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Abstract



The axial mesoderm is a specialised population of cells lying at the
midline of the embryo. It is composed of two cell populations: the
anterior prechordal mesoderm (PM), bounded posteriorly by the
notochord (NC). A wealth of studies have shown that both PM and NC
are key organising centers that pattern and regionalise the overlying
neuroectoderm into fore-, mid-, hindbrain and spinal cord. However, it
is unclear how the axial mesoderm becomes regionalised into PM and
NC with a sharp boundary established between the two domains. Here I

use the chick embryo to address this question.

One of the reasons that studies into the development of axial mesoderm
have been hampered is due to the lack of an exclusive marker of the
PM. Here, I show that 7bx18 is a novel and exclusive marker of the PM

and is expressed once the axial mesoderm has fully extended.

Much emphasis has been placed in the literature upon the importance of
Nodal signalling in axial mesoderm formation, however, little is known
about its role in the fully extended axial mesoderm. Here, I show that Nodal
initiates 7hx18 expression in the fully extended axial mesoderm, i.e. acting
to further specify PM. My studies reveal, further, that Nodal signalling is
inhibited by the paraxial mesoderm and retinoic acid. Together, the
antagonistic signals appear to establish the posterior limit of the PM and the

anterior limit of the NC.

Finally, I find that 7bx/8 sharpens the PM-NC boundary by
downregulating the NC marker 3B9 and establishing a third
subpopulation of Shh- axial mesoderm that lies at the PM-NC interface.
I discuss the potential significance of this third axial mesoderm

population.



Chapter 1

Introduction



1.1 Introduction

The phylum Chordata includes the Cephalochordata (amphioxus), the
Urochordata (tunicates such as sea squirts, salps and larvaceans) and
the Vertebrata (fish, amphibians, reptiles, birds and mammals). A
defining feature of this phylum is the presence of a rod-like tissue
that extends in the midline. This tissue is commonly termed the
notochord, and is located ventral to the neural tube. Some chordates
retain the notochord throughout their lives, whereas in others it is
only present during embryogenesis and larval life. Thus, the
notochord is a permanent feature of amphioxus, but is lost at
metamorphosis in the sea squirt Ciona intestinalis and is largely

replaced in vertebrates by the vertebral column after embryogenesis.

Studies over many decades have detailed the importance of the axial
mesodermal notochord. As detailed below, it is the source of
embryonic developmental signals, co-ordinating the development of
the central nervous system (CNS), non-midline mesoderm and even
endodermal structures (Takya, H., 1961; Placzek et al., 1990;
Yamada et al., 1993; Trousse et al., 1995; Fan and Tessier Lavigne,
1994; Brand-Saberi et al., 1993; Halpern et al., 1993; Kim et al.,
1997). It also provides a mechanical supporting function in some
species - giving the body some rigidity against which the axial
musculature can act. Without the notochord, embryos fail to elongate
leading to restricted locomotion and a malformed embryo (Talbot et

al., 1995; Stemple et al., 1996).

Crucially, although the notochord does constitute the vast majority of

the axial mesoderm, classic embryological studies in the early part of



the 20™ century showed that the axial mesoderm is in fact composed
of two major components, the anteriorly- situated prechordal
mesoderm/mesendoderm, and the more posteriorly-located notochord
(Spemann and Mangold, 1924 as cited in De Robertis, E. M., 2006).
These can be distinguished through their different morphologies, the
prechordal mesoderm’s fan-like appearance contrasting with the rod-
like appearance of the notochord (Adelman, H. B., 1922, 1927,
Meier, 1981; Izpistia-Belmonte et al., 1993). The anterior prechordal
mesoderm (PM), bounded posteriorly by the notochord, has been
shown to be present in all vertebrate species studied to date
(Adelmann, H. B., 1922). As detailed below, both structures are, in
fact, crucial to the establishment of the body plan, and each plays a
distinct role in the organization and formation of different

components of the body of the vertebrate.

1.2 Mesoderm induction and early embryonic patterning: classic

phenomenological studies

Studies in Xenopus pioneered our understanding of mesoderm
induction, and the phenomenological events that govern axial
mesoderm induction. The Xenopus egg is polarized into a dark
coloured animal and a yolky vegetal pole (Figure 1.1A). Before the
zygote divides, the cortex rotates and as a result, maternal
components of the Wnt signalling pathway (Box 1) are redistributed
to the future dorsal side (Figure 1.1B). Cleavage occurs along the
animal-vegetal axis dividing the egg into half and then again at right

angles to divide it into four. As cleavage continues the egg is divided
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Figure 1.1 Development of the Xenopus embryo.

A Xenopus egg is divided into two halves: the dark pigmented
animal pole and the yolky vegetal pole.

B Cortical rotation takes place before the zygote divides. This leads to
the distribution of vesicles containing Disheveled (Dsh) protein to the
dorsal side. This concentration of Dsh stabilises 3 catenin in this dorsal
location (Tao et al., 2005).

C Aslit known as the blastopore forms and the blastula is now ready to
form the deeper layers of the embryo.

D Gastrulation continues as cells involute (indicated by the arrows).
They move underneath the roof of the blastocoel which gets pushed
to one side.



Box 1 The canonical Wnt signalling pathway

Whnts are secreted glycoproteins that bind Frizzled receptor and LRP6 co-
receptor complex. Upon the binding of ligand Frizzled and LRP6 receptors
are activated leading to the recruitment of a key intracellular component
Dishevelled (Dsh), which interacts with a protein complex including Axin,
GSK, APC and CK1 inhibiting degradation of p-catenin. Stabilised p-catenin
enters the nucleus and complexes with TCF to activate Wnt target genes. In
the absence of Wnt ligands, GSK-3 and CK1 phosphorylate f-catenin
marking it for degradation post ubiquitnation in the cytosol. Thus, p-catenin
cannot bind TCF and activate TCF responsive genes. As a result Groucho, a
corepressor binds TCF in the nucleus inhibiting Wnt target gene activation.
The figure below shows the simplified core pathway and does not include the
antagonists of the Wnt signalling pathway. Wnt antagonists are divided into
two groups: sFRP family including WIF-1 and Cerebrus which bind Wnt
ligands and Dickkopf proteins which inhibit the pathway by binding to LRP
coreceptors (Adapted from Wolpert, 2002).
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into smaller cells and then a cavity called the blastocoel develops in
the animal half (Figure 1.1C). The embryo is now called the blastula,
and can form its three germ layers — ectoderm, mesoderm and

endoderm (Figure 1.1D).

Recombination experiments first revealed that vegetal endoderm
induces the mesoderm in the animal cap cells (Nieuwkoop P, 1969;
Sudarwati and Nieuwkoop, 1971). Animal cap explants cultured in
isolation do not produce mesoderm in vivo or in vitro, but do so when
cultured or combined with vegetal cells (Nieuwkoop P., 1969a;
Nieuwkoop P., 1969b; Nieuwkoop and Ubbels, 1972). This led to the
hypothesis that animal cap cells receive signals from vegetal cells
instructing them towards mesodermal fate, and the repression of
ectodermal fate (Sargent et al., 1986). Refined subdissections of the
vegetal hemisphere, in fact, revealed that different portions of the
vegetal territory have different mesodermal inducing abilities
(Boterenbrood & Nieuwkoop, 1973; Dale et al., 1985; Dale and
Slack, 1987 a and b). Thus, only a discrete group of cells — opposite
the site of sperm entry — will induce a specialized region of
mesodermal cells, termed the organiser. This specialized region of
vegetal cells 1s termed the Nieuwkoop Centre (Gerhart et al., 1989).
Lineage tracing experiments confirm that the Nieuwkoop centre does

not contribute itself to the organiser or the mesoderm but has an

inductive role (Gimlich, R. L., 1986).

The organiser performs three major functions: it recruits adjacent
mesodermal cells to become ‘dorsal’, it induces neural tissue in the
neighbouring ectoderm and it self-differentiates into the axial

mesoderm  (Lemaire and Kodjabachian, 1996). The instructive



properties of the organiser were shown powerfully by a classic
experiment where the organiser region was isolated and grafted into
the ventral side of the newt embryo. This gave rise to a fully
developed secondary axis including neural tissue underlain by axial
mesoderm and somites (Spemann H., 1938; Bouwmeester, T., 2001).
Subsequent to these early experiments, many studies in a wide range
of vertebrates have shown that structures analogous to the organiser
(for instance the mouse node, the zebrafish shield and Hensen’s
node) have analogous properties. If transplanted ectopically into the
host of a similar stage embryo, they induce and ‘dorsalise’ the host
tissue to form neural tissue and paraxial mesoderm (Beddington, R.,
1994; Shih and Fraser, 1995; Shih and Fraser, 1996, Dias and
Schoenwolf, 1990). At early gastrulation the organiser begins to
pattern the established mesoderm into specific fates. This results in
the ventral mesoderm being patterned into kidney and blood, the
intermediate lateral mesoderm into somites; the dorsal mesoderm,
containing the organiser, will form the axial mesoderm composed of
anterior prechordal mesoderm and posterior notochord as the dorsal

lip begins to involute.

Crucial, then to the on-going development of the embryonic body
plan, is the third property of the organiser — its ability to self-
differentiate into axial mesoderm. Concomitant with this
differentiation, the organiser- forming axial mesoderm undergoes
movements that lead to a reorganisation of the blastula and the germ
layers, that establish the basic body plan on which specific organs
form (Harland and Gerhart, 1997). This process is known as

gastrulation.



Early phenomenological studies pointed to the crucial role of the
axial mesoderm as an early ‘organiser’ and ‘patterning centre’, and
revealed that notochord and prechordal mesoderm have different
organizing and patterning activities (Adelmann, H. B., 1930;
Mangold, O., 1933; Spemann, H., 1938). If, instead of grafting early
organiser tissue, different regions of the extending axial mesoderm
were grafted into ectopic ventral locations, then they induced only
subsets of neural tissue: the anterior extending axial mesoderm
induced head-like structures, whereas posterior extending axial
mesoderm induced trunk-like structures (Mangold, O., 1933 as cited
in Doniach, T., 1992). This suggested for the first time that
prechordal  mesoderm  and  notochord  have  different

inducing/patterning activities.

1.2.1 Mesoderm induction and early embryonic patterning:

molecular studies

Since these early experiments, a wealth of studies have been
performed, to examine the molecular events that govern these steps.
Mesoderm induction occurs when a maternal T box gene, VegT,
localized in the vegetal cells activates zygotic genes of the TGFf
superfamily called the Nodal-related proteins; these appear to be the
main diffusible signals that act to induce mesoderm and definitive
endoderm (Figure 1.2 A and B) (Box 2) (Zhang et al., 1998;
Clements et al., 1999). Veg-T depleted embryos lack mesoderm and
endoderm, but this phenotype can be rescued by injecting TGFf
signalling ligands, in particular the Nodal related proteins Xnr 1, -2, -
4 and Derriere (Kofron et al., 1999). Conversely, inhibition of Nodal
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Box 2 TGF-f signalling pathway

The TGF-f family of signalling molecules consists of two general branches:
the TGF-p/Activin/Nodal and BMP/GDF branches. Signalling is mediated by
type | or type |l serine/threonine receptor kinases. Ligand binding results in
the association of the two types of receptor and phosphorylation of type |
receptor by the type Il receptor. This results in phosphorylation of Smad
proteins (Smad 2/3 for TGF-p/Activin/Nodal or Smad1, 5, 8 for BMP receptor
substrates). This increases their affinity for Smad4 resulting in assembly of a
complex, which translocates to the nucleus and binds to transcription factors
to activate target gene transcription. The figure below does not include the
antagonists of the pathway that are crucial for its regulation. These
antagonists include chordin, noggin, members of the DAN family including
Cerberus, DAN and Gremlin, follistatin, and lefty proteins. In addition to
these antagonists further negative regulation comes from Smad 6 and 7,
which compete with signal transducing smads for receptor binding (Adapted

from Massague and Wotton, 2000).
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signalling in Xenopus blocks mesoderm formation (Agius et al.,

2000; Osada and Wright, 1999).

Studies in Xenopus have been instrumental, not just in pointing to the
role of Nodal in mesoderm induction but in establishing how Nodal
signalling can lead to the establishment of different types of
mesodermal cell. These studies have revealed that Nodal signalling,
along with Wnt signalling pathway components that were distributed
to one side of the embryo due to cortical rotation, establish the
Nieuwkoop centre opposite the sperm entry point (Heasman et al.,
1994; Wylie et al., 1996; Agius et al., 2000). This is now the dorsal
side of the embryo and active Wnt signalling here means that its
downstream factor (-catenin, stabilises and stimulates Xnr protein
levels, establishing a Nodal signalling gradient along the dorso-

ventral axis of the embryo (Takahashi et al., 2000) (Figure 1.2 C).

B-catenin plays a role, not only in stimulating high levels of Nodal in
the Nieuwkoop Centre, but additionally co-operates with Nodal
signalling components in the organiser. Here, [3-catenin translocates
to the nucleus and complexes with transcription factor Tcf-3, and in
cooperation with high Nodal signals, activates the expression of
genes such as Siamos and Twin, which then activate organiser genes
such as Gsc, Chordin, Noggin, Follistatin, Cerberus, XLiml and
Xnr3 (Brannon et al., 1997; Fan et al., 1998; Laurent et al., 1997; Fan
and Sokol, 1997; Kessler, D. S., 1997; Carnac et al., 1996; Engleka
and Kessler, 2001; Bae et al., 2011). Siamos and Twin, if expressed
ventrally can induce the organiser and a complete secondary axis

(Laurent et al., 1997; Lemaire et al., 1995).
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Non-organiser mesoderm at this point has a ventral fate, promoted by
high levels of BMP4 and Xwnt8 (Fainsod et al., 1994; Graff et al.,
1994; Suzuki et al., 1994; Christian et al., 1991; Christian and Moon,
1993). Once the organiser is established, it begins to secrete
antagonists of BMPs and Wnt, such as Chordin, Follistatin, Noggin,
Cerberus and Frzb-1 (Piccolo et al., 1996; Zimmerman et al., 1996;
Leyns et al., 1997; Bouwmeester et al., 1996). These appear to
establish a concentration gradient, inhibiting BMP and Wnt signals,
and effectively ‘dorsalising” the mesoderm (Sassai et al., 1994;
Piccolo et al., 1996; Sassai et al., 1995; Smith and Harland, 1992;
Leyns et al., 1997; Wang et al., 1997; Bouwmeester et al., 1996).

The same BMP antagonists deriving from the early organiser appear
crucial to neural induction. Prior to formation of the organiser, BMPs
are uniformly expressed in the animal cap ectoderm (Hemmati-
Brivanlou and Thomsen, 1995). With the onset of organiser
formation, BMP antagonists that bind BMPs and prevent their
binding to the receptors, are secreted (Piccolo et a., 1996;
Zimmerman et al., 1996; Hsu et al., 1998; Piccolo et al, 1999;
Fainsod et al., 1997; Lemura et al., 1998). Ectodermal tissue that
does not receive BMP signalling acquires a ‘neural fate’ (Hemmati-
Brivanlou and Melton, 1994; Henry et al., 1996; Lamb et al., 1993;
Reversade et al., 2005). Molecular analyses reveal that, neural tissue
that is induced in this early phase of development has ‘anterior-like

identity’ (Nieuwkoop, P., 1954; Doniach, T., 1995).

As discussed above formation of the organiser leads to the
establishment of the axial mesoderm and hence further dorsoventral

and anteroposterior development of the embryo. The Wnt/p-catenin
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pathway is not only essential for establishing the organiser by
activating the transcription factors Siamois and Twin, but is also
important for convergent extension movements (Kuhl et al., 2001).

The first axial mesoderm cells to extend are the prechordal mesoderm
cells (Keller, R. E., 1976). For a short while, these retain the ability
to induce/maintain anterior neural identity, through their continued
expression of BMP and Wnt antagonists (Schneider and Mercola,
1999). By contrast, these factors are not maintained in developing
notochord cells. Thus, anterior neural properties are maintained only
in the prospective forebrain, while ‘posteriorising’ factors, including
Wnts, FGFs and retinoic acid, transform other neural cells into
hindbrain and spinal cord fates, through activation of genes such as
the Hox genes (Games and Sive, 2000; Wilson and Edlund, 2001).

This 1s known as ‘activation-transformation’ (Figure 1.3).

1.3 Patterning activities of the prechordal mesoderm and

notochord

Since the initial classic experiments described above, a number of
experimental studies have pointed to the different character of PM
and NC, and their different abilities to induce different cell types,
characteristic of particular regions in the overlying neural tissue
along the rostro-caudal axis. Grafting and tissue recombination
experiments show that the PM is able to induce neural tissue, which
is anterior in character (Pera and Kessel, 1997; Saude et al., 2000)
and can pattern neural tissue so that it differentiates into
hypothalamic and other diencephalic identities (Dale et al., 1997,
1999; Ohyama et al., 2005; Ohyama et al., 2008). The patterning
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activities of the prechordal mesoderm are quite distinct from those of
the more posterior notochord: grafting and tissue recombination
experiments show that the NC ectopically induces cell types that are
characteristic of the hindbrain and spinal cord, including floor plate,
motor neurons and seroternergic neurons (Placzek et al., 1993; Hynes
et al., 1995; Yamada et al., 1991; 1993; Tanabe and Jessell, 1996).
Conversely, removal of NC results in the absence of these cell types

(Placzek et al., 1990; van Straaten and Hekking, 1991).

In fact, notochord-derived signals govern, not just the patterning of
the overlying neural tube, but are instrumental in patterning other
adjacent tissue. The varied roles of notochord-derived signals include
patterning the somites, specifying the slow twitch muscle fibres and
patterning of the early endoderm and pancreas (Barresi et al., 2000;
Munsterberg and Lassar, 1995; Cleaver and Krieg, 2001; Kim et al,
1997).

