantaneously.

5ITG based models often also include the trapped electron mode (TEM) which is also thought
to play a significant role in core transport.
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3.2.2.1 The ITG dispersion relation

As in the electron drift wave case, we assume kzvthe
≫ Ω and electrons are again

taken to be adiabatic such that their response is given by eqn. 3.4. To obtain the

ITG mode it is important to set ∇Ti 6= 0. The ITG mode does not require a density

gradient but this shall be retained here to highlight its effects. It is necessary to allow

significant ion temperatures such that Pi 6= 0 and hence it is necessary to describe

ion pressure fluctuations. An adiabatic equation of state,

d

dt

(

Pn−κ
)

= 0 (3.14)

is assumed, with κ the ratio of specific heats (typically 5/2). Using the ion con-

tinuity equation to eliminate the density from eqn. 3.14 leads to the ion pressure

equation:

Ṗi + vi · ∇Pi + κPi∇ · vi = 0 (3.15)

In addition, the pressure gradient term in the ion momentum equation must be

retained. Following Ref [95] the perpendicular ion velocity is assumed to be solely

the perturbed E ×B velocity. If instead the linearised ion momentum equation is

solved following the same approach as in section 3.2.1 in the absence of collisions and

assuming a scalar pressure then eqn. 3.7 is reproduced with an additional diamagnetic

term due to the pressure gradient. In a more rigorous approach it is found that

components of the pressure tensor can in fact cancel the diamagnetic component of

the velocity6 (in the case of uniform B) [22, 96]. Hence if the polarisation drift

is assumed to be negligible7 then it can be seen that this approach leaves only the

E ×B component as significant. By taking the dot product of the ion momentum

equation with b an expression for the parallel velocity can be found:

v1‖ = −i 1

miΩ

(

qi∇‖φ1 +
∇‖P1

no

)

(3.16)

Noting that only the divergence of v1‖ enters the continuity equations it is useful

to calculate this now. The resulting expression can be simplified by making the

substitution ∇ · ∇‖ = ∆‖ = −k2
z :

∇‖ · v1‖ = i
k2

zc
2
s

ΩTe

(

qiφ1 +
P1

n0

)

=
iωs

2

ΩTe

(

qiφ1 +
P1

n0

)

(3.17)

6In the literature this is referred to as “gyroviscous cancellation”. A simple physical justification
can be given in so far as the perpendicular velocity enters the continuity equations solely to convect
heat and particles. As the diamagnetic drift is a fluid drift it cannot result in this convection

7These polarisation terms were retained in the electron drift wave dispersion derivation and
contributed the k2

yρ
2
s terms. The case considered here can be considered the same in the limit of

k2
yρ

2
s → 0.
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The perpendicular velocity only enters through terms of the form v1⊥ · ∇f0, where

∇f0 is an equilibrium gradient in the radial direction. Such terms take the form

v1⊥ · ∇f0 =
∇f0 × b

B
· ∇φ1 (3.18)

Making the substitution (∇f0 × b) · ∇ → −ikyf0/Lf this simplifies to

v1⊥ · ∇f0 = −i kyf0

BLf

φ1 (3.19)

Now these velocity relations can be substituted into the linearised ion continuity

equation, leading to

− iΩn1 − i
kyn0

BLn

φ1 + i
ωs

2n0

ΩTe

(

qiφ1 +
P1

n0

)

= 0 (3.20)

Using the Boltzmann relation given in eqn. 3.4, n1 can be eliminated allowing

eqn. 3.20 to be written:

− Ω
n0qi

Te

φ1 + ωn
∗e

n0qi

Te

φ1 +
ωs

2n0

ΩTe

(

qiφ1 +
P1

n0

)

= 0 (3.21)

Gathering terms relating to the two different fluctuations provides an expression for

P1 in terms of φ1:
[

Ω2 − ωn
∗eΩ − ωs

2
]

n0qiφ1 = ωs
2P1 (3.22)

Following an identical procedure for the ion pressure equation, eqn. 3.15, gives:

[

Ω2 − κωs
2

τ

]

P1 =

[

κωs
2

τ
− ΩωP

∗

]

n0qiφ1 (3.23)

Here the temperature ratio τ = Te/Ti has been introduced along with the pressure

diamagnetic frequency ωP
∗ :

ωP
∗ =

kyTi

qiBLP

(3.24)

Substituting eqn. 3.22 into eqn. 3.23 then yields the dispersion relation:

Ω3 − Ω2ωn
∗e − Ωωs

2
(

1 +
κ

τ

)

+ ωs
2
(

ωP
∗ +

κ

τ
ωn

∗e

)

= 0 (3.25)

This is a cubic equation which can provide a root with a positive imaginary com-

ponent, implying an unstable wave solution. It is perhaps more natural to express

this relation in terms of ωn
∗e and ωT

∗i, where ωT
∗i is the ion temperature diamagnetic

frequency

ωT
∗i =

kyTi

qiBLT

(3.26)
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as this allows the effects of temperature and density gradients to be isolated. Noting

that ωP
∗ = ωT

∗i − ωn
∗e/τ the dispersion relation can be written:

Ω3 − Ω2ωn
∗e − Ωωs

2
(

1 +
κ

τ

)

+ ωs
2
(

ωT
∗i +

(

κ− 1

τ

)

ωn
∗e

)

= 0 (3.27)

In the limit of cold ions 1/τ → 0 and ∇Ti = 0, eqn. 3.27 reduces to the electron drift

wave dispersion relation, eqn. 3.10, seen previously (assuming k2
yρ

2
s = 0). Further it

can be noted that in the absence of a density gradient eqn. 3.25 reduces exactly to

equation 9 of Ref [95]. It is useful to note that a cubic a+bx+cx2+dx3 = 0, a, b, c, d ∈
R, has complex roots iff ∆ < 0 with ∆ = 18abcd−4c3a+c2b2 −4db3 −27d2a2. Hence,

taking κ = 1, τ = 1 and ωn
∗e = 0 for simplicity, this yields the condition for ITG

instability of ωT
∗i > 1.089ωs, which is approximately described by

cs

ωcLT

>
kz

ky

(3.28)

Retaining the density gradient modifies this relation and provides a stabilising in-

fluence. This is highlighted in figure 3.2 which shows the instability boundary as a

function of ωn
∗e/ωs and ωT

∗i/ωs. It can be seen that even in the absence of a density

gradient it is possible to support a small temperature gradient without instability

and only by exceeding some critical gradient will the mode be unstable. This concept

of critical gradients is important in 1D transport models as it can lead to the idea

of a “stiff profile” where the onset of turbulence at the critical gradient pins the

profile.

5

6 10

2

2

ωT∗i/ωs

1 Unstable

3

8

ω
n ∗e
/ω

s

4

4

Stable

Figure 3.2: The shaded region shows the unstable region for the two fluid slab
ITG mode as a function of ωn

∗e/ωs and ωT
∗i/ωs under the assumptions

κ = 1 and τ = 1.
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3.2.3 Incorporating extra effects

It has been seen that slab two fluid calculations can lead to dispersion relations

describing various waves and instabilities of relevance to the study of anomalous

transport and can provide some basic insight into these modes. The slab geometry

used here only bears a passing resemblance to the full toroidal system of tokamaks

and important effects have been neglected or simplified when looking at this “shear-

less slab”. For example the pitch of the magnetic field in a tokamak varies with

radius, i.e. the field is sheared, which can provide an important stabilising influence

to such drift modes [97]. The fact that B is not uniform in toroidal systems such as

tokamaks also provides important modifications to the system which can significantly

alter the behaviour.

It has already been discussed that there are a large range of factors which can drive

drift waves; to describe a general system where any of these factors can be active it

is important to include all such effects in the model. Moreover for calculations of

turbulent transport it is necessary to retain the saturation mechanisms contained in

nonlinear terms: i.e. linear theory is helpful but insufficient. Including these factors

rapidly increases the complexity of two fluid models. Whilst such models provide

physical insight, it is useful to consider alternative approaches. By returning to a

kinetic theory (from which the two fluid approach is derived) it is possible to obtain

a more complete description of the plasma fluctuations.

3.3 Kinetic plasma description

Earlier in section 1.3.3 it was seen that a single charged particle’s motion can be

described by the Lorentz equation provided the EM fields have been specified. The

EM fields which are used in the Lorentz equation consist of both externally prescribed

fields and those generated by the charged particles themselves. Hence to evolve the

particle motion it is necessary to know both the charge density, ρc (x, t), and current

density, J (x, t), over the whole system in space, x, and time. This information is

available if the position and velocity of all the charged particles are known at the

initial time, t = t0. The ideas behind solving such a system to obtain the position

of all particles at some later time, t = tf , lend themselves to a numerical analogy.

Considering time to be a discrete quantity with spacing ∆t, at an initial time t0 the

position and velocity of all particles are considered known and Maxwell’s equations

can be used to solve for the EM fields. These fields can then be used with the Lorentz

equation to advance the position and velocity of particles to the next point in time,

t = t0 + ∆t. This process could then be repeated until the desired time had been

reached.
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Given that plasma in tokamaks can have a density of the order 1020 m−3 and volume

approaching 100 m3 (a factor 10 higher for ITER) the solution of each particle’s

equation of motion is not practical8. Rather than talking about the position and

velocity of N particles the system can be described by a distribution function for

each species, fs (x, v, t), which details the number density of species s at a given

point in the 6D “phase-space”9, (x -v), such that
∫

fsdx dv = N . By formulating

the evolution of fs it is possible to repeat the same sort of iterative process as with

the single particle picture in order to describe the system at a later time. This

evolution is described by the kinetic equation which will now be discussed.

3.3.1 The kinetic equation

It is convenient to introduce the generic phase-space coordinates, zi, with index i ∈
{1, 2, 3, 4, 5, 6} representing (x, v) and hence a position in phase-space is represented

by the single vector, z. Suppose the system of interest is composed of a single

particle such that fs (z, t) = δ
[

z − zj (t)
]

, with δ the Dirac delta function and zj (t)

the particle’s instantaneous phase-space position. Clearly the change in fs along the

particle trajectory through phase-space is zero, leading to

∂fs

∂t
+
dzi

dt

∂fs

∂zi

= 0 (3.29)

where the Einstein summation convention is assumed. This equation10 can be iden-

tified as a continuity equation for fs in the 6D phase-space in the absence of sources

and sinks (provided by nuclear and atomic processes). In the case with N particles

of species s, fs is in fact a sum over these single particle distribution functions but

eqn. 3.29 still holds.

The terms ∂zi/∂t, i ∈ {1, 2, 3} can be identified as a velocity, v, whilst ∂zi/∂t, i ∈
{4, 5, 6} describes the acceleration, a, i.e. the force on the particle per unit mass11.

In this case the force is just the Lorentz force and depends upon the EM fields, which

in turn depend upon ρc and J . These two quantities can be expressed in terms of

the species distribution functions using:

ρc (z, t) =
∑

s

qs

∫

fsdv (3.30)

8A simple estimate, assuming each equation of motion can be solved in one computational cycle,
suggests that the time taken to solve for 1022 particles is ∼1 year when running on 105 3 GHz
processors.

9In fact fs represents the probability of finding a particle of species s in the “phase-space”
volume element, dx dv.

10Often referred to as the Klimontovich-Dupree equation.
11It can be noted that until the force is specified eqn. 3.29 is a general form valid for a range of

cases including neutral fluids.
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J (z, t) =
∑

s

qs

∫

fsv dv (3.31)

Hence eqn. 3.29 along with Maxwell’s equations form a closed system of equa-

tions.

The distribution described here is essentially a set of delta functions, each represent-

ing a single particle. As such, nothing appears to have been gained over individual

particle tracking other than a simplified notation and dependence on (x, v) rather

than {xi, vi}. Progress can be made by noting that the interest lies with the mac-

rostate rather than the microstate. Thus rather than considering the microstate

defined by fs it is appropriate to consider the ensemble average, 〈fs〉. This ensemble

average acts to smooth out the point like nature of fs resulting in a smoothly varying

distribution function as well as EM fields. The ensemble average is loosely defined

as:

〈fs〉 =
1

∆z

∫

∆z
fsdz (3.32)

where ∆z represents a small phase-space volume containing a statistically significant

number of particles. Ensemble averaging eqn. 3.29 leads to

∂ 〈fs〉
∂t

+ v · ∂ 〈fs〉
∂x

+

〈

a · ∂fs

∂v

〉

= 0 (3.33)

The last term on the LHS of eqn. 3.33 can be written

〈

a · ∂fs

∂v

〉

= 〈a〉 · ∂ 〈fs〉
∂v

− C (〈fs〉) (3.34)

where C (〈fs〉), known as the collision operator, accounts for individual particle in-

teractions, or collisions, which prevent a and fs from being statistically independent.

Utilising eqn. 3.34, dropping the ensemble average notation, 〈· · ·〉 (as will be the case

for the rest of this thesis) and substituting in for a from the Lorentz equation, makes

it possible to write eqn. 3.33 as

∂fs

∂t
+ v · ∂fs

∂x
+

qs

ms

[E + v ×B] · ∂fs

∂v
= C (fs) (3.35)

In the absence of collisions eqn. 3.35 is known as the Vlasov equation. When including

collisions the equation is generally named after the choice of collision operator used,

a common choice being the Fokker-Planck operator12.

12The specific form of the collision operator will not be discussed in this thesis.
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3.4 Gyrokinetics

The Vlasov equation, eqn. 3.35, describes the evolution of the system, but it still

amounts to a 6D problem involving a large range of spatial and temporal scales,

much like the particle tracking approach. It is however a useful starting point for

a range of more tractable approaches such as the fluid description used earlier13.

Under certain approximations it is possible to simplify the kinetic equation to leave

the gyrokinetic equation, which is simpler to solve.

The main idea behind gyrokinetics exploits the separation of time scales between

that of the rapid gyromotion and the relatively slow drift wave motion. Under this

assumption it is possible to average over the rapid gyromotion without losing the

physics relevant to the processes of interest. This averaging can be applied to the

kinetic equation, reducing the dimensionality of the problem to 5D, resulting in an

equation for the evolution of the gyroaveraged distribution function. This averaged

distribution function can now be considered as describing the distribution of charged

rings, rather than particles.

Since the first gyrokinetic derivations [98, 99] several different approaches have been

developed to obtain the gyroaveraged kinetic equation (or gyrokinetic equation,

GKE). These derivations usually contain three main sections;

• Physically motivated ordering assumptions, known as the gyrokinetic order-

ings, which take advantage of the relevant physics and allows a separation of

the kinetic equation into a set of ordered equations.

• Choose coordinates to isolate the rapid gyromotion from the slower drift mo-

tions.

• Separation of the ordered equations, employing gyroaveraging where necessary

to remove the rapid motion from the problem.

A brief outline of some of these key steps, highlighting important points and ideas,

will be covered here. More complete and rigorous derivations have been covered in

detail in a wide range of publications14 which will not be replicated here, in particular

a large amount of algebra is neglected in section 3.4.3.2 and section 3.4.3.3.

Focus will be given to the linear gyrokinetic equation, which is sufficient for stability

calculations. For the calculation of particle and heat fluxes both the phase and

amplitude of the fluctuations are important; nonlinear interactions are required to

saturate the fluctuation amplitudes and the nonlinear GKE is discussed briefly in

section 3.4.4.

13For details on the fluid derivation from the Vlasov equation see appendix A.
14The discussion presented here roughly follows that of [22], [100], [101] and [102].
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3.4.1 Linearised kinetic equation

It is convenient to represent the species distribution function, fs, as a sum of ordered

terms such as

fs = fs0 + ǫfs1 + O
(

ǫ2
)

(3.36)

with ǫ ≪ 1. Here the lowest (0th) order term is considered to represent the equi-

librium value whilst the 1st order term is a linear perturbation to this; in linear

theory, as considered here, all higher order terms are dropped. The same process

can be applied to the electromagnetic fields (and the associated potentials), such

that a quantity S is represented by S = S0 + ǫS1. Applying such an expansion to

the Vlasov equation15 allows the 0th and 1st order terms to be separated producing

two ordered equations:

v · ∇f0 +
q

m
χ0 · ∇vf0 = 0 (3.37)

∂f1

∂t
+ v · ∇f1 +

q

m
χ0 · ∇vf1 +

q

m
χ1 · ∇vf0 = 0 (3.38)

where the species subscript has been dropped and χ is defined:

χ = E + v ×B = −∇φ− ∂A

∂t
+ v ×B (3.39)

It will be assumed that all equilibrium quantities are static, i.e. ∂f0/∂t = 0 etc.,

somewhat simplifying the leading order equation. The 1st order equation, eqn. 3.38,

is the Vlasov equation linearised with respect to perturbations. To proceed further

it is useful to consider the phase-space coordinates used.

3.4.2 Coordinates

Whilst the linearised Vlasov equation given in eqn. 3.38 is expressed in terms of x

and v, it is useful to consider alternative coordinates which exploit properties of the

system. To aid the gyroaverage procedure it is useful to consider a set of velocity

coordinates which makes the gyromotion explicit. A simple coordinate set satisfying

this is
(

v⊥, α, v‖
)

where α is the gyrophase (defined in figure 1.5). The vector velocity

can then be defined as v = v⊥ + v‖b with v⊥ defined as

v⊥ = v⊥ [ê1 cos (α) − ê2 sin (α)] (3.40)

where ê1 and ê2 complete the right handed coordinate set (ê1, ê2, b).

An alternative choice of velocity space coordinates is (µ, κ, α) with µ = v2
⊥/2B the

15Collisions will be dropped throughout this outline derivation for simplicity. They can be incor-
porated into the final equation by reintroducing a generic, undefined collision operator.
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magnetic moment per unit mass and κ = v2/2 the particle kinetic energy per unit

mass. The set (µ, κ, α) cannot actually fully define a position in terms of v‖ and v⊥

due to the ambiguity introduced by using the κ coordinate which involves v2. It is

therefore necessary to introduce an additional binary coordinate, σ = v‖/
∣

∣

∣v‖
∣

∣

∣, which

defines the direction of the parallel velocity. It is necessary to express ∇v in the

adopted coordinate system using

∇v = (∇vuj)
∂

∂uj

(3.41)

to yield:

∇vh =

[

v
∂

∂κ
+
v⊥
B

∂

∂µ
+
v⊥ × b

v2
⊥

∂

∂α

]

h (3.42)

This expression for ∇v allows the linearised kinetic equation, eqn. 3.38, to be written

as:

[

∂

∂t
+ v · ∇ + ωc

∂

∂α

]

f1 =

− q

m

[

E1 ·
(

v
∂

∂κ
+
v⊥
B

∂

∂µ
+
v⊥ × b

v2
⊥

∂

∂α

)

(3.43)

+

(

v‖ ×B1

)

· v⊥

B

∂

∂µ
+
(

B1‖ − v‖
v⊥

cos (α)B1⊥

)

∂

∂α



 f0

Some derivations of the GKE transform from the particle position spatial coordinate

to a system based on the guiding centres. Whilst this approach is not explicitly

applied here it is briefly introduced to complete the discussion16. Recalling fig-

ure 1.5 the gyrocentre position, X, can be related back to the particle’s position, x,

using

X = x− ρL (3.44)

with the directed Larmor radius, ρL, given by

ρL = ρL (X, v) [ê1 sin (α) + ê2 cos (α)] =
b× v⊥
ωc

(3.45)

In gyrokinetics perturbations with wavelengths the same size as ρL are allowed and

effects from variations in the EM fields around the Larmor orbit are retained. As such

ρL can change with x and not just X, introducing further complication as discussed

in Ref [22].

16For a demonstration of the gyrokinetic equation derivation using these “guiding centre” co-
ordinates see Ref [100].
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3.4.3 Gyrokinetic orderings

To make further progress with the derivation of the GKE it is now useful to make

assumptions about the system, specifically the relative order of different terms. These

gyrokinetic orderings are physically motivated and take advantage of properties of

the system, providing a complementary set to those introduced in section 3.4.1. The

orderings are summarised as

Ω

ωc

≈ ρL

L
≈ k‖
k⊥

≈ L⊥
L‖

∼ δ ≪ 1 (3.46)

where δ is a small number and L, L‖ and L⊥ all represent some characteristic length

scale. It can be noted that in the linear case it is assumed that ǫ ≪ δ.

The first of these orderings is simply stating that the gyromotion is rapid relative

to the mode frequency, which is consistent with drift waves, and provides temporal

scale separation. The second ordering provides a separation of spatial scales sug-

gesting equilibrium changes across one Larmor radius are small17. The final two

orderings deal with anisotropy of the system rather than scale separations. The

parallel wavelength is assumed to be large due to the rapid parallel motion whereas

perpendicular motion is reduced, this is summarised by the ordering k‖ ≪ k⊥. Fi-

nally it is assumed that perturbed quantities vary on the length scale of ∼ ρL in the

perpendicular direction and ∼ L in the parallel direction due to the ease of motion

along the field line18. As such ∇⊥ ∼ 1/L⊥ ∼ 1/ρL and ∇‖ ∼ 1/L‖ ∼ 1/L and hence

∇‖h1 ≪ ∇⊥h1.

An eikonal representation for the perturbed quantities can be used:

h1 = h1A (x, v) exp (ik · x− iΩt) (3.47)

with the amplitude, h1A, containing long length scale variation and the exponential

containing short scales. Using this representation it can be shown that ∇‖ ∼ k‖ and

∇⊥ ∼ k⊥ which shows that these final two orderings are consistent with such an

eikonal representation.

3.4.3.1 Ordering the linearised Vlasov equation

It is possible to separate eqn. 3.43 into a set of ordered equations and due to the

anisotropy of the spatial variation it is necessary to split the spatial gradient operator

into short and long length scale components. For perturbed quantities these length

scales can be matched with the perpendicular and parallel directions respectively but

17This ordering in fact follows from Ω/ωc ≪ 1 for drift modes with Ω ∼ ωn
∗e and kyρL ∼ 1.

18Equilibrium quantities are assumed to vary only on long length scales such that ∇h0 ∼ h0/L.
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for equilibrium parameters the long length scale is in all directions. As equilibrium

gradients are not included in eqn. 3.43 this distinction is not important here and ∇⊥

and ∇‖ will be used to represent the short and long length scale gradients respectively.

Applying the gyrokinetic orderings to the LHS of eqn. 3.43 allows it to be written

as:
[

∂

∂t
+ v · ∇ + ωc

∂

∂α

]

f1 =
(

L1 + Lδ
)

f1 (3.48)

where the two ordered operators, L1 and Lδ are defined as:

L1 = ωc
∂

∂α
+ v⊥ · ∇⊥ (3.49)

Lδ =
∂

∂t
+ v · ∇‖ (3.50)

and the superscript indicates the order of the terms in δ.

To order the RHS of eqn. 3.43 it is necessary to consider the order in δ of the

perturbed fields when expressed in terms of the EM potentials. Assuming B1 =

B1
1 +B1

δ and E1 = E1
1 + E1

δ the RHS of eqn. 3.43 becomes:

− q

m



E1 ·
(

v
∂

∂κ
+
v⊥
B

∂

∂µ
+
v⊥ × b

v2
⊥

∂

∂α

)

+

(

v‖ ×B1

)

· v⊥

B

∂

∂µ

+
(

B‖1
− v‖
v⊥

cos (α)B⊥1

)

∂

∂α

]

f0 =
(

M1 + Mδ
)

f0 (3.51)

with M1 and Mδ defined as:

M1 =
q

m

[

v⊥ · ∇⊥φ1

(

∂

∂κ
+

1

B

∂

∂µ

)

− v‖v⊥ · ∇⊥A1‖
B

∂

∂µ

]

(3.52)

Mδ = − q

m

[

E1
δ ·
(

v
∂

∂κ
+
v⊥
B

∂

∂µ

)

+ E1
1 · v⊥ × b

v2
⊥

∂

∂α

+
v⊥ ·

(

v‖ ×B1
δ
)

B

∂

∂µ
+
(

B1‖
1 − v‖

v⊥
cos (α)B1⊥

1
)

∂

∂α



 (3.53)

Finally it is helpful to represent both the equilibrium and perturbed distribution

functions as a sum of parts ordered in δ, such that eqn. 3.43 can be written as:

(

L1 + Lδ
) [

f1
1 + f1

δ + O
(

δ2
)]

=
(

M1 + Mδ
) [

f0
1 + f0

δ + O
(

δ2
)]

(3.54)
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3.4.3.2 The leading order equation

Taking the leading order terms in eqn. 3.54 gives the equation L1f1
1 = M1f0

1, which

using eqn. 3.50 and eqn. 3.52 leads to

(

ωc
∂

∂α
+ v⊥ · ∇⊥

)

f1
1 =

q

m

[

v⊥ · ∇⊥φ1

(

∂

∂κ
+

1

B

∂

∂µ

)

− v‖v⊥ · ∇⊥A1‖
B

∂

∂µ

]

f0
1 (3.55)

Splitting f1
1 into gyrophase independent and gyrophase dependent parts provides

a solution for f1
1, given in eqn. 3.56, in terms of the EM potentials, f0

1 and a

gyrophase independent function g, often referred to as the non-adiabatic component

of the perturbed distribution function.

f1
1 =

q

m

[

φ1

(

∂

∂κ
+

1

B

∂

∂µ

)

− v‖A1‖
B

∂

∂µ

]

f0
1 + g

(

x, v‖, v⊥
)

exp (−ik · ρi) (3.56)

3.4.3.3 The first order equation

The first order terms in eqn. 3.54 give:

L1f1
δ + Lδf1

1 = M1f0
δ + Mδf0

1 (3.57)

After a small amount of manipulation this can be written as:

∂

∂α

[

f1
δ exp (ik · ρi)

]

+
exp (ik · ρi)

ωc

Lδf1
1 =

exp (ik · ρi)

ωc

(

M1f0
δ + Mδf0

1
)

(3.58)

This provides an equation for f1
δ in terms of f1

1 and f0, however by averaging

eqn. 3.58 over the gyrophase the first term can be eliminated leaving an equation for

g in terms of f0. The gyroaverage is represented by 〈· · · 〉 and is defined as:

〈h〉 =
1

2π

∫ 2π

0
h dα (3.59)

Hence the gyroaveraged version of eqn. 3.58 is given by:

〈

exp (ik · ρi)Lδf1
1
〉

=
〈

exp (ik · ρi)
(

M1f0
δ + Mδf0

1
)〉

(3.60)
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Proceeding with a significant amount of algebra and making the assumption that f0
1

is independent of µ allows eqn. 3.60 to be written as

[

∂

∂t
+
(

v‖b+ vD

)

· ∇
]

g = −
[

∇f0
1

B
· b× ∇⊥ +

q

m

∂f0
1

∂κ

∂

∂t

]

[

(

φ1 − v‖A1‖
)

J0 (kρL) +
v⊥
k
B1‖J1 (kρL)

]

(3.61)

which is the linear electromagnetic gyrokinetic equation. This is in agreement with

equation 56 of Ref [103] in the absence of equilibrium flows and nonlinearities19.

