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Abstract  

Using first-principles density functional calculations, LiNiO2-related cathode materials 

are studied. It is found that in contrast to previous studies, the hole state in Li doped 

NiO shows predominately Ni character and is accompanied by a local Jahn-Teller 

distortion. We show that this is consistent with experiments. A new potential ground 

state LiNiO2 cell is found in which charge disproportionation Ni3+
Ni2++Ni4+ occurs. 

However another cell in which the Jahn-Teller distortions of Ni3+ octahedral are in a 

zigzag ordering, is close in energy. Therefore we suggest that in real LiNiO2 samples, the 

two phases coexist. This explains the absence of long range ordering in LiNiO2. 

Rock-salt LiMO2 compounds crystallise in three different structures depending on the 

cation ordering. We show that this cannot be explained by the size effect and propose 

that the exchange interaction between M ions is responsible for the ordering. Both size 

difference between Li and M and the exchange interaction between nearest-

neighbouring M ions favour the layered structure, whereas the exchange interaction 

between second-nearest-neighbouring M ions destabilises the layered structure.  

The defect formation energies are low in LiNiO2, consistent with the difficulty to 

synthesise truly stoichiometric LiNiO2. The tendency for Ni to be present in the Li layers 

can be explained by super-exchange interactions. Therefore with Co substitution for Ni, 

the nonmagnetic Co ions screen these interactions and destabilise the presence of Ni in 

the Li layer. The same effect is found with Al substitution from our calculations. We 

also show why substitution of Ni by Mn increases the concentration of the interlayer 

mixing defects worse compared to LiNiO2. In addition, a correlation between the 

oxygen charge and the defect formation of oxygen vacancy is found. It appears that the 

lower the effective oxygen charge, the smaller the defect formation energy. 
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Chapter 1 

Introduction 

 

 

1.1 Lithium ion batteries  

Since the commercialisation by SONY in 1991, lithium ion batteries have become an 

indispensible part of our life. They show higher energy density compared to 

conventional rechargeable batteries, no memory effect or self-discharge. Therefore 

they are now used to power almost all our portable electronic devices like mobile 

phones, music players, digital cameras and laptops. There is also a demand for the 

storage of renewable energies. The lithium ion battery is certainly one of the 

candidates since it offers high energy density. Also Li ion batteries are looking to 

replace petrol as the power source in automobiles in order to reduce their carbon 

footprint.  
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A lithium ion battery is composed of three parts, the anode (negative electrode), 

electrolyte and cathode (positive electrode) as illustrated in figure 1-1. Upon charging, 

lithium ions are extracted from cathode, drift across the electrolyte and are inserted 

into the anode. Meanwhile the electrons flow through the external circuit from 

cathode to anode. Using the common cathode material LiCoO2 and anode material 

graphite as an example, the reactions at the electrodes are: 

 Cathode  

      
      
                        

 Anode 

          
      
          

 Overall 

        
      
                    

Upon discharging, the exactly reverse process occurs.  
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Figure 1-1: Illustration of the three main components in a lithium ion battery. Upon 

charging and discharging, lithium ions drift across the electrolyte between the two 

electrodes. This image is taken from [1]. 

 

 

Figure 1-2 is a schematic electronic energy diagram of a Li ion battery at open circuit. 

   and    are the electrochemical potentials of the anode and the cathode 

respectively. In the electrolyte, the energy separation    between the lowest 

unoccupied molecular orbital (LUMO) and the highest occupied molecular orbital 

(HOMO) is called the potential window. If    locates above the LUMO, the electrolyte 

gets reduced. Similarly if    locates below the HOMO, the electrolyte gets oxidized. 

Therefore to form a thermodynamically stable battery, the positions of    and    must 
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lie within the potential window of the electrolyte, which imposes the constraint on the 

open circuit voltage     of a battery 

              

Therefore to achieve a high battery voltage the electrolyte should offer a wide 

potential window. Also it should have high Li-ion conductivity but be electronically 

insulating in order to avoid internal short-circuiting. And for safety reasons, it should be 

non-flammable. 

 

 

Figure 1-2: Schematic energy diagram of a lithium battery at open circuit. ΦA and ΦB 

are the work functions of the anode and cathode. Eg is the window of the electrolyte 

for thermodynamics stability. For a μA higher than LUMO and/or a μC lower than 

HOMO, a kinetic stability is required by the formation of an SEI (solid-electrolyte 

interface) layer. The image is taken from [2]. 
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Good electrode materials should possess the following characteristics:  

 Lithium ions should be able to be reversibly extracted from and inserted into 

the material without changing its host structure. The higher quantity of Li ion 

that can be reversibly intercalated per formula unit, the higher is the capacity. 

 The cathode should have a high (positive) electrochemical potential and the 

anode should have a low electrochemical potential in order to obtain a high 

battery voltage.  

 The mobility of Li ions should be high in electrode materials. High mobility 

enables rapid extraction and insertion of Li ions and gives high rate capability 

(high power).  

 The electronic conductivity should be as good as the Li conductivity or better 

for high rate capability (high power). 

 High thermal stability for the use in various ambient conditions.  

 The electrode materials should be compatible with the electrolyte. This means 

that the Fermi levels of both cathode and anode should lie within the potential 

window of the electrolyte. Also there should not be chemical reactions 

between the electrodes and the electrolyte.   

 From a commercial point of view, electrode materials should be inexpensive 

and easy to synthesise.  

 Electrode materials should be non-toxic and environmentally benign.  
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Although both anode and cathode are equally important in a Li ion battery, the 

restriction of the performance of current Li ion batteries comes from cathode materials. 

As seen in figure 1-3, cathode materials display less specific capacity than the 

commercially used anode material graphite. Therefore cathode materials are the main 

focus in this thesis. 

 

 

 

Figure 1-3: Voltage versus capacity of several electrode materials. Materials denoted 

with the same colour have the same crystal structure. The image is taken from [2]. 
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1.2 Cathode materials  

All currently used cathode materials can be divided into three main categories 

according to their crystal structures. As shown in figure 1-4, they can be layered 

structures, spinel structures or olivine structures. The common feature of these 

structures is that Li can be extracted and inserted in and out of the structure.  

 

              

 

 

Figure 1-4: (a) Layered (b) spinel and (c) olivine structures. Lithium is denoted in green. 

In the layered structure, the edge-sharing octahedra form a two-dimensional network. 

In the spinel and olivine structure, the polyhedra form three-dimensional networks.  

The image is taken from [3]. 
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1.2.1 Cathode materials with the layered structure 

The first and most commonly used cathode material is LiCoO2 and it exhibits the 

layered rocksalt structure.  This structure has alternating transition metal and lithium 

layers with oxygen layers in between them, as shown in figure 1-4. The CoO2 layers are 

composed of edge sharing CoO6 octahedra which makes it a rigid host for lithium 

intercalation. Nevertheless, partially delithiated LixCoO2 is meta-stable when x<1[4]. It 

is suggested that delithiated LixCoO2 decomposes to spinel Co3O4 and stoichiometric 

LiCoO2 with oxygen evolution and that the lower the Li content is, the easier the 

decomposition process. Such irreversible structural transformation is responsible for 

capacity loss. Therefore, in practice, only half of the lithium can be reversibly cycled 

without significant capacity fading which results from structural change. Besides the 

process of oxygen evolution associated with the structural change at low lithium 

content is exothermic and could cause an explosion. This is a serious safety concern. 

LiNiO2 is a potential cathode material to replace LiCoO2 because cobalt is toxic and 

expensive. Although it is usually reported to adopt the layered structure, there is 

always a certain amount of extra Ni present in the Li layers which makes its real 

formula         Li1-xNi1+xO2[5]. So far no truly stoichiometric LiNiO2 material is available. 

The presence of Ni in the Li layers degrades the electrochemical property as a 

cathode[6]. Also, similar to LiCoO2, partially delithiated LiNiO2 is unstable. Layered 

LixNiO2 transforms  irreversibly to spinel-like and disordered rock-salt structures 

accompanied by oxygen evolution at a lower temperature compared to LixCoO2[4]. This 
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makes LiNiO2 even more dangerous than LiCoO2. Overall, LiNiO2 is not an ideal cathode 

material. However these problems can be overcome by partially substituting Ni with 

other cations.  

LiVO2 and LiCrO2 also crystallize in the layered structure. However in Li1-xVO2, after the 

Li deintercalation the V ions migrate to the Li layers rapidly which causes irreversible 

structural change[7]. This makes it difficult to insert Li back into the structure and 

results in poor electrochemical performance as a cathode. LiCrO2 is electrochemically 

inactive[8]. Only tiny amounts of Li can be extracted from its structure.  

LiMnO2 and LiFeO2 have attracted immense interest as replacements for LiCoO2 

because Mn and Fe are cheap and non-toxic. Unfortunately stable phases of LiMnO2 

and LiFeO2 do not adopt the layered structure [9, 10] and consequently it is difficult to 

extract Li from them. Although layered LiMnO2[11] and LiFeO2[12] have been reported, 

they are meta-stable and can only be obtained from low-temperature synthesis 

methods such as ion-exchange. Besides, they transform back to non-layered structure 

upon lithium deintercalation and are again not suitable for the use as cathodes. 

Recently many research groups have started to shift their attention to NaMO2 because 

all NaMO2 (M=first row transition metals) adopt the layered rocksalt structure and 

some of them have been reported to show promising electrochemical performance as 

cathodes[13-15]. For example, it is reported that 0.8 Na per formula unit in layered 

NaMnO2 can be reversibly deintercalated and intercalated[15]. Such performance is 
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better than its lithium counterpart LiMnO2. However sodium is heavier than lithium 

and therefore sodium based cathode materials exhibit lower specific energy.  

 

1.2.2 Cathode materials with the spinel structure  

The first material with the spinel structure identified as a cathode material was 

LiMn2O4[16]. Manganese is substantially cheaper than cobalt and not toxic. Therefore 

it attracted interest as a potential replacement for LiCoO2. As shown in figure 1-4, the 

spinel structure has the 16d octahedral sites occupied by manganese ions, the 32e sites 

occupied by oxygen ions and the tetrahedral 8a site occupied by lithium ions. Generally, 

materials with spinel structure give high operating voltage above 4V. Li2FeMn3O8 was 

even reported to exhibit a 5V operating voltage[17]. Moreover, the 3D host structure 

results in good structural stability. However, the capacity fades during charge-

discharge cycling or high temperature operating due to manganese dissolution from 

LiMn2O4[18]. 

 

 

1.2.3 Cathode materials with the olivine structure 

In recent years a new type of materials, lithium transition metal phosphates, which 

exist in the olivine structure have become favoured due to their low cost, high safety, 

non-toxicity and long cycle-life. LiFePO4 is the prototype of this type of material[19]. 
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The olivine structure is shown in figure 1-4. The structure has an orthorhombic unit cell 

containing four formula units with space group Pnma. Transition metals locate at 

octahedral sites and lithium ions move in the 1D channel. The rigid PO4
3- tetrahedral 

polyanion is composed of 4 strong covalent O – P bonds. There are two main 

advantages of such a strong poly-anion unit. First, it eliminates the problem of oxygen 

evolution and makes the material stable even under harsh conditions such as high 

temperature or overcharge and therefore suitable for the use in hybrid automobiles. 

Second, the host structure remains intact even at low Li content and hence gives rise to 

exceptionally long cycling life. The main obstacle in materials with the olivine structure 

is the low electronic conductivity because the distance between transition metals is 

large, unlike edge sharing MO6 octahedra in layered LiMO2 which results in better 

electronic conductivity due to the smaller M-M distance. Nevertheless this problem 

can be solved by reducing the particle size[20] or carbon coating[21]. Recently a 

material based on LiFePO4 has been reported to display an ultrafast charging 

discharging rate[22]. The full discharged process in 10-20 seconds was achieved. 
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1.3 Previous theoretical studies on cathode materials 

Computer simulations have been widely used to investigate properties of cathode 

materials from structures, voltages and lithium mobilities.  The effect of transition 

metal ion M and anion X on the structure and average intercalation voltage in layered-

LiMO2[23-25], olivine-LiMXO4 (X=Ge, Si, Sb, As, P)[25, 26] has been systematically 

studied. As shown in figure 1-5, a good agreement between the calculated values and 

experiments is obtained. Also a correlation between voltage and electronegativity of X 

is observed which can be used to alter the character of M-O bonding and tune the 

lithium insertion voltage. As one theoretical study[24] on layer-LiMO2 suggests, charge 

transfer between M-O during Li deintercalation has a strong influence on voltage.  

 

 

Figure 1-5: Calculated average lithium intercalation voltage compared to experimental 
results (crosses) for various polyoxianionic compounds[26].  
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Another important factor for a material to function as a cathode material is the Li 

mobility. Li mobility in layered-LiMO2[27-29], olivine-LiMPO4[30, 31] and spinel-

LiM2O4[32] has also been extensively studied by theoretical calculations. Figure 1-6 

shows the predicted lithium diffusion pathway in different structures and the 

activation energy for lithium migration. It is shown that in layered-LiMO2, the lithium 

slab distance is the main factor that influences lithium diffusion[27]. As shown in figure 

1-7, when the lithium slab distance is larger, the activation energy is lower and vice 

versa. This can be easily understood. Since the space between lithium slabs is the 

lithium diffusion channel, the large the space the easier for lithium to move. 

 

 

Figure 1-6: The lithium diffusion paths in lithium transition oxides.(a) layered structure 
(b)spinel structure (c)olivine structure[1]. 
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Figure 1-7: Activation barrier for lithium migration as a function of lithium slab 

distance[27]. 

 

 

 

1.4 Motivation and objectives  

Over the past decade, there has been a growing interest in olivine-structured LiFePO4 

as a cathode material over layered rocksalt LiMO2. Because LiFePO4 shows excellent 

cyclability, it is cheaper and, most importantly, safer. Nevertheless from Table 1-1, we 

can see that materials with layered rocksalt structure still have better performance in 

terms of capacity and energy density. If the safety issue of layered rocksalt LiNiO2 

materials can be resolved, they it be a better choice. The most serious problem of 

layered LiNiO2 as a potential cathode material is thermal instability, which is directly 
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related to the safety of a battery. Experimentally this can now be mitigated by cationic 

substitution. For example, aluminium substitution in LiNiO2 has given great 

improvements in thermally stability[33] and cyclability[34] which makes LiNiO2-based 

compounds still promising cathode materials.  

 

Table 1-1: Main features of most common cathode materials[35]. 

Features LiCoO2 LiNiO2 LiMn2O4 LiFePO4 

Structure Layered  

rock-salt 

Layered  

rock-salt 

Spinel Olivine 

Nominal voltage(V) 3.6 4.0 3.9 3.5 

Specific capacity (mA.h.g-1)* 274 274 148 170 

Discharge capacity (mA.h.g-1)** 145 160 105 155 

Specific energy (Wh kg-1) 520 640 410 540 

Energy density (Wh L-1) 2650 3070 1720 1940 

Safety Fair Poor Good Good 

Environmental friendliness Poor Fair Good Good 

Availability Low Fair High High 

Cost High Fair Low Low 

*Theoretical , **Observed 

 

In this thesis we therefore focus on LiNiO2-based layered cathode materials. The main 

objective is to investigate the effect of cation substitution on structural imperfection 

and oxygen non-stoichiometry. Once we know how to control the structural stability of 

the material and prevent oxygen loss, then we can make batteries with high 

performance and greater safety. In chapter 3, the crystal and electronic structures of 
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LiNiO2 are first investigated in order to pave the way for the subsequent study on 

structural defects. A new possible ground state of LiNiO2 is found which explains the 

unusual behaviour of this compound in which no long-range structural or magnetic 

ordering is observed. In chapter 4, we investigate the structural variation of LiMO2 

compounds with rock-salt structure. The exchange interaction between transition 

metal ions is found to be responsible for the cation arrangement. In chapter 5 the 

structural defects in LiNiO2 based layered compounds are investigated. The effect of 

cationic substitution is explained. Finally in chapter 6, we summarise all results and 

discuss how all these simulation are going to help to design new cathode materials. 
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Chapter 2 

Ab initio simulation methods 

 

 

2.1 Introduction 

Matter is a collection of nuclei and electrons. In principle by studying the behaviours of 

these particles, all chemical and physical properties of a material can be understood. 

Quantum mechanics tells us that the Schrodinger equation is the fundamental 

equation that governs the behaviour of particles. However solving the many-body 

Schrodinger equation is a formidable task. Many theories have been developed to deal 

with the quantum mechanical many-body problem, from the early simple Hartree self-

consistent field approach, the ensuing Hartree-Fock theory to the currently widely used 

density functional theory[1, 2]. The development of advanced theories along with the 

rapid progress in computing power has made computer simulation more and more 

important in the field of materials science. Insights into materials properties at the 
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atomic and molecular level that are not always attainable from experiments can 

therefore be gained through theoretical calculations. 

 

 

2.2 Quantum Mechanical Many Body Problems 

For a non-relativistic quantum system, its stationary properties can be obtained by 

solving the time-independent Schrodinger equation  

       (2-1) 

where   is the many-body wavefunction of the system and the Hamiltonian   has the 

following form 

 

   
  

   
   

   
   

 

       
    

 
 

 
 

  

          

  
  

   
  
 

 

 
 

 
 

     
 

          

 

(2-2) 

where electrons, denoted by lower case letters, have mass   , charge   and position 

   and nuclei, denoted with capital letters, have masses   , charges    and positions 

  . The Hamiltonian contains the kinetic energies of both electrons and nuclei, the 

Coulomb interactions between electrons and nuclei, the electron-electron Coulomb 

interactions and the nuclei-nuclei Coulomb interactions. Once the wavefunction is 
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known, any physical observable can then be obtained as the expectation value from a 

corresponding operator O acting on the wavefunction. 

     
       

     
 (2-3) 

However, when the system contains more than two particles, the Schrodinger equation 

cannot be solved analytically. Many approximations need to be made to tackle a given 

many-body quantum mechanical problem.  

 

 

2.3 The Born-Oppenheimer approximation [3] 

The first of many approximations in the calculation of a many-body system is called the 

Born-Oppenheimer approximation. Because the mass of nuclei is a thousand times 

greater than electrons, the response of electrons to nuclear movements can be 

regarded as instantaneous. Therefore the nuclei positions are seen as fixed and used as 

input parameters which generate a static external potential. As a result, the 

wavefunctions of electrons and nuclei can be decoupled.  

                   (2-4) 

Also, the kinetic energy of nucleus can be neglected from the Hamiltonian and the last 

term in equation 2-2 is only a constant. Now the full Hamiltonian is reduced to the 

“electronic Hamiltonian” 
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(2-5) 

where   is the kinetic energy operator,   is the external potential and   is the 

electron-electron interaction. This simplifies the original problem to     

                   (2-6) 

 

Even though the number of variables in the equation is greatly reduced, at this point 

there is still no hope of dealing with a real material by direct solving the wavefunction 

of the system. 

 

 

 

2.4   Density functional theory 

2.4.1 The Hohenberg-Kohn theorems [4] 

The intuitive procedure to study a system is usually that – with a known external 

potential we solve the Schrödinger equation to obtain wave functions and then by 

applying appropriate operators to wave functions we can acquire all physical 
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properties. The wave functions are apparently the centre of the scheme. Nonetheless, 

in 1964 from the Hohenberg-Kohn theorems a totally different concept emerged.  

