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Abstract 

This thesis investigates the use of synthetic talking heads, with lip, tongue and 

face movements synchronized with synthesized or natural speech, in technology-

enhanced learning. This work applies talking heads in a speech tutoring 

application for teaching English as a second language. Previous studies have 

shown that speech perception is aided by visual information, but more research is 

needed to determine the effectiveness of visualization of articulators in 

pronunciation training. This thesis explores whether or not visual speech 

technology can give an improvement in learning pronunciation. 

This thesis investigates techniques for audiovisual speech synthesis, using both 

viseme-based and data-driven approaches to implement multiple talking heads. 

Intelligibility studies found the audiovisual heads to be more intelligible than 

audio alone, and the data-driven head was found to be more intelligible than the 

viseme-driven implementation.  

The talking heads are applied in a pronunciation-training application, which is 

evaluated by second-language learners to investigate the benefit of visual speech 

in technology-enhanced learning. User trials explored the efficacy of the software 

in demonstrating the /b/–/p/ contrast in English. The results indicate that learners 

showed an improvement in listening and pronunciation after using the software, 

while the benefit of visualization compared to auditory training alone varied 

between individuals. User evaluations found that the talking heads were perceived 

to be helpful in learning pronunciation, and the positive feedback on the tutoring 

system suggests that the use of talking heads in technology-enhanced learning 

could be useful in addition to traditional methods.  
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1 Introduction  

The importance of human faces in communication has led to considerable interest 

in computer facial animation and visual speech synthesis. Human speech 

perception is aided by visual information, such as the movement of the lips, which 

aids intelligibility (Sumby et al. 1954; Summerfield 1987). Speech comprehension 

is also enhanced by facial expressions,  which convey meaning and thus support 

communication (Massaro 1998). 

This thesis is concerned with visual speech synthesis, computer-generated facial 

animation synchronized with acoustic speech, and talking heads, physiological 

models with audio-visual speech. This study also encompasses animated agents 

which interact with a user to emulate face-to-face communication with a human 

assistant. Talking heads can augment the intelligibility of speech, and when 

combined with animated agents can convey emotions and offer more natural 

interaction, and these advantages can make them valuable in technology-enhanced 

learning applications. Animated agents are employed in many software 

applications, while talking heads with accurate visible articulation are attracting 

increasing interest for use in pronunciation training (Hazan 2008). For example, 

the talking head known as “Baldi” is an existing tutor for speech production 

(Massaro et al. 2008; Massaro 2012), and state-of-the-art technological advances 

are being utilised in the “ARTUR” articulation tutor (Engwall 2008).  Improved 

modelling of internal articulatory organs has been an important recent 

development in talking heads for pronunciation training (Badin et al. 2008). 

This project applies talking head technology in a speech tutoring application: 

teaching English as a second language for adults. The aim was to create a 

pronunciation assistant, to complement traditional methods and to assist the work 

of a human language tutor. The studies investigate the benefits of visual speech 

technology in language learning.  

The main research question addressed by this thesis is whether or not visual 

speech technology gives an improvement in learning pronunciation. From this 

arise subsidiary issues, concerning how the quality of the technology affects the 
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improvement, and whether it makes a difference to learning.  This study seeks to 

determine the benefit of visual speech in technology-enhanced learning, and the 

most effective implementations of facial animation for modelling visual speech.  

Two approaches were chosen for the development of talking heads: viseme-driven 

and data-driven speech animation. Previous studies of talking heads in speech 

tutoring have used viseme-driven techniques (Massaro et al. 2008), which require 

a smaller amount of data to create key poses for articulators. A disadvantage of 

data-driven techniques is that they require a large corpus of captured data in order 

to produce realistic results, and for internal visualization, a corpus of internal 

articulatory data is required, but the benefit of a data-driven approach based on a 

real speaker’s data is that it can create a more accurate model of articulator 

movement. Therefore, after the acquisition of a suitable corpus of data, a data-

driven head was also created, and the resulting talking heads were compared in 

intelligibility tests. 

The following experiment conditions are used within the thesis: 

• Audio alone - this is used in the intelligibility tests (Chapter 5) and the 

speech tutoring trials (Chapters 6), in comparison with the talking heads that have 

been implemented. 

• Viseme-driven, non-photo-based talking head (THVN) - this head was 

created using a synthetic mesh in Facegen (Singular Inversions 2008).  This head 

is used in the intelligibility and naturalness tests (Chapter 5) and the first speech 

tutoring trial (Chapter 6). 

• Viseme-driven, non-photo-based talking head, including expression - this 

head was created using a synthetic mesh in Facegen (Singular Inversions 2008). 

Facial expressions including eye and head movements were added.  This head is 

used in the web-based naturalness test (Chapter 5).  

• Viseme-driven, photo-based talking head (THVP) - this head was created 

using photographs of the real speaker. This head is used in the second 

intelligibility test (Chapter 5) and the second speech tutoring trial (Chapters 6). 
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• Data-driven talking head (THD) – this head was created at GIPSA-Lab, 

Grenoble, using a corpus of data from a real speaker. This head is used in the 

second intelligibility test (Chapter 5), the web-based naturalness test (Chapter 5), 

and the final speech tutoring trial (Chapter 6). 

• Real video - video recordings of the real speaker. This is used in the 

intelligibility and naturalness tests (Chapter 5) in comparison with the talking 

heads that have been implemented. 

 

Each talking head was applied in a pronunciation training system, and user studies 

investigated the use of the software in demonstrating the /b/–/p/ contrast in 

English. Few previous studies have explored this contrast, which was chosen as a 

case study after consultation with English language tutors who revealed that one 

of their largest groups of students was native Arabic speakers, and the most 

common difficulty for this group was /b/–/p/, because this contrast did not exist in 

their native language. A difficulty with using /b/ and /p/ as a case study for 

pronunciation training is that the difference between /b/ and /p/ is produced by 

voicing, which is difficult to show in a talking head, and although /b/ and /p/ do 

have some visible differences, as shown by (Lazalde 2010), this difference may 

not always be salient enough to aid discrimination. The experiments presented in 

this thesis are widening the range of phonemic contrasts which have been studied, 

with a less visually salient contrast than those in previous research. The user trials 

determined the impact of the software in learning perception and pronunciation, 

and its effectiveness as a teaching tool was evaluated. 

1.1 Contributions 

The contributions of this thesis are as follows: 

• A software application using a talking head for teaching pronunciation, which 

is the first of its kind for teaching British English. This software was used in 

experiments to investigate the use of talking heads in speech tutoring. This 

work was shortlisted in the UK ICT Pioneers Competition 2011 (EPSRC 

2011). 
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• A novel corpus, comprising MRI, EMA and video data, which is the first of its 

kind for a British English female speaker. The corpus was acquired at the 

"Département Parole et Cognition", GIPSA-Lab, Grenoble, during a research 

visit funded by an International Travel Grant by the Royal Academy of 

Engineering. This corpus was used to create a data-driven head in a 

collaborative project at GIPSA-Lab. The MRI data was used to improve the 

articulatory modelling of the viseme-driven head (Knight 2011).  

• New studies evaluating the visual speech in two different talking heads; one 

viseme-driven and one data-driven. Intelligibility tests showed that the 

audiovisual heads were more intelligible than audio alone (Dey et al. 2010a). 

The data-driven head was found to be more intelligible than the viseme-driven 

head. 

• Original studies evaluating the use of talking heads in learning pronunciation 

of British English as a second language. The results indicate that learners 

showed an improvement in listening and pronunciation after using the 

software, while the benefit of visualization compared to auditory training 

alone varied between individuals. User evaluations found that the talking 

heads were perceived to be helpful in learning pronunciation (Dey et al. 

2010b). 

1.2 Thesis structure 

The following chapters review the techniques used in producing talking heads, 

and applications of visual speech. Chapter 2 begins with an overview of the field 

of facial animation. It reviews existing literature and describes techniques for 

producing talking heads and visual speech. It then reviews applications of talking 

head technology, including second language learning, and the teaching of 

pronunciation. Chapter 3 introduces how this project applies talking head 

technology in a speech tutoring application. Chapters 4 and 5 describe the data 

capture and implementation of two different talking heads. Chapter 6 describes 

the evaluation of the quality of visual speech of the talking heads. Chapter 7 

discusses the evaluation of the speech tutoring application, and details the studies 
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in teaching English as a second language for adults. Finally, conclusions and 

future work are discussed in Chapter 8. 
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2 Facial Animation, Visual Speech and Speech 

Tutoring 

Visual Speech unites the fields of speech synthesis and computer facial animation. 

While research in computer graphics involves modelling and animation of the 

face (Parke et al. 1996; Magnenat-Thalmann et al. 2004), research in speech 

synthesis focuses on production of acoustically realistic speech. Visual Speech 

brings the two together in the synthesis of graphically and acoustically realistic 

speech, complete with synchronised lip, tongue and jaw movements and the 

modelling of expression (Massaro 2012). The connection between audio and 

visual research  is exemplified by the recent conference Interspeech 2008 which 

had two special sections, one on talking heads (Engwall 2008; Fagel et al. 2008) 

and one on visible speech synthesis (Theobald et al. 2008). The modelling of 

expression also incorporates research in Artificial Intelligence; thus conferences 

on animated agents also include work on talking heads (Martin et al. 2007). 

The following sections discuss the physical mechanisms of speech production, 

followed by the main techniques for producing facial animation, visual speech, 

and expression in speech animation. 

2.1 Speech Production 

The process of speech production has three phases: respiration, in which the lungs 

force air through the vocal tract and out though the oral and nasal cavities (Figure 

2.1); phonation - the vibration of the vocal cords; and articulation – the shaping 

of the upper vocal tract to generate speech sounds. 

Speech sounds can be categorised according to the articulatory positions required 

to produce the sound. A standard representation for transcribing all possible 

speech sounds has been established by the International Phonetic Association 

(IPA) (Figure A.1) (International  Phonetic Association 2005). Consonants are 

defined by the place of articulation, its manner and phonation. For example, the 

place of articulation of the consonant /p/ is bilabial, i.e. it is produced by 
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constriction of airflow between the lips; its manner is plosive, i.e. the sound 

occurs after a blockage of air flow is released; and its phonation is that it is 

voiced. A voiced consonant is produced when the vocal cords are vibrating, 

whereas an unvoiced consonant is one in which the vocal cords are not vibrating.  

A table of all consonants, with their place of articulation, manner and phonation is 

shown in the IPA chart in Figure A.1. Vowels are defined by the location of the 

tongue within the oral cavity, and the rounding of the lips is also a distinguishing 

factor. The tongue position can range from the front of the mouth, e.g. /i/, to the 

back, e.g. /u/, and the tongue height can range from close, e.g. /i/, to open, e.g. /a/.  

A diagram of the positions of all the vowels is shown in Figure A.1. 

 

Figure 2.1: Anatomy of vocal tract, reproduced under Creative Commons Licence 

(Flemming 2012) 
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2.2 Facial Animation 

Facial animation involves controlling a face model using geometric manipulations 

or image manipulations, although many approaches combine several techniques. 

The techniques can be classified as those involving manipulations of 2D images 

or 3D models. The 2D approaches include image morphing, which allows 

transitional images to be generated between a pair of target images (Ezzat et al. 

1997). Another image-manipulation technique for 2D animation is video-rewrite, 

where video footage of an actor is segmented corresponding to phonetic units, 

which are then concatenated to create animations of a speaker (Bregler et al. 

1997).  2D methods have achieved more videorealistic results than 3D methods 

(Liu et al. 2008), and some 2D animations are perceptually indistinguishable from 

real video, yet still not as intelligible for lip-reading as real recordings (Geiger et 

al. 2003).  2D methods can be unrealistic for head movements, and the viewpoint 

is limited to that of the target images, whereas 3D geometric methods are 

viewpoint-independent.  

3D techniques involving geometric manipulation include interpolation, 

parameterization and muscle models. Interpolation-based techniques involve 

modelling portions of the face mesh to approximate expressions, and then 

blending these different morph targets. This method is fast and offers high fidelity 

of expressions, but involves intensive manual labour, and is specific to each 

character. Parameterization was used by Parke, whose facial mesh of 3D points 

was controlled by a set of conformation and expression parameters (Parke et al. 

1996). An advantage over interpolation is that parameters can easily be combined 

for a wider range of facial expressions. Physically-based muscle models simulate 

the physical and anatomical characteristics of bones, tissues, and skin 

(Terzopoulos et al. 1990; Lee et al. 1995). Such methods can be very powerful for 

creating realism, but the complexity of facial structures make them 

computationally expensive, and difficult to create. This complexity can be 

avoided by using mesh deformation to simulate muscle action (Magnenat-

Thalmann et al. 1988). Pseudo muscle-based systems often use Ekman and 

Friesen's Facial Action Coding System (Ekman et al. 1978), which defines 64 

basic facial Action Units to represent facial movements caused by muscles. 



Visual speech in technology-enhanced learning 

 

 Page 20 

Waters proposed a vector muscle model in which a muscle was modelled by a 

linear deformation field affecting the surrounding skin (Waters 1987). 

Another technique for 3D animation uses motion capture to map recorded 

movement onto a character (Zhao et al. 2010). Feature points on an actor’s face 

are recorded, often using reflectance markers placed on the actor, which are 

tracked by cameras. Ma et al (Ma et al. 2008) used a real-time 3D scanning 

system to record training data of the high-resolution geometry and appearance of 

an actor performing a small set of predetermined facial expressions. A set of 

motion capture markers was placed on the face to track large scale deformations. 

The large scale deformations were mapped to the finer scale deformations in the 

form of deformation-driven polynomial displacement maps, encoding variations 

in medium-scale and fine-scale displacements. For synthesis, the polynomial 

displacement maps were driven by new motion capture data from a sparse set of 

motion capture markers. The technique produced accurate reconstructions over 

most of the face, but the tracking of the contours of mouth and eyes was 

insufficient for reconstruction of the detailed motions near the edges of the lips 

and eyelids.  

A key issue in motion capture is the accuracy of tracked data, which may include 

noise from vibration. The motion data is filtered before it is transformed to drive a 

computer model of a character (Deng et al. 2007).  A difficulty which is especially 

pertinent in facial animation is that feature points are not always visible, for 

example, the corners of the lips may be occluded during speech. This is a problem 

for optical tracking systems, which require tracked points to be within the line of 

sight. Magnetic tracking systems do not have the line-of-sight problem, but are 

usually less accurate than optical systems, although non-invasive electromagnetic 

systems are now available which are designed for tracking speech-related facial 

movements (Northern Digital Inc. 2012). 

Markerless vision-based approaches, such as Active Appearance Models 

(Tresadern et al. 2010), use estimation algorithms to track occluded points. These 

can be limited in resolution (Poppe 2007), but this issue has decreased as camera 

technology has improved, and recently markerless facial performance capture has 

achieved realistic pore-level geometric details, while addressing tracking 
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problems caused by very fast motion or occlusions (Beeler et al. 2011). Beeler et 

al. identify anchor frames in a sequence, which are similar to a manually chosen 

reference frame. Due to the similarity, the image tracker can compute the flow 

from the reference to each anchor independently and with high accuracy. For 

example, in a sequence of lip movements where the upper lip becomes occluded 

by the lower lip, this method is able to track the upper lip backwards from a later 

anchor frame to the occluded frame, automatically restoring tracking after the 

occlusion. A high-quality 3D reconstruction technique gave the mesh visually 

realistic pore-level geometric detail. Another approach achieving photorealistic 

detail combined optical flow and photogrammetry to reconstruct 3D motion from 

images (Borshukov et al. 2005). Five synchronized cameras captured the actor's 

performance, and optical flow was used to track each pixel's motion over time in 

each camera view. This data was combined with a scanned model of a neutral 

expression of the actor and photogrammetric reconstruction of the camera 

positions. Manual correction of optical flow errors was required. The Digital 

Emily Project (Alexander et al. 2010) used video-based motion analysis in a 

manually guided process. The animated character’s 3D pose was manually set on 

several example frames, and a model-based optical-flow algorithm calculated the 

required character pose in the intermediate frames. An advantage over marker-

based techniques is that this process is based on video of the entire face, which 

provides more information about the motion of the eyes and mouth than could be 

recorded by motion-capture markers. However, this process requires a large 

amount of manual work to adjust any misaligned poses and remove artifacts. 

 The problem of following a feature point across its location changes between 

poses, and mapping it to a corresponding vertex on a target model is a feature 

correspondence problem (Parke et al. 2008).  Retargeting, or cross-mapping, of 

the geometry involves adaptation of the recorded source data to a target character, 

which need not have a direct resemblance to the recorded actor (Pighin et al. 

2006). 

The most popular method of producing facial animation is currently interpolation, 

because it quickly produces basic facial animations. Many other systems use 

parameterization, and researchers has extended Parke’s parameterized approach to 
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include more features and functionality; for example Massaro’s Baldi talking head 

was based on Parke’s model (Massaro et al. 2005).  The popularity of  facial 

animation has led to standardisation of the parameters, in the MPEG-4 standard, 

which specifies feature points and facial animation parameters (Algirdas 2002) 

(Ostermann 2002). 

2.3 Visual Speech Animation 

Visual speech animation is the synthesis of realistic facial animations 

synchronized with acoustic speech. There are various techniques for producing 

automatic visual speech animation, which are introduced below and discussed in 

more detail in the subsequent sections. 

Parke and  Waters classify the approaches to automatic speech synchronisation by 

the form of input, which may be text-based, pre-recorded acoustic speech, or a 

combination of inputs (Parke et al. 1996). Waters and Levergood’s text-driven 

approach extracted from input text a timed sequence of phonetic units and control 

parameters to drive the speech output (Waters et al. 1994). Lewis and Parke’s 

speech-driven method adapted a common speech synthesis method, Linear 

Prediction Analysis, to provide simple phonetic recognition from recorded speech 

(Lewis et al. 1987). The recognized phonetic units were then associated with 

mouth positions to provide keyframes for animation using a parametric model of 

the human face.  

An alternative classification is by Deng and Noh, who classify the approaches to 

visual speech by the method of output production, which may be viseme-driven or 

data-driven (Deng et al. 2007).  The term viseme is defined by Fisher as a unit of 

speech in the visual domain (Fisher 1968).  In viseme-driven speech animation, 

each key pose is associated with a viseme, i.e. the position of the lips, jaw and 

tongue when producing a particular sound. Examples of systems that use this 

approach are given in Section 2.3.1. Data-driven approaches do not require pre-

designed key shapes, but use a pre-recorded facial motion database for synthesis 

using machine learning or concatenation of sample data. Examples of systems that 

use this approach are given in Section 2.3.2. 
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A key challenge in visual speech animation is that there is great variation in the 

realisation of visemes during the production of natural speech. This phenomenon 

is termed coarticulation, which is the influence of surrounding visemes upon the 

current viseme (Hardcastle et al. 1999). To account for coarticulation, current 

systems either explicitly take into account context when blending viseme 

keyframes, or use a longer unit such as the diphone, which starts at the centre of 

one phone and ends at the centre of the next, so transitions between phones are 

preserved.  

2.3.1 Viseme-driven approaches 

Viseme-driven approaches require the creation of key mouth shapes for each 

phonetic realisation, and then smoothing functions or coarticulation rules are used 

to synthesize new speech animations. There are difficulties in defining visemes, as 

there is asynchrony between the acoustic and the visual modalities of speech, 

where the onset of movement does not always correspond to the onset of the 

acoustic realisation of a phone. Also, allophones which sound similar can often 

appear different visually. There is no consensus as to which phones are grouped to 

form each viseme, and how many visemes to use. Attempts have been made to use 

machine learning approaches to identify visemes objectively (Hilder et al. 2010), 

but  these have yet to yield a generic set of visemes. However, most viseme-based 

approaches assume a many-to-one relationship between phones and visemes, and 

use an approximate set of mouth shapes; for example, Tekalp and Ostermann used 

14 visemes (Tekalp et al. 2000). 

The most common approach to modelling of coarticulation is by Cohen and 

Massaro (Cohen et al. 1993), based on Lofqvist’s gestural theory of speech 

production (Löfqvist 1990), using dominance and blending functions. Each 

dominance function represents the influence over time that a viseme has on a 

speech utterance. Typically the influence will be greatest at the centre of the 

viseme and will degrade with distance from the viseme centre. Dominance 

functions are blended together to generate a speech trajectory, in the same way as 

spline basis functions are blended together to generate a curve (Figure 2.2). The 

shape of each dominance function is different according to which viseme it 
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represents, and what aspect of the face is being controlled (for example, lip width 

or jaw rotation). This approach to computer-generated speech animation is used in 

the Baldi talking head (Massaro 2012). 

The Cohen-Massaro coarticulation model was extended by Cosi et al by the 

addition of a temporal resistance function and a shape function for more general 

cases, such as fast or slow speaking rates (Cosi et al. 2002). This approach is used 

in the talking head LUCIA (Cosi et al. 2008). Le Goff and Benoit proposed a 

method to automatically extract the parameters for the dominance function from 

data measured from a real speaker  (Le Goff et al. 1996). King and Parent 

extended the Cohen-Massaro model by using a curve to replace a single viseme 

target. Each facial model parameter has a curve that animates that parameter over 

time. A parameter curve is created by blending the viseme curves of the utterance 

(King et al. 2005). Bevacqua and Pelachaud proposed additional qualifier 

parameters to simulate expressivity in lip movements. Visemes for each emotion 

were derived from recorded speech motion data, and two qualifiers were added to 

modulate the expressivity of a lip movement; the tension qualifier was used to set 

the intensity of muscular strain, and the articulation qualifier controlled the 

degree to which a lip shape met its target apex (Bevacqua et al. 2004; Deng et al. 

2007). 
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Figure 2.2: Cohen-Massaro Dominance Functions for the word “stew”, and corresponding 

lip protusion values over time, reproduced with permission (Massaro 1998) 

 

An alternative to dominance functions is a coarticulation model based on the 

optimization of a system with constraints (Edge 2004; Edge et al. 2004) The 

system generates trajectories which pass through appropriate visemes, applying a 

technique similar to the spacetime constraints method used for articulated body 

animation (Witkin et al. 1988). This approach was extended by Lazalde (Lazalde 

2010), using motion-captured speech mapped to a 3D synthetic face model to 

derive facial animation parameters and create data for the coarticulated visemes in 

the constraint-based approach (Lazalde et al. 2010). 

2.3.2 Data-driven approaches 

Data-driven approaches use video or motion capture data captured from a real 

speaker, which is then used to drive a synthesized talking head. Feature points can 

be tracked using markers on the face or a markerless tracking system. A 3D 

surface mesh can be built by reconstructing the facial geometry from feature 
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points. A model of the speech movements can be built, for example, using 

Principal Component Analysis to parameterize the data (Bailly et al. 2009). The 

recorded motion capture sequences can be parameterized, and can be used to drive 

the talking head directly, to create animations corresponding to the original 

utterances, but this performance-driven animation approach does not scale to large 

volumes of speech. Data-driven approaches extract data from the recorded corpus, 

using concatenative or machine-learning approaches, to synthesize novel 

sequences. 

2.3.2.1 Concatenative speech animation 

Data-driven, concatenative speech synthesis uses basis units that include context 

(e.g. diphones, triphones etc.) extracted from a pre-recorded corpus, instead of 

visemes. As the basis units already incorporate the variation of each viseme 

according to context and to some degree the dynamics of each viseme, no model 

of coarticulation is required. Speech is generated by selecting appropriate units 

from a database and blending the units together. This is similar to concatenative 

techniques in audio speech synthesis (where, for example, diphone units are 

concatenated at the spectrally-stable centre points of phones, and the waveforms 

are transformed so auditory discontinuities are minimised). For auditory speech 

synthesis a cost function is designed to maintain smoothness in the acoustic signal 

across concatenation boundaries. The best matching unit is considered the 

candidate that requires the least modification to form the join. For visual speech 

synthesis a cost function is designed to ensure a fluent and natural transition 

between adjacent visual speech gestures (Theobald 2007). The disadvantage to 

these models is that a large amount of captured data is required to produce natural 

results. For example, Huang et al used a corpus of 300  sentences, each lasting 5-

10 seconds, recorded at 60 frames per second, to give 90000 video frames and a 

database of  9580 triphones (Huang et al. 2002). Longer units minimise the 

number of concatenations and preserve coarticulation effects to produce more 

natural results, but these require larger corpus sizes to ensure good coverage of 

transitions between the units. 
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2.3.2.2 Speech animation using Machine Learning  

Speech animations can be generated directly from audio by using hidden Markov 

models or neural nets to transform audio parameters into a stream of control 

parameters for a facial model. This method can handle voice context, rhythm, 

tempo, emotion and dynamics without complex approximation algorithms and the 

training database needs no phonetic units or visemes; the only data needed is the 

voice and the animation parameters. An example of this approach is the Johnnie 

Talker system (Takács et al. 2007). Another approach using machine learning 

techniques uses Gaussian processes to model audio and visual parameters in a 

shared space (Deena et al. 2010). The limitation is that phonetic labels, which are 

time-consuming to produce, are needed for both the training and test data. 

Two-dimensional shape and appearance models have been used to create near-

video-realistic synthetic talking faces (Theobald et al. 2004). Englebienne et al. 

used an Active Appearance Model to extract features from video frames, and a 

Hidden Markov Model to align phoneme labels to the audio stream of video 

sequences, and this information was used to label the corresponding video frames 

(Englebienne et al. 2007). Their model, trained on these labelled video frames, 

was able to generate new video-realistic sequences from unseen phoneme 

sequences. In a web-based test where 33 volunteers compared 12 pairs of video 

sequences, many of the sequences generated were indistinguishable from real 

video sequences. The limitations of this approach are that the dataset was from 

only a single speaker reading aloud, and applying these methods to different 

contexts, such as conversational speech, would be likely to result in very different 

results. Also, with no explicit model of coarticulation, effects such as anticipatory 

coarticulation were not captured as well as they could be if a model of phonetic 

context was added. 

