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Abstract

Hearing impairment is a widespread problem around the world. It is estimated that one in six
people are living with some degree of hearing loss. Moderate and severe hearing impairment
has been recognised as one of the major causes of disability, which is associated with declines
in the quality of life, mental illness and dementia. However, investigation shows that only
10-20% of older people with significant hearing impairment wear hearing aids. One of the
main factors causing the low uptake is that current devices struggle to help hearing aid users
understand speech in noisy environments. For the purpose of compensating for the elevated
hearing thresholds and dysfunction of source separation processing caused by the impaired
auditory system, amplification and denoising have been the major focuses of current hearing
aid studies to improve the intelligibility of speech in noise. Also, it is important to derive a
metric that can fairly predict speech intelligibility for the better development of hearing aid
techniques.

This thesis aims to enhance the speech intelligibility of hearing impaired listeners. Mo-
tivated by the success of data-driven approaches in many speech processing applications,
this work proposes the differentiable hearing aid speech processing (DHASP) framework
to optimise both the amplification and denoising modules within a hearing aid processor.
This is accomplished by setting an intelligibility-based optimisation objective and taking
advantage of large-scale speech databases to train the hearing aid processor to maximise
the intelligibility for the listeners. The first set of experiments is conducted on both clean
and noisy speech databases, and the results from objective evaluation suggest that the am-
plification fittings optimised within the DHASP framework can outperform a widely used
and well-recognised fitting. The second set of experiments is conducted on a large-scale
database with simulated domestic noisy scenes. The results from both objective and subjec-
tive evaluations show that the DHASP-optimised hearing aid processor incorporating a deep
neural network-based denoising module can achieve competitive performance in terms of
intelligibility enhancement.

A precise intelligibility predictor can provide reliable evaluation results to save the
cost of expensive and time-consuming subjective evaluation. Inspired by the findings that
automatic speech recognition (ASR) models show similar recognition results as humans
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in some experiments, this work exploits ASR models for intelligibility prediction. An
intrusive approach using ASR hidden representations and a non-intrusive approach using
ASR uncertainty are proposed and explained in the third and fourth experimental chapters.
Experiments are conducted on two databases, one with monaural speech in speech-spectrum-
shaped noise with normal hearing listeners, and the other one with processed binaural speech
in domestic noise with hearing impaired listeners. Results suggest that both the intrusive and
non-intrusive approaches can achieve top performances and outperform a number of widely
used intelligibility prediction approaches.

In conclusion, this thesis covers both the enhancement and prediction of speech intelligi-
bility for hearing aids. The proposed hearing aid processor optimised within the proposed
DHASP framework can significantly improve the intelligibility of speech in noise for hearing
impaired listeners. Also, it is shown that the proposed ASR-based intelligibility predic-
tion approaches can achieve state-of-the-art performances against a number of widely used
intelligibility predictors.
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Chapter 1

Introduction

Hearing impairment is a widespread problem across the world. It is estimated that 1.59
billion people are living with some degree of hearing impairment, and 430 million of them
suffer from moderate or severe impairment (World Health Organization, 2021). Declines in
hearing ability are associated with not only a decrease in life quality but also an increased
risk of developing mental illness. Not being able to hear clearly or understand what others
say is more than just an inconvenience: the impediment to daily communication leads to
social isolation, which can increase the risk of cognitive decline and mortality (Loughrey
et al., 2018). Furthermore, it has been recognised that hearing impairment may be the most
important modifiable risk factor for dementia (Livingston et al., 2017).

Despite hearing impairment causing serious consequences, the difficulty of understanding
speech in noise is yet to be adequately resolved. It is estimated that only 10-20% of older
people with significant hearing impairment choose to wear hearing aids (Davis et al., 2016).
One of the most important factors contributing to this very low uptake is that the benefit from
hearing aids can be minimal in noisy environments (McCormack and Fortnum, 2013). ‘I can
hear you, but I can’t understand you’ is one of the most common complaints from hearing
aid users (Lesica, 2018). Despite restoring audibility to some degree, current hearing aids
are often ineffective at restoring speech intelligibility in the presence of background noise.
Therefore, hearing aids that can significantly improve the intelligibility of speech in noise are
highly desirable. Additionally, a major challenge in developing such hearing aids is that the
factors governing speech intelligibility are only poorly understood.

The focus of this thesis is enhancing speech intelligibility for hearing impaired listeners.
Inspired by the recent success of data-driven approaches in many audio signal processing
applications (Purwins et al., 2019), this work seeks to extend the applications of the data-
driven methodology to intelligibility improvement for hearing aids. In addition, accurate



2 Introduction

intelligibility prediction is also found to be crucial for the development of hearing aids, and
it is thus studied in this thesis as well.

This chapter starts with a brief introduction to the mechanisms of hearing. The declines
in hearing ability are then explained to motivate the usage of hearing aids for speech intelligi-
bility improvement. In the following section, the development of hearing aids is presented.
Afterwards, the motivations for the two major themes of work in this thesis, data-driven
speech intelligibility enhancement and prediction, are established. Finally, the research
questions, the contributions, and the outline of the thesis are presented.

1.1 Mechanisms in hearing

In order to better understand hearing impairment, it is necessary to first understand how a
healthy auditory system processes acoustic signals. To ‘hear’, sound pressure waves need
to be converted to electrical signals in the brain. This transduction is performed in a snail
shell-like structure called the cochlea. This structure conducts the transformation from the
mechanical signals that pass through the outer and middle ear to the electrical signals of
auditory nerves which are then perceived by the brain. Specifically, the incoming sound
waves lead to the vibration of the basilar membrane along the length of the cochlea. Following
the vibration, the inner hair cells (IHCs) that are attached to the basilar membrane within
the cochlea then release neurotransmitters onto auditory nerves to induce corresponding
electrical signals.

A simplified understanding of what the human auditory system does in the mechanical
to electrical signal transformation is a process consisting of amplification, dynamic range
compression, and frequency analysis (Lesica, 2018). First, when the incoming sounds
are too weak to vibrate the basilar membrane strongly enough to activate auditory nerve
activities, outer hair cells (OHCs) can provide active amplification by reinforcing the passive
movement of the basilar membrane. Second, the incoming sound is compressed because
the OHC amplification decreases as the sound level increases. The compression ensures
that a wide-spanning of sound levels, e.g., from normal breathing sounds at around 10 dB
to chainsaw noises that can reach 120 dB, can be encoded with a limited dynamic range of
auditory nerve activity. Third, the frequency selectivity is achieved by the structure of the
cochlea itself. The spiral shape reduces the size of the cochlea, and the reduced diameter of
coiling is reflected in the width of the basilar membrane, hence tuning the frequency range.
Consequently, the basilar membrane vibration amplitudes and the subsequent auditory nerve
activities in different cochlea areas reflect the energy at different frequencies in the incoming
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sounds. Therefore, the electrical signal sent to the brain could be approximated as having
undergone a frequency analysis.

It is insufficient to understand the auditory system performing only such simple frequency
analysis, because the transformation is highly nonlinear. The amplification and compression
themselves perform relatively simple processing and ideally can be replaced by the wide
dynamic range compression, which is a common scheme of current hearing aids. Meanwhile,
OHCs that modulate basilar membrane movement not only help activate their attached area
but also influence other cochlea regions. As a result, the basilar membrane vibration does not
simply reflect the energy at a certain frequency of an incoming sound. It is also dependent
on the energy at other frequencies, which leads to nonlinear cross-frequency interactions.
The auditory nerve activities can thus differ from those of the simple frequency analysis
in various ways. One is that the energy at two frequencies in the incoming sounds can
activate the vibration of the basilar membrane in an additional cochlea area, which is posited
to be triggered by the third frequency that is not presented in the sounds. Another is the
winner-take-all, i.e., the dominant frequency activation in a local basilar membrane area
can suppress the amplification provided by OHCs at other frequencies with lower levels of
stimulation. The resulting complex auditory nerve activity patterns are crucial for recognising
speech in noise (Sachs et al., 1983; Sachs and Young, 1980). Due to the complex nonlinearity
of the transformation, it is extremely difficult to thoroughly model the mechanisms in hearing,
thus difficult to restore the transformation process when some part of the auditory system is
dysfunctional.

1.2 Declines in hearing ability

Hearing impairment is usually categorised as one of three types: conductive, sensorineural,
and mixed hearing impairment. Conductive hearing impairment involves a problem in the
outer or middle ear, sensorineural hearing impairment involves a problem in the inner ear,
and mixed hearing impairment is a combination of the previous two. Conductive hearing
impairment can often be treated with surgical intervention or pharmaceuticals to partially
or sometimes fully restore the hearing ability. For that reason, hearing aid users are usually
suffering from sensorineural hearing impairment, which is caused by the degradation in the
inner ear and is usually permanent. Therefore, the sensorineural hearing impairment will be
the focus of the thesis.

There are a number of factors that can damage or lead to the dysfunction in the inner ear.
Ageing is the major reason for sensorineural hearing impairment and age-related hearing
loss has been projected to be one of the top leading causes of burden of disease by 2030
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(Mathers and Loncar, 2006). As the inner ear structures usually degenerate over time, the
hearing ability declines with ageing. Exposure to loud sounds is another factor causing
sensorineural hearing impairment (Sliwinska-Kowalska et al., 2012). This includes exposure
to loud noises, such as a gunshot; occupational noises such as construction or factory work;
and recreational sounds such as listening to loud music. Ototoxic drugs can also lead to
temporary or permanent dysfunction of the inner ear (Arslan et al., 1999). Diseases that
can result in high fever may also damage the cochlea (Mateer et al., 2018). Additionally,
genetic makeup can make a certain group of people more susceptible to ear damage from
loud sounds or ageing (Willems, 2000).

The most obvious consequence of hearing impairment is the degradation of the amplifica-
tion and compression in the cochlea. A typical symptom is a loss of hearing sensitivity, i.e.,
auditory nerves can no longer be triggered by weak sounds, while less auditory nerve activity
is likely to be elicited by louder sounds than that in normal hearing. This degradation is usu-
ally caused by the dysfunction of OHCs, which provide active amplification and compression.
This motivates the use of the wide dynamic range compression in hearing aids (Kates, 2008),
which is designed to provide the amplification and compression that damaged OHCs can not
provide anymore. The wide dynamic range compression will apply greater amplification to
weak sounds than it does to stronger sounds. However, this strategy is insufficient to restore
the intelligibility of speech in noise, as hearing impairment is more complex than that.

Hearing impairment can be described as a distortion of auditory neural activity patterns
(Lesica, 2018). One major type of distortion is caused by the dysfunction of the highly
nonlinear auditory processing. The nonlinear cross-frequency interactions in the cochlea can
be lost to some degree, and these interactions are highly dependent on the OHCs and are
crucial for speech perception in noisy environments (Recio-Spinoso and Cooper, 2013; Sachs
et al., 1983; Sachs and Young, 1980). Therefore, the auditory nerve activity patterns from an
impaired ear are very different from those from a normal ear, and fail to provide a sufficient
basis to distinguish different sound sources and are less robust to recognise speech with
background noises. Consequently, the loss of these interactions caused by the dysfunction
of OHCs can lead to difficulty in understanding speech in noise. Another type of distortion
is originated from the auditory nerves themselves (Liberman and Kujawa, 2017), which
results in the degeneration of transmission from IHCs to the brain. Additionally, the hearing
impairment can lead to impaired temporal processing by some measures, e.g. failure to
detect the short pauses within a sound (Humes et al., 2010). The temporal processing in the
auditory system is critical for both the ability to localise sound sources and the ability to
recognise speech in noisy and reverberant environments (Marrone et al., 2008). Furthermore,
the long-term influences of hearing impairment usually extend to the brain itself due to brain
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plasticity (Tremblay and Miller, 2014). One example is that the brain gradually learns to
enforce the inputs from the ear as the inputs are weakened with the development of the
impairment, which can lead to improved discrimination of perceivable low-level sounds
(Gourévitch et al., 2014). As a consequence of the complexity of the neural activity distortion,
it is unlikely to fully restore normal auditory perception with hearing aid devices.

1.3 A brief history of hearing aid development

Due to the complicated neural activity distortion caused by hearing disability, conventional
hearing aids are not really trying to fully restore normal auditory perception. A major interest
in hearing aid studies has been to benefit hearing impaired listeners by improving speech
intelligibility for better communication in daily environments. In this section, the history of
hearing aids for intelligibility enhancement is briefly reviewed. It covers the early solution
of amplification, recent attempts at restoring compression, and more advanced hearing aids
with noise suppression. This advancement follows the developing knowledge of the declines
in hearing ability, i.e., from the simple understanding of amplification and compression
dysfunction in the cochlea, to auditory neural activity pattern distortion.

In the early days of active hearing aid development, the aim was to amplify the incoming
sound so that hearing impaired listeners can hear and understand it. In 1898, the first portable
hearing aid was invented by using a carbon microphone to turn a weak signal into a strong
one with an electric current. This device, consisting of a separate microphone, headphones,
amplifier, and battery, was bulky and difficult to use. Later in the early 1900s, vacuum
tube hearing aids were developed and gained popularity in the market. These hearing aids
leveraged telephone microphones to convert speech into electric signals and amplified by
the valves, and delivered through the receivers. The vacuum tubes were then replaced by
transistors in hearing aids, which were smaller, required less power and amplified signals
with less distortion. In these early years, the key question was how best to amplify the
incoming sound. The one-half gain rule, that is to amplify the sounds slightly less than
one-half of the hearing thresholds, was proposed by Lybarger (1963) and provided a basis
for linear amplification.

Later, the dysfunction of compression in the cochlea was tackled with dynamic range
compression (Fowler, 1936). In the 1970s, microprocessor-based hearing aids were invented
which enabled multi-channel processing of audio signals. Later in the late 1980s, the first
fully digital hearing aids, which used microcomputers to control analogue amplifiers, filters,
and limiters, were brought to the market. The digital multi-channel processing enabled the
technique of wide dynamic range compression. This technique is to dynamically adjust
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the amplification provided by hearing aids according to the levels of incoming sounds, i.e.,
to amplify less when the sound is loud and to amplify more when the sound is quiet. The
amplification formulae from this stage were developed to be compatible with dynamic range
compression to maximise listening comfort along with intelligibility.

Despite the success of hearing aids in improving intelligibility in quiet environments,
they provided little improvement to speech intelligibility in noisy environments. The reason
is that the distortion of auditory neural activity patterns could not be fully restored, and these
patterns are crucial for human auditory systems to perform source separation as introduced in
the previous section. As a result, modern hearing aids, which are more like high-tech hearing
buds, offering Bluetooth connections to smartphones, and rechargeable batteries, always
deploy a denoising module to suppress environmental interference. The noise suppression
function has the potential to compensate for the dysfunction of source separation in the
human auditory systems, and thus to improve the speech intelligibility of noisy speech for
hearing impaired listeners.

In brief, the development of hearing aids was from amplification, compression, to noise
suppression. The early-stage hearing aids aimed to restore audibility by amplifying incoming
sounds. Later, compression techniques were focused to control excessive loudness that
resulted from linear amplification. For modern hearing aid studies, speech in noise enhance-
ment has been gaining more attention. With the advancement of hearing aid techniques, the
ultimate goal of hearing aids has always been to enhance speech intelligibility for hearing
impaired listeners.

1.4 Motivations

For the purpose of enhancing speech intelligibility for hearing impaired listeners, an ideal
hearing aid is expected to provide adequate amplification and effective noise suppression.
This thesis hence focuses on the optimisation of hearing aid amplification and denoising
using data-driven approaches, which recently have achieved significant advancement in many
speech processing tasks, such as speech recognition (Nassif et al., 2019), speech separation
(Wang and Chen, 2018), etc.

During the development of hearing aid intelligibility enhancement algorithms, it has been
found that an accurate intelligibility predictor can play a crucial role. A good intelligibil-
ity model can benefit the optimisation of both hearing aid fittings and noise suppression.
Additionally, it can provide reliable performance evaluation of hearing aids. As subjective
evaluation by human listening experiments can be quite expensive and time-consuming,
accurate objective evaluation can help accelerate the development of new hearing aid models.
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Therefore, novel intelligibility prediction approaches are also proposed and presented in this
thesis.

1.4.1 Data-driven speech intelligibility enhancement

Typically, a hearing aid amplifies sounds according to a frequency-gain amplification table,
which is fitted to the listener’s audiogram, i.e., measurements of the levels at which pure-tones
become audible at various frequencies. An appropriate amplification fitting is expected to not
only make overall loudness comfortable but also make speech intelligible. The fitting process
should be conducted by an audiology specialist, otherwise, the hearing aid may work poorly.
This configuration process can take months and typically requires a number of return visits
to an audiology clinic. Therefore, an automated fitting approach would be highly desirable
as it can speed up the process and reduce costs.

Additionally, there is a need for scene-dependent fittings in spite of the remarkable success
of current general hearing aid prescriptions. According to Kochkin (2010), the satisfaction of
hearing aid users can vary a lot across a range of listening environments. For example, over
90% of hearing aid users are satisfied with the communication improvement in one-on-one
situations, while less than 60% of users are satisfied in school or a classroom. Therefore,
automated optimisation of hearing aid fittings for different noisy environments could help
improve speech intelligibility. Also, whether the noise suppression feature provided by
advanced hearing aids is turned on or not can be another important factor that can influence
hearing aid fittings.

Recently, the emergence of the differentiable digital signal processing (Engel et al., 2020)
provided an approach to the automated data-driven optimisation of parameterised speech
processing models. In general, the performances of data-driven models are closely related to
the data used for the optimisation. This enables the automated optimisation of customised
scene-dependent hearing aid fittings, as the data generated in different listening environments
can be different, and thus the optimisation produces different solutions. Additionally, the
objective function (i.e., optimising target) is also crucial and determines the performance of
the optimised models. With data-driven optimisation, the fittings can be optimised to directly
maximise the intelligibility of hearing impaired listeners by introducing an intelligibility-
based objective function. Motivated by this, this thesis explores the efficacy of data-driven
optimisation for hearing aid fittings. It is not only the general fittings with respect to listeners’
hearing abilities, but also fittings customised to various noisy environments that will be
investigated.

Effective noise suppression is crucial for hearing aid speech intelligibility enhancement,
as the source separation ability of hearing impaired listeners can be profoundly degraded.
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In recent years, data-driven approaches with deep neural networks (DNNs) have brought a
huge improvement to speech denoising (Luo and Mesgarani, 2019; Xu et al., 2014; Zhang
et al., 2020). However, a limited number of works have been conducted for the purpose of
hearing aid speech enhancement. This is due to the strict real-time requirement of hearing
aids, i.e., the desirable latency for hearing aid processing can be as low as 5 to 6 ms (Stone
et al., 2008). Moreover, many speech denoising works target improving the recognition
accuracy of automated speech recognition systems, or improving the perception for normal
hearing listeners. Few works have been conducted for the purpose of speech intelligibility
improvement for hearing impaired listeners. Therefore, this thesis will further explore
the efficacy of DNN-based noise suppression models in the case of hearing aid speech
intelligibility enhancement.

1.4.2 Intelligibility prediction

Although the factors governing speech intelligibility have been studied since the 1920s
(French and Steinberg, 1947), there is still much that is poorly understood. Most existing
approaches predict intelligibility by measuring the signal-to-noise ratio (SNR) at modulation
frequencies or the correlation within frequency bands between a high quality reference speech
signal and the degraded speech. Although these approaches are suitable for speech with some
types of degradation, e.g., stationary additive noise, reverberation, and clipping, they do not
generally work well when speech is degraded by strong non-stationary noise or non-linear
processing by, for example, Wiener filtering, DNNs (Gelderblom et al., 2017; Yamamoto
et al., 2017).

It is common for speech intelligibility predictors to leverage additional speech-related
information apart from the degraded speech signal itself, e.g., the transcription, and the
corresponding clean reference speech signal. These methods are usually described as
intrusive intelligibility prediction. On the contrary, non-intrusive intelligibility prediction,
which only uses the degraded signal itself, has drawn increasing attention because of its
application in realistic scenarios, where a reference signal or transcription can be difficult
to access. A number of non-intrusive predictors heavily rely on environmental knowledge,
such as room reverberant characteristics (Falk et al., 2010), therefore their application is
limited. Another group of non-intrusive approaches essentially attempt to estimate reference
signal features or transcriptions so that they can then follow the same procedures as the
intrusive approaches (Andersen et al., 2017; Sørensen et al., 2017a). In addition, data-driven
methods have been proposed, and they directly train predictors given a large amount of
speech and its corresponding intelligibility data pairs (Andersen et al., 2018b; Zezario et al.,
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2020). Consequently, the data quantity and quality will largely decide the performance of
data-driven predictors.

In recent years, a number of works have take advantage of automatic speech recognition
(ASR) models as intelligibility predictors, as ASR models could show similar patterns
to humans in some speech recognition scenarios (Cooke, 2006; Schädler et al., 2015).
Despite the potential of ASR-based intelligibility predictors, a limited number of works
have demonstrated significant improvements over other existing intelligibility prediction
approaches. This thesis follows the idea of using ASR models to model intelligibility, and
explores novel approaches to take advantage of recent advanced ASR models to achieve
more accurate speech intelligibility prediction, especially for the intelligibility of hearing
impaired listeners.

1.5 Research questions

This thesis aims to provide insights from two aspects that are crucial to the development
of hearing aids in terms of speech intelligibility enhancement, corresponding to the two
aforementioned sections in the motivation: data-driven hearing aid speech enhancement and
speech intelligibility prediction.

The research goal of data-driven hearing aid speech enhancement is to enable data-driven
speech processing for hearing aids by introducing intelligibility objectives that model a wide
range of hearing abilities. It is necessary to explore the optimised enhancement models
for not only quiet speech but also speech in noisy environments. The research questions
motivating this part of the work are:

• How well can data-driven optimised hearing aid fittings perform in terms of intelligi-
bility improvement for speech in noisy and noise-free environments?

• Can the hearing aid fittings optimised for different noisy environments provide benefits
over general fittings?

• How well can hearing aid speech enhancement models with a DNN-based denoising
module perform in noisy environments?

The research goal of the chapters related to speech intelligibility prediction is to study
how to take better advantage of ASR models for both intrusive and non-intrusive robust
intelligibility prediction for a wide range of hearing abilities. As ASR models are optimised
to understand speech, they are supposed to be able to extract important features for speech
recognition. The efficacy of these ASR features for intelligibility prediction is worthy
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of further investigation. In addition, current ASR-based intelligibility predictors rely on
transcription, which could be difficult or expensive to achieve in some cases. Therefore,
this research also aims to explore how to exploit ASR models for accurate non-intrusive
intelligibility prediction. In conclusion, the following research questions are expected to be
addressed:

• How well can the features extracted by ASR models perform in terms of robust
intelligibility prediction?

• How can ASR models predict intelligibility non-intrusively, i.e., without using extra
information like reference signals or transcription?

1.6 Contributions

The contributions from this work are listed as follows:

• In Chapter 3, a data-driven differentiable hearing aid speech processing framework is
built to enable the automated optimisation of the enhancement models. The optimised
hearing aid fittings could outperform well-recognised fittings for both quiet and noisy
speech in terms of objective evaluation.

• In Chapter 4, a DNN-based hearing aid enhancement system is proposed for intelligi-
bility enhancement in noisy environments. The system is proven well-performed by
both objective and subjective evaluation.

• In Chapter 5, an ASR-based intelligibility predictor that takes advantage of hidden
representations of the DNN-based ASR model is proposed. The proposed method is
shown to outperform both widely used existing approaches and the transcription-based
ASR predictor.

• In Chapter 6, the uncertainty of ASR models is proposed to use as an intelligibility
predictor. The proposed approach does not need supervised optimisation with intel-
ligibility labels, and can achieve performances approaching those of intrusive ASR
predictors.

It is worth mentioning that the author has also helped the organisation of the Clarity
project for machine learning challenges for hearing aid processing. A full list of publications
from the author’s PhD research is listed here:
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1.7 Thesis Outline

This thesis is structured in the following way:

• Chapter 2 firstly reviews the progress in recent years on hearing aid speech enhance-
ment. Then the review covers the development of both intrusive and non-intrusive
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speech intelligibility prediction approaches, with a specific focus on those that can
model different hearing abilities.

• Chapter 3 investigates the differentiable optimisation of hearing aid fittings with an
intelligibility objective function for both quiet and noisy speech.

• Chapter 4 presents the proposed DNN-based hearing aid enhancement system for
binaural intelligibility enhancement in noisy environments and studies its performance
with both objective and subjective evaluation results.

• Chapter 5 presents the proposed ASR-based intelligibility predictor leveraging DNN
hidden representations, and shows its advantages over a number of widely used metrics
for both normal hearing and hearing impaired listeners.

• Chapter 6 presents the proposed non-intrusive uncertainty-based ASR intelligibility
predictor, and studies its performances for both normal hearing and hearing impaired
listeners.

• Chapter 7 concludes this thesis, provides answers to the research questions, discusses
limitations of the work presents potential future directions.



Chapter 2

Background and Related Work

Hearing impairment, which can significantly decrease quality of life and lead to mental
illness (Loughrey et al., 2018), has yet to be adequately resolved. Intelligibility improvement
has been a major focus of hearing aid studies, as it can help hearing impaired listeners
improve life quality by reducing the impediment to daily communication. For the purpose
of developing better hearing aid algorithms, this thesis has been motivated to explore novel
approaches for not only speech intelligibility enhancement, but also speech intelligibility
prediction.

In a usual everyday environment, a speech signal can suffer from both external and
internal degradation before being perceived by a hearing impaired listener, as shown in
Figure 2.1. The internal degradation is caused by hearing impairment, and the external
degradation can be caused by environmental noise, reverberation, electronic transmission,
etc. As a consequence of the joint degradation, hearing impaired listeners fail to understand
speech even with the usage of hearing aids in noisy environments. Being able to hear the
speech but not able to understand it is a major complaint towards current hearing aids.
Therefore, an ideal hearing aid is expected to tackle both external and internal degradation to
improve the hearing impaired listeners’ intelligibility.

In Section 2.1, this chapter first reviews the approaches to tackling internal degradation, i.e.
hearing loss compensation algorithms. From early linear sound amplification algorithms to
modern wide dynamic range compression and frequency lowering, hearing loss compensation
research has been focusing on not only listening comfort but also intelligibility. After
that, Section 2.2 covers techniques for tackling external degradation, i.e., speech denoising
approaches. Beamformers and deep neural network (DNN) based speech denoising methods
are the main focus, as they have shown the ability to effectively suppress external noises and
have been top choices for modern assistive hearing devices.
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Fig. 2.1 Flow chart showing speech to the perception of a hearing impaired listener.