Finally, notochord-derived signals appear to play various roles in
early specification of the heart, and its related structures (Danos and
Yost, 1995). Defects in notochord development can lead to the loss of
left-right patterning of pre-cardiac mesoderm. The presumptive
cardiac field, marked by the expression of the transcription factor
Nkx2.5, expands if the anterior notochord is ablated, proving that
signals from this region are important to limit the heart field
(Goldstein and Fishman, 1998). ntl and fIh zebrafish mutants fail to
form the notochord, but also fail to form the dorsal aorta, implicating
a role for NC in dorsal aorta formation (Fouquet et al., 1997; Sumoy

et al., 1997).
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Molecular studies have pointed to a number of genes that are
expressed in the PM and NC and appear to mediate their properties.
For example, expression of the transcription factors Goosecoid (Gsc)
and Foxa2 in the PM appears to be important for correct anterior
specification. Double mutant embryos for both transcription factors
show perturbed anterior neural patterning (Filosa et al., 1997). In Gsc
mutant mice, relatively normal patterning of the nervous system is
seen although the nodes of these embryos have a weaker ability to
induce neural cells (Zhu et al., 1999). Anterior endoderm and the PM
share expression of the transcription factor Liml1, which has also
been shown to play a role in anterior neural patterning (Shawlot et
al., 1999). Liml knockout mice fail to develop the anterior head
region (Shawlot and Behringer, 1995). In the early PM, Wnt and
BMP antagonists such as Dkk-1 and Noggin are expressed, and
appear to antagonize Wnt and BMP signals, preventing the
posteriorisation of anterior structures. (Glinka et al., 1998; Hashimoto

et al., 2000; Bachiller et al., 2000).

Intriguingly, expression of the Wnt and BMP antagonists in PM is
transient, and soon after gastrulation, PM begins to express the BMP
family members, BMP2 and BMP7 (Dale et al., 1997, Halilagic et al.,
2003). BMPs now co-operate with Shh to pattern the prospective
hypothalamus (Dale et al., 1999; Ohyama et al., 2005, 2008). The
secreted signal, Shh is, in fact, expressed throughout the axial
mesoderm (Echelard et al., 1993; Krauss et al., 1993; Marti et al.,
1995; Roelink et al., 1995). However, in posterior regions, the NC
expresses Shh but not BMP7 (Roelink et al., 1994; Rowitch et al.,
1999). The exclusive expression of Shh in the notochord appears to

govern many of its patterning roles, including ventralisation of the
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neural tube and patterning of the somites (Yamada et al., 1991, 1993;
Johnson et al., 1994; Munsterberg et al., 1995; Borycki et al., 1998)

Together, these studies show that PM and NC derive from the same
general region in the embryo — the organiser — but rapidly assume
quite different molecular identities. These molecular studies support
the classic idea that PM and NC represent two cell types that together
make up the axial mesoderm and begin to reveal how the PM and NC
play significant roles in patterning the embryo. However, a major
outstanding question is that of how PM and NC develop and acquire
their different fates.

1.4 Role of Nodal in mesoderm induction

As briefly outlined above, the TGFp family member, Nodal appears
to play an evolutionarily conserved role in mesoderm induction
(Table 1.1). The importance of the Nodal signal was first
demonstrated in mouse, when a naturally occurring retroviral
insertion mutation with severe gastrulation defects was shown to
encode the Nodal gene (Conlon et al., 1991; Conlon et al., 1994;
Zhou et al., 1993). The mice lacked mesoderm due to loss of
primitive streak, essential for mesoderm induction (Zhou et al., 1993;
Conlon et al., 1994). Similarly, in zebrafish, mutations in the Nodal-
related genes cyclops and squint led to lack of mesoderm (Feldman et
al., 1998; Rebagliati et al., 1998). Nodal was again shown to be
crucial for mesoderm formation in chick, where, similar to the
situation in mouse, it is required for the formation of the primitive

streak (Bertocchini and Stern, 2002).
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Since these observations, many studies have focused on the Nodal
signalling pathway (Figure 1.4). Briefly, Nodal is thought to be
secreted as a prodomain protein, which is cleaved into a mature form
by the SPC convertases — Furin and Pace4 (Beck et al., 2002).
Mature Nodal is thought to bind to ActRII/ALK4/5/7 receptors, and
the co-receptor Cripto, to trigger signalling via phospholrylation of
Smad?2/3. Upon phosphorylation Smad 2/3 bind Smad4 leading to the
Smad 2/3/4 complex to be translocated to the nucleus where it binds

FoxHI transcription factor to activate target genes (Schier, A., 2003).

Loss of function studies show that ActRIl A and B have redundant
functions but loss of both leads to severe defects in gastrulation and
mesoderm formation (Matzuk et al., 1995; Song et al., 1999).
Phosphorylation of Smad4 leads to activation of transcription factors
including FoxH1 (Whitman, M., 2001). Mutation of these signalling
components, in a range of species, supports the role of Nodal
signalling in mesoderm induction (Table 1.1). Likewise, ectopic
expression of Nodal signal inhibitors leads to loss of mesoderm,

again supporting the key role of Nodal in mesoderm induction (Table

1.1).
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Table 1.1 Role of Nodal and Nodal pathway components in

mesoderm induction

Gene Component | Organism | Role/Phenotype

Nodal Ligand Mouse Loss of function mutation lack
mesoderm (Zhou et al., 1993; Conlon
et al., 1994)

Xnrs Ligands Xenopus | Gain and loss of functions
experiments suggest that they are
crucial for mesoderm induction
(Osada and Wright, 1999, Kofron et
al., 1999; Takahashi et al., 2000)

Cyclops; Ligands Zebrafish | Lack of almost all mesodermal

Squint derivatives (Feldman et al., 1998)

Nodal Ligand Chick Misexpression results in ectopic
primitive streak formation if
hypoblast is displaced (Bertocchini
and Stern, 2002)

SPC1;SPC4 | Convertase Mouse Disorganised primitive streak
formation and lack of most
mesoderm and endoderm (Beck et
al., 2002)

Cripto Co-Factor Mouse Lack of primitive streak and
mesoderm (Ding et al., 1998)

One-eyed Co-Factor Zebrafish | Mutants lacking maternal and

pinhead zygotic oep fail to induce mesoderm

(oep) (Gritsman et al, 1999)

Lefty 1&2 | Inhibitors Zebrafish | Morpholino injections show an
enlarged mesodermal domain
(Agathon et al., 2001; Chen and
Schier, 2002; Feldman et al., 2002)

Lefty 2 Inhibitor Mouse Excess mesoderm formation (Meno
et al., 1999)

Cerberus- Inhibitors Mouse Expanded mesodermal domains due

like;Leftyl to primitive streak and multiple
primtive streak formation observed
in double mutant embryos (Pera-
Gomez et al., 2002)

Cerberus Inhibitors Chick Expressed in the hypoblast and
inhibits primitive streak formation in
the overlying epiblast (Bertocchini
and Stern, 2002)

ActRITA Receptor Mouse No phenotype (Matzuk et al., 1995)

Act RIIB Receptor Mouse No phenotype (Oh and Li, 1997)

ActRIIA&B | Receptors Mouse [TA-/-1IB-/- : gastrulation does not

occur
[TA-/-1IB+/- : primitive streak
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elongation impaired (Song et al.,
1999)

ALK4 Receptor Xenopus | Lack of mesoderm in mutants
carrying a truncated mutation (Chang
etal., 1997)
ALK4 Receptor Mouse Null mutant embryos fail to form the
primitive streak and hence the
mesoderm (Gu et al., 1998)
ALK4 Receptor Zebrafish | Mesoderm induction and patterning
impaired in studies using inhibitors
(Sun et al., 2006)
ALK7 Receptor Xenopus | Constitutively active form induces
and mesendoderm and dominant negative
Mouse form blocks Xnr1 function
(Reissmann et al., 2001)
Smad?2 Transcription | Mouse Lack of mesoderm in homozygous
factor mutants (Nomura and Li, 1998)
Smad?2 Transcription | Xenopus | Required for translocation of Smad4
factor to the nucleus and complex with
Fast-1. Dominant negative mutant
activity results in partial mesoderm
loss (Hoodless et al., 1999)
Smad2/3 Transcription | Zebrafish | Overexpression of Smad 2, Smad 3a
factors and 3b mutants blocked mesoderm
induction (Jia et al., 2008)
Smad 2/3 Transcription | Mouse Embryos with loss of Smad3 and
factor reduced Smad 2 function do not
gastrulate and lack the mesoderm
(Vincent et al., 2003; Dunn et al.,
2004).
Smad4 Transcription | Mouse Mutants fail to gastrulate and form
factor mesoderm (Sirard et al., 1998).
FoxH1 Transcription | Mouse Failure to form the node and defects
factor in mesoderm formation (Hoodless et
al., 2001; Yamamoto et al., 2001)
Schmalspur | Transcription | Zebrafish | Lack of maternal and zygotic
(FoxHI) factor transcripts of FoxH]1 leads to loss of
the organiser and defects in
mesoderm formation (Pogoda et al.,
2000; Sirotkin et al., 2000)
FoxH1 Transcription | Xenopus | Blocking antibodies reveal defects in
(Fastl) factor mesoderm formation (Watanabe and

Whitman, 1999)
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1.4.1 Role of Nodal in axial mesoderm specification

Early experiments in Xenopus, working on the Nodal-related
molecule, activin, first suggested that, not only can these induce
mesoderm, but that it works in a dose-dependent manner to specify
prechordal mesoderm cells versus notochord cells (Green et al., 1992,
1997; Gurdon et al., 1996). These studies showed that Activin acts
dose-dependently to induce the prechordal mesodermal marker Gsc
at high levels and the notochord marker Xbra at low levels in
Xenopus animal cap cells (Jones et al., 1995; Lustig et al., 1996;
Erter et al., 1998). Since these experiments, a wealth of genetic
evidence has acculumated to support the idea that Nodal/Nodal-
related proteins, act in a dose-dependent way to induce notochord and

prechordal mesoderm (Table 1.2).

In zebrafish, loss of function mutants of squint and cyclops show
defects in both PM and NC but PM appears to be particularly reduced
(Hatta et al., 1991; Heisenberg and Niisslein-Volhard, 1997, Dougan
et al., 2003). This is further supported by a complete lack of PM in
one-eyed pinhead mutants, which lack the co-factor for Nodal
receptors (Schier et al., 1997). Similarly in mouse, Nodal
hypomorphic mutants lack PM but not the NC, indicating that high
Nodal signalling is essential for PM development (Lowe et al., 2001).
Additionally, lack of PM, but not NC, is also observed in Smad 2
conditional knock-out mutants (Vincent et al., 2003). Conversely,
double mutants of the Nodal inhibitors Cerberus and Leftyl have an
expanded PM (Pera-Gomez et al., 2002). In chick embryos it has
been shown that an ectopic source of Cripto can alter the fate of NC

to PM adding to the evidence that high Nodal signalling is required
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for PM fate (Chu et al., 2005). However in mutants with a complete

loss of Nodal signalling, a lack of axial mesoderm is observed. So,

loss of the convertases Furin and Pace4, the co-factor Cripto and the

transcription factors Smad 2, 3 and Smad 4 leads to lack of both PM
and NC (Beck et al., 2002; Ding et al., 1998; Waldrip et al., 1998;
Weinstein et al., 1998, Vincent et al., 2003; Dunn et al., 2004; Chu et

al., 2004). Similarly, in Xenopus blocking antibodies against

transcription factor FoxH1 also abolish axial mesoderm (Watanabe

and Whitman, 1999).

Table 1.2 Role of Nodal and Nodal pathway components in axial

mesoderm formation

Gene Component | Organism | Role/Phenotype

Nodal Ligand Mouse Hypomorphic mutants lack PM but not the
NC (Lowe et al., 2001)

Cyclops Ligand Zebrafish | Loss of function mutation shows defects in
PM and NC but particularly reduced PM
(Hatta et al., 1991; Thisse et al., 1994;
Dougan et al., 2003)

Squint Ligand Zebrafish | Same phenotypes as Cyclops (Heisenberg
and Niisslein-Volhard, 1997; Chen and
Schier, 2001; Dougan et al., 2003)

SPC1;SPC4 | Convertase Mouse Double mutant resembles Nodal mutants
lacking axial mesoderm (Beck et al., 2002)

Cripto Co-Factor Mouse Mutant embryos lack axial mesoderm and A-
P axis is mis-oriented (Ding et al., 1998)

Cripto Co-Factor Chick Ectopic expression downregulated NC
markers and upregulated PM markers in the
notochord (Chu et al., 2005)

One-eyed Co-Factor Zebrafish | Complete loss of PM in mutants (Schier et

pinhead al., 1997)

(oep)

Lefty 1&2 | Inhibitors Zebrafish | Ectopic expression of Lefty abolished axial
mesoderm (Bisgrove et al., 1999)

Cerberus Inhibitor Xenopus | Injected Cer-S mRNA led to a lack of axial
mesoderm in embryos (Piccolo et al., 1999)

Cerberus- Inhibitors Mouse Double mutants show an expanded

25




like;Leftyl

prechordal mesoderm, multiple axis
formation (Pera-Gomez et al., 2002)

ALK4 Receptor Xenopus | Truncated receptor injected into embryos
gave reduction in notochord specific marker
(Chang et al., 1997). Secondary axis
induction was observed after injecting ALK4
RNA in embryos (Armes and Smith, 1997)
Also high levels induced Gsc and low levels
induced Xbra in animal cap explants (Armes
and Smith 1997)
Smad 2 Transcription | Mouse Conditional knockout embryos lack
factor prechordal mesoderm (Vincent et al., 2003).
Smad4 Transcription | Mouse Conditional knockdown mutants gastrulate
factor but fail to form the axial mesoderm (Chu et
al., 2004)
FoxH1 Transcription | Xenopus | Disruption in axial mesoderm formation
factor based on loss of function experiments using

blocking antibodies (Watanabe and
Whitman, 1999)

In summary, Nodal signalling is essential for the formation of both

notochord and prechordal mesoderm but graded Nodal signals

control cell fate decisions such that a high level of Nodal specifies

prechordal mesoderm, whereas lower levels specify the notochord.

How might this gradient of Nodal signalling be set up? Firstly, Nodal

signals are generated locally and are thought to diffuse short

distances, so the cells closer to the source experience a higher level of

Nodal signalling than those further away. It has been shown in

zebrafish that squint-producing cells induced Gsc locally and ntl//T (a

homologue of Brachyury) at long range (Chen and Schier, 2001).

Secondly, Nodal signalling could be modulated by temporal

activation of Nodal signals, so in Xenopus they are activated dorsally

first and ventrally later (Lee et al., 2001). The exact mechanism

involves Nodal signalling to be activated by the cooperative action of

VegT and p-catenin dorsally and is attenuated later by the action of

Nodal antagonists Cerberus and antivin (Lee et al., 2001). VegT
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alone is responsible by the activation of Nodal signalling ventrally
and commences only once its dorsal expression has been attenuated
(Lee et al., 2001). But in zebrafish the time at which the Nodal
signals are received does not seem to be important. Cells still respond
and induce the appropriate targets genes even when they receive a
delayed Nodal signal (Dougan et al., 2003). Thus, at present, the
mechanisms leading to formation of the proposed Nodal gradient are

not entirely clear.

Likewise unclear are the mechanisms that lead to the formation of
two very discrete cell groups from a continuous concentration
gradient. How does the proposed Nodal gradient ultimately results in
the formation of two discrete cell types, namely the PM and the NC?
A number of mechanisms could account for this. Firstly, feedback
loops could operate to establish a step-gradient from a continuous
gradient (Figure 1.5). In zebrafish it is postulated that the Nodal
ligand squint autoregulates itself via a positive feedback mechanism.
Both squint and cyclops can also induce the expression of Lefty
inhibitors that can act at long range (Schier, A., 2003). The
interactions between the ligand and the inhibitor establish a step-wise
gradient, leading to the formation of PM close to the source of Nodal,
and notochord at a distance (Chen and Schier, 2001; Schier, A.,
2003). Alternatively, cells may operate post-signalling to sharpen the
boundary between different cell types. Such a mechanism is known
to operate in the spinal cord, where the Gli proteins initially translate
the Shh gradient. Activator Glil is expressed in a ventral to dorsal
gradient whereas repressor Gli proteins 2 and 3 are expressed
dorsally. Shh converts Gli 2 and 3 to their activator forms thereby

establishing a ventral to dorsal gradient (Box 3) (Jacob and Briscoe,
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2003). Ultimately the Shh and Gli gradients lead to overlapping
transcription factor expression domains along the dorsoventral axis.
(Figure 1.6). These domains are sharpened through the cross-
repressive interactions, leading to discrete boundaries (Briscoe and
Ericson, 2001). Cells then establish different progenitor domains

according to their transcriptional code (Dessaud and Briscoe, 2008).