2.3.3 Expression in Speech Animation 

A complete facial animation system would include all facial expressions. A fully 

expressive automated character animation needs to display emotions, head 

movements such as nodding, and eye movements such as blinking, and eye gaze. 

Queiroz et al proposed a model for the automatic generation of expressive gaze by 
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examining eye behaviour in different affective states (Queiroz et al. 2008). Ekman 

(Ekman 1989) defined facial expressions of emotion (affect displays), and the 

following non-emotional expressions: Emblems, e.g. nodding in agreement; 

Manipulators, e.g. blinking; Signals, e.g.  raised eyebrows signalling a question; 

Punctuators, movements at pauses, e.g. smiling; and Regulators, e.g. turning head 

to listener. These expression overlays were included in Ekman’s procedure for 

complete speech animation. This entailed computing lip shapes by applying rules 

that transform phonetic units to action units, then computing all action units for 

emotion and expression.  This was followed by spline interpolation between 

phonetic units, and finally the generation of the complete facial expression image.  

Pelachaud’s work in facial animation considers the link between intonation and 

expression. Intonation is the melodic feature of an utterance, and is linked to the 

attitude of the speaker and conveys emotional signals (Pelachaud 1991). It has 

three components: type of utterance, attitude and emotion, and affects the pitch, 

loudness, tempo and pauses within speech. In Pelachaud’s system, each emotion 

corresponds to a particular set of values of these intonational parameters. Emotion 

affects lip shapes during speech, influencing the muscle tension and the degree of 

hyper-articulation or hypo-articulation, so these parameters must be modelled in 

order to give a talking head expressivity (Bevacqua et al. 2004). 

Cao et al. used a machine learning approach to model expressive visual behaviour 

during speech (Cao et al. 2005). A database of high fidelity speech-related facial 

motions with variations across multiple emotions was recorded with an optical 

system, tracking markers on the face with 8 cameras. A training set of speech 

related motions was used to derive a generative model of expressive facial 

motion. The input of the system is a spoken utterance and a set of emotional tags 

which can be specified by a user or extracted from the speech signal using a 

classifier. The output is realistic facial animation that is synchronised to the input 

audio and conveys the specified emotions. A limitation of this approach is its 

dependency on the quality of the motion and speech data, and building the 

database requires laborious manual processing. 
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2.4 Talking Heads in Speech Tutoring 

Applications of talking heads in speech tutoring include pronunciation training for 

speech-impaired children; speech reading for deaf children, and teaching English 

as a second language for adults. Traditionally dyslexic children are explicitly 

trained to make articulatory gestures to form words (Wise et al. 1999). Dyslexic 

children have been found to have difficulty in sensing the position of the tongue, 

teeth and lips whilst making a specific sound,  and in identifying the appropriate 

picture depicting these positions (Montgomery 1981). Montgomery suggested that 

dyslexic children would benefit from training in awareness of articulation 

processes with single phonemes. Therefore a talking head with correct tongue 

movements for individual phonemes could be beneficial in tongue training. 

Visual speech can be valuable in speech tutoring applications because vision 

benefits human speech perception, for three reasons as suggested by Summerfield 

(Summerfield 1987): It helps speaker localization, it contains speech segmental 

information that supplements the audio, and it provides  complimentary 

information about the place of articulation (Potamianos et al. 2004). Potamianos 

et al. state that human speech perception is bimodal in nature: Humans combine 

audio and visual information in deciding what has been spoken. The visual 

modality benefit to speech intelligibility in noise has been quantified by Sumby 

and Pollack, who found that the visual contribution to intelligibility ranged from 

77% to 81% as the Signal-to Noise ratio increased from -30 dB to -6 dB,  for a 

test using a 32-word vocabulary (Sumby et al. 1954). Benoît and Le Goff found 

that visual speech adds intelligibility to the auditory information when the 

acoustics are degraded (Benoît et al. 1998). Visual speech is of particular 

importance to the hearing impaired, for whom mouth movement has an important 

role in communication (Marschark et al. 1998).  

There are several theories behind why visual feedback can be beneficial in speech 

tutoring. Bullock offers theoretical evidence for why spectrograms (visualization 

of waveforms of acoustic speech) can be useful in speech therapy for children 

(Bullock 2011a). Established theory is that as children learn phonology, their 

expressive representations of phonemes (articulatory movements, auditory 
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feedback) connect with their receptive representations (auditory features of 

speech). For some children there is a mismatch between their expressive and 

receptive representations of phonemes. Therefore, another form of feedback 

should be given so that the learner does not have to rely on their own auditory 

perception. 

Another theoretical framework is the Directions Into Velocities of Articulators 

(DIVA) computational model (Guenther 2003). It proposes that a child learning to 

speak is informed by two neural systems. The first is a feed-forward control 

system, which consists of the speech sound map (motor plan), the cerebellum 

(coordination and smoothing of movement), and articulatory velocity and position 

maps (motor cortex).  These systems inform the speaker what to do in order to 

produce a given sound.  The second is the feedback system, which consists of 

orosensory (how the sound feels) and auditory information.  Speech production 

involves a “target” that the motor system aims to achieve in order to produce a 

particular speech sound. Targets in the DIVA model take the form of convex 

regions in a planning space consisting of auditory and orosensory dimensions (for 

example, vocal tract constrictions), which are learned by infants during the 

babbling phase, when they recognize a specific vocal tract configuration as 

producing a speech sound. For example, the region for /p/ does not vary over the 

dimension of lip aperture, because all bilabial stops have full closure of the lips, 

so it is learned that lip aperture is an important dimension for producing the 

bilabial stop /p/. Since convex region learning relies on language-specific 

recognition of phonemes by the infant, the shapes of the resulting regions will 

vary from language to language. At first a child must rely more on the feedback 

system than the feedforward system because the movements are not yet mapped.  

As the child practices speech, it stores more information in the feedforward 

system about the movements and their associated auditory consequences, which in 

turn will inform future sound productions. If a child has difficulty perceiving the 

correctness of a production, its feedback system cannot adequately inform the 

feedfoward system. Bullock argues that an additional feedback component, such 

as a spectrogram, can help students make judgments about their productions and 

make adjustments to the feed-forward system. At first, the learner must rely more 
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on visual feedback and learn to ignore the auditory productions. When sufficient 

correct productions have been practised and the speech sound and articulatory 

movement maps have been adjusted, the learner can then start to rely on their 

auditory feedback system (Bullock 2011c). 

These theories are concerned with children learning a first language, but some of 

the implications can also be extended to second language learning. Most current 

approaches to second language acquisition  can be divided into two groups: 

nativist models and empiricist models (MacWhinney 1997). Nativists view second 

language acquisition as repeating the course of first language acquisition, which is 

aided by a universal language instinct. Empiricist approaches argue that in 

childhood there is a critical period for language learning, after which the learner 

can no longer rely on the universal language instinct to facilitate second language 

learning. The empiricist approach emphasizes the role of input in both first and 

second language learning and the role of transfer and generalization in second 

language learning. The Competition Model of MacWhinney and Bates 

(MacWhinney 1992) takes an empiricist approach which views both first and 

second language learning as data-driven processes that rely not on universals of 

linguistic structure, but on universals of cognitive structure. This model attributes 

development to learning and transfer. It assumes that all mental processing uses a 

common, interconnected set of cognitive structures. Thus a second language 

learner will initially experience a large amount of transfer from their first 

language to the second language. Inappropriate interference effects in phonology 

are eliminated by unlearning some of this direct transfer. Some new sounds are 

learned that do not mirror first-language sounds. In other cases, newly acquired 

words need to be unlinked from sounds influenced by first-language segments. 

Learning at this stage progresses by correct registration of the phonology of the 

second-language target lexical items. The learner must be encouraged to perceive 

the mismatch between their output forms and the correct input forms. 

MacWhinney suggests that this could be achieved through a process in which 

learners attempt to match their own productions to computer-controlled digitized 

speech (MacWhinney 1992). 
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For second-language learners a common difficulty is the conceptual distinction 

between sounds which are allophones in their native language (for example, /p/ 

and /b/ are allophones in Arabic, and /r/- /l/ are allophones in Japanese.) The 

learner needs to work on hearing and producing the contrast in the second 

language, so practice is essential to activate new concepts relevant to the new 

language. Listen-and-repeat practice can be helpful to actively learn new concepts 

at a subconscious level (Fraser 2006). Verbal explanations of pronunciation can 

be difficult for students with limited vocabulary to understand, and a benefit of 

visual representations is that they are language-independent. Another benefit of 

using speech tutoring software, which applies to adult second language learners as 

well as children learning a first language, is that it enables independent drill to 

take place. When students use visualization to modify articulatory movements, if 

they can recognize the salient visual features of the targets, they are actively 

involved in their learning and this increases their understanding.  

2.4.1 Existing Speech Tutoring Software 

Applications using talking head technology for second language learning have 

been developed, but are not in common usage, and the software used by language 

schools generally uses video recordings rather than synthesized talking heads. For 

example, the English Language Teaching Centre at the University of Sheffield 

currently uses the Sky Pronunciation Suite software in teaching (SKY). This uses 

video and audio recorded from a real human rather than a synthesised talking 

head. It includes training in the Phonemic Alphabet, in which the system plays a 

recording, and the user has to click on the correct symbol, and the system gives 

feedback as a score. The system plays video recordings of a real mouth, which 

shows the correct mouth movements for each item. The system can record the 

user’s voice, and they can play it back while playing a model speaker’s voice 

simultaneously, so the user can hear how they deviate from the correct 

pronunciation. They can also visually compare the waveforms. Such spectrogram 

data, although it can be difficult to read, has been shown to have a beneficial 

effect when used by speech therapists (Bullock 2011b). This may be because a 

student who cannot determine when they are producing an incorrect sound is 

unlikely to change their productions without any external feedback, and the 
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spectrogram provides an alternative mode of feedback so that the learner does not 

have to rely on their own auditory perception.  

The usefulness of visual feedback depends on how easily it can be interpreted. 

Visual displays of the acoustic signal may be impractical as a therapy aid due to 

the abstractness and complexity of the display. This is where talking heads can 

provide an advantage. Displaying animated models of the articulators can give the 

learner visual information which is easy to understand. For example, the Speak As 

You See (SAYS) pronunciation software uses 3D animations to show exactly 

where to place the tongue in relation to the palate and teeth, in order to produce 

the correct sounds (Learning Technologies International 2012). This software is 

used in conjunction with a mirror so that the learner can view their own 

movements simultaneously. The developers of SAYS state that in an initial test, 

some students improved their ability to differentiate their pronunciation of /r/ and 

/l/ sounds after using the software for as little as 15 minutes.  

Other existing applications of talking heads for teaching English as a second 

language include Cohen and Massaro’s Baldi (Massaro 2004). Baldi uses terminal  

analogue synthesis (Klatt 1987), which mimics the final speech product rather 

than the physiological mechanisms that produce it. The software is based on 

Parke's talking head, with additional and modified control parameters, texture 

mapping, and the addition of a tongue. Cohen and Massaro developed a new 

visual speech synthesis coarticulatory control strategy, using dominance and 

blending functions (Massaro 1998). Baldi also has controls for paralinguistic 

information so he can display facial expressions and gestures, and affect in the 

face, so he can show anger, happiness and sadness (Massaro et al. 2005). The 

system offers text-to-visible speech synthesis and alignment with natural speech. 

Baldi can be displayed in various configurations, for example, the skin can be 

made transparent so that the tongue and inside of the mouth can be viewed, and 

the head can be rotated to be seen from the back or side (Cosi 2002). Baldi has 

more recently been augmented with a body, to extend communication through 

gesture (Massaro et al. 2005).  

Baldi has been used in multiple languages  (Cosi 2002), (Ouni 2003), (Massaro et 

al. 2005), (Ouni 2005). For example, Baldi was used to train eleven Japanese 
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speakers to identify and produce American English /r/ and /l/, using two methods; 

instruction illustrating the internal articulatory processes of the oral cavity, and 

instruction providing only the normal view of the tutor’s face (Massaro 2004). 

The perception and production of words by the Japanese trainees improved after 

training. However, this study did not indicate whether the display of internal 

articulators gave an advantage over displaying only the external face. In a more 

recent study, sixteen native English speakers were trained on pairs of similar 

speech segments in Arabic (/k/ and /q/) and in Mandarin (/i/ and /y/) (Massaro et 

al. 2008). Participants were trained with auditory speech versus both auditory and 

visual speech, and with a frontal view versus an inside view of the vocal tract. The 

participants showed improvements after training with the talking head, compared 

to the control groups, but the differences were not significant (Massaro et al. 

2008). It is possible that the sample sizes were too small, and a larger study could 

yield more significant results. A tentative finding of this study was that the outside 

of the face seemed to be more easily processed than a sagittal viewing illustrating 

the tongue, palate, and velum. This study did not conclusively show that the 

visualisation of internal articulatory movements was effective in pronunciation 

training, which supports the view that further research is needed. 

Baldi has been used to teach vocabulary to deaf children, and also for language 

learning with autistic children (Massaro 2012). The speech tutor for deaf children 

uses Baldi’s internal productions. By making the skin transparent or by showing a 

sagittal view, Baldi can illustrate pronunciation of sounds that are not normally 

visible. In a trial of the system for the presentation of the internal visemes to deaf 

children, a significant improvement in learning was found in post-test speech 

production compared to pre-test. The lack of a control group raises the possibility 

that some of this learning was independent of the training. However, follow-up 

tests six weeks later showed that the subjects’ productions had deteriorated since 

the post-test productions, without continued use of the Baldi tutoring system, 

which suggests that the training system had been a factor in the post-test 

improvement in speech production (Massaro et al. 2004).   

The ARTUR (ARticulation TUtoR) project aimed to provide computer assisted 

pronunciation training for hearing- or speech impaired children and second 
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language learners. ARTUR is a virtual speech tutor which uses three-dimensional 

animations of the face and internal parts of the mouth to give feedback on the 

difference between the user's deviation and correct pronunciation. The facial data, 

such as jaw position and mouth opening, was extracted from video images of the 

face. Experiments showed that the augmented reality side-view did not help 

subjects perform better overall than with the front view only, but it was beneficial 

for the perception of some articulatory features, such as palatal plosives (Wik et 

al. 2008) . The automatic mispronunciation detection could make errors, so a 

Wizard-of-Oz test was used in which a human selected the appropriate feedback 

and audiovisual instructions based on the user’s pronunciation. The subjects’ 

change in articulation during the practice session was monitored with an 

ultrasound probe. The ultrasound measurements suggested that an improvement 

was made by following articulatory instructions given by the computer-animated 

teacher (Engwall 2008). 

Other applications in speech therapy include the work of Kroger, who conducted a 

pilot study using a visual articulatory model as a visual stimulation technique in 

therapy of articulation disorders and apraxia of speech. The visual recognition of 

sounds and syllables over the course of therapy was evaluated, and a significant 

increase in recognition rate was found (Kröger et al. 2005).  Grauwinkel and 

Fagel’s talking head with three-dimensional animation of internal articulator 

dynamics was investigated for use in speech therapy for children with interdental 

lisps (Grauwinkel et al. 2007). The results showed that most of the children were 

able to visually identify correct and wrong productions of the talking head. The 

evaluations showed that the lesson improved the sibilant production of two of the 

three children. In a subsequent study by the same authors, children’s productions 

of words containing the sounds /s/ and /z/ were recorded and evaluated before and 

after two short learning lessons with an experimenter using the virtual head to 

explain the correct pronunciation of these sounds. Results showed that several 

children significantly improved their speech production of the /s/ and /z/ sounds 

(Fagel et al. 2008). 

Badin et al. developed a French-speaking audiovisual talking head that can 

display all speech articulators. Three-dimensional models of speech articulators 
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were derived from volume MRI and multiple view video images acquired on one 

speaker (Badin et al. 2002). Linear component analysis was used to model these 

articulators as the weighted sum of a small number of basic shapes corresponding 

to the articulators’ degrees of freedom for speech (Badin et al. 2006). Control 

parameters for animation were derived from points on the articulators of the same 

speaker tracked by Electro-Magnetic Articulography (Badin et al. 2008). Badin et 

al. found  that tongue reading can take over the audio information when the latter 

is not sufficient to supplement lip reading (Badin et al. 2010). This finding has 

important implications for developing speech tutoring applications, as it lends 

support to the notion that visualization of tongue movements can contribute to 

speech perception.  

2.5 Summary  

The development of a complete facial animation system combines visual speech 

animation with expression modelling. The most common techniques for computer 

facial animation involve geometric manipulation of 3D facial models, using 

interpolation or parameterization, to produce graphically realistic computer-

generated heads. Visual speech synthesis uses either viseme-driven or data-driven 

approaches to produce graphically and acoustically realistic speech. Viseme-

driven speech animation requires a smaller amount of data to create key poses for 

internal articulators. A disadvantage of data-driven techniques is that they require 

a large corpus of captured data in order to produce realistic results, and for 

internal visualization, a corpus of internal articulatory data is required, but the 

benefit of a data-driven approach based on a real speaker’s data is that it can 

create a more accurate model of articulator movement. Given the necessary 

visemes, key-frame interpolation is the simplest and fastest technique to produce 

animation. However, parameterization can more easily combine expressions, so 

may be more suitable for producing emotionally expressive speech. Expression 

overlays convey signals such as the display of emotions, head movements and eye 

movements, to improve the naturalness of non-verbal communication. All three 

need to be integrated for the production of believable talking heads. 
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There are several existing systems which use talking heads in teaching 

pronunciation, for both second learning and speech therapy, but talking heads are 

currently not commonly used in speech tutoring. Existing software for teaching 

second languages generally uses video recordings of real humans talking, which 

can be useful but cannot show the internal movements during articulation. This is 

an advantage of talking heads, which can provide multiple views of the mouth and 

vocal tract. Previous research has suggested that use of talking heads can lead to 

an improvement in speech production, but more research is needed to determine 

which aspects of talking heads, for  example the visualization of internal 

articulators, are the most effective in training. 
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3 Talking Heads in Speech Tutoring 

This chapter addresses how this project applies talking head technology in 

learning applications. Cole suggests that pedagogical agents, represented by 

talking heads or human voices, inspire social agency in interactive media, 

enabling users to interact with the program as they interact with people (Cole et 

al. 2007). Studies have shown that users learned more and reported greater 

satisfaction using programs that incorporated virtual humans or human voices 

(Moreno et al. 2001; Baylor et al. 2005). This provides motivation for the use of 

talking heads in tutoring systems. 

Existing computer-based speech tutoring systems such as Baldi (Massaro 2012) 

are assistants used alongside a speech therapist, rather than standalone tutors 

performing the complete role of teaching. “It is important to point out that even 

the best computer program could never replace the therapist but only assist and 

facilitate his or her work. Computer-aided speech training is a complement to 

traditional methods and has a pedagogical value for the therapist who has a good 

knowledge of articulatory and acoustic phonetics as well as of the computer 

technique” (Öster 1996). This research therefore aimed to create a pronunciation 

assistant rather than a complete tutor. 

3.1 Teaching English as a second language for adults 

The chosen study was teaching English as a second language for adults. The 

talking head teaches a particular language feature; a suitable test case was 

identified in consultation with teachers and users to determine what would be 

beneficial to the students. The University of Sheffield’s English Language 

Teaching Centre (ELTC) runs courses for non-native speakers to improve their 

English; full-time courses to help students reach an appropriate level of 

proficiency in English for entry into university; and summer schools for students 

preparing to enter university. Tutors and students from the ELTC were consulted 

to research how technology could be of benefit in the teaching of English as a 

second language. Six members of staff and two students were interviewed for 
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their opinions on the use of technology in second language learning. The findings 

were that technology is not used a lot in teaching of pronunciation, as most tutors 

demonstrate speech live.  The possibilities for technology are with the routine 

work of repetition and drilling of vocabulary, which cannot be done to a great 

extent in class because it can become tedious and takes a lot of time. The ELTC 

currently use  software, Sky (SKY), which shows videos of lip movements for 

teaching pronunciation.  The tutors consulted thought that a 3D model with 

tongue movements and cross-section visualization would be useful; for example, 

when demonstrating glottal stops, it is difficult to explain how the vocal tract is 

used, but an image would make it easier. The tutors currently use charts of 

dissected heads, and they thought that anything that makes the demonstration 

seem more alive would be a good asset. One of their students concurred that it is 

helpful in class when the pronunciation tutor demonstrates tongue positions.  

The most common native languages of the students on the ELTC courses are 

Chinese and Saudi Arabian. The most common problems for the Chinese speakers 

are /r/ - /l/; for the Arabic speakers, /p/-/b/, voiced and unvoiced similar sounds. A 

tutor suggested that a suitable test case would use short sentences, which can be 

broken into sounds, so students can practise strong forms, weak forms and elision. 

This is because the way a word sounds in isolation differs from the way it is 

pronounced in connected speech.  For example, the strong form of a word, where 

it is stressed, is phonemically different from the weak form of the word, where it 

is unstressed. Moreover, elision, the omission of sounds often occurs 

unintentionally in natural connected speech. Therefore, it is important to train 

using sentences rather than just individual words, in order to teach natural-

sounding speech. 

Oster defines guidelines for clinical applications of computer-based speech 

training for children with hearing impairment (Öster 1996). Oster states that a 

visual speech training aid has a number of important requirements, which include 

immediate visual feedback of the child’s voice and articulation, and contrastive 

training, i.e. the correct model of the therapist and the deviant production of the 

child are shown simultaneously and compared with each other. These guidelines 

had implications for the design of this system; ways of providing immediate 
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visual feedback were investigated, while contrastive training could be achieved by 

adding functionality to play back a recording of the user’s production for 

comparison with a model speaker. 

3.2 Design of Talking Head 

In the design of the Talking Head, one issue to consider was whether to have a 

whole face or just mouth movement. This research explores what style of talking 

head is sufficient. For example, the system of Massaro et al allows internal 

articulatory movements to be viewed, and learning was improved, but this did not 

prove the effectiveness of showing internal articulatory movements for 

pronunciation training (Massaro et al. 2008). An English language tutor from the 

ELTC said that cross-section visualization of tongue positions would definitely be 

useful, because it is useful to have a practical demonstration of the way lip and 

tongue positions affect speech. Therefore it was decided that internal visualization 

would be included in the speech tutoring system (Chapter 4). 

The level of natural gestures required was also considered, for example, whether 

users would respond better to a moving talking head or a stationary talking head. 

Conversational signals could make the face appear less rigid, to increase its 

believability. However, the naturalness survey in Chapter 6 found that adding eye 

and head movements did not improve the perceived naturalness; so these 

movements were removed to make the animation less distracting for the users, so 

they could focus on the mouth movements. Psychological studies have found that 

eye-gaze patterns are concentrated on the “core features” of the face: the nose, the 

mouth, and especially the eyes (Walker-Smith et al. 1977).  If the eyes were 

hidden, it could help a learner to focus on the lips, but being able to see the whole 

face can aid intelligibility, as other parts of the face can emphasise the 

movements. It could be useful to over-accentuate important mouth movements by 

using caricatures rather than realistic models, so that differences between poses 

are more identifiable (Frowd et al. 2007). Other issues considered were whether to 

make the face a cartoon-like character or photographic representation. 

Caricaturizing some features, for example by making the mouth larger, could give 
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the head a more cartoon-like appearance to match the level of realism of its 

behaviour, which could make it more acceptable to users (Mori 1970).  

The chosen embodiment for the first talking head was based on an average female 

face from Facegen (Singular Inversions 2008) (Figure 3.2). The facial features of 

this face are the average of all races, in an effort to be inclusive of all the potential 

users of this application, as suggested by the language tutors surveyed. A hair 

model from Facegen was added. A female embodiment was selected as some 

studies have shown that female agents are more likely to positively influence 

learning (Baylor 2005). The talking head was named “Tara” (Talking Articulation 

Assistant). 

3.3 Graphical User Interface for Speech Tutoring Application 

The talking head, Tara (Talking Articulation Assistant), developed as described in 

Chapter 4, was integrated into a Graphical User Interface for a speech tutoring 

application, developed using the QT framework (QT 2009). The  speech tutoring 

application demonstrates how to pronounce sounds at phonetic, word and 

sentence level, displaying the appropriate mouth movements, and displays a 

transverse cross-section though the head, showing the movement of internal parts 

such as the tongue during speech (Figure 3.1). A camera controller was added to 

allow the user to rotate the head, and buttons were added to show a close-up of the 

talking head’s mouth in the front view.  

The speech tutoring application consists of 10 screens, shown in Appendix B: 

1: Introduction 

2: Listening Practice: Sounds 

3: Listening Practice: Words 

4: Listening Practice: Phrases 

5: Listening Test: Sounds 

6: Listening Test: Words 

7: Speaking Practice: Sounds 
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8: Speaking Practice: Words 

9: Speaking Practice: Phrases 

10: End of Lesson 

 

 

Figure 3.1: Screenshot of Speech Tutoring Application used in Tutoring Study 1 

 

Functionality was added to allow the user to record their voice and play back the 

recording. Simple speech recognition was implemented using Microsoft 5.1 SAPI 

and Microsoft English (U.S.) 6.1 Recogniser. To maximize the accuracy of the 

speech recognition, a forced-alignment approach was used, with a grammar to 

constraint the recognized vocabulary to the words within the application, and 

similar variants of these words to allow for variations in speakers’ accents e.g. 