The first Hohenberg-Kohn theorem states that the external potential Vext(r) is a unique 

functional of its ground state electron density n(r), except for a constant, for any 

system. Consequently all properties of the system are determined by the ground state 

electron density n(r), since the Hamiltonian is uniquely determined by the external 

potential Vext(r). Therefore instead of the complicated many-body wavefunction, the 

ground state electron density n(r) serves as the central variable of a problem. To prove 

this theorem, let us assume that there are two different external potentials     
       

and     
       which give rise to two different Hamiltonians,      and     , two different 

ground state wavefunctions      and      and two different ground state energies 

     and     , but the same ground state electron density     . It then follows that  

 
                                       

                                                                

(2-7) 

so that 

                 
           

             , (2-8) 

and similarly  

                 
           

              (2-9) 

The addition of the above two inequalities leads to a contradiction 
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                     (2-10) 

Thus two different external potentials cannot possibly result in the same ground state 

electron density.  

From the second Hohenberg-Kohn theorem, there is a universal functional F[n], which 

is the same for any electron system, that ground state energy E[n] can be written as 

                        (2-11) 

and  

                (2-12) 

It is known that the energy of a system is lowest in its ground state with its ground 

state wavefuntion  . Now if the system is in any other arbitrary state   , which is the 

ground state associated with another different external potential     
     and    but 

not the ground state associated with         and  . It then follows that  

 

               
                     

                                

(2-13) 

There the energy obtained from the above definition is indeed a minimum with the 

ground state electron density     . Now if      is known, then by minimising the 

energy of the system the ground state electron density and energy can be found 

(Variational principle). Unfortunately, the form of      is still currently unknown.  
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2.4.2 The Kohn-Sham Approach[5] 

For a non-interacting system described by the following single-particle equation, 

  
  

  
                 (2-14) 

its ground state wavefunction can be written as a Slater determinant of the solutions 

   with the corresponding electron density 

              
 

 

   

 (2-15) 

and most importantly the kinetic energy of this non-interacting system can be 

expressed exactly as 

     
  

  
      

     

 

   

  (2-16) 

Therefore if we can find a non-interacting system that produces the same electron 

density as the real interacting system, the kinetic energy can be calculated according to 

the above equation. But of course it is not the exact kinetic energy of the interacting 

system. Base on this, Kohn and Sham[5] then suggested that the energy functional 

     in the ground state energy of a real interacting system 

                  
 

 
 

         

      
           (2-17) 

takes the form  
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                  (2-18) 

where       is the kinetic energy of a fictitious non-interacting system with the same 

ground state electron density      and        is defined as the exchange and 

correlation energy of the interacting system with density     . The exchange-

correlation functional        accounts for the difference in kinetic energy between the 

real interacting system and the non-interacting system, as well as the non-classical 

electrostatic contribution from the electron-electron interaction of the real interacting 

system. 

By substituting    with the expression of equation 2-16 and applying appropriate 

minimisation of      with respect to density     , we can get 

                
     

      
           (2-19) 

where  

     
       

     
 (2-20) 

is the exchange-correlation potential. Therefore, the single particle equation becomes 

   
  

  
            

     

      
                   (2-21) 

This is the so-called Kohn-Sham equation. If the form of     , or equivalently       , is 

known, the Kohn-Sham equation can then be solved self-consistently. Given an initial 

estimate of the ground state electron density, the effective potential in the Kohn-Sham 
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equation can be constructed from equation 2-19. By solving the Kohn-Sham equation 

we can then compare the density calculated from the solutions equation from 

equation 2-17 with the initial density used to construct the effective potential. This 

procedure should be repeated until a self-consistent density is obtained, which is then 

the correct ground state electron density of the system. In summary, the Kohn-Sham 

approach maps an interacting many-body system to a non-interacting system with the 

same ground state electron density, which is a much simpler problem to handle 

mathematically. All the many-body effects are thrown into a “black box”, the 

exchange-correlation term.  

If the spin polarisation is considered, the electron density is decomposed into spin-up 

and spin-down components  

                  (2-22) 

with the total energy functional           .  

The Kohn-Sham equation 

 
  

  

  
            

     

      
       

       
    

   
       

            

(2-23) 

is then solved separately for the spin-up and spin-down electrons with their 

corresponding exchange-correlation potentials 
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 (2-24) 

and 

    
  

           

      
 (2-25) 

The introduction of the additional degrees of freedom of spins often results in multiple 

self-consistent solutions of the spin-polarised Kohn-Sham equation which correspond 

to different stable spin configurations. Hence all possible spin configurations should be 

considered in order to find the real ground state.  

 

 

2.4.3 Exchange and correlation functionals 

So far no exact exchange and correlation energy functional has been found. All current 

used functionals are approximations and therefore fail in some circumstances because 

they do not capture the non-locality that the true exchange-correlation functional 

should possess, i.e. the exchange-correlation energy should be not expressed simply as 

a sum over electron density at each point r and instead it should contain a non-local 

object that includes the effect of the electron density at r’. 

The two most commonly adopted functional forms are LDA (Local Density 

Approximation) and GGA (Generalised Gradient Approximation). In LDA, the main idea 

is to treat the inhomogeneous electron as locally homogeneous. That means the 
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exchange-correlation energy at each point depends only on the electron density at the 

same point. So the exchange-correlation energy for a system with density n(r) is given 

by 

    
                      (2-26) 

where      is the exchange-correlation energy density. We then take the well 

developed form of     derived for a homogeneous electron gas. The exact form of the 

exchange part of     of the homogeneous gas can be obtained from the Hartree-Fock 

theory and the correlation part of     has been accurately calculated from Monte-Carlo 

simulations [6]. Since LDA assumes the local energy depends only on local density 

(locality), it works badly on systems with rapid change in electron density, such as 

isolated atoms or small molecules.   

To address the issue of inhomogeneities in the electron density, the idea of GGA is that 

in addition to the dependence on the local density, the gradient of the local density 

should also be taken into consideration. The GGA functional takes the form 

    
                   

                                  (2-27) 

Several different forms of GGA functional have been developed and gained success 

over the LDA functional[7, 8]. As shown in figure 2-1, generally LDA underestimates 

bulk lattice constants. Another well-known problem with LDA is the overestimate of 

binding energies which could be as large as several eV. This is greatly improved by the 

use of GGAs[9]. 
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A notorious problem in both LDA and GGAs is the underestimate of band gaps in 

insulators. This can be attributed to that the lack of non-locality of LDA and GGAs and 

therefore it can be improved by functional with better treatment of the non-local 

exchange such as the hybrid functionals, to be introduced below. Also, since the 

dispersion interaction is a dynamical, inherently non-local correlation effect, for the 

same reason that neither LDA nor GGA functionals can describe Van der Waals systems 

well. 

Bulk lattice constant                                   Cohesive energies  

 

Figure 2-1: Comparison of the performance of the LDA and GGA functionals. Image 
courtesy of Dr. Martin Fuchs, Fritz-Haber-Institute der MPG. 

 

 

2.5 Treatments for strongly correlated systems 

Although density functional theory has gained great success, it is well known that by 

employing the LDA or GGA approximation functional it gives incorrect descriptions of 

transition metal compounds. In the Hartree-Fock theory, the electron exchange is 
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precisely dealt with by the use of a single Slater determinant(*) but the electron 

correlation is not accounted for. The correlation energy, the difference between 

Hartree-Fock energy and the exact energy, in transition metal oxides is usually large 

and therefore these materials are termed “strongly correlated.” As a result, many wide 

gap magnetic insulators are predicted to be metallic or small gap semiconductors with 

underestimated magnetic moments.  

The failure of the standard DFT to describe these systems originates from the so-called 

self-interaction-error. Considering a one electron system, it is obvious that the single 

electron cannot exert electrostatic potential on itself.  However the Hartree energy 

(Coulomb interaction) from the Kohn-Sham formalism reads 

 
 

 
 
         

      
        (2-28) 

which is clearly nonzero, as if the electron interacts with itself. If the exact exchange-

correlation functional were known, by the definition “exact” it would cancel this self-

interaction which makes the total electron interaction vanish in such electron system. 

However the LDA and GGA approximations fail to do so. Consequently the electrons 

tend to be over delocalised spatially[10]. This spurious self-interaction error is 

especially pronounced in strongly-correlated systems such as 3d transition metal 

compounds due to the spatially localised nature of 3d electron states.   

 

*As a result of exact exchange, the self-interaction error is zero. 
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2.5.1  The DFT+U method 

The DFT+U method was originally proposed to give a better description of strongly 

correlated systems such as first row transition metal oxides[11]. It is known that the 

Hubbard model[12] works well in describing strongly correlated systems. In the 

Hubbard model, the strongly correlated d electrons are subjected on-site coulomb 

repulsions and U is the energy cost to place two electrons at the same site: 

                          (2-29) 

The behaviour of electrons can be crudely regarded as a competition between the 

kinetic energy t and the on-site coulomb energy U. When t is greater than U, electrons 

can hop between sites and are hence itinerant. When U is greater than t, electrons are 

localised and insulating. The metal-insulator transition in some transition metal oxides 

and the insulating behaviour of Mott insulator are correctly described based on the 

Hubbard Model.  

The main idea of the DFT+U method is to incorporate an orbital dependent, Hubbard-

model like energy correction parameter U in the standard DFT method. Electrons are 

separated into two subsystems. The localised electrons i (3d or 4f) are described by the 

Hubbard term and the less localised electrons (s and p) are described by the original 

DFT term. The energy functional then takes the form:  
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(2-30) 

where        and         is called the “double counting term”, which is the 

average Coulomb energy of localised electrons i, and must be deducted because the 

contribution from localised electrons is counted twice, both in EDFT and EHubbard.  

By taking into account exchange interaction and adopting rotationally invariant 

formulation, Dudarev et al.[13] proposed the practical form  

 

            
   

 
            

 

      
    

 
            

 

 

(2-31) 

where    is the on-site density matrix of the d electrons which contains the 

information of the d orbital occupancies. 

As a result of the introduction of      term in DFT, partial occupations of orbitals, on 

which the      term is applied, are discouraged. Considering a system doped with one 

electron/hole (defect state) in its N orbitals, where the      term is applied, the energy 

of the electron/hole evenly distributing over N orbitals will then be higher than the 

electron/hole occupying one orbital with N-1 empty orbitals. In other words, the 

electron/hole is forced to localise as       increases.  Figure 2-2 shows the effect of 
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applying      to nickel d orbitals on the distribution of charge density of NiO. The 3d 

orbitals are clearly more localised with the application of     .  

The DFT+U method has been widely used in studying strongly-correlated systems. 

However up to now there is no satisfactory way to determine the value of      in the 

DFT+U method. Although methods has been proposed to calculate the      

parameter[14-16], the most common way is to choose a value that gives reasonable 

experimental results such as lattice constants, magnetic moments, band gaps, etc.  

 

 

Figure 2-2: The difference between the charge density with and without U in the (100) 

plane of NiO [13]. Nickel is located at the centre of the figure.  
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2.5.2  Hybrid functionals  

Because the self-interaction error is cancelled exactly in the Hartree-Fock 

approximation from its construction, hybrid functionals that mix a portion of exchange 

energy from Hartree-Fock theory with explicit exchange-correlation energy from DFT 

have been proposed as a way of overcoming the shortcomings of the LDA and GGA 

approximations. The exchange-correlation energy of a hybrid functional takes the form 

    
      

    
          

      
    (2-32) 

Unlike the DFT+U method in which the      parameter is system dependent, the 

amount of HF exchange energy is an a priori fixed parameter in the hybrid functional 

method. Studies have shown that the mixing of 20-35 % of exchange energy give rise to 

good bulk properties of transition metal oxides such as lattice constants, band gaps, 

exchange coupling constants[17, 18]. Nonetheless the calculation of the Hartree-Fock 

exchange energy is computationally expensive which makes it less appealing for 

studying systems containing large number of particles.  

To circumvent this problem, recently Heyd, Scuseria and Ernzerhof proposed to split 

the exchange energy of the PBE0 hybrid functional [19] into the long-range and short-

range components and also showed that the long-range components contributes little 

to the total energy and thus can be neglected[20]. The resulting functional, called the 

HSE functional, then has the form 
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    (2-33) 

with   defined in the following equation which splits the Coulomb operator into the 

long (right) and short range (left) parts 

 
 

 
 

         

 
 
        

 
 (2-34) 

where erf is  the error function.  

  is called the range separating parameter determining the extent of short-range 

interactions. It was shown that the optimum value of   is approximately 0.2-0.3 Å-1 in 

order to reproduce various properties of molecules and solids[20]. The exclusion of the 

long-range part of Hartree-Fock exchange greatly reduces computational cost and 

enables the study of extended systems such as crystalline solids or large molecules. 

The HSE functional has been proved to reproduce the localised nature of transition 

metal oxides pretty well give and is becoming popular for studying solid crystalline 

compounds[21, 22].   
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2.6 Solving the Kohn-Sham equation in practice  

In order to solve the Kohn-Sham equation for real materials, some remaining problems 

need to be addressed. First, a material contains virtually an infinite number of 

electrons, how this can be dealt with? Second, a good mathematical representation of 

wavefunctions is required. Finally, how do we treat electron-nuclear interactions? 

 

2.6.1 The Bloch theorem 

A perfect solid crystalline material is composed of infinitely repeating unit lattice cells.  

Due to the periodicity of solid crystals, the potential arising from the coulomb 

interaction that the electrons feel is also periodic with the same periodicity as the 

crystal. The Bloch theorem states that in the presence of a periodic potential 

           , where                   is the translation vector of the 

lattice and    ,    , and    are lattice vectors of the primitive lattice, the following 

relation exists: 

                   (2-35) 

or the equivalent form 

                  (2-36) 

where       has the same periodicity as the potential         =       and k is 

called the Bloch vector, arising from the translational symmetry. 
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The reciprocal lattice vector                  is defined to fulfil the 

following relation  

         (2-37) 

It then follows that  

                                         (2-38) 

                      (2-39) 

Therefore only wavefunctions in the first Brillouin zone need to be calculated, which is 

the volume defined by the primitive reciprocal lattice vector.  

At this point, thanks to Bloch theorem the problem is simplified from the calculation of 

all electrons in the infinite solid to the calculation of a much smaller number of 

electrons in one unit cell, and the electron wavefunction in the neighbouring cell 

differs only by a phase factor      . In addition only wavefunctions in the first Brillouin 

zone in the k-space need to be considered. However, since k is continuous one still 

encounters the problem of an infinite number of k vectors, which is not 

computationally feasible.  

Fortunately, the wavefunctions at k-points close together in the first Brillouin zone are 

nearly identical. Consequently the wavefunctions at a single k-point is representative 

of wavefunctions over a region. Now wavefunctions only need to be calculated for a 

finite number of k-points. There are many methods developed to determine 

representative k-points. One popular method proposed by Monkhorst and Pack[23] 



CHAPTER 2 – Ab initio SIMULATION METHODS 
 
 

40 
 

that chooses evenly distributed k-points in the first Brillouin zone is used in all our 

calculations. Figure 2-3 illustrates the convergence behaviour of total energy with k-

points. In all our calculations, the numbers of k-points are large enough to ensure good 

convergence and accurate results. 

 

 

 

 

Figure 2-3: The convergence of LiNiO2 total energy against k-points. 

 

 

 

-22.5 

-22.45 

-22.4 

-22.35 

-22.3 

-22.25 

0 2 4 6 8 10 12 14 16 

En
er

gy
 (

eV
) 

K-point grid 



CHAPTER 2 – Ab initio SIMULATION METHODS 
 
 

41 
 

2.6.2 Plane wave basis 

According to the Bloch theorem, the wave function of electrons in a periodic potential 

can be expressed as  

                  (2-40) 

The periodic function       can be naturally expanded with the discrete plane-wave 

basis (a Fourier series)   

              
    

 

 (2-41) 

where G are reciprocal lattice vectors corresponding to the real space crystal lattice 

vector R.   

The wavefunction is then written as a sum of plane waves 

              
        

 

 (2-42) 

In principle, an infinite number of plane-waves should be used to express exactly the 

wavefunction. However, the plane wave coefficient       becomes more and more  

insignificant as |K+G| increases and the plane-wave expansion can be truncated by 

setting a cut-off kinetic energy of the plane-wave        
  

  
       . Figure 2-3 

shows the convergence behaviour of total energy with respect to the cut-off energy of 

the plane-wave. A high cut-off energy is set for all our calculations to ensure good 

convergence and accurate results. 
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Apart from the plane wave basis set, there is another category of basis sets, localised 

basis sets. As suggested by the name, localised basis sets centred at atomic positions, 

such as atomic orbitals and Gaussian type functions. Nevertheless the choice of plane 

wave basis is favoured in studying systems with periodic boundary conditions. The 

main advantage of the plane wave basis is computational efficiency. Plane waves are 

more easily to be handled mathematically than other basis sets. Besides, the 

completeness of the plane wave basis set can be easily controlled and the convergence 

of properties can be systematically checked. Moreover, the plane wave basis is 

independent of atomic positions and the superposition errors arising from over-

completeness of local basis sets are avoided.  

 

 

Figure 2-4: The convergence of LiNiO2 total energy against plane-wave cut-off energy.  
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2.6.3   Pseudopotentials and the Projector-Augmented Wave Method 

Due to the orthogonality between the core and valence electrons, the wave functions 

of valence electrons oscillate rapidly near the nucleus. A large number of plane waves 

is needed to represent such oscillation. Fortunately it is known that the core electrons 

do not contribute much in chemical bonding and are not sensitive to the surrounding 

environment. Theories have been developed to replace electron states by node-less 

wavefunctions that still give the same scattering properties and outside the core region, 

the pseudo-wavefunction and the true wavefunction are identical. This is the basic idea 

of pseudopotential as illustrated in figure 2-5. The main advantage of the 

pseudopotential method is that fewer plane waves are needed and therefore it is much 

more computationally efficient than solving the problem with the true potential. 

However the true wavefunction is not obtainable from the pseudopotential method. 

 

Figure 2-5: The solid lines represent the true potential and wave function and the 
dashed line represent the pseudopotential and pseudowavefuntion. Taken from [24] 
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The projector augmented wave (PAW) method was introduced by Bloch in 1994 [25]. 

This method starts from the search of a linear transformation   such that  

              (2-43) 

where      is the true wavefunction and       is the pseudo wavefunction which is 

smooth with no oscillation near the nucleus. In order to keep      and        identical 

outside certain cut-off radii      around atoms at positions R, the transformation   

should have the following form 

        

 

 (2-44) 

where   is the unity operator and    is an operator that acts only within spheres 

           around each atom at position  . This is called the augmentation region.  

Around each atom at R, a set of local spherical waves, called partial waves,    is built 

with the index i containing the atomic position R and angular momentum quantum 

numbers l, m. The nature choice of partial waves   are solutions of the radial 

Schrodinger equation of isolated atoms. The operator    is then defined from the 

following relation which makes a set of pseudo partial waves     coincide with partial 

waves    outside the augmentation region. 

                     (2-45) 

                        (2-46) 
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If the set of pseudo partial waves     is complete, then inside the augmentation region 

the pseudo wavefunction       can be expanded as 

              

 

   (2-47) 

From all the above relations, it follows  

 

            

          

 

      

          

 

         

             

 

          

 

   

(2-48) 

Since   is required to be linear and    are the coefficients of the expansion with   , 

they can be determined as  

               (2-49) 

with the condition  

              

 

   (2-50) 

where     are called projectors. Finally we arrive at  

                   

 

                 

 

           (2-51) 

and  
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       (2-52) 

In summary, the PAW method divides the true electron wavefunction in to three 

components as illustrated in figure 2-6. By appropriate choice of the partial waves   , 

the pseudo-partial waves     and the projectors     around atoms, the linear 

transformation   is then defined and what is really calculated in practice from the 

Kohn-Sham equation is the pseudowavefunction   . Through the transformation   the 

true wavefunction   can be obtained and so do all physical quantities. It can be shown 

that the norm-conserving and ultra-soft pseudopotentials are approximations of the 

PAW method. Therefore not only the all-electron wavefunction is accessible in the 

PAW method, its accuracy and efficiency are of the same order of the ultra-soft 

pseudopotential method or better. 