28



(£00zZ “'V “421yos wouy paydepy) “s|j@0 HON Buionpul uibiew sy} wouy Aeme UOIBIJUSIUOD [BPON JOMO| B pue |\ d
Buionpul uibiew 8y} 0} J8SO[D UoIEBIUB2UOD [BPON YbIy e saysijgelss sioqgiyul pue spuebl| ay) usamiaq Aejdiajul
ay} ‘A|IdAoa||0) abuel poys e je joe Ajuo ued sdojof) “Juaipelb dajs e Bunesuo juinbs jqyul pue abuel Buoj

1e 108 sAya "ebuel Buoj je sjoe pue doo| yoeqpas) aAlisod e eIA uoissaldxa UMO sy saonpul Juinbs “sAys| Jo
uoissaldxa ay} 8anpul sdojoAo pue juinbs yjog "uoionpul |89 |ewlaposaw Jo Judixa pue adA} sy} suiwisiep

231 Aol sionqiyul Jisyl yum sdojoAo pue juinbs spuebi| [epoN usamjaq suonoelajul Aiojeinbaioine pue ssou)

‘spuebi| |lepoN Aq sadA} [|99 Jewiaposaw JOUlSIp JO UOI}dONpPUI JO [SPON §° | 94nbBi4

aJaydsiweH |jewiuy

aJaydsiweH |elabap uibie

sdojokg >  sAye << inbg

/\C

29



Box 3 Sonic Hedgehog signalling pathway in vertebrates

It is thought that in vertebrates primary cilia are crucial for the transduction of Shh signalling.
(A) In the absence of Shh, the activity of Smoothened (Smo), a seven-pass transmembrane
receptor is repressed by Patched1 (Ptch1) a twelve-pass transmembrane receptor, which
leads to the inhibition of pathway transduction. PKA targets the zinc-finger transcription factors
activator Gli (GliA) proteins to the proteasome where they are either completely degraded or
truncated to their repressor form. This repressor form (GliR) translocates to the nucleus and
represses the activation of Shh target genes. Any full length GliA proteins that remain are
maintained in an inactive state by suppressor of fused (Sufu) (B) When Shh binds Ptch1, Smo
is no longer repressed and is translocated to the primary cilium. PKA is inhibited by Smo and
as a result GliA is not processed and translocate to the nucleus to activate target genes.
There are three Gli transcription factors, Gli1 acts as a transcriptional activator whereas Gli2
and GIi3 can act as both activator and repressor. However, Gli2 mainly acts as an activator
and GIi3 as a repressor. In the absence of Shh signal, Gli3 is truncated to its repressor form
by proteolytic cleavage, whereas Gli2 is mostly degraded (Adapted from Dessaud et al.,
2008).
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1.5 Mesoderm formation in the chick embryo

Studies on mesoderm induction and patterning in the chick embryo
have lagged behind those in other species, but in general, it is clear
that the basic mechanisms are conserved. The gastrula chick embryo
is a flat bilayered blastoderm sitting on top of the yolk (Figure 1.7A).
The hypoblast layer — the functional equivalent of the Xenopus
vegetal pole - forms between the blastoderm and the underlying yolk
and it will form extra embryonic structures. The embryo proper will

form from the overlying epiblast - the equivalent of the animal pole.

As the egg travels down the oviduct, gravity determines the antero-
posterior axis of the blastoderm and cells form a crescent shape next
to the posterior marginal zone (PMZ), termed Koller’s Sickle, at the
future posterior end of the blastoderm (Figure 1.7 B and C) (Khaner
and Eyal-Giladi, 1989). Cells begin to concentrate at this end to form
a thickening known as the primitive streak (Figure 1.7 D and E)
(Bellairs, R., 1986; Khaner and Eyal-Giladi, 1989). The PMZ cells
express the TGFP signalling molecule Vg-1 in the hours preceding
streak formation and induce its formation (Seleiro et al., 1996; Shah
et al., 1997). cWnt8C expressed in the marginal zone also plays a role
in streak formation proved by its ability to duplicate axis if injected
into Xenopus embryos (Hume and Dodd, 1993). Vg-1 and cWnt8C
induce the expression of Nodal in the PMZ (Lawson et al., 2001;
Skromne and Stern, 2002). Nodal together with Fgf signalling in
Koller’s sickle is responsible for inducing the primitive streak
(Bertocchini et al., 2004). For this to occur successfully, Nodal

signalling must be inhibited from the surrounding epiblast to prevent
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Figure 1.7 Development of the primitive streak in the chick embryo.

A The blastoderm sits on top of the yolk and the embryo will develop on
its flat surface.

B The anterior and posterior axis of the embryo are defined as the
posterior marginal zone forms at the future posterior end. Wnt8c is
expressed throughout the marginal zone but Vg1 is expressed
only in the posterior marginal zone (PMZ). Both act in cooperation
to induce Nodal in the PMZ (Bertochinni etal., 2004).

C Posterior marginal zone induces a thickening of cells at the posterior
margin called Koller’s sickle.

D-E Further signals from the posterior marginal zone induce the primtive
streak.
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streak formation there, and BMP signalling must be inhibited in

Koller’s Sickle.

Inhibition of Nodal signalling occurs in two ways. Firstly, the
hypoblast secretes the Nodal antagonist, Cerberus that prevents
Nodal from inducing a premature streak (Bertocchini et al., 2002). At
the time of streak formation, the hypoblast is displaced to an anterior
position removing the source of Nodal antagonists posteriorly to
allow Nodal to act (Bertocchini et al., 2002; Chapman et al., 2002).
Secondly, the streak itself also secretes a Nodal inhibitor, which

inhibits streak formation in the surrounding epiblast (Bertocchini et

al., 2004).

The primitive streak further defines the antero-posterior axis of the
embryo; anterior being the direction towards which it elongates and
posterior marked by the beginning of the cell condensation. At the
anterior tip of the primitive streak lies the homologue of the
amphibian Spemann’s organiser, termed the node in higher
vertebrates, Hensen’s node in the chick (Figure 1.8). During
gastrulation cells from the epiblast migrate into the primitive streak
and pass either through Hensen’s node or around it to give rise to the
deeper layers of the embryo (Figure 1.8). Pioneering experiments in
vitro and later fate mapping studies have revealed that the position of
the cells within the primitive streak dictates their migratory route and
final destination (Waddington C, 1932; Schoenwolf et al., 1992;
Psychoyos and Stern, 1996).
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Figure 1.8 Gastrulation in the chick embryo.

A Schematic shows a fully extended primitive streak with Hensen’s node
at its anterior tip. At gastrulation cells move into Hensen’s node and
the primitive groove (indicated by arrows).

B A cross section through the primitive streak shows the ingressing
mesodermal and endodermal cells. The cells will then follow various
migratory routes to organise different fates within the new germ layers.
Cells from Hensen’s node contribute to the prechordal mesoderm and
the notochord. Anterior primitive streak cells also contribute to the
notochord as well as the somites (Psychoyos and Stern, 1996).
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1.5.1 Development of chick axial mesoderm

The relatively large size of the chick axial mesoderm means that, in
contrast to the difficulties in analyzing mesoderm induction, the
chick is ideally suited to studies on the specification of distinct types
of axial mesoderm cells, including notochord and prechordal
mesoderm (Jurand, 1962; Psychoyos and Stern, 1996; Foley et al.,
1997; Vesque et al., 2000). The cells that will give rise to axial
mesoderm structures lie within Hensen’s node and anterior primitive
streak and their emergence requires precise spatial and temporal
control (Grabowski, C. T., 1956; Schoenwolf et al., 1992; Psychoyos
and Stern, 1996; Zamir et al., 2006). A head process composed of
axial mesoderm precursors extends anteriorly as Hensen’s node and
primitive streak move posteriorly (Figure 1.9). Post- extension of the
axial mesoderm at HH stage 6, the rod-like structure of axial
mesoderm composed of the anterior prechordal mesoderm (PM) and
the posterior notochord (NC) can be seen underlying the
neuroectoderm (Figure 1.10) (Psychoyos and Stern, 1996; Foley et
al., 1997; Joubin and Stern, 1999). I will refer to the migrating axial
mesoderm cells as ‘head process mesoderm’ and once the cell
populations have fully extended and resolved they will be referred to
as PM and NC.

Early studies showed that the Nodal-like signal, activin, has the
ability to induce chick axial mesoderm (Mitrani et al., 1990; Ziv et
al., 1992). Activin is transcribed in the chick embryo prior to and post
primitive streak formation and induces axial structures in isolated
epiblasts cultured in vitro (Mitrani et al., 1990; Mitrani and Shimoni,

1990). Activin induces the axial mesoderm markers, Gisc and Not-1
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Axial mesoderm
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Hensen’s node
Primitive

Figure 1.9 Formation of the axial mesoderm.

A Axial mesoderm precursors move into Hensen’s node and migrate
anteriorly (indicated by blue arrows) (Psychoyos and Stern, 1996).
Head process consisting of axial mesoderm precursors emerges and
extends away from the primitive streak.

B As the axial mesoderm cells migrate anteriorly away from the primitive
streak and Hensen'’s node, primitive streak and Hensen’s Node begin
to regress posteriorly (indicated by black arrow).
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(a NC marker) at higher concentrations than are required to induce
other types of mesoderm (Stern et al., 1995). The activin receptors
ActR II-A and B are also expressed in the chick primitive streak and
are capable of inducing axial structures if injected into Xenopus
embryos, further supporting a role for Nodal-like signals in axial
mesoderm development in the chick (Stern et al, 1995). Also, as
mentioned earlier, an ectopic source of Cripto, which is a co-receptor
in Nodal signalling pathway is able to alter the fate of notochord to
prechordal mesoderm (Chu et al., 2005). Thus, Activin and Nodal
signalling is required for prechordal mesoderm and notochord

specification.

1.5.2 Prechordal mesoderm and notochord commitment

An unknown question, however, in any species, remains that of when
prechordal mesoderm and notochord actually commit to each fate.
Such studies have been addressed primarily in chick, where they
suggest a late-specification. Fate mapping studies reveal that labeled
cells move into the node from HH stage 3 and transiently acquire
PM/NC properties whilst in the node but then lose those properties as
they migrate out, suggesting that the cells in the head process are not
committed and can change their character (Joubin and Stern, 1999).
This idea that these cells are not fully committed in Hensen’s node is
supported by experiments carried out by Foley et al., 1997; Vesque et
al., 2000. Dil labelling experiments revealed that head process that
initially migrates out of Hensen’s node at HH stage4+ consist of
intermingled cells that at a later stage will contribute to both PM and

NC (Foley et al., 1997). Additionally, early head process at HH stage
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4+ has a different neural inducing potential to late head process at
stage 5. Early head process at HH stage 4+ upon grafting into the
extraembryonic region of another embryo, confers neural fate onto
the host cells (Foley et al., 1997). However, anterior head process
isolated at HH stage 5 is specific in its neural inducing properties
(Foley et al., 1997). Transplantation experiments show that explants
of anterior head process only confer forebrain character to
prospective neural tissue alone and not other kinds of tissues such as
the extraembryonic tissue (Foley et al., 1997). This shows that head
process mesoderm extending out of Hensen’s node at stage 4+ does

not have set properties and must be specified.

Additionally, at HH stages 4+ and 5 head process mesoderm shares
characteristics of both PM and NC, including expression of Gsc and
Chordin but again their full character is yet to be determined (Vesque
et al., 2000). These studies suggested that, in chick as head process
cells migrate away from the node they are exposed to TGFf signals
from the anterior endoderm, as a result of which PM character is
promoted and NC character is suppressed. These studies suggest that
sustained TGF signalling is essential to maintain PM and suppress
NC identity. However, the factors that may mediate this, and set PM

fate, are unclear.

1.6 T-box genes

T-box genes are a family of transcription factors characterised by a
conserved DNA binding domain called the T-box (Figure 1.11). The
first T-box gene to be identified is called Brachyury or 7. Mice which
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have a naturally occurring mutation in Brachyury have a short tail
phenotype (Dobrovolskaia-Zavadskaia, N., 1927 as cited in Schulte-
Merker et al., 1994). Brachyury binds the T domain as a dimer, each
monomer occupies a T-half site (Papapetrou et al., 1997). T-box
genes are expressed widely during early embryonic development and
have been linked to many developmental disorders. Amongst many
roles of T-box genes, a growing body of work suggests a vital role of
T-box genes in mesoderm function. The role of a few key T-box

genes is discussed below.

1.6.1 Role of T-box genes in mesoderm development

As mentioned earlier, Brachyury plays a crucial role in mesoderm
development. Mutation in Brachyury leads to a defective primitive
streak and an absence of the posterior notochord (Gluecksohn-
Schoenheimer, 1938). Notochord precursors fail to migrate away due

to defects in cell adhesion (Yanagisawa et al., 1981).

As mentioned earlier, a similar phenotype has been reported when the
brachyury homologue Xbra mRNA is blocked in Xenopus (Smith et
al., 1991). Further it was found by Xbra overexpression experiments
that Xbra is required for the differentiation and maintenance of the
differentiated state of notochord cells (Cunliffe and Smith, 1992).
The role of Brachyury is also conserved in zebrafish (Halpern et al.,
1993). This shows that T-box genes are evolutionarily conserved and
are important for mesoderm formation and subsequent

morphogenesis.
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Brachyury acts cell autonomously as a transcriptional activator and
several studies have been conducted to find its downstream targets
(Kispert et al., 1995). Embryonic fibroblast growth factor eFGF has
been identified as one target (Casey et al., 1998). A study by Tada et
al. (1998) identified, a second target, showing that, homeobox gene
Bix 1 was induced by Xbra in the mesoderm and specifies ventral
mesoderm. Thus Brachyury is capable of specifying mesodermal

character.

Since the characterisation of Xbra, it has become clear that a cascade
of T-box genes operates subsequently and temporally. The T-box
gene Eomesodermin, is expressed one to two hours before Xbra. It is
capable of initiating mesoderm induction and is one of the first
mesoderm inducing genes to be expressed in the early gastrula.
Ectopic expression of Eomesodermin leads to activation of other
mesodermal genes such as Gsc, Xwnt8 and Xbra (Ryan et al., 1996).
Culture studies suggest that it may act in a dose-dependant way to
promote notochord and muscle fate. Impaired function of the gene

leads to gastrulation arrest and a loss of mesoderm gene activation.

Prior to this, T-box transcription factor Veg T, is expressed in the
vegetal pole of the Xenopus embryo. It acts on the neighbouring cells
influencing their fate and establishing three primary germ layers
(Stennard et al.,, 1996, Zhang et al.,, 1998). It can induce
Eomesodermin and vice versa, as well as other mesodermal genes
including Xbra and Xwnt8 (Stennard et al., 1996). Depletion of VegT
leads to loss of key signalling molecules required for mesoderm

induction and thus the loss of mesoderm itself (Kofron et al., 1999).
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In addition to playing crucial roles in mesoderm induction and axial
mesoderm development, T-box genes have been shown to play an
important role in paraxial mesoderm development. Paraxial
mesoderm gives rise to the vertebral column and the muscles of the
body. At HH stage 6 it can be seen unsegmented either side of the
neural tube but by H stage 7 it has begun segmentation into somites
by the process of epithelialisation. Tbx6 is downstream of
Eomesodermin and Brachyury and is expressed in the primitive
streak, paraxial mesoderm, presomitic mesoderm and the tail bud in
the mouse (Chapman et al., 1996). Its expression pattern has also
been studied in Xenopus and zebrafish and is broadly similar to that

in mouse (Uchiyama et al., 2001; Hug et al., 1997).

Tbx6 expression in the presomitic mesoderm highlights its role as a
key gene involved in the correct specification and segmentation of
somites. Studies of mutant Tbx6 mouse embryos have revealed that
some somites form in an irregular fashion indicating that Tbx6 is
required for correct somitic segmentation (Chapman and
Papaioannou, 1998). Tbx6 activates the transcription factor Mesp?2,
which is responsible for determining the segment boundary of
somites (Yasuhiko et al., 2006). Its crucial role in somite patterning is
further demonstrated by its naturally occurring mutation, called Rib-
vertebrae, presenting a severe phenotype of vertebral malformations.
The cause has been described as defective anterior-posterior (AP)
patterning, size and morphology of somites (Watabe-Rudolph et al.,
2002).

Similarly, Tbx18 is also involved in somite development. It is

expressed in the paraxial mesoderm and specifically in the anterior
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half of the developing and the newly formed somites (Kraus et al.,
2001; Haenig and Kispert, 2004). In the mutant Tbx18 mouse
embryo, somites develop but the posterior half of the somite expands
and invades the anterior territory (Bussen et al.,, 2004).
Overexpression of Tbx18 leads to thinning of the posterior portion of
the somites. This raises the possibility that Tbx18 is required for the
anterior-posterior somite boundary, rather than somite specification
(Takahashi et al., 2000). Subsequent studies support this idea
showing that Tbx18 may control the integrity of the somite
compartments by regulating the adhesion properties of the cells, such
that loss or misexpression of Tbx18 leads to loss or gain of new
adhesion properties, disrupting the sharp boundary set up between the
distinct compartments (Bussen et al., 2004; Farin et al., 2007).

During inner ear development Tbx18 is again crucial for boundary
formation between otic fibrocytes and otic capsule (Trowe et al.,
2008). Otic fibrocytes fail to undergo a mesenchymal to epithelial
transition to form basal cells that form an epithelium separating the
different compartments of the cochlea, specifically the stria
vascularis in Tbx18 deficient mice (Trowe et al., 2008). Again the
authors propose that the role of Tbx18 is either to govern a repulsive

signal or to govern the adhesion properties of the cells.

Tbx18 is also required to specify ureteral mesenchyme whose
proliferation and differentiation in smooth muscle cells is essential
for the development of a functional ureter (Airik et al., 2006). In the
absence of Tbx18, prospective ureteral mesenchymal cells lose their
ability to aggregate around the ureter stalk but disperse to mix with

other kidney tissues. Tbx18+ cells are thought to promote preferential
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adhesion between themselves and the ureteric epithelium and are

specified to remain ureteric and not differentiate into other tissues

(Airik et al., 2006).

Finally, Tbx18 along with other T-box genes, including Tbx 1, 2, 3, 5
and 20 plays a role in the cardiac specification as well (Greulich et
al., 2011). They are expressed in different progenitor pools and act in
complex regulatory networks to pattern the developing heart,
although the mechanisms are not clear. Together, however, these
studies indicate that a common role for Tbx18 might be in regulation

of adhesive properties and boundary formation.

Due to their wide variety of roles in mesoderm development, T-box
genes are good candidates for playing a role in axial mesoderm
development. In this study, I particularly wished to explore the
possibility that a T-box gene may play a role in PM development,
since this developmental domain of the axial mesoderm is currently

poorly understood.

1.7 Thesis aims

One of the main reasons that studies into prechordal mesoderm
development have been hampered is due to a lack of an exclusive
marker for the prechordal mesoderm. Thus, my first objective was to
identify a marker expressed only in the prechordal mesoderm. Gain
and loss of function studies of such a factor would allow me to study
the development of prechordal mesoderm specifically. As discussed

above, | particularly focused on the T-box gene family, as they are
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strong candidates, playing a variety of roles within the developing

mesoderm.

