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Abstract

Autonomous systems with safety-critical concerns such as self-driving vehicles must
be able to mitigate risk by dependably detecting entities that represent factors of
risk in their environment (e.g., humans and obstacles). Nevertheless, the machine
learning (ML) techniques that these systems use for image classification and real-
time object detection disregard risk factors in their training and verification. As
such, they produce ML models that place equal emphasis on the correct detection
of all classes of objects of interest—including, for instance, buses, pedestrians and
birds in a self-driving scenario.

To address this limitation of existing solutions, this thesis proposes an approach
for the development of risk-aware ML ensembles applied to image classification.
The new approach (i) allows the risk of misclassification between different pairs of
classes to be quantified individually, (ii) guides the training of deep neural network
classifiers towards mitigating the risks that require treatment, and (iii) synthesises
risk-aware ensembles with the aid of multi-objective genetic algorithms that seek to
optimise the ensemble performance metrics while also mitigating risks.

Additionally, the thesis extends the applicability of this approach to real-time
object detection (RTOD) deep neural networks. RTOD involves detecting objects of
interest and their positions within an image using bounding boxes, and the RTOD
extension of the approach employs a suite of new algorithms to combine the bounding
box predictions of the models from the risk-aware RTOD ensemble.

Last but not least, the thesis introduces a self-adaptation approach that leverages
risk-aware RTOD ensembles to improve the safety of an autonomous system. To
that end, the new approach switches dynamically between ensembles with different
risk-aware profiles as the system moves between regions of its operational design
domain. This dynamic RTOD selection approach is shown to reduce the number of
crashes and to increase the number of correct actions for a simulated autonomous
vehicle.
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Chapter 1

Introduction

1.1 Motivation

Machine learning (ML) is envisaged to enable autonomous systems to make safety-
critical decisions previously reserved for humans. ML techniques such as deep learn-
ing [80] have been used to train deep neural network (DNN) classifiers. A DNN is
a structure comprising an input layer, an output layer and several hidden layers in
between. Each layer contains a set of neurons which apply a non-linear function to
a weighted sum of inputs from the previous layer. A DNN learns to perform partic-
ular tasks through training—examples of such tasks include image classification and
object detection. During training, the strength of the connections between neurons
is learned. Afterwards, the trained DNN is used to perform the same task on novel
inputs [28]. DNNs have been shown to perform remarkably well on a wide range of
problems. These include, for instance, speech recognition [9, 27, 105, 135], detection
and recognition of traffic signs [10, 145], autonomous driving [24, 64, 83, 127], diag-
nosis of medical conditions [34, 102, 165], identification of risk factors [85, 113, 150]
in medical diagnosis, and biomedical imaging leading to a better understanding and
the early diagnosis of severe diseases [92, 93, 130].

This thesis focuses on the dependable use of ML-based image classification
(Chapter 3) and real-time object detection (RTOD) (Chapter 4) in safety-critical
applications such as autonomous driving, and on the dynamic switching between
synthesised ensembles as the autonomous system moves between Operational De-
sign Domain (ODD) regions (Chapter 5). Image classification is the process of
allocating a single label, taken from a set of possible labels, to an image. This is a
fundamental problem in computer vision, where it forms the basis of localisation,
detection, and segmentation [24, 116]. On the other hand, object detection is a
complex task that deals not only with classification but also with the location of
objects in a scene—a task of significant importance to many real-world applications
where we need to differentiate between many objects to make sense of our environ-
ment [22, 112, 170]. When applied online, e.g., to the successive frames of a video
stream, the task is termed real-time object detection [120, 117].

Despite significant advances, specifically in the area of deep learning for image
classification and object detection, DNNs cannot be 100% accurate due to chal-
lenges ranging from insufficient training data [87, 99], class imbalance [88, 172] and
imperfect performance evaluation measures [43, 136] to inherent localisation and
identification errors [117, 163, 172]. As such, the use of DNNs in safety-critical ap-
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CHAPTER 1. INTRODUCTION

plications introduces risks that need to be systematically assessed and mitigated.
Nevertheless, the error function minimised by the training of DNN classifiers, and
the assessment [148] of their performance are typically oblivious to the risks associ-
ated with the intended use of these classifiers. A DNN classifier makes no difference
between misclassifying a 30 km/h speed limit sign on a residential road as 130 km/h
(an error with potentially fatal consequences) and misclassifying the same 30 km/h
speed limit sign as a 20 km/h speed limit sign (an error much less likely to lead
to serious incidents). Similarly, they place equal emphasis on the detection accu-
racy of other classes of objects of interest—including, for example, buses, cats, bikes
and birds in an autonomous driving scenario. All these errors in classification are
as eagerly avoided as each other during training. all are as keenly counted when
assessing classifier performance, with the result that a classifier which avoids a mis-
classification that poses a significant safety concern is deemed no better than one
which avoids a misclassification associated with no risk.

By disregarding the likelihood, consequences, and impact of different misclassi-
fications, DNNs introduce unknown risks that limit their adoption in safety-critical
autonomous systems. Even when these risks can be mitigated (e.g., by using spe-
cial monitors to detect unsafe DNN inputs [14, 96] and traditionally developed and
verified software to replace the DNN outputs with fail-safe, suboptimal values when
using the DNN is deemed unsafe [23]), this mitigation comes at a high engineering
and operational cost and leads to increased system complexity.

The risk factors associated with the use of DNN components need to be miti-
gated if the adoption of this technology is to find use in safety-critical applications,
or otherwise such adoption may lead to endangerment or loss of life. An unfortu-
nate example of this is the Uber self-driving car which failed to properly identify a
pedestrian walking alongside a bicycle [143]. As the vehicle and pedestrian paths
converged, the self-driving system software classified the pedestrian as an unknown
object, as a vehicle, and then as a bicycle with varying expectations on its future
travel path. As a result of the crash, the pedestrian unfortunately died. In an-
other relevant accident [147], a Tesla vehicle crashed into an overturned truck and
apparently fails to correctly identify a stationary pedestrian. For such systems to
be trustworthy and trusted, their developers and operators should demonstrate that
the risk factors associated with neural network classification have been appropriately
considered, and appropriate risk mitigation has been employed.

This thesis presents a suite of machine learning approaches that overcome this
major drawback of current DNN classifiers and real-time object detection DNNs by
considering the risks associated with their intended use throughout the ML model
training and verification. The risk is defined as the possibility of something bad hap-
pening [115]. Risk is normally described in terms of risk sources, potential events,
their consequences and their likelihoods [44]. We follow the risk management pro-
cess recommended by the ISO 31010 standard [65], which provides a framework
for selecting and applying risk assessment techniques that are appropriate for the
specific context and objectives of an organisation. We chose this standard because
it expresses an international consensus on best practices and risk assessment tech-
niques. Additionally, this standard provides a systematic and structured approach
to risk assessment that can help organisations identify and assess risks more effec-
tively, and it describes a range of risk assessment techniques, from brainstorming to
expert judgment, that can be tailored to the specific needs of the problem at hand.

10



1.2. Research contributions

Last but not least, adopting ISO/IEC 31010 enhances the credibility of a solution
by demonstrating that it follows well established risk assessment practices [65].

ISO/IEC 31010 also suits our approach because it provides specific risk assess-
ment techniques such as those that use a consequence/likelihood matrix. In con-
trast, ML-specific approaches like the ‘Assurance of Machine Learning for use in
Autonomous Systems’ (AMLAS) [59] provide a methodology for systematically in-
tegrating safety assurance into the development of machine learnt components. Such
approaches propose the identification of safety requirements to control the risk of the
identified contributions of the ML component to system hazards, without proposing
concrete quantitative/qualitative techniques for assessing the likelihood and severity
of identified concerns, as done by the ISO/IEC 31010 standard.

As such, in addition to the usually labelled data used to train and verify DNNs,
our approach requires standard risk information—specific for the intended DNN use,
and provided by domain experts. This information captures:

(i) The likelihood of encountering each of the classes identified by the DNN. This
refers to the likelihood of an event happening and can be described as an
expected probability or frequency of encountering an instance of a given class
during a determined period of time.

(ii) The level of impact of the possible misclassifications, which considers how the
event could influence cost, schedule, or technical performance objectives.

(iii) The maximum risk level that is acceptable.

Given this information, we identify the misclassification risks that require treatment,
we train DNNs capable of mitigating individual (or small sets of) such risks, and we
combine these DNNs into neural network or RTOD ensembles [58, 82]. Unique to
our approach, the risk-aware training involves the use of loss functions tailored to
reduce high-risk misclassifications, and the risk-aware ensemble synthesis employs
multi-objective genetic algorithms [103] to generate ML model ensembles that are
Pareto optimal with respect to both traditional ML performance metrics and risk
mitigation capabilities.

1.2 Research contributions

The work presented in this thesis is underpinned by the hypothesis that the training
of DNNs and the synthesis of DNN ensembles can consider and mitigate the risks
associated with their intended operating domain, so as to enable autonomous systems
to operate with fewer incidents and higher effectiveness. To validate this hypothesis,
the thesis makes the research contributions summarised below.

1. An approach for risk mitigation in neural network classifiers. We
present in Chapter 3 an approach for effectively identifying and mitigating
risks associated with relevant misclassifications for DNN image classifiers. Our
approach (i) uses a risk management process recommended by the ISO 31010
standard to identify high-risk misclassifications, (ii) guides the training of DNN
classifiers towards mitigating the risks that require treatment, and (iii) synthe-
sises risk-aware ensembles with the aid of multi-objective genetic algorithms
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CHAPTER 1. INTRODUCTION

that seek to optimise DNN performance metrics while also mitigating risks.
The effectiveness of the approach is assessed through applying it to two widely
used data sets, CIFAR-10 [77] and a subset of the German Traffic Sign Recog-
nition Benchmark (GTSRB) [141]. The obtained results from the evalua-
tion indicate that better image classifiers can be constructed by synthesising
Pareto-optimal ensembles that include risk-oblivious and risk-aware models.

2. An approach to synthesising risk-aware ensembles for real-time ob-
ject detection. In Chapter 4 we extend the approach from the first contri-
bution for the development of risk-aware ML ensembles for real-time object
detection. The extended version supports the dependable use of ML-based
RTOD in safety-critical applications such as autonomous driving. The ap-
proach was extended to deal with images coming from video streams and
containing multiple objects. The key challenge overcome by our new approach
is the effective combination of the knowledge from each of the base learners,
since each RTOD model is predicting a different set of multiple objects with
different locations. To overcome this challenge, we propose three algorithms
applied in the ensemble synthesis stage, and used for combining the bounding
box predictions of the models in the ensemble. To evaluate our approach, we
performed experiments using the PASCAL Visual Object Classes Challenge
(VOC) 2007 object detection data set [42] which contains 9,963 images for the
training, validation and test of object detector models with 24,640 annotated
objects. The data set contains 20 classes from the categories person, animal,
vehicle and indoor. The results suggest that our approach can effectively miti-
gate risk, supporting the development of dependable RTOD-based systems for
safety-critical applications.

3. A method for integrating risk-aware object detection ensembles into
autonomous systems. In Chapter 5 we propose a method that uses several
risk-aware ML ensembles with dynamic switching between ensembles as the
system moves between different regions of its operational design domain. To
evaluate our method we ran multiple episodes of the simulator described in
the fourth contribution. This allowed us to assess the effectiveness of ensemble
switch as the ODD region changes. We assessed effectiveness by measuring
safety as the number of crashes and number of correct actions taken, i.e., slow
and fast navigation for an autonomous vehicle, during journeys of the vehicle.
The evaluation of our approach shows that the dynamic switching between
ensembles as the autonomous vehicle enters a new ODD region has the benefit
of improving safety by decreasing the number of crashes and by increasing the
number of correct actions taken.

4. A reusable simulator from the autonomous mobile robot navigation
domain. The open-source 3D robotics simulation platform Gazebo [74] was
used to implement a reusable autonomous mobile robot simulator for the eval-
uation of the method from the previous contribution. The simulator, which
includes a simple track-circuit, allows the deployment of mobile robots and
cubes with images which represent objects in the space. The simulator as-
sesses the effectiveness of object detection algorithms such as YOLO real-time
object detection system [119] by measuring the number of crashes and number
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1.3. Thesis structure

Ch. 1 Introduction

Ch. 3 Mitigating 
Risk in Neural 

Network Classifiers

Ch. 2 Background

Part 1

Part 2

Ch. 4 Risk-aware 
Real-time Object 

Detection

Part 3

Part 4

Ch. 6 Conclusion and further work

Part 5

Ch. 5 Dynamic Selection of Risk-aware 
Object Detection Ensembles

Part 4

Figure 1.1: The thesis is structured in five parts and contains six chapters, with the
main contributions covered in Chapters 3, 4 and 5.

of correct actions taken by the mobile robot. The simulator offers the advan-
tage of testing RTOD methods in a challenging environment due to varying
lighting conditions, with the possibility to adjust the speed of the robot, and
its angles of object detection. Additionally, mapping the images onto the
cubes deforms them by changing their original size, creating multiple types of
disturbances.

5. A systematic evaluation of the real-time object detection ensembles from the
second contribution and of the method from the third contribution using the
simulator from the fourth contribution.

1.3 Thesis structure

As shown in Figure 1.1, the remainder of this thesis is structured as follows.
Chapter 2 introduces background terminology and concepts used throughout the

rest of the thesis, and therefore required to understand the proposed methods. It
starts with a brief introduction to machine learning in Section 2.1, with an emphasis
on supervised learning and in particular deep neural networks applied to image
classification and the more complex task of object detection. Next, the chapter
provides an introduction to risk assessment in Section 2.2; this is paramount to
understanding the core ideas in Chapters 3, 4 and 5. The chapter continues with a
succinct presentation of genetic algorithms in Section 2.3, where key concepts and
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CHAPTER 1. INTRODUCTION

definitions are addressed. Finally, in Section 2.4, the chapter introduces ensemble
learning, providing a description of the most representative ensemble methods.

Chapter 3 presents a four-step approach that considers the risk factors associated
with neural network classification and places mitigation strategies to deal with the
risk value associated to relevant misclassifications. The proposed method (i) allows
the risk misclassification between classes to be quantified, (ii) guides the training of
DNN classifiers towards mitigating the risks that require treatment, and (iii) syn-
thesises risk-aware ensembles with the aid of multi-objective genetic algorithms that
seek to optimise DNN performance metrics while also mitigating risk. The chapter
starts by describing the stages of the mentioned approach in Section 3.1. Next,
Section 3.3 presents the evaluation of the method in two different data sets, CIFAR-
10 [77] and a subset of the GTSRB [141]. Lastly, it presents the related work in
Section 3.4.

Chapter 4 introduces a method for the development of risk-aware ML ensembles
for real-time object detection. The reported method in this chapter supports the
dependable use of real-time object detection by (i) identifying the risks that require
treatment, (ii) training a set of ML models that mitigate these risks, and (iii) using
multi-objective genetic algorithms to combine the ML models into risk-aware ML
ensembles. The chapter begins with a description of the stages of the method in
Section 4.1. Following, in Section 4.2 the evaluation of the method in the PAS-
CAL VOC 2007 [42] dataset is presented. Lastly, the related work is developed in
Section 4.3.

Chapter 5 describes an approach that advocates the use of risk-aware ML en-
sembles with dynamic switching between models as a real-time adaptation system
(RAS) moves from one ODD region to another. The chapter starts with an intro-
duction in Section 5.1; then the five components of the approach are described in
Section 5.2. Next, the evaluation is presented in Section 5.3. Finally, the related
work is shown in Section 5.4.

In the last part of this thesis, Chapter 6 presents the conclusions of the thesis
by summarising its findings and contributions, and lists a range of areas for further
research which build on the approaches introduced in the earlier parts of our work.
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Chapter 2

Background

This chapter introduces background terminology and concepts used throughout the
rest of the thesis, and therefore required to understand the proposed methods. We
start with a brief introduction to machine learning in Section 2.1, emphasising super-
vised learning and in particular deep neural networks applied to image classification
in Section 2.1.1 and then extended to the more complex task of object detection in
Section 2.1.2. Next, we introduce the reader to risk assessment in Section 2.2, which
is required to understand the core ideas from Chapters 3 and 4. We then succinctly
present genetic algorithms in Section 2.3, where key concepts and definitions are
addressed. Finally, in Section 2.4, ensemble learning is introduced, and the most
representative ensemble methods are described.

2.1 Machine learning

ML is a subfield of artificial intelligence (AI) and represents the scientific study of
algorithms and statistical models that computer systems use to perform a specific
task without being explicitly programmed [13, 97]. Normally, an ML model is pre-
sented with many examples relevant to a task and it finds statistical structure in
these examples that eventually allows the system to come up with rules for automat-
ing tasks. On the basis of algorithm procedure, ML techniques can be classified into
four types: (i) supervised ML techniques, (ii) unsupervised ML techniques, (iii)
semi-supervised ML techniques and (iv) reinforcement ML techniques [38, 66].

Supervised ML techniques build on knowledge gained from labelled data samples
in order to forecast future events. These techniques employ a training process that
exploits the labelled dataset, in order to infer a function that produces output values
for new data samples. To that end, the training algorithm compares the results
produced by the ML model under development to the actual (i.e., expected) results
in order to identify errors and to change the model based on these results. After
training on the labelled data sets, the ML models are expected to generalise to
unseen data from the real world [126].

Unsupervised ML techniques are employed when the training data is non-classified
and not labelled. They analyse how the system can deduce a function to explain the
hidden patterns from the unlabelled data. The system does not identify the proper
output, but it discovers the data and writes observations from the dataset to find
hidden patterns from unlabelled data [11].

Semi-supervised ML techniques lie between supervised and unsupervised ML

15



CHAPTER 2. BACKGROUND

techniques. This type of ML uses labelled and unlabelled data during the training
process. Generally, it considers a smaller quantity of labelled data and a larger
quantity of unlabelled data. These techniques can adjust themselves to attain higher
accuracy and are preferable in cases where acquiring labelled data requires skilful and
appropriate resources to train or learn from them. In contrast, obtaining unlabelled
data does not need the extra resources [126].

Finally, reinforcement learning techniques interact with the environment by ac-
tions, and adapt their learning based on errors or rewards received as a result of
this interaction. Trial and error search and delayed rewards are some of the com-
mon features of the reinforcement method. Reinforcement learning enables systems
and software programs to identify the ideal behaviour in a specific context, e.g. in
order to increase the performance of a process comprising multiple activities or of a
navigation path comprising multiple segments [84].

In this thesis, we focus on supervised ML, in particular on neural networks, which
will be described in detail below. Supervised ML requires three key ingredients [67]:

1. Input data samples, for instance, pictures.

2. Examples of the expected output for the input data samples. In an image
classification task, the expected output could be labels such as dog or cat.

3. A way to evaluate the model produced by the ML algorithm. This is neces-
sary to determine the “distance” between the model’s current output and its
expected output, e.g. the loss function.

2.1.1 Image classification

Image classification is the process of allocating a single label, from a set of possible
labels, to an image. This is a fundamental problem in computer vision, where it
forms the basis of localisation, detection, and segmentation [24, 116].

Recently, DNNs have proven to be particularly effective at image classification
tasks. In addition to the performance influenced by the network structure itself,
the data set is also one of the influencing factors that cannot be ignored. The data
provided to the algorithm is crucial in image classification, especially for supervised
classification. The picture dataset feeds the DNN, and the better the quality of the
data, the more accurate the model [94].

Examples of commonly used benchmark data sets for evaluating the performance
of DNN image classifiers are IMageNet data set, GTSRB, CIFAR-10, CIFAR-100,
and MNIST [131]. The data used in supervised ML are normally split into training,
validation, and test sets. According to [121], these data sets have the following roles:

• the training set is a set of examples used for learning, that is to fit the param-
eters of the classifier or the data used to fit the model;

• the validation set contains a set of examples used to tune the parameters of
a classifier, for example, to choose the number of hidden units in a neural
network; in conclusion, it provides an unbiased evaluation of a model fit on
the training dataset while tuning model hyperparameters;
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Figure 2.1: DNN architecture. The DNN has an input layer, an output layer and
several hidden layers in between. The input image is decomposed into pixels and
normalised to obtain values between 0 and 1 representing each such pixel, and all
pixel representations are forwarded to the neural network’s input layer.

...

**
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*
Figure 2.2: Representation of a neuron depicting its inputs, computation and output

• the test set is a set of examples used only to assess the performance of a fully-
trained classifier, it provides an unbiased evaluation of a final model fit on the
training dataset.

As shown in Figure 2.1, a DNN is a structure constructed as layers stacked on top
of each other. The input image is decomposed into pixels and normalised to obtain
a single number between 0 and 1 for each such pixel, and the pixel representations
are presented to the neural network’s input layer. The DNN has an input layer,
output layer and various hidden layers in between (the term deep refers to how
many hidden layers contribute to the network). Each layer contains a set of neurons
which apply an activation function to a weighted sum of outputs from the previous
layer. A DNN learns to perform particular tasks through training, during which
the strength of connections or weights between units is learned. Subsequently, the
trained DNN is expected to correctly classify samples which were not used during
the training, i.e., the model is expected to generalise to samples from the real world
[28].

The output yli of a neuron i in layer l is a function of the outputs of the earlier
layer such that

yli = f

(
nl−1∑
j=1

wl−1
j yl−1

j + bl

)
(2.1)

where nl−1 is the number of neurons in layer l − 1, yl−1
j is the output of the jth

neuron in layer l − 1, wl−1
j is a weight associated with the output, bl is a bias term

for layer l, and f is the activation function. An example of an artificial neuron is
shown in Figure 2.2, the artificial neuron takes several inputs (these inputs are for
instance pixels from an image represented in values ranging from 0 to 1), sums them
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together and finally applies the activation function to obtain the output signal. The
summation of the inputs is done in a weighted way. The specification of what a
layer does to its input data is stored in the layer’s weights. Initially, the weights are
randomly assigned to the network. Another parameter also trained and used in the
summation process is the neuron’s bias b. Its value is added to the weighted sum as
an offset and makes the model more flexible to better model the given data.

An activation function could be for instance a binary function such that if y is
above a threshold the next neuron will be activated, that is y = 1 or 0 in other
cases. Formally, this activation function can be expressed as:

y = f(x) =

 0, if x < t

1, otherwise
(2.2)

The step function is a simple example of an activation function; however, ad-
vanced functions which contain properties such as non-linearity, to model complex
behaviours, have been introduced [112]. Examples of commonly used activation
functions include the sigmoid function

σ(x) =
1

1 + e−x
, (2.3)

the hyperbolic tangent

tanh(x) =
ex − e−x

ex + e−x
, (2.4)

and the Rectified Linear Unit (ReLU)

ReLU(x) = max(0, x) =

 0, if x < 0

x, if x ≥ 0
(2.5)

A graphic representation of these activation functions is shown in Figure 2.3.
As mentioned before, different activation functions can be applied to different prob-
lems, with the non-linearity in the activation being useful to model complex problems
where the data can not be modelled as a linear function. Each of the listed func-
tions has its own advantages and disadvantages; however, given its computational
simplicity, the ReLu function is the most popular choice of activation function for
hidden layers [112].

In order to adjust the weights so that the DNN correctly makes predictions, a
loss function or objective function is used to compute a distance score between the
true target and the prediction of the network, as shown in Figure 2.4. This score
(error) is used as a feedback signal, with the weights adjusted in a direction that
will lower the loss score. The adjustment is done by an optimiser, the mechanism
that allows the network to update itself based on its loss function. This process is
repeated many times for each of the instances of the data.

According to [156] common loss functions in classification are (i) the perceptron
loss function, (ii) binary cross-entropy (logarithmic loss), (iii) Sigmoid cross-entropy
loss, (iv) softmax cross-entropy loss, (v) hinge loss, and (vi) ramp loss. Below we
briefly describe each of these loss functions, and Table 2.1 provides their definitions.

18



2.1. Machine learning

(a) step (b) sigmoid

(c) tanh (d) ReLU

Figure 2.3: Graphic representation of commonly used activation functions.
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Input
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Figure 2.4: The loss score is the measure of the distance between the current predic-
tion and the true target and is then used as a feedback signal to adjust the weights
of the DNN (taken from [27]).

(i) Perception loss function. This loss function is a piecewise function. When
the predicted value of the sample has the same sign as the real label, the loss
value is 0; otherwise, the loss value is the absolute value of the predicted value.
From the perspective of geometric meaning, the former means that there is
no loss for correctly classified samples, while the latter measures the distance
from the predicted samples to the decision boundary f(x) = 0, and the larger
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Table 2.1: Commonly used loss functions in classification (adapted from [156]).

Name Formula Explanation Algorithm

Perceptron loss L(y, f(x)) = max{0,−yf(x)} max(a, b) =

 a if a ≥ b

b if a < b

Perceptron. The obj func is

L = −
∑

xi∈M yi(w
Txi + b),

where, M is the misclassified sample set.

Binary Cross-Entropy

(Logarithmic loss)

L(y,
∼
p) = −log

∼
p,

where
∼
p=

 p, if y = 1

1− p, if y ̸= 1

Conditional prob dist:

p = P (y = 1|x) = 1
1+e−f(x) ,

1− p = P (y = −1|x) = 1
1+ef(x)

Logistic regression (LR).

The obj func is

L = − 1
N

∑N
i=1 log

1

1+e−yi(w
T xi+b)

Sigmoid cross entropy loss

L(y,
∼
p) = −log

∼
p,

where
∼
p=

 p, if y = 1

1− p, if y ̸= 1

p = σ(f(x)) = 1
1+e−f(x) ,

where σ(·)

is the Sigmoid function

Neural network (NN).

The obj func is the same as LR.

Softmax cross entropy loss L(y, P (y|x)) = −logP (y|x)

P (y|x) = efy(x)∑
k efk(x) ,

where fy(x) and fk(x)

are the decision funcs

corresponding to the

y and k class respectively.

Neural network (NN).

The objective function is

L = − 1
N

∑N
i=1 log

e
wT
yi

xi+byi∑
k e

(wT
k

xi+bk)

Hinge loss
Hs(z) = max{0, s− z},

where, s is a constant

Specially, in SVM

L(y, f(x)) = H1(yf(x)) =

max{0, 1− yf(x)}

Support vector machine (SVM)

The objective function is

L = 1
2 ∥ w ∥2 +C

∑N
i=1max{0, 1− yi(w

Txi + b)}

Ramp loss
Rs(z) = H1(z)−Hs(z),

where, s < 1 is a constant

Specially, in Ramp loss SVM

Lr(y, f(x)) = H1(yf(x)−Hs(yf(x)))

Ramp loss SVM.

The objective function is

L = 1
2 ∥ w ∥2 +C

∑N
i=1 Lr(yi, f(xi))

the distance, the greater the error. It is a continuous and differentiable loss
function with respect to variables so that it is easy to optimize. However, its
goal is only to determine the sample category correctly, that is, the sample
meets the requirement when it is located in the decision boundary. In this way,
the model obtained has poor generalisation performance and is not robust to
noise data [101].

(ii) Binary cross-entropy (logarithmic loss). This loss function is a function of the
sample prediction probability value, where the prediction probability value
is obtained through the conditional probability distribution (detailed in Ta-
ble 2.1). Specifically, the greater the probability of the sample being predicted
as its label, the smaller the corresponding loss value; otherwise, the greater
the loss value. In the actual calculation, the probability of being predicted as
a positive class is expressed as p, while the other probability is 1 − p [156].

(iii) Sigmoid cross-entropy loss. The Sigmoid cross-entropy loss and logarithmic
loss are the same. The reason why the same losses are described by two
names is that they are defined from different sources. The Sigmoid cross-
entropy loss is obtained by seeing the probability value converted from the
predicted value through the Sigmoid activation function as the actual output
of cross-entropy, and the real label of the sample as the expected output of
cross-entropy. Cross-entropy describes the distance between the actual output
and the expected output. The smaller the value of cross-entropy is, the closer
the two probability distributions are.

(iv) Softmax cross-entropy loss. The only difference between this loss function and
the Sigmoid cross-entropy loss function is that this loss function replaces the
Sigmoid function with the softmax function to solve the multi-classification

20
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problem [73].

(v) Hinge loss. In the binary classification problem, the hinge loss function defines
the margin (represented by the parameter s) near the decision boundary, and
the correctly classified samples in the middle of the two margin boundaries
and all misclassified samples have the cost. The hinge loss function does not
punish the correct classification samples of |f(x)| ≥ s. It is considered that
such samples have been learned well enough so that the model is more focused
on the overall classification error. It should be noted that s is generally set to
1 in applications and improvements of hinge loss function [37].

(vi) Ramp loss. This is an improved version of the hinge loss function. The hinge
loss value of outlier is very large and outliers play a leading role in determining
the decision boundary so that the model will reduce the accuracy of normal
samples to reduce such loss, and finally reduce the overall classification accu-
racy, resulting in low generalization ability of the model. However, the ramp
loss function limits the maximum loss value, which limits the influence of out-
liers to some extent, and the model is more robust to outliers. In addition,
when the ramp loss function is applied to SVM, the number of support vectors
can be reduced and the training efficiency can be improved [156].

Before describing how the performance of an image classifier is evaluated, is
important to mention that during the training of a DNN model underfitting and
overfitting should be considered. For instance, if a DNN model has too few layers,
or the layers are too small, the accuracy of the model may stagnate. This is, the DNN
is underfitting, meaning that it does not have enough parameters for the complexity
of the task. The only solution to adopt, should this case happen, is to adopt a new
architecture that is better suited for the intended application. On the other hand,
if the DNN architecture is excessively complex or the training data set is overly
small, the network may start overfitting the training data. This means that the
network will learn to fit very well the training distribution data; nevertheless, it
will not generalise to new samples. One possible solution to this problem might be
gathering a larger, more diverse training set, although this is not always possible in
practice (e.g., due to limited access to the target objects). Another solution is to
adapt the network or its training in order to constrain how much detail the DNN
learns [112].

Now, consider an n-sample data set D = {d1, d2, ..., dn} and a set of classes
C = {c1, c2, ...cs}. Image classification involves assigning a class ci ∈ C to each
data sample dk ∈ D. Let Y = {y1, y2, ..., yn} be the set of actual classes (ground
truth) corresponding to the data set D, where yk is the actual class of dk. And let
Y ′ = {y′1, y′2, ..., y′n} be the set of predictions made by a DNN model M for each
element in D where y′k is the prediction for the element dk. The performance of M
can be assessed using a measuring function Φ, which assigns a metric ϕ ∈ R to the

pair (Y, Y ′), that is, (Y, Y ′)
Φ−→ ϕ [95].

There are various ways of assessing the effectiveness of an ML model such as a
DNN. The first information that can be obtained once a model has been tested is
the confusion matrix, a performance measurement for machine learning classification
based on the testing data set. When the number of classes is s = 2, and one of the
classes is called positive and the other negative, the confusion matrix can be written
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as

CM =

 TruePositives (TP ) FalseNegatives (FN)

FalsePositives (FP ) TrueNegatives (TN)

 (2.6)

This can be extended to multi-class in the following way. Think about a data
set D = {d1, d2, ..., dn} that contains n samples, where dk is the k − th element in
D. Consider C = {c1, c2, ...cs} a set of classes where ci represents the i − th class.
A DNN model M that is given the dk sample predicts the label cj when in reality it
belongs to the ci class thereby causing a misclassification. Let Y = {y1, y2, ..., yn} be
the set of actual classes (ground truth) corresponding to the data set D, where yk is
the actual class of dk. And let Y ′ = {y′1, y′2, ..., y′n} be the set of predictions made by
M for each element in D where y′k is the prediction for the dk element. According
to [95], the performance of M can be assessed using a measuring function Φ, which

assigns a metric ϕ ∈ R to the pair (Y, Y ′), that is, (Y, Y ′)
Φ−→ ϕ. A multi-class

confusion matrix is defined as:

CM =


m11 m12 ... m1s

m21 m22 ... m2s

...
...

. . .
...

ms1 ms2 ... mss

 (2.7)

where mij represents the number of elements actually belonging to the i-th class
(ci) but that are classified as members of the j-th class (cj) (except for the values
on the diagonal).

Based on the binary confusion matrix (2.6), numerous performance metrics have
been proposed [56, 69, 100, 114, 137] and are summarised in Table 2.2. All these
metrics take values between 0 and 1, except for Matthews Correlation Coefficient
(MCC), Bookmaker Informedness (BM), and Markedness (MK), whose ranges lie
between -1 and 1. From all these metrics, the precision, recall (sensitivity) and F1
score are commonly used for classification [137].

Recall or sensitivity is the proportion of real positive cases that are correctly
predicted. This measures the coverage of the real positive cases. Concisely, recall
measures the effectiveness of a classifier to identify positive labels. Its desirable
feature is that it reflects how many of the relevant cases were picked up. It tends to
be neglected when the focus is on how confident one can be in the rule or classifier.
However, in a computational linguistics/machine translation context and in a med-
ical context, recall is regarded as primary, as the aim is to identify all real positive
cases [47, 114].

Precision denotes the proportion of predicted positive cases that are correctly
real positives. This is what ML, data mining and information retrieval focus on,
it can also be seen as a measure of the accuracy of predicted positives or class
agreement of the data labels with the positive labels given by the classifier [114].

The F1 measure is a combination of the above (precision and recall) and is widely
used in most application areas of machine learning, not only in the binary scenario
but also in multi-class cases. Is defined as the harmonic mean of precision and recall
[137, 25]. In multi-class cases, the F1 micro/macro averaging can be employed.
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Table 2.2: Performance metrics for a DNN based on the binary confusion matrix
(taken from [95]).

Symbol Metric Defined as

SNS Sensitivity or Recall TP
TP+FN

SPC Specificity TN
TN+FP

PRC Precision TP
TP+FP

NPV Negative Predictive Value TN
TN+FN

ACC Accuracy TP+TN
TP+FN+TN+FP

F1 F1 score 2 PRC·SNS
PRC+SNS

GM Geometric Mean
√
SNC · SPC

MCC Matthews Correlation Coefficient TP ·TN−FP ·FN√
(TP+FP )(TP+FN)(TN+FP )(TN+FN)

BM Bookmaker Informedness SNS + SPC − 1

MK Markedness PPV +NPV − 1

The macro-averaged F1 is computed on a set of instances; it is defined as the
average of the single label F1 measures computed for each label and gives the same
weight to each label:

FM
β =

m∑
i=1

(1 + β2)TPi

(1 + β2)TPi + β2FNi + FPi

(2.8)

The micro-averaged F1 is computed after pooling the labels of all instances of a
given set, and gives equal weight to each labelling decision:

Fm
β =

∑m
i=1(1 + β2)TPi∑m

i−1[(1 + β2)TPi + β2FNi + FPi]
(2.9)

where β ∈ [0,+∞) controls the trade-off between precision and recall and m is the
number of labels [81, 111, 151].

2.1.2 Object detection

In the previous section, we provided an introduction to image classification, whose
main objective is to simply label a given image. In this section, we review object
detection, a much more complex task that deals not only with classification but also
with the location of objects in a scene, which is closer to real-world applications
where normally, we need to differentiate between many objects to make sense of
our environment. Formally, object detection [22, 112, 170] is defined as a function
that maps an image to a list of objects O = (o1, o2, . . . , on), where the i-th detected
object oi = (ci, boxi) specifies:

• (estimate) probabilities ci = (ci1, ci2, . . . , ciN) that object i belongs to each of
N classes of interest,

∑N
j=1cij =1;
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• a bounding box (boxi) comprising either the coordinates of the top-left and
bottom-right corners of the image region where object i is located or the
coordinates of the centre of the image in addition to its width and height
measures.

The state-of-the-art ML models for object detection can be divided into two
categories: two-stage and one-stage detectors. In general terms, two-stage detectors
tend to obtain higher accuracy, but with a higher computational cost than one-stage
detectors. However, this fact highly depends on the selected convolutional backbone
network and the hyperparameter configuration, which is a complex procedure [21].

Two-stage frameworks divide the detection process into the region proposal and
the classification stage. These models first propose several object candidates, known
as regions of interest (RoI), using reference boxes (anchors). In the second step, the
proposals are classified and their localisation is refined [170]. The region proposal-
based methods mainly include R-CNN [53], spatial pyramid pooling (SPP)-net [61],
Fast R-CNN [52], Faster R-CNN [120], region-based fully convolutional network
(R-FCN) [31], feature pyramid networks (FPN) [86], and Mask R-CNN [60].

On the other hand, one-stage detectors contain a single feed-forward fully con-
volutional network that directly provides the bounding boxes and the object classi-
fication. One-stage detectors regard object detection as a regression or classification
problem, adopting a unified framework to achieve final results (categories and lo-
cations) directly. The one-stage methods mainly include MultiBox [40], Attention-
Net [164], G-CNN [104], YOLO [117], Single Shot MultiBox Detector (SSD) [91],
YOLOv2 [118], YOLOv3 [119], deconvolutional single shot detector (DSSD) [49],
RetinaNet [88], and deeply supervised object detectors (DSOD) [132].

The one and two stage algorithms owe their name to the sub steps taken in
the detection process. Two-stage frameworks divide the detection process into the
region proposal and the classification stage and the one-stage algorithms perform
both tasks simultaneously. Regardless of the stages in the detection step the pipeline
of object detection models can be mainly divided into three steps [170]. The pipeline
is depicted in Figure 2.5 and each of the steps is detailed below:

1. In a first step, a feature extraction neural network (NN) is used to detect
potential objects in the input image. Feature extraction is an important com-
ponent of every image classification and object recognition system. It consists
on mapping the image pixels into the feature space. For automatic identi-
fication of the objects from remote sensing data, they are to be associated
with certain attributes which characterise them and differentiate them from
each other. The similarity between images can be determined through features
which are represented as a vector. Feature extraction is concerned with the
extraction of various attributes of an object and thus associates that object
with a feature vector that characterises it. It is the first step to classifying
an image and identifying the objects. The characteristics of an image such as
colour, texture, shape etc. are used to represent and index an image or an
object [149].

2. In a second, detection step, anchor bounding boxes (i.e., approximate bounding
boxes drawn from a set of predefined box sizes) are fitted around these objects,
and then adjusted appropriately, this adjustment is represented in Figure 2.6,
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Figure 2.5: The object detection pipeline can be summarised in three stages: 1)
Feature extraction; 2) Detection and anchor bounding box correction; 3) Bounding
box matching and labelling.