 

 

 

Figure 2-6: Schematic representation of the three components in the PAW method. 
Image courtesy of Dr. Marc Torrent, Département de Physique Théorique et Appliquée, 
Commissariat à l’Energie Atomique, Bruyères-le-Châtel. 
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2.7 Structural optimisation  

The total energy in the density functional theory is a function of atomic positions 

             . Finding the optimised structure can be achieved in principle simply 

by minimising the energy which is a function of atomic positions,              . 

However it is not a simple task. There are various mathematical algorithms that can be 

used in the search of the minimum value of a function, such as the steep descent, 

conjugate gradient, Newton-Raphson method, to be introduced below. In density 

functional theory, the form of               is not attainable and therefore the 

knowledge about forces acting on ions (derivatives) needed in minimisation methods 

have to be calculated through the Hellmann-Feynman theorem[26, 27]. According to 

the theory, the force acting on an ion at position    can be written as 

     
  

   
       

        

   
   

    

   
 (2-53) 

where      is the electron density,         is the external potential and     is the 

Coulomb interaction between nuclei. This enables us to calculate the ionic forces 

(derivatives) from the ground state density      obtained from solving the Kohn-Sham 

equation. One point needs to be made here that when a localised basis set is used, the 

incompleteness of the basis gives rise to the so-called Pulay forces[28]. However the 

plane wave basis is independent of atomic positions and the error is zero. Every 

minimisation method has its pros and cons. An inappropriate choice of minimisation 

method could result in slow convergence or even divergence. Also, no minimisation 
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method guarantees the global minimum. In some systems such as transition metal 

oxides there are many local minimums (meta-stable states), a subtle different initial 

configuration can lead to a different local minimum and therefore results should be 

explained with extreme care. 

 

2.7.1 The steepest descent method 

In this method, minimisation moves on the energy surface from a point    to the next 

point      along the direction where the function decreases most rapidly, which is the 

direction opposite to the gradient at point   : 

              (2-54) 

where    is the step size controlling how far one should go along that direction and the 

direction 

               (2-55) 

   can be determined by locating the lowest point on the direction, the line search in 

one dimension. First bracket the minimum by finding three points x1, x2 and x3 that 

fulfil the relation E(x3)<E(x1) and E(x2), this ensures that a minimum lie between x1 and 

x2. Then choose the next point x4 in between x1 and x2 using a golden section and reject 

one of the outer points x1 or x2 which is not adjacent to that of x3 and x4 which has a 

lower energy. Repeat the same procedure until the minimum is reached.  
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In this steepest descent method, the minimisation direction in any step is only 

orthogonal to its previous one but not to any others and therefore later minimisation 

directions can undo the effect of earlier ones. This results in a large number of steps to 

reach the minimum when dealing with an energy surface with long narrow valleys. 

 

2.7.2 The conjugate gradient method 

The difference of the conjugate gradient method from the steepest descent method is 

that the conjugate directions are introduced as search directions. Two directions     

and    are conjugate if they fulfil the relation  

             (2-56) 

where 

    
   

     
   

 (2-57) 

is called the Hessian matrix. It can be shown that the minimum of a quadratic function 

of   variables can be reached in exactly   steps by moving along a set of   conjugate 

directions. 

To ensure the minimisation direction at point   is conjugate to all previous directions, 

it can be calculated according  

               (2-58) 

where  
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 (2-59) 

If a direction is conjugate to all its previous direction, it does not cancel the effect of 

any previous minimisation steps. Hence by deploying the conjugate gradient method, 

the number of steps in minimisation could be reduced compared to the steepest 

descent method when one is close to the minimum.  

 

2.7.3 The Newton-Raphson method 

In this method, the second order derivative (Hessian) of a function is also used in the 

search of the minimum. At the point   , a function can be approximated with a Taylor 

series to second order 

                        
 

 
              (2-60) 

At the minimum point     ,            and therefore 

                  (2-61) 

Obviously if the target function is quadratic, the minimum can be reached in one step. 

For functions containing terms beyond second order, the minimum is approached 

iteratively according to equation 2-61. Although the Newton-Raphson method gives 

rapid convergence, the calculation of the inverse Hessian matrix for large system can 

be very costly. 
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2.7.3 Quasi-Newton methods 

In quasi-Newton methods, the inverse Hessian matrix is not calculated directly and 

instead an approximation   to the Hessian matrix is used. At a step i, it is chosen to 

satisfy the relation 

                      (2-62) 

In the popular Broyden-Fletcher-Goldfarb-Shanno (BFGS) approach, the approximated 

inverse Hessian matrix at the ith step   
   is calculated according to 

  
       

   
                   

                   

 
     

                   
             

              
            

 

                 
                 (2-63) 

where 

   
         

                   
 

      
             

              
            

 (2-64) 

 

The unit matrix   is often used as    and hence the first step is equivalent to the 

steepest descent method.  
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2.8 Vienna Ab-initio Simulation Package (VASP)[29, 30] 

VASP is a package for performing ab-initio quantum mechanical calculations based on 

ultrasoft-pseudopotentials or the projector augmentation method, and a plane wave 

basis set. Methods for solving electronic structures introduced above are all 

implemented in VASP. All calculations in this thesis were carried out using VASP.  
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Chapter 3  
 
Ground state properties of LiNiO2 
 
 
 
 
3.1 Introduction 
 
LiNiO2 is a potential cathode material to replace LiCoO2 in lithium ion batteries. 

Compared to cobalt, nickel is less toxic and inexpensive which make it a desirable 

material.  In addition, LiNiO2 exhibits good capacity with competitive voltages in the 

range of 3-4 V.  

 

Although this compound has been intensively studied for decades, the local 

geometry, electronic and magnetic structure are still highly debatable. One factor 

that causes such confusion is the difficulty to synthesis truly stoichiometric LiNiO2, 

even the most recent experimental studies struggle to do so.  Where quoted, 

typical defect concentrations are of the order of a few percent – nickel is found on 

the lithium site of the perfect structure. The true formula is therefore (Li1-xNix)NiO2 
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and the magnetic behavior and electrochemical performance are are sensitive to 

the value of x.  

LiNiO2 is usually synthesized by mixing NiO with Li2CoO3 or Li2O[1, 2]. An X-ray 

spectroscopy study on LixNi1-xO reveals that the hole donated by Li+ shows 

pronounced oxygen character[3]. Accordingly many subsequent XAS studies on the 

electronic structure of LiNiO2 have been interpreted in terms of “oxygen hole”, thus 

claiming that the charge state of nickel remains Ni2+ in LiNiO2 as the same in NiO. 

Similarly, the nature of the charge compensation accompanying Li deintercalation 

in Li1-xNiO2 is also controversial, again due to large amount of oxygen character of 

holes observed[4].  

 

In this chapter, the effect of Li-doping on the crystal and electronic structure of NiO 

is first discussed in order to clarify the properties of doped holes. Then we go on to 

investigate possible local crystal structures of LiNiO2 and its corresponding 

electronic structures.  
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3.2 Nature of hole states in Li-doped NiO 
 

3.2.1 Review of literature  

Hole doped Mott-insulators have attracted considerable attention due to the 

discovery of high-temperature superconducting cuprates. One basic question is the 

nature of the hole state in Mott insulating systems. NiO is traditionally considered 

to be a prototype Mott insulator with a wide band gap. It is often classified as a 

charge-transfer insulator, although the original Zaanen-Sawatzky-Allen paper[5] 

suggested that it is on the borderline between a charge-transfer and a Mott-

Hubbard insulator. Indeed, recent work suggests a mixture of charge-transfer and 

Mott-Hubbard character[6], although most experimental and theoretical work has 

apparently supported the charge-transfer nature of the band gap in NiO[7-10]. Hole 

doping in NiO is usually obtained by doping NiO with lithium oxide (with which it 

forms an extensive solid solution) whereby Ni2+ is replaced by Li+. Antolini has 

summarised the experimental evidence on the question of the nature of the 

hole[11].  The older  magnetic measurement studies  adopted Ni3+ as the relevant 

nickel charge state for interpreting their results[12], as do all the current studies on 

the related compound LiNiO2[13]. Changes in the Ni-Ni bond length with the 

composition, x, of  LixNi1-xO obtained from nickel K-edge X-ray absorption fine 

structure spectroscopy[14] support the idea  that the nickel ion should be 

considered as Ni3+ - i.e. the hole is on the metal. On the other hand, oxygen K-edge 

X-ray absorption spectroscopy of LixNi1-xO has been interpreted in terms of holes on 

the oxygen atoms[3]. This interpretation relies on ideas taken from an analysis of 

excitations in pure NiO[7]. This work, together with a number of ab initio 
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calculations[15, 16] discussed below, is the justification of the idea that the hole is 

in the oxygen valence band, localised on an oxide ion next to the Li dopant (hence 

formally producing an O- ion).  

 

Previous theoretical work using spin-unrestricted Hartree-Fock and hybrid 

functionals with a high-percentage of Fock exchange predicted that the hole states 

resided mainly on oxygen[15, 16]. However the high percentages of Fock exchange 

used lead to an unreasonably large band gap in NiO[17, 18]; in effect these 

methods over-emphasise an ionic description. Consequently the valence band edge 

was found to consist exclusively of oxygen states in these calculations. This is not 

consistent with the large contribution from Ni states seen in the valence band edge 

in experiment[7]. Recent work using Dynamic-Mean-Field theory (DMFT) 

calculations also predicted oxygen holes[19]. However, that calculation ignores the 

Li ion completely except for its ability to generate holes. This discounts both the 

structure relaxation and the Li impurity potential. Moreover, these calculations 

failed to reproduce the “surviving” gap upon Li doping observed in oxygen K-edge 

X-ray-absorption spectra which the previous authors[14] ascribed to a localising 

potential. We have therefore performed calculations that explicitly include the Li 

ion, performed within periodic boundary conditions rather than using a finite 

cluster.  
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3.2.2   Computational details   
 
 
Hybrid functional and DFT+U methods are used to investigate Li-doped NiO. The 

HSE06 hybrid functional, which mixes 25% of Hartree-Fock exchange with 75% of 

the PBE functional, is used[20]. The inclusion of Hartree-Fock exchange corrects the 

self-interaction error contained in standard DFT functionals and so greatly improves 

the description of strongly correlated systems such as transition metal oxides. It has 

been shown previously that 20% to 35% of exact exchange in DFT calculations 

results in good physical properties for NiO[17]. In DFT+U, the rotational invariant 

formalism[21] is used and Ueff = U – J, the onsite correction, is set to be 5.3 eV for Ni 

3d electrons. The number is taken from a previous study on NiO in which this Ueff 

value was shown to give reasonable physical properties[22].  In this study we 

assume that the hole is localised on the Ni ion (through the application of the Ueff 

correction for Ni only). The application of the onsite correction on oxygen 2p 

orbitals has also been used for oxide materials. Nevertheless, the effect of onsite 

correction on both 3d and 2p orbitals is included in the HSE06 calculations for 

which we also present results. It will be shown that the correction on 3d alone is 

sufficient to reproduce qualitatively same results as the HSE06 method.   

 

To model Li-doped NiO, we consider a single composition whereby one Ni is 

replaced by Li in a 2x2x2 antiferromagnetic NiO supercell with 8 formula units. This 

corresponds to a non-stoichiometry of x=0.125 in LixNi1-xO which is well within the 

experimental range and, moreover, was the composition chosen for the Hartree-

Fock calculations discussed above. 



Chapter 3 – GROUND STATE PROPERTIES OF LiNiO2 
 
 

61 
 

 

The full structure optimisation is performed without any cell or symmetry 

constraint, until the force is less than 0.01 eV-Å-1 per ion. A plane wave energy cut-

off of 500eV and k-point meshes of 5x5x5 for HSE06 and 6x6x6 for GGA+U were 

used. All calculation were carried out using the Vienna ab initio simulation package 

(VASP)[23]. 

 

3.2.3   Localisation of hole states   
 

NiO adopts a cubic rocksalt structure with space group Fm3m. The Ni2+ ions in NiO 

have a high spin d8 (t2g
6eg

2) electronic configuration. The calculated lattice 

parameters, Ni magnetic moments and band gaps of NiO are listed in Table 3-1. 

Both the HSE06 functional and the GGA+U calculations yield good agreement with 

experimental values apart from the underestimate of the band gap by about 1 eV in 

GGA+U. 

 

 

Table 3-1: Comparison of calculated and experimentally measured properties of 
NiO 

 

 Lattice parameter 
(Å) 

Ni magnetic moment (μB) Band gap (eV) 

HSE06 4.179 1.66 4.1 

GGA+U 4.20 1.69 3.2 

Experiment 4.171a 1.64b, 1.77c, 1.90d 4e 
aReference [24]    bReference[25]     cReference[26]   

dReference[27]    eReference[28]     
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Upon Li doping, the local environment of one of the Ni ions undergoes substantial 

distortion with four short and two long Ni-O bonds, whereas the environments of 

the other six Ni stay unaltered as shown in Table 3-2. The magnetic moment of the 

nickel ion in the distorted environment is also substantially reduced. The Ni-O bond 

lengths of this distorted Ni are very similar to those reported for Ni3+ in LiNiO2 

(which has a Jahn-Teller distortion). Comparing this to the local density of states 

(DOS) of the undistorted Ni2+ (t2g
6eg

2) in figure 3-1, the extra unoccupied spin-up eg 

state in the distorted Ni DOS shows that its electronic configuration should be  

t2g
6eg

1 and hence Ni3+.  

 

 

 

 

 

 

 

Table 3-2: Ni-O bond lengths and Ni magnetic moments in the optimised LiNi7O8 

structure. 

 
 HSE06 GGA+U 

dNi-O (Å) Bader 
charge 

(e) 

Magnetic 
moment 

(µB) 

dNi-O (Å) Bader 
charge 

(e) 

Magnetic 
moment 

(µB) 

Ni 
(undistorted) 

2.07-
2.09 

+1.43 1.65 2.08-
2.10 

+1.31 1.69 

Ni (distorted) 1.90 x 4, 
2.13 x 2 

+1.61 0.88 1.93 x 4, 
2.14 x 2 

+1.43 1.05 
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Figure 3-1: Local density of states of the undistorted and distorted Ni in the LiNi7O8  

supercell using the HSE06 functional (upper) and GGA+U (lower). 
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Figure 3-2 shows the total density of states of pure NiO and Li doped NiO (LiNi7O8), 

from both HSE06 and GGA+U calculations. In NiO, the valence band edge states 

consist of about 50% Ni and 50% oxygen character, consistent with the large Ni d 

spectral weight at the top of the valence band obtained from both local-density 

approximation (LDA) + DMFT calculations[19] and also from experiment[7]. Upon 

hole doping by substituting one Ni with Li, hole states in Li0.125Ni0.875O emerge with 

three peaks within the NiO band gap. They are clearly associated with the distorted 

Ni3+, as can be seen from the local density of states (LDOS) in figure 3-1.  

 

  

 

 

   
 

Figure 3-2: Density of states of NiO and Li0.125Ni0.875O for the HSE06 functional 

(upper) and GGA+U (lower) showing both relaxed and unrelaxed cases for 

Li0.125Ni0.875O. Note in the GGA+U density of states for Li0.125Ni0.875O, the Ni and O 

states overlap completely at the spin-up peak around 0.5 eV. 
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However, the band gaps are only opened if structural relaxation is allowed (see 

figure 3-2). This indicates that Jahn-Teller distortion is the key for the emergence of 

the band gap and a concomitant hole localisation on Ni. Although the band gaps 

narrow to about 1.3eV (HSE06) and 0.5eV (GGA+U) in Li0.125Ni0.875O, they are both 

consistent with the absence of metallic conductivity in the LixNi1-xO system.  

 

In order to have a direct comparison with existing experimental results, we have 

attempted to reproduce the oxygen K-edge absorption spectra from our ground 

state structures of NiO and Li0.125Ni0.875O, by plotting out the calculated empty 

oxygen states with a Gaussian smearing width 1 eV. Although the core-hole effect is 

not accounted for in our calculations, it has been shown that the main 

characteristics of the oxygen K-edge absorption spectra can still be correctly 

reproduced without the core-hole in NiO at the DFT+U level[29]. Figure 3-3 shows 

the calculated spectra for pure NiO and Li0.125Ni0.875O, along with the experimental 

spectra[3]. The four peaks A to D in the NiO oxygen absorption spectrum agree well 

with available experimental spectra.  

 

Upon Li doping a new peak E appears in the calculated spectra which corresponds 

to the peak at 528.5 eV in the experimental spectra. When compared to the density 

of states in figure 3-2, this new peak E is seen to be the contribution from the states 

that describe the hybridisation between O2- and Ni3+. As x increases, the 

concentration of Ni3+ increases and consequently the intensity of this peak 

increases. In addition to the peak appearing at about 528.5 eV, there is another 
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peak at about 530 eV which was ignored by the original authors but can be clearly 

seen in the x=0.4 curve as circled. This peak is also seen in an oxygen K-edge 

electron-energy-loss-spectroscopy[30] and was ignored there also. As we can see 

from figure 3-2, in addition to the oxygen states associated with peak E, there is 

also a small oxygen contribution associated with the empty spin-down eg states of 

the Ni3+ ion. We suggest that these states are the source of the double peak feature 

at high lithium concentration. 

 

To further elucidate where the hole states go in Li doped NiO, we have plotted out 

the charge density constructed from the wave functions of the hole states in the 

band gap, as shown in figure 3-4. Because the HSE06 and GGA+U calculations 

produce indistinguishable graphs only the HSE06 case is presented for simplicity. It 

is clear that hole states mainly reside on one nickel ion with a small amount on the 

six oxygen ions surrounding the nickel. Again the contribution from oxygen is the 

consequence of the strong hybridisation between the nickel ion and its six 

surrounding oxygen ions. 
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 Figure 3-3: Calculated oxygen empty states (left) of LixNi1-xO with x=0, 0.125  (offset 

for clarity) using GGA+U compared to experimental result  (right) from ref[3].  Note 

the peak (circled) in the experimental data for x = 0.4 
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Figure 3-4: Charge density contour map (e/Å3) of hole states in the (100) plane for 

Li0.125Ni0.875O. Results shown for the HSE06 functional; those for the GGA+U method 

are indistinguishable. 
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3.3 Charge disproportionation and Jahn-Teller distortion in 
LiNiO2 

 

3.3.1 Review of literature in theory and experiment  
 
Chemical intuition suggests that the nickel ion in LiNiO2 should be regarded as low-

spin Ni3+ (t2g
6eg

1) since lithium and oxygen are Li+ and O2- respectively. Due to the 

orbital degeneracy of the electronic configuration of Ni3+, according to Jahn-Teller 

theorem[31], the (Ni3+)(O2-)6 octahedron should undergo a distortion that lifts such 

degeneracy and lowers the energy. Indeed two different Ni-O bond lengths have 

been observed both in Extended X-ray Absorption Fine Structure(EXAFS) 

spectroscopy[32] and neutron diffraction[33] studies which are attributed to a local 

Jahn-Teller distortion.  However unlike other Jahn-Teller active systems such as 

NaNiO2 and LiMnO2, no cooperative distortion has been observed in LiNiO2.  