Secondly, I aimed to study the role of Nodal signalling in prechordal
mesoderm development. As described above, Nodal signalling has
already been shown to play a crucial role in axial mesoderm
development. However, most of these studies focus on its early role
in axial mesoderm development i.e. its role in their establishment
over the period HH stage 3-5 in the chick. It is unknown if prechordal
mesoderm specification and/or maintenance is dependant on Nodal
signalling post extension i.e. over the period HH stage 6-13. 1
hypothesised that Nodal signalling is required for prechordal

mesoderm specification over this time period.

Thirdly, I aimed to understand how Nodal signalling is regulated in
the axial mesoderm of the chick embryo so that prechordal mesoderm
forms anteriorly and notochord posteriorly. I wished to examine how
the extent of the prechordal mesoderm is determined and the

boundary between prechordal mesoderm and notochord defined.
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CHAPTER 2

Materials and Methods
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2.1 Molecular Biology methods for DNA preparation

2.1.1 Bacterial cell culture and DNA extraction

DHaS5 competent bacteria (Invitrogen) were transformed with
plasmid and then grown on static Luria Bertani (LB)-Agar plates
containing the appropriate antibiotic at 37 °C. A single colony of cells
was grown first in LB broth and antibiotic (ampicillin, 50ug/ml) on a
shaker at 225rpm for 8 hours at 37°C and then 2ml of the culture was
transferred to 200ml LB broth containing antibiotic and cultured
overnight on the shaker at 225rpm at 37°C. The next day the culture
was spun at 6000g for 15 minutes at 4°C using Beckman centrifuge
(Avanti centrifuge J-25). DNA was extracted from the pellet and
purified using HiSpeed Plasmid Maxi kit (QIAGEN) according to

manufacturers instructions.

2.1.2 siRNA vector synthesis

The siRNA vectors were made as decribed by Das et al, 2006. Tbx18
siRNA vectors were targeted to the following sequences:

A; AAGCTTGACACTCTCATCTTCT,

B; AAGGAGTGCACTTACTTAGCAG,

C; AAGCTTTGGTGGAGTCTTACGC and chosen using the design

tool at https://www.genscript.com/ssl-bin/app/rnai. The vectors used

a chicken specific U6 promoter, which drove the expression of a
modified chicken microRNA operon (Figure 4.10). The three vectors
were transfected together or co-electroporated to increase knockdown

efficiency as described in 2.4.2 and 2.4.3.
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2.2 Analytical molecular biology techniques

2.2.1 RNA extraction and cDNA synthesis

Total RNA was extracted from whole chick embryos or heads of
chick embryos wusing the RNAeasy kit (Stratagene). The
concentration of purified RNA was measured on NanoDrop ND100
(Labtech). cDNA was synthesized by reverse transcribing 2ug of
purified RNA wusing SuperScript III Reverse Transcriptase

(Invitrogen) and random primers (Promega).

2.2.2 Reverse transcription polymerase chain reaction (RT-PCR)

A typical RT-PCR reaction was set up consisting of H,O (Sigma), 1x
PCR Buffer (Promega), 1mM MgCl, (Sigma Aldrich), 200uM
dNTPs (Invitrogen), 0.5ul ¢cDNA template, 200nmol of forward
primer, 200nmol of reverse primer and 7.5units of Taq polymerase
per 25ul (Sigma Aldrich). The PCR reaction was started with an
initial denaturation step at 95°C for 3 minutes, 30 cycles for each
gene consisting of denaturation step at 95°C for 1 minute, primer
annealing at individual temperature for one minute and product
extension at 72°C for 1 minute. A final elongation step at 72°C for 8
minutes ended the reaction. Table 2.1 gives a summary of primers
used at individual annealing temperature. Nucleic acids were detected

by mixing with a loading buffer and running on 1%agarose gel
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containing ethidium bromide in 1xTAE buffer. 1kb (Promega) or
500bp (New England Biolabs) DNA ladders were used to confirm

bands were of the expected size.

2.2.3 Protein analysis

Sample preparation

Nodal proteins were obtained either from cell supernatants (see 2.3.2)
or as commercial recombinant proteins (R&D systems). Proteins
were denatured and reduced in LDS sample buffer (NuPAGE —
Invitrogen) containing 1x reducing agent at 70 °C for 10 minutes.
SDS PAGE

Samples were immediately loaded on NuPAGE 4-12% Bis Tris
gradient precast gels (Invitrogen) and run at 160V (constant voltage)
in MOPS buffer (Invitrogen) using the X-Cell Novex MiniCell
system (Invitrogen). A BenchMark Prestained Protein Ladder
(Invitrogen) was run along side the samples to confirm the band
sizes.

Western Blotting

Proteins were transferred onto Hybond-C Extra nitrocellulose
membrane (Amersham Biosciences) according to standard
techniques. Briefly transfer was conducted at 90V for 1.5 hours using
Biorad wet transfer system. After blotting the membrane was blocked
in PBS containing 0.1%Tween20 (Sigma Aldrich) and 5% milk
powder (Marvel) for one hour at room temperature. Membrane was
then probed with anti-Nodal rabbit polyclonal (1:4000, gift from
M.Shen) in blocking solution overnight at 4°C. Membrane was then

washed in PBS containing 0.1%Tween20, anti-Rabbit HRP (1:6000,
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Jackson labs) was applied in blocking solution for 45 minutes at
room temperature. Finally proteins were detected using ECL Plus

Western Blotting Detection System (GE Healthcare).

2.3 In vitro manipulations

2.3.1 Purification of proteins

ProNodal and Cerberus Short proteins were produced using 293T
cells. Cells were grown in DMEM containing 10% of fetal calf serum
and transfected with mFlagNodal-H246L for ProNodal (Constam and
Robertson, 1999), pCS2-cer-S for Cerberus Short (Piccolo et al.,
1999) or empty pCS2 vector (gift from Daniel Constam) for controls
using lipofectamine (GIBCO) in OPTIMEM (GIBCO) without
serum. Medium was replaced after 5 hours and cells were cultured
for a further 72 hours. Supernatants were collected and concentrated
20 fold using 10kD cut off Centri-plus columns (Millipore) then

diluted in explant culture medium to the required concentration.

2.3.2 Cell Pellets

293T cells were transfected as above with mFlagNodal-H246L for
ProNodal or empty pCS2 vector. Transfected cells were cultured for
24 hours and then transferred to DMEM containing 10% fetal calf
serum for a further 24 hours. Cell pellets were then generated in
overnight hanging drop cultures by trypsinising and plating 20ul
drops at 100K cells per ml.
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2.3.3 Chick embryo dissection

All embryos were accessed in ovo by making a small window in the
eggshell and removing the overlying membranes. Embryos were then
harvested from the yolk, staged and dissected in cold Leibowitz’s

L15-Air medium (GIBCO).

2.3.4 Explant culture

Explants of the PM and NC were prepared by dissecting the head and
trunk region anterior to Hensen’s node and primitive streak of stage 6
embryos using sharp tungsten needles. Mesoderm was isolated from
the neurectoderm using Dispase (Img/ml) and the axial mesoderm,
identifiable by its morphology was dissected. It was then further sub
dissected into the prechordal mesoderm and the notochord. Explants
were cultured in collagen beds as described by Dale et al., 1999.

Proteins used are described in Table 2.2.

Table 2.2 Proteins used in explant cultures

Protein Concentration Source
ProNodal 0.25x, 1x and 3x See 2.3.1
Mature Nodal 50ng/ml, 100ng/ml | R&D systems

and 250ng/ml
Cerberus Short 0.25x, 0.5x and 1x See 2.3.1
ALK inhibitor (SB431542) | 25uM Sigma Aldrich
FgfR3-fc 600ng/ml R&D systems
All-trans retinoic acid 10°M Sigma
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2.3.5 In vitro lipofection

The following solutions were prepared:

Solution 1: 0.5ug of construct in 50ul of OPTIMEM medium
Solution 2: Sul of lipofectamine (Invitrogen) in OPTIMEM medium
Solutions were combined and incubated for 30 minutes at room
temperature. The DNA and lipofectamine complex medium was then
added to explants for 2 hours. Explants were then mounted on
collagen beds and cultured in fresh explant medium for a further 13
hours before fixation and preparation for analysis via
immunohistochemistry and in situ hybridisation. These studies have
not been included due to low efficiency of transfections (9%

efficiency) and variable viability.

2.4 In vivo manipulations

2.4.1 Cell pellet implantation

A small window was made into the eggshell and membranes
overlying the embryo were removed. To visualise the embryo blue
food dye (Dr Oetker, Tesco) was mixed with L15-Air medium (1:10)
and injected under the embryo. In order to access the axial
mesoderm, a small incision was made next to the neural tube of a HH
stage 6 or 10 chick embryo. Cell pellets were then implanted into the
hole and placed next to the notochord by applying gentle pressure.
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After implantation the eggs were sealed and incubated for 24 hours.
They were then dissected in cold L15-Air medium, fixed and
processed to be analysed by immunohistochemistry and in situ

hybridisation.

2.4.2 In ovo lipofection

The DNA and lipofectamine complex (described in 2.3.5) was also
applied directly onto stage 4 embryos prepared by first removing the
vitelline membrane above Hensen’s Node. The eggs were sealed and
incubated for 24 hours. They were then dissected in cold L15-Air
medium, fixed and processed to be analysed by
immunohistochemistry and in situ hybridisation. These studies have
not been included due to low efficiency of transfections. Prechordal
mesoderm and notochord were targeted using in ovo electroporation

instead (see 2.4.3), which was more efficient.

2.4.3 In ovo electroporation

HH stage 3-10 embryos were accessed by making a small window
into the eggshell. Membranes overlying the embryo were removed
and the embryo was visualised by injecting blue food dye L15-Air
medium mixture under the embryo. DNA was injected in Hensen’s
node, prechordal mesoderm or notochord as described in Table 2.3.
pCAGGS-cTbx18 (gift from Cheryl Tickle) was co electroporated
with pCAGGS-RFP (50ng/ul and 30ng/ul respectively). pCAGGS

vector and pCAGGS-RFP used as controls at the same concentration.
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Tbx18 SiRNA (see 2.1.2) and empty control vector (gift from Stuart
Wilson) were used at a final concentration of 50 ng/ul. Electrodes
were then placed as described in Table 2.3, 4mm apart with cathode
in contact with the albumen and the anode piercing the yolk directly
underneath the cathode. Current was applied as described in Table
2.3 (4 — 6 x 50ms pulses) across the electrodes using TSS20 Ovodyne
electroporator (Intracel). Eggs were then sealed and incubated for 24
hours, dissected in cold L15-Air medium, fixed and processed to be

analysed by immunohistochemistry and in situ hybridisation.
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2.5 Immunohistochemistry

Immunohistochemistry analysis was performed according to
established techniques (Placzek et al., 1993). Embryos and explants
were fixed at 4°C in 4% Paraformaldehyde (0.12M Phosphate Buffer)
for two hours and then transferred to 30% sucrose (0.1M Phosphate
buffer). The tissue was then cryosectioned (15um thickness) and
collected onto Superfrost Plus slides (Thermo Scientific). Tissue was
pre-treated in a blocking solution of phosphate buffered saline (PBS)
containing 1% heat inactivated goat serum (HINGS) and 0.1% Triton
X-100 for one hour. Primary antibodies were applied in blocking
solution overnight at 4°C. Tissue was washed in PBS and then
secondary antibody in blocking solution was applied for one hour at
room temperature. Finally slides were mounted using Vectashield
mounting medium containing 4’,6-diamidino-2-phenylindole (DAPI)

(Vector laboratories) and glass coverslips.

Table 2.4 Primary and secondary antibodies used to detect proteins

Antibody

Concentration

Source

Primary Antibodies

68.5E1 anti-Shh

1:50

Johan Ericson

Anti-3B9 1:50 DSHB

Anti-Phosphorylated | 1:500 Cell signalling

Smad 1/5/8 technologies

Anti-RFP 1:1000 Chemicon
Secondary conjugates

Cy3 1:200 Jackson labs
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Alexa 594 1:500 Molecular Probes

Alex 488 1:500 Molecular Probes

2.6 In situ hybridisation

In situ hybridisation analysis was performed according to established
techniques (Vesque et al., 2000). Slides were post-fixed for ten
minutes in 4%PFA and then incubated with acetylation mix of
triethanolamine (Fluka) and acetic anhydride (Sigma). They were
then incubated in prehybridisation solution for a minimum of two
hours at 68°C prior to incubation in a hybrisation solution containing
RNA probe overnight. Slides were washed in SSC/formamide
solutions before blocking with 10%HINGS in TBST. They were
incubated in blocking solution containing alkaline phosphotase
conjugated anti-DIG antibody (ROCHE) for 90 minutes. Slides were
developed in NTMT containing NBT and BCIP (both from ROCHE).
The following DNA templates were used to synthesise digoxygenin

labeled antisense RNA probes using conventional methods.

Table 2.5 Plasmid DNA used to synthesise RNA probes

Plasmid Linearised with Transcribed | Source

with
Pcvhh-1 (Shh) | Sall (Promega) SP6 (NEB) Thierry Lints
cNR1(Nodal) | Notl (Promega) T7 (NEB) Clifford Tabin
pcGsc EcoR1 (Promega) SP6 (NEB) Clifford Hume
pMT23- EcoR1 (Promega) SP6 (NEB) Kevin Lee
Chordin
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pcBMP7 Xhol (Promega) T3 (NEB) Brian Houston

cTbx18 BamH1 (Fermentas | T7 (NEB) Malcolm
TS) Logan

NEB = New England Biolabs, Fermentas TS = Fermentas Thermo Scientific

2.7 Microscopy and Image analysis

Brightfield and fluorescent images were taken using Olympus BX60
running Spot software (Diagnostic Instruments Inc) and Zeiss
Apotome microscope with Axiovision software (Zeiss). Photoshop
CS3 (Adobe) and ImageJ (NIH, http:rsb.info.nih.gov/ij) were used to
process images. Schematics were drawn using Illustrator CS5

(Adobe).

2.8 Statistical analysis

Percentage marker expression was calculated by measuring the area
of positive expression and comparing that to the total area of the PM
explant (Figure 5.8 B). In NC explants however, NC length was
measured, rather than area, as contamination can occur from the
endoderm below, and the paraxial mesoderm lying parallel to, the
NC, whereas it can be cleanly isolated anteriorly and posteriorly. So,
the length of the NC with positive marker expression was measured
and then compared to total length of the explant (Figure 5.4 B). The
values shown in figures represent the mean percentage calculated by

analysing the number of explants anlaysed given in brackets.
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Prism 5.03 software (GraphPad Software Inc.) was used to perform
all statistical analyses. P-values were determined using two-tailed

students t test.
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CHAPTER 3

Thbx18: a novel and specific marker of

prechordal mesoderm
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3.1 Introduction

Chick embryo development is studied with reference to morphology
and according to the Hamburger-Hamilton (HH) stageing system
(Hamburger and Halmilton, 1951). Axial mesoderm development
begins around 18-24 hours of development of the chick embryo.
Head process mesoderm consisting of axial mesoderm cells can be
clearly observed at stage 5 migrating anteriorly away from Hensen’s
node (Figure 3.1 A, A* and A**) (Hamburger and Halmilton, 1951;
Kochav and Eyal-Giladi, 1971). A fully extended axial mesoderm
can be seen from HH stage 6 onwards (Figure 3.1 B — E).

As described in the main Introduction (Section 1.5.1) the anterior tip
of the axial mesoderm, known as the prechordal mesoderm (PM) has
a broader fan-shaped morphology (Figure 3.1 B-E). PM underlies
neuroectoderm that will give rise to the forebrain. Transverse
sections through the PM over HH stage 6-13 reveal it to be broad and
flat (Figure 3.1 B*-E*).

Posterior to the PM is the long rod-like notochord (NC). The NC is
positioned underneath the prospective midbrain, hindbrain and the
spinal cord and is surrounded by paraxial mesoderm on either side
(Figure 3.1 B-E). Compared to the PM, NC has a round morphology
(Figure 3.1 B**-E**),

As outlined in the main Introduction, the events that lead to the
development of PM or NC have been studied in many vertebrates.
Evidence suggests that in the chick, Nodal-like morphogens operate
prior to gastrulation begin to specify PM or NC (Mitrani et al., 1990;
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Mitrani and Shimoni, 1990; Ziv et al., 1992; Stern et al, 1995). The
mechanism of exact separation of PM and NC cells into their distinct
identities 1s unclear (See section 1.5.2). However, in vitro
observations show that head process mesoderm is composed either of
a common progenitor that co-expresses notochord and prechordal
mesoderm markers or cells are arranged in a mixed ‘salt and pepper’
arrangement (Vesque et al., 2000 and Foley et al., 1997). These
studies suggest that PM and NC begin to resolve when the tip of head
process encounters signals from the anterior endoderm. Thus, culture
of early NC with anterior endoderm leads to the downregulation of
NC markers and the upregulation of the PM marker Gsc (Vesque et
al., 2000). Regardless of which of these mechanisms is true, it is clear
that notochord and prechordal mesoderm are not fully resolved in

head process mesoderm as mixed expression and/or mixed cells are

readily detected (Foley et al., 1997; Vesque et al., 2000; Chapter 3).

One reason that studies into PM versus NC specification have been
hampered is that few definite markers exist for either one and
particularly for PM. To further understand the molecular events that
govern the specification of PM and NC, I first aimed to establish a
profile of markers of the differentiated PM and NC and in particular
identify a PM-specific marker.

3.2 Results

To begin to characterise the axial mesoderm I analysed the
expression profiles of various signalling molecules and transcription

factors. I began this analysis at HH stage 5, a time when axial
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mesoderm is migrating anteriorly as head process mesoderm I ended

the analysis at HH st13, the time when PM begins to regress.

3.2.1 Gsc and BMP7 mark the PM

I first confirmed the expression profiles of Goosecoid (Gsc) and
BMP7, both previously described to mark the PM in the chick
embryo (Izpisia-Belmonte et al., 1993; Dale et al., 1999; Vesque et
al., 2000). Consistent with previous studies, I find that the
transcription factor Gsc and the signalling ligand BMP?7 are
expressed in head process mesoderm and the PM (Figure 3.2 and

3.3).

