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Abstract 

Gist extraction rapidly processes global structural regularities to provide access to the general 

meaning and global categorizations of our visual environment – the gist. Medical experts can also 

extract gist information from mammograms to categorize them as normal or abnormal. However, 

the visual properties influencing the gist of medical abnormality are largely unknown. It is also 

not known how medical experts, or any observer for that matter, learned to recognise the gist of 

new categories. This thesis investigated the processing and acquisition of the gist of abnormality. 

Chapter 2 observed no significant differences in performance between 500 ms and unlimited 

viewing time, suggesting that the gist of abnormality is fully accessible after 500 ms and remains 

available during further visual processing. Next, chapter 3 demonstrated that certain high-pass 

filters enhanced gist signals in mammograms at risk of future cancer, without affecting overall 

performance. These filters could be used to enhance mammograms for gist risk-factor scoring. 

Chapter 4’s multi-session training showed that perceptual exposure with global feedback is 

sufficient to induce learning of a new gist categorisation. However, learning was affected by 

individual differences and was not significantly retained after 7-10 days, suggesting that 

prolonged perceptual exposure might be needed for consolidation. Chapter 5 observed evidence 

for the neural signature of gist extraction in medical experts across a network of regions, where 

neural activity patterns showed clear individual differences. Overall, the findings of this thesis 

confirm the gist extraction of medical abnormality as a rapid, global process that is sensitive to 

spatial structural regularities. Additionally, it was shown that a gist category can be learned via 

global feedback, but this learning is hard to retain and is affected by individual differences. 

Similarly, individual differences were observed in the neural signature of gist extraction by 

medical experts. 
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Chapter 1: Literature Review 

1.1 Introduction 

In the medical field, categorization of complex images into normal and abnormal is an important 

first step for further diagnostics. Medical personnel performing this task are often described as 

experts, suggesting that they innately possess or have developed the specific capabilities 

necessary to diagnose these complex medical images. Diagnosing medical images is a difficult 

task, where an abnormality must be perceived and processed to lead to a decision. Indeed, 

medical experts such as radiologists or cytologists possess the extraordinary ability to view a 

medical image and form a diagnosis. While part of reaching a diagnosis comes from interpreting 

clinical history and symptoms, the main bulk must come from the perceptual information 

gathered from the medical images, suggesting a large role for perceptual expertise. Interestingly, 

medical experts frequently describe experiences where they know that something is wrong with 

a medical image, before they have performed a detailed search and decision-making process, 

seemingly based on global information they perceived in the blink of an eye. This suggests that a 

broad distinction between normal and abnormal cases can be achieved even after only a short 

exposure. Thus, these medical images might contain a so-called gist signal, a general meaning or 

categorization of our visual environment, which medical experts are able to extract through their 

expertise. 

Indeed, previous research has shown that medical experts can distinguish abnormal from normal 

cases after rapid exposure to a medical image. For example, radiologists achieved 70% accuracy 

in categorising chest radiographs with just 200 ms of visual exposure (Kundel & Nodine, 1975), 

which is not enough for visual search to take place. This ability is not limited to chest radiographs, 

as medical experts were able to accurately rate the probability of an abnormality in 

mammograms and micrographs (cytology) with above-chance accuracy with 250 ms exposure 

time (Evans, Georgian-Smith, Tambouret, Birdwell, & Wolfe, 2013). Under these conditions, 

observers reached d’ prime of approximately 1 with 250 ms exposure time, and ~1.14 with 500 

ms for mammograms, compared with a d’ prime of 1.86 for abnormal/normal categorisation 

during free viewing of a mammogram dataset under similar laboratory settings (Evans, Birdwell, 

& Wolfe, 2013). Thus, performance under gist conditions is lower than under normal diagnostic 

conditions with full scrutiny, but medical experts still show a surprisingly accurate perception of 

presence or absence of abnormalities when they view a medical image for only 100 to 500 

milliseconds. In this thesis, I will refer to this ability as the extraction of the ‘gist of abnormality’. 

While medical professionals are perceptual experts in their specific fields, any human can be said 

to possess a high level of expertise about their environment. In our daily lives, we are constantly 
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exposed to complex visual environments, from which we need to rapidly extract relevant 

features to guide our actions. Indeed, within 20-30 ms, humans can distinguish superordinate 

categories, such as natural from man-made environments (Joubert, Rousselet, Fabre-Thorpe, & 

Fize, 2009), or even differentiate basic scene categories such as fields, forests, and rivers (Greene 

& Oliva, 2009). Similarly, broad categorisations such as the presence or absence of an animal in 

the scene are above-chance with 10 ms exposures, and reach a high accuracy with 40-60 ms 

(Bacon-Macé, Macé, Fabre-Thorpe, & Thorpe, 2005). Thus, humans can extract surprisingly 

complex semantic and statistical information from rapidly presented scenes, analogous to the 

gist of abnormality extracted by medical experts. 