“bat, pat, but, put”.  This allowed the speech recognition to detect when a speaker 

had said /b/ or /p/, so the talking head could give feedback when it detected the 

correct sound, for example, saying “Well done!” in response to a correct 

pronunciation. Figure 3.2 shows a diagram of the components of the speech 

tutoring system. 
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Figure 3.2: Diagram of Speech Tutoring Application used in Tutoring Study 1 
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4  Development of Viseme-Driven Talking Head 

This thesis considers two approaches for the development of talking heads: 

viseme-driven and data-driven speech animation. Viseme-driven techniques 

require a smaller amount of data to create key poses for articulators. A 

disadvantage of data-driven techniques is that they require a large corpus of 

captured data in order to produce realistic results, and for internal visualization, a 

corpus of internal articulatory data is required, but the benefit of a data-driven 

approach based on a real speaker’s data is that it can create a more accurate model 

of articulator movement. 

This chapter describes the two viseme-driven heads created. The first (THVN) is a 

generic, non-photorealistic head, while the second viseme-driven head (THVP) 

was given a more photorealistic appearance using photographs of a real speaker, 

and the modelling of the internal articulators was improved by the use of MRI 

data from the same speaker. The following chapter (Chapter 4) describes the 

acquisition of the corpus of MRI, EMA and video data, in collaboration with 

GIPSA-Lab, Grenoble, and the creation of a data-driven head (THD). 

4.1 Implementation of Viseme-Driven Talking Head (THVN) 

A viseme-driven, non-photorealistic talking head (THVN) was implemented in 

C++ on the Windows XP platform, using a Text-To-Speech synthesizer to 

generate audio to drive the animation (Figure 4.1). Face models were created 

using Facegen modelling software (Singular Inversions 2008), which provided 

face meshes for 15 distinct visemes (Figure 4.2), in addition to the neutral face 

and facial expressions. 
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Figure 4.1: Diagram of Speech Tutoring Application  

 

Figure 4.2: Facegen models for visemes (with names used by Facegen)  

4.2 Internal articulator models 

The tongue meshes provided by Facegen were designed to look plausible in the 

frontal external view, but these tongue shapes were not realistic when viewed 

mid-sagittally, so would be of limited validity in a tutoring application for 

demonstrating correct tongue positions during speech. Visemes for the tongue 

positions were initially adapted from Oscar Martinez Lazalde’s tongue models 

(Figure 4.3). However, the internal mouth visualization using Lazalde’s teeth and 

tongue models (Lazalde et al. 2008) required further development to display more 

accurate articulatory movements.  
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Figure 4.3: Tongue Visemes and Teeth Model (Lazalde et al. 2008)  

The Visible Human Project (EPFL 2009) female provides a dataset for tongue 

anatomy, but more data was needed for modelling tongue dynamics. Badin et al. 

(Badin et al. 2008) have used MRI, Electro-Magnetic Articulography and video 

data to produce articulatory models, and Cohen et al. (Cohen et al. 1998) and 

Engwall (Engwall 2003) have used MRI and electropalatography data in tongue 

modelling. The Artimate framework uses EMA data for articulatory animation 

synthesis, to provide animation of the tongue and teeth for a virtual character 

(Steiner et al. 2012). Existing vocal tract visualization tools include ArtiSynth 

(Fels et al. 2007) and Vocal Tract Lab (Birkholz et al. 2007). A corpus of 

articulatory data, MOCHA-TIMIT, has EMA, EPG and laryngograph data of 

teeth, tongue and velum (Wrench 1999). The “mngu0” corpus consists of MRI 

data of a single British English male speaker (Steiner et al. 2012). 

In order to achieve the most accurate articulatory animation, the speaker used as 

the source of data for the geometry of the articulatory organs should match the 

speaker used as the source of the motion capture data. This approach would 

capture the correct geometric degrees of freedom for modelling articulation, and 

also respect speaker-specific articulatory strategies (Elisei et al. 2001). For this 

project, a corpus of articulatory data of a British English female speaker was 

required, and since none of the existing corpora were suitable, a new corpus was 

created in collaboration with GIPSA-Lab, as described in Chapter 5.  
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4.2.1 MRI Tongue Contours  

The mid-sagittal contours (Figure 4.5) from MRI data (Figure 4.4) captured at 

GIPSA-Lab as described in Chapter 5 were used to remodel the tongue visemes of 

the viseme-driven talking head. For each vowel, the corresponding articulation 

was chosen, while for each consonant, the /e/ context, for example “epe”, was 

chosen because it was the vowel with the most central tongue position (Figure 

A.1). The vertices of each contour were imported into 3DS Max, and aligned with 

the head meshes (Figure 4.6).  The tongue mesh was remodelled, and deformed 

manually for each viseme, until its outline was as close a match as possible to the 

corresponding MRI contour in the mid-sagittal plane (Figures 4.7- 4.8). It now 

became clear that the visemes had to be reclassified; for example the tongue shape 

for /m/ was not the same as that for /b/-/p/; therefore a separate viseme was 

created using the tongue contour for /m/. There was now a total set of 20 visemes 

(Table 4.1).  

 

Figure 4.4: Mid-sagittal MRI scan for articulation of vowel /e/ 
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Figure 4.5: Mid-sagittal MRI contours for vowel /e/ 

 

Figure 4.6: Alignment of head meshes with mid-sagittal MRI contours for vowel /e/ 
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Figure 4.7: Comparing original tongue mesh with mid-sagittal MRI contour 

 

Figure 4.8: Modelling tongue mesh based on mid-sagittal MRI contour
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Index Sound IPA  Internal 

Viseme 

Index Sound IPA  Internal 

Viseme 

1 neutral 
(jaw 

closed) 

silent 

 

11 n n 

 

2 a (in 
calm) 

ɑː  

 

12 o (in 
fond) 

ɒ 

 

3 b, p  p 

 

13 oo (in 
fool) 

uː 

 

4 ch, j, 
sh 

ʃ 

 

14 r r 

 

5 d, t t 

 

15 th Ɵ   

 

6 ee (in 
beep) 

iː 

 

16 l l 

 

7 e (in 
less) 

e 

 

17 m m 

 

8 f, v f 

 

18 s s 

 

9 i (in 
sit) 

ɪ 

 

19 ng ŋ 

 

10 k, g k 

 

20 w  w 

 

Table 4.1: Reclassified Visemes 

 



Visual speech in technology-enhanced learning 

 

 Page 51 

4.3 Text-To-Speech Synthesis 

A text-to-speech (TTS) synthesis system was required to generate the auditory 

speech and phonetic labels to drive the animation. This was chosen from the 

existing systems available, which are described in the following sections. 

4.3.1 Festival Speech Synthesis System  

Festival provides a general framework for building speech synthesis systems. It 

offers full text to speech.  The system is written in C++ and uses the Edinburgh 

Speech Tools Library for low level architecture and has a Scheme-based 

command interpreter for control (CSTR 2008). MBROLA provides voices which 

can be used with Festival (MBROLA). Festival has been used in existing talking 

heads (Edge 2004), (Lazalde 2010). 

4.3.2 Microsoft Speech Application Programming Interface 

The Microsoft Speech API provides a TTS engine for Windows applications. The 

Microsoft voices available, such as “Microsoft Mary”, sounded too robotic, but 

the Microsoft Speech SDK 5.1 could be linked with MBROLA (MBROLA) for 

more natural-sounding voices.  

4.3.3 HTS Hidden Markov Model-based Speech Synthesis  

Model-based systems are an alternative to concatenative systems such as that used 

by Festival. An example of a HMM-based Speech Synthesis System is HTS (HTS 

2011). HTS can be more consistent but less natural sounding than concatenative 

synthesis. An HTS sample, compared with a concatenative Festival voice sample, 

was more intelligible, but sounded monotonic. HTS is easier to manipulate than 

concatenation; for example, with concatenation, the user does not have much 

control over prosody and pauses. With concatenation the user can only produce 

what is pre-recorded in the database, whereas in theory HTS can generate 

anything, because it uses statistical models rather than a large database. A 

drawback of HTS is that it is less real-time than concatenation, so it is less 

suitable for conversation; for example, it could take 2-3 seconds to convert text to 

speech, which would be a noticeable pause in a real-time interactive application. 
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4.3.4 Loquendo TTS 

Loquendo TTS is a commercially-available concatenative speech synthesis engine  

(Loquendo 2008). Loquendo TTS 7 was chosen for Text To Speech conversion, 

because compared to the non-commercial systems available at the time, such as 

Festival, Loquendo provided more natural-sounding voices, although it still has 

some artefacts.  

Most sentences were automatically generated by Loquendo with the correct 

pronunciation of segmentals, prosody, intonation and emphasis. There were some 

difficulties with the synthesis of some words; for example, the isolated word 

"age" could sound like “aitch”, and “dug” could sound like “duck”. The word 

stress sounded unusual in some contexts, e.g. "butter" in the sentence "She said 

the butter's bitter".  However, these issues could usually be overcome by using 

annotation to control how to pronounce these sounds. A major benefit was the 

option to use XSAMPA notation to specify exactly which phonetic units would be 

pronounced. This feature was important when used by the pronunciation-tutoring 

application to produce instructions on how to pronounce individual sounds.  

There were three British voices available, two female and one male. The voice 

chosen was “Kate”, a British female with an English Received Pronunciation (RP) 

accent, which was selected as the most suitable for the application. The C API of 

Loquendo TTS was used to integrate the TTS into the application. The callback 

mechanism of Loquendo TTS provided a means of outputting phoneme labels and 

durations which could be used directly by the application to produce speech-

synchronised animation for the talking head. 

4.4 Text to Visual Speech 

The application takes input as a text file containing the words to be spoken. This 

text can be annotated with Loquendo markup tags, to control voice parameters 

such as speed, prosody and pitch. Loquendo TTS generates speech, saves it to a 

.wav file, and outputs phonetic labels and durations. The outputted phonetic labels 

are in the XSAMPA format, a machine-readable format for phonetic 

transcriptions. Each phonetic label is mapped to a Facegen mesh for the 



Visual speech in technology-enhanced learning 

 

 Page 53 

corresponding viseme. When the animation is run, the appropriate viseme mesh is 

displayed for a particular frame and interpolation is used to create in-between 

frames. The quality of this interpolation process influences the quality of the 

resulting animation. A diagram of this process is shown in Figure 4.9. 

 

Figure 4.9:  Viseme-driven speech synchronised animation 

4.5 Interpolation 

Initially, linear interpolation was used to blend the meshes for a smoother 

transition between visemes. Linear interpolation is the simplest and fastest method 

of calculation, but sharp changes of gradient at each keyframe can be visually 

disturbing. An alternative method which was implemented is Catmull-Rom spline 

interpolation, which overcomes the gradient change problem and fits the 

keyframes more smoothly. A Catmull-Rom spline is a cubic curve which passes 

through all control points (Catmull et al. 1974). 

For a keyframe with value vi at time ti, where the following keyframe has a value 

vi+1 at time ti+1 (Figure 4.10), s is an interpolation factor in [0, 1) computed from 

the keyframe times (Equation 4.1): 

s = (t - ti) / (ti+1 - ti)         

 [Equation 4.1] 
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Figure 4.10: Spline Interpolation, adapted from (Dunlop 2009)  

Tangents are defined at the end points of the current curve segment: Ti at the start 

point, and Ti+1 at the end point. The interpolation of the curve can be expressed as 

follows: 

S =  

| s3 |

| s2 |

| s  |

| 1  | 

 H =  

|  2 -2  1  1  |

| -3  3 -2 -1  |

|  0  0  1  0  |

|  1  0  0  0   | 

 C =  

| vi    |

| vi+1  |

| T0i   |

| T1i+1 | 

 

The value vs of the curve at position s can be calculated using the formula given in 

Equation 4.2: 

vs = ST H C          

 [Equation 4.2] 

A standard Catmull-Rom spline assumes that the keyframe values are evenly 

spaced in time, and calculates the tangents T0
i and T1

i as centred finite differences 

of the adjacent keyframes (Equation 4.3): 

2

  ) v- (v
  T 1-i1i

i
+

=         

 [Equation 4.3] 

In order to allow for non-uniform spacing of keyframes, additional scaling values 

are applied to compensate for irregular keyframe timing, and the resultant 

tangents are given by Equations 4.4 and 4.5, where the scaling factors are given 

by Equations 4.6 and 4.7 respectively: 
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T
0

i = F -
i Ti         

 [Equation 4.4] 

T
1
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 [Equation 4.8] 

The tangents of the segments at the extreme ends of the spline are undefined, and 

are given a value of 0 (Equation 4.8) (Nokia Corporation 2005), (Watt et al. 

1992). 

4.6 Principal Component Analysis   

In order to reduce the computation time for the animation, Principal Component 

Analysis (PCA) was carried out. PCA reduces the dimensionality of the data by 

transforming it into uncorrelated variables, called principal components, which 

capture the maximal variation in the data. 

Any element, v, in the original dataset can be represented using Equation 4.9, 

where µ is the mean vector, ei is the ith principal component, and the bi are weights 

uniquely defining v.  

i

s

i

bev ∑
=

 + =

1
iµ  

Equation 4.9 
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The ei principal components can be calculated by finding the eigenvectors of the 

covariance matrix for the observed dataset, with the corresponding eigenvalues 

representing the variance, si, accounted for by each component. Components with 

low eigenvalues represent only small variations in the dataset, and may be culled 

with little loss of accuracy in the model (Edge 2004). 

Code by Lazalde (Lazalde et al. 2008) was used to calculate the PCA and 

reconstruction functions. The PCA code was run in Matlab, separately for the 

internal vertices and external vertices, to create Principal Components (PCs) for 

the final set of 20 visemes. The number of PCs was set to 7 for the internal 

meshes and 7 for the external meshes, giving a total of 14 PCs, which showed 

little noticeable loss of accuracy compared to using the maximum 20 PCs. The PC 

data was loaded into the talking head application, where the dominance functions 

were applied to the PCs.  These PCs were then reconstructed into meshes during 

the generation of frames for animation. Using PCA reduced the computation time, 

because the dominance functions were being applied to only a small number of 

PCs instead of to every vertex of a mesh of 22158 vertices (Figure 4.11). The 

application of PCA involved a trade-off between minimising the number of PCs to 

reduce computation time and minimising loss of data, which could cause loss of 

subtle but salient details in the lip visemes. Separate PCA was run for the external 

and internal parts, which maintained separation of the Principal Components,  and 

the mesh could be segmented further to apply local PCA to different facial 

regions, which would simplify each feature space, to give better PCA 

approximations. 
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Figure 4.11: Mesh for Talking Head (THVN) 

4.7 Coarticulation 

The Cohen and Massaro model for coarticulation was implemented, using a 

dominance function to represent the influence over time that a viseme has on a 

speech utterance (Cohen et al. 1993). Typically the influence is greatest at the 

centre of the viseme and degrades with distance from the viseme centre (Figure 

4.12). The shape of each dominance function is different according to which 

viseme it represents, and what aspect of the face is being controlled (e.g. lip 

width, jaw rotation.)  Each speech segment has one dominance function for each 

articulator. Articulatory dominance functions can differ in time offset, duration, 

and magnitude; different time offsets can capture differences in voicing, while the 

magnitude can represent the relative importance of a characteristic for a segment 

(Massaro 1998).  
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Figure 4.12: Cohen-Massaro Dominance Functions for the word “stew”, and 

corresponding lip protusion parameter values, reproduced with permission (Massaro 

1998)  

4.7.1 Tuning visual speech model parameters by observation of video 

 The coefficients of the dominance functions were set by observation, comparing 

the synthesized visual speech in the external frontal view against video recordings 

of a real person saying the same words, until the synthesized speech looked like 

the recorded speech. The word lists used for tuning included each sound in initial 

and final positions, e.g. for the sound /b/, the words “bad bed bud bib bob ebb” 

were used. The dominance functions of each segment were blended together to 

generate a speech trajectory. 

For example, in the word "stew", the /s/ and /t/ segments have low dominance 

compared to /u/ (Figure 4.12), and the low anticipatory rate of /u/ causes its 

domination to extend far forward in time. The result is that the lip protrusion 

extends forward in time from the vowel (Figure 4.13). The animation frames were 

compared against the video frames (Figure 4.13), and the coefficients were tuned 

to give the closest match that could be found by observation. Since manually 
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tuning was a time-consuming process, the number of words that could be used 

was limited, and not all contexts could be included. The words chosen for tuning 

included each consonant viseme in initial and final positions (Table 4.2). 

 

Viseme Words 

b m p bad bed bib bob men put  

k g cat could kick great again  

d s t dad did said tip tongue it 

f v face fall if off of van have  

n h nan and on had how hello 

r l rat red rare are lips loll all 

ch j sh show she jam judge chin  

th thin teeth mouth the then  

Table 4.2: Example words used in tuning visual speech 

 

 

Figure 4.13: Animation and Video frames for “stew” 



Visual speech in technology-enhanced learning 

 

 Page 60 

4.8 Synchronisation between audio and video 

Synchronisation between audio and video was achieved by using the audio 

playback loop to determine which frame to display at each time step. The 

playback offset time is updated by the audio device every 25 milliseconds, so the 

maximum possible frame rate for playback is 40 FPS. A supersampling technique 

was employed to smooth the animation. Frames were generated at double the 

frame rate (80 FPS), averaged in pairs, and the averaged frames were played at 40 

FPS.  

The frame rate of 40 FPS did not always give smooth animation, so a smoothing 

filter was applied to the animation. The method used for smoothing the series xt 

was to calculate a weighted moving average by first choosing a set of weighting 

factors (Equation 4.10): 

[w1, w2, …, wk] such that ∑

=

=
k

n

wn

1
1 

          Equation 4.10 

These weights are used to calculate the smoothed statistics st (Equation 4.11): 

11211 ...

1
+−−−+

+++

=

== ∑ ktkttntnt xwxwxw

k

n

xws  

Equation 4.11 

Two filters were tried: a three-value filter with the weights [1, 2, 1], and a five-

value filter with the weights [1, 3, 4, 3, 1]. The five-value filter was found to give 

smoother animation than the three-value filter, and did not cause perceptible 

blurring between speech segments. 

A graph display window was implemented to display vertex values of animation 

frames over time. This was used to view the smoothness of the trajectories. Figure 

4.14 shows an example for one vertex, at the centre of the bottom lip edge. The 

graph plots the vertex coordinates against time (in milliseconds), creating three 

trajectories: Z at the top, X below, and Y at the bottom. 
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Figure 4.14: Trajectory for sentence “Hello, how are you?” 

4.9 Expression modelling 

Facial expressions, such as blinking, eye movements and smiling, were modelled 

using Facegen morph targets (Figure 4.12). Head movements, eye movements, 

and blinking were displayed when the head was idle, with sequences based on 

Pelachaud’s timings (Pelachaud 1991).  

 

 

Figure 4.12: Facegen meshes for facial expressions 

4.9.1 Photo-based viseme-driven talking head (THVP) 

A second viseme-driven head (THVP) was created with a more photo-realistic 

external appearance than the previous viseme-driven head (THVN). Facegen was 

used with three photographs from the video corpus, taken from three angles 

(Figure 4.13), with feature points including the mouth corners, nose tip and chin 

marked on each photograph, to create a head based on the photographs (Figure 

4.14). Internal visemes (Figure 4.15) were created as described in Section 4.2.1. 

Audio recordings of the speaker, taken from the video corpus, replaced the 

synthetic speech. 
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Figure 4.13: Photos used to create photo-based viseme-driven head 

 

Figure 4.14: Photo-based viseme-driven head (THVP) 

 

Figure 4.15: Internal view of photo-based viseme-driven head (THVP) 
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5 Development of Data-Driven Talking Head 

At the "Département Parole et Cognition", GIPSA-Lab, Grenoble, a collaborative 

project was undertaken to acquire corpuses of speech using various articulatory 

measurement methods, and to build a set of articulatory models for a British 

English talking head. The process involved capturing magnetic-resonance 

imaging (MRI) scans to create static models of internal articulators during speech, 

electromagnetic articulography (EMA) recording to capture dynamic motion of 

the articulators, and 3D video of the face, tracked on multiple cameras, to create a 

model of the speaker’s head and a corpus of audio-visual speech of English 

speech.  

5.1 Data collection 

The first data capture session involved three hours of 2D MRI recording, to create 

mid-sagittal scans (Figure 5.1) of the speaker’s articulation of a set of vowel and 

consonant contexts, to be used to create a tongue model in the mid-sagittal plane. 

Next, in a six-hour session of video capture on two cameras, three hours of video 

data were recorded, consisting of three views of the speaker’s head with facial 

markers for motion tracking. The video corpus included vowel and consonant 

sequences, English words and sentences, and a set of facial expressions and neck 

movements. Four hours were spent recording EMA data, with magnetic coils for 

motion tracking attached to the speaker’s tongue, teeth and nose, with the same 

corpus content as for video. Finally a 3D MRI corpus was recorded in a two-hour 

session, creating a set of slices through the whole of the head, for a set of vowel 

and consonant articulations. 

5.1.1 2D MRI  

2D MRI data was captured on a 3 Tesla MRI scanner, to be used to create a 

tongue model in the mid-sagittal plane. A corpus was designed to cover the 

maximal range of English articulations that the speaker could utter. The corpus 

consisted of vowels and vowel-consonant-vowel combinations (VCVs).  The 

sounds needed to be sustained for eight seconds of MRI capture, so long vowel 



Visual speech in technology-enhanced learning 

 

 Page 64 

sounds were chosen for the VCVs because they were more sustainable than short 

vowels. Since the MRI images would not show differences in voicing, only 

unvoiced consonants were recorded. 

12 vowels were chosen, to cover most of the long vowel sounds in the English 

language. These were combined with the 12 unvoiced consonants of the English 

language, to create 72 articulations. 

• Vowels: iː in beep; ɑː in calm; ɔː in cork; uː in fool; ɜː in burn; ɪ in sit; e in 

less; æ in apple; ɒ in fond; ʌ in come; Ʊ in full; ǝ in above 

• VCVs (6 vowels * 12 consonants = 72 articulations)  

[ɑː e iː uː ɔː ɜː] * [p t k f s Ɵ ʃ l r m n ŋ] 

E.g.  ɑːpɑː ɑːtɑː ɑːkɑː ɑːfɑː ɑːƟɑː  ɑːsɑː ɑːʃɑː ɑːlɑː ɑːrɑː  ɑːmɑː ɑːnɑː ɑːŋɑː 

Reference scans were also taken with the incisors in contact, and a dental cast of 

the speaker’s teeth was also scanned in the mid-sagittal plane, to be used to help 

model the teeth. 

 

Figure 5.1: MRI scan for articulation of vowel /e/ 
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5.1.2 Video Capture on Three Cameras 

The video capture session used three cameras to provide three different views of 

the speaker. The subject's face was marked with up to 168 coloured beads glued to 

the mouth, jaw, nose, cheek, neck and eyebrow areas. First a small subset of the 

video corpus was recorded with a small number of facial markers (Figure 5.2). 

Then a larger corpus was recorded with the full set of markers (Figure 5.3). The 

corpus with the full set of markers would look less natural, but was mandatory to 

recover a full 3D surface, and would lead to more accurate visual speech 

synthesis. 

The corpus for video consisted of the following: 

• MOCHA TIMIT corpus sentences (Wrench 1999)  

• VCVs: as for MRI, plus voiced consonants (6 x 25 = 150) 

[ɑː e iː uː ɔː ɜː] x [p b t d k g f v Ɵ  ð s z ʃ ʤ ʧ ʒ l r m n ŋ  w j h x] 

• Phrases specifically needed for the tutoring application (Appendix C) 

• Modified Rhyme Test words  (Meyer Sound 2010) (Appendix D) 

The dynamic corpus with the small set of 40 markers included the following:  

• Small set of vowels: ɑː in calm, iiː in beep, uuː (u) in fool, ɪ in sit, e in less, ɒ 

in fond, ǝ  in above 

• Small set of VCVs, for the most extreme vowel articulations: [ɑː iː uː]  *  [p b 

t k f   Ɵ  s  ʃ  l r m n]  

• Phrases specifically needed for tutoring application (48 phrases) 

• MOCHA-TIMIT subset (Appendix C) 

• Modified Rhyme Test words (50 tuples) (Appendix D) 

The dynamic corpus with the full set of 168 markers included the following: 

• 48 phrases for tutoring application (Appendix C) 

• MOCHA-TIMIT corpus (460 sentences) 

• Modified Rhyme Test words (50 tuples) (Appendix D) 
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• A full set of  72 VCVs 

• A set of facial expressions: neutral, closed smile, open smile, blink, look up, 

look down, look left, look right 

• A set of neck movements: turn left/right, up/down, tilt left/right, 

forward/backward, shift left/right, lift/release 

 

Figure 5.2: Video capture with small set of 40 facial markers 

 

Figure 5.3: Video capture with full set of 168 facial markers 

 

5.1.3 EMA corpus 

For EMA recording, 6 coils were attached to the speaker’s articulators (Figure 

5.4): 

1. Reference point on bridge of nose, at the point which does not move during 

speech 
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2. Upper incisor 

3. Lower incisor  

4. 0.5 cm from tip of tongue 

5. Tongue blade (middle of tongue) 

6. Tongue dorsum (back of tongue)  

The corpus for EMA was the same as for the video corpus. While the EMA was 

recorded, video was also recorded with a small set of markers on the facial 

articulators. 