Here vD contains the magnetic drifts and J0 (kρL) and J1 (kρL) are the 0th and 1st

order Bessel functions respectively. The Bessel functions arise from the gyroaveraging

operation and are defined as:

J0 (z) =
1

2π

∫ 2π

0
exp (iz cosα) dα (3.62)

J1 (z) = − i

2π

∫ 2π

0
exp (iz cosα) exp (i cosα) dα (3.63)

3.4.4 Nonlinear effects

The linearisation performed in section 3.4.1 is only valid for infinitesimal fluctuations

and hence the linear GKE, eqn. 3.61, is only valid for small fluctuations. However,

if an unstable solution exists then its amplitude will grow with time and hence

after a certain amount of time the linearisation breaks down and the equation is no

longer valid. To overcome this it is necessary to adopt a modified ordering for the

fluctuations, which can be summarised by setting ǫ = δ such that

Ω

ωc

≈ ρL

L
≈ k‖
k⊥

≈ L⊥
L‖

≈ f1

f0

≈ qφ1

T
≈ B1

B0

∼ δ ≪ 1 (3.64)

where the fluctuation terms, f1 etc., represent the total fluctuation rather than simply

the linear piece used in the linear case. Repeating the procedure used to derive the

linear GKE it is then possible to obtain the nonlinear EM GKE:

[

∂

∂t
+
(

v‖b+ vD

)

· ∇
]

g = −
[

∇f0
1

B
· b× ∇⊥ +

q

m

∂f0
1

∂κ

∂

∂t
+Rni

]

[

(

φ1 − v‖A1‖
)

J0 (kρL) +
v⊥
k
B1‖J1 (kρL)

]

(3.65)

19This comparison simply involves setting the equilibrium flows to 0, i.e. V = 0, and neglecting
the final term on the RHS of equation 56 of Ref [103] which represents the nonlinearity.
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where Rni contains the gyroaveraged nonlinear interactions and is given by

Rni =
∇g
B

· b× ∇⊥ (3.66)

The nonlinear interactions can complicate solution of the GKE but provide effects

important for quantitative calculations. For example, the fluctuation amplitude will

saturate, allowing the quantitative calculation of heat and particle fluxes.
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Chapter 4

Using the gyrokinetic equation

4.1 Numerical simulations

The electromagnetic gyrokinetic equation, such as that given in eqn. 3.65, describes

the evolution of the non-adiabatic component of the perturbed distribution function,

g, for a given system. Solutions of the GKE and the related gyrokinetic Maxwell’s

equations provide details of the fluctuating plasma parameters, such as density, and

EM fields, giving insight into the processes driving transport. Analytical solution

of the linear GKE is possible only under certain limits; analytic theory typically

neglects important physics and is generally only applicable to simplified geometries.

Such solutions can prove to be useful for exploring some of the underlying instabil-

ity characteristics, but to study the full physical system it is necessary to adopt a

numerical approach.

As computational power has increased over the years it has become possible to de-

velop codes using increasingly complete gyrokinetic models, representing more real-

istic scenarios. Advanced algorithms and numerical schemes taking advantage of

the properties of tokamaks have led to further reductions in computational cost and

a large number of gyrokinetic simulation codes currently exist which can routinely

solve the full linear and nonlinear GKE. Such advances and improvements in under-

standing and computational capabilities have led to the ability to study experimental

discharges using gyrokinetic codes, providing insight into the physical processes driv-

ing the observed transport.

4.1.1 Numerical approaches

There are several possible approaches that can be taken to numerically solve the

GKE, which is reflected in the large number of gyrokinetic codes currently in exist-
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ence. Such a range is useful as it provides means to independently benchmark the

results from different codes in order to provide confidence in the conclusions drawn.

Gyrokinetic codes can be classified on a variety of characteristics including the nu-

merical scheme used and the physics contained. A few of the key characteristics

are given in table 4.1 along with typical options, for a more complete discussion

of the different approaches adopted in gyrokinetic codes the reader is referred to

Ref [104].

Characteristic
Fields Electrostatic Electromagnetic
GKE Linear Nonlinear

Electron model Adiabatic Gyrokinetic
Numerical approach Eulerian Lagrangian

Spatial domain Local Global

Table 4.1: A summary of important characteristics for gyrokinetic codes.

The first two characteristics simply describe the specific gyrokinetic system being

solved whilst the third denotes whether the electrons are assumed to be adiabatic

or if the electron GKE is used (often referred to as kinetic electrons)1. The numer-

ical approach taken can be split into two main approaches: Eulerian (or continuum)

codes which solve the equations on a fixed grid or hybrid-Lagrangian codes, known

as particle in cell (PIC) codes, which adopt a marker tracking (or moving grid) type

approach combined with fixed grids for the field calculations2. These approaches

have significantly different numerical properties making them useful for independ-

ent benchmarking. The final characteristic discussed here refers to the simulations

spatial domain, specifically how the poloidal and radial directions are treated. The

treatment of the radial domain is an important topic in this thesis.

4.1.1.1 Radially local vs. global

If the radial length scale of equilibrium profile variations, Leq, is much larger than the

characteristic radial size of drift instabilities, ∼ O (ρi), then it is possible to apply a

simplification to the GKE known as the local approximation. In this approximation3

it is assumed that the equilibrium parameters are constant over the radial extent of

the instability (whilst retaining non-zero gradients), introducing a degeneracy in

the radial direction. It is then possible to transform the underlying equations to

1It should be noted that electromagnetic codes can include the electrostatic limit, nonlinear
codes can be run as linear codes and codes with kinetic electrons can also use adiabatic electrons.

2In fact there is a third numerical approach, known as semi-Lagrangian, in which, rather than
tracking the trajectory of specific particles as time advances as done in Lagrangian codes, at each
time step the origin of particles on a fixed grid is calculated by finding their reverse trajectories.
The particles properties can then be calculated through interpolation from the fixed grids onto the
particles starting position. This approach is used in the gyrokinetic code GYSELA [105].

3This approximation and its application will be discussed in greater detail in chapter 5.
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remove the radial dimension from the problem. This process yields the local GKE

which is solved on a single flux surface, resulting in reduced computational demands

compared to the global solution.

Gyrokinetic codes which do not use this approximation are known as global codes

and retain the effects of radial profile variations. Global codes are therefore capable

of simulations involving large radial domains covering many flux surfaces. This

increased simulation domain significantly increases the computational cost of these

global codes, but with the advent of large scale supercomputers their use has become

more routinely feasible. Taking Leq to represent the equilibrium variation and ρL to

represent the mode size then the limit ρ∗ → 0 represents the regime in which the local

approximation is strictly valid. For large tokamaks, such as JET and ITER, ρ∗ is

indeed small in the core whilst near the edge and in other tokamaks, such as MAST,

ρ∗ can be larger and the local approximation will become less valid. Comparisons

between global and local codes typically agree in the limit ρ∗ → 0 [106, 107]. A more

detailed study of the relationship between local and global representations and their

solutions is the topic of chapter 5.

4.2 Challenges for gyrokinetics

There has been large progress made in the study of fluctuations over the past few

decades, aided by increasing computational performance and diagnostic capabilities.

It is now possible to provide quantitative predictions of transport properties in a

range of experimental situations, and varying levels of agreement are found between

predictions and experiment depending on the scenario studied [108, 109]. Despite

this, the theoretical study of fluctuation driven transport is far from complete and

there remain unresolved challenges which must be addressed.

The cyclical formation and collapse of edge transport barriers observed when oper-

ating in H-mode limits the obtainable barrier width and height, thereby limiting the

maximum plasma performance achieved during H-mode. To make predictions of the

performance of ITER it is important to understand this cycle. A model based on

MHD stability constraints, known as EPED [110], has proved successful in predict-

ing the barrier properties immediately prior to the collapse. The potential damage

resulting from the energy and particles ejected during the barrier collapse, or ELM,

is a key concern for ITER and techniques to reduce, or mitigate, the impact of these

ELMs or remove them entirely are being investigated [111, 112]. The evolution of

the edge barrier between two natural ELMs is dependent on the transport in the

edge region due to microinstabilities. By understanding this evolution in terms of

the microinstability behaviour, insight may be gained into the mechanisms behind

59



Chapter 4. Using the gyrokinetic equation 4.3. Topics addressed in this thesis

the current ELM mitigation techniques, which are currently not fully understood.

Unfortunately as the normalised fluctuation amplitudes approach 1 near the edge,

the gyrokinetic orderings used in chapter 3 break down. It is necessary to adopt a

new approach. Similar issues are of relevance to gyrokinetics inside transport barri-

ers where the local value of ρ∗ (determined by ρL/Ln for example) is relatively large

and global effects can become significant. An area of significant research focus is the

development of a gyrokinetic formulation and codes suitable for edge regions and

transport barriers. There has been significant progress in this area [113–115] and

prototype codes have been developed to start to test possible numerical implement-

ations [116–118]. There is however, still a long way to go before physically relevant

edge gyrokinetic simulations are routinely feasible. A study of the microstability

evolution in the edge region during an ELM cycle for the spherical tokamak MAST

is presented in chapter 6. Whilst the formulation of gyrokinetics used here is not

one developed for the edge region (and therefore the accuracy of the results is lim-

ited) this study can be viewed as a first step towards a complete treatment and can

provide some preliminary insight into the physics involved.

The L-H transition and the formation of internal transport barriers are thought to

be related to the suppression of turbulent fluctuations but it has not been possible to

show the spontaneous formation of transport barriers in current codes. As mentioned

previously, this suppression is often postulated to be due to sheared flows which can

be large in current generation tokamaks with neutral beam heating. ITER will

have neutral beam heating but the resulting rotation is expected to be relatively

low (with a Mach number M = vϕ/vthi
≈ 0.05) [91, 119] and hence sheared flow

suppression may be a weak process. It is however possible to get self generated

spontaneous rotation in the plasma due to momentum transport processes [120] and

the calculation of such momentum transport is currently being integrated into a

number of gyrokinetic codes [121–123]. Momentum transport can be enhanced by

various symmetry breaking processes [124] and it will be shown in chapter 5 that

profile variations can contribute to this symmetry breaking.

4.3 Topics addressed in this thesis

A comparison between local and global models for a reduced linear gyrokinetic ITG

model is presented in chapter 5 in order to explore the relation between these repres-

entations. Earlier work on this model [125] finds two classes of solution depending

upon the profiles present. This finding is explored numerically in order to test the

behaviour of these two classes of mode against the predictions implicit in earlier

work [125, 126]. Typically, local codes are currently only capable of treating the less

general of these two classes. The possibility of incorporating these profile effects into
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existing local codes, such that they can treat both classes of mode, is explored. This

would offer a means to leverage existing well developed local codes to perform studies

including profile effects, allowing estimates of the resulting symmetry breaking for

example.

Whilst the physics of transport barrier formation and evolution remain elusive, pre-

dictive models for the H-mode pedestal behaviour are of key importance to predic-

tions of tokamak performance. The EPED predictive model has been tested against

a number of large aspect ratio tokamaks and generally shows good agreement with

experiment in these cases [127]. This model is based upon a combination of MHD and

gyrokinetic instabilities and will be discussed in more detail in chapter 6. In practice

the gyrokinetic stability is not usually calculated due to the difficulties of operating

near the edge, and simpler models are used instead. To address how well these simple

models represent the gyrokinetic stability, and to investigate the applicability of the

EPED model to STs, a gyrokinetic study of the H-mode pedestal region on MAST

has been performed. In particular the linear gyrokinetic stability has been probed

using the local gyrokinetic code GS24 [128] at several times between two ELMs such

that the effect of the evolution of the pressure profile on the microinstabilities can

be investigated. Whilst the gyrokinetic model in GS2 is not derived for use in the

edge, the use of such a tool provides a step towards a rigorous gyrokinetic treatment

of the pedestal. An interesting transition between two classes of instability is ob-

served at the interface between the shallow and steep gradient regions, and may be

of importance for the pedestal evolution.

4A detailed overview of GS2 is available in Ref [129].
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Chapter 5

On local approximations to global

gyrokinetic theory

5.1 An introduction to ballooning theory

Linear potential perturbations in an axisymmetric system, such as φ = φ (r, θ, ϕ),

can be Fourier decomposed in the toroidal direction to obtain, φ = φ (r, θ) exp (inϕ),

where n is the toroidal mode number. In cylindrical and plane slab geometries it

is also possible to decouple poloidal harmonics by decomposing poloidally such that

φ = φ (r) exp (i [nϕ+mθ]), with m the poloidal mode number1. The mode will

be strongly resonant at the rational (or resonant) surface where q = m/n and the

perturbation is exactly aligned with the magnetic field lines. This results in constant

amplitude along the closed field lines as illustrated in figure 5.1.

In such systems these Fourier modes are entirely independent and depend only upon

the conditions near the relevant resonant location. These modes are damped by a

small amount of magnetic shear [97, 130] and so would not initially be expected in

experimentally relevant situations. In more realistic geometry, where the magnetic

field varies around a flux surface, modes with different m can couple together in such

a way as to minimise this shear damping [131], thereby resulting in unstable modes

which stretch across multiple rational surfaces. The behaviour of these coupled

systems is somewhat more complex than the simple uncoupled behaviour, being

both two dimensional and radially extended. However, provided the radial extent of

the mode is small relative to that of equilibrium variations it is possible to exploit the

resulting scale separation to simplify the problem, making its solution more feasible,

and this is the subject of this chapter.

1In a plane slab geometry, {x, y, z}, the poloidal, θ, and toroidal, ϕ, directions become the
two periodic, perpendicular directions {y, z}, whilst in cylindrical geometry, {r, θ, z}, the toroidal
direction is mapped to z.
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Figure 5.1: The perturbed potential in slab geometry for a mode with poloidal
mode number, m = 6, and toroidal mode number, n = 3. A magnetic
field line with q = m/n = 2 is shown by the solid white line and is
aligned with the perturbation such that the perturbation amplitude
is constant along the field line. A magnetic field line with q = 3 is
shown by the dashed black line; this field line is not aligned with the
perturbation and as such effectively short circuits the perturbation.

When there is strong separation between equilibrium and Larmor orbit length scales

the ordering ρ∗ ≪ 1 is satisfied and can be exploited to simplify the system. The

applicability of radial scale separation is not restricted to the separation between

equilibrium and Larmor orbit length scales; indeed the first demonstration of the

local approach was for an MHD model [132] where strong separation between the

rational surface spacing and the length scale associated with equilibrium variations

was required. This separation is characterised by the ordering ∆/L ≪ 1, where

∆ = 1/nq′ is the distance between neighbouring rational surfaces2 and q′ is the

radial gradient of the safety factor, q. Hence, assuming q′ ∼ O (1), in the limit

n → ∞ there is a separation of radial scales, which suggests a simplification can be

made by adopting an Eikonal representation for the perturbation of the form:

φ (r, θ, ϕ) = A (r, θ) exp

[

in

(

ϕ−
∫ θ

q∗dθ

)]

(5.1)

where A is a slowly varying amplitude envelope and q∗ = rBϕ/BθR is the local safety

factor such that q = (2π)−1 ∮ q∗dθ. The phase, n
(

ϕ− ∫ θ q∗dθ
)

, is constant along a

field line but in the limit n → ∞ varies rapidly across flux surfaces, representing the

important characteristic k‖ ≪ k⊥. For the rest of this chapter the toroidal behaviour

will be described solely by the toroidal mode number, n, and no explicit dependence

on ϕ will be seen but can be recovered by multiplying by exp (inϕ).

2Noting that nq = m = kθr and ŝ = (r/q)(dq/dr) it can be seen that nq′ ≡ kθ ŝ and hence for
kθ ∼ 1/ρL and ŝ ∼ O (1) the parameter ∆ = 1/nq′ = 1/kθ ŝ is approximately equivalent to ρL and
hence in this regime the scale separation ordering based on rational surface separation is equivalent
to the ρ∗ ordering used earlier.
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The requirement for periodicity in θ of eqn. 5.1 is given by:

A (r, θ + 2π) − A (r, θ) exp (in2πq) = 0 (5.2)

Taking the radial derivative of this leads to

A′ (r, θ + 2π) − A′ (r, θ) exp (in2πq) = in2πq′A (r, θ) (5.3)

For the eikonal approach to be valid it is required that A varies slowly, specifically

that A′/A ≪ nq′. This means that eqn. 5.3 can only be satisfied at all locations

if nq′ ≪ 1 everywhere. As n is large this condition highlights that the eikonal

representation, eqn. 5.1, is only valid for infinitesimal q′ and hence, for the realistic

case of sheared magnetic fields, is not applicable [133].

In order to take advantage of the spatial scale separation through the use of an eikonal

form it is necessary to find a representation for φ (r, θ) which avoids the problem of

the periodicity constraint. One technique is to map the problem from the finite θ

domain, periodic between −π and π, to the infinite domain, η, often referred to as the

ballooning coordinate. This takes advantage of the fact that any periodic function,

f (θ), can be represented by another function on the infinite domain, f̂ (η) through

the relation:

f (θ) =
∑

m

∫ ∞

−∞
f̂ (η) δ (η − θ − 2πm) dη (5.4)

where δ is the Dirac delta function3 and f̂ (η) provides the weight for the contribution

of each delta function to the periodic function. This representation samples the

infinite function at intervals of 2π and sums these to give the value of a periodic

function at θ, which is illustrated pictorially in figure 5.2.

The integral in eqn. 5.4 must converge in order for this representation to be applic-

able; this implies the boundary condition f̂ (η) → 0 for η → ±∞. Making use of the

relation4:

2π
∑

n

δ (r − 2πn) =
∑

m

eimr (5.5)

allows eqn. 5.4 to be written as

f (θ) = (2π)−1
∑

m

∫ ∞

−∞
f̂ (η) eim(η−θ)dη (5.6)

This representation is equivalent to that introduced in Ref [132], known as the bal-

3It can be noted that the summation of delta functions represented here is often referred to as
the Dirac comb, δN . The resulting integral can be seen to be sampling the function f̂ (η) with a
sampling period of 2π.

4This is an example of the Poisson summation formula.
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Figure 5.2: The procedure to map a function on the infinite domain, f̂ (η), to
a function on the periodic domain, f (θ), is illustrated schematically
by figure 5.2(a), figure 5.2(b) and figure 5.2(c). The initial function
on the infinite domain is shown in figure 5.2(a), by summing over
the function sampled at 2π intervals (or equivalently summing over
an infinite number of copies of the function each shifted by integer
multiple of 2π as illustrated by figure 5.2(b)) a periodic function will
be constructed provided f̂ (η) → 0 as η → ±∞.

looning transform, where a Fourier representation for φ was adopted

φ (r, θ) =
∑

m

Ame
−imθ (5.7)

and the amplitude coefficients, Am, are represented according to eqn. 5.6 as integrals

over the infinite ballooning domain:

φ (r, θ) =
∑

m

e−imθ
∫ ∞

−∞
eimηφ̂ (r, η) dη (5.8)

It is important to highlight that the representation given in eqn. 5.8 ensures period-

icity in θ for any φ̂, which vanishes for η → ±∞.

Following Ref [132] the ballooning transformation allows the original system, which

is described by the generic 2D eigenvalue equation in r-θ:

(L (r, θ) − λ)φ (r, θ) = 0 (5.9)
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to be mapped to one in r-η:

(L (r, η) − λ) φ̂ (r, η) = 0 (5.10)

where the eigenvalue, λ, is the same in both cases5. This means the true, periodic,

problem has been replaced with one in the r-η domain with the same eigenvalue.

The advantage of this is that the periodic boundary conditions in θ, which prevent

an eikonal approach, have been replaced with conditions on η → ±∞, specifically

that φ̂ → 0 for η → ±∞ such that the integration in eqn. 5.8 converges. This allows

an eikonal representation for φ̂:

φ̂ (x, η) = A (x, η) e−inq′[xη−S(x)] (5.11)

where x is the radial variable, x = r−rs with rs some reference rational surface posi-

tion, and the amplitude function A (x, η) is slowly varying. The function S (x) is con-

stant on a field line and varies slowly with x such that the phase factor exp (inq′S (x))

describes rapid variation in the perpendicular direction but is constant along the field

line describing k‖ ≪ k⊥ as in eqn. 5.1. Taking the radial derivative of eqn. 5.11 and

taking the leading order terms gives

∂

∂x
→ inq′

(

dS (x)

dx
− η

)

(5.12)

Comparing with the Fourier derivative representation d/dx → ikx it is seen that

dS/dx can be related to the radial wavenumber kx (evaluated at η = 0) and hence

the shorthand
dS (x)

dx
= k (5.13)

will be used throughout the remainder of the chapter.

By expanding the operator, L, in orders of 1/nq′ it is possible to obtain the lowest

order equation, which describes the behaviour of φ̂ (x, η) in the absence of profile

variations (which only enter at the next order in 1/nq′). This lowest order equation

is the “local” representation of the problem, and it will be shown in section 5.2.2

that this takes the form of an ordinary differential equation in η. The solution of the

local equation determines û (η) for specified x and k. The local frequency, Ω0 (x, k),

emerges as an eigenvalue of the local equation and it is important to note that its

value depends on both x and k. At this stage both x and k are free parameters with

no conditions placed upon their selection; it is only with consideration of terms at

higher order in 1/nq′ that these free parameters are determined. To be able to relate

Ω0 to the true, global frequency, Ω, it is crucial to select x and k carefully. These

5An illustration of this will be given later for specific operators corresponding to a simplified
gyrokinetic ITG model.
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higher order considerations are not typically accounted for in local gyrokinetic codes

despite their potential importance.

In order to investigate the importance of these higher order profile effects, and to

numerically validate the theoretical findings implicit in the earlier literature, a re-

duced gyrokinetic ITG model has been studied. The reduced model takes the form

of a 2D eigenvalue equation for the perturbed potential, φ1 (x, θ), and retains the

effects of profile variations. This global model, discussed in section 5.2.1, describes

the electrostatic ITG mode in a simple toroidal geometry and was first introduced

in the form used here in Ref [134]. Taking the limit of large n it is possible to obtain

the local limit of the global model, and this is discussed in section 5.2.2.

The simplifications applied in deriving the global model make numerical solution

feasible over a large range of toroidal mode numbers, and here the global ITG mode

is studied for n in the range ∼ 20 < n < 2000. Hence by comparing the global

model in the limit of large n with the local model, we will investigate how best to

treat x and k in applications of the local representation, such as in local gyrokinetic

codes.

5.2 A gyrokinetic toroidal ITG model

Whilst the two fluid ITG model introduced in section 3.2.2 provided some insight

into the underlying physical mechanisms behind the ITG mode it neglects many

important effects which can significantly modify its behaviour. This neglect is due in

part to the simplified geometry and the fluid species treatment adopted in order to

make the analytic study tractable. The toroidal ITG model derived here improves on

this simple two fluid picture, treating a large aspect ratio concentric circular cross-

section toroidal system. A consequence of the large aspect ratio assumption is that

the magnetic drift frequency, ωD, is much smaller than the real mode frequency6

such that:

ωD = 2ǫnω
n
∗i ≪ ω (5.14)

where ǫn = Ln/R and ωn
∗i = −ωn

∗e/τ . The electrons are once again taken to be

adiabatic, and specifically the ordering

k‖vthe
≫ ω ≫ k‖vthi

(5.15)

is assumed. The ion species is treated using a gyrokinetic description, which retains

finite larmor radius (FLR) effects, which can modify the ion dynamics.

6This can be seen to be as a consequence of the two separate orderings ωn
∗i ≈ ω and Ln ≈ a in

combination with the large aspect ratio ordering, a/R ≪ 1.
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5.2.1 The global model

The global model derivation relies upon applying quasineutrality in conjunction with

expressions for the ion and electron perturbed densities in order to obtain an equa-

tion for the perturbed potential, φ1. The adiabatic electron approximation sets the

electron perturbed density to be

n1e = n0
eφ1

Te

(5.16)

where n0 is the equilibrium ion and electron density. The perturbed ion density, n1i,

is simply

n1i =
∫

f1
1dv3 (5.17)

with f1
1 (the perturbed distribution function to leading order in ρ∗) given by the

leading order gyrokinetic equation, eqn. 3.56. Assuming f0
1 (the equilibrium distri-

bution function) is given by the isotropic Maxwellian distribution, fM ,

fM = n (r)

(

m

2πT (r)

)3/2

exp

(

− mκ

T (r)

)

(5.18)

with κ = v2/2, eqn. 3.56 then reduces to

f1
1 = −eφ1

T
fM + g exp (−ik · ρi) (5.19)

Substituting this into eqn. 5.17 yields

n1i = −n0
eφ1

Ti

+
∫

g exp (−ik · ρi) dv
3 (5.20)

Applying quasineutrality then expresses φ1 as a velocity integral of the non-adiabatic

component of the perturbed distribution function, g:

n0
eφ1

Te

(1 + τ) =
∫

g exp (−ik · ρi) dv
3 (5.21)

with τ = Te/Ti. Expanding dv3 as v⊥dv⊥dv‖dα and noting k · ρi = k⊥v⊥ sin (α) /ωc,

eqn. 5.21 becomes

n0
eφ1

Te

(1 + τ) = 2π
∫ ∞

−∞

∫ ∞

0
gJ0 (z) v⊥dv⊥dv‖ (5.22)

where the relation

∫ 2π

0
exp (−ik · ρi) dα =

∫ 2π

0
exp (−ik⊥ρi cosα) dα = 2πJ0 (z) (5.23)

with z = k⊥v⊥/ωc has been used to represent the integral over the gyrophase, α.
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The non-adiabatic component, g, is described by the GKE, eqn. 3.61, which after

making the substitution ∂/∂t → −iω and neglecting magnetic perturbations be-

comes:

[

−iω +
(

v‖b+ vD

)

· ∇
]

g = −∇fM

B
· b× ∇⊥φ1J0 (z) + iωφ1J0 (z)

q

m

∂fM

∂κ
(5.24)

where the ion species subscript has been neglected. Using eqn. 5.18 to evaluate the

derivatives of fM on the RHS of eqn. 5.24 gives

∂fM

∂κ
= −m

Ti

fM (5.25)

∇fM =

[

1 + ηi

(

v2

v2
thi

− 3

2

)]

fM

Ln

êr = α
fM

Ln

êr (5.26)

where ηi = Lni
/LTi

and α is given by

α =

[

1 + ηi

(

v2

v2
thi

− 3

2

)]

(5.27)

Substituting eqn. 5.25 and eqn. 5.26 into eqn. 5.24 and letting ∇ → ik this be-

comes
[

v‖
∂

∂ê‖
+ i (k · vD − ω)

]

g = i
q

Ti

[

ωn
∗eα

τ
− ω

]

fMφ1J0 (z) (5.28)

where ωn
∗e is given by

ωn
∗e = − kyTe

qBLn

(5.29)

and ∂/∂ê‖ is the parallel derivative term, b · ∇, given by

∂

∂ê‖
= b ·

(

êθ

r

∂

∂θ
+

êϕ

R0 + r cos (θ)

∂

∂ϕ

)

≈ bθ

r

∂

∂θ
+
inbϕ

R
=

bϕ

Rq

(

∂

∂θ
+ inq

)

(5.30)

Here, the known toroidal variation, exp (inϕ) has been used to replace the toroidal

angle derivative with in. The drift velocity due to the magnetic geometry, vD, is

given by

vD =
b× ∇B
ωc

[

µ

m
+
v2

‖
B

]

(5.31)

Noting that B ≈ R0B0/R, with B0 the magnetic field strength on the magnetic axis,

and for a circular cross-section R = R0 (1 + (r/R0) cos θ), applying the large aspect

ratio approximation, r/R0 ≪ 1 [135] gives the magnetic field strength as

B = B0

(

1 − r

R
cos (θ)

)

(5.32)
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This allows k⊥ · (b× ∇B) to be written as

k⊥ · (b× ∇B) = − 1

R0

[sin (θ) êr + cos (θ) êθ] · [krêr + kθêθ]

= − kθ

R0

[

cos (θ) +
kr

kθ

sin (θ)

]

(5.33)

The magnetic drift frequency can then be written as

k⊥ · vD =
ωD

2

(

2v2
‖

v2
thi

+
v2

⊥
v2

thi

)[

cos (θ) +
kr

kθ

sin (θ)

]

= ω̄D (5.34)

with ωD defined in eqn. 5.14. Rearranging eqn. 5.28 and treating the parallel de-

rivative as small, v‖∂/∂ê‖ ≪ (ω̄D − ω), allows an expression for g to be found to

O (δ2)7:

g =
q

Ti

fMJ0 (z)

ω − ω̄D

[

ω − ωn
∗eα

τ

]

(

1 − i
δ

(ω − ω̄D)
− δ2

(ω − ω̄D)2

)

φ1 (5.35)

where δ is given by

δ = v‖
∂

∂ê‖
(5.36)

Taking advantage of the small magnetic drift frequency ordering, ωD ≪ ω, a second-

ary expansion of eqn. 5.35 in ∆ = ω̄D/ω can be performed to give:

g =
q

Ti

fMJ0 (z)
[

1 − ωn
∗eα

ωτ

]

(

1 + ∆ − i
δ

ω
− i

2δ∆

ω
− δ2

ω2

)

φ1 (5.37)

Substituting eqn. 5.37 into eqn. 5.22 yields

φ1
(1 + τ)

τ
=

2

v3
thi

√
π

∫ ∞

−∞

∫ ∞

0
e

−v2

‖
−v2

⊥

v2

thi

(

1 − k2
⊥v

2
⊥

2ωc
2

)

[

1 − ωn
∗eα

ωτ

]

(

1 + ∆ − δ2

ω2

)

φ1v⊥dv⊥dv‖ (5.38)

where terms even in v‖ have been dropped as they integrate to zero and the Bessel

function has been expanded for k⊥v⊥ ≪ ωc using J2
0 (z) ≈ 1 − z2/2 for small z.