Intelligibility modelling is crucial for the development of hearing aid algorithms. When
evaluating these algorithms, an accurate intelligibility predictor can save a large amount of
time and expenses. In Section 2.3, intrusive intelligibility prediction methods are reviewed,
including hearing impairment intelligibility prediction. These intrusive approaches make
predictions for a degraded signal with additional information, which is usually the corre-
sponding clean reference signal. Despite the success of intrusive approaches, the reference
signals are usually not provided in realistic scenes. Therefore, non-intrusive intelligibility
prediction approaches which require only the degraded signals are needed and covered in
Section 2.4.

2.1 Hearing loss compensation

The research on fittings for hearing loss compensation has been an interest since over 80
years ago. The selected gain and frequency response was usually linear in the last century,
that is, to provide constant gains varing with frequencies, but independent of sound levels.
With the emergence of the wide dynamic range compression technology, more attention has
been paid to nonlinear fittings, which accommodate the incoming sound energy levels at
various frequencies. Additionally, frequency compression provides another perspective for
hearing loss compensation by squeezing sounds in inaudible high frequencies into a smaller
range of audible lower frequencies. In this section, the current major techniques for hearing
loss compensation will be reviewed.

2.1.1 Linear amplification

The one-half gain rule for hearing aid fittings was first proposed by Lybarger (1963) and
formed the basis for many prescribing formulas. It recommends providing the gain as half of
the hearing thresholds, e.g., for a 50 dB hearing loss, a 25 dB gain needs to be provided. This
rule can be easily computed and was found effective for the speech reception threshold except
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for mild hearing impairments. The one-half gain rule was later examined and calibrated,
e.g. by Berger et al. (1980) and Byrne and Tonisson (1976). The broad rationale of later
derivation for fitting formulas is usually motivated by the idea of amplifying all frequency
bands of speech to the most comfortable level or to be equally loud at a comfortable level.

Later, Byrne and Dillon (1986) revised the former procedure by Byrne and Murray (1986)
and proposed the new National Acoustic Laboratories procedure (NAL-R) for gain and
frequency response selection. The underlying motivation is to maximise speech intelligibility
by maximising as much of a speech signal to be audible while still keeping the volume
comfortable. It followed the idea of equalising loudness across all speech frequency bands to
maximise the audibility and validated the procedure by Byrne and Murray (1986), which
failed to do so. The rationale is that if one or a limited number of frequency bands dominates
the overall loudness, the remaining frequency bands will probably be too soft or even
unnoticeable and degrading speech intelligibility. Therefore, the NAL-R prescriptive fitting is
based on the loudness equalisation, while also taking the one-half gain rule into consideration
to determine the average gain. The NAL-R provided insertion gains at different frequencies
which are computed as:

G f = 0.05AHL+0.31HL−B, (2.1)

where HL is the hearing loss at the given frequency, AHL is the average hearing loss at
[500, 1000, 2000] Hz, and the bias B is [-17, 8, -3, 1, 1, -1, -2. -2, -2] at [250, 500, 750,
1000, 1500, 2000, 3000, 4000, 6000] Hz, respectively. The biases are measured to achieve
a flat audiogram, i.e., the relative gains vary across frequencies so that the corresponding
loudness is equal. In the study by Byrne et al. (1990), NAL-R was found to need to be further
calibrated for profound hearing impairment. The gain rule needs to follow the two-thirds
rule when the high frequency hearing losses are profound, and NAL-RP was proposed based
on this.

2.1.2 Nonlinear amplification

As shown in Figure 2.2, linear amplification limits its application as it can not handle speech
at a large range of different levels. This is due to the due to the fact that the reduction of
the dynamic range of hearing impairment is not linear, i.e., very loud speech is usually also
uncomfortably loud for hearing impaired listeners, while normal conversational speech can
be too soft for them to understand. To accommodate the need for adjusting insertion gain for
different sound pressure levels, wide dynamic range compression has been widely applied in
hearing aids since the 1990s.
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Fig. 2.2 Speech loudness perception of the normal and reduced dynamic range, adapted from
(Kuk, 1996). The arrows represent the loudness range of input speech, and the box areas
represent the loudness dynamic range of listeners. Sub-figure (a) and (b) show the normal
dynamic range and the reduced dynamic range perceiving loud, conversational and soft
speech, respectively. Sub-figure (c) presents the linear amplification effect for the reduced
dynamic range. The loud speech can be uncomfortably too loud for impaired hearing,
despite the soft speech can be perceived. Sub-figure (d) shows the nonlinear dynamic range
compression amplification that provides insertion gain adaptively, so that speech at various
sound pressure levels can be perceived comfortably.
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NAL-NL1 (Byrne et al., 2001) was proposed to meet the need for wide dynamic range
compression based on the similar rationale of NAL-RP. However, it does not strictly stick
to the rule that loudness needs to be equal across all frequency bands, because this is likely
to degrade the speech quality to an unacceptable level. Therefore, NAL-NL1 was derived
following the principle that the speech should be amplified to a normal loudness or to a
lower level while maximising intelligibility. The loudness normalisation is applied except for
high loudness levels, for which the amplification targets are set to a lower level as it leads to
higher intelligibility. NAL-NL2 (Keidser et al., 2011) made a further extension with more
experimental data while keeping the same aim as NAL-NL1. More insertion gain is provided
for low and high frequencies and less gain for middle frequencies, and hearing impaired
listeners can gain better intelligibility without increasing loudness when using the NAL-NL2
presecription than the NAL-NL1.

Multiple additional nonlinear prescriptive fittings have been developed and widely used.
For example, the CAMEQ, CAMEQ-2HF (Moore et al., 1999a, 2010) were motivated by the
rationale that provides good audibility over a wide range of levels while still maintaining
listening comfort. Their fitting procedures are based on loudness and quality judgments. The
latest Desired Sensation Level method (Scollie et al., 2005) was derived to make sure the
audibility of conversational speech is as much as possible when avoiding loudness discomfort.
It also accommodates different requirements for speech in quiet and noisy environments. It
is worth noting that there is a loudness difference among the NAL-NL2, DSL, and CAMEQ-
2FH, that is, the overall gain of the DSL is the largest and the NAL-NL is the smallest
among the three. Also, the NAL-NL2 also reduces high frequency gain when high hearing
thresholds are present because of the evidence of less efficiency of using these ranges under
such thresholds (Hogan and Turner, 1998).

For the nonlinear amplification by wide dynamic range compression, attack and release
times are also important and were studied in (Alexander and Masterson, 2015; Gatehouse
et al., 2006a,b). Attack time represents the time delay between the intensity of the input
signal exceeding the threshold and the compressor compressing the intensity to the target
value, while the release time is the opposite. Generally, a short attack time is required to
prevent sudden intensity rise which could bring loudness discomfort, and the release time
is always longer than the attack time. Meanwhile, wide dynamic range compression can
sometimes decrease the intelligibility of speech signals, e.g., it can cause distortion of the
signal envelopes and introduce modulation sidebands.
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Fig. 2.3 Presentations of three frequency lowering techniques. Spectrum of an unprocessed
signal (a) and that processed by three frequency lowering techniques: (b) frequency com-
pression, (c) frequency transposition, (d) frequency composition. U, S, and T represent
unprocessed, source, and target frequency bands, respectively.

2.1.3 Frequency lowering

Most hearing impaired listeners often suffer from high-frequency hearing loss due to aging
and other effects. Frequency lowering has been a recent focus of hearing aids research. It is
the technique of shifting a range of input frequencies to lower frequencies so that listeners
with weak high frequency audibility could be provided with low frequency cues. Frequency
transposition (Alexander et al., 2014; Parent et al., 1997), frequency composition (Kuriger
and Lesimple, 2012; Salorio-Corbetto et al., 2017), and frequency compression (Ellis and
Munro, 2015; Glista et al., 2009; Hopkins et al., 2014; Simpson et al., 2005) are three most
widely utilised techniques concerned with frequency lowering.

Brief illustrations of common frequency lowering methodologies are shown in Figure 2.3,
and the main differences among these techniques are how high frequency cues are dealt with.
Frequency compression compresses high frequency bands of the source signals into lower
bands while not overlapping with unprocessed original bands. For frequency transposition,
source and target signals share the same bandwidth and the high frequency bands are directly
transposed into lower bands. As for frequency composition, the source signal in the higher
frequency domain is divided into subbands, which are compressed separately and aggregated
into the lower frequency domain. A number of evaluations were done in the past decade and
proved that these techniques can help hearing loss patients restore part of the information
in quiet environments (Glista and Scollie, 2018). However, in noisy and complex scenes,
these techniques failed to be functional. Meanwhile, frequency lowering techniques will
also cause inherent distortions including reducing the spacing between harmonics, altering
spectral peak levels, and modifying spectral shapes (McDermott, 2011).
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2.2 Speech denoising for hearing aids

For listeners with normal hearing, the auditory system is capable of extracting target speech
in noisy environments. This ability is usually severely decreased for hearing impaired
listeners because of the raised hearing thresholds, the nonlinear auditory coding distortion,
etc. Therefore, it is often insufficient for hearing aids to improve the intelligibility of speech
in noise with only hearing loss compensation. Simply amplifying the incoming sounds to
the auditory does not help much for target speech extraction. Therefore, a denoising module
is desired for hearing aids to suppress unwanted sounds for the purpose of intelligibility
improvement for hearing impaired listeners.

There are several types of interfering sounds that can heavily damage speech intelligibility,
especially for hearing impaired listeners: (1) environmental noises that mask the crucial
information of target speech for recognition, e.g, domestic noise such as washing machine,
traffic noise, aircraft engine noise; (2) interfering voices with spectrum similar to that of
speech, leading to increasing difficulty for target speech recognition; (3) substantial room
reverberation produced by the reflection of hard surfaces such as walls, floors, and ceilings.
It has been a long interest for hearing aids to take advantage of noise suppression techniques,
including adaptive filtering (Vary and Martin, 2006) and spectral subtraction (Bentler and
Chiou, 2006; Boll, 1979). More recently, beamforming, also referred to as a spatial filtering
technique, stood out for noise suppression as it can take advantage of microphone arrays
to extract sound from the target direction (Benesty et al., 2008). Additionally, with the rise
of deep learning, DNN-based methods have shown great potentials for hearing aid speech
denoising. The last two groups of noise suppression techniques are reviewed in the context
of hearing aid processing.

2.2.1 Beamformers

Essentially, beamforming leverages the directional clues within the signals received by
multiple microphones to enhance the sound from a target source and suppress sounds from
other directions. Generally, the more microphones are used and the more widely spread the
microphones are, the better beamforming performs. Meanwhile, hearing aids are usually
fitted binaural and thus can be combined to form a beamforming array. Each device is
supposed to output one processed signal for each ear. The binaural outputs depend on both
how the directional cues are used and how the binaural cues are preserved. There have
been a number of works proposing different beamformers for hearing aids, such as Best
et al. (2017); Doclo et al. (2010, 2015); Moore et al. (2021). In this section, the classical
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minimum variance distortionless response (MVDR) beamformer (Capon, 1969) is reviewed
as an example.

A multi-channel noisy speech y ∈ RM×t consisting of a target signal x and interfering
noise n can be transformed into the time-frequency domain and expressed as:

Y( f , t) = d( f )S( f , t)+N( f , t), (2.2)

where Y,S,N ∈ RM×F×T are the time-frequency representations of the noisy speech,
target speech and noise, respectively. M,F,T represent the number of microphones, frequency
bins, and time indices. Meanwhile, d is the steering vector representing the direct path
impulse responses between the target speech and microphones.

A beamformer essentially targets obtaining the weights w to sum the signals from
microphones Y ∈ RM×F×T into a predicted target signal Ŝ ∈ RF×T , which can be computed
as:

Ŝ = wHY, (2.3)

where w ∈ RM×F and (.)H is the Hermitian Conjugate of a complex matrix. When applying
beamforming to an utterance, the beamformer is regarded as a time-invariant beamformer
if the weights stay unchanged for all frames. Otherwise, it is regarded as time-variant
beamformer and can be adaptive to the change of an utterance.

The MVDR beamformer aims at minimising the power of the output signal while keeping
the target speech distortionless, and the weights are formed as:

wMVDR( f ) = argmin
w

wH( f )ΦYY( f )w( f ), s.t. w( f )Hd( f ) = 1, (2.4)

where ΦYY( f ) is the covariance matrix of the noisy time-frequency representation Y at
frequency f . One solution to the MVDR beamformer can be based on reference channel
selection:

wMVDR( f ) =
Φ

−1
NN( f )ΦSS( f )

Trace
(

Φ
−1
NN( f )ΦSS( f )

)u, (2.5)

where ΦNN and ΦSS are the covariance matrices of the noise and target speech, respectively.
Also, u is the reference channel one-hot vector, i.e., the index of the reference microphone is
1 and the rest are 0s.
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The covariance matrix ΦSS can be achieved with the estimated time-frequency mask
Ms(t, f ) of the target speech:

ΦSS( f ) =
∑

T
t=1 Ŝ(t, f )ŜH(t, f )

∑
T
t=1 Ms(t, f )Ms(t, f )

, (2.6)

where the estimated Ŝ is computed as:

Ŝ(t, f ) = Ms(t, f )Y(t, f ). (2.7)

Similarly, the covariance matrix ΦSS can also be estimated with the noise mask Mn(t, f ). This
solution converts the problem of estimating the weight w into estimating the time-frequency
masks of the time-frequency representations of target speech and noise. The estimation of
the masks can be accomplished with statistic approaches, such as with complex Gaussian
mixture model (Higuchi et al., 2017) and with DNNs (Erdogan et al., 2016). There are
multiple additional beamformers based on different intuitions and different solutions. The
beamformers are preferable for hearing aid applications as they are relatively computationally
cheaper and introduce minimum distortions. However, the linear combination of signals
from multiple microphones may not be able to suppress noises effectively, especially when
the target speech is in close proximity to the noise sources.

2.2.2 DNN-based approaches

DNNs have been explored for noise suppression with data-driven optimisation since they
show the powerful modelling ability on large databases, such as the methods proposed in
Lu et al. (2013); Xu et al. (2013, 2014). In general, DNNs turn speech denoising into
regression tasks, and they are optimised to map noisy speech to clean speech via back-
propagation. It is believed that the design and choice of DNN architectures, optimisation
objective functions, and speech representations can all be important to the performance of
DNN-based approaches.

Early approaches focus more on single-channel noise suppression. Many of them train
the networks with reconstruction objectives to predict the desired clean time-frequency
representations given those of noisy speech. For example, Lu et al. (2013) leveraged an
auto-encoder to predict the clean mel frequency power spectrum, which can be further
converted to the waveform with the phase information from the noisy speech. Xu et al.
(2014) proposed to train a basic DNN to restore the clean speech with the representation
of log power spectral features, through which the waveform speech can be synthesised by
inverse short-term Fourier transform. More recently, Défossez et al. (2020) proposed to
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use a U-Net for waveform speech denoising with an optimisation objective operated in
the time domain. Apart from that, a growing body of work has been utilising Generative
Adversarial Nets (GANs) (Goodfellow et al., 2014), which are known to be able to improve
the fidelity and perception of network outputs. Pascual et al. (2017) firstly proposed to take
advantage of a GAN for waveform speech denoising, and combined the reconstruction with
the GAN loss as the optimisation objective. Similarly, Michelsanti and Tan (2017); Soni
et al. (2018) trained GANs for noise suppression but with time-frequency representations.
Also, a number of works proposed to use speech evaluation metrics as the optimisation
objectives for denoising DNNs. Martin-Donas et al. (2018); Zhao et al. (2018) implemented
differentiable approximations to these measures so that they can propagate the prediction
errors to optimise the networks. Zhang et al. (2018) used another DNN to approximate these
evaluation measures and leveraged this network as the optimisation objective.

Speech separation can be regarded as a special task of speech denoising. For the separation
task, more than one target speech signal is expected to be extracted, that is, the input signals
contain overlapping speech from multiple sources and the separation model is supposed to
generate each clean speech signal separately. One of the common challenges in training
speaker-independent multi-talker speech separation models is the label permutation problem:
it is difficult to match the predicted signal and the ground truth target signals to compute the
correct loss for optimisation. Early DNN-based speech separation approach (Hershey et al.,
2016) avoids this problem by leveraging clustering algorithms to minimise the distances
among the time-frequency bins from the same source while to maximise the distances of
those from different sources. The permutation invariant training technique (Yu et al., 2017)
was proposed to tackle this problem by regarding the pair with minimum error among all
potential prediction and label pairs and widely used in the later DNN-based speech separation
methods. Similar to the speech denoising approaches aforementioned, the choices of network
architecture, and optimisation objectives of speech separation models have been constantly
studied and investigated. The time-domain speech separation approaches, which directly are
usually optimised with SNR-based objectives and directly process waveform speech (Luo
and Mesgarani, 2018, 2019), stood out in recent studies. There are also a number of works
focusing only on the speech by one target talker, such as Wang et al. (2019); Žmolíková et al.
(2019). These approaches generally leverage the speaker embedding from the target talker to
extract the target speech.

Previously introduced DNN-based speech denoising approaches focus on single-channel
speech, while there usually are microphone arrays deployed in modern hearing aids. There-
fore, DNN-based multi-channel speech denoising approaches that take better advantage
of spatial information are of more interest for the purpose of hearing aids. A number of
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DNN-based multi-channel speech denoising approaches leverage DNNs to predict the time-
frequency masks of target speech and apply the masks to beamformers as introduced in the
previous section (Erdogan et al., 2016; Heymann et al., 2016). Essentially, the DNN-based
beamformers still apply a linear combination to multi-channel signals, thus the performances
are limited to the nature of beamformers. Another group of approaches extend single-channel
models by combining the spectral and spatial information, such as Chakrabarty et al. (2018);
Wang et al. (2018). Similarly, time-domain DNN-based approaches have also achieved suc-
cess in multi-channel speech separation by directly encoding all channels into the networks
(Gu et al., 2019; Zhang et al., 2020).

Despite the success of DNN-based speech denoising, they have been rarely applied in
modern hearing aids. One of the underlying reasons is that DNNs often come with high
latency, which is not acceptable for hearing aid applications. A number of studies conducted
by Stone and Moore (1999, 2002, 2003, 2005) suggest that the disturbance increase as the
latency increases. A latency as low as 20 to 30 ms can be disturbing for listeners with mild
to moderate hearing loss. Meanwhile, Dillon et al. (2003) found that 10 ms latency can
degrade sound quality on commercial hearing aids. A more recent study by Stone et al.
(2008) suggests that the latency may need be as low as 5 to 6 ms for open-canal hearing
aids, which have been progressively more popular in the market. As DNNs are generally
heavily parameterised, they are computationally expensive and more difficult to satisfy the
low latency requirement than beamformers. It is relatively easier for time-domain DNN-
based approaches than frequency-domain approaches because the window size of the Fourier
transformation is conventionally quite long. Despite that, more attention has been paid to
reducing the ideal latency of DNN-based speech denoising (Wang et al., 2022).

2.3 Intrusive speech intelligibility prediction

As mentioned in Chapter 1, it is common to leverage additional information apart from the
degraded speech signal itself for intelligibility prediction, and these approaches are regarded
intrusive. A majority of intrusive approaches predict intelligibility by comparing some
(psycho)acoustic representations of the reference and degraded speech signal. The additional
information used in these approaches is usually the reference speech or the additive noise.
Another group of intrusive approaches make intelligibility prediction with ASR models
and compares the ASR outcomes with the speech transcriptions, which are the additional
information. In this section, both the development of (psycho)acoustic representation-based
and ASR-based intelligibility prediction approaches will be introduced.
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Although a large amount of work has been done for speech intelligibility prediction, they
usually have an implicit assumption that the listener’s hearing ability is not degraded. There-
fore, these approaches can be difficult for the purpose of evaluating hearing aid enhancement,
i.e. the listener’s hearing ability is imperfect. Fortunately, attention has also been drawn to
the field of intelligibility prediction by hearing impaired observers. These approaches usually
take advantage of existing knowledge of the human auditory periphery to build impaired
hearing models and use these models to simulate the acoustic representations of the signal
that hearing impaired listeners perceive and use these to perform intelligibility prediction. In
this section, a number of approaches for hearing impairment intelligibility prediction will
also be reviewed.

2.3.1 Acoustic representation-based approaches

The articulation index (AI) is one of the first objective speech intelligibility measures pro-
posed by the Bell Telephone Laboratories (French and Steinberg, 1947). It was then improved
and elaborated by Kryter (1962) and widely used for the evaluation of speech communi-
cation systems. The AI is computed based on the SNRs within multiple frequency bands.
These SNRs are limited and subject to an auditory masking effect and then combined with
corresponding perceptually motivated weight coefficients (Kryter, 1962). The AI was later
extended and standardised to the speech intelligibility index (SII) (ANSI, 1997). These
approaches target calculating the available average amount of speech information, and they
use the long-term averaged speech spectrum as inputs, therefore, they can only perform well
for simple linear degradation, e.g., stationary additive noise. Rhebergen and Versfeld (2005)
made a further extension by computing the SII for each small time frame within a speech
signal to take the modulation domain into consideration, and combined all SII values as the
predicted intelligibility. This approach could perform well for speech in more fluctuating (i.e.,
non-stationary) noises in terms of the speech recognition thresholds (SRTs). Furthermore,
Kates and Arehart (2005) proposed coherence speech intelligibility (CSII), which replaces
the SNR in the SII with the signal-to-distortion ratio (SDR) in each frequency band. The
SDRs are computed with coherence function (Carter et al., 1973), which is a measure of
correlation in the frequency domain. The CSII can be applied to speech nonlinearly degraded
by peak-clipping and centre-clipping, while it considers the analysis of only wideband signals,
not the narrowband sub-components.

Since the AI was developed for simple linear degradation, Steeneken and Houtgast
(1980) proposed the speech transmission index (STI) to predict the intelligibility of speech
degraded by reverberation and some nonlinear degradation like clipping. For this purpose,
a noise signal with a speech-shaped long-term averaged spectrum is modulated at a range
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Fig. 2.4 General approach of intrusive intelligibility prediction.

of frequencies and then processed by the transmission system. Each modulated signal and
its corresponding output response are used to compute an apparent SNR, and all the SNRs
are combined with a group of psycho-acoustically derived weighting to achieve the overall
STI value. After the proposition of the STI, researchers developed variations to use speech
as the probe signals for more sophisticated degradation, such as the works of Hohmann
and Kollmeier (1995); Payton and Braida (1999); Payton et al. (2002), etc. However, these
speech-based STI methods were proved to be not able to adequately predict the intelligibility
of nonlinearly processed speech (Hohmann and Kollmeier, 1995; Payton et al., 2002; van
Buuren et al., 1999). Later, a normalised covariance measure (NCM) based STI variant
showed its potential for nonlinear operations, including envelope thresholding and spectral
subtraction (Goldsworthy and Greenberg, 2004). To compute the NCM-based STI, the
temporal envelope normalised covariance, i.e., normalised cross correlation (NCC), between
the reference and degraded speech at different frequencies are extracted. These covariances
are then converted to the apparent SNR for the overall predicted intelligibility. Apart from
that, STI and its many variants require the assumption that the degradation is stationary,
therefore they fail to predict the intelligibility of speech with non-stationary distortions. The
quasi-stationary STI is then proposed (Schwerin and Paliwal, 2014) to process the modulation
envelope in short-time segments, and only requires the assumption of quasi-stationarity so
that it can tackle non-stationary degradation.

The aforementioned approaches briefly reviewed the early progression of speech intel-
ligibility prediction. Until then, the general approach was to make the correlation-based
comparison between some extracted acoustic representations of the reference and degraded
speech, as shown in Figure 2.4. However, these approaches are still less appropriate for de-
graded speech processed by some speech enhancement models, which can result in nonlinear
and non-stationary distortions.

In recent years, more attention has been attracted to finding more appropriate acoustic
representations for intelligibility prediction. The length of the analysis segment window can
be one crucial factor when extracting representations. Some approaches estimate correlation
values based on the complete speech signal, which tends to be several seconds, e.g., Goldswor-
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thy and Greenberg (2004); Kates and Arehart (2005). Such a long analysis window leads to
a restriction that the degradation needs to be stationary, and a few high amplitude regions
could dominate the overall estimation. On the contrary, there are also some approaches using
a very short analysis window less than 50 ms, e.g., Christiansen et al. (2010); Rhebergen and
Versfeld (2005). This short window leads to a poor modulation frequency resolution and
excludes low temporal modulations which contribute heavily to intelligibility. The results
from Drullman et al. (1994); van den Brink (1964) showed that the analysis window length
around 333-500 ms could be more suitable for intelligibility prediction. Motivated by this,
Taal et al. (2011) proposed a short-time objective intelligibility measure (STOI), which has
been arguably the most widely used intelligibility prediction approach. To compute the STOI
value, the reference and degraded speech are firstly decomposed into time-frequency bins
with a group of one-third octave bands. Then the short-time temporal envelope segments
of the degraded speech are normalised and clipped. Finally, the degraded segments are
compared with those of the reference speech to achieve the overall predicted intelligibility.
The STOI showed a high correlation with the intelligibility of listening results for speech
processed by some enhancement model, including the ideal time frequency segregation
(Brungart et al., 2006) and two single-channel noise-reduction algorithms (Ephraim and
Malah, 1984; Erkelens et al., 2007). Furthermore, Jensen and Taal (2016) proposed the
extended-STOI (ESTOI) to improve the performance on speech with temporally modulated
noise maskers.

Apart from the correlation-based approaches, there are several different groups of ap-
proaches for intelligibility prediction, and their acoustic representations are carefully de-
signed. The speech-based envelope power-spectrum model (sEPSM) assumes that intelli-
gibility can be predicted by the SNRs in the envelope domain (Jørgensen and Dau, 2011).
It takes advantage of a group of gammatone filters (Moore and Glasberg, 1983), which can
describe the shape of the impulse response on the basilar membrane, for envelope extraction.
The sEPSM was further extended using a dynamic compressive gammachirp filterbank (Irino
and Patterson, 2006) by Yamamoto et al. (2019). Another group of approaches estimate
intelligibility by measuring the mutual information between the acoustic representations of
reference and degraded speech. The K-nearest neighbour mutual information intelligibility
measure (Taghia and Martin, 2013) uses the same acoustic representation as STOI. The
speech intelligibility in bits (Van Kuyk et al., 2017), which estimates the amount of infor-
mation shared between a talker and a listener in bits per second, uses an auditory model to
extract representations. Moreover, the glimpsing model proposed by Cooke (2006) has also
been investigated for intelligibility prediction. It leverages the "glimpse", which is defined as
the proportion of time frequency regions where the SNR is higher than a predefined threshold.