 

 

Figure 5.4: EMA recording 
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5.1.4 3D MRI corpus 

For 3D MRI capture, first it was necessary to find machine settings that would 

give images of sufficient quality within a reasonable recording time. Neutral-pose 

3D MRI images taken at various settings were viewed using ImageJ imaging 

software, to find the setting which produced the best quality images. Eventually a 

3D MRI corpus was recorded with articulations sustained for 13.6 seconds. The 

corpus was a subset of the 2D MRI corpus, with VCVs for the most extreme 

vowel articulations.  

• Vowels: iː (i) in beep, ɑː (a) in calm, ɔː in cork, uː in fool, ɜː in burn, ɪ in sit, e 

in less, æ in apple, ɒ in fond, ʌ  in come, �  in full, � (q) in above 

• VCVs: [ɑː iː uː] * [p t k f   � s  ʃ  l r m n ng] 

5.2 Internal Articulatory Modelling 

The captured data was processed in order to build models at GIPSA-Lab. The 

contours of the rigid bony structures involved in the vocal tract (jaw, hard palate, 

nasal passages, nostrils and sinuses) and the deformable structures (tongue, 

velum, nasopharyngeal wall) were manually registered in the 2D mid-sagittal 

MRI images, using a program in Matlab to trace the contours as planar B-spline 

curves controlled by a limited number of points (Figures 5.5 - 5.6). This MRI 

data, combined with the EMA data, was used by GIPSA-Lab to make a first data-

driven tongue model in the mid-sagittal plane, using a linear modelling approach, 

involving guided PCA, where a priori knowledge was introduced during the 

linear decomposition (Badin et al. 2006). A first inversion model was created to 

map the EMA data to articulatory parameters, and then to 2D contours. A 

limitation of this model was that the back of the tongue was not realistically 

modelled, due to the EMA coil being too far forward. Further work would be 

needed to process the 3D MRI data, in order to make a full 3D tongue model, and 

visualize this in a 3D talking head (Badin et al. 2008). 
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Figure 5.5: MRI contour tracing 

 

Figure 5.6: MRI contours 

5.3 External Articulatory Modelling 

The audio and video recordings were annotated to identify the vowel and 

consonant articulations, and the facial marker data was processed in order to 

extract motion sequences. These were used by GIPSA-Lab to create a data-driven 

model of the external articulators (Badin et al. 2002) (Figure 5.8). The 3D 
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movements of facial points were acquired using multicamera photogrammetry 

(Elisei et al. 2001) (Figure 5.7). A shape model was built using guided PCA 

where a priori knowledge was introduced during the linear decomposition. This 

allowed the extraction of six components related to speech movements: The first 

controlled the opening/closing movement of the jaw;  three parameters related to 

the lips: one controlled a protrusion/spreading movement of both; another 

controlled the upper lip raising/lowering movement; another controlled the lower 

lip lowering/raising; the second jaw parameter was associated with a horizontal 

forward/backward movement of the jaw; and the sixth parameter was related to 

the vertical movements of the larynx (Bailly et al. 2009). 

The shape model of the facial movements was then used to guide a multi-view 

tracker of the beads using correlation-based techniques. The initial shape model 

helped to constrain the search space within regions of interest for each vertex of 

the facial mesh. Automatic tracking of the beads was combined with 

semiautomatic correction (Bailly et al. 2006). Visemes were selected from the 

video corpus, and the most salient frames were precisely marked by hand, adding 

any untracked beads, for example, beads at the sides of the head which could 

disappear from some of the views. The 3D data was supplemented by lip 

geometry that was acquired by semi-automatically fitting a parametric lip model 

to the speaker-specific anatomy and articulation (Bailly et al. 2009).  

To achieve a photorealistic appearance, an appearance model was used for 

computing the colour of each pixel of the face. Selected images of all 

configurations used for estimating the shape model were warped to a neutral 

shape, to give shape-free images (Bérar et al. 2003). Linear regression was used to 

relate the RGB colours of each pixel of the shape-free images to shape 

parameters. The texture model computes texture maps, which are extracted and 

blended according to articulatory parameters, so the RGB values of each pixel 

vary with the values of the articulatory parameters. The texture maps are 

computed in three steps. First, the shape model is used to track articulations 

marked by a small subset of beads (Section 5.1.2), for one target image per 

allophone. Next, shape-free images are extracted by warping the selected images 

to a neutral shape. The third step is the linear regression of the RGB values of all 
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visible pixels of the shape-free images, by the values of articulatory parameters 

obtained in the first step. The speaker-specific shape and appearance models are 

thus driven by the same articulatory parameters (Bailly et al. 2009). The resulting 

talking head is a data-driven facial clone of the speaker (Figure 5.9). In the 

resulting animation frames, some black areas were visible on the lower teeth when 

the mouth was open, so this could affect the realism of some animations. This was 

due to these areas appearing and disappearing with the opening and closing of the 

mouth. To improve the appearance of the inner mouth, precise prediction of the 

jaw position and tongue position would be required in order to capture changes of 

appearance due to speech articulation (Bailly et al. 2009). 

 

Figure 5.7: Facial geometric mesh 

 

Figure 5.8: Articulatory Model  
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Figure 5.9: Data-driven talking head  
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6  Evaluation of Quality of Visual Speech 

The three talking heads described in Chapters 4 and 5 needed to be evaluated to 

assess the quality of the   visual speech, to ensure that it was suitable for the task 

of pronunciation training. This chapter describes how the visual speech was 

evaluated using subjective user tests for intelligibility and naturalness (Dey et al. 

2010a).  

6.1 Evaluation Approaches  

There are currently no standardised evaluation procedures for visual speech. 

Approaches can be objective, using algorithmic metrics, or subjective, using 

human participants. A curve of the motion of a point on an animated face can be 

objectively compared against a curve obtained from motion capture of a real 

speaker, using a dynamic time warping algorithm for measuring similarity 

(Salvador et al. 2004).  

One subjective method is a Turing test, where viewers are asked whether an 

animation is real or synthetic, but this  test can only be applied to video-realistic 

talking heads (Theobald et al. 2008). A possible solution is to place markers on 

both the real face and the synthetic face, and show the viewers the markers only, 

so that they will compare the motion and not the rendering. Perceptual tests were 

developed by Cosker (Cosker et al. 2005), who played animations dubbed with an 

audio word different from that of the video, and asked participants which word 

they heard. This tested whether the lip-synchronisation was effective enough to 

confuse the response, due to the “McGurk Effect” (McGurk et al. 1976). This 

approach can be used for non video-realistic talking heads, but it only uses single 

words so it cannot test coarticulation effects, although it could be extended to use 

sentences. Ouni et al. (Ouni et al. 2007) evaluated the intelligibility of the Baldi 

talking head by using a visual contribution metric (Sumby et al. 1954) to measure 

the benefit to intelligibility provided by the synthetic animated face relative to the 

benefit provided by a natural face. This method quantified that Baldi was 93% as 

accurate as a real face. Ouni et al also found that for a natural face, the lips alone 
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were almost as effective as the full face in contributing to intelligibility, but for 

the synthetic face the lips alone were much less effective for intelligibility. 

6.2 Intelligibility Test 1 (THVN): Modified Rhyme Test 

The intelligibility of the viseme-driven non-photorealistic talking head (THVN) 

was evaluated subjectively using a Modified Rhyme Test (MRT), an ANSI 

standard test for statistical intelligibility testing (Meyer Sound 2010). The MRT 

approach was previously used by Fagel to evaluate the intelligibility of a talking 

head (Fagel 2008). Fagel found the word recognition rate to be 27% for audio 

alone, and 50% for audiovisual speech.  The MRT used 50 six-word lists of 

monosyllabic English words, and the words in each list differed only in the initial 

or final consonant sound, e.g. "shop, mop, cop, top, hop, pop" (Appendix D).  

32 participants with normal hearing and vision were tested individually in an 

acoustically-isolated booth, with visual images presented on a 15 inch computer 

screen and acoustic stimuli presented binaurally over headphones. In each trial, 

participants were shown a six-word list and asked to identify which word was 

spoken. Responses were scored as the number of words identified correctly. 20 

words were presented for each of 3 conditions:  

• degraded synthetic audio speech alone 

• an external view of the talking head (THVN) with degraded synthetic audio 

speech 

• video of a real person with degraded audio 

Different words were used for the 3 different conditions, in order to minimize 

learning effects (Appendix D). In order to minimize sequence effects, the order of 

presentation was randomized. The audio was degraded by adding speech-shaped 

noise to the acoustic signal. First, the long-term average speech spectrum 

(LTASS) of the speech waveform was computed, and from this a finite impulse 

response (FIR) filter was constructed. Gaussian white noise was generated and 

convolved with the filter. The resulting speech-shaped noise was then added to the 

original speech (Assmann 2010). Speech shaped-noise has a similar effect to the 

masking produced by multiple speakers speaking at the same time, and is more 
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suitable than white noise for speech perception tests, as it simulates real life 

situations. 

The noise levels were chosen within a range in which the words were barely 

recognizable, after preliminary tests on one listener; below -20 dB word 

recognition for audio alone fell to chance levels (16%), while above -16 dB word 

recognition for natural video became close to optimal. For 16 participants, the 

SNR was set to -18 dB. For the remaining 16 participants, all words for all three 

conditions were presented at an SNR of -20 dB, and then repeated at -16 dB. 

6.2.1 Results of Intelligibility Experiment 1 

Visualization improved the intelligibility of the speech at all three SNRs (Table 

6.1 and Figure 6.1). The word recognition rate was higher for the audiovisual 

heads than for audio alone, and higher for the natural head than the synthetic head. 

ANOVA over all conditions shows that the gain in intelligibility due to 

visualization is highly significant (p = 0.01) at each SNR. In post-hoc t-tests, at 

SNR -16 dB, the natural head was significantly more intelligible than audio alone 

(p = 0.1).  Post-hoc T-tests (p = 0.1) found no other significant differences 

between any other conditions at any SNR. 

In Table 6.1, Table 6.2 and Figure 6.1 there are two groups of participants, with a 

different group for SNR -18 dB, which explains the slightly lower intelligibility 

for the synthetic head at SNR -18 dB, compared to SNR -20 dB. 

At the lowest SNR the recognition rate for natural video was only slightly higher 

than the synthetic head. At SNR -20 dB the improvement in word recognition due 

to the visualization in the audiovisual synthetic head, calculated using a 

normalized measure (Sumby et al. 1954), was 39.5%, while the improvement due 

to the natural head was 39.9% (Table 6.2). The visual contribution of the synthetic 

face relative to the natural face was not invariant as found by (Ouni et al. 2007), 

but was higher for the lower SNR of -20 dB, compared to -16 dB. The benefit of 

visual speech relative to audio alone was higher for the lower SNR (-20 dB, 

compared to -16 dB), a finding consistent with that of Benoit (Benoît et al. 1998), 

who found that the poorer the auditory scores the greater the benefit of lip-
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reading. At a lower SNR the audio alone is less intelligible so listeners rely more 

on lip movements to decide which word was said.  

 

Mean % words correctly identified 

audio alone Synthetic THVN natural SNR (dB) 

30.3 57.8 58.1 -20 

47.8 55.6 63.4 -18 

56.9 67.2 86.6 -16 

Table 6.1: Intelligibility Test 1: Mean % words correctly identified 

Visual contribution to intelligibility (%) 

Synthetic THVN natural SNR (dB) 

39.5 39.9 -20 

15.0 29.9 -18 

23.9 68.8 -16 

Table 6.2: Intelligibility Test 1: Visual contribution to intelligibility 

 

Figure 6.1: Intelligibility scores. The error bars denote the standard deviation. 
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The confusion matrix for the synthetic head THVN (Figure 6.2) compares the 

visemes presented against the visemes they were perceived as by the participants. 

The number of identifications was summed over all participants, for all words 

spoken by the synthetic talking head, at all SNRs. Each sum was divided by the 

number of occurrences of the animated viseme, to give a percentage of 

identifications of that viseme. The area of each circle represents the percentage of 

identifications of that viseme. For example, viseme 6 (/r/-/l/), was mistaken for 

viseme 5 (/h/-/n/-/ng/), as often as it was identified correctly. The two visemes 

look similar from the outside, and the tongue modelling may have been 

insufficiently accurate to allow discrimination between visemes 5 and 6. Also, in a 

real speaker there is articulatory movement at the base of the tongue which is 

visible below the jaw when pronouncing /n/, which was not modelled in the 

synthetic head. On the whole, the matrix shows that the correct classifications (on 

the diagonal) scored the highest, so overall the visemes were identifiable. 

For the natural head, the confusion matrix shows that the visemes /h/-/n/-/ng/ and 

/g/-/k/ were less well identified than other visemes (Figure 6.3). This may be 

because the tongue movements that distinguish these visemes from others were 

less visible from the external view. This indicates a limitation of the viseme 

classification: “there are some phones that do not require the use of the visual 

articulators, and so phonemes such as /k/ or /g/, which are velar consonants 

articulated at the back of the soft palate, are unlikely to have an associated 

viseme” (Hilder et al. 2010). 
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Figure 6.2: Confusion Matrix for Synthetic Talking Head 

 

Figure 6.3: Confusion Matrix for Natural Head 

Figure 6.4 shows the confusion matrix of the synthetic head minus that of the 

natural head. This highlights the differences between the two heads and shows the 

weaknesses of the synthesised model. For example, visemes 5 (/h/-/n/-/ng/) and 6 

(/r/-/l/) had high confusions compared with the natural head, and could be more 

accurately modelled. 
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Figure 6.4: Difference between Synthetic Head and Natural Head 

6.3 Subjective test for naturalness (THVN) 

The naturalness of the talking head THVN was evaluated using subjective quality 

assessment (Theobald et al. 2008). Users were asked to rate the naturalness of the 

visual speech along a five point Likert scale  (Likert 1932). After undertaking the 

intelligibility test at an SNR of -18 dB, 16 participants were presented with the 

synthetic talking head, for 20 isolated words with no audio degradation, and were 

asked to rate the naturalness of the visual speech along a 5 point scale, with 1 for 

"very unnatural" and 5 for "very natural".  

The naturalness scores for the synthetic talking head were, on average across all 

words and all participants, 3.5 on a scale of 1 to 5 (s.d. 1.0), so the visual speech 

was rated as “moderately natural” overall, but for some sounds the animation 

could be more realistic (Figure 6.5). The word which scored lowest, "duck”, has 

little external mouth movement compared to "hop", which scored highest, so this 

may be a factor in the ratings for the animation.  
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Figure 6.5: Naturalness Ratings 
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6.4 Subjective Evaluations of Naturalness of Talking Heads 

THVN and THD 

Participants were asked to rate the naturalness of talking heads THVN and THD 

in two online surveys. The first survey was a pilot on a subset of conditions, and 

the second survey used the full range of conditions. The same 2 sentences from 

the MOCHA corpus (Wrench 1999), were used for each, chosen to cover a range 

of sounds:  

1. “Birthday parties have cupcakes and ice-cream.”  

2. “He will allow a rare lie.” 

 

The first sentence covered /b/, /p/ and /k/ visemes while the second included /r/ 

and /l/. The first sentence had 10 syllables, while the second sentence had 7 

syllables. These differences may have had effect on the perceived naturalness, so 

the two sentences were considered separately in the analysis. 

6.4.1 Online Survey 1: Pilot Evaluation of Naturalness 

For the first survey on 6 participants, four conditions were presented for each 

sentence: 

1. The viseme-driven non-photo-based head without eye and head movements 

(rigid viseme-driven head), with a synthetic voice (THVN) 

2. The viseme-driven non-photo-based head with eye and head movements 

(expressive viseme-driven head) with a synthetic voice (THVN + expression) 

3. The data-driven head, with a natural voice (THD) 

4. Natural video, with a natural voice 

These were the original audiovisual conditions of the talking heads when created; 

i.e. the viseme-driven heads were presented with a synthetic voice, while the data-

driven head and the natural video were presented with the natural voice. The 

synthetic voice was the “Kate” voice from Loquendo TTS (Section 4.3.4), while 

the natural voice recordings were taken from the video corpus (Chapter 5). The 

eye and head movements were created using Facegen morph targets (Section 4.8). 
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Participants were asked to rate the naturalness of the lip movements on a Likert 

scale of 1-5, with 5 being the most natural.  

A formula was used to convert each Likert score to a percentage, which treated 

each Likert value as the mid-range value in the possible range of corresponding 

percentage values (Equation 6.1).  

 

100   
scalelikert   2

1
- 

 scalelikert 

uelikert val
 percentage likert to ×

×
=  

Equation 6.1 

 

Table 6.3 and Figure 6.6 show that the viseme-driven talking head (THVN) was 

perceived as the least natural, and the eye blinks and head movements did not 

improve its perceived realism. The data-driven head was perceived as more 

natural than the viseme-driven conditions. The natural video was perceived as the 

most natural of all conditions.  

The second sentence was rated as slightly more natural than the first, in all 

conditions except natural video. It is possible that the different visemes had an 

effect, since the first sentence had /b/, /p/ and /k/ visemes and the second sentence 

had /r/ and /l/ visemes.  However, although the MRT intelligibility experiment had 

found /r/ and /l/ visemes to be less identifiable for the viseme-driven THVN head 

(Figure 6.4), this did not seem to affect the perceived naturalness here for the 

second sentence. The first sentence had 10 syllables, while the second sentence 

had 7 syllables, so the longer sentence length may have had an effect, because 

users had more time to notice flaws in the modelling so they perceived the longer 

sentence as less natural. For the expressive talking head (THVN + expression), 

both sentences were presented with a blink at the start and the end of the sentence, 

so for the first sentence there was a longer gap between blinks, which may have 

been perceived as less natural. 
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Visual condition Auditory 
condition 

Mean 
response for 

each 
sentence 

Mean for the 
pair of 

sentences 

Likert score 
to Percentage 

(%) 

3.2 60 rigid viseme-
driven head 

(THVN) 

synthetic 
voice   

3.8 

3.5 

 

3 58  expressive 
viseme-driven 
head (THVN + 

expression) 

synthetic 
voice   

3.8 

3.4 

 

3.7 65 data-driven head 
(THD) 

natural 
voice 3.8 

3.75 

 

4.8 85 natural video  natural 
voice 4.7 

4.75 

 

Table 6.3: Results of Online Naturalness Survey 1 
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Figure 6.6: Naturalness Ratings in Online Survey 1 
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6.4.2 Online Survey 2: Further Evaluation of Naturalness 

For the second survey on 10 participants, eight conditions were presented for each 

sentence, which included all the audiovisual combinations, i.e. the viseme-driven 

heads (THVN) were aligned with the natural voice, and the data-driven head 

(THD) and the natural video were aligned with the synthetic voice. For this survey 

the Likert scale used was 1-7, to give more precision than a five-point scale.  

In this survey, the mean responses showed that the first sentence was rated as 

more natural than the second in some conditions, such as THVN, but the second 

sentence was rated as more natural for other conditions, such as THD. This 

suggests that the differences between the two sentences, such as the number of 

syllables, did not have much effect on the perceived naturalness.  The modal 

responses showed that the added expressivity slightly improved the naturalness of 

the viseme-driven head in some conditions, i.e. for the second sentence with the 

synthetic voice, and the first sentence with the natural voice (Table 6.4 and Figure 

6.7). However, the mean results were lower for the expressive head. 
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Figure 6.7: Naturalness Ratings in Online Survey 2 
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 Visual 
condition 

Auditory 
condition  

Modal 
Likert 
response 
for each 
sentence 

Mean 
Likert 
response 
for each 
sentence 

Mean 
Likert 
response 
for the pair 
of 
sentences 

Mean 
Likert 
score to 
Percentage 
(%) 

2, 4 3.8 Rigid viseme-
driven head 
(THVN) 

synthetic 
voice   

2 2.9 

3.35 40.7 

3 4.1 Rigid viseme-
driven head 
(THVN) 

natural 
voice  

2, 4 3.6 

3.85  47.9 

3 3.2  Expressive 
viseme-driven 
head (THVN + 
expression)  

synthetic 
voice  

3 3.2 

3.2  38.6 

4 4.1 Expressive 
viseme-driven 
head (THVN + 
expression)  

natural 
voice 

2 3.5 

3.8 47.1 

3 3.8 Data-driven 
head (THD) 

synthetic 
voice  5 4.1 

3.95  49.3 

3, 5 4.7 Data-driven 
head (THD) 

natural 
voice 

4, 6 4.8 

4.75  60.7 

7 5.7 Natural video synthetic 
voice  6 4.9 

5.3 68.6 

7 6.2 Natural video natural 
voice  7 6 

6.1  80 

Table 6.4: Results of Online Naturalness Survey 2 

The results of both surveys showed that natural speech was always perceived as 

more realistic than synthetic speech, for each visual condition. The real video with 

the natural voice was perceived as the most natural of all conditions. Contrary to 

expectation, the eye blinks and head movements did not improve the perceived 

realism of the viseme-driven talking head, which indicates that the modelling of 

the movements could be improved. The data-driven head was always perceived as 

more natural than the any of the viseme-driven conditions. A limitation of this 

comparison is that this viseme-driven head THVN was obviously not 

photorealistic, while the data-driven head THD was based on the same images as 
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the real video, so this would be likely to influence ratings, regardless of the 

quality of the speech animation. Consequently a more photo-realistic viseme-

driven head (THVP), based on the same speaker, was compared against the data-

driven head, as described in the next section. 

6.5 Intelligibility Test 2: Modified Rhyme Test on 2 Talking 

Heads (THVP and THD) 

The visual speech of the data-driven head (THD), was compared against the 

photo-based viseme-driven head (THVP), against audio alone, and against real 

video, in a word identification test. The MRT was used as before, but with 14 

words presented for each of 4 conditions:  

• degraded natural audio speech alone 

• an external view of the viseme-driven talking head (THVP) with degraded 

natural audio speech  

• an external view of the data-driven talking head (THD) with degraded natural 

audio speech 

• video of a real speaker with degraded natural audio 

Different words were used for the 4 different conditions, in order to minimize 

learning effects (Appendix D). In order to minimize sequence effects, the order of 

presentation was randomized.  

The audio was degraded by adding speech-shaped noise to the acoustic signal 

(Assmann 2010). The noise levels were chosen within a range in which the words 

were barely recognizable; below -20 dB word recognition for audio alone fell to 

chance levels (16%), while above -16 dB word recognition for natural video 

became close to optimal. For 12 participants, all words for all four conditions 

were presented at an SNR of -20 dB, and then repeated at -16 dB. 

6.5.1 Results of Intelligibility Test 2 

The results of the intelligibility experiment on 12 participants are presented in 

Table 6.5. The visual contribution to intelligibility is given in Table 6.6. 
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Mean % words correctly identified 
SNR (dB) Audio Viseme-driven 

(THVP) 
Data-driven 

(THD) 
Natural 
video 

-20 25.1 33.5 41.3 63.3 
-16 35.9 48.3 52.6 67.4 

Table 6.5: Intelligibility Test 2: Mean % words correctly identified 

Visual contribution C = head score – audio score / 1 – audio score (%) 
SNR (dB) Viseme-driven 

(THVP) 
Data-driven 

(THD) 
Natural video 

-20 11.2 21.6 51.0 
-16 19.3 26.1 49.1 

Table 6.6: Intelligibility Test 2: Visual contribution to intelligibility 

 

Visualization improved the intelligibility of the speech at both SNRs (Figure 6.8). 

The word recognition rate was higher for the audiovisual heads than for audio 

alone, higher for the data-driven head than the viseme-driven head, and higher for 

the natural head than the synthetic heads. At each SNR, ANOVA over all 

conditions shows that the gain in intelligibility from visualization is highly 

significant at p = 0.01 (SNR -16 dB, F (3, 44) = 9.926; SNR -20 dB, F (3, 44) = 

16.554).  ANOVA over the audio condition and the synthetic heads shows that the 

gain in intelligibility from the synthetic heads, over audio alone, is significant, at 

both SNRs at alpha=0.05 (SNR -16 dB, F (2, 33) = 4.979; SNR -20 dB, F (2, 33) 

= 3.781). A post-hoc T-test shows that the real video is significantly more 

intelligible (p = 0.05) than audio at SNR – 20 dB. Post-hoc T-tests (p = 0.1) found 

no other significant differences between any other conditions at either SNR. 
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Figure 6.8: Intelligibility scores. The error bars denote the standard deviation. 

Each confusion matrix (Figures 6.9 to 6.12) compares the visemes (or phonemes, 

in the case of audio alone) presented against what they were perceived as by the 

participants. The number of identifications was summed over all participants, for 

all words spoken, at both SNRs. Each sum was divided by the number of 

occurrences of the animated viseme, to give a percentage of identifications of that 

viseme. The area of each circle represents the percentage of identifications of that 

viseme. On the whole, for each condition, the matrix shows that the correct 

classifications (on the diagonal) scored the highest, so overall the visemes were 

identifiable. There was most confusion for the audio condition (Figure 6.9), 

followed by the viseme-driven head THVP (Figure 6.10), then the data-driven 

head THD (Figure 6.11), and then the natural video (Figure 6.12). This shows that 

the data-driven head THD was more intelligible and more accurately modelled 

than the viseme-driven head THVP. 
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Figure 6.9: Confusion Matrix for audio alone 
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Figure 6.10: Confusion Matrix for Viseme-driven Talking Head 
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Figure 6.11: Confusion Matrix for Data-driven Talking Head 
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Figure 6.12: Confusion Matrix for Natural video 

Figure 6.13 shows the confusion matrix of the viseme-driven head minus that of 

the natural head. This highlights the differences between the two heads and shows 

the weaknesses of the synthesised model. For example, visemes 11 (/l/) and 12 

(/n/) had high confusions compared with the natural head, and could be more 

accurately modelled. 
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Figure 6.13: Difference between Viseme-driven Head and Natural Head 

Figure 6.14 shows the confusion matrix of the data-driven head minus that of the 

natural head. This shows that visemes 3 (/f/-/v/) and 12 (/n/) had high confusions 

compared with the natural head, and could be more accurately modelled. 
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Figure 6.14: Difference between data-driven Head and Natural Head 
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6.6 Conclusions from Intelligibility and Naturalness 

Evaluations 

The naturalness surveys showed that for every visual condition, the talking head 

with natural speech was always perceived as more natural than the same head with 

synthetic speech. This is unsurprising, and shows that the quality of the 

synthesized speech is not yet sufficient for listeners to believe that it is real. 