Expanding the brackets on the RHS of eqn. 5.38, neglecting products of small para-

7It is necessary to keep terms of order δ2 in order to retain parallel dynamics in the final result
as in the upcoming velocity integral terms linear in δ will integrate to zero.
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meters, leads to

φ1
(1 + τ)

τ
=

2

v3
thi

√
π

∫ ∞

−∞

∫ ∞

0
e

−v2

‖
−v2

⊥

v2

thi



−
ηi

(

v2
‖ + v2

⊥
)

v2
thi

Ωτ
+
(

1 +
3ηi

2Ωτ
− 1

Ωτ

)

(5.39)

(

1 − ǫn

τΩ

[

cos (θ) +
kr

kθ

sin (θ)

] [

2v2
‖

v2
thi

+
v2

⊥
v2

thi

]

− k2
⊥v

2
⊥

2ωc
2

−
v2

‖
Ω2ωn

∗e
2

∂2

∂l2

)]

φ1v⊥dv⊥dv‖

where Ω = ω/ωn
∗e is the normalised mode frequency. The integral in eqn. 5.39 can

be evaluated by noting that the integration over velocity space only involves terms

of the general form

Ip,q =
∫ ∞

−∞
exp

(

−
v2

‖
v2

thi

)

vp
‖

∫ ∞

0
exp

(

− v2
⊥

v2
thi

)

v
(q+1)
⊥ dv⊥dv‖ (5.40)

and that such integrals have the standard solution [136] of

Ip,q =
v3

thi
vp+q

thi

2
Γ
(

p+ 1

2

)

Γ
(

q + 2

2

)

(5.41)

where Γ (x) is the gamma function (or generalised factorial). The values of the

gamma functions for p, q = 0, 2, 4 are shown in table 5.1.

x Γ
(

x+1
2

)

Γ
(

x+2
2

)

0
√
π 1

2
√

π
2

1

4 3
√

π
5

2

Table 5.1: Values of the gamma function for selected arguments, including those
required to evaluate the velocity integrals in eqn. 5.40.

Expressing eqn. 5.39 in terms of the generic integral form, eqn. 5.40 leads to

φ1
(1 + τ)

τ
=

2

v3
thi

√
π

[

− ηi

v2
thi

Ωτ
(I2,0 + I0,2) +

(

1 +
3ηi

2Ωτ
− 1

Ωτ

)

(5.42)

(

I0,0 − ǫn

τΩ

[

cos (θ) +
kr

kθ

sin (θ)

] [

2I2,0

v2
thi

+
I0,2

v2
thi

]

− k2
⊥I0,2

2ωc
2

− I2,0

Ω2ωn
∗e

2

∂2

∂l2

)]

φ1

Substituting for Ip,q using eqn. 5.41 provides

φ1
(1 + τ)

τ
=
[

− 3ηi

2Ωτ
+
(

1 +
3ηi

2Ωτ
− 1

Ωτ

)

(5.43)
(

1 − 2ǫn

τΩ

[

cos (θ) +
kr

kθ

sin (θ)

]

− k2
⊥v

2
th

2ωc
2

− v2
th

Ω2ωn
∗e

2

∂2

∂l2

)]

φ1
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Noting that ρi
2 = v2

th/2ωc and

v2
th

ωn
∗e

2
=

2L2
n

k2
yρi

2τ 2
(5.44)

eqn. 5.43 can be simplified to

[

−2ǫn

τΩ

[

cos (θ) +
kr

kθ

sin (θ)

]

−
(

Ω − 1

Ωτ + 1.5ηi + 1

)

(5.45)

−k2
⊥ρi

2 −
(

Ln

kθρiτΩ

)2
∂2

∂l2



φ1 = 0

Manipulating eqn. 5.45 and substituting for the parallel derivative from eqn. 5.30

leads to the eigenvalue equation for the perturbed potential, φ1:

[

ρs
2 ∂

2

∂x2
− c−2ǫn

Ω

(

cos (θ) +
i sin (θ)

kθ

∂

∂x

)

−
(

σ

Ω

)2
[

∂

∂θ
+ inq′x

]2

− Ω − 1

Ω + ηs



φ1 (x, θ) = 0 (5.46)

where x = r − rs with rs some reference rational surface, ρs
2 = ρi

2τ , c = k2
θρi

2τ ,

ηs = (1 + 1.5ηi) /τ , the substitution kr → i∂/∂x has been made and σ is defined

as

σ =
ǫn√
cq

(5.47)

The first two terms in eqn. 5.46 are due to the FLR effects, the third term is due to

the magnetic drifts and is known as the coupling term, the fourth term represents the

parallel dynamics8 whilst the fifth is the eigenvalue. The coefficients in eqn. 5.46,

such as ǫn and q, are free to vary with radial position, x.

5.2.1.1 Poloidal Fourier decomposition

Following eqn. 5.7 it is possible to introduce a poloidal Fourier decomposition of

φ1:

φ1 =
∑

m

um (x)e−imθ (5.48)

8The expression in eqn. 5.30 has been used to give the parallel derivative. The transformation
inq → inq′x has been made by Taylor expanding q as qx0

+ q′x and then factoring out the constant
variation at x0 given by im0.
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This allows eqn. 5.46 to be replaced with:

∑

m

[

ρs
2 ∂

2

∂x2
− c− ǫn

Ω

([

1 − 1

kθ

∂

∂x

]

eiθ +

[

1 +
1

kθ

∂

∂x

]

e−iθ

)

+
(

σ

Ω

)2

[m− kθŝx]2 − Ω − 1

Ω + ηs

]

um (x)e−imθ = 0 (5.49)

where um (x) is the mth Fourier mode and nq′ has been replaced by kθŝ. Recalling

that ikθ = ∇θ it is clear that kθ = m/r should vary as m varies9. As m = nq ≫ 1

and the change in m across the width of the mode δm ≈ nq′δx the relative change

in kθ across the mode is ∼ q′x/q. Assuming q′ ∼ q/L then for δx ≪ L this variation

is negligible. All the coefficients in eqn. 5.49 are assumed independent of θ (except

where explicitly indicated), multiplying by exp (ijθ) and integrating from −π to π

allows the summation over m to be eliminated to leave

ρs
2∂

2um (x)

∂x2
− cum (x) − ǫn

Ω

([

1 +
1

kθ

∂

∂x

]

um+1 (x) +

[

1 − 1

kθ

∂

∂x

]

um−1 (x)

)

+
(

σ

Ω

)2

[m− kθŝx]2 um (x) − Ω − 1

Ω + ηs

um (x) = 0 (5.50)

This form explicitly highlights the coupling of the m± 1 modes into the equation for

um (x) due to the third term (the drift term). The original 2D eigenmode equation

for φ1 (x, θ) given in eqn. 5.46 is now represented by the set of coupled equations

for {um (x)} given in eqn. 5.50. Truncating the set of equations to a given range

of m provides a system which is suitable for numerical solution using a “shooting”

algorithm [138], discussed in section 5.4.1.

5.2.2 The local model

As the toroidal mode number increases the rational surface spacing decreases and

a growing separation of scales develops between the rational surface spacing and

the equilibrium length scales. This leads to a situation whereby the equilibrium

properties on two adjacent rational surfaces are approximately constant. In this limit

the equation for um+1 (x) is nearly identical to that for um (x) and it is possible to

represent um+1 (x) as simply a shifted and scaled form of um (x), a property referred

to as translational invariance. Specifically, under the transformation x → x+ 1/nq′

and m → m + 1 eqn. 5.50 is essentially unchanged, provided the radially varying

coefficients do not change noticeably (i.e. 1/nq′ ≪ Leq with Leq an equilibrium length

9This was noted in Ref [137] which retains the full variation of kθ across the mode.
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scale). It is therefore appropriate to seek solutions of the form

um (x) = u0

(

x− δm

nq′

)

eiFm (5.51)

where δm = m−m0 with m0 the poloidal mode number corresponding to the rational

surface at which x = 0 and Fm is a complex number which introduces an amplitude

and phase factor. It is useful to split the contribution of Fm into two components to

yield

eiFm = A (x) eimθ0 (5.52)

where A (x) encapsulates the slow, equilibrium length scale amplitude variation10

and θ0 is a slowly varying function of x such that exp (imθ0) varies rapidly relative

to A (x).

Writing the generic radial function, u0 (x), as a Fourier transform:

u0 (x) =
∫ ∞

−∞
eim0ηe−inq′xηû (η)dη (5.53)

allows the perturbation to be written as

φ1 (x, θ) =
∑

m

eim(θ0−θ)
∫ ∞

−∞
ei(m−nq′x)ηA (x) û (η)dη (5.54)

where the integral represents a Fourier transform between the shifted, normalised

radial coordinate11, m − nq′x, and the field line coordinate, η. It can be seen here

that θ0 is acting as an offset to the poloidal coordinate, θ, and as such it sets the

poloidal angle where the different Fourier harmonics constructively interfere. This

leads to θ0 being referred to as the ballooning angle as the perturbation will peak,

or “balloon”, at this given poloidal angle.

Comparison of eqn. 5.54 with eqn. 5.8 using eqn. 5.11 shows that this Fourier

transform representation is equivalent to the ballooning transform introduced in

section 5.1 provided

û (η)A (x) eimθ0 = A (x, η) einq′S(x) (5.55)

Assuming A (x, η) ≈ û (η)A (x) (stricly û (η) is û (η, x)) then eqn. 5.55 is satisfied

by

mθ0 = nq′S (x) (5.56)

Noting that θ0 is slowly varying in x and near a rational surface δm ≈ nq′x it can

be seen that

θ0 ≈ dS (x)

dx
= k (5.57)

10Here the m dependence of Fm has been extended to a radial dependence.
11This radial coordinate is m0 on the rational surface where q = m/n
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and θ0 can be related to the radial wavenumber12 introduced in eqn. 5.12. It

should be noted that here S (x) is complex and as such θ0 is also complex. In order

to be able to treat θ0 as a real number it is possible to absorb the exponential

term resulting from the imaginary component into the amplitude function, A (x) →
A∗ (x) = A (x) exp [−mI (θ0)].

Thus the ballooning representation for the radial Fourier modes is obtained:

um (x) =
∫ ∞

−∞
A (x) einq′S(x)ei(m−nq′x)ηû (η)dη (5.58)

From eqn. 5.58 it can be seen that:

∂um (x)

∂x
=
∫ ∞

−∞

[

inq′
(

dS

dx
− η

)

+ in
dq′

dx
(S − xη) (5.59)

+
1

A (x)

dA

dx

]

A (x) einq′Sei(m−nq′x)ηû (η)dη

and

i (m− nq′x)um (x) =
∫ ∞

−∞

[

∂

∂η
− 1

û (η)

∂û (η)

∂η

]

A (x) einq′Sei(m−nq′x)ηû (η)dη (5.60)

Noting that the derivatives of û (η) w.r.t. η and A (x) w.r.t. x are small in nq′

relative to the other terms (as required by the eikonal representation), and assuming

q′ is also slowly varying, the 0th order transformations are found13:

∂

∂x
→ −inq′ [η − k] (5.61)

(m− nq′x) → −i ∂
∂η

(5.62)

Using these transformations the system of coupled equations, represented by

L (∂/∂x,m− nq′x,Ω) {um (x)} = 0 (5.63)

becomes, to lowest order in 1/nq′:

L (η, k,Ω) û (η) = 0 (5.64)

12In the literature θ0 is sometimes referred to as the ballooning angle and sometimes as the radial
wavenumber. There is little difference in these two terminologies, however recalling eqn. 5.12 it is
clear that the true radial wavenumber also incorporates η and as such the term ballooning angle
will be used throughout this work.

13These transformations are equivalent to the relation between functions of the two Fourier
conjugate coordinates m− nq′x and η − k. For example, suppose F (k) is the Fourier transform of
f (x) then df/dx transforms to ikF (k) and xf (x) transforms to idF/dk.
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Substituting eqn. 5.61, eqn. 5.62 and eqn. 5.58 into eqn. 5.50 yields:

[

(ρsnq
′)

2
(η − k)2 + c +

2ǫn

Ω
[cos (η) + ŝ (η − k) sin (η)]

+
(

σ

Ω

)2 ∂2

∂η2
+

Ω − 1

Ω + ηs

]

û (η) = 0 (5.65)

which is the lowest order ballooning (or local) equation representing the global model

in the limit n → ∞. This is a one dimensional ordinary differential equation which

can be solved numerically for û (η) given k and x (which are free parameters at this

order). The boundary condition û (η) → 0 for η → ±∞, required for the integrability

of eqn. 5.58, can only be satisfied for the correct value of Ω, which may be considered

as an eigenvalue of the equation, for specified values of x and k. The substitution

Ω → Ω0 (x, k), with Ω0 the local frequency, can be used to highlight two important

points:

1. The eigenvalue of the local equation, Ω0, depends upon the values of x and k

used.

2. For a specified x and k the eigenvalue of the local equation, eqn. 5.65, Ω0, is

not necessarily the same as the eigenvalue of the global equation, eqn. 5.50, Ω.

This makes it clear that proper treatment of the free parameters x and k is crucial

for the ability of the local representation to represent the global solution, and this is

discussed in section 5.3.

5.3 Choosing the local model’s free parameters to

fit the global model

Whilst the parameters of the local equation, x and k, are free at the lowest order

in 1/nq′, at the next order conditions are imposed upon their treatment. It is only

when these conditions are satisfied that Ω0 and the local solution, û (η), can be used

to describe the solution to the global problem. For the correct values of x and k,

and only then, it is possible to write Ω = Ω0 (x, k) + O (1/nq′).

For the system considered here the local frequency can be represented with the

model

Ω0 (x, k) = Λ + g (x) + h (k) (5.66)
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where Λ is a model parameter to be determined14. Once suitable forms for g (x)

and h (k) are selected, it is possible to determine any free coefficients in these forms

by fitting to the Ω0 (x, k) obtained from solution of the local equation for the range

of x and k of interest.

The radial variation, g (x), will be dependent upon the equilibrium profiles used, but

as the radial extent of interest is small relative to the equilibrium scale length it is

possible to Taylor expand about x = 0:

g (x) ≈ λ1x+ λ2x
2 (5.67)

where g (x = 0) = 0 is assumed and λn, which can be determined by fitting to

Ω0 (x, k), represents the nth Taylor expansion coefficient and is proportional to the

nth radial derivative of g (x). This leads to two different situations; either the linear

term will dominate and g (x) ≈ λ1x or dg/dx = 0 and g (x) ≈ λ2x
2.

To help select a suitable form for h (k) it is useful to consider the properties of

the local equation and um (x). Under the joint transformations η → η + 2π and

k → k + 2π the expression for um (x), eqn. 5.58, is unchanged provided the local

eigenfunction û (η) is unchanged. The local equation, eqn. 5.65 and hence the eigen-

function û (η), will only be unchanged if the eigenvalue, Ω0, is also invariant under

these transformations and hence Ω0 must be periodic in k. Using the periodicity of

Ω0, it is clear that h (k) must be a periodic function. By defining Λ to be the average

of Ω0 over one period in k, evaluated at x = 0:

Λ ≡ 1

2π

∫ 2π

0
Ω0 (x = 0, k) dk = 〈Ω0〉k (5.68)

it is clear that the average of h (k) must be zero. For the circular cross-section

equilibrium studied in this chapter a suitable choice for h (k) which satisfies these

criteria is simply β cos (k). The resulting model is then:

Ω0 (x, k) = Λ + λlx
l + β cos (k) (5.69)

with l either 1 or 2. Considering the contour in {x,k} where Ω0 = Ω (which is as yet

unknown) eqn. 5.69 represents a relation between the unknown global frequency, Ω,

14For this system the separation of the x and k variation into independent terms should be
reasonable provided the radial variation of the coefficients in the local equation, eqn. 5.65, all vary
on the equilibrium length scale (as required for the local equation to be valid). If this is not
satisfied then it is clear that at different radial locations across the global mode’s width different
terms may dominate the local equation, and hence the dependence of Ω0 on k could vary between
radial locations. In general systems the x and k dependence cannot be separated simply and a
more complex model for Ω0 is required.
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and the free parameters k (x) and x, which can be written as

xl = α [d− cos (k)] (5.70)

where α = β/λl and

d =
Ω − Λ

β
(5.71)

In order to solve for k (x) it is necessary to provide extra information; specifically

the value of d is required.

5.3.1 The Fourier-Ballooning representation

Whilst the ballooning representation used earlier to derive the local equation is a

relatively intuitive decomposition of the perturbed potential, φ1, it is in fact more

convenient to adopt an alternative, equivalent, form when considering the relation

between Ω and the free parameters. Combining the ballooning representation for

the radial mode function, eqn. 5.58, with the poloidal Fourier decomposition of the

perturbed potential, eqn. 5.48, leads to:

φ1 (x, θ) = A (x) einq′S(x)
∑

m

∫ ∞

−∞
eim(η−θ)e−inq′xηû (η)dη (5.72)

It is possible to represent the radial variation given by the terms outside of the

summation as a Fourier transform:

A (x) einq′S =
∫ ∞

−∞
χ (p)F (p) einq′xpdp (5.73)

where p represents the conjugate variable to nq′x, with χ (p) and F (p) representing

the slow and fast variations in p respectively. The fast variation in p is often written

in the eikonal form:

F (p) = einq′Ŝ(p) (5.74)

Noting that the integral in eqn. 5.72 is of the form of eqn. 5.6 allows it to be written

as
∑

m

e−imθ
∫ ∞

−∞
û (η)ei(m−nq′x)ηdη = f (θ, x) = ξ (θ) e−inq′xθ (5.75)

Using eqn. 5.73 and eqn. 5.75 the perturbed potential is given by:

φ1 (x, θ) =
∫ ∞

−∞
ξ (θ)χ (p)F (p) einq′x(θ−p)dp (5.76)

79



Chapter 5. Local approx. to global 5.3. Choosing the free parameters

which is known as the Fourier-ballooning representation [137, 139]. Under this rep-

resentation the local equation is unchanged provided the transformations:

p → k (5.77)

x → i

nq′
d

dp
(5.78)

are made [126]. It can be noted that eqn. 5.78 leads to

x → −dŜ (p)

dp
(5.79)

when applied to F (p). For simplicity eqn. 5.77 will be used in to connect p with

k and all future instances of p will be replaced with k. Noting that ξ (θ)χ (k) is

unchanged under the transformation k → k + 2π and θ → θ + 2π, then to ensure

periodicity in θ it is necessary that:

F (k) = F (k + 2π) (5.80)

and hence using eqn. 5.79

Ŝ (k + 2π) − Ŝ (k) =
2πj

nq′ (5.81)

with j ∈ Z. The change in Ŝ (k) given in eqn. 5.81 is related to the change in x,

such that j ∼ nq′x and hence 2πj/nq′ ≪ 1. This additional information regarding

the free parameter dŜ/dk can be used in the model for Ω0 in order to relate Ω to

Λ.

5.3.2 Relating the local and global mode frequencies

Returning to eqn. 5.70 and applying eqn. 5.78, this can now be written as a differ-

ential equation for F (k)

(

−i
nq′

d

dk

)l

F (k) = α [d− cos (k)]F (k) (5.82)

Solving the differential equation given by eqn. 5.82 provides d as an eigenvalue.

The solution, F (k), can be used directly with the Fourier-Ballooning representation,

eqn. 5.76, to give the global mode structure. Alternatively as the value of d is now

known eqn. 5.70 can be used to provide an expression for k (x)

k (x) = cos−1

(

d− xl

α

)

(5.83)

80



Chapter 5. Local approx. to global 5.3. Choosing the free parameters

in terms of d, x and α which can be used directly with eqn. 5.54 to give the global

mode structure.

The procedure shown here provides both a relation between the global frequency and

the averaged local frequency and an expression for k (x) which allows the global mode

structure to be determined. This shows that all of the information required to fully

describe the global solution can be determined from information provided by solving

the local equation over a range of x and k values. The procedure for determining d

will now be demonstrated for the two different types of radial variation which can

be encountered and this information will then be used in section 5.3.3 to predict the

expected properties of the global mode in these two scenarios.

5.3.2.1 Quadratic radial variation: Isolated modes

Considering a situation where the equilibrium profiles provide the local frequency

with an extremum at x = 0, i.e. when the radial variation is best described by

choosing l = 2, then eqn. 5.82 can be written as

− 1

(nq′)2

d2

dk2
F (k) = α [d− cos (k)]F (k) (5.84)

Anticipating that the solution will be peaked around the stationary point at k = 0

it is possible to expand cos (k) as 1 − k2/2. Substituting this, along with eqn. 5.74,

into eqn. 5.84 and proposing15

Ŝ = bk2 (5.85)

yields

− i2b

nq′ + (2bk)2 = α

[

d− 1 +
k2

2

]

(5.86)

Balancing the k2 terms leads to

b =
1

2

√

α

2
(5.87)

Substituting this back into eqn. 5.86 gives an expression for d:

d = 1 − i

nq′
√

2α
(5.88)

Assuming nq′√2α ≫ 1 eqn. 5.88 simply becomes d = 1. Recalling eqn. 5.71 this

suggests that Ω is related to the averaged local frequency through:

Ω = Λ + β (5.89)

15Clearly this definition does not satisfy the periodicity constraint eqn. 5.81, however due to the
expansion about k = 0 the solution is only valid in this region and eqn. 5.85 may considered as
some function which satisfies eqn. 5.81 expanded about k = 0.
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Noting eqn. 5.69 it is clear that eqn. 5.89 suggests that the global frequency Ω is

approximately given by the local frequency evaluated at x = 0, k = 0, as posited.

Modes which arise in situations where there is a stationary point in Ω0 were the

first class of drift mode studied in the literature using the ballooning transform

[134]. The higher-order treatment given in the literature for these modes follows

that of the original MHD based ballooning work [132]. Rather than transforming

to the Fourier-Ballooning representation as done here, the findings of the earlier

MHD study were used to show that the mode was expected to be localised about the

stationary point, in agreement with the results found here. These modes are known

as “isolated modes” due to the localisation about the stationary point.

Strictly, eqn. 5.89 is only valid within an O (1/nq′) correction, and hence it is expec-

ted that the difference between Ω0 (x = 0, k = 0) and the true mode frequency found

by solving the global equation will be given by a term inversely proportional to nq′.

This “correction factor” is a consequence of the finite radial width of the mode. This

suggests that the average of Ω0 taken over the radial width of the mode16, which will

be calculated in section 5.3.3.1, may be a more accurate estimate of the true mode

frequency.

5.3.2.2 Linear radial variation: General modes

The existence of a stationary point in Ω0 is a special situation and hence the isolated

modes just introduced will only be found at certain radial locations17. As the

observed drift wave driven transport does not just occur in a few small radial regions,

corresponding to a stationary point and the associated isolated mode’s radial width,

it is clear that modes must also exist which do not require stationary points in Ω0.

Taking the more common case whereby the radial dependence of the local frequency

is approximately linear yields “general modes”. Whilst these modes can be treated

using the ballooning representation as done in the literature for isolated modes, it

is more complicated than the isolated case and the Fourier-ballooning approach is

more straightforward.

Setting l = 1 eqn. 5.82 becomes

− i

nq′
d

dk
F (k) = α [d− cos (k)]F (k) (5.90)

16It can be noted that for the quadratic variation considered here such an average will always be
less than the value at x = 0 and as such the 1/nq′ correction is expected to always be negative in
this case.