Transverse sections through the chick PM show that Gsc is expressed
at stage 5 in the anterior and posterior head process mesoderm
(Figure 3.2 A and F). Additionally it is also detected in the PM at HH
stage 6 (Figure 3.2 B) and then in both the PM and the overlying
floor plate at HH stages 8 and 10 (Figure 3.2 C and D). I do not
detect any Gsc expression in the PM at HH stage 13 (Figure 3.2 E). I
did not detect Gsc at any of the stages analysed in the NC (Figure 3.2
G-)).

BMP7 has a similar expression as Gsc in the axial mesoderm. It is
first detected at stage 5 in head process mesoderm and then in the PM
from stage 6 (Figure 3.3 A-D). By stage 8 its expression is detected
in both the PM and the overlying floor plate (Figure 3.3 C-D).

Expression is stronger at earlier stages when compared with later
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stages. At HH stage 13, expression does not appear uniform
throughout the PM but is intermittent, restricted to only a few cells
(Figure 3.3 E). BMP7 expression can also be faintly observed in the
region of NC immediately posterior to the PM from stage 8 (data not
shown), however, it is absent in the majority of the notochord (Figure

3.3 G-J).

3.2.2 SHH marks both NC and PM

The signalling ligand SHH 1is expressed throughout the axial
mesoderm from stage 6 but I do not detect it at stage 5 (Figure 3.4).
Like Gsc and BMP7, SHH is expressed in the PM but not in the
overlying neuroectoderm at HH stage 6, but expression extends to the
overlying floor plate at HH stages 8 and 10 (Figure 3.4 B-D). At HH
stage 13 SHH protein is no longer detected in the PM but persists in
the overlying floor plate (Figure 3.4 E). SHH is expressed at all
stages in the NC but its expression begins in the floor plate of the
spinal cord after HH stage 6 (Figure 3.4 G-J).

3.2.3 Chordin and 3B9 mark the NC

The secreted molecule Chordin (Chrd) is expressed in head process
mesoderm at stage 5 (Figure 3.5 A and F). It is also detected in the
NC and the floor plate of the spinal cord over the period HH stage 6
to 10 (Figure 3.5 G-J). At HH stage 13 Chrd is only expressed in the
NC and is absent from the overlying floor plate (Figure 3.5 J). Chrd
expression is not expressed in the PM (Figure 3.5 B-E).
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Similarly, the surface molecule 3B9 is a marker for the NC and not
the PM (Figure 3.6). However, unlike Chrd it is only expressed in the
NC and not in the floor plate (Figure 3.6 G-J). I did not detect 3B9 in
head process mesoderm at stage 5 (Figure 3.6 A and F).

3.2.4 Expression profiling in prechordal mesoderm and

notochord explants

To determine whether the PM and NC maintain their marker profile
in vitro, explants of PM and NC were dissected at HH stage 6 and
cultured on collagen beds for 15 hours, until the equivalent of HH
stage 8/9 in vivo (Figure 3.7). Explants were then fixed, processed by
in situ hybridisation or Immunohistochemistry and scored in a semi-
quantitative manner (Figure 3.8 K, for quantitation see materials and
methods section 2.8). Prechordal mesoderm explants continued to
express Gsc, BMP7 and SHH but not Chordin and 3B9 (Figure 3.8
A-E). Over 60% of the area of each PM explant expresses Gsc,
BMP7 and SHH (Figure 3.8 K). NC explants also maintained their
unique character in vitro and expressed SHH, Chordin, 3B9 and
BMP7 but not Gsc (Figure 3.8 F-J). Chordin and 3B9 were expressed
in over 90% along the length of each NC explant (Figure 3.8 K).
Expression of BMP7 could be observed faintly in the NC, with 20%
of the explant expressing BMP7 (Figure 3.8 G and K).

So, Gsc and BMP7 can be used in vitro as marker of the PM and 3B9
and Chordin as markers of the NC. However, my analyses reveal that
Gsc and BMP7, are not exclusive to the PM and label also the

neurectodermal midline. The lack of definitive markers hampers
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analysis of PM development (van Straaten et al., 1989; Placzek et al.,
1990; Yamada et al., 1991; Placzek M., 1995; Catala et al., 1996;
Teillet et al., 1998; Le Douarin et al., 1998; Placzek et al., 2000;
LeDouarin and Halpern, 2000; Patten et al., 2003). I therefore sought
to identify additional markers that specifically mark the PM.

3.2.5 Expression analysis of T-box genes in the axial mesoderm

As outlined in the main introduction (section 1.6.1) I decided to study
the expression of T-box genes, given that previous studies have
shown that they play a role in other regions of the developing
mesoderm (e.g. Papaioannou and Silver, 1998; Naiche et al., 2005;
Wardle and Papaioannou, 2008; see also references in section 1.6.1).
I focused on those T-box genes that have been shown to either
regulate or are regulated by BMPs and Nodal as previous studies
support a role for these molecules in PM specification (Mitrani et al.,
1990; Mitrani and Shimoni, 1990; Ziv et al., 1992; Stern et al, 1995;
Vesque et al., 2000).

Thx2 and 3 are expressed with BMPs in the cardiac mesoderm
(Yamada et al., 2000). BMPs directly regulate their expression:
overexpression of BMP ligands induces 7hx2 and 7hx3 in non-
cardiogenic tissue (Yamada, 2000). 7hx2 and 7hx3 also act with SHH
and BMP signalling to specify posterior digit identities in the chick
limb (Suzuki et al., 2004).

Studies in chick, mouse, Xenopus and zebrafish have shown that

Thx6 and Thx18 are critical for the correct specification of somites
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(Chapman et al., 2003; Chapman and Papaioannou, 1998; Bussen et
al., 2004; Begemann et al., 2002; Haenig and Kispert, 2004; Tanaka
and Tickle, 2004; Uchiyama et al., 2001). The expression of 7hx6 can
be induced by BMP ligands in Xenopus and zebrafish (Uchiyama et
al., 2001; Szeto and Kimelman, 2004).

Low levels of BMP signalling are also required for the correct
expression of 7hxI8 expression in the proepicardium of the
developing heart (Schlueter et al., 2006). Conversely, in the uretral
mesenchyme the authors proposed that 7hx/8 regulates BMP and
SHH signalling pathways (Airik et al., 2006).

I also wanted to study Eomesodermin, which has a pivotal role in
mesoderm delamination during gastrulation as well as specification
of the anterior primitive streak (Arnold et al., 2008). It interacts with
Nodal signalling to promote correct anterior posterior axis formation
and epithelial to mesenchymal transition of the ingressing mesoderm

(Arnold et al., 2008).

To begin to analyse the expression of T-box genes in the axial
mesoderm I first used RT PCR to detect RNA for these T box genes.
cDNA was prepared from whole chick embryos and from the heads
of the chick embryos at HH stage 6, 8, 10 and 13.

Tbx2, Tbx3, Thx18, and Eomesodermin were detected in whole chick
embryo and heads (Figure 3.9 B-E). Tbx6 could only be detected in
whole embryos at all stages but was only detected in the head at HH
stage 6 (Figure 3.9 F).
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Figure 3.9 Expression of T-box genes using RT PCR in heads and whole chick embryos

cDNA used to perform was obtained from either whole chick embryos (whole), heads of chick embryos
(head) or heads after dissecting out the cardiac tissue (head*). Marker gene tested is on the left and

stage analysed from HH stage 6-13 is indicated on the top.
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Using immunohistochemistry and in situ hybridisation I studied the
expression of these genes in chick embryos (data not shown).
Expression was detected in a variety of structures including the eyes
and the hypothalamus. However, only 7bx/8 marked the PM. Thx18
was detected in the PM over HH stages 6-10 (Figure 3.10 B-D).
Expression appeared relatively transient and could no longer be
detected at stage 13 (Figure 3.10 E). 7bx18 expression was not
detected in the PM prior to stage 6 nor was expression detected in the
NC at any stage (Figure 3.10 A, G-K). To determine whether 7hx/8
might act as a useful marker in in vitro experiments I examined its
expression in PM explants. Tbx18 is maintained in vitro explants of
the PM (74% of explants express 7hx18, n=19/20) (Figure 3.10 F).
Thx 18 expression was largely absent in NC explant (Figure 3.10 L).
In some NC explants small patches of 7bx18 expression were
detected in 12% of NC explant (n=7/12) (Figure 3.10 F and L). Thus,
broad and robust expression of 7hx/8§ is seen in the PM explants and

it is largely absent from the NC explants.

3.3 Discussion

In summary I have identified a transcription factor, 7hx18, that in
vivo exclusively marks the fully extended PM in the chick embryo.
Expression of 7bx/8 has been described in mouse, zebrafish and
Xenopus, however, its expression in the PM has not been studied
(Kraus et al., 2001; Begemann et al., 2002; Jahr et al., 2008). To see
if the expression of 7hx/8 in PM is conserved across species, these

studies need to be repeated with a particular focus on the PM.
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My studies show that, not only is 7bx 18 expressed exclusively in the
PM, but also that it is a relatively late marker of the PM, being
expressed only from stage 6 onwards. As such it contrasts with Gsc
and BMP7, which are also expressed at stage 5. This raises the
possibility that Tbx18 may have a late role in PM specification and/or
maintenance. Interestingly 7hx18 is although specific to the PM in
vivo, I observe that it is detected in NC explants in low amounts. This
suggests that the expression of 7hx 1§ is tightly regulated in vivo to
preserve the unique identity of PM.

Mouse and Drosophila knockout studies of Gsc do not show any
obvious phenotype in gastrulation (Rivera-Perez et al., 1995; Yamada
et al., 1995; Zhu et al., 1999; Goriely et al., 1996). Defects in neural
patterning are however, observed in Drosophila, zebrafish and
Xenopus but the expression of Gsc in both PM and neuroectoderm
makes it difficult to distinguish between a direct role of Gsc in the
neuroectoderm or the prechordal mesoderm (Seiliez et al., 2005;
Steinbiesser et al., 1995; Hahn and Jaeckle, 1996). Other
transcription factors of the PM including Liml, Hesx1, Frizzled,
Crescent, Dkk, HNF383, Otx2, blimpl are also expressed in the
neuroectoderm and/or the anterior visceral endoderm located anterior
to the PM (Ang et al., 1996; Ang and Rossant et al., 1994; Brickman
et al., 2000; Chapman et al., 2004; de Souza et al., 1999; Jones et al.,
1999; Ladher et al., 2000; Martinez Barbera et al., 2000; Shawlot and
Behringer, 1995; Sun et al., 2008). Thus up until now it has been
complicated to study the specification and role of the PM due to the
lack of an exclusive marker of the PM. The specific expression of
Thx18 in the PM provides an opportunity to study whether it plays an

important role in PM specification. Studies analysing how PM
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specifies and the factors involved in its specification/development are
currently difficult to interpret. Thus, the specific expression of 7bx18
in the chick PM now presents an opportunity to study the factors
involved in the specification/maintenance of PM and the role that

Tbx18 itself 1s playing in the PM.
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Chapter 4

Thbx18 inhibits notochord character and
induces the formation of a third type of axial

mesoderm at the PM/NC boundary
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4.1 Introduction

As outlined in Chapter 3 (introduction), i.e. prechordal mesoderm
and notochord are not fully resolved in head process mesoderm as
mixed expression and/or mixed cells are readily detected (Foley et

al., 1997; Vesque et al., 2000; Chapter 3).

However, from HH stage 6-7, notochord and prechordal mesoderm
resolve — in-situ hybridisation and immunohistochemical analyses
show distinct expression boundaries between the two cell types. This
raises the possibility that a factor may be expressed in either one or
both axial mesoderm cell type, and inhibit characteristics of the
second. For instance, hypothetically, prechordal mesoderm cells may
begin to express a transcription factor that inhibits notochord

character.

In theory, such a transcription factor could exert an effect through a
number of mechanisms. Elsewhere in the embryo, for example in the
neural tube (see section 1.4.1) such sharp expression boundaries arise
through the mutual repression of cells in adjacent domains,
maintained by particular transcription factors (Briscoe and Ericsson,
2001). The best characterised of these are the homeodomain
transcription factors Nkx2.2 and Pax6, that mutually repress each
other (Briscoe et al., 2000). Thus, a transcription factor expressed in
the PM could repress NC fate directly, downregulating notochord
character. Such cells might then

1. die as a consequence of downregulating NC characteristics

(Figure 4.1 A),
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2. change fate and form PM, upregulating PM markers (Figure
4.1 B),

3. become a third type of axial mesoderm cell that expresses the
transcription factor but not NC or other PM characteristics
(Figure 4.1 C), or,

4. express particular adhesive properties, or chemorepulsive
signals, so that they act as a barrier or push away any cells that
do not express the same properties (Figure 4.1 D),

5. behave due to a combination of such properties (e.g. 2 and 4 or

3 and 4).

As described in Chapter 3, 7hxI8 has the correct profile to act as
such a factor. It is not expressed in the head process mesoderm
formation when NC and PM are mixed/intermingled. However, it is
expressed from HH stage 6 i.e. the time at which NC and PM appear
to resolve in vivo. Moreover, in other regions of the embryo, T box
genes can repress cell identities (Bussen et al., 2004; Farin et al.,
2007; Kapoor et al., 2011). As described in the main Introduction
(section 1.6.1), 7bxI8 in particular has been associated with
boundary formation in three distinct territories in the developing
embryo — the somites, the inner ear and the ureter (Bussen et al.,
2004; Farin et al., 2007; Trowe et al., 2008; Airik et al., 2006). The
mechanism through which 7hx/8 acts to form boundaries in all these
structures is unclear, but it is widely speculated that 7bx/8 may either
confer distinct adhesive properties to cells which then adhere to cells
with the same properties or it may promote the expression of a
chemorepellent. So, there might be a common molecular program
through which 7bxI8 operates to form sharp boundaries in these

tissues.

87



"'SaAjasWway) se saladold uoisaype swes ay) sassod jou op
1ey] s||990 |adal pue saiuadold uoisaype swes ay) buissaidxa Aq Jayiabo) ajebaibbe xio1oe4 1o aAnisod sjje)
d

"‘wIsposawl |eixe Jo adAy paiy) e
Bunealo Agalay) ‘sonsualoeleyd \d aiejnbaidn jou op ng sonsusioeIeyd DN dle|nbaiumop XJojoe 1oj aanisod s||8)
o)

"0S9) pue g Xq ] ‘@due)sul Joj solslialoeleyd |\d dieinbaidn pue sonsusloeleyd ON alejnbaiumop Aew sjjo)
g

‘sisojdode obiapun xJ1010B4 10} 8AnIsod ||18D
A

DN PuUB |Nd usamiaq Alepunog ay}
2)ealo 0] salnoJ 9|qissod Buimol|o) ay) axe) Aew s|j8d asoy) pue aje) DN Slqiyul s||99 Nd Aq pessaldxe xiojoe4

IN pue Nd uaam}aq uoljewo} Alepunoq Jo swisiueyosaw a|qissod L'y ainbi4

88



Aiepunog
e Buiwioy 5
o)ebalbbe “M_w
s||90 089
tXi0Ped | s|je0 +X 10)0e s|leo
.|_| 101084 Xxio108
Y D’ 00
000 000
a
-Payd m W
-69¢
+989) S||I90
+81Xq1 Si[=) onojdody Sii®
() Xio10e () xlioyoe
00 (L]
000 000

&9



In this chapter I set out to address whether 7hx18 is likely to play a
role in the establishment of a sharp boundary between notochord and
prechordal mesoderm. To be able to do this, I performed in ovo gain
and loss-of-function electroporation experiments. Thus, I aimed to
misexpress 7hx18 in the notochord and additionally aimed to
electroporate small interefering RNAs targeted to 7hx 18 into the

prechordal mesoderm.

4.2 Results

4.2.1 Electroporation of the axial mesoderm

Whereas analysis of gene function by misexpression in the neural
tube of the chick embryo has become a routine method in recent
years, electroporation of the axial mesoderm remains challenging
(Yasugi and Nakamura, 2000; Swartz et al., 2001; Nakamura et al.,
2004; Das et al., 2006; Croteau and Kania, 2011). The neural tube
can be accessed easily and the lumen of the neural tube serves as a
vehicle to hold DNA before transfection. The axial mesoderm in
comparison underlies the neural tube making access difficult and the
lack of lumen adds to the challenge of precise transfection. The
prechordal mesoderm is a particularly difficult cell to target as it is a
transient structure, allowing limited time for an efficient gene

misexpression or knockdown.

To attempt to robustly target axial mesoderm cells I experimented

with a variety of methods (see materials and methods). Most success
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resulted when cells were targeted pre-gastrulation, i.e. before axial
mesoderm cells extend out of Hensen’s node and thus at a time point
when they are easily accessible. Vectors were introduced into
Hensen’s node using standard in ovo electroporation techniques
(Gray and Dale, 2010, Figure 4.2). Initially a pCAGGS empty vector
and a pCAGGS-RFP vector were co-electroporated into HH stage 4
and embryos developed to HH stage 10. Whole mount analyses
revealed that RFP expression could be observed in the midline of the
embryo (Figure 4.3 A). Sections through the trunk of such embryos
showed RFP expressed in a mosaic manner with an average of 20%

NC cells electroporated (no. of cells =36/180) (Figure 4.3 B).