Importantly, gist categorisation timeframes do not allow for detailed search of the image. Under 

normal circumstances, the average saccade latency in adults is 200-220 milliseconds (Darrien, 

Herd, Starling, Rosenberg, & Morrison, 2001; Gezeck, Fischer, & Timmer, 1997). This means that 

gist categorizations can be made without any eye movements, thus, the observer could not have 

foveated all the items in their environment. And while attention can be oriented without moving 

our eyes, either towards a saccade target preceding a saccade or while the eyes remain fixated, 

selective attention through covert attention still would not allow scrutinization of multiple image 

elements within the gist extraction timeline. For example, pre-saccadic covert attentional shifts 

occur approximately 50 ms beforehand and still rely on a saccade to occur (Deubel, 2008), while 

covert attention during fixation has estimated dwell times between 250 (Theeuwes, Godijn, & 

Pratt, 2004) and 500 ms (Duncan, Ward, & Shapiro, 1994) in simplistic visual arrays. Thus,, there 

must instead be some global, non-selective process in place which shapes our first, split-second 

impression without needing to direct selective attention overtly or covertly (Wolfe, Vo, Evans, & 

Greene, 2011). Indeed, this rapid recognition of categories of objects and scenes is thought to 

occur via a process called gist extraction, which allows us to rapidly extract general information 

about our visual environment without requiring focused attention or prolonged exposure.  

In this thesis, gist extraction is defined as a collection of global, non-selective visual processes 

that extract structural and statistical regularities and spatial envelope properties over the whole 

image to extricate the general meaning, or gist, of any image. The gist of abnormality is defined 

as a specific type of gist extraction in which medical images are categorised into broad classes, 

usually normal and abnormal/suspicious. Combining the findings in medical image diagnosis and 

rapid scene categorisation raises the question of how medical experts developed their ability to 

extract the gist of abnormality, which can be generalized to the question of how human 

observers learn the gist of any new category. The main goals of this thesis are to further clarify 

what factors influence the extraction of the gist of medical abnormality, and to investigate the 

learning of the gist of a new category. 
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This literature review will firstly further substantiate the definition of gist extraction used here. 

Then, neuroimaging findings will be evaluated to form an understanding of potential mechanisms 

of gist extraction, through the timeline of processing and involved brain areas. Next, evidence for 

parameters influencing extraction of gist of abnormality by medical experts will be reviewed in 

more detail. Lastly, this chapter will outline the goals of this thesis. 

1.2. Visual processes making up gist extraction 

Gist extraction is likely not achieved through a singular process or mechanism. Instead, it is 

thought to consist of a collection of visual processes, occurring conjointly to extract gist, that 

share three key characteristics: These processes should all be rapid, occurring with short 

exposure times and reaction times; they should not require focused attention; and they should 

occur globally on the whole image, with consequently a lack of access to location information.  

Gist extraction is a combination of rapid, non-selective, global processes that occur globally, 

across the visual field. Processes matching these three characteristics can be divided in three sub-

groups with different properties. Firstly, the extraction of spatial structural regularities, which 

summarize the patterns of spatial frequencies present in an image; Secondly, the extraction of 

summary statistics of an ensemble of items, which are collapsed across an image; Thirdly, the 

extraction of basic and intermediate features across the whole visual field without focused 

attention, which are not bound to locations or other features. These three sub-groups of 

processes underlying gist will be discussed in more detail below, followed by a discussion of 

attentional theories that can explain how gist extraction occurs without focused attention. 