Correction

Figure 2.6: On the left is the set of predefined anchor bounding boxes with different
sizes picked to detect an object. On the right is the adjustment of an anchor box to
match the detection(the picture was taken from [41]).

where from a set of predefined anchor boxes the one that better fits the current
detection is picked to latter adjust it accordingly, the correction is computed by
the neural network. Next, an NN classifier is used to estimate the probabilities
that the object within each bounding box belongs to the N classes of interest,
as well as a confidence measure that an object is actually present in each of
these boxes.

3. In the final step, bounding box matching and labelling is performed. To start
with, irrelevant and duplicate boxes are eliminated. A box is deemed irrele-
vant if the product between its confidence measure and maximum class prob-
ability is below a predefined “relevance” threshold. To identify duplicates, a
non-maximum suppression (NMS) algorithm processes the remaining boxes
in decreasing probability order, i.e., starting with the box i with the highest
class probability ci,j, and eliminating all unprocessed boxes that overlap sig-
nificantly with box i. The overlap between two boxes is deemed significant
if their intersection over union (IoU) measure (i.e., the ratio between their
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IoU: 0.81
Confidence: 0.7

Figure 2.7: True positive in the object detection context. The detection meets two
conditions: detection and location (the picture was taken from [41]).

intersection and their union) exceeds a predefined threshold. Each remain-
ing box is then labelled with the name corresponding to its maximum class
probability.

The NNs employed by ML-based RTOD solutions are trained and tested using
large sets of image samples annotated with both the bounding boxes and the class
labels for all relevant objects in each image. For detailed descriptions of ML-based
RTOD, we refer the reader to [117, 119, 91, 88].

In order to evaluate the performance of object detection algorithms, some metrics
have been proposed. We start by defining the components of the confusion matrix
which is described by the true positives (TP), the false negatives (FN), and the false
positives (FP), they were already described in Section 2.1.1. However, the definition
of these concepts in the detection context is different:

• A true positive is a prediction that matches a ground-truth bounding box of
the same class. It also can be defined as the elements correctly classified. The
detection must satisfy two conditions: (i) the confidence score of the predicted
bounding box should be greater than the confidence threshold and (ii) the IoU
(described below) between the predicted bounding box and the ground-truth
bounding box should be greater than the IoU threshold. Figure 2.7 shows an
example of a TP detection with an IoU of 0.81 and a Confidence of 0.7.

• A false positive represents a prediction for which: (i) an incorrect detection
of a non-existent object is made with high confidence; (ii) the IoU is below
the threshold; or (iii) the bounding box correctly fits the predicted object, but
the class label of the prediction is incorrect. Examples of false positives are
depicted (as yellow boxes) in Figure 2.8.

• A false negative is a prediction for which there is an object in the ground truth,
yet the model was unable to detect it; an example is shown in Figure 2.9, where
only the ground-truth box is present.

Note that, in the object detection context, the true negative result does not
apply, as there is an infinite number of bounding boxes that should not be detected
within any given image [107].

Then we have the IoU, which is a measurement based on the Jaccard Index,
a coefficient of similarity for two sets of data. In the object detection field, the
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Figure 2.8: Example of true positive (red box), false positives (yellow boxes) and
ground truth (green box). (the picture was taken from [41]).

Figure 2.9: Examples of a false negative detection where only the ground truth is
present (the picture was taken from [41]).

IoU measures the overlapping area between the predicted bounding box Bp and the
ground-truth bounding box Bgt divided by the area of union between them (see also
Figure 2.10):

IoU =
area(Bp ∩Bgt)

area(Bp ∪Bgt)
(2.10)

The IoU is used to determine if a detection is considered correct or incorrect by
comparing it with a threshold, for example, if IoU ≥ t then detection is correct. If
IoU < t then the detection is incorrect.

The precision × recall curve, which is shown in Figure 2.11, can be seen as
a trade-off between precision and recall for different confidence values associated
with the bounding boxes generated by a detector. If the confidence is close to 1,

Figure 2.10: Calculation of the intersection over union (IoU) (taken from [107]).
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Figure 2.11: Precision-Recall curve plot.

the precision will be high, but the recall will be low. This is undesirable because
although the detections made will be mostly correct, most of the objects will be
missed. As only confident predictions are kept, the recall shrinks and the precision
raises. On the other hand, when the confidence is close to 0, the precision will be
low, but the recall will be high. Most of the predictions are kept, which rises the
recall; however, because the model is less confident in its predictions, the precision
shrinks [112]. An object detector is considered good if its precision stays high as its
recall increases, which means that if the confidence threshold varies, the precision
and recall will still be high. Therefore, a high area under the precision × recall curve
(AUC) tends to indicate both high precision and high recall. As described in [107],
in practical cases, the precision × recall plot is often a zigzag-like curve and this
difficult the accurate measure of the AUC. In order to remove the zigzag behaviour
[42] proposes the use of the 11-point interpolation where the shape of the precision
× recall curve is summarized by averaging the maximum precision values at a set
of 11 equally spaced recall levels [0,0.1, 0.2, ... , 1] and then averages them out.
Mathematically, this can be expressed as:

AP11 =
1

11

∑
R∈{0,0.1,0.2,...,1}

Pinterp(R), (2.11)

where
Pinterp(R) = max

∼
R:

∼
R≥R

P (
∼
R) (2.12)

and P (
∼
R) represents the measured precision at recall

∼
R.

The mean average precision (mAP) is the most common performance metric
for object detection and is widely accepted by the research community. Many ob-
ject detection algorithms, such as Faster R-CNN [120], MobileNet SSD [91] and
YOLO [117, 119] use mAP to evaluate their models. The mAP is also used across
several benchmark challenges such as the Pascal VOC [42], Microsoft COCO: Com-
mon Objects in Context [87] and ImageNet Object Detection Challenge [123]. Av-
erage precision (AP) is calculated by estimating the area under the curve of the
precision × recall relationship, mAP is the average of AP of each class. The mAP
formula requires the calculation of other sub-metrics such as confusion matrix, IoU,
precision and recall [107].
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The mAP measures the accuracy of object detectors over all classes in a specific
dataset. The mAP1 is simply the average AP over all classes [91], [120], that is

mAP =
1

N

N∑
i=1

APi, (2.13)

with APi being the AP in the ith class and N the total number of classes.

2.2 Risk assessment

Risk is defined as the possibility of something bad happening [115]. Risk is normally
described in terms of risk sources, potential events leading to the risk occuring, their
consequences and their likelihoods (i.e., the chances of the events happening). An
event can have multiple causes and lead to multiple consequences. The seriousness
of consequences can be estimated using metrics that can take a number of discrete
values, be continuous variables or be unknown. Consequences may not be discernible
or measurable at first, but may accumulate over time. Sources of risk can include
inherent variability or uncertainties related to factors including human behaviour
and organizational structures or societal influences for which it can be difficult to
predict any particular event that might occur [44].

The ISO 31000 international standard [44] proposes a risk assessment process
that involves identifying risks, analysing them, and using the understanding gained
from the analysis to evaluate risk. The ultimate aim of this process is to establish:
whether the risk needs to be addressed; the priorities for treatment of risks; and the
actions needed to treat the risks.

For recording and reporting information about the magnitude of risk, various
techniques have been proposed in the ISO 31010 standard. The purposes of record-
ing the risk include communicating information about risk to decision makers and
regulators; providing a record and justification of the motive for decisions made; pre-
serving the results of assessment for future use and reference; tracking performance
and trends; provide confidence that risks are understood and are being managed
appropriately; enable verification of the assessment and to provide an audit trail.

Among other methods for risk assessment, [44] suggests the use of a conse-
quence/likelihood matrix (also referred to as a risk matrix or heat map) for record-
ing and reporting information about the magnitude of a risk. An example of a such
a risk matrix is shown in Table 2.3. The approaches to developing risk-aware ML
ensembles proposed in this thesis adopt this risk-assessment method.

The risk matrix allows to report information about the likelihood, consequence
or impact and level of risk, indicated by the position in the matrix. Additionally,
it displays a rating for the significance of risk. The axes of the matrix feature the
scales for consequence (impact) and likelihood and the scales can have any number
of points, five-point scales being the most common. For instance, in Table 2.3 the
consequence is represented on a five-points scale ranging from a–e with a being the
highest consequence and e being the least severe consequence. The consequence scale
can depict positive or negative consequences and the scales should extend from the
maximum credible consequence to the lowest consequence of interest. For instance,

1For a practical example of the mAP calculation the reader is referred to [107]
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Table 2.3: Example of a consequence/likelihood matrix. The consequence rating is
given on a five-point scale of a–e with a being the most significant consequence and
e the less significant. The likelihood is similarly represented on a five-point scale
of 1–5, where 5 corresponds to ‘very likely’ and 1 to ‘remotely likely’ events. The
colours from the cells fade from red (I) to goldenrod (V), indicating the priority of
the risk (adapted from [44]).

Likelihood rating

1 2 3 4 5
C
on

se
q
u
en
ce

ra
ti
n
g a III III II I I

b IV III III II I

c V IV III II I

d V V IV III II

e V V IV III II

ranging from multiple fatalities to first aid only required, for a health and safety
context. The rating can be given in words, numbers or letters.

The likelihood scale should span the range relevant to data for the risks to be
rated. For example, ranging from very likely to remotely possible and can be given
as words, numerals or letters, if we refer to our example Table 2.3, the likelihood
rating is given on a 1–5 scale with 5 being the highest likelihood and 1 the lowest.

As already mentioned, a risk matrix is assembled with the consequence on one
axis and the likelihood on the other. A rating for risk level is often associated
wtih each cell. Typically, boxes are coloured to indicate the magnitude of risk and
decision rules can be linked to them. If we look again at Table 2.3, five colours are
used to identify the different risk levels. The colours fade from red to goldenrod
indicating the priority of the risk. The highest priority is for the risk cells shaded
in red and marked with an ‘I’ and the risks with the lowest priority are shaded in
goldenrod and marked with an ‘V’. The matrix can be set up to give extra weight to
consequences or to likelihood, or it can be symmetrical, depending on each specific
application. A consequence/likelihood matrix is used to evaluate and communicate
the relative magnitude of risks on the basis of a consequence/likelihood pair that is
typically associated with a focal event. To rate a risk, the user finds the consequence
(impact) and then the likelihood at which it is believed to occur. A point is placed
in the cell that combines these values and the level of risk is read off from the matrix.

The consequence/likelihood matrix has several limitations. In particular, signif-
icant expertise is required to design a valid matrix, as proposing suitable likelihood
and consequence ratings needs a deep understanding of all aspects relevant to the
assessed risk context; if the proposed ratings are based on biased interpretations,
the obtained risks will mislead the decision-takers instead of providing useful in-
sight. In addition, even when experts are dealing with the ratings, it can be difficult
to define common scales that apply across a range of circumstances relevant to an
organisation. This might limit the generalisation of a derived matrix. When talk-
ing about the scales, it is difficult to define them unambiguously to enable users to
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weight consequence and likelihood consistently, and this too represents a limitation
as there will always be the possibility that the proposed scales are not the most
accurate, which can directly affect the validity of risk ratings because they depend
on how well the scales were developed and calibrated.

Despite the drawbacks mentioned in the previous paragraph, the risk matrix has
the advantage of being relatively easy to use and provides a rapid ranking of risks
into different significance levels. This provides a clear visual display of the relevant
significance of risks by consequence, likelihood, and level of risk. Furthermore, this
allows an easy understanding of risks to stakeholders, with clear indication of which
risks should be considered with urgency and which are less concerning. It also can
help to decide which risks can be alleviated with the current mitigation strategies in
place and which ones need further consideration. Finally, the risk matrix can be used
to compare risks with different types of consequence and how the likelihood influence
the risk level. For instance, there can be a risk with a high level of consequences but
because its likelihood is very low, its significance remains low as well; nevertheless,
if the conditions of the context change and the likelihood increases, what once was
an insignificant risk could become a high priority one.

2.3 Genetic algorithms

Genetic algorithms (GAs) are a family of heuristic search algorithms inspired by
the principles of evolution in nature. Genetic algorithms are useful both as search
methods for solving problems and for modelling evolutionary systems. Due to the
probabilistic development of the solution, the use of a GA does not guarantee opti-
mality even when it may be reached. However, GAs are likely to yield solutions close
to the global optimum. This probabilistic nature of the solution is also the reason
they can overcome being “stuck” at local optima. GAs are particularly effective
at tackling large (potentially huge) search spaces and navigating them, looking for
optimal combinations of parameter values, architecture options, etc. [45, 161].

GAs are founded on the principles of the Darwinian evolution theory and their
operation is underpinned by several key principles:

1. the principle of variation: the traits of individual specimens belonging to a
population may vary;

2. the principle of inheritance: the traits are consistently passed on from speci-
mens to their offspring;

3. the principle of selection: the specimens possessing traits that are better
adapted to the environment will be more successful at surviving, and will
also contribute more offspring to the next generation.

Genetic algorithms use a series of key concepts [161] that can be described as
follows. First, a GA genotype is a collection of genes that are grouped into chro-
mosomes. In GA, each individual is represented by a chromosome representing a
collection of genes. As shown in Figure 2.12, a chromosome can be expressed as a
binary string, where each bit represents a single gene.

A collection of individuals that represent candidate solutions for the problem to
be solved, is termed a population. The population represents the current generation
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Figure 2.12: Example of a binary-coded chromosome.

Figure 2.13: Population of binary-coded individuals.

of chromosomes, and evolves over time when the current generation is replaced by
a new one. An example of a GA population is illustrated in Figure 2.13, where each
individual is binary-coded and shaded with different colours to represent the various
individuals of the population.

Genetic algorithms require a way to evaluate the quality of the individuals within
a population. A fitness function (also known as the “target function”) is used for
this purpose. This is the function to be optimised or the problem to be solved by the
GA. The fitness function evaluates individuals, where the higher the score the better
the solution encoded by and individual, and the more likely for the individual to be
chosen to reproduce and to be represented in the next generation. As generations
pass by, the quality of the solution is expected to improve, and the fitness to increase,
When an acceptable fitness function value is reached, after a predetermined number
of generations, or when the solution is no longer improving after a predefined number
of generations, the GA process stops.

A genetic algorithm consists of three main stages after the evaluation of an in-
dividual, i.e., a set of operations performed by the algorithm for each generation.
The first stage is selection: this stage determines which of the individuals from the
current population will be used to reproduce and create offspring for the next gener-
ation. The selection is based on the fitness score, with priority given to individuals
with higher scores; however, low-scored individuals can still be chosen with lower
probabilities, which helps to maintain diversity in future generations.

In the next stage, crossover is applied to create new individuals. Two parents
are usually chosen from the current generation, and parts of their chromosomes
are interchanged to create two new chromosomes representing the offspring. This
process is illustrated in Figure 2.14

Lastly, mutation is applied in the last stage. The purpose of the mutation GA
operator is to periodically and randomly refresh the population, introducing new
patterns into the chromosomes, and encouraging search in uncharted areas of the
solution space. As illustrated in Figure 2.15, mutation may appear as a random
change in a gene, in this case flipping a bit in a binary string. However, when the
solution space is continuous, i.e. the individuals are constructed of real (floating-
point) numbers, this type of mutation is not longer valid. Specialised algorithms
to deal with the crossover and mutation of real-coded chromosomes (i.e., blend
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Figure 2.14: Crossover operation between two chromosomes.

Figure 2.15: Mutation in an individual presented at randomly flipping a bit.

crossover, simulated binary crossover, and real mutation) are presented below:

• Blend crossover randomly selects each offspring from the following interval
created by its parents parent1 and parent2:

[parent1 − α(parent2 − parent1), parent2 + α(parent2 − parent1)] (2.14)

where, α is a constant whose value lies between 0 and 1.

• Simulated binary crossover imitates the properties of the single-point crossover
that is commonly used with binary-coded chromosomes. One of these proper-
ties is that the average of the parent’s values is equal to that of the offspring’s
values. This technique uses the following formula:

offspring1 =
1

2
[(1 + β)parent1 + (1 − β)parent2]

offspring2 =
1

2
[(1 − β)parent1 + (1 + β)parent2]

(2.15)

where β is a random number known as the spread factor.

• Real mutation generates a random real number that resides in the vicinity
of the original individual, e.g. by using normally distributed (or Gaussian)
mutation where a random number is generated using a normal distribution
with a mean value of zero and some predetermined standard deviation.

The stopping criteria for GAs can combine multiple conditions. The two most
commonly used such conditions are:

1. A maximum number of generations has been reached;

2. Over the last generations of the GA, no noticeable improvement has been
observed. This can be achieved by keeping the best fitness value obtained at
each generation and comparing the current best value with a predefined one
previously obtained, if the difference is below a given threshold the GA process
can be finalised.
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Figure 2.16: The main stages of the basic GA workflow.

Other stopping conditions can be: a predetermined amount of time has elapsed
since the process began; a certain cost or budget has been consumed, such as CPU
time and/or memory; the best solution has taken over a portion of the population
that is larger than a preset threshold [110, 161].

To summarise, the genetic algorithm workflow, illustrated in Figure 2.16, starts
with a random population generated using candidate solutions or individuals, which
need to be evaluated using the fitness function. The core of the flow is a loop where
the GA successively performs selection, crossover, and mutation, followed by a re-
evaluation of the individuals. The loop continues until one of the stopping conditions
applies, at this point, the best individual of the existing population is retrieved, and
this is the final solution of the algorithm.

As mentioned in [161], genetic algorithms present the advantage of having global
optimisation capability. In contrast, more naive search and optimisation algorithms
are prone to get stuck in a local maximum rather than finding the global one—
because, in the vicinity of a local maximum, any small change will degrade the
score. An example of this situation is depicted in Figure 2.17. Genetic algorithms,
on the other hand, are less sensitive to this phenomenon and are more likely to find
(or approximate) the global maximum. This is due to the use of a population of
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global maximum

local maximum

global minimum

local minimum

Figure 2.17: Optimisation problems have local maxima and minima points; these
represent solutions that are better than those around them, but not the best overall.

candidate solutions rather than a single one. GAs are also good at handling problems
with a complex mathematical representation, since genetic algorithms only require
the outcome of the fitness function for each individual and are not concerned with
other aspects of the fitness function such as derivatives. As such, they can be used
for problems with complex mathematical representations or functions that are hard
or impossible to differentiate. Other complex cases where genetic algorithms excel
include problems with a large number of parameters and problems with a mix of
parameter types; for example, a combination of continuous and discrete parameters.

Another benefit of GA’s is that they can handle problems that does not have a
clear mathematical representation provided that the problem can run on a computer
and the problem’s objective functions are encoded using a mathematical represen-
tation (to enable evolution). One such case of particular interest is when the fitness
score is based on human opinion. Likewise, GAs can deal with cases where the score
of each individual cannot be obtained, as long as there is a way to compare two indi-
viduals and determine which is better. For instance, an ML algorithm that drives a
car in a simulated race can be improved using GAs. A GA-based search can optimise
and tune the ML algorithm by having different versions of it compete against each
other to determine which version is better. Additionally, GAs are generally resilient
to noise, thanks to the repetitive operation of reassembling and reevaluating the
individuals. They also support parallelism and distributed processing, given that
the fitness calculation, as well as the operations of selection, crossover, and muta-
tion, can each be performed concurrently on individuals and pairs of individuals in
the population, respectively. This makes GAs suitable for distributed processing.
Finally, GAs are suitable for continuous learning because they can operate contin-
uously in an ever-changing environment, and at any point in time, the best current
solution can be fetched and used as required.

On the other hand, GAs also have several limitations. These include, for instance,
the need for special definitions: each problem needs a suitable representation, i.e.
to define the fitness function and the chromosome structure, as well as the selection,
crossover, and mutation operators that will work for this problem. This can be
challenging and time-consuming, and requires significant domain expertise. GAs
also need hyperparameter tuning, as their operation relies on hyperparameters such
as population size and mutation rate. There are no exact rules for making these
choices. Because a GAs operate on large populations and given its repetitive nature,
it can be computationally intensive, as well as time-consuming before a good result
is reached. Genetic algorithms also have the risk of premature convergence. If
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the fitness of one individual is much higher than the rest of the population, this
individual may be duplicated enough that it takes over the entire population. This
can lead to the GA getting prematurely stuck in a local maximum, instead of finding
the global one. Finally, there is no guaranteed solution. The use of GAs does not
guarantee that the global maximum for the problem at hand will be found [161].

Despite these limitations, GAs generally remain an appropriate option for solving
complex non-linear models where the location of the global optimum is a difficult
task—not least because it may be possible to use GA techniques to tackle problems
that cannot be modelled easily or accurately using other approaches.

2.4 Ensemble learning

Ensemble learning represents a machine learning approach that allows multiple ma-
chine learning models, called base learners or weak learners, to consolidate their
predictions and output a single, optimal prediction, given their respective inputs
and outputs [167]. Ensemble learning is inspired by the wisdom of crowds phe-
nomenon described in social science, which suggests criteria applicable to groups of
people making decisions together. It is claimed that, if these criteria are satisfied,
then the aggregate decisions made by the group will often be better than those of
its individual members [4].

Ideally, the individual models used in ensemble learning should be diverse to
make the ensemble rich in solutions, with some models classified as generalists and
others as specialists. For an ensemble used in a classification problem, a generalist
model can maintain a decent performance for a variety of classes without excelling in
any of them, whereas a specialist is an excellent model for making predictions about
one class but may perform poorly for the rest of the classes. The combination of
both model types is expected to show great improvement in terms of performance.
To achieve this, the ensemble is expected to learn when to rely on specialist models
and when to disregard their opinion and consider the output of a generalist model.

Ensemble methods try to solve the problems of bias and variance in ML models.
Bias refers to the inability of a method to correctly estimate the target. In ML,
bias refers to the difference between the expected prediction and its target. Biased
models cannot properly fit the training data, resulting in poor performance during
training and testing, as illustrated by the example on the left of Figure 2.18. On
the other hand, variance refers to how much individuals vary within a group. In the
ML context variance refers to the model’s variability or sensitivity to data changes.
High-variance models can generally fit the training data well; however, they perform
poorly in the test data set. This is termed overfitting, an example of which is shown
on the right of Figure 2.18. Achieving a good trade-off between bias and variance
can be an optimal point of complexity, where the error of the model is minimised
and it performs best both during training and testing [79].

Ensemble methods rely on the fact that the same algorithm can produce different
models, due to the initial conditions and hyperparameters or through the use of a
mix of different model architectures. By combining different, diverse models, it is
typically possible to reduce the expected error of the group, while each individual
model remains unchanged.

The benefits of using ensemble learning over single models encompasses perfor-
mance and robustness. The performance is increased by combining the predictions
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Figure 2.18: A biased linear regression model for data obtained from a sine function
data (left), and a high variance model that fits the training data perfectly but has
a poor performance on the test data (right).

of base learners. In general, the more base learners added to the ensemble, the more
accurate the ensemble will be, under the condition that each learner is uncorrelated
to the others. This is increasingly difficult to achieve as the set of base learners
grows larger. Furthermore, the law of diminishing returns applies [33].

Additionally, ensemble methods try to construct a set of hypotheses and combine
them for joint use. As such the output and forecasts of ensembles tend to remain
consistently accurate even when one or more of the input variables or assumptions
are changed due to unforeseen circumstances. As a result, the robustness of an
ensemble is superior compared to that of a base learner [169].

Ensemble learning also presents several difficulties and drawbacks. If the data
used for training and testing the ensemble models are noisy or incomplete, no single
machine learning technique will generate a highly performant model. For example,
in a study of a population of cars, if data about the colour, shape, and manufacturer
are gathered, it is difficult to generate an accurate model for any variable, as many
cars have the same colour and shape but are built by a different manufacturer. In
this example, adding more features to the dataset can greatly improve the model’s
performance. In the same scenario, adding more models to an ensemble cannot
provide improved performance.

There is also the interpretability problem, as by employing a large number of
models, interpretability could be reduced. Sometimes, it is difficult to explain why a
single model predicted one class. In an ensemble, there are multiple models affecting
the final prediction and may be more things to explain than the prediction process
itself, such as why the ensemble choose to train these specific models and not others
and also the number of selected models. Coming next is the high computational cost
of training an ensemble. Training a single neural network is already computationally
expensive, and training 100 models requires 100 times more computational resources.
Computational costs do not only hinder the ensemble training, but also the use of
the ensemble in production, as now multiple predictions need to be obtained and
combined to produce the output. In real-time settings, millisecond execution times
are sometimes expected, and therefore even a few microseconds of added latency
can make a huge difference.

Finally, there is not a clear way of choosing the right models for inclusion into
an ensemble. Ideally, the models included in the ensemble should possess different
characteristics. Their diversity could depend on a number of factors, such as the
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size and quality of the training data set, and the learning algorithm itself. However,
many different models could be developed and there is not a clear way of deciding
which to include in an ensemble [79].

2.4.1 Ensemble methods

Ensemble methods are divided into two major taxonomies [79]: generative and non-
generative methods. Non-generative methods are focused on combining the predic-
tions of a set of pre-trained models usually trained independently of one another,
and the ensemble algorithm dictates how their predictions will be combined. Base
classifiers are not affected by the fact that they exist in an ensemble. Generative
methods, on the other hand, are able to generate and affect the base learners that
they use. They can either tune their learning algorithm or the dataset used to train
them.

2.4.1.1 Non-generative methods

Voting. This type of non-generative ensemble method refers to techniques that
allow models to vote in order to produce a single answer, similar to how individuals
vote in elections. The most popular (most voted for) answer is then selected as
the winner. Two main voting techniques can be used, hard and soft voting. Hard
voting combines a number of predictions by assuming that the most voted class is
the winner. Soft voting takes into account the probability of the predicted classes. In
order to combine the predictions, this technique calculates the average probability
of each class and assumes that the winner is the class with the highest average
probability [79, 122, 152].

Stacking. Stacking, on the other hand, refers to methods that utilise a model
which learns how to best combine the base learners’ predictions. Stacking is a form
of meta-learning. The main idea is that use base learners in order to generate
metadata for the problem’s dataset and then utilise another learner called a meta-
learner, in order to process the metadata. Base learners are considered to be level 0
learners, while the meta-learner is considered a level 1 learner [79, 122, 152].

2.4.1.2 Generative methods

Bagging. Bagging ensemble methods aim to reduce variance. A bagging algo-
rithm resamples instances of the training dataset, creating many individual and
diverse datasets, originating from the same dataset. Afterwards, a separate model
is trained on each sampled dataset, forcing diversity between the models included
in the ensemble [8, 79].

Boosting. Boosting is a technique mainly targeting biased models. Its main idea is
to sequentially generate models, such that each new model addresses biases inherent
in the previous models. Thus, by iteratively correcting previous errors, the final
ensemble has a significantly lower bias [16, 79].
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Random forests. This type of generative ensemble method is similar to bagging,
in that it resamples from the training dataset. However, instead of sampling data
instances, it samples features, thus creating even more diverse trees since features
strongly correlated to the target may be absent in many trees [8, 79].

2.5 Summary

This chapter presented concepts, definitions and terminology necessary to under-
stand the proposed approaches and contributions of this thesis. We started by
describing machine learning and narrowed it down to supervised learning and in
particular deep neural networks and how they are applied to image classification
and object detection. Next, we defined risk assessment following the recommen-
dations provided by the ISO 31000 international standard, and discussed the use
of the consequence/likelihood matrix for recording and reporting risk information.
We then presented genetic algorithms, focusing on key concepts such as chromo-
some, population and fitness function, each of which was briefly explained. We also
presented the main operations performed by a GA, namely selection, crossover and
mutation, as well as the basic GA workflow. Finally, we concluded the chapter by
describing ensemble learning and how it aims to tackle the problem of bias and vari-
ance in ML, improving the performance and robustness of machine learning. Two
main classes of ensemble methods, i.e. non-generative and generative methods, were
discussed briefly.
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Mitigating Risk in Neural
Network Classifiers

This chapter presents a four-step approach that considers the risk factors associated
with supervised learning models, reducing the misclassifications associated with high
risks in the intended use of a ML classifier. The proposed method (i) allows the risk
misclassification between classes to be quantified, (ii) guides the training of DNN
classifiers towards mitigating the risks that require treatment, and (iii) synthesises
risk-aware ensembles with the aid of multi-objective genetic algorithms that seek
to optimise ML model performance metrics while also mitigating risk. We start by
describing the general approach in Section 3.1. Then, in Section 3.2 we describe
the application of our approach to the context of image classification using DNN
classifiers. Next, in Section 3.3, we evaluate the the approach on two data sets,
CIFAR-10 [77] and a subset of the GTSRB [141]. We then present related work in
Section 3.4. Finally, Section 3.5 concludes the chapter with a brief summary.

3.1 General approach for the synthesis of risk-

aware supervised-learning model ensembles

The steps of our method for taking risk into account in ML models are depicted in
Figure 3.1. In the first stage, risk-oblivious training, we obtain a set of tradition-
ally trained ML models. The weights of these models are initialised with random
values prior to training such that each of the trained models, although having the
same structure, is different. Then, in stage two, risk-aware verification, a set of risk
concerns, which are risk values associated with class pairs whose misclassification
results in risks that require treatment, is obtained. We follow the ISO/IEC 31010
risk management standard [65], which provides guidance on how information sup-
plied by a domain expert can be included in a risk assessment process by considering
risk information such as likelihood of encounter, impact, and likelihood of misclas-
sification. In the third stage, called risk-aware training, the risk concerns identified
in the previous stage are used to produce sets of risk-aware ML models that mit-
igate the risk for the concern they were created for. Finally, in the fourth stage,
risk-aware ensemble synthesis and verification, our approach combines subsets of
the risk-oblivious and the risk-aware models, where these subsets are selected based
on their performance and risk values. The models in these subsets are fed to a
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Figure 3.1: Four-step method for the synthesis of risk-aware supervised learning
models.

multi-objective genetic algorithm whose fitness function seeks to create a set of ML
ensembles that achieve optimal trade-offs between maximising a performance metric
(which depends on the type of supervised learning models involved) and minimising
the residual risk.

3.2 Implementing the approach for deep neural

network classifiers

In this section, we instantiate our generic approach from Figure 3.1 for DNN clas-
sifiers. We provide a comprehensive breakdown of each stage of the instantiated
approach in the following sections, offering detailed descriptions and insights into
its implementation process.

3.2.1 Risk-oblivious training

In this stage, we obtain a set of traditionally trained DNN models. The fact that
initially the weights in the DNN are randomly assigned results in different final
models, even when the same DNN structure is used for all models. Nevertheless,
our approach also supports the use of DNN models with different structure. By
generating a set of models, we are able to identify those risk concerns that are
common to all models generated from the training set. We term these models risk-
oblivious because no risk information has been considered during the training of
these models, and because we use the traditional loss function, which gives the same
importance to all misclassifications.

We note that this first stage is required in order to obtain a baseline that allows
the identification (in the next stage of the approach) of class pairs whose misclassifi-
cation as one another corresponds to unacceptable levels of risks. As such, risk-aware
training needs to be employed (in a third stage of our approach) to mitigate these
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risks.

3.2.2 Risk-aware verification

The objective of this step is to obtain a set of risk concerns, which are risk values
associated with class pairs deemed to require treatment. We follow the ISO/IEC
31010 risk management standard [65], which provides guidance on how information
from a domain expert can be included in a risk assessment process by using the
following parameters:

1. the likelihood LoEi of encountering each class i, provided on a five-point ordi-
nal scale—very low (VL), low (L), medium (M), high (H) and very high (VH),
and reflecting the likelihood of encountering an instance of a class in a given
context;

2. the impact of misclassifying an instance of class i as class j when i ̸= j, which
is defined on the same five-point scale, i.e., impact(i,j) ∈ {V L,L,M,H, V H};

3. the likelihood of misclassification (LoM) thresholds

LoM0, LoMVL, LoML, LoMM, LoMH, LoMVH, LoM1 (3.1)

where

0=LoM0<LoMVL<LoML<LoMM<LoMH<LoMVH<LoM1 = 1; (3.2)

4. the risk threshold τ which specifies the maximum risk level that can be toler-
ated; the risk associated with misclassifying a data sample of class i as class j
needs to be mitigated if its risk level r(i,j) is greater than τ .

Given these parameters, and the fraction p(i,j) of data samples of class i from
a test data set that are misclassified as class j ̸= i by the DNNs from step 1,
we first establish the likelihood of misclassification LoM(i,j) for the class pair (i, j)
as the unique element from {V L,L,M,H, V H} that satisfies LoMpred(LoM(i,j)) <
p(i,j) ≤ LoMLoM(i,j) , where the predecessor function pred is defined by pred(VL) = 0,
pred(L) = VL, etc. Next, we compute the overall likelihood OL(i,j) of misclassify-
ing class i as class j by combining LoEi and LoM(i,j) by using the mapping from
Table 3.1. Finally, we use the mapping from Table 3.2 to derive the risk level r(i,j)
associated with misclassifying class i as class j from OL(i,j) and impact(i,j), and we
consider the class pair (i, j) as a risk concern if and only if r(i,j) > τ .

Example 3.2.1 Assume that LoEi = M , LoM(i,j) = V H and impact (i,j) = H for
a class pair (i, j). Using the mapping from Table 3.1, we obtain OL(i,j) = H; then,
we combine OL(i,j) and impact(i,j) by using the mapping from Table 3.1, obtaining
r(i,j) = H. If we further consider τ = M , then all the class pairs with risk level
above M , i.e., those corresponding to the highlighted cells from Table 3.2 represent
risk concerns. This includes the class (i, j) from our example.
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Table 3.1: Overall likelihood OL(i,j)

LoM(i,j)

LoEi VL L M H VH

VH L M H VH VH

H L M M H VH

M L L M M H

L VL L L M M

VL VL VL L L L

Table 3.2: Risk r(i,j)

impact(i,j)

OL(i,j) VL L M H VH

VH L M H VH VH

H L L M H H

M VL L M M M

L VL L L L L

VL VL VL VL VL VL

Once the thresholds (3.1) are specified by domain experts for the intended appli-
cation for the DNN classifier under development, we can define the misclassification
intervals as follows: VL=[LoM0, LoMVL); L=[LoMVL, LoML); M=[LoML, LoMM);
H=[LoMM, LoMH); VH=[LoMH, LoMVH); P=[LoMVH, LoM1].

We can think of them as buckets were each of the misclassification pairs, will be
placed. We added an extra interval, ‘punish’ (P), that will include all misclassifi-
cations that go higher than the maximum value of misclassification LoMVH; this is
useful to guide the ensemble synthesis, because the GA will instantly realise that
certain combination of models and weights incur such a high amount of risk and
will penalise the fitness function of that individual. A detailed description of how
the risk is encoded is provided in Section 3.2.4.

3.2.3 Risk-aware training

In this step, the risk concerns identified in the previous step are used to produce sets
of risk-aware DNN models that aim to mitigate the risk for the concern they were
created for. To achieve that, we modify the cross-entropy loss function by multiply-
ing the result of the classification loss by a weights matrix ω that encodes a penalty
value in the class-pair whose misclassification risk we need to mitigate. This am-
plifies the contribution of misclassifications that need mitigation to the overall loss
function. Consequently, the network is forced to tweak its weights in order to reduce
the error, and eventually achieve a smaller misclassification value for the concern.
The cross-entropy function traditionally assumes a uniform weighting independent
of the predicted or actual class. In contrast, our a class-weighted cross entropy is
constructed as:

L(θ) = − 1

M

M∑
i=1

N∑
n=1

ωny
i
nlog

(
p̂in
)

(3.3)

where θ represents the DNN parameters to be learnt, M is the number of instances
in the data set, yin is the target probability that the ith instance belongs to class n
and p̂in is the output of the soft-max for instance i belonging to class n. Note that
generally yin is either 1 or 0 depending on whether the instance belongs to the class
or not. Finally, ωn is a weight associated with misclassifying class n. Weighting
the class in this way is commonly used to tackle class imbalance in training sets.
There is not a specific rule for the selection of the ωn values. In the experiments
carried out in Section 3.3 the values were selected through trial and error, with the
observation that, as the weight value increases for a given class pair, the associated
number of misclassifications for that class pair is reduced (see Figure 3.9). However,
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the value also has an effect on the misclassifications for the rest of the class pairs,
in the sense that if it is set too high, then the overall accuracy of the DNN model is
adversely affected.

The resulting risk-aware models may be viewed as “experts” in avoiding one
form of misclassification. In the next step, we show how these experts are combined
with the “generalists” created in the first step of our approach.

3.2.4 Risk-aware ensemble synthesis and verification

The final step of our approach combines subsets of the risk-oblivious and the risk-
mitigating models obtained in steps 1 (Risk-oblivious training) and 3 (Risk-aware
training), respectively, where these subsets are selected based on their performance
and risk values. The models in the subsets are fed to a multi-objective genetic
algorithm (GA) that synthesises the ensemble described in the following section
by searching for the best set of weights to combine the risk-oblivious and risk-
aware models into an ensemble that maximises performance and reduces the risk-
relevant misclassification errors as much as possible. From among the existing search
algorithms, we preferred to use GAs because they can efficiently search through large
and complex solution spaces such as the one presented in this section. Moreover, GAs
are designed to explore multiple solutions simultaneously and can quickly converge
on promising solutions through the use of crossover and mutation operators. This
makes them particularly effective in situations where (like in the case of our ensemble
synthesis) there are multiple possible solutions to a problem, and it is not feasible
to explore all possible solutions exhaustively.

Another method for synthesising the ensemble would have been to train a NN
that would combine the results of individual NNs in the ensemble into the final
result. We did not opt for this method because it requires to first identify the best
set of individual NN to be combined in the output-layer of the ensemble. Therefore,
using this method would require an extra step before the ensemble creation, whilst
the GA architecture that we adopted performs both tasks (i.e. model selection and
ensemble training) simultaneously. Nevertheless, using a NN to combine the results
of the risk-oblivious and risk-mitigating NNs from the ensemble remains a valid
option that is worth exploring in future research.

3.2.4.1 Ensemble construction

We use the risk-aware ensemble architecture depicted in Figure 3.2, where each of n
models allowed in the ensemble is presented with an input to be classified into one
of m classes. Each model then produces a distribution of class probabilities using a
soft max function, such that pji is the probability of class i predicted by model j.
Each of these predictions is then weighted by a value wj

i , the intuition being that if
model j is good at predicting class i then it will end up being more highly weighted
in the ensemble. For each class, we then sum the weighted predictions and apply an
arg max function to obtain a class prediction from the ensemble.