Psychological studies into the human reaction to media have found that users are 

more sensitive to audio quality than video quality, and audio quality has more 

effect on the user’s attention, memory and opinion about what is heard (Reeves et 

al. 1996). However, these results show that the data-driven head, even with a 

synthetic voice, was perceived as more natural than the viseme-driven conditions 

with a natural voice; and the natural visual signal combined with a synthetic voice 

were always perceived as more natural than any of the synthetic visualizations 

with a natural voice. So this shows that the perception of audio quality does not 

completely overrule that of video. Reeves and Nass suggested that poor audio 

fidelity is more psychologically unfamiliar, as most spoken audio is heard at high-

fidelity, whereas we are used to dealing perceptually with low visual fidelity, for 

example in dim lighting. However, it could be argued that we are also used to 

dealing with noisy audio conditions; but it is the “robotic” quality of synthesized 

speech which is unfamiliar and has an eerie effect, reducing our acceptance of the 

synthetic-voiced talking head. The “uncanny valley” could also explain why 

adding eye and head movements, which were intended to add more lifelike 

behaviour to the non-photorealistic head, but were not quite realistic enough, 

reduced the acceptance of the moving head compared to the rigid head (Mori 

1970). 

The non-photo-based viseme-driven talking head (THVN) showed a gain in 

intelligibility compared to audio speech alone, and was almost as intelligible as 

the video of a real speaker at SNR -20 dB (Figure 6.1) (Dey et al. 2010a). Certain 

visemes, such as (/r/-/l/) and (/h/-/n/-/ng) were confused with others (Figure 6.5), 

and could be improved by modelling the internal articulators more accurately, and 

then reclassifying the visemes into more categories, for example, separating (/r/) 

from (/l/), which has different tongue movements. Overall the visemes were 
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identifiable. In the subjective naturalness tests, the visual speech was rated as 

moderately natural overall. The data-driven head was perceived as more natural 

than this viseme-driven head. 

An intelligibility test comparing the photo-based viseme-driven talking head 

(THVP) against the data-driven head (THD) confirmed that visualization 

improved the intelligibility of the speech. The word recognition rate was higher 

for the audiovisual heads than for audio alone, higher for the data-driven head 

than the viseme-driven head, and higher for the natural head than the synthetic 

heads. This shows that the data-driven head was more intelligible and more 

accurately modelled than the viseme-driven head.  For the viseme-driven head, the 

reclassification of the visemes into more categories, for example separating /r/ and 

/l/ which had different tongue visemes (Table 4.1), led to viseme (/r/) showing 

few confusions, while (/l/) had some strong confusions (Figure 6.13), which could 

be improved by modelling the tongue dynamics more accurately.  Viseme (/n/) 

could be improved by modelling the movement under the jaw more accurately. 

The data-driven head showed fewer confusions than the viseme-driven head 

(Figure 6.14), but also showed confusions for the viseme (/n/), which could be 

improved by modelling the movement under the jaw with more data for this area 

of the articulators. On the whole, for each talking head, the visemes were 

identifiable. Thus the talking heads were determined to be sufficiently realistic to 

be used to demonstrate pronunciation in a tutoring system  (Dey et al. 2010b). 
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7 Evaluation of Speech Tutoring Application  

The three talking heads (Chapter 4 and 5) were applied in the speech tutoring 

system (Chapter 3), which was evaluated in user trials. Existing training systems 

have been evaluated by experiments to assess the performance improvement of 

users after using the software. The evaluation of this tutoring system’s 

effectiveness in tuition followed a similar approach to that of Massaro (Massaro et 

al. 2008), with the improvement in speech production assessed by human 

judgment. The studies aimed to determine whether the system made a difference 

to learning. 

The evaluation of the experiments aimed to determine the effect of using visual 

speech in learning, and aimed to elucidate the advantages and disadvantages of 

using this technology. For example, the visualization of the inside of the mouth, 

showing the tongue movements during speech, is not possible using conventional 

tutoring. The disadvantages of a computerised system are that its feedback is 

limited, and it cannot offer as much intervention as a human tutor, so it would not 

fully replace a human tutor. However, the computer system is intended for use as 

an assistant, and could help a less experienced person to take the role of the 

human tutor. A major benefit would be to enable users to use the tutoring system 

at home in their own time, so students would be able to practise their speech at 

home with their families, outside of teaching hours. 

7.1 Choice of Case Study  

Key aspects of pronunciation include segmentals – speech sounds (vowels, 

consonants), and suprasegmentals – rhythm (stress, pausing) and intonation, i.e. 

prosody (Dabic 2010). For these studies, the focus was on segmentals, and 

consonants in particular. Although the software does demonstrate the other 

features indirectly, the featured lesson concentrated on a specific consonant pair, 

and only the perception and production of these consonant sounds was assessed in 

the experiments. 
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The /b/–/p/ contrast was chosen as a case study after consultation with tutors from 

the English Language Teaching Centre at the University of Sheffield. Six 

members of staff and two students were interviewed for their opinions on the use 

of technology in second language learning. The tutors revealed that one of their 

largest groups of students was native Arabic speakers, and the most common 

difficulty for this group was /b/–/p/, because this contrast did not exist in their 

native language. The /b/–/p/ difficulty can also exist in learners from other native 

languages; for example, Korean (Bauman 2006), Chinese (Swan et al. 2001) and 

Japanese; “The English /b/–/p/ voicing contrast may also lead to confusions as 

voiceless plosives in Japanese tend to be unaspirated and so English /b/ and 

Japanese /p/ will be phonetically similar” (Hazan et al. 2005). 

 A problem for some learners, for example, Korean speakers, is that the lower lip 

is pressed too close to the top teeth, causing a vibration, which will produce a /v/ 

(Bauman 2006). Therefore, for those with this difficulty, the internal visualization 

could be useful, for demonstrating the lip and tooth positions during pronunciation 

of the /b/ sound. 

Lazalde (Lazalde 2010) carried out an objective analysis of the differences 

between the visemes /b/, /m/  and /p/ for one male and one female speaker, in 

VCV contexts, speaking at speeds of 100 syllables per minute and 200 syllables 

per minute. The amount of mouth opening was found to be larger for /b/, followed 

by /m/ and then by /p/. Physical observation showed that /p/ usually required more 

lip pressure than /b/ or /m/. Lazalde confirmed that there was a significant 

difference between the /b/, /p/ and /m/ visemes. Lazalde also found that better 

results were obtained when synthesizing visual speech using separate visemes 

rather than when using a single /b/-/m/-/p/ viseme. 

A difficulty with using /b/ and /p/ as a case study for pronunciation training is that 

the main difference between /b/ and /p/ is produced by voicing, but it is difficult to 

show voicing in a talking head; it would require the visualization of the glottals. 

However, it may not be useful to show the movement of the glottals because they 

cannot be consciously controlled in the same way as a tongue or lip movement.  
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An existing approach used by clinicians is spectrographic displays which provide 

feedback of subtle auditory features that are difficult to detect otherwise, such as 

voice onset time. Spectrograms can visualize the difference between /b/ and /p/, 

but it can be difficult to learn how to read such data, and since it is an abstract 

representation, it is not clear how to apply it to one’s own productions. 

Mahshie used visualization of  the subject’s own airflow as visual feedback for 

teaching production of the voicing distinction between /p/ and /b/ (Mahshie 1996).  

A deaf subject took part in 12 sessions provided over 7 weeks. The training 

involved coordination of the laryngeal and oral gesture required for production of 

the voicing distinction for /p/ vs. /b/. It was found that the appropriate production 

patterns were observed with greater precision when visual feedback was provided 

than when it was withheld. Evidence for internalization of learning, as reflected in 

the tests before training at the start of each session, was not observed until later in 

the training, after several sessions. When the speaker’s production was judged for 

accuracy, while there was an improvement in the production of /p/, the subject’s 

production of /b/ segment voicing actually decreased. Mahshie suggested that this 

was probably the result of overgeneralizing the production pattern.  Therefore this 

study showed that provision of the feedback resulted in improved performance 

during some phases of teaching, but not during others. 

A study by (Hazan et al. 2005) investigated the effect of audiovisual perceptual 

training on the perception and production of consonants by 39 Japanese learners 

of English. This study  included /b/-/p/-/v/, but was testing the labiodental contrast 

of /b/ and /p/ against /v/, so they ignored any difference between /b/ and /p/. 

Training took part in 10 sessions over 4 weeks. At each session, a perception test 

was carried out in the form of a minimal-pair identification task. Results found 

that audiovisual training using natural video gave better perception scores than 

audio alone, which was better than video alone, although there was no significant 

difference between any of the conditions. A second study investigated the /r/-/l/ 

contrast, which was less visually distinctive than the labial/labiodental contrast of 

/b/ and /p/ vs /v/.  This study found that for the perception of the /l/–/r/ contrast, 

audiovisual training was not more effective than auditory training. In a speech 

production study of /r/-/l/, native talkers of British English were asked to judge the 
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speech produced by the learners, using a minimal-pair identification task and a 

quality rating task. The increase in scores was significantly greater for the learners 

with natural audiovisual training than for audio alone. The conclusions were that 

perceptual training resulted in improvements to the pronunciation of the trained 

consonants in second-language learners, and that audiovisual training was more 

effective than audio training when the visual contrast was sufficiently salient. 

Visualization of speech led to a greater improvement in pronunciation, even for 

contrasts with relatively low visual salience (Hazan, Sennema et al. 2005).  The 

findings of (Hazan et al. 2005) need to be verified with a wider range of phonemic 

contrasts.  The experiments presented in this thesis are widening the range of 

contrasts studied, with a less visually salient contrast. 

For learning the distinction between /b/ and /p/, the usual technique used in 

existing second-language tutoring involves listening tests, because if a learner 

cannot perceive the difference, they cannot produce it.  Therefore the tutoring 

application presented in this thesis provides listening practice, comparing /b/ 

against /p/ sounds. Research has shown that visual speech complements the audio, 

and the MRT experiments in Chapter 5 have shown that for all these talking 

heads, the visual signal gives a contribution to intelligibility of the speech. So the 

visualization of the lips enhances the audio, so would make a talking head in this 

tutoring application more intelligible than audio alone, and could therefore be 

more useful than listening practice based on audio alone.   

In Chapter 6, the sounds /b/ and /p/ were separated in the confusion matrices, to 

show how much they were confusable with each other. The confusion matrices 

show that /b/ was mistaken for a wider range of sounds (/d/-/t/ as well as /m/ and 

/p/) in the audio alone condition than with the talking heads, which shows that the 

visualization does make a difference to the perception. The /b/ and /p/ sounds had 

less confusion for the data-driven head than the viseme-driven head, which shows 

that the data-driven head was more accurately modelled than the viseme-driven 

head. The data driven head is modelled on real recordings of the speaker saying 

/b/ and /p/, so it is more realistic than the viseme-driven heads in showing these 

sounds. Figure 7.1 shows the animation frames of the data-driven head for the 

word “back” and Figure 7.2 shows the animation frames for the word “pack”. The 
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lips appear to be slightly more pursed when saying /p/, in the first two frames of 

Figure 7.2, than when saying /b/ in the first two frames of Figure 7.1, and the rest 

of the utterance appears to be pronounced more emphatically for “pack” than 

“back”. Thus there are subtle visual differences, and experiments will indicate 

whether these are salient enough to aid pronunciation.  

 

 

Figure 7.1: Animation frames of data-driven head for the word “back” 
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Figure 7.2: Animation frames of data-driven head for the word “pack” 

7.2 Experiment Design 

The studies carried out explored the role of visual speech information on the 

development of speech perception and production skills in second language 

learners. It is the presence of voicing and timing differences that allow us to 

distinguish /b/ from /p/. The visual differences in timing are very subtle and the 

auditory differences in voicing can be difficult to perceive for some non-native 

learners. Vision and hearing are complementary and each of these separate 

channels is more efficient for different verbal information (Ross 1999). Thus 

putting the audio and visual modalities together may help more than one modality 

alone. 
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The experimental protocol took a similar approach to those used by (Mahshie 

1996) and (Hazan et al. 2005), with a pre-test before training at the start of each 

session to give a reflection of internalized learning; a training period using the 

training software first for listening practice, then for giving feedback on listening 

and speech production; and finally, a post-training test,  to reflect the extent to 

which the subject was able to produce the pattern following the training period.  

The pre-test and post-tests recorded speech input (listening ability) with an 

auditory detection task, to test whether phonological representations were 

accurate; and speech output (production of speech) with a task involving reading 

words aloud. Different words were used for the listening and speaking test stimuli 

(Appendix E), and these differed from those used in the training application, in 

order to test for generalization of the perception/production patterns to new words.  

The studies conducted are describes in the following sections. First a pilot study 

was conducted comparing head THVN against audio alone (Dey et al. 2010b). A 

small study was conducted using head THVP, to investigate the effect of internal 

visualization compared with external visualization alone. Finally, a crossover 

study of 17 participants was conducted comparing the data-driven head THD 

against audio alone. 

7.3 Tutoring Study 1: Evaluation of viseme-driven non-photo-

based head 

A pilot study was conducted using the speech tutoring software with the viseme-

driven non-photorealistic talking head (THVN), with no head movements, eye 

movements or facial expressions, and an earlier implementation of tongue 

visemes, based on Lazalde’s tongue visemes, as described in Chapter 4.7 (Figure 

7.3). 

The pilot trial was run with five native Arabic speakers, learning English as a 

second language, who worked through a session lasting one hour with a repeat 

session one week later. The participants were all from the same English language 

class, with similar levels of English proficiency.  
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A pre-test and post-test of pronunciation were carried out, in which the subjects 

read aloud isolated words and sentences in English and their speech was recorded. 

A listening pre-test and post-test was also carried out, in which the participants 

listened to acoustic speech of isolated words and identified which words they 

heard (Appendix E.1 – E.3).  

After the pre-test, the participants were presented with the Pronunciation Assistant 

software, and asked to work their way though a lesson. Three participants were 

presented with the complete software, with the talking head in an external frontal 

view and an internal mid-sagittal view (Figure 7.3), and two were presented with 

the software with no talking head visualization.  The lesson taught the 

pronunciation of the sounds /b/ and /p/, a contrast which the students found 

difficult because it did not exist in their native language. The lesson included 

practice in listening to sounds, words and phrases, and pronunciation practice, in 

which the software would demonstrate how to pronounce a sound, word or phrase, 

and then the user would say it aloud, with the option to record their own speech 

and play it back.  

After the session with the Pronunciation Assistant software, the post-test was 

carried out, in which the listening test and speaking test were repeated. Finally the 

participants completed a questionnaire about their experience of using the 

software, which asked the users to rate on a five-point Likert scale how useful 

they found each feature (Appendix E.4). 

The pre- and post pronunciation tests were evaluated by a native English speaker, 

who was a tutor from the English Language Teaching Centre at the University of 

Sheffield, and thus experienced in judging pronunciation. The audio recordings 

were presented to the judge in a random order, and the judge decided whether /b/ 

or /p/ was heard in the isolated words. For the list of sentences, the judge decided 

whether each instance of /b/ or /p/ was pronounced correctly. The numbers of 

correct pronunciations were counted to give an overall score.   
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Figure 7.3: Screenshot of Speech Tutoring Application used in Tutoring Study 1 

7.3.1 Study 1 Listening Results 

The listening scores are shown in Table 7.1 and Figure 7.4. Users 1, 3 and 5 tried 

the audiovisual (talking head) version of the software, while users 2 and 4 had 

audio alone. 

 

Study 1 Listening Scores (/b/ and /p/) % 

User Condition Session 1 
pre 

Session 1 
post 

Session 2 
pre 

Session 2 
post 

1 audiovisual 75 75 90 90 

2 audio 95 90 100 100 

3 audiovisual 70 90 90 85 

4 audio 60 60 80 60 

5 audiovisual 95 85 80 85 

Table 7.1: Study 1 Listening Scores (/b/ and /p/) 
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Figure 7.4: Study 1 Listening Scores (/b/ and /p/) 

On average, for /b/ and /p/, the talking head gave a higher improvement (mean 

improvement 6.67%) in listening than audio alone (mean improvement 2.5%). 

The scores for /b/ and /p/ separately are presented separately in Tables 7.2 and 

7.3: 

 

Study 1 Listening (B) % 

User Session 1 pre Session 1 
post 

Session 2 pre Session 2 post 

1 60 50 100 80 

2 90 80 100 100 

3 60 80 80 70 

4 60 60 70 40 

5 100 80 60 70 

Table 7.2: Study 1 Listening Scores (/b/) 

 

For listening to /b/ sounds, there was no improvement on average for either the 

audio or audiovisual conditions. However, considering each individual, 2 out of 3 

participants with the head improved, and 1 out of 2 participants with audio 

improved. 
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Study 1 Listening (/p/) % 

User Session 1 pre Session 1 
post 

Session 2 pre Session 2 post 

1 90 100 80 100 

2 100 100 100 100 

3 80 100 100 100 

4 60 60 90 80 

5 90 90 100 100 

Table 7.3: Study 1 Listening Scores (/p/) 

For listening to /p/ sounds, there was an improvement on average for both the 

audio (mean improvement 10%) and audiovisual condition (mean improvement 

13.3%), and this improvement was higher for the audiovisually-trained group than 

audio alone. All participants with the head improved from the start of session 1 to 

the end of session 2, while 1 out of 2 participants with audio improved. 

7.3.2 Study 1 Speaking Results (/b/ and /p/) 

Table 7.4 and Figure 7.5 show that for speaking (/b/ and /p/), there was an 

improvement on average for both the audio (mean improvement 0.83%) and 

audiovisual condition (mean improvement 1.67%), and this improvement was 

higher for the audiovisually-trained group than audio alone. All participants with 

the head improved from the start of session 1 to the end of session 2, while 1 out 

of the 2 participants with audio improved. 

 

Study 1 Speaking Score (/b/ and /p/) % 

 User Session 1 pre Session 1 
post 

Session 2 pre Session 2 
post 

1 88.3 88.3 90 90 

2 85 98.3 96. 7 95 

3 95 100 95 96.7 

4 86.7 90 85 78.3 

5 85 85 85 86.7 

Table 7.4: Study 1 Speaking Scores (/b/ and /p/) 
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Figure 7.5: Study 1 Speaking Scores (/b/ and /p/ combined) 

7.3.3 Study 1 Speaking (/b/ scores) 
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Figure 7.6: Study 1 Speaking Scores (/b/) 

Figure 7.6 shows that for speaking /b/ sounds, those who used the viseme-driven 

head had an improvement in each session, so there was an improvement overall 

(mean improvement 8.33%). Those who used audio had an immediate 

improvement in the first session, but not after that, and no overall improvement. 

7.3.4 Speaking (/p/ scores) 

For speaking /p/ sounds, those who used the viseme-driven head showed no 

improvement (Figure 7.7). Those who used audio had an immediate improvement 

in the first session, but not after that. The audio-alone condition gave an 

improvement overall (mean improvement 8.33%). 
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Figure 7.7: Study 1 Speaking Scores (/p/) 

7.3.5 Speaking and Listening Tests combined 

The Speaking and Listening Tests were combined by taking the mean of each 

corresponding score for listening and speaking (Table 7.5 and Figure 7.8). For 

speaking and listening combined (/b/ and /p/), there was an improvement on 

average for both the audio (mean improvement 1.25%) and audiovisual condition 

(mean improvement 2.92%), and this improvement was higher for the 

audiovisually-trained group than audio alone.  

 

Study 1 Speaking and Listening scores combined % 

User Session 1 pre Session 1 post Session 2 pre Session 2 post 

1 81. 7 81. 7 90 90 

2 90 94.2 98.3 97.5 

3 82.5 95 92.5 90.8 

4 73.3 75 82.5 69.2 

5 90 85 82.5 85.8 

Table 7.5: Study 1 Speaking and Listening Scores (/b/ and /p/) 
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Figure 7.8: Study 1 Speaking and Listening Scores 

Generally, there was an improvement in speaking and listening, from the first test 

(pre-test session 1) to the final test (post-test session 2), for both groups. When the 

scores /b/ and /p/ sounds were considered separately, there were some differences 

between them. For speaking, the talking head gave no improvement for /p/ 

sounds; possibly because /p/ was the harder sound to learn for native Arabic 

speakers, and this viseme-driven head did not sufficiently convey the difference 

between /b/ and /p/. However, overall the talking head gave a more consistent 

improvement than audio alone. The fluctuations in the scores were probably due 

to individual variations and the small sample sizes. Future tests would require 

larger groups of participants, and could require longer training times, to show any 

significant difference in learning. 

 

7.3.6 Study 1 User Feedback 

The user questionnaire asked the users to rate each feature of the software on a 

Likert Scale of 1-5 (1= Strongly Disagree; 2 = Disagree; 3 = Neutral; 4 = Agree; 5 

= Strongly Agree). The responses are shown in Table 7.6. 
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Study 1 User Feedback: mean response on Likert Scale 1-5 

Question Audio  

 (2 responses) 

Audiovisual  

(3 responses) 

This software was helpful in learning 

pronunciation 

5.0 4.7 

I found the external view helpful NA 4.0 

I found the internal view helpful  NA 4.3 

I found the listening practice helpful 5.0 5.0 

I found the listening test helpful 5.0 5.0 

I found the speaking practice helpful 4.5 5.0 

I found the recording function helpful 5.0 4.7 

The content of the lesson matched my needs. 4.5 4.7 

This software is easy to use 5.0 5.0 

This software is engaging. 5.0 4.7 

The talking head appeared natural NA 3.3 

This software is satisfying to use.  5.0 4.7 

Table 7.6: Study 1 User Feedback 

 

The feedback from the questionnaires was generally positive. The students 

enjoyed using the software, and found the content of the lesson useful. The 

students who used the talking head agreed that the talking head external view and 

side view were helpful. Students from both groups liked the practice of 

pronunciation of words and phrases.  

The feedback for the talking head was similar to that for audio; most participants 

strongly agreed that the software was useful. Each participant was aware of only 

one version, so they were not comparing the two, and those in the audio-alone 

group were just as positive about the software. In the talking-head group, when 

asked if the talking head appeared natural, 66 % agreed and 33% disagreed. Those 

who had the talking head version unanimously thought that the visualization was 

useful; 100% strongly agreed that the external view was useful, while for  the 
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internal view, 66% agreed and 33% strongly agreed that the internal view was 

useful. This indicates that the users thought that the external view was more 

helpful than the internal view, which may be because the internal view is an 

unfamiliar view to most, and is not normally used in traditional methods of 

learning a language, or because the users did not see a difference between the /b/ 

and /p/ visualizations. This study suggested that the visualization was thought to 

be useful, but did not test whether it was the internal or external visualization that 

helped; this was investigated in the next study.   

7.4 Tutoring Study 2: Evaluation of viseme-driven photo-

based head (THVP) 

A user trial evaluated the viseme-driven photo-based head, comparing external 

and internal visualization (Figure 7.10), against external visualization alone 

(Figure 7.9). This experiment investigated whether displaying the internal 

articulators made a difference to learning. While previous studies have 

investigated whether visualization of articulators gives an improvement in 

learning (Massaro et al. 2008; Wik et al. 2008), few have investigated the impact 

of expression in animated characters for speech tutoring (Massaro 2004), and 

none have proved that talking heads give a significant improvement in learning. 

 

Figure 7.9: Screenshot of Speech Tutoring Application used in Tutoring Study 2 
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Figure 7.10: Screenshot of Speech Tutoring Application used in Tutoring Study 2 

 

7.4.1 Study 2 Experimental Design 

The study was carried out in collaboration with James Carmichael at AlGhurair 

University in Dubai. The participants were native Arabic speakers, of an 

intermediate level of English proficiency.  The users were divided into two 

groups, to test the two different conditions. The trials were conducted in sessions 

lasting one hour over one month.  

A listening pre-test and post-test was carried out in the form of a minimum-pair 

identification task, in which the participants listened to acoustic speech of isolated 

words and identified which words they heard. A pre-test and post-test of 

pronunciation was carried out, in which the subjects read aloud isolated words and 

sentences in English and their speech was recorded (Appendix E.5 – E.7). The 

words and sentences used in the speaking test were not present in the tutoring 

application itself, so this experiment would investigate whether the pronunciation 

training was effective in generalization to new words. 

After the pre-test, the participants were presented with the Pronunciation Assistant 

software, and asked to work their way though a lesson.  The lesson teaches the 

pronunciation of the sounds /b/ and /p/, a contrast which does not exist in the 
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users’ native language. The lesson includes practice in listening to sounds, words 

and phrases, and pronunciation practice, in which the software demonstrates how 

to pronounce a sound, word or phrase, and then the user says it aloud, with the 

option to record their own speech and play it back.  