 

A trimer ordering of Jahn-Teller distortions of Ni3+ ions was proposed from the 

neutron study[33] and the absence of long-range ordering was explained by domain 

formation induced by the strain generated by such trimer ordering. The analysis of 

the neutron partial density function (PDF) in the study supports the hypothesis of a 

Jahn-Teller distortion since their results show four bond-lengths grouped as “long 

bonds” (2.04 Ǻ and 2.06 Ǻ with an average length of 2.05 Ǻ) and “short bonds” 

(1.90 Ǻ and 1.96 Ǻ with an average length of 1.93 Ǻ) suggestive of the 2:1 ratio of 

short to long bonds expected for Jahn-Teller distortion. However, the long-range 

PDF peaks increase in height with temperature – an unusual effect that the authors 

again attribute to domain formation.    
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The electronic structure of LiNiO2 has been directly probed by X-ray Absorption 

Spectroscopy (XAS). Following the interpretation of oxygen hole in Li-doped NiO, 

XAS studies on LiNiO2 suggested the charge state Li+Ni2+(O2)1.5-[4, 34]. Another XAS 

study revealed different surface electronic structure from the bulk in LiNiO2[35]. It 

was found that the nickel ions at the surface show largely Ni2+ character and Ni3+ in 

the bulk.  

 

The electrically insulating behavior with a band gap of ~0.5 eV[36] was first 

reproduced from a DFT+U calculation by allowing a collinear Jahn-Teller distortion 

which causes the split of Ni3+ eg band[37]. However as mentioned above such a 

collective distortion has never been observed in LiNiO2. In another theoretical study 

using density functional calculation with the self-interaction-correction method, Ni 

is also determined to be Ni3+ in LiNiO2[38]. Although the insulating behaviour is 

reproduced with a band gap, the six Ni-O bonds of the NiO6 octahedron are 

assumed to be identical in the study which is not consistent with the two different 

Ni-O bond lengths experimentally observed.  

 

The magnetic properties of LiNiO2 have been a matter of debate since the first 

measurements in 1958[12]. Reynard et al.[13] suggested, on the basis of anomalies 

in the spin susceptibility observed at 10 K and 400 K, that there are at least two 

energy scales involved, corresponding to spin and orbital interactions, and that the 

possibility of orbital frustration should be considered. The neutron studies[33] 

argue against this since this would imply that the number of “short” and “long” Ni—
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O bonds would be equal.  The authors suggest instead that the magnetic properties 

should be explained by the assumption that there is local orbital ordering:  the 

          orbitals of three Ni3+ ions point towards their shared oxygen. This model 

also receives support from a recent electron diffraction study.   However, there 

remain problems with the interpretation of the magnetic data using this scheme; in 

particular the coexistence of ferromagnetic and antiferromagnetic spin fluctuations. 

It is argued that the existence of domains, required to prevent stress buildup 

caused by the trimer ordering, may restrict the antiferromagnetic fluctuations.   

 

Finally, a whole range of possible electronic ground states are noted in compounds 

that have a nominal Ni3+ charge state, from a totally delocalized metal (LaNiO3) to a 

strongly localized orbital ordering insulator (NaNiO2). This is shown in Table 3-3 

where the behaviour is correlated with the nickel-oxygen bond length (dNi-O). 

Charge disproportionation, an alternative to lifting the orbital degeneracy,  is also 

reported for other rare earth nickelates[39].  It can be seen from the Table 1 that in 

the case of LiNiO2 there could be a competition between charge ordering and 

orbital ordering for the ground state. We demonstrate that this is indeed the case 

using first principles density functional theory and to discuss the consequences. 
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Table 3-3: The Ni-O bond lengths (dNi-O) in compounds with the nominal valence 

state Ni3+ and their ground state behaviour. Numbers of Ni-O bonds of a given 

length given in brackets. *Note that the Ni-O bond lengths differ between studies of 

LiNiO2. 

 
Compound dNi-O (Å) <dNi-O >(Å) Electronic ground state 

LaNiO3[40] 1.933 x 6 1.93 Metallic (delocalised)  

NdNiO3[41] Ni3+δ     1.891 x 2    
               1.911 x 2 
               1.930 x 2 

1.947 Charge ordering insulator  

Ni3-δ     1.960 x 2 
              1.966 x 2 
              2.023 x 2 

LuNiO3[42] Ni3+δ     1.892 x 2  
              1.915 x 2 
              1.937 x 2 

1.957 Charge ordering insulator  

Ni3-δ      1.975 x 2 
               2.019 x 2 
               2.003 x 2 

YNiO3[43] Ni3+δ     1.901 x 2  
              1.924 x 2 
              1.944 x 2 

1.958 Charge ordering insulator  

Ni3-δ      1.963 x 2 
               2.006 x 2 
               2.012 x 2 

AgNiO2[44] Ni3.5+  1.934 x 6 1.963 Moderately charge 
ordering, 3Ni3+  
Ni2++2Ni3.5+ Ni2+      2.022 x 6 

LiNiO2[33] 1.91 x 4 
2.04 x 2 

1.97  

NaNiO2[45] 1.92 x 4 
2.15 x 2 

 

2.00 Orbital ordering insulator  
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3.3.2   Computational details 

In this study, the rotational invariant form[21] of the DFT+U formalism was used 

and Ueff = U – J, the onsite correction, was set to be 6.5 eV for Ni 3d electrons 

adapted from a self-consistent calculation[46].  Other work[47] has used a smaller 

value of Ueff.  It is, however, important to demonstrate that the results of 

calculations are not strongly dependent on the value of the U parameter chosen 

and we provide evidence for this below. The inclusion of the U parameter has been 

shown to successfully reproduce the charge disproportionation in AgNiO2, LuNiO3, 

NdNiO3, YNiO3 and used to investigate possible charge-orbital orderings in 

Fe3O4[48-50]. The cut off energy for plane-waves was set at 500 eV. For all cells, the 

k-point spacing is less than 0.03 Å-1 in the Brillouin zone.  Convergence of the 

energy was confirmed for both these parameters. For geometry optimisation, the 

force was converged to less than 0.01 eV-Å-1 per ion.  In all cases, the cells were 

fully optimised assuming the starting symmetry of the cell. All calculations were 

carried out using the Vienna ab initio simulation package (VASP)[23]. 

 

LiNiO2 is frequently reported to crystallise in the hexagonal structure with mR3  

space group symmetry. A slight monoclinic distortion was observed at low 

temperatures (10 K) by the neutron diffraction study of [33] and a better fit found 

to the C2/m space group, but detailed analysis showed that the collinear ordering 

of the Jahn-Teller distortions implied by this space group was not supported by a 

combination of the Rietveld refinement and the neutron PDF data. An electron 
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diffraction study[51] was analysed using the Pm space group which is the simplest 

space group that can incorporate a trimer ordering model.   

 

Previous density functional calculations have predicted that distortions with C2/m 

symmetry lower the cohesive energy but did not consider charge 

disproportionation. In order to investigate the various possible electronic 

relaxations in LiNiO2 we have used four unit cells as starting configurations. Two of 

these, mR3  and C2/m cells (each with one formula unit) have been discussed 

before. In addition, two more cells are proposed and discussed below. One cell 

contains a zig-zag Jahn-Teller orbital ordering of the Ni3+ ions and has P21/c 

symmetry with two formula units. The other cell, with P2/c symmetry containing 

four formula units, but retaining good agreement with the measured lattice 

parameters of the low temperature structure, was constructed for the charge 

disproportionation model. As far as we are aware, no attempt has been made to 

analyse the experimental data using the P2/c space group. We have also 

investigated the Pm unit cell (trimer ordering) but, as we shall show, when the cell 

geometry is optimised, it becomes indistinguishable from P21/c. The different 

orderings of Jahn-Teller distortion are illustrated in figure 3-5.  
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Figure 3-5: Three different possible ordering of Jahn-Teller distortions of Ni3+. Open 

circles denotes Ni3+ ions and solid and dashed lines denote oxygen planes above 

and below the Ni3+ layer. Images are taken from [33]. 

 

 

 

 

3.3.3   Results and discussion 

 

We have calculated the structures and lattice energies of the four unit cells 

discussed above and present our results both for the structure and relative energies 

of the cells (using the mR3 cell as a baseline for convenience). The relative ordering 

of lattice energies for the four cases is independent of the choice of the Ueff value 
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provided that value falls in the range  

5.5-7.0 eV as shown in Figure 3-6. Outside this range, the P2/c is destabilised 

relative to the C2/m and P21/c cells. Previous work[47] using a smaller value of Ueff 

(4.5 eV) is still comparable since, as can be seen from Figure 3-6, the relative 

energies of the C2/m and P21/c cells change little over a very wide range of Ueff 

values.  Even for a value of Ueff as low as 4.5 eV, the P2/c cell is comparable in 

energy with the C2/m and P21/c cells. We note comparison with previous work 

where relevant (and consider only the fully relaxed cases) but our aim is rather 

different to theirs since we wish to consider whether the charge disproportionation 

cell can be lower in energy than any Jahn-Teller ordering. Structural data for the 

cells is given in Table 1 for the chosen Ueff value of 6.5 eV. All further results use this 

value. It is convenient to consider the results for the unit cells in turn. 

 
 
 
 

 
Figure 3-6: Stabilisation energies (relative to the mR3 cell and given per formula 
unit) of the C2/m, P21/c and P2/c cells as a function of Ueff. 
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The cell parameters of the mR3 cell are shown in Table 3-4 and demonstrate good 

agreement with the experimental values. Figure 3-7 shows the density of states of 

the mR3 cell. The empty spin-up eg band(*) and half empty spin-down eg band 

indicates an electronic configuration t2g
6eg

1 which corresponds to the low-spin d7 

state and hence Ni3+.  LiNiO2 is reported to be a semiconductor with a band gap of 

about 0.5 eV [36] but in the cell the spin-down eg band lies on the Fermi level which 

implies conducting behaviour.  The symmetry of the mR3  cell ensures that all six 

Ni-O bonds are identical and disagrees with the observation of different Ni-O bond 

lengths seen in experiment.  

 

 

Table 3-4: The optimised geometries of cells and calculated magnetic moments on 

nickel ions. Experimental values reported in brackets (    ; C2/m, the Ni-O bond 

lengths quoted here are taken from the analysis of the Rietveldt refinement, not 

the neutron PDF analysis as discussed in the text below since this is not tied to the 

C2/m symmetry).  

Space 
Group 

a (Å) b (Å) c (Å) β 
(degrees) 

dNi-O (Å) Magnetic 
moment (µB) 

     2.9023 
(2.8788)  

 14.1889 
(14.2035) 

 1.99[6] 
(1.974) 

1.419 

C2/m 5.151 
(4.9693) 

2.7929 
(2.8774) 

5.1461 
(4.9967) 

112.011 
(109.204) 

1.90[4], 2.14[2] 
(1.94[4], 
1.96[2]) 

1.108 

P21/c 5.8468 2.9302 4.90974 125.641 1.91[4], 2.12[2] 1.140 

P2/c 5.0291 5.8059 4.942 70.6822 Ni(a) 2.05-2.07 
Ni(b) 1.88-1.91 

Ni (a) 1.759 
Ni (b) 0.128 

 

 

* From standard crystal field splitting models, the local eg orbitals on Ni are higher in 
energy than the t2g orbitals. For this discussion we identify the unoccupied states of 
nickel shown in the density of states figures as the equivalent of the eg states discussed 
in the text.  
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In the optimised C2/m cell, there are four short Ni-O bonds at 1.90 Å and two long 

Ni-O bonds at 2.14 Å which corresponds to a Jahn-Teller distorted system. The total 

density of states of the C2/m cell shown in Figure 3-7 shows a split in the eg band 

relating to a Jahn-Teller distortion.  The band gap is approximately 0.5 eV, again in 

good agreement with the experimental data.  Two unoccupied spin-up eg states and 

one unoccupied spin-down eg state are present which indicates an electronic 

configuration t2g
6eg

1, and hence Ni3+. This cell appears to be an accurate description 

for the Jahn-Teller relaxed structure generally accepted as the ground state of 

LiNiO2.  However, this cell presupposes a long-range cooperative Jahn Teller 

distortion which is not observed.  

 

 
 

Figure 3-7: The density of states of the four candidate unit cells for LiNiO2 . Cells are 

indicated  as above. Note that only the Jahn-Teller distorted (C2/m, P21/c) or charge 

disproportionation (P2/c) cells show semi-conducting behaviour. 
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In the P21/c cell, all Ni ions are Jahn-Teller distorted with 4 short Ni-O and 2 long Ni-

O bonds, implying the presence of Ni3+ ions.  The geometrical difference from the 

C2/m cell is that the orientations of Jahn-Teller distortions in this cell are in a zigzag 

ordering. This induces, as expected, significant distortion of the lattice from the 

C2/m cell which is not observed in experiment. The results are similar to previous 

work; the most notable change being that the monoclinic angle found here (125˚) is 

significantly larger than previously (107.87˚). From Figure 3-7, the electronic 

structure of this P21/c cell is almost identical to the C2/m cell since the Ni ions are 

all Ni3+ in both cells. Nevertheless, it will be shown that this zigzag Jahn-Teller 

ordering is more stable than the collinear case. Calculations were also performed 

using the Pm cell (which represents the trimer ordering case) as a starting point. 

Results without relaxation produced a cell of significantly higher energy (per 

formula unit) than the mR3  cell. The higher energy of this structure may be due to 

the geometrical frustration identified in [33] resulting in significant strain in the 

structure. We are not able to relieve this strain by introducing the large-scale 

curvature suggested in [33] – the number of atoms required for such a calculation 

are beyond what ab initio calculations can currently consider.  Upon geometrical 

relaxation, the Pm cell relaxed to a cell of P21/c symmetry with the behaviour 

discussed above.  

 

The P2/c cell contains four LiNiO2 formula units and two inequivalent Nickel sites in 

a zigzag ordering. The total density of states in Figure 3-7 indicates that the P2/c 

cell is a semi-conductor with a band gap about 0.5 eV, in good agreement with the 
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measured value. In the optimised geometry, Ni(a) has six long Ni-O bonds at 2.04 ~ 

2.07 Å with a magnetic moment of 1.759 µB. The local density of states in Figure 3-8 

shows that one eg band is unoccupied (the spin-down band but the choice is 

arbitrary), indicating the (high-spin) electronic configuration t2g
6eg

2 or Ni2+. Ni(b) has 

six short Ni-O bond lengths at 1.88 ~ 1.91 Å with a magnetic moments 0.128 µB. The 

local density of states in Figure 3-8 for Ni(b) shows that both the spin-up and spin-

down eg bands are unoccupied,  indicating the electronic configuration t2g
6eg

0 or 

low-spin Ni4+  . 

 

 

 

 
 

Figure 3-8: Local density of states for the two inequivalent nickels in the P2/c cell. 

The top diagram shows the nickel with six long Ni-O bonds. The bottom diagram 

shows the nickel with six short Ni-O bonds. 
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Figure 3-9 shows the iso-surface of the charge density difference which 

demonstrates substantially different amounts of electron density on the two Nickel 

ions. The P2/c cell therefore shows charge disproportionation.  Although not 

reported in experiments, the  P2/c cell reproduces the insulating character of LiNiO2 

and the amount of monoclinic distortion displayed is about 0.22˚, in very good 

agreement with the value 0.16˚ detected by neutron diffraction at low 

temperature[33] in the sample assigned to C2/m symmetry.   

 

We emphasise that, despite the simple denotation of the nickel charge states as 

Ni2+, Ni3+ and Ni4+, there is considerable charge transfer between the nickel and 

oxygen ions due to the covalency arising from the overlap between metal 3d and 

oxygen 2p orbitals. This is clear from the densities of states in Figure 3-7 from 

looking at the amount of d character shown in the figures. A similar point is made 

by the Mulliken and Bader charges shown in Table 3-5 below.  

 

 
Figure 3-9: Charge density difference (total density minus sum of atomic densities) 
for the P2/c cell. Green denotes Li, red denotes O and grey denotes Ni. The iso-

surface shown in blue corresponds to charge density 0.5 e/Å3. Note the difference 
between two kinds of Ni atom.  
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TABLE 3-5: Bader charges of nickel and oxide ions in the cells calculated cells. The 
values in brackets are the volumes (Å3) within which the charge is calculated.  
 

Space 
Group 

Bader Charge 
(Ni) 

Bader Charge 
(O) 

     +1.3671 (7.5376) -1.183 

C2/m +1.4459 (7.1567) -1.223 

P21/c +1.4259 (7.182) -1.213 

P2/c Ni(a) +1.279 (8.279) 
Ni(b) +1.485 (6.425) 

O(a) -1.123 
O(b) -1.259 

 
 

 

The lattice energies of the four cells are listed in Table 3-6.  The lowest energy cell 

for LiNiO2 is that with P2/c symmetry. This suggests that charge disproportionation 

must be considered as a reasonable mechanism to remove the orbital degeneracy 

of Ni3+ in LiNiO2.  The ordering of the other cells is the same as for previous work 

but the relative stabilisation energies are somewhat different – the ones quoted 

here are about twice those in [47]. This can reasonably be ascribed to the different 

Ueff values used.  The lattice energy of the P2/c cell is, however, only about 2 meV 

lower than the P21/c cell (the equivalent of 25 K and well within the margin of error 

of the calculation) and 14.5 meV lower than the C2/m cell (the equivalent of 170 K 

and probably within the margin of error).  Table 3-6 also shows the lattice energies 

for NaNiO2 in the three different symmetries explored for LiNiO2.  NaNiO2, unlike 

LiNiO2, is found exclusively in the Jahn-Teller relaxed state.  Previous calculations on 

the m3R and C2/m cells of NaNiO2 were performed using a Ueff value of 4.5 eV but 

from Figure 3-6 it is clear that similar results are expected for our value of 6.5 eV 
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except for the P2/c disproportionation cell which the previous work did not 

consider. Our calculations find the lowest energy configuration in NaNiO2 to be the 

cooperative C2/m Jahn-Teller cell by approximately 32 meV (and 58 meV below the 

charge-disproportionation cell P2/c).  This is many times the energy difference 

between the lowest-energy Jahn-Teller cell and the charge disproportionation cell 

in LiNiO2.    

 
 
 

Table 3-6: Calculated lattice energies per formula unit (meV) relative to the m3R

cell using a Ueff parameter of 6.5 eV. The lowest energy cells are shown in bold. The 
Pm cell is shown in italics since it is unrelaxed.  
 

 LiNiO2 NaNiO2 

Pm  +61.80 n/a 

     0 0 

C2/m -48.05 -78.65 

P21/c -60.37 -46.28 

P2/c -62.56 -20.53 

 
 
 
 
Our results suggest that both Jahn-Teller distortion and charge disproportionation 

are possible in samples of LiNiO2 at the temperatures at which all the experiments 

to determine the structure were performed. The EXAFS experiments were 

performed at room temperature; no temperature is reported for the electron 

diffraction work but it is reasonable to infer that it was performed at room 

temperature; the neutron diffraction was performed at a range of temperatures 

between 10 K and 585 K. This may explain the differences in reported experimental 

structures.   Slight changes in the growth conditions, stoichiometry, and other 

variables could favour the formation of one cell rather than another.  It is also 
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possible that both relaxations can occur within the same sample within different 

grains for example or at the surface versus the bulk or there exists a more stable 

phase with a complicated charge-orbital ordering pattern, in which Ni2+, Ni3+ and 

Ni4+ coexist. 

 

The P2/c cell matches the majority of the reported experimental findings, two 

different Ni-O bond lengths, the small monoclinic distortion, the band gap and the 

lack of Jahn-Teller related magnetic properties. Its most important failure is that 

such a cell should give an approximately 1:1 ratio of the Ni-O short to long bonds 

rather than the approximate ratio of 2:1 observed in [33] (assuming that we group 

the Ni—O bond lengths as suggested there). However, if the PDF in [33] is sampling 

a mixture of the cells involving charge disproportionation and Jahn-Teller distortion, 

then our results are consistent with this work since it is clear from the PDF that 

there is a range of Ni-O distances which contribute to the approximate 2:1 ratio 

depending on how they are grouped together. We would also have a natural 

explanation for the domain structure claimed by [33] at low temperatures. 