To decide which models and weights should be used in the ensemble and to
ensure that the appropriate trade off is achieved between performance and risk we
used the GA strategy described below.
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Figure 3.2: Risk-Aware Ensemble architecture. We combine the predictions of n
models for the same input with a set of weights. The weights are values between 0
and 1 and help to determine how much confidence the ensemble has on the model’s
prediction. Finally, all the predictions are added up and we apply an argmax func-
tion to obtain the ultimate ensemble prediction.

3.2.4.2 The GA strategy

The GA strategy requires (i) the definition of a chromosome which encodes fea-
tures of the problem space; (ii) the optimisation criteria and constraints against
which chromosome fitness will be assessed; and (iii) the specification of an evolution
strategy for each generation.

Chromosome encoding. The chromosome is encoded as a single binary indicator
value and N floating point values per model in the candidate set. A value of 1 in
the binary field indicates that the model is included in the ensemble, while a value
of zero indicates it is excluded. Each of the floating point values then represents the
weights associated with the output of that model.

Fitness function. Our GA strategy has two fitness functions and one constraint.
The first fitness function seeks to maximise a performance metric for the models
such as the F1 score for image classifiers or (see the next chapter) mAP for object
detectors, and the second to minimise the residual risk defined as:

residual risk =
∑

r(i,j)>τ

res risk(LoEi, impact(i,j), p(i,j), τ) (3.4)

where res risk(LoEi, impact(i,j), p(i,j), τ) for the class pair (i, j) is a positive value
that reflects by how much the risk of misclassifying class i as class j exceeds τ if
r(i,j) > τ , and zero otherwise. The constraint is that the number of models included
in the ensemble (Ens) must satisfy:

Ensmin ≤ Ens ≤ Ensmax (3.5)

where the bounds Ensmin, Ensmax are pre-specified GA hyperparameters.
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Evolution strategy. For the evolution strategy we use the DEAP evolutionary
framework [46] that implements the NSGA-II [36] algorithm for selection and then
apply cross-over and mutation as described next.

First, let us consider the binary indicator fields. Using a single cross over point
applied to the model selection genes, we generate two children. Next we examine
each candidate chromosome. If the number of models turned on is outside the
constraint bounds (3.5), we choose models, at random, to be turned on or off as
appropriate.

Example 3.2.2 For example consider the following model selection genes for two
parents describing a problem with 10 candidate models:

g1 =[1, 1, 1, 1, 0, 0, 1, 0, 0, 0] (3.6)

g2 =[0, 0, 0, 0, 1, 0, 1, 0, 1, 1]

Assume that we have a constraint stating that the number of active models must be
between 3 and 5 inclusive, and that a cross over point of two is selected at random,
generating two child genes as:

c1 =[1, 1, |0, 0, 1, 0, 1, 0, 1, 1] (3.7)

c2 =[0, 0, |1, 1, 0, 0, 1, 0, 0, 0]

where | denotes our crossover point. The resulting child c2 is valid since 3 of its
models are active; c1, however, has 6 models active and is hence invalid. From those
models turned on in c1 we select one at random (in this case model 2) and set its
value to zero to obtain two valid genes:

c1 =[1, 0, 0, 0, 1, 0, 1, 0, 1, 1] (3.8)

c2 =[0, 0, 1, 1, 0, 0, 1, 0, 0, 0]

Mutation is applied to a chromosome as a bit swap. First, two genes of the
chromosome are selected at random and their binary indicators are swapped. After
the swap we check that the total number of active models remains unchanged to
meet the constraint (3.5). For example, to mutate chromosome c2 models 1 and 3
are swapped giving a mutated chromosome c3:

c3 = [1, 0, 0, 1, 0, 0, 1, 0, 0, 0] (3.9)

For the floating point values, we applied simulated binary crossover [35] (which
applies if and only if the model is selected for inclusion in one of the chromosomes).
For this reason it is necessary to first apply crossover and mutation to the binary
indicator fields.

3.2.4.3 Encoding the risk with fractional parts

In this section we explain that the risk value for each concern needs to have a
fractional part, and how this value is obtained.

In order to guide the search of the GA it was necessary to implement a strategy
that could help to identify when a selection of models and weights during the en-
semble synthesis had a noticeable impact on the amount of the residual risk. In this
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Figure 3.3: The relationship between the mapping tables and the thresholds of
misclassification. Observe, how the LoM combines with the LoE to obtain the
overall likelihood (OL). Note how the columns are not equally distributed, e.g. the
mapped OL has two cells for medium (M); however, we still want to differentiate
how further into the segment a mapped value is, otherwise, a LoM with a low (L)
value will not be different from a medium (M) LoM in the OL. Finally, the OL
combines with the impact to obtain the final risk.

way, the GA can find in which direction to continue the search for Pareto-optimal
solutions.

The strategy that we propose is to add a fractional part to the risk value and
even when the risk for a concern could not be brought below the current risk level
from one GA generation to the next, the GA will still be able to notice a change
in the risk value although it may be subtle. For example, if the current risk is 4.8
and a set of weights selected by the GA yields to a risk value of 4.5, we can see
how the risk remains in the same risk level 4; however, there is an indication of risk
reduction and by continuing the search in that direction the GA is likely to find a
better solution.

The relationship between the mapping Tables 3.1 and 3.2 and the likelihood of
misclassification thresholds is depicted in Figure 3.3. The risk mapping comprises
the following steps:

1) Obtain the fractional likelihood of misclassitication fLoM , which transforms the
mean fraction of misclassification (p(i, j)) of class i as class j over the risk-
oblivious models to a number within the interval [0, 5]. We do this by using the
intervals defined in Section 3.2.2 and the following formula:

fLoM = mapped value(p(i, j)) +
p(i, j) − left(p(i, j))

right(p(i , j )) − left(p(i, j))
(3.10)
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where

mapped value(x) =



0, if x ∈ [LoM 0,LoM VL)

1, if x ∈ [LoM VL,LoM L)

2, if x ∈ [LoM L,LoMM)

3, if x ∈ [LoMM,LoM H)

4, if x ∈ [LoM H,LoM VH)

5, if x ∈ [LoM VH,LoM 1]

is the index of the LoM interval that p(i, j) belongs to, and

(left(x), right(x)) =



(LoM 0,LoM VL), if x ∈ [LoM 0,LoM VL)

(LoM VL,LoM L), if x ∈ [LoM VL,LoM L)

(LoM L,LoMM), if x ∈ [LoM L,LoMM)

(LoMM,LoM H), if x ∈ [LoMM,M H)

(LoM H,LoM VH), if x ∈ [LoM H,LoM VH)

(LoM VH,LoM 1), if x ∈ [LoM VH,LoM 1]

represent the smallest misclassification fraction values for a concern with the
same LoM tier as the concern under analysis and for a concern with the next
LoM tier, respectively. For example, if p(i, j) ∈ [LoMVL, LoML), we have
mapped value(p(i, j)) = 1, left(p(i, j)) = LoMVL and right(p(i, j)) = LoML,
so we obtain

fLoM = 1 +
p(i, j) − LoMVL

LoML − LoMVL
.

2) Obtain the fractional overall likelihood fOL, which combines the likelihood of
encounter LoE and fLoM using Table 3.1. We need to look up the row of
Table 3.1 where LoE is located, e.g. if LoE = 3(H) then we use the row =
[L(1) M(2) M(2) H(3) V H(4)]. As we can see, the table is not evenly divided,
for instance in row we have M located in positions 1 and 2, and because we want
to capture this variations, i.e. how far into M a concern is located, we calculate
the size sz of the segment of row elements with the same (non-fractional) OL
value as the concern being examined:

sz = last − first + 1 (3.11)

where first is the index of first element in row with the same OL as our concern,
and last is the index of last element in row with the same OL as our concern.
With this notation, we calculate fOL as:

fOL = OL +
fLoM − first

sz
(3.12)

We illustrate this step in Figure 3.3, where we assume that LoE=H. It is possible
to appreciate how the columns are not equally distributed, e.g. the mapped OL
has two cells for medium (M). However, we still want to differentiate how further
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into the segment a mapped value is, in order to guide the risk reduction in the
GA. Otherwise, a LoM with a low (L) value will not be different from a medium
(M) LoM in the OL value.

3) Finally, we calculate the fractional risk frisk in a similar way to fOL, but now
mapping OL and impact in Table 3.2. In this case, we require the relevant
column of Table 3.2 because the impact levels are stored column-wise. For
example, if impact = 2(M ), then column = [V L(0) L(1) M(2) M(2) H(3)]
needs to be used. Again, we calculate sz using (3.11) and the final fractional
risk is obtained using the expression:

frisk = risk +
fOL− first

sz
(3.13)

where risk is the mapped OL and impact using Table 3.2, and sz, first were
already defined above. An example of applying the whole process is presented
later in Section 3.3.2.

In Figure 3.3, we can visualise how OL combined with different impact values
yields different risk levels. We highlight the fact that the mapping is not one
to one, e.g. the minimum risk level that can be obtained when OL=L and
impact=M is L instead of VL, and the maximum risk can never be higher than
H (except when a penalisation happens).

3.3 Evaluation

3.3.1 Evaluation methodology

The effectiveness of the approach was assessed through applying it in two case
studies. For the first case study, we took the widely used CIFAR-10 dataset [77]
which contains 60,000 images of transportation vehicles e.g. truck, car, etc., ships,
and animals and whose classes are depicted in Figure 3.4. The individual models
were trained using the training set of CIFAR-10 images. For testing, we split the
CIFAR-10 test image set into two subsets of the same size, and we used one subset for
testing the individual models, and the other subset for the testing of the ensemble.

For the second case study we used the well-known GTSRB benchmark [141],
which contains 50,000 labelled images from 43 classes. The data set contains images
of speed limit signs, prohibitory signs, mandatory signs, and danger signs. Examples
are provided in Figure 3.5. Due to its highly imbalanced nature, a subset of the
benchmark was created by selecting only samples from the speed limit signs and
an extra class composed of random samples from the non-speed limit signs in the
dataset. From the original test set, we randomly took 100 samples per class in
the subset, and then augmented them to obtain a test set for the ensemble. The
remaining test images were used to test the individual models. For augmentation,
we used width shift range, height shift range and rotation range—all of which were
carried out using functions already available in the Keras ImageDataGenerator API.1

All the experiments were performed on a server with 64GB of RAM with 8 Intel
Core i7-9700K 3.60GHz CPUs, running Ubuntu 18.04.5 with a 64-bit architecture
and 6.9TB of hard disk.

1more details about this API can be found at https://www.tensorflow.org/api_docs/

python/tf/keras/preprocessing/image/ImageDataGenerator
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(a) aeroplane

(b) automobile

(c) bird

(d) cat

(e) deer

(f) dog

(g) frog

(h) horse

(i) ship

(j) truck

Figure 3.4: Sample images for each of the 10 classes in the CIFAR-10 data set.

The experiments carried out and their results are presented and discussed in
Section 3.3.2 and 3.3.3, respectively.
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(a) Speed limit signs

(b) Prohibitory signs

(c) Mandatory signs

(d) Danger signs

Figure 3.5: Example images from the GTSRB benchmark which includes images
from speed limit signs, prohibitory signs, mandatory signs and danger signs. The
data set contains 43 classes in total.

3.3.2 Evaluation on the CIFAR-10 data set

3.3.2.1 Inputs

The data set For our experiments, we used the CIFAR-10 dataset [77] which
consists of 60,000 32x32 colour images with N = 10 classes, with 6,000 images per
class. There are 50,000 training images and 10,000 test images. The risk-oblivious
and risk-aware models were trained using the training data. We split the 10,000 test
images in two, 5,000 images for testing the individual models and 5,000 for testing
the final ensemble.
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Table 3.3: Impact for the misclassifications of classes in the CIFAR-10 dataset pro-
vided on a 0-4 scale of VL-VH. The cells with a dash are misclassifications considered
irrelevant for the context or that does not make sense.

Predicted Class

0 1 2 3 4 5 6 7 8 9

A
ct
u
al

C
la
ss

0 - 3 - - - - - - 2 2

1 4 - - - - - - - 1 0

2 - - - 2 0 1 0 1 - -

3 - - 0 - 1 0 1 1 - -

4 - - 2 3 - 2 2 4 - -

5 - - 3 4 3 - 3 2 - -

6 - - 2 1 1 0 - 2 - -

7 - - 2 1 2 1 0 - - -

8 2 2 - - - - - - - 1

9 3 4 - - - - - - 2 -

Risk information

Impact level impact(i, j). Typically, the impact assessment considers how the
undesirable event being assessed could influence cost, schedule, or technical perfor-
mance objectives, i.e., how the context will be affected if such an event is to happen.
In Table 3.3 we present the impact values used in our evaluation for class misclassi-
fications. We present the actual classes on the rows of the table and the predicted
classes in the columns. The impact is being measured in a 0–4 scale (corresponding
to VL–VH), and we marked with a dash the cells for misclassifications that are con-
sidered irrelevant for the context or that are not applicable because the actual class
is the same as the predicted class. For example, if we look at Table 3.3 again, we
can see that class aeroplane (0) predicted as class aeroplane (0) is dashed because
this is not a misclassification and will not make sense to rate it with an impact
value. Likewise, class aeroplane (0) predicted as either bird (2), cat (3), deer (4),
dog (5), etc. have been dashed, which indicates that these misclassifications are not
of interest for our context.

The dash should not be confused with a zero impact, when the impact is 0 (VL),
this means that the misclassification is of interest in our context, nevertheless, when
it happens, the effect that it will have is very low and its contribution to risk will
be minimum; for example, we assessed that misclassifying a cat (3) as a bird (2)
will have a very low impact in a self-drive scenario. In contrast, misclassifying a
dog (5) as a cat (3) in a risky manoeuvre could lead to legal implications in the
UK if the dog is injured as a result, which is why we assigned a 4 (i.e., VH) impact
to this misclassification. One more example is misclassifying a truck (9) as an
automobile (1): in an overtaking situation, wrong assumptions made about the size
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Table 3.4: Likelihood of encounter (LoE) for the 10 classes of the CIFAR-10 dataset
used to perform the evaluation of the proposed approach, it is given on a 0-4 scale
of VL-VH.

Class 0 1 2 3 4 5 6 7 8 9

LoE 3 4 4 2 4 4 2 1 0 4

of the vehicle, speed and time could lead to a potential accident, hence the very
high impact in such misclassification.

All the proposed impact values in Table 3.3 could be arguably different depend-
ing on perspectives and particular experiences. For the purpose of our evaluation,
estimating these values is fine because we are just providing an example of what
this table could look like. In a real-world scenario, expert domain input is required
in order to fine-tune the impact values accordingly, to accurately reflect the actual
impact values in the particular context of interest.

Likelihood of encounter LoE(i). The LoE parameter refers to the likelihood of
an event happening. LoE can be described as an expected probability or frequency
of encountering an instance of a given class during a determined period of time.
The likelihood of encounter we used for the evaluation on this data set is provided
in Table 3.4. The LoE for each class is given again on a 0–4 scale (corresponding
to VL–VH). For instance, we assessed that the classes automobile (1), bird (2),
deer (4), dog (5) and truck (9) are very likely to be encountered during an hour-long
road trip; on the other hand, the class ship (8) will very rarely be observed during
an hour-long road trip. This table is again just an example; for any real-world
application, it is recommended that this table is proposed by an expert domain.

Likelihood of misclassification thresholds. As described in Section 3.2.2, the
LoM thresholds facilitate the mapping of the fractions of misclassification to a 5-
point scale of VL–VH.

The thresholds that we used for this experiment are 0< 0.01< 0.025< 0.045<
0.075 < 0.2 < 1. With the thresholds in place we can define the intervals for the
risk levels as follows: VL=[0, 0.01); L=[0.01, 0.025); M=[0.025, 0.045); H=[0.045,
0.075); VH=[0.075, 0.2); P=[0.2, 1].

Figures 3.6 and 3.7 show how the calculated risk looks like when the LoE and
impact, respectively, varies using the defined intervals. As we can see in both figures,
the risk grows steadily as the LoM value is increasing. Each chart shows that the
risk is a piece-linear function of the LoM between the intervals for the risk described
above at different LoE (Figure 3.6) and impact levels (Figure 3.7). Our graphs
were thought in this way because our synthesised ensemble can only mitigate risk
by decreasing the LoM (risk mitigation by reducing likelihood of encounter and/or
impact is possible by other means, which are out of scope for our work). These
charts also allow to anticipate, given the LoE and impact, how much the LoM needs
to be decreased for a concern to be mitigated e.g. to be moved down from VH to H,
etc. which is directly linked to the width of each interval, the LoE and the impact.

Figure 3.6, shows the effect of varying the LoE while the impact remains the
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(a) LoE=VL (b) LoE=L

(c) LoE=M (d) LoE=H

(e) LoE=VH

Figure 3.6: The effect of varying the LoE at different impact levels.

same, there are five levels for the impact in each of the graphs, from VL-VH and each
of them is depicted with a different colour to compare the risk behaviour at each
impact level and how it changes in relation to the LoE. The charts are connected
with the mapping tables 3.1 and 3.2. For instance when LoE = V L if we look at
Table 3.1 it does not matter how high the LoM goes, the highest overall likelihood
(OL) will be Low (see the row for LoE=VL in Table 3.1). When we combine the
OL with the impact in Table 3.2 we realise that at a fixed impact = V L the final
risk will never be above V L and this is reflected in chart 3.6a, see how the risk
for the blue line (impact = V L) never hits the Low risk threshold. Basically, the
charts allow the visualisation of the mapping tables for a better understanding of
the complex risk mapping we are carrying out, and help us to spot where the risk
thresholds leave the concerns and by how much the LoM should be reduced to
actually mitigate our risk concerns. Some of the impact levels are overlapped for
instance in graphs 3.6b to 3.6e the risk for impact = H (red line) is never visible,
this is because it overlaps with the impact = V H, and this can be confirmed when
looking at Table 3.2 it can be seen how the columns of the table for levels of impact
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high and very high have the same values.

Figures 3.6 and 3.7 present a steep jump to P (the penalise value) when the
LoM ≥ 0.2. This comes from the way in which the likelihood of misclassification
thresholds are defined. In particular, when LoM ∈ [≥]0.075, 0.2), it is mapped to
a VH likelihood of misclassification value, while LoM values of 0.2 or above are
mapped to P. If the LoM maps to P then we automatically assign a P value to the
risk as well. The objective of mapping to the P value is to guide the GA search
and quickly notice when a selection of models and weights yields a risk value that
is unacceptable, so that the search can continue in a different direction.

Now consider Figure 3.6a with an impact of VH (the purple line), moving a
concern from the low risk to the very low risk requires the LoM to be decreased to
a value smaller than 0.025 which depending on the risk-oblivious models, might be
difficult to achieve, especially if the LoM is greater than 0.1; graphically, we can see
how the risk for this interval seems to be mostly flat from the LoM values between
0.075 and 0.175. We are careful to avoid this behaviour when doing the mappings
as in these cases, our method has little to do to mitigate the risk.

Conversely, in Figure 3.6e when the impact is V H (purple line), if we have a
risk of H that we would like to mitigate to M , we can see how the slope of the risk
in that area is sharp which indicates that mitigating the concern will be quick as
even a small reduction of the LoM will have a significant influence in the amount of
risk. If we discuss about mitigating a risk from VH to H (again with an impact of
VH) we observe that the risk reduction needs to be significant for this concern to
be alleviated, especially, if the LoM is greater than 0.1.

Figure 3.7 shows the risk behaviour at each of the five impact levels varying at
each of them the LoE, which is represented with different colours. In Figure 3.7a we
can observe the risk at each LoE value when impact = V L. Note that even when the
LoE = V H, the worst risk value will be low; nevertheless, as the impact increases,
so does the risk, e.g. in Figures 3.7d and 3.7e when the LoE has the same value
V H, the risk gets as high as V H. Note how in Figure 3.7a, when the LoE is M , H
and V H, the corresponding risk values (shown by lines in green, red, and purple)
do not start at V L like the blue and yellow lines. This is because we split V L into
three different segments, which is directly related to the mapping tables: if you look
at Table 3.2, you will see how when the impact is V L (first column) the value very
low is repeated three times, for OL ∈ {V L,L,M}, so when the LoE ∈ {V L,L}
(see Table 3.1), we have OL = V L and mapping OL = V L and impact = V L gives
a risk value of V L (first segment). However, when the LoE ∈ {M,H, V H} (see
Table 3.1), the mapped OL begins at level L (rather that V L), and when OL = L
and impact = V L in Table 3.2 the mapped risk is V L (second segment), which
explains why the risk values for LoE = M , H and V H do not start at V L. For
further details about how we calculate the segment sizes, see Section 3.2.4.3.

Figures 3.6 and 3.7 also give us an idea of the risk values for the set of concerns,
and how by adjusting either the LoE or the impact values, our concerns could end
up with different risk values. In other words, in the real world, there are different
contexts where our systems could be deployed, and for each of these contexts the
LoE or impact values could be different. For example, in a rural area it may be
more likely to encounter animals such as horses, deer, etc. than in the city, whereas
in the city, pedestrians and bicycles could be more commonly found. The analysis
of these graphs gives us an idea of the risk values when our system will be deployed
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(a) Impact=VL (b) Impact=L

(c) Impact=M (d) Impact=H

(e) Impact=VH

Figure 3.7: The effect of varying the impact at different LoE levels.

in different contexts and whether our approach will be sufficient to mitigate the
risk, or further mitigation strategies should be considered, e.g., to reduce impact or
likelihood of encounter.

When our method is constrained because the LoM can not be decreased at
least one risk level below the current one, other mitigation strategies can be put in
place, e.g. to reduce the LoE of deer by placing fences around the road or banning
pedestrians from highways to avoid the risk of them being misclassified as any other
class and lead to an accident. As we already mentioned these charts allow to have
this conversation, make an analysis and make decisions based on the likelihood
of misclassification thresholds, LoM values, and how the impact and LoE combine
together and determine the behaviour of the risk which is required to be understood,
particularly, because of the sophisticated risk mapping that we are using.

Maximum acceptable risk level We evaluated our approach in this data set
using two acceptable risk levels: τ = M and τ = H (i.e. mitigate all risks > M and
> H respectively).
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Table 3.5: Mean fraction of misclassification p(i, j) for the evaluation of the 30
risk-oblivious models on the CIFAR-10 dataset. The values on the diagonal are 0
because we excluded the cases in which the model correctly identified the classes.

Predicted Class

0 1 2 3 4 5 6 7 8 9

A
ct
u
al

C
la
ss

0 0.0 0.0104 0.0378 0.0174 0.0164 0.0058 0.0109 0.0093 0.0469 0.0245

1 0.0102 0.0 0.0023 0.0057 0.002 0.003 0.0121 0.0018 0.0179 0.0602

2 0.055 0.0025 0.0 0.0476 0.0847 0.0475 0.0631 0.0151 0.0088 0.0065

3 0.0187 0.0027 0.0489 0.0 0.0543 0.1373 0.0805 0.0271 0.0091 0.0093

4 0.0097 0.0021 0.041 0.0459 0.0 0.0227 0.0461 0.0325 0.0072 0.0019

5 0.0051 0.0012 0.0285 0.1324 0.0393 0.0 0.0273 0.0339 0.0015 0.0034

6 0.0068 0.0011 0.0255 0.044 0.0245 0.015 0.0 0.0027 0.002 0.002

7 0.0112 0.0005 0.0212 0.0415 0.0526 0.0419 0.0107 0.0 0.0037 0.0089

8 0.0449 0.0147 0.0073 0.0162 0.0057 0.0043 0.0081 0.0034 0.0 0.016

9 0.0223 0.0391 0.0069 0.0098 0.0035 0.0023 0.0066 0.0038 0.0239 0.0

3.3.2.2 Step 1: Risk-oblivious training

To create the models for our experiments we used a convolution neural network
with the structure based on those developed by the Keras team [26]. We trained
30 models with an average F1 score of 0.7907 and average residual risk of 17.5758,
for 100 epochs. The time required to train one model was around 4.52 hours.

3.3.2.3 Step 2: Risk-aware verification

The mean fLoM and fOL values for the 30 risk-oblivious models are shown in Ta-
ble 3.6 and in Table 3.7, respectively. The values from these tables indicate the
respective parameter values on a 0-4 scale corresponding to VL-VH plus a fractional
part that will be explained below. The LoM value is the mapped fraction of mis-
classification (see Table 3.5) for each of the classes; note that we require it to be
scaled because the mapping table OL (Table 3.1) expects both the LoM and the
LoE in the 0-4 scale of VL-VH. The fOL (Table 3.7) is the result of combining the
fLoM and the LoE in the mapping Table 3.1. The dashes indicate class pairs, e.g.
the actual class airplane (0) predicted as either, class bird (2), cat (3), deer (4) or
dog (5), that are not of interest for our context.

Table 3.8 shows the final mapped risk, which is the result of combining the fOL
and the impact as indicated earlier in Table 3.2. The shaded cells correspond to class
pairs with a risk value greater than or equal to τ = 2 (note that for the experiments
for τ = 3, a subset of these shaded cells indicate the risks that need to be mitigated).
In total, there are 21 risk concerns for τ = 2, and their corresponding risk values
are: 1) frog (6) predicted as bird (2) with risk 2.005; 2) plane (0) predicted as
car (1) with risk 2.01; 3) car (1) predicted as plane (0) with risk 2.01; 4) bird (2)
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Table 3.6: Mean fLoM from the evaluation of the 30 risk-oblivious models on the
CIFAR-10 data set, the values are provided on a 0-4 scale of VL-VH. The cells with
a dash are misclassifications considered irrelevant for the context.

Predicted Class

0 1 2 3 4 5 6 7 8 9
A
ct
u
al

C
la
ss

0 - 1.02 - - - - - - 3.06 1.96

1 1.01 - - - - - - - 1.52 3.5

2 - - - 3.08 4.07 3.08 3.6 1.34 - -

3 - - 3.13 - 3.31 4.49 4.04 2.1 - -

4 - - 2.8 3.03 - 1.84 3.03 2.37 - -

5 - - 2.17 4.45 2.71 - 2.11 2.44 - -

6 - - 2.02 2.95 1.96 1.33 - 0.27 - -

7 - - 1.74 2.82 3.25 2.84 1.04 - - -

8 2.99 1.31 - - - - - - - 1.4

9 1.81 2.7 - - - - - - 1.92 -

Table 3.7: Mean fOL for the evaluation of the 30 risk-oblivious models on the
CIFAR-10 data set, the values are provided on a 0-4 scale of VL-VH. The cells with
a dash are misclassifications considered irrelevant for the context.

Predicted Class

0 1 2 3 4 5 6 7 8 9

A
ct
u
al

C
la
ss

0 - 2.01 - - - - - - 3.06 2.48

1 2.01 - - - - - - - 2.52 4.25

2 - - - 4.04 4.54 4.04 4.3 2.34 - -

3 - - 2.56 - 2.66 3.49 3.04 2.05 - -

4 - - 3.8 4.01 - 2.84 4.01 3.37 - -

5 - - 3.17 4.72 3.71 - 3.11 3.44 - -

6 - - 2.01 2.48 1.98 1.66 - 1.14 - -

7 - - 1.37 1.91 2.12 1.92 1.02 - - -

8 1.33 0.66 - - - - - - - 0.7

9 2.81 3.7 - - - - - - 2.92 -

predicted as dog (5) with risk 2.04; 5) horse (7) predicted as deer (4) with risk
2.06; 6) plane (0) predicted as truck (9) with risk 2.24; 7) deer (4) predicted as
dog (5) with risk 2.42; 8) truck (9) predicted as ship (8) with risk 2.46; 9) plane (0)
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Table 3.8: frisk for the class-pairs on the CIFAR-10 data set, the values are provided
on a 0-4 scale of VL-VH. The cells with a dash are misclassifications considered
irrelevant for the context. The shaded cells indicate the concerns with risk > 2 (M).

Predicted Class

0 1 2 3 4 5 6 7 8 9

A
ct
u
al

C
la
ss

0 - 2.01 - - - - - - 2.53 2.24

1 2.01 - - - - - - - 1.51 1.62

2 - - - 3.04 1.77 2.04 1.65 1.45 - -

3 - - 0.86 - 1.55 1.25 1.68 1.35 - -

4 - - 2.9 4.01 - 2.42 3.01 3.37 - -

5 - - 3.17 4.72 3.71 - 3.11 2.72 - -

6 - - 2.0 1.49 1.33 0.55 - 1.14 - -

7 - - 1.37 1.3 2.06 1.31 0.34 - - -

8 1.33 0.66 - - - - - - - 0.7

9 2.81 3.7 - - - - - - 2.46 -

predicted as ship (8) with risk 2.53; 10) dog (5) predicted as horse (7) with risk
2.71; 11) truck (9) predicted as plane (0) with risk 2.81; 12) deer (4) predicted as
bird (2) with risk 2.9; 13) deer (4) predicted as frog (6) with risk 3.01; 14) bird (2)
predicted as cat (3) with risk 3.04; 15) dog (5) predicted as frog (6) with risk 3.11;
16) dog (5) predicted as bird (2) with risk 3.17; 17) deer (4) predicted as horse (7)
with risk 3.37; 18) truck (9) predicted as car (1) with risk 3.7; 19) dog (5) predicted
as deer (4) with risk 3.71; 20) deer (4) predicted as cat (3) with risk 4.01; and
21) dog (5) predicted as cat (3) with risk 4.72.

Example 3.3.1 We present an example of the risk calculation for the concern ‘dog
(class 5) misclassified as cat (class 3)’ using the intervals previously defined and the
formulas introduced in Section 3.2.4.3.

1. Obtain fLoM . The concern dog(5) as cat(3) has a p(i, j) = 0.1324 (see Ta-
ble 3.5), which belongs to the interval V H : [0.075, 0.2); substituting in (3.10),
we compute:

fLoM = 4 +
0.1324 − 0.075

0.2 − 0.075

and we obtain fLoM = 4.45.

2. Obtain fOL. Continuing with our example, we have LoM = 4, LoE = 4, and
row = [L(1) M(2) H(3) V H(4) V H(4)]. so first = 3 and last = 4, and
substituting in (3.11) we obtain sz = 2. Using (3.12) and substituting, we
compute:

fOL = 4 +
4.45 − 3

2

and get fOL = 4.725 (see Table 3.7).
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(a) Models for the concern deer (4) as cat (3) (b) Models for the concern deer (4) as horse (7)

(c) Models for the concern dog (5) as deer (4) (d) Models for the concern truck (9) as car (1)

Figure 3.8: Risk-oblivious vs risk-aware models for four of the concerns for the
evaluation on the CIFAR-10 data set.

3. Finally, we calculate the frisk . As impact = 4(V H) and fOL = 4.725(V H),
then column = [V L(0) L(1) M(2) H(3) V H(4)]. We calculate sz using (3.11),
where first = 4 and last = 4 (for the specific fOL and impact):

sz = 4 − 4 + 1 = 1.

Using (3.13) and substituting, we calculate:

frisk = 4 +
4.725 − 4

1

and obtain the fractional frisk = 4.725. This can be corroborated in Table 3.8
for the concern dog(5) as cat(3).

For each τ value we obtained a different number of concerns. For τ = M see Ta-
ble 3.9, and for τ = H see Table 3.13 for the list of concerns and their corresponding
risk values.

3.3.2.4 Step 3: Risk-aware training

We trained 30 models per concern identified in the previous step, with 10 such
models built for each ω ∈ {2, 5, 10} (giving a total of 630 risk-aware models for
τ = M , and 270 risk-aware models for τ = H) with an average F1 score of 0.7946
and average residual risk of 18.0412. If we compare these values with those from
the risk-oblivious models, we can see that on average the risk-aware models have
more residual risk. However, when we carefully compare the risk-aware models for
each specific concern to the risk-oblivious models, the risk-aware ones have lower
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(b) Risk-aware models, weight ω = 2
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(c) Risk-aware models, weight ω = 5
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(d) Risk-aware models, weight ω = 10

Figure 3.9: The effect of applying weight to the concern dog predicted as cat on
misclassification. The size of the marker is proportional to the number of misclassi-
fications observed, the green lines intersect the concern e.g. class dog predicted as
cat and the red lines the inverted classes of the concern e.g. cat predicted as dog to
visualise the effect of weight in both situations.

risk levels for the concern they are “aware” of than the risk-oblivious. This is the
expected outcome, i.e. the risk-aware models are expected to dominate in terms of
F1 and residual risk. This result is depicted in Figure 3.8, which shows the F1 and
residual risk for the generated models, distinguishing between ω = {2, 5, 10} and
risk-oblivious for four randomly chosen concerns. For example, in Figure 3.8a the
risk-aware model with ω = 10 (green dot in the Pareto-front) is the best performing
model in terms of risk with a residual risk below 4 and F1 close to 0.8. We also
have in the Pareto-front two risk-aware models for ω = 5 (yellow dots) and two
risk-aware models for ω = 2 (blue dots). We also notice in Figures 3.8b, 3.8c and
3.8d that at least one of the risk-oblivious models (red dots) made it to the Pareto-
front; nonetheless, most of the Pareto-dominating models belong to the three sets of
risk-aware models. Furthermore, having good risk-oblivious models is of benefit for
the ensemble, as we will be combining the specialist (risk-aware) models with good-
performing generalist models to account for the misclassifications without risk-aware
models.

For each model created we examined the confusion matrix and the number of
misclassifications for the test set were recorded. The results are plotted for the
concern dog as cat in Figure 3.9 where we compare the effect of the weighting ω
used to train the models. As shown in this figure, the tendency is for misclassification
in the risk-aware models to be reduced as the weight is increased. This reduction
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(b) Risk-aware models, weight=2
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(c) Risk-aware models, weight=5
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(d) Risk-aware models, weight=10

Figure 3.10: The effect of applying weight to the concern dog predicted as cat on
precision.

in misclassification rate is not cost-free however, and an examination of the whole
model reveals that a trade off is necessary between controlling the risk associated
with this mode of misclassification and performance metrics. The size of the marker
is proportional to the number of misclassifications observed. For clarity we omit
predictions correctly made. Here we see that, the size of the marker associated with
misclassifying a dog as a cat reduces as the weight increases. It is clear however that
we now more frequently misclassify a cat as a dog.

Figure 3.10 shows an examination of the precision associated with each class
for the model sets. We can see from this plot that as the weight is increased the
precision of the dog class drops. This means that we are obtaining a higher number
of false positives since we are more willing to accept a cat classified as a dog. When
we examine recall, as shown in Figure 3.11, we note that recall for the cat class
drops as the weight increases. This is due to an increase in the false negative rate,
i.e. the number of cats which are not correctly identified by the model. Indeed, with
a weight of 10 the recall for cats has dropped to approximately 0.47.

3.3.2.5 Step 4: Risk-aware ensemble synthesis and verification

As mentioned in Section 3.3.2.1, we used two different values of τ (τ = M and τ =
H), to assess whether our approach is able to mitigate risk at different thresholds. In
this section we show the results that we obtained for each of the defined thresholds
of acceptable risk values.
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(b) Risk-aware models, weight=2
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(c) Risk-aware models, weight=5
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(d) Risk-aware models, weight=10

Figure 3.11: The effect of applying weight to the concern dog predicted as cat on
recall.

Ensemble synthesis for τ = M . We synthesised three different risk-aware en-
sembles, each comprising a different number of allowed models l. We first randomly
selected eight models for each of the 21 concerns obtained at this τ value (see Ta-
ble 3.9) and eight of the risk-oblivious ones from the F1/residual-risk Pareto front
for each type of model, obtaining a set of 21 × 8 + 8 = 176 models. These models
were used as input for the GA to synthesise a) an ensemble allowing l = 2 models;
b) an ensemble allowing l = 5 models; and c) and ensemble allowing l = 10 models.
We did it in this way to assess whether increasing the size of the ensemble leads to
ensembles with higher F1 score capable of mitigating the risk concerns.

Figure 3.12 summarises the results obtained in this experiment. First, Fig-
ures 3.12a, 3.12b and 3.12c show the Pareto fronts of the ensemble learning at
the different sizes of the ensemble, i.e. 2, 5 and 10 models. Each of these three
graphs displays in different colours the results obtained at 60 (blue), 100 (orange),
500 (green), 1000 (red) and 2500 (purple) generations. The F1 score of the ensemble
classifiers increases and the residual risk is reduced as more GA generations are used
for the ensemble synthesis. For example, in Figure 3.12b we can observe how at 60
generations (blue Pareto front) the minimum residual risk achieved is around 6.5
and the F1 score just above 0.825, while at 100 generations (orange Pareto front) the
residual risk has been reduced to roughly 5.5 with nearly the same F1 score. We also
note that this improvement is less and less noticeable (the principle of diminishing
returns), which suggests that at 1000 generations we approximate the best solution
that the GA can produce.

Figure 3.12d compares the three Pareto fronts obtained from the different sizes
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(a) Ensemble 2 models (b) Ensemble 5 models

(c) Ensemble 10 models (d) Comparing the 3 ensemble sizes at 2500 gen-
erations

(e) Comparing single models(risk-oblivious and
risk-aware) vs the 3 ensemble sizes

Figure 3.12: Ensemble learning history for different sizes of the ensemble when
τ = M on the CIFAR-10 dataset.

of the ensemble at 2500 generations i.e. the best set of solutions found by the GA.
The Pareto front in blue for the ensemble of 2 models, in orange the ensemble of
5 models and in green the ensemble of 10 models. It can be appreciated how as
more models are allowed in the ensemble the solutions move towards the top left of
the graph, meaning that the residual risk is reduced and the F1 score augmented.
However, we acknowledge that as the number of models grows, so does the required
time to synthesise the ensemble, which is shown in Table 3.10; the ensemble of 2
models required 2.68 hours, then the ensemble of 5 models doubled the time to 5.47
hours and finally, the ensemble of 10 models demanded 14.5 hours. As we can see
the quality of the solution is a quid pro quo for the time required to synthesise the
ensemble.

Finally, in Figure 3.12e we compare the Pareto fronts for the three ensemble
sizes with the individual risk-oblivious and risk-aware models. Clearly, all ensemble
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Table 3.9: Results for the CIFAR-10 data set at the different sizes of the ensemble
when τ = M during training of the ensemble. The risk values correspond to the
solution in the Pareto front with the smallest amount of risk when 10 models are
allowed in the ensemble after 2500 generations. The risk values in red show the
concerns that were not mitigated below the maximum acceptable risk τ = M (2).