4.2.2 Misexpression of 7bx18 in the notochord

To begin to investigate the role of 7hx18, I misexpressed Thx/8 and
ascertained its effect on notochord. A DNA expression construct
(cTbx18), containing cDNA for 7hxI8§ cloned into the pCAGGS
vector (Tanaka and Tickle, 2004) and was co-electroporated with
pCAGGS — RFP to allow detection of electroporated cells (in the
vector to reporter ratio of 1.7:1) (Table 4.1). Empty pCAGGS vector
and pCAGGS — RFP were co-electroporated as control (Table 4.1).
Analysis was restricted to those embryos that showed robust
expression of RFP in the midline (Figure 4.4 A and C). Embryos with
such clear RFP in the notochord intriguingly, (n=2/3) also showed
increased expression of RFP in the prospective heart region of
embryos misexpressing 7bx/8 in the notochord compared to the
controls (n=0/2) (Figure 4.4 marked by arrowheads). The limitation

of co-electroporation were considered in these analysis i.e. it cannot
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be ruled out that there is a possibility that not all RFP cells are
expressing cTbx18 gene. Therefore it was important to compare the
embryos misexpressing ¢Tbx18 in the notochord to be compared to
the controls carefully to conclude that there is a possibility that
embryos misexpressing cTbx18 had an enlarged heart domain but the
control embryos did not. To confirm this observation it is important

to repeat this experiment and analyse a bigger sample.
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Figure 4.4 Tbx18 is expressed in the NC of pPCAGGS-cTbx18 and
pPCAGGS-RFP (+Tbhx18 +RFP) but not in pPCAGGS and pCAGGS-RFP
(control) co-electroporated embryos.

A Expression of RFP is detected throughout the midline as well as
the heart (marked by arrowhead) of pPCAGGS-cTbx18 and pCAGGS-
RFP (+Tbx18 +RFP) co-electroporated embryo.

B Transverse section through the embryo (marked by line in A) shows
robust expression of Tbx78 in the NC (marked by dotted line).

C Expression of RFP is detected throughout the midline but not in
the heart of the pCAGGS and pCAGGS-RFP (control)
co-electroporated embryo.

D Trasverse section through the embryo (marked by line in C) shows that
Thbx18 is not expressed in the NC (marked by dotted line).
Scale bar = 25 um.
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Misexpression of 7hx /8 in the NC was first confirmed by in situ
hybridisation. Expression of 7hx/8 was detected in the NC of
pCAGGS — ¢Tbx18 electroporated embryos (no. of embryos = 3/3)
whereas the NC of control embryo did not express 7bx18 (no. of
embryos =2/2) (Figure 4.4 B and D). Notably, 7bx/8+ cells were
almost always aggregated together in pCAGGS-cTbx18; single
Tbx 18+ cells were rarely observed (Figure 4.4 B).

To ask whether Thx/8 can downregulate NC characteristics, I
analysed expression of the NC markers 3B9 and Chrd. 3B9 was not
detected in pCAGGS-cTbx18 electroporated notochord cells (no. of
embryos = 3/3, no. of cells =5/54), whereas control electroporated
cells robustly expressed 3B9 (no. of embryos = 2/2, no. of cells
=20/28) (Figure 4.5 A and B). As Tbx18 is a transcription factor it is
expected to act in a cell autonomous manner however, electroporated
and non-electroporated cells alike lose the expression of 3B9 (marked
by arrows in Figure 4.5). This suggests that there might be a
secondary non-cell autonomous effect. This further implies that
Thx18 might play a role in suppressing the notochord marker 3B9 in
prechordal mesodermal cells but requires further investigation to
successfully conclude this by analyzing a larger sample of embryos.
Due to repeated technical difficulties, expression of Chrd could not

be studied.

To further test the properties of 7hx 18- cells (as set out in Figure 4.1),
I first asked whether Thx 18+ 3B9- cells are undergoing apoptosis, by
observing DAPI, which labels the nuclei. Chromatin condensation
was not observed in the nuclei in pCAGGS-cTbx18 (no of embryos =

3/3, no of cells =55/60) or control electroporated cells (no of embryos
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= 2/2, no of cells =60/61) (Figure 4.6). This suggests that 3B9- cells

are healthy and do not undergo apoptosis post-Tbx 18 misexpression.

Next I tested the hypothesis that cells alter their fate to prechordal
mesoderm and begin to express Gsc. Expression of Gsc was not
detected in pPCAGGS-cTbx18 electroporated NC cells or in control
vector electroporated cells (Figure 4.7). This suggests that 7bx 8+
cells downregulate 3B9 but do not upregulate the prechordal
mesoderm marker Gsc, i.e. are not altering their fate to prechordal
mesoderm. This suggests that they instead exist as a third type of

axial mesodermal cell, which is Thx/8+, Gsc- and 3B9-.

Previous studies in the lab have, in fact, suggested the presence of a
third population of axial mesoderm cell types in vivo, that exists at
the boundary of PM and NC and unlike the PM and NC, does not
express SHH (Figure 4.8, M.P. unpublished observations). Thus, I
tested 1f misexpression of 7bhx/8 in the NC results in the
downregulation of SHH, potentially indicating the creation of this
third type of axial mesoderm. Expression of SHH in pCAGGS-
cTbx18 electroporated as well as non electroporated NC cells was
weaker (no of embryos 3/3, no of cells = 14/67) than those in control
suggesting that SHH is downregulated in NC cells misexpressing
Thx18 (no of embryos 2/2, no of cells = 30/42) (Figure 4.9). This
suggests that there is a possibility that 7bx/8 misexpressing cells
alter their fate from NC to a third type of axial mesoderm sitting at

the boundary between PM and NC.
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4.2.3 Tbx18 loss-of function in the prechordal mesoderm

To directly establish the role of 7hx/8 in the prechordal mesoderm
siRNA vectors targeted to 7bx/8 were also designed as described
earlier (Shiau et al., 2008; see materials and methods). Target
sequences were amplified by PCR and cloned into pRFPRNAIC
backbone (Figure 4.10). Their transcription is driven by a chicken
specific promoter, Chick U6 promoter. The plasmid also contains a
RFP cassestte driven by B-actin promoter to allow visualization of the
electroporated cells. Work 1s currently ongoing to successfully

electroporate the vectors into the prechordal mesoderm.

4.3 Discussion

Studies described here show that 7hx/8 might play a role in
suppressing notochord identity although further testing is required by
analysing a larger sample of embryos. Misexpression of 7Hx/8§ in the
notochord suppressed the expression of the notochord marker 3B9 in
a cell non-autonomous way, with transfected and non-transfected

cells downregulating 3B9 (Figure 4.5).

The mechanism through which 7bx/8 exerts this effect is not
mediated by apoptosis of NC cells (Figure 4.6). Neither does it
govern the expression of the prechordal mesoderm marker, Gsc,
suggesting that it does not induce or maintain prechordal mesoderm

identity (Figure 4.7). Instead the analysis of SHH in serial adjacent
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sections suggests that these cells might have a profile of a third type

of axial mesoderm cell (Figure 4.9).

This third type of axial mesoderm cell may sit at the boundary of PM
and NC (Figure 4.9). In future it will be critical to characterise

this region in vivo to see if it is 7bx 18+, Gsc- and 3B9-, supporting
the hypothesis that 7bx /8 creates a boundary between PM and NC by
creating a cell population with a distinct marker profile. This will
suggest a novel way of restricting cell mixing in the axial mesoderm
and protecting distinct prechordal mesoderm and notochord cell
populations. Further future studies are required to address the
mechanism through which Tbx18 operates to confer these distinct

cell properties.

One possibility suggested by studies of 7hx/8 in other regions
(Bussen et al., 2004; Airik et al., 2006; Trowe et al., 2008) is that
Thx18 regulated adhesive properties of PM cells. An intriguing
observation from these studies is that, post-electroporation, cells
misexpressing 7hx18 cells were almost always found in a cluster.
This suggests that 7hx/8 may confer an adhesive property to these
cells such that they adhere to one another thus creating a boundary
between themselves and their neighbours. Alternatively cells may
gain chemo-attractant or repulsive characteristics allowing them to
aggregate together and repel cells that do not possess the same
properties as themselves. Interestingly, the receptors EphA4 and
EphA3 (involved in chemotaxis) are expressed in the notochord of
the chick embryo, expression of Eph/Ephrin family members has yet
to be reported in the prechordal mesoderm; however, wholemount in-

situ hybridisation suggests EphrinB2 as a particular candidate (Baker
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and Antin, 2003). In zebrafish Eph/Ephrin signalling has been shown
to be involved in cell movements of prechordal mesoderm and
notochord cells during gastrulation such that disruption of the
pathway led to prechordal mesoderm cells lying outside of their
domain (Chan et al., 2001). Future work is required to establish the
mechanism of boundary formation by 7hx/8, involving analysis of
the expression of chemo-repellant and cell adhesion molecules in the
axial mesoderm and the manner in which their expression pattern

may be governed by 7bx18.

My studies suggest that 7bx/8 may lead to the establishment of a
third type of axial mesoderm that sits at the NC-PM interface. No
study thus far has described this cell population; given the central
role that axial mesoderm plays in patterning the overlying neural
tube, one can speculate that the loss of SHH from this small region
may have profound effects on the patterning of the overlying mid-
forebrain. Future experiments are required to examine this in detail.
A critical question is that of the future fate of this third population of
axial mesoderm. Studies in the lab show that it appears to be a
transient structure, thus, later in development no gap in Shh
expression is detected (Dale et al., 1999; Manning et al., 2006).
Intriguingly, as Figure 4.4 shows, embryos misexpressing 7bx/8 in
the notochord appear to have an enlarged heart domain. Previous
studies have pointed to a link between anterior notochord and the
heart field (Goldstein and Fishman, 1998), so, perhaps cells from this

region contribute to the heart (I will return to this idea in Chapter 7).

In conclusion, studies described here suggest that the hypothesis that

Tbx18 might play a role in PM/NC boundary formation by

107



1. inducing the formation of a third type of axial mesoderm that
sits at the boundary between PM and NC,

2. conferring an adhesive property to the cells so that they cluster
together and

3. by inhibiting notochord characteristics in particular NC marker

3B9

Further studies are required to address the mechanism through which
Thx18 acts to form the boundary between PM and NC. However, a
second unanswered question is that of how 7bx/8 expression is
governed in the prechordal mesoderm. In the next chapter, I set out to

address how the expression of 7bx18 is controlled in the PM.
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CHAPTER 5

Tbx18 is governed by both canonical and

non-canonical Nodal signalling pathways
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5.1 Introduction

Nodal signalling plays a conserved role in the formation of the
prechordal mesoderm as described in the main Introduction (see
Chapter 1 Table 1.1). For example, mouse embryos that are mutant
for FoxH1, one of the target genes of Nodal, lack anterior and
midline structures (Hoodless et al., 2001; Yamamoto et al., 2001. The
zebrafish mutant schmalspur, that lacks FoxH1 function, also shows
broad anterior and midline defects including defects in the PM
(Pogoda et al., 2000; Sirotkin et al., 2000). Xenopus studies using
blocking antibody for FoxH1 and injection of dominant negative
FoxH1 also eliminate PM (Watanabe and Whitman, 1999). These
studies demonstrate that Nodal plays an early and conserved role in

the formation of prechordal mesoderm.

The loss of PM in these studies is unsurprisingly accompanied by a
loss of PM expressed genes including Gsc. The loss of tissues
precludes any understanding of whether Nodal signalling directly
governs Gsc expression. However, other experiments suggest that it
does play a direct role in Gsc expression. For example, Gsc domain is
expanded when Xenopus Nodal gene Xnr/ mRNA is injected into
Xenopus embryos and conversely its expression is blocked when
mRNA for a specific Nodal inhibitor Cerberus Short was injected
into the embryos (Agius et al., 2000). Similarly in zebrafish, mRNA
for Nodal ligands squint and cyclops can induce Gsc in wildtype
embryos (Feldman et al., 1998; Sampath et al., 1998; Gritsman et al.,
2000). Also mouse Nodal mRNA is capable of inducing gsc in
zebrafish embryos (Toyama et a., 1995). Additionally, it has been

shown that Nodal-related molecules control Gsc transcription through
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a distal responsive element within the Xenopus Gsc promoter region
(Watabe et al., 1995). Transduction of Nodal-related signal results in
a complex of transcription factors Smad2/4 and mixer on distal
promoter element activating Gsc transcription (Germain et al., 2000).
The motif identified as crucial in transcription factor mixer for
mediating Smad2 interaction is also present on FoxH1, so a common
mechanism exists for Smad recruitment to the distal element
(Germain et al., 2000). Further, a specific FoxH1 binding site has
also been identified in the mouse Gsc promoter, which is required for
Gsc transcription by Nodal signalling (Labee et al., 1998). Thus,

Nodal signalling is able to directly activate Gsc transcription.

Most of the studies describing the role of Nodal in prechordal
mesoderm development, focus on an early role for Nodal signalling,
examining its ability to govern the early induction of Gsc in PM
precursors (Varlet et al., 1997; Feldman et al., 1998). So, these
studies focus on the role of Nodal signalling as the PM is migrating

out of the organiser and has not fully extended.

Recent evidence in the Placzek lab suggests that Nodal signalling has
an additional role, governing the PM post-extension. These studies
show that Nodal maintains the expression of SHH in the PM over the
period HH stage 6-12 (Ellis et al., in revision). However,
interestingly, it is the unprocessed Pro form (ProNodal) that is
essential for SHH maintenance. Moreover, ProNodal appears to
operate in this case by binding and activating Fgf receptor 3 (FgfR3)
rather than the canonical ALK receptors, through which
proteolytically cleaved Mature Nodal acts.
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As yet, no study has yet investigated whether Nodal signalling
governs other later characteristics of the PM when it has fully
extended in part because no marker has been shown to be expressed
post-extension. My analyses show that 7hx/8 can be detected only
from HH stage 6 chick embryo, which allows me to ask whether
Tbx18 is governed by Nodal signalling? Here | set out to address this
question and ask additionally whether Nodal acts in its pro-form via
the novel FgfR3 pathway and/or its mature form, via the canonical

ALK receptor pathway, to regulate 7bx/8 in the PM.

5.2 Results

5.2.1 Expression of Nodal in the PM

If Nodal signalling functions in the PM then its expression may well
persist post gastrulation from stage 6 in the chick embryo. Figure 5.1
shows that indeed Nodal 1s expressed in the PM and is absent from
the NC at HH stage 8 (Ellis et al., in revision). 1 did not analyse the
expression of Nodal at any other stages, because it has such weak

expression in the PM, requiring long development.

5.2.2 Expression of FgfR3 in the PM

As mentioned in the Introduction (Table 1.1 and 1.2) a wealth of
evidence shows that Mature Nodal acts through the canonical ALK
receptor pathway. By contrast ProNodal acts via the novel FgfR3
pathway (Ellis et al., in revision). If either Mature Nodal or ProNodal
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operate in the fully extended PM, expression of ALK receptors and
FgfR3 should be detected in the PM post-gastrulation.

Unfortunately due to a lack of functional antibodies and RNA probes
targeted to ALK receptors, I was unable to confirm its expression
pattern in the PM. However, it has been shown in Xenopus that
ALKA4 is expressed in the PM and notochord (Chen et al., 2005). Also
ALK co-receptor, Cripto is expressed and has a function in the chick

PM (Colas and Schoenwolf, 2000; Chu et al., 2005).

I was, however, able to confirm that FgfR3 is expressed in the PM
and the overlying neuroectoderm at HH stages 6-10 (Figure 5.2 B-D).
I did not detect any expression earlier (at stage 5) and only weak
expression was seen at stage 13 (Figure 5.2 A and E). In the posterior
head process mesoderm, FgfR3 is similarly absent at HH stage 5, but
it is broadly detected in the NC and overlying neuroectoderm at HH
stages 6-10 (Figure 5.2 F-I). FgfR3 expression becomes more
complicated in the NC at stage 13, when weak expression persists in
the anterior NC (data not shown) but not in the posterior NC (Figure
5.2).

5.2.3 ProNodal and Mature Nodal can upregulate 7bx18 in the
NC

I next set out to establish the role of Nodal signalling in the
specification of chick assaying both ProNodal and Mature Nodal for
their ability to induce PM markers.
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ProNodal was obtained from 293T cells transiently transfected with
plasmid encoding a cleavage mutant form of Nodal, which secretes
only the ProNodal form into the supernatant. Western blot analysis of
conditioned medium showed a protein band of the correct molecular
mass (Figure 5.3 A, Ellis et al., in revision). In addition a
recombinant mature Nodal (R&D systems) was assayed, having first
performed western blot analysis to confirm a protein with the correct

molecular mass (Figure 5.3 B).

HH stage 6 NC explants were used as a test bed, to determine if
ProNodal and/or Mature Nodal are sufficient to induce expression of
Gsc and Thx18 in extended axial mesoderm (Figure 5.4 A). Before
asking whether ProNodal/Mature Nodal can upregulte PM markers I
asked if NC is able to respond to ProNodal/Mature Nodal by
downregulating standard NC markers. To determine the extent of
downregulation, the length of the entire NC, and the length of
expression pattern of the protein/gene tested, were measured and
percentage expression was then calculated and compared to controls

(Figure 5.4 B, see materials and methods section 2.8).

This experiment was performed at three concentrations for both
proteins, to determine an optimal concentration. The concentration
range was based on an independent assay in which a similar
concentration range of Nodal antagonises BMP7 (Ellis et al., in
revision). Although the precise concentration of ProNodal obtained
from cell supernatant is unknown, by running it alongside the known
concentration of Mature Nodal we were able to estimate a

comparable concentration range for use in these assays. This was
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done by comparing the strength of the ProNodal protein band to the
Mature Nodal protein band.

NC cultured with ProNodal downregulates 3B9 at 1x and 3x but not
at 0.25x compared to controls (Figure 5.4 C-F). At 1x 53% of the NC
continued to express 3B9 compared to 80% at 3x. Chrd was
downregulated at 0.25x (60%) and 1x (63%) but not at 3x (78%)
(Figure 5.4 G-J). It is surprising to see that 0.25x and 1x
downregulated NC markers more than 3x. This might be due to the
high concentration of protein activating a negative feedback

mechanism preventing downregulation of NC markers.

In response to Mature Nodal, 3B9 was downregulated at 250 ng/ml
and 100 ng/ml but not at 50 ng/ml compared with controls (Figure
5.5 A-D). Chrd was downregulated at all three concentrations (Figure
5.5 E-H). However, at 250 ng/ml, downregulation was most robust,
with, only 36% of the NC continuing to express 3B9 and 40%
expressing Chrd compared, to 76% 3B9 and 60% Chrd at 100 ng/ml
(the second highest).