2.3 Intrusive speech intelligibility prediction 27

The recent variant of the glimpsing model (Edraki et al., 2021) decomposes speech into
spectro-temporal modulation subspace with the Gabor filterbank (Schädler et al., 2012).

2.3.2 ASR-based approaches

The acoustic representation-based intelligibility prediction approaches always make strong
assumptions that the correlation between the representations of reference and degraded
speech, or the SNR at (modulation) frequency bands is closely related to intelligibility.
However, these assumptions can fail due to, e.g., different types of background noise, and
processing of enhancement models. Employing ASR models for intelligibility modelling
has the potential to overcome this, as it requires only a minimum set of assumptions, that is,
how much a speech signal can be understood by an ASR model is related to the intelligibility
achievable by humans. In addition, the acoustic representation-based approaches usually
require the reference speech or the noise, while ASR-based approaches usually need only
the transcription of the degraded speech. Therefore, there has been a growing interest in
researchers using ASR models to predict intelligibility.

The aforementioned glimpsing model (Cooke, 2006) is one of the earliest works to show
that the similarity of speech in noise recognition patterns between ASR models and humans.
The quantitative results show that the consonant recognition identification performance of a
missing data ASR model with the glimpses as input is similar to that of humans for speech in
speech-shaped noise modulated with the envelope of multiple talker babble (Cooke, 2006).
Later, Barker and Cooke (2007) also showed that the ASR can also approximate human
recognition performance in terms of speaker intelligibility. However, the glimpse approaches
can usually predict intelligibility for only speech with additive noise.

Later, Schädler et al. (2015) found that the SRTs of human listeners for speech in multiple
noise conditions can be well predicted by ASR models. They trained and tested an ASR
model with the German matrix test material, and the experimental results show that the SRTs
of the ASR model for speech in multiple types of stationary noises and a fluctuating noise
are much more correlated than that of the SII to the human SRTs. Furthermore, Spille et al.
(2018b) found that the gap between ASR and human recognition can be further closed by a
DNN-based ASR model, as DNNs have brought substantial progress to ASR in recent years.

The ASR-based intelligibility prediction has attracted increasing interest recently. More
works have been conducted for hearing impairment intelligibility prediction, and non-
intrusive intelligibility prediction and they will be introduced in the following sections.
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2.3.3 Hearing impairment intelligibility prediction

The aforementioned intelligibility prediction approaches share an assumption that a listener’s
hearing ability is not degraded. Consequently, they can make poor intelligibility predictions
when a listener is hearing impaired, as the internal degradation to the speech is not taken
into their consideration. For the purpose of accurately predicting the intelligibility of hearing
impaired listeners, a hearing loss model that models the listener’s hearing ability needs to
be included in the intelligibility predictor. Furthermore, binaural cues, which are usually
used to localise the target speech source, are crucial for listeners to recognise speech in
spatially separate noise, and studies also found that human is better than ASR models at
taking advantage of binaural cues (Spille et al., 2018b). Therefore, the binaural cues can
be also an important factor to predict how much a listener understands speech. In this
section, a number of intelligibility predictors incorporating hearing loss models, with also
their application to binaural signals, will be reviewed.

The hearing aid speech perception index version 1 (HASPIv1) (Kates and Arehart, 2014a)
is one of the most widely used intelligibility predictors for hearing impaired listeners and
incorporates a comprehensive auditory model (Kates, 2013). The auditory model simulates a
number of hearing perception degradation due to hearing impairment. Kates and Arehart
(2021) later revised the HASPI and proposed HASPI version 2, which will be reviewed
in this section. In the following part of this thesis, the acronym ‘HASPI’ will be used to
represent HASPI version 2 for convenience. The diagram of the auditory model within
the HASPI is shown in Figure 2.5. An input speech is firstly resampled to 24 kHz, then
processed by a middle ear model which consists of a two-pole infinite impulse response
(IIR) high-pass filter with a cut-off frequency at 350 Hz and a one-pole IIR low-pass filter
with a cut-off frequency at 5 kHz. A group of 32 fourth-order gammatone IIR filters (Cooke,
1993; Patterson et al., 1995) covering the range from 80 to 8000 Hz are used for auditory
analysis. The bandwidths of the gammatone filterbank are broadened in responses to not
only hearing losses (Moore et al., 1999b) but also signal intensity (Baker and Rosen, 2002),
i.e. the root mean square (RMS) average. The dynamic-range compression due to OHC
damage is modelled by the control filterbank (Ruggero et al., 1997). The control filterbank
also consists of 32 gammatone IIR filters covering from 80 to 8 kHz, while the bandwidths
are set to maximum, i.e., corresponding to the maximum hearing loss (Zhang et al., 2001).
In addition, the OHC compression includes an 800-Hz low pass filter to provide a small time
delay. The OHC compressed envelope is then multiplied by the envelope retrieved from the
analysis filterbank. After that, the envelope is processed by simulated IHC compression. At
last, the IHC compressed envelope is introduced to a 2 ms rapid adaptation. The envelopes
of the reference and the degraded speech extracted from the HASPI auditory model are
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Fig. 2.5 HASPI auditory model for envelope extraction.

used for further modulation analysis. A set of five basis functions are used to acquire the
short-time mel-frequency cepstral coefficients (Mitra et al., 2012), which are then filtered by
ten modulation filters. The NCC between the reference and degraded filtered sequences are
computed and averaged across the five basis functions to produce ten averaged modulation
values. Eventually, these ten modulation outputs are mapped to the intelligibility score using
an ensemble of ten neural networks. To accommodate the need of predicting the intelligibility
of binaural signals, a better-ear strategy can be applied, i.e. regarding the larger score between
the predicted left ear and the right ear ones as the eventual intelligibility score.

Apart from the HASPI, the Cambridge MSBG hearing loss model (Baer and Moore, 1993,
1994; Moore and Glasberg, 1993; Stone and Moore, 1999), a well-recognised hearing loss
simulator, can be used as the front-end for hearing impairment intelligibility prediction. The
MSBG model takes an input speech and simulates how a hearing impaired listener perceives
the speech given the audiogram. The simulated signal can then be regarded as the degraded
speech and used for intelligibility prediction with the normal approaches introduced in the
previous sections. The diagram of the MSBG hearing loss model is shown in Figure 2.6.
Given an input speech, a source to cochlea transformation filter is applied to simulate
the acoustic changes during sound propagation from the free field to the eardrum (Shaw,
1974). The spectral smearing is then applied to simulate the reduced frequency selectivity
caused by hearing impairment. This is done by applying a bandwidth broadened auditory
filterbank (Moore and Glasberg, 1983) in the frequency domain. After that, the loudness
recruitment simulates the phenomenon that the response to the speech of an impaired auditory
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Fig. 2.6 Diagram of the MSBG hearing loss model.

is smaller than a normal one, while the responses to high-level sounds are similar. A group of
gammatone filters retrieve the envelopes at different frequency bands, and then the envelopes
are nonlinearly compressed according to the hearing abilities. The compressed envelopes are
then used as the gain to adjust the amplitudes of the speech at different frequency bands. At
the last, a cochlea to source transformation filter is applied to the recruited speech. For the
purpose of intelligibility prediction, an additional predictor is desired to process the simulated
hearing impaired degraded speech. The modified binaural STOI (MBSTOI) (Andersen et al.,
2018a) is an improved version of the deterministic binaural STOI (Andersen et al., 2016)
and can take advantage of binaural cues through an equalization-cancellation stage (Durlach,
1972) to predict binaural intelligibility. The combination of the MSBG hearing loss model
and MBSTOI can therefore predict binaural intelligibility for hearing impaired listeners, e.g.
Graetzer et al. (2021).

Additionally, the ASR-based intelligibility prediction approaches have been also used for
hearing impairment intelligibility prediction. Kollmeier et al. (2016) extended the method
proposed in Schädler et al. (2015) by introducing a hearing impairment effect simulation
front-end to the ASR model. The front-end consists of a simulation of the elevated hearing
threshold by setting the speech level to the audiogram level if it is below this value, and an
additional suprathreshold distortion by adding Gaussian white noise with an individualised
fitted standard deviation. The results of the German Matrix test in stationary and fluctuating
noises show that the predicted SRTs of hearing impaired listeners by the ASR are correlated
well with hearing impaired listeners. Similarly, Fontan et al. (2017) proposed to take
advantage of a simplified MSBG model as the ASR front-end. The proposed system was
evaluated with simulated hearing impaired listeners (i.e. normal hearing listeners listening
to speech with simulated hearing impairment degradation) on a small vocabulary of French
speech material. Experimental results show that though the ASR recognition results are
generally worse than humans, they are correlated to human performance well.
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2.4 Non-intrusive speech intelligibility prediction

Non-intrusive speech intelligibility prediction is always desired for its application in realistic
scenarios, where a clean reference signal is difficult to access. As intrusive approaches
usually require strictly aligned and clean reference signals, they are usually used to evaluate
simulated scenarios. On the contrary, a degraded signal can be submitted alone to a reference-
free non-intrusive intelligibility predictor. Therefore, the non-intrusive approaches are more
likely to be used for real-life applications, including hearing aids, voice calls or cochlea
implants.

Early non-intrusive approaches rely on the prior knowledge of acoustic features that
are correlated with intelligibility. The application of these approaches can be limited,
e.g., the speech to reverberation modulation energy ratio (SRMR) (Falk et al., 2010) and
average modulation-spectrum area (ModA) (Chen et al., 2013) target only reverberant or
dereverberated speech. Another group of approaches can be regarded as variants of intrusive
approaches, especially STOI. Specifically, these approaches estimate the corresponding
reference signal or features from a degraded speech signal and use the estimated reference
signal or features to predict intelligibility in an intrusive way. In addition, data-driven non-
intrusive intelligibility prediction has been drawing increasing attention in recent years. These
approaches take advantage of machine learning models to learn the mapping from degraded
signals to intelligibility labels. Lastly, ASR models have been also explored for non-intrusive
intelligibility prediction. In this section, the four categories of the aforementioned approaches
will be reviewed.

2.4.1 Acoustic representation-based approaches

Non-intrusive intelligibility prediction approaches based on acoustic prior knowledge are
usually motivated by the observed correlation between acoustic features and intelligibility.
SRMR (Falk et al., 2010) is a classic approach motivated by the finding that the ratio of
low to high modulation frequency energy is related to reverberant or dereverberated speech
intelligibility. In detail, a group of gammatone filters are used to process a degraded speech to
obtain the temporal envelopes. The envelopes are then processed by 7 or 8 modulation filters,
which are chosen on a per-signal basis. The SRMR is given by the summation of the first 4
modulation energy divided by the summation of the other modulation energy. The ModA
(Chen et al., 2013) follows a similar idea by computing the area of the modulation spectrum
and shows an advantage in predicting the intelligibility of reverberant speech perceived by
cochlea implant listeners.
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Fig. 2.7 Non-intrusive intelligibility prediction with estimated reference.

The across-band envelope correlation metric (ABECm) is also proposed for non-intrusive
intelligibility prediction (Chen, 2016b). It is inspired by the phenomenon that the across-band
envelope correlation carries important information for human speech perception. Therefore,
the average correlation of adjacent bands is used as an intelligibility predictor. Additionally,
the reduced speech dynamic range measure (rDRm) is found to be correlated with speech
intelligibility (Chen, 2016a). Specifically, a degraded speech signal is divided into short
non-overlapping segments, whose RMS levels are divided by the overall RMS level and
regarded as relative-RMS-levels. The speech dynamic range is computed as the difference
between the maximum and minimum relative-RMS-levels. Both ABECm and rDRm are
experimented with sentences in multiple SNR levels with various noise maskers and show
competitive results for intelligibility prediction.

2.4.2 Pseudo reference-based approaches

When the corresponding reference clean speech is not available for intrusive intelligibility
prediction, an intuitive idea is to create a pseudo reference. With the pseudo reference, it
is possible to make a non-intrusive prediction using intrusive approaches. As described
in Figure 2.7, the approaches construct a reference estimation model to generate pseudo
reference representation, which is then used for correlation measures like intrusive approaches.
In some special cases, the pseudo reference speech signal itself is estimated for intelligibility
prediction(Sørensen et al., 2016, 2017b).

The non-intrusive STOI (NI-STOI) proposed by Andersen et al. (2017) is one of the early
works to construct a model for reference representation estimation. Specifically, it introduces
a model to learn the principle components of modulations of a very long clean speech
signal, and then project degraded speech modulation onto the learnt principle components
to estimate the pseudo reference. The degraded short-time segmentation and estimated
reference segmentation are used for correlation measures following the STOI approach to
make intelligibility predictions. The experimental results show that NI-STOI can outperform
SRMR for simulated speech in noises, but perform significantly worse than STOI, especially
when speech is degraded by cafe noises. Similarly, Sørensen et al. (2017a) proposed the
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non-intrusive codebook-based STOI (NIC-STOI) to take advantage of the codebook-based
approach (Kavalekalam et al., 2016) to estimate clean envelope spectrum, and NIC-STOI
shows close correlation with STOI. In addition, Karbasi et al. (2016) proposed to use a twin
hidden Markov model to synthesise 1/3 octave band representation of pseudo reference, and
the experiment shows very competitive results to STOI.

There are two major limitations to the pseudo reference based non-intrusive approaches.
One is difficulty in accurate estimation, i.e., when the reference estimation model fails to
make a reasonable estimation, the performance of the predictor can suffer from a significant
drop. The other limitation is that its performance depends on the employed intrusive approach.
If the intrusive predictor, i.e. usually STOI, does not perform well in some scenarios, it is still
not possible to make an accurate prediction even if the pseudo reference can be estimated
perfectly.

2.4.3 Data-driven approaches

Data-driven approaches have been increasingly popular for non-intrusive intelligibility pre-
diction, thanks to the rapid development of large-scale machine learning techniques in speech
processing. A common framework of these approaches is to learn a mapping from a degraded
speech signal or its representations to the corresponding intelligibility score, which can be
human listening results or scores from intrusive predictors like STOI. The mapping models
are optimised with a large amount of training data, i.e. degraded speech and intelligibility
pairs, and can be generalised to different evaluation scenarios.

The approach proposed by Sharma et al. (2010) is one of the early works of data-
driven non-intrusive intelligibility prediction and uses a Gaussian mixture model to learn the
mapping from degraded speech features to SII scores. Later, Sharma et al. (2016) proposed
to employ a classification and regression tree to learn the mapping from short-time features
of degraded speech to STOI scores. The experimental result shows the predicted STOI
can be correlated well with ground truth STOI across a large range of SNRs for simulated
noisy speech. In recent years, there has been a growing interest to take advantage of DNN
models for intelligibility prediction. Andersen et al. (2018b) proposed to take advantage of a
convolutional neural network, which takes short-time representations used in STOI as inputs
and makes predictions on human recognition results. The performance was shown to be
slightly better than STOI and approaching ESTOI. Similarly, Zezario et al. (2020) proposed
the STOI-Net, which consists of a convolutional neural network and a long short-term
memory with an attention mechanism, to predict STOI scores. Later, Zezario et al. (2022)
proposed the MBI-Net to predict speech intelligibility from multi-channel input signals.
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Data-driven approaches heavily rely on the quality of the training data used to optimise
the models. If intrusive intelligibility scores estimated by methods like STOI are used for
training objective, the performance of the models are then capped by the intrusive approach
itself. Otherwise, a large number of human recognition results are required to optimise the
model, which can be very expensive and time-consuming.

2.4.4 ASR-based approaches

Most ASR-based intelligibility prediction requires transcripts to measure the recognition
results of ASR models, which are then used to correlate with those of human. Therefore,
these approaches are usually considered intrusive. The approaches proposed in Holube and
Kollmeier (1996) and Jürgens and Brand (2009) overcome this by looking at the dynamic time
warping (DTW) ASR. DTW ASR models make predictions based on the measured distances
between test degraded words and a number of pre-prepared template word recordings.
The experiments also show that the predictions are more accurate if the template and test
recordings are identical (Jürgens and Brand, 2009), which is similar to intrusive predictions.

Meanwhile, there are a number of works that leverage ASR-derived measures to enable
non-intrusive prediction. Martinez et al. (2022) proposed to leverage the mean temporal
distance to capture the temporal smearing effect (Hermansky et al., 2013) in the phoneme
posteriogram generated by an ASR model. The mean temporal distances are then mapped
to word error rate (WER) so that the transcripts are not needed during the evaluation. The
estimated WER are then used to measure the SRTs for German Matrix test material. The
experimental results show that the predicted SRTs are well correlated with human listeners.
However, the generalisation ability requires more evaluation, as the training and test noises
are similar in this work. Later, Roßbach et al. (2022) proposed to use a similar model to make
intelligibility predictions for hearing impaired listeners at the utterance level. Surprisingly,
even though the model is trained with a noisy German speech database, it can perform quite
well for English speech in the evaluation. Additionally, Karbasi et al. (2022) investigated
microscopic, i.e., word level, non-intrusive prediction with ASR models. In detail, a number
of ASR-derived measures, including dispersion, entropy, log-likelihood ratio, etc., are used to
map to the recognition correctness of each word within a matrix speech corpus. This method
requires a number of human intelligibility labels to optimise the mapping model, which is a
simple feed-forward network.



Chapter 3

Optimising Hearing Aid Fitting with the
DHASP framework

3.1 Introduction

An appropriate amplification fitting tuned for the listener’s hearing disability is critical for the
good performance of hearing aids, which are expected to improve audibility and hopefully
intelligibility. Typically, the amplification of the hearing aid at various frequencies closely
matches the listener’s audiogram, which is measured using pure tone, with a standardised
mapping. Early hearing aid fitting prescriptions, including the National Acoustic Laboratories
Revised (NAL-R) formula (Byrne and Dillon, 1986), aim to maximise speech intelligibility
for a specified loudness level. With the introduction of commonly used wide dynamic
range compression, more recent prescriptions, including NAL-NL1, NAL-NL2 (Byrne et al.,
2001; Keidser et al., 2011) and CAMEQ, CAMEQ-2HF (Moore et al., 1999a, 2010), enable
adaptive amplification with respect to the incoming sound levels. Generally, hearing aid
fittings are designed to amplify incoming sounds in a way that the amplified sound can be
perceived and understood comfortably.

The developments of most prescriptive fittings are based on data collected in subjective
listening experiments, which are usually expensive and time-consuming. In this chapter, an
alternative approach to finding the optimal fitting is explored. Inspired by recent advances in
deep neural networks for speech processing, this chapter proposes a differentiable hearing
aid speech processing (DHASP) framework in which a hearing aid processor with trainable
parameters can be optimised via back-propagation. Using a differentiable approximation
to an existing intelligibility model, the hearing aid is automatically tuned to maximise the
predicted intelligibility of the speech signal for a specific individual.
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Furthermore, amplification is often not enough to restore intelligibility for hearing
impaired listeners. The most common complaint of hearing aid users is that they struggle
to understand speech in noisy situations (Brons et al., 2015; Lesica, 2018). This is despite
the fact that hearing aids are able to provide sufficient amplification, and despite the fact
that modern hearing aids often include noise suppression algorithms. Ultimately better
source separation algorithms might solve this problem in the future, but it is still desirable to
investigate whether speech intelligibility in noise can be improved by data-driven approaches
to parameter-tuning in current hearing aid designs. In particular, the potential for replacing
traditional hearing aid fitting formulae with scene-dependent fitting algorithms is looked at
in this chapter.

The fitting formulae approach to hearing aid gain setting is remarkably successful and
widely deployed in modern hearing aids given that a single formula is used to cover all
listening conditions. However, the question naturally arises as to whether better results
could be achieved by using noise-dependent fittings, and if so, how should these fittings be
optimised. This is particularly relevant now that environment classification algorithms are
available to automatically detect whether a user is, say, in a domestic living room, in a noisy
cafe or standing by a busy road intersection, thus it can be beneficial to be able to switch gain
settings for different environments. It should also be considered that hearing aids now apply
increasingly sophisticated (but imperfect) noise-reduction algorithms (e.g., adaptive filtering
(Vary and Martin, 2006), spectral subtraction (Bentler and Chiou, 2006; Boll, 1979), spatial
filtering (Levitt, 2001)) that can alter the signal in ways that have not been considered in the
design of modern hearing aid fitting formulae.

In addition, recent hearing aids are using environmental classification algorithms (Lamarche
et al., 2010; Nordqvist and Leijon, 2004) to allow the characteristics of the noise suppression
algorithms to be tuned separately for different noise types (Bentler and Chiou, 2006). This
further complicates the requirements of fitting formulae. Logically, hearing aid gains should
be optimised in consideration of the perception of the processed noise-reduced signal that the
hearing aid delivers. This chapter thus further explores the possibilities of improving current
hearing aid performance by developing fittings specific to different listening environments
and noise-reduction processing, and extends the DHASP framework to speech in noise.

This chapter is organised as follows. Section 3.2 presents the overview of the DHASP
framework. Section 3.3 and Section 3.4 show the methods, experimental setup and results
for clean speech and noisy speech, respectively. The last section summarises the works in
this chapter.
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Fig. 3.1 Overall workflow of DHASP.

3.2 DHASP framework overview

The overall workflow of the proposed DHASP framework is shown in Figure 3.1. The
degraded signal can represent a noisy speech signal processed with or without a noise
suppression algorithm. To simulate the typical signal pathway of a hearing aid (HA) user, the
degraded signal is enhanced by a HA processor before being processed by a hearing impaired
(HI) model. Its difference from a reference signal processed by a normal hearing (NH) model
is measured and used as the loss to optimise the HA processor with back-propagation. The
NH and HI models are represented by a hearing loss model, whose characteristics are based
on a listener’s audiogram. All signals are presented at 65 dB as the sound pressure level
(SPL) of normal conversation. A high-performance deep learning library PyTorch (Paszke
et al., 2019) is used for the implementation to retrieve the gradients for the optimisation.

To study the performance of optimised amplification fittings, a finite impulse response
(FIR) filter is used as the HA processor providing level-independent amplification. The
amplification provided depends on six trainable parameters, which represent the insertion
gains at [250, 500, 1000, 2000, 4000, 6000] Hz consistent with the frequencies used by a
typical audiogram. The frequency response is then obtained with linear interpolation, and
iFFT is applied to retrieve the impulse response. A Hann window is subsequently multiplied
with the impulse response.

In Section 2.3.3, two approaches are introduced to model the intelligibility of hearing
impaired listeners, that is using the Hearing Aid Speech Perception Index (HASPI) (Kates,
2013) and modelling the hearing ability loss with the MSBG hearing loss model (Baer and
Moore, 1993, 1994; Moore and Glasberg, 1993; Stone and Moore, 1999). In the remaining
of this chapter, the DHASP framework is validated with the approximations to these two
models. Specifically, it is firstly validated for clean speech. The objective function is based
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on a differentiable approximation to HASPI in this case. After that, the DHASP framework
is used for the optimisation of hearing aid fitting for speech in noise. And the objective
function is adopted from the MSBG hearing loss model.

3.3 Fitting optimisation for clean speech

In this section, the details of the differentiable approximation to the auditory model originally
designed in the HASPI (Kates, 2013) are firstly introduced. The auditory model approxi-
mation is then used in the objective function to optimise the FIR filter which represents the
hearing aid fitting. The performance of the optimised fittings is later evaluated with a clean
speech corpus, and the results are presented at the end of this section.

3.3.1 Differentiable HASPI-based objective

The differentiable HASPI-based objective consists of the differentiable HASPI-based model
for simplified hearing impairment simulation, and an objective function comparing the
normal hearing and hearing impaired output. The workflow of the differentiable auditory
model shown in Figure 3.2 is mainly adapted from the auditory processing used in HASPI.
The model operates at 24 kHz and depends on the auditory thresholds given by the listener’s
audiogram at [250, 500, 1000, 2000, 4000, 6000] Hz. The auditory thresholds are set
to zeros for the normal hearing model. Two groups of filterbanks, the dynamic-range
compression, and a dB conversion process, are used to simulate the mechanisms in human
audition considering the impact of hearing impairment. In contrast to the auditory model
in the original HASPI (Kates, 2013), which uses infinite impulse response filters (IIR), the
proposed DHASP framework employs FIR filters to avoid expensive recursive computation.
The middle ear component and the inner-hair cell adaptation process in the HASPI model
are not included for the same reason. The influence of the signal intensity on the analysis
filter bank included in the HASPI model is not considered because of the difficulty in the
differentiation implementation. All parameter settings used in the differentiable auditory
model are the same as the model used in HASPI.

Analysis filterbank

The analysis filter bank consists of a total of I = 32 fourth-order FIR gammatone filters
(Cooke, 1993). The ith filter h(i)a of the analysis filterbank is expressed as:

h(i)a (t) = A(i)
a t(N(i)−1)e−2πb(i)a t cos

(
2π f (i)a t

)
, (3.1)
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Fig. 3.2 Differentiable HASPI-based model.

where A(i)
a is the amplitude required to normalise the frequency response of the filter; b(i)a

and f (i)a are the bandwidth and the centre frequency of the filter, respectively (Loweimi et al.,
2019); N(i) is the order of the filter which is set as 4 in the model. The centre frequencies fa

are in the Mel scale covering the range from 80 Hz to 8 kHz. The bandwidths bNH
a are in the

equivalent rectangular bandwidth (ERB) scale (Moore and Glasberg, 1983) for the normal
hearing model. To approximate the behaviour that the auditory filter bandwidths increase
along with the hearing loss (Moore et al., 1999b), the bandwidths bHL

a of the hearing loss
model is expressed as:

bHL
a =

(
1+attno/50+2(attno/50)6

)
bNH

a , (3.2)

where attno is the hearing loss for outer-hair cells in dB, with a maximum attenuation of 50
dB (Kates, 2013).