Concern
Id

Actual Predicted
Initial risk

Risk ensemble

2 models

Risk ensemble

5 models

Risk ensemble

10 models

1 Frog (6) Bird (2) 2.005 1.5 1.63 1.96

2 Plane (0) Car (1) 2.01 1.8 1.4 1.4

3 Car (1) Plane (0) 2.01 1.8 1.6 1.8

4 Bird (2) Dog (5) 2.04 2.38 1.98 2.05

5 Horse (7) Deer (4) 2.06 2.32 2.19 2.12

6 Plane (0) Truck (9) 2.24 2.38 2.31 2.16

7 Deer (4) Dog (5) 2.42 2.06 2 2.13

8 Truck (9) Ship (8) 2.46 2.06 1.4 2.2

9 Plane (0) Ship (8) 2.53 2.29 2.2 2.31

10 Dog (5) Horse (7) 2.71 2 2.33 1.6

11 Truck (9) Plane (0) 2.81 2.13 2.13 2.13

12 Deer (4) Bird (2) 2.9 2.26 2.13 2.2

13 Deer (4) Frog (6) 3.01 2.26 2.33 1.8

14 Bird (2) Cat (3) 3.04 2 2.13 2.4

15 Dog (5) Frog (6) 3.11 2.93 2 2

16 Dog (5) Bird (2) 3.17 2 2 2

17 Deer (4) Horse (7) 3.37 1.8 2.13 2

18 Truck (9) Car (1) 3.7 1.8 2.13 2.26

19 Dog (5) Deer (4) 3.71 4.48 4.31 3.15

20 Deer (4) Cat (3) 4.01 1.6 1.8 2

21 Dog (5) Cat (3) 4.72 3.45 3.15 4.01

Residual risk 18.035 7.018 5.475 5.13

sizes achieved much lower risk and typically higher F1 score. The exception is the
Pareto front for the ensembles allowing two models, which includes ensembles whose
F1 score is lower than that of some of the individual models. However, even for this
small ensemble size, there is a trade-off between the F1 score and the risk, i.e., what
amount of F1 score is given up in exchange for risk mitigation.

A detailed summary of the results is presented in Table 3.9, which compares the
initial amount of risk for each of the 21 concerns obtained at this τ value with the
amount of risk obtained at each size of the ensemble during its training. The risk
values correspond to the solution in the Pareto front with the smallest amount of
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Table 3.10: F1 score achieved and time required to train the ensemble using the GA
for 2500 generations when τ = M at the smallest residual risk.

Ensemble 2 models Ensemble 5 models Ensemble 10 models

F1 score
Required Time

(in hours)
F1 score

Required Time

(in hours)
F1 score

Required Time

(in hours)

0.7919 2.68 0.8271 5.47 0.8422 14.5

risk achieved when 10 models are allowed in the ensemble after 2500 generations.
We coloured in red the risk values with the concerns where the risk is above the
maximum accepted τ ≥ M (2). At the bottom of the table we compare the residual
risk values for the different sizes of the ensemble and we can see how it decreased as
more models were allowed in the ensemble. We also notice that despite a significant
reduction in the residual risk, from 18.035 of the initial concerns to 7.0175 for the
ensemble of 2 models, 5.475 for the ensemble of 5 models and 5.13 for the ensemble
of 10 models, not all concerns were mitigated below the acceptable risk level τ . In
fact, at all sizes of the ensemble the GA failed to bring down the risk for 12 concerns
out of 21; however, most of these concerns were mitigated to some extent. For
instance, the majority of the concerns with a risk of H (3) were reduced to at least
a risk of M (2), we are referring specifically to the concerns 13) deer predicted as
frog, 14) bird predicted as cat, 15) dog predicted as frog, 16) dog predicted as bird,
17) deer predicted as horse, and 18) truck predicted as car.

To understand this behaviour, remember that the objective of the genetic algo-
rithm is to minimise the amount of residual risk as much as possible and not only
to mitigate the risk below the proposed threshold τ i.e. the GA will choose the
appropriate set of DNN models and weights to satisfy this objective and it will not
stop when the risk for individual concerns has been mitigated because the algorithm
is dealing with all the concerns at the same time. Our method only alleviates risk
by lowering the LoM , and despite a great improvement in terms of risk mitigation,
getting the very low misclassification rates require for the complete mitigation of all
risk concerns, which is unfeasible. These limitations are not specific to our approach
but are affecting all machine learning approaches. These problems include: the com-
plexity of the data, limited training data, overfitting and generalisation problems,
incomplete feature representation, and inherent localisation and identification. Be-
ing aware of these problems helps to understand that the chosen models and weights
by the GA will in some cases achieve the objective τ but in other cases (despite a
reduction in the LoM) the risk level will not be lowered below τ .

If we examine these results carefully, we can also notice that some concerns got
worse. For instance the concern 5) horse predicted as deer has an initial risk value
of 2.06, and for the 3 different sizes of the ensemble a risk of 2.32, 2.19 and 2.12.
Similarly, the concern 4) bird predicted as dog initially has a risk value of 2.04 and
for the ensemble of 2 and 10 models the risk is elevated to 2.38 and 2.05, respectively;
also the concern 19) dog predicted as deer has an initial risk of 3.71 and it is raised
to 4.48 and 4.31 in the ensemble of 2 and 5 models correspondingly; nevertheless,
we should not forget the residual risk, in order for the GA to accomplish decreasing
the risk for some concerns others will rise, and the GA will affect some of them in
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this way for the benefit of decreasing the residual risk, which is considering not a
single concern but all the concerns with risk values above the acceptable threshold
e.g. among others, increasing the risk from 2.06 to 2.32 for the concern 5) horse
predicted as deer when 2 models are allowed in exchange of mitigating the risk from
4.01 (VH) to 1.6 (L) for the concern 20) deer predicted as cat, and also the concern
18) truck predicted as car where the risk was mitigated from 3.7 (H) to 1.8 (L).
In general we can think of the concerns as a mattress for which whenever some of
the springs are pressed down, others will come up. This analogy, we think, helps
to understand how the GA combined the models and weights to obtain the overall
best solution.

We can also notice in Table 3.10 that all ensemble sizes achieved a better F1
score (at the minimum residual risk) than the risk-oblivious models; 0.7919, 0.8271,
and 0.8422 vs 0.7907, which is the average F1 of the risk-oblivious models. For
the risk-aware models, the F1 score was slightly higher than that of the ensemble
allowing 2 models, 0.7946 for the risk-aware models vs 0.7919 for the ensemble
allowing 2 models; however, the residual risk is where the benefit can be seen as it
was mitigated from 18.035 to 7.018. Regarding the time, it is evident that as more
models are allowed in the ensemble, more time is required to synthesise the solution.

As we mentioned at the beginning of this section, we kept half of the test set to
test our final ensemble. The results of this testing are presented in Table 3.11, which
shows a similar behaviour to that obtained during training, i.e. the tendency for the
residual risk is to decrease as more models are allowed in the ensemble. We notice
how the residual risk values obtained in the test set are higher to those obtained
during training; however, there is a significant improvement when we compare the
initial residual risk with the residual risk at the different sizes of the ensemble e.g.
the residual risk was lowered from 18.035 to 8.4424 for the ensemble of two models,
7.8949 for the ensemble of five models and 7.6724 for the ensemble of 10 models,
which demonstrates the benefit of our approach. We also observe a variation in
the level of risk for each concern when using ensembles of different capacity. For
example, the concern with id 8 (i.e. truck misclassified as ship) in Table 3.11 has risk
values of 2.065, 1.4 and 2.065 for the ensembles allowing two, five and 10 models,
respectively. This behaviour is also observed in Table 3.15, for example for the
concerns with ids 5 and 8. This variation in risk values for the same concern in
different ensemble sizes is expected because for each size of the ensemble different
individual risk-oblivious and risk-aware models are proposed and selected, and also
the sets of weights the GA will choose is different each time. Rather than focusing
on individual risk concerns, the GA aims to minimise the residual risk and at each
iteration of the GA a new set of models and weights is proposed. Finally, since the
GA performs a stochastic search, it is not guaranteed that the same solution will be
found in different runs of the ensemble synthesis even when considering the same
number of individual models.

Likewise, we present Table 3.12, which shows the F1 score achieved at each size
of the ensemble when it was evaluated on the test data set. As expected, the F1
score increases with the size of the ensemble, from 0.7862 for the ensemble of 2
models to 0.8236 for the ensemble of 5 models, and to 0.8376 for the ensemble of 10
models.

This concludes the analysis of the results obtained for τ = M on the CIFAR-10
data set, the following fragment summarises the outcome for the experiments using
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Table 3.11: Results for the CIFAR-10 data set at the different sizes of the ensemble
when τ = M in the test dataset. The risk values correspond to the solution in the
Pareto front with the smallest amount of risk when 10 models are allowed in the
ensemble after 2500 generations. The risk values in red show the concerns that were
not mitigated below the maximum acceptable risk τ = M (2).

Concern
Id

Actual Predicted
Initial risk

Risk ensemble

2 models

Risk ensemble

5 models

Risk ensemble

10 models

1 Frog (6) Bird (2) 2.005 1.565 1.7 1.565

2 Plane (0) Car (1) 2.01 1.8 1.4 1.6

3 Car (1) Plane (0) 2.01 1.8 1.6 2.13

4 Bird (2) Dog (5) 2.04 2.5 2.215 2.415

5 Horse (7) Deer (4) 2.06 2.28 2.175 2.1575

6 Plane (0) Truck (9) 2.24 2.3625 2.3625 2.2325

7 Deer (4) Dog (5) 2.42 2.13 2.13 2.13

8 Truck (9) Ship (8) 2.46 2.065 1.4 2.065

9 Plane (0) Ship (8) 2.53 2.385 2.1975 2.2875

10 Dog (5) Horse (7) 2.71 2 2 2

11 Truck (9) Plane (0) 2.81 1.4 1.6 1.8

12 Deer (4) Bird (2) 2.9 1.8 2.13 2.265

13 Deer (4) Frog (6) 3.01 2.465 2.395 2.13

14 Bird (2) Cat (3) 3.04 2 2.065 2.2

15 Dog (5) Frog (6) 3.11 3.35 2 1.6

16 Dog (5) Bird (2) 3.17 2.13 3.04 2.26

17 Deer (4) Horse (7) 3.37 1.8 2.13 1.8

18 Truck (9) Car (1) 3.7 2.26 2.66 3.04

19 Dog (5) Deer (4) 3.71 4.5 4.315 4.08

20 Deer (4) Cat (3) 4.01 2 1.8 1.8

21 Dog (5) Cat (3) 4.72 4.015 4.08 4.28

Residual risk 18.035 8.4424 7.8949 7.6724

Table 3.12: F1 score at different sizes of the ensemble obtained when the ensemble
was evaluated in the test dataset using τ = M .

F1 ensemble 2 models F1 ensemble 5 models F1 ensemble 10 models

0.7862 0.8236 0.8376

the threshold of acceptable risk τ = H on the same data set.
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(a) Ensemble 2 models (b) Ensemble 5 models

(c) Ensemble 10 models (d) Comparison of the 3 ensemble sizes at 2500
generations

(e) Comparison of single models (risk-oblivious
and risk-aware) to the 3 ensemble sizes (at 2500
generations)

Figure 3.13: Ensemble learning history for the different sizes of the ensemble when
τ = H on the CIFAR-10 dataset.

Ensemble synthesis for τ = H. In this part of the section we describe the
results obtained for τ = H. The list of the nine concerns obtained is presented in
Table 3.13. As can be seen, this is a subset of the concerns obtained for τ = M .
Again, we synthesised three different risk-aware ensembles varying the number of
allowed models l in each of them. We first randomly selected eight models for each of
the concerns obtained at this τ value (see Table 3.13) and eight of the risk-oblivious
ones from the F1/residual-risk Pareto front for each type of model, obtaining a set of
80 models. These 80 models were given to the GA to synthesise ensembles allowing
two, five and ten models.

In Figure 3.13 we present the obtained results. Figures 3.13a, 3.13b and 3.13c
show the Pareto-optimal ensembles found for the ensemble allowing 2, 5 and 10
models, respectively. For each of them, the Pareto front was plotted at 60, 100, 500,
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1000 and 2500 generations. In all three plots, the same pattern is evident: as more
generations of the GA pass by, the Pareto front improves, finding new solutions
with lower residual risk and higher F1 score. For example, this improvement is
clearly distinguishable in Figure 3.13c, where the 60-generation (blue) Pareto front
has a residual risk of around 5.5, the 100-generation (yellow) Pareto front has a
residual risk of approximately 4.8, and the 2500-generation (purple) Pareto front
has a residual risk of roughly 4.1. We also witness an increase in the F1 score from
around 0.853 at 60 generations to almost 0.856 at 2500 generations. Additionally, we
spot how, in all three graphs (Figures 3.13a, 3.13b and 3.13c), the improvement is
increasingly difficult to achieve from generations 500 to 2500: the law of diminishing
returns applies.

Similarly to our previous results for τ = M , in Figure 3.13d we compare the
three sizes of the ensemble at 2500 generations of the GA. There are no new insights
to report, yet these results confirm our previous finding that, as more models are
allowed in the ensemble the quality of the solution found is superior in terms of both
residual risk and F1 score.

Finally, in Figure 3.13e we compare the individual risk-aware and risk-oblivious
models to the 3 ensemble sizes we synthesised. Again, it is possible to appreciate
how the residual risk of the individual models is comparably high to that of the
ensembles. The residual risk of the risk-oblivious and risk-aware models ranges
between around 2.5 and 8, whereas the residual risk for the Pareto fronts is between
0 and 2, which is a significant risk reduction. In addition, all Pareto-front ensembles
achieved higher F1 scores than the individual models, the better individual model
obtained an F1 of almost 0.82 while the ensemble of 10 models is very close to
0.86—again, a considerable improvement.

In Table 3.13, we present the risk values for each concern and compare it to the
one obtained at each ensemble size. We chose the ensemble from the Pareto front
with the lowest residual risk during the training of the ensemble. We also compare
in the last row of the table the total residual risk. The red-coloured values are
the concerns with a risk value τ ≥ 3 (H). Examples of these are: concern 9) dog
predicted as cat with risk value of 4.01 for the ensemble allowing 2 models, 3.85 for
the ensemble of 5 models, and 3.15 for the ensemble of 10 models; concern 6) truck
predicted as car with a risk value of 3.04 for the ensemble of 10 models; and concern
7) dog predicted as deer also with a risk value of 3.4 for the ensemble of 10 models.
In contrast to what we found for our previous τ value, in this case none of the
concerns ended up with a risk value higher than the initial value; on the contrary,
at all sizes of the ensemble the risk values obtained were reduced, including for the
concern 9) dog misclassified as cat, for which the risk was mitigated from 4.72 to
4.01, 3.85 and 3.15 for sizes 2, 5 and 10 of the ensemble, respectively.

Unexpectedly, when 10 models are allowed in the ensemble we ended up with 3
concerns with residual risk τ ≥ H(3). Looking carefully, we also realise how the GA
found that by slightly increasing the risk in concerns 6) truck misclassified as car
and 7) dog misclassified as deer (compared to sizes 2 and 5 of the ensemble), it was
able to significantly decrease the risk for the concern 9) dog misclassified as cat, from
4.72 to 3.15, which is the lowest risk level recorded for that concern. We already
discussed this behaviour of the GA in the previous evaluation for τ = M , explaining
that the GA always aims to improve the total residual risk rather than the number
of concerns over τ ; this is confirmed by how the residual risk was reduced from 4.84
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Table 3.13: Results for the CIFAR-10 data set at the different sizes of the ensemble
when τ = H during training of the ensemble. The risk values correspond to the
solution in the Pareto front with the smallest amount of risk when 10 models are
allowed in the ensemble after 2500 generations. The risk values in red show the
concerns that were not mitigated below the maximum acceptable risk τ = H (3).

Concern
Id

Actual Predicted
Initial risk

Risk ensemble

2 models

Risk ensemble

5 models

Risk ensemble

10 models

1 Deer (4) Frog (6) 3.01 2.4 2.13 2.26

2 Bird (2) Cat (3) 3.04 2.13 2.52 2.46

3 Dog (5) Frog (6) 3.11 2.79 1.4 2

4 Dog (5) Bird (2) 3.17 2.93 2.93 2.26

5 Deer (4) Horse (7) 3.37 2.93 2.79 2.93

6 Truck (9) Car (1) 3.7 2.66 2.66 3.04

7 Dog (5) Deer (4) 3.71 2.93 2.66 3.04

8 Deer (4) Cat (3) 4.01 2.66 2.93 2.4

9 Dog (5) Cat (3) 4.72 4.01 3.85 3.15

Residual risk 4.84 1.015 0.85 0.23

to 0.23 when 10 models were allowed in the ensemble.

Table 3.14 shows the F1 score and the time required to synthesise the ensemble
at sizes 2, 5 and 10. We appreciate how as more models are allowed in the ensemble
the F1 score raises but also does the ensemble synthesis time, e.g. from 2.28 hours
for the ensemble allowing 2 models to 13.18 hours for the ensemble of 10 models.

In Table 3.15 we present the results obtained by evaluating the ensembles on
the test set. The results are as expected, with the residual risk shrinking as more
models join the ensemble. We notice how in the test set we obtained a higher number
of concerns with the risk above τ = 3, for example in size 2 of the ensemble the
concerns 3) dog predicted as frog, 4) dog predicted as bird, 5) deer predicted as
horse, 6) truck predicted as car, 7) dog predicted as deer, and 9) dog predicted as
cat have a risk above 3. All of them however, except for concerns 6) truck predicted
as car and 7) dog predicted as deer, were mitigated with respect to the initial risk
value, which is the expected behaviour. As for concerns 6) truck predicted as car
and 7) dog predicted as deer have worsen their risk values from 3.7 and 3.71 to
3.85. Again when comparing the residual risk from initially 4.84 to 3.61 obtained
in the ensemble of 2 models, we notice the overall risk reduction, which is the aim
of our method and shows its benefit of significantly improving the residual risk. To
conclude, we present Table 3.16, which shows the F1 score for the test data set
increasing from 0.8102 to 0.8417 as the ensemble size grows.

Finally, in Figure 3.14 we present an example of the predictions made by the
ensemble for 32 randomly selected images from the test set used to evaluate the
ensemble of 10 models with τ = H. The figure shows the predicted class, in brackets
the actual class, and the image. We coloured in green the correct predictions and
in red the misclassifications. This concludes the evaluation of our approach on the
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Table 3.14: F1 score achieved and time required to train the ensemble using the GA
for 2500 generations when τ = H at the smallest residual risk.

Ensemble 2 models Ensemble 5 models Ensemble 10 models

F1 score
Required Time

(in hours)
F1 score

Required Time

(in hours)
F1 score

Required Time

(in hours)

0.82088 2.28 0.8476 4.2 0.8549 13.18

Table 3.15: Results for the CIFAR-10 data set at the different sizes of the ensemble
when τ = H in the test dataset. The risk values correspond to the solution in the
Pareto front with the smallest amount of risk when 10 models are allowed in the
ensemble after 2500 generations. The risk values in red show the concerns that were
not mitigated below the maximum acceptable risk τ = H (3).

Concern
Id

Actual Predicted
Initial risk

Risk ensemble

2 models

Risk ensemble

5 models

Risk ensemble

10 models

1 Deer (4) Frog (6) 3.01 2.52 2.52 2.465

2 Bird (2) Cat (3) 3.04 2.13 2.265 2.13

3 Dog (5) Frog (6) 3.11 3.04 1.6 2

4 Dog (5) Bird (2) 3.17 3.15 3.04 2.79

5 Deer (4) Horse (7) 3.37 3.15 2.79 3.25

6 Truck (9) Car (1) 3.7 3.85 3.15 3.08

7 Dog (5) Deer (4) 3.71 3.85 3.85 3.75

8 Deer (4) Cat (3) 4.01 2.26 3.25 2.26

9 Dog (5) Cat (3) 4.72 4.52 4.215 4.215

Residual risk 4.84 3.61 2.505 2.295

CIFAR-10 data set. In the next section we present the evaluation of the approach
for a subset of the German Traffic Sign Recognition Benchmark, a well-known data
set used to perform image classification.

Table 3.16: F1 score at different sizes of the ensemble obtained when the ensemble
was evaluated in the test dataset using τ = H.

F1 ensemble 2 models F1 ensemble 5 models F1 ensemble 10 models

0.8102 0.8326 0.8417
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Figure 3.14: Predictions of the ensemble of 10 models with τ = H in the CIFAR-
10 test dataset for the ensemble. In green the correct predictions and in red the
incorrect ones, the actual class is in brackets.

3.3.3 Evaluation on the GTSRB dataset

3.3.3.1 Inputs

The data set For these experiments we used a subset of the GTSRB [141] dataset
by selecting seven classes related to speed limits, plus a class other composed of
random samples selected from the remaining 36 classes in the dataset. The resulting
training set comprises 12920 samples and the test set has 4756 samples. These were
then used to train and test the individual risk-oblivious and risk-aware models. We
created a secondary test set for the ensemble by randomly selecting 100 samples
for each class to obtain a total of 800 samples that were augmented with image
pertaurbation to create a complete test set of 4756 samples. The augmentation
applied a width shift, height shift and rotation using the Keras ImageDataGenerator
API2. We defined the following class IDs: 0) speed limit 30km/h; 1) speed limit
50km/h; 2) speed limit 60km/h; 3) speed limit 70km/h; 4) speed limit 80km/h; 5)
speed limit 100km/h; 6) speed limit 120km/h; 7) Other.

Risk information

Impact level impact(i, j) Our impact proposal for class misclassifications, for
use in the evaluation of our approach on the GTSRB, is shown in Table 3.17. We
remind the reader that the impact considers how an event, in this case, a speed sign
misclassification, could influence system behaviour in terms of cost, schedule, safety
or performance. The impact is presented in the same way as previously shown with

2Details about this API can be found at https://www.tensorflow.org/api_docs/python/

tf/keras/preprocessing/image/ImageDataGenerator
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Table 3.17: Impact for the misclassifications on the subset of the GTSRB dataset
provided on a 0-4 scale of VL-VH. The cells with a dash are misclassifications con-
sidered irrelevant for the context or that do not make sense.

Predicted Class

0 1 2 3 4 5 6 7

A
ct
u
al

C
la
ss

0 - 3 4 4 4 4 4 4

1 1 - 2 3 4 4 4 4

2 3 0 - 2 3 4 4 4

3 4 2 0 - 2 3 4 4

4 4 2 1 0 - 3 4 4

5 4 4 3 2 1 - 3 4

6 4 4 4 4 2 1 - 4

7 4 4 4 4 4 4 4 -

Table 3.18: Likelihood of encounter (LoE) for the 8 classes of the subset of the
GTSRB dataset used to perform the evaluation of the proposed approach, it is
given on a 0-4 scale of VL-VH.

Class 0 1 2 3 4 5 6 7

LoE 2 4 3 0 3 1 4 4

a 0-4 scale of VL-VH and dashes indicating misclassifications that are not of interest
for our context.

We assigned an impact value with a consideration of potential accidents arising
from class misclassifications, for example, we propose that misclassifying a speed
limit of 30 km/h (0) as any of 60 km/h (2), 70 km/h (3), 80 km/h (4), 100 km/h (5),
and 120 km/h (6) could lead to a very high impact accident since the speed limit is
not being respected, and we therefore assign a VH (4) impact to this misclassifica-
tions (see Table 3.17).

Likelihood of encounter LoE(i) The likelihood of encounter for this evaluation
is shown in Table 3.18 and reflects how likely is to encounter an instance of each
class in an hour long road trip. Once more we classify these on a 0-4 scale of VL-VH.

Likelihood of misclassification thresholds As previously described we used
thresholds to map the fractions of misclassification to a 5 point scale 0f VL-VH.
The thresholds used for this experiment are 0 < 0.002 < 0.005 < 0.01 < 0.0152 <
0.03 < 1. With the thresholds in place we can define the intervals for the risk levels
as follows: VL =[0, 0.002); L=[0.002, 0.005); M =[0.005, 0.01); H = [0.01, 0.0152);
VH=[0.0152, 0.03); P = [0.03, 1].
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Table 3.19: Mean fraction of misclassification p(i, j) for the evaluation of the 30
risk-oblivious models for the subset of the GTSRB.

Predicted Class

0 1 2 3 4 5 6 7

A
ct
u
al

C
la
ss

0 0.0 0.0005 0.0 0.0006 0.0015 0.0005 0.0 0.0029

1 0.0022 0.0 0.0009 0.0003 0.0008 0.0 0.0 0.0

2 0.0001 0.0019 0.0 0.0 0.0262 0.0006 0.0001 0.0022

3 0.0013 0.0004 0.0004 0.0 0.0019 0.0012 0.0025 0.0164

4 0.0124 0.0153 0.004 0.0001 0.0 0.0025 0.0009 0.0

5 0.0002 0.0 0.0 0.0 0.0006 0.0 0.0027 0.0

6 0.0 0.0008 0.0053 0.0027 0.0039 0.007 0.0 0.0135

7 0.0008 0.0003 0.0022 0.0014 0.0023 0.0006 0.0008 0.0

Maximum acceptable risk level. Similarly to the evaluation on CIFAR-10 we
evaluated this data set using two acceptable risk levels: τ = M and τ = H (i.e.
mitigate all risks > M and > H respectively).

3.3.3.2 Step 1: Risk-oblivious training

To create the models for our experiments we used a convolution neural network
with the structure based on those developed by the Keras team [26]. We trained
30 models with an average F1 score of 0.9825 and average residual risk of 10.028,
for 100 epochs, the time required to train one model was around 1.55 hours.

3.3.3.3 Step 2: Risk-aware verification

As we detailed in Section 3.1, the aim of this step of our approach is to obtain the
set of concerns to be mitigated by the risk-aware ensemble. To achieve this we first
combine the fLoM with the impact and LoE to obtain the fractional overall likeli-
hood, fOL. Table 3.19 show the mean fraction of misclassification for the GTSRB
dataset and Table 3.20 shows the associated fLoM on a scale of 0-4 (VL-VH) with
the dashes assigned to correct classifications.

Table 3.21 shows the fOL for all class-pairs in the data set. The fOL is also
provided on a 0-4 scale of VL-VH and the dashes are for the correct classifications.
Lastly, Table 3.22 shows the frisk associated with each of the class-pairs in the data
set, with the 11 concerns acquired for τ = 2(M) highlighted in red (note this also
includes the concerns for τ = 3 (H)). The list of concerns highlighted, and their
corresponding risk values, are as follows: 1) 60 km/h (2) predicted as class Other (7)
with a risk of 2.03; 2) Other (7) predicted as class 60 km/h (2) with a risk of 2.06;
3) 80 km/h (4) predicted as class 100 km/h (5) with a risk of 2.08; 4) Other (7)
predicted as class 80 km/h (4) with a risk of 2.1; 5) 120 km/h (6) predicted as class
70 km/h (3) with a risk of 2.23; 6) 120 km/h (6) predicted as class 80km/h (4)
with a risk of 2.315; 7) 80 km/h (4) predicted as class 50 km/h (1) with a risk of 3;
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Table 3.20: Mean fLoM for the evaluation of the 30 risk-oblivious models on the
GTSRB data set, the values are provided on a 0-4 scale of VL-VH. The cells with a
dash are misclassifications considered irrelevant for the context.

Predicted Class

0 1 2 3 4 5 6 7

A
ct
u
al

C
la
ss

0 - 0.25 0.0 0.3 0.75 0.25 0.0 1.29

1 1.06 - 0.44 0.15 0.4 0.0 0.0 0.0

2 0.05 0.95 - 0.0 4.74 0.3 0.05 1.06

3 0.64 0.2 0.2 - 0.95 0.6 1.16 4.08

4 3.46 4.0 1.66 0.05 - 1.16 0.44 0.0

5 0.1 0.0 0.0 0.0 0.3 - 1.23 0.0

6 0.0 0.4 2.06 1.23 1.63 2.4 - 3.67

7 0.4 0.15 1.06 0.7 1.1 0.3 0.4 -

Table 3.21: Mean fOL for the evaluation of the 30 risk-oblivious models on the
GTSRB data set, the values are provided on a 0-4 scale of VL-VH. The cells with a
dash are misclassifications considered irrelevant for the context.

Predicted Class

0 1 2 3 4 5 6 7

A
ct
u
al

C
la
ss

0 - 1.12 1.0 1.15 1.38 1.12 1.0 1.64

1 2.06 - 1.44 1.15 1.4 1.0 1.0 1.0

2 1.05 1.95 - 1.0 4.74 1.3 1.05 2.03

3 0.32 0.1 0.1 - 0.48 0.3 0.58 1.69

4 3.46 4.0 2.33 1.05 - 2.08 1.44 1.0

5 0.1 0.0 0.0 0.0 0.3 - 1.12 0.0

6 1.0 1.4 3.06 2.23 2.63 3.4 - 4.34

7 1.4 1.15 2.06 1.7 2.1 1.3 1.4 -

8) 120 km/h (6) predicted as class 60 km/h (2) with a risk of 3.06; 9) 80 km/h (4)
predicted as class 30 km/h (0) with a risk of 3.46; 10) 120 km/h (6) predicted as
class Other (7) with a risk of 4.33; 11) 60 km/h (2) predicted as class 80 km/h (4)
with a risk of 4.74.

3.3.3.4 Step 3: Risk-aware training

We trained 30 models per concern identified in the previous step, 10 of such models
were built for each ω ∈ {2, 5, 10} (a total of 330 risk-aware models for τ = M ,
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Table 3.22: frisk values for the class-pairs in the GTSRB data set, the values are
provided on a 0-4 scale of VL-VH. The cells with a dash are misclassifications con-
sidered irrelevant for the context. Highlighted in red the concerns with risk value
> 2 (M).

Predicted Class

0 1 2 3 4 5 6 7
A
ct
u
al

C
la
ss

0 - 1.12 1.0 1.15 1.38 1.12 1.0 1.64

1 1.35 - 1.44 1.15 1.4 1.0 1.0 1.0

2 1.05 0.65 - 1.0 4.74 1.3 1.05 2.03

3 0.32 0.1 0.03 - 0.48 0.3 0.58 1.69

4 3.46 3.0 1.44 0.35 - 2.08 1.44 1.0

5 0.1 0.0 0.0 0.0 0.3 - 1.12 0.0

6 1.0 1.4 3.06 2.23 2.32 1.8 - 4.34

7 1.4 1.15 2.06 1.7 2.1 1.3 1.4 -

and 120 risk-aware models for τ = H) with an average F1 score of 0.9813 and
average residual risk of 10.2770. Figure 3.15 compares the risk-oblivious and risk-
aware models and we would expect to see the risk-aware models dominating the
risk-oblivious ones. However, in this experiment we note that there is always one
risk-oblivious model present on the Pareto front. The general tendency, however,
is for the risk-aware models to dominate the risk-oblivious in terms of risk. For
instance in Figure 3.15d out of 4 models in the Pareto front three belong to the risk-
aware models, two weighted as 2 (blue dots) and one weighted as 10 (green dots)
Where a risk-oblivious model is included it tends to be on the basis of improved F1
score. We believe that including high performing risk-oblivious models is of benefit
for the performance of the ensemble as these models will compensate for the class-
pairs that do not have specialist models, i.e. all misclassifications with risk values
smaller than τ .

Figures 3.16, 3.17, and 3.18 show the effect of applying a weight to the loss
function for the risk-aware models associated with the 60km/h predicted as 80km/h
concern. We observe a similar pattern to that observed for the previous dataset.
In Figure 3.16 the tendency is for the number of misclassifications to reduce as the
value of the weight is increased. The marker at the intersection of the green lines
represents the number of misclassifications for an actual class of 60 km/h predicted
as 80 km/h. This marker is smaller on Figure 3.16b for ω = 2 than for the risk-
oblivious models indicating that the number of misclassifications has dropped.

There is not a great difference between the sizes of marker in figures 3.16b
and 3.16c, although the reduction becomes clear as the weight increases to 10, this
is shown in Figure 3.16d where we obtain the smallest number of misclassifications.

The weight also has an effect on the rest of class pairs, observe how in Figure 3.16a
the markers for the class pairs 80 km/h predicted as 30 km/h, 80 km/h predicted
as 50 km/h, and a misclassifcation of 70 km/h predicted as other are larger than
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(a) Models for the concern 60km/h(2) as
80km/h(4)

(b) Models for the concern 60km/h(2) as other(7)

(c) Models for the concern 80km/h(4) as
30km/h(0)

(d) Models for the concern 120km/h(6) as
60km/h(2)

Figure 3.15: Risk-oblivious vsrisk-aware models for the GTSRB dataset.

those observed in figures 3.16b, 3.16c and 3.16d. This indicates that the number
of misclassifications for those concerns has also been reduced when the risk-aware
models were created for the concern 60 km/h predicted as 80 km/h. This is not
always the case, however, and sometimes we observe that whilst the concern is
controlled other missclassification rates are increased. For example, if we compare
the size of the marker for the class-pair 80 km/h misclassified as 60 km/h (the
intersection of the red lines) in Figure 3.16b with that on Figure 3.16c. The marker
is bigger in Figure 3.16c, which indicates how increasing the weight to fix one concern
affected the other.

In Figure 3.17 we show the effect of applying weight to the concern 60 km/h
predicted as 80 km/h on precision. We first plot the precision for the eight classes
on the risk oblivious models in Figure 3.17a, and then we show the precision for
each class at the different weight values in figures 3.17b, 3.17c, and 3.17d. The
precision of the class 60 km/h drops from a mean value of approximately 0.99 in
Figure 3.17a, to a mean value of around 0.97 in Figure 3.17d. This drop in precision
occurs because a higher number of false positives is obtained as a result of being
more willing to accept an 80 km/h classified as 60 km/h.

In Figure 3.18 we show the effect on recall of applying a weight to the concern
associated with the speed limit 60 km/h being predicted as 80 km/h. In this case
we see that the recall for the 80 km/h class drops from a maximum value of roughly
0.99 in Figure 3.18a to below 0.97 in Figure 3.18d. Again this occurs due to a rise
in the number of false negatives and is a consequence of having a higher number
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(a) Risk-oblivious models

30km/h 50km/h 60km/h 70km/h 80km/h 100km/h120km/h Other
Predicted

30km/h

50km/h

60km/h

70km/h

80km/h

100km/h

120km/h

Other

Ac
tu

al

(b) Risk-aware models, weight=2
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(c) Risk-aware models, weight=5
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(d) Risk-aware models, weight=10

Figure 3.16: The effect of applying weight to the concern speed limit 60km/h pre-
dicted as 80km/h on misclassification. The size of the marker is proportional to
the number of misclassifications observed, the green lines intersect the concern e.g.
class 60 km/h predicted as 80 km/h whereas the red lines the inverted classes of the
concern e.g. 80 km/h predicted as 60 km/h to visualise the effect of weight in both
situations.

of 80km/h not correctly identified by the model. By contrast, the recall associated
with the 60km/h class sees an increase from around 0.96 in Figure 3.18a to 0.98 in
Figure 3.18d. This is the result of having more 60km/h correctly classified, which
is the aim for this set of models.

3.3.3.5 Step 4: Risk-aware ensemble synthesis and verification

As described previously, we synthesised ensembles for two values of τ ; τ = M and
τ = H, to show that our approach is able to mitigate risk at different thresholds of
risk acceptance. The obtained results are summarised below for each τ .

Ensemble synthesis for τ = M We first randomly selected eight models for
each of the 11 concerns identified for this value of τ (the set of concerns is listed
in Table 3.23). To this model set we added eight randomly selected risk-oblivious
models from the F1/residual-risk Pareto front. This resulted in a set of 96 models
from which the GA could synthesise three ensembles with the number of models set
to l = 2, l = 5 and l = 10.

The results for this experiment are reported in Figure 3.19. The first three
figures 3.19a, 3.19b and 3.19c show the F1/residual risk Pareto-optimal ensembles
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(a) Risk-oblivious models
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(b) Risk-aware models, weight=2
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(c) Risk-aware models, weight=5
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(d) Risk-aware models, weight=10

Figure 3.17: The effect of applying weight to the concern speed limit 60km/h pre-
dicted as 80km/h on precision.

obtained for 2, 5 and 10 models. We observe the same pattern as found in the
previous evaluation for the CIFAR-10 data set, i.e. as the number of generations
used to create ensembles increases so does the F1 score whilst the residual risk is
reduced. For example if we look at Figure 3.19b we see that the minimum residual
risk found by the ensemble at 20 generations (blue Pareto front) is 1.2, and later,
at 40 generations (yellow Pareto front), it drops to approximately 0.9. Finally, it is
reduced to 0.8 after 2500 generations (red Pareto front). At the same time the F1
score, is increased from approximately 0.9930 after 20 generations to 0.9950 after
2500 generations.

In Figure 3.19d we compare the 3 different sized ensembles after 2500 generations
of the GA. As the number of models is increased from 2 to 10, the performance of
the synthesised ensembles improves with the residual risk falling from 1.5 to roughly
0.6 for the ensemble allowing 10 models.

Finally, in Figure 3.19e the performance of the risk-oblivious and the risks-aware
models is compared to the Pareto fronts for the 3 synthesised ensembles. We observe
that the ensembles clearly dominate the best individual models, both in terms of
risk and F1 score.

Table 3.23 shows a summary of the risk values obtained for each of the ensembles
during the training stage compared to the initial risk for each of the identified
concerns. The values shown in red indicate where the risk values remain above the
maximum acceptable risk τ = M (2).

We observe that, for all sizes of ensemble, all the concerns were mitigated to
some extent, with the exception of concern 1) 60km/h predicted as the class other
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(a) Risk-oblivious models
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(b) Risk-aware models, weight=2
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(c) Risk-aware models, weight=5
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(d) Risk-aware models, weight=10

Figure 3.18: The effect of applying weight to the concern speed limit 60km/h pre-
dicted as 80km/h on recall.

whose risk value was slightly raised from 2.03 to 2.04. This behaviour mirrors that
observed in the evaluation of the approach on the CIFAR-10 data set in which some
concerns seem to get worst in terms of risk. However, we do observe that the residual
risk has been significantly mitigated at all sizes of the ensemble. Whilst the most
significant risk reduction can be seen in the largest, 10 model, ensemble we note that
all ensembles are able to reduced many concerns with even the smallest ensemble
reducing the risk associated with concern 10 from very high (4) risk to moderate
(2).

Table 3.24 shows the F1 score and the time for ensemble construction with both
increasing as the size of the ensemble is increased.