After the session with the Pronunciation Assistant software, the post-test was 

carried out, in which the listening test and speaking test were repeated. Finally the 

participants completed a questionnaire about their experience of using the 

software, which asked the users to rate how useful they found each feature 

(Appendix E.8 - E.9). For this survey the Likert scale used was 1-7, to give more 

precision than a 5-point scale. 

In order to analyze the speaking test recordings, a native English listener was 

recruited as a judge, who assessed the speech in the form of a listening test. The 

reasoning was that if a second-language speaker could be understood by a native 

English listener, then they were pronouncing the sound correctly. For each word 

or sentence presented, the judge was asked to determine whether what they heard 

was /b/, /p/, ambiguous or unintelligible. The judging was carried out as a minimal 

pair identification task, with carrier sentences that would make sense with either 

the /b/ or /p/ word; for example, “I would like to put the bath here” /“I would like 

to put the path here”. The judge did not know what each item was supposed to be, 

so they were making a decision purely on what they heard, and was unaware of 

which group each speaker was from, and unaware of whether they were hearing 

pre- tests or post-tests, so they were listening objectively. The judge’s responses 

were then scored as follows: a correct identification scored 1; an incorrect, 

ambiguous or unintelligible identification scored 0. The scores were counted to 

give a score for each participant’s pre-test and post-test for each session. 

 

7.4.2 Study 2 Listening Test Results (/b/ and /p/) 

User 1, who had the internal visualization, showed no improvement in listening 

for /b/ or /p/. User 2, who had external visualization only, did show an 

improvement in listening for /b/ and /p/, separately (Tables 7.8 and 7.9) and 

combined (Table 7.7). 
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Study 2 Listening Test % 
User Session 1 pre-

test 
Session 2 post-
test 

Internal Visualization 
(I) or External only (X) 

1 85 80 I 

2 60 85 X 

Table 7.7: Study 2 Listening Scores (/b/ and /p/) 

7.4.3 Study 2 Listening Test /b/ sounds 

User Session 1 pre-
test 

Session 2 post-
test 

Internal Visualization 
(I) or External only (X) 

1 80 70 I 

2 50 80 X 

Table 7.8: Study 2 Listening Scores (/b/) 

7.4.4 Study 2 Listening Test /p/ sounds 

User Session 1 pre-
test 

Session 2 post-
test 

Internal Visualization 
(I) or External only (X) 

1 90 90 I 

2 70 90 X 

Table 7.9: Study 2 Listening Scores (/p/) 

7.4.5 Study 2 Speaking (/b/ and /p/ combined) 

Both users showed an improvement in speaking for /b/ and /p/ combined (Table 

7.10). User 2, who had external visualization only, showed a greater 

improvement. 

Study 2 Speaking % 

User Session 1 pre-
test 

Session 2 post-
test 

Internal Visualization 
(I) or External only (X) 

1 52.5 57.5 I 

2 65 72.5 X 

Table 7.10: Study 2 Speaking Scores (/b/ and /p/) 
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7.4.6 Study 2 Speaking (/b/) 

Both users showed an improvement in speaking for /b/ (Table 7.11).  

User Session 1 pre-
test 

Session 2 post-
test 

Internal Visualization 
(I) or External only (X) 

1 40 50 I 

2 75 80 X 

Table 7.11: Study 2 Speaking Scores (/b/) 

7.4.7 Study 2 Speaking (/p/) 

User 1, who had the internal visualization, showed no improvement in speaking 

for /p/. User 2, who had external visualization only, did show an improvement in 

speaking for /p/ (Table 7.12). 

User Session 1 pre-
test 

Session 2 post-
test 

Internal Visualization 
(I) or External only (X) 

1 65 65 I 
2 55 65 X 

Table 7.12: Study 2 Speaking Scores (/p/) 

Overall, User 1, who was trained with both internal and external visualization, 

showed no improvement in listening, but some improvement in speaking. User 2, 

who was trained with the external visualization only, improved in both listening 

and speaking. It may be that for the /p/ and /b/ sounds, the internal visualization 

was not helpful because the tongue is not used much in producing these sounds, 

so not much difference was seen between the visualizations. In this experiment, 

the user with version X saw two views of the external view, whereas the user with 

version I saw one of each view, so the lips may have been more useful for /b/ and 

/p/ than the internal view. A limitation of this experiment is that no immediate 

post-test was carried out after the first session, and no pre-test was carried out at 

the start of the second session, so in the intervening period between sessions, there 

could be influences other than the software affecting the users’ performance, 

which were unaccounted for. Furthermore, the numbers of participants was too 

small for the results to be conclusive. However, some positive feedback was 



Visual speech in technology-enhanced learning 

 

 Page 114 

obtained (Table 7.13). User 1 moderately agreed that the software was useful, and 

strongly agreed that both the external and internal views were useful. The user 

liked the talking head and found it to be user-friendly. User 2 strongly agreed that 

the software was useful, and moderately agreed that the external view was useful. 

Both users strongly agreed that the software was interesting and satisfying to use. 

 

Study 2 User Ratings on each feature of the software 

 User 1 (Group I)  User 2 (Group X)  

The Pronunciation Assistant 
software was helpful in learning 
pronunciation. 

Moderately agree Strongly agree 

I found the external view of the 
talking head helpful. 

Strongly agree Moderately agree 

I found the internal view of the 
talking head helpful. 

Strongly agree NA 

The talking head looked 
realistic. 

Moderately agree Strongly agree 

The speech animation appeared 
natural. 

Neutral Slightly agree 

I found the listening practice 
with the talking head helpful. 

Strongly agree Strongly agree 

I found the listening test with 
the talking head helpful. 

Strongly agree Strongly agree 

I found the speaking practice 
with the talking head helpful. 

Moderately agree Strongly agree 

I found the recording function 
in the Pronunciation Assistant 
software helpful. 

Slightly agree No response 

The Pronunciation Assistant 
software is interesting to use. 

Strongly agree Strongly agree 

The Pronunciation Assistant 
software is satisfying to use. 

Strongly agree Strongly agree 

The content of the lesson 
matched my needs. 

Moderately agree Strongly agree 

Table 7.13: Study 2 User Feedback 
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7.5 Tutoring Study 3: Evaluation of data-driven head (THD) in 

a tutoring system 

This experiment investigated whether the data-driven talking head (Figure 7.11), 

with a photo-realistic appearance and an articulatory model based on a real 

speaker, was more effective in teaching pronunciation than audio alone.  

 

Figure 7.11: Screenshot of Speech Tutoring Application used in Tutoring Study 3 

The data-driven talking head was evaluated by second-language learners. Each 

participant took part in two one-hour sessions, which were carried out within 1 

month.  The participants were divided into two groups with a crossover design, so 

that one group, A-AV, were first given the software with audio alone, and then 

were given the talking head in their second session, while the other group, AV-A, 

were given the talking head first, and then audio alone in their second session. 

 In each one-hour session, a participant first took part in a pre-test listening test, 

where they listened to 20 words and selected which word they heard, and a pre-

test speaking test, where their voice was recorded while reading aloud a list of 20 

words and 20 sentences (Appendix E.5 – E.7). Then they used the speech tutoring 

software, which demonstrates the /p/ and /b/ sounds in English. After this training 

they took part in a post-test listening and speaking test, which took the same 
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format as the pre-tests. Finally they completed a questionnaire asking their 

opinions of the software (Appendix E.9 – E.10). The users rated on a 7-point 

Likert scale how useful they found each feature. In their second session they were 

asked to rate whether they preferred the version of the software with audio alone 

or the talking head, and their reasons for this preference. 

Participants for the experiment were recruited from the student population of the 

University of Sheffield. The volunteers were of diverse backgrounds, with a range 

of native languages including Arabic, Vietnamese, Korean, Chinese and Japanese, 

and various levels of English proficiency, from moderate to proficient. The results 

presented are for the 17 participants of the crossover experiment; 8 in group AV-

A and 9 in group A-AV.  

In order to analyze the speaking test recordings, a native English listener was 

recruited as a judge, who assessed the speech in the form of a listening test. The 

reasoning was that if a second-language speaker could be understood by a native 

English listener, then they were pronouncing the sound correctly. For each word 

or sentence presented, the judge was asked to determine whether what they heard 

was b, p, ambiguous or unintelligible. The test was designed to use minimal pairs 

of words containing /b/ or /p/, and carrier sentences had been created that would 

be semantically valid with either the /b/ or /p/ word; for example, “I would like to 

put the bath here” / “I would like to put the path here”. The judge did not know 

what each item was supposed to be, so they were making a decision purely on 

what they heard, and was unaware of which group each speaker was from, and 

unaware of whether they were hearing pre-tests or post-tests, so they were 

listening objectively. The judge’s responses were then scored as follows: a correct 

identification scored 1; an incorrect, ambiguous or unintelligible identification 

scored 0. Thus points would only be awarded for clear, unambiguous 

pronunciation. The scores were counted to give a score for each participant’s pre-

test and post-test for each session. 

The results are presented in the following sections. First, the participant 

information is given in Table 7.14. Next, the listening results are shown for /b/ 

and /p/ combined, and then for /b/ and /p/ separately. Then the speaking results are 

presented similarly. Finally, the subjective user feedback from the questionnaires 
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is presented. In the tables, the yellow shading indicates the talking head condition, 

while the unshaded rows are for the audio condition. 

 

7.5.1 Study 3 Participant Information  

User Group  Native Language Level of English 
(self-rated) 

IELTS score 

1 AV_A  Arabic Moderate 5.5 
2 AV_A  Arabic Moderate 5 
3 AV_A  Kurdish fluent - 
4 AV_A  Kannada fluent - 
5 AV_A  Tamil fluent - 
6 AV_A  Farsi Moderate - 
7 AV_A  Chinese beginner 6.5 
8 AV_A  Korean Moderate 6 
9 A_AV  Vietnamese Proficient 8 
10 A_AV  Arabic Proficient 5.5 
11 A_AV  Urdu Proficient 7 
12 A_AV  Malay Moderate 6.5 
13 A_AV  Japanese beginner - 
14 A_AV  Farsi Moderate 6.5 
15 A_AV  Japanese Moderate - 
16 A_AV  Turkish Proficient - 
17 A_AV  Japanese beginner - 

Table 7.14: Study 3 Participant Information 

 

7.5.2 Study 3 Results of Listening Test (/b/ and /p/) 

Most users showed an overall improvement from the start of session 1 to the end 

of session 2 (Figure 7.12). The standard deviation was high, because individual 

variations caused fluctuations in scores. User 10 in Group AV-A had an unusually 

low score at the end of the session with the talking head (Table 7.15), which 

caused the average score for the talking head to decrease (Table 7.16). Another 

user (User 17) scored 100% in the first listening test, so there was a ceiling effect 

for his listening results. (This user was still included in the analysis because his 

speaking scores were lower, so he had the potential for improvement in 

pronunciation.)  
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Study 3 Listening (/b/ and /p/) % 
User Session 1 

pre-test 
Session 1 
post-test 

Session 2 
pre-test 

Session 2 
post-test 

Group  

1 55 60 75 80 AV-A 
2 75 85 80 90 AV-A 
3 85 80 95 90 AV-A 
4 90 85 90 90 AV-A 
5 90 90 90 85 AV-A 
6 90 90 95 100 AV-A 
7 90 95 90 100 AV-A 
8 95 95 90 90 AV-A 
9 60 75 85 85 A-AV 
10 65 60 75 55 A-AV 
11 85 85 90 90 A-AV 
12 85 90 80 95 A-AV 
13 85 100 100 100 A-AV 
14 90 90 95 90 A-AV 
15 95 95 95 95 A-AV 
16 95 95 95 95 A-AV 
17 100 95 100 100 A-AV 

Table 7.15: Study 3 Listening Scores (/b/ and /p/) 

Study 3 Mean Scores for Listening (/b/ and /p/) % 
Group  Session 1 pre-

test 
Session 1 
post-test 

Session 2 pre-
test 

Session 2 
post-test 

AV-A 83.8 85 88.1 90.6 
A-AV 84.4 87.2 90.6 89.4 

Table 7.16: Study 3 Mean Listening Scores (/b/ and /p/) 

 

Group AV-A, who had the head first, improved after using the talking head, and 

this group had a greater improvement overall. The audio condition showed a 

higher average improvement than the talking head, in both groups. (If the outlier, 

user 10, was removed then all groups and conditions would show an 

improvement, but the audio condition still would give a greater improvement than 

the audiovisual condition.) Combining the groups, there was an overall 

improvement for both audio (mean improvement 2.64%) and audiovisual (mean 

improvement 0.07%), and the improvement from audio was higher. 



Visual speech in technology-enhanced learning 

 

 Page 119 

Listening Test averages

50

55

60

65

70

75

80

85

90

95

100

0 1 2 3 4 5

pre session 1    post session 1       pre session 2        post session 2

s
c
o

re
 %

AV-A wk1 (head)

A-AV wk1 (audio)

AV-A wk2 (audio)

A-AV wk2 (head)

 

Figure 7.12: Study 3 Listening Test /b/ and /p/ scores 

7.5.3 Study 3 Lowest Listening Scores 

There was a large variation in the scores because the users were of diverse 

backgrounds, with a range of nationalities and various levels of English 

proficiency. To separate out those with a clear /b/-/p/ difficulty, the results of 

those who scored 80% and below are presented in Table 7.17. These users were 

one Vietnamese and 3 Arabic native speakers, at intermediate levels of English. 

The results show that individual variations are still high. Two of these users (1 

and 2) improved in both conditions, one improved with audio alone, and one 

showed no improvement in either condition. This shows that some individuals 

benefit more than others from different ways of learning. User 10 scored lower 

after both training sessions. Overall for listening, audio alone gave a greater 

improvement than the talking head (Table 7.17). 

 

User Session 1 
pre 

Session 1 
post 

Session  2 
pre 

Session 2 
post 

Group  

1 55 60 75 80 AV-A 
2 75 85 80 90 AV-A 
9 60 75 85 85 A-AV 
10 65 60 75 55 A-AV 

Table 7.17: Study 3 Lowest Listening Scores (/b/ and /p/) 
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7.5.4 Study 3 Listening (/b/ sounds) 

Group AV-A, who had the head first, improved after using the talking head, but 

showed no improvement in their second session, using audio (Table 7.18). Group 

A-AV, who had the audio first, improved using audio, but not in their second 

session, using the talking head. The individual listening scores for /b/ are shown 

in Table 7.19. Overall, the head gave no improvement for listening to /b/ sounds, 

while audio alone gave some improvement (Figure 7.13). 

 

Study 3 Mean Scores for Listening (B sounds) % 
Group  Session 1 pre-

test 
Session 1 
post-test 

Session 2 pre-
test 

Session 2 
post-test 

AV-A 83.8 85 90 90 
A-AV 80 86. 7 92.2 88.9 

Table 7.18: Study 3 Mean Listening Scores (/b/) 

 

User Session 1 
pre-test 

Session 1 
post-test 

Session 2 
pre-test 

Session 2 
post-test 

Group  

1 50 70 100 80  AV_A  
2 80 80 70 90 AV_A  
3 80 80 100 90 AV_A  
4 80 80 90 90 AV_A  
5 90 90 90 90 AV_A  
6 100 80 90 100 AV_A  
7 100 100 90 100 AV_A  
8 90 100 90 80 AV_A  
9 40 70 90 80 A_AV  
10 70 50 90 60 A_AV  
11 70 70 80 80 A_AV  
12 80 100 80 90 A_AV  
13 70 100 100 100 A_AV  
14 100 100 100 100 A_AV  
15 90 90 90 90 A_AV  
16 100 100 100 100 A_AV  
17 100 100 100 100 A_AV  

Table 7.19: Study 3 Listening Scores (/b/) 
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Figure 7.13: Study 3 Listening Test /b/ scores 

7.5.5 Study 3 Listening (/p/ sounds) 

 

User Session 1 pre 
% 

Session 1 
post 

Session  2 
pre 

Session  2 
post 

Group  

1 60 50 50 80 AV_A  
2 70 90 90 90 AV_A  
3 90 80 90 90 AV_A  
4 100 90 90 90 AV_A  
5 80 80 90 80 AV_A  
6 80 100 100 100 AV_A  
7 80 90 90 100 AV_A  
8 100 90 90 100 AV_A  
9 80 80 80 90 A_AV  
10 60 70 60 50 A_AV  
11 100 100 100 100 A_AV  
12 90 80 80 100 A_AV  
13 100 100 100 100 A_AV  
14 80 80 90 80 A_AV  
15 100 100 100 100 A_AV  
16 90 90 90 90 A_AV  
17 100 90 100 100 A_AV  

Table 7.20: Study 3 Listening Scores (/p/) 
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Study 3 Mean Scores for Listening (/p/ sounds) % 
Group  Session 1 pre-

test 
Session 1 post-
test 

Session 2 pre-
test 

Session 2 post-
test 

AV-A 82.5 83.8 86.3 91.3 
A-AV 88. 9 87. 8 88. 9 90 

Table 7.21: Study 3 Mean Listening Scores (/p/) 
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Figure 7.14: Study 3 Listening Test /p/ scores 

Both auditory and audiovisual training resulted in an improvement overall for 

listening to /p/ sounds (Table 7.21 and Figure 7.14). The improvement was 

slightly higher for auditory training (mean improvement 1.94%) than audiovisual 

training (mean improvement 1.18%). 4 out of 17 participants improved from 

audio training, and 5 out of 17 participants improved from audiovisual training. 4 

out of 17 participants improved more from audio than audiovisual training, while 

4 out of 17 participants improved more from audiovisual than audio training 

(Table 7.20). 

An incubation effect was observed, as the users improved between the two 

sessions. Incubation is defined as a process of unconscious recombination of 

thought elements that were stimulated through conscious work at one point in 

time, resulting in enhanced performance at some later point in time (Seabrook et 

al. 2003). The results indicate that this effect occurred, as users consolidated the 
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training into memory and improved their performance by the start of the next 

session, without any additional practice in the specific task. 

An order effect was observed, as those who had auditory training first did not 

benefit from the audiovisual training in their second session, but those who had 

the audiovisual training first did benefit from auditory training in their second 

session. This could be due to “stimulus blocking” (Kamin 1969); training with the 

impoverished signal first caused the second session with an enhanced signal to 

make no difference, because the subject had learned how to perform with an 

impoverished signal, and so they would need to unlearn this before the enhanced 

signal could be of benefit. This finding suggests that there is value in using the 

audiovisual head, and that it should be used first, before audio alone. 

7.5.6 Study 3 Speaking Results (/b/ and /p/) 

Both groups improved in each training session, with a strong within-session 

improvement each time (Table 7.22 and Figure 7.15), which suggests that the 

software is beneficial. However, the users deteriorated between sessions, so there 

was no incubation effect. This suggests an interference effect (Tomlinson et al. 

2009), as in the intervening week they reverted to their previous ways, which 

were incompatible with the new training. The incorrect habits would have to be 

unlearned before the users could learn new habits, and one week may not have 

been enough time for this to occur. 

 

Study 3 Mean Scores for Speaking (/b/ and /p/ sounds) % 
Group  Session 1 pre-

test 
Session 1 
post-test 

Session 2 pre-
test 

Session 2 
post-test 

AV-A 67.5 72.8 62.8 66.9 
A-AV 71.1 79.2 70.8 76.1 

Table 7.22: Study 3 Mean Speaking Scores (/b/ and /p/) 
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User Session 1 pre Session 1 post Session 2 pre Session 2 post Group  
1 50 72.5 47.5 55 AV_A  
2 57.5 57.5 40 40 AV_A  
3 62.5 62.5 55 65 AV_A  
4 62.5 75 62.5 65 AV_A  
5 77.5 85 80 80 AV_A  
6 65 65 77.5 72.5 AV_A  
7 80 85 65 82.5 AV_A  
8 85 80 75 75 AV_A  
9 75 87.5 82.5 77.5 A_AV  
10 52.5 45 52.5 60 A_AV  
11 70 87.5 62.5 87.5 A_AV  
12 62.5 77.5 80 67.5 A_AV  
13 75 75 60 67.5 A_AV  
14 80 82.5 72.5 75 A_AV  
15 60 87.5 80 87.5 A_AV  
16 85 85 87.5 85 A_AV  
17 80 85 60 77.5 A_AV  

Table 7.23: Study 3 Speaking Scores (/b/ and /p/) 
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Figure 7.15: Study 3 Speaking Test (/b/ and /p/ scores) 

Combining the groups together, the mean improvement was higher from audio 

(6.06%) than from using the head (5.30%) but the standard deviation is high, 

showing that there was a lot of variation in the results. 6 out of 17 participants 
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improved more from audio than from head, while 7 out of 17 participants 

improved more from the talking head than from audio. This shows that some 

individuals benefit more than others from the visualization. For the speaking test, 

the visualization may help with speech production. However, /p/-/b/ is a very 

subtle visual difference, and is mainly learned by listening to the contrast, so 

audio alone can be more beneficial in learning to perceive the distinction, which 

may in turn lead to better speech production.  

On average over all users, there was an improvement from the start of the first 

session to the end of the second session. Ten participants improved using the 

audio version, and an equal number improved using the head (Table 7.23). Thus 

the majority did improve from using the software. Most of those who did not 

improve were those who achieved higher scores to begin with, so had less room 

for improvement.  

In Table 7.24 the results are considered for only the four users who scored lowest 

overall (users 1, 2, 9 and 10). For speaking /b/ and /p/, for the 4 users who were 

the lowest scoring users overall, the mean improvement was higher for the head 

(6.25%) than for audio (3.13). On average for the 4 users who were the lowest 

scoring users overall, audio was better than the head in the listening test, but the 

head was better than audio for the speaking test.  So this result indicates that for 

some of those with a definite difficulty in perceiving /p/ vs /b/, the audio alone 

was more effective when practicing an audio discrimination task, but when 

practicing speech production, the visualization was more effective than audio 

alone for teaching how to pronounce the sounds. 

 

User Session 1 
pre 

Session 1 
post 

Session 2 
pre 

Session 2 
post 

Group  

1 50 72.5 47.5 55 AV_A 
2 57.5 57.5 40 40 AV_A 
9 75 87.5 82.5 77.5 A_AV 
10 52.5 45 52.5 60 A_AV 

Table 7.24: Study 3 Lowest-scoring users’ Speaking Scores (/b/ and /p/) 
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7.5.7 Study 3 Speaking Test /b/ sounds 

Both conditions gave an improvement overall for speaking /b/ sounds (Table 

7.25). The improvement was higher for audio (4.27%) than audiovisual (0.59%). 

The individual speaking scores for /b/ are shown in Table 7.26. 

 

Study 3 Mean Scores for Speaking (/b/ sounds) % 
Group  Session 1 pre-

test 
Session 1 
post-test 

Session 2 pre-
test 

Session 2 
post-test 

AV-A 65.6 66.3 60 61.9 
A-AV 76.1 82. 8 75 75. 6 

Table 7.25: Study 3 Mean Speaking Scores (/b/) 

 

User Session 1 pre Session 1 post Session  2 pre Session  2 post Group  
1 50 65 35 30 AV_A  
2 45 30 20 20 AV_A  
3 60 70 60 70 AV_A  
4 80 75 75 80 AV_A  
5 70 80 75 65 AV_A  
6 65 65 80 70 AV_A  
7 80 85 70 85 AV_A  
8 75 60 65 75 AV_A  
9 60 80 80 75 A_AV  
10 70 50 60 55 A_AV  
11 85 90 85 95 A_AV  
12 70 85 80 65 A_AV  
13 80 75 70 70 A_AV  
14 75 85 70 75 A_AV  
15 70 100 85 85 A_AV  
16 85 85 95 80 A_AV  
17 90 95 50 80 A_AV  

Table 7.26: Study 3 Speaking Scores (/b/) 

 

7.5.8 Study 3 Speaking Test (/p/) 

The audiovisual condition showed a higher mean improvement (10.0%) than 

audio alone (7.85%) in speaking for /p/ sounds (Table 7.27 and Figure 7.16). 11 
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out of 17 participants improved from audio and 12 out of 17 improved using the 

head.  6 out of 17 participants improved more using audio, while 8 out of 17 

improved more using the head (Table 7.28). 

 

Study 3 Mean Scores for Speaking (/p/ sounds) % 
Group  Session 1 pre-

test 
Session 1 
post-test 

Session 2 pre-
test 

Session 2 
post-test 

AV-A 69.4 79.4 65.6 71.9 
A-AV 66.1 75. 6 66. 7 76. 7 

Table 7.27: Study 3 Mean Speaking Scores (/p/) 

 

User Session 1 
pre 

Session  1 
post 

Session 2 
pre 

Session 2 
post 

Group  

1 50 80 60 80 AV_A  
2 70 85 60 60 AV_A  
3 65 55 50 60 AV_A  
4 45 75 50 50 AV_A  
5 85 90 85 95 AV_A  
6 65 65 75 75 AV_A  
7 80 85 60 80 AV_A  
8 95 100 85 75 AV_A  
9 90 95 85 80 A_AV  
10 35 40 45 65 A_AV  
11 55 85 40 80 A_AV  
12 55 70 80 70 A_AV  
13 70 75 50 65 A_AV  
14 85 80 75 75 A_AV  
15 50 75 75 90 A_AV  
16 85 85 80 90 A_AV  
17 70 75 70 75 A_AV  

Table 7.28: Study 3 Speaking Scores (/p/) 
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Figure 7.16: Study 3 Speaking Test Scores (/p/ sounds) 

 

7.5.9 Study 3 User Feedback 

The user questionnaire asked the users to rate each feature of the software on a 

Likert Scale of 1-7: 

1= Strongly Disagree 

2 = Moderately Disagree 

3 = Slightly Disagree 

4 = Neutral 

5= Slightly Agree 

6 = Moderately Agree 

7 = Strongly Agree 

 

The responses from the two Groups AV-A and A-AV are presented first 

separately (Table 7.29) and then combined (Table 7.30).  
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Study 3 Mean response on Likert scale 1-7 

Question Group 
AV-A 
Audio 
 

Group  
AV-A 
Talking 
head 

Group 
A-AV 
Audio  

Group A-
AV 
Talking 
head 

The Pronunciation Assistant 
software was helpful in 
learning pronunciation. 