1.2.1. Spatial structural regularities  

Every image that we perceive is built up from textures in different orientations and spatial 

frequencies, overlapping and together forming the image. This also means that an image can be 

broken down into these spatial structural regularities. Detailed textural properties and their 

orientations can be extracted from a sample image using a set of linear bandpass filters with 

multiple orientations and scales according to a steerable pyramid structure, and applied to 

Gaussian noise to create an artificial image that carries the same spatial structural statistics or 

regularities as the sample image (Portilla & Simoncelli, 2000). Information extracted from scene 

photographs using spatial filters with scaling constants matching the receptive field sizes of the 

visual cortex area V2 based on foveal fixation at the centre of the scene can be appliedto 

Gaussian noise to create so-called ‘metamer’ images.  These metamers which were not 

distinguished from their sample scene when they were presented sequentially followed by a 

target image (does this target match 1 or 2, 2-AFC) if this occurred prior to engagement of 

selective attention (200 ms exposure per image) (Freeman & Simoncelli, 2011), but upon further 
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inspection were distinctly different and did not contain any recognizable objects. This shows that 

spatial structural regularities can capture the scene features that are extracted under rapid 

viewing conditions, resulting in similar perception to the original. However, observers were not 

asked to categorize the scenes or to detect which of the samples was artificial.  

However, spatial structural regularities alone are not always sufficient for capturing the gist of an 

image. Materials such as paper, fabric, and glass can be accurately categorised after 40 ms 

exposure (Sharan, Rosenholtz, & Adelson, 2009), showing that these contain gist signals. 

However, accuracy on a match-to-sample task (250 ms exposure) was lower for artificially 

generated textures using Portilla & Simoncelli’s model (with the same spatial structural 

properties as the texture) than real material patches (Balas & Conlin, 2015). Similarly, material 

categorization (water, metal, wood, stone) performance was significantly lower on presented 

artificial textures than natural images (Balas, Conlin, & Shipman, 2016).Even when the artificial 

texture was presented foveally and the natural image was presented peripherally, reducing the 

resolution of the natural image, natural images outperformed the artificial ones. Thus, the spatial 

structural regularities in our visual environment that can be extracted through series of multi-

scale, multi-orientation filters analogous to the receptive fields in the V2 likely play a role in gist 

extraction but are unlikely to be sufficient to drive categorization on their own, at least as 

captured by the artificial texture models such as Portilla and Simoncelli (2000). 

1.2.1.1. Low and high spatial frequency bands 

Spatial frequency bands capture different aspects of visual information: lower spatial frequencies 

(LSF) provide coarse, ‘blobby’ information, and higher spatial frequencies (HSF) provide edges 

and contours of shapes. Both types of visual information can represent aspects of scene content, 

LSF captures  larger surface areas of a scene, while HSF captures mainly areas of rapid change in 

the scene. Thus, both provide different aspects of scene information that could be used for the 

recognition of a gist category. 

Early research on spatial frequency processing focussed primarily on the importance of LSF for 

rapid scene processing, which lead to the so-called coarse-to-fine hypothesis. This hypothesis 

defines temporal aspects of visual processing: coarse LSF information is accessed first after which 

finer, HSF information becomes available. The coarse-to-fine hypothesis states that this is caused 

by the difference in speed by the two different pathways carrying spatial frequency information: 

LSF information is conveyed to the inferior temporal cortex by the fast magnocellular pathways, 

while HSF is conveyed by the slower parvocellular pathways (Bar, 2004; Kauffmann, Ramanoël, & 

Peyrin, 2014). However, a large body of mainly macaque research shows that frequency tuning 

between magnocellular and parvocellular cells often overlaps considerably (Skottun, 2015), 
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suggesting that the distinction in frequency sensitivity between the two pathways might not be 

as clear cut as sometimes believed.  

In gist research, the coarse-to-fine hypothesis was investigated by experiments combining low 

and high frequency information from two scenes into hybrid images. It was found that the 

perceived scene category of a flashed hybrid image was predominantly the low frequency scene 

category at 30 ms, and the high frequency scene category at 150 ms (Schyns & Oliva, 1994). 

However, these hybrid images were constructed by merging the LSF information from one scene 

with the HSF of another. This breaks spatial space contiguity, disrupting boundaries and contours. 

Additionally, the scene category of both the low and high frequency scene in a hybrid image had 

a priming effect after 30 ms exposure time (Schyns & Oliva, 1994), indicating that both LSF and 

HSF were available to the visual system. Later research even showed that preceding exposure to 

images containing either meaningful LSF or HSF content influenced the perception of 

subsequently viewed hybrid images, with over 70% of perceived categories matching the 

previously seen meaningful spatial frequency band (Oliva & Schyns, 1997). Thus, gist extraction of 

a hybrid image might not be equivalent to that of a natural scene image, and both frequency 

bands are available after extremely brief exposure times, and the relative weight of LSF and HSF 

in our gist perception depends on both exposure time and task-relevance. 