 

We turn finally to the magnetic data. Both the data of ref[13] and the more recent 

μSR data[52] suggest that the ferromagnetic and antiferromagnetic states are close 

in energy. The ESR data suggests that the dominant interactions are ferromagnetic, 

but that strong antiferromagnetic fluctuations exist between 13 K and 50 K. 

However, the saturation of the linewidth suggests that the antiferromagnetic 

correlations do not propagate below 10 K. The detailed interpretation of the 



Chapter 3 – GROUND STATE PROPERTIES OF LiNiO2 
 
 

85 
 

behaviour in terms of orbital frustration is not consistent with later neutron[33] and 

electron diffraction[51] work.  The μSR data predicts different magnetic ground 

states for different compositions of Li1-xNixO2; ferromagnetic for x = 0.03 and x = 

0.15; antiferromagnetic for x = 0.02. The authors state that this supports the idea 

that the change in magnetic state is a bulk effect rather than demonstrating the 

formation of ferromagnetic or antiferromagnetic domains. 

 

Our calculations cannot fully resolve this issue because of the limited accuracy of 

density functional theory calculations, but they can illustrate why the complexity 

exists. We have performed spin-polarised calculations on all the unit cells 

considered above. The C2/m cell has a ferromagnetic ground state with 

ferromagnetic coupling both within the layers and between the layers, but a mixed 

state with ferromagnetic coupling within the layers but antiferromagnetic coupling 

between the layers is only 3 meV above it in energy. For the P21/c cell, the 

ferromagnetic ground state is again lowest, but an antiferromagnetic state is only 

5meV above it. A similar result is obtained for the P2/c cell (which is the one that 

shows disproportionation of Ni3+) but here, the antiferromagnetic state is only 3 

meV above the ferromagnetic ground state. Although the figures apparently predict 

a ferromagnetic ground state two points should be noted. First, the density 

functional calculations are not accurate to a few meV. Second, 1 meV (in terms of 

kT) corresponds to about 11 K. The calculations are entirely consistent with the 

great magnetic complexity observed. 
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3.5     Conclusions 
 
First, it is demonstrated that the hole induced by lithium doping in NiO 

predominately localises on a Ni ion that is second-neighbour to Li, with some partial 

density on the surrounding oxide ions. The lithium dopant acts not only as an 

acceptor, but the relaxation of lithium ions also amplifies the Jahn-Teller distortion 

around the Ni3+ ion, which then functions as a carrier trap. This shows the necessity 

of including the effect of the lithium ion explicitly. Unlike excitation, where the 

short lifetime does not allow the lattice time to respond, the physical hole doping is 

often coupled with lattice distortion and results in the formation of a small polaron. 

It is therefore not sufficient simply to consider the number of holes that are present 

at a given level of lithium doping in an otherwise perfect NiO lattice. The oxygen 

contribution to the hole states is a consequence of covalency between the Ni 3d 

and O 2p orbitals, which results in the appearance of the new peak in oxygen 

absorption spectra. The Ni is hence best described as oxidised from 2+ to 3+ and a 

strong Jahn-Teller distortion is found as expected. And the proposed charge state 

Li+Ni2+(O2)1.5- can now be excluded.  

 

A new ground state crystal structure with P2/c space group symmetry is predicted. 

In this cell, the charge disproportionation reaction 2Ni3+  Ni2++ Ni4+ occurs which 

gives two groups of Ni-O bond lengths and the experimentally observed 

semiconducting behaviour. As a result, the ground state valency of Ni ions should 

be half 2+ and half 4+ charge state. Also the P2/c cell is consistent with the slight 

monoclinic distortion found at low temperature (10 K). Therefore the absence of 



Chapter 3 – GROUND STATE PROPERTIES OF LiNiO2 
 
 

87 
 

cooperative Jahn-Teller distortion is well justified by this cell. Nonetheless, since 

the energy difference between two mechanisms is extremely small, and we cannot 

exclude the possibility that a trimer ordered system, stabilised by local (but still 

mesoscale) curvature is important. Our results do exclude the possibility that a 

space group incorporating the trimer ordering can be the ground state 

configuration.  This supports the hypothesis that the mechanism by which 

individual nickel ions remove orbital degeneracy could easily be influenced by its 

local environment. This is probable since the various ways of ordering the Jahn-

Teller distorted Ni3+ ions are all likely to involve significant strain effects caused by 

local distortion.  

 

In real samples, due to thermal effect and impurities, both Jahn-Teller distortion 

and charge disproportionation may occur and the nickel valency could be a mixture 

of 2+, 3+ and 4+. Ni4+ would be expected to show an unusually short Ni-O bond 

length. This is seen in some of charge-ordered nickelates  (see Table 3-3) and 

occasionally elsewhere[53]. 

 

Since Ni4+ has a very low magnetic moment, this provides an alternative method for 

relieving the magnetic frustration expected in this compound but our calculations 

are not accurate enough to predict the ground magnetic state of the system 

unambiguously.   
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Finally, we have illustrated the difference between LiNiO2 and NaNiO2. In NaNiO2, 

there is only one dominant mechanism which is Jahn-Teller distortion. Here it is 

comparably easy to determine its ground state crystal and electronic structure 

without any dispute. The different case of LiNiO2, where a number of different 

possible ground states are very close in energy, illustrates how two systems which 

are apparently so similar chemically, can nevertheless have very different 

behaviour. 
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Chapter 4  

Cation ordering in LiMO2 compounds 

(M=V, Cr, Mn, Fe, Co, Ni) explained by 

exchange interactions 

 

 

4.1 Introduction to crystal structures of LiMO2 compounds 

Compounds with formula LiMO2 (where M is a first row transition metal) have 

attracted great interest due to their application in rechargeable lithium ion 

batteries. As introduced in chapter 1, the structure of the LiMO2 compounds is the 

key to their electrochemical performance as cathodes. Only those with the layered 

structure display good electrochemical activities. It is therefore essential to 

understand the factors that influence the structure in LiMO2.  

Several polymorphs of LiMO2 exist, which differ in the cation ordering. LiVO2, LiCrO2 

and LiCoO2 crystallize in a layered structure with space group symmetry     [1-3]. 

Although LiNiO2 is also often reported to have a layered structure, there is always a 

considerable amount of Ni present in the Li layer[4]. The stable structure of LiMnO2 
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is orthorhombic with space group symmetry    [5]. The unique cation ordering in 

LiMnO2 is believed to originate from the strong Jahn-Teller distortion of the Mn3+ 

ion. A metastable layered LiMnO2 structure has been synthesised by an ion-

exchange method[6]. Even in this case 10% of Mn was found to be present in the Li 

layers. LiFeO2 exists in various crystalline structures[7, 8]. The cation-ordered 

tetragonal γ-LiFeO2 is known to be the stable form of LiFeO2. The cation-disordered 

cubic α-LiFeO2 can be obtained by heating γ-LiFeO2 above 600° and there is an 

intermediate β-LiFeO2 between the α and γ phases. Many other metastable phases 

have also been obtained by low-temperature synthesis methods[9-11]. 

 

 

 

Figure 4-1: The phase relationship of LiFeO2.  Image taken from[12]. 

 

The structure variation in ionic compounds is usually explained by the ionic size 

effect. However since first row M3+ ions are all smaller than Li+, if only the ionic size 

effect is taken into account, all LiMO2 should have the same cation arrangement. 

Also given the similar ionic sizes of these M3+ ions, it is clear that the different 
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arrangements of cations in LiMO2 cannot be justified simply by the argument in 

terms of size effect. For example the ionic radii of V3+ and high-spin Fe3+ are given 

by Shannon[13] to be 0.64 Å and 0.645 Å respectively. The tiny 0.05 Å difference in 

size does not give a clear demarcation of the dramatically difference in cation 

arrangements in LiVO2 and LiFeO2. Also from table 4-1 there is clearly no correlation 

between the calculated M3+ - O2- bond lengths and the stability of a particular phase.  

 

Table 4-1: M3+ - O2- bond lengths from our calculations discussed below and the 

stable phase of LiMO2 

 M3+ - O2- (Å) Stable LiMO2 structure 

V3+ 2.06 Layered 

High-spin Fe3+ 2.05 γ-LiFeO2 

Cr3+ 2.03 Layered 

Low-spin Co3+ 1.94 Layered 

 

 

There has been one previous theoretical study attempting to explain the structural 

variation of LiMO2 compounds[14]. In the study, an ionic model with pair-wise 

Buckingham potentials was used. By altering the parameters in the model and 

assigning different compounds arbitrarily to regions in the parameter space, it was 

concluded that the size and charge have effects on the structural stability. This 

argument derived from the ionic model is certainly not faulty.  However as we have 

demonstrated above, it cannot explain the structural difference between layered 
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LiVO2 and γ-LiFeO2. First it is not adequate to describe transition metal oxides with 

an ionic model due to the considerable amount of covalency between metal and 

oxygen. Moreover the electronic effect such as Jahn-Teller distortion cannot be 

captured by simple pair potentials. Even if the ionic model can truly describe LiMO2 

compounds, correct parameters in the model are required to reproduce accurate 

interatomic interactions. Whether the parameters used in that study can represent 

LiMO2 compounds or not is a question. Therefore the conclusion from the arbitrary 

assignment of parameters is only an artefact. Second and most importantly, the 

ordered γ-LiFeO2 phase was not considered in that study.  

 

 

4.2 Phase stabilities of LiMO2 

4.2.1 Computational details 

In order to investigate the structural variation, lattice energies of LiMO2 (M=Al, V, Cr, 

Mn, Fe, Co, Ni) are calculated with three different cation arrangements shown in 

figure 4-2, the layered, γ and o orderings. The cell of layered LiMO2 (M=Al, V, Cr, Co) 

has space group symmetry      . Layered LiMnO2 shows a monoclinic distortion 

which lowers its symmetry to C2/m. For layered LiNiO2 the potential ground state 

cell with space group symmetry P21/c considered in chapter 3 is adopted[15]. The γ 

and o cation orderings are the cation orderings in γ-LiFeO2 and orthorhombic 

LiMnO2, with space group symmetry I41/amd and pmnm respectively. In addition, 
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the lattice energies of NaAlO2 with the three different cation arrangements are also 

calculated to investigate the influence of size difference between Li+ and Na+.  

In the layered cation arrangement, the triangular M3+ sublattice could cause 

frustration and therefore only the ferromagnetic coupling between M3+ ions is 

calculated for simplicity. In cells with γ and o cation ordering, antiferromagnetic 

structures are adopted from those determined by neutron diffraction studies[5, 16].  

 

           

 

 

Figure 4-2: LiMO2 with three different cation arrangements. The (a) Layered (b) γ 

and (c) o arrangements. Green, purple and red spheres denote Li, M and oxygen 

respectively.  
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All calculations are based on density functional theory in combination with the 

projector augmented wave (PAW) method[17] implemented in the Vienna ab initio 

simulation package (VASP)[18]. The Perdew-Burke-Ernzerhof exchange-correlation 

functional[19] is used and a Hubbard model Ueff correction[20] is applied to d 

electrons to account for energy associated with the on-site coulomb repulsion. All 

LiMO2 structures are calculated with the same value 4.5 eV of Ueff on the d 

electrons of M3+. The plane wave energy-cutoff is set to 500 eV for good 

convergence in lattice energies. For all cells, the k-point spacing is less than 0.05 Å-1 

in the Brillouin zone. All atomic positions in the cell and the lattice are free to relax 

until the residual force acting on each ion is less than 0.01 eV/ Å.  

 

 

4.2.2 Results and discussion 

Figure 4-3 shows the calculated stabilities of LiMO2 compounds with the γ and o 

cation arrangement both in ferro- and anti-ferromagnetic states, relative to the 

layered cation arrangement. As shown in the figure only two compounds, LiMnO2 

and LiFeO2, stabilise in phases other than the layered cation ordering. The rest of 

the compounds are stabilised in the layered structure. All experimentally observed 

stable structures of LiMnO2 compounds are correctly predicted in our calculations 

apart from LiMnO2. As seen in figure 4-3 LiMnO2 is calculated to be most stable with 

the γ cation arrangement in the ferromagnetic state, which contradicts the 

experimentally observed o-LiMnO2 structure. This issue will be addressed below. 
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Above all, a dramatic energy difference of about 200 meV between the 

ferromagnetic (FM) and antiferromagnetic (AF) configurations in LiFeO2 with the γ 

cation arrangement is noted. There are also about 100 meV energy differences 

between the FM and AF configuration in LiFeO2 and LiMnO2 with the o cation 

arrangement. These numbers indicate strong exchange interactions between Fe3+ 

ions and between Mn3+ ions. In addition as seen in figure 4-3, LiFeO2 would be 

stabilised in the layered structure if spins on Fe3+ are forced to align ferro-

magnetically. This suggests the possibility that the exchange interaction is the 

reason for LiMnO2 and LiFeO2 deviating from the layered structure. Therefore this 

prompted the investigation on the exchange interaction between transition metal 

ions discussed below.  

 

Figure 4-3: Calculated lattice energies of LiMO2 with γ and o ordering relative to the 
layered ordering (ferromagnetic). 
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4.3 Exchange interactions between octahedrally coordinated 

transition metal ions 

The exchange interaction is a quantum mechanical phenomenon arising from the 

overlap of wavefunctions (orbitals) which is responsible for magnetic behaviours in 

many materials such as the antiferromagnetic magnetic ordering and the trend of 

Neel temperature in first-row transition metal monoxides. In an insulating 

crystalline material where electrons are localised, the exchange interaction 

between magnetic moments on individual lattice site can be treated with the 

Heisenberg Hamiltonian:  

                 

   

 (4-1) 

where    and    are the spin operators at the     and     lattice sites, and     is the 

exchange constant between    and   . One can expect that in materials where such 

exchange interaction exists, there is an energy gain through the exchange 

interaction which should be included in the total lattice energy.  

In oxides with the rock-salt structure, as illustrated in figure 4-4, the interaction 

between nearest-neighbour (NN) metal ions is denoted as J1. This interaction J1 can 

be understood as a result of direct orbital overlap between nearest neighbouring 

transition metal ions. In addition, there is a considerable magnitude of interaction 

between 2nd-nearest-neighbour (2NN) metals ions, denoted as J2 in figure 4-4. This 

is quite unexpected since the distance between 2nd nearest neighbours is too large 
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for any effective orbital overlap. To explain this, the superexchange mechanism was 

proposed[21].  

 

 

Figure 4-4: Interactions between transition metal ions in the rock-salt structure. 

 

 

The superexchange interaction occurs between two transition metal ions separated 

by an anion. In transition metal oxides, 3d orbitals on metal ions overlap 

considerably with oxygen 2p orbitals. It can be seen in many experimental and 

theoretical studies in transition metal oxides that the doped electrons or holes 

often exhibit both 2p and 3d characters. Li doped NiO, considered in chapter 3 is a 
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good example. Due to such orbital overlapping, electrons can then virtually transfer 

between transition metal ions mediated by oxygen, which is the origin of the 

superexchange interaction.  

The interactions J1 and J2 have a strong dependence on the electronic 

configurations of transition metal ions. Goodenough[22] and Kanamori[23] 

summarised the interactions using semi-empirical rules based on the symmetry 

relation of orbitals. Generally J1 is strong when there are half-filled t2g orbitals, 

which allows the direct overlapping between t2g orbitals of NN metal ions. Although 

the 90° metal-oxygen-metal superexchange is also possible and can contribute to J1, 

it is rather weak. J2 comes predominately from the 180° metal-oxygen-metal 

superexchange mediated by oxygen since the distance is large between transition 

metals and therefore there is only insignificant direct d orbital overlapping. J2 is 

strong when there are half-filled eg orbitals because the lobes of eg orbitals point 

towards p orbitals which results in large overlap between metal 3d and oxygen 2p 

orbitals. While the Goodenough-Kanamori rule has given correct predictions of the 

sign of exchange interactions in various materials, it does not provide a clear 

indication on the magnitude.  

As mentioned in the previous section, we suspect that the exchange interaction has 

an influence on the structural variation in LiMO2 compounds. Here through 

calculating the magnitude of exchange interaction between transition metal ions 

we are going to show that the energy associated with exchange interactions, often 
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considered secondary, can indeed have an impact on the crystal structure. And 

then we further discuss the structural variation of the LiMO2 compounds. 

 

 

4.3.1   Computational details 

In order to probe the exchange interaction and its influence on site preferences, 

pairs of transition metal ions V2+ (t2g
3eg

0), high-spin Mn2+ (t2g
3eg

2), high-spin Fe3+ 

(t2g
3eg

2) and Ni2+ (t2g
6eg

2) are embedded in a 4x4x4 MgO cell with two different 

arrangements. As shown in figure 4-5, in the NN cell the transition metal ion pair is 

located as nearest neighbours in two edge sharing MO6 octahedra. In the 2NN cell 

the transition metal ion pair is located as 2nd nearest neighbours in two corner 

sharing MO6 octahedra. The choice of those four ions is because they do not exhibit 

orbital degeneracy. In transition metal oxides, ions with degenerate orbitals usually 

undergo Jahn-Teller distortion and the orbital degeneracy is lifted. Consequently, if 

we were to deal with ions with orbital degeneracy, there would be one more 

degree of freedom entering the problem, the orbital ordering, which would need to 

be considered. There are two reasons for the choice of MgO.  First, Mg2+ is 

nonmagnetic and therefore the exchange interaction is absent between Mg2+ ions 

or between Mg2+ and embedded transition metal ions. Consequently the exchange 

interactions J1 and J2 only take place between embedded transition metal ion pairs 

in the NN and 2NN cell respectively. Second, the size of the Mg2+ ion is similar to 

first row transition metal M2+ ions and so ion size effect is minimised.  
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Figure 4-5: The (A) NN cell and (B) 2NN cell of two transition metals embedded in a 

4x4x4 MgO cell. The transition metal, Mg and O are denoted in grey, orange and 

red spheres respectively.  

 

In order to estimate the energy associated with the exchange interactions J1 and J2 

from the Heisenberg Hamiltonian, total lattice energies of both FM and AF coupling 

of spins on metal ions are calculated. In our calculations, spins are collinear and 

restricted to the Z direction and therefore the Heisenberg model can be simplified 

to the Ising model  

                
    

   

 (4-2) 

where    
 and    

 are the total spins at the     and     lattice sites. By applying the 

Ising Hamiltonian on a crystal where the exchange interaction only act between NN 

pairs (  ) and 2NN pairs (  ), the energy gain can be written as 

 

                  
  

               
   

          
  

         
   

 

(4-3) 
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where     and      are the exchange constants between    and 2NN pairs, n is 

the number of unpaired electrons at site   (  ) and the   is the spin quantum 

number (for electrons   
 

 
 ). The left summation in the equation is over i,j 

between NN pairs, the right summation is over i,j between 2NN pairs and   ,   = +1 

or -1 (spin up and spin down).  

Subsequently the exchange energies     and    can be extracted from total energies 

of different magnetic configurations[24-26]. In our case only    exists in the NN cell  

                (4-4) 

and similarly    can be obtained from the calculations of the 2NN cell 

                 (4-5) 

Hence            and             are energy gains resulted from the 

exchange interactions of the transition metal ion pair in the NN cell and 2NN cell. 

The larger energy difference between FM and AF states indicates stronger 

interaction. 

All calculations here are performed as described in 4.2.1 except in the charged cell 

containing Fe3+ ions, in which a homogeneous background-charge is applied. 
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4.3.2 Interactions between transition metal ions and their    

site preferences 

Figure 4-6 shows results of density functional theory calculations for four different 

transition metal pairs, V2+, Mn2+, Fe3+ and Ni2+, embedded in the 4x4x4 MgO cell. 