17Indeed as both the real and imaginary components of Ω0 must be stationary at the same
position, suitable locations for isolated modes are a rare occurrence.
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Substituting eqn. 5.74 into eqn. 5.82 yields

dŜ

dk
= α [d− cos (k)] (5.91)

Integrating this over one period in k and applying the periodicity constraint eqn. 5.81

leads to

d =
2πj

nq′ (5.92)

and as such d ≈ 0. This implies Ω = Λ and recalling eqn. 5.68 this shows that the

global frequency in such a scenario is given to O (1/nq′) by the average of the local

frequency over one period in k, evaluated at x = 0. The growth rate of general modes

can therefore be significantly reduced from that for the isolated modes. To account

for the O (1/nq′) correction it is again necessary to compare with the average taken

over the radial width of the mode, which will be calculated in section 5.3.3.2.

5.3.3 Predicting the global mode structure

Through the ballooning representation of the radial Fourier modes, eqn. 5.58, it can

be seen that the radial variation is primarily given by A (x) exp (inq′S (x)). Using

eqn. 5.83 along with the values of d obtained in the previous section it is possible to

estimate the radial width of the global mode determined by the imaginary component

of S (x), i.e. assuming A (x) can be treated as constant over the width of the global

mode18. Further to this the approximate relation between θ0 and k given in eqn. 5.57

can be used along with eqn. 5.54 such that the poloidal angle at which constructive

interference is expected between adjacent radial Fourier modes, um (x), is given by

the real component of k.

This ability to predict the radial width and poloidal angle at which the mode peaks

will be illustrated for the isolated and general modes considered in section 5.3.2 and

the resulting predictions will be tested against direct solutions of the global model

in section 5.6.1.

5.3.3.1 Isolated modes: Radial width and poloidal angle

To determine the properties of the isolated global mode it will be necessary to use

the expression for k (x) given by eqn. 5.83 with d = 1:

k (x) = cos−1

(

1 − x2

α

)

(5.93)

18This is valid provided the global mode width is sufficiently less than the equilibrium scale
length.
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Taking the real component of k (x) and expanding for x ≈ 0 allows the poloidal angle

at which the mode is expected to peak to be written as:

k (x) ≈ 0 + x

√

2

α
(5.94)

which indicates the mode is expected to peak at the outboard midplane, where

θ = 0.

To obtain the radial width information recall from eqn. 5.54 that the radial amplitude

envelope is contained within the imaginary component of S (x). Integrating eqn. 5.93

provides:

S (x) = x cos−1

(

1 − x2

α

)

+ 2
√

2α− x2 (5.95)

Expanding eqn. 5.95 about x = 0 to second order gives:

S (x) ≈ 2
√

2α +
x2

√
2α

(5.96)

and hence the radial full width half maximum, ∆w, of the amplitude envelope

exp [−nq′I (S)] is described by

∆w =
2
√

2 log (2)
∣

∣

∣

√
2α
∣

∣

∣

√

2nq′I
(√

2α
)

(5.97)

where I
(√

2α
)

is the imaginary component of
√

2α. This shows that the mode’s

radial width is expected to scale as 1/
√
nq′ for fixed equilibrium parameters and will

allow a quantitative prediction of the global mode’s radial width. This could also be

used to set the radial range over which to average Ω0 when trying to improve the

comparison with Ω.

5.3.3.2 General modes: Radial width and poloidal angle

In the case of general global modes, d = 0 and eqn. 5.83 gives k (x) as:

k (x) = cos−1
(

−x

α

)

(5.98)

Expanding eqn. 5.98 about x = 0 provides

k (x) ≈ ±
(

π

2
+
x

α

)

(5.99)

so that the global mode structure will be centred poloidally about θ = ±π/2. The

sign must be selected such that the resulting amplitude variation produces a confined
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mode (i.e. the amplitude must decay as x increases), this is determined by the sign

of I (α). Assuming I (α) is +ve it is appropriate to select the +ve form of eqn. 5.99.

Integrating eqn. 5.98 yields

S (x) = α

√

1 − x2

α2
+ x cos−1

(

−x

α

)

(5.100)

Expanding this about x = 0 gives

S (x) ≈ α+
πx

2
+
x2

2α
(5.101)

which suggests the radial width due to exp [−nq′I (S)] will be given by

∆w =
2
√

2 log (2) |α|
√

nq′I (α)
(5.102)

This width takes a similar form to that for the isolated modes, eqn. 5.97, except

that the dependence is now on α rather than
√

2α. It is important to note that

α will vary between the two cases as the value of λl will depend upon the specific

equilibrium profiles in each case and as such a direct comparison between eqn. 5.102

and eqn. 5.97 is not appropriate.

5.4 Numerical solutions

In order to test and validate the procedures outlined in section 5.3, which should

allow the global mode properties to be determined entirely from solutions to the

local equation, it is useful to be able to obtain solutions to both the global model,

eqn. 5.50, and the local model, eqn. 5.65. A numerical approach to the solution

of these equations is essential as an analytic result is not possible with non-zero

coupling (i.e. in toroidal geometry). A code has been developed which will solve

both equations for a given set of equilibrium profiles, providing Ω, {um (x)}, Ω0 and

û (η). This code can be used to compare the true global frequency with that from

the local model using the procedure outlined in section 5.3. The approaches adopted

in the global and local sections of the code will now be outlined.

5.4.1 Numerical approach: Global model

Considering a mode with a finite radial width it is clear that only a finite number

of rational surfaces must be coupled together in the global mode. It is possible to

truncate the infinite set of coupled equations in eqn. 5.50 to retain only M = 2 δm+1
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equations for the range of poloidal mode numbers m0 − δm ≤ m0 ≤ m0 + δm, where

the global mode is centred on the rational surface with q = m0/n. To represent

these equations numerically it is helpful to discretise in the radial direction, which is

achieved by introducing a finite difference representation for the radial derivatives.

Using central differences the derivatives can be written as

∂f (x)

∂x

∣

∣

∣

∣

∣

x=xi

=
fi+1 − fi−1

2h
(5.103)

∂2f (x)

∂x2

∣

∣

∣

∣

∣

x=xi

=
fi+1 − 2fi + fi−1

h2
(5.104)

where the subscript refers to the radial grid point and h is the (uniform) spacing

between grid points. This allows the system of equations, eqn. 5.50, to be written

as

P i · U i−1 +Qi · U i + Si · U i+1 = 0 (5.105)

where U i is a vector of length M representing the values of {um (xi)} and the square

M × M matrices P i, Qi and Si represent the coefficients of the equation acting at

the i− 1, i and i+ 1 grid points respectively and are defined in table 5.2. Due to the

coupling of the m±1 modes the matrices P , Q and S are tridiagonal and the system

can be solved using a tridiagonal shooting method which will now be outlined.

P
P
P
P
P
P

P
P
P

Array
Index

j = k − 1 j = k j = k + 1

Pj,k
χǫi

n

2Ωhkθ

ρi
2

h2 −Pk−1,k

Qj,k −χǫi
n

Ω

(

[mj − nq′xi] σi

Ω

)2 − 2Pj,k − Ω−1
Ω+ηi

s
− c Qk−1,k

Table 5.2: The three non-zero elements of the tridiagonal matrices P i
j,k

and Qi
j,k

.

The matrices, along with Si
j,k

= P i
k,j

, represent the global dispersion
relation, eqn. 5.50.

The solution begins with the ansatz

U i−1 = αi−1 · U i + βi−1 (5.106)

where the matrix αi and vector βi are to be found at each meshpoint. Using

eqn. 5.106 then given U at a single mesh point it is possible to find U every-

where provided α and β can be determined. Substituting eqn. 5.106 into eqn. 5.105

yields
[

P i · αi−1 +Q
]

· U i = −Si · U i+1 − P i · βi−1 (5.107)

Multiplying both sides of eqn. 5.107 from the left with the inverse of
[

P i · αi−1 +Q
]

provides an expression for U i:

U i = −
[

P i · αi−1 +Q
]−1 · Si · U i+1 −

[

P i · αi−1 +Q
]−1 ·

(

P i · βi−1
)

(5.108)
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where the [L]−1 notation refers to the inverse of the matrix L. Incrementing i by 1

in eqn. 5.106 and comparing with eqn. 5.108 leads to expressions for αi and βi to be

found in terms of P , Q, S, αi−1 and βi−1:

αi = −
[

P i · αi−1 +Qi
]−1 · Si (5.109)

βi = −
[

P i · αi−1 +Qi
]−1 ·

(

P i · βi−1
)

(5.110)

These relations allow α and β to be found at all points given the values at a single

grid point.

In practice β is treated as an M × M matrix, β, rather than a vector of length M ,

with each column representing a linearly independent solution19. The state vector,

U i, must also be expanded to matrix form, U i, in this case. The algorithm to solve

eqn. 5.105 can then be summarised as:

1. Provide boundary value of α and β at the central mesh point, x = xc, i = ic.

These are taken to be αic = 0 and βic

j=l
= 1, βic

j 6=l = 0 where 1 ≤ l ≤ M labels

the M linearly independent solutions20.

2. Apply eqn. 5.109 and eqn. 5.110 to determine α and β at all other mesh points.

3. Use eqn. 5.106 with the determined values of α and β and vanishing boundary

conditions for U at the lower boundary, i = 1, (i.e. U i=1 = 0) to determine U

at the next mesh point, i = 2.

4. Continue to use eqn. 5.106 to generate U i+1 until i = ic − 1 is reached.

5. Use eqn. 5.106 with the determined values of α and β and vanishing boundary

conditions for U at the upper boundary, i = nx, to determine U at the next

mesh point, i = nx − 1

6. Repeat until i = ic + 1 is reached.

7. Now that U i has been found for i < ic and i > ic it is necessary to check that

the solution across the central region satisfies the eigenvalue condition:

L · f = λµlf = 0 (5.111)

with

P i · U ic−1 +Qi · U ic + Si · U ic+1 = L (5.112)

19This is equivalent to performing M independent solutions, each with an independent initial-
isation of β. The advantage of the matrix formulation is that the entire set of solutions can be
found within a single pass through the algorithm. A vector representation of β and U can provide a
small reduction in memory requirements so may be of use in situations where the storage of several
M × M × nx arrays (where nx is the number of radial mesh points) is a limiting factor in the
performance of the algorithm.

20These boundary conditions imply U ic = βic .
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8. The M eigenvalues, µl, and eigenvectors, f l, of L are determined and the

smallest value of µl is selected as the desired value. If this is not sufficiently

small (less than 10−6 say) then Ω must be updated (described in section 5.4.1.1)

and the algorithm returns to step 1. Otherwise a valid solution has been

found. The eigenvector f l = F corresponding to the smallest eigenvalue then

describes how the M independent solutions must be combined to form the

radial wavefunctions, {um (x)}:

um (xi) = U i · F (5.113)

5.4.1.1 Updating the frequency

As the matrices P , Q and S depend upon the global frequency, Ω, the eigenvalue

condition, eqn. 5.111, will only be satisfied for certain values of Ω. These values are

unknown and it is necessary to try to converge to values which satisfy this equation.

By starting with an initial guess for Ω, it is possible to cast the determination

of the correct value as a root finding problem where the desired root is the value

of Ω required to provide µl ≈ 0. This has been implemented using two similar

methods; the first is the secant method and the second is the Muller method [138].

Taking µl = µl (Ω) the secant method defines a straight line through two pairs of

{µl,Ω} values (provided by the current and previous iteration through the solution

algorithm) and solves to estimate the root. The Muller method is very similar

except it fits a quadratic through three sets of points (provided by the current and

two previous iterations). Typically the Muller method is used as experience has

indicated that it tends to be more robust than the secant method and generally

leads to faster convergence. The computational requirements of the root finding

algorithms can depend strongly upon how close the initial guess for Ω is to the

actual solution and hence this is an important consideration, which will be discussed

in section 5.4.3.

5.4.2 Numerical approach: Local model

The solution of the local equation, eqn. 5.65, is significantly less demanding than the

global problem, eqn. 5.50, as it is a single ordinary differential equation rather than

a coupled set of equations. Provided the initial conditions û (η = η0) and û′ (η = η0)

(with û′ = dû/dη), the common 4th order Runge-Kutta method (RK4) [138] can be

used to numerically integrate eqn. 5.65 from η = η0 to η = ±ηm, with ±ηm the

upper and lower boundaries. Whilst boundary conditions on û (η) for η → ±∞
are known21, the local model does not provide suitable initial conditions to use in
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the RK4 scheme. The algorithm developed to solve eqn. 5.65 using the RK4

method overcomes this lack of initial conditions by combining solutions obtained

from even and odd trial solutions such that the boundary conditions are satisfied

at one boundary and then iterating on Ω0 until the conditions are satisfied at the

second boundary. This algorithm can be summarised as:

1. Assume initial conditions representing an even function (zero gradient, non-

zero amplitude) at the central mesh point, η = η0, and apply the RK4 method

to integrate to the upper boundary, yielding û (η)1.

2. Assume initial conditions representing an odd function (non-zero gradient, zero

amplitude) at the central mesh point, η = η0, and apply the RK4 method to

integrate to the upper boundary, yielding û (η)2.

3. Find c such that û (η)1 + cû (η)2 = 0 at the upper boundary.

4. The correct boundary conditions at η = η0 are then the amplitude used in step

one and the gradient used in step 2 scaled by c.

5. Use these initial values and the RK4 method to integrate from η = η0 to the

lower boundary.

6. If the boundary conditions are not satisfied at the lower boundary then Ω0

must be updated and the algorithm repeated, else a valid solution has been

found.

The techniques used for updating Ω0 are the same as in the global algorithm (either

the secant or Muller methods are used) but here the role of the ficticious eigenvalue,

µl, is played by the value of û (η) at the lower boundary. As with the algorithm to

solve the global model, the computational demands of this algorithm depend some-

what upon the initial guess for the local frequency, Ω0, and a scheme for optimising

this will be introduced in section 5.4.3.

It should be noted that whilst the boundary conditions that have been implemented

here are of Dirichlet type (i.e. they specify the value of the function at the boundary)

this is only a necessary condition for û (η) → 0 for η → ±∞ and is not sufficient

to guarantee this. For example a solution of the form û (η) = sin (cη) would satisfy

the imposed boundary conditions but does not provide the required convergence

properties. Ideally Cauchy type boundary conditions would be implemented where

both the value and gradient of û (η) are fixed to specified values, which in this case

would be zero. These have not been implemented in this case in order to minimise

the code’s complexity and as a result it is necessary to perform an additional check

to ensure that solutions returned by this algorithm do indeed have the required

21These boundary conditions are that û (η) must decay to zero for η → ±∞ such that the integral
in eqn. 5.58 converges.
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behaviour.

5.4.3 The cylindrical limit

In the limit of negligible coupling, which arises due to the magnetic drifts, the system

can be considered to represent the cylindrical limit22. In this limit both the global

and local equations can be solved analytically, moreover because there is no coupling

the global solution will only depend upon local equilibrium properties and the global

and local cylindrical mode frequencies should agree. Dropping the drift term in

eqn. 5.50 leads to a set of uncoupled equations, where the equation for each um (x)

is:


ρs
2 ∂

2

∂x2
− c+

(

σkθŝx∗
Ω

)2

− Ω − 1

Ω + ηs



um (x) = 0 (5.114)

where the substitution x = x∗ + x0 has been made with x0 = m/kθŝ. Assuming a

solution of the form um (x) = exp (−iδx2
∗) and substituting into eqn. 5.114 gives



2ρs
2
(

−2δ2x2
∗ − iδ

)

− c+

(

σkθŝx∗
Ω

)2

− Ω − 1

Ω + ηs



um (x) = 0 (5.115)

where it has been assumed that δ is independent of x∗. It is necessary to choose δ

such that x∗ is removed from the equation and hence:

δ =
σkθŝ

2ρsΩ
(5.116)

This leaves an equation for Ω in terms of the equilibrium parameters and the poloidal

wave number only:

i

(

σŝ
√
c

Ω

)

+ c+
Ω − 1

Ω + ηs

= 0 (5.117)

with c = (kθρs)
2. Rearranging eqn. 5.117 leads to the quadratic equation

Ω2 (1 + c) + Ω
(

cηs − 1 + iσŝ
√
c
)

+
(

iσηsŝ
√
c
)

= 0 (5.118)

which can be solved to yield the mode frequency in the limit of no coupling:

Ω =
−cηs + 1 − iσŝ

√
c±

√

(cηs − 1 + iσŝ
√
c)

2 − 4i (1 + c)σηsŝ
√
c

2 (1 + c)
(5.119)

Introducing a fictitious parameter, χ, which multiplies the coupling term in the global

equation it is possible to control the strength of the magnetic drifts in the local and

22In the true cylindrical limit ǫn → 0 as R → ∞ and both the coupling term and the parallel
term become zero. The solution for um (x) is then of the form of an outgoing wave.
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global equations. By setting χ = 0 in the numerical codes it is expected that the

root finding algorithm should converge to the analytic Ω. By providing this value

as an initial guess and then slowly increasing χ in steps, the solution can be tracked

from the known analytic limit to the situation of interest, such as χ = 1. Using

the converged solution of the previous step as the initial guess for the current step

means that the root finding algorithm should rapidly converge to a solution, vastly

reducing the time taken to find the final answer.

5.4.4 Benchmarking: Global code

The algorithm discussed in section 5.4.1 for solving the coupled equations given by

eqn. 5.50 has been implemented in a Fortran code. This code outputs both the

complex mode frequency, Ω, and the radial Fourier modes, {um (x)}, as a function of

coupling strength, χ. To provide some confidence in the algorithm’s implementation

it is possible to compare the analytical value of Ω, calculated from eqn. 5.118, with

that obtained from the numerical code in the case of no coupling. Using “standard

quadratic” equilibrium parameters at x = 0 (introduced in section 5.5) the analytical

mode frequency is found to be Ωa = −0.106+i0.229, which is in exact agreement with

the converged numerical value found using n = 50. Whilst this tests the algorithm in

the case of no coupling, these coupling effects are important to the full global mode

and further tests with non-zero coupling are useful.

As was shown in section 5.3.3.1 the isolated mode’s radial width is expected to scale

as 1/
√
nq′ and additionally the mode frequency will be given by a constant plus

O (1/nq′) terms. By setting up the equilibrium profiles such that there is a stationary

point in the diamagnetic frequency (see section 5.5.1 for details) it is expected that

an isolated mode will be found. The n dependence of the full width half maximum

of the radial amplitude envelope, ∆w, and the mode’s complex frequency, Ω, has

been determined using the global code and compared to the predicted scalings. The

results of this scan in n are shown in figure 5.3.

The gradient of a straight line fit to ln (n) vs ln (∆w) is −0.51, showing excellent

agreement with the higher order prediction. Similarly a fit of the form:

γ = A0n
A1 + A2 (5.120)

to the data shown in figure 5.3(b) yields A1 = −1.066 which again shows good agree-

ment with the higher order prediction. It is interesting to note that the coefficient

A2, which is found to be 0.3842, represents the expected value of the global mode fre-

quency in the limit n → ∞, i.e. in the local limit. As such this provides a benchmark

test for the numerical implementation of the local solution.
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Figure 5.3: The behaviour of an isolated mode’s radial width, ∆w, as the tor-
oidal mode number is increased (points) and a fit to log (w) =
B0 + B1 log (n) (line), is shown in figure 5.3(a) with B0 = −1.56
and B1 = −0.51. The behaviour of the growth rate, γ, as the tor-
oidal mode number is increased (points) and a fit to γ = A0n

A1 +A2

(line), is shown in figure 5.3(b) with A0 = −0.1950, A1 = −1.066
and A2 = 0.3842.

5.4.5 Benchmarking: Local code

The numerical algorithm for solving the local equation has also been implemented

within the code used for solving the global problem. It provides the local mode

frequency, Ω0, and eigenfunction, û (η), for specified x and k values as a function of

the coupling strength, χ. In the analytic limit (χ = 0) the local mode frequency for

x = 0 (and any k) is found to be −0.106 + i0.229, which is in perfect agreement with

the analytic prediction.

For χ 6= 0 the local equation should be equivalent to the global model in the limit

n = ∞. It is therefore possible to compare the local growth rate with that found

by extrapolating the global fit, eqn. 5.120, to the limit of n = ∞. To perform the

comparison with the local value it is necessary to specify the correct x and k values

to use. The equilibrium profiles used for these benchmark cases lead to a quadratic

radial variation in Ω0 and hence using the results of section 5.3.3.1 it is clear that the

comparison should be made with Ω0 (x = 0, k = 0). This growth rate is found to be

0.3843, which is in very good agreement with the value found by extrapolating the

results of the toroidal mode number scaling study performed in the global benchmark

and shown in figure 5.3(b).

5.4.6 Convergence testing

It is important to verify that the results obtained from both the global and local

codes are independent of the details of the numerical implementation. In particular
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it is important to verify that a sufficient number of grid points have been used in

discretising the equations to accurately resolve the structures present in the solution

and the associated gradients and that the grids cover a sufficient range that the

boundary conditions can be satisfied. For the simulations presented here convergence

testing has been performed to identify a suitable grid resolution and extent to be

used which minimises the computational expense whilst still providing a sufficiently

accurate result. In practice the global simulations presented here use 2000 grid points

covering the radial domain −0.1 ≤ x ≤ 0.1 and 61 poloidal modes whilst the local

simulations use 2000 grid points23 covering the ballooning domain −2 ≤ η ≤ 2.

Results from simulations using both 1000 and 4000 grid points in x and η do not

vary significantly from those presented here.

5.5 Global modes: The effect of profiles

Now that the code to solve the global and local models has been benchmarked it is

possible to use this to probe the theoretical work discussed in section 5.3. This theory

suggests that solutions of the global model can yield either isolated or general type

modes dependent upon the spatial variation of the local frequency, Ω0, and that

these modes should have significantly different properties. To test this the global

code discussed in section 5.4 can be exploited to investigate the global solutions for

two different classes of equilibrium profiles.

Assuming the radial variation of the local frequency has the same form as that of

the analytical (cylindrical) frequency, given by eqn. 5.119, then it is clear that the

class of solution expected depends solely upon the equilibrium profiles used. The

drive for the ITG mode is contained within the parameter ηs and, assuming all other

parameters are approximately constant, the existence of a stationary point in Ω0

requires a stationary point in ηs. By setting the ηs profile it should be possible to

select either isolated or general modes. In practice, however, the variation of the

other equilibrium parameters will also influence the radial profile of Ω0. To remove

this complication in the global code it has been assumed that all other equilibrium

parameters used are constant24, which allows the expected mode type to be controlled

by the ηs profile alone. It should be noted that this introduces a slight inconsistency

into the problem as it is necessary to retain a non-zero value for ŝ such that the

resonance at rational surfaces, given by integer values of m−nq′x, is included in the

system. This resonant behaviour at rational surfaces is of importance to the global

23It is important to note that error accumulation can be an issue for the RK4 algorithm used in
obtaining the local solution and as such it is also important that not too many grid points are used
here.

24This assumption is not essential to the solution of the global model and indeed the developed
code is capable of treating arbitrary variation in all equilibrium parameters.

93



Chapter 5. Local approx. to global 5.5. Global modes: The effect of profiles

mode’s behaviour and hence to include this correctly a q profile of the form:

q (r) = (qa − q0)
(

r

a

)qp

(5.121)

has been selected with qa and q0 the value of q at the edge and centre of the plasma

respectively, a is the minor radius and qp is a constant. Such a q profile leads

to a naturally constant shear profile with ŝ = qp. The equilibrium and system

parameters used throughout the simulations presented here are given in table 5.3,

with qm = m0/n the value of q at x = 0.

Parameter Value
q0 0.75
qa 4.2
qm 1.8
n 50
m0 90

ŝ (or qp) 2
nq′ 498.6
a 0.5 m
R0 5.0 m
ǫn 0.03088
kθρs 0.33

Table 5.3: A summary of the equilibrium profile parameters used throughout the
numerical ITG simulations.

5.5.1 Isolated modes

In order to investigate isolated modes an ηs profile of the form

ηs (x) = ηm

(

1 − ηgx
2
)

(5.122)

is used, which introduces a stationary point in the analytical frequency at x = 0. For

the studies presented here the values ηm = 5.0 and ηg = 62.5 have been used.

Running the global code with the equilibrium parameters given in table 5.3 and

retaining 30 poloidal modes either side of the central value yields the complex mode

frequency as a function of coupling strength, as shown in figure 5.4. At the coupling

strength considered here, χ = 0.5, the complex mode frequency is given by Ω =

0.0062 + i0.3812. It is useful to note that the difference between this and the local

frequency at x = 0, k = 0, found in section 5.4.2, is indeed O (1/nq′) and that the

global value is less than the local value, as anticipated in section 5.3.2.1.

The set of 61 radial functions, {um (x)}, produced by the code are shown in fig-

ure 5.5(a). As expected, each um (x) is found to peak at the rational surface where
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Figure 5.4: The mode frequency and growth rate as a function of coupling
strength, χ, for the global problem with isolated profiles.

q = m/n. The phase relationship between adjacent Fourier modes can be found

by

k2D = θ0 = log

(

um (xm)

um+1 (xm+1)

)

(5.123)

where xm is the location of the mth rational surface. Analysing this phase relationship

it can be seen that the relative phase, θ0 (or equivalently the wavenumber k), is

around zero for this mode, as shown in figure 5.6. Using {um (x)} with eqn. 5.48 it

is possible to reconstruct the 2D potential φ1 (x, θ) and the result of this is shown in

figure 5.5(b). The mode is centred on the outboard midplane, which is a consequence

of the specific relative phase found between the Fourier modes. This is also consistent

with the mode being centred about the stationary point in the local growth rate as the

net drive for the mode peaks at the outboard midplane, θ = 0, due to unfavourable

curvature.
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Figure 5.5: The real component of the radial Fourier modes, R ({um (x)}), as
found by the global code [figure 5.5(a)] and the reconstructed global
mode structure, R (φ1 (x, θ)), [figure 5.5(b)]. Each radial Fourier
mode um (x) peaks at the rational surface where m = nq′x and has
approximately zero phase relative to its neighbours, resulting in the
2D structure peaking at the outboard midplane, θ = 0.
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Figure 5.6: The relative phase between adjacent radial Fourier modes, k2D (or
θ0), as a function of poloidal mode number, m, for isolated profiles
calculated using eqn. 5.123. The phase is centred on 0, suggesting the
Fourier modes will constructively interfere at the outboard midplane,
θ = 0, as seen in figure 5.5(b).

5.5.2 General modes

The investigation of general modes uses an ηs profile of the form

ηs (x) = ηm − ηgx (5.124)

which provides a linear variation in the analytic frequency25. For the studies

presented here the values ηm = 5.0 and ηg = 40.0 have been used.

Using the standard equilibrium parameters described earlier and again retaining 30

poloidal modes either side of the central value provides the complex mode frequency

as a function of coupling strength, shown in figure 5.7. In this case the complex mode

frequency is given by Ω = −0.1068 + i0.2317 at the coupling strength of interest,

χ = 0.5, which shows a reduced growth rate, γ, relative to the isolated case. It can

be noted that as the coupling is increased to 0.5 the complex mode frequency varies

from the cylindrical value by less than 1.5%.