Anatomical properties of the visual system seem to underline the importance of LSF, as gist can 

be extracted from images in foveal regions but also far periphery. Peripheral vision has lower 

resolution and consequently cannot process high spatial frequencies that are processed foveally. 

The outer boundary of central vision differs depending on definition used, from only the macula 

(0 – 3.6°) to extending it up to the perifovea at 10°, while peripheral vision extends to ~62 

degrees binocularly, and 105-110 degrees monocularly – the latter also called the far periphery 

(Loschky, Boucart, et al., 2015). Even when scenes were presented at large visual eccentricities 

up to 70°, gist extraction of superordinate scene category (naturalness, openness, expansiveness) 

was still reliable (Boucart, Moroni, Thibaut, Szaffarczyk, & Greene, 2013). However, reaction time 

increased and performance decreased with increased eccentricity, especially for more detailed 

categorisation (indoor/outdoor), which was at chance-level at 70°. A different study presented 

images for 28 ms, placed randomly at 1 of 9 locations, for an animal presence detection task, 

showed performances of 60.5% correct at 70° and performance increased almost linearly 

towards central vision (Thorpe, Gegenfurtner, Fabre‐Thorpe, & BuÈlthoff, 2001). This suggests 

that gist extraction can occur even with the lower resolution of peripheral vision, especially for 

more broad categorisations (natural/man-made), although accuracy does go down, potentially 

because HSF information is less accurately extracted at the lower resolution of peripheral vision.  
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On the other hand, recent neuroimaging research has found that scene-selective areas respond 

preferentially to HSF rather than LSF information. The parahippocampal place area (PPA) showed 

increased activity with HSF checkerboards, scenes and even faces, compared to their LSF 

equivalents (Rajimehr, Devaney, Bilenko, Young, & Tootell, 2011). Similarly, when contrast was 

equalized, the PPA and the occipital place area (OPA) were activated more by HSF than LSF 

versions of indoor and outdoor scenes, while there was no difference in the retrosplenial cortex 

(RSC) (Kauffmann, Ramanoël, Guyader, Chauvin, & Peyrin, 2015). Thus, HSF seems to 

preferentially activate the two of the important scene processing areas, the PPA and OPA.  

To get a more meaningful measurement of the role of spatial frequency bands in scene 

processing, further neuroimaging research has investigated the relationship between spatial 

frequency and scene categorization. Scene category could be decoded from BOLD signals in the 

PPA, RSC, and lateral occipital complex (LOC) from both photographs and their corresponding line 

drawings viewed for 2 seconds (Walther, Chai, Caddigan, Beck, & Fei-Fei, 2011), suggesting the 

important role of contours and edges (HSF) in scene category encoding. Similarly, computational 

models could decode scene category from the brain activation patterns evoked when viewing 

HSF natural scene images for 800 ms from all tested scene-related regions (PPA, RSC, OPA and 

LOC), while for LSF images scene category could only be decoded in the posterior PPA (Berman, 

Golomb, & Walther, 2017). Overall, these correlational studies strongly suggest that HSF rather 

than LSF carries meaningful information of scene category in scene-selective areas during rapid 

viewing (800 ms), although this might not hold the same for ultra-rapid presentations (~30 ms). 

One last point of note is that hybrid images or separate LSF and HSF presentations might not be 

directly analogous to a full natural image. Instead, LSF and HSF might be integrated in a super-

additive manner, as viewing the LSF + HSF of a scene led to superior levels of gist extraction for a 

vehicle presence detection task (100 ms exposure), compared to the probability summation of 

separate LSF and HSF viewing (Kihara & Takeda, 2010). However, this super-additive performance 

was not found with exposure time up to 83 ms, suggesting that the super-additive integration of 

LSF and HSF information for scene categorization becomes available somewhere around 100 ms 

after image onset. Thus, integration of spatial frequencies occurs after approximately 100 ms 

viewing time and might be super-additive, leading to higher performance than based on 

probability summation of separate frequencies.  

Thus, ultimately, and unsurprisingly, both LSF and HSF play important roles in rapid scene 

categorization, and their relative importance might differ depending on factors such as 

categorization type, location of the image on the retina, and exposure time. LSF information 

might be available earlier and could drive gist extraction for ultra-rapid presentations, but once 

available, evidence suggests that HSF might encode scene category information to scene-
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selective areas more strongly. LSF and HSF are integrated after only brief exposure time, which 

increases gist perception accuracy. Overall, spatial frequency information is extracted rapidly and 

globally through gist and the information carried by LSF and HSF both play an important role in 

informing scene categorization.  