Control filterbank

Another group of fourth-order FIR gammatone filters are used as control filterbank to simulate
the two-tone suppression mechanism in the cochlea (Bruce et al., 2003; Heinz et al., 2001).
The bandwidths of the control filters correspond to the maximum bandwidth allowed in the
hearing loss model, i.e. 50 dB attenuation for outer-hair cell. The bandwidths of control filters
are set wider so that they could reduce the gain of the parts of a signal, that stay outside the
bandwidth of the analysis filters but still within the control filters (Kates, 2013). Each centre
frequency of the control filter f (i)c is shifted higher relative to the centre frequency of the
corresponding analysis filter f (i)a using a human frequency-position function to correspond to
a fractional basal shift (Greenwood, 1990):

f (i)c = 165.4(10(1+s) log10

(
1+ f (i)c /165.4

)
−1), (3.3)

where s is the shift fraction which is set 0.02 in this model.
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Dynamic-range compression

The dynamic-range compression is simulated following the control filtering. The input to
the compression rule is each control signal envelope E(i)

c (n) in dB. The compression gain
G(i)(n) in dB is computed as:

G(i)(n) =−attno − (1−1/CR)(θlow − Ê(i)
c (n)), (3.4)

where:
Ê(i)

c (n) = max(θlow,(min(E(i)
c (n),θhigh)). (3.5)

θlow is the lower threshold set as (attno + 30) dB sound pressure level, and θhigh is set as
in the model. CR is the compression ratio which is 1.25 at 80 Hz and linearly increases
to 3.5 at 8 kHz for the normal hearing model. This compression behaviour is consistent
with the psychophysical estimates of dynamic-range compression in the human auditory
system (Moore et al., 1999b). Increasing outer-hair cell damage leads to the reduction of
compression ratio. The gain reduction Gmaxo is set as 14 dB for the compression ratio of
1.25 at 80 Hz, and as 50 dB for the compression ratio 3.5 at 8 kHz. The outer-hair cell
threshold is set as 1.25Gmaxo . If the hearing loss indicated by the audiogram is greater
than the outer-hair threshold, attno is set as Gmaxo and inner-hair cell loss attni is set as the
remaining loss. On the contrary, attno and attni are set as 80% and 20% of the total loss,
respectively. The compression gain G(i)(n) is then converted into the linear scale, and applied
to the corresponding output of the analysis filtering.

Envelope dB conversion

The compressed analysis envelope is converted into dB at this stage. The inner-cell hair loss
attenuation attni is then added to the converted envelope.

Objective function

The reference envelope E(i)
r (n) and processed envelope E(i)

p (n) processed by the normal
hearing and the hearing loss model, respectively, are smoothed using a 16 ms Hann window
with 50% overlapping over the time period I. Given the smoothed envelopes E(i)

r (m) and
E(i)

p (m), the objective function consists of a cepstral correlation measure function (Kates and
Arehart, 2014a) and an energy control function. A set of half-cosine basis functions b j(i) are
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used to compute the cepstral sequences:

C( j)
r (m) =

I

∑
i=1

b j(i)E
(i)
r (m), (3.6)

C( j)
p (m) =

I

∑
i=1

b j(i)E
(i)
p (m), (3.7)

where:
b j(i) = cos[( j−1)πi/(I −1)]. (3.8)

These basis functions are similar to the principal components for the short-time spectra
of speech (Zahorian and Rothenberg, 1981) and have been used for consonant and vowel
recognition (Nossair and Zahorian, 1991; Zahorian and Jagharghi, 1993). The normalised
correlation is then expressed as:

R( j) =
∑m=0C( j)

r (m)C( j)
p (m)√

∑m=0(C
( j)
r (m))2

√
∑m=0(C

( j)
p (m))2

. (3.9)

The final cepstral correlation is the average of R(2) to R(6).
To prevent the over-amplification of the trained hearing-aid processors, which brings

discomfort to listeners, an energy control loss is introduced to constrain the processed
envelope energy if it is higher than the corresponding reference envelope energy:

L(i)
e = ∑

m∈S
(E(i)

p (m)−E(i)
r (m)), (3.10)

where:
S = {m | E(i)

p (m)−E(i)
r (m)> 0}. (3.11)

Overall, the objective function used is expressed as:

L =−1
5

6

∑
j=2

R( j)+α ∑
i

L(i)
e , (3.12)

where α is the energy loss weight, which is tuned empirically.
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3.3.2 Experiments

Evaluation

HASPI is used to evaluate the performance of the proposed framework. HASPI is based
on the auditory model proposed by Kates (2013), and it is designed to predict the speech
intelligibility of hearing impaired listeners. The HASPI intelligibility score H is computed
as a linear combination followed by a nonlinear scaling function:

H =
1

1+ e−(14.817CC+4.616CB−9.047)
(3.13)

Both basilar membrane vibration (BMV) correlation CB, based on the temporal fine structures,
the rapid oscillations close to the center frequency, and cepstral correlation CC based on the
envelopes, slower amplitude modulations, respectively, are taken into consideration.

NAL-R prescription is used as the baseline system. It prescribes a gain frequency curve
given an audiogram. The hearing losses at [250, 500, 1000, 2000, 4000, 6000] Hz are used
for the frequency response derivation to be consistent with the proposed framework. A FIR
filter is then designed as the hearing aid processor given the frequency response curve.

Audiogram database

10 standard audiograms from Bisgaard et al. (2010), which cover a range of common
audiograms in clinical practice, are used to evaluate the proposed framework and are shown
in Figure 3.3 as the solid curves with crossing marks. N1 to N7 represent hearing impaired
listeners with flat and moderately sloping audiograms, and S1 to S3 represent the steep-
sloping group. The audiograms are ranked according to the hearing loss severity. As HASPI
has a maximum hearing loss limit, the audiograms used in this work are capped at a deficit
of 100 dB hearing loss.

Experimental setup

In the experiment of fitting optimisation for clean speech, DHASP is trained and evaluated
on the TIMIT dataset (Garofolo et al., 1993). The training set consists of utterances from 462
speakers while utterances from another 50 speakers are used as the validation set. Utterances
of the remaining 24 speakers are used as the final evaluation test set. In both training and
evaluation, the input signal is normalised so that its root mean square (RMS) amplitude
equals one and is regarded as 65 dB SPL to mimic everyday conversational speech. Utterance
segments of 0.5 seconds long are randomly sampled as the input signals during training. The
processors are trained with a batch size of 128 for 4000 epochs using the Adam optimiser
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Fig. 3.3 Frequency responses of the DHASP optimised and the NAL-R fittings for standard
audiograms for speech in quiet. Standard audiograms are presented as solid curves with cross
markers. The hearing losses are capped at 100 dB. The dashed and solid curves represented
the frequency responses of the NAL-R prescription filters and the trained DHASP filters,
respectively.

(Kingma and Ba, 2014) and a learning rate of 0.001. Six trainable parameters which represent
the frequency response gains of the processors at [250, 500, 1000, 2000, 4000, 6000] Hz
are optimised. The parameters are all initialised to 1 dB for audiograms N1 to N6 and S1 to
S3. For profound loss such as audiogram N7, the low gain initialisation leads to vanishing
gradients. Therefore the parameters are initialised to 50 dB in the experiment. The energy
loss coefficient α is set to 5e-5.

Fig. 3.4 HASPI intelligibility scores of the original, NAL-R processed, and DHASP processed
signals for speech in quiet. The error bars indicate the standard error of the mean utterance
intelligibility scores in the test dataset. The curves with the cross and triangle marks show
the corresponding cepstral correlation scores and the BMV correlation scores.
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3.3.3 Results

The frequency responses of the optimised filters by DHASP and the NAL-R prescription
filters are shown in Figure 3.4 as the solid and dashed curves, respectively. Across all the
standard audiograms the amplification provided by the optimised filters broadly follows the
frequency response patterns of the NAL-R filters. In general, the optimised filters amplify
the input signals more in the frequency region below 500 Hz. For audiograms with mild and
moderate high frequency loss (N1-N5), the proposed filters have higher gains in the high
frequency area. On the contrary, the proposed filters amplify less in the high frequency when
the loss is severe as shown in N6 and S2. As the information in the high frequency is almost
not recoverable due to the profound loss, the amplification in that area would not make a
significant difference. DHASP ensures stable convergence for the training of all audiograms,
while the convergence time increases along with the severity of the hearing loss.

Figure 3.3 shows the HASPI scores, including intelligibility scores H, cepstral correlation
CC and simulated BMV correlation CB, of the unprocessed original signals, NAL-R processed
signals, and DHASP-processed signals. Both processed signals had higher intelligibility
scores than the unprocessed signals. The filters optimised by the DHASP framework achieved
higher HASPI scores than the NAL-R prescription filters, with improvements significant
across all the audiogram conditions [paired t-test, p < .005]. With increased hearing loss
severity, the advantages of the proposed optimised processors are more significant compared
to the NAL-R prescription. The variation of the intelligibility scores across all the utterances
in the test dataset indicates that DHASP can achieve better performance with good consistency.
It is not surprising that the cepstral scores of the optimised filters are higher than the NAL-R
ones because the objective focuses on the envelope correlation. However, the optimised
filters also consistently achieve higher BMV correlation scores.

3.4 Fitting optimisation for noisy speech

This section focuses on the fitting optimisation for speech in different noisy environments
and the processed noisy speech by a common noise suppression algorithm. The differentiable
approximation to the MSBG model, and the design of the optimisation objective are firstly
explained in detail. The experimental setup is then presented, including the evaluation metrics
and the database. The experimental results are presented at the end.
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Fig. 3.5 Differentiable MSBG-based model.

3.4.1 Differentiable MSBG model-based objective

The MSBG model can be considered as a hearing impairment simulator, which consists of the
simulations of acoustic transformation between sound source and cochlea, spectral smearing,
and loudness recruitment. The structure of the model is shown in Figure 3.5. The hearing
loss model proposed in this work is a differentiable approximation to the MSBG model,
and the differences are in filter implementation and envelope retrieval. All infinite impulse
response (IIR) filters in the MSBG model are approximated with FIR filters, and Hilbert
transformation is used to extract the envelopes, so that the computation can be performed in
parallel for fast optimisation using GPUs.

Source to cochlea transformation

The transformation of the sound pressure level from a sound source to the cochlea is derived
from the combination of a free field and a middle ear transfer function. The free field transfer
function (Shaw, 1974) approximates the acoustic changes during sound propagation from
the free field to the eardrum. The middle ear transfer function (Killion, 1978) simulates the
acoustic alterations of sound in the middle- and inner-ear before arriving at the cochlea. The
overall transformation is implemented using an FIR filter, whose frequency response is the
combination of the free field and the middle ear frequency-gain tables.

Spectral smearing

Spectral smearing (Baer and Moore, 1993) is used in the hearing loss model to simulate
reduced frequency selectivity, which is one of the major deficits in the sound analysis ability
of cochlear hearing loss. Experimental results showed that this technique leads to little
effect on the intelligibility of speech in quiet, but a large effect on speech in noise (Baer and
Moore, 1993) or interfering speech (Baer and Moore, 1994). This is generally consistent
with the phenomenon that impaired frequency selectivity contributes largely to the difficulty
of understanding speech in noise for listeners with cochlea hearing loss.

Input waveform signals are first processed by STFT with Hamming windows. Smearing
is then performed to the power spectrogram, and the phase remains unchanged for iSTFT
after smearing. Given the input spectrogram X and the output spectrogram Y , the spectrum



46 Optimising Hearing Aid Fitting with the DHASP framework

smearing function is expressed as:

Y = A−1
N AW X , (3.14)

where AN and AW are the matrices representing the normal and the widened auditory filter-
banks, respectively. For each auditory filter within the filterbank, the form is given by:

W (g) = (1+ pg)exp(−pg), (3.15)

where W (g) is the intensity weighting function describing the filter shape in the frequency
domain, g is the frequency difference from the centre frequency fc divided by fc, and p is
the parameter determining the sharpness of the auditory filter (Moore and Glasberg, 1983).
The value of p is computed as:

p =
4 fc

r×ERB
, (3.16)

where ERB is the equivalent rectangular bandwidth (Glasberg and Moore, 1990) calculated as
24.7× (0.00437 fc+1), and the widening factor r differs for the lower and upper sides of the
filter, denoted as rl and ru, respectively. The values of rl and ru are dependent on the degree
of hearing loss. Each auditory filter is at last calibrated by dividing 24.7×ERB(rl + ru)/2
to remove an upward tilt in the excitation pattern, which is caused by the increase of the
bandwidth as the fc grows.

Loudness recruitment

It is observed that the response of a damaged cochlea to low-level sounds is much smaller
than a normal one, while the response to high-level sounds is roughly the same as normal
(Moore and Glasberg, 1993). This is simulated by a recruitment mechanism as stated below.

A group of gammatone filters are firstly used to extract the fine structures x(n) of the
smeared waveform signal. The ith filter h(i) of filterbank is expressed as:

h(i)(t) = A(i)t(N(i)−1)e−2πb(i)t cos
(

2π f (i)t
)
, (3.17)

where f (i) is the centre frequency, b(i) is the bandwidth computed as 1.019×ERB, N is the
order of the gammatone filter (4 in this study), and A(i) is the amplitude to normalise the
filters. The number of filters I differs according to the hearing abilities. The bandwidths of
the filters are broadened two or three times for moderate or moderate to severe hearing loss,
respectively. The outputs of the filters are aligned in the time domain to ensure the peaks
for all channels are coincident with a pulse input. This alignment will make the mixture of
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the outputs of the filters generally sound almost identical to the input signal. The envelope
E(n) of each channel is retrieved with Hilbert transformation followed by a group of low
pass filters for smoothing. The waveform output signal y(n) is then recruited as:

y(n) =
I

∑
i=1

(
E(i) (t)

Eθ

)( θ

θ−HL(i)
−1
)

x(i) (n) , (3.18)

where HL is the audiometric hearing loss in dB, θ is the maximal loudness threshold which
is set 105 dB, and Eθ is the corresponding envelope magnitude.

Cochlea-to-source transformation

The recruited signal is lastly processed by a cochlea-to-source transfer FIR filter, whose
frequency response is the additive inverse in dB of the frequency response of the source-to-
cochlea transformation filter.

Objective function

Given the simulated reference signal yr(n), i.e. the clean normal hearing signal, and the
processed hearing impaired signal yp(n), STFT is firstly applied to retrieve the correspond-
ing spectrograms Yr(m,k) and Yp(m,k). The objective function consists of a spectrogram
reconstruction loss Lspec and a sound pressure level loss Lspl . Lspec is expressed as:

Lspec = 20log10

(
1

mk ∑
m,k

∣∣Yp (m,k)−Yr (m,k)
∣∣) , (3.19)

and Lspl is computed as:

Lspl = 20log10

(√
1
n ∑

n
yp(n)2 −

√
1
n ∑

n
yr(n)2

)
. (3.20)

The overall objective function is expressed as:

L =

Lspec +αLspl, if Lspl ≥ 0

Lspec, otherwise
, (3.21)

where α is a weighting coefficient. Lspl is used to prevent over-amplification, which could
lead to listening discomfort for the listeners, and thus it is not applied if negative.
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3.4.2 Experiments

Evaluation

HASPI is used for the evaluation of the proposed optimised fittings within the DHASP
framework in terms of intelligibility improvement for hearing impaired listeners. In addition,
the hearing aid speech quality index (HASQI) (Kates and Arehart, 2014b), which is developed
based on the same physiological auditory model used in HASPI, is used to evaluate speech
quality. Also, segmental frequency weighted signal-to-noise (FWSNR) ratio is also used for
evaluation, and the implementation is from (Loizou, 2013). The FWSNRs are measured after
the amplified signals processed by the MSBG model.

The open-source NAL-R prescription is used as the baseline prescription, which is widely
recognised and more importantly tested in subjective experiments. To be consistent with
the HA processor, the derivation of the NAL-R frequency response is based on the hearing
losses at [250, 500, 1000, 2000, 4000, 6000] Hz. The Wiener filtering algorithm, popular
for noise suppression in hearing aids, is used in this work as the noise suppression front end.
Fittings optimised on clean data are regarded as the general fittings (G) that stay invariant for
all environments. Meanwhile, the custom fittings include the fittings optimised on noisy data
(Cn) and the fittings optimised on the Wiener filtering enhanced noisy data (Cw).

Database

Three standard audiograms (Bisgaard et al., 2010) that represent different hearing loss
categories are used in this study: N1 (mild hearing loss), N2 (moderate hearing loss), and N4
(moderate to severe hearing loss). Their hearing losses at different frequencies are shown in
Table 3.1.

Table 3.1 Hearing losses of the audiograms used in this study.

250 Hz 500 Hz 1 kHz 2 kHz 4 kHz 6 kHz

N1 10 dB 10 dB 10 dB 15 dB 30 dB 40 dB
N2 20 dB 20 dB 25 dB 35 dB 45 dB 50 dB
N4 55 dB 55 dB 55 dB 65 dB 75 dB 80 dB

The noisy speech corpus introduced by Valentini-Botinhao et al. (2016) is used, which
was mixed using speech utterances from the Voice Bank Corpus (Veaux et al., 2013), and
noises from the recordings of the first channel of the Demand database (Thiemann et al.,
2013). A set of 56 speakers is used for training, and another set of 28 speakers is divided
into the validation and test sets. There are around 400 utterances from each speaker. 10 types
of noises are mixed with the utterances, at the SNRs of 0, 5, 10, and 15 dB according to
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ITU-T P.56 standard (ITU-T, 1993). All signals are filtered with a high pass filter whose
cut-off frequency is 80 Hz to eliminate non-speech interference. Three categories of noises
are selected in the experiments: traffic, kitchen, and babble. The traffic noise and kitchen
noise are comparatively more stationary, and mainly distributed in low and high frequencies,
respectively. The babble noise is less stationary, and its spectrum overlaps clean speech.

Experimental setup

The Wiener filter implementation is based on the method proposed by Plapous et al. (2006).
The parameter setting in the differentiable hearing loss model is consistent with the MSBG
model. In the spectral smearing, [rl , ru] are set as [4.0, 2.0], [2.4, 1.6], and [1.6, 1.1]
for the moderate to severe, moderate, and mild hearing loss, respectively. In the loudness
recruitment, the gammatone filterbank consists of 36, 28, or 19 filters respectively for the
three types of hearing loss. The HA processors are trained with a batch size of 128 for 500
epochs using the Adam optimiser with a learning rate of 1e-2. The parameters are initialised
as the NAL-R fitting. The weighting coefficient in Eq. 3.21 is set to 5.

3.4.3 Results

Figure 3.6 shows the frequency responses of the optimised general (G) and custom (Cn, Cw)
fittings along with the baseline NAL-R prescription for the three hearing loss categories in
various noise conditions. First, it can be observed that in general, the frequency responses of
optimised fittings have higher gains in low and high frequencies and lower gains around 1 kHz
than the NAR-R prescription. This is broadly consistent with the results of subjective hearing
experiments reported in Mackersie et al. (2020) and the previous section. The subjective
experiments for hearing-aid self-fitting showed that hearing impaired listeners prefer higher
gain in high frequency, and lower gain around 1 kHz for speech in noise compared to the
NAL-NL2 fitting, which provides even more gain in low and high frequencies and less gain
in middle frequency than NAL-R.

Second, compared to the frequency responses of the processors optimised using noisy
data (Cn), those optimised using Wiener filtering denoised data (Cw) are more similar to
those optimised using clean data (G). This is expected as Wiener filtering is able to suppress
the noise to some extent. Among the three noise types, the kitchen noise energy is mainly
distributed in high frequencies, and thus the processors optimised in kitchen noise provide
more gain in low frequency and less gain in high frequency. On the contrary, the processors
optimised in traffic and babble noises, whose energy is mostly in low frequencies, show
more gain in high frequency and less in low frequency. It can also be observed that as the



50 Optimising Hearing Aid Fitting with the DHASP framework

Fig. 3.6 Frequency responses of NAL-R fitting, custom fittings optimised with noisy data
(Cn), custom fittings optimised with Wiener filtering enhanced noisy data (Cw), and the
general fittings (G) for different hearing losses.
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Table 3.2 Evaluation scores of various fittings applied to noisy speech before and after the
enhancement of Wiener filtering. N: NAL-R prescriptive fittings, G: optimised general
fittings, +W: using enhanced noisy speech by Wiener filtering, Cn: custom fittings optimised
on noisy data, Cw+W: custom fittings optimised on Wiener filtering enhanced noisy data
with Wiener filtering. The single best score in each group is indicated in bold.

N N+W G G+W Cn Cw+W

Traffic

N1
HASPI 0.92 0.93 0.92 0.95 0.93 0.95
HASQI 0.25 0.23 0.26 0.27 0.28 0.26
FWSNR 5.40 6.08 5.82 6.40 7.59 6.22

N2
HASPI 0.87 0.81 0.88 0.91 0.89 0.91
HASQI 0.18 0.13 0.20 0.19 0.21 0.19
FWSNR 5.63 6.00 7.08 6.31 7.61 6.30

N4
HASPI 0.21 0.16 0.52 0.40 0.52 0.39
HASQI 0.03 0.02 0.08 0.05 0.08 0.05
FWSNR 0.91 2.06 5.12 4.44 5.24 4.40

Kitchen

N1
HASPI 0.99 0.98 0.99 0.99 0.99 0.99
HASQI 0.42 0.30 0.42 0.35 0.44 0.35
FWSNR 9.54 8.77 7.42 8.65 10.71 8.76

N2
HASPI 0.97 0.91 0.98 0.98 0.98 0.98
HASQI 0.23 0.17 0.30 0.24 0.30 0.24
FWSNR 9.64 8.54 7.84 7.77 8.39 7.65

N4
HASPI 0.23 0.20 0.61 0.53 0.61 0.51
HASQI 0.03 0.03 0.08 0.07 0.08 0.07
FWSNR 1.86 2.21 6.55 5.71 6.63 5.65

Babble

N1
HASPI 0.68 0.65 0.66 0.67 0.68 0.67
HASQI 0.15 0.13 0.15 0.14 0.16 0.14
FWSNR 4.26 4.21 4.41 4.36 6.00 4.23

N2
HASPI 0.57 0.50 0.59 0.59 0.60 0.59
HASQI 0.11 0.08 0.12 0.10 0.12 0.10
FWSNR 4.35 4.07 5.38 4.35 5.48 4.24

N4
HASPI 0.13 0.09 0.31 0.24 0.30 0.23
HASQI 0.02 0.02 0.06 0.04 0.05 0.04
FWSNR 0.37 1.01 3.52 2.81 3.66 2.80
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hearing loss severity increases from N1 to N4, the differences among processors optimised
with different settings are smaller.

Table 3.2 presents the HASPI, HASQI, and FWSNR scores of the various fittings eval-
uated in this study. The optimised fittings specific to different listening environments and
noise-reduction processing outperform NAL-R in most of the evaluation scores. The improve-
ment over NAL-R is in general larger for more severe hearing loss than that for mild hearing
loss, but the benefit can be seen for all three listeners’ audiograms and across different noise
conditions. This shows there are potential advantages in listening-condition specific fittings
that can be learned using the proposed data-driven approach.

Comparing the scores between the optimised custom fittings and the general prescriptive
fittings, it is clear that the custom fittings produced higher FWSNRs than the general fittings
in all cases. The custom fittings also achieved overall higher or approximately equal HASPI
and HASQI scores than the general fittings for mild and moderate hearing losses. For
moderate to severe hearing loss in the babble noise condition, the general fitting scores are
marginally better than the custom fitting scores. This could be due to the fact that the custom
fittings provided overall higher insertion gain, and HASPI and HASQI are sensitive to signal
presentation level when the hearing threshold is high, i.e., when the hearing loss is more
severe.

It can also be seen that Wiener filtering does not lead to better performance for hearing
loss based on the objective evaluation. Our direct measurement without the hearing loss
model suggests that Wiener filtering can improve the SNR of noisy speech on average by
6.18, 8.62, and 5.06 dB for traffic, kitchen and babble noise, respectively. However, the
HASPI scores suggest that only listeners with mild and moderate hearing losses can gain
intelligibility benefits from Wiener filtering in the environment with traffic noise, where the
noise is relatively stationary and distributed in low frequencies. For more severe hearing
loss, or in the kitchen and babble noise, Wiener filtering did not improve the HASPI score.
The SNR improvement by Wiener filtering also did not translate into improvement to the
FWSNR in all the tested conditions. While it improves the FWSNR for NAL-R fittings in
traffic noise, there is no clear performance pattern for other noisy environments. Overall,
the objective experiments suggest the potential advantage of the custom hearing aid fitting
optimisation, while challenging the intelligibility benefit of Wiener filtering for environmental
noise suppression.
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3.5 Conclusions

This chapter presents the DHASP framework for hearing aid fitting optimisation with hearing
impaired models. The framework is fully differentiable, therefore can optimise the fittings
using a differentiable objective function with the back-propagation algorithm. FIR filters
are used to carry the amplification frequency responses with respect to different listeners’
audiograms, characteristics of the noise environments, and whether noise suppression al-
gorithms are being applied. The objective functions used in the DHASP are differentiable
approximations to widely-used auditory models which take hearing impairment into account.
The differentiable HASPI-based and MSBG model-based objective functions are used for
speech in quiet and noise, respectively. According to objective evaluation results, the hear-
ing aid amplification fittings optimised by the DHASP framework outperform the NAL-R
prescription processors given a range of standard audiograms.

It has been argued that a data-driven hearing aid fitting algorithm can be more flexible
than current prescribed fitting formulae. The objective evaluation results suggest that the
optimisation-based approach has the potential to outperform prescribed fittings, and that
noise-dependent optimisation is particularly promising, with the greatest benefits for mild
and moderate hearing losses. In addition, it is observed that the fittings optimised by two
different auditory-based models show similar patterns compared to the NAL-R prescriptive
fittings from the mild to the moderate to severe hearing losses, i.e., more amplification in the
low and high frequencies, and less amplification in the middle frequencies around 1000 Hz.

With the introduction of differentiable optimisation, DHASP has the potential to help
the further fine-tuning of the hearing aid fitting as well. Moreover, this framework can also
be used for the optimisation of more powerful models like deep neural networks due to
the differentiable characteristic. Therefore, it has the potential to help tackle various more
complex challenges, such as speech denoising and separation, for hearing impaired listeners.
In the next chapter, the DHASP framework incorporates a DNN for speech denoising to
enhance speech.





Chapter 4

Incorporating DNN-based Denoising into
the DHASP framework

4.1 Introduction

Hearing impairment is usually associated with the decreased sensitivity of sound loudness,
i.e., weak sounds can no longer trigger auditory neural activities and strong sounds trigger
less (Lesica, 2018). However, the incoming sound is not supposed to be lifted by the same
amount as the reduced hearing threshold, i.e., there are fewer dB between the quietest sound
that can be heard and the loudest sound that can be tolerated by a hearing impaired listener.
This is due to the decrease in the dynamic range, which is like having fewer bits available
in an audio signal. As a result, speech fidelity is going to be lost and thus difficult to be
understood, especially for those with severe hearing impairment.