Table 3.25 presents the results obtained for the test set reserved for the ensemble.
In general, we observe the same pattern as described above, with the residual risk
decreasing as more models are allowed in the ensemble. From an initial residual risk
of 9.405 we observe a fall to 2.71 for the ensemble of size 2, 1.47 for the ensemble
of size 5 and finally 1.1 for the ensemble of size 10. We note that while the residual
risk obtained in the test set is higher than that observed during the training of
our approach it is still able to successfully mitigate the risk associated with mis-
classifications in this dataset. Lastly, Table 3.26 shows the F1 score obtained for
the different sizes of the ensemble which shows an increasing trend from 0.9935 (2
models) to 0.9938 (5 models) and to 0.9947 (10 models).
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(a) Ensemble 2 models (b) Ensemble 5 models

(c) Ensemble 10 models (d) Comparing the 3 ensemble sizes at 2500 gen-
erations

(e) Comparing single models(risk-oblivious and
risk-aware) vs the 3 ensemble sizes

Figure 3.19: Ensemble learning history for the different sizes of the ensemble when
τ = M on the subset of the GTSRB dataset.

Ensemble synthesis for τ = H The list of concerns obtained at this risk thresh-
old can be seen in Table 3.27. For consistency with our previous experiments we
selected eight models for each of the four identified concerns from the F1/residual-
risk Pareto front. Again we added eight models from the risk-oblivious set to obtain
a total of 40 models. The GA once more synthesised 3 ensembles of size 2, 5 and 10
models. The result are summarised in Figure 3.20 where we show the: Pareto front
as it evolves over the GA generations; the effect of ensemble size on performance;
and a comparison with single models.

Table 3.27 shows the risk per concern at different sizes of ensemble during train-
ing. We observe that all concerns were mitigated below τ = H and the residual risk
achieved is 0, which is a great improvement. This however, does not mean that we
are no longer making misclassifications, they are still happening but the number of
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Table 3.23: Results for the GTSRB dataset at the different sizes of the ensemble
when τ = M during training of the ensemble. The risk values correspond to the
solution in the Pareto front with the smallest amount of risk when 10 models are
allowed in the ensemble after 2500 generations. The risk values in red show the
concerns that were not mitigated below the maximum acceptable risk τ = M (2).

Concern
Id

Actual Predicted
Initial risk

Risk ensemble

2 models

Risk ensemble

5 models

Risk ensemble

10 models

1 60 km/h (2) Other (7) 2.03 2.04 2.04 2.04

2 Other (7) 60 km/h (2) 2.06 1 1.77 1

3 80 km/h (4) 100 km/h (5) 2.08 1 1 1

4 Other (7) 80 km/h (4) 2.1 1.77 1 1

5 120 km/h (6) 70 km/h (3) 2.23 1 1 1

6 120 km/h (6) 80km/h (4) 2.315 2.04 1 1

7 80 km/h (4) 50 km/h (1) 3 2.1 2.1 1.79

8 120 km/h (6) 60 km/h (2) 3.06 1 1 1

9 80 km/h (4) 30 km/h (0) 3.46 1.79 1.79 1

10 120 km/h (6) Other (7) 4.33 2.07 1 1

11 60 km/h (2) 80 km/h (4) 4.74 3.21 2.66 2.66

Residual risk 9.405 1.4475 0.7975 0.7

Table 3.24: F1 score achieved and time required to train the ensemble on the GTSRB
data set using the GA after 2500 generations when τ = M at the smallest residual
risk.

Ensemble 2 models Ensemble 5 models Ensemble 10 models

F1 score
Required Time

(in hours)
F1 score

Required Time

(in hours)
F1 score

Required Time

(in hours)

0.994028 0.9 0.994859 1.58 0.995843 4.13

misclassifications are tolerated, i.e. below τ = H. Table 3.28 shows the F1 score
and the time required to synthesise the ensemble for the evaluation on the subset of
the GTSRB and again we observe the same pattern as for previous evaluations, i.e.
the F1 score and the time increases as more models are allowed in the ensemble.

Tables 3.29 and 3.30 show the risk values and F1 score corresponding to the
evaluation of our approach on the test data set for the ensemble. We note that
two risk values, coloured in red, for the concern 4) 60 km/h predicted as 80 km/h,
remain above the maximum acceptable risk for the smaller ensembles; nevertheless,
they were reduced from an initial risk value of 4.74 to 3.21. We also note that the
overall residual risk was reduced considerable from 3.59 to 0.21 for both the smaller
ensembles and completely mitigated by the larger, 10 model, ensemble.

Finally, in Figure 3.21 we show an example of predictions made by the ensemble
of size 10 for τ = M , the 32 images were randomly taken from the test data set.
The figure shows the image, predicted class and ground truth label in brackets, the
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Table 3.25: Results for the GTSRB dataset at the different sizes of the ensemble
when τ = M in the test dataset. The risk values in red show the concerns that were
not mitigated below the maximum acceptable risk τ = M (2).

Concern
Id

Actual Predicted
Initial risk

Risk ensemble

2 models

Risk ensemble

5 models

Risk ensemble

10 models

1 60 km/h (2) Other (7) 2.03 2.035 2.035 2.035

2 Other (7) 60 km/h (2) 2.06 1 1.77 1

3 80 km/h (4) 100 km/h (5) 2.08 1 1 1

4 Other (7) 80 km/h (4) 2.1 1.77 1 1

5 120 km/h (6) 70 km/h (3) 2.23 1 1 1

6 120 km/h (6) 80km/h (4) 2.315 2.035 1 1

7 80 km/h (4) 50 km/h (1) 3 2.0975 2.23 1.79

8 120 km/h (6) 60 km/h (2) 3.06 1 1 1

9 80 km/h (4) 30 km/h (0) 3.46 1.79 1.79 1.79

10 120 km/h (6) Other (7) 4.33 3.33 1 2.18

11 60 km/h (2) 80 km/h (4) 4.74 3.21 3.21 2.885

Residual risk 9.405 2.7075 1.475 1.1

Table 3.26: F1 score at different sizes of the ensemble obtained when the ensemble
was evaluated in the GTSRB test dataset using τ = M .

F1 ensemble 2 models F1 ensemble 5 models F1 10 ensemble models

0.9935 0.9938 0.9947

correct predictions are coloured in green and the incorrect ones in red.

Table 3.27: Results for the GTSRB dataset at the different sizes of the ensemble
when τ = H during training of the ensemble. The risk values correspond to the
solution in the Pareto front with the smallest amount of risk when 10 models are
allowed in the ensemble after 2500 generations.

Id
Concern

Initial risk
Risk ensemble

2 models

Risk ensemble

5 models

Risk ensemble

10 modelsActual Predicted

1 120 km/h (6) 60 km/h (2) 3.06 1 1 1

2 80 km/h (4) 30 km/h (0) 3.46 1 2.19 1

3 120 km/h (6) Other (7) 4.33 2.07 2.07 1

4 60 km/h (2) 80 km/h (4) 4.74 2.88 2.88 2.88

Residual risk 3.59 0 0 0
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(a) Ensemble 2 models (b) Ensemble 5 models

(c) Ensemble 10 models (d) Comparing the 3 ensemble sizes at 2500 gen-
erations

(e) Comparing single models(risk-oblivious and
risk-aware) vs the 3 ensemble sizes

Figure 3.20: Ensemble learning history for different sizes of the ensemble when
τ = H on the subset traffic sign dataset.

Table 3.28: F1 score achieved and time required to train the ensemble on the GTSRB
data set using the GA for 2500 generations when τ = H at the smallest residual
risk.

Ensemble 2 models Ensemble 5 models Ensemble 10 models

F1 score
Required Time

(in hours)
F1 score

Required Time

(in hours)
F1 score

Required Time

(in hours)

0.994479 0.85 0.995096 1.5 0.9959 3.05

3.3.4 Discussion

We presented the evaluation of our approach using two different data sets, CIFAR-
10 and a subset of the GTSRB. Both data sets were evaluated using the same
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Table 3.29: Results for the GTSRB dataset at the different sizes of the ensemble
when τ = H in the test dataset. The risk values correspond to the solution in the
Pareto front with the smallest amount of risk when 10 models are allowed in the
ensemble after 2500 generations. The risk values in red show the concerns that were
not mitigated below the maximum acceptable risk τ = H (3).

Concern
Id

Actual Predicted
Initial risk

Risk ensemble

2 models

Risk ensemble

5 models

Risk ensemble

10 models

1 120 km/h (6) 60 km/h (2) 3.06 2.07 1 1

2 80 km/h (4) 30 km/h (0) 3.46 1 2.195 1

3 120 km/h (6) Other (7) 4.33 2.81 2.81 2.07

4 60 km/h (2) 80 km/h (4) 4.74 3.21 3.21 2.885

Residual risk 3.59 0.21 0.21 0

Table 3.30: F1 score at different sizes of the ensemble obtained when the ensemble
was evaluated in the GTSRB test dataset using τ = H.

F1 ensemble 2 models F1 ensemble 5 models F1 ensemble 10 models

0.9939 0.9942 0.995

hyperparameters, i.e. number of models allowed in the ensemble, maximum risk
acceptable thresholds, number of generations in the GA, etc. The results obtained
for both data sets indicate that our method can effectively identify and mitigate
the risk associated with relevant misclassifications for DNN image classifiers. We

Figure 3.21: Predictions of the ensemble of 10 models with τ = M in the GTSRB test
dataset for the ensemble. In green the correct predictions and in red the incorrect
ones, the actual class is in brackets.

86



3.3. Evaluation

observed how, in both experiments, during training and testing of the ensembles the
tendency is for the residual risk to decrease and the F1 score to increase as more
models were allowed in the ensemble. We also notice how the time to synthesise the
ensembles is higher as more models are allowed in the GA; additionally, the time
to synthesise an ensemble grows when the GA has more models to choose from, for
instance, in the CIFAR-10 experiments 176 models were available to the GA and it
took 14.5 hours to complete 2500 generations whereas in the subset of the GTSRB
96 models were available and it took 4.13 hours to complete the 2500 generations.

We could further observe how in both data sets, some concerns appeared to have
worsen their risk values (i.e. increased the initial risk value) after the synthesised
ensembles; however, is the residual risk what was minimised and not the number
of concerns, even when the risk for an individual concern rose, the residual risk
was always minimised, we found an analogy with a mattress, whenever some of the
springs are pressed down, others will come up. We understand that our method
can certainly deal and mitigate the risk for the most of the concerns as our results
indicate; nevertheless, we acknowledge that our proposed method has little space for
maneuver when the data sets are highly imbalanced or classes are underrepresented.
Our method can effectively decrease the amount of risk by lowering the likelihood
of misclassification; however, that does not prevent the use of additional mitigation
strategies (when our approach is not sufficient) such as lowering the likelihood of
encounter of a given class by putting other measures in place, e.g. fences can be
built in the surroundings of a road to prevent deer from crossing the road. In
conclusion, the results from these experiments show that better image classifiers can
be constructed by synthesising Pareto-optimal ensembles that include risk-oblivious
and risk-aware models.

3.3.5 Threats to validity

Construct validity. Potential threats to construct validity may be due to the
procedure employed during the design of the case study for evaluating the proposed
approach, and due to the assumptions or simplifications made, such as determining
values for the LoE and the Impact of misclassification of class pairs. To mitigate
this concern, we based our approximations of these values based on real-world conse-
quences of misclassifications and LoE. Specifically, we relied on the Road Accidents
and Safety Statistics reports 3 published on the UK Government’s web site as a
reliable source to inform our approximations. This approach allowed us to increase
the credibility of our findings. To further reduced these threats, we recommend the
use of input from domain experts in order to fine-tune the values accordingly to
reflect the context of interest.

Internal validity. Internal validity threats may first arise from biases introduced
during the acquisition of results, specifically related to the data used for training
the DNN models and performing ensemble synthesis. Additional threats may arise
due the possibility of sub-optimal solutions as a result of the GA getting trapped in
local minima.

3The information is available at https://www.gov.uk/government/collections/

road-accidents-and-safety-statistics
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To address these concerns, we implemented specific measures. First, we carefully
segmented the data into separate sets for validation, training and testing, for both
the individual models and the ensemble synthesis. This ensured that the evaluation
process was conducted on independent datasets, reducing the risk of bias.

Moreover, we conducted experiments using two distinct datasets, which allowed
us to create diverse scenarios in terms of length and complexity. This approach fa-
cilitated the exploration of different ensemble configurations, including varying the
number of models involved, and enabled us to train the GA for different numbers of
generations. By incorporating these variations, we aimed to minimise the potential
biases and limitations associated with a single dataset or fixed experimental param-
eters. Overall, these measures were taken to address the aforementioned threats,
and thus to increase the reliability and robustness of our findings.

External validity. These threats can originate from concerns related to the gen-
eralisability of our method, i.e. whether it will yield similar results in terms of risk
minimisation and improving performance metrics when applied to other datasets. To
alleviate this threat, we have developed our approach in a context-independent way,
allowing its usage regardless of the DNN model structure, dataset, risk thresholds,
LoE values, Impact values, and performance metrics used to guide the ensemble
synthesis stage.

These considerations allow the necessary flexibility for its implementation in
different contexts, as demonstrated in the evaluation section where we applied the
approach to two different datasets. However, to claim complete general applicability
of the approach, further experiments on emerging datasets are needed.

3.4 Related Work

Various research efforts focus on the importance of weighting for DNNs [12, 17, 90]
and the problem of unbalanced data in the training process [76, 139, 168, 173]. These
studies mention risk minimisation but refer only to the loss function; a proper risk
profile is never used in the training and verification stages.

In [12], the authors highlight a problem that emerges when machine learning
models are employed in the wild, i.e. how the distribution of the data of interest
can be fairly shifted compared to the distribution of the data on which the model
was trained. According to this source, there are cases where the publicly available
datasets with which the models are trained do not represent and reflect the statistics
of a particular dataset of interest. To deal with this problem they present a princi-
pled and a practical domain-adaptation algorithm to correct for shifts in the label
distribution between a source and a target domain named regularised learning un-
der label shifts (RLLS). The algorithm estimates importance weights using labeled
source data and unlabeled target data, and then trains a classifier on the weighted
source sample. The method was evaluated on the CIFAR-10 and MNIST datasets
and the results show that RLLS improves classification accuracy. This method is
comparable to ours, because the importance weighting works by altering the relative
contribution of mistakes on various training points of the loss function, our method
applies a similar idea to create the sets of risk-aware models for a given concern with
a high likelihood of misclassification; nonetheless, their approach only concentrates
on classification accuracy and disregards risk factors.
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Similarly [17] investigates the effects of importance weighting in deep learning
across a variety of architectures, tasks, and data sets. Their experiments focus
on classification problems in which they apply class-conditioned weights of various
strengths and evaluate the impact of the weights on the learned decision bound-
aries. To investigate the effects of importance weighting they down-weight the loss
contributions of examples from a particular class. The objective of this research is
to analyse how the weighting in the loss function affects the contributions of specific
targeted classes. We also show the effect of weight in the number of misclassifica-
tions, and how different weight values affect the number of misclassifications, again
the value of our approach resides in the risk information we include and how we
combine the different models to mitigate risk.

The use of cost matrices to assign a cost to each misclassification based on the
distribution of each class is proposed in [139]. These costs were then utilised during
the training process to increase the final classification accuracy. While this is similar
to our approach, in the sense that they target particular classes, this solutions focuses
on modifying the output of a classifier. In contrast, we target the loss function. To
deal with data with imbalanced class distribution [173], proposes a weighted method
which is able to generalise to balanced data by assigning different weights for each
example according to users’ needs. To alleviate the bias in performance caused
by imbalanced class distribution, an extra weight is assigned to each sample to
strengthen the impact of minority class while weaken the relative impact of majority
class; different to our approach, we add a weight not to each sample, but rather to
each relevant misclassification.

Distinct to the previously mentioned approaches [168], proposes an evolutionary
cost-sensitive deep belief network (ECS-DBN) for imbalanced classification. Their
method uses adaptive differential evolution to optimise the misclassification costs
based on the training data that presents an effective approach to incorporating the
evaluation measure into the objective function by first optimising the misclassifica-
tion costs, and then apply them to DBN. Another, similar approach is presented by
[109], which formulates a misclassification cost minimising genetic algorithm; they
propose three different fitness functions that aim to minimise the total misclassifica-
tion cost. Although, these methods propose an evolutionary algorithm to deal with
the imbalanced classification and total misclassification cost, they are not aiming
to decrease the misclassification for relevant class pairs as they solely attempt to
improve the overall accuracy of the models disregarding the risk factors.

Studies such as [50] use ensemble models to handle concept drift and oversam-
pling, and for dealing with class imbalance; they briefly mention the importance of
class misclassification reduction. However, their main focus is not on tackling class
misclassification, and their ensembles use simple averaging to combine probability
outputs from a set of models.

A model of lifelong learning is introduced in [5], based on a network of experts.
New tasks/experts are learned and added to the model sequentially, building on
what was learned before. Their main line of reasoning is that different models are
normally created for different tasks trained on different datasets, each of which is an
expert on its own domain, but not on others. They explain how learning a new task,
requires adapting the model to the new set of classes and fine-tuning it with the new
data. The authors of this work emphasise the need for having different specialist
or expert models for different tasks and build a network of experts, where a new
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expert model is added whenever a new task arrives and knowledge is transferred
from previous models. This work is relevant to us because it considers individual
models as experts, analogous to our risk-aware models and propose the creation of
an ensemble to improve the performance of single classifiers. By contrast, however,
they do not consider generalist models (or risk-oblivious models) and their inten-
tion is not to reduce the number of misclassifications but rather to focus on how to
select the proper specialist for the right environment. The example they provide is
an autonomous vehicle that uses video prediction and needs to be able to load the
correct model for the current environment. It might not have all the data from the
beginning, and so it becomes important to learn specialists for each type of envi-
ronment, without the need for storing all the training data. Yet another important
difference to our approach is that, despite the fact that they show interesting confu-
sion cases or examples of misclassifications such as flowers as birds, cars as aircrafts,
aircrafts as cars, etc. their approach do not aim to mitigate them per se, likewise
they do not combine the knowledge from different models, but instead they provide
the mechanism to retrieve the most appropriate individual model.

A similar approach to that previously presented is [63] which introduces a method
for distilling the knowledge in an ensemble of models into a single model with the
argument that making predictions using a whole ensemble of models is cumbersome
and may be too computationally expensive to allow deployment to a large number
of users, especially if the individual models are large neural networks. They also
explain how their distilling of knowledge from a large model into a small one, allows
to train the small model to generalise in the same way as the large model. If a
cumbersome model generalises well because, for example, it is the average of a large
ensemble of different models, a small model trained to generalise in the same way
will typically do much better on test data than a small model that is trained in the
normal way on the same training set as was used to train the ensemble. Interestingly,
they also introduce a new type of ensemble composed of one or more full models
and many specialist models which learn to distinguish fine-grained classes that the
full models confuse. The advantage they state is that unlike a mixture of experts,
these specialist models can be trained rapidly and in parallel. This is similar to our
approach because we also propose a combination of generalists and specialists in
our ensemble with the intention of having a generalist model which compensates for
the class-pairs that do not have a specialist model, otherwise, a class-pair which was
initially not regarded as a concern could end up with a risk value above the maximum
tolerated. We can also see that this work diverge from our approach when they do
not focus their efforts on risk mitigation of relevant class-pair misclassifications as
we do.

Authors in [3] construct classifier ensembles using multiple Pareto features as
inputs extracted by a multi-objective evolutionary trace transform algorithm. By
contrast, for traditional classifier ensembles using single input features, data ran-
domisation techniques have been employed in training the ensemble members to ex-
plicitly promote the diversity of ensembles, in this work, majority voting is adopted
to combine the output of the base classifiers. The method combines different models
to obtain better classifiers; however, they do not consider specialist and generalist
models, moreover, they do not consider weights when combining the output of the
classifiers which helps to give weight to the models contribution based on their ability
to correctly classify a given sample. Finally, [76] aims to deal with class imbalance by
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presenting an ensemble of cost-sensitive decision trees for imbalanced classification.
Base classifiers are constructed according to a given cost matrix, but are trained on
random feature sub-spaces to ensure sufficient diversity of the ensemble members.
They also employ an evolutionary algorithm for simultaneous classifier selection and
assignment of weights for the fusion process. Nonetheless, this ensemble synthesis
approach does not considers risk; its goal is simply to tackle imbalance classification.

As we can see, none of the presented related works consider misclassification
of relevant class pairs, nor do they consider risk during the training or verification
stages. Our approach is unique in using the risk-aware training of DNNs using loss
functions tailored to reduce high-risk misclassifications as well as risk-aware ensemble
synthesis employing multi-objective genetic algorithms to generate DNN ensemble
classifiers that are Pareto optimal with respect to both, traditional ML performance
metrics and risk mitigation capabilities. To the best of our knowledge, no existing
approaches mitigate the risk associated to different DNN misclassifications as we do.

3.5 Summary

In this chapter we presented an approach to synthesise risk-aware DNN classifiers
and we discussed in detail each of the stages of our method in Section 3.1. We
presented the evaluation of the proposed method in two different data sets, namely
CIFAR-10 in Section 3.3.2 and a subset of the GTSRB in Section 3.3.3, for which we
created risk-oblivious and risk-aware models. We identified the relevant concerns for
each data set and synthesised Pareto-optimal ensembles that were tested and com-
pared at different thresholds of risk acceptance to show that our proposed approach
can successfully identify and mitigate the risk associated with relevant misclassifi-
cations for DNN image classifiers. Next, we presented a discussion of the findings
in Section 3.3.4. Finally, we presented the related work in Section 3.4. In the next
chapter (Chapter 4 Risk-aware Real-time Object Detection) we present a method
for the development of risk-aware ML ensembles for real-time object detection.
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Chapter 4

Risk-aware Real-time Object
Detection

This chapter presents the instantiation of our generic risk-aware ML ensemble syn-
thesis method from Section 3.1 for the development of risk-aware ensembles for
Real-time Object Detection (RTOD). The instantiated method supports the de-
pendable use of RTOD by (i) identifying the risks that require treatment, (ii) train-
ing a set of ML models that mitigate these risks, and (iii) constructing risk-aware
ML ensembles using multi-objective genetic algorithms. The chapter begins with a
description of the stages of the proposed method in Section 4.1 before an evaluation,
using the PASCAL VOC 2007 dataset, is presented in Section 4.2. A discussion of
related work is given in Section 4.3 before we provide a summary of the chapter in
Section 4.4.

4.1 Approach

The implementation of the method for risk-aware RTOD ensembles is illustrated in
Figure 4.1. In stage 1: Risk-oblivious training, we use standard ML training to
generate a set of RTOD models. Next, in stage 2: Risk-aware verification, a five-
point semi-quantitative risk assessment technique from the ISO 31010 standard [65]
is used to identify risk concerns, i.e., RTOD object misclassifications that induce
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Figure 4.1: Risk-aware RTOD ensemble synthesis method.
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unacceptably high risks. Next, in stage 3: Risk-aware training, a configurable
number of risk-aware RTOD models are produced for each risk concern identified
in the previous step. These are models whose neural networks are trained using a
loss function L(θ) that prioritises the minimisation of misclassifying class i as class
j over that of all other misclassifications, as introduced in Chapter 3. Finally, in
stage 4: Risk-aware ensemble synthesis & verification, we select a subset
of risk-oblivious models from stage 1 and risk-aware models from stage 3, and use
a multi-objective genetic algorithm to optimise a set of weights for combining the
outputs from these models in an ensemble that achieves Pareto-optimal trade-offs
between maximising the mAP score and minimising the residual risk.

Our presented method builds upon the approach introduced in Chapter 3, how-
ever, object detection is a much more complex task than image classification in-
volving the classification of multiple objects, and bounding boxes to describe their
locations, within a single image. The application of the method to object detection
required significant extensions for the solution described in Chapter 3 as follows:

1. In the second stage of the approach (Risk-aware verification) the derivation
of the likelihood of misclassification is qualitatively different because the ob-
ject detector, unlike the classifier, is concerned with both the class label and
the object position. To obtain the risk-concerns for the RTOD we apply the
process described in Section 4.1.2;

2. In the fourth stage (Risk-aware ensemble synthesis & verification) we consider-
ably extended the approach to support the effective combination of knowledge
from each of the base learners, since each RTOD model is predicting a differ-
ent set of multiple objects with different locations. This extension required the
development of three algorithms for combining the bounding box predictions
of the models in the ensemble;

3. The performance evaluation of the RTOD models is not the F1 score as for
image classification. For object detection the commonly used performance
metric is the mAP, a more complex metric as it involves an assessment of
the algorithm’s capacity to perform detection and location of multiple objects
accurately, and of the precision-recall curve for each of the classes.

A detailed description of each of the stages of this approach can be found in the
following sections.

4.1.1 Stage 1 : Risk-oblivious training

The first stage of the approach uses standard ML training to generate a set of RTOD
models. Each model is obtained from the same training data set with different
random initial weights for the RTOD neural network. As previously mentioned in
Section 3.2.1 the importance of this step resides in the need to identify a baseline
that allows the identification of class pairs whose misclassification corresponds to
unacceptable levels of risks. We also remind the reader of the importance of having
a large enough data set to ensure that the DNNs once trained truly reflect that the
proposed model structure has issues misclassifying objects of class A as class B and
are not noise or outlier values due to limited data which could be addressed with
reasonable efforts to increase the number of samples available.
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4.1.2 Stage 2: Risk-aware verification

In this stage a five-point semi-quantitative risk assessment technique from the ISO 31010
standard [65] is used to identify risk concerns for the RTOD. The likelihood of en-
counter loE, the impact level impact(i, j) and likelihood of misclassification (LoM)
thresholds are obtained as shown previously in Section 3.2.2.

The derivation of the likelihood of misclassification is different because the object
detector, unlike the classifier, is concerned with both the class label and object
position. This added complexity means that multiple bounding boxes, associated
with multiple objects, may be incorrectly placed or missing altogether. Indeed a
false detection will produce a bounding box for an object which does not exist in
the scene. In this way matching predictions to the ground truth becomes more
challenging.

To obtain the risk concerns for the RTOD we apply the following process:

1. For each object oj, j ∈ {1, 2, . . . ,m}, in a data sample, let cj ∈ {1, 2, . . . , n} be
the true class of oj, and boxj = (((xj, yj)

top, (xj, yj)
bottom)) the set that contains

the coordinates of the top left and bottom right corners of each true bounding
box. A pair (cj, boxj) is an element in the ground truth set of information
per object; therefore y = {(c1, box1), (c2, box2), · · · , (cm, boxm)} is the set that
contains the ground truth information of one sample with m objects in it.

The data sample is then passed to a model Mi, i ∈ {1, 2, . . . , s}, where s
is the number of models to be assessed, whose prediction for object oj is
c′i,j = (P 1

i,j, P
2
i,j, ..., P

n
i,j) that contains the probabilities of object oj belong-

ing to each of the n classes in the data set. And also predicts box′
i,j =

(((xi,j, yi,j)
top, (xi,j, yi,j)

bottom)), similarly to the previous case, a tuple (c′i,j, box
′
i,j)

will be added to the predictions set:

y′i = {(c′i,1, box
′
i,1), (c

′
i,2, box

′
i,2), ..., (c

′
i,j, box

′
i,j)} (4.1)

There can be three possible cases for the prediction:

(a) All the objects in the sample where predicted by the model Mi.

In this case we must match predicted objects to the list of objects known
in the sample using the intersection over union. Note that each object
may generate multiple bounding boxes:

Matches = {(box1, box2) ∈ boxes(Y ) × boxes(Y ′
i ) |

IoU(box1, box2) ≥ threshold
(4.2)

Next we remove any duplicates (ground-truth boxes that match with
more than one predicted bounding box), in this case of duplicates the
greater IoU will be selected — this generates a Matches′ ⊆ Matches set
of box pairs.

Matches′ will contain the ground truth and the prediction for the object,
so there is (cj, boxj) and (c′i,j, box

′
i,j) for each object (needed to add to y

and to y′i respectively).
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(b) All the objects in the scene were missed. In this case, for each object in
the ground-truth add box′

i,j = ((0, 0), (0, 0)) and c′i,j = (00, 01, .., 1n) i.e.
(set 0 for the probability of all classes, except for class n that is identified
as no detected).

(c) The prediction of one or more objects in the sample is ∅ (the object
was not predicted by the model Mi), but, not all objects were missed, for
example in a scene with five objects two are detected and three are missed.
For the detected objects do as in case (a) above, i.e match the predictions
with their ground truths, and for all the ground truths without a match
do as in case (b).

The ground-truth set y for each sample will be added to Y to obtain Y =
{y1, y2, ...yr} that will contain the ground truth information of each of the r
samples in the data set; likewise a set Y ′

i = {y′i,1, y′i,2, ..., y′i,r} will contain the
predictions for each sample in the data set and for each model Mi.

2. Once the set of ground truths Y and the set of predictions Y ′
i are available we

can obtain the confusion matrix.

It is important to mention that, as in the established practice from RTOD
(and therefore orthogonal to our approach), confusion matrices for object de-
tection typically do not consider missed objects and duplicated predictions
directly. Missed objects and duplicated predictions are indirectly considered
in the evaluation process through IoU thresholds and precision-recall analy-
sis. Missed objects are typically reflected in false negatives (objects that were
not detected) in the precision-recall curve. Duplicated predictions may affect
precision, as they contribute to false positives if they do not meet the IoU
threshold or overlap with ground truth bounding boxes. In our approach we
use the confusion matrix not as the performance metric when synthesising
the ensemble, but as a mechanism to identify the misclassifications made by
the object detector. The performance of the RTOD model is independently
measured by the mAP.

3. The risk level threshold τ ∈ {VL, L,M,H,VH} is defined for the application
using the RTOD model which specifies the maximum risk level that can be
tolerated, e.g. if τ = VH we aim to mitigate all concerns with a risk value
≥ VH.

4. Given this risk information, we consider each pair of classes i ̸= j, and we
calculate p(i, j) as the mean fraction of misclassifications of class i objects as
class j objects over the risk-oblivious RTOD models from Section 4.1.1. Next,
we use the thresholds LoMVL, LoML, LoMM, LoMH, and LoMVH to establish
the likelihood LoM(i, j) ∈ {VL, L,M,H,VH} of class i being misclassified as
class j by a risk-oblivious RTOD model. Finally, we use likelihood and risk
matrices [65] to establish an overall likelihood OL(i, j) and a risk level r(i, j)
for the misclassification of class i as class j as shown in Figure 4.2. The shading
of the ‘VH’ elements from the risk matrix indicates that the diagram assumes
a maximum acceptable risk level τ = VH, and that any pair of classes (i, j)
whose misclassification risk level resides in the shaded area represents a risk
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Figure 4.2: Calculation of the risk level r(i, j) for misclassifying class i as class j given
the likelihood of encounter LoE(i) for class i and the impact impact(i, j) of such a
misclassification, where LoM(i, j) is the calculated likelihood of misclassification.

concern, i.e., a risk that needs to be mitigated. The outcome of this stage of
our method is a set of all such risk concerns for the RTOD models.

4.1.3 Stage 3 : Risk-aware training

If risk concerns were identified in the previous stage (Section 4.1.2), then this stage
produces a configurable number of risk-aware RTOD models for each risk concern
(i, j). These are models whose NNs are trained using a loss function L(θ) that
prioritises the minimisation of misclassifying class i as class j over that of all other
misclassifications:

L(θ) = − 1

M

M∑
k=1

N∑
l=l

w(yk, ŷk)ykl log pkl, (4.3)

where θ represents the NN weights to be learnt, M is the number of samples in
the training data set, N is the number of classes, ykl = 1 if the true class for the
k-th sample yk = l and ykl = 0 otherwise, pkl is the value of the l-th NN output
neuron for the k-th sample, and (unique to our method) w(yk, ŷk) > 0 is a weight
associated with classifying sample k as class argmaxN

l=1pkl = ŷk; to obtain RTOD
models that mitigate the risk concern (i, j), we use:

w(yk, ŷk)=

ωN2/(N2+ω−1), if yk = i ∧ ŷk = j

N2/(N2+ω − 1), otherwise
(4.4)

where ω > 1 is a parameter of our risk-aware model training. Note that (i) setting
ω = 1 reduces (4.3) to the standard loss function used in training, and (ii) the use
of ω > 1 increases the contribution of the loss term ykl log pkl from (4.3) for samples
k of class i misclassified as class j.

We show in Section 4.2 that using the loss function (4.3) can yield RTOD models
with significantly reduced misclassification rates p(i, j). Of course, this technique
cannot guarantee that such models will be obtained under all circumstances. For
instance, the technique may be unable to mitigate risks due to training data sets that
are unbalanced or too small, or when poorly chosen NN architectures are used. In
such cases, these issues may be addressed directly, or it may be possible to mitigate
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the risk by reducing its impact (e.g., a self-driving car can drive slower) or likelihood
of encounter (e.g., by banning bicycles on certain roads used by self-driving cars).

4.1.4 Stage 4: Risk-aware ensemble synthesis & verification

In this stage, we select a subset of risk-oblivious models from Stage 1 and risk-
mitigating models from Stage 3, and use a multi-objective genetic algorithm to
optimise a set of weights for combining the outputs from these models into a set of
ensembles that achieve Pareto-optimal trade-offs between:

1. maximising the mAP score, an established performance measure for object
detection models [42, 91, 107, 120];

2. minimising the residual risk (see Equation 3.4).

The ensemble construction, GA strategy, and the risk encoding mechanism is
the same as that described in Section 3.2.4. Below, we provide the steps needed
to form the ensemble for an object detector model. Since each model predicts
multiple objects the challenge is to define how the outputs from each model should
be combined. In order to address this challenge we adopt the following approach.

We first formally define an ensemble Ens as a set of l models such that Ens =
{M1,M2, . . . ,Ml} with l ≥ 2. Each of the models may be risk-aware or risk-
oblivious. The objective of the heuristic search is to obtain the set of ensembles
that achieves Pareto optimality between maximising the mAP score and minimising
the risk. The steps taken to form the ensemble are shown in Algorithms 1–3:

1. The function getParetoOptimalEnsembles from Algorithm 1 shows the
main pseudocode for the ensemble creation. A combination of object pre-
dictions that belong to the same ground-truth is obtained by first identifying
sets of objects with significantly overlapping bounding boxes (according to the
IoU measure). In line 8 we call the function getNewElement from Algo-
rithm 2, which adds a new element to the set combination if the IoU between
the ground-truth box and the predicted box exceeds a predefined threshold.
Once all the model’s predictions are checked for an object, we call the function
getClassif in line 10 to combine the predictions of all selected single models
to obtain one prediction per object.

2. The combination of the individual predictions is generated by function get-
Classif from Algorithm 3. This function multiplies the set of predictions
generated by each model by the associated weights learnt by the GA (line 6),
and adds each model’s weighted prediction to obtain the output of the ensem-
ble as Oc = (c′1 ∗ weights1 + c′2 ∗ weights2, ... + c′l ∗ weightsl). The weights
(wji)1≤j≤l,1≤i≤n, optimised by the GA, are those used to combine the lists of
objects detected by l > 1 RTOD models into a single list EnsembleO. After
this combination of individual model predictions, a single object is predicted
by the ensemble. This object has:

(a) bounding box coordinates computed as the mean coordinates of the bound-
ing boxes for the objects;
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(b) class given by argmaxn
i=1

∑
j∈J wjic

j
i , where J ⊆ {1, 2, . . . , l} is the subset

of models that contribute objects to EnsembleO, wji > 0 is a weight that
reflects the ability of j-th model to detect objects of class i, and cji is model
j’s estimate probability that the object detected is of class i.

The inputs for these algorithms are:

1. The sets of predictions from l models (setOfPredictions = {Y ′
1 , Y

′
2 , ..., Y

′
l })

such that set i has the form Y ′
i = {(c′i1, box

′
i1), ..., (c

′
ili, box

′
ili, )}, where c′ij =

(p1, p2, . . . , pn) is a tuple of probabilities for the n classes, box′
ij contains the

coordinates of the bounding boxes for the n classes, j ∈ {1, 2, ..., ni}; i.e.
model i identifies ni ≥ 0 objects in the image.

2. Y = {(c1, box1), ..., (cni, boxni)} where (cij, boxij) represents the ground-truth
probabilities and boxes that correspond to an object.

3. weights = {W1, ...,Wl} contains one element per model in the ensemble, where
Wi = {w1, w2, ..., wn}, contains n values (one value per class); wi represents a
value between 0 and 1.

The weights are used to multiply each predicted class probability of each model
in the ensemble. By adjusting these weights the GA evaluates if the current
selection of weights generated a better solution than those ecountered in pre-
vious generations.

Algorithm 1 Ensemble algorithm.

1: function getParetoOptimalEnsembles
2: EnsembleO = {}
3: while the GA is running do
4: setOfPredictions = {Y ′

1 , Y
′
2 , ..., Y

′
l }

5: for each ((p1, p2, . . . , pn), box ) ∈ Y do ▷ for each element in ground-truth
6: combination = {}
7: for each Y ′ ∈ setOfPredictions do ▷ for each set of predictions
8: combination = getNewElement(combination,box,Y ′) ▷ see Alg. 2
9: end for

10: EnsembleO = EnsembleO ∪ {getClassif(combination)} ▷ see Alg. 3
11: end for
12: end while
13: return EnsembleO
14: end function

4.2 Evaluation

4.2.1 Evaluation methodology

To evaluate our method we applied it to the PASCAL VOC 2007 dataset [42],
which is widely used as a benchmark for object detection. The goal of this task is
to recognise objects from a number of visual object classes in realistic scenes which
can contain multiple objects.
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Algorithm 2 Function to check if an object was identified by a model.