Firstly we note that the absolute values of            and             

drop with increasing value of Ueff. In the DFT+U method, Ueff is introduced to 

account for the on-site coulomb interaction between electrons. So higher values of 

Ueff give rise to more confined d orbitals (less diffuse) which results in less overlap 

between metal 3d and oxygen 2p orbitals[20]. Similarly the direct d-d orbital 

overlap, if it exists, diminishes with increasing Ueff. Since the interactions J1 and J2 

depend on the extent of orbital overlap, they are expected to weaken as Ueff 

increases. This is indeed supported by the decreasing absolute values of      

      and             seen in our results. 
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Figure 4-6: The calculated energies versus Ueff of the four cases. Note that in the 

Fe3+ case, the energies do not exhibit a convergent/asymptotic behaviour as in 

other three cases. This might be a consequence of the calculated cell being charged 

and the choice of method used by VASP to attempt to correct for this.  

 

 

         , termed as the site preference energy, is the energy difference 

between the favoured spin configuration (lower in energy) of the NN cell and 2NN 

cell. In other words, if           is positive, the lattice energy of the 2NN cell 
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is lower and therefore the transition metal ion pair prefers to stay as nearest 

neighbours. Conversely, if           is negative, the 2NN cell is more stable 

and that means the pair of transition metal ions prefers to stay as 2nd nearest 

neighbours. Such site preferences certainly involve a size effect, i.e. the size 

difference between Mg2+ and the embedded transition metal ions, but also, we 

propose, from the difference in energy gain through J1 in the NN cell and J2 in the 

2NN cell (relative strength). Therefore the site preference energy should contains 

two contributions and is written as  

 

         

                                

         

(4-6) 

The term in the curly brackets is the contribution from interactions between 

transition metal ions, denoted as                in figure 4-7 and         is the 

contribution from the size effect. From the relationships between           , 

                , and           in figure 4-7, it can be seen that the energies 

associated with the size effect are no more than 40 meV, due to the comparable 

ionic radii between Mg2+ (0.72 Å), V2+ (0.79 Å), Mn2+ (0.83 Å), Fe3+ (0.645 Å) and Ni2+ 

(0.69 Å). Moreover they are not sensitive to Ueff. Since the size effect is small and 

usually not significant, the contribution arising from the relative strength in J1 and J2 

could become the dominating factor in the site preference energy. As seen in figure 

4-7,             is highly correlated with                  apart from the 

case of Mn2+ in which the strengths of J1 and J2 are similar. 
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Figure 4-7: The correlation between the site preference energy, E(interaction) and 

E(size). 

 

 

As seen in figure 4-6, in the case of V2+ (t2g
3eg

0), the large value of E(AF-FM)NN 

indicates strong J1, resulted from the direct overlap of half-filled t2g orbitals.  

Compared to E(AF-FM)NN, E(AF-FM)2NN is much smaller. Overall, the NN cell is lower 
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in energy due to larger energy gain through J1 and therefore the V2+ pair strongly 

prefers to stay as nearest neighbours. Interestingly, as shown in figure 4-8, such 

strong J1 interaction in the NN cell is accompanied by the shortening in the V2+-V2+ 

distance in the AF state compared to the FM state.  This “V2+-V2+ dimerization” is 

similar to the dimerization of Ti3+ ions seen in NaTiSi2O6[27] and MgTi2O4[28]. In 

those compounds, Ti3+ ions also have half-filled t2g orbitals and are located at 

octahedral sites sharing common edges, the same as V2+ pairs in the NN cell. 

 

 

Figure 4-8: The M-M distance in FM and AF states in the NN cell. 

 

 

In the case of Mn2+, from figure 4-8 there is also a difference in the Mn2+-Mn2+ 

distance in the NN cell between FM and AF states in combination with a noticeably 

large J1. Nevertheless, as seen in figure 4-6 the magnitude of E(AF-FM)NN is much 

smaller than in the V2+ case which makes E(AF-FM)NN and E(AF-FM)2N comparable 



CHAPTER 4 – CATION ORDERING IN LiMO2 COMPOUNDS EXPLAINED BY 
EXCHANGE INTERACTIONS 
 
 

112 
 

(The energy gains through J1 and J2 are similar). The NN cell is energetically more 

favourable than the 2NN cell, although with a much smaller site preference energy 

than the V2+ case. As a result, the Mn2+ pair prefers to stay as nearest neighbours in 

the MgO supercell. 

Fe3+ (t2g
3eg

2) has the same electronic configuration as Mn2+ but with higher valency 

and smaller ionic radius. The shorter Fe3+-O2- bond length compared to Mn2+-O2- 

leads to a difference in the crystal field splitting and greater covalency between 

metal 3d and oxygen 2p orbitals. All these factors can influence the interactions J1 

and J2. Our results show that J1 is weakened compared to the Mn2+ case while J2 is 

enhanced. Also the difference in M-M distance between FM and AF states in the NN 

cell vanishes, consistent with small J1. Overall, the 2NN cell is lower in energy due to 

larger energy gain through J2 and therefore the Fe3+ pair strongly prefers to stay as 

2nd nearest neighbours. 

In the Ni2+ (t2g
6eg

2) case, the t2g orbitals are fully occupied and therefore there 

should not be overlap between them. Consequently only the 90° Ni2+-O-Ni2+ 

superexchange through the overlap between eg orbitals of Ni2+ and 2p orbitals of 

oxygen contributes to J1, which is expected to be weak. This is confirmed by the 

calculated smaller values of E(AF-FM)NN. In contrast, J2 is large. Overall, the 2NN cell 

is lower in energy due to larger energy gain through J2 and therefore the Ni2+ pair 

strongly prefers to stay as 2nd nearest neighbours. 

So far we have demonstrated that strengths of interactions J1 and J2 between 

transition metal ions depend strongly on their electronic configurations. Besides, if 
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the size effect is negligible, when J1 is stronger than J2, the energy gain through J1 in 

the NN cell is larger than the energy gain through J2 in the 2NN cell. Therefore the 

lattice energy of the NN cell is lower and this means that transition metal pairs 

prefer to stay as nearest neighbours. Conversely, if J2 is stronger than J1, the 

transition metal pair would prefer to stay as 2nd nearest neighbours.  

 

 

4.4 Explanations for the cation arrangement in LiMO2 

Figure 4-9 again shows the stability of LiMO2 with the γ and o cation arrangement 

both in ferro- and anti-ferromagnetic states, relative to the layered cation 

arrangement. In both LiAlO2 and NaAlO2, the lattice energies of LiAlO2 and NaAlO2 

with the layered cation arrangement are calculated to be lowest and hence most 

stable. Because LiAlO2 and NaAlO2 are ionic, the only reason for them to be 

stabilised in the layered strurcture is the size difference between two cations. Also 

the more significant the size difference between cations, the more stable the 

layered cation arrangement is. This can be realised by comparing LiAlO2 and NaAlO2. 

Because the size difference between Na+ and Al3+ is larger than between Li+ and Al3+, 

as shown in figure 4-9 NaAlO2 is much more stabilised in the layered cation 

arrangement than in LiAlO2. In fact due to the pronounced size difference between 

Na+ and M3+, all NaMO2 compounds exhibit the layered structure[29-34]. Therefore 

the size effect is the dominating factor of cation arrangement in NaMO2. 
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If only the size effect is taken into account, all LiMO2 compounds should prefer the 

layered cation ion arrangement. If, as we have demonstrated in the previous 

section, there exists a larger interaction J2 between M3+ ions than J1, this could drive 

them to settle as 2nd neighbours and result in a different cation arrangement.  

 

 

Figure 4-9: Calculated lattice energies of LiMO2 with γ and o ordering relative to the 
layered ordering (ferromagnetic). 

    

 

From figure 4-9, LiVO2 and LiCrO2 are predicted to stabilise in the layered structure, 

in agreement with experiments. The electronic configuration of V3+ and Cr3+ are 

t2g
2eg

0 and t2g
3eg

0. The unfilled eg orbital gives rise to a weak J2 as indicated by the 

small energy difference between AF and FM configurations with the γ cation 
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ordering. J1, which arises from the direct overlap of half-filled t2g orbitals, between 

V3+ ions and Cr3+ ions, regardless its strength, would only reinforce the stability of 

the layered cation arrangement. 

It is known that the magnetic coupling between neighbouring pair of V3+ in LiVO2 

and Cr3+ LiCrO2 is anti-ferromagnetic. Therefore one might be concerned about the 

calculated results which assume ferromagnetic coupling in the layered structure. 

Indeed it has been reported[35] that the lattice energy is lower in the layered 

LiCrO2 with the anti-ferromagnetic and ferrimagnetic configurations than for the 

ferromagnetic configuration. Nonetheless such lowering in the lattice energy would 

only reinforce the relative stability of the layered cation arrangement. Therefore 

despite the fact that only ferromagnetic coupling in LiVO2 and LiCrO2 is considered 

in this study, the calculated relative structural stabilities of LiVO2 and LiCrO2 are 

correct even though the magnetic states are not.  

In LiFeO2, the calculated structural stability indicates that antiferromagnetic γ-

LiFeO2 is more stable than phases with the layered and o-LiMnO2 cation 

arrangements. Indeed although layered LiFeO2[9] and LiFeO2 with the o-LiMnO2 

cation arrangement[10] have been synthesised, they are meta-stable. However γ-

LiFeO2 with ferromagnetic coupling is less favourable than the layered structure and 

there is a huge energy difference (about 200 meV) between the AF and FM states 

as already mentioned earlier. This indicates a strong J2 interaction between Fe3+ 

ions, which not only results in strong antiferromagnetic coupling but also is the 

driving force for LiFeO2 to crystallise in the γ-LiFeO2 structure. The γ-LiFeO2 
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structure is therefore the result of maximising the number of J2, as seen in table 4-2, 

and hence obtaining the largest energy gain through the exchange interaction.  

 

 

Table 4-2: The number of J1 and J2 interactions acting on one transition metal ion in 
the cells with different cation orderings. The positive and negative value means FM 
and and AF coupling respectively. 

 

 

The situation in LiMnO2 is more complicated. Due to the degenerate electronic 

configuration of Mn3+ (t2g
3eg

1), the MnO6 octahedron undergoes a strong Jahn-

Teller distortion which lifts the orbital degeneracy and its corresponding orbital 

ordering produces further complexity in the cation interactions. The unique result 

that the o-LiMnO2 structure observed experimentally is favoured over the layered 

and γ-LiFeO2 cation arrangement in LiMnO2 can be regarded as the consequence of 

the collective Jahn-Teller distortions of MnO6 octahedra and their corresponding 

orbital ordering. Nevertheless, as seen in figure 4-9 LiMnO2 is calculated to be most 

stable with the γ cation arrangement in ferromagnetic state, which contradicts the 

experimentally observed o-LiMnO2 structure. Figure 4-10 shows the calculated 

phase stabilities with different against Ueff, relative to the layered structure, in 

LiMnO2. The correct phase stability with AF o-LiMnO2 being the most favourable 

 J1  J2 

Layered 6 0 

γ 2, -2 -4 

o 2, -4 -2 
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can be reproduced when Ueff is less than 3. In addition, the lattice energy between 

the FM γ-LiFeO2 and AF o-LiMnO2 phases are similar in certain range of Ueff, which 

could be the reason for the often reported high concentration of stacking faults in 

LiMnO2[36-38]. If we look back to figure 4-2, it not difficult to see that the stacking 

faults in the o-LiMnO2 structure would indeed result in the γ-LiFeO2 structure.  

 

Figure 4-10: Phase stability of LiMnO2. 

 

 

In LiCoO2, the Co3+ (t2g
6eg

0) has fully occupied t2g and empty eg orbitals. Hence Co3+ 

is nonmagnetic and there is no exchange interaction acting on Co3+ ions. However 

figure 4-8 shows that LiCoO2 is more strongly stabilised in the layered structure 

than the ionic case LiAlO2, despite the similar ionic size between Co3+ (0.545 Å)and 

Al3+ (0.535 Å). The fully occupied t2g orbitals along with the covalence in the Co3+-O2- 
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bonding result in a strong isotropic tendency of Co3+ with rigid CoO6 octahedron. As 

seen in table 4-3, due to size difference between Li+ and Co3+, LiO6 and CoO6 

octahedra can only both remain undistorted with the layered cation arrangement. 

Therefore it costs energy for CoO6 octahedra to be distorted as in phases with the γ 

and o cation arrangements. This is what makes them very unfavourable compared 

to layered structure, in addition to the size effect.  

In LiNiO2, similar to LiMnO2, the Ni3+ (t2g
6eg

1) ion is also Jahn-Teller active due to 

orbital degeneracy. However LiNiO2 does not exhibit the o-LiMnO2 structure. It is 

often reported to crystallise in the layered structure, although with considerable 

amounts of Li-Ni anti-site defects or nonstoichiometry. Nevertheless the calculated 

lattice energies of the layered LiNiO2 and the antiferromagnetic LiNiO2 with o cation 

arrangement are very close. This may be responsible for the considerable amount 

of Li-Ni anti-site defects or nonstoichiometry often reported in LiNiO2. Since the 

presence of Ni ions in the supposed layered LiNiO2 would to some extent make the 

cation ordering locally look like that in o-LiMnO2.  
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Table 4-3: The Li+ - O2- and Co3+ - O2- distance in LiCoO2 with different cation 

orderings. 

 Li+ - O2- (Å) Co3+ - O2- (Å) 

Layered 2.11 x 6 1.94 x 6 

γ 1.97 x 4 
2.36 x 2 

1.92 x 2 
1.97 x 4 

o 1.97 x 2 
2.06 x 2 
2.38 x 2 

1.91 x 2 
1.95 x 2 
1.96 x 2 

 

 

 

4.5 Summary  

By embedding first row transition metal ion pairs in the MgO supercell, the 

dependence of J1 and J2 exchange interactions on electronic configuration is 

demonstrated. Also it is shown that when size effect is not noticeable compared to 

the effect of exchange interactions, their site preference to stay as nearest 

neighbours or 2nd nearest neighbours depends on the relative strength of J1 and J2 

exchange interactions. When the exchange interaction J1 is stronger (more energy 

gain), the transition metal pair prefers to stay as nearest neighbours (90° M-O-M). 

When the exchange interaction J2 is stronger, the transition metal pair then prefers 

to stay as 2nd-nearest neighbours (180° M-O-M). 

Accordingly, the structural variation of rock-salt LiMO2 is explained. The size 

difference between Li+ and M3+ as well as J1 favours the layered structure, as in 

LiVO2, LiCrO2 and LiCoO2. Whereas in LiFeO2, a significant J2 exchange interaction 
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arising from half-filled eg orbitals stabilises M3+ in the 180° M-O-M configuration 

and therefore it does not form the layered structure. 
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Chapter 5  

Effects of cation substitution on 

structural defects in layered LiNiO2  

 

 

5.1 Introduction 

Layered rock salt structure materials with the general formula LiMO2 (M=transition 

metal) have been studied intensively due to their applicability as cathode materials 

in lithium ion batteries. LiCoO2 is the prototype commercially used cathode. 

However cobalt is toxic and expensive. The search for replacements for cobalt-

based cathodes has lasted for decades. LiNiO2 is one of the potential cathode 

materials for lithium ion batteries. Although this compound has been intensively 

studied for many years, the electronic, magnetic and local structures are still highly 

controversial[1, 2], as discussed in chapter 3. 

Experimentally it is not yet possible to synthesise perfect, stoichiometric LiNiO2. A 

certain fraction of extra nickel ions occupy the lithium site making the true formula 

of the material [Li1-xNix]NiO2[3] (This is referred to hereafter as an extra Ni defect). 
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A recent theoretical study on LiNiO2 also predicts an unavoidable high 

concentration of Ni present in the Li layers at high temperature[4]. Besides, 11% of 

Li-Ni interlayer mixing (cation exchange between Li and Ni in the expected layered 

structure) is reported to occur in the LiNiO2-based materials LiNi1/2Mn1/2O2 and 6% 

LiNi1/3Mn1/3Co1/3O2[5, 6]. The presence of Ni in the Li layers has a detrimental effect 

on the electrochemical performance of the material as a cathode. First, it disrupts 

the lithium diffusion by blocking the diffusion pathways[7]. Second, it has been 

suggested that the presence of nickel in the lithium layer is responsible for first-

cycle irreversibility[8-10]. During the first charge, the Ni2+ ions at Li sites are 

oxidised to smaller Ni3+ ions. This causes a local shrinkage around those nickel ions 

and therefore it is difficult to insert lithium ions back into the positions around 

them.  

Oxygen loss is another issue in layered cathode materials. A recent study on 

LiNi0.8Mn0.1Co0.1O2-δ demonstrated that up to ~12% oxygen loss occurs depending 

on the synthesis conditions and there is a strong correlation between oxygen 

content and electrochemical performance[11].  As introduced in chapter 1, 

delithiated Li1-xNiO2 is not thermally stable. It undergoes a phase transition 

accompanied by oxygen evolution. It has been shown that the extent of oxygen 

evolution increases as x increases[12]. This irreversible structural change 

concomitant with oxygen loss may be responsible for the observed capacity 

fading[13, 14]. 
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In order to improve the electrochemical performance of LiNiO2, the strategy of 

partial substitution of Ni by other metal cations has been deployed. It is known that 

Co substitution gives better 2-D layered character. For LiNi1-xCoxO2 with x> 0.3, 

nickel is no longer present in the lithium layer[15]. As a result, the irreversibility at 

the first-cycle mentioned above disappears. By contrast, the interlayer mixing 

increases with Mn doping[16]. Nevertheless, LixNi0.5Mn0.5O2 exhibits excellent 

structural stability at low Li content against oxygen loss[17] and therefore better 

safety. Al doping improves the thermal stability although Ni is still found in the Li 

layer[18, 19]. Cycling tests show that 10% aluminium suppresses all the phase 

transitions observed for the LixNiO2 system[19].  

Although the properties produced by partial cationic substitution are well studied, 

the reasons why these foreign dopants produce them are not clear. In this study, 

first-principles calculations were performed to investigate the structural defects of 

Li-Ni anti-site, extra Ni and oxygen vacancy in LiNiO2 and the effect of Ni 

substitution by Co (LiNi0.5Co0.5O2), Al (LiNi0.5Al0.5O2) and Mn (LiNi0.5Mn0.5O2). Same 

structural defects in NaNiO2 and LiCoO2 are also calculated for comparison.  
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5.2 Point defects in crystals  

Perfect crystals do not exist. According to the dimensionality, defects in crystals can 

be categorized into point defects, line defects and planar defects. It is the point 

defects we are concerned with here. Figure 5-1 shows some common point defects. 

They are vacancies, interstitial and substitutional impurities. The vacancy defect 

means that there are ions missing from their lattice and result in vacant lattice sites. 

The interstitial defect is that an atom occupies a position in the crystal which is not 

a regular lattice site. The substitutional impurity means that an atom at its regular 

lattice site is replaced by a foreign element, such as doping in semiconductors.  

Apart from the above defects, there is another defect called the anti-site defect in 

which two atoms swap their regular lattice sites. In ionic solids, different types of 

defects usually occur simultaneously in order to maintain the charge neutrality - for 

example the Frenkel disorder and Schottky disorder in an ionic binary compound 

M+X-. The Frenkel disorder means one atom is displaced from its normal site to an 

interstitial site, i.e. a vacancy defect and an interstitial defect are created 

simultaneously. In the Schottky disorder, one cation and one anion are missing 

together, i.e. two vacant sites are created simultaneously. The charge neutrality can 

also be retained by the creation of electrons or holes, i.e. electronic and hole 

defects.  