The radial Fourier modes found in this case are shown in figure 5.8(a). This radial

mode structure is somewhat different to that seen in figure 5.5(a), which is due to

a change in the phase relationship between adjacent Fourier modes. It can be seen

from figure 5.9 that the relative phase, θ0, in the general mode case is around π/2,

which is consistent with the value of k predicted by eqn. 5.99. The reconstructed

2D potential φ1 (x, θ), given in figure 5.8(b), shows that the 2D mode structure is

indeed centred at π/2, as expected from this calculated relative phase.

25Provided the same value of ηm is used then ηs (x = 0) will be the same for both isolated and
general cases and as such the local solution at x = 0 will be identical in the two cases.
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Figure 5.7: The mode frequency and growth rate as a function of coupling
strength, χ, for the global problem with general profiles.
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Figure 5.8: The real component of the radial Fourier modes, R ({um (x)}), as
found by the global code [figure 5.8(a)] and the reconstructed global
mode structure, R (φ1 (x, θ)), [figure 5.8(b)]. Each radial Fourier
mode um (x) peaks at the rational surface where m = nq′x and has
approximately π/2 phase relative to its neighbours, resulting in the
2D structure peaking at the top of the plasma, θ = π/2.

5.6 From local to global

The solutions of the global model introduced in the previous section show good

qualitative agreement with the predictions of the higher order ballooning theory

introduced in section 5.3. The power of the higher order theory is not limited to

qualitative predictions however, and using the expressions derived in section 5.3 it is

possible to provide quantitative calculations of the properties of global modes entirely

from solutions of the local equation. To achieve this it is necessary to determine the

model parameters, Λ, λ and β used in the model equation for Ω0 (x, k). This involves

performing many local calculations scanning over the range of x and k of interest26

to obtain the necessary Ω0 (x, k) data. Whilst the local equation does not contain

any explicit radial variation, as the value of x is scanned it is necessary to vary the

26It is important to note that the solution at each x and k value is entirely independent and
hence this scan is perfectly parallelisable.
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Figure 5.9: The relative phase between adjacent radial Fourier modes, k2D (or
equivalently θ0), as a function of poloidal mode number, m, for gen-
eral profiles. The phase is centred on π/2, suggesting the Fourier
modes will interfere constructively at the top of the plasma, θ = π/2,
as seen in figure 5.8(b).

equilibrium parameters such that they remain consistent with the values used in the

global solutions. Separate studies have been made for the quadratic and linear profile

cases described in the previous section.

5.6.1 Quadratic profiles

Adopting the quadratic profiles used to study the isolated global modes in sec-

tion 5.5.1 it is possible to find the local frequency, Ω0 (x, k), and this is shown in

figure 5.10. It can be seen that selecting a quadratic ηs profile has indeed led to a

radial variation of Ω0 which has a stationary point at x = 0. The local frequency at

this stationary point is Ω0 (x = 0, k = 0) = 0.0058 + i0.3843.
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Figure 5.10: The real local mode frequency, figure 5.10(a), and local growth rate,
figure 5.10(b), as a function of x and k determined from solution of
the local equation using isolated profiles.

Fitting the model for Ω0 (x, k), eqn. 5.69 with l = 2, to this data yields the following
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model parameters:

Λ = −0.1183 + i0.2571 (5.125)

λ = 12.61 − i15.90 (5.126)

β = 0.1257 + i0.0831 (5.127)

which leads to β/λ = α = 0.0006 + i0.0074. It should be noted that the value of

Λ has been constrained to be exactly the average of Ω0 over k at x = 0. The fit of

the model to the data has discrepancies of up to 1%, translating to an error on the

model parameters of between 0.1% and 1%.

The model parameter values can be used in conjunction with the expressions derived

in section 5.3.2.1, eqn. 5.93 and eqn. 5.95, to give k (x) and S (x). These functions,

evaluated at the rational surfaces, are shown in figure 5.11. The k profile can be

compared with that shown in figure 5.6 from analysing the relative phase of the

neighbouring radial Fourier modes. The value derived from the global mode struc-

ture appears to be slightly smaller than that from the local model. Importantly,

agreement is found between the local and global values for k at m = m0 = 90 which

sets the poloidal angle of constructive interference and has the largest influence on

the 2D mode structure.
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Figure 5.11: The real components of the functions k (x) [figure 5.11(a)] and S (x)
[figure 5.11(b)] calculated from the local model parameters (black
lines). The value of k (x) determined directly from the global mode
structure is shown by blue points.

The radial half width of the global mode is predicted using eqn. 5.97 to be ∆w =

0.0317, which agrees within ∼ 9% with the width calculated directly from the global

mode structure, ∆w = 0.0292. Using the expression for k (x) along with this radial

width allows the local frequency to be averaged along the curve defined by {x, k (x)}
over this width. This averaging provides 〈Ω0〉 = 0.0065+i0.3821 which compares well

with the global frequency, Ω = 0.0062+i0.3812, and is an improvement on the lowest

order local value found by taking x = 0 and k = 0 given above. Whilst the correction

between the lowest order local frequency and this averaged value is relatively small
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in this case, the ability to calculate this correction using data available from the

lowest order equation shows the potential to describe the global mode properties to

a high degree of accuracy even at modest nq′.

Finally the expression for S (x), eqn. 5.95, can be determined solely in terms of

x by substituting for α. Substituting this and the solutions of the local equa-

tion27 û (η) into the ballooning representation, eqn. 5.58, it is possible to calcu-

late φ1 (x, θ) =
∑

m um (x) exp (−imθ). The result of this calculation is shown in

figure 5.12, and good qualitative agreement can be seen with the mode structure

obtained by direct solution of the global equation shown in figure 5.5(b). This agree-

ment is a consequence of the good quantitative comparison between the global and

predicted mode widths and the value of k evaluated at the rational surface x = 0

using both the global and local methods.
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Figure 5.12: The real component of the global mode structure, R (φ1 (x, θ)), for
the case of a quadratic ηs profile calculated using the solution of the
local equation along with the relevant higher order theory. Good
agreement is seen between this and the mode structure found by
direct solution of the global equation, shown in figure 5.5(b).

5.6.2 Linear profiles

Changing to the linear ηs profile used to study the general modes in section 5.5.2

yields Ω0 (x, k) shown in figure 5.13. It can be seen that with this linear ηs profile

Ω0 does not have a stationary point at x = 0 and is approximately linear. Follow-

ing eqn. 5.99 and evaluating the local complex mode frequency at k = π/2 yields

Ω0 (x = 0, k = π/2) = −0.1091 + i0.2306.

Fitting the model for Ω0 (x, k), eqn. 5.69 with l = 1, to this data yields the following

27The û (η) function used at each point here is that calculated at x = 0, k = 0 however it
is possible to use the function calculated using the appropriate value of k at each value of x as
calculated from eqn. 5.93 but this does not significantly alter the global structure.
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Figure 5.13: The real local mode frequency, figure 5.13(a), and local growth rate,
figure 5.13(b), as a function of x and k determined from solution of
the local equation using general profiles.

model parameters:

Λ = −0.1163 + i0.2553 (5.128)

λ = 2.2543 − i1.4035 (5.129)

β = 0.1459 + i0.1309 (5.130)

which leads to β/λ = α = 0.0206 + i0.0709. As in the quadratic profile case the fit

of the model to the data is not perfect28 and discrepancies of up to 1% are again

observed, translating to an error on the model parameters of between 0.1% and 1%.

These model parameters can be used with the expressions derived in section 5.3.2.2,

eqn. 5.98 and eqn. 5.100, to give k (x) and S (x), and these are shown in figure 5.14

evaluated at the rational surfaces. Comparing the k profile shown here with that

derived from the global mode structure, shown in figure 5.9, fairly good agreement is

seen between the local and global values of k for the range of poloidal mode numbers

of interest.

Using the expression for the expected mode radial width, eqn. 5.102, the predicted

half width of the global mode is ∆w = 0.0292, which agrees to within around 5% with

the observed global mode width, ∆w = 0.0309. Using the expression for k (x) along

with this radial width allows the local frequency to be averaged along the curve

defined by {x, k (x)} over this width. This averaging provides 〈Ω0〉 = −0.1102 +

i0.2300 which compares very well with the global frequency, Ω, and is very similar to

the lowest order value found by taking x = 0 and k = π/2 given above. The averaged

local frequency is not a significant improvement in this case, unlike the quadratic

profile case. This is because the local frequency in this case is approximately linear

28Indeed the local solution becomes more difficult as the growth rate drops making Ω0 for x > 0.05
untrustworthy in this case. As such the fitting in this case has been performed over the reduced x
range −0.1 ≤ x ≤ 0.05.
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Figure 5.14: The real components of the functions k (x) [figure 5.14(a)] and S (x)
[figure 5.14(b)] calculated from the local model parameters. The
value of k (x) determined directly from the global mode structure
is shown by blue points.

in both the x and k directions about x = 0, k = π/2. The average over a small range

in x centred about x = 0 is therefore very close to the value at x = 0, k = π/2.

As in the case with quadratic profiles, using α with the expression for S (x), eqn. 5.95,

it is possible to calculate φ1 (x, θ) =
∑

m um (x) exp (−imθ) by substituting this and

the solutions of the local equation, û (η), into the ballooning representation, eqn. 5.58,

and numerically evaluating the integral over η.

The result of this calculation is shown in figure 5.15, and good qualitative agreement

can be seen with the mode structure obtained by direct solution of the global equa-

tion shown in figure 5.8(b). The quantitative agreement shown by the comparison

between the radial widths, the poloidal angle of constructive interference and the

complex mode frequency is very good.
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Figure 5.15: The real component of the global mode structure, R (φ1 (x, θ)), for
the case of a quadratic ηs profile calculated using the solution of the
local equation along with the relevant higher order theory. Good
agreement is seen between this and the mode structure found by
direct solution of the global equation, shown in figure 5.8(b).
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5.7 Discussion

The results presented in this chapter have shown that the properties of global eigen-

modes depend strongly on the equilibrium profiles. This remains true even in the

limit of 1/nq′Leq → 0, where the equilibrium length scale, Leq, is much larger than

the mode’s radial width. In this limit there exists a separation of scales, which res-

ults in an approximate degeneracy of radial locations. This degeneracy, which allows

the radial direction to be treated as quasi-periodic, was exploited to replace the 2D

global eigenvalue equation with a 1D eigenvalue equation in the extended ballooning

coordinate, η, by application of the well known ballooning representation. Whilst

the resulting local equation is much simpler to solve than the full global equation, it

requires both the radial position, x, and the wavenumber (or ballooning angle), k (or

θ0), to be specified. A common practice in the exploitation of linear local gyrokinetic

codes is either to select k to maximise the growth rate, or to use a range of values for

k, treating each as independent. Linear results are therefore often presented only for

k = 0, which positions the mode at the outboard midplane (θ = 0). This is where the

pressure and magnetic fields gradients align (the so called region of bad curvature)

and local growth rates are expected to be maximum. Such an approach is consistent

with the original literature introducing the ballooning transformation, assuming the

local frequency has a stationary point at the radial location of interest. However,

the results presented in Ref [132] are strictly only applicable to Hermitian systems

(such as the ideal MHD system that was the focus of Ref [132]) where the eigenvalue

is real whilst the gyrokinetic system is non-Hermitian as the eigenvalue is complex.

This brings additional complexities into determining the conditions imposed upon

k and also in properties such as the amplitude envelope. Returning to the higher

order terms neglected in the standard local approach the restrictions that are placed

upon the choice of k for a specified x were discussed. Theoretical treatment of this

system suggests that in the case where both components of the local frequency have

a stationary point at the same x and k then the global mode will indeed be localised

about this point in {x, k}. Whilst there will always be at least two k values for

which Ω0 is stationary in k (due to the periodicity in k), generally the frequency

and growth rate of an instability will have different parametric dependencies on the

equilibrium parameters. Only in very special circumstances will both components of

Ω0 be stationary in x at the same radial location leading to the existence of isolated

modes. These modes are expected to be an uncommon occurrence in experiments.

At positions where there is not a stationary point in both components of Ω0, one ex-

pects to find general modes which have a global complex frequency equivalent to the

local value averaged over k and a mode structure that is centred on some non-zero

poloidal angle.

By solving both the global and local equations for situations with and without a
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stationary point in Ω0 it has been verified numerically for the first time that the

global modes do indeed behave as predicted by the higher order local theory. Whilst

the isolated modes sit at the outboard midplane with the maximum growth rate, the

general modes do not, and their growth rate is significantly reduced from the max-

imum value. The results presented here have important consequences for local linear

gyrokinetic calculations which usually implicitly assume the existence of a stationary

point in Ω0 at the radial position being studied. The local growth rate will typically

overestimate the true global growth rate. In situations where local linear gyrokinetic

studies are being used to probe the basic qualitative characteristics of microinstabil-

ities this may have limited impact, but where quantitative calculations are required

this overestimate is likely to be important. For example quasi-linear predictions of

heat and particle fluxes which depend upon the linear growth rate, will commonly

be an overestimate of what might be expected from the global eigenmode.

Utilising the expressions derived from the higher order local theory along with the

solutions of the local equation it was demonstrated that by treating x and k appro-

priately it is possible to recover the properties of the global mode to a reasonable

accuracy. This is important as it shows that whilst the standard operation of local

gyrokinetic codes will generally overestimate the instability of the system, existing

local codes can be used to predict the properties of the true global mode. The appro-

priate procedure to obtain this information involves entirely independent calculations

and is therefore perfectly parallelisable. This motivates the use of local codes as a

complementary tool to global simulations for studies of global instabilities. Indeed

the use of local codes along with the procedures outlined here may in fact be prefer-

able in some scenarios due to the parallelisable nature of this procedure and to take

advantage of features available in a given local code.

5.7.1 Sheared flows

As introduced earlier, sheared flows are believed to play an important role in the

formation of transport barriers through the suppression of turbulence and the un-

derlying microinstabilities. This has motivated the inclusion of linearly sheared flows

in local gyrokinetic codes in order to explore this behaviour, and to study experi-

mental scenarios of relevance to transport barrier formation. It is important to note

that equilibrium flows will be close to toroidal in direction due to collisional damping

of poloidal flows29 [140, 141]. The decomposition of these equilibrium flows into

components parallel and perpendicular to the magnetic field therefore depends upon

q. It is only the shear in the perpendicular flow, dU⊥/dr, which provides a stabil-

29As it is only the passing particles which may contribute to the net flow, collisions between these
and trapped particles results in an effective drag on the passing particles leading to flow damping.
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ising influence, whilst the parallel velocity gradient, dU‖/dr, provides an instability

drive analogous to that provided by the temperature gradient [142, 143]. Only the

stabilising effect, due to the perpendicular flow shear, will be considered here.

The effect of including these flows is to add a time dependence to the eikonal phase,

S, [144, 145] which translates to a time dependent ballooning angle. This leads to the

picture that a linearly sheared flow causes the mode to convect along the field line

[142], which clearly translates to poloidal motion when considering an axisymmetric

system30. As the mode moves through the good and bad curvature regions the

instantaneous growth rate will oscillate in time as shown in figure 5.16.
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Figure 5.16: The time dependent instantaneous growth rate (red) along with the
minimum, maximum and average values (orange, green and blue)
due to a sheared poloidal flow [figure 5.16(a)]. The logarithm of the
linear perturbation amplitude, φ2, is shown in figure 5.16(b) for the
different growth rates. The average growth rate (blue) is reduced
from the maximum value (green) corresponding to times when the
perturbation is at the outboard midplane (i.e. θ0 = 0).

By averaging the instantaneous growth rate over some period suitably longer than

the oscillation period, τF , (known as the Floquet period) the effective growth rate

of the mode will be found. This time averaged growth rate is equivalent to the local

growth rate (in the absence of a sheared flow) averaged over a 2π period in k. This

Floquet averaged γ is consistent with the treatment of general modes outlined in

this chapter. The local codes in essence assume that introducing a linearly sheared

flow into the system forces the original mode (which is implicitly assumed to be

of isolated type) to become a general type mode. Whilst this treatment is correct

in the case where there is indeed an isolated mode in the absence of flow, it has

already been discussed above that in general such situations are rare. Even in the

absence of a sheared flow, when taking into account other global effects the general

30An alternative picture is simply that radially extended structures, such as those seen in the
global mode structure plots figure 5.5(b) and figure 5.8(b), will be tilted (or sheared) poloidally by
the sheared flow such that the radial correlation length is decreased.
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mode will already have a growth rate equivalent to the k (or time) averaged value

and introducing a linearly sheared flow is unlikely to significantly alter the modes

behaviour; i.e. whilst the linearly sheared flow converts an isolated mode to a general

mode, it will rarely convert the general mode to an isolated mode31. To investigate

this in the global and local models the transformation Ω → Ω − ΓE can be made,

where ΓE = ΓE (x) represents the Doppler shift to the real frequency due to the

linearly sheared flow and following Ref [146] has been defined as32

ΓE (x) = γe
x

r0

nq0√
2

(5.131)

where γe is known as the shearing rate and sets the relative strength of the flow

shear. Such a representation makes it clear that if the equilibrium profiles initially

provide a stationary point in both components of Ω0 then the introduction of the

linearly sheared flow will lead to a radial shift of the stationary point in the real

frequency whilst the local growth rate’s radial dependence will remain unchanged.

In the case of equilibrium profiles where Ω0 is already linear in radius it can be seen

that linearly sheared flows will only act to alter the gradient of Ω0 (either increasing

or decreasing it depending upon the direction of flow). This modifies the model

parameter λ and for this reason it is anticipated that whilst the growth rate of the

general mode will not be significantly affected by the sheared flow, the mode’s radial

width will change.

5.7.1.1 Isolated modes

The inclusion of a linearly sheared Doppler shift to the real component of the global

frequency alters the evolution of the global frequency and growth rate as the coupling

strength is increased. Using the same equilibrium profiles as used to study the

isolated modes in section 5.5.1 the growth rate and radial width have been found as

a function of shearing rate, γe, and this is shown in figure 5.17.

It can be seen that the growth rate of the mode for small shearing rates is close to

that found for the general mode (which is itself close to the analytical value found in

the limit of no coupling). This is much reduced from the value found in the absence

of a sheared Doppler shift (γe = 0 → γ = 0.3812), which highlights the significant

impact a small amount of sheared flow has on isolated modes. This dramatic effect is

consistent with the picture introduced above that the linearly sheared Doppler shift

removes the stationary point in the local real frequency33 which means an isolated

31Although the special situations where this can occur may well be of interest.
32Representing the perpendicular flow as vE×B ∼ E/B then the characteristic frequency asso-

ciated with this motion in the binormal (y) direction is kyE/B. Taylor expanding E about the
radial position where E = 0 then yields the radial variation in the shearing rate, (kyx/B)E′, which
noting that ky ≈ nq0/r0 yields eqn. 5.131 where γe =

√
2E′/B.
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Figure 5.17: The global growth rate [figure 5.17(a)] and radial full width half
maximum [figure 5.17(b)] as a function of shearing rate, γe, using
isolated type equilibrium profiles and a linearly sheared Doppler
shift. The growth rate is much reduced from the value in the ab-
sence of shear flow, γ = 0.3812, and is in fact close to that found
for the general mode, γ = 0.2317. The radial width in the absence
of sheared flow was found to be 0.0292 which is somewhat below
the widths found here for the lowest shearing rates studied.

mode can no longer exist and it is in fact a general mode which exists in this case.

This is further supported by the radial mode structure which is found to have a

relative phase of π/2 between adjacent Fourier modes, as previously observed for the

general modes.

As the shearing rate is reduced the mode’s radial width does not tend towards that

found in the absence of a sheared flow, found to be 0.0292, and it can be seen that

the radial width in fact increases rapidly as the shearing rate is reduced towards

zero. This actually limits the lowest shearing rate which can be studied using the

code due to memory restrictions which impose limits on the total number of rational

surfaces which can be treated. The explanation for this trend can again be provided

by considering the global mode found in the presence of the sheared flow to be of

the general type. In the cases with γe 6= 0 the lowest order radial variation in Ω0

is set by the sheared Doppler shift, and as such as the shearing rate is decreased

this radial variation is reduced. The extrapolation of this behaviour to the case

with γe = 0 would suggest that there is no radial variation in Ω0 and as such the

modes radial envelope is not bounded in x. Of course this is not the true behaviour

in this unique case and the isolated mode structure would indeed be recovered for

γe = 0. This highlights an interesting point which can impact the interpretation

of local linear gyrokinetic simulations including sheared flows. In such simulations

the time averaged growth rate will be independent of the shearing rate provided the

33The stationary point is not actually destroyed however, it is simply shifted, and as such it may
be possible that this change can allow isolated modes to exist elsewhere provided suitable conditions
exist at the shifted location.
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time range over which it is averaged is much larger than a Floquet period, τF . As a

result of this the growth rate for γe = 0 does not agree with that found in the limit

γe → 0. The reason for this apparent inconsistency is that in the limit γe → 0 the

Floquet period becomes larger, τF → ∞, and as such the initial perturbation will

have grown in amplitude by many orders of magnitude in this time. This means that

in fact the perturbation will likely have exceeded the threshold for nonlinear effects

to be important well before it has sampled one full period. If the time averaging is

restricted to only cover the time range between the initial perturbation and the time

the nonlinear threshold is crossed then the growth rate in the limit γe → 0 should

smoothly match onto that at γe = 0.

5.7.1.2 General modes

Following from the results observed in the previous section, where the introduction

of a linearly sheared flow caused the isolated mode to become a general type mode, it

may be expected that there will be little effect on the case where the mode is already

of general type. Using the same equilibrium profiles as used to study general modes

in section 5.5.2 the growth rate and radial width have been found as a function of

shearing rate, γe, and are shown in figure 5.18.
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Figure 5.18: The global growth rate [figure 5.18(a)] and radial full width half
maximum [figure 5.18(b)] as a function of shearing rate, γe using
general type equilibrium profiles and a linearly sheared Doppler
shift.

It can be seen that in this case the growth rate for γe = 0 fits with the behaviour for

γe 6= 0 suggesting the mode seen here with sheared flow is not drastically different

to the case in the absence of sheared flows. Similar asymmetry seen in the γ vs.

γe data has been observed in global gyrokinetic simulations [147] The mode’s width

varies with γe, and like in the isolated case the width appears to peak for a particular

value of γe. Whilst the width peaked as γe → 0 for the isolated case, in the general

case shown here it can be seen that the width peaks for γe 6= 0. This relates to
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the fact that there is already a linear variation in Ω0 before the sheared flow is

introduced and hence the radial variation will be removed for a specific, non-zero,

value of γe, at which point the radial width will peak. The linear Doppler shift can

oppose the radial variation due to the ηs variation, which is given by the local model

parameter λ. Using eqn. 5.131 with the equilibrium parameters used here, it can be

seen that to achieve dΓE/dx = 2.2543 (which is the real component of λ, given by

eqn. 5.129) requires γe = 0.0128 which is slightly below the shearing rate where the

peak actually occurs. The discrepancy is due to the fact that the radial variation in

the local growth rate is not altered by the introduction of sheared flow, and hence

whilst there is no radial variation in R (Ω0) it is necessary to counter the effect of

the variation in I (Ω0) by “over-compensating” the variation in real frequency. A

simple illustration of this is can be made by considering the expression for the mode

radial width, eqn. 5.102, in terms of the real and imaginary components of both

β = βr + iβi and λ = λr + iλi:

∆w =
2
√

2 log (2) |β|
√

nq′ (βiλr − βrλi)
(5.132)

It is clear from eqn. 5.132 that ∆w → ∞ for βiλr → βrλi rather than simply for

λr = 0. This suggests that a shearing rate which gives an effective radial variation

in R (Ω0) of λr ≈ λiβr/βi will correspond to a mode with a very large radial width.

Substituting in the values for the real and imaginary components of λ and β leads

to the prediction that for dΓE/dx = 3.81863 the mode’s radial width will be very

large. This corresponds to γe = 0.0217 which agrees well with the data shown in

figure 5.18(b).

5.7.2 Future work

Whilst the results presented here have illustrated how it is possible to use the solu-

tions of the local model to describe the properties of the global mode, there remain

several important areas of interest that have not been explored. Perhaps the most

obvious next step is to demonstrate the extension of the procedure highlighted here

to general magnetic geometry and more complex physical systems than the simple

model discussed. This can be achieved using existing local gyrokinetic codes, such as

GS2, to map out Ω0 (x, k). This can then be used with the general procedure outlined

here to calculate the global mode’s properties. These results can be benchmarked

against global gyrokinetic codes in order to provide confidence in the extension to the

general gyrokinetic system. This would allow experimentally relevant scenarios to be

investigated. In particular 2D observations of fluctuations from electron cyclotron

emission diagnostics provides an interesting opportunity to compare the predicted
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poloidal position of the mode with that of the observations.

It has been shown that to fully describe the global mode it is strictly necessary to

consider a range of x and k. Despite this a reasonable approximation can be made se-

lecting x = 0 and k = keff, where keff is an effective ballooning angle which, provided

k (x) is slowly varying, is approximately keff = k (x = 0). By parameterising the

dependence of k (x = 0) on geometrical factors, such as triangularity and elongation,

it should be possible to provide a reasonable prediction of keff provided the radial

variation of Ω0 is known34. This would be useful for any quasi-linear transport cal-

culations where the saturated turbulent amplitudes are assumed to be related to the

linear growth rate. By using k = 0 in the quasi-linear calculations the linear growth

rate will typically be significantly overestimated compared to the value found using

k = keff, resulting in an overestimate of the quasi-linear transport. Furthermore, the

radial size of the mode can be determined using this information which can help set

the appropriate lengthscales in the problem. In addition, a non-zero ballooning angle

is of large importance to the study of momentum transport, where terms which break

the symmetry of the system are crucial [148, 149] (e.g. by providing a Reynolds stress

that introduces plasma rotation [150]). By providing an effective ballooning angle

it is possible to estimate the contribution to symmetry breaking due to the radial

profile variation, allowing this to be included in simple transport models without the

need for global simulations.

Only linear systems, where each toroidal mode number can be treated independently,

have been discussed here. The applicability and impact of these results for nonlinear

systems has not been considered. The global eigenmodes treated here essentially

represent the final linear state of a time evolving instability. If in the time taken to

form these eigenmode structures background fluctuations have had enough time to

grow in amplitude to reach the nonlinear phase then it may be expected that these

eigenmode structures will never form. In this scenario it is the peak growth rate,

i.e. that for k = 0, that is of interest and the effective linear k will have little im-

pact. It should be noted that until the eigenmode has formed the individual rational

surfaces remain essentially uncoupled and shear damping may be expected to play a

significant role. Moreover, if the rational surfaces are uncoupled then the ballooning

nature of the instability will be somewhat destroyed and the poloidal amplitude will

be set purely by the instabilities dependence on k. To answer the question as to how

the time scale to reach the nonlinear phase and for eigenmode formation compare it

will be necessary to recast the global model as an initial value problem35 such that

it is possible to investigate the time scale for eigenmode formation. This can then

34This could either be provided by a parameterisation of Ω0 on the equilibrium profiles or through
direct calculation by a local gyrokinetic or gyrofluid code for example.