1: function getNewElement(combination,box, Y ′)
2: bestMatch = nil
3: bestScore = 0
4: firstT ime = 0
5: for each ((p1, p2, . . . , pn), box

′) ∈ Y ′ do
6: score = IoU(box, box′)
7: if firstT ime == 0 and score ≥ threshold then
8: bestScore = score
9: bestMatch = ((p1, p2, . . . , pn), box

′)
10: firstT ime = 1
11: else if firstT ime == 1 and score ≥ threshold and score > bestScore then
12: bestMatch = ((p1, p2, . . . , pn), box

′)
13: bestScore = score
14: end if
15: end for
16: if bestMatch! = nil then
17: combination = combination ∪ {((p1, p2, . . . , pn), box′)}
18: Y ′ = Y ′ \{((p1, p2, . . . , pn), box′)}
19: end if
20: return combination
21: end function

Algorithm 3 Function to combine the knowledge of all models in the ensemble and
decide the final class.
1: function getClassif(combination)
2: finalClass = {}
3: finalBox = {}
4: i = 0
5: for each ((p1, p2, . . . , pn), box ) ∈ combination do
6: wPred = (p1, p2, . . . , pn) ∗ weights[i]
7: finalClass = finalClass ∪ {wPred}
8: finalBox = finalBox ∪ {box}
9: i+ = 1
10: end for
11: finalBox = finalBox/lenght(combination)
12: return finalClass, finalBox
13: end function

The VOC dataset contains significant variability in terms of object size, orien-
tation, pose, illumination, position and occlusion. The distributions of images and
objects by class are approximately equal across the training/validation and test sets.
The VOC 2007 data set contains in total 9,963 images, 2,501 samples for training,
4,952 for testing and 2,501 for validation, containing 24,640 annotated objects [42]
with n = 20 classes. The test data was augmented to 19,808 images using Gaus-
sian noise. All individual models were trained and tested on the corresponding data
splits. The validation split was not used during the training of the individual models
and it was used to test the final synthesised ensemble. The twenty object classes
are depicted in Figure 4.3 and listed as follows, with class ids included in brackets:
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Figure 4.3: Example images from PASCAL VOC2007 dataset depicting all 20
classes.

• Person: person (14)

• Animal: bird(2), cat(7), cow(9), dog(11), horse(12), sheep(16)

• Vehicle: aeroplane(0), bicycle(1), boat(3), bus(5), car(6),
motorbike(13), train(18)

• Indoor: bottle(4), chair(8), dining table(10), potted plant(15),
sofa(17), tv/monitor(19)

For our experiments we used the real-time object detection pipeline of YoloV3 [119]
implemented in TensorFlow 2.0 1. According to [112], this is a poof of concept imple-
mentation and therefore the performance of the obtained models is not guaranteed
to be the best. We opted for this option given its ease of implementation and well
documented code base.

All the experiments were performed on a server with 64GB of RAM with 8
processors Intel Core i7-9700K CPU @ 3.60GHz, running Ubuntu 18.04.5 with a
64-bit architecture and 6.9TB of hard disk.

1For a complete description of the implementation refer to https://github.com/zzh8829/

yolov3-tf2
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4.2.2 Evaluation on the PASCAL VOC 2007 data set

4.2.2.1 Risk information

In order to evaluate our approach we first defined a set of risk information for the
VOC context as follows:

Impact level impact(i, j) The impact of misclassification is shown in Table 4.1
where each of the (i, j) cells contains the impact for the relevant class pairs in a
0-4 point scale of VL to VH. It measures the interactions between misclassifications
of classes and how they would affect the context. The dashes in the table refer
to misclassifications that are not relevant for the context where the system will be
deployed, for instance, misclassifying the class bottle (4) as class dining table (10)
in a self-driving car operating in an urban setting is not relevant and therefore is
dashed. This does not mean that the individual models are not confusing these
classes, and in a different context this might well be a misclassification that needs
to be dealt with. A value of 0 means that such misclassification has a very low
(VL) impact when it occurs, e.g. misclassifying class dog (11) as class sheep (16) is
deemed to have VL impact. We allocated a range of impact scores to illustrate our
approach however, in practice, such values would be obtained from domain experts.

Likelihood of encounter LoE(i) Is a measure of how likely is to encounter
instances of a given class during a determined period of time. Table 4.2 shows the
LoE for the n = 20 classes in the Pascal VOC 2007 data set. The values are in a
0-4 point scale of VL to VH. For example, classes bicycle (1), bus(5), car(6), etc.
are expected to be encountered quite often in our self-driving scenario. This values
are also expected to be provided by domain expert.

Likelihood of misclassification thresholds We defined the thresholds for this
experiment as 0 < 0.027 < 0.03 < 0.08 < 0.1096 < 0.20 < 1. The thresholds have
been derived after making the analysis described in Section 4.1.2. To determine the
values we need to first look at the confusion matrices and identify the minimum and
maximum LoM, then we propose five different values between 0 and the maximum
LoM so that we are able to map the LoM values to a 0-5 scale of VL-VH. Using
the likelihood of misclassification thresholds we obtained the intervals for the risk
levels as follows:

• VL:[0, 0.027)

• L:[0.027, 0.03)

• M:[0.03, 0.08)

• H:[0.08, 0.1096)

• VH:[0.1096, 0.20)

• P:[0.20, 1]

Maximum acceptable risk level For the experiment being described we pro-
posed the acceptable risk level to be τ = H, which indicates that we want to reduce
the risk associated with any concerns identified as having a risk value > H.
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Table 4.1: Impact for the risk-aware RTOD method evaluated on the Pascal VOC
2007 dataset provided on a 0-4 scale of VL-VH. The cells with a dash are misclas-
sifications considered irrelevant for the context or that do not make sense.

Predicted Class

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

A
ct
u
al

C
la
ss

0 - - - - - - - - - - - - - - - - - - - -

1 - - - - - 2 2 - - - - - - 2 4 - - - - -

2 - - - - - - - - - - - - - - - - - - - -

3 - - - - - - - - - - - - - - - - - - - -

4 - - - - - - - - - - - - - - - - - - - -

5 - 3 - - - - 3 - - - - - - 3 2 - - - 2 -

6 - 3 - - - 2 - - - - - - - 4 3 - - - 3 -

7 - - - - - - - - - 4 - 2 3 - 4 - 4 - - -

8 - - - - - - - - - - - - - - - - - - - -

9 - - - - - - - 4 - - - - 2 - - - 1 - - -

10 - - - - - - - - - - - - - - - - - - - -

11 - - - - - - - 4 - 2 - - 3 - 2 - 0 - - -

12 - - - - - - - 0 - 0 - 0 - - - - 0 - - -

13 - 4 - - - 0 4 - - - - - - - 4 - - - - -

14 - 4 - - - 4 4 4 - 4 - 4 4 4 - - - - - -

15 - - - - - - - - - - - - - - - - - - - -

16 - - - - - - - 4 - 4 - 4 4 - 4 - - - - -

17 - - - - - - - - 0 - - - - - - - - - - -

18 - - - - - - - - - - - - - - - - - - - -

19 - - - - - - - - - - - - - - - - - - - -

Table 4.2: Likelihood of encounter (LoE) for the 21 classes of the Pascal VOC
dataset used to perform the evaluation of the proposed approach, it is given on a
0-4 scale of VL-VH.

Class 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

LoE 0 4 0 0 0 4 4 2 0 2 0 4 2 4 4 0 2 0 0 0

4.2.2.2 Risk-oblivious model training

In this step we trained 21 risk-oblivious RTOD models for 30 epochs with transfer
learning 2 where each model took approximately 2 hours to be trained. The obtained

2For a detailed explanation of model training using YoloV3 implemented in TensorFlow 2.0
refer to https://github.com/zzh8829/yolov3-tf2/blob/master/docs/training_voc.md102
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Table 4.3: Mean fraction of misclassification p(i, j), for the evaluation of the 21 risk-
oblivious models risk-aware RTOD method evaluated on the VOC 2007 dataset.

Predicted Class

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

A
ct
u
al

C
la
ss

0 0.0 0.0 0.0313 0.031 0.0003 0.0007 0.0077 0.0007 0.0067 0.0005 0.0002 0.0001 0.0001 0.0003 0.0132 0.0019 0.009 0.0009 0.0033 0.0023

1 0.0004 0.0 0.0012 0.0012 0.0067 0.0004 0.0036 0.0 0.007 0.0001 0.0004 0.0005 0.0 0.0155 0.0363 0.0038 0.0012 0.0006 0.0007 0.0002

2 0.0071 0.0003 0.0 0.0115 0.0023 0.0 0.0002 0.0071 0.0037 0.0029 0.0005 0.0059 0.0012 0.0 0.0418 0.0058 0.0212 0.0002 0.0001 0.0025

3 0.0107 0.0001 0.0122 0.0 0.0037 0.0034 0.0195 0.0001 0.0052 0.0008 0.0004 0.0002 0.0002 0.0 0.018 0.0054 0.0107 0.0016 0.005 0.0028

4 0.0 0.0002 0.0021 0.0013 0.0 0.0003 0.0018 0.0 0.0084 0.0 0.0037 0.0 0.0 0.0 0.0196 0.0045 0.0004 0.0017 0.0001 0.0035

5 0.0 0.0 0.0005 0.0051 0.0006 0.0 0.143 0.0001 0.0005 0.0003 0.0 0.0 0.0001 0.0 0.0135 0.0005 0.0008 0.0009 0.0213 0.0016

6 0.0004 0.0006 0.0002 0.0019 0.0002 0.0029 0.0 0.0 0.0009 0.0 0.0002 0.0 0.0003 0.0037 0.014 0.0008 0.0005 0.0009 0.001 0.0006

7 0.0001 0.0 0.0148 0.0007 0.0017 0.0002 0.0013 0.0 0.0034 0.0002 0.0013 0.031 0.0003 0.0 0.0256 0.007 0.0045 0.0055 0.0001 0.004

8 0.001 0.0007 0.0005 0.0006 0.0064 0.0 0.0021 0.0006 0.0 0.0001 0.0114 0.0012 0.0 0.0001 0.0352 0.0162 0.0003 0.0449 0.0 0.0062

9 0.0031 0.0 0.0113 0.0101 0.0 0.0001 0.0025 0.0015 0.0041 0.0 0.0 0.019 0.0172 0.0 0.0075 0.0005 0.0598 0.0004 0.0007 0.0003

10 0.0 0.0004 0.0003 0.0005 0.0145 0.0001 0.0012 0.0 0.0949 0.0 0.0 0.0004 0.0 0.0 0.0234 0.0143 0.0002 0.0042 0.0 0.0006

11 0.0004 0.0003 0.0214 0.001 0.0007 0.0001 0.0004 0.0403 0.0074 0.0092 0.0001 0.0 0.012 0.0001 0.0493 0.0011 0.0156 0.0166 0.001 0.0004

12 0.0005 0.0004 0.0075 0.0023 0.0002 0.0002 0.0023 0.0059 0.0022 0.0375 0.0 0.0271 0.0 0.0007 0.0414 0.0 0.0126 0.0016 0.0004 0.0003

13 0.0001 0.0287 0.0003 0.0009 0.0029 0.0005 0.0308 0.0 0.0019 0.0004 0.0006 0.0001 0.0005 0.0 0.0989 0.0019 0.0011 0.0 0.0009 0.0015

14 0.0001 0.0006 0.0007 0.0012 0.0011 0.0002 0.0015 0.0004 0.0044 0.0 0.0007 0.0006 0.0003 0.001 0.0 0.001 0.0003 0.0021 0.0004 0.0006

15 0.0003 0.0006 0.0045 0.0035 0.0059 0.0018 0.0007 0.0001 0.0262 0.0 0.0045 0.0 0.0001 0.0002 0.0177 0.0 0.0005 0.0039 0.0001 0.0052

16 0.0012 0.0001 0.033 0.0039 0.0003 0.0 0.0023 0.0022 0.002 0.0462 0.0003 0.0352 0.0071 0.0 0.0084 0.0002 0.0 0.0002 0.0001 0.0005

17 0.0001 0.0 0.0006 0.0006 0.0022 0.0006 0.0041 0.0007 0.1271 0.0 0.0152 0.0037 0.0 0.0001 0.0407 0.0065 0.0004 0.0 0.0001 0.0045

18 0.001 0.0 0.0002 0.0084 0.001 0.0123 0.0117 0.0001 0.001 0.0004 0.0003 0.0003 0.0004 0.001 0.0084 0.0002 0.0005 0.0011 0.0 0.0025

19 0.0005 0.0 0.0004 0.0006 0.0036 0.0024 0.0054 0.0013 0.0294 0.0 0.0018 0.0 0.0 0.0 0.0095 0.0081 0.0 0.0032 0.0002 0.0

models have an average mAP score of 0.4310 at IoU=0.5 (i.e. a valid detection is
considered when the IoU between the ground-truth and the prediction is ≥ 0.5) and
an average residual risk of 3.54.

4.2.2.3 Risk assessment

Using the risk-oblivious models we calculate the mean fraction of misclassification,
as described in Section 4.1.2, the results are shown in Table 4.3. Next, using the like-
lihood of misclassification thresholds and Table 4.3, we obtain the fLoM presented
in Table 4.4. The fLoM is given on a scale of VL to VH with dashes signifying that
the misclassifications are considered irrelevant for the context, e.g. the class sofa
(17) predicted as potted plant (15), the class tv/monitor (19) predicted as chair (8).

To calculate the fractional overall likelihood fOL we then combine the LoM and
the LoE using the look up Table 3.1 to obtain Table 4.5. Finally, the OL and the
impact are mapped using Table 3.2 to obtain the frisk presented in Table 4.6, the
shading of the cells indicate all the concerns with a risk value above the maximum
acceptable risk level τ > H (3). The five concerns identified are shown in Table 4.7.

4.2.2.4 Risk-aware model training

For each of the concerns identified in the previous step we then created 21 models,
consisting of 7 models for each value of ω ∈ {2, 5, 10}. In this way we obtain a total
of 105 risk-aware models with an average mAP score of 0.4317 at IoU=0.5, and
average residual risk of 3.44. We compare the performance of the risk-aware and the
risk-oblivious models in Figure 4.4a. We can see from this figure that some of the
risk-aware models outperform the best risk-oblivious models in both residual risk
and mAP score. We note that risk-awake models for: bus predicted as car (yellow
marker); motorbike predicted as car (red marker); and bicycle predicted as person
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Table 4.4: Mean fLoM for the evaluation of the 21 risk-oblivious models risk-aware
RTOD method evaluated on the Pascal VOC 2007 dataset provided on a 0-4 scale
of VL-VH. The cells with a dash are misclassifications considered irrelevant for the
context or that do not make sense.

Predicted Class

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

A
ct
u
al

C
la
ss

0 - - - - - - - - - - - - - - - - - - - -

1 - - - - - 0.01 0.13 - - - - - - 0.57 2.12 - - - - -

2 - - - - - - - - - - - - - - - - - - - -

3 - - - - - - - - - - - - - - - - - - - -

4 - - - - - - - - - - - - - - - - - - - -

5 - 0.00 - - - - 4.36 - - - - - - 0.00 0.50 - - - 0.78 -

6 - 0.02 - - - 0.10 - - - - - - - 0.13 0.51 - - - 0.03 -

7 - - - - - - - - - 0.00 - 2.02 0.01 - 0.94 - 0.16 - - -

8 - - - - - - - - - - - - - - - - - - - -

9 - - - - - - - 0.05 - - - - 0.63 - - - 2.59 - - -

10 - - - - - - - - - - - - - - - - - - - -

11 - - - - - - - 2.20 - 0.34 - - 0.44 - 2.38 - 0.57 - - -

12 - - - - - - - 0.21 - 2.15 - 1.03 - - - - 0.46 - - -

13 - 1.56 - - - 0.01 2.01 - - - - - - - 3.63 - - - - -

14 - 0.02 - - - 0.00 0.05 0.01 - 0.00 - 0.02 0.01 0.03 - - - - - -

15 - - - - - - - - - - - - - - - - - - - -

16 - - - - - - - 0.08 - 2.32 - 2.1 0.26 - 0.31 - - - - -

17 - - - - - - - - 4.19 - - - - - - - - - - -

18 - - - - - - - - - - - - - - - - - - - -

19 - - - - - - - - - - - - - - - - - - - -

(blue marker); reduce risk when compared to risk-oblivious models (brown marker),
with residual risk reduced from a minimum of 2.7, for the risk-oblivious models, to
under 2.5 for risk-aware models. In the following section we describe the results of
combining the individual models in an ensemble.

4.2.2.5 Ensemble synthesis

In this step, we first randomly selected 2 risk-aware models per concern and 2 of
the risk-oblivious models from the mAP/residual-risk Pareto front for each type
of model, obtaining a total of 12 models. From this set of models the GA was
instructed to synthesise an ensemble allowing l = 4 models. We allowed the GA to
run for 125 generations and recorded the time to synthesise the ensemble as well as
the mAP scores for training an testing sets, the results are shown in Table 4.8. We
see that the amount of time required to synthesise the ensemble is significant i.e.
we require 28 hours to obtain a solution at 125 generations. This time is affected by
the number of models in the ensemble, the number of classes and also the number
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Table 4.5: Mean fOL for the evaluation of the 21 risk-oblivious models on risk-aware
RTOD method evaluated on the Pascal VOC 2007 dataset provided on a 0-4 scale
of VL-VH. The cells with a dash are misclassifications considered irrelevant for the
context or that do not make sense.

Predicted Class

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

A
ct
u
al

C
la
ss

0 - - - - - - - - - - - - - - - - - - - -

1 - - - - - 1.01 1.13 - - - - - - 1.57 3.12 - - - - -

2 - - - - - - - - - - - - - - - - - - - -

3 - - - - - - - - - - - - - - - - - - - -

4 - - - - - - - - - - - - - - - - - - - -

5 - 1.00 - - - - 4.68 - - - - - - 1.00 1.50 - - - 1.78 -

6 - 1.02 - - - 1.10 - - - - - - - 1.13 1.51 - - - 1.03 -

7 - - - - - - - - - 1.00 - 2.01 1.0 - 1.47 - 1.08 - - -

8 - - - - - - - - - - - - - - - - - - - -

9 - - - - - - - 1.02 - - - - 1.32 - - - 2.3 - - -

10 - - - - - - - - - - - - - - - - - - - -

11 - - - - - - - 3.20 - 1.34 - - 1.44 - 3.38 - 1.57 - - -

12 - - - - - - - 1.10 - 2.08 - 1.52 - - - - 1.23 - - -

13 - 2.56 - - - 1.01 3.01 - - - - - - - 4.31 - - - - -

14 - 1.02 - - - 1.0 1.05 1.01 - 1.00 - 1.02 1.01 1.03 - - - - - -

15 - - - - - - - - - - - - - - - - - - - -

16 - - - - - - - 1.04 - 2.16 - 2.05 1.13 - 1.16 - - - - -

17 - - - - - - - - 1.73 - - - - - - - - - - -

18 - - - - - - - - - - - - - - - - - - - -

19 - - - - - - - - - - - - - - - - - - - -

of samples in the data set.

Figure 4.4b shows the set of Pareto-optimal ensembles found by the GA at 10
(blue Pareto front), 20 (yellow Pareto front), 25 (green Pareto front), 30 (red Pareto
front), 40 (purple Pareto front) and 125 generations (brown Pareto front). As the
number of generations increases, the residual risk decreases and the mAP score
improves, with diminishing returns as more GA generations are produced. For
example, after 10 generations the minimum residual risk is just below 2 with a mAP
score below 0.502, after 30 generations the residual risk has been reduced to 1.5 and
the mAP score reached 0.504, at the maximum, 125, generations the residual risk is
approximately 1.2 and the mAP score is 0.506.

All of the ensembles achieved much better mAP scores than the risk-oblivious
and risk-aware models and this is shown in Figure 4.4c. We can observe how the
mAP for all the individual models is below 0.45 whereas the ensemble achieves a
mAP score of 0.506 at the minimum risk. As expected, additional mAP performance
can be traded against risk by selecting an ensemble from the Pareto front with a
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Table 4.6: frisk values for the class-pairs in the Pascal VOC 2007 data set, the values
are provided on a 0-4 scale of VL-VH. The cells with a dash are misclassifications
considered irrelevant for the context. Highlighted in red the concerns with risk value
> 3 (H).

Predicted Class

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

A
ct
u
al

C
la
ss

0 - - - - - - - - - - - - - - - - - - - -

1 - - - - - 1.01 1.13 - - - - - - 1.57 3.12 - - - - -

2 - - - - - - - - - - - - - - - - - - - -

3 - - - - - - - - - - - - - - - - - - - -

4 - - - - - - - - - - - - - - - - - - - -

5 - 1.0 - - - - 4.68 - - - - - - 1.0 1.5 - - - 1.78 -

6 - 1.02 - - - 1.1 - - - - - - - 1.13 1.51 - - - 1.03 -

7 - - - - - - - - - 1.0 - 2.0 1.0 - 1.47 - 1.08 - - -

8 - - - - - - - - - - - - - - - - - - - -

9 - - - - - - - 1.02 - - - - 1.32 - - - 1.43 - - -

10 - - - - - - - - - - - - - - - - - - - -

11 - - - - - - - 3.2 - 1.34 - - 1.44 - 2.69 - 0.52 - - -

12 - - - - - - - 0.37 - 0.69 - 0.5 - - - - 0.41 - - -

13 - 2.56 - - - 0.34 3.01 - - - - - - - 4.31 - - - - -

14 - 1.02 - - - 1.0 1.05 1.01 - 1.0 - 1.02 1.01 1.03 - - - - - -

15 - - - - - - - - - - - - - - - - - - - -

16 - - - - - - - 1.04 - 2.16 - 2.05 1.13 - 1.16 - - - - -

17 - - - - - - - - 0.58 - - - - - - - - - - -

18 - - - - - - - - - - - - - - - - - - - -

19 - - - - - - - - - - - - - - - - - - - -

Table 4.7: Risk concerns identified for the RTOD with class ids shown in brackets.

ID True Class Predicted Class Risk

1 Motorbike (13) Car (6) 3.01

2 Bicycle (1) Person (14) 3.12

3 Dog (11) Cat (7) 3.2

4 Motorbike (13) Person (14) 4.31

5 Bus (5) Car (6) 4.68

different set of trained weights, e.g. in the brown Pareto front obtained at 125
generations we can opt to select an ensemble that yields to a mAP score of 0.513,
which is the highest possible, at the cost of assuming a residual risk of approximately
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(a) Performance of single models (b) Ensemble learning

(c) Performance of ensemble vs single models

Figure 4.4: Performance of single models and ensemble results of the proposed
approach evaluated on the VOC 2007 data set with acceptable risk level τ = M .

Table 4.8: Time to synthesise the ensemble and mAP score of it for the evaluation
on the VOC2007 dataset

No of

generations

Required time

(in hours)

mAP (training)

@IoU=0.5

mAP (testing)

@IoU=0.5

125 28 0.5061 0.5366

2.8.
Table 4.9 presents the risk values per concern of the synthesised ensemble at

125 generations for the smallest risk obtained during training and testing of the
ensemble. The last row of the table also shows the residual risk. We can observe
how during the training of the ensemble the concerns 1) motorbike (13) predicted as
car (6), 2) bicycle (1) predicted as person (14) and 3) dog (11) predicted as cat (7)
were fully mitigated below the maximum acceptable risk threshold τ = H (3), with
corresponding risk values of 1.36, 1.8 and 2.8. As for concerns 4) motorbike (13)
predicted as person (14) and 5) bus (5) predicted as car (6) they could not be
alleviated below the proposed τ = H (3); nevertheless, in both of them the risk was
decreased from V H (4) to H (3).

When the ensemble was tested, we found that 3 concerns remained above the
maximum acceptable threshold: 2) bicycle (1) predicted as person (14); 4) motor-
bike (13) predicted as person (14); and 5) bus (5) predicted as car (6). However, the
risks were generally reduced, except for concern 2 whose risk value increased from
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Table 4.9: Risk values per concern during training and testing of the ensemble
evaluated on the Pascal VOC 2007 dataset. Highlighted in red the concerns with
risk value > 3 (H).

Id
Concern

Initial risk
Ensemble risk-

training

Ensemble risk-

testingActual Predicted

1 Motorbike(13) Car(6) 3.01 1.36 1.00

2 Bicycle(1) Person(14) 3.12 1.80 3.50

3 Dog(11) Cat(7) 3.20 2.80 1.31

4 Motorbike(13) Person(14) 4.31 3.97 3.52

5 Bus(5) Car(6) 4.68 3.11 3.77

Residual risk 3.32 1.08 1.79

Table 4.10: Mean RTOD time (in seconds) to process a single image in a batch of
100 images

Ensemble Size 1 2 4 6 8 16

RTOD Time 0.137 0.267 0.527 0.776 1.036 2.073

3.12 to 3.5. We can also see how the initial risk of 3.32 was reduced to 1.79 for the
test set, which indicates that despite the fact of one concern been exacerbated, it
was for the benefit of lowering the overall residual risk. This occurs since the GA
will trade off risks for individual concerns in order to minimise the overall risk. Sim-
ilarly, we observe that the balance of objects present in the testing and training set
can impact our training and evaluation. The number of objects for the class bicycle
in the split for testing the ensemble has a small number of instances, and therefore,
a single misclassification has a significant impact of the reported results. For exam-
ple, if the total of objects for class A is 10 and 3 objects are misclassified the mean
fraction of misclassification will be p = 3/10, from this we can see that each new
misclassification will significantly increase the value of p, and hence the total risk,
even when the number of misclassifications is relatively low. As previously men-
tioned the data quality has a significant impact on the quality of the results that
our method provides; nonetheless, because all the other concerns were mitigated
and the residual risk was significantly reduced we conclude that this establishes the
benefit of our method.

To evaluate the impact of increasing complexity on object detection time, we
built a series of ensembles of increasing size and recorded the time taken to process
100 samples. As shown in Table 4.10, the mean time to process a sample on a desktop
workstation increases linearly with the number of models in the ensemble. These
times, which can be reduced considerably by applying the optimisations described
in [118], indicate that our method is of practical use.

Finally, Figure 4.5 illustrates the performance of a synthesised ensemble and its
constituent models when applied to four images from the data set. A tick in the top
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Figure 4.5: Object detection comparing four models to the risk-aware RTOD en-
semble synthesised from them.

right corner of the image indicates the model correctly identified all objects, whilst a
cross indicates that at least one object was not detected or was misclassified. We can
see that the ensemble is able to successfully identify objects even when the majority
of models are unable to do so.

4.2.3 Discussion

We introduced a new method for the synthesis of risk-aware ML ensembles for real-
time object detection. The experimental work to evaluate our method was performed
on the widely used Pascal VOC 2007 data set for the maximum acceptable risk level
τ = H at which we encountered five concerns and we synthesised an ensemble
allowing four models for 125 generations of the GA. The obtained results, presented
in Section 4.2.2, suggest that our method can effectively mitigate risk, supporting
the development of dependable RTOD-based systems for safety-critical applications.

We observed how the required time to synthesise the ensemble is large, we require
around 14 minutes per generation of the GA, this time is affected by the number of
individuals per generation (50 for our experiments), the number of models allowed
in the ensemble, the number of classes in the data set, the number of objects per
image and the number of images in the data set. In Section 4.1.4 we presented algo-
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rithms 1, 2, and 3 which first groups sets of objects identified by the same individual
models based on the IoU metric and then combines each model’s prediction with
sets of weights to determine the ultimate prediction of the ensemble. This process
is repeated for each element in the ground truth and for each model allowed in the
ensemble which explains the amount of time required to synthesise the ensemble.

When looking at the initial risk values per concern and how these values compare
with that obtained using the ensemble we observe the gain of using our approach
as the risk is always mitigated, and this is reflected in the residual risk, whose
tendency is to be decreased as generations of the GA elapse while improving the
mAP score. We also note that the residual risk obtained during the evaluation of the
ensemble on the test data set is higher than that obtained during the training of the
ensemble, which suggests that our model overfitted, i.e. it had a better performance
during training. This is possibly because it was trained for longer than needed
but it could also be related with the data distribution in the training and testing
splits. For example, if a class is underrepresented in the test split and a lower
number of total instances of such class is present compared to the training split,
each new misclassification during testing leads to an increment in risk. However,
the improvement of our approach is significant as the initial risk dropped from 3.32
to 1.79 which shows the advantage in risk mitigation of our approach.

4.2.4 Threats to Validity

Construct validity. These threats can arise from the methodology employed dur-
ing the design of the experimental study and the underlying assumptions. This
includes assumptions made during the risk assessment stage, which should consider
RTOD, as well as proper inclusion of a risk profiling of the relevant class pairs.

To address this threat, we meticulously derived the likelihood of misclassification
for object detection, which presented added complexity due to the association of
multiple bounding boxes with multiple objects. We also considered the need to
create a confusion matrix, to identify high likelihood of misclassification class-pairs,
while simultaneously considering the mAP as a performance metric for the ensemble.

Regarding risk assessment, we adhered to the ISO/IEC 31010 risk standard,
which provides guidance on implementing risk management principles and processes.
This standard specifically offers guidance on the selection and application of risk
assessment techniques.

By following these measures, we aimed to mitigate threats related to the exper-
imental methodology, assumptions made during risk assessment, and the accurate
evaluation of ensemble performance. The inclusion of ISO/IEC 31010 guidance en-
sured a robust approach to risk management and assessment throughout the project.

Internal validity. These threats may arise from the construction of the ensemble
and the need for accurate integration of the predictions provided by each individual
RTOD model. Additionally, there is a potential threat regarding the efficiency of
the synthesised ensemble in merging the models’ predictions for real-time object
detection.

To address this concern, we proposed a suite of algorithms specifically designed
for the ensemble synthesis stage to effectively combine the bounding box predictions
from the individual models. Furthermore, to achieve real-time object detection,
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we integrated our proposed algorithms into the YoloV3 object detection pipeline,
ensuring an efficient knowledge combination process.

In order to assess the practical usability of our approach, we synthesised ensem-
bles of different sizes and measured the time required to process a single image. The
obtained values indicate that our method is indeed practical and can be effectively
employed in real-time object detection scenarios.

External validity. While we acknowledge that one case study alone may not
provide comprehensive validation of the effectiveness of our approach, we have chosen
to evaluate our method using the widely used Pascal VOC 2007 dataset. This dataset
is highly regarded in the field of computer vision, particularly for object detection
tasks, due to its diverse range of object classes, large-scale nature, and real-world
complexity.

The selection of the Pascal VOC 2007 dataset allows us to assess our approach’s
performance and capabilities within the context of this established benchmark. How-
ever, as part of our future work, we aim to further investigate the effectiveness of
our approach by applying it to additional case studies. By doing so, we can expand
our understanding of its applicability and robustness in diverse scenarios.

4.3 Related work

Several existing RTOD solutions use ensembles of ML models [22, 2, 140, 50, 146].
Unlike our method, most of these solutions [22, 50] combine the output of their
component ML models with equal weights, disregarding the fact that each model
may be better at predicting certain classes. [22] presents an ensemble algorithm that
can be applied with any object detection model. The method has been employed
to define a test-time augmentation procedure for object detection models. Similar
to our approach, they threshold the IoU to group which predictions correspond to
the same object; nonetheless, they add the restriction that all boxes in the group
should be predicting the same class. Then in order to consider each group as a valid
detection, they use 3 strategies: (i) affirmative, in this strategy, whenever one of the
models that produced the initial predictions says that a region contains an object,
such a detection is considered as valid; (ii) consensus, in this case, the majority
of the initial models must agree to consider that a region contains an object. The
consensus strategy is analogous to the majority voting strategy commonly applied
in ensemble methods for image classification; (iii) unanimous, in the last strategy,
all the models must agree to consider that a region contains an object. This is
different to our approach because we do not consider the condition of all boxes for
the same object predicting the same class. We recognise that some models make
different predictions for the same object i.e. some predictions are correct and some
are not, and this is the problem we are trying to solve, to decrease the number of
such misclassifications by combining the weighted predictions of different models in
the ensemble.

In [162] the authors propose the construction of a detector with higher detec-
tion performance and without lowering the detection speed to perform RTOD, their
idea is to combine a one-stage framework, context modeling, and multi-scale repre-
sentation. They apply dilated convolution to object detection and build a context
detection module based on the fact that dilated convolution extends the receptive
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field without increasing the number of computations. At the same time, they capture
fine-grained details through multi-scale representation to enhance the representation
capability of the model. In addition, they combine the idea of ensemble learning to
further improve the performance of the detector. Their ensemble first concatenates
the inference results of two models at inference time. They assume that a single
model can generate N prediction bounding boxes; thus, they will get 2N bounding
boxes after inference. Then they perform a non-maximum suppression algorithm
on the 2N bounding boxes to obtain the final prediction bounding boxes. Finally,
they apply NMS with IoU overlap of 0.45 per class and keep the top 200 detections
per image (they call this feature ensembling). They divide their ensemble modes
into three strategies but the most relevant is the ensemble of different models which
combines a model based on VGG16 (a DNN 16 layers deep [134]), and the model
trained by feature ensembling. The idea is interesting and already has in mind the
overload that the ensemble may impose in the predictions, that is way they use
one-stage detectors, but is limited in scalability as only two models can be included
in the ensemble, besides their only interest resides in improving the mAP score, in
contrast, our method supports the synthesis of ensembles of different sizes and uses
GA that aim to improve the mAP score and to mitigate risk of misclassification for
sets of concerns.

Another interesting ensemble method is weighted boxes fusion (WBF) [140]
which proposes a method for fusing predictions of different object detection models.
Unlike NMS and soft-NMS methods that remove some predictions, the proposed
WBF method uses confidence scores of all proposed bounding boxes to construct
average boxes. This method uses weighting in combining the outputs of their ML
models, this weights are determined using a basic heuristic that is focused on improv-
ing accuracy by constructing averaged boxes. The proposed technique (WBF) is also
implemented in SyNet [2] that combines a multi-stage RTOD with a single-stage one
with the motivation of decreasing the high false negative rate of multi-stage detec-
tors and increasing the quality of the single-stage detector. This approach considers
a detection valid if the IoU of the ground truth and the prediction is over a thresh-
old, which is the standard in object detection. As mentioned, for the combination
of the different RTOD models they implement WBF which utilises all predictions in
order to find bounding box clusters. Both WBF and SyNet, only focus on improving
accuracy by constructing averaged boxes, without explicitly reducing the number
of misclassifications. In contrast, our method uses a multi-objective genetic algo-
rithm that yields RTOD ensembles with Pareto-optimal trade-offs between object
detection accuracy and risk.

[57] proposes a method called the Wasserstein loss based model for object de-
tection to assign different weights to one sample identified as different classes with
different values. The distance metric is designed by combining the cross-entropy
(CE) or binary cross-entropy (BCE) with Wasserstein distance to learn the detector
considering both the discrimination and the seriousness of different misclassifica-
tions. The focus of this method is on avoiding unacceptable misclassifications caused
by CE/BCE loss-based object detection methods. They apply the Wasserstein loss
as an alternative to empirical risk minimisation to improve classification accuracy.
Specifically, they calculate the Wasserstein distance between a softmax prediction
histogram and its ground-truth label. By defining the ground metric based on the
appearance similarity and misclassification severity (e.g., the distance between bike

112



4.4. Summary

and car is larger than bike and motorbike), classification performance for each ob-
ject can be measured related to inter-class correlations. The Wasserstein metric
is a distance function defined between probability distributions in a given metric
space. The authors adapt this for object classification, using the ground-distance
matrix defined by dividing the classes into different groups using prior knowledge
and measuring the distance between different groups using a Gaussian filter. They
divide the classes of the data set in groups, e.g. group 1: bus, truck and car, group
2: traffic light, traffic sign, etc. and make the assumption of risk free misclassifi-
cation for objects in the same group; however, in the self-driving domain making
a distinction between a traffic light and a traffic sign seem to be highly important,
and the same occurs with the rest of the groups, therefore, we argue that making a
distinction between individual misclassifications is essential. Although, this method
cares about misclassification of groups of classes, they fail to introduce a proper risk
metric as we do.

Finally, the RTOD ensemble generation solution devised by [146] uses a genetic
algorithm to optimally combine the ML models from the ensemble. Their fitness
function aims to satisfy two characteristics, (i) fewer classifiers and (ii) lower error
rate. The authors in this work claim that is preferable that fewer classifiers give a
correct prediction for a given object rather than more classifiers. This contradicts our
approach that has demonstrated in our experiments that adding more models to the
ensemble yields to a better performance. Besides, this solution focuses exclusively
on optimising the ensemble accuracy, and therefore, does not considers the risks
associated with different misclassifications like our method. To the best of our
knowledge, no existing RTOD approach considers the risks corresponding to different
misclassifications.

4.4 Summary

This chapter discussed a method for the development of risk-aware ML ensembles for
real-time object detection. We evaluated our method on the widely used PASCAL
VOC 2007 data set and we implemented a version of the object detector YoloV3
to train risk-oblivious models. We set a maximum acceptable risk level of τ = H
and obtained a set of five concerns. We then trained a set of risk-aware models for
each of the identified concerns and synthesised Pareto-optimal RTOD ensembles.
The experimental results presented in this section suggest that our method can
effectively mitigate risk, supporting the development of dependable RTOD-based
systems for safety-critical applications.
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Chapter 5

Dynamic Selection of Risk-aware
Object Detection Ensembles

This chapter describes an approach that proposes the use of risk-aware ML ensem-
bles with dynamic switching between models as a Real-time Adaptation System
(RAS) moves between Operational Design Domain (ODD) regions. We assessed the
effectiveness of the approach measuring safety by observing the number of crashes
and number of correct actions taken during journeys of the autonomous vehicle. The
chapter starts with an introduction in Section 5.1; we then describe the five com-
ponents of the approach in Section 5.2. Next, we move to the evaluation presented
in Section 5.3. Related work is presented in Section 5.4 and, finally, we present a
summary of the chapter in Section 5.5.

5.1 Introduction

Ensemble Methods are inspired by the wisdom of the crowd phenomenon, in which
many weaker learner predictions are combined in order to obtain a more accurate
prediction [125]. The hypothesis is that by combining multiple base learners, the er-
rors of a single model is likely to be compensated by other base learner models and,
as a consequence, the overall performance of the ensemble would be optimal [4, 167].
Ensemble methods composed of DNN models have been successfully applied to ob-
ject detection tasks such as scene recognition [32, 106], x-ray inspection [75], object-
tracking [171] and safety critical systems such as autonomous vehicles [154, 15] and
airborne collision avoidance systems [70, 68]. In all of these cases the ensemble
methods have shown to perform remarkably well, in most of the cases surpassing
humans or hand-crafted algorithms [70].

The ensembles using DNN models as base learners are usually trained in large
data sets and expected to generalise to previously-unseen inputs. However, this
is not always the case and it has been shown that even small perturbations to
images produce a detection failure in the base learners [144, 55, 166] and, as a
consequence, in the output of the ensemble. Such disturbances in the input of
the ensembles could be produced by significant changes in the real world operating
domain, or context perturbations. Such changes could occur in different weather
conditions, such as haze or rain, but also through differences in lighting conditions,
such as dawn, daylight and dusk [108, 154]. Because the initial ensembles could
have been synthesised without considering all these possible scenarios the likelihood
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of misclassifications (LoM) and the probability of missing objects in the detection
stage may also increase. In addition, the likelihood of encountering different classes
(LoE) at different times of day, or in different geographical areas also varies, e.g.
at peak hours you are more likely to encounter pedestrians and cyclists in areas
surrounding schools. These changes in LoE and LoM therefore affect the list of risk
concerns as we move through operating domain region. This unexpected behaviour
in the synthesised ensembles is likely to result in decisions that would compromise
the safety of the system, restricting its usage in safety-critical applications.