1.2.1.2. Global spatial envelope properties 

Combining spatial frequencies and their orientation as a pattern across an image can be 

summarized as the global spatial envelope (Oliva & Torralba, 2001). This spatial envelope 

contains outlines of surfaces and their surface properties, such as textures. The global spatial 

envelope can be extracted using calculations of principal component analysis of the Fourier 

spectrum of the image. Similarly, the visual system can extract these spatial patterns through the 

Gabor-like receptive fields of orientation sensitive cells. Each pattern of orientations can then be 

summarized with their scores for descriptive labels such as naturalness, openness, roughness, 

expansion, ruggedness, transience, or mean depth. When the global property scores of scenes 

are projected on a multidimensional space, semantically related scenes are often grouped closely 

together. Differences in naturalness score can predict scene categorisations such as natural 

versus man-made scenes (Oliva & Torralba, 2001), as man-made scenes have more straight 

horizontal and vertical lines, and natural landscapes have a wider distribution of edge 

orientations, textured zones, and smooth contours, influencing their global spatial envelope 

properties. Taking this further to specific scene categories, openness score could differentiate 

between a street (closed) and a highway (open), which have similar naturalness and expansion 

scores. Thus, combinations of global spatial envelope properties can be used to categorize scenes 

and might be used by the visual system for gist extraction.  

The importance of global spatial envelope properties for gist extraction was clearly demonstrated 

by Greene and Oliva (2009), who showed that the chance of a false alarm for a distractor scene 

during rapid viewing (30 ms exposure) could be accurately predicted and even computationally 

modelled based on its similarity to the target category in its global spatial envelope properties. 

When a set of trials contained distractors from a different category but similar global properties, 

there were more false alarms and if a hit occurred, it was associated with longer reaction times. 

This suggests that similarities in global properties result in gist signals that are harder to 

distinguish from each other, which increases false alarms and reaction times. 

In conclusion, global spatial envelope properties and their descriptive labels directly relate to 

accuracy and reaction time, suggesting these properties play an important role in gist extraction. 

Gist categorization is more accurate and faster when the categories have dissimilar global spatial 

envelope properties from each other. 
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1.2.2. Summary statistics 

Natural scenes contain a lot of regularities, such as the patterns from trees in a forest. And while 

these regularities can be informative in the form of spatial structural regularities, they can also be 

viewed as redundant. It is not necessary to process each individual tree to know you are in a 

forest. And where there is redundancy, information can be compressed with a more efficient 

coding scheme. This can produce summary statistics that can efficiently capture general 

information of a group of similar elements (e.g., trees).  

Summary statistics capture the average and distribution of a feature without access to specific 

objects or their locations. For example, summary statistics can efficiently encode the mean and 

distribution of sizes of a group of circles. Indeed, observers accurately reported mean size of 

ensembles of 4 to 16 circles after brief exposure (500 ms), but they were unable to distinguish 

individual circles from random ones with similar sizes (Ariely, 2001). Mean size of an ensemble 

could even be extracted with just 50 ms of viewing time (Chong & Treisman, 2003). The same 

applies for other basic visual features, such as orientation (Parkes, Lund, Angelucci, Solomon, & 

Morgan, 2001), velocity and direction of motion (Williams & Sekuler, 1984), hue (Maule, Witzel, 

& Franklin, 2014), or the centre of mass (Alvarez & Oliva, 2008) of object ensembles. 

Interestingly, larger set sizes have been reported to slightly increase performance and reduce 

reaction times when reporting mean size or orientation (Parkes et al., 2001; Robitaille & Harris, 

2011), suggesting that summary statistic processing occurs in parallel over the whole ensemble. 

The advantage of larger set sizes suggests that summary statistics are an efficient averaging 

procedure, where noise of individual items cancels out to increase accuracy. 

While most summary statistics capture averages of basic visual features, observers can also 

extract summary statistics of more complicated features, such as the average emotion or gender 

of face ensembles (Haberman & Whitney, 2007), which could be extracted from sets of 4 or 16 

faces shown for 2 seconds with similar discrimination thresholds for both set sizes. Again, 

observers did not have access to individual faces in the ensemble, as performance at a 2AFC task 

to identify individual faces was at-chance. Further research indicates that emotion extraction 

from 16 faces became more noisy with shorter exposure times of 500 or even 50 ms, but still 

occurred with above-chance accuracy (Haberman & Whitney, 2009). Thus, summary statistics can 

capture averages of complicated features, even at brief exposure times, occurring globally and 

without providing access to individual elements, and could thus play a role in gist extraction. 