6.5 5.8 6.2 6.3 

I found the external view of 
the talking head helpful. 

NA 6.3 NA 6 

The talking head looked 
realistic. 

NA 6.4 NA 6.2 

The speech animation 
appeared natural. 

NA 6.1 NA 5.8 

I found the listening practice 
with the talking head helpful. 

6.4 6 6.3 6.4 

I found the listening test with 
the talking head helpful. 

6.3 6 5.4 6.2 

I found the speaking practice 
with the talking head helpful. 

6.5 6.4 6.3 6.7 

I found the recording function 
in the Pronunciation Assistant 
software helpful. 

6.4 6.1 6.4 6.4 

The Pronunciation Assistant 
software is interesting to use. 

6.1 6.5 6.7 6.2 

The Pronunciation Assistant 
software is satisfying to use. 

6.3 6.1 6 5.9 

The content of the lesson 
matched my needs. 

5.6 5.6 5.6 5.6 

Which version did you prefer? 
(A rating above 4 shows a 
preference of the talking head 
over the audio version) 

5.7 NA (their 
first week)  

NA 
(their 
first 
week) 

5.4 

Table 7.29: Study 3 User Feedback 
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Combining the two groups, the mean responses of the 17 users are in Table 7.30. 

 

Question Audio  Talking 
head 

Audio 
Likert to 
% 

Talking 
Head 
Likert to % 

The Pronunciation Assistant 
software was helpful in learning 
pronunciation. 

6.4 6.1 84.3 80 

I found the external view of the 
talking head helpful. 

NA 6.1 NA 80 

The talking head looked realistic. NA 6.3 NA 82.9 
The speech animation appeared 
natural. 

NA 5.9 NA 77.1 

I found the listening practice with 
the talking head helpful. 

6.4 6.2 84.3 81.4 

I found the listening test with the 
talking head helpful. 

5.8 6.1 75.7 80 

I found the speaking practice with 
the talking head helpful. 

6.4 6.5 84.3 85.7 

I found the recording function in 
the Pronunciation Assistant 
software helpful. 

6.4 6.3 84.3 82.9 

The Pronunciation Assistant 
software is interesting to use. 

6.4 6.4 84.3 84.3 

The Pronunciation Assistant 
software is satisfying to use. 

6.1 6 80 78.6 

The content of the lesson matched 
my needs. 

5.6 5.6 72.9 72.9 

Which version did you prefer? (A 
Likert rating above 4 shows a 
preference of the talking head over 
the audio alone.) 

 5.55  72.1 

Table 7.30: Study 3 User Feedback (combined groups) 

 

On average, the users agreed that the software was helpful in learning 

pronunciation. Group A-AV, who had used the audio version before the head, 

gave the head a higher rating, whereas Group AV-A gave the head lower ratings, 

but that was in week 1, before they had tried the audio version. 

Most agreed that the external view of the head was useful. All agreed that it 

looked realistic, and most agreed that the speech animation looked natural. The 
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ratings for most of the tutoring lesson features were similar for the audio and 

audiovisual versions. One user found the speech recognition was not very accurate 

for his voice, and would like this to be improved. He stated that the software was 

most useful for listening practice. Some users commented that they would like the 

software to demonstrate a wider range of consonant or vowel sounds, rather than 

just /b/ and /p/, as not all had a specific /b/-/p/ problem; some had more difficulty 

with another set of sounds, while others wished to improve their pronunciation in 

general. 

Most preferred the talking head, and when asked why, many commented that it 

was useful to see the lips. One reported that she would prefer the audio version so 

she was not distracted with visuals, but this was the only comment in favour of the 

audio alone. One user reported that the head made him feel as if he was practicing 

with a real tutor. One user preferred audio alone, but showed an improvement in 

speaking after using the head, and was worse after audio, and showed no 

improvement for listening. Another user slightly preferred audio, but this user’s 

pronunciation improved more from the head.  Conversely, those who did not 

improve using the head, still rated it as useful. There was no correlation between 

the users’ opinions and their scores. So in conclusion, the talking head was 

strongly preferred over audio alone by the majority of users. 

7.5.10 Study 3: Summary of Results 

Most users showed an overall improvement from the start of Session 1 to the end 

of Session 2, although this improvement was not significant given the small 

number of subjects.  The standard deviation was high, because individual 

variations caused fluctuations in scores. There was no significant difference found 

using T-tests (p = 0.1) between audio alone and the talking head. On average over 

all 17 users, there was an improvement after using the talking head, and after 

audio alone, for listening and speaking.  

Overall, for the listening test, audio alone gave greater improvement than the 

talking head. An explanation for this result is that the listening test performance is 

improved by the practice of listening to the audio contrast. Visualization may not 

help in this task because the animation may distract users from listening to the 
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audio contrast. One user, who preferred the audio version, did comment that the 

animation was distracting. Another who moderately preferred the audio version 

commented that the motion in the animations was fast, and thought that sequential 

photos would be better. Long animated sequences may cause learners to have 

difficulty in remembering the entire process. Constant motion can be disturbing, 

and learning can improve when there are visual rests, as memory is enhanced 

when users can stop and think (Reeves et al. 2000). Therefore for the listening 

test, the audio alone gave higher improvement, because this allowed users to 

practise listening without the distraction of the animation. Also, since the pre/post 

tests involved listening to audio alone, without the aid of visualization, it was 

harder for the audiovisually-trained group, who had less practice of listening 

without visualization, whereas the audio-trained group had been trained to listen 

with audio alone, so they performed better in the audio-alone listening post-tests. 

For speaking, the audio alone gave a higher improvement than the talking head for 

/b/ sounds, but the talking head was better than audio for /p/ sounds.  Therefore 

the visualization was more helpful for /p/ than for /b/. This could be because this 

talking head showed more emphasis for the /p/ sounds; from observation of the 

data-driven head, the /b/ sounds do not show as much lip movement as the /p/ 

sound, which had more prominent lip movements. For /b/ sounds, the voicing 

difference could be heard in the audio, so the audio helped more than the video for 

/b/. Another explanation is that for Arabic speakers, /b/ is easier to pronounce than 

/p/ , because the /p/ sound does not exist in their native language (Thelwall et al. 

1990), so they may pronounce /p/ as /b/. Also for Japanese speakers the /p/ sound 

is unaspirated so it can sound like an English /b/ (Hazan et al. 2005). Therefore it 

could be expected that many of the participants in this experiment would find /b/ 

easier than /p/. The scores for /b/ and /p/ were in the same range on average, due 

to the diversity of the participants’ native languages and levels of English. 

However, looking at those with the lowest scores, they scored lower for speaking 

/p/ than /b/ in the first pre-tests, so they had more room for improvement with 

speaking /p/ than /b/.  Therefore for those with a definite difficulty, the 

visualization was more beneficial. 
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On average for the 4 lowest scoring users overall, the head was better than audio 

for the speaking test, but audio was better than the head in the listening test.  So 

this result indicates that for those with a definite difficulty in perceiving /p/ vs /b/, 

the audio alone was more effective when practicing an audio discrimination task, 

but when practicing speech production, the visualization was more effective than 

audio alone for teaching how to pronounce the sounds. However these findings 

are limited, and would have to be repeated on larger groups to be able to give 

significant results. 

The talking head was strongly preferred over audio alone by the majority of users, 

as shown by the final rows of Tables 7.29 and 7.30, where the Likert ratings were 

all greater than 4, showing a preference of the talking head over the audio alone 

(Appendix E.10 Question 13). The feedback on all the features of the software 

was positive, with many users reporting that they thought the talking head was 

useful, realistic, and interesting to use.  
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8 Conclusions and Future Work  

This thesis has explored the application of visual speech in perception and 

pronunciation training. It has developed and evaluated a new software application 

featuring a talking head as an aid for pronunciation practice in second language 

learning, which is the first of its kind for British English. This thesis has provided 

empirical data which shows that learners liked using talking heads in second 

language learning, and some learners improved more from using talking heads 

than from audio alone.  

This thesis investigated the development of three talking heads and their 

deployment in second language learning. Its contribution is to explore a range of 

techniques, compare different approaches and shed light on the advantages and 

disadvantages of the different approaches to creating talking heads.  

The studies began with a completely generic viseme-driven synthetic head, not 

based on any person, with a synthetic voice. Parts of the talking head were then 

replaced with parts specific to one speaker: another viseme-driven head was 

created with a photo-based face, tongue positions based on MRI images of that 

speaker, and the real voice of that speaker. A novel corpus was acquired during a 

research visit to the "Département Parole et Cognition", GIPSA-Lab, Grenoble, 

comprising MRI, EMA and video data, which is the first of its kind for a British 

English female speaker.  Finally, collaboration with GIPSA-Lab produced a new 

data-driven head with facial geometry and lip movements modelled on one British 

English female speaker.  

The quality of speech animation was evaluated in Modified Rhyme Tests, which 

found all the synthetic heads to be more intelligible than audio alone, though less 

intelligible than real video. The non-photo-based viseme-driven head showed a 

gain in intelligibility compared to audio speech alone, and was almost as 

intelligible as the video of a real speaker under similar noise conditions. Certain 

visemes were confused with others, and could be modelled more accurately, but 

overall the visemes were identifiable. In a subjective naturalness evaluation 

survey, the visual speech of the non-photo-based viseme-driven talking head was 
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rated to be moderately natural. A Modified Rhyme Test found the data driven 

head to be more intelligible than the photo-based viseme-driven head. A 

naturalness survey showed that the data driven head was perceived as more 

natural than the non-photo-based viseme head. These results show that the data 

driven model is more accurate than viseme-driven. This is because the viseme-

driven model is more generic, not entirely modelled on real data, and only an 

approximation of abstracted parameters, whereas the data driven model is derived 

from real data from a video corpus of a specific speaker, and captures more 

subtleties.  

The efficacy of the talking heads in a tutoring system was evaluated in three user 

trials involving second language learners of English. The studies aimed to 

determine the benefit of visual speech in second language learning, and its 

effectiveness as a teaching tool for this application.  

A pilot trial of the non-photo-based viseme-driven head was run with five native 

Arabic speakers learning English as a second language. Positive feedback was 

received from the students, who enjoyed using the software, and found the 

visualization useful. Generally, there was an improvement in speaking and 

listening, from the first test to the final test, for both groups. Overall the talking 

head gave a more consistent improvement in pronunciation than audio alone.  

The photo-based viseme-driven head was trialled with two native Arabic speakers 

learning English as a second language. The user with the internal view showed no 

improvement, while the user with the external view showed some improvement. 

Their questionnaire feedback showed that the users though that both the internal 

and external views were useful. Previous studies have had similar results, for 

example, Baldi users reported they preferred the internal visualization to external 

alone, although no significant difference was found (Massaro et al. 2003). More 

research will be needed to show whether internal visualization can make a 

difference in learning pronunciation. 

The data-driven head was evaluated in a crossover experiment with 17 second-

language speakers, comparing the data-driven head against audio. Generally, there 

was an improvement in speaking and listening, from the first test to the final test, 
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for both groups. For the listening test, audio alone gave slightly greater 

improvement than the head. An explanation for this result is that the listening test 

performance is improved by the practice of listening to the audio contrast, and 

visualization may not help in this task because the animation may distract users 

from listening to the audio contrast. Therefore for this listening test, the audio 

alone gave a higher improvement, because this allowed users to practice listening 

without the distraction of visualization. Incubation effects were observed, as the 

users improved their listening ability between the two sessions. The order in 

which the training was administered made a difference to the users’ listening 

performance. An interference effect was observed, where those who had auditory 

training first did not benefit from the audiovisual training in their second session. 

This suggests that for maximum benefit, the audiovisual training should be 

administered first. 

For the speaking test, some users showed more improvement in the audiovisual 

condition, while others improved more in the audio condition. The visualization 

may help with speech production, but although /b/ and /p/ do have some visible 

differences, this difference may not always be salient enough to aid 

discrimination: “The distinction between /p/ and /b/ is not likely to be 

disambiguated by visual cues as visual cues carry little information to the voicing 

distinction.” (Hazan et al. 2002). The main difference between /b/ and /p/ is in 

voice onset time, and this difference may be mainly learned by listening to the 

contrast.  The speaking results showed that the pronunciation of /p/ improved 

more after audiovisual training, whereas /b/ improved more from audio training. 

A similar  disparity was also found by (Hazan et al. 2005), who found that /r/ 

pronunciation improved more for the audiovisual training group than the audio 

training group, but that /l/  pronunciation did not.  

The experimental findings are consistent with previous research which found that 

talking heads did not improve listening perception over audio alone. (Hazan et al. 

2005) found that for the perception of the /l/–/r/ contrast, audiovisual training was 

not more effective than auditory training, and the greatest increase in scores was 

seen in the audio-trained group. 
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 The experimental results also support evidence that the combining of audio with 

visualization may be useful to some and not others. Large individual variations 

were also experienced by (Hazan et al. 2005), who found that some learners 

improved their pronunciation significantly more than others.  “It is well known 

that individuals vary significantly in terms of their lipreading skills … and also in 

their ability to integrate auditory and visual information ... Indeed, it is plausible 

that, for some learners at least, perceptual training will be more successful when 

focused on a single modality, with the visual modality acting as a distractor.” 

(Hazan et al. 2005).  Individual learners may use very different learning strategies. 

Hazan and Kim investigated whether specific auditory or cognitive skills were 

linked to initial sensitivity to a novel phonetic contrast or to the degree of learning 

following computer-based phonetic training, and found that rate of learning was 

not correlated with any of the auditory or cognitive skills tested (Hazan et al. 

2010). Therefore it is difficult to predict which learners will benefit from 

computer-based phonetic training.  

These findings verify existing work, and extend it by showing that the findings 

from the experiments by Hazan et al., which used natural audiovisual stimuli, are 

also true for a synthetic talking head. These experiments have also extended the 

range of phonemic contrasts which have been studied. Overall, no significant 

improvement was found for any of the audio or audiovisual conditions, and in 

each experiment no significant difference was found between the two conditions. 

This is not only due to the small sample sizes and large individual variations, but 

also because over the short training periods, any improvement in pronunciation is 

likely to be very small. In each experiment, one judge was used for all of each 

speaker’s responses, to keep the scoring consistent, but multiple judges could be 

used, taking the average of their judgments. The variation of the experimental 

results shows that it is difficult to measure pronunciation improvement in such a 

precise way. The approach usually used by English language tutors is more 

holistic, assessing the overall quality and intelligibility of the speech. Many 

teachers do not consider it important to test specific features, because in real-life 

situations the context allows learner to interpret what they hear, or to be 

understood even if the sounds are not pronounced correctly. Moreover, testing 
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oral skills is often difficult to administer given the large number of students to be 

tested (Bobda 2006). Future studies would be more longitudinal, training students 

with the software over several months, involving their own tutors and possibly 

their examination scores from their usual English language classes to assess their 

long-term improvement. 

One benefit of visualization is to make learning more interesting. Animation can 

bring learning points to life, and relevant imagery increases retention (Shepard 

1967). Even if there is very little visual difference between /b/ and /p/, the 

animated head makes the application more interesting to use, so users are more 

motivated to concentrate. Fatigue may be reduced if the repetitive practice is made 

less boring with visual stimuli. Even though no significant improvement was 

found in listening or pronunciation, the feedback in the questionnaires was 

positive and the majority of users reported that they found the external and 

internal visualization useful.   These results are consistent with previous studies 

(Massaro et al. 2003). Baldi was used for /r/-/l/ training on 11 Japanese speakers. 

Since /r/ and /l/ have different tongue positions it could be expected that internal 

visualization would be helpful in their studies; however, tests on Baldi did not 

find a significant improvement, and no difference between internal and external 

visualization, although users said that they preferred the training with the internal 

view.  While studies to date have not shown a significant difference from using 

talking heads, this research and previous research have shown than users believe it 

to be helpful. Since users like the talking heads and enjoy using the software, they 

may be more motivated to use it for practice, and motivation is an important 

factor in pronunciation learning. Factors influencing motivation can be negative, 

e.g. fear of derision (which would not occur using the talking head, as tuition 

could take place alone with the computer), and positive, e.g. desire to study for the 

sheer pleasure of learning. A learner who is strongly motivated is more likely to 

focus on the training, practise more, and succeed in improving their performance 

(Dabic 2010). Computer-based instruction can provide an increased level of 

participation through interactivity, which leads to higher levels of cognitive 

engagement and therefore higher levels of retention (Tobias et al. 2011). 
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This research has provided a tool for teaching pronunciation, using a computer-

generated head to visualize internal articulator motion in a way which cannot be 

demonstrated by a human tutor alone. Evaluation has shown that the software 

improved perception and production, even if it was the audio modality which 

helped more than the visualization, in some cases. Although the experiments have 

not shown definitively that the visualization improves performance over audio 

alone, the feedback from users shows that they do think it is helpful. The software 

can be useful for perception training, giving listening practice and feedback, and 

by extension of learning perception, speech production can be improved.  The 

application can be used in speaking practice where users listen to sounds and then 

try to reproduce them, and can listen to their own recordings to compare for 

themselves their production against the example. Some speech recognition has 

been incorporated to give feedback on pronunciation, although it is not definitive 

and does not give specific feedback tailored to the user, so it cannot replace a 

human tutor, but can be used as an aid to solitary practice. A major benefit is that 

students can use the software for practice outside of teaching hours, in their own 

time, at home or anywhere in the world. The self-directed nature of computer-

based tuition can also lead to higher retention, as the content is followed at the 

rate which suits the learner, who can stop and reflect, building internal models, 

and relating new knowledge to existing knowledge, and repeat the lesson in a way 

that is not possible in classroom-based tutoring (Kulik et al. 1991; Tobias et al. 

2011). 

8.1 Future Work 

A question to consider is why Computer Assisted Language Learning (CALL) has 

not yet been taken up by many users.  A problem is that the technology for 

providing feedback has not advanced enough to replace the need for human tutors, 

and there are unsolved issues with the unnaturalness of character embodiment. 

The realism and believability of appearance, behaviour and interaction need to be 

improved to increase acceptance of talking head technology. 

Further work could improve the realism of the visual speech. The viseme-based 

head was shown to be less intelligible than the data-driven head, with more 
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confusion between visemes, so these could be more accurately modelled. For 

example, a perceptual test based on the McGurk effect (McGurk et al. 1976) could 

help to identify weaknesses in the synthesis of certain visemes (Cosker et al. 

2005). Lazalde has shown that using separate visemes can give better results than 

a single B-M-P viseme (Lazalde 2010). Utterances with less mouth movement 

were rated as less natural in the experiment in Section 6.3, so adding extra 

emphasis could increase the perceived naturalness. More expressive speech could 

appear to be more natural, because face and head movements may distract 

attention from the lips, as well as presenting more lifelike behaviour. The 

perceived intensity of facial expressions can be increased by increasing shape and 

motion information, and including eye motion (Wallraven et al. 2008). The 

modelling of non-verbal behaviour could be improved, for example, with more 

realistic eyelid kinematics (Steptoe et al. 2010). Further experiments could 

investigate whether a more expressive talking head is perceived as more realistic, 

and whether this is preferred in the tutoring application. Empirical studies (Reeves 

et al. 1996) have found that people are inclined to see media as living and 

animate, and there is a tendency to anthropomorphize objects, for example, 

inferring a positive attitude and personality from the perception of a smiling 

expression, so it is likely that more expressive behavior would increase the 

illusion of humanity, and increase the acceptance of the talking head. 

Future work could use the 3D MRI data collected in the corpus to make the first 

full 3D data-driven articulatory model of a British English female speaker, using 

similar techniques to those used for a French speaker at GIPSA-Lab (Badin et al. 

2008). This would then produce a full 3D internal and external model of a British 

English speaker to be used in a speech tutoring application. Further experiments 

would investigate whether the internal view with more accurate articulation 

modelling would give a greater improvement in learning pronunciation. 

Further studies on larger groups of participants could investigate whether a more 

natural head has a greater effect on learning, and could determine the benefits of 

using talking heads in learning a language. Further studies could compare the 

effects of various aspects of the animation of the talking head, such as the impact 

of more natural facial expressions. Longer training periods would be required on 
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larger groups of participants to determine whether the use of talking heads can be 

of benefit in learning pronunciation. 

There are many different configurations and variables which could be investigated 

further. Every speaker has their own articulation strategy, and their own unique 

facial geometry, and the data-driven head was modelled on only one speaker, so it 

demonstrates how that person speaks, rather than some “ideal” based on the 

average articulations of many speakers.  It may be possible that this particular 

data-driven head improved learners’ pronunciation of /p/ because this particular 

speaker’s facial geometry and articulation strategy showed greater emphasis in the 

production of /p/ sounds, making this speaker a good candidate for demonstrating 

that sound. Other speakers could have thinner lips and may not show as much lip 

protrusion or movement, which could affect the results. The tutoring application 

could be extended to include a wider range of segmental sounds, and other 

features of pronunciation, such as prosody. Future studies could experiment with 

other data-driven and viseme-driven heads, created using different approaches and 

a range of speakers. The synthetic heads could be compared against natural video, 

as a baseline for realism. (Hazan et al. 2005) found that when comparing the Baldi 

talking head against natural video, those trained with the synthetic face showed 

less improvement than those trained with audio or with natural audiovisual 

stimuli, but this may be because the quality of the synthetic heads was not yet 

sufficiently intelligible. The Modified Rhyme Tests in Chapter 5 found the data-

driven head to be more intelligible than the viseme-driven head, yet still not as 

intelligible as natural video. It is expected that more realistic movements would be 

better for teaching pronunciation, so it is expected that the natural video would 

give better performance in tutoring than the external of the data-driven head, 

which would be better than the external view of the viseme-based head. However, 

the internal views of the synthetic heads could give an advantage, so these could 

be used in training in addition to natural video.  

A possible future study could experiment with exaggerating and slowing down 

articulations, which is another possible benefit of synthetic heads, which could 

make the correct lip and tongue positions easier to see than in natural imaging 

techniques. Spectrographs show that the sound changes involved in the difference 
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between /p/ and /b/ last only a few hundred milliseconds, and these rapid changes 

can be too brief for dyslexic children to recognize (Straub 2001). Tallal found that 

children with developmental language learning problems are impaired in their 

ability to process brief, rapidly successive acoustic stimuli, specifically in the tens 

of millisecond time window. Children were trained to recognize sounds by using 

modified acoustic speech to amplify and temporally extend the brief, rapidly 

successive cues, and through adaptive training, the speech was gradually made 

faster, until it was the normal rate. Trials found that intensive daily training (two 

hours a day, five days a week, for four weeks) resulted in highly significant 

improvements in speech discrimination and language processing compared to a 

control group (Tallal 2001).  A similar approach could be extended to visual 

stimuli, and studies could investigate whether slowed-down, hyper-articulated 

speech animation could improve learning better than naturally-articulated speech 

animation. 

A future direction for research would be for the tutoring system to give better 

feedback to the users, and to achieve this, a more accurate speech recognition 

system would need to be integrated. For example, many hidden Markov model 

(HMM) recognisers can output a goodness-of-fit probability score indicating how 

acoustically similar an utterance is to a pre-defined ideal (Green et al. 2003). This 

would allow the system to rate more precisely how closely a learner’s production 

matches the target the recogniser has been trained to expect, for example, a model 

British English speaker’s production. Visual feedback could be tailored to 

represent the user’s score, which would give them a visual target to aim towards, 

and an indication of their own improvement, as used in the Ortho-Logo-Paedia 

articulation program, which provides immediate visual feedback on performance, 

which can be “right”/”wrong” or graduated (Hatzis et al. 2003). Research in 

speech therapy suggests that feedback must be both auditory and visual (Palmer 

2004). An interesting direction for future research would be visual feedback based 

on analysis of the users’ articulator movements. One approach is to use acoustic-

to-articulatory inversion (Ben Youssef 2011)  to allow the system to  infer which 

articulator movements the user has made from analysis of the acoustic signal. 

Alternatively, computer vision techniques can be used, since machine-based lip-
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reading systems can now outperform human lip-readers (Hilder et al. 2009). It has 

been shown that acoustic-to-articulatory inversion can be improved by adding 

visual features extracted from the speaker’s face, as important articulatory 

information can be extracted using only a few facial measurements (Kjellström 

2009). Tongue movements can then be reconstructed from the audio and video 

information (Kjellstrom et al. 2006). Then the talking head could display the 

user’s own movements, and display what the correct movements should be for 

comparison, and give appropriate instruction specific to that user. If such a system 

could give accurate feedback to a user, then this could be of great benefit in 

practicing speech without the presence of a human tutor and would be a major 

benefit of using talking heads in addition to traditional methods.   
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Appendix A: International Phonetic Alphabet  

 

Figure A.1: International Phonetic Alphabet Chart, reproduced with permission 

(International  Phonetic Association 2005) 
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Appendix B: Speech Tutoring Application 

Screenshots 

 

Figure B.1: Introduction 

 

Figure B.2: Listening Practice: Sounds 
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Figure B.3: Listening Practice: Words 

 

Figure B.4: Listening Practice: Phrases 
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Figure B.5: Listening Test: Sounds 

 

Figure B.6: Listening Test: Words 
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Figure B.7: Speaking Practice: Sounds 

 

Figure B.8: Speaking Practice: Words 
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Figure B.9: Speaking Practice: Phrases 

 

Figure B.10: End of Lesson 
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Appendix C: Words for Video Corpus 

C.1: Phrases for tutoring application  

All the phrases used in the tutoring application and recorded in the video corpus 

are listed below. 