35This can be achieved by retaining the d/dt terms in the original gyrokinetic equation rather
than making the substitution d/dt → −iω.
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be compared with the growth rate of the local mode found for k = 0.
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Chapter 6

Gyrokinetic stability of the MAST

H-mode pedestal

6.1 Predicting the pedestal’s properties

The plasma performance (i.e. density and temperature) in the core is strongly coupled

to that of the edge due to a feature known as “profile stiffness”. This stiffness refers to

experimental observations that in the central region between the core and edge there

is typically a minimum profile length scale that can be achieved [151–153], i.e. that

the density and temperature gradients cannot exceed a given level. This behaviour

is thought to be due to the onset of microinstability driven turbulent transport when

exceeding the critical gradient for the onset of the mode. Assuming the transport

increases rapidly with increasing drive1 this will clamp the gradient driving the mode

to this marginal point. This idea is exploited by numerous transport calculations

(such as those discussed in section 2.7) as the expected gradients can be determ-

ined simply by searching for the linear instability threshold and it becomes possible

to develop relatively simple transport models [154, 155]. By suppressing these mi-

croinstabilties and the resulting transport in a region, for example through sheared

flows near the plasma edge, the driving gradients may be increased above their usual

limits, leading to a region of improved confinement. Outside of this region the pro-

file stiffness remains which highlights the importance of the edge region in setting

the core performance. The prediction of the pedestal height and width is therefore

extremely important in predicting the plasma performance of tokamaks operating

in H-mode. Transport calculations based on 1D gyrofluid models indicate that a

temperature pedestal height of 4 keV is required for ITER to be able to meet its

performance targets [156].

1Whilst no clear definition is generally used to rigorously quantify the stiffness the rate at which
transport increases with increasing drive is often used to characterise a mode’s stiffness.
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Without external intervention the H-mode pedestal will typically evolve until an ex-

plosive edge localised mode (ELM) is triggered, causing the pedestal to collapse in a

cyclical process known as the ELM cycle. Understanding what processes determine

the pedestal evolution and what triggers the ELM is crucial to being able to predict

the state of the pedestal just prior to the ELM and in the times leading up to the

crash. Unlike in current machines, ELMs are a serious concern for the lifetime of

plasma facing components (PFCs) in ITER [66, 157, 158] and it is necessary to con-

sider the stability of the ITER pedestal to ELMs2. Techniques for triggering ELMs

early (ELM mitigation) or preventing them entirely (ELM suppression) are being

investigated on current generation tokamaks [111, 112, 159] and typically involve the

application of a magnetic perturbation to the edge of the plasma3. These studies

suggest that it should be possible to increase the ELM frequency, thereby reducing

the peak power transferred to the PFCs4. As these techniques prevent the pedestal

from achieving its natural final state it is important for ITER that the dynamics of

the pedestal are understood. It is insufficient simply to describe the limiting case

just prior to a natural ELM crash.

6.1.1 The peeling-ballooning ELM model

Signatures of an ELM can be observed with a number of different diagnostics, provid-

ing useful information in the development of an ELM model. These signatures can

vary somewhat depending on the operational regime leading to the classification of

ELMs into numerous different categories. The definition of these ELM types will not

be discussed here5 other than to say that type I ELMs, associated with operating

at powers well above that required to enter H-mode, tend to provide the largest

transient heat loads (∼ 5 − 15% of stored energy in 102 − 103 µs [161]) and are

the most concerning for ITER. The following discussion will focus on these type I

ELMs.

Perhaps some of the most useful observations arise from optical imaging of the plasma

during the ELM crash. The spherical tokamak MAST is especially well suited to

capture such images and an example is shown in figure 6.1. These images show

filamentary, field aligned structures associated with the ELM and the associated

toroidal mode number, typically found to be 10 < n < 20 [162], can be estimated

2Calculations, assuming that ELMs in ITER have similar characteristics to current observations,
suggest that for ITER to survive its proposed 3000 shots the typical ELM energy loss must be less
than ∼ 4 MJ and ELMs exceeding this limit must be rare [157].

3Techniques for directly triggering ELMs are also being investigated, often known as ELM
pacing. These include methods such as injecting pellets or providing a rapid vertical plasma dis-
placement [160].

4The energy deposited by an ELM is typically proportional to the time since the previous ELM,
i.e. WELMfELM ≈ const. with WELM the energy lost per ELM and fELM the ELM frequency [64].

5A good outline of the various ELM types is provided in Ref [63].
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by analysing the filaments [163]. The filaments are seen to erupt radially out of the

plasma on the low field side of the tokamak (i.e. in the direction of increasing major

radius) with a radial velocity on the order of 0.1 − 1 km s−1 [161].

Figure 6.1: Visible image during ELM crash taken from MAST. Reprinted with
permission from Ref [163].

Magnetic fluctuations with frequency similar to the Alfvén frequency, O (105 Hz),

are often observed leading up to (and during) the ELM crash [65]. This, in conjunc-

tion with the timescales associated with the ELM crash, O (10 µs), suggests that

ELMs have an origin in MHD instability [164]. This is further corroborated by the

observation that the normalised pressure gradient

α = −2µ0Rq
2

B2

dp

dr
= −βRq2

Lp

(6.1)

with p the plasma pressure, β = 2µ0p/B
2 the normalised plasma pressure and Lp =

p/p′, is typically close to the critical value for onset of the ideal MHD ballooning

instability [165], αc, in the pedestal [64, 166]. Whilst this suggests that the ideal

MHD ballooning instability may be playing an important role in the ELM cycle,

observations of pedestals with pressure gradients around αc which don’t display type

I ELMs [167] and observations showing the pressure gradient may reach this value

well before the ELM crash [168] suggest that these ballooning modes do not lead

directly to the ELMs but an additional trigger is required.

The large pressure gradient associated with the pedestal region results in a large

current density peak through the “bootstrap current” [169]. The origins of this

parallel current can be elucidated by considering the trapped particle orbits in the
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presence of a density gradient. As the sense of the banana orbit is set by the trapped

particle’s charge it is clear that two like trapped particles centred on the flux surfaces

at r and r + δb, where δb is the banana orbit width, will both pass through r + δb/2

(assuming δb doesn’t vary significantly over this scale) but will have the opposite sign

of v‖ at this point. If there is a density gradient, such that there are more trapped

particles at r then r + δb, then there will be more trapped particles travelling in

one direction than the other at a given radial position, leading to an apparent net

parallel momentum in the trapped particles6. This gives rise to a friction on

passing electrons, whilst the same process occurs for the ions but with a reversed

parallel velocity (due to the reversed banana orbit direction) leading to a parallel

current. The current is limited by passing electron-ion collisions. The calculation of

this bootstrap current for arbitrary geometry and collisionality is complicated and

a numerically derived formulation, often referred to as the Sauter formula, is often

used [170, 171]. There can be additional contributions to the current (such as the

diamagnetic current) which can be taken into account, though are often negligible

relative to the bootstrap term.

MHD instabilities can be driven by both the pressure and current gradients [172]

and the induced bootstrap current due to the pedestal pressure gradient can lead

to the destabilisation of additional MHD modes. The role of low-n “kink” modes

(driven mainly by radial current gradients) in setting operational limits7 [172] has

led to these being well studied and it has been suggested that a related instability

may play a significant role in the ELM [173]. Ideal external kink modes8 require a

resonant rational surface outside of the plasma, with the growth rate increasing as

the rational surface moves towards the plasma surface. When the rational surface is

very close to the plasma surface the instability is strongly localised to the edge region

[173, 174], suggesting higher n, and the instability is dependent upon the parallel

current flowing at the plasma edge, J‖. Simulations of these modes, referred to as

peeling modes [175], can be used to derive stability boundaries in terms of normalised

pressure gradient, α, and shear9, ŝ, [174, 176]. Importantly studies, in a simple

circular cross section geometry (similar to that used in chapter 5), also calculated

the stability of the ballooning modes and it was found that for appropriate edge

parameters these could couple to the peeling modes resulting in peeling-ballooning

(PB) modes [174, 176, 177], though the precise behaviour is sensitive to many factors

6This is similar to the mechanism behind the diamagnetic current, though here it is the difference
in the number of particles with the two senses of the Larmor orbit rather than the banana orbit
and hence this is in the binormal (in flux surface perpendicular) direction.

7The low-n (n ∼ 3) nature of these modes means the resulting instability has a global effect on
the plasma, leading to a distortion or “kinking” of the entire plasma.

8The qualifier “external” is occasionally used to distinguish it from the internal, n = m = 1,
kink mode associated with the sawtooth crash [29, 172].

9Here the shear is used to represent the normalised edge current density in a more accessible
term.
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including the magnetic geometry [178, 179]. These PB modes can extend further into

the plasma than the localised peeling modes and have been proposed as a model for

the ELM [174]. In the following text we use PB to refer to pure peeling and ballooning

modes as well as the coupled peeling-ballooning modes unless otherwise stated.

The stability of PB modes will depend upon both the edge current and pressure

gradient. A simple cartoon given in Ref [174] to describe the ELM cycle based on

the evolving stability of these MHD modes is as follows:

1. Immediately following a large ELM (or after the L-H transition) the edge cur-

rent density and pressure gradient is low but increases rapidly (due to sup-

pressed turbulence) until the ballooning boundary is reached.

2. The edge current evolves (possibly on a similar timescale to that of the pressure

[180]) increasing until the peeling ballooning boundary is reached.

3. Further increases lead to PB instability which reduces the pressure gradient,

further enhancing the instability leading to a large drop in pressure gradient

and current density and the plasma returns to near its initial state.

An example stability boundary is shown in figure 6.2 with the three phases la-

belled.
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Figure 6.2: A cartoon based on the peeling-ballooning model for the plasma

evolution during an ELM cycle proposed in Ref [174]. The red,
blue and purple lines represent the ballooning, peeling and peeling-
ballooning stability boundaries, respectively, as a function of pressure
gradient and edge current density. The proposed evolution during
the ELM cycle is described in the main text.

In practice quantitative calculations of these stability boundaries are complicated by

the dual role of the pressure gradient and associated bootstrap current:
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• Whilst the ballooning modes are pressure gradient driven this pressure gradient

can in fact stabilise the peeling modes.

• The bootstrap current associated with the pressure gradient provides a driving

term for the peeling mode whilst reducing the edge shear which can stabilise

the ballooning modes.

The interplay between these effects will depend upon many factors such as the flux

surface shaping and the impurity content. Detailed numerical calculations are re-

quired in order to calculate the stability boundary determined by the PB modes for

a given equilibrium as a function of edge current and pressure gradient.

The linear ideal MHD stability code, ELITE [181, 182], was developed in order

to calculate the growth rate and mode structure of PB instabilities for arbitrary

geometry. This uses ballooning theory modified to include surface terms important

for peeling modes, which were neglected in Ref [132]. Importantly finite n corrections

are included, allowing the treatment of the intermediate n modes associated with

ELMs10. This allows stability calculations to be performed for experimentally

consistent equilibria, providing a means to test the PB model of the ELM crash.

Early calculations using ELITE of the stability of PB modes for several times leading

up to an ELM crash, based upon DIII-D data, showed the n = 10 PB growth rate

increasing rapidly just prior to the ELM crash [182]. Furthermore, the profile of

observed electron temperature loss due to the ELM matches the amplitude of the

calculated radial PB mode structure11. Further studies of DIII-D data [183, 184]

and other tokamaks, such as Alcator C-Mod [182], have shown good qualitative

and quantitative comparisons between the observed pedestal properties and the PB

stability12. Such studies using real experimental equilibria and profiles provide

compelling evidence for the PB ELM model.

6.1.2 The EPED model

Given magnetic equilibrium data, including the pressure profile, it is possible to use

ELITE to determine if the PB mode is unstable. Without information about the

expected form of the pressure profile an equilibrium cannot be constructed and it

is not possible to provide predictions of the actual pedestal pressure profiles likely

to be obtained prior to an ELM in future experiments. However, by assuming a

functional form for the pressure profile it is possible to study the limits imposed on

the pedestal height as a function of the model parameters. An example functional

10The lower limit in n is given in Ref [182] to be ∼ 5.
11In other words the relative electron temperature loss is largest where the PB eigenfunction is

largest.
12These comparisons typically either illustrate the PB mode being just above marginal immedi-

ately prior to the ELM crash or stable in ELM free H-mode.
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form is:

F (ψ) = Fs + Fc

[

1 −
(

ψ

ψp

)α1
]α2

+ Fp

[

tanh

(

2 − 2ψm

∆

)

− tanh

(

2ψ − 2ψm

∆

)]

(6.2)

where ψ is the poloidal flux normalised to the value at the seperatrix, ∆ is the ped-

estal width, ψm and ψp set the location of the pedestal midpoint and top, Fs, Fp,

Fc control the separatrix, pedestal and core values respectively and α1 and α2 are

model parameters used to control the core profile. Functions of the form given in

eqn. 6.2 were used to represent the density and temperature profiles in a study of

ITER using ELITE [177]. Here α1 and α2 were picked to be in rough agreement with

core transport modelling. Multiple ELITE runs with varying temperature pedestal

height, Tped, and fixed density pedestal height, ne,ped, were used to find the limiting

pedestal temperature (and hence pressure) for a given pedestal width and with tor-

oidal mode numbers in the range 8 ≤ n ≤ 30. This limit was taken to be set when the

calculated growth rate exceeded a small threshold level. These calculations indicate

that in order for ITER to achieve the required temperature pedestal of 4 keV [156]

(introduced in section 6.1) the pedestal width must be greater than about 2.5% of

the minor radius. This study highlights three unknowns preventing the prediction

of the temperature pedestal height in current and future tokamaks:

1. The toroidal mode number, n.

2. The pedestal width, ∆.

3. The relative density and temperature contributions to the pressure profile.

The toroidal mode number can be restricted to a modest range based on the obser-

vations made on existing tokamaks, such as 5 < n < 30. Whilst this may give a

reasonable estimate as to the stability limits in a given device, in cases such as ITER,

which must operate near these stability limits without crossing them, the variations

in the prediction can be important. For example, for a pedestal width of 2.5% of the

minor radius the stable ITER temperature pedestal height found in Ref [177] covers

a range ∼ 3.5 keV < Tped < 4.5 keV for 15 < n < 30 which translates to a fusion

gain of 7 < Q < 13 [156]. Physically it is expected that the toroidal mode number

with the largest growth rate will correspond to the ELM. Whilst ELITE provides

the growth rate for a given mode number it does not include all the relevant physics

which may determine which toroidal mode number has the largest growth rate. For

example the effect of sheared flows (not included in ELITE) on the stability of a

mode is likely to depend upon its radial extent, which is something that will change

with toroidal mode number. ELITE therefore may not correctly identify the most
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unstable toroidal mode number13. It is possible to incorporate additional effects,

such as sheared toroidal flows, diamagnetic effects and others discussed in Ref [185],

into existing codes such as ELITE, allowing a more accurate calculation of the most

unstable mode number and improved treatment of threshold effects.

To determine the pedestal width, ∆, it is useful to consider the state of the edge

region immediately after the L-H transition. It is widely thought that this transition

is related to the suppression of edge turbulence due to sheared flows. The associated

reduction in transport allows the temperature and density gradients to increase in

this region until some stability limit is reached14. The pedestal width may then

evolve due to other processes (such as current diffusion and the evolution of the

flow). As the pedestal width evolves the height will also evolve to maintain the

critical gradient. This will continue until the PB mode stability boundary is crossed

and an ELM is triggered15. By characterising the instability responsible for setting

the pressure gradient limit it is possible to calculate the limiting pedestal height for a

given width, using the same procedure as described earlier for calculating the peeling

ballooning limit. This provides a constraint on the pedestal height as a function of

the pedestal width. Should this constraint lie above that set by the PB stability

boundary then the plasma will enter the PB unstable region, leading to an ELM

crash. This idea is illustrated in figure 6.3 which shows a cartoon of the PB stability

curve (black line) as a function of pedestal height and width along with three other

example potential stability limits. The location where these stability limits cross the

PB limit, highlighted by the square points, sets the prediction of the pedestal height

and width immediately prior to the ELM. If they do not cross then it is anticipated

a typical ELM crash will not occur and the pedestal will continue to evolve until

another mechanism causes this to halt.

A model known as EPED has been developed to make predictions of the pedestal

height and width based on such a two constraint procedure [110]. The stability of

kinetic ballooning modes (KBMs) are employed to provide a secondary constraint in

addition to the PB stability limit. These are electromagnetic kinetic microinstabil-

ities which are the kinetic analogue of the ideal ballooning modes discussed earlier.

Indeed KBMs can be described by similar equations to the ideal ballooning mode

[186], though the kinetic effects provide a destabilising influence for low k⊥ρi and

a stabilising influence for higher k⊥ρi [187]. Importantly, the critical β = βk (or

α = αk) associated with these instabilities is expected to be around that of the ideal

MHD mode and therefore the observations of the pedestal gradient remaining around

13Indeed such missing effects are also likely to introduce a small error into the calculated stability
limits for a given toroidal mode number.

14In the PB model, introduced in the previous section, this limit is set by the onset of ideal MHD
ballooning modes.

15Alternatively others factors, such as externally applied perturbations, could act to halt the
pedestal width evolution, preventing the ELM being triggered.

120



Chapter 6. GK study of MAST pedestal 6.1. Predicting the pedestal’s properties

0.0

0.0

0.2

0.2

0.4

0.4

0.6

0.6

0.8

0.8

1.0

1.0
Pedestal width, ∆

P
ed

es
ta

l
h
ei

gh
t

Figure 6.3: A cartoon of the pedestal height limits at a given width for the
peeling-ballooning mode (black) and three example models for the
critical gradient limit (red, green and blue). Immediately after the
ELM crash the pedestal height is low but quickly increases until it
reaches the first boundary, e.g. the red, green or blue curves; the
pedestal then evolves along this curve until the peeling-ballooning
limit is crossed (black) at which point an ELM is triggered and the
process repeats. This two constraint model for the pedestal provides
a prediction of the limiting pedestal height and width immediately
prior to an ELM crash based on where the two stability limits inter-
sect.

the critical ballooning value is consistent with a KBM limit. These KBMs may be

thought of as setting a local constraint on the pressure gradient (although non-local

effects are likely to have some influence in the pedestal) whilst the PB mode imposes

a global constraint. Whilst the KBM stability may be considered, to first approx-

imation, to be local, i.e. it only depends on the parameters on a given flux surface,

factors like the bootstrap current (and hence the shear) depend upon the gradients

away from this surface16. To achieve a pressure profile which is precisely at the

critical gradient across the entire pedestal is therefore a complicated minimisation

problem, requiring iteration. Hence when determining the pedestal height limit set

by KBMs for an assumed profile shape it is unlikely that the entire pedestal will be

at the marginal gradient. This raises the question as to how to define the limit; does

the entire pedestal need to be at marginal or beyond or is it sufficient that a certain

proportion of the pedestal is marginal? Depending upon how this limit is defined

the precise stability limit may move, thereby altering the prediction and hence this

definition must be made as part of the two constraint predictive model.

16For example should the pressure gradient increase outboard of a given surface then on that
surface the value of β will rise, thereby altering the critical Lp (c.f. eqn. 6.1).
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There have been several iterations of the EPED model, with the current version

known as EPED1.6. These iterations introduce various refinements as new tech-

niques are developed and understanding improves. Here only the differences in the

model used to represent the KBM stability limit will be discussed. When the EPED

model was first developed the computational requirements and numerical difficulties

associated with electromagnetic linear gyrokinetic simulations in the outer regions

of shaped plasmas made it prohibitive to perform direct calculations of the KBM

stability for the large number of cases required to accurately determine the stability

limit as a function of pedestal height and width. A parameterisation for the pedestal

width based on arguments relating αk and its average across the pedestal, 〈αk〉, to

the poloidal beta at the top of the pedestal, βθ,ped = βpedB
2/B2

θ , for large aspect

ratio tokamaks was introduced [110]:

∆ = 0.076
√

βθ,ped (6.3)

This scaling is consistent with observations from a number of tokamaks [188]. The

parameter 0.076 in eqn. 6.3, is taken to be fixed for all standard aspect ratio tokamaks

and was determined by fitting c1

√

βθ,ped to data from a large number (>4000) of

DIII-D timeslices [110]. The predicted pedestal width and height using this stability

constraint along with the PB constraint was tested against data from a number

of standard aspect ratio tokamaks and was found to show quite good agreement

[188]. An example of the predicted and the measured pedestal width and height

immediately prior to an ELM crash on DIII-D is shown in figure 6.4.

Pedestal width, ∆

P
ed

es
ta

l
h
ei

gh
t

(k
P

a)

15

10

5

0

20

0.00 0.02 0.04 0.06 0.08

Stability (PB) constraint

Width (KBM) constraint

Prediction

Measurement

Figure 6.4: The calculated PB (green) and 0.076
√

βθ,ped (blue) stability limits for
DIII-D shot 132010. The predicted pedestal height and width (dot)
agree within errors with the observed values immediately prior to
and ELM (red square). This figure is based on figure 5 of Ref [110].
Reprinted with permission from [110]. Copyright 2009, American
Institute of Physics.
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Version 1.5 of EPED exploits the similarity of ideal local (i.e. n = ∞) ballooning

modes (referred to as n∞ modes) with KBMs observed in the core [189, 190] to re-

place the 0.076
√

βθ,ped constraint with one based upon the stability of ideal ballooning

modes [191]. These calculations are relatively computationally inexpensive, but al-

low for important effects such as plasma shaping to be included unlike in EPED1.

This provides the possibility of using EPED1.5 to predict the pedestal properties of

spherical tokamaks. The application of an EPED1.5 type model to predicting the

pedestal properties of the spherical tokamak MAST [192] forms part of the work

discussed in section 6.2. As the ideal ballooning stability is a local quantity it is

necessary to consider the precise definition of when the ballooning modes set a limit

on the pedestal height. In Ref [191] the procedure used to determine the limiting

pedestal height is when a region of the pedestal greater than 1% (measured in ψN) is

ideal ballooning unstable. Recently version 1.6 of EPED has been introduced which

uses a technique referred to as the “ballooning critical pedestal” (BCP) technique

to characterise the KBM limit [127]. Once again the onset of the KBM is taken to

be set by the onset of the ideal ballooning modes. Importantly, the BCP technique

defines the pedestal height to be limited when 50% of the pedestal is marginal or

unstable17 to the ideal ballooning modes. The value of 50% has been selected in

order to represent the enitre pedestal region being near marginal on average. The

various versions of EPED have been extensively tested against data from numerous

standard aspect ratio tokamaks. These tests, discussed in some detail in Ref [127],

typically show very good agreement between the model and experiment, with the

ratio of experimental to predicted pedestal heights often found to be around 1 ± 0.2

(i.e. the predictions are within 20% of observations).

The remaining missing component in predicting the core performance, that of the

relative contribution of the temperature and density to the pressure, is perhaps the

most challenging. The separate evolution of the density and temperature pedestal

profiles from the initial state following the ELM crash will depend upon both the

heat and particle sources and the transport mechanisms (i.e. the microinstabilities)

in the edge region. It will be shown later that the KBM growth rate responds equally

to changes in the density and temperature gradients (i.e. it is the pressure gradient

that drives the instability) and therefore the KBM constraint on its own doesn’t

help isolate the separate effects of density and temperature. In this case it may be

expected that the final density and temperature profiles will be set by the relative size

of the particle and heat sources. However, in the picture of the ELM cycle proposed

by the EPED model it is typically assumed that the pedestal width will increase

throughout the ELM cycle. Considering a flux surface which is initially just in from

the pedestal (i.e. towards the core) it is clear that for the pedestal to expand through

17In fact as the ballooning modes can enter a “second stable” region for sufficiently large α the
criterion is in fact simply at or beyond the lower stability boundary.
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this surface the shallow gradients initially present here must be allowed to steepen.

The evolution of the pedestal as it expands inwards is determined by the transport

processes occurring in the shallow gradient region at the top of the pedestal. For

example if a temperature gradient driven instability is unstable at the pedestal top

then attempts to increase the temperature gradient here are likely to be met by

large increases in the heat flux. This is again a manifestation of the stiff nature of

the core transport resulting in the gradients being pinned to critical values. In such

a scenario it may be expected that whilst the density gradients are free to evolve

the temperature pedestal will remain roughly constant throughout the ELM cycle

due to the temperature gradient driven turbulence18. As the many instabilities

which can exist in plasmas respond in different ways to the density and temperature

gradients, the precise relation between density and temperature is complicated. To

fully determine this relationship it is necessary to perform a transport analysis that

includes turbulence and the full heat and particles sources19 which is an extremely

challenging task.

6.2 Testing an EPED-type model for the MAST

pedestal

The EPED model has been tested on a range of standard aspect ratio tokamaks

but not on spherical tokamaks (STs) and it is unknown whether it is possible to

accurately predict the pedestal properties in such devices using this model. To

test such a model for STs a type-I ELMing H-mode discharge from MAST will be

investigated and the PB and n∞ stability constraints calculated to determine if the

pedestal immediately prior to the ELM crash is consistent with the intersection of

the PB and n∞ constraints. Further to this by studying the stability constraints

as a function of time it is possible to determine if the pedestal gradients are indeed

limited by the n∞ stability limit throughout the ELM cycle, as implied by the EPED

model.

The remainder of this chapter introduces a study of the pedestal evolution for a

MAST H-mode discharge. The experimental measurements of electron density and

temperature profiles are discussed in section 6.2.1 and an EPED1.5 type stability

analysis based on the equilibria obtained is made in order to test if such a model

is applicable to spherical tokamaks, and this will be discussed in section 6.2.2. Fol-

18However, as the density gradient evolves the turbulence is likely to be affected and it may then
become possible to achieve higher temperature gradients at the same time as higher density gradi-
ents. The precise behaviour observed is likely to be strongly dependent on the specific equilibrium
conditions and the particle and heat sources.

19Including neutral penetration from the edge for example.
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lowing this a linear gyrokinetic analysis of the microstability of both the steep and

shallow gradient regions is presented in section 6.3 allowing the dominant instabil-

ities to be identified. This provides an opportunity to test the validity of the KBM

constraint used by the EPED model as well as offering insight into the role that

microinstabilities at the top of the pedestal play in its evolution.

6.2.1 Experimental observations

To study the inter-ELM pedestal evolution it is necessary to obtain accurate meas-

urements of both the density and temperature profiles throughout an ELM cycle.