The previous chapter introduces the usage of the DHASP framework to optimise hearing
aid amplification fitting. However, this is not sufficient to help hearing impaired listeners
understand speech in noise. Decreased sensitivity is an over-simplified understanding of
hearing impairment, which also reduces the frequency selectivity of auditory, causes temporal
smearing, and brings profound distortion to neural activity patterns. The detailed frequency
or temporal cues, and the undistorted neural activity patterns are important for sound source
localisation and separation. Consequently, hearing impaired listeners are more likely to fail
to understand speech in noisy scenes, i.e., when suffering from additional external distortions
such as environmental noise and reverberation.

For that reason, a denoising module that suppresses external distortion is equally impor-
tant as an amplification module for an ideal hearing aid. In fact, noise suppression has become
a popular feature of modern hearing aids. Even so, research has shown that many noise
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Fig. 4.1 Overall workflow of DHASP including a denoising module and an amplification
module.

reduction features provide only limited benefit on intelligibility improvement (Magnusson
et al., 2013), especially single channel noise suppression algorithms. In some situations,
noise suppression can improve the quality of speech but harms intelligibility (Brons et al.,
2014). Therefore, a denoising module that can significantly improve the intelligibility of
hearing impaired listeners for speech in noise is wanted for an ideal hearing aid.

Recently, multi-channel noise suppression systems have shown progressive improvement
in terms of intelligibility enhancement, as introduced in Section 2.2. These systems can
take good advantage of spatial cues to extract target speech. DNN-based multi-channel
systems have shown particularly significant improvement. Motivated by that, a DNN-based
multi-channel denoising module is included in the HA processor for noise suppression within
the DHASP framework in this chapter, as shown in Figure 4.1. It is worth noting that hearing
aids require real-time processing with a latency requirement below 10 ms, and most DNN
models take utterance-level inputs thus leading to high latency. Therefore, the proposed HA
processor is implemented to meet the requirement of an ideal low latency, i.e., the processor is
causal, and the output from the processor at the current sample does not use any information
from input samples more than 5 ms into the future. The proposed HA processor is validated
with a large-scale database from the first round Clarity Enhancement Challenge (CEC1)
(Graetzer et al., 2021).

4.2 Method

As presented in the HA processor block in Figure 4.1, a denoising module MD and an
amplification module MA need to be optimised for noise suppression and hearing loss
compensation. As a result, the approach proposed in this chapter is designed to optimise the
two modules in two separate optimisation stages. The overall workflow of the approach is
shown in Figure 4.2. In the first stage, MD is optimised with a signal-to-noise ratio (SNR)
loss for noise and reverberation suppression.
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Fig. 4.2 Overall workflow of the two-stage optimisation for the denoising and the amplifica-
tion modules. In the second stage, the denoising module can be jointly optimised together
with the amplification module.

In the second stage, a differentiable hearing loss model MHL is incorporated and MA

is optimised with an objective function consisting of an STOI loss (Taal et al., 2011) and
a loudness loss (Steinmetz and Reiss, 2021) for the compensation of hearing impairment.
This is similar to the approach introduced in Section 3.4, i.e., the optimised amplification is
dependent on not only the hearing impairment but also the denoising effect. Additionally, MD

can be jointly optimised in the second stage. All components are implemented with PyTorch
(Paszke et al., 2019), and the back-propagation algorithm is used to compute gradients for
the optimisation. MD, MA and MHL are described in this section.

4.2.1 Denoising module

The denoising module MD aims to suppress disturbances caused by both noise and speech
interferers. Conv-TasNet (Luo and Mesgarani, 2019) is an end-to-end convolutional time-
domain audio separation network and has shown its success for single-channel speech
separation and denoising tasks. In order to exploit the spatial information provided by
multi-channel signals in the Clarity Challenge, the multi-channel (MC) Conv-TasNet is used
in this work as MD. The MC-Conv-TasNet has been proven effective for a joint denoising,
dereverberation and separation task in terms of SNR and ASR recognition improvement
(Zhang et al., 2020). In this work, it is further validated for intelligibility improvement in a
more realistic environment setting with a larger SNR range.
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Fig. 4.3 Structure of MC-Conv-TasNet

The structure of MC-Conv-TasNet is shown in Figure 4.3. It incorporates a spectral
encoder, a spatial encoder, a separator and a decoder. Given a multi-channel noisy signal
x ∈ RC×T , where C is the number of channels and T is the number of signal samples, the
spectral encoder takes one channel as the input and maps segments of this channel x0 ∈R1×T

to high-dimensional features with a 1-D convolutional layer. Meanwhile, the spatial encoder
extracts the spatial information from x with a 2-D convolutional layer. Outputs of both
spectral and spatial encoders are utilised by the separator, which then computes a mask
for the target features. The separator consists of multiple 1-D convolutional blocks, which
include multiple 1-D convolutional layers, PReLU activations, normalisation layers, and
residual connections. Finally, the decoder reconstructs a single channel output ŷ ∈R1×T with
the estimated features provided by the separator.

Different from (Luo and Mesgarani, 2019; Zhang et al., 2020), SNR rather than scale-
invariant SNR (SI-SNR) is used as the objective, so that the signal level stays consistent as it
is critical for the down-streaming amplification. The SNR loss LD(y, ŷ) is expressed as:

LD(y, ŷ) =−10log10
∥y∥2

∥y− ŷ∥2 + τ∥y∥2

= 10log10
(
∥y− ŷ∥2 + τ∥y∥2)−10log10 ∥y∥2,

(4.1)

where ŷ and y are the estimated and reference signals, respectively, and τ = 10−SNRmax/10 is
a soft threshold preventing examples that are well denoised dominating the gradients within
a training batch (Wisdom et al., 2020). SNRmax is set to 30 dB according to Wisdom et al.
(2020).

4.2.2 Amplification module

The amplification module MA aims to implement individualised enhancement to the denoised
signals to maximise the intelligibility for the hearing impaired listeners. In this work, both
a Conv-TasNet and a finite impulse response (FIR) filter are compared as candidates to be
used as the amplification module. The structure of the amplification Conv-TasNet is roughly
consistent with the denoising MC-Conv-TasNet. The difference is that the amplification
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Conv-TasNet does not deploy a spatial encoder, as it takes the single channel output from
the denoising module as the input. The amplification FIR is the same as the processor in
the DHASP described in the previous chapter. The amplification module takes the denoised
signal ŷ ∈ R1×T as the input and produces the amplified signal ẑ ∈ R1×T .

STOI is used in the objective function as the target is to achieve maximal intelligibility.
A loudness constraint term is also included, otherwise, the signal could be over-amplified
as STOI is almost regardless of signal level. Specifically, STOI predicts intelligibility by
computing the cross correlation between the acoustic representations of the processed signal
and the reference signal. When amplifying the processed signal, more information can be
leaked after the processing of the hearing loss simulator. Therefore, a loudness constraint is
needed, and the objective function is expressed as:

LA(y, ẑ) =−STOI(y,MHL(ẑ))+α∥Γ(y)−Γ(MHL(ẑ))∥2, (4.2)

where α is a weighting coefficient, Γ is the loudness computing formula according to
ITU-R BS.1770-4 (Radiocommunication Sector of ITU, 2011), and MHL represents the
hearing loss the model which will be introduced in the next section.

4.2.3 Hearing loss model

The hearing loss model MHL used in this work is a differentiable approximation to the
MSBG model (Baer and Moore, 1993, 1994; Moore and Glasberg, 1993; Stone and Moore,
1999) released in the challenge, and the detailed approximation implementation explained
in the previous chapter. Different from the MSBG model, the differentiable hearing loss
model takes advantage of FIR filters and Hilbert transformation for fast parallel computing.
The model takes the audiogram of a listener as input, and simulates free field, middle- and
inner-ear transformation, spectral smearing, and loudness recruitment. For more details, see
Section 3.4.

4.3 Experimental setup

This section presents the detailed experimental settings to evaluate the proposed HA processor.
The database used in the CEC1 challenge (Graetzer et al., 2021) which provides simulated
domestic noisy environments is used in this work, and the results are retrieved from both
objective and subjective evaluations. The baseline systems include the CEC1 challenge
baseline with also a number of CEC1 participants. In addition, the detailed configuration of
the proposed HA processor is also introduced in this section.
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Fig. 4.4 An example scene in CEC1 database.

4.3.1 Overview of CEC1 Database

The CEC1 database provides a set of 10,000 simulated domestic scenes for hearing aid
speech processing. Each scene is a simulated room in a cuboid shape where there are a
target speaker, an interfering source, and a hearing impaired listener, as shown in Figure 4.41.
The simulated rooms are built with room impulse responses generated by the Real-time
framework of the Auralization of interactive Virtual ENvironments (RAVEN) (Schröder and
Vorländer, 2011). The target speech material contains British English sentences read by 40
readers, and each utterance consists of 7 to 10 words. For the interfering sources, half of the
scenes use a speech from the Open-source Multi-speaker Corpora of the English Accents
in the British Isles (Demirsahin et al., 2020) and the other half use domestic noises from
the Freesound (Font et al., 2013). In order to simulate the use of hearing aids, a group of

1Adopted from https://claritychallenge.org/docs/cec1/cec1_scenario
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head-related impulse responses are drawn from the OlHead-HRTF database (Denk et al.,
2018).

In each scene, the speech at the listener is firstly generated by convolving the target speech
with the binaural room impulse response, which is created in RAVEN and the head-related
impulse response from OlHead-HRTF. The speech is then mixed with a speech or noise
interferer with a specified speech-weighted SNR in the frequency domain. The SNRs for the
speech interferers are from 0 to 12 dB, and the SNRs for the noise interferers are from -6 to
6 dB. The SNR is calculated with respect to a specific setup. In detail, both speech and noise
before SNR calculation are convolved by a speech-weighted filter, and the overall SNR is
defined at the better ear. Additionally, the target speech always begins two seconds after the
start of the interferer.

Among the 10,000 simulated scenes provided in CEC1, 6,000 of which are used as the
training set (train), 2,500 are treated as the development set (dev), and 1,500 are used for
the final evaluation set (eval). Utterances from 24 speakers are selected for train, 10 for dev,
and 6 for eval. Each scene incorporates a six-channel noisy signal, which consists of the
front, mid, and rear microphone inputs for both the left and right ear, and a dual-channel
clean anechoic signal from the left and right ear positions. The sampling rate of the signals is
44.1 kHz.

Bilateral pure-tone audiograms are used to characterise listeners’ hearing abilities by
recording the hearing thresholds at [250, 500, 1000, 2000, 3000, 4000, 6000, 8000] Hz. 100
generated audiograms are provided in train and dev, and another 50 audiograms from real
listeners for the eval.

4.3.2 System setup

Denoising module

The network configuration of MD is described in this section. In general, the parameter
settings follow those used by Zhang et al. (2020). The signals are downsampled to 22.05 kHz
to be operated by the network. 256 and 128 filters are used in the spectral and spatial encoders,
respectively. The length of the encoder filters is 20 samples, and thus the latency is less than
1 ms as the network is configured causal. 256 and 512 channels are used in the bottleneck
1×1 convolutional block and the convolutional blocks, respectively. The kernel size in the
convolutional blocks is 3. 6 convolutional blocks with dilation factors of 1, 2, 4, ..., 32 are
repeated 4 times within the separator.

All six channels of noisy signals are used as the input of MD, and one channel of anechoic
signals is used as the reference (dependent on the left or right ear) for training. MD is trained
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for 200 epochs on 2-second long segments. Adam optimiser (Kingma and Ba, 2014) is used
for training with the initial learning rate of 1e-3. Gradient clipping with a maximum L2-norm
of 5 is applied. The convolution layers and layer normalisation in MD are implemented
causally. An NVIDIA Tesla V100 SXM2 GPU is used for training MD, and two modules
are trained in total for the left and right ear. In this work, MD is not jointly optimised in the
second stage, otherwise it can cause strong artefacts.

Amplification module

Both the Conv-TasNet and an FIR filter are selected to be optimised as the amplification
module, noted as MC

A and MF
A , respectively. As hearing losses cause complicated non-linear

degradation, MC
A is expected to provide such an amplification that can be a better fit to this

degradation. In contrast, MF
A is optimised to provide a simple and linear amplification which

processes signals with constraints, i.e., avoids distortion or artefacts. The configuration of
MC

A is consistent with MA, except for the number of separator convolutional blocks being
two. The implementation of MF

A is detailed described in the previous chapter, and the length
of the FIR filter is 882. The latency of MF

A used for evaluation is more than 5 ms, while we
further reduced the tap size of the FIR filter to 220 and the difference is minimal.

The single-channel output of MD is used as the input, and MA produces a single-channel
amplified signal for hearing loss compensation to each ear. The amplified signals are hard
clipped from -1 to 1 after amplification to meet the CEC1 rule, and then upsampled to
44.1 kHz for the processing of MHL. MC

A is trained for 50 epochs with the initial learning rate
of 1e-3 and MF

A is trained for 20 epochs with the learning rate of 5e-2.

4.3.3 Evaluation

The evaluation consists of an objective evaluation and a subjective evaluation, both conducted
by the Clarity challenge organisers. In the objective evaluation, each scene within the eval
set is evaluated with three audiograms. The combination of the MSBG hearing loss simulator
and MBSTOI is used as the evaluation metric. MBSTOI is an improved version of binaural
STOI, which is arguably the most widely used intelligibility evaluation metric. The detailed
description of MBSTOI can be seen in Section 2.3.3. An enhanced speech signal is first
processed by the MSBG model given the corresponding audiogram. The processed signal
and the corresponding clean reference signal are used to compute the MBSTOI score.

In the subjective evaluation, each scene within the eval set is evaluated by one hearing
impaired listener. For scenes with noise interferer, the listener is asked to follow the instruc-
tion: “In the speech in noise test, you will hear a sentence and a loud distracting noise (e.g.,
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Table 4.1 Overview of the systems submitted to CEC1.

System Beamforming DNN-based denoising Amplification

Žmolíková and Cernock (2021) MVDR Conv-TasNet DNN

Tammen et al. (2021) (a) wBLCMP DNN post-filter MBDRC

Tammen et al. (2021) (b) wBLCMP MBDRC

Yang et al. (2021) RLS adaptive MC-Conv-TasNet Linear equaliser

Moore et al. (2021) MVDR CAMFIT + AGC

Chen et al. (2021) DCCRN Dynamic equaliser

Kendrick (2021) U-Net Linear

Gajecki and Nogueira (2021) Binaural Conv-Tasnet

a washing machine). You need to repeat what the talker is saying." For scenes with speech
interferer, as the target speech always starts later than the interferer speech, the instruction
for the listener is: “In the two-talker test, you will hear two talkers speaking at the same time.
One talker will start later than the other. You must repeat what this second talker is saying."
The repeated speech by the listener is then transcribed by an ASR to retrieve the recognition
results, which are then compared with the reference prompt to calculate the percentage of the
correctly recognised words. Also, the listener responses and the corresponding prompt texts
need aligning before the correct words can be counted.

4.3.4 Baselines

CEC1 provides a baseline hearing aid implementation, which consists of the CAMFIT algo-
rithm (Moore et al., 1999a) and a configuration of the OpenMHA (Kayser et al., 2021) for a
behind-the-ear model. The CAMFIT provides the compression ratios for a multiband com-
pression system where the centre frequencies are at [177, 297, 500, 841, 1414, 2378, 4000,
6727] Hz. The OpenMHA configuration involves the multiband dynamic range compression
(MBDRC) plugin for hearing loss compensation and directional processing to improve the
SNR levels.

The approach described in this chapter has also been evaluated against the various other
systems that were submitted to CEC1. In general, all these systems can be broadly described
in terms of beamforming, DNN-based denoising and amplification. A brief overview of these
systems is presented in Table 4.1.

Žmolíková and Cernock (2021) proposed a system consisting of three parts: a beamform-
ing module, a post-enhancement DNN, and a listener-adjustment DNN. The beamforming
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module uses a minimum variance distortionless response beamformer to take advantage of
spatial cues of a multi-channel signal, with the time-frequency mask estimated by a complex
gaussian mixture model. The Conv-TasNet is used for post-enhancement with a multi-task
optimisation objective consisting of STOI, SNR and PMSQE (Martin-Donas et al., 2018).
The listener-adjustment DNN is an auxiliary network taking audiograms into consideration
and outputs the amplified signal for hearing loss compensation.

Similarly, Tammen et al. (2021) proposed a system consisting of (1) a weighted binaural
linearly constrained minimum power (wBLCMP) beamformer targeting at minimising output
power when ensuring the desired speech component undistorted, (2) a DNN-based minimum
variance distortionless response post-filter for further interferer suppression, (3) a multiband
compression for hearing loss compensation which is the same as the one in OpenMHA.
The full system is denoted as Tammen et al. (2021) (a); the system without the post-filter is
denoted as Tammen et al. (2021) (b).

Yang et al. (2021) also proposed to combine DNN and beamformer for intelligibility
improvement. A DNN-based single-channel speech enhancement is firstly trained with a
multi-resolution spectral loss (Wisdom et al., 2019). The DNN denoised single channel
signals are then used for recursive least squares (RLS) adaptive beamforming. In the
beamformer’s time-frequency space, the coefficients are amplified for the compensation
of hearing loss. It is worth noting that training of the system involves an on-the-fly data
augmentation by generating new scenes combining target speech and interfering sources
from different existing scenes in the original training dataset.

Moore et al. (2021) proposed a system without using DNN for noise suppression. A
binaural minimum variance distortionless response beamformer is used to improve SNRs.
Meanwhile, a broadband automatic gain control is used following linear hearing loss com-
pensation.

Moreover, Chen et al. (2021), Kendrick (2021) and Gajecki and Nogueira (2021) proposed
to use DNN-based systems for noise suppression. Chen et al. (2021) leveraged a deep complex
convolution recurrent network (DCCRN) for denoising followed by a weighted prediction
error filtering for dereverberation. Kendrick (2021) employed a convolutional U-Net for
denoising and a subsystem consisting of an amplification filter bank processor, a compressor
and soft clipping. Gajecki and Nogueira (2021) proposed to introduce attention layers to two
Conv-TasNet for binaural denoising.
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Table 4.2 Objective evaluation results. MD: MC-Conv-TasNet based denoising module; MC
A :

Conv-TasNet based amplification module; MF
A : FIR based amplification module.

Method
MBSTOI

Noise interferer Speech interferer

Žmolíková and Cernock (2021) 0.678 0.715
Moore et al. (2021) 0.653 0.676

Kendrick (2021) 0.639 0.701
Yang et al. (2021) 0.632 0.670

Tammen et al. (2021) (a) 0.611 0.636
Tammen et al. (2021) (b) 0.607 0.634

Chen et al. (2021) 0.524 0.521
Gajecki and Nogueira (2021) 0.481 0.549

Baseline 0.282 0.335

MD + MC
A 0.672 0.704

MD + MF
A 0.693 0.741

4.4 Results

4.4.1 Objective results

The results of MBSTOI objective evaluation are shown in Table 4.2. Both the denoising
effectiveness and the benefit of hearing loss compensation decide the MBSTOI scores of
the MSBG model processed signals. As the baseline system does not include a functional
noise suppression module, there is a large gap between its objective scores and those of
all CEC1 participants. Systems proposed by Chen et al. (2021) and Gajecki and Nogueira
(2021) manage to suppress interferers to some degree with DNNs to improve objective
evaluation scores significantly compared to the baseline. Meanwhile, systems consisting
of both beamformers and DNNs, i.e. those proposed by Tammen et al. (2021); Yang et al.
(2021); Žmolíková and Cernock (2021), can achieve better MBSTOI scores. It is worth
noting that pure beamforming system (Moore et al., 2021) obtain very competitive results,
though DNNs are usually considered to be able to bring more significant noise suppression.
The system proposed by Moore et al. (2021) can achieve very high MBSTOI scores thanks
to its denoising DNN and amplification subsystem.

The proposed systems can reach the top objective scores. It is worth noting that MF
A

performs overall the best in terms of both noise and speech interferers. As the FIR filter
has such a simple structure that could have better generalisation ability, it performs better
compared to deep neural network based MC

A .



66 Incorporating DNN-based Denoising into the DHASP framework

Table 4.3 Subjective evaluation results. MD: MC-Conv-TasNet based denoising module;
MF

A : FIR based amplification module.

Method
Correctness (per cent)

Noise interferer Speech interferer

Tammen et al. (2021) (b) 86.726 86.885
Yang et al. (2021) 85.532 4.444

Tammen et al. (2021) (a) 84.914 83.929
Moore et al. (2021) 83.613 82.895

Žmolíková and Cernock (2021) 75.424 81.498
Kendrick (2021) 72.222 77.778

Chen et al. (2021) 60.593 44.681
Baseline 33.202 51.152

MD + MF
A 80.426 82.432

Most CEC1 participating systems consist of a denoising module for interferer suppression
and an amplification module for hearing loss compensation. The system in Žmolíková and
Cernock (2021) and this work show that the amplification modules that are optimised with
approximated MSBG models help reach the top objective evaluations.

Also, the proposed system with MF
A reaches the highest MBSTOI scores, and the sys-

tem proposed by Žmolíková and Cernock (2021) with a DNN-based amplification module
achieves the second highest scores. Meanwhile, the proposed system with MC

A amplification
which is much more heavily parameterised reaches the third highest MBSTOI scores. This
suggests that the over-parameterisation of the amplification module, i.e. the optimised ampli-
fication module with a large number of parameters, can do harm to the performance on the
evaluation set.

The variance of the objective evaluation results achieved by the systems with only DNNs
for interferer suppression is larger than those with beamformers. This suggests that the
quality of the denoising module can be highly dependent on the DNN structures, training
techniques, etc. Meanwhile, beamformers can benefit from the CEC1 scenarios in which the
first two seconds of the signal contain only interferers, and the listeners, target sources and
interfering sources all are at fixed locations.

4.4.2 Subjective results

The subjective evaluation results are shown in Table 4.3. In general, systems proposed by
participants can significantly outperform the CEC1 baseline. Approaches with beamformers
can achieve top subjective results, while those using only DNN for denoising bring less
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Fig. 4.5 Subjective evaluation correctness of the proposed approach and the CEC1 baseline,
and average hearing thresholds of each listener. Subjective evaluation correctness of the
proposed approach and the CEC1 baseline, and average hearing thresholds of each listener.
The top panel presents the correctness of scenes with speech in noise interferers. The middle
panel presents the correctness of scenes with speech in speech interferers. The bottom figure
presents the average hearing loss (HL) across different frequencies and both ears of each
listener. In the top and middle panels, the regression lines of both the proposed and CEC1
baseline correctness are presented.
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Fig. 4.6 Box plots of subjective evaluation correctness against better-ear SNRs of the un-
processed scenes. The top rows presents the recognition correctness of scenes with speech
in noise interferers, and the bottom rows show those of scenes with speech plus speech
interferers. The median and mean correctness are shown in orange solid line and green
dashed line, respectively. The box represents the range from the lower to the upper quartile
of the correctness scores, and the whiskers extend to 1.5 times the interquartile range.
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intelligibility improvement. The ranking in terms of scenes with noise interferers is quite
consistent with that of scenes with speech interferers. The system proposed by Yang et al.
(2021) is an outlier achieving very low subjective scores for scenes with speech interferers.
The reason is that the recognition correctness of scenes with speech interferers can be heavily
biased, as the listeners are asked to repeat what the second talkers say, i.e., the target speech,
while the system of Yang et al. (2021) can completely eliminate the interfering speech
resulting in no second talkers appearing.

The overall rankings indicate the benefit of beamformers for subjective intelligibility
improvement. One major advantage of beamforming is the better utilisation of spatial clues
for noise suppression. The limits of the CEC1 scenes, i.e., the fixed first two seconds of
interferers and source and listener positions, make the task easier for beamformers. In
addition, DNNs usually bring more distortion, especially for low SNR signals, despite they
can suppress more noises. Therefore, the intelligibility of DNN-processed signals may
be more degraded compared to distortionless beamformers. This is also reflected by the
comparison between the two systems proposed in Tammen et al. (2021): the full system with
DNN post-filter gains a slight advantage in terms of MBSTOI scores but performs slightly
worse in the subjective evaluation.

Figure 4.5 presents the listening recognition correctness of the CEC1 baseline and the
proposed system MD + MF

A , and average hearing thresholds of each listener. The results of
the first six listeners, i.e., from p244 to p252, are conducted by normal hearing listeners and
not computed for the overall results shown in Table 4.3. For the scenes with noise interferers,
the proposed system with a DNN-based noise suppression module can bring a significant
improvement compared to the CEC1 baseline for all hearing impaired listeners. For the
scenes with speech interferers, only a limited number of hearing impaired listeners can not
gain benefit from the proposed system, which could be caused the listening test instruction
confusion, as the correctness of these listeners (p217, p219, p229, p239) is close to zero.

For the CEC1 baseline, it can be observed that the correctness decreases with the growth
of average hearing losses. This phenomenon is more significant for scenes with speech
interferers. Meanwhile, the correctness decreasing trend is not obvious for the proposed
system. This suggests that the proposed system can help gain more intelligibility improvement
for more severe hearing impaired listeners.

The subjective recognition performance along SNRs is shown in Figure 4.6. The SNRs
are those of raw signals, i.e., those without any processing. For both scenes with noise and
speech interferers, the proposed system can gain significant improvements, especially for
those with low SNRs. It can also be observed that the scenes with noise interferers in low
SNRs are not as intelligible as those with high SNRs with the enhancement of the proposed
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systems. However, recognition correctness distributions of scenes with speech interferers are
similar across all SNRs.

4.5 Conclusions

In this chapter, a DNN-based denoising module is included in the DHASP framework for
noise suppression. The amplification FIR filter is then optimised with the denoised signals
with the objective consisting of differentiable approximations to the MSBG hearing loss
model and STOI. The proposed hearing aid processor is validated in the CEC1. It achieves
the top performance in terms of objective evaluation, while not being as competitive for
subjective evaluation.