The use of summary statistics would allow gist extraction to occur in peripheral vision, as the 

averaging procedures would compensate for the increased size of the receptive fields in the 

periphery. The influence of summary statistics on peripheral vision can be demonstrated by a 
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phenomenon called crowding, in which identification of a target is impaired by surrounding 

distractors, called flankers. Balas and colleagues (2009) suggested that crowding is caused by 

averaging of peripheral vision into summary statistics. This was supported by the similarity 

between performance on 4-AFC letter-detection in peripheral ensembles and foveal viewing of 

summary statistic representations (mongrels) of these ensembles. Thus, summary statistics might 

be extracted especially in the periphery of our vision to increase the accuracy of our perception 

of global features. 

In addition to being available rapidly and globally, multiple summary statistics can also be 

extracted in parallel, suggesting the process does not require focused attention. Indeed, 

observers could monitor for both numerosity and mean size of a single ensemble, reporting one 

of the two with a post-cue without effects on accuracy (Utochkin & Vostrikov, 2017), and 

participants’ numerosity and mean size estimates of the same ensemble were not correlated. 

This suggests that both statistics were calculated independently, in parallel. However, this might 

not be the case processing multiple ensembles simultaneously. When observers had to monitor 

mean size and/or numerosity of two differently coloured ensembles of circles simultaneously, 

dual task cost occurred, reducing accuracy. Similarly, largest mean size and mean orientation was 

more accurately perceived in 2 sets of sequentially presented duos than when 4 ensembles were 

presented in one view (Attarha & Moore, 2015), again showing a dual task cost of monitoring 

multiple ensembles. Other studies also identified reductions in accuracy with more than two 

subsets (Halberda, Sires, & Feigenson, 2006; Poltoratski & Xu, 2013). Lastly, in an ensemble of 

coloured letters, observers could accurately report both letter identity and letter colour 

proportions, but judgement of conjoined features (proportion green Ts) was much less accurate 

(Treisman, 2006). This indicates that processing of a summary statistic is limited to a low number 

of separate ensembles, but that the visual system can monitor for multiple distinct summary 

statistics in one ensemble, however these summary statistics are separately calculated and not 

easily bound to each other in specific combinations.  

What’s more, summary statistics do not require focused attention to be calculated. While 

observers were engaged in a foreground object tracking task, they were more likely to notice 

changes in the structured background when these changes altered the ensemble structure, 

showing that summary statistics allow automatic detection of changes in a naturalistic 

background, even under reduced attention to the ensemble due to the tracking task (Alvarez & 

Oliva, 2009). 

In summary, summary statistics are calculated rapidly on a global ensemble, without requiring 

focused attention, and without providing access to individual objects within the ensemble. 

Summary statistics can be calculated for multiple visual properties simultaneously, and these 
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properties can be simple (size, orientation) or more complicated (emotion). By averaging across 

items, summary statistics reduce redundancy and increase accuracy of the global properties of 

the image, which can contribute meaningfully to gist extraction. 

1.2.3. Intermediate disjunctive features 

Intermediate disjunctive features were first introduced under the Feature Integration Theory 

(FIT). FIT states that visual attention consists of two processes occurring serially: First, features 

are registered globally and in parallel under distributed attention. Then, focused attention is then 

needed to correctly bind the features of one object to each other based on a shared location 

(Treisman & Gelade, 1980). In the first stage, in absence of focused attention, features can be 

considered ‘free-floating’ (Treisman, 2006; Treisman & Schmidt, 1982). Distributed attention 

provides general parameters of statistical properties, while losing access to local object 

information. It spreads globally over the entire display or over a set of similar objects (Treisman, 

2006), giving access to features of the attended group. These features are for example global 

shape, boundaries, and relations between elements. Distributed attention does not allow access 

to correctly conjoined features, as supported by participants’ inability to accurately estimate the 

proportion of green T’s in a coloured shape array with 500 ms exposure time, while their 

estimations of proportion of green shapes or T’s separately remained accurate (Treisman, 2006), 

similar to the summary statistics discussed above. Distributed attention is also thought to provide 

access to intermediate disjunctive features (Evans & Chong, 2012).  