The electron density and temperature can be obtained through a Thomson scattering

diagnostic. This diagnostic technique involves firing a laser through the plasma and

analysing the properties of the scattered light20. The Thomson scattering system

on MAST has high spatial resolution [193, 194] resulting in 130 measurement points

across the plasma, with several (∼ 6) in the pedestal, providing a good determina-

tion of the pedestal width (and gradient). In addition to this, whilst each Thomson

laser has a firing rate of approximately 33 ms, the temporal resolution is improved

due to the use of 8 separate lasers. This provides an average temporal resolution

of 4.2 ms with the additional possibility of firing the lasers in a rapid burst, with

resolutions of up to 5 µs being used in experiment [195]. In MAST, typical type-I

ELM cycles are around 6 − 12 ms in duration meaning that there are typically 1 or

2 laser pulses per cycle. Using just these single laser pulses to diagnose the ELM

cycle will provide poor temporal resolution and may not well represent any different

phases of the ELM cycle that may exist. Whilst the burst mode offers a way to

get higher resolution data this can be somewhat challenging to use to diagnose a

particular ELM cycle. To improve the statistics of the measurements used in the

study presented here a H-mode discharge with periodic ELMs was repeated three

times21 with the Thomson lasers firing at evenly spaced intervals. Extracting the

Thomson measurements during the type-I ELMing phase provides 50 profiles which

can be arranged by the time since the previous ELM, δt, normalised to the period

between two ELMs, τELM, thus representing a series of measurements as a function

of normalised time, 0 ≤ t = δt/τELM ≤ 1. Modified hyperbolic tangent, or mtanh,

models:

F (r) =
aped − asol

2

[

mtanh
(

aetb − r

2a∆

, aslope

)

+ 1
]

+ asol (6.4)

with

mtanh(r, b) =

(

(1 + br)er − e−r

er + e−r

)

(6.5)

20See [25] for a brief summary.
21The shot numbers of these discharges are #24452, #24459 and #24763.
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can be used to parameterise the density and temperature profiles in terms of the

four model parameters, {a}. By binning the model parameters corresponding to

the different time points into five time ranges it is possible to obtain mtanh profiles

characteristic of the experimental pedestal evolution, described by the average model

parameters in each of the time bins.
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Figure 6.5: The density [figure 6.5(a)] and temperature [figure 6.5(b)] profiles
generated by the composite-binning technique for five equally sized
temporal bins representing the entire inter-ELM period correspond-
ing to the times (normalised to the ELM period) 0.1, 0.3, 0.5, 0.7
and 0.9 (i.e. the temporal bins correspond to 0-20%, 20-40%, 40-60%,
60-80% and 80-100% of the ELM cycle).

The five electron temperature and density profiles are shown in figure 6.5. It can

be seen that whilst there is little difference in the temperature profile throughout

the ELM cycle22 the density continues to evolve up until the ELM crash. In both

cases it appears that the peak gradient is fixed to some value, though the region over

which this peak gradient exists increases with time for the density. It is useful to

look at the net pressure evolution, as it is this which is important for the instabilities

underlying the EPED model. The pressure profile evolution is given in figure 6.6

along with the corresponding pressure gradient profiles. It can be seen that whilst

the peak pressure gradient increases by around 10% throughout the ELM cycle the

region of steep normalised pressure gradient (> 10 kPa for example) increases by a

factor ∼ 2−3, agreeing with the behaviour shown by the density evolution. It should

be noted that the use of fixed functional forms (such as the mtanh form used here)

can emphasise or obscure certain features of the profile measurements. For example

the mtanh form can overestimate the peak gradient whilst underestimating that near

the top and foot of the pedestal 23 on DIII-D measurements [197]. Whilst the use

22As the profiles are generated from binned data the collapse and recovery of the profiles are
not observed here. High temporal resolution data from JET shows that the crash and subsequent
pedestal recovery can occur rapidly compared to the inter-ELM time scale [196].

23Indeed this is (at least part of) the motivation for the BCP constraint introduced by EPED1.6.

126



Chapter 6. GK study of MAST pedestal 6.2. Testing MAST pedestal

of such functional forms is still desirable24 it is important to retain these issues in

mind whilst drawing conclusions based upon results using these profiles.
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Figure 6.6: The pressure [figure 6.6(a)] and corresponding gradient [figure 6.6(b)]
profiles for the five times through the ELM cycle considered here, cal-
culated using the density and temperature profiles given in figure 6.5.

6.2.2 MHD stability analysis

Now that the pressure profile has been obtained at the five times (normalised to the

ELM period) t =0.1, 0.3, 0.5, 0.7 and 0.9, it is possible to perform MHD (PB and n∞)

stability analysis for the evolving pedestal. In order to achieve this it is necessary to

reconstruct MHD equilibria at each of the five time points, with particular focus given

to the edge region. In addition to the electron density and temperature measurements

provided by the Thomson scattering system this equilibrium reconstruction requires

information about the main species ion profiles as well as impurity ion concentrations.

This extra information can alter the equilibrium reconstruction and the bootstrap

current, which is known to play a key role in the PB stability. The MHD stability

may be sensitive to the assumptions made regarding these ion quantities and it is

useful to check how the stability varies as these assumptions change. In particular

two models for the ion temperature have been tested; the first of these is the equal

temperature assumption Ti = Te whilst the second is known as the “flat” model

where Ti = Te is assumed in the core but in the pedestal Ti is found by extrapolating

from the pedestal top using the Te gradient from the core such as to avoid a steep

ion temperature gradient25. Carbon is assumed to be the main impurity species (as

24These functional forms help to work around the limitations of low diagnostic resolution. In
addition they provide a useful way to generate the profiles required as input to predictive PB
calculations, which can also be compared easily to experiment through the model parameters.

25Edge ion temperature measurements on MAST indicate that in low collisionality discharges the
flat model is appropriate whilst in high collisionality cases the equal temperature model is suitable
[198].
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the divertor targets are made from carbon fibre composites) and the effective charge,

zeff, is taken to be 2 everywhere, consistent with experimental measurements from

MAST [199], leading to the main species ion density being given by ni = 5ne/6. Using

the boundary shape, total plasma current and vaccuum magnetic field calculated in

equilibrium reconstructions made using EFIT [200] along with calculations of the

bootstrap current using the Sauter formula [170, 171], the HELENA code [201] can

be used to reconstruct high precision equilibria.

The HELENA code also provides a calculation of the n∞ stability as a function of

flux surface so that the region unstable to n∞ modes is known immediately once the

equilibrium has been found. The n∞ unstable region for the five experimental time

points is shown in figure 6.7 for both ion temperature models. It can be seen that the

unstable region expands throughout the ELM cycle as the pedestal expands. The

choice of the ion temperature gradient model has little impact on the n∞ stability.

This insensitivity to the ion temperature model has been found for all the stability

calculations considered here and hence following results will all be for the Ti = Te

model.
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Figure 6.7: The region in normalised poloidal flux, ψN , unstable to n∞ balloon-
ing modes throughout the ELM cycle for equal (blue solid, square)
and flat (red dashed, circle) ion temperature models.

Whilst this procedure allows the MHD stability of the experiment to be tested at each

of the five time points, it provides no information about how far from the stability

boundary the experiment is. In order to map out the stability constraints used by

the EPED model it is necessary to scale the pressure pedestal height at fixed width.

This can be achieved by scaling the density and temperature profiles by some factor

and the resulting profiles are characterised by the peak normalised pressure gradient,

αmax. The procedure used here is to scale the density profile for fixed temperature as

128



Chapter 6. GK study of MAST pedestal 6.2. Testing MAST pedestal

this is closest to the experimental behaviour26. For each new set of profiles the full

equilibrium reconstruction procedure can be performed, including a self-consistent

calculation of the bootstrap current.

As the pressure profile is scaled the n∞ ballooning stability provided by HELENA can

be used to find the limiting gradient (i.e. the KBM constraint), following either an

EPED1.5 or EPED1.6 (BCP) approach. To calculate the PB stability the HELENA

generated equilibrium can be used with the finite-n stability code ELITE introduced

earlier. In these calculations the toroidal mode number has been limited to the range

5 ≤ n ≤ 25 consistent with the range observed for ELM filaments in MAST [202].

The growth rate of the finite-n PB modes (for n = 25) is shown as a function of the

maximum normalised local pressure gradient, αmax, in figure 6.8 based on scaling

the pressure profile for the case just after the ELM crash (i.e. for a narrow pedestal)

and just before the ELM crash (i.e. for a wide pedestal). It can be seen that the

experimental case just before the ELM crash is PB unstable and that the growth

rate increases rapidly for small increases in the normalised pressure gradient above

the experimental value. The case just after the ELM crash is stable to PB modes

and αmax must be increased by a large amount (almost a factor 2) in order to become

unstable.
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Figure 6.8: The growth rate, γ, of n = 25 PB modes normalised to the Alfvén
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)

(for the core plasma) calculated
by ELITE as a function of maximum normalised pressure gradient,
αmax, for the cases immediately after (blue solid) and just before
(red dashed) the ELM crash. The experimental values of αmax are
indicated by the circle and star symbols.

The PB stability constraint can be represented by the αmax for which the growth

rate found by ELITE increases above zero (or some small threshold value). This

has been calculated for each of the five time points during the ELM cycle and is

26Repeated studies scaling the temperature profile for fixed density have also been performed but
yield very similar results despite the different dependence of the bootstrap current on density and
temperature gradients.
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shown in figure 6.9 along with the experimental values of αmax. It can be seen that

the experimental curve crosses the stability boundary just prior to the ELM crash,

which is consistent with the EPED model. The experimental value of αmax remains

roughly constant (consistent with the local gradients being limited to a critical value)

but the stability boundary moves to lower gradients as the pedestal widens. This

highlights the global nature of the PB modes whereby both the pedestal gradient

and width influence the stability.
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Figure 6.9: The critical αmax representing the n = 25 PB stability boundary,
αcrit, (red circles) above which PB modes are unstable, calculated
by ELITE for each of the five time points during the ELM cycle.
The experimental value of αmax (blue squares) is given for each time
point. The experiment enters the unstable region just before the
ELM crash.

It is possible to represent the data shown in figure 6.9 in terms of the pedestal height

rather than αmax and this is given in figure 6.10. In addition the limiting pedestal

height determined by various n∞ stability constraints (corresponding to 1% in ψN

(EPED1.5), 50% of the pedestal (EPED1.6) and 100% of the pedestal being n∞

unstable) are shown along with the experimental pedestal height. This shows that

whilst the experiment crosses the n = 25 PB stability boundary immediately prior to

the ELM crash none of the n∞ stability constraints cross the PB stability boundary

at any point. Indeed the experimental pedestal height lies well above both the EPED

constraints tested, though reasonable agreement can be obtained using the constraint

that 100% of the pedestal is n∞ unstable. Extrapolating this stability boundary to

later times suggests that it would cross the PB stability boundary for t ∼ 1. These

results suggest that an EPED type model could be successful for describing the

evolution and final state of the MAST H-mode pedestal (in the type-I regime studied

here) but highlights the problems with using the local stability of n∞ ballooning

modes to provide a second global stability constraint on the pedestal. Indeed the

precise definition of this constraint strongly effects the results obtained here whilst
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a truly global calculation could provide a constraint without this ambiguity.
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Figure 6.10: The limiting pedestal height, Pped, based on n = 25 PB (blue) and
various n∞ ballooning stability criteria as a function of normalised
time. The n∞ constraints are such that the pedestal height is lim-
ited for an unstable region equal to 1% in ψN (purple, EPED1.5
like), 50% of the pedestal width, ∆, (green, EPED1.6 like) and
100% of ∆ (red). The experimental pedestal height is also shown
(black).

As the ELM cycle progresses the pedestal is widening and as such the results shown

in figure 6.10 can be interpreted as representing the typical EPED predictive plot,

such as that shown in figure 6.4. It is useful however to apply a procedure identical

to that used by EPED, in order to clearly indicate the prediction that would be made

by such a model. This involves taking the equilibrium corresponding to t = 0.9 and

scanning in both the pedestal height and width in order to calculate the stability

boundaries and to find their intersection. The results of such a study are shown

in figure 6.11 along with the experimental value immediately prior to the ELM

crash. This clearly shows that the two n∞ constraints often employed in the EPED

model would not provide a good prediction of the pedestal properties. The new

constraint tested here which requires the entire pedestal to be n∞ unstable provides

a prediction which is much closer to that observed by experiment, with a predicted

pedestal height approximately 10% larger than that observed at t = 0.9. Whilst the

predicted pedestal height is reasonably close to the experimental value, the predicted

pedestal width is about 50% larger than the experimental observation.

The results presented here all suggest that an EPED type model for the limiting

pedestal properties (and the implied inter-ELM evolution) is applicable to the type-I

ELMing H-mode on MAST studied here but that the definition of the n∞ (i.e. KBM)

constraint used in recent EPED revisions is not suitable here. Indeed a new con-

straint requiring 100% of the pedestal to be n∞ unstable has been tested and shows
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Figure 6.11: The limiting pedestal height, Pped, based on n = 25 PB (blue) and
various n∞ ballooning stability criteria as a function of pedestal
width based on scans around the equilibrium for t = 0.9. The n∞
constraints are as in figure 6.10. The experimental pedestal height
and width measured at t = 0.9 is shown by the star.

reasonable agreement with experiment. These n∞ constraints are somewhat arbit-

rary, with no physics justification for their selection. Within the limits of the current

procedure, which enforces a fixed functional form for the density and temperature

profiles, it is unlikely that a well justified constraint can be obtained27 and the best

approach may be to calibrate the n∞ criteria for a given machine. This provides

uncertainties to the prediction of the pedestal properties on future devices. Improve-

ments in the profile descriptions and the resulting equilibria, combined with better

stability calculations (such as global gyrokinetics), may offer a means to minimise

this problem.

6.3 A gyrokinetic study of the MAST pedestal re-

gion

Whilst there is much evidence to suggest that the type-I ELM crash is associated

with crossing the PB stability boundary, the actual pedestal evolution up to this

point is controlled by the balance of particle and heat sources and the corresponding

transport. As in the core, edge transport is likely dominated by microinstability

driven turbulence. The gyrokinetic description of these instabilities is more complete

(through the inclusion of kinetic effects etc.) than that provided by MHD models,

27This is due to the fact that in experiment the limiting gradient on a given surface will depend
upon the limiting gradients found further out, resulting in a complex dependence likely to lead to
profiles not well described by a simple functional form.
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motivating a gyrokinetic study of the pedestal region. Further motivation for the

use of gyrokinetics in this region arises as the n∞ ballooning stability calculations

used by the EPED model are in fact acting as a proxy for the KBM stability. The

correspondence between n∞ MHD modes and KBMs has not previously been tested

in the edge region. By performing a linear gyrokinetic study of the pedestal region

it is possible to compare the region unstable to n∞ MHD modes and KBMs.

The use of gyrokinetics in the edge region of a tokamak plasma is challenging and

the validity of the gyrokinetic model can be strained in this region. Recalling that

the derivation of the GKE introduced in section 3.4 involves the ordering ρ∗ =

ρs/Leq ≪ 1 (and a subsequent expansion), it is clear that in the pedestal, where the

equilibrium length scales are short, this ordering can be violated28 and the GKE is no

longer strictly applicable. The profile of ρ∗ in the edge region29 for the H-mode case

at t = 0.5 discussed in section 6.2 is shown in figure 6.12, highlighting the violation

of the small ρ∗ ordering for large ψN . Whilst formulations of gyrokinetics applicable

to the conditions30 found in internal transport barriers and the edge region are being

developed [203] the implementation and verification of this system into numerical

simulations is still some way off.
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Figure 6.12: The ratio of ion gyroradius, ρi, to the temperature length scale,
LT as a function of normalised poloidal flux, ψN , calculated for the
t = 0.5 profiles given in figure 6.5(b).

28The assumption that the fluctuations associated with the microinstabilities are much smaller
than the equilibrium values can also be questionable near the edge where the profiles tend towards
zero and δn/n ∼ O (1) (e.g. see figure 2.3).

29The profile shown is for ions and uses Leq = LT as LT < Ln.
30In particular allowing relatively large normalised fluctuation amplitudes, e.g. qφ1/T ∼ O (1).
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6.3.1 Microstability during the ELM cycle

As a first step towards a complete gyrokinetic study of the pedestal region it is

desirable to exploit existing gyrokinetic codes to investigate the microstability of the

H-mode edge region. The data presented in figure 6.12 indicates that the validity of

the standard formulation of gyrokinetics is indeed being pushed in the steep gradient

region of the pedestal and as such the results obtained in this region should be

treated with caution, though are likely to be indicative of the full kinetic behaviour

(and are an improvement on MHD/fluid treatments in terms of including FLR and

kinetic effects). In particular ρ∗ drops quite quickly (and smoothly) as ψN is reduced

and gyrokinetics in the transition and shallow gradient regions should be reasonable.

Further to this the electron physics will remain well described by the GKE throughout

the region studied due to the smaller Larmor radius.

GS2 is a local electromagnetic gyrokinetic initial value code [128] which, in the

linear mode used here, returns the eigenfunction and complex mode frequency of the

dominant instabilities as a function of the binormal wavenumber, ky, on a specified

flux surface of a given equilibrium. Using the five equilibria generated for the MHD

study, discussed in section 6.2.2, as input to GS2 it is possible to map out the

microstability evolution on a given flux surface through the ELM cycle. By repeating

this for a number of flux surfaces in the edge region, the stability of the pedestal

and shallow gradient regions throughout the ELM cycle can be resolved in order

to give some insight into the dynamics of the microstability evolution. This allows

the identification of the dominant instabilities and provides the opportunity to seek

KBMs in the region found to be unstable to n∞ MHD modes.

To probe the edge region 12 evenly spaced flux surfaces have been studied for

0.94 ≤ ψN ≤ 0.995 at each of the five time points during the ELM cycle. These

simulations retain collisions and electromagnetic perturbations, which are important

towards the edge, but neglect sheared plasma flows. The sheared plasma flows may

be significant in the pedestal but are likely to be small in the shallow gradient re-

gion [204]. Each simulation includes three gyrokinetic species (deuterium, electrons

and carbon) which are assumed to have the same density and temperature length

scales31 as electrons, consistent with the composite profiles discussed in section 6.2.1.

Whilst a non-adiabatic electron response is included in solving the gyrokinetic sys-

tem, the binormal wavenumber range, which consists of 80 points, is restricted to

near ion scales, 0.07 ≤ kyρi ≤ 5.5, such that electron scale instabilities (such as

the electron temperature gradient mode) are excluded, allowing focus to be given to

KBMs (which are ion scale instabilities).

31Simulations using the flat ion temperature model yield very similar results to those with the
equal model.
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The combined output of these simulations consists of a large amount of data32 and it

is useful to define a simple metric to describe the character of the instabilities allowing

a summary of the results to be made before a more detailed study is presented. In

electromagnetic simulations the parallel perturbed magnetic vector potential, A‖, can

lead to a net radial perturbation to the magnetic field line such that the perturbed

magnetic field line does not return to the equilibrium flux surface. Such instabilities

are referred to as tearing, whilst instabilities in which the perturbed magnetic field

line returns to the equilibrium flux surface are known as twisting33. It is possible

to characterise this behaviour through the “parity factor”, Cpar, defined as:

Cpar = 1 −
∣

∣

∣

∫

A‖ dθ
∣

∣

∣

∫

∣

∣

∣A‖
∣

∣

∣ dθ
(6.6)

such that Cpar = 0 and Cpar = 1 correspond to pure tearing and twisting parity

instabilities respectively. By considering only the most unstable instability at each

ψN and t the amount of data can be reduced substantially.
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Figure 6.13: The parity factor, Cpar, of the dominant instability in the edge
region during the ELM cycle. The region unstable to n∞ ballooning
modes (lines with points) agrees quite well with the twisting parity
region (red).

The parity factor for the dominant instabilities is shown in figure 6.13 as a function

of ψN and t. There are two distinct regions in the parity data, and these correspond

well to the shallow and steep gradient regions. The dominant instabilities in the

shallow gradient region have tearing parity whilst those in the steep gradient are

twisting in nature. Example φ and A‖ eigenfunctions for these twisting and tearing

modes are given in figure 6.14 for ψN = 0.95 and ψN = 0.98 at t = 0.5, highlighting

the distinction between tearing and twisting parity. The region found unstable to n∞

32In total there are 5 times, 12 surfaces and 80 kyρi values resulting in 4800 data points, each
with a frequency, growth rate and 3 eigenfunctions (φ, A‖ and B‖).

33Most commonly studied microinstabilities, such as the ITG mode, are twisting in nature. Indeed
electrostatic instabilities can have no tearing component (although finite β modifications allow a
tearing component to develop [205]).
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ballooning modes is overlaid on the parity data. It can be seen that the n∞ unstable

region is similar to (though slightly larger than) the twisting parity region.
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Figure 6.14: The φ and A‖ eigenfunctions (normalised to the maximum value of
φ, φmax) for the dominant instabilities at t = 0.5 on surfaces ψN =
0.98 [figure 6.14(a), figure 6.14(b)] and ψN = 0.95 [figure 6.14(c),
figure 6.14(d)] with kyρi = 0.149 and kyρi = 3.276 respectively.
These correspond to twisting and tearing parity modes respectively.

To identify the specific type of instabilities found in these simulations it is necessary

to investigate the dependencies that the growth rate, γ, has on the various equilib-

rium gradients and other plasma parameters. It is possible to identify the twisting

parity modes found in the steep gradient region as KBMs due to the rapid increase

in γ with increasing β, shown in figure 6.15(a), which is expected for KBMs34 (and

opposite to that typically observed for other ion scale twisting parity instabilities

[206]). The good agreement seen between the twisting parity and n∞ regions there-

fore implies that the KBM stability is indeed well described by the n∞ stability

calculations. The tearing parity modes are also found to respond strongly to β as

shown in figure 6.15(b). Further to this the electron temperature gradient is found

to be destabilising for the tearing parity modes, which is consistent with the beha-

viour expected for microtearing modes (MTMs) [101, 207–213]. It can be noted that

34In addition the growth rate is also found to increase with both density and temperature gradi-
ents, which is again characteristic of KBMs.
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MTMs have been observed in simulations near the edge of ASDEX-Upgrade [214]

and JET [215].
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Figure 6.15: The growth rate, γ, of the dominant twisting [figure 6.15(a)] and
tearing [figure 6.15(b)] parity instabilities as a function of β based
on a scan about the equilibrium corresponding to t = 0.5 and ψN =
0.98 and ψN = 0.95 respectively. The experimental value of β is
indicated by the vertical blue line. The effect of varying β is simply
to scale the strength of the magnetic perturbations (A‖ and B‖) in
the gyrokinetic Maxwell’s equations.

Whilst it has been found that the dominant instabilities in the steep gradient region

are KBMs and in the shallow gradient region they are MTMs, the instabilities vigour

(i.e. the growth rate) is not revealed through the parity plots generated so far. This

is crucial to develop a deeper understanding of the pedestal behaviour. For example,

whilst the dominant modes in the steep gradient region are KBMs it is possible that

the MTMs are simply slightly less unstable than the KBMs here and could therefore

also be playing an important role in setting the critical pedestal gradient observed

experimentally. This could be seen by looking at plots of γ (kyρi) as the MTMs and

KBMs are well separated in kyρi. To investigate the behaviour of these instabilities

in more detail it is useful to look at the behaviour of the growth rate as a function

of kyρi, ψN and t.

The growth rate as a function of kyρi and ψN is shown for t = 0.1 and t = 0.9 in

figure 6.16. The separation in kyρi of the MTMs and KBMs is clearly apparent,

with kyρi > 1 indicating MTMs whilst KBMs are at lower kyρi values. It can be

seen that at all radial locations there is only a single type of instability unstable:

MTMs are stable in the steep gradient region whilst KBMs are stable in the shallow

gradient region. The growth rate of the KBMs for t = 0.9 shows an interesting

behaviour. There are two peaks in the growth rate as a function of ψN and these

occur at the foot and “knee” of the pedestal35 where the gradients are below the
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Figure 6.16: The growth rate spectra, γ (kyρi), as a function of ψN for t = 0.1
[figure 6.16(a)] and t = 0.9 [figure 6.16(b)]. The unstable modes
with kyρi > 1 are MTMs whilst those at low kyρi are KBMs.

maximum value. In the steep gradient region the KBMs are in fact only marginally

unstable. The KBMs found here are strongly sensitive to the shear (with the growth

rate dropping for reductions in the shear) and become significantly more unstable

for small increases in the shear. In this steep gradient region the magnetic shear

is reduced due to the bootstrap current. Recalling that the mtanh profiles, used to

represent the density and temperature, can overestimate the peak gradient then it is

clear that the magnetic shear in this steep gradient region may be slightly too low,

which will modify the KBMs stability. As the gradients increase at a given location

in the shallow gradient region (as part of the pedestal expansion) the MTMs that

exist there are stabilised. However, by comparing the MTM stability at ψN = 0.95

for the two times shown it is clear that as the pedestal expands (at higher ψN) the

MTM growth rate increases despite the fact that the gradients at this location are

unaltered. As ne is increasing here, the length scales are also increasing, and this

is what provides the destabilising influence. This suggests the MTMs may become

more difficult to stabilise as the pedestal expands, therefore making it more difficult

for the pedestal to expand further inwards. To see this more clearly it is useful to

look at γ (kyρi, t) for ψN = 0.95 as shown in figure 6.17(a) which clearly shows the

increase in MTM growth rate as the ELM cycle progresses.

6.3.2 Exploring the pedestal expansion

The contour plot of γ (kyρi, t) for ψN = 0.97 shown in figure 6.17(b) shows that as

the gradients steepen on a surface in the shallow gradient region the MTMs become

less unstable until the KBM threshold is reached and KBMs become the dominant

instability. Better understanding the nature of this transition may help shed light

upon the following questions:

35The knee of the pedestal is the location where the shallow and steep gradient regions connect.
This is also often known as the transition region or the pedestal shoulder.
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Figure 6.17: The growth rate spectra, γ (kyρi), as a function of t for ψN = 0.95
[figure 6.17(a)] and ψN = 0.97 [figure 6.17(b)].

• Why does the density pedestal expand whilst the temperature pedestal is

fixed36?

• Does anything stop the pedestal expansion37?

To probe the transition between MTMs and KBMS in more detail and to try to

answer these questions it is useful to perform artificial parameter scans around the

experimental equilibria. This allows the response to changes in various parameters,

such as the density and temperature length scales, to be probed.

In investigating these questions there are three scenarios of interest:

(a) A surface initially in the shallow gradient region which enters the pedestal.

(b) A surface which remains in the shallow gradient region throughout the ELM

cycle.

(c) A surface which is in the transition region at the end of the ELM cycle (i.e. it

doesn’t quite enter the pedestal before the ELM crash).

These surfaces are illustrated in figure 6.18 and here we specifically take ψN = 0.97

and t = 0.5 for surface a, ψN = 0.95 and t = 0.9 for surface b and ψN = 0.96 and

t = 0.9 for surface c.