In transition metal oxides, due to variable valency of transition metal ions, the 

concentration of point defects can be very high and compounds are frequently non-

stoichiometric. Non-stoichimetric compounds are characterised with a single phase 
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over a range of compositions. For example in VOx the oxygen content x can range 

from 0.79 to 1.29. In addition, the charge compensation associated with defect 

formation in transition metal oxides often takes place on transition metal ions by 

changing its charge state because charges in transition metal oxides often easily 

localise in the form of small polarons. 

Defects in ionic crystals are commonly described using the Kröger–Vink notation: 

  
  

In the representation M corresponds to atoms or vacancies and can also be 

electrons (e) or holes (h). S indicates the lattice site in perfect crystal that is 

occupied by M. C indicates the electronic charge of M relative to the species 

originally occupying that site. Positive charge is denoted by  , negative charge is 

denoted by   and zero charge is denoted by x. 

 

Figure 5-1: Schematic view of point defects 
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The importance of studying defects arises because they have an impact on 

properties of materials. For example YBa2Cu3O7-x can be tuned to be either an 

insulator or a superconductor depending on the amount of oxygen deficiency[20]. 

In solid electrolytes, the ionic conductivity is usually correlated with defect 

concentration[21, 22]. Therefore if we can control the concentration of defects, 

properties of materials can be manipulated.  

 

 

5.2.1 Defects in thermal equilibrium at the dilute limit 

At any finite temperature all crystals contain certain amount of defects because the 

defect formation is thermodynamically favoured. Let us consider a crystal 

containing    regular sites but   of them are occupied by one species of defect, for 

example vacancies in a simple metal. The change in free energy for the creation of 

  point defects in a perfect crystal is then 

           (5-1) 

where   is the work necessary to create a single defect (defect formation energy) 

and    is the configurational entropy. Therefore although it costs free energy    to 

create point defects, an entropy contribution     is introduced by the creation of 

defects and lowers the free energy. The minimization of the free energy by the 

formation of defects is clearly depicted in figure 5-2.  
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Figure 5-2: Free energy against the number of defect. This explains why point 

defects exist. 

 

 

The configurational entropy depends on the number of ways in which the defects 

can be arranged   and can be expressed as 

         (5-2) 

where   is Boltzmann’s constant. Obviously in a perfect crystal there is only one 

way for its arrangement and    . When there are   defects taking place in   

lattice sites, the number of possible arrangements is 

   
  

        
 (5-3) 

If  ,        and   are all numbers, by using Stirling’s approximation the 

configurational entropy in equation 5-2 then becomes 
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  (5-4) 

and when n<<N, i.e. dilute defect concentration, it becomes 

         
 

 
 (5-5) 

At equilibrium, the free energy is the minimum with respect to the number of 

defecst and therefore 

 
   

  
       

 

 
   (5-6) 

By rearranging the above equation, the defect concentration       can then be 

written as 

        
  

  
  (5-7) 

It is clear that at any finite temperature  , there is a non-zero defect concentration. 

For defects in ionic crystals, the relation between the defect concentration and the 

defect formation energy is more complicated than equation 5-7.  As mentioned 

above, there is necessarily more than one defect type and it is necessary to impose 

overall charge neutrality. Nevertheless, the relation between the intrinsic defect 

concentrations and their formation energies can usually still be expressed by a 

Boltzmann factor-like term.  
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5.2.2 Defect formation energies at the dilute limit 

Through the thermodynamics of defects, one can estimate the defect concentration 

from the defect formation energy. The knowledge about the defect concentration 

can then be linked to material properties. Therefore for such purposes obtaining 

accurate defect formation energies is the key of studying defects. However the 

definition and calculation of the defect formation energy is not trivial. In recent 

years one formalism, originally proposed to tackle intrinsic defects in 

semiconductor at the dilute limit[23], has been widely used, including the recent 

study on layered LiMO2 (M=Ni, Co, Mn, Li1/3Mn2/3)[4]. In the formalism (usually 

referred to as the Zhang-Northrup method), a cell representing a perfect bulk 

crystal containing    atoms of each species   is assumed to be in equilibrium with a 

reservoir of atoms with chemical potential    for each species and a reservoir of 

electrons with chemical potential   . When a defect is formed by removing or add 

    atoms and charge   and results in a defective cell with energy     , the change 

in Gibbs free energy (defect formation energy) can be written as 

                         

 

 (5-8) 

Since the energy of the perfect supercell is 

            

 

 (5-9) 

The defect formation energy is then 
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 (5-10) 

One should be aware that this formalism is in principle only applicable for defects 

at the dilute limit, results obtained from this formalism for systems where defects 

are clearly not dilute should be interpreted with care.  

 

 

5.3 Treatments of defects in layered LiMO2 

In this study, we consider the presence of extra Ni in the Li layers, the Li-Ni 

interlayer mixing and the oxygen loss as point defects in the supposedly perfect 

layered LiMO2. Experimentally, nearly stoichiometric LiNiO2 can only be synthesized 

under an oxygen flow and Li2O and NiO are often used as starting materials. 

Therefore the presence of NiO and Li2O is assumed under such conditions and the 

extra Ni defect can be considered as occurring through the following defect 

reaction 

                 
    

  
 

 
     

 

 
   (5-8) 

Furthermore, the focus of this study is the effect of cation substitution which is 

reflected from the relative defect formation energies between different 

compositions. The choice of a different defect reaction scheme will not alter the 

relative defect formation energies. 
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The interlayer mixing defect is considered as occurring through the reaction 

             
      

      
       

    
  (5-9) 

and the oxygen vacancy defect occurs through the reaction 

           
      

  
 

 
   (5-10) 

In this work we define defect formation energies (DFE) as the formation enthalpies 

of the above defect reactions at 0 K. Two assumptions are made here. First, in solid 

phases the volume term can be neglected and thereby the enthalpy corresponds to 

the internal energy. Second, defects are assumed to distribute evenly in the crystal. 

In the case of extra Ni defect in LiNiO2, the defect formation energy per defect is 

then 

 

                       

                                

 
 

 
        

 

 
      

(5-10) 

where             is the lattice energy of a perfect LiNiO2 cell and              

is the lattice energy of the cell containing one extra Ni defect.  

Similarly the defect formation energy of interlayer mixing is 

                                               (5-11) 

where            is the lattice energy of the perfect cell and              is the 

lattice energy of the cell containing one interlayer mixing defect.   
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The defect formation energy of oxygen vacancy is 

 

                 

                          
 

 
      

(5-11) 

where            is the lattice energy of the perfect cell and              is the 

lattice energy of the cell containing one oxygen vacancy. 

In LiNiO2, since the amounts of Ni present in the Li layers and oxygen deficient are 

reported to be a few percent, far beyond the dilute limit, by an appropriate choice 

of the supercell size, correct defect concentration can be simulated.  

 

 

5.4 Computational details 

In this study, first-principles calculations were performed to investigate the 

structural defects of interlayer mixing, extra Ni and oxygen vacancy in layered 

LiNiO2 and the effect of Ni substitution by Co (LiNi0.5Co0.5O2), Al (LiNi0.5Al0.5O2) and 

Mn (LiNi0.5Mn0.5O2). The structural defects in layered NaNiO2 and LiCoO2 are also 

calculated for comparison.  

All calculations are based on density functional theory in combination with the 

projector augmented wave (PAW) method[24]. The generalized gradient 

approximation is used with the Perdew-Burke-Ernzerhof functional[25] and a 

Hubbard model U correction[26] is incorporated for the d electrons to give a better 
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description of this strongly correlated system. The U parameters used for Ni, Co and 

Mn are 6.5, 4.9 and 4.5 eV respectively, adapted from a self-consistent 

calculation[27]. The plane wave energy-cutoff is set to 500 eV. For all cells, the k-

point spacing is less than 0.05 Å-1 in the Brillouin zone. Structure optimizations were 

performed until the residual force acting on each ion was less than 0.01 eV/A. All 

calculations were carried out using the Vienna ab initio simulation package 

(VASP)[28]. 

For the calculation of perfect layered LiNiO2, the possible ground state cell with 

space group symmetry P21/c proposed in chapter 3 is used as the starting structure. 

In this P21/c cell the Jahn-Teller distortions of Ni3+ in the NiO2 slab are in a zigzag 

ordering. For calculations of layered LiNi0.5Co0.5O2, LiNi0.5Al0.5O2 and LiNi0.5Mn0.5O2 

the two simplest in-plane cation orderings, linear and zigzag orderings, are 

considered as shown in figure 5-3. Supercells with 32 formula units containing 128 

atoms are used in all defect calculations. The interlayer mixing defect and extra Ni 

defect in such supercell correspond to a concentration of 3.125 % which is well 

within the experimentally reported range of defect concentration in LiNiO2. 

Therefore the size of the cell is adequate for simulating the observed defects in 

LiNiO2 and there is no need for the extrapolation to the infinite limit.  

The interlayer mixing defect in layered AMO2 is constructed by swapping one Ni (Co 

in the LiCoO2 case) in the MO2 slab with its nearest A ion. The extra Ni defect is 

constructed by replacing one A by Ni in the supercell. The oxygen vacancy defect is 

constructed by removing one oxygen from the supercell.  
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Figure 5-3: The linear (left) and zigzag (right) ordering of cations in the MO2 slab. 

Red denotes oxygen. Blue and yellow denotes two different types of cations. 

 

 

5.5 Results and Discussions 

5.5.1 Properties of pristine compounds  

Before proceeding to the defect structure calculations, crystal and electronic 

structure of perfect LiNi0.5Co0.5O2, LiNi0.5Al0.5O2 and LiNi0.5Mn0.5O2 are first 

determined. In LiNi0.5Co0.5O2 and LiNi0.5Al0.5O2 the linear ordering of cations with 

space group symmetry P2/m is found to be more favourable energetically than the 

zigzag ordering and therefore used for subsequent defect calculations. In 

LiNi0.5Mn0.5O2, the zigzag ordering of Ni and Mn with space group symmetry P2/c is 

more energetically favourable, in agreement with a previous theoretical study[29].  
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Figure 5-4: Total Density of states and local density of states on metal ions of 

LiNi0.5Co0.5O2. 

 

Figure 5-5: Total Density of states and local density of states on metal ions of 

LiNi0.5Al0.5O2. 
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Figure 5-6: Total Density of states and local density of states on metal ions of 

LiNi0.5Mn0.5O2. 

 

 

Figure 5-4, 5-5 and 5-6 shows the calculated density of states. The insulating 

behaviour of these compunds is well reproduced with band gaps, about 0.7 eV, 0.9 

eV and 1.1 eV in LiNi0.5Co0.5O2, LiNi0.5Al0.5O2 and LiNi0.5Mn0.5O2 repectively. The local 

density of states (DOS) of Ni in LiNi0.5Co0.5O2 shows one empty spin-up and two 

empty spin-down states which indicates that the electronic configuration of Ni is 

t2g
6eg

1 (S=1/2), thus low-spin Ni3+, in accordance with the calculated magnetic 

moment 1.12 μB.  A Jahn-Teller distortion occurs as expected on low-spin Ni3+ as 

shown from the Ni-O bond lengths in table 5-1. Cobalt ions are therefore 

anticipated to be Co3+ for the sake of charge neutrality. Indeed the empty spin-up 
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and empty spin-down states from the local density of states of cobalt indicate that 

its electronic configuration is t2g
6eg

0 (S=0) meaning low-spin Co3+, along with its 

calculated zero magnetic moment. Likewise, nickel ions are determined to be low 

spin Ni3+ in LiNi0.5Al0.5O2 with a Jahn-Teller distortion. Nevertheless, from the Ni3+-O 

bond lengths in table 5-1, it is clear that Ni3+ displays two different modes of Jahn-

Teller distortion, Q2 and Q3 in LiNi0.5Co0.5O2 and LiNi0.5Al0.5O2 respectively, as shown 

in figure 5-7. The Q3 mode of Jahn-Teller distortion is the one observed in 

LiNiO2[30]. In LiNi0.5Co0.5O2, the low-spin Co3+ ions are very stable in the isotropic 

octahedral environment with 6 identical Co3+-O2- bond lengths. The structural 

constraint imposed by the presence of rigid Co3+ octahedra makes the more 

distorted Q3 mode less favourable and results in the Q2 mode for distorted Ni3+. 

This result is in agreement with an EXAFS study that in LiNi1-yCoyO2 the Jahn-Teller 

distortion of NiO6 octohedra is suppressed with increasing y[31]. In LiNi0.5Mn0.5O2, 

two empty spin-down eg states seen in the local density of states of nickel and fully-

occupied spin-down t2g states seen in the local density of states of manganese 

indicate that their electronic configurations are t2g
6eg

2 and t2g
3eg

0 corresponding to 

Ni2+ and Mn4+, in agreement with previously reported results[32].  
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Table 5-1: Calculated metal-oxygen bond lengths. Angle brackets denote average 

bond lengths. 

LiNi0.5Co0.5O2 LiNi0.5Al0.5O2 LiNi0.5Mn0.5O2 

 Bond length 

(Å)  

 Bond length 

(Å)  

 Bond length 

(Å)  

Ni3+ – O 1.88  x 2 

1.95  x 2 

2.08  x 2  

Ni3+ – O 1.91  x 2 

1.92  x 2 

2.11  x 2  

Ni2+ – O 2.06  x 2 

2.08  x 2 

2.09  x 2  

<Ni3+ – O> 1.97  <Ni3+ – O> 1.97  <Ni2+ – O> 2.08  

Co3+ – O 1.94  x 6  Al3+ – O 1.90 x 2 

1.93 x 2 

1.96 x 2   

Mn4+ – O 1.92 x 2 

1.95 x 2 

1.98 x 2  

<Co3+ – O> 1.94  <Al3+ – O> 1.93 <Mn4+ – O> 1.95 

 

 

 

 

 

 

Figure 5-7:  Two modes of Jahn-Teller distortion 
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5.5.2 Change of charge states of metal ions induced by defect 

formations 

In all LiMO2 cells with extra Ni and interlayer mixing defects, the calculated 

magnetic moment of 1.7 μB (S=1) of the Ni present in the Li layer along with its 

average Ni-O bond length 2.07 Å together imply that it is Ni2+.  Therefore in the 

LiNiO2, LiNi0.5Co0.5O2 and LiNi0.5Al0.5O2 cells with the interlayer mixing defect, in 

order to retain charge neutrality one Ni in the NiO2 slab is oxidised from Ni3+ to Ni4+ 

with calculated magnetic moment 0.19 μB (S=0), as seen in the spin density contour 

map of the top graph in figure 5-8, and average Ni-O bond length 1.89 Å.  In the 

LiNi0.5Mn0.5O2 cell, the interlayer mixing defect does not cause any change of charge 

state as nickel ions are already Ni2+. 

In cells with the extra Ni defect, since one Li+ is replaced by Ni2+, one metal ion in 

the MO2 slab must be reduced to keep the charge neutrality. In the LiNiO2, NaNiO2, 

LiNi0.5Co0.5O2 and LiNi0.5Al0.5O2 cells, it is the Ni in the MO2 slab that gets reduced 

from Ni3+ to Ni2+ with calculated magnetic monent 1.7 μB (S=0) and average Ni-O 

bond length 2.07 Å. The preferred change of charge state on Ni rather than Co in 

LiNi0.5Co0.5O2 is probably due to the relatively stable electronic configuration of Co3+ 

(t2g
6eg

0). In LiNi0.5Mn0.5O2, the charge state of Ni2+ cannot be reduced anymore and 

therefore the charge compensation accompanied by the extra Ni defect takes place 

on manganese with Mn4+  Mn3+. The middle graph of figure 5-8 shows the case of 

the extra-Ni defect in LiNi0.5Mn0.5O2. The eg orbital character on Ni2+ (t2g
6eg

2) can be 

seen from the shape of spin density pointing towards oxygens. Similarly, the spin 

density on Mn4+ (t2g
3eg

0) pointing away from oxygen represents the t2g orbital 
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character.  The Mn showing different shape of spin density is the one gets reduced 

from Mn4+ to Mn3+.  

In cells with the oxygen vacancy defect, two metal ions in the MO2 next to the 

oxygen vacancy site are reduced to keep the charge neutrality. The bottom graph in 

figure 5-8 clearly shows that two Co3+ ions are reduced to Co2+ upon the removal of 

one oxygen ion.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 



CHAPTER 5 – EFFECTS OF CATION SUBSTITUTION ON STRUCTURAL 
DEFECTS IN LAYERED LiMO2 
 
 

144 
 

 

 

 

Figure 5-8: Charge density (left) and spin density (right) contour maps (e/Å3) of 

LiNiO2 with the Li-Ni anti-site defect (top), LiNi0.5Mn0.5O2 with the extra-Ni defect 

(middle) and LiCoO2 with the oxygen vacancy defect (bottom).  
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5.5.3 Stabilities of defects and the effect of cation substitution 

 

 

   

Figure 5-9: The effect of Co and Al substitution on calculated defect formation 

energies.  
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The calculated defect formation energies in LiNiO2 are shown in figure 5-9. The 

calculated formation energies of the three defects in LiNiO2 are all small, ranging 

from approximately 0.3 to 1.0 eV. This is consistent with the difficulty to synthesize 

stoichiometric defect-free LiNiO2. It is shown in the previous chapter that the cation 

arrangement in rock salt structure compounds depends strongly on the cation 

interactions if the size effect is insignificant. Therefore we suggest that the 

presence of Ni ions in the Li layers in the supposedly layered LiNiO2 is stabilized by 

the 180˚ Ni-O-Ni superexchange interaction, which results in the low formation 

energies of the interlayer mixing and the extra Ni defects. Nevertheless, the extra 

Ni defect is the most favourable and therefore is the predominant defect species in 

LiNiO2. 

 

In LiNi0.5Co0.5O2 and LiNi0.5Al0.5O2 due to the linear cation ordering in the transition 

metal plane, there are two inequivalent Li sites on which to place the Ni in the 

interlayer mixing and the extra Ni defects, as shown in figure 5-10, and we refer to 

them as configurations A and B.  In LiNi0.5Mn0.5O2, the zigzag ordering of Ni and Mn 

also results in two inequivalent Li sites referred to as A and B. Similarly in the cells 

of LiNi0.5Co0.5O2, LiNi0.5Al0.5O2 and LiNi0.5Mn0.5O2, there are two inequivalent 

oxygens, one bonding with two Ni and one bonding with one Ni, in the cell which 

can be removed to create the oxygen vacancy.  We refer to the removal of the 

oxygen bonding with two Ni as configuration A and the removal of the oxygen 

bonding with only one Ni as configuration B.  



CHAPTER 5 – EFFECTS OF CATION SUBSTITUTION ON STRUCTURAL 
DEFECTS IN LAYERED LiMO2 
 
 

147 
 

 

      

Figure 5-10: Two inequivalent positions in the Li layer, configuration A (left) and B 
(right). The grey sphere denotes Ni. The blue sphere denotes Co. The green sphere 
denotes Li. And the red sphere denotes O. 

 

 

The effect of Co substitution can be seen in the top panel of figure 5-9. It is first 

noted that the defect formation energies of the interlayer mixing and the extra Ni 

defects in LiNi0.5Co0.5O2 drop lower than in LiNiO2. This is rather surprising since it is 

known that experimentally Co substitution in LiNiO2 suppresses the presence of Ni 

in the Li layer. Nevertheless the formation energies of the interlayer mixing and 

extra Ni defects are higher in configuration B than configuration A by about 300 

meV and 360 meV respectively. This can be explained by the exchange interactions 

discussed in chapter 4. As seen in figure 5-10, in configuration A, the Ni in the Li 

layer forms six 180˚ Ni-O-Ni chains. In configuration B, the six 2nd-nearest-

neighbours, in the cation sublattice, of the Ni in the Li layer are Co3+, forming 180˚ 

Ni-O-Co chains which does not give rise to the 180˚ superexchange interaction due 

to the empty eg orbitals of Co3+ (t2g
6eg

0). This again confirms that the presence of 

Ni2+ in the Li layer is stabilized by the 180˚ Ni-O-Ni superexchange interaction. The 
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higher number of the 180˚ Ni-O-Ni chains gives rise to the lower energy. In the real 

LiNi0.5Co0.5O2 compound, the Co3+ ions distribute randomly in the MO2 slab and the 

main effect of cobalt substitution is screening the 180˚ Ni-O-Ni superexchange 

interaction. This is different from a previous proposed size effect[15], and therefore 

destabilizes the presence of Ni in the Li layer.  