Intermediate features are formed from a combination of basic visual features, such as colour and 

shape, such as exemplars of for example a wing, beak, or arm. They are distinct features, rather 

than just a sum of these basic features. Neural evidence for intermediate features comes from 

animal research which has shown that higher cortical areas contain neurons that are 

preferentially tuned to specific intermediate features. For example, some of the neurons in the 

inferotemporal area of macaques selectively responded to elementary components of natural 

objects, such as a T-shaped element or a circle with a smaller circle protruding from it (Tanaka, 

1996). Similarly, inferotemporal neurons showed preferential activation when the monkey was 

viewing monkey hands or faces (Gross, Rocha-Miranda, & Bender, 1972). Thus, there is evidence 

of neural representations of intermediate features. Computational evidence shows that an 

algorithm trained on intermediate features of faces and cars outperformed an algorithm based 

on either basic or more complex features, and was more generalizable, meaning it performed 

better stimuli outside of the training set than the basic or complex features model (Ullman, Vidal-

Naquet, & Sali, 2002). This shows that intermediate features can increase the flexibility of 

categorisation. 



25 
 

Indeed, intermediate disjunctive features can influence rapid categorization of presence or 

absence of broad object categories within a scene. Firstly, absence of diagnostic features (eyes, 

muzzle/beak, limbs) in a rapidly viewed scene (32 ms) highly impaired animal detection in both 

accuracy and reaction times (Delorme, Richard, & Fabre-Thorpe, 2010). Similarly, when human 

distractors were added to an animal and vehicle detection task during rapid serial visual 

presentation (RSVP; 75 ms per frame), accuracy of animal detection went down, likely due to 

similarity in their intermediate disjunctive features, while there was no effect on vehicle 

detection (Evans & Treisman, 2005). In the same experiment, participants were asked to identify 

and localize the animal, which occurred with above-chance accuracy when the animal presence 

was correctly detected: localization occurred in 53% of the cases when the animal was correctly 

detected, and correct identification occurred in 44%. However, this is not as high as would be 

expected if the visual system had access to the animal object. Instead, it was theorized that an 

educated guess could be informed by the combination of intermediate features (furry, antlers → 

stag), leading to some correct identifications. Indeed, many of the incorrect identifications were 

of the correct general category (mammal, bird etc.), suggesting that observers were aware of 

likely animal sub-categories. Thus, intermediate features can provide rich information about the 

possible scene content. This is also the case for scene categorization, where the presence of a 

salient incoherent object (e.g. tree or animal in man-made scene, boat or human in natural 

scene) reduced accuracy and slowed reaction times (Joubert, Rousselet, Fize, & Fabre-Thorpe, 

2007), showing that intermediate features can also influence broader scene categorization. Thus, 

extracting intermediate features play a role in gist extraction by allowing rapid, generalizable 

detection of presence of for example animals or humans within a scene, which in turn can also 

guide the perceived scene category. 

1.2.4. Non-selective process 

Part of the definition of gist extraction given at the start of this thesis stated that processes 

involved in gist extraction should not rely on focused, selective attention. Instead, they occur 

over whole visual field, and extract features are not bound to locations or to other features co-

occurring in the same location. However, gist information does require attention to be entered 

into visual processing, which is often described as distributed or non-selective, which is needed 

to access the unbound features. A non-selective process can process multiple items in parallel 

without selection, which leads to a higher capacity limit. Thus, as gist extraction should not 

require focused attention on the stimulus, it should not suffer from serial processing limitations. 

Indeed, gist extraction for an animal detection task in the periphery occurs without diminished 

performance during a demanding foveal letter discrimination task requiring focused attention (F. 

F. Li, VanRullen, Koch, & Perona, 2003). When two scenes are presented in parallel, performance 
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on a rapid animal present/absent task drops only slightly. This small drop in performance 

matches independent parallel processing, as for example the likelihood of a false alarm increases 

when processing two distractor images instead of one. Similarly, reaction times remained the 

same during parallel processing of two scenes for animal presence detection, and no changes in 

occipital neuronal activity could be detected using electroencephalogram (EEG) (Rousselet, 

Fabre-Thorpe, & Thorpe, 2002), providing evidence for the parallel nature of gist extraction of 

two scenes. This was further supported by a follow-up study using 4 quadrants for inter- and 

intra-hemifield presentations of 1, 2, or 4 scenes (Rousselet, Thorpe, & Fabre-Thorpe, 2004). 

Again, the small drop in performance for the 2 and 4 scene conditions fit with the model of 

parallel processing. Thus, gist processing indeed shows properties of a non-selective process, as it 

occurs simultaneously with selective tasks or on multiple scenes in in parallel without large 

effects on performance. 