1. Hello! 

2. Welcome to today's lesson. 

3. Work your way through the sections. 

4. correct 

5. incorrect 

6. Click on a letter to listen to its sound. 

7. b@ 

8. p@ 

9. Click on a word to listen to its sound. 

10. Bat 

11. Back 

12. Bore 

13. Rubber 

14. Stub 

15. Pat 

16. Pack 

17. Poor 

18. Supper 

19. Stop 

20. Click on a phrase to listen to its sound. 

21. Betty Botter bought some butter. 

22. But she said the butter's bitter. 

23. If I put it in my batter it will make my batter bitter. 

24. But a bit of better butter will make my batter better. 

25. Peter Piper picked a pack of pickled peppers. 

26. A pack of pickled peppers Peter piper picked. 

27. If Peter Piper picked a pack of pickled peppers, 

28. Where's the pack of pickled peppers Peter Piper picked? 

29. Click on the Play button and then click on the letter you hear. 

30. Click on the Play button and then click on the word you hear. 

31. By 
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32. Ban 

33. Pie 

34. Pan 

35. Click on a letter and repeat what you hear. 

36. Press the Start Recording button to record your voice. 

37. Then play your recording. 

38. Put your lips together. 

39. Using your voice, open your lips. 

40. Repeat after me... 

41. b@, b@, b@: 

42. Open your lips with a puff of air. 

43. p@, p@, p@ 

44. Click on a word and repeat what you hear. 

45. Click on a phrase and repeat what you hear. 

46. Well Done!  

47. You have reached the end of the lesson. 

48. Goodbye! 

C.2: MOCHA -TIMIT subset  

The subset of sentences from the MOCHA-TIMIT corpus (Wrench 1999) 

recorded in the video corpus is listed below. 

011. He will allow a rare lie. 

014. Before Thursday's exam, review every formula. 

035. Help celebrate your brother's success. 

037. Critical equipment needs proper maintenance. 

038. Young people participate in athletic activities. 

077. Bagpipes and bongos are musical instruments. 

109. Birthday parties have cupcakes and ice cream. 

158. Our experiment's positive outcome was unexpected. 

241. Clear pronunciation is appreciated. 

438. The fifth jar contains big, juicy peaches. 
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Appendix D: Stimulus Words of MRT 

The 300 Stimulus Words of the Modified Rhyme Test (Meyer Sound 2010): 

1 went sent bent dent tent rent 
2 hold cold told fold sold gold 
3 pat pad pan path pack pass 
4 lane lay late lake lace lame 
5 kit bit fit hit wit sit 
6 must bust gust rust dust just 
7 teak team teal teach tear tease 
8 din dill dim dig dip did 
9 bed led fed red wed shed 
10 pin sin tin fin din win 
11 dug dung duck dud dub dun 
12 sum sun sung sup sub sud 
13 seep seen seethe seek seem seed 
14 not tot got pot hot lot 
15 vest test rest best west nest 
16 pig pill pin pip pit pick 
17 back bath bad bass bat ban 
18 way may say pay day gay 
19 pig big dig wig rig fig 
20 pale pace page pane pay pave 
21 cane case cape cake came cave 
22 shop mop cop top hop pop 
23 coil oil soil toil boil foil 
24 tan tang tap tack tam tab 
25 fit fib fizz fill fig fin 
26 same name game tame came fame 
27 peel reel feel eel keel heel 
28 hark dark mark bark park lark 
29 heave hear heat heal heap heath 
30 cup cut cud cuff cuss cud 
31 thaw law raw paw jaw saw 
32 pen hen men then den ten 
33 puff puck pub pus pup pun 
34 bean beach beat beak bead beam 
35 heat neat feat seat meat beat 
36 dip sip hip tip lip rip 
37 kill kin kit kick king kid 
38 hang sang bang rang fang gang 
39 took cook look hook shook book 
40 mass math map mat man mad 
41 ray raze rate rave rake race 
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42 save same sale sane sake safe 
43 fill kill will hill till bill 
44 sill sick sip sing sit sin 
45 bale gale sale tale pale male 
46 wick sick kick lick pick tick 
47 peace peas peak peach peat peal 
48 bun bus but bug buck buff 
49 sag sat sass sack sad sap 
50 fun sun bun gun run nun 

 

D.1: MRT words used in Intelligibility Test 1: Audio Alone 

Yellow shading indicates the chosen word used in the test. 

 

Test 
stimulus 
number 

MRT 
List 
number 

      Sound 
tested 

Initial 
(i ) or 
Final 
(f) 

1 27 peel reel feel eel keel heel p i 
2 35 heat neat feat seat meat beat s i 
3 36 dip sip hip tip lip rip h i 
4 38 hang sang bang rang fang gang b i 
5 39 took cook look hook shook book sh i 
6 42 save same sale sane sake safe l f 
7 43 fill kill will hill till bill w i 
8 46 wick sick kick lick pick tick p i 
9 47 peace peas peak peach peat peal ch f 
10 48 bun bus but bug buck buff n f 
11 27 peel reel feel eel keel heel r i 
12 35 heat neat feat seat meat beat f i 
13 36 dip sip hip tip lip rip l i 
14 38 hang sang bang rang fang gang g i 
15 39 took cook look hook shook book h i 
16 42 save same sale sane sake safe v f 
17 43 fill kill will hill till bill t i 
18 46 wick sick kick lick pick tick k i 
19 47 peace peas peak peach peat peal s f 
20 48 bun bus but bug buck buff s f 
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D.2: MRT words used in Intelligibility Test 1: Synthetic Talking 

Head (THVN) 

Test  
Stimulus 
number 

MRT 
List 
number 

      Sound 
tested 

Initial 
(i ) or 
Final 
(f) 

1 4 lane lay late lake lace lame m f 
2 7 teak team teal teach tear tease ch f 
3 11 dug dung duck dud dub dun k f 
4 13 seep seen seethe seek seem seed k f 
5 15 vest test rest best west nest v i 
6 16 pig pill pin pip pit pick l f 
7 17 back bath bad bass bat ban s f 
8 18 way may say pay day gay s i 
9 21 cane case cape cake came cave p f 
10 22 shop mop cop top hop pop h i 
11 30 cup cut cud cuff cuss cud p f 
12 31 thaw law raw paw jaw saw th i 
13 33 puff puck pub pus pup pun f f 
14 37 kill kin kit kick king kid ng f 
15 40 mass math map mat man mad p f 
16 41 ray raze rate rave rake race y f 
17 44 sill sick sip sing sit sin p f 
18 45 bale gale sale tale pale male t i 
19 49 sag sat sass sack sad sap p f 
20 50 fun sun bun gun run nun r i 
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D.3: MRT words used in Intelligibility Test 1: Natural Video 

Test  
Stimulus 
number 

MRT 
List 
number 

      Sound 
tested 

Initial 
(i ) or 
Final 
(f) 

1 1 went sent bent dent tent rent b i 
2 2 hold cold told fold sold gold c i 
3 3 pat pad pan path pack pass th f 
4 5 kit bit fit hit wit sit f i 
5 6 must bust gust rust dust just j i 
6 8 din dill dim dig dip did p f 
7 9 bed led fed red wed shed r i 
8 10 pin sin tin fin din win w i 
9 12 sum sun sung sup sub sud n f 
10 14 not tot got pot hot lot p i 
11 19 pig big dig wig rig fig d i 
12 20 pale pace page pane pay pave v f 
13 23 coil oil soil toil boil foil o i 
14 24 tan tang tap tack tam tab b f 
15 25 fit fib fizz fill fig fin z f 
16 26 same name game tame came fame g i 
17 28 hark dark mark bark park lark l i 
18 29 heave hear heat heal heap heath t f 
19 32 pen hen men then den ten th (d) i 
20 34 bean beach beat beak bead beam ch f 
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D.4: MRT words used in Intelligibility Test 2: Audio Alone 

Test  
Stimulus 
number 

MRT 
List 
number 

      Sound 
tested 

Initial 
(i ) or 
Final 
(f) 

1 27 peel reel feel eel keel heel p i 
2 47 peace peas peak peach peat peal ch f 
3 35 heat neat feat seat meat beat f i 
4 46 wick sick kick lick pick tick k i 
5 38 hang sang bang rang fang gang r i 
6 12 sum sun sung sup sub sud ng f 
7 3 pat pad pan path pack pass th f 
8 2 hold cold told fold sold gold s i 
9 39 took cook look hook shook book t i 
10 42 save same sale sane sake safe m f 
11 8 din dill dim dig dip did l f 
12 48 bun bus but bug buck buff n f 
13 28 hark dark mark bark park lark b i 
14 43 fill kill will hill till bill w i 

 

D.5: MRT words used in Intelligibility Test 2: Viseme-Driven 

Synthetic Talking Head (THVP) 

Test  
Stimulus 
number 

MRT 
List 
number 

      Sound 
tested 

Initial 
(i ) or 
Final 
(f) 

1 40 mass math map mat man mad p f 
2 7 teak team teal teach tear tease ch f 
3 33 puff puck pub pus pup pun f f 
4 13 seep seen seethe seek seem seed k f 
5 50 fun sun bun gun run nun r i 
6 37 kill kin kit kick king kid ng f 
7 31 thaw law raw paw jaw saw th  i 
8 18 way may say pay day gay s i 
9 4 lane lay late lake lace lame t f 
10 18 way may say pay day gay m i 
11 31 thaw law raw paw jaw saw l i 
12 50 fun sun bun gun run nun n i 
13 45 bale gale sale tale pale male b i 
14 15 vest test rest best west nest w i 
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D.6: MRT words used in Intelligibility Test 2: Data-Driven 

Synthetic Talking Head (THD) 

Test  
Stimulus 
number 

MRT 
List 
number 

      Sound 
tested 

Initial 
(i ) or 
Final 
(f) 

1 21 cane case cape cake came cave p f 
2 22 shop mop cop top hop pop sh i 
3 30 cup cut cud cuff cuss cud f f 
4 49 sag sat sass sack sad sap k f 
5 36 dip sip hip tip lip rip r i 
6 44 sill sick sip sing sit sin ng f 
7 17 back bath bad bass bat ban th f 
8 41 ray raze rate rave rake race s f 
9 4 lane lay late lake lace lame t f 
10 22 shop mop cop top hop pop m i 
11 16 pig pill pin pip pit pick l f 
12 11 dug dung duck dud dub dun n f 
13 19 pig big dig wig rig fig b i 
14 1 went sent bent dent tent rent w i 

 

D.7: MRT words used in Intelligibility Test 2: Natural Video 

Test  
Stimulus 
number 

MRT 
List 
number 

      Sound 
tested 

Initial 
(i ) or 
Final 
(f) 

1 14 not tot got pot hot lot p i 
2 34 bean beach beat beak bead beam ch f 
3 5 kit bit fit hit wit sit f i 
4 26 same name game tame came fame g i 
5 9 bed led fed red wed shed r i 
6 24 tan tang tap tack tam tab ng f 
7 32 pen hen men then den ten th (d) i 
8 23 coil oil soil toil boil foil s i 
9 29 heave hear heat heal heap heath t f 
10 6 must bust gust rust dust just m i 
11 20 pale pace page pane pay pave n f 
12 25 fit fib fizz fill fig fin l f 
13 23 coil oil soil toil boil foil b i 
14 10 pin sin tin fin din win w i 
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Appendix E: Tutoring Study Stimuli 

E.1: Study 1 Listening Pre/Post Test Stimuli 

1. path 

2. bath 

3. best 

4. pest 

5. bit 

6. pit 

7. bop 

8. pop 

9. pun 

10. bun 

11. tab 

12. tap 

13. nip  

14. nib 

15. hob 

16. hop 

17. pub  

18. pup 

19. cob 

20. cop 

E.2: Study 1 Pre/Post Test Speaking Words: 

1. pair  

2. bear 

3. pond  

4. bond 

5. sub 

6. sup 

7. cub 

8. cup 

9. rip 

10. rib 

11. beep 
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12. peep 

13. beach 

14. peach 

15. pin 

16. bin 

17. pill 

18. bill 

19. bale 

20. pale 

E.3: Study 1 Pre/Post Test Speaking Phrases 

1. Bagpipes and bongos are musical instruments. 

2. It’s absorbed into the bloodstream. 

3. The benefits claimed in the report were substantial. 

4. The team involved in the project avoided the problem. 

5. The blackberries were baked in a pie. 

6. Help celebrate your brother's success. 

7. Our experiment's positive outcome was unexpected. 

8. A batch of biscuits was in the box. 

9. Young people participate in athletic activities. 

10. Clear pronunciation is appreciated. 

11. Birthday parties have balloons and banners. 

12. Basic equipment needs proper maintenance. 
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E.4: Study 1 User Questionnaire  

 

Part 1: Personal Information  

1. In what age group are you? 

       19 and under  

       20 - 29  

       30 - 39  

       40 - 49  

       50 - 59  

       60 +  

 

2. Gender:  

       Male  

       Female 

3.  Please state your level of English: 

 IELTS Level:    

 

4. Please state your primary or native language.  

 

Part 2:  General Questions 

 1.  What have you found most difficult in learning pronunciation? 

2.  What particular aspects of learning pronunciation do you think software 

could be useful for? 

3.  Have you used any other pronunciation software before? If so, please give 

details.  
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Part 3:  To be completed after software use 

 After using the software, please indicate the extent to which you agree or disagree 

with the following statements: 

 SD = Strongly Disagree  

 D = Disagree 

 N = Neutral 

 A = Agree 

SA = Strongly Agree 

 

This software was helpful in learning 
pronunciation 

SD D N A SA 

I found the external view helpful SD D N A SA 

I found the internal view helpful  SD D N A SA 

I found the listening practice helpful SD D N A SA 

I found the listening test helpful SD D N A SA 

I found the speaking practice helpful SD D N A SA 

I found the recording function helpful SD D N A SA 

The content of the lesson matched my 
needs 

SD D N A SA 

This software is easy to use SD D N A SA 

This software is engaging SD D N A SA 

The talking head appeared natural SD D N A SA 

This software is satisfying to use.  SD D N A SA 

4.  What particular aspect(s) of this software did you like? 

5.  What particular aspect(s) of this software did you dislike? 

6.  Do you have any suggestions for improvement? 
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E.5: Study 2 and 3 Pre/Post Test Listening Words 

1. path 

2. bath 

3. big 

4. pig 

5. bit 

6. pit 

7. bark 

8. park 

9. pun 

10. bun 

11. tab 

12. tap 

13. sub 

14. sup 

15. bale 

16. pale 

17. pub  

18. pus 

19. best 

20. pop 

E.6: Study 2 and 3 Pre/Post Test Speaking Words 

1. bond 

2. pull 

3. beep 

4. peat 

5. bang 

6. rib 

7. peep 

8. hob 

9. pond  

10. pay 

11. rip 

12. symbol  

13. board  

14. bull 
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15. bay 

16. hop 

17. poured 

18. beat 

19. pang 

20. simple  

E.7: Study 2 and 3 Pre/Post Test Speaking Phrases  

1. I would like to put the bath here.   

2. I brought a bin. 

3. I put the bills on the table.   

4. Put this blanket on your back.  

5. I put the cub in the basket.         

6. Look at how big that bear is!   

7. Did you see that pike?   

8. Her buns are awful.   

9. I will put the patch here.      

10. He has too many pets. 

11. I would like to put the path here.      

12. I brought a pin. 

13. I put the pills on the table.      

14. I put the cup in the basket. 

15. Did you see that bike? 

16. Put this blanket on your pack. 

17. I will put the batch here.   

18. Look at how big that pear is!   

19. Her puns are awful.   

20. He has too many bets. 
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E.8: Study 2: User Feedback after using Pronunciation 

Software Version I (internal and external visualization) 

1. Participant ID:  

After using the Pronunciation Assistant software, please indicate the extent to 

which you agree or disagree with the following statements.  

2. The Pronunciation Assistant software was helpful in learning pronunciation.  

Strongly 
disagree 

Moderately 
disagree 

Slightly 
disagree 

Neutral
Slightly 
agree 

Moderately 
agree 

Strongly 
agree 

Not 
Applicable 

        

 

3. I found the external view of the talking head (e.g. lip and tongue movements 

viewed from the front) helpful.  

Strongly 
disagree 

Moderately 
disagree 

Slightly 
disagree 

Neutral
Slightly 
agree 

Moderately 
agree 

Strongly 
agree 

Not 
Applicable 

        

 

4. I found the internal view of the talking head (e.g. lip and tongue movements 

viewed from the side) helpful.  

Strongly 
disagree 

Moderately 
disagree 

Slightly 
disagree 

Neutral
Slightly 
agree 

Moderately 
agree 

Strongly 
agree 

Not 
Applicable 

        

 

5. The talking head looked realistic.  

Strongly 
disagree 

Moderately 
disagree 

Slightly 
disagree 

Neutral
Slightly 
agree 

Moderately 
agree 

Strongly 
agree 

Not 
Applicable 

        

 

6. The speech animation appeared natural.  

Strongly 
disagree 

Moderately 
disagree 

Slightly 
disagree 

Neutral
Slightly 
agree 

Moderately 
agree 

Strongly 
agree 

Not 
Applicable 
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Strongly 
disagree 

Moderately 
disagree 

Slightly 
disagree 

Neutral
Slightly 
agree 

Moderately 
agree 

Strongly 
agree 

Not 
Applicable 

        

7. I found the listening practice with the talking head helpful.  

Strongly 
disagree 

Moderately 
disagree 

Slightly 
disagree 

Neutral
Slightly 
agree 

Moderately 
agree 

Strongly 
agree 

Not 
Applicable 

        

 

8. I found the listening test with the talking head helpful.  

Strongly 
disagree 

Moderately 
disagree 

Slightly 
disagree 

Neutral
Slightly 
agree 

Moderately 
agree 

Strongly 
agree 

Not 
Applicable 

        

 

9. I found the speaking practice with the talking head helpful.  

Strongly 
disagree 

Moderately 
disagree 

Slightly 
disagree 

Neutral
Slightly 
agree 

Moderately 
agree 

Strongly 
agree 

Not 
Applicable 

        

 

10. I found the recording function in the Pronunciation Assistant software helpful.  

Strongly 
disagree 

Moderately 
disagree 

Slightly 
disagree 

Neutral
Slightly 
agree 

Moderately 
agree 

Strongly 
agree 

Not 
Applicable 

        

 

11. The Pronunciation Assistant software is interesting to use.  

Strongly 
disagree 

Moderately 
disagree 

Slightly 
disagree 

Neutral
Slightly 
agree 

Moderately 
agree 

Strongly 
agree 

Not 
Applicable 

        

 

12. The Pronunciation Assistant software is satisfying to use.  

Strongly 
disagree 

Moderately 
disagree 

Slightly 
disagree 

Neutral
Slightly 
agree 

Moderately 
agree 

Strongly 
agree 

Not 
Applicable 
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13. The content of the lesson matched my needs.  

Strongly 
disagree 

Moderately 
disagree 

Slightly 
disagree 

Neutral
Slightly 
agree 

Moderately 
agree 

Strongly 
agree 

Not 
Applicable 

        

 

14. What did you like about this software?  

15. What did you dislike about this software?  

16. Do you have any comments or suggestions for improvement?  

E.9: Study 2 and Study 3: User Feedback after using 

Pronunciation Software Version X (external visualization) 

1. Participant ID:  

After using the Pronunciation Assistant software, please indicate the extent to 

which you agree or disagree with the following statements.  

2. The Pronunciation Assistant software was helpful in learning pronunciation.  

Strongly 
disagree 

Moderately 
disagree 

Slightly 
disagree 

Neutral
Slightly 
agree 

Moderately 
agree 

Strongly 
agree 

Not 
Applicable 

        

 

3. I found the external view of the talking head (e.g. lip and tongue movements 

viewed from the front) helpful.  

Strongly 
disagree 

Moderately 
disagree 

Slightly 
disagree 

Neutral
Slightly 
agree 

Moderately 
agree 

Strongly 
agree 

Not 
Applicable 

        

 

4. The talking head looked realistic.  

Strongly 
disagree 

Moderately 
disagree 

Slightly 
disagree 

Neutral
Slightly 
agree 

Moderately 
agree 

Strongly 
agree 

Not 
Applicable 
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5. The speech animation appeared natural.  

Strongly 
disagree 

Moderately 
disagree 

Slightly 
disagree 

Neutral
Slightly 
agree 

Moderately 
agree 

Strongly 
agree 

Not 
Applicable 

        

 

6. I found the listening practice with the talking head helpful.  

Strongly 
disagree 

Moderately 
disagree 

Slightly 
disagree 

Neutral
Slightly 
agree 

Moderately 
agree 

Strongly 
agree 

Not 
Applicable 

        

 

7. I found the listening test with the talking head helpful.  

Strongly 
disagree 

Moderately 
disagree 

Slightly 
disagree 

Neutral
Slightly 
agree 

Moderately 
agree 

Strongly 
agree 

Not 
Applicable 

        

 

8. I found the speaking practice with the talking head helpful.  

Strongly 
disagree 

Moderately 
disagree 

Slightly 
disagree 

Neutral
Slightly 
agree 

Moderately 
agree 

Strongly 
agree 

Not 
Applicable 

        

 

9. I found the recording function in the Pronunciation Assistant software helpful.  

Strongly 
disagree 

Moderately 
disagree 

Slightly 
disagree 

Neutral
Slightly 
agree 

Moderately 
agree 

Strongly 
agree 

Not 
Applicable 

        

 

10. The Pronunciation Assistant software is interesting to use.  

Strongly 
disagree 

Moderately 
disagree 

Slightly 
disagree 

Neutral
Slightly 
agree 

Moderately 
agree 

Strongly 
agree 

Not 
Applicable 
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11. The Pronunciation Assistant software is satisfying to use.  

Strongly 
disagree 

Moderately 
disagree 

Slightly 
disagree 

Neutral
Slightly 
agree 

Moderately 
agree 

Strongly 
agree 

Not 
Applicable 

        

 

12. The content of the lesson matched my needs.  

Strongly 
disagree 

Moderately 
disagree 

Slightly 
disagree 

Neutral
Slightly 
agree 

Moderately 
agree 

Strongly 
agree 

Not 
Applicable 

        

 

13. What did you like about this software?  

14. What did you dislike about this software?  

15. Do you have any comments or suggestions for improvement?  

 

E.10: Study 3: User Feedback after using Pronunciation 

Software Version A (audio alone) 

1. Participant ID:  

After using the Pronunciation Assistant software, please indicate the extent to 

which you agree or disagree with the following statements.  

2. The Pronunciation Assistant software was helpful in learning pronunciation.  

Strongly 
disagree 

Moderately 
disagree 

Slightly 
disagree 

Neutral
Slightly 
agree 

Moderately 
agree 

Strongly 
agree 

Not 
Applicable 

        

 

3. I found the listening practice with the Pronunciation Assistant software helpful.  

Strongly 
disagree 

Moderately 
disagree 

Slightly 
disagree 

Neutral
Slightly 
agree 

Moderately 
agree 

Strongly 
agree 

Not 
Applicable 
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4. I found the listening test with the Pronunciation Assistant software helpful.  

Strongly 
disagree 

Moderately 
disagree 

Slightly 
disagree 

Neutral
Slightly 
agree 

Moderately 
agree 

Strongly 
agree 

Not 
Applicable 

        

 

5. I found the speaking practice with the Pronunciation Assistant software helpful.  

Strongly 
disagree 

Moderately 
disagree 

Slightly 
disagree 

Neutral
Slightly 
agree 

Moderately 
agree 

Strongly 
agree 

Not 
Applicable 

        

 

6. I found the recording function in the Pronunciation Assistant software helpful.  

Strongly 
disagree 

Moderately 
disagree 

Slightly 
disagree 

Neutral
Slightly 
agree 

Moderately 
agree 

Strongly 
agree 

Not 
Applicable 

        

 

7. The Pronunciation Assistant software is interesting to use.  

Strongly 
disagree 

Moderately 
disagree 

Slightly 
disagree 

Neutral
Slightly 
agree 

Moderately 
agree 

Strongly 
agree 

Not 
Applicable 

        

 

8. The Pronunciation Assistant software is satisfying to use.  

Strongly 
disagree 

Moderately 
disagree 

Slightly 
disagree 

Neutral
Slightly 
agree 

Moderately 
agree 

Strongly 
agree 

Not 
Applicable 

        

 

9. The content of the lesson matched my needs.  

Strongly 
disagree 

Moderately 
disagree 

Slightly 
disagree 

Neutral
Slightly 
agree 

Moderately 
agree 

Strongly 
agree 

Not 
Applicable 

        

 

10. What did you like about this software?  

11. What did you dislike about this software?  



Visual speech in technology-enhanced learning 

 

 Page 170 

12. Do you have any comments or suggestions for improvement?  

13. If this is your 2nd session, and you have used 2 different versions, which did 

you prefer?  

Strongly 
prefer 
audio 
alone 

Moderately 
prefer audio 
alone 

Slightly 
prefer 
audio 
alone 

Neutral

Slightly 
prefer 
talking 
head 

Moderately 
prefer 
talking head 

Strongly 
prefer 
talking 
head 

Not 
Applicable 

        

 

14. If you prefer one version, please comment on why. 
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