Meanwhile, beamformer-based systems stand out in the subjective evaluation thanks to
two major reasons: (1) beamformers introduce less external processing distortion compared to
DNNs; (2) the CEC1 scenes are static and a two-second non-target speech period is provided
in the beginning of a scene signal, thus it is easier for beamformers to take advantage
of spatial cues. Beamformers do not achieve high objective intelligibility scores as they
can preserve interferers, which does not necessarily degrade subjective intelligibility. The
reason for this difference is that it is typical for most intelligibility predictors, especially
intrusive ones, to consider the signal as ‘one source’ and measure the amount of distortion by
comparing the whole signal to the reference. However, this is only true when the listener
hears a signal as a single source and the difference appears as distortion artefacts. If the
cues for segregation are preserved for noisy speech, the listener can attend selectively to
the target speech, i.e., the interferer may cause some masking but this will be interpreted as
missing information rather than a mismatch. There is nothing much in MBSTOI and many
intelligibility measurements that really capture this. Therefore, there is a significant gap
between the objective and subjective evaluation results, and thus more accurate intelligibility
predictors are wanted for better development of speech enhancement algorithms, especially
for hearing aids.



Chapter 5

Intrusive Intelligibility Prediction with
ASR Hidden Representations

5.1 Introduction

Accurate objective speech intelligibility prediction plays an important role in the develop-
ment of hearing aids, because subjective listening experiments can be time-consuming and
expensive (Falk et al., 2015). Most approaches make predictions by comparing the acoustic
representations of reference and degraded speech signals. In Chapter 2, it was noted that
appropriate representations are crucial for accurate prediction. Although much progress has
been made in accurate intelligibility prediction, many proposed approaches fail for speech
processed by some enhancement models, particularly those that cause non-linear and non-
stationary distortions. One potential reason is that the hand-picked acoustic representations
of these approaches are usually not explicitly correlated with recognition.

The speech recognition performance of recent DNN-based ASR systems is approaching
that of humans, and more importantly, they have also shown similar patterns in speech
recognition performances, e.g. (Fontan et al., 2017; Schädler et al., 2015). Therefore,
it has been of interest to use DNN-based ASR for intelligibility prediction. Compared
to the acoustic representations proposed in the aforementioned intelligibility prediction
algorithms, hidden representations of DNN-based ASR are optimised to directly correlate
with recognition. In this chapter, these ASR hidden representations are used to measure
the similarity between a pair of degraded and reference speech signals, and the measured
similarity is regarded as an intelligibility predictor.

This chapter is organised as follows. Section 5.2 presents the extraction of ASR hidden
representations and the similarity measurement. Section 5.3 describes the experimental setup
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Fig. 5.1 A general framework for intrusive intelligibility prediction. The proposed approach
in this chapter uses an ASR model as the representation extractor.

including databases, model configuration, and evaluation metrics. The results and analyses
of two datasets are presented in Section 5.4 and Section 5.5. The last section summarises the
work in this chapter.

5.2 Similarities between ASR hidden representations

This section will describe how to leverage hidden representations from an ASR model for
intelligibility prediction. The majority of intrusive intelligibility prediction approaches fall
into a similar framework shown in Figure 5.1, such as STOI and HASPI. An acoustic repre-
sentation extractor is used to extract the representations of the processed speech signal x̂ and
its corresponding reference speech x. The similarity between the reference representations H
and processed representations Ĥ is measured and used to correlate to the intelligibility.

In this chapter, an ASR model is proposed to be used as the representation extractor for
intelligibility prediction. The ASR model based on transformer architectures (Vaswani et al.,
2017) has achieved great success recently and is used for hidden representation extraction. As
the hierarchy of such powerful transformer-based ASR models usually consists of multiple
levels, and the representations at different levels are differently expressive, the performances
of hidden representations at different levels within the ASR are also investigated. Since the
ASR model used in this work takes a single-channel speech signal as the input, the hidden
representation can thus only represent this single channel. In order to extend the proposed
approach to binaural signals, a better-ear policy is applied in the similarity computation,
i.e. regarding the larger score between the predicted left-ear and the right-ear similarities as
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the eventual intelligibility score. In this section, the ASR model will first be described in
detail. Then the different hidden representations investigated in this work will be introduced.
Finally, the similarity computation will be explained.

5.2.1 DNN-based ASR model

Figure 5.2 shows the architecture of the transformer-based ASR model used in this work.
It consists of a convolutional neural network (CNN) based PreNet (Han et al., 2020), a
transformer-based encoder, and a transformer-based decoder. The PreNet is a stack of
convolutional layers for a better understanding of global context. Both the encoder and
decoder are composed of a number of transformer blocks. Each encoder transformer block
consists of a multi-head self-attention sub-layer and a position-wise fully connected feed-
forward sub-layer (Vaswani et al., 2017). A residual connection and layer normalisation (Ba
et al., 2016) are applied to both sub-layers. In the multi-head attention sub-layer, the input
features are firstly mapped to query Q, key K with embedding length dk, and value V with
embedding length dv, and the attention mechanism is computed as:

Attention(Q,K,V ) = Softmax
(

QKT
√

dk

)
V. (5.1)

The projection and attention mechanisms are run in parallel multiple times, and the concate-
nation of attention outputs is then multiplied by a linear projection matrix. Compared to the
encoder transformer block, an extra multi-head attention sub-layer is inserted to perform the
attention mechanism on the encoder output features. In addition, a positional mask is used
in the decoder multi-head self-attention sub-layer to enforce that only the known previous
decoded outputs are dependent.

The ASR model is optimised with the joint CTC-attention mechanism (Kim et al., 2017),
i.e., a combination of Connectionist Temporal Classification (CTC) (Graves et al., 2006)
and attention-based sequence-to-sequence (seq2seq) (Chorowski et al., 2015). The CTC
leverages repeatable intermediate label representation and a special blank label for ASR
decoding, and the loss function can be expressed as:

LCTC =− log

 ∑
π∈β−1(l)

M

∏
m=1

P(zm
πm
)

 , (5.2)

where β is a function that removes repeated intermediate and blank labels, πm is the interme-
diate and blank label sequence, P(zm

πm
) is the probability of πm at time m, and l is the target

label sequence. The seq2seq loss function is the sum of divergences between the ground
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Fig. 5.2 ASR architecture and hidden representations at three different levels.

truth label zu and predicted token ẑu at u-th position in the transcript sequence:

Lseqseq = ∑
u

P(zu)(logP(zu)− logP(ẑu)). (5.3)

The overall loss function for ASR optimisation is:

L = λLCTC +(1−λ )Lseqseq, (5.4)

where λ is a predefined weighting coefficient.

5.2.2 Hidden representations

The transformer-based ASR model is hierarchical and consists of multiple DNN-based
blocks. The knowledge from different levels of the ASR model can be different, and thus
can produce different effects for intelligibility prediction. This study investigates three
hidden representations, as shown in Figure 5.2, including outputs of the CNN PreNet
H pre ∈ RT pre×dpre

, outputs of the transformer encoder Henc ∈ RT enc×denc
, and outputs of the

transformer decoder Hdec ∈ RT dec×ddec
. The PreNet representations H pre are viewed as
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low-level acoustic features. Meanwhile, the encoder representations henc can be viewed
as high-level acoustic representations, as ASR models using CTC decoding do not learn a
language model, and CTC output intermediate labels are independent from each other. In
contrast, the seq2seq decoder is usually considered as an internal language model (Meng et al.,
2021). Therefore, the decoder representations Hdec are viewed as hidden representations
with learnt language knowledge. Due to the structure of the transformer-based ASR model,
the length of PreNet and encoder representations are determined based on the input signals.
In contrast, the decoder representations have indeterminate lengths, which indicates that the
lengths of the processed and the reference representations can be different.

5.2.3 Similarity computation

The cosine similarity is used in this work to measure the similarity between two hidden
representations, as it is naturally well-scaled to the range from 0 to 1. Given a pair of hidden
representations at a single time step, h, ĥ ∈ Rd , the cosine similarity is computed as:

ρ = cos(h, ĥ) =
h · ĥ

∥h∥∥ĥ∥
, (5.5)

where ∥ · ∥ is the L2 norm. For PreNet and encoder representations, the reference and
processed representations of each time step are matched. The similarity at each time step
ρt for the binaural reference and processed representations is computed from the pair of
representations at this time step, i.e., ρt = cos(ht , ĥt). The overall similarity between the
reference and processed representations is computed as:

sim(H, Ĥ) =
1
T

T

∑
t=1

ρt . (5.6)

For decoder representations, the representations of the reference and processed signals
could have variable time steps, i.e., T , T̂ could be different. Therefore, for each pair of
sequences of decoder representations {H, Ĥ}, the fast dynamic time warping algorithm
proposed in (Salvador and Chan, 2007) is applied to find the warped path. The overall
similarity is computed as the similarity of the warped pair:

sim(H, Ĥ) = sim(Hw, Ĥw) =
1

Tw

Tw

∑
t=1

cos(Hw(t), Ĥw(t)), (5.7)

where Hw and Ĥw are the warped representations, Tw is the total time steps after warping.
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The similarity computation for single-channel signals are introduced above. For the bin-
aural signals, the better-ear policy is applied, i.e., the maximal similarity among the reference
and processed single channel pairs {hl, ĥl}, {hl, ĥr}, {hr, ĥl}, {hr, ĥr} at each time step is
selected as the overall similarity at this time step. For PreNet and encoder representations, the
overall similarity between the binaural reference and processed representations is therefore
computed as:

sim(Hbi, Ĥbi) =
1
T

T

∑
t=1

max
{

ρ
ll
t ,ρ

lr
t ,ρrl

t ,ρrr
t

}
. (5.8)

Similarly for the decoder representations, all four representations of the reference and
processed signals could have variable time steps, i.e., T l , T r, T̂ l , T̂ r could be different. And
the overall binaural similarity is then computed as:

sim(Hbi, Ĥbi) = max
{

sim(H l
w, Ĥ

l
w),sim(H l

w, Ĥ
r
w),sim(Hr

w, Ĥ
l
w),sim(Hr

w, Ĥ
r
w)

}
. (5.9)

5.3 Experimental setup

5.3.1 Databases

The experiments are conducted on two very different databases: the Noisy Grid corpus
(Barker and Cooke, 2007) and the first round Clarity Prediction Challenge (CPC1) corpus
(Barker et al., 2022). Both of them contain a large number of degraded speech signals and
their corresponding references, together with the recognition results of human listeners. The
listeners in the Noisy Grid corpus are normal hearing, whereas those in the CPC1 are hearing
impaired. Utterances in the Noisy Grid corpus are single-channel, and strictly controlled in
terms of speech material and noise levels. In addition, no speech enhancement is applied
to speech signals in the Noisy Grid corpus. In contrast, utterances in the CPC1 corpus are
binaural, and generated to simulate everyday domestic scenes. Furthermore, various speech
enhancement algorithms are applied to these utterances.

5.3.2 ASR configuration

The SpeechBrain (Ravanelli et al., 2021) LibriSpeech transformer ASR recipe is used in this
work. 80-channel log mel-filterbank coefficients are used as inputs with a 25 ms window with
a stride of 10 ms. The sampling rate of the input signals is 16k Hz covering the mel-filterbank
features from 0 to 8k Hz. The PreNet consists of three 2D convolutional layers, and the
encoder and the decoder consist of 12 and 6 transformer blocks, respectively. The weighting
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coefficient λ is set 0.3 for training, and 0.4 for decoding. The dimensions at the one-time
step for PreNet, encoder, and decoder hidden representations are 10 240, 768, and 768,
respectively.

The ASR model used for intelligibility prediction is from the SpeechBrain released model,
which is trained on the 960-hour LibriSpeech database (Panayotov et al., 2015). Therefore,
the model is of the knowledge for well-performed clean speech recognition. Furthermore,
the ASR model is finetuned on the experimental databases to incorporate the knowledge of
degraded speech. Unless stated otherwise, the ASR model is finetuned for ten epochs on the
training set. For the noisy Grid corpus, the inference of the ASR model is strictly constrained
within the Grid grammar, as was also the case for the listening experiments.

5.3.3 Evaluation

Three performance evaluation measures, including root mean square error (RMSE), nor-
malised cross-correlation coefficient (NCC), and Kendall’s Tau coefficient (KT), are exploited
as the evaluation metrics to measure the correlation between the predicted intelligibility and
the listener word correctness scores (WCS). The WCS is computed as the words that are
correctly recognised divided by the total number of words in an utterance, which is regarded
as a proxy for intelligibility. As the first two metrics RMSE and NCC could be invalid
for non-linear correlations, a logistic function f (x) = 1/[1+ exp(ax+b)] is applied to the
predicted intelligibility to examine the monotonic relation, following the conventions of
previous works, including Andersen et al. (2018a); Taal et al. (2011). Each database consists
of a training set, a development set, and an evaluation set. The ASR model is trained with
the data in the training set. The parameters a and b of the logistic function are optimised on
the development set. And the fitted predictions are evaluated on the evaluation set.

5.4 Monaural speech in SSN with normal hearing listeners

5.4.1 Corpus description

The Noisy Grid corpus is an extension to the original Grid corpus (Cooke et al., 2006) with
added speech-shaped noise (SSN) at 11 different SNR levels from -14 dB to 6 dB, plus one
at 40 dB. Each Grid utterance consists of six words following the structure of “command-
color-preposition-letter-digit-adverb", and the words are randomly selected within a limited
vocabulary of [4,4,4,25,10,4] words for each sentence location, respectively. The listeners
are asked to identify “color", “letter", and “digit" in the listening tests, therefore the WCS
for each utterance can only be [0,1/3,2/3,1]. In order to make the distribution of WCS
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Fig. 5.3 Scatter plot of the listener word correctness scores (WCS) distribution in the evalua-
tion set at different SNR levels. The opaqueness is correlated with the density.

relatively more continuous, the reported WCS is averaged over ten utterances at the same
SNR level. The added SSN is created by shaping Gaussian noise so that its long-term average
spectrum is the same as that of the average of speech signals within the clean Grid corpus.
The human listening results are conducted by 20 normal-hearing listeners. The original
database comprises utterances spoken by 34 speakers, and all the listening test results are
reported in Barker and Cooke (2007). In this work, the database is divided into the training
set for ASR optimisation consisting of the utterances from 22 speakers, the development set
consisting of the utterances from 6 speakers, and the evaluation set consisting of utterances
from 6 speakers. Figure 5.3 shows the listener WCS distribution at different SNR levels.

5.4.2 Baselines

A number of intrusive intelligibility predictors are used as the baselines in the experiment.
These baselines are all widely-used and well-recognised, and predict intelligibility by com-
paring a degraded speech signal and its corresponding reference signal. In addition, the ASR
recognition WCS is also used as one of the baselines. As in the proposed approach, the
intelligibility scores predicted by the baselines are fitted by a logistic function, and the fitting
parameters are optimised on the development set.
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Coherence speech intelligibility index

The coherence speech intelligibility index (CSII) (Kates and Arehart, 2005) is a widely-
used variant of the speech intelligibility index (SII). The CSII replaces the signal-to-noise
ratio (SNR) of each frequency band with the signal-to-distortion ratio (SDR). The SDR is
estimated with the coherence function, which is the correlation in the frequency domain.
Three values representing different amplitude levels of CSII, i.e. low-CSII, mid-CSII, and
high-CSII, are computed and linearly combined to achieve the overall prediction using the
coefficients in Kates and Arehart (2005).

Normalised covariance measure

The normalised covariance measure (NCM) (Goldsworthy and Greenberg, 2004) is an
improved version of the speech transmission index (STI) (Steeneken and Houtgast, 1980).
To measure the NCM, a group of band-pass filters is applied to both the degraded and the
reference signals to extract the temporal envelopes. The normalised covariance between the
degraded and reference envelope at each band is then measured and converted to an apparent
SNR. These SNR values are clipped, and at last combined subject to a band-wise weighting
function.

Short-time objective intelligibility measure

The short-time objective intelligibility (STOI) measure (Taal et al., 2011) takes advantage of
short-time temporal envelope segments with a duration of 386 ms, which is suggested as the
optimal duration for intelligibility prediction (Drullman et al., 1994; van den Brink, 1964).
The segments extracted from the degraded signals are normalised and clipped so that the
SDR is higher than 15 dB. The predicted intelligibility is computed as the mean of all the
NCC between the reference and degraded segments across both time and frequency bands.

Extended short-time objective intelligibility measure

The extended short-time objective intelligibility (ESTOI) measure was proposed in Jensen
and Taal (2016) to improve the performance of STOI in the situation where modulated noise
sources are present. The ESTOI computes the spectral correlation between the degraded
and reference signals, instead of the correlation of the envelope segments. In addition, the
clipping in STOI is removed.
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Table 5.1 Evaluation results on the Noisy Grid corpus in terms of RMSE, NCC, and KT. The
down arrow indicates the smaller the better, and the up arrows indicate otherwise.

RMSE ↓ NCC ↑ KT ↑

CSII 0.100 0.928 0.766
NCM 0.083 0.950 0.801
STOI 0.146 0.850 0.671
ESTOI 0.103 0.926 0.761
SIIB 0.131 0.877 0.691
HASPI 0.197 0.716 0.526
ASR WCS 0.139 0.854 0.697

PreNet representations 0.129 0.905 0.726
Encoder representations 0.129 0.915 0.747
Decoder representations 0.115 0.923 0.761

Speech intelligibility in bits

The speech intelligibility in bits (SIIB) (Van Kuyk et al., 2017) predicts intelligibility based
on information theory. A mutual information estimator is used to estimate the mutual
information in bits between the representations of the degraded and reference speech signals.
The representations are extracted by an auditory model that simulates both time and frequency
masking (Rhebergen et al., 2006; Slaney et al., 1993). The SIIB used in this work is the
modified version using a Gaussian channel proposed in Van Kuyk et al. (2018). As it is
suggested that the duration of input signals to SIIB should be larger than 20 seconds, the
Grid signals are all repeated 20 times and concatenated.

Hearing aid speech perception index

The hearing aid speech perception index (HASPI) version 2 (Kates and Arehart, 2021)
incorporates an elaborate auditory model, that can simulate hearing impairment, to extract
estimated envelopes of the degraded and reference signals. The cepstral coefficient corre-
lations at a number of modulation rates are then computed and averaged over a group of
basis functions. The results are then fed into an ensemble of neural networks to generate the
predicted intelligibility. As the listeners in the Noisy Grid corpus listening experiments are
normal hearing, the hearing thresholds input to HASPI are set as zeros.
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Fig. 5.4 Scatter plots of all intelligibility predictions on the Grid corpus evaluation set, along
with the logistic fitting functions.
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Fig. 5.5 RMSE and NCC of the intelligibility predictors at different SNRs. The dashed lines
represent the baseline approaches, and the solid lines represent the proposed ASR hidden
representation-based approaches.
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5.4.3 Results

It is observed that over 90% of utterances, whose SNRs are equal to or higher than 0 dB,
have perfect WCS in the listening tests. In order to even the distribution of the database, only
the results of utterances whose SNRs are lower than 0 dB are reported. The overall evalua-
tion results of the baselines and proposed ASR hidden representation-based intelligibility
predictors are listed in Table 5.1. Additionally, the scatter plots of the predictions against the
listeners’ recognition results are shown in Figure 5.4. Other than that, the RMSE and NCC
of the predictors at different SNRs are shown in Figure 5.5.

NCM performs the best in terms of all three evaluation metrics, followed by CSII.
Essentially, both these two approaches measure the SNRs at a number of frequency bands
and combined the SNRs subject to a frequency-weighted function. For speech degraded by
stationary noise, as is the case of Noisy Grid corpus, NCM and CSII with relatively simple
mechanisms can perform exceptionally well, thanks to the frequency-weighted functions,
which reflect the importance of different frequency bands to human speech perception.

ESTOI, which measures the spectral normalised correlation, can also make accurate
predictions, as it is proposed to improve the performance over STOI when speech is degraded
by modulated noise sources. Meanwhile, the mutual information-based SIIB, which estimates
how much information is shared between the clean reference signal produced by a speaker
and the degraded signal received by a listener, can also achieve competitive results. However,
HASPI performs poorly even though it incorporates a detailed auditory model. One reason
could be that the prediction of HASPI heavily relies on an ensemble of neural networks,
which are specifically optimised towards other intelligibility databases listed in Kates and
Arehart (2021) and do not generalise well to the Noisy Grid corpus.

Although the performance of ASR WCS is fairly competitive, it is outperformed by the
proposed ASR hidden representation-based approaches. This suggests that the similarities of
hidden representations can be a better predictor for speech intelligibility compared to ASR
recognition performance. By comparing the performance of different levels of representations,
it can be observed that high-level representations can support more accurate intelligibility
predictions. In addition, as shown in the scatter plots in Figure 5.4, the similarities between
the reference and degraded signals of higher-level representations are stronger. This indicates
that the ASR model can naturally extract the features that are closely related to recognition
with the growth of network depth.

It can be observed in Figure 5.5 that the RMSE values of most intelligibility predictors at
SNR levels equal to or higher than 0 dB are minimal, because both the predicted intelligibility
and human recognition results are almost perfect. It is also clear that there is a peak for
almost every predictor at the -8 dB SNR in terms of RMSE, because the listener WCS at
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-8 dB is most widely distributed as shown in Figure 5.3. In addition, there is a clear trend
that the RMSE values decline from -8 db to 0 dB, where the listener WCS clearly increases
and is distributed approximately in the range of 0.4 to 1.0. Interestingly, the RMSE of ASR
WCS is less affected by SNR levels. Despite the fact that the ASR WCS is similar to the
human WCS in low SNR ranges, it still makes recognition mistakes in high SNR ranges
where listeners can achieve almost perfect recognition performance.

For NCC at different SNR levels also shown in Figure 5.5, most approaches have slight
improvement from -14 dB to -2 dB. The sudden drops from 0 dB could be due to the ceiling
effect, i.e. the most listener WCS is 1 and the predictions can be noisily distributed slightly
smaller than 1. Apart from the poorly performing HASPI, ASR WCS is still an outlier in
terms of its NCC score. Its NCC is relatively flat across SNR levels for the same reason that
its RMSE scores are poorer in the high SNR range.

5.5 Processed binaural speech in domestic noise with hear-
ing impaired listeners

5.5.1 Corpus description

CPC1 (Barker et al., 2022) provides a large number of processed binaural speech signals
by machine learning hearing-aid systems and the corresponding responses from hearing
impaired listeners. Each signal represents a simulated mixture of a target speech and an
interfering noise within a simulated cuboid-shaped living room, enhanced by a hearing-aid
system given the audiogram (i.e., a pure-tone measure of hearing thresholds at different
frequencies) of a listener. Both the binaural processed signals and the corresponding anechoic
reference signals are provided. The ground truth intelligibility is presented as the listener
WCS. A total of 6 speakers, 10 hearing aid systems and 27 listeners are included.

The CPC1 includes two tracks: (1) closed-set, that is the listeners and systems in the
evaluation set are overlapped with those in the training data; (2) open-set, that is the systems
or listeners in the evaluation set are not included in the training data. For both tracks, the
scenes in the training data are split into 70% and 30% as a training set and a development set,
and the results on the evaluation data are reported. The experimental details can be found in
the CPC1 overview paper (Barker et al., 2022).
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Fig. 5.6 Intelligibility prediction for hearing impaired listeners with the MSBG hearing loss
simulator.

5.5.2 Baselines

The baseline approaches in the Noisy Grid corpus are also used as the baselines for CPC1.
However, most of these approaches cannot take hearing abilities into consideration and
can process only monaural signals. In order to simulate the hearing impairment of the
listeners, the Cambridge MSBG hearing loss simulator (Baer and Moore, 1993, 1994; Moore
and Glasberg, 1993; Stone and Moore, 1999) is applied to the processed speech signals
given listeners’ audiograms, as shown in Figure 5.6. For the purpose of leveraging binaural
information, a simple but effective better ear (BE) policy is used. Similarly to the binaural
setup introduced in Section 5.2.3, the maximal predicted intelligibility of the four pairs of
processed and reference signals, i.e., left processed and left reference, left processed and right
reference, right processed and left reference, right processed and right reference signal pairs,
is regarded as the overall prediction. Therefore, BE-CSII, BE-NCM, BE-STOI, BE-ESTOI,
and BE-SIIB can be used applied to CPC1 signals as the baselines. The combination of
MSBG simulation and BE is also applied to ASR recognition WCS, so that it can be used as
another baseline approach.

The aforementioned baselines leverage the MSBG model to simulate hearing impairment.
Meanwhile, HASPI itself incorporates a well-designed auditory model that simulates hearing
impairment. Therefore, the BE-HASPI can make intelligibility predictions for CPC1 binaural
speech given different audiograms. In addition, the CPC1 introduces its official baseline as
the combination of the MSBG hearing loss model and modified binaural STOI (MBSTOI)
(Andersen et al., 2018a). MBSTOI is the modified version of the deterministic binaural STOI
(Andersen et al., 2016) and can take advantage of binaural cues through an equalization-
cancellation stage (Durlach, 1972).
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Table 5.2 Evaluation results on both CPC1 closed-set and open-set in terms of RMSE, NCC,
and KT.

RMSE ↓ NCC ↑ KT ↑

Closed-set

BE-CSII 0.287 0.615 0.412
BE-NCM 0.289 0.607 0.388
BE-STOI 0.273 0.662 0.421
BE-ESTOI 0.253 0.719 0.446
BE-SIIB 0.303 0.566 0.364
MBSTOI 0.285 0.621 0.398
BE-HASPI 0.254 0.717 0.445
ASR WCS 0.250 0.729 0.523

PreNet representations 0.347 0.299 0.182
Encoder representations 0.237 0.758 0.487
Decoder representations 0.231 0.773 0.498

Open-set

BE-CSII 0.404 0.493 0.358
BE-NCM 0.308 0.580 0.409
BE-STOI 0.371 0.559 0.418
BE-ESTOI 0.294 0.640 0.466
BE-SIIB 0.336 0.521 0.387
MBSTOI 0.365 0.529 0.391
BE-HASPI 0.267 0.676 0.469
ASR WCS 0.250 0.723 0.534

PreNet representations 0.356 0.254 0.136
Encoder representations 0.241 0.751 0.534
Decoder representations 0.235 0.763 0.530
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Fig. 5.7 Scatter plots of all intelligibility predictions on the CPC1 closed-set evaluation set,
along with the logistic fitting functions.
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Fig. 5.8 Scatter plots of all intelligibility predictions on the CPC1 open-set evaluation set,
along with the logistic fitting functions.
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5.5.3 Results

ASR training

The training of the default ASR model starts from the pretrained model on the LibriSpeech1

(LS). Therefore, it has a detailed knowledge of clean speech. Furthermore, it is optimised
with the LS train-clean-100 set combined with noises from the training set in the first round
Clarity Enhancement Challenge (Graetzer et al., 2021) (CLS) for ten epochs. Finally, the
ASR model is optimised on the CPC1 training set for another ten epochs. In addition, the
MSBG hearing loss model is used to process the signals when training and testing on CPC1.