Thus, NC markers were maximally suppressed using 1x ProNodal
and 250 ng/ml Mature Nodal. These protein concentrations are within
a similar range to each other, based on band intensities revealed by
Western blot (Figure 5.3). Thus, ProNodal at 1x and Mature Nodal at
250 ng/ml were chosen for analysis of higher number of explants in
which, (a) serial adjacent sections were analysed for downregulation
of NC markers and concomitant upregulation of PM markers and (b)
statistical analyses were performed to point the significance of my

results.
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After culture with medium containing 1x ProNodal, NC showed a
significant downregulation in 3B9 and Chrd compared to the NC
cultured with mock-transfected control supernatant (3B9 P value =
0.02 and Chrd P value = 0.05) (Figures 5.6 A, B, I and J, 5.7 A and
B). Downregulation was observed in all cells in a specific region of
the NC (i.e. not in all the cells of the NC). In serial adjacent sections,
the downregulation in NC markers was accompanied by a significant
upregulation of 7hx/8 (P value = 0.04) compared to controls (Figures
5.6 Cand K, 5.7 C). Gsc was also significantly upregulated (P value
=0.02) (Figures 5.6 Dand L, 5.7 D).

Similarly, NC cultured with Mature Nodal (250 ng/ml) also
downregulated 3B9 and Chrd from one region of the NC (3B9 P
value = 0.05, Chrd P value = 0.03) (Figures 5.6 E, F, I and J, 5.7 A
and B). Again serial adjacent sections showed a significant
upregulation in 7bx/8 in the same region in which 3B9 and Chrd
were downregulated (P value = 0.01) (Figure 5.6 G and K, 5.7 C).
Gsc was also upregulated in the same region as 7hx/8 (Figure 5.6 H
and L) although unlike ProNodal, the upregulation of Gsc by Mature
Nodal did not appear to be statistically significant (P value = 0.38)
(Figure 5.7 D). However, I am repeating these experiments as
variable results observed maybe explained by technical difficulties

(see discussion).

5.2.4 Nodal signalling is required for 7bx18 expression in the PM

These experiments show that ProNodal and Mature Nodal can

upregulate 7bx18 and Gsc in NC explants. To directly test if Nodal
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signalling is required for the maintenance of Gsc and the induction of
Thx18 in the PM, PM was dissected from HH stage 6 chick embryos
and cultured for 16 hours in medium containing secreted protein
Cerberus Short (CerS) (Figure 5.8 A). CerS is a specific antagonist of
Nodal signalling (Piccolo et al., 1999; Belo et al., 2000) and
antagonises both ProNodal and Mature Nodal (Ellis et al., in

revision).

Previously in the lab it has been shown that CerS downregulates SHH
in the PM, so this was used as an independent assay to determine the
optimal concentration of CerS for use (Ellis et al., in revision). A
concentration range of 0.25x, 0.5x and 1x was chosen based on the
concentration used by Ellis et al., in revision. The area of SHH
expression then compared in PM explants treated with CerS versus
those treated with 1x mock-transfected control supernatant (Figure
5.8 B). Downregulation of SHH was observed at all concentrations
but 1x CerS almost completely downregulated SHH (13% SHH
expression) (Figure 5.8 C-E). PM explants treated with medium
containing mock-transfected control supernatant continued to express

SHH (Figure 5.8 F).

Gsc and Thx18 were next assessed, to determine if 1x CerS has an
effect on their expression. Like SHH, Gsc was significantly
downregulated in explants cultured with CerS compared to controls
(SHH P value = 0.03, Gsc P value 0.008) (Figures 5.9 A, B, F and G,
5.10 A and B). Likewise, 7bx/8 was not detected in explants after
culture with CerS, compared to controls (P value = 0.01) (Figures 5.9

Cand H, 5.10 C).
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Figure 5.9

Inhibition of Nodal signalling results in downregulation of PM
markers Thx18 and Gsc.

A-E

In PM explants cultured with CerS at 1x, PM markers SHH, Gsc
and Thx18 downregulate post culture. Expression of NC markers
3B9 and Chrd is not detected.

F-J

PM explants cultured under control conditions continue to express
SHH, Gsc and Tbx18. NC markers 3B9 and Chrd are not
detected post culture.

For positive control for Chrd and 3B9 see Figure 3.8 | and J
respectively.

Scale bar = 50 ym
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As PM explants lost expression of SHH, Gsc and Thx18 post CerS
treatment, expression of Chrd and 3B9 was also analysed to see if
loss of Nodal signalling was accompanied by a change in fate to NC.
I could not detect 3B9 and Chrd in PM explant cultured with CerS
media or control media (Figure 5.9 D, E, I and J).

5.2.5 Canonical and Non-canonical Nodal pathways may govern

expression of 7bx18 in the PM

As described in the Introduction it is known that Nodal largely acts
via ActRII/ALK4/5/7 receptors to initiate Gsc expression in vivo.
Recent work has also shown that ProNodal can bind and act via Fgf
receptor 3 (Gu et al., 1998, Ellis et al., in revision). I therefore next
set out to test whether the canonical ALK receptor pathway and/or
the novel FgfR3 receptor pathway regulate the expression of Gsc and

Thx18 in the post-extended PM.

To test this PM explants were cultured with a widely used inhibitor
of ALK receptors, SB-431542 (Inmann et al., 2002) and expression
of PM and NC markers analysed. Blocking ALK receptors did not
have a statistically significant effect on SHH, consistent with
previous studies in the lab (Ellis et al., in revision) (Figures 5.11 A
and F, 5.13 A). Weak decrease in Gsc expression was observed
(Figure 5.11 B and G, 5.13 B) (however, I am repeating these
experiments as I am concerned that there are some technical
difficulties). Consistent with the finding that Mature Nodal can

induce Tbx18 in the NC, a significant reduction of 7hx/8 was
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observed in PM with reduced Nodal signalling via ALK receptors (P
value = 0.01) (Figures 5.11 C, H and 5.13 C).

I did not detect a change in 3B9 and Chrd expression compared to

controls (Figure 5.11 D, E, I and J).

To reduce ProNodal signalling acting via FgfR3 in the PM and test if
it has a direct role in governing Gsc and 7bx18, a recombinant
protein called FgfR3-fc was used. FgfR3-fc competes with the
endogenous FgfR3 receptor for ligand binding and thus decreases
signalling downstream of FgfR3. Reduction in FgfR3 led to a
significant decrease in SHH and 7hx/8 expression (SHH P value =
0.002, Tbx18 P value = 0.01) but Gsc was unaffected (Figures 5.12
A, B, C, F G and H, 5.13 D-F). This confirms previous results
obtained in the lab describing the role of ProNodal in the
maintenance of SHH in the PM (Ellis et al., in revision). They also
show that ProNodal governs the expression of 7hx/8 in the PM but

not Gsc.

Consistent with PM cultured with CerS and ALK inhibitor loss of
PM markers did not lead to a change in fate to NC. 3B9 and Chrd
could not be detected in the PM cultured with FgfR3-fc (Figure 5.12
D, E, I and J).

After culturing with both SB-431542 and FgfR3-fc expression of
SHH and Gsc are reduced but Thx/8 is completely down regulated
compared to controls (Figure 5.14 A, B, C, E, F and G). No change
was observed in 3B9 (Figure 5.14 D, and H). Due to insufficient

numbers (n=2) a statistical test could not be performed.
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Taken together these studies suggest that ProNodal and Mature Nodal
signalling 1s important for initiating 7bxI/8 expression. Future
experiments will determine if both or one is required for maintenance

of Gsc and/or Thx18.
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Figure 5.11

Inhibition of canonical Nodal signalling via ALK receptor
results in downregulation of PM markers Thx18 and Gsc.

A-E

Post culture with ALK inhibitor, SHH is not downregulated,
Gsc is weakly downregulated and Tbx18 is completely
downregulated in PM explants. NC markers 3B9 and Chrd are
not expressed post culture.

F-J

In PM explants cultured under control conditions (DMSQO), SHH,
Gsc and Thbx18 continue to be expressed. NC markers 3B9 and
Chrd are not expressed post culture.

Scale bar = 50 ym
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Figure 5.12

Inhibition of non canonical Nodal signalling via FgfR3 results in
downregulation of PM marker Thx78 but not Gsc.

A-E

In PM explants cultured with FgfR3-fc SHH and Tbx18
downregulate but Gsc is expressed after culture with FgfR3-fc.
NC markers 3B9 and Chrd are not detected.

F-J
PM explants cultured under control conditions continue to express
SHH, Gsc and Tbx18. NC markers 3B9 and Chrd are not detected

Scale bar = 50 ym
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ALK inhibitor + R3-fc

Control

SHH

Gsc

Tbx18

3B9

Figure 5.14

Inhibition of canonical and non-canonical Nodal signalling
results in downregulation of PM markers Thx18 and Gsc.

A-D

Weak SHH and Gsc expression is detected post culture with
ALK inhibitor and FgfR3-fc. Thx18 expression is downregulated after culture.

NC marker 3B9 is not expressed.

E-H

In PM markers cultured under control conditions SHH, Gsc and Tbhx18
continue to be expressed post culture. NC marker 3B9 is not detected.

Scale bar = 50 ym
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5.3 Discussion

In summary, studies described here demonstrate that the Ilate
prechordal mesoderm marker, 7bx/8 behaves like earlier expressed
PM markers as it is dependent on Nodal signalling for its expression.
Upon inhibition of Nodal signalling by Cerberus Short SHH, 7hx18
and Gsc are downregulated in the PM (Figures 5.9 and 5.10). This
also shows that Nodal signalling plays a late role in the PM by

continuing to regulate the expression of PM markers.

Further it has recently been found that Nodal can bind and activate
FgfR3 and this novel pathway is involved in SHH maintenance in the
PM (Figure 5.13, Ellis et al., submitted). Inhibiting Nodal signalling
via canonical ALK receptor and/or the novel FgfR3 inhibits 7hx1S8,
thus it operates downstream of ALK receptors and FgfR3 (Figures
5.11, 5.12 and 5.13). However, Gsc continues to be expressed when
FgfR3 is inhibited but its expression though not statistically
significant is weak in PM explants cultured with ALK inhibitor
(Figures 5.9, 5.10, 5.11, 5.12 and 5.13). Further when both ALK and
FgfR3 receptors are inhibited Gsc expression appears to be
downregulated (Figure 5.14). Thus it would be necessary to confirm
this observation by increasing the number of explants analysed.
However, interestingly in zebrafish organiser it has been shown that
Nodal acting via ALK receptors can regulate Gsc expression in a one
hour time window post which blocking Nodal signalling no longer
downregulates Gsc (Hagos and Dougan, 2007). This shows that
Nodal can act in a complex temporal manner to maintain Gsc. If
indeed such a strict time window operates in the PM, this provides a

potential reason for a varied result seen in Figure 5.11 B. Explants
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were dissected at HH stage 6 which consists of a two hour time
window more accurately represented by HH stage 6- and 6+. Thus,
potentially Mature Nodal may govern Gsc expression at HH stage 6-
but not 6+. To test this possibility it would be crucial to block Mature

Nodal signalling in PM explants dissected at precise stages.

Where the inhibition of Nodal signalling by CerS led to a loss of PM
markers, this effect was not accompanied by an induction of NC
markers in the PM (Figure 5.9) Similarly, PM explants cultured with
ALK inhibitor or FgfR3-fc also did not induce NC markers (5.11 and
5.12). Thus, although PM loses its character upon Nodal inhibition, it

does not acquire other axial mesoderm i.e. NC character by default.

One of the functions of the PM is its ability to induce hypothalamic
character in the overlying neural tissue (Dale et al., 1997, 1999;
Ohyama et al.,, 2005, 2008). It would be interesting to test the
signalling abilities of PM post Nodal inhibition, by culturing it with
neural tissue to see if it is still capable of inducing hypothalamic cell
properties. One would predict that it would no longer be able to
induce hypothalamic cells as PM requires the activity of both SHH
and BMP7 to be able to induce hypothalamic cells and Nodal
inhibition suppresses SHH in the PM (Dale et al, 1999).

An interesting observation arising from studies where NC explants
were cultured with Pro or Mature Nodal is that Nodal is sufficient to
downregulate its own markers and upregulate PM marker 7bx/8 in a
particular region of the NC analysed in serial adjacent NC sections.
This not only suggests that NC has the ability to respond to a PM
signal Nodal and change its fate to PM fate but also that this is true
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for only a particular region of the NC. All the cells of the NC are
therefore not competent to respond to Nodal signals. These
observations raise the question of how Nodal is regulated in the axial
mesoderm so that only prechordal mesoderm cells respond to it and
not notochord cells despite most of them being competent to be able
to do so. Also if the majority of axial mesodermal cells can respond
to Nodal and become PM like, why do only a small minority of cells
become PM and majority the NC? How is the posterior limit of the
PM defined?
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CHAPTER 6

Paraxial mesoderm and retinoic acid
antagonise Nodal signalling to maintain
distinct domains of prechordal mesoderm

and notochord
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6.1 Introduction

My studies show that Nodal plays a late role in prechordal mesoderm
specification and is required for the expression of the PM marker
Thx18 (Figure 5.9, 5.11 and 5.12). Nodal 1is sufficient to
downregulate notochord markers and upregulate PM markers in
notochord explants (Figure 5.6). This shows that notochord cells are
competent to respond to Nodal signals and can change their character
to prechordal mesoderm. This raises the question of how Nodal is
regulated in vivo such that only the axial mesoderm becomes
prechordal mesoderm. How is the posterior extent of prechordal
mesoderm defined? Evidence in other species suggests that the
concentration of Nodal signal that an axial mesoderm cell receives is
important to determine its fate, such that high concentrations of
Nodal are required for prechordal mesoderm fate and lower
concentrations for notochord fate (Schier et al., 1997). This raises
the possibility that there are mechanisms that restrict high Nodal

signalling to anterior-most regions of the axial mesoderm.

Alternatively, it is possible that axial mesoderm is not homogeneous,
and that different regions possess different competence to respond to
Nodal signalling. In support of this idea, my studies suggested that
not all the notochord cells are Nodal responsive: a distinct population
of notochord cells clustered at one end of the notochord explants does
not respond to Nodal signals (Figure 5.6). This NC population
maintains expression of notochord markers and does not upregulate
prechordal mesoderm markers. Could this cell population sit

anteriorly at the boundary between PM and Nodal-responsive
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notochord? If so this would provide a mechanism of how the

posterior limit of PM is defined.

A third possibility is that both Nodal signal restriction, and axial
mesoderm competence play a role in determining the posterior limit
of the prechordal mesoderm. For instance, it is possible to envisage
three populations of axial mesoderm:
1. Nodal responsive anterior axial mesoderm that encounters high
levels of Nodal signal and forms the PM.
2. Anterior notochord that has the ability to respond to Nodal but
does not in vivo due to low concentration of Nodal signal or
the presence of another factor that inhibits Nodal signaling.

3. Nodal unresponsive posterior notochord.

Thus, my aims in the studies below are to determine the position of
Nodal unresponsive notochord cells, and to understand how Nodal
signalling is regulated in the notochord such that the posterior limit of

the prechordal mesoderm is defined.

6.2 Results

6.2.1 Posterior end of the notochord is ProNodal non-responsive

As described above, cells that are Nodal unresponsive are always
clustered at one end of the notochord (Figure 5.6). So, to be able to
investigate their relative position in the notochord, cells at the

posterior end of notochord explants were labelled with Dil (1,1'-
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dioctadecyl-3,3,3',3'-tetramethylindocarbocyanine  perchlorate), a
lipophyllic membrane dye that labels the whole cell and emits a red
fluorescence. The explants were cultured as described in Figure 6.1A,
with medium containing ProNodal. Thus Nodal was presented in a
uniform manner to all notochord cells. Figure 6.1 B shows that
notochord cells at the posterior end of the NC, marked by Dil,
continue to express the notochord marker 3B9 (n=3). Conversely,
cells in anterior regions of the notochord explant downregulated 3B9
(Figure 6.1 B). This shows that cells at the posterior end of the

notochord are not competent to respond to ProNodal.

6.2.2 Notochord is not responsive to ProNodal in ovo

Next I investigated if NC cells can alter their fate in ovo if they are
exposed to ProNodal. To be able to establish this I used the hanging
drop method to create pellets of pCS2 CMN-transfected 293T cells
that could be used as a source of ProNodal protein (see materials and
methods) (Ben-Haim et al., 2006). Cells were co-transfected with a
pCAGGS-RFP vector to distinguish transfected cell pellets from
other tissue upon transplantion in vivo. Figure 6.2 shows an example
of a pellet, successfully transfected with pCAGGS-RFP vector with
cells fluorescing red. An empty pCS2+ vector and pCAGGS-RFP

were co-transfected into 293T for control cell pellets.

Next, I determined that the pellets were secreting sufficient ProNodal
protein to downregulate the notochord marker 3B9, i.e. with an
efficiency similar to that observed with the soluble protein (shown in

Figure 5.6). I cultured notochord explants with either ProNodal-
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transfected or control vector-transfected pellets and found that the
notochord marker 3B9 was downregulated in much of the notochord
cultured with the ProNodal transfected pellet (n=3), whereas explants
cultured with control vector pellet expressed 3B9 in all cells (n=3)
(Figure 6.3). This shows that the pellets behave in the same way to

the soluble proteins and can be used for in ovo transplantations.