6.3.2.1 Surface a

In the experimental evolution on surface a the density gradient increases whilst the

temperature gradient remains roughly fixed. To probe this behaviour the normalised

inverse density length scale, Lref/Lne
, has been scanned around its nominal value

(whilst scaling the gradient of β, β′, consistently38) and the resulting effect on the

36This will depend upon the particle and heat sources as well as the instabilities present and as
such can’t be answered fully by the linear gyrokinetic study presented here.

37Aside from entering the PB unstable region.
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Figure 6.18: Cartoon representing the pressure profile at t = 0.5 (dashed green)
and t = 0.9 (solid red). The three surfaces about which artificial
scans are performed are indicated schematically by the points which
represent a ψN = 0.97 at t = 0.5, b ψN = 0.95 at t = 0.9 and c

ψN = 0.96 at t = 0.9.

growth rate spectra is shown in figure 6.19(a). It can be seen that for the lowest

density gradient investigated the MTMs are strongly unstable, but that increasing

this gradient up to the experimental value provides a stabilising influence (both

in the peak γ and in the range of kyρi which is unstable). Further increases in

the gradient above this point remain stabilising to the MTMs, however increasing

Lref/Lne
above 4 results in KBMs becoming strongly unstable39. If the temperature

gradient is scaled at fixed density gradient (again scaling β′ consistently) somewhat

different behaviour is seen, as shown in figure 6.19(b). Here it can be seen that as

the temperature gradient is increased from the experimental value there is a small

stabilising impact on the MTMs but these modes remain unstable throughout the

range studied40. At Lref/LTe
= 8 the KBMs also become unstable such that both

MTMs and KBMs are unstable at the same time. It can be noted that in both the

temperature and density gradient scans the KBM onset occurs at the same β′ value41

highlighting that it is the pressure gradient that is the key source of free energy for

the KBM.

The behaviour observed in figure 6.19 provides a simple picture for why the density

pedestal can expand inwards whilst the temperature pedestal remains fixed. As the

density gradient increases on a surface in the transition region the MTM is stabil-

38This parameter is related to α (recall eqn. 6.1) and increases as the density and temperature
gradients increase.

39In addition to the change in kyρi at which the growth rate peaks, there is a clear switch in
parity (highlighted by the black line in figure 6.19(a)) indicating a switch in mode from MTM to
KBM.

40There is however an upshift in the kyρi associated with the MTMs which may be expected to
lead to a slight reduction in the transport associated with these modes.

41Indeed the γ vs. β′ data agrees very well between the density and temperature gradient scans
for the low kyρi modes.
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Figure 6.19: The variation in γ (kyρi) as the inverse density [figure 6.19(a)] and
temperature [figure 6.19(b)] length scales are varied from the equi-
librium values on surface a. The experimental value is indicated
by the vertical white line whilst the black line is the contour where
Cpar = 0.9 (the tics point towards higher values).

ised, removing a transport mechanism and allowing the pressure gradient to increase

further. This can continue until the KBM limit is reached. Due to the strongly stiff

nature of the KBM and the fact that it responds equally to density and temperature

gradients any further attempts to steepen the pressure gradient through an increase

in heat or particles arriving at the surface will be balanced by an increase in turbu-

lent transport here. The fact that increasing the temperature gradient does not lead

to a strong stabilisation of the MTM may prevent the temperature gradient from

increasing significantly as any increases may lead to an increased heat flux. Whilst

this simple picture seems to explain the different density and temperature evolution

observed for this specific MAST scenario it is necessary to perform nonlinear sim-

ulations to probe the behaviour of the particle and heat fluxes through scans such

as those presented here. This is beyond the scope of the work presented here. Im-

portantly the available heat and particle sources may also impact on the evolution

observed.

The variation in β′ which occurs as the density and temperature gradients are varied

has an influence on the growth rate, as shown in figure 6.20. It can be noted that

the small stabilising effect seen for increases in Lref/LTe
around the experimental

value is in fact due to the increase in β′ and scans keeping this fixed show the MTMs

becoming more unstable for increasing temperature gradient. It is useful to recall

that surface a is initially in the transition region and the density gradient has already

started to steepen up so that β′ is larger than in the shallow gradient region. It might

be anticipated that the destabilising influence of increasing the temperature gradient

is weakened in this case. By performing a similar investigation on surface b, which

is in the shallow gradient region, this effect can be probed.
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Figure 6.20: The variation in γ (kyρi) as the gradient in β, β′ is varied for surface
a. The experimental value is indicated by the vertical white line
whilst the black line is the contour where Cpar = 0.9 (the tics point
towards higher values).

6.3.2.2 Surface b

Scans in the density and temperature gradients identical to those presented in fig-

ure 6.19 have been performed using surface b, which is in the shallow gradient region,

as a starting point and are shown in figure 6.21. The behaviour of the growth rate

as the density gradient is changed is very similar to that shown in figure 6.19(a),

though the experimental point is much further from the KBM threshold. The tem-

perature gradient scan shown in figure 6.21(b) shows significantly different behaviour

from that seen in figure 6.19(b) however. Here the increase in temperature gradient

is seen to be destabilising throughout the range from the experimental position to

the KBM threshold. This strengthens the picture developed previously for why the

density pedestal expands whilst the temperature pedestal remains fixed. Compar-

ing figure 6.19(b) with figure 6.21(b) it can be seen that as the density gradient

increases it becomes possible for the temperature gradient to increase without the

MTM growth rate increasing significantly. This may provide a window in which

the temperature gradient is able to increase, however due to the proximity of the

experiment to the KBM onset seen in figure 6.19(b) this opportunity is likely to be

limited42.

During the experimental pedestal evolution the gradients do not increase significantly

on surface b, the main change in the equilibrium is an increase in β due to the

gradients increasing at larger ψN . To probe this behaviour an artificial scan varying

only β has been performed43 using surface b as a starting point, and the results are

42In other discharges and tokamaks the separation of the KBM onset and the point at which
increases in the temperature gradient are possible could be separated by a large distance, allowing
more significant variation in the temperature gradient.
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Figure 6.21: The variation in γ (kyρi) as the inverse density [figure 6.21(a)] and
temperature [figure 6.21(b)] length scales are varied from the equi-
librium values on surface b. The experimental value is indicated
by the vertical white line whilst the black line is the contour where
Cpar = 0.9 (the tics point towards higher values).

shown in figure 6.22. It can be seen that as β is increased the MTMs become

more unstable and for sufficiently high β the KBMs can also be driven unstable.

It can be noted that the β at which KBMs are destabilised is significantly above

the experimental value. Noting that the experimental conditions are those at the

end of the ELM cycle it is clear that the onset of KBMs seen here will not be

experienced in experiment. Despite this the general trend seen here, where both

the MTMs and KBMs become more unstable on surfaces in the shallow gradient

region as the pedestal expands, suggests that there may be a natural width for

which further pedestal expansion leads to a significant degradation of the confinement

further towards the core.
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Figure 6.22: The variation in γ (kyρi) as β is varied for surface b. The experi-
mental value is indicated by the vertical white line whilst the black
line is the contour where Cpar = 0.9 (the tics point towards higher
values).

43A similar scan also varying β′ in order to keep the β length scale fixed shows similar behaviour
to the scan in β only.
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6.3.2.3 Surface c

The final region of interest is surface c, which is just entering the transition region

at the end of the ELM cycle. As the pedestal evolves the gradients further into the

transition region (larger ψN) steepen, leading to an increase in β on surface c. To

study this the β has been scaled consistently with the density, such that Lref/Lne

increases for increasing β, and β′, which is consistent with the experimentally ob-

served evolution. The results of this scan are shown in figure 6.23. It can be seen

that for relatively small increases in β above the experimental value that there is

an onset of KBM modes. This is similar to the behaviour shown in figure 6.22 but

the KBM onset here is much closer to the experimental value than on surface b, due

to the increased gradients in the transition region. This shows that the transition

region shortly prior to the ELM crash is very close to a position in β and β′ for

which both MTMs and KBMs are strongly unstable over a large range of kyρi. The

transport due to KBMs can be large [189] and it is has also recently been shown that

MTMs can drive significant levels of heat flux [216, 217]. It might be expected that

the situation above β = 0.02 shown in figure 6.23 will be associated with a strong

increase in the transport levels. This is likely to make it difficult for the pedestal to

expand beyond this point in operating space. Nonlinear simulations investigating the

transport due to the MTMs and KBMs and the coupling between these modes are

extremely challenging though may yield useful insights into the processes occurring

at the top of the pedestal.
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Figure 6.23: The variation in γ (kyρi) as β is varied for surface c. The experi-
mental value is indicated by the vertical white line whilst the black
line is the contour where Cpar = 0.9 (the tics point towards higher
values).
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6.4 Discussion

In this chapter the evolution of the MAST H-mode pedestal in the type-I ELMing

regime has been studied. Experimental measurements of the density and temper-

ature profiles during the ELM cycle show that the density pedestal width increases

throughout the ELM cycle whilst the temperature pedestal width remains roughly

constant. The peak pressure gradient varies by less than 10% over the ELM cycle,

consistent with being limited to some critical value.

MHD analysis of five equilibria representing the entire ELM cycle have been used

to probe the PB and ideal n∞ MHD ballooning stability. This shows that the re-

gion unstable to n∞ modes occupies the steep gradient region and expands as the

pedestal expands. Throughout the ELM cycle the region unstable to n∞ modes is

wider than 1% in ψN and 50% of the pedestal width, which are the two constraints

invoked by versions 1.5 and 1.6 of the EPED model. It was found that a constraint

based on 100% of the pedestal being n∞ unstable gave much better agreement with

experiment. The PB mode with n = 25 becomes unstable just prior to the ELM

crash, consistent with the PB model for the ELM cycle.

The equilibrium immediately prior to the ELM crash was used as a basis for scans

in the pedestal width and height, with the resulting data used to calculate the PB

and n∞ stability constraints, following an EPED type approach. The intersection

of the PB and n∞ stability curves provides a prediction of the pedestal height and

width immediately prior to the ELM crash. Three different n∞ pedestal height

constraints were tested, based on the EPED1.5 and EPED1.6 constraints and a

constraint requiring 100% of the pedestal to be n∞ unstable. It was found that

the EPED constraints did not cross the PB boundary for the entire range of data

studied, suggesting there would be no ELM crash. The prediction using the 100%

criterion yields a pedestal height approximately 10% larger than that observed at

a normalised time t = 0.9 whilst the pedestal width is about 50% larger44. Tests

of the EPED model on a number of discharges from many standard aspect ratio

tokamaks typically show predictions of the pedestal height which vary by up to 20%

from the observations [110], suggesting the prediction for MAST found here is within

the usual model accuracy. Overall it appears that the approach used in the EPED

predictive model is applicable to MAST (and other STs), suggesting that the physics

of the type-I ELM cycle is relatively unchanged between large and tight aspect ratio

tokamaks.

It is clear however, that there is some freedom within the approach used here which

can lead to large variations in the predictions achieved. The PB stability constraint

44Due to the relatively low gradient of the PB stability curve, shown in figure 6.11, it is clear
that the predicted pedestal height is fairly insensitive to the predicted width.
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depends upon the toroidal mode number, n, used. Whilst it may be expected that it

is the most unstable n which is the most relevant, the ELITE code used to calculate

the PB stability does not contain all the physics which may be relevant in setting

the peak n. Perhaps the clearest issue with the procedure used here is in selecting

the constraint to use in setting the n∞ limit. Whilst the EPED1.5 and EPED1.6

constraints have been used successfully for a substantial range of large aspect ratio

cases, here they yielded very poor predictions45. The 100% constraint introduced

here was found to provide much better predictions of the pedestal height and width.

Importantly none of these n∞ constraints have a clear physical justification. Whilst

it’s possible to calibrate this constraint for each existing tokamak for which predic-

tions are to be made, this approach is not possible for future devices such as ITER.

The EPED model states that the pedestal pressure gradient is limited to the critical

value for the n∞ ballooning mode (or KBM) onset. In theory it is possible to con-

struct a pedestal pressure profile which is precisely critical across the entire pedestal,

though due to the dependence of the bootstrap current on the pressure gradient this

becomes a complicated non-local problem. The BCP approach used in EPED1.6

attempts to approximate this by using a simple mtanh form for the profiles and then

requiring 50% of the pedestal to be at or beyond the critical value. The quality of

the fit of the functional form used to the experimental data46 will alter the precise

size of the unstable region obtained for the functional profiles required to match the

experimental data. The mtanh profiles used here are a very good fit to the MAST

data [3] which may help explain why the constraint of 100% of the pedestal being

unstable gave good agreement here. In the case of DIII-D the mtanh fits seems to

give slightly worse agreement with the data [197] suggesting that the BCP approach

is more applicable here. By calculating a critical pedestal profile for future machines

such as ITER it should be possible to select a functional form which closely matches

this. This could then be used as a basis for the typical EPED type studies that are

used to make predictions of the pedestal height and width, but using the 100% n∞

unstable constraint. Variations in the calculated bootstrap current (either through

a change in parameters, such as impurity concentration, or through the use of an

alternative model) are likely to effect the shape of the critical profile. If the optim-

ised pedestal profile significantly changes shape then this approach will no longer be

valid and either a new functional form must be selected or a BCP type approach

(possibly with a different width selection) will be required, i.e. the region required

to be n∞ unstable must be changed.

Whilst the n∞ stability is used as part of the EPED model, it is actually KBMs which

are thought to set the pedestal pressure gradient limit. The use of n∞ stability

45In fact the results shown in figure 6.11 suggest that the EPED based n∞ constraints will cross
the PB curve only for ∆ much larger than that seen in experiment.

46In other words how close the “non-locally optimised” profile is to the functional form.
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as a proxy to KBM stability is based upon both instabilities being described by

similar equations. Whilst this relation has been tested in the core through reasonable

agreement in the critical gradient [189] it has not been previously verified for edge

conditions. A linear gyrokinetic study of the equilibria used in the MHD investigation

indicates that KBMs are unstable in the steep gradient region. The region unstable

to KBMs agrees very well with that found for n∞ modes. It should be noted that the

accuracy of the gyrokinetic model in the steep gradient region is limited due to the

large ρ∗. A global treatment using a formulation of gyrokinetics suitable for ρ∗ ∼ 0.1

is required to capture the full physics important for the KBM, and the unstable

region may vary from that found here. Such simulations are not currently feasible,

though it can be noted that the relative success of the EPED model suggests any

modification should be relatively small.

These gyrokinetic simulations also show that in the shallow gradient region towards

the core, where ρ∗ is much smaller, MTMs are the dominant instability. These modes

are suppressed by the increasing density gradient and are stable in the steep gradient

region. On the surfaces which don’t enter the steep gradient region the MTMs survive

and become more unstable through the ELM cycle (due to increasing local β). The

expansion of the pedestal will depend upon the behaviour of the instabilities in this

shallow gradient region at the top of the pedestal. In order to probe this artificial

scans were performed around three different equilibria in the shallow gradient and

transition regions. This provides a simple plausible picture for the pedestal evolution

observed on MAST in terms of the microstability behaviour:

1. The steep pedestal pressure gradient is limited to near the KBM threshold.

2. MTMs dominate the shallow gradient region and limit the electron temperature

gradient achievable here.

3. The density pedestal can expand inwards as MTMs are stabilised by increasing

the density gradient, allowing the pressure gradient to increase further until

the KBM limit is reached.

4. As the pedestal expands the local β on surfaces further towards the core in-

creases, making the MTMs more unstable and therefore making it harder for

the pedestal to expand further through suppression of the MTMs.

5. Towards the end of the ELM cycle the pressure gradient transition region is

close to a position in β, β′ operating space where both KBMs and MTMs are

simultaneously unstable over a large range of kyρi. Entering this region may

trigger a large change in the transport properties and is likely to limit the

pedestal expansion.

As the evolution of the pedestal depends upon the behaviour of instabilities found in
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the shallow gradient region47 it may be expected that this picture will vary between

discharges and tokamaks. There have, however, been observations of unstable

MTMs at the top of the JET pedestal [215] and towards the edge of ASDEX-Upgrade

[214] suggesting the behaviour seen here for MAST may have relevance for other

devices.

6.4.1 Future work

The study presented here has provided some insight into the processes underlying

the pedestal evolution and tested an EPED type model for predicting the pedestal

properties seen on MAST. In addition to the improvements of the EPED approach

discussed earlier48 there are several areas of further work relating to the gyrokinetic

study which can help improve understanding further.

The simple picture developed for the pedestal evolution involving the evolution of

the MTM and KBM stability is based upon the results of linear simulations of the

experimental equilibria. These simulations did not include the effects of sheared

E ×B flows, which are thought to be significant, especially in the pedestal. Sheared

E ×B flows are likely to result in an up-shift in the KBM threshold gradient, though

this is likely to be a relatively small effect due to the stiffness of the KBM transport.

To build upon this study it is useful to try to better understand the instabilities in-

volved. This can be achieved by studies of the MTM and KBM in simplified systems

based on edge conditions. In relation to this it is important to note that electron

scale instabilities have been excluded from the results presented here. Preliminary

studies looking at 10 ≤ kyρi ≤ 100 have indicated the existence of electron temper-

ature gradient (ETG) modes in the shallow gradient region and these modes may

also be important in the pedestal evolution. Similar analyses of different types of

discharge and other tokamaks will provide some indication as to how generic this

process is and may indicate other instabilities which can play a role. In reality non-

linear simulations, which provide calculations of the heat and particle fluxes, are

required in order to verify the change in transport with increasing density gradients

in the transition region assumed in this simple picture. These simulations will be

challenging but could provide valuable insight.

The experimental gradients, and their evolution, occur due to a balance between heat

and particle sources and the resulting turbulent fluxes. To fully describe this process

a transport analysis is required including a range of effects such as neutral penetra-

tion. This is likely to be very challenging and rely upon accurate calculation of the

47The sources of heat and particles will also effect the pedestal evolution.
48These include the incorporation of more relevant effects into the PB stability calculation and

a change to the definition of the n∞ stability constraint.
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nonlinear fluxes. The implementation and use of a formulation of global gyrokinetics

valid in the pedestal region is required in order to improve the confidence of the

gyrokinetic results obtained in this region. Whilst such formulations are starting to

be developed the implementation and testing of these in numerical simulations is

still not likely for a significant period of time.
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Chapter 7

Summary and discussion

The effective confinement of heat and particles is crucial for the economic viability of

future fusion reactors. The turbulent transport of these quantities, driven by small

scale instabilities, greatly increases the rate at which they are lost from tokamaks,

leading to the need to build larger, more expensive, machines. By understanding this

turbulence and optimising operational scenarios to minimise its impact, confinement

can be improved for a fixed size device, greatly improving the cost per unit energy

produced.

The field of gyrokinetics has been developed in order to study theoretically this

plasma turbulence and the underlying linear instabilities. Numerous codes exist to

solve the gyrokinetic system and many exploit the separation of scales often ob-

served between the characteristic radial size of the instability and the length scale of

equilibrium variations to further simplify to a local system.

In this thesis two key questions for the gyrokinetic study of confinement have been

addressed:

1. How important is the effect of radial equilibrium profile variations, neglected

in the local system, for linear instabilities?

2. What role do microinstabilities play in the dynamics of the edge transport

barrier evolution observed during the favourable H-mode operation?

These two topics are at the forefront of current research and are among a number of

questions which must be addressed in order to improve understanding of transport

barriers near the edge. The main findings, limitations and remaining questions for

these two areas will now be discussed.
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7.1 The effect of equilibrium variations

A global electrostatic gyrokinetic ITG model for a simple large aspect ratio geometry

was developed in chapter 5. The application of the ballooning transformation and an

expansion in 1/nq′ was used to reduce this model to a local system. It was shown that

by considering the dependence of the local complex mode frequency, Ω0, on radius,

x, and wavenumber (or ballooning angle), k, it was possible to obtain an expression

for the global complex mode frequency, Ω, only in terms of parameters obtained from

solution of the local model. Furthermore, this procedure yields analytic expressions

for k (x) which can be used to reconstruct the global mode structure again based

purely on solution of the local model, predicting both the radial width and poloidal

orientation of the perturbation. Two classes of instability were identified, dependent

upon the equilibrium profiles present:

• Isolated modes which peak at the outboard midplane, θ = 0 where the growth

rate is maximised and are captured by existing local codes.

• General modes which peak at θ = ±π/2 with a reduced growth rate and are

not captured within the standard operation of local codes.

A code was developed to solve both local and global models, allowing the predictions

implicit in the analytic expressions for k (x) and Ω to be tested. Very good agree-

ment was found between the global mode’s properties and those predicted using this

procedure with the local solutions, for both classes of instability.

These results illustrate the significant finding that the solution of the global model

can be entirely reconstructed using multiple local solutions. This offers a novel means

to study the effect of radial equilibrium variations utilising existing local gyrokin-

etic codes through application of the trivially parallelisable procedure developed here.

This allows general geometry to be treated as well as including multiple effects of rel-

evance to experiment which have been neglected in the models used here. Moreover,

it provides an additional means to benchmark global codes against the results of well

benchmarked local simulations.

The ability to calculate an effective ballooning angle, k (x = 0), is appealing for

quasi-linear transport models. Not only does this provide an estimate for the growth

rate of the instability and its associated radial scale, both of which are crucial in such

models, but it also yields an estimate of the symmetry breaking due to the profile

shearing effects, which are important for momentum transport.

It is important to note that the analysis presented here is only applicable to linear

systems and the implications of these results for the nonlinear case remains an open

question. If the time taken for an initial perturbation to reach the nonlinear threshold

is much shorter than the time taken to form a radially coupled eigenmode then the
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nonlinear physics will dominate and the effects discussed here may be less important.

However, if this is indeed the case then the formation of ballooning structures, which

requires radial coupling, is no longer possible and one may expect shear damping to

suppress the instability [131]. A study of the relevant time scales is required in order

to make progress with this outstanding question and necessitates the use of a global

initial value code.

7.2 Stability of the pedestal

The spontaneous transition to a regime of high confinement, or H-mode, is observed

on many tokamaks. This is associated with a the formation of an edge transport

barrier, known as the pedestal, in which a steep pressure gradient is achieved. The

periodic collapse of the pedestal, associated with the onset of ELMs, limits the

achievable performance improvement and is concerning for ITER due to the ejection

of large amounts of energy in a very short time, leading to large power loads which

can cause significant damage.

A linear local gyrokinetic study of the pedestal and the neighbouring shallow gradi-

ent region has been presented in chapter 6 for a H-mode case from the spherical

tokamak MAST at five times between two ELMs. These simulations show that kin-

etic ballooning modes (KBMs) are the dominant instability in the pedestal whilst

microtearing modes (MTMs) are dominant in the shallow gradient region. Artifi-

cial parameter scans around the experimental equilibria have been used to probe

the behaviour of both the MTMs and KBMs as the density and temperature gradi-

ent length scales evolve. This provides a simple picture for the observed pedestal

evolution in terms of the microstability behaviour:

1. The pressure gradient in the pedestal is limited to near the KBM threshold.

2. MTMs dominate in the shallow gradient region and limit the electron temper-

ature gradient.

3. The density pedestal can expand inwards, provided there is a particle source,

as MTMs are stabilised by increasing density gradient, allowing the pressure

gradient to increase further until the KBM limit is reached.

4. As the pedestal expands, the local β on surfaces further towards the core

increases, making the MTMs more unstable. This may make it harder for the

pedestal to expand further through suppression of the MTMs.

5. Towards the end of the ELM cycle the pressure gradient transition region is

close to a position in {β, β′} operating space where both KBMs and MTMs are

simultaneously unstable over a large range of kyρi. Entering this region could
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trigger a large change in the transport properties and may limit the pedestal

expansion.

These results highlight the importance of the microinstabilities in the shallow gradi-

ent region in influencing the evolution of the density and temperature profiles.

The picture developed here is based on the results of linear simulations whilst the

experimental profile evolution will be determined by a balance of the heat and particle

sources with the nonlinear turbulent fluxes. Therefore an important next step in this

study is to develop nonlinear simulations in the shallow gradient region in order to

probe the behaviour of these fluxes through similar artificial scans to those performed

here. These are likely to be extremely challenging1 though will be an important test

of the picture developed here.

It is important to acknowledge that the short equilibrium length scales and large

normalised fluctuations near the edge and in the pedestal stretch the validity of the

standard formulation of gyrokinetics used in this study in the steep gradient region.

The development and implementation of gyrokinetics suitable for such regimes is

extremely challenging but very important in improving the accuracy of gyrokinetic

studies of the pedestal. Despite this, it is useful to extend the study performed

here to investigate the shallow gradient region, where the gyrokinetic model used

here is more valid, to other tokamaks to probe the similarities and differences across

machines and scenarios. Employing a global approach to study the mode transition

at the interface between the shallow and steep gradient regions is desirable to help

better understand the behaviour in this region.

1Indeed the first converged nonlinear simulations of MTMs in the core have only recently been
achieved [216, 217].
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Appendix A

Fluid equations from the kinetic

equation

Taking velocity moments of the ensemble averaged distribution function, fs, leads

to expressions for the fluid variables. For example the species density, ns, and flow,

V s, are given by the 0th and 1st order moments respectively:

ns =
∫

fsdv (A.1)

nsV s =
∫

fsv dv (A.2)

The fluid equations used in section 3.2 can also be rigorously derived from the kinetic

equation, achieved by taking velocity moments of eqn. 3.35. This will be illustrated

for the continuity equation using the Vlasov equation1 (i.e. eqn. 3.35 in the absence

of collisions). Multiplying eqn. 3.35 by v0 and integrating leads to

∂

∂t

(
∫

fsdv
)

+
∫

v · ∂fs

∂x
dv +

1

ms

∫

F
∂fs

∂v
dv = 0 (A.3)

where F is the Lorentz force. Progress can be made by considering each term indi-

vidually, for example the first term in eqn. A.3 is given by

∂

∂t

(
∫

fsdv
)

=
∂ns

∂t
(A.4)

Noting that ∂/∂x is performed at fixed v the second term can be rewritten as

∫

v · ∂fs

∂x
dv =

∂

∂x

∫

vfsdv =
∂

∂x
(nsVs) (A.5)

1Provided the collision operator does not alter the number of particles, integration of the collision
term over velocity space should yield 0.
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The third term can be simplified using integration by parts to give

∫

F
∂fs

∂v
dv = [Ffs]v −

∫

fs
∂F

∂v
dv (A.6)

Noting that fs → 0 for v → ±∞ the first term of eqn. A.6 must be zero. As each

component of the Lorentz force, F , is independent of the corresponding velocity

component the second term in eqn. A.6 is also 0 and eqn. A.3 can be written as

∂ns

∂t
+

∂

∂x
(nsVs) = 0 (A.7)

which is the continuity equation introduced previously, eqn. 3.1.
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