Overall results

Table 5.2 presents the performance of various baselines and the proposed ASR hidden
representation-based approaches. Figure 5.7 and Figure 5.8 show the listener WCS against
the predicted intelligibility by the baselines and proposed approaches with their correspond-
ing logistic mapping functions for the closed-set and open-set. Generally, the predicted
intelligibility is less accurate for the open-set, because neither the listener nor the speech
enhancement systems in the evaluation set are seen in the training set. Meanwhile, the
rankings for different approaches are similar for the closed- and open-set.

In contrast to the Grid corpus results, the performances of BE-NCM and BE-CSII are
not as competitive in the CPC1 database. Especially, BE-CSII performs the worst for the
open-set. The two classic approaches NCM and CSII are simple yet effective for speech
in stationary noises, but can fail to make accurate intelligibility predictions for speech in
complex environments and being processed by enhancement systems. This is not surprising
as they are designed for stationary degradation and a limited number of types of non-linear
processing.

On the contrary, BE-ESTOI shows relatively satisfactory results for the CPC1 database.
As ESTOI performs also well in the noisy Grid corpus as shown in Figure 5.1, it shows its
consistency in intelligibility prediction for very different speech signals. However, both BE-
STOI and MBSTOI fail to reach as competitive performances as ESTOI, and their evaluation
results on both closed- and open-sets are similar. This indicates the equalization-cancellation
stage in MBSTOI might not bring many benefits. The major difference between ESTOI and
STOI is that ESTOI computes the spectrally normalised correlation rather than the envelope
segment correlation. Therefore, the correlation between the reference and degraded signals
in the frequency domain can be more crucial to intelligibility prediction than in the time
domain.

1huggingface.co/speechbrain/asr-transformer-transformerlm-librispeech
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It can also be observed that BE-HASPI can make relatively accurate intelligibility pre-
dictions in the CPC1 database. Given that it performs very poorly in the noisy Grid corpus,
the contribution to the good CPC1 performance could be due to the incorporated elaborate
hearing loss model.

Both the results of the closed-set and open-set indicate that the proposed ASR high-
level hidden representations-based approach could outperform the baselines at intelligibility
prediction in terms of RMSE and NCC. The ASR WCS predictions are advantageous with
regard to KT because WCS is discrete, i.e., in which case tied pairs are more likely to appear.
Interestingly, the low-level representations from the PreNet can achieve even better results
than ASR WCS in the noisy Grid corpus, but perform poorly for CPC1. Between the two
high-level hidden representations, the decoder ones including language model knowledge
are better than the encoder ones which represent high-level acoustic features in terms of
RMSE and NCC, while the KT scores are close. It can also be observed in the scatter plots
that the similarities of the decoder representation are more spread than those of the encoder
representation, i.e., the similarity between a severely degraded speech signal and its reference
signal can be very low.

Data mismatch

For the purpose of further investigating the influence of data mismatch (i.e., different dis-
tribution of training and evaluation data) on ASR models for intelligibility prediction, four
different ASR models with different training data knowledge (LS, LS+CLS, LS+CPC1,
LS+CLS+CPC1) are probed. The MSBG model is used for all models as preprocessing for
hearing loss simulation. ASR models trained on CLS can be considered to have knowledge of
noisy speech, and those trained on CPC1 can be considered to have knowledge of hearing-aid
processed noisy speech. The correlations between the predicted intelligibility with decoder
representations and the ground truth WCS are shown in Table 5.3. The results show that
the ASR models trained with CPC1 training data (LS+CPC1, LS+CLS+CPC1) could make
optimal predictions, while the latter one is slightly better in terms of RMSE and NCC because
it has knowledge of noisy speech. Meanwhile, the ASR models with no knowledge of CPC1
data (LS, LS+CLS) could also achieve competitive results. It is worth noting that the ASR
model trained only on clean LS signals could still outperform the baseline system.

Hearing loss simulation

The influence of the MSBG hearing loss model is also investigated. The intelligibility
prediction results of ASR models trained on LS+CLS+CPC1 with and without the MSBG
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Table 5.3 Evaluation results on the closed-set of decoder representations from different ASR
models.

MSBG Training data RMSE ↓ NCC ↑ KT ↑

with

LS 0.264 0.692 0.449
LS+CLS 0.243 0.746 0.464
LS+CPC1 0.233 0.768 0.503
LS+CLS+CPC1 0.231 0.773 0.498

w/o LS+CLS+CPC1 0.234 0.767 0.476

model for hearing loss simulation are also shown in Table 5.3. The results indicate that the
MSBG hearing loss model can offer a slight advantage in hearing impaired intelligibility
prediction for the ASR hidden representations.

Listener- and system-wise correlation

The results of the listening experiments provided by CPC1 can be noisy, because of the
not strictly constrained speech materials, the large size vocabulary, etc. Therefore, both the
listener WCS and the predicted intelligibility scores are averaged on listeners and hearing-aid
systems for more conclusive analysis. The average listener WCS, the predicted intelligibility
from the baselines, and the proposed ASR hidden representation similarity from the ASR
trained on LS+CLS+CPC1 with the MSBG hearing loss model on different listeners and
hearing-aid systems with their corresponding error bars are shown in Figure 5.9a and Fig-
ure 5.9b. The listener- and system-wise evaluation results on the closed-set are measured and
shown in Table 5.4. It can be observed that BE-HASPI can perform exceptionally well for
both listener- and system-wise intelligibility prediction. This is opposite to its performance
on the noisy Grid corpus, which provides the WCS from normal hearing listeners. Therefore,
it is sensible to believe that the hearing loss simulation incorporated by HASPI is pretty
reliable. Meanwhile, the proposed decoder representation performs the best for system-wise
intelligibility prediction in terms of RMSE.

5.6 Conclusions

In this chapter, ASR hidden representations have been investigated for intelligibility predic-
tion. In detail, the similarity between hidden representations of a degraded speech signal
and its corresponding reference signal extracted by a DNN-based ASR model is regarded
as an intelligibility indicator. This proposed approach has shown its efficacy in the experi-
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Table 5.4 Listener- and system-wise evaluation results on the closed-set of predicted intelligi-
bility.

RMSE ↓ NCC ↑ KT ↑

Listener-wise

BE-CSII 0.072 0.575 0.356
BE-NCM 0.076 0.490 0.373
BE-STOI 0.073 0.541 0.373
BE-ESTOI 0.073 0.529 0.362
BE-SIIB 0.084 0.355 0.385
MBSTOI 0.078 0.412 0.299
BE-HASPI 0.070 0.593 0.425
ASR WCS 0.074 0.515 0.430

PreNet representations 0.087 -0.043 -0.002
Encoder representations 0.071 0.571 0.510
Decoder representations 0.073 0.540 0.459

System-wise

BE-CSII 0.146 0.801 0.644
BE-NCM 0.150 0.792 0.289
BE-STOI 0.130 0.846 0.289
BE-ESTOI 0.078 0.948 0.378
BE-SIIB 0.151 0.794 0.244
MBSTOI 0.147 0.798 0.244
BE-HASPI 0.062 0.984 0.778
ASR WCS 0.053 0.983 0.733

PreNet representations 0.229 0.342 0.022
Encoder representations 0.067 0.962 0.689
Decoder representations 0.049 0.982 0.733
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(a) Listener-wise

(b) System-wise

Fig. 5.9 Listener- and system-wise average intelligibility with standard errors on the closed-
set.
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ments on the noisy Grid corpus, which contains the responses of normal hearing listeners on
speech with additive stationary noises, and the CPC1 database, which contains the responses
of hearing impaired listeners on simulated domestic noisy speech processed by complex
enhancement algorithms.

The experimental results show that classic intelligibility prediction approaches NCM and
CSII can achieve the most accurate prediction for speech in stationary SSN, but they fail on
simulated domestic noisy speech with complex non-linear processing. Meanwhile, ESTOI,
the improved version of arguably the most widely used STOI, can achieve consistently
high performance on both databases. In addition, HASPI, which incorporates an elaborate
auditory model, is found that can make accurate intelligibility predictions for hearing impaired
listeners.

On the other hand, the proposed ASR hidden representation-based intelligibility pre-
diction can achieve competitive performance on the noisy Grid corpus, and the best on the
CPC1 database. In addition, the experimental results show it can be better than using ASR
recognition results for intelligibility prediction. Detailed analysis shows that the high-level
hidden representations, which also contain the language model knowledge, can achieve the
best performance.



Chapter 6

Non-intrusive Intelligibility Prediction
with Unsupervised ASR Uncertainty

6.1 Introduction

Accurate intelligibility prediction has always been of great interest for its importance in
developing speech enhancement-related applications. Intelligibility prediction is a naturally
unobtrusive task, i.e., when humans are judging whether a signal is intelligible or not, they
are not doing so with respect to some external reference. Meanwhile, when predicting
the intelligibility of a degraded speech signal, additional inputs, such as a corresponding
reference clean speech, and transcription of the degraded speech, are typically required as
seen in the previous chapter. However, these intrusive prediction approaches can be difficult
to be applied in real-world scenarios. In these scenarios, it can be expensive or impractical
to obtain additional inputs. Therefore, non-intrusive intelligibility prediction, which only
requires the degraded speech itself, has been a growing research topic.

Conventional non-intrusive intelligibility prediction takes advantage of acoustic features,
such as the speech to reverberation modulation energy ratio (SRMR) (Falk et al., 2010)
and the across-band envelope correlation metric (ABECm) (Chen, 2016b). These acoustic
features of degraded speech are observed to be correlated to intelligibility in certain scenarios
and thus be used for prediction. Different approaches have used different acoustic features,
for example, SRMR is based on reverberation characteristics, while ABECm uses the average
envelope correlation of adjacent bands. One major disadvantage of these methods is that the
application is usually limited to a certain scenario, e.g., SRMR is designed for reverberant and
dereverberated speech, and part of the ABECm foundation is based on the assumption that
these correlations are important for recognising noise-vocoded speech. Another group of non-
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intrusive approaches try to generate pseudo clean reference signals, and can be considered
as variants of intrusive prediction methods, such as Andersen et al. (2017), Sørensen et al.
(2017a), and Karbasi et al. (2016). A clean feature estimation model is usually constructed
and used to produce an estimated reference for computing STOI-like scores. Therefore,
clean signals are usually required to optimise the estimation model. Recently, a number of
data-driven methods are proposed, such as Andersen et al. (2018b); Sharma et al. (2016);
Zezario et al. (2020). These methods train a classification and regression tree or neural
networks to predict intelligibility from features of noisy signals, therefore requiring a number
of expensive human listening results or scores from intrusive predictors like STOI. These
approaches are limited by the quality of training data and the intrusive prediction results.

Apart from the aforementioned approaches, another promising candidate for non-intrusive
intelligibility prediction is to take advantage of ASR models, such as Holube and Kollmeier
(1996); Jürgens and Brand (2009); Karbasi et al. (2022); Spille et al. (2018a), given that
they can perform similarly to human speech recognition in terms of recognition patterns in
certain situations (Barker and Cooke, 2007; Fontan et al., 2017; Schädler et al., 2015). It is
natural that the recognition results of an ASR model can be used as an intelligibility predictor.
However, these approaches are not entirely non-intrusive as some forms of reference are
still used. For example, transcription is needed to calculate the recognition correctness,
and temporal alignment is needed if the task is phoneme recognition. Furthermore, the
recognition results are not necessarily a good prediction of speech intelligibility, e.g., an
ASR model can sometimes make a correct guess even if the intelligibility of the speech is
low. Therefore, non-intrusive ASR-based intelligibility models are desired.

Early non-intrusive ASR-based approaches turn to dynamic time warping ASR so that no
transcripts are needed (Holube and Kollmeier, 1996; Jürgens and Brand, 2009). Specifically,
representations of a test degraded speech signal extracted by a designed perception model are
compared with those of a number of prior template speeches. The minimal distance between
the test representations and template representations is used to correlate with intelligibility.
It is also found that the approach performs best when the test and prior speech material are
identical, which is then similar to intrusive prediction. Recently, there is growing attention
to leveraging ASR-derived measures for non-intrusive prediction. Roßbach et al. (2022)
exploited mean temporal distance to capture the temporal smearing effect (Hermansky et al.,
2013) in the phoneme posteriogram generated by an ASR model, and map the distance to
intelligibility. Karbasi et al. (2022) investigated a number of word-level posterior-related
measures for microscopic intelligibility prediction. These approaches optimised ASR-derived
features and optimised a mapping model with training data pairs, i.e., degraded speech
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features and human intelligibility scores, and can generalise the prediction ability to the
degraded speech in the evaluation.

Uncertainty of speech recognition is similar to the definition of speech intelligibility,
which can be characterised by the probability of correct word recognition (Allen, 1995).
Meanwhile, the ASR uncertainty is associated with the probability of models making cor-
rect predictions (Kalgaonkar et al., 2015). The uncertainty estimation is crucial for ASR
application as it can help improve robustness in critical tasks, i.e., it is extremely important
to assess reliability or probability of correctness for decisions made by ASR models (Jiang,
2005). A large number of recent ASR uncertainty estimation methods construct and opti-
mise an estimator on top of the original ASR model to predict the uncertainty of a given
utterance (Kalgaonkar et al., 2015; Ragni et al., 2018; Swarup et al., 2019). Recently, a
word-level ASR uncertainty estimation method is also proposed by Oneaţă et al. (2021).
Most approaches train the uncertainty estimation model with supervision, that is the ratio
of recognition mistakes made by an ASR model is needed. Meanwhile, a sequence-level
uncertainty estimation method for auto-regressive structured prediction tasks is proposed by
Malinin and Gales (2021).

Motivated by the connection between ASR uncertainty and speech intelligibility, this
chapter investigates how to estimate the uncertainty of an ASR model and correlate it to
intelligibility. The uncertainty of a model is typically estimated with supervision, i.e., to train
a model with the uncertainty labels, which are the human intelligibility scores in this work.
However, the supervised approaches share the same problem with data-driven intelligibility
prediction, which is the difficulty to obtain expensive human listening recognition labels.
Therefore, this chapter proposes an unsupervised ASR uncertainty estimation method, which
does not require intelligibility labels to make predictions. In addition, most ASR-based
approaches focus on word- or phoneme-level prediction, and are limited to matrix tests, i.e.,
limited vocabulary and grammar in the speech material. It is desirable to propose an ASR-
based approach that can perform well for sequence-level everyday speech. In this chapter,
an unsupervised sequence-level uncertainty estimation is formulated, and the estimated
uncertainty is used to correlate speech intelligibility. It is explored how accurately the ASR
uncertainty is able to model intelligibility, compared to a range of intelligibility predictors,
including not only non-intrusive approaches but also widely used intrusive approaches. The
experimental materials cover matrix speech with additive noises for normal hearing listeners,
and processed simulated speech in domestic noises for hearing impaired listeners.

This chapter is organised as follows. Section 6.2 presents the derivation of unsupervised
uncertainty estimation. Section 6.3 very briefly introduces the experimental setup which
is similar to that used in the previous chapter, allowing a better comparison of intrusive



98 Non-intrusive Intelligibility Prediction with Unsupervised ASR Uncertainty

Processed
speech

ASR1

ASR2

ASR3

ASRn

...
Ensemble Uncertainty

Predicted
intelligibility

Fig. 6.1 An ensemble of ASR models is used to estimate the uncertainty of a processed
speech, which is then used for intelligibility prediction.

vs non-intrusive approaches, using the Noisy Grid and CPC1 databases. The results and
analyses are presented in Section 6.4 and Section 6.5. The last section summarises the work
in this chapter.

6.2 Unsupervised ASR uncertainty estimation

In this section, it is described how two sequence-level ASR uncertainty measures, confidence
and entropy, are formulated using an ensemble method following the derivation in Malinin
and Gales (2021). The ensemble of models can be interpreted from a Bayesian perspective,
i.e., regarding model parameters θ as random variables and using a prior p(θ) to compute
the posterior p(θ |D) with a given dataset D. As Bayesian inference is usually intractable for
models like deep neural networks, it is possible to take advantage of an approximation q(θ)
to p(θ |D) with a family of models with different parameters (Hoffmann and Elster, 2021).
Monte-Carlo Dropout (Gal and Ghahramani, 2016) and Deep Ensembles (Lakshminarayanan
et al., 2017) are two major approaches to generating ensembles, and the latter approach is
exploited in this work. A brief overview of the proposed approach is shown in Figure 6.1. A
group of ASR models are ensembled to estimate the uncertainty given a processed speech,
and the estimated uncertainty is used to correlate with speech intelligibility.

6.2.1 Sequence-level uncertainty estimation

Given the ASR training dataset containing variable-length sequences of input acoustic
features {x1, . . . ,xN}= x ∈ X , and the corresponding transcript targets {y1, . . . ,yL}= y ∈ Y ,
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an ensemble of M ASR models {P(y|x;θ
(m))} can be trained to achieve the approximated

posterior q(θ). The sequence-level predictive posterior P(y|x,θ) can be computed as the
expectation of the ensemble:

P(y|x,θ) = Eq(θ)[P(y|x,θ)]≈
1
M

M

∑
m=1

P
(

y|x,θ (m)
)
, (6.1)

where θ
(m) ∼ q(θ)≈ p(θ |D). The sequence-level entropy H(y|x,θ) can be expressed as:

H(y|x,θ) = EP(y|x,θ)[− lnP(y|x,θ)] =− ∑
y∈Y

P(y|x,θ) lnP(y|x,θ). (6.2)

It is usually not possible to compute the posterior P(y|x,θ) as Y is an infinite set with
variable-length transcript sequences. However, an autoregressive ASR model could factorise
the posterior into a product of conditionals:

P(y|x,θ) =
L

∏
l=1

P(yl|y<l,x;θ),yl ∈ {ω1, . . . ,ωK}, (6.3)

where ω represents the byte-pair encoding (BPE) token, and K is the size of BPE vocabulary.
The BPE tokeniser is one of the popular subword-based tokenisation approaches, which
target compressing a very large vocabulary size and avoiding character-based tokenisation
that leads to very long sequences. The BPE tokenisation is designed to ensure that the most
commonly occurred words in the vocabulary are represented as a single token, while the
rarely appeared words are divided into more subword tokens. It is now widely used in ASR
tasks.

Confidence is usually considered as the maximum predicted probability, and the sequence-
level confidence CS in this work is regarded as a combination of token-level confidence. In
order to make a fair comparison of sequences with variable lengths, a length normalisation
rate is used (Cover, 1999), and CS is computed as:

CS = exp

[
1
L

ln
L

∑
l=1

max
1
M

M

∑
m=1

P(yl|y<l,x;θ
(m))

]
. (6.4)

Entropy computation is usually challenging as the expectations of y are practically
intractable, i.e., there are KL possible candidates for a L-length sequence yL, and a forward-
pass inference needs to be conducted for each hypothesis y. Meanwhile, beam-search in ASR
inference stage is able to provide high-quality hypotheses and can therefore be considered as
a form of importance-sampling that yields hypotheses from high-probability space. By using
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B top hypotheses within a beam, the approximated sequence-level entropy HS with simple
Monte-Carlo estimation can be computed as:

HS =−
B

∑
b=1

πb

L(b)
lnP(y(b)|x,θ),

πb =
exp 1

T lnP(y(b)|x,θ)
∑

B
k exp 1

T lnP(y(k)|x,θ)
,

(6.5)

where a calibration temperature T can be introduced to adjust the distribution of hypotheses,
and:

lnP(y(b)|x,θ) =
L(b)

∑
l(b)=1

ln
1
M

M

∑
m=1

P(y(b)l |y(b)<l ,x;θ
(m)). (6.6)

As higher entropy indicates more uncertainty, negative entropy is used to form a measure
that is correlated with intelligibility in this work.

6.2.2 Token-level ASR posterior

The ASR models used in this work are based on the transformer architecture (Vaswani et al.,
2017), which has shown impressive results recently. The model consists of a convolutional
neural network-based front-end, a transformer-based encoder, and a transformer-based
decoder. A mechanism combining the Connectionist Temporal Classification (CTC) and
attention-based sequence to sequence (seq2seq) is used for the optimisation Kim et al. (2017).
When estimating the uncertainty, the predictive posterior for each token is expressed as:

P(yl|y<l,x;θ
(m)) = λPCTC(yl|y<l,x;θ

(m))+(1−λ )Pseq2seq(yl|y<l,x;θ
(m)), (6.7)

where λ is a weighting coefficient.

6.3 Experimental setup

The experimental setup is roughly the same as described in Section 5.3. The two very different
databases Noisy Grid corpus (Barker and Cooke, 2007) and CPC1 (Barker et al., 2022)
corpus are used to evaluate the proposed ASR uncertainty-based non-intrusive approach. As
introduced before, the Noisy Grid corpus provides monaural utterances in speech-shaped
noises and the recognition results by normal hearing listeners. Meanwhile, the CPC1 corpus
provides a large number of binaural speech examples in simulated domestic environments
then processed by several speech enhancement models, and the responses from hearing
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impaired listeners. Both databases are divided into a training set, a development set, and an
evaluation set.

The ASR configuration and training are also identical to the ones used in the previous
chapter, i.e., the ASR architecture follows the SpeechBrain LibriSpeech transformer ASR
recipe (Ravanelli et al., 2021), and the ASR model is from the released model which is
pretrained on the 960-hour LibriSpeech dataset (Panayotov et al., 2015). For the purpose
of constructing an ensemble of ASR models, 6 models are finetuned on the training set of
the experimental databases. As a result, an ensemble of these 6 finetuned ASR models are
used for uncertainty estimation. Different random seeds are used for the training of these 6
models, i.e., the training process for example the order of loading data batches is different for
each model. In addition, the weighting coefficient λ is set to 0.4 with respect to the settings
in the recipe, and the temperature T and B the beam size are set 1 and 10, respectively. The
hyperparameter settings for uncertainty estimation are discussed for the CPC1 experiments.

As for evaluation metrics, RMSE, NCC, and KT are all included together with a logistic
fitting function f (x) = 1/[1+ exp(ax+b)], as RMSE and NCC are usually used for linear
correlation measure thus invalid for non-linear correlations. The fitting function is applied
to the uncertainty to predict the word correctness score of the listener responses, and the
parameters are tuned on the development set.

6.4 Monaural speech in SSN noise with normal hearing
listeners

6.4.1 Baselines

The performance of the novel approaches will be compared to a number of baselines. In the
previous chapter, NCM achieves the best intrusive performance in the Noisy Grid corpus,
thus selected as a baseline approach. Meanwhile, STOI and ESTOI are arguably the most
widely used intrusive approaches. In addition, one of the most classic non-intrusive predictor
SRMR is also used. The performances of the ASR WCS obtained from the ensemble of ASR
models, and the intrusive ASR hidden representation (HR) based proposed in the previous
are also reported for comparison.
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Fig. 6.2 Scatter plots of all intelligibility predictions on the Grid corpus evaluation set, along
with the logistic fitting functions.
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Table 6.1 Evaluation results on the Noisy Grid corpus in terms of RMSE, NCC, and KT.

RMSE ↓ NCC ↑ KT ↑

NCM 0.083 0.950 0.801
STOI 0.146 0.850 0.671
ESTOI 0.103 0.926 0.761
SRMR 0.150 0.851 0.661
ASR WCS 0.144 0.844 0.695
ASR HR 0.115 0.923 0.761

ASR Uncertainty CS 0.093 0.937 0.790
ASR Uncertainty −HS 0.094 0.936 0.791

6.4.2 Results

Overall results

Table 6.1 lists the evaluation results on the Noisy Grid test set. The results show that the
non-intrusive SRMR can achieve competitive performance close to the widely used STOI,
despite it not requiring a reference signal. Even so, it does not perform as well as other
intrusive approaches, including ESTOI, NCM, ASR WCS and ASR ASR. Meanwhile, the
ASR uncertainty based approaches can make more accurate predictions than most intrusive
approaches including ASR HR and ESTOI. Although there is a minor performance gap
between the ASR ASR uncertainty based approaches and NCM, the results are surprising
given that they are estimated with only the degraded speech signals. It can be observed that
the negative entropy performs overall slightly better than the confidence, but the difference is
very minimal.

Figure 6.2 shows the predicted intelligibility scores of NCM, STOI, ESTOI, SRMR, ASR
WCS, ASR HR, and the confidence and negative entropy from the ensemble of ASR models
along with their logistic mapping functions. It can be observed that SRMR generally fits
well for low intelligibility speech, while in the high listener WCS region, the data points are
dispersed. As SRMR is computed as the ratio between low and high frequency modulation,
this indicates that a low ratio is not a necessary condition to low intelligibility, i.e., some
speech can still be quite intelligible when the ratio is low. The ASR uncertainty measures, on
the contrary, fit very well for both low and highly intelligible speech signals.

Data mismatch

The influence of data mismatch, i.e., the distribution gap between the ASR training data and
evaluation data, is also investigated. Four ensembles consisting of ASR models trained with
different training data are used: (1) ASR models trained only on clean LibriSpeech (LS);
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Table 6.2 Evaluation results on ASR ensembles trained by different training databases.

Training data Measure RMSE ↓ NCC ↑ KT ↑

LS
CS 0.172 0.762 0.572
−HS 0.166 0.788 0.595
WCS 0.206 0.607 0.440

CGrid
CS 0.224 0.521 0.329
−HS 0.235 0.444 0.302

ASR WCS 0.148 0.825 0.650

DGrid
CS 0.098 0.925 0.767
−HS 0.099 0.924 0.768

ASR WCS 0.115 0.901 0.754

NGrid
CS 0.093 0.937 0.790
−HS 0.094 0.936 0.791

ASR WCS 0.144 0.844 0.695

(2) LibriSpeech pretrained models finetuned on Clean Grid corpus (CGrid); (3) LibriSpeech
pretrained models finetuned on clean Grid corpus mixed with DEMAND noise (Thiemann
et al., 2013) (DGrid); (4) LibriSpeech pretrained models finetuned on Noisy Grid speech.