We have previously shown how, by integrating information from domain experts
concerning the risk profile of an operating domain we are able to synthesise risk-
aware ensemble models that successfully mitigate the risk for each of their concerns.
In this chapter we propose an approach that mitigates the uncertainty that affects
real-world applications [1, 20, 62, 138] by using risk-aware ML ensembles with dy-
namic switching between models as a RAS moves from one ODD region to another.
For this work we assume that such ODD regions can be identified in advance, for
instance we may identify that the LoE and Impact of misclassification varies as we
move from a motorway to a residential area, and that by identifying concerns which
are appropriate for each region we can improve safety.

To demonstrate the effectiveness of our approach we make use of the Gazebo [74]
simulator and the robot operating system (ROS) [142] to simulate a Turtlebot robot 1

acting as an autonomous-driving vehicle. The vehicle moves around a circuit com-
pleting laps, each of them representing different ODD regions. As the autonomous-
driving vehicle moves around the circuit it encounters different objects and, once an
object is detected, it is expected to choose between a set of actions to operate safely
and avoid a collision. The vehicle is equipped with a camera and makes use of a
risk-aware RTOD ensemble as described in Chapter 4. In addition the vehicle has
the ability to switch between different risk-aware synthesised ensembles as it moves
into a different region. The evaluation presented shows the benefit of dynamically
switching between ensembles depending on the ODD region by successfully decreas-
ing the number of unsafe actions taken and the number of crashes of the self-driving
vehicle.

5.2 Approach

In this section we describe the main components of our proposed approach depicted
in Figure 5.1 which includes (i) the environment where the system will be deployed
composed of different ODD regions; (ii) The ODD detector which allows our sys-
tem to identify in which region it is currently operating through analysis of sensors
mounted on the vehicle; (iii) the controller whose main task is to seamlessly switch
between the different available risk-aware ensembles; (iv) the decision framework
that decides the speed of the vehicle based on the objects detected by the risk-aware
RTOD ensembles; and (v) the system we intend to control for its safe-autonomous
navigation in the environment. The components are described in detail in the fol-
lowing sections.

1https://emanual.robotis.com/docs/en/platform/turtlebot3/overview/
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Figure 5.1: The components and interactions between components of the proposed
approach for the dynamic selection of risk-aware object detection ensembles.

5.2.1 The environment

We consider the environment to be the external world in which the system is ex-
pected to operate. Formally it has been defined as a grouping of external and
observable entities that the system can only observe and interact with but can not
control [133]. If we intend to deploy a system in the real world, it is paramount
to understand and delimit the regions in which it is expected to work to ensure its
safe deployment. It is also essential that the uncertainties associated with the envi-
ronment which impact system safety are understood and considered during system
design [72].

In the work we present this means that we have consulted the appropriate do-
main experts to provide the relevant risk-information. This includes the LoE for all
classes as well as the impact that specific misclassifications may have. Based on this
information a suitable set of risk concerns is identified and mitigation strategies,
which include the synthesis of Pareto-optimal risk-aware ensembles, employed. An
effort has been made by [30] to formally define the real-world entities existing in the
environment, including their attributes, relationships, and if applicable, behaviors.
They propose an ontology which refers to elements that occur in road environments
for specifying operational world models for self driving vehicles used to define the
ODD. According to [124] an ODD alludes to the functional conditions under which
a system has been specifically designed to operate and includes environmental, geo-
graphical, and time-of-day restrictions, and/or the requisite presence or absence of
certain traffic or roadway characteristics. Following the previous definitions we can
state that environment in this work refers to a collection of different ODDs for which
the experts-domain are expected to provide their relevant risk-information and each
ODD’s sets of concerns have been identified as well as the corresponding mitigation
strategies.

5.2.2 The ODD detector

The ODD detector is responsible for determining the specific ODD region in which
the autonomous system is currently operating. This crucial functionality enables the
system’s controller to make informed decisions and take appropriate actions based
on the identified region.

To accurately detect the ODD region, the detector relies on different sensor in-
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puts. For instance, it may utilise a GPS sensor to gather geographical information,
allowing the system to recognise changes in location and adapt its behaviour ac-
cordingly. By leveraging GPS data, the ODD detector can identify when the system
transitions between different geographic regions with distinct operational constraints
or requirements.

Moreover, weather condition sensors such as an anemometer can be employed
as part of the ODD detector’s sensor suite. These sensors enable the system to
perceive and account for changes in weather conditions, including factors like wind
speed, which may impact the vehicle’s performance or necessitate adjustments to
its driving behavior.

In addition to the aforementioned sensors, the ODD detector can be further
enhanced through the integration of a camera sensor. The camera enables visual
perception, allowing the system to analyse the surrounding environment and detect
critical elements such as fog, rain, or alterations in lighting conditions. By leveraging
the camera’s capabilities, the ODD detector can gather real-time visual information
and effectively determine the presence of adverse weather conditions or other visual
cues about environmental changes that might affect the system’s decision-making.

The ODD detector functions include: (i) ODD region identification—the ODD
detector determines the specific ODD region in which the autonomous system is
currently operating; (ii) sensor integration—the ODD detector integrates data from
multiple sensors to gather information about the system’s surroundings, e.g., it may
incorporate inputs from sensors like GPS, cameras, LiDAR, radar, weather sensors,
or other environmental sensors to enhance its understanding of the operational con-
text; (iii) ODD boundary determination—based on the available sensor data, the
ODD detector defines the boundaries and constraints of the operational design do-
main, and establishes the limits within which the autonomous system can safely
operate and inform to make appropriate decisions; (iv) decision support—the ODD
detector provides crucial information to the system’s controller. By identifying the
current ODD region and its associated constraints, the ODD detector assists in
making informed decisions and selecting appropriate actions for the autonomous
system.

In summary, the ODD detector serves as the mechanism for identifying the
current ODD region in which the autonomous system is operating. It integrates
sensor data, including GPS, weather condition sensors like an anemometer, and
visual information from a camera, to accurately perceive geographical, weather-
related, and environmental changes. This comprehensive sensory input enables the
ODD detector to provide crucial information to the system’s controller, empowering
it to make context-aware decisions and take appropriate actions within the distinct
operational design domains.

5.2.3 The controller

Based on the data provided by the ODD detector the controller needs to decide if a
switching from the current RTOD ensemble is necessary and which of the available
models is the most suitable. This means that the systems understands the environ-
ment where it operates and has the ability to decide its response to changes in the
environment. In our approach we assume that we know in advance the set of pos-
sible ODD regions in which the system is expected to work (the environment) and
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that for each of them a risk analysis has been carried out as described in Chapter 4.
The risk analysis includes firstly the consultation of the domain expert to assess
the LoE for each relevant class as well as the impact of misclassification for each
class-pair. For example, on a motorway we expect LoE to be high for classes such
as car, truck or bus. In contrast, classes such as person or bicycle are not expected
to be encountered regularly. Similarly, the impact of misclassification changes ac-
cording to the new region, for example, making a misclassification of a motorbike as
a person could have a higher impact in the motorway ODD than in the city centre
ODD as this implies that the vehicle should brake severely causing an accident, in
the city centre the vehicle is expected to be driving considerably slower and braking
is less likely to be problematic. Secondly we identify risk concerns relevant for each
ODD which will be determined according to the maximum tolerated risk threshold
τ . With this information at hand we can synthesise Pareto-optimal risk-aware en-
sembles with respect to risk and performance metrics that successfully mitigate the
set of risk concerns. The intuition is that as the system moves from one ODD re-
gion to another the set of concerns and the amount of risk for each of them changes
degrading the performance of the current risk-aware ensemble which may compro-
mise the safety of the system. The switching to a new ensemble ensures that the
safety concerns are kept by selecting a model that deals with the new risk concerns
identified.

5.2.4 The decision framework

This component gets the set of predictions from the object detector and based on
the prediction an action will be taken. Each ground-truth class cj ∈ {1, 2, . . . , n}
has assigned an action ai ∈ {1, 2, . . . , s} that will affect the speed of the system and
the action ai will be selected by the decision framework every time the prediction
c′j contains the relevant class. For instance, if class car has assigned the action
fast, every time the object detector reports class car the speed of the vehicle will
be increased for a period of time t and after the time has elapsed the speed will
be back to a nominal speed; as expected, every time the object detector makes a
misclassification the wrong action will be executed. If the object detector misses
the object, then no action will be reported and we assume a crash happens. This
information is recorded during the run of the system and allows us to make an
evaluation of how well the chosen risk-aware ensemble performed on the ODD region.

5.2.5 The real-time adaptation system (RAS)

The RAS is a crucial component that operates in a continuous feedback loop, in-
teracting with the environment, reporting its state to the decision framework, and
executing appropriate actions based on the provided instructions.

One of the primary functions of the RAS is to continuously monitor and report
its state to the decision framework. This involves gathering relevant data about
its internal state, sensor readings, and other contextual information. By providing
this real-time information, the RAS enables the decision framework to have an
up-to-date understanding of the system’s current situation, allowing for informed
decision-making.

Based on the instructions received from the decision framework, the RAS ex-
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ecutes the corresponding actions. These actions can include executing different
behaviours, maneuvers, or responses depending on the goals and tasks assigned to
the autonomous system. For instance, in the case of a self-driving vehicle, the RAS
may be responsible for controlling the vehicle’s speed, steering, braking, and other
relevant functions necessary for safe and efficient operation.

The RAS also interacts with the environment by observing it and acting upon
it to achieve its assigned tasks. This involves processing data from various sensors,
such as cameras, LiDAR, radar, or other environmental sensors, to perceive and
understand the surroundings. By observing the environment, the RAS can gather
critical information about road conditions, obstacles, traffic, and other relevant fac-
tors that influence its decision-making and actions.

Furthermore, the RAS actively acts upon the environment based on its assigned
tasks and objectives. This can include actions such as changing lanes, maintaining a
safe distance from other vehicles, responding to traffic signals, or navigating complex
traffic scenarios. The RAS uses its perception capabilities and decision-making
algorithms to make informed decisions and execute actions that align with its goals.

5.3 Evaluation

5.3.1 Evaluation methodology

In order to evaluate our proposed approach we built a simulator into which we
deployed a vehicle using our method. We then ran multiple episodes and evaluated
the system to assess the effectiveness of ensemble switching as the ODD region
changes. We assessed effectiveness with respect to safety by measuring the number
of crashes, and number of correct actions taken (slow and fast), during 10 journeys
of the vehicle. Each journey is composed of six laps of a simple circular track by
the vehicle in the simulation. Using a circular track allows us to easily simulate
longer journeys. For each lap, we randomly deploy cubes with images mapped to
their faces which represent objects, in scenes, which are expected to be seen in
the current ODD region. The simulator is constructed with a set of light sources
distributed on the ceiling which, combined with the speed of the robot and angles
of detection, simulate environmental disturbances. An example of the simulator is
shown in Figure 5.2.

We found that when detecting objects at a distance the number of misclassifica-
tions was very high. We then implemented a simple decision framework in which the
robot was assumed to be able to calculate the distance to the detected object and
hence disregard any classification further than a threshold from the robot. When
the robot is in the detection area shown in Figure 5.3 and an object is detected we
record the prediction and the object cube is removed from the simulation. Based
on the detection the robot will take an action (i) if the predicted classes are bus,
dog or bicycle the vehicle will take the action slow ; if the predicted classes are car
or motorbike the vehicle will increase its speed or take the action fast ; and if the
prediction is any other class then the vehicle will ignore which means no change to
the current speed of the vehicle. The action taken will be executed during the three
seconds after the detection was made after which it will return to a nominal speed.
Beyond the detection area we defined the crash area also represented in Figure 5.3,
when the vehicle enters this area a crash is registered and the image is removed from
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Figure 5.2: Simple track-circuit with different images displayed on cubes to be
identified by the autonomous agent as it completes laps on the Gazebo simulator.

Current autonomous 
vehicle position 

Image to be 
detected

Crash area

Detection area

Figure 5.3: Detection and crash area for the autonomous vehicle. A detection is
registered when the vehicle is in the green-shaded area, if the vehicle goes beyond
this point and a detection was not registered (red-shaded area) a crash is recorded.

the simulation.
We selected 16 images for the classes mentioned above (bus, car, motorbike,

dog and bicycle) from the test set of the PASCAL VOC 2007 [42] challenge. Our
evaluation considers two different ODD regions: (i) motorway with the classes bus,
car and motorbike; and (ii) town with the classes motorbike, person, dog, cat and
bicycle. The 10 journeys of the autonomous vehicle were randomly assembled with
6 laps each, where each lap could contain either motorway or town classes.

Our system is provided with three synthesised ensembles one specific ensemble
for each ODD and a base ensemble which considers all of the concerns for both ODDs
simultaneously. We also assessed the best performing risk-aware and risk-oblivious
models using an acceptable risk level of τ = H(3). The base ensemble is designed to
be applied to both of the different ODD regions defined i.e. motorway and town. It
attempts to mitigate five risk concerns: (i) motorbike predicted as car; (ii) bicycle
predicted as person; (iii) dog predicted as cat; (iv) motorbike predicted as person;
and (v) bus predicted as car. The second ensemble is specific to the motorway
ODD and includes only two concerns: (i) motorbike predicted as car; and (ii) bus
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Table 5.1: LoE (that corresponds to the actual class) and impact levels (that cor-
responds to the class pairs) for the three synthesised ensembles. Observe how the
values vary from one ODD to the other.

Id
Concern Base Ensemble Motorway ensemble Town ensemble

Actual Predicted LoE Impact LoE Impact LoE Impact

1 Motorbike(13) Car(6) VH VH VH VH H VL

2 Bicycle(1) Person(14) VH VH VL H VH VH

3 Dog(11) Cat(7) VH VH VL H VH VH

4 Motorbike(13) Person(14) VH VH L VL VH VH

5 Bus(5) Car(6) VH VH VH VH VH L

predicted as car. Finally, the third ensemble was synthesised for a town ODD and
considers three concerns: (i) bicycle predicted as person; (ii) dog predicted as cat;
and (iii) motorbike predicted as person. The single risk-aware and risk-oblivious
models are reused from Chapter 4; however, the ensembles for the specific ODDs
are newly created.

In Table 5.1 we show the LoE values for each of the classes across the different
ensembles as well as the impact levels. The Table reflects that from one ODD to
another classes are expected to be encountered more or less often, for instance the
class bicycle has a very-high likelihood of encounter in the ODD town; whereas, in
the ODD motorway its LoE is very-low as we normally do not expect to find bicycles
in a motorway. Similarly, the class dog has a very-low LoE in the motorway ODD
but it is very likely to be found in town. The impact of misclassifications also
varies, in our example, misclassifying a bus as a car in a motorway has a very-high
impact as we believe that if an assumption is made based on the size of the vehicle
in front to plan an action such as overtaking, and the wrong size is predicted this
could cause an accident; however, in town the misclassification has a low impact as
we assume the vehicle is traveling at low speed and overtaking is a less dangerous
maneuver. The values that we chose could be arguable different, in fact, in a real-
world scenario expert domain input is required; however, the values we propose help
to create scenarios with different concerns to evaluate our approach.

Finally, we provide some technical details of the simulation. It has been built in
the popular simulator Gazebo [74] version 9.0, 2 a 3D dynamic multi-robot environ-
ment capable of recreating complex worlds. Inside the Gazebo world we deployed
a TurtleBot3 3 as our autonomous vehicle running the Robot Operating System
(ROS) 4 melodic equipped with a camera and running an implementation of YoloV3
in TensorFlow 2.0 5. This implementation was modified accordingly to allow the
use of our risk-aware real-time object detection method described in Chapter 4 and
to bridge the communication between the TurtleBot and the YoloV3 [119] object
detector.

2https://gazebosim.org
3https://www.turtlebot.com/
4https://www.ros.org/
5https://github.com/zzh8829/yolov3-tf2
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Table 5.2: Risk values before and after the synthesised base, motorway and town
ensembles for the relevant concerns in each of them. The concerns are the class pairs
with risk values above τ = H(3) and the asterisk in ensembles motorway and town
indicates that the class pairs did not require mitigation as their initial risk value
was below τ .

Id
Concern

Base ensemble Motorway ensemble Town ensemble

Initial risk Mit risk Initial risk Mit risk Initial risk Mit risk
Actual Predicted

1 Motorbike(13) Car(6) 3.01 1.36 3.01 1.4 1.67 *

2 Bicycle(1) Person(14) 3.12 1.8 1.04 * 3.12 1.81

3 Dog(11) Cat(7) 3.2 2.8 1.06 * 3.2 2.11

4 Motorbike(13) Person(14) 4.31 3.97 1.65 * 4.31 3.28

5 Bus(5) Car(6) 4.68 3.11 4.68 3.89 1.26 *

Residual risk 3.32 1.08 1.69 0.89 1.63 0.28

5.3.2 Experimental results

Table 5.2 shows the initial risk values for the identified concerns. We observe that
the risk varies for the concerns in the different ensembles due to the provided risk
information (LoE and impact values in Table 5.1) and its variation in each ODD,
for instance, the class pair dog predicted as cat in the base and town ensembles has
an initial risk of 3.2 which makes it a concern as this value is above τ = H(3); the
same class pair in the motorway ensemble has a value of 1.06 which means it is not
a concern in this ODD. Table 5.2 also shows the mitigated risk values for each of
the concerns, i.e. the risk value obtained with the synthesised ensemble. We can
see how the synthesised ensembles successfully decrease the risk values and this is
reflected in the residual risk in the last row of the table. In the base ensemble the
residual risk was reduced from 3.32 to 1.08, in the motorway ensemble the residual
risk was reduced from 1.69 to 0.89 and in the town ensemble the residual risk was
reduced from 1.63 to 0.28. The asterisks in motorway and town ensembles indicate
that no mitigation was required for those class pairs as their initial risk values were
below τ and did not, therefore, require mitigation.

We show the ensemble learning history of the three synthesised ensembles in
Figure 5.4. Training for the three ensembles ran for 2500 generations of the GA and
we can observe how as generations elapsed the GA found better solutions with a
reduction in the amount of risk and improved mAP. We note that the residual risk
in the base ensemble, shown in Figure 5.4a, was reduced to 1.08 and is the ensemble
with the highest residual risk when compared to the other two. Because the base
ensemble is dealing with five concerns at the same time, the GA struggles to find
solutions that mitigate the risk for all concerns below τ . This is expected since
more concerns mean that the GA starts with a larger residual risk. Nevertheless,
the ensemble successfully mitigated the risk to some extent for all concerns.

We allowed each ensemble to make use of 4 models and when we investigated
model choice we identified the following: For the base ensemble the GA chose three
risk-aware models for the concerns (i) bicycle as person, (ii) dog as cat and (iii) bus
as car, and one risk-oblivious model. For the motorway ensemble the GA selected
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(a) Ensemble learning base (b) Ensemble learning motorway

(c) Ensemble learning town

Figure 5.4: Ensemble learning history of the three synthesised ensembles for the
evaluation of the proposed approach.

two risk-aware models for the concerns (i) motorbike as car and (ii) bus as car and
two risk-oblivious models. Finally, for the town ensemble three risk-aware models
were selected (i) bicycle as person, (ii) dog as cat and (iii) motorbike as person and
one risk-oblivious model. This suggests that the GA was able to identify and use
the risk-aware models created for the specific concerns and use them to mitigate the
risk. For the ODDs motorway and town the GA was able to fit one risk-aware model
per concern as well as the risk-oblivious models; however, for the base ensemble,
only three concerns got a risk-aware model and because the risk-aware models are
specialist in one type of misclassification, they normally do not perform very well for
the rest of the class pairs, that is why the GA, selected two risk-oblivious models,
to account for those cases, leaving two concerns without specialist, and we believe
this contributes to how much the residual risk can be minimised.

The synthesised ensembles were deployed into the simulation described in Sec-
tion 5.3.1 and the number of crashes was registered for each of them as well as
the number of times the correct action was taken during the 10 journeys of the au-
tonomous vehicle. We also ran an experiment dynamically switching between models
as the autonomous vehicle entered to a new ODD, all of the results are shown in
Table 5.3. As we can observe, dynamically switching between the ensembles reduces
the mean number of crashes compared to using a single ensemble or single model
with the mean reducing from a maximum of 16.30 for a single model to 12.60 when
using adaptation.

When we consider the systems ability to execute the correct action we found
that for the fast action adaptation is better than using the motorway, town or
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Table 5.3: Mean values of crashes, safe action fast and safe action slow during
the 10 journeys of the autonomous vehicle when dynamically switching between
models (adaptation), using only the motorway ensemble, the town ensemble, the
base ensemble and the best performing risk-oblivious single model.

Model Mean crashes
Mean safe

action fast

Mean safe

action slow

Adaptation 12.60 9.20 14.30

Motorway ensemble 14.90 8.20 14.30

Town ensemble 15.70 8.90 12.70

Base ensemble 15.30 8.60 13.80

Single model 16.30 10.10 10.90

base ensembles with a mean of 9.20 safe actions per journey vs 8.20, 8.90 and 8.60
when adaptation was not used. Surprisingly, single model has higher precision than
adaptation. We believe this is due in part to the challenging environment in which
the vehicle is operating, i.e. the image is shrunk to fit on the cubes; the lighting
conditions are not as one finds in the training set and; the angle of view and speed of
the vehicle distorts the image. This means that some of the models in the ensemble
are adversely affected and the performance of the ensemble suffers. The single model
is less prone to this error and is not being combined with other models.

For the safe action slow we found that both the adaptation and motorway en-
sembles have the highest value per journey. Across the range of conditions we see
then that switching ensembles for each ODD is better as we have reduced the num-
ber of crashes and improved the safe actions fast and slow when compared to using
only one ensemble for the two different ODD regions.

The benefit of model switching is also shown in Figure 5.5 which compares the
number of crashes of the autonomous vehicle when switching models with the mo-
torway, town and base ensemble as well as the best performing risk-oblivious single
model for all journeys considered. We can see that using our approach lowers the
variance and mean of the number of crashes recorded and we also obtained the min-
imum value recorded in one journey, We also note that the motorway ensemble is
better than the town and base ensembles, however, the motorway ensemble has a
higher variance. We can also see that town in one run has the worst performance
of all models (outlier) with 24 crashes and has no benefit over the base ensemble.
Lastly, single model has the worst performance when compared to our approach
and the rest of the ensembles. These results confirm that by using our approach the
safety of the vehicle has been improved in a challenging environment.

5.3.3 Discussion

The evaluation of our approach shows that by dynamically switching ensembles
as the autonomous vehicle enters a new ODD region has the benefit of improving
the safety of the vehicle by decreasing the number of crashes and by choosing the
correct action based on the detection. However, we still observe how crashes and
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Figure 5.5: Comparison of number of crashes when using adaptation, motorway
ensemble, base ensemble and single model for the 10 journeys of the autonomous
vehicle in the gazebo simulation.

misclassifications continue to happen which is not a surprise as we are deploying
the models in a challenging context with environmental disturbances that come
naturally from the lighting conditions of the simulation such as brighter/darker areas
and shadows created for the angle in which the light sources are displayed. The size
of the images also makes object detection more challenging as we are mapping the
images onto cubes which deforms them by changing their original size. Similarly,
what the camera perceives, and sends to the ensembles, is not only the image on the
cube itself but also noise such as bits of the road and other objects in the simulation.
The fact that the robot is moving around the circuit-track also has an effect on the
angle of perception of the image which leads to misclassifications and missed objects
affecting the safety of the vehicle. Because of all mentioned disturbances we found
that even the same ensemble would some times correctly classify the images and
in a different lap either completely miss it or misclassify it. Despite the challenges
discussed we emphasise that our approach effectively improves the safety of the
autonomous vehicle when compared to a solution that does not considers dynamic
ensemble switching.

5.3.4 Threats to Validity

Construct validity. These threats are associated with the assumptions made dur-
ing the implementation of the simulator used to evaluate the proposed approach.
Specifically, they may be caused by a potential discrepancy between the simulator
and the real-world environment, as well as by the accuracy of the synthesised en-
sembles in representing the intended ODD regions. To address these threats, we
conducted our experiments in the Gazebo simulator, which is widely recognised as
the best suited platform for simulating autonomous vehicles performing tasks.

Gazebo offers several key features that mitigate these concerns. Firstly, it pro-
vides a realistic environment, allowing for the creation of immersive virtual scenarios
that closely resemble real-world conditions. Secondly, Gazebo supports the integra-
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tion and simulation of various sensors commonly used in autonomous vehicles, such
as cameras, lidars, and radars. This capability enables realistic perception mod-
eling, allowing autonomous vehicles to accurately sense and interpret their virtual
surroundings. Finally, Gazebo incorporates robust physics engines that accurately
simulate vehicle dynamics and control systems. It takes into account important
factors like inertia, friction, suspension, and aerodynamics, resulting in realistic ve-
hicle behavior and response to control inputs. This feature enables accurate testing
and tuning of autonomous vehicle control algorithms, enhancing the reliability and
performance of the proposed approach.

To ensure the accuracy of the synthesised ensembles in representing the ODD
regions, we carefully selected the relevant classes for each ODD. We derived the risk
information values by considering the frequency of class instances within each ODD,
the impact of misclassifications in different ODDs, and how these values vary across
different ODDs. We drew inspiration from the Road Accidents and Safety Statistics
reports 6 from the UK to guide our determination of these values.

Internal validity. These threats can originate from the potential of obtaining in-
accurate results and the introduction of bias during data collection and analysis. To
mitigate them, we conducted experiments encompassing a diverse set of scenarios.
These scenarios varied in terms of the number of deployed images at random loca-
tions, the quantity of synthesised ensembles, the range of mitigated concerns, and
the number of GA generations utilised.

Furthermore, to enhance the reliability and robustness of our findings, the re-
ported results were gathered over multiple independent journeys of the autonomous
vehicle. This approach helped ensure that the outcomes were not influenced by spe-
cific instances or biased data points, thus reducing the risk of skewed or unreliable
results.

External validity Threats emerge from the challenges associated with applying
the proposed evaluation methodology to RTOD ensembles synthesised from data sets
other than the one used in our case study. To mitigate this threat, we introduced the
ensemble synthesis as a separate and independent component of the methodology.
We recommend deriving ensembles using balanced data sets and incorporating input
from domain experts to provide accurate risk information.

Additionally, we propose the utilisation of a reusable simulator that enables the
performance evaluation of the methodology to be decoupled from the specific case
study at hand. Such a simulator offers the flexibility to deploy customised objects,
and allows users to load their own RTOD algorithms into the autonomous vehicle,
enhancing the versatility and adaptability of the evaluation process.

By separating the ensemble synthesis and leveraging a reusable simulator, we
aimed to mitigate the threats associated with the generalisability and applicability of
our framework. We therefore envisage that the framework can be applied to diverse
data sets and scenarios, fostering broader adoption and facilitating the assessment
of the proposed approach in different contexts. Nevertheless, the evaluation of the
framework through additional case studies is needed to confirm this hypothesis.

6For more details please refer to https://www.gov.uk/government/collections/

road-accidents-and-safety-statistics
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5.4 Related work

Ensemble methods have effectively been used to improve the accuracy of single-DNN
models particularly for tasks such as self-driving vehicles [154], advanced driver
assistance systems [159], vehicle detection [155], etc. However, the majority of
these solutions do not consider different ODD regions and their corresponding risk
mitigation strategies. Moreover, the existing solutions are not making the dynamic
selection of ensembles as we do.

An efficient ensemble algorithm for object detection on a dataset for autonomous
vehicles under adverse weather conditions is presented in [154]. In this work they
propose assembling multiple baseline deep learning models under different voting
strategies for object detection and the utilisation of data augmentation to boost the
models’ performance. The applied techniques demonstrated an increase in accuracy
over the baseline models and were able to identify objects from the images captured
in the adverse foggy and rainy weather conditions. Unlike our work they do not make
an identification of different ODDs and do not apply online switching of ensembles.

A real-time fusion model approach based on the dynamic analysis of agreement
among object detection outputs with data augmentation to enhance the model’s
accuracy is proposed in [159]. The approach is demonstrated in the context of cone,
pedestrian and box detection for advanced driver assistance systems. Although this
approach applies ensembles to improve the performance of the models, it does not
support the synthesis of different ensemble models applied to different context.

Wang et al. introduce a weighted ensemble method called soft-weighted-average [155]
. The proposed method is attenuated by object detection confidence, and it penalises
the detection result of the corresponding relationship by the confidence attenuation.
The proposed method can further reduce the vehicle misdetection of the target de-
tection algorithm, obtaining a better detection result, similarly to the previous work.
This method does not considers the synthesis of ensembles for different ODD regions
and does not supports dynamic model selection.

DeepCert, a tool-supported method for verifying the robustness of deep neural
network image classifiers to contextually relevant perturbations such as blur, haze,
and changes in image contrast is presented in [108], their focus is on verifying DNN
robustness to small perturbations in the images being classified. DeepCert addresses
the verification problem by supporting (i) the encoding of real-world image pertur-
bations; (ii) the systematic evaluation of contextually relevant DNN robustness;
(iii) the generation of contextually relevant counterexamples; and (iv) the selection
of DNN image classifiers suitable for the operational context during design or when
the system is deployed. As we can see, the similarity with our approach is that this
method derives DNN models for operational contexts or different ODDs; neverthe-
less, their approach only makes a recommendation of which model to use but they
do not apply dynamic selection of the models as we do, another difference is that
they work with single models applied to image detection and our work focuses on
risk-aware ensembles applied to object detection.

5.5 Summary

In this chapter we presented an approach that advocates the use of a collection of
risk-aware ML ensembles with dynamic switching between models as a RAS moves
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from one ODD region to another. We described the five components of the approach
and we then moved to its evaluation using a simulator in which a vehicle moves
round a circuit in which context dependent objects are present. The vehicle used
RTOD ensembles that we synthesised with details of risk information and risk values
for the concerns that each of the models were designed to mitigate. We assessed
the effectiveness of ensemble switching by measuring safety as the number of crashes
and number of correct actions taken. The obtained results suggest that by using our
approach the safety of the vehicle has been improved in a challenging environment.
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Chapter 6

Conclusion and Further Work

6.1 Conclusions

This thesis highlighted the need to systematically assess and mitigate the risk intro-
duced by deep neural networks (DNN) in safety critical applications. In particular,
the loss function minimised by the training of DNN classifiers, and the assessment
of their performance, are oblivious of the risks associated with the intended use of
such classifiers. Traditionally, DNNs place equal emphasis on the detection accuracy
of classes, disregarding any context-relevant misclassifications. We propose an ap-
proach in which we identify class-pairs whose misclassifications are of concern from
a safety perspective. We achieve concern identification through the derivation of a
risk profile for each misclassification that combines the likelihood of misclassification
with risk information such as impact and likelihood of encounter where each risk
factor is a result of the context in which the system will be deployed.

The approaches introduced in this work consider DNNs applied to image clas-
sification as well as real-time object detection. We address limitations of existing
solutions by considering risk factors to identify class pairs with risk values over an
acceptable threshold, which we term concerns. Concerns are ranked in order to
identify those which require immediate treatment and those which can be tolerated.
Once the concerns are identified we propose an approach to mitigate risk concerns by
modifying the loss function and obtaining a set of specialist models. These models
are then combined with traditional, generalist models to create risk-aware ensembles
whose training is guided by a GA that seeks to minimise risk and to maximise perfor-
mance metrics. The evaluation of the proposed approaches shows an improvement
in terms of both the risk minimisation and the performance metrics.

This thesis also explored the possibility of using run-rime adaptation in which
risk-aware ensembles are dynamically switched as the system moves from one Op-
erational Design Domain (ODD) region to another. The simulation environment
which we constructed allows us to evaluate the performance of risk-aware ensembles
in a challenging context with environmental disturbances. The evaluation of our
approach shows the potential for improvement in the safety of an autonomous vehi-
cles by reducing the number of crashes and increasing the number of correct actions
taken.

In the remainder of this chapter we summarise the main contributions of this
thesis.

Firstly, in Chapter 3, we presented an approach for identifying and mitigating
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risks associated with misclassifications to synthesize risk-aware DNN image classi-
fiers for use in safety critical applications. The effectiveness of the approach was
assessed through the application of two case studies, CIFAR-10 [77] and a subset of
the GTSRB data set [141]. The results obtained for both data sets suggest that our
method can can mitigate contextually relevant risk concerns using Pareto-optimal
ensembles of risk-aware and risk-oblivious DNN image classifiers. We note the ten-
dency for the residual risk to decrease and the F1 score to increase as the number
of models allowed in the ensembles increased.

Secondly, in Chapter 4 we extended our approach to development risk-aware ML
ensembles for real-time object detection. Since object detectors are concerned not
only with image classification, but also defining the position of an object within a
scene, this required a consideration of the bounding boxes in the identification of
risk concerns. The validity of our method was evaluated using the PASCAL visual
object classes challenge (VOC) 2007 dataset, a common used dataset in object
detection tasks. The experimental results presented in this chapter suggest that
our method can effectively mitigate risk, supporting the development of dependable
RTOD-based systems for safety-critical applications.

Finally, we presented in Chapter 5 an approach that advocates the use of risk-
aware ML ensembles with dynamic switching between models at run-time as the
system moves from one ODD region to another. In order to assess the effectiveness
of our proposed approach we built a simulator into which we deployed an autonomous
vehicle using our method. Using this simulated environment we evaluated the system
to measure the effectiveness of ensemble switching as the ODD region changed. We
assessed the effectiveness of our approach by measuring the number of crashes and
number of correct actions taken by the system when objects were detected. This
evaluation shows that our approach has the benefit of improving the safety of the
vehicle by decreasing the number of crashes and more frequently choosing the correct
action based on the detection.

6.2 Directions for Future Work

The research presented in this thesis can be refined and extended in multiple direc-
tions as described below. Exploring these directions could improve the effectiveness
of the methods that we introduced in this PhD project.

6.2.1 Mitigating Risk in Neural Network Classifiers

In the evaluation of this approach we have demonstrated that better image clas-
sifiers can be constructed by synthesising Pareto-optimal ensembles that mitigate
risk and improve performance metrics. To further assess the generalisability of this
approach we would like to examine other domains, for example health care, and ap-
ply the approach to a data set such as Chestx-ray8 [157]. If such direction is taken
it will impose new challenges, for instance we would require a close collaboration
with specialist medics to provide the risk information needed for stage two of the
approach.

Whilst the experiments carried out so far indicate that increasing the number
of models used in the ensemble increases system performance, it is unclear where
the limits of such improvement lie. As the search space increases it may become
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infeasible for the genetic algorithm approach to find suitable solutions. It is also
unclear if such limits are context dependent. Further work is required to identify
the limits of our approach and provide guidance on the construction of ensembles
for different contexts.

Additionally, we propose as further work alternative training strategies. For
instance, developing novel training strategies that target the mitigation of multi-
ple identified risks. This can involve exploring techniques such as active learn-
ing [29, 128, 129], where the training process focuses on high-risk instances or in-
corporating cost-sensitive learning [39, 89] to assign different penalties for misclas-
sifications based on their associated risks.

Additionally, as part of the directions we propose for future research, we rec-
ommend the optimisation of the process for synthesising risk-aware ensembles using
multi-objective genetic algorithms. To achieve this, it is essential to explore new av-
enues that can improve the diversity and performance of the ensembles. One area of
investigation involves delving into novel genetic operators that can introduce greater
variation and exploration within the ensemble population. Additionally, studying
alternative selection mechanisms can help strike a balance between exploiting high-
performing models and exploring risk-mitigating solutions.

Finally, we recommend as future work the development of innovative ensemble
generation approaches. By investigating new methods for creating ensembles, we can
effectively leverage the power of multi-objective GAs to enhance their diversity and
performance. These approaches may involve techniques such as ensemble pruning
or ensemble weighting based on risk severity. Through these advancements, one can
create risk-aware ensembles that succeed in both mitigating risks and maintaining
high performance.

6.2.2 Risk-aware Real-time Object Detection

The experimental results presented in this chapter of the thesis suggest that our
method can effectively mitigate risk, supporting the development of dependable
RTOD-based systems for safety-critical applications.While the PASCAL VOC 2007
dataset has provided valuable insights into the effectiveness of our approach, future
research should explore the use of additional and more diverse data sets for eval-
uation for instance it would be interesting to evaluate the Microsoft COCO [87]
dataset which gathers images of complex everyday scenes containing common ob-
jects in their natural context or the nuScenes [18] dataset which contains images
from the autonomous driving domain. This would help validate the generalisability
of the approach across different object categories, environmental conditions, and
detection scenarios.

Stage four of our method (ensemble synthesis) provides as part of the prediction
a bounding box calculated as the average of all bounding boxes predicted by the
models allowed in the ensemble.

To deal with bounding boxes, approaches such as weighted boxes fusion intro-
duced in [140] or the approach introduced in [162] explore different ideas for bound-
ing box selection such as weighting of boxes based on their confidence score and the
use of an algorithm called non-maximum suppression to disregard low scoring boxes.

Combining these ideas with the ensemble structure that we propose could refine
the method to minimise the error in the final bounding box provided by learning
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which models in the ensemble are better at predicting boxes for different classes in
the dataset.

The approach can also be extended in its Risk-aware ensemble synthesis and ver-
ification step by investigating advanced fusion techniques, such as ensemble averag-
ing, weighted voting, or adaptive combination methods, which can lead to improved
ensemble performance and risk mitigation. This is particularly crucial in the context
of RTOD, where multiple objects with varying locations are present in images from
video streams.

Real-time object detection systems operate in dynamic and evolving environ-
ments, where new objects or changes in object behavior can occur. Future work
should focus on developing adaptive ensemble generation techniques that can dy-
namically incorporate new knowledge from base learners and adapt to changing
conditions. This could involve incorporating online learning methods or incremen-
tal ensemble learning approaches to continuously update the ensemble’s knowledge
and adapt to evolving object detection challenges.