To examine if ProNodal can alter the fate of the notochord in ovo, 1
transplanted ProNodal pellets into HH stage 10 embryos. HH stage
10 embryos were chosen initially due their ease of manipulation. A
small incision was made immediately lateral to the neural tube and
the pellet was transplanted into the pore created (Figure 6.4). The
embryos were analysed after 24 hours at HH stage 14 and only those
embryos in which RFP-expressing pellets could be seen were
analysed (Table 6.1) (Figure 6.5 A and F). Expression analysis of
3B9 did not reveal a downregulation in embryos transplanted with
ProNodal transfected pellet (n=6/6) (Figure 6.5 B). Chrd was not
detected in the notochord, as it is normally downregulated in the
notochord at HH stage 14 (Figure 6.5 C). The PM markers Gsc and
Thx18 were not upregulated in embryos transplanted with ProNodal
transfected pellet (n=6/6) (Figure 6.5 D and E). Embryos transplanted
with control vector pellet continued to express 3B9 and did not
express Chrd, Gsc and Tbx18 (n=1/1) (Figure 6.5 G - J). This shows
that NC does not respond to ProNodal and change its fate to
prechordal mesoderm in ovo. However, noticeably, in a number of
embryos (n=5/6) with a transfected Nodal pellet, a small group of
notochord cells appeared to ‘pinch off’ from the main endogenous
notochord (Figure 6.5B, yellow arrowhead). This was never detected

with control-transfected pellets.
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The lack of clear effect in ovo after transplanting beads to HH stage
10 embryos prompted me to attempt to perform the more difficult
transplants into HH stage 6 embryos, to more closely mimic the in
vitro NC explants (which were all isolated from HH stage 6 embryos)
(Table 6.1). Again no obvious change in 3B9 or Chrd expression was
detected and the endogenous intact NC did not express Gsc and
Thx18 (n=1/1) (Figure 6.6). At first glance, this suggests that NC
might not alter its fate to PM in response to ProNodal signal.
However, interestingly I observed an ectopic structure was observed
(marked by dotted lines in Figure 6.6), which did not express 3B9
and Chrd but expressed Gsc and Thx18. The cells of this ectopic
structure might be notochord cells, which have changed their fate in
response to ProNodal signal to PM and then pinched off. Work is
currently ongoing to confirm this observation by repeating this
experiment and comparing the results to control pellet transplanted

embryos.

Table 6.1 Summary of in ovo transplantations

Transplanted | Number of | Number of | Embryos
at HH stage | embryos embryos with RFP+

transplanted | surviving pellets

ProNodal 10 36 15 6
Control 10 24 7 1
ProNodal 6 24 17 1
Control 6 18 1 0
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6.2.3 Paraxial mesoderm counteracts ProNodal signalling and

maintains notochord fate

The observation that NC cannot alter its fate to PM in response to
ProNodal in ovo suggests that perhaps an external factor operates to
inhibit ProNodal (or ProNodal signalling) in ovo and maintain the
fate of notochord. The source of such a posteriorising factor could be
paraxial mesoderm lying parallel to the notochord. Signals such as
Wnts, FGFs and retinoic acid from the presomitic mesoderm and
paraxial mesoderm are crucial to posteriorise neuroectoderm and
transform it into hindbrain and spinal cord (Aulehla and Pourquie,
2010), and potentially, could play a role in anterior-posterior
character of the axial mesoderm, i.e. restricting Nodal, or its

signalling effect.

To investigate if paraxial mesoderm can inhibit ProNodal/ProNodal
signalling from altering NC fate and downregulating 3B9, notochord
explants was cultured with the adjacent paraxial mesoderm intact, in
the presence of a ProNodal pellet (Figure 6.7 A). Analysis of 3B9
expression shows that 3B9 expression was maintained in the
notochord cultured with paraxial mesoderm and the ProNodal
secreting pellet (n=9) (Figure 6.7 B). This contrasts with the situation
in which notochord explants are cultured alone, in which case
ProNodal downregulates 3B9 expression anteriorly and maintains it

only posteriorly (n=3) (Figure 6.7 C; see also Figure 6.3).
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6.2.4 Retinoic acid counteracts ProNodal signalling to maintain

prechordal mesoderm and notochord fate

Paraxial mesoderm flanking the notochord is arranged in segmented
somites, which are a source of retinoic acid (Rossant et al., 1991;
Niederreither et al., 1997). As mentioned earlier retinoic acid is a key
posteriorising signalling molecule and its activity is highest in the
newly formed somites posteriorly and decreases anteriorly
(Niederreither et al., 1997). This posterior to anterior gradient of
retinoic acid makes it an ideal candidate to oppose the anterior to
posterior Nodal gradient. Additionally, the observation that newly
formed posterior notochord is completely resistant to Nodal signals
also supports this fact as it receives the highest retinoic acid

signalling.

Thus, to investigate if retinoic acid counteracts Nodal signalling,
notochord explants were cultured with ProNodal and retinoic acid
and the expression of 3B9 was analysed (Figure 6.8 A). As a positive
control all-trans retinoic acid was tested and successfully
differentiated ES cells into neurons (data not shown). It was used at
10° M as previously described for other chick explants (Osmond et
al., 1991; Kramer and Penny, 2003). Notochord explants maintain the
expression of 3B9 throughout the notochord when cultured with
medium containing both ProNodal and retinoic acid (n=4) (Figure 6.8
B). However, consistent with previous results (Figure 6.1), when
cultured with medium containing ProNodal and DMSO, the anterior
NC downregulates 3B9 (n=3) (Figure 6.8 C). This suggests that

retinoic acid inhibits ProNodal signalling, suggesting a mechanism
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for the normal restriction of prechordal mesoderm to anterior-most

parts of the axial mesoderm.

6.3 Discussion

As described in the main introduction, a plethora of studies have
indicated that Nodal/Nodal related signals act in a dose-dependent
way to induce prechordal mesoderm and notochord (Jones et al.,
1995; Lustig et al., 1996; Erter et al., 1998; Schier et al., 1997; Chen
and Schier, 2001; Dougan et al., 2003). However, the mechanisms
that lead to the formation and maintenance of these two distinct cell
populations remain unclear.

Studies described here provide a mechanism through which Nodal
signals are regulated in a way that induces and then maintains the
distinct fates of prechordal mesoderm and notochord. My in vitro
studies show that notochord can be further classified into two sub-
populations: Nodal-responsive anterior notochord and Nodal-
unresponsive posterior notochord (Figure 5.6 and Figure 6.1). My in
vivo experiments, while incomplete, support this conclusion, showing
that posterior notochord does not appear to respond to Nodal signals
and change its fate to prechordal mesoderm (Figure 6.5). My studies
provide evidence that the failure of posterior notochord to respond to
Nodal maybe due to paraxial mesoderm-derived retinoic acid, which
inhibits Nodal signaling, thus maintaining the posterior character of
notochord (Figure 6.7 and 6.8). Thus, retinoic acid exerts its effects
by restricting the effects of Nodal signalling to the anterior regions
and therefore potentially defining the posterior limit of the prechordal

mesoderm. It would be crucial to confirm this observation by
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increasing the number of experiments performed as well as culturing
NC and paraxial mesoderm with retinoic acid receptor inhibitor BMS
453. Additionally, to prove this process occurs in ovo, it would be
crucial to repeat the transplant experiments with ProNodal cell pellets
and BMS 453 soaked beads and see if PM domain expands into the

anterior NC.

Interestingly, another study shows that retinoic acid can limit the
posterior extent of PM in ovo (Halilagic et al., 2003). They show that
RA maybe synthesised in the PM, as one of the enzymes required for
its synthesis, Raldh?2, is expressed in the head process mesoderm and
the prechordal mesoderm at HH stages 5 and 6. Using the vitamin A-
deficient quail model, which resembles RA knockout model, they
show that PM domain marked by Gsc and BMP7 expands into the
anterior NC, which downregulates the expression of Chordin, similar
to my observations described in this chapter (Halilagic et al., 2003).
The authors propose that RA may refine the extent of the PM by
controlling BMP signalling, which is required in the anterior
endoderm to upregulate PM characteristics in the head process
mesoderm (Halilagic et al., 2003; Vesque et al., 2000). However,
since this study another study has shown that RA catabolising
enzyme Cyp26C1 is expressed in the anterior head mesoderm and the
anterior paraxial mesoderm at HH stage 4-9 (Reijntjes et al., 2004).
However, Cyp26C1 is not detected in the notochord and the posterior
paraxial mesoderm, anterior to the Raldh2 expressing presomitic
mesoderm (Reijntjes et al., 2004). Thus, even though RA might be
synthesised in the PM indicated by the expression of Raldh2, it is
potentially catabolised due to the presence of Cyp26CI. The

observation that PM expands into the anterior NC, which
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downregulates its characteristics in the vitamin A-deficient model as
well as my studies can potentially be explained by the lack of
posterior gradient of RA. According to my revised model, RA from
the posterior paraxial mesoderm and not the prechordal mesoderm

may antagonise the anterior Nodal gradient to limit the PM domain.
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CHAPTER 7

Discussion
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7.1 Discussion

My studies provide insights into the late specification of axial
mesoderm. I identify an exclusive marker of the PM, 7bx/8, which
may play a key role in establishing the boundary between PM and
NC. I also show that ProNodal and Mature Nodal signalling plays a
late role in PM specification by inducing 7bx[8, post-extension.
Taking these observations together, in this chapter I suggest a model
(Figure 7.1) for how PM and NC domains might be established and
how the boundary between them could be further refined. I also
discuss other findings, future perspectives and the significance of

these studies.

7.2 Model for axial mesoderm development

One of the outstanding questions in axial mesoderm development is
that of how the discrete domains of PM and NC are set up. It has
been shown that head process mesoderm cells extending out of
Hensen’s node are initially specified by TGFf signals from the
anterior endoderm, which upregulate PM character and downregulate
NC character (Vesque et al., 2000). My studies imply that once the
axial mesoderm is fully extended, the opposing actions of ProNodal
and retinoic acid may further establish notochord and prechordal
mesoderm, potentially defining the posterior limit of the prechordal
mesoderm and the anterior limit of the notochord (Figure 6.8, Figure
7.1). Prechordal mesoderm does not receive the posterior-derived

retinoic acid signals: thus ProNodal specifies prechordal mesoderm
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character further by inducing 7bx18 (Figure 5.9). Once induced,
Tbx18 downregulates the notochord marker, 3B9 and potentially is
involved in refining the boundary between PM and NC cells through
the formation of a third type of SHH negative axial mesoderm
(Figure 4.5 and 4.9, discussed further in 7.3). Anterior notochord,
though competent to respond to ProNodal signals and become
prechordal mesoderm, maintains its fate due to the presence of
retinoic acid, which inhibits ProNodal signals (Figure 5.6 and 6.8).
The caudorostral wave of retinoic acid means that the newly formed
notochord receives the highest retinoic acid concentration from the
posterior paraxial mesoderm, presomitic mesoderm and Hensen’s

node and thus is completely resistant to ProNodal.

This model is consistent with the observations made using the
vitamin A-deficient quail model where the PM domain marked by
Gsc expands into the anterior NC (Halilagic et al., 2003). Anterior,
and not posterior, NC changes its fate to PM fate by downregulating
the NC marker Chrd. Further, consistent with my studies, the authors
also note that Shh is weaker in the region corresponding to the PM-
NC interface. Thus, I hypothesise that in vitamin A-deficient quail
model, the domain of 7bx18, like Gsc would expand. As a result of
this, the SHH- region would also expand as Thx/8 downregulates NC
marker 3B9 and creates an expanded third subpopulation of axial

mesoderm by downregulating SHH.

7.3 Role of the third subpopulation of axial mesoderm

What could be the destiny of this third subpopulation of axial

mesoderm, that lies at the interface of the notochord and prechordal
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mesoderm? Intriguingly, preliminary data shown in Figure 6.6 shows
that although the NC does not appear to downregulate its markers nor
upregulate PM markers in response to ProNodal signals in ovo, an
ectopic structure can be clearly seen expressing PM markers Gsc and
Tbx18. This structure could be derived either from the notochord —
1.e. tissue that has pinched off from the notochord, downregulated NC
markers and upregulated PM markers, or could be derived from other
mesenchymal tissue that has responded to ProNodal signals by
upregulating PM markers. While further experiments are needed to
distinguish these, I do see an apparent pinching off of notochord cells
in response to ProNodal (Figure 6.5), potentially supporting the

former interpretation.

Intriguingly, this observation is similar to the phenotypes described
in embryos misexpressing 7bx/8 in the notochord (Figure 4.4). As
discussed in chapter 4, 7bxI8- misexpressing notochord cells
potentially behave like the third subtype (3B9- SHH- Tbx18+) of
axial mesoderm that is situated at the boundary between PM and NC
(Figure 4.5 and 4.9). This is a transient population of cells only seen
over the period HH stage 8 — 9. Their transient appearance means
they could have the following potential fates: to die, to transform into
either PM or NC or to migrate away from that region. My studies
suggest that these cells are not undergoing apoptosis and they also do
not express full PM or NC characteristics (Figure 4.6 and 4.7). One
hypothesis could be that perhaps these cells migrate away from this
region. In support of this, 7hx/8-misexpressing embryos have a high
number of RFP+ cells, not only in the notochord, but also in the heart
compared to controls (Figure 4.4). Also, Figure 6.6 described here

shows that post-ProNodal exposure, ectopic Thx/8+ Gsc+ cells are
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observed. I hypothesise that this third subtype of axial mesoderm is
composed of cells that migrate away from the axial mesoderm and

potentially contribute to the cardiac mesenchyme.

Cardiac precursors are, in fact, known to migrate in an anterior and
lateral direction post-gastrulation and come to lie in the anterior
lateral plate mesoderm either side of the anterior notochord forming
bilateral heart fields (Olsen and Srivastava, 1996; Garcia-Martinez
and Schoenwolf, 1993). They will then contribute to a single primary
heart tube, which starts beating by HH stage 10 (Song et al., 2011). In
zebrafish it has been shown that cardiac precursors lie adjacent to the
border of the prechordal-notochord interface and are marked by the
homeodomain transcription factor Nkx2.5 (Goldstein and Fishman,
1998). Ablating the anterior notochord leads to the expansion of
Nkx2.5+ territory as lateral cells lying adjacent to the notochord are
redirected to form the cardiac mesenchyme (Goldstein and Fishman,
1998). However, it remains to be seen whether the anterior notochord
or indeed the prechordal-notochord interface itself contributes to the
cardiac mesenchyme. In chick we know that the prechordal-
notochord interface is SHH-. A further full marker profile including
analysis of the prechordal mesoderm markers 7bx/8, Gsc and the
cardiac mesenchyme markers, Nkx2.5 and Isletl, along with fate
mapping studies of this region, are required, in future studies, to
identify if this region does indeed contribute to the cardiac
mesenchyme over the period HH stage 8 — 9. The fact that, post-HH
stage 9, the Shh negative territory is no longer observed in the axial
mesoderm would support this hypothesis, as by this stage, the cardiac
mesenchyme has migrated to form bilateral heart fields which will

contribute to form the heart tube.
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Intriguingly, the vitamin-A deficient quail embryos die due to
cardiovascular defects (Twal et al., 1995; Zile et al., 2004). Instead of
a looped heart tube, these embryos have an enlarged non-
compartmentalised heart (Twal et al.,, 1995). This observation
supports my observation that embryos misexpressing 7hxI8 also
have enlarged hearts (Figure 4.4). Thus, based on my model I
hypothesise that lack of RA would allow Nodal to act on anterior NC
and change its fate to 7bx/8+ PM. This expanded 7bxI/8+ region
would then create an expanded SHH- population potentially giving

rise to an enlarged heart domain.

7.4 Future direction

In future it will be important to investigate if the expression of 7bx18
is conserved across species. Expression of 7hx/8 has been described
in the mouse, zebrafish and Xenopus in other tissues but its
expression in the PM has not been especially investigated (Kraus et
al., 2001; Begemann et al., 2002 and Jahr et al., 2008). The lack of
phenotype associated with the PM in 7bhx/8 knockout studies
suggests that perhaps another gene may compensate for its loss. A
candidate gene could be 7hx15, which is closely related to 7hx18 due
to highly conserved sequences between them (Farin et al., 2007,
Begemann et al., 2002). It has been shown that both proteins can
heterodimerise, further suggesting that they can be capable of
controlling the same target genes if expressed in the same tissue
(Farin et al., 2007). Examples of such a tissue include the proximal

limb bud region and the somites where it has been shown that 7bx15

171



replaces Thx18 expression in zebrafish (Farin et al., 2008; Begemann
et al., 2002). Thus, it would be crucial to further characterise the
expression of both these genes in the PM. Further using Nodal and
Tbx18/Thx15 conditional knockdown mouse and zebrafish models it
would be important to show that they play a conserved role in the

process axial mesoderm regionalisation across all species.

It would be crucial to confirm the observations presented in Chapter
4 by analysing a larger sample of electroporated embryos. One of the
main challenges of this experiment has been targeting the notochord
and prechordal mesoderm specifically. To be able to achieve both the
specificity and a larger sample to analyse, an early chick embryo
culture (EC culture) technique would be useful to establish. The
advantages of this technique include being able to dissect the embryo
and maintaining it in vitro allowing to specifically target the
prechordal mesoderm and notochord by accessing them directly on
the ventral side (Chapman et al., 2001). Also, the embryos can then
be imaged as they develop, this will have the further advantage of
revealing what structures the cells contribute to post electroporation
with transgene compared to controls. This will allow me to test the
hypothesis that 7hxI/8 expressed in the anterior notochord directs
these cells to the contribute to the heart fields by changing its fate to

the third type of axial mesoderm cell population.

7.5 Conclusion

The data presented in this thesis suggests a model for axial mesoderm
regionalisation in the chick embryo. Axial mesoderm regionalisation

into prechordal mesoderm and notochord is crucial for the
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regionalisation of the overlying neural tissue. As described in the
Introduction a plethora of studies have shown that differential
signalling from the prechordal mesoderm and notochord
compartmentalises the overlying neural tissue, which is key for the
different functions performed by the different regions of the resulting
fore-, mid-, hindbrain and spinal cord. Further, my data also suggests
that the maintenance of a sharp boundary between prechordal
mesoderm and notochord may also be crucial for the correct
specification of the developing heart. Thus, for the correct
regionalisation of the central nervous system and the heart it is
important that prechordal mesoderm and notochord maintain their

separate domains.
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