The results of Noisy Grid test set for each ensemble of ASR models are shown in
Table 6.2. It shows that a stronger prior knowledge of the test data, i.e., closer training
and evaluation data distribution, leads to a higher correlation between ASR uncertainty and
speech intelligibility based on the results of CGrid, DGrid, and NGrid. However, it can be
observed that when the ASR models have no knowledge of the noisy signals, the confidence
and negative entropy of LS finetuned ensemble could outperform the CGrid ensemble. It is
also worth noting that ASR models optimised on DGrid, i.e., different types of noises from
the Noisy Grid test set, could also produce competitive results.

6.5 Processed binaural speech in domestic noise with hear-
ing impaired listeners

6.5.1 Baselines

The proposed approach is also compared against a number of existing intrusive and non-
intrusive baselines for the CPC1 database. In the previous chapter, ASR HR shows the
overall best performance and is included here as one of the intrusive baselines. ASR WCS
is also used for comparison. Other than those, two well-performing intrusive approaches
BE-ESTOI and BE-HASPI are considered, as BE-ESTOI shows accurate prediction ability
and BE-HASPI incorporates an elaborate hearing loss model. In addition, MBSTOI, which
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is the baseline system of CPC1, is used as another baseline system as it can take better
advantage of binaural cues. These approaches leverage the MSBG model to simulate the
effect of hearing hearing as a front-end loss except for BE-HASPI.

For the non-intrusive baselines, SRMR is included as it is one of the most representative
conventional approaches based on prior knowledge of acoustic features. Similarly to BE-
ESTOI and BE-HASPI, the better-ear policy is applied to accommodate binaural information.
In addition, three non-intrusive approaches in the CPC1 are taken into consideration. Roßbach
et al. (2022) proposed to leverage the mean temporal distance of triphone posteriogram
generated by an ASR to predict intelligibility, which is similar to the work proposed in
Martinez et al. (2022). It is worth noting that the training material for the ASR is a large
simulated noisy German speech corpus. The other two approaches (Close et al., 2022; Zezario
et al., 2022) are data-driven. In detail, Zezario et al. (2022) proposed to use a DNN to learn
the mapping from cross-domain features to listener WCS. The cross-domain features include
STFT processed spectrogram, learnable filter bank extracted features (Ravanelli and Bengio,
2018), and latent representations extracted by a large-scale self-supervised model WavLM
(Chen et al., 2022). The WavLM is also trainable during the training of the DNN. Similarly,
Close et al. (2022) proposed to train a prediction DNN to fit the normalised spectrogram to
listener WCS.

6.5.2 Results

Overall results

The overall results of the CPC1 closed- and open-set are shown in Table 6.3. For the
closed-set, the ASR uncertainty measures can achieve the performance very close to the
best performing intrusive approach ASR HR, and surpass all the other intrusive predictors
in terms of RMSE and NCC. ASR WCS performs the best with regard to KT as WCS are
discrete, i.e., tied pairs are more likely to appear.

Meanwhile, the ASR uncertainty measures still stand out among non-intrusive approaches.
They largely outperform the conventional acoustic feature-based BE-SRMR. The ASR-
based approach proposed in Roßbach et al. (2022) also does not perform as well as the
ASR uncertainty. As the training material is German and the predictor is based on the
triphone posteriogram, the intelligibility predictor does not have access to language-specific
information. This is consistent with the finding in the previous chapter, that an intelligibility
predictor can be more accurate if the language information is taken into consideration, i.e.
the decoder hidden representation is better than the high-level encoder hidden representation
for intelligibility estimation. The data-driven approach proposed in Zezario et al. (2022)
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Table 6.3 Evaluation between the listening results WCS and predicted intelligibility measures
on CPC1 evaluation set.

RMSE ↓ NCC ↑ KT ↑

Closed-set

Intrusive

BE-ESTOI 0.253 0.719 0.446
BE-HASPI 0.254 0.717 0.445
MBSTOI 0.285 0.621 0.398
ASR WCS 0.249 0.731 0.526
ASR HR 0.231 0.773 0.498

Non-intrusive

BE-SRMR 0.354 0.244 0.152
Close et al. (2022) 0.334 0.43 -
Roßbach et al. (2022) 0.259 0.70 -
Zezario et al. (2022) 0.231 0.78 -
ASR Uncertainty CS 0.234 0.767 0.497
ASR Uncertainty −HS 0.233 0.768 0.499

Open-set

Intrusive

BE-ESTOI 0.294 0.640 0.466
BE-HASPI 0.267 0.676 0.469
MBSTOI 0.365 0.529 0.391
ASR WCS 0.253 0.717 0.530
ASR HR 0.235 0.763 0.530

Non-intrusive

BE-SRMR 0.358 0.213 0.116
Roßbach et al. (2022) 0.321 0.54 -
Zezario et al. (2022) 0.244 0.75 -
ASR Uncertainty CS 0.248 0.729 0.512
ASR Uncertainty −HS 0.246 0.734 0.512
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Table 6.4 Listener- and system-wise evaluation results on the closed-set of predicted intelligi-
bility.

RMSE ↓ NCC ↑ KT ↑

Listener-wise

Intrusive
BE-HASPI 0.070 0.593 0.425
ASR WCS 0.074 0.515 0.430
ASR HR 0.073 0.540 0.459

Non-intrusive
BE-SRMR 0.082 0.274 0.322
ASR Uncertainty CS 0.074 0.526 0.459
ASR Uncertainty −HS 0.074 0.495 0.425

System-wise

Intrusive
BE-HASPI 0.062 0.984 0.778
ASR WCS 0.053 0.983 0.733
ASR HR 0.049 0.982 0.733

Non-intrusive
BE-SRMR 0.219 0.463 0.111
ASR Uncertainty CS 0.052 0.979 0.733
ASR Uncertainty −HS 0.054 0.975 0.733

can achieve the best performance in the closed-set thanks to the knowledge provided by the
large-scale self-supervised pretrained model WavLM. Other than that, it does require the
listener WCS label to train the model.

The results on the open-set are similar those on the closed-set. It is worth noting that the
top performing non-intrusive approaches have a larger performance drop compared to the
ASR HR. This indicates that the performance of non-intrusive approaches is more sensitive
to the mismatch gap between the training and evaluation data.

Unlike the results in the Noisy Grid database, the intelligibility prediction accuracy of
the confidence is slightly lower than negative entropy. As the CPC1 speech material is
much more complicated, i.e., the speech material has a larger vocabulary, the degradation is
simulated with domestic noises and room impulse responses, and non-linear processing by
various DNN-based speech enhancement, the entropy can reflect the uncertainty better than
confidence.

Listener- and system-wise correlation

As the CPC1 listener recognition results can be noisy, the average intelligibility prediction
accuracy over different listeners and systems is investigated. The listener- and system-wise
correlation results are shown in Table 6.4. As shown in the previous chapter, BE-HASPI can
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Table 6.5 Evaluation results on the closed-set of different ensembles of ASR models trained
on different databases, and with or without using MSBG hearing loss simulation.

MSBG Training data Measure RMSE ↓ NCC ↑ KT ↑

with

LS

ASR WCS 0.269 0.674 0.455
ASR HR 0.264 0.692 0.449

ASR Uncertainty CS 0.283 0.630 0.426
ASR Uncertainty −HS 0.278 0.646 0.423

LS+CLS

ASR WCS 0.244 0.742 0.503
ASR HR 0.243 0.746 0.464

ASR Uncertainty CS 0.250 0.731 0.444
ASR Uncertainty −HS 0.245 0.738 0.446

LS+CPC1

ASR WCS 0.248 0.735 0.527
ASR HR 0.233 0.768 0.503

ASR Uncertainty CS 0.236 0.764 0.504
ASR Uncertainty −HS 0.233 0.768 0.505

LS+CLS+CPC1

ASR WCS 0.249 0.731 0.526
ASR HR 0.231 0.773 0.498

ASR Uncertainty CS 0.234 0.767 0.497
ASR Uncertainty −HS 0.233 0.768 0.499

w/o LS+CLS+CPC1

ASR WCS 0.249 0.730 0.525
ASR HR 0.234 0.767 0.476

ASR Uncertainty CS 0.241 0.751 0.472
ASR Uncertainty −HS 0.239 0.754 0.477

achieve the most accurate listener-wise prediction in terms of RMSE and NCC, thanks to
its elaborate hearing loss model. Meanwhile, the ASR confidence achieves slightly worse
results than the intrusive ASR HR-based approach, but better than ASR WCS and BE-SRMR.
Though the ASR negative entropy prediction is the same as confidence with regard to RMSE,
the NCC and KT evaluations are not as good.

For the system-wise evaluation results, it can be observed that all ASR-based approaches
perform well concerning RMSE, and approaching BE-HASPI concerning NCC and KT. The
ASR confidence is slightly better than the negative entropy, and both of them can achieve
similar results to the intrusive ASR HR-based prediction.

Data mismatch

Motivated by the performance gap between the CPC1 closed- and open-set, the influence
of the mismatch between the training and evaluation data is explored. Four ensembles of
ASR models: (1) trained by only clean LibriSpeech speech (LS), (2) LS pretrained then
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finetuned with noisy LibriSpeech mixed with Clarity noise (LS+CLS), (3) LS pretrained
then finetuned with CPC1 databases (LS+CPC1), (4) LS+CLS trained then finetuned with
CPC1 databases (LS+CLS+CPC1), are used for uncertainty estimation in the closed-set. All
four ensembles are strong models of clean speech recognition as they are all pretrained with
LibriSpeech. CLS represents the data distribution of noisy speech, and CPC1 represents
the data distribution of noisy speech processed by various hearing aid algorithms. Table 6.5
presents the results of the four ASR-based approaches.

For ASR HR and uncertainty based approaches, it is clear that the performance improves
when the training data is more similar to the evaluation data, i.e., the ASR ensembles trained
with CPC1 are better than the ensemble trained with only CLS, and the CLS trained ensemble
performs better than only LS trained ensemble. However, this is not the case for ASR
WCS-based prediction, whose best performance is achieved when the ensemble of ASR
models is trained with LS+CLS.

In general, the intrusive ASR HR-based approach could make more accurate predictions
than the non-intrusive ASR uncertainty-based ones when the training data is the same. In
spite of that, the performance gap is quite small when CPC1 is used for training. This
indicates that despite the non-intrusive uncertainty approaches being not as generalisable as
intrusive HR, they can still make very accurate intelligibility predictions. It is also worth
mentioning that when the training data is significantly different from the evaluation data, the
ASR uncertainty measures perform worse than ASR. This pattern can also be observed in the
Noisy Grid results, i.e. when the ensemble of ASR models is trained with CGrid or LS.

Hearing loss simulation

The influence of the MSBG hearing loss model is also investigated and the results are shown
in Table 6.2. The performance of the ensemble of ASR models trained on LS+CLS+CPC1
with and without the MSBG model for hearing loss simulation is presented. The uncertainty
measures can gain more advantages with the MSBG model, compared to the HR-based
prediction. This could be due to the ceiling effect, as the CPC1 listening results are quite
noisy and the ASR HR approach has already achieved very top performance, thus does not
have enough room for further improvement.

Hyperparameters for uncertainty estimation

The influence of three major hyperparameters for uncertainty estimation is investigated with
CPC1 database, including the ensemble size, temperature, and TopK beam size. The results
are shown in Table 6.6. Ideally, the estimated uncertainty should be more accurate with the
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Table 6.6 The effect of tuning uncertainty estimation hyperparameters on system performance
as measured by RMSE, NCC and KT. Results are shown separately for the confidence-based
(Cs) and entropy-based (−Hs) uncertainty estimates.

Hyperparameter Measure RMSE ↓ NCC ↑ KT ↑

Ensemble size

1
CS 0.233 0.769 0.497
−HS 0.233 0.769 0.499

3
CS 0.233 0.768 0.498
−HS 0.233 0.769 0.500

6
CS 0.234 0.767 0.497
−HS 0.233 0.768 0.499

Temperature

0.1
CS 0.238 0.756 0.491
−HS 0.237 0.758 0.492

0.5
CS 0.235 0.764 0.495
−HS 0.235 0.763 0.496

1
CS 0.234 0.767 0.497
−HS 0.233 0.768 0.499

1.5
CS 0.236 0.764 0.485
−HS 0.235 0.764 0.490

2
CS 0.236 0.763 0.482
−HS 0.236 0.761 0.486

Beam size

5 −HS 0.233 0.768 0.499

10 −HS 0.233 0.768 0.499

15 −HS 0.233 0.768 0.499

20 −HS 0.233 0.768 0.499

50 −HS 0.233 0.769 0.500
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increase in ensemble size. However, the intelligibility prediction does not gain benefit from
using only one ASR model to using six models as an ensemble. All the ASR models are
finetuned for only ten epochs from the same LS trained model, and the CPC1 database is
relatively small for training a modern end-to-end ASR model. These lead to minor variability
among different ASR models. Therefore, increasing the ensemble size does not contribute to
the CPC1 experiments.

Temperature is a parameter that changes the probability distribution of the softmax
function. The lower the temperature is, the model is more confident in its classification.
On the contrary, the softmax probability distribution is flatter when the temperature is high.
Five temperature values from 0.1 to 2 are tried, and the results show that the most accurate
intelligibility prediction is made when the temperature is 1.

By increasing the number of top candidates in the beam search, i.e. beam size, the entropy
estimation is supposed to be more accurate, because more samples are obtained. The beam
size is set from 5 to 50 in the experiments. The experimental results show that when the beam
size is set 50, there indeed is an improvement in terms of NCC and KT, but the difference is
marginal. This could be due to the same reason as the ensemble size, i.e., the uncertainty
estimation does not vary much when the models are quite similar.

In conclusion, the hyperparameters for uncertainty estimation including ensemble size,
temperature, and TopK beam size do not make a significant difference in the intelligibility
estimation. The potential reason is that the variance among the ASR models in the ensemble is
not significant. As the CPC1 database is relatively small, the randomisation of the finetuning
process can not lead to significant differences among the ASR models.

6.6 Conclusions

In this chapter, an ASR uncertainty-based intelligibility prediction approach has been pro-
posed. Specifically, an ensemble of ASR models has been leveraged to infer the recognition
uncertainty, which shows a high correlation with human intelligibility. The proposed ap-
proach has three major advantages: (1) the approach is non-intrusive, thus does not require a
clean reference speech signal for prediction; (2) the uncertainty is estimated without supervi-
sion, therefore no listener recognition results are needed to train the model if considering
only monotonicity; (3) the predicted intelligibility is utterance-level, and the language model
information can be well utilised.

The experimental results have shown that the non-intrusive ASR uncertainty-based
intelligibility prediction approach can make accurate predictions in both Noisy Grid and
CPC1 databases. In the Noisy Grid experiments, which contain simulated speech linearly
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degraded by SSN, the uncertainty prediction achieves the second best results among a number
of intrusive and non-intrusive approaches. In the CPC1 experiments, which contain simulated
domestic noisy speech processed by complex DNN-based enhancement and the responses by
hearing impaired listeners, the performance of uncertainty prediction is only slightly behind
the best performing intrusive HR-based approach, and a DNN-based data-driven approach,
which requires the knowledge from both large-scale pretrained model and a large number of
listener intelligibility labels. Between the two uncertainty measures, confidence and negative
entropy, the difference is minimal. Confidence performs slightly better in the Noisy Grid
database, while negative entropy performs better in the CPC1.

Further analysis shows that the ASR uncertainty is sensitive to data mismatch between the
ASR training data and intelligibility evaluation data. When the distributions of the training
and evaluation data are close, the non-intrusive uncertainty-based prediction exhibited a
performance very similar to the intrusive hidden representation based approach. Otherwise,
it can even be even worse than ASR word correctness scores. Despite that, ASR uncertainty
estimated by mismatched training data can still achieve competitive results, and better than
many other leading intrusive and non-intrusive approaches.



Chapter 7

Conclusions

This thesis has been focusing on data-driven approaches for speech intelligibility enhance-
ment and prediction for hearing aids. For the purpose of improving the intelligibility of
noisy speech for hearing impaired listeners, a differentiable hearing aid speech processing
framework was proposed. This framework could optimise hearing aid fittings together with a
DNN-based denoising model using an intelligibility-based objective function. The first half
of this thesis presented this framework for data-driven speech intelligibility enhancement
and was organised to address the following research questions:

• How well can data-driven optimised hearing aid fittings perform in terms of intelligi-
bility improvement for speech in noisy and noise-free environments?

• Can the hearing aid fittings optimised for different noisy environments provide benefits
over general fittings?

• How well can hearing aid speech enhancement models with a DNN-based denoising
module perform in noisy environments?

An accurate speech intelligibility predictor can be crucial for the development of hearing
aid enhancement algorithms, because it can reduce the requirement for expensive subjective
evaluation with listening experiments. The second half of this thesis focused on intelligibility
prediction with ASR models, and provided an intrusive and a non-intrusive ASR-based
approach to address the following research questions:

• How well can the features extracted by ASR models perform in terms of robust
intelligibility prediction?

• How can ASR models predict intelligibility non-intrusively, i.e., without using extra
information like reference signals or transcription?
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The final chapter concludes this thesis by first reviewing the contributions with respect to
the above research questions, and then discussing some of the limitations of the work before
presenting potential future research directions.

7.1 Contributions

7.1.1 Speech intelligibility enhancement for hearing aids

Motivated by the recent success of data-driven approaches, this thesis explored their appli-
cation to the optimisation of hearing aid fittings by constructing the DHASP framework.
Specifically, the framework consists of an FIR filter representing a frequency gain amplifica-
tion table, and an optimisation objective incorporating a differentiable approximation to an
auditory model. The auditory model takes hearing abilities into consideration and models
the intelligibility of speech in noise judged by hearing impaired listeners. With such an
optimisation objective, the hearing aid amplification fittings are trained to maximise speech
intelligibility given a speech database.

In Chapter 3, the DHASP framework was first optimised with a clean speech database,
TIMIT (Garofolo et al., 1993), at conversational levels. In the experiments, the optimisation
objective was a combination of an approximation to HASPI, which models the intelligibility
of hearing impaired listeners, and an energy constraint, which prevents over-amplification.
Compared to the widely used and recognised classic NAL-R fittings, the optimised fittings
provided an intelligibility improvement when evaluated using objective measures. Also,
it was observed that the optimised fittings tend to provide more amplification in the low
and high frequencies, while less amplification in the middle frequencies, i.e., around 1 kHz,
similar to the pattern shown in Gonçalves Braz et al. (2022).

Having considered the case of clean speech (i.e., noise-free conditions), the DHASP
framework was extended to handle speech in various noisy environments, and a differentiable
approximation to the MSBG hearing loss model was used as the optimisation objective. Given
one specific audiogram, the amplification fittings are optimised in the context of the noise
conditions, i.e. so as to be customised to different noisy environments, for example, traffic,
babble, and kitchen noises. In addition, the effects of a conventional hearing aid denoising
approach, Wiener filtering, were explored, i.e., the optimised fittings were also customised
to whether the denoising function is turned on. Objective evaluation results showed that
the data-driven optimised fittings that are customised to different noisy environments and
the usage of the denoising feature can outperform both generally optimised fittings and
NAL-R. Additionally, it was found that Wiener filtering does not necessarily improve speech
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intelligibility. Furthermore, it was also found that the fittings optimised with the MSBG
hearing loss model provided more amplification at low and high frequencies, while less gain
in middle frequencies around 1 kHz compared to NAL-R, which is similar to those of the
HASPI optimised fittings.

Taken together, these experimental results showed that the DHASP framework could
perform well in terms of intelligibility improvement, and the customised fittings could gain
benefit over general fittings. However, it should be noted that these conclusions are based on
objective evaluation and have not been validated with hearing impaired listeners.

In Chapter 4, the DHASP framework was further extended to more complex scenarios
with a DNN-based denoising module and evaluated with both objective and subjective
evaluations. The CEC1 database (Graetzer et al., 2021) provides a large number of simulated
domestic scenes, each of which consists of a target talker, a hearing impaired listener, an
interfering source and room acoustics. To tackle the intelligibility degradation caused by
the interfering sources and reverberation, a DNN-based denoising module was trained to
extract the target speech in the DHASP framework. The denoised speech signals were then
used to optimise the amplification fittings for hearing loss compensation with an objective of
the approximated MSBG hearing loss model and approximated STOI. Both objective and
subjective evaluation results showed that the data-driven speech intelligibility enhancement
model with a DNN-based denoising module could provide a significant improvement over a
conventional hearing aid model. Furthermore, it was also observed that methods combining
DNNs and beamformers can enhance speech with minimal distortion. These processed speech
signals, though not achieving the best objective intelligibility scores, are most intelligible to
hearing impaired listeners among those processed by many other approaches.

7.1.2 Speech intelligibility prediction

It was observed in the findings of Chapter 4 that there is often significant disagreement
between the objective and subjective evaluation results, i.e., systems with lower objective
scores can achieve the top subjective performance. This indicates there is a need for more
accurate speech intelligibility predictors for the development of hearing aid speech enhance-
ment algorithms. Motivated by the recent progress of DNN-based ASR models, which can
perform similarly to humans in some recognition tasks, this thesis has proposed to exploit
them for intelligibility prediction in this thesis.

Most current widely used intrusive intelligibility predictors follow a scheme that measures
the similarity between the extracted acoustic representations of a processed speech signal and
its corresponding clean reference signal. The accuracy of the prediction is heavily dependent
on the quality of the extracted representations. In Chapter 5, a DNN-based ASR model was
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used as a representation extractor for the intrusive intelligibility prediction. The motivation
is that DNNs are naturally trained to be good representation extractors, and thus ASR-based
DNNs are expected to extract the representations that are crucial for the recognition of speech.
The proposed approach was validated with two very different databases. The Noisy Grid
corpus (Barker and Cooke, 2007) provides a large number of matrix test speech mixed with
speech-shaped noise and their corresponding recognition performances by normal hearing
listeners. In contrast, the CPC1 (Barker et al., 2022) database provides a large number of
enhanced speech signals that simulate noisy domestic environments and their corresponding
recognition performances by hearing impaired listeners. The representations extracted by
the ASR model achieved very competitive prediction accuracy for the Grid corpus, and
significantly outperformed a large number of popular intelligibility predictors. Experimental
results also showed that high-level representations of the DNN-based ASR which contains
language information can achieve the most accurate intelligibility prediction in the CPC1
database.

Intrusive approaches are usually difficult to apply in realistic environments, in which
the reference signals are not available. As a result, non-intrusive intelligibility predictors
are more desirable. In Chapter 6, an ASR uncertainty-based non-intrusive approach was
proposed. Specifically, the sequence-level recognition uncertainty of a given processed
speech signal was estimated with an ensemble of ASR models, and the uncertainty was
then used to correlate to speech intelligibility. The uncertainty estimation is unsupervised,
therefore does not require uncertainty labels, i.e., intelligibility labels from human listening
experiments in this context. The proposed ASR uncertainty-based non-intrusive approach
was also validated with the Noisy Grid corpus and the CPC1 database. It achieved the best
performance for the Noisy Grid corpus, and very competitive prediction accuracy for the
CPC1 database among a number of leading intrusive and non-intrusive approaches. The
results suggested that the uncertainty estimated from an ensemble of ASR models can be
naturally very correlated to human speech recognition results.

For both the proposed intrusive and non-intrusive approaches in this thesis, the quality of
the ASR models is crucial. The DNN-based ASR models used in this work were pre-trained
with the LibriSpeech database (Panayotov et al., 2015) which contains 960 hours of utterances,
and therefore possess strong knowledge of clean speech recognition. The pre-trained models
were then finetuned with the noisy or processed speech signals to reduce the mismatch
between the ASR training data and the evaluation data. Experiments showed that the smaller
the mismatch is, the more accurate is the intelligibility prediction that can be achieved with
the ASR models. Furthermore, it was also found that the ASR representation-based intrusive
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approach is more robust than the ASR uncertainty-based non-intrusive approach when the
training and evaluation data mismatch is significant.

7.2 Limitations and future research

This thesis explored the application of data-driven approaches to hearing aid speech intelligi-
bility enhancement, including amplification and denoising. However, this is still far from
adequately solving the problem of hearing impairment. First of all, intelligibility is only one
attribute of speech, while there could be a number of other attributes that are important for
the satisfaction of hearing aid usage. Improving intelligibility can sometimes lead to the
degradation of quality, e.g., intelligibility enhancement can distort the target speech to keep
the cues for recognition, which may lead to listening dissatisfaction. Similarly, intelligibility
is not necessarily correlated to listening effort, i.e., a processed speech signal can be quite
intelligible but still require a lot of effort to understand for a hearing impaired listener. This
can also lead to a decline in life quality. Also, high intelligibility does not necessarily lead to
high comprehension, i.e., one can misinterpret a sentence while understanding most words.
Secondly, the noisy speech intelligibility enhancement lacks consideration of environmental
awareness, which is crucial for the everyday usage of hearing aids. Complete suppression of
interfering sources may remove important non-speech sounds, such as fire alarms.

Additionally, the proposed approaches for speech intelligibility enhancement still need
to be further refined for potential applications. Wide dynamic range compression is a
standard for modern hearing aids that allows adaptive amplification. However, the data-driven
optimised fittings proposed in this thesis are linear and may only be suitable for speech at
conversational levels. Further work should be conducted to extend the data-driven optimised
fittings to be compatible with the wide dynamic range compression (Gonçalves Braz et al.,
2022). Despite the success of DNN-based noise suppression models, they have rarely been
deployed for real-time applications. The major reason is that the DNN models are usually
over-parameterised and computationally expensive. This leads to long processing times and
high power consumption, which makes it particularly difficult to deploy the DNN-based
denoising models on modern hearing aids. For future research, DNN compression techniques
such as knowledge distillation can be used to achieve a DNN with a much smaller number of
parameters while keeping a similar noise suppression performance (Tan and Wang, 2021).

Regarding speech intelligibility prediction, a major challenge for the proposed approaches
is generalisation, i.e., the ability to predict the intelligibility of a speech signal that is very
different from the signals used for training the underpinning ASR models. The difference
can be caused by different noisy environments, being processed by different enhancement
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systems, etc. Therefore, a future direction for improving ASR-based intelligibility prediction
is to generate a larger database for ASR training by introducing speech in more variant noisy
scenes and processed by more diverse speech enhancement models. It is also worth noting
that the ASR representation-based intelligibility prediction approach does not perform as
well as the non-intrusive approach in the Noisy Grid corpus. The reason could be that the
over-parameterisation of the DNNs leads to noisy representations for relatively simple tasks,
i.e., part of the extracted representations are redundant and not related to the recognition
tasks. Therefore, it is worthwhile to conduct further research on the ASR representations and
how much each of them is correlated to speech intelligibility.
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