The defect formation energies in LiCoO2 are also shown in the top panel of figure 5-

9. The defect energies of the interlayer mixing defect and the extra Co defect are 

considerably higher than Ni containing compounds. This agrees with experimentally 

observed perfect layered LiCoO2. Owing to the electronic configuration of Co3+ in 

the CoO2 slab, there is no interaction between Co ions that can stabilize the 

presence of Co in the Li layer.  

Since there is no d electron in the Al3+ ion, there is no superexchange interaction 

between Al3+ and Ni2+. A similar effect of Al substitution to Co substitution on 

defect formation energies is therefore expected because Al substitution should also 

effectively screen the Ni-O-Ni superexchange interaction. Indeed by adopting the 

linear cation ordering in the LiNi0.5Al0.5O2 cell (left panel in figure 5-3), as shown in 

the bottom panel of figure 5-9 the calculated formation energies of the interlayer 

mixing and the extra Ni defects are very similar to those in LiNi0.5Co0.5O2. Defects of 

configuration A are also more favourable due to the stabilisation by the exchange 

interaction. However, unlike in LiNi1-xCoxO2 with x > 0.3 neither the interlayer 

mixing defect nor extra Ni defects are observed[15]. Experimentally 5% of extra-

nickel ions are still found in the lithium layer in LiNi1-xAlxO2 with 0.1 < x < 0.5[19]. 
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Therefore the assumption of even distribution of Ni and Al is probably not correct 

and this result backs up the theory that Al tends to segregate to interfaces[33] and 

that a core-shell structure may be formed[34] in LiNi0.5Al0.5O2. Consequently, the 

extra-Ni and Li-Ni anti-site defects can still occur in Ni-rich domains in LiNi0.5Al0.5O2 

as in LiNiO2, where the presence of Ni in the Li layer can be stabilized by the 180˚ 

Ni-O-Ni exchange interaction. 

 

Figure 5-11: Calculated defect formation energies in LiNi0.5Mn0.5 and NaNiO2 

compared to LiNiO2. 
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In LiNi0.5Mn0.5O2, as shown in the top panel of figure 5-11 there is no significant 

difference in configuration A and B of the formation energy of the interlayer mixing 

and the extra Ni defects. The formation energy of the interlayer mixing is markedly 

lower than the extra-Ni defect. This is consistent with the experimentally observed 

high concentration of interlayer mixing defects in LiNi0.5Mn0.5O2. Also the formation 

energy of the interlayer mixing defect is even lower than in LiNiO2 by about 0.3 eV. 

Unlike in LiNi0.5Co0.5O2 and LiNi0.5Al0.5O2 where the 180˚ Ni-O-Co and 180˚ Ni-O-Al 

interactions are absent, in LiNi0.5Mn0.5O2 the electronic configuration of Mn4+ 

(t2g
3eg

0) could give rise to moderate 180˚ Ni2+-O2--Mn4+ interactions[35]. 

Consequently  although the number of 180˚ Ni-O-Ni interaction is reduced due to 

Mn substitution, the presence of Ni2+ can be stabilized not only by the 180˚ Ni-O-Ni 

interaction but also the 180˚ Ni2+-O2--Mn4+ interaction. And since the ionic radius of 

Ni2+ is similar to Li+, these ions can exchange sites readily without significant 

rearrangement of the surrounding atomic positions. Besides no charge 

compensation is necessary to create the interlayer mixing defect in LiNi0.5Mn0.5O2. 

In contrast to the interlayer mixing defect, the extra Ni defect is hugely destabilised 

in LiNi0.5Mn0.5O2 compared to LiNiO2 as the defect formation energy is much higher. 

The reason is probably that the reduction of Mn4+ to Mn3+, which is the charge 

compensation accompanying the extra-Ni defect, is considerably less favourable 

than the reduction of Ni3+ to Ni2+ due to the stable electronic configuration of Mn4+ 

(t2g
3eg

0). 
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In NaNiO2, the structural constraint comes from the large ionic size of Na+. It is 

shown in table 5-2 that for the zigzag ordering of the Ni3+ Jahn-Teller distortions or 

charge disproportionation Ni3+  Ni2++Ni4+ in the NiO2 slab to happen, the LiO6 

octahedron must undergo significant distortion. The larger Na+ ion, compared to Li+, 

fills up the interslab space completely (more closely packed) and forbids the zigzag 

ordering of the Ni3+ Jahn-Teller distortions or charge disproportionation Ni3+  

Ni2++Ni4+ in the NiO2 slab. Hence the Ni3+ Jahn-Teller distortions in NaNiO2 are 

forced to align collinearly as observed experimentally, which results in undistorted 

NaO6 octahedra. This gives a good 2-D layered character and is less susceptible to 

defects as manifested in the high defect formation energies compared to LiNiO2 as 

shown in the bottom panel in figure 5-11. Actually because of the dramatic 

difference in ionic radii between Na and first-row transition metal M, the size effect 

dominates the interactions between cations and consequently all NaMO2 are 

reported to form perfect layered structures as already pointed out in chapter 4. 

 

Table 5-2: Li-O bond lengths in the three different LiNiO2 cells 
 

 Li – O bond lengths (Å) 

C2/m 

(collinear ordering of the Ni3+ Jahn-Teller 
distortions) 

2.11 x 4 

2.13 x 2 

P21/c 

(zigzag ordering of the Ni3+ Jahn-Teller 
distortions) 

2.04 x 2 

2.10 x 2 

2.24 x2 

P2/c 

(charge disproportionation Ni3+  Ni2++Ni4+) 

2.03 x 2 

2.08 x 2 

2.19 x 2 



CHAPTER 5 – EFFECTS OF CATION SUBSTITUTION ON STRUCTURAL 
DEFECTS IN LAYERED LiMO2 
 
 

152 
 

5.5.4 Oxygen vacancy  

 

Figure 5-12: Correlation between oxygen charge and defect formation energy of 

the oxygen vacancy. 

 

 

Figure 5-12 shows the calculated defect formation energy of the oxygen vacancy 

against calculated oxygen charge by using the Bader charge analysis[36, 37]. The 

charge on oxygen should be closer to -2 in highly ionic compounds. However in 

transition metal oxides, there is a considerable overlap between the oxygen 2p and 

metal 3d orbitals. The metal-oxygen bond length is shorter for late transition metals 

or metals with higher charge states and thereby greater overlap between oxygen 

2p and metal 3d orbitals is observed. This is reflected in the calculated oxygen 
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charge as shown in figure 5-12, from left to right (LiAlO2  LiNiO2 and LiCoO2  

Li0.5CoO2), the decrease of calculated oxygen charge is a consequence of the 

increase in overlapping between oxygen 2p and metal ion 3d orbitals. The 

important point here is that a correlation can be clearly seen between the 

formation energy of the oxygen vacancy defect and the calculated oxygen charge. 

Also as shown in figure 5-9 and figure 5-10, in LiNi0.5Co0.5O2, LiNi0.5Al0.5O2 and 

LiNi0.5Mn0.5O2, the defect formation energy for removing the oxygen bonding to 

two Ni (configuration A) is lower than the oxygen bonding with one Ni 

(configuration B). The oxygen bonding with two Ni has lower charge. It appears that 

the smaller the oxygen charge is, the easier it is to remove the oxygen. It has been 

suggested that in terms of ionic bonding, the strength of the metal-oxygen bond 

depends on the effective charge on oxygen[38]. Therefore the smaller the oxygen 

charge, the weaker the bonding is. However it is not clear whether this is the true 

explanation for this correlation or not. In addition when the charge on oxygen ions 

is low, there would be a tendency for them to form peroxide at the surface as 

suggested by Goodenough et al.[39] and then dissociate through the following 

reaction: 

     
           

This is consistent with experimental results that the temperature for oxygen 

evolution on heating (i.e. the thermal stability) decreases as x decreases in layered 

LixMO2[40-42]. It seems that low oxygen charge causes the chemical instability of 

an oxide compound against oxygen loss.  
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For example from figure 5-12 the defect formation energy of the oxygen vacancy in 

Li0.5NiO2 is lower than in LiNiO2. The common argument for the thermal instability 

of LixNiO2 with x<1 is associated with the presence of Ni4+ due to its 

“unconventional” high oxidation state. However Ni4+ has the same electronic 

configuration t2g
6eg

0 as Co3+ in an octahedral site which is very stable in LiCoO2. It is 

equally possible to argue that it is the low amount of charge on oxygen associated 

with Ni4+ that causes the instability of the compound.  

Comparing LiNiO2 with LiCoO2 there is no noticeable difference in the oxygen 

charge, but the defect formation energy of the oxygen vacancy in LiCoO2 is 

significantly higher than in LiNiO2 (by about 1.2 eV). This is probably due to the 

relatively stable electronic configuration of low-spin Co3+ t2g
6eg

0. Therefore by 

creating an oxygen vacancy, it costs more energy to reduce Co3+ to Co2+ than to 

reduce Ni3+ to Ni2+ in LiNiO2. Although the defect formation energy of an oxygen 

vacancy in LiCoO2 is markedly higher than in LiNiO2, it drops drastically by ~1.5 eV in 

Li0.5CoO2 upon removal of half the lithium ions. This can again be explained by the 

decrease of oxygen charge which is associated with the creation of Co4+ ions. 

According to the correlation between oxygen charge and the defect formation 

energy of the oxygen vacancy, doping with a more electro-positive cation should 

mitigate the oxygen loss in layered LixMO2 compounds and result in better thermal 

stability. Indeed doping with Mn4+ causes a decrease in oxygen loss[43] and so does 

Al or Mg doping[18, 44, 45], or Ti4+ substitution for Mn4+ in  

Li[Li0.33Mn0.67-xTix]O2[46].  
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5.6 Conclusions  

All calculated formation energies in the various LiMO2 compounds are consistent 

with experiments. It is demonstrated that the defect formation energies in LiNiO2 

are low, in agreement with the experimental difficulty of synthesizing 

stoichiometric defect-free LiNiO2. The driving force for the Ni ion to be present in 

the Li layer is the 180˚ Ni-O-Ni superexchange interaction. Therefore substituting Ni 

by Co in the MO2 slab screens the 180˚ Ni-O-Ni configurations and thus effectively 

reduces the concentration of Ni in Li layers. Moreover, a correlation between the 

defect formation energy of the oxygen vacancy and oxygen charge (as measured 

from a Bader analysis) is noted. It appears that the smaller the oxygen charge, the 

lower the oxygen vacancy formation energy, although the reason is not clear. 

Nevertheless this explains the thermal instability of LixCoO2 and LixNiO2 at low x, as 

well as the improved electrochemical behaviour in Al, Mg or early transition metal 

doped LiMO2. Therefore in designing better cathode materials, the use of high 

electropositive cations is desirable.  
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Chapter 6  

Conclusions 

 

 

In this thesis, we have performed density function calculations to study selected LiMO2 

compounds that are potential cathode materials in Li ion batteries.  

In chapter 3, we resolved the controversy on LiNiO2 regarding its local crystal structure 

and electronic structure. First the interpretation of oxygen hole in LixNi1-xO is rejected. 

The results from our calculation suggested that although oxygen 2p character is indeed 

found in the holes state upon Li doping, the Jahn-Teller distortion and local density of 

states of Ni indicates the change of Ni oxidation states. Hence the hole is better 

described as localised on Ni result in Ni3+ upon Li doping. In the calculations of LiNiO2, 

four different cells corresponding to different local structure were considered. We 

found that in the cell with P2/c space group symmetry, there are two inequivalent Ni 

ions with valency 2+ and 4+, indicating charge disproportionation Ni3+
Ni2++Ni4+. 

Another cell with P21/c space group symmetry, in which the Jahn-Teller distortions of 
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octahedral surrounding the Ni3+ ions are in a zigzag ordering, has a similar lattice 

energy with the P2/c cell. The energy difference between these two cells is marginal. 

Therefore we suggest that in real LiNiO2 samples, the two phases coexist. This explains 

the absence of long range ordering in LiNiO2. 

In chapter 4, the structural variation in rock-salt LiMO2 (M = V, Cr, Mn, Fe, Co, Ni) 

compounds was explored. There are three different stable phases of LiMO2 according 

to the cation orderings, layered, o-LiMnO2 and γ-LiFeO2. The different cation ordering 

cannot be explained by the size difference. Instead by embedding transition metal 

pairs in a MgO supercell, it is shown that the exchange interactions between transition 

metal ions have an effect on their site preferences and hence are responsible for the 

structural variation. In LiMO2, the size difference between Li and M favours the layered 

cation ordering. The exchange interaction between 1st-nearest neighbouring transition 

metal ions J1 also has the effect to stabilise transition metal ions in a 90° M-O-M 

configuration and hence favours the layered cation ordering. Conversely the exchange 

interaction between 2nd-nearest neighbouring transition metal ions in the rock-salt 

structure J2 stabilises transition metals in a 180° M-O-M configuration. Therefore in 

LiFeO2, the strong J2 exchange interaction surpasses the size effect and the J1 exchange 

interaction and results in the γ-LiFeO2 cation ordering which maximises the number of 

the 180° Fe-O-Fe configuration.  

In chapter 5, we studied the structural defect in layered LiNiO2 and the effect of 

cationic substitution. It is found that the defect formation energies are low in LiNiO2, in 
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agreement with the difficulty to synthesise truly stoichiometric LiNiO2 and the results 

of a recent theoretical study. The tendency of the presence for Ni to be present in the 

Li layers is induced by the 180° Ni-O-Ni exchange interaction. Therefore with Co 

substitution for Ni, the nonmagnetic Co ions screen the 180° Ni-O-Ni interaction and 

destabilise the presence of Ni in the Li layer. The same effect is found with Al 

substitution from our calculation. The substitution of Ni with Mn makes the interlayer 

mixing defect worse compared to the same defect in LiNiO2. In addition, a correlation 

between the oxygen charge and the defect formation of oxygen vacancy is found. It 

appears that the lower the oxygen charge, the smaller the defect formation energy is.  

 

 

6.1 Suggestion for designing new cathode materials 

For LiMO2 compounds to function as a good cathode material, the perfect layered 

structure is desirable. In this thesis, we have found that due to the size similarity 

between Li+ and M3+, the exchange interaction is an important factor that controls the 

cation ordering in LiMO2 compounds. The 90° M-O-M exchange interaction J1 stabilises 

the layered structure but the 180° M-O-M exchange interaction J2 destabilises the 

layered structure. In order to stabilise LiFeO2, LiMnO2 and LiNiO2 in the layered 

structure by partially cationic substitution with another cation M, M should be able to 
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eliminate the J2 interaction or enhance the J1 interation. The best example is the Co3+ 

substitution for Ni in LiNi1-xCoxO2 discussed in chapter 5.  

In order to ease the problem of oxygen deficiency or oxygen evolution which degrades 

the electrochemical performance in layered LixMO2, the correlation demonstrated in 

between the oxygen charge and the defect formation energy of oxygen vacancy 

suggests that, the more electropositive cations, such as early first-row transition metals, 

should be considered because this would result in higher oxygen charge and hence the 

compound would be less likely to loss oxygen.  

 

 

6.2 Future work 

In this thesis, bulk properties are investigated. We have learnt from our results how to 

control the structure and maintain structural stability of layered LiMO2 compounds. 

This facilitates the design of safer batteries with longer life time. However it has been 

reported, for example in LiNiO2, the electronic structure at the surface shows different 

characteristics from the bulk. Lithium insertion and extraction as well as oxygen 

evolution must all take place initially from the surface. Moreover, a solid-electrolyte 

interface can grow on the surface and impede the lithium diffusion. All these suggest 

the importance of characterisation and control of the surface structure, which play a 
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more important role on the electrochemical performance. It is therefore well worth a 

thorough study on the surface structures of layered cathode materials. We should 

begin from investigating what is the energetically favoured LiMO2 surface and study 

the interaction between surface and electrolyte. Once the cathode-electrolyte 

interface is established, we can then proceed to the study of lithium diffusion in and 

out of cathode and see the effect of surface structure on lithium mobility. Also the 

effect of different electrolytes on stabilising surface structure should be studied. This 

requires study of an organic/mineral interface. Such interfaces are, of course, well-

known in biominerals but there are few simulation studies of this problem in the 

context of battery materials. The results of such study can help on controlling surface 

structure of cathodes and improve lithium diffusivity.  
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Appendix I  

Bader charge analysis 

 

In a molecule or solid atomic charges are not observables and therefore cannot be 

obtained from any quantum mechanical operation. Richard Bader proposed an 

atoms in molecules approach[1] for partitioning the charge in a molecule into 

regions associated with individual atoms that comprise the molecule. This approach 

uses the analysis of the real space charge density. First a set of atomic volumes are 

divided by zero flux surfaces. A zero flux surface is a surface on which the charge 

density is a minimum perpendicular to the surface. Every point    on the surface 

satisfies the following relation 

               

where   is the electron density and       is the unit vector normal to the surface at 

  . Atomic charges can then be obtained by integrating the charge density over 

atomic volumes. The idea of the Bader approach is clearly illustrated in figure A 

below.  

The computational programme for performing the Bader charge analysis used in 

this thesis is developed by Wenjie Tand and Graeme Henkelman[2,3].  
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Figure A: Charge density in CO and the zero flux surface as the boundary between 

the two atoms [1]. 
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Appendix II  

Calculated energies in chapter 5  

 

Table A: Calculated cohesive energies of solids and the dissociation energy of 

oxygen molecule used in working out defect energies from defect reactions.  

Compound *Energy (eV) 

Li2O -14.313 

Na2O -11.211 

NiO -10.069 

O2 -9.846 
* Energies calculated by VASP are with respect to pseudo-atoms.  

** It is well known that the dissociation energy of oxygen molecule exhibits large 
error when LDA or GGA functionals are used. However this error cancels out when 
we compare defect formation energies (relative values are unaffected) in 
compounds with different compositions and therefore has no influence on our 
comparison of the results.  

 

 

Table B: Calculated defect formation energies (eV) in various layered LiMO2 

compounds. A and B means different configurations of a defect.  

 Interlayer mixing Extra Ni Oxygen vacancy 
LiNiO2 0.7968 0.4738 0.9983 

LiNi0.5Co0.5O2 (A) 0.7305 0.41593 1.13127 

LiNi0.5Co0.5O2 (B) 1.03607 0.78229 1.39668 

LiCoO2 1.40951 1.34512 2.48625 

LiNi0.5Al0.5O2 (A) 0.83557 0.51257 1.6458 

LiNi0.5Al0.5O2 (B) 1.01532 0.7137 1.9073 

LiNi0.5Mn0.5O2 (A) 0.42902 1.19638 2.32757 

LiNi0.5Mn0.5O2 (B) 0.49716 1.23861 2.60038 

NaNiO2 2.45361 1.229713 1.45924 
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Appendix III  

Ionic radii (Å) of ions of interest  

 

 

Li+ 0.76 

V3+ 0.64 

Cr3+ 0.615 

High-spin Mn3+ 0.645 

Fe3+ 0.645 

Co3+ 0.545 

Low-spin Ni3+ 0.56 

 