6.2.3 Dynamic Selection of Risk-aware Object Detection
Ensembles

A possible way in which the approach can be refined is through increasing the
number of ODDs in which the autonomous driving will be deployed, this requires
the identification of risk information for the new ODDs and synthesising ensembles
with the ability to handle risk for them. Different ODD regions have been proposed
to study context perturbation and disturbances in [108, 154]. We can use some of
the ideas presented in these research to get inspiration and refine the evaluation of
our approach. Moving on this direction will also require the selection of the relevant
classes from the dataset and map the images onto the cubes to be deployed during
the simulation. Testing the approach in a variety of regions of operation will help
to prove the generality of the approach.

Another direction of further research is combining the dynamic switching of
ensembles with verification techniques such as model checking. For instance, we can
use a Markov decision process (MDP) model to synthesise a controller that seeks to
minimise the time to perform journeys of the self-driving vehicle while keeping the
a cumulative incident costs below a certain value. We can get inspiration from work
such as [48, 54, 98, 153, 158].

6.2.4 Further Research Directions

This thesis proposed two different methods to be applied to image classification and
object detection integrating a risk analysis to guide the training and synthesis of
risk-aware ensembles. At the core of our approach we modified the loss function
of the deep neural network training algorithms underpinning the image classifica-
tion and the object detection tasks. DNNs are only one type of machine learning
approach for classification and further work is needed to extend our approach to
other classification algorithms. In the future it would be interesting to see how risk-
mitigation approaches could be applied to decision trees [71] or binary classification
algorithms [78], and how they can be integrated into self-adaptive systems that use
a combination of AI and control-theoretic components [19, 160].
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At the moment we are only considering the camera sensor in our autonomous
system, however, autonomous agents such as self-driving vehicles require a variety of
sensors including ultrasonic sensors, radio detection and lidar as well as other vision
sensors such as stereo cameras, thermal cameras and event-driven cameras [51].
Further research is required to understand how risk mitigation might be used when
we have a combination of multiple sensors on the autonomous system such as those
described above.
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Appendix A

Chapter 3 - Supplementary
Material

This appendix shows the DNN architectures used to train the risk-oblivious and
risk-aware models on the CIFAR-10 dataset and on the subset of the GTSRB from
Chapter 3.

A.1 DNN architectures used to train the models

on the CIFAR-10 dataset

1 from __future__ import print_function

2 import keras

3 from keras.datasets import cifar10

4 from keras.preprocessing.image import ImageDataGenerator

5 from keras.models import Sequential

6 from keras.layers import Dense , Dropout , Activation , Flatten

7 from keras.layers import Conv2D , MaxPooling2D

8 import json

9 import os

10

11 batch_size = 32

12 num_classes = 10

13 epochs = 100

14 data_augmentation = False

15 num_predictions = 20

16 model_id = 0

17 save_dir = os.path.join(os.getcwd (), ’/saved_models/Unweighted ’)

18

19 for model_id in range (30):

20 model_name = ’unweighted_model_ {}.h5’.format(model_id)

21

22 # The data , split between train and test sets:

23 (x_train , y_train), (x_test , y_test) = cifar10.load_data ()

24

25 # Convert class vectors to binary class matrices.

26 y_train = keras.utils.to_categorical(y_train , num_classes)

27 y_test = keras.utils.to_categorical(y_test , num_classes)

28

29 model = Sequential ()

30 model.add(Conv2D (32, (3, 3), padding=’same’,
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31 input_shape=x_train.shape [1:]))

32 model.add(Activation(’relu’))

33 model.add(Conv2D (32, (3, 3)))

34 model.add(Activation(’relu’))

35 model.add(MaxPooling2D(pool_size =(2, 2)))

36 model.add(Dropout (0.25))

37

38 model.add(Conv2D (64, (3, 3), padding=’same’))

39 model.add(Activation(’relu’))

40 model.add(Conv2D (64, (3, 3)))

41 model.add(Activation(’relu’))

42 model.add(MaxPooling2D(pool_size =(2, 2)))

43 model.add(Dropout (0.25))

44

45 model.add(Flatten ())

46 model.add(Dense (512))

47 model.add(Activation(’relu’))

48 model.add(Dropout (0.5))

49 model.add(Dense(num_classes))

50 model.add(Activation(’softmax ’))

51

52 # initiate RMSprop optimizer

53 # Let’s train the model using Adam

54 model.compile(loss=’categorical_crossentropy ’,

55 optimizer=’adam’,

56 metrics =[’accuracy ’])

57

58 x_train = x_train.astype(’float32 ’)

59 x_test = x_test.astype(’float32 ’)

60 x_train /= 255

61 x_test /= 255

62

63 if not data_augmentation:

64 print(’Not using data augmentation.’)

65 model.fit(x_train , y_train ,

66 batch_size=batch_size ,

67 epochs=epochs ,

68 validation_data =(x_test , y_test),

69 shuffle=True)

70 else:

71 print(’Using real -time data augmentation.’)

72 # This will do preprocessing and realtime data augmentation

:

73 datagen = ImageDataGenerator(

74 # set input mean to 0 over the dataset

75 featurewise_center=False ,

76 # set each sample mean to 0

77 samplewise_center=False ,

78 # divide inputs by std of the dataset

79 featurewise_std_normalization=False ,

80 # divide each input by its std

81 samplewise_std_normalization=False ,

82 # apply ZCA whitening

83 zca_whitening=False ,

84 # epsilon for ZCA whitening

85 zca_epsilon =1e-06,

86 # randomly rotate (degrees , 0 to 180)

87 rotation_range =0,
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88 # randomly shift images horizontally

89 width_shift_range =0.1,

90 # randomly shift images vertically

91 height_shift_range =0.1,

92 # set range for random shear

93 shear_range =0.,

94 # set range for random zoom

95 zoom_range =0.,

96 # set range for random channel shifts

97 channel_shift_range =0.,

98 # set mode for filling points

99 #outside the input boundaries

100 fill_mode=’nearest ’,

101 cval=0.,

102 # randomly flip images

103 horizontal_flip=True ,

104 vertical_flip=False ,

105 rescale=None ,

106 preprocessing_function=None ,

107 data_format=None ,

108 validation_split =0.0)

109

110 datagen.fit(x_train)

111

112 # Fit the model on the batches generated by datagen.flow().

113 model.fit_generator(datagen.flow(x_train , y_train ,

114 batch_size=batch_size),

115 epochs=epochs ,

116 validation_data =(x_test , y_test),

117 workers =4)

118

119 # Save model and weights

120 if not os.path.isdir(save_dir):

121 os.makedirs(save_dir)

122 model_path = os.path.join(save_dir , model_name)

123 model.save(model_path)

124 print(’Saved trained model at %s ’ % model_path)

125

126 # Score trained model.

127 scores = model.evaluate(x_test , y_test , verbose =1)

128 print(’Test loss:’, scores [0])

129

130 # Now save the model architecture and weights

131 json_string = model.to_json ()

132

133 architecture_name = ’model_architecture_ {}. txt’.format(model_id

)

134 save_path = os.path.join(save_dir , architecture_name)

135

136 with open(save_path , ’w’) as outfile:

137 json.dump(json_string , outfile)

138

139 weights_name = ’model_weights_ {}.h5’.format(model_id)

140 save_path = os.path.join(save_dir , weights_name)

141 model.save_weights(save_path)

Listing A.1: DNN architecture used to train the risk-oblivious models on the CIFAR-
10 dataset.
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1 from __future__ import print_function

2 import keras

3 from keras.datasets import cifar10

4 from keras.preprocessing.image import ImageDataGenerator

5 from keras.models import Sequential

6 from keras.layers import Dense , Dropout , Activation , Flatten

7 from keras.layers import Conv2D , MaxPooling2D

8 import json

9 import os

10

11 import numpy as np

12 import tensorflow as tf

13 from keras import backend as K

14 import datetime

15

16

17 def class_weighted_loss(y_true , y_pred , ** kwargs):

18 w_flat = np.array(weights).flatten ()

19 WEIGHTS = tf.constant(w_flat , dtype=tf.float32)

20 y_classT = K.argmax(y_true , axis =1)

21 y_classP = K.argmax(y_pred , axis =1)

22

23 idx = y_classT + 10* y_classP

24

25 w = tf.gather(WEIGHTS , idx)

26 loss = keras.losses.categorical_crossentropy(y_true , y_pred)

27 result = loss * w

28 return result

29

30 #set of concerns

31 data =[[0, 1, 2,’1as0_w2 ’],[0, 1, 5,’1as0_w5 ’],

32 [0, 1, 10,’1as0_w10 ’],[1, 9, 2,’9as1_w2 ’]...]

33

34

35 for j in range(0, len(data)):

36 predicted=data[j][0]

37 actual=data[j][1]

38 weight=data[j][2]

39

40 #create directory

41 os.mkdir(’/savedModels/weighted ’+data[j][3])

42 saveDirectory=’/savedModels/weighted ’+data[j][3]

43

44 weights = np.ones ((10 ,10))

45 weights[predicted ,actual] = weight

46

47 f = weights.shape [0]*( weights.shape [0])

48 weights /= np.sum(weights)/f

49

50 save_dir = os.path.join(os.getcwd (), saveDirectory)

51

52 batch_size = 32

53 num_classes = 10

54 epochs = 100

55 data_augmentation = False

56 num_predictions = 20

57

58
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59 for i in range (10):

60 model_id = i

61 model_name = ’model_ {}.h5’.format(model_id)

62

63 # The data , split between train and test sets:

64 (x_train , y_train), (x_test , y_test) = cifar10.load_data ()

65

66 # Convert class vectors to binary class matrices.

67 y_train = keras.utils.to_categorical(y_train , num_classes)

68 y_test = keras.utils.to_categorical(y_test , num_classes)

69

70 model = Sequential ()

71 model.add(Conv2D (32, (3, 3), padding=’same’,

72 input_shape=x_train.shape [1:]))

73 model.add(Activation(’relu’))

74 model.add(Conv2D (32, (3, 3)))

75 model.add(Activation(’relu’))

76 model.add(MaxPooling2D(pool_size =(2, 2)))

77 model.add(Dropout (0.25))

78

79 model.add(Conv2D (64, (3, 3), padding=’same’))

80 model.add(Activation(’relu’))

81 model.add(Conv2D (64, (3, 3)))

82 model.add(Activation(’relu’))

83 model.add(MaxPooling2D(pool_size =(2, 2)))

84 model.add(Dropout (0.25))

85

86 model.add(Flatten ())

87 model.add(Dense (512))

88 model.add(Activation(’relu’))

89 model.add(Dropout (0.5))

90 model.add(Dense(num_classes))

91 model.add(Activation(’softmax ’))

92

93 opt = keras.optimizers.RMSprop(learning_rate =0.0001 , decay=1e

-6)

94

95 model.compile(optimizer=’adam’,

96 loss=class_weighted_loss ,

97 metrics =[’accuracy ’])

98

99 x_train = x_train.astype(’float32 ’)

100 x_test = x_test.astype(’float32 ’)

101 x_train /= 255

102 x_test /= 255

103

104 if not data_augmentation:

105 print(’Not using data augmentation.’)

106 model.fit(x_train , y_train ,

107 batch_size=batch_size ,

108 epochs=epochs ,

109 validation_data =(x_test , y_test),

110 shuffle=True)

111 else:

112 print(’Using real -time data augmentation.’)

113 # This will do preprocessing

114 #and realtime data augmentation:

115 datagen = ImageDataGenerator(
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116 # set input mean to 0 over the dataset

117 featurewise_center=False ,

118 # set each sample mean to 0

119 samplewise_center=False ,

120 # divide inputs by std of the dataset

121 featurewise_std_normalization=False ,

122 # divide each input by its std

123 samplewise_std_normalization=False ,

124 # apply ZCA whitening

125 zca_whitening=False ,

126 # epsilon for ZCA whitening

127 zca_epsilon =1e-06,

128 # randomly rotate (degrees , 0 to 180)

129 rotation_range =0,

130 # randomly shift images horizontally

131 width_shift_range =0.1,

132 # randomly shift images vertically

133 height_shift_range =0.1,

134 # set range for random shear

135 shear_range =0.,

136 # set range for random zoom

137 zoom_range =0.,

138 # set range for random channel shifts

139 channel_shift_range =0.,

140 # set mode for filling points

141 # outside the input boundaries

142 fill_mode=’nearest ’,

143 cval=0.,

144 # randomly flip images

145 horizontal_flip=True ,

146 vertical_flip=False ,

147 rescale=None ,

148 preprocessing_function=None ,

149 data_format=None ,

150 validation_split =0.0)

151

152 datagen.fit(x_train)

153

154 # Fit the model on the batches

155 #generated by datagen.flow().

156 model.fit_generator(datagen.flow(x_train , y_train ,

157 batch_size=batch_size),

158 epochs=epochs ,

159 validation_data =(x_test , y_test),

160 workers =4)

161

162 # Save model and weights

163 if not os.path.isdir(save_dir):

164 os.makedirs(save_dir)

165 model_path = os.path.join(save_dir , model_name)

166 model.save(model_path)

167 print(’Saved trained model at %s ’ % model_path)

168

169 # Score trained model.

170 scores = model.evaluate(x_test , y_test , verbose =1)

171 print(’Test loss:’, scores [0])

172

173 # Now save the model architecture and weights
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174 json_string = model.to_json ()

175

176 architecture_name = ’model_architecture_ {}. txt’.format(

model_id)

177 save_path = os.path.join(save_dir , architecture_name)

178

179 with open(save_path , ’w’) as outfile:

180 json.dump(json_string , outfile)

181

182 weights_name = ’model_weights_ {}.h5’.format(model_id)

183 save_path = os.path.join(save_dir , weights_name)

184 model.save_weights(save_path)

Listing A.2: DNN architecture used to train the risk-aware models on the CIFAR-10
dataset.

A.2 DNN architectures used to train the models

on the subset of the GTSRB dataset

1 import pickle

2 import pandas as pd

3 import numpy as np

4 from keras.models import Sequential

5 from keras.optimizers import Adam

6 from keras.layers import Dense

7 from keras.layers import Flatten , Dropout

8 from keras.utils.np_utils import to_categorical

9 from keras.layers.convolutional import Conv2D , MaxPooling2D

10 from keras.preprocessing.image import ImageDataGenerator

11 import cv2

12 import os

13 import json

14 import sys

15 import random

16

17 #set size to maximum to avoid trucation

18 np.set_printoptions(threshold=sys.maxsize)

19

20 #Load pickle subset data

21 base=’/SubsetOfTrafficSign/german -trafficSubSetData/’

22 #Train data

23 with open(base+’y_train.pkl’, ’rb’) as input:

24 y_train = pickle.load(input)

25 with open(base+’X_train.pkl’, ’rb’) as input:

26 X_train = pickle.load(input)

27

28 #Test data

29 with open(base+’y_test.pkl’, ’rb’) as input:

30 y_test = pickle.load(input)

31 with open(base+’X_test.pkl’, ’rb’) as input:

32 X_test = pickle.load(input)

33

34 #Validation data

35 with open(base+’y_val.pkl’, ’rb’) as input:

36 y_val = pickle.load(input)

37 with open(base+’X_val.pkl’, ’rb’) as input:

38 X_val = pickle.load(input)
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39

40

41 datagen = ImageDataGenerator(width_shift_range =0.1,

42 height_shift_range =0.1,

43 zoom_range =0.2,

44 shear_range =0.1,

45 rotation_range =10.)

46

47 datagen.fit(X_train)

48

49 batches = datagen.flow(X_train , y_train , batch_size =15)

50 X_batch , y_batch = next(batches)

51

52 y_train = to_categorical(y_train)

53 y_test = to_categorical(y_test)

54 y_val = to_categorical(y_val)

55

56

57 # create risk -oblivious models from subset

58 save_dir = os.path.join(os.getcwd (), ’/SubsetOfTrafficSign/

saved_models/unweighted ’)

59 def make_model ():

60 model = Sequential ()

61 model.add(Conv2D (60, (5, 5), input_shape =(32, 32, 1),

activation=’relu’))

62 model.add(Conv2D (60, (5, 5), activation=’relu’))

63 model.add(MaxPooling2D(pool_size =(2, 2)))

64

65 model.add(Conv2D (30, (3, 3), activation=’relu’))

66 model.add(Conv2D (30, (3, 3), activation=’relu’))

67 model.add(MaxPooling2D(pool_size =(2, 2)))

68

69 model.add(Flatten ())

70 model.add(Dense (500, activation=’relu’))

71 model.add(Dropout (0.5))

72 #this int is the no of classes

73 model.add(Dense(8, activation=’softmax ’))

74

75 model.compile(Adam(lr =0.001) ,

76 loss=’categorical_crossentropy ’,

77 metrics =[’accuracy ’])

78

79 return model

80

81

82 for model_id in range (30):

83 model = make_model ()

84 print(model.summary ())

85

86 history = model.fit_generator(datagen.flow(X_train , y_train ,

87 batch_size =50),

88 steps_per_epoch=X_train.shape [0]/50 ,

89 epochs =100,

90 validation_data =(X_val , y_val), shuffle =1)

91

92 # Now save the model architecture and weights

93 json_string = model.to_json ()

94
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95 architecture_name = ’model_architecture_ {}. txt’.format(model_id

)

96 save_path = os.path.join(save_dir , architecture_name)

97

98 with open(save_path , ’w’) as outfile:

99 json.dump(json_string , outfile)

100

101 weights_name = ’model_weights_ {}.h5’.format(model_id)

102 save_path = os.path.join(save_dir , weights_name)

103 model.save_weights(save_path)

Listing A.3: DNN architecture used to train the risk-oblivious models on the subset
of the GTSRB dataset.

1 import numpy as np

2 import keras

3 import tensorflow as tf

4 from keras import backend as K

5 from keras.optimizers import Adam

6 from keras.layers import Dense

7 from keras.layers import Flatten , Dropout

8 from keras.utils.np_utils import to_categorical

9 from keras.layers.convolutional import Conv2D , MaxPooling2D

10 from keras.models import Sequential

11 import utils.library as lib

12 import pickle

13 import pandas as pd

14 from keras.preprocessing.image import ImageDataGenerator

15 import os

16 import json

17

18 def class_weighted_loss(y_true , y_pred , ** kwargs):

19 w_flat = np.array(weights).flatten ()

20 WEIGHTS = tf.constant(w_flat , dtype=tf.float32)

21 y_classT = K.argmax(y_true , axis =1)

22 y_classP = K.argmax(y_pred , axis =1)

23

24 idx = y_classT + 8* y_classP

25

26 w = tf.gather(WEIGHTS , idx)

27 loss = keras.losses.categorical_crossentropy(y_true , y_pred)

28 result = loss * w

29 return result

30

31

32 # create model

33 def make_model ():

34 model = Sequential ()

35 model.add(Conv2D (60, (5, 5), input_shape =(32, 32, 1),

activation=’relu’))

36 model.add(Conv2D (60, (5, 5), activation=’relu’))

37 model.add(MaxPooling2D(pool_size =(2, 2)))

38

39 model.add(Conv2D (30, (3, 3), activation=’relu’))

40 model.add(Conv2D (30, (3, 3), activation=’relu’))

41 model.add(MaxPooling2D(pool_size =(2, 2)))

42

43 model.add(Flatten ())
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44 model.add(Dense (500, activation=’relu’))

45 model.add(Dropout (0.5))

46 #int no of classes

47 model.add(Dense(8, activation=’softmax ’))

48

49 model.compile(Adam(lr =0.001) , loss=class_weighted_loss , metrics

=[’accuracy ’])

50 return model

51

52 #load the data of the subset traffic sign

53 base=’/home/misael/Documents/riskAware/SubsetOfTrafficSign/german -

trafficSubSetData/’

54 #Train data

55 with open(base+’y_train.pkl’, ’rb’) as input:

56 y_train = pickle.load(input)

57 with open(base+’X_train.pkl’, ’rb’) as input:

58 X_train = pickle.load(input)

59

60 #Test data

61 with open(base+’y_test.pkl’, ’rb’) as input:

62 y_test = pickle.load(input)

63 with open(base+’X_test.pkl’, ’rb’) as input:

64 X_test = pickle.load(input)

65

66 #Validation data

67 with open(base+’y_val.pkl’, ’rb’) as input:

68 y_val = pickle.load(input)

69 with open(base+’X_val.pkl’, ’rb’) as input:

70 X_val = pickle.load(input)

71

72 num_of_samples = []

73 cols = 5

74 num_classes = 8

75

76

77 datagen = ImageDataGenerator(width_shift_range =0.1,

78 height_shift_range =0.1,

79 zoom_range =0.2,

80 shear_range =0.1,

81 rotation_range =10.)

82

83 datagen.fit(X_train)

84

85 batches = datagen.flow(X_train , y_train , batch_size =15)

86 X_batch , y_batch = next(batches)

87

88 y_train = to_categorical(y_train ,8)

89 y_test = to_categorical(y_test ,8)

90 y_val = to_categorical(y_val ,8)

91

92

93 ############################### config parameters and files

94 noOfEpochs =100

95 ############################## end config param and files

96

97 #concerns

98 data =[[4, 2, 2, ’2as4_w2 ’],[4, 2, 5, ’2as4_w5 ’],[4, 2, 10, ’2

as4_w10 ’],
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99 [0, 4, 2, ’4as0_w2 ’],[0, 4, 5, ’4as0_w5 ’],[0, 4, 10, ’4

as0_w10 ’],

100 [7, 6, 2, ’6as7_w2 ’],[7, 6, 5, ’6as7_w5 ’],[7, 6, 10, ’6

as7_w10 ’],

101 [1, 4, 2, ’4as1_w2 ’],[1, 4, 5, ’4as1_w5 ’],[1, 4, 10, ’4

as1_w10 ’]]

102

103

104 for i in range(0, len(data)):

105 print("starting model --------",i)

106 predictedClass=data[i][0]

107 actualClass=data[i][1]

108 weight=data[i][2]

109 os.mkdir(’/SubsetOfTrafficSign/saved_models/weightedModels/

weighted ’+data[i][3])

110 saveDirectory=’/SubsetOfTrafficSign/saved_models/weightedModels/

weighted ’+data[i][3]

111

112 weights = np.ones ((8 ,8))

113 weights[predictedClass ,actualClass] = weight

114

115 f = weights.shape [0]*( weights.shape [0])

116 weights /= np.sum(weights)/f

117

118 save_dir = os.path.join(os.getcwd (), saveDirectory)

119 model_id = 0

120

121 for model_id in range (10):

122 model = make_model ()

123

124 history = model.fit_generator(datagen.flow(X_train , y_train ,

125 batch_size =50),

126 #total elements of the training set/batch_size

127 steps_per_epoch=X_train.shape [0]/50 ,

128 epochs=noOfEpochs ,

129 validation_data =(X_val , y_val), shuffle =1)

130

131 # Now save the model architecture and weights

132 json_string = model.to_json ()

133

134 architecture_name = ’model_architecture_ {}. txt’.format(

model_id)

135 save_path = os.path.join(save_dir , architecture_name)

136

137 with open(save_path , ’w’) as outfile:

138 json.dump(json_string , outfile)

139

140 weights_name = ’model_weights_ {}.h5’.format(model_id)

141 save_path = os.path.join(save_dir , weights_name)

142 model.save_weights(save_path)

Listing A.4: DNN architecture used to train the risk-aware models on the subset of
the GTSRB dataset.
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Chapter 4 - Supplementary
Material

This appendix shows the YoloV3 architecture used to train the risk-aware and risk-
oblivious models from Chapter 4. This implementation of YoloV3 in TensorFlow
2.0 is suggested in [112] and the code is publicly available at https://github.com/
zzh8829/yolov3-tf2. Then we show the loss function of YoloV3 used to synthesise
the risk-oblivious and the modified loss function used to train the risk-aware models.

1 from absl import logging

2 import numpy as np

3 import tensorflow as tf

4 import cv2

5

6 YOLOV3_LAYER_LIST = [

7 ’yolo_darknet ’,

8 ’yolo_conv_0 ’,

9 ’yolo_output_0 ’,

10 ’yolo_conv_1 ’,

11 ’yolo_output_1 ’,

12 ’yolo_conv_2 ’,

13 ’yolo_output_2 ’,

14 ]

15

16 YOLOV3_TINY_LAYER_LIST = [

17 ’yolo_darknet ’,

18 ’yolo_conv_0 ’,

19 ’yolo_output_0 ’,

20 ’yolo_conv_1 ’,

21 ’yolo_output_1 ’,

22 ]

23

24

25 def load_darknet_weights(model , weights_file , tiny=False):

26 wf = open(weights_file , ’rb’)

27 major , minor , revision , seen , _ = np.fromfile(wf , dtype=np.

int32 , count =5)

28

29 if tiny:

30 layers = YOLOV3_TINY_LAYER_LIST

31 else:

32 layers = YOLOV3_LAYER_LIST

33
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34 for layer_name in layers:

35 sub_model = model.get_layer(layer_name)

36 for i, layer in enumerate(sub_model.layers):

37 if not layer.name.startswith(’conv2d ’):

38 continue

39 batch_norm = None

40 if i + 1 < len(sub_model.layers) and \

41 sub_model.layers[i + 1]. name.startswith(’

batch_norm ’):

42 batch_norm = sub_model.layers[i + 1]

43

44 logging.info("{}/{} {}".format(

45 sub_model.name , layer.name , ’bn’ if batch_norm else

’bias’))

46

47 filters = layer.filters

48 size = layer.kernel_size [0]

49 in_dim = layer.get_input_shape_at (0)[-1]

50

51 if batch_norm is None:

52 conv_bias = np.fromfile(wf, dtype=np.float32 , count

=filters)

53 else:

54 # darknet [beta , gamma , mean , variance]

55 bn_weights = np.fromfile(

56 wf , dtype=np.float32 , count =4 * filters)

57 # tf [gamma , beta , mean , variance]

58 bn_weights = bn_weights.reshape ((4, filters))[[1,

0, 2, 3]]

59

60 # darknet shape (out_dim , in_dim , height , width)

61 conv_shape = (filters , in_dim , size , size)

62 conv_weights = np.fromfile(

63 wf , dtype=np.float32 , count=np.product(conv_shape))

64 # tf shape (height , width , in_dim , out_dim)

65 conv_weights = conv_weights.reshape(

66 conv_shape).transpose ([2, 3, 1, 0])

67

68 if batch_norm is None:

69 layer.set_weights ([ conv_weights , conv_bias ])

70 else:

71 layer.set_weights ([ conv_weights ])

72 batch_norm.set_weights(bn_weights)

73

74 assert len(wf.read()) == 0, ’failed to read all data’

75 wf.close ()

76

77

78 def broadcast_iou(box_1 , box_2):

79 # box_1: (..., (x1, y1, x2, y2))

80 # box_2: (N, (x1, y1, x2, y2))

81

82 # broadcast boxes

83 box_1 = tf.expand_dims(box_1 , -2)

84 box_2 = tf.expand_dims(box_2 , 0)

85 # new_shape: (..., N, (x1, y1, x2, y2))

86 new_shape = tf.broadcast_dynamic_shape(tf.shape(box_1), tf.

shape(box_2))
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87 box_1 = tf.broadcast_to(box_1 , new_shape)

88 box_2 = tf.broadcast_to(box_2 , new_shape)

89

90 int_w = tf.maximum(tf.minimum(box_1 [..., 2], box_2 [..., 2]) -

91 tf.maximum(box_1 [..., 0], box_2 [..., 0]), 0)

92 int_h = tf.maximum(tf.minimum(box_1 [..., 3], box_2 [..., 3]) -

93 tf.maximum(box_1 [..., 1], box_2 [..., 1]), 0)

94 int_area = int_w * int_h

95 box_1_area = (box_1 [..., 2] - box_1 [..., 0]) * \

96 (box_1 [..., 3] - box_1 [..., 1])

97 box_2_area = (box_2 [..., 2] - box_2 [..., 0]) * \

98 (box_2 [..., 3] - box_2 [..., 1])

99 return int_area / (box_1_area + box_2_area - int_area)

100

101

102 def draw_outputs(img , outputs , class_names):

103 boxes , objectness , classes , nums = outputs

104 boxes , objectness , classes , nums = boxes[0], objectness [0],

classes [0], nums [0]

105 wh = np.flip(img.shape [0:2])

106 for i in range(nums):

107 x1y1 = tuple ((np.array(boxes[i][0:2]) * wh).astype(np.int32

))

108 x2y2 = tuple ((np.array(boxes[i][2:4]) * wh).astype(np.int32

))

109 img = cv2.rectangle(img , x1y1 , x2y2 , (255, 0, 0), 2)

110 img = cv2.putText(img , ’{} {:.4f}’.format(

111 class_names[int(classes[i])], objectness[i]),

112 x1y1 , cv2.FONT_HERSHEY_COMPLEX_SMALL , 1, (0, 0, 255),

2)

113 return img

114

115

116 def draw_labels(x, y, class_names):

117 img = x.numpy()

118 boxes , classes = tf.split(y, (4, 1), axis=-1)

119 classes = classes [..., 0]

120 wh = np.flip(img.shape [0:2])

121 for i in range(len(boxes)):

122 x1y1 = tuple ((np.array(boxes[i][0:2]) * wh).astype(np.int32

))

123 x2y2 = tuple ((np.array(boxes[i][2:4]) * wh).astype(np.int32

))

124 img = cv2.rectangle(img , x1y1 , x2y2 , (255, 0, 0), 2)

125 img = cv2.putText(img , class_names[classes[i]],

126 x1y1 , cv2.FONT_HERSHEY_COMPLEX_SMALL ,

127 1, (0, 0, 255), 2)

128 return img

129

130

131 def freeze_all(model , frozen=True):

132 model.trainable = not frozen

133 if isinstance(model , tf.keras.Model):

134 for l in model.layers:

135 freeze_all(l, frozen)

Listing B.1: YoloV3 architecture used to train the risk-aware and risk-oblivious
models from Chapter 4.
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APPENDIX B. CHAPTER 4 - SUPPLEMENTARY MATERIAL

1 def YoloLoss(anchors , classes =80, ignore_thresh =0.5):

2 def yolo_loss(y_true , y_pred):

3 # 1. transform all pred outputs

4 # y_pred: (batch_size , grid , grid , anchors , (x, y, w, h,

obj , ... cls))

5 pred_box , pred_obj , pred_class , pred_xywh = yolo_boxes(

6 y_pred , anchors , classes)

7 pred_xy = pred_xywh [..., 0:2]

8 pred_wh = pred_xywh [..., 2:4]

9

10 # 2. transform all true outputs

11 # y_true: (batch_size , grid , grid , anchors , (x1, y1, x2, y2

, obj , cls))

12 true_box , true_obj , true_class_idx = tf.split(

13 y_true , (4, 1, 1), axis=-1)

14 true_xy = (true_box [..., 0:2] + true_box [..., 2:4]) / 2

15 true_wh = true_box [..., 2:4] - true_box [..., 0:2]

16

17 # give higher weights to small boxes

18 box_loss_scale = 2 - true_wh [..., 0] * true_wh [..., 1]

19

20 # 3. inverting the pred box equations

21 grid_size = tf.shape(y_true)[1]

22 grid = tf.meshgrid(tf.range(grid_size), tf.range(grid_size)

)

23 grid = tf.expand_dims(tf.stack(grid , axis=-1), axis =2)

24 true_xy = true_xy * tf.cast(grid_size , tf.float32) - \

25 tf.cast(grid , tf.float32)

26 true_wh = tf.math.log(true_wh / anchors)

27 true_wh = tf.where(tf.math.is_inf(true_wh),

28 tf.zeros_like(true_wh), true_wh)

29

30 # 4. calculate all masks

31 obj_mask = tf.squeeze(true_obj , -1)

32 # ignore false positive when iou is over threshold

33 best_iou = tf.map_fn(

34 lambda x: tf.reduce_max(broadcast_iou(x[0], tf.

boolean_mask(

35 x[1], tf.cast(x[2], tf.bool))), axis=-1),

36 (pred_box , true_box , obj_mask),

37 tf.float32)

38 ignore_mask = tf.cast(best_iou < ignore_thresh , tf.float32)

39

40 # 5. calculate all losses

41 xy_loss = obj_mask * box_loss_scale * \

42 tf.reduce_sum(tf.square(true_xy - pred_xy), axis=-1)

43 wh_loss = obj_mask * box_loss_scale * \

44 tf.reduce_sum(tf.square(true_wh - pred_wh), axis=-1)

45 obj_loss = binary_crossentropy(true_obj , pred_obj)

46 obj_loss = obj_mask * obj_loss + \

47 (1 - obj_mask) * ignore_mask * obj_loss

48 # TODO: use binary_crossentropy instead

49 class_loss = obj_mask * sparse_categorical_crossentropy(

true_class_idx , pred_class)

50

51 # 6. sum over (batch , gridx , gridy , anchors) => (batch , 1)

52 xy_loss = tf.reduce_sum(xy_loss , axis=(1, 2, 3))

53 wh_loss = tf.reduce_sum(wh_loss , axis=(1, 2, 3))
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54 obj_loss = tf.reduce_sum(obj_loss , axis=(1, 2, 3))

55 class_loss = tf.reduce_sum(class_loss , axis=(1, 2, 3))

56

57 return xy_loss + wh_loss + obj_loss + class_loss

58 return yolo_loss

Listing B.2: YoloV3 loss function used to train the risk-oblivious models from
Chapter 4.

1 def YoloLoss(anchors , classes =80, ignore_thresh =0.5, actualClass ,

predClass ,weight):

2 def yolo_loss(y_true , y_pred):

3 # 1. transform all pred outputs

4 # y_pred: (batch_size , grid , grid , anchors , (x, y, w, h,

obj , ... cls))

5 pred_box , pred_obj , pred_class , pred_xywh = yolo_boxes(

6 y_pred , anchors , classes)

7 pred_xy = pred_xywh [..., 0:2]

8 pred_wh = pred_xywh [..., 2:4]

9

10 # 2. transform all true outputs

11 # y_true: (batch_size , grid , grid , anchors , (x1, y1, x2, y2

, obj , cls))

12 true_box , true_obj , true_class_idx = tf.split(y_true , (4,

1, 1), axis=-1)

13 true_xy = (true_box [..., 0:2] + true_box [..., 2:4]) / 2

14 true_wh = true_box [..., 2:4] - true_box [..., 0:2]

15

16 # give higher weights to small boxes

17 box_loss_scale = 2 - true_wh [..., 0] * true_wh [..., 1]

18

19 # 3. inverting the pred box equations

20 grid_size = tf.shape(y_true)[1]

21 grid = tf.meshgrid(tf.range(grid_size), tf.range(grid_size)

)

22 grid = tf.expand_dims(tf.stack(grid , axis=-1), axis =2)

23 true_xy = true_xy * tf.cast(grid_size , tf.float32) - \

24 tf.cast(grid , tf.float32)

25 true_wh = tf.math.log(true_wh / anchors)

26 true_wh = tf.where(tf.math.is_inf(true_wh),

27 tf.zeros_like(true_wh), true_wh)

28

29 # 4. calculate all masks

30 obj_mask = tf.squeeze(true_obj , -1)

31 # ignore false positive when iou is over threshold

32 best_iou = tf.map_fn(

33 lambda x: tf.reduce_max(broadcast_iou(x[0], tf.

boolean_mask(

34 x[1], tf.cast(x[2], tf.bool))), axis=-1),

35 (pred_box , true_box , obj_mask),

36 tf.float32)

37 ignore_mask = tf.cast(best_iou < ignore_thresh , tf.float32)

38

39 # 5. calculate all losses

40 xy_loss = obj_mask * box_loss_scale * \

41 tf.reduce_sum(tf.square(true_xy - pred_xy), axis=-1)

42 wh_loss = obj_mask * box_loss_scale * \

43 tf.reduce_sum(tf.square(true_wh - pred_wh), axis=-1)
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44 obj_loss = binary_crossentropy(true_obj , pred_obj)

45 obj_loss = obj_mask * obj_loss + \

46 (1 - obj_mask) * ignore_mask * obj_loss

47 # TODO: use binary_crossentropy instead

48 class_loss = obj_mask *sparse_categorical_crossentropy(

true_class_idx , pred_class)

49

50 #########################

51 #1) define weights matrix

52 weights = np.ones((classes ,classes))

53 actual=actualClass

54 predicted=predClass

55 weights[predicted ,actual] = weight

56

57 #2) transform to arrays

58 weights = np.array(weights)

59 f = weights.shape [0]*( weights.shape [0])

60 weights /= np.sum(weights)/f

61

62 true_class_idxHot=tf.one_hot(tf.cast(true_class_idx , tf.

int32),classes)#to categorical

63 #delete 1 dimention as it was 16*13*13*3*1*20

64 #and I need it 16*13*13*3*20

65 true_class_idxHot=tf.squeeze(true_class_idxHot)

66

67 #3) encode weights in formula

68 #true_class_idxHot and pred class

69 #both have the shape (16*13*13*3*20)

70 w_flat = np.array(weights).flatten ()

71 WEIGHTS = tf.constant(w_flat , dtype=tf.float32)

72 # this is equivalent to passing axis=4,

73 #i.e. the max in the predicted class

74 y_classT = K.argmax(true_class_idxHot)

75 y_classP = K.argmax(pred_class)

76

77 idx = y_classT + classes*y_classP

78 w = tf.gather(WEIGHTS , idx)

79

80 class_loss = class_loss * w

81 ’’’End modify ’’’

82

83 ##End of weighted section

84 # 6. sum over (batch , gridx , gridy , anchors) => (batch , 1)

85 xy_loss = tf.reduce_sum(xy_loss , axis=(1, 2, 3))

86 wh_loss = tf.reduce_sum(wh_loss , axis=(1, 2, 3))

87 obj_loss = tf.reduce_sum(obj_loss , axis=(1, 2, 3))

88 class_loss = tf.reduce_sum(class_loss , axis=(1, 2, 3))

89 return xy_loss + wh_loss + obj_loss + class_loss

90 return yolo_loss

Listing B.3: Modified YoloV3 loss function used to train the risk-aware models from
Chapter 4.
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Appendix C

Chapter 5 - Supplementary
Material

This appendix shows interesting scenarios from the simulation in Chapter 5. We
show a crash in Figure C.1, misclassifications made by the ensembles synthesised
for the motorway and town ODDs in Figures C.2 and C.3. And we show when the
ensembles correctly classifies the objects in Figures C.4 and C.5.

Figure C.1: A crash registered when using the town synthesised ensemble i.e. no
adaptation (see also Figure 5.3).
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Figure C.2: The class dog misclassified as person by the motorway ensemble.

Figure C.3: The class bus misclassified as car by the town ensemble.
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Figure C.4: Correct classification made by the ensemble when using adaptation.

Figure C.5: Correct classification made by the ensemble when using adaptation.
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