What’s more, gist extraction does not require pre-existing knowledge of the exact targets to 

monitor for, further demonstrating the non-selective nature of gist extraction. When a task is 

known before image onset, goal-directed top-down processes can tune lower level neural 

responses to be more sensitive to the stimulus, for example, increasing sensitivity to task-

relevant features in monkeys performing a bisection or Vernier task (W. Li, Piëch, & Gilbert, 

2004). In many gist experiments, a limited set of pre-cued properties is used, which does not 

account for the possibility that perhaps a limited amount of non-selective filters can be active at 

the same time. A study comparing pre- and post-cues with 9 possible categories showed that pre-

cue performance was significantly higher, but post-cue detection still outperformed expected 

levels if observers could only monitor for one cue (Evans, Horowitz, & Wolfe, 2011), suggesting 

that multiple filters can be active simultaneously. Even more strikingly, the RSVP study by Potter, 

Wyble, Hagmann, and McCourt (2014) also showed above-chance performance even if the target 

category was revealed 200 ms after the RSVP (Potter et al., 2014). Similarly, gist extraction can 

monitor for multiple cues simultaneously in one image. Observers could effectively monitor for 

the presence of one or both of the categories (e.g. animal and/or beach), with increased 

performance when detecting the presence of at least one cued category (Evans, Horowitz, et al., 

2011). Thus, gist extraction can occur for on multiple cues simultaneously, or even when the 

target is unknown, removing top-down task-context influences.  

However, there is some evidence that attentional limits do exist in gist extraction, as studies 

show inattentional blindness and dual-task cost effects, indicating that gist extraction is not a 

completely ‘cost-free’ parallel process. When observers are unaware that a specific feature will 

appear and should be monitored, they often do not consciously perceive it – this is called 

inattentional blindness. Dual-task cost occurs when performance on the primary task goes down 
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when simultaneously performing the secondary task. Both inattentional blindness and dual-task 

costs occur for summary statistics. A substantial proportion of participants was unable to report 

the ensemble property colour diversity of a letter grid when they were tasked with monitoring 

letter identity in a cued row, showing inattentional blindness. Similarly, letter identity accuracy 

was reduced when they subsequently monitored for both the cued row and colour diversity of 

the ensemble (Jackson-Nielsen, Cohen, & Pitts, 2017), indicating that monitoring the summary 

statistic carried some attentional demand. Likewise, for scene gist, during a primary task of 

multiple object tracking task or an RSVP of letters/digits, an unexpected scene background as the 

second to last mask was often not perceived (inattentional blindness), and subsequent 

monitoring for both the primary task and scene gist decreased performance (dual-task cost) 

(Cohen, Alvarez, & Nakayama, 2011). So, while gist extraction is generally a highly efficient 

process that can occur in parallel to itself or other demanding tasks, a level of attention and 

alertness is required to process perception of the gist, which can lead to inattentional blindness 

when unaware of the need to process the gist for reporting, or to dual-task costs when 

monitoring gist alongside certain demanding primary tasks.  

So, as gist extraction requires a certain amount of attention, this thesis will briefly discuss some 

of the attentional theories for visual processing that best fit with the observed qualities of gist 

extraction. Most visual attention theories define a split between two types of attention, one 

accessing the image features globally, and the other deploying attention to locations for precise 

processing and refined object recognition. These theories should account for the rapid processing 

of gist, as the time course of gist extraction clearly shows that it does not rely on fixation of 

individual elements and is unlikely to involve deployment of attention to specific locations. Thus, 

gist extraction belongs to the global axis of attention. One attentional theory which illustrates 

how gist could be processed rapidly and with minimal attentional demands is the reverse 

hierarchy theory, which is supported by anatomical, neuroimaging, computational, and 

behavioral evidence, which will be discussed below. 

1.2.4.1. Reverse hierarchy theory 

The reverse hierarchy theory (RHT) was informed by the cortical structure of the visual system. 

Neurons in early visual cortex areas, like the V1, often have small receptive fields, they respond 

to for example a precise orientation of a specifically sized bar of light in one part of the visual 

field. On the other hand, higher cortical areas contain neurons with larger receptive fields, which 

are often tuned to more general, higher-order stimuli, such as a specific face. Indeed, neuronal 

responses in the inferior temporal cortex of macaques were robust to changes in viewpoint and 

size of complex shape stimuli (Vogels & Orban, 1996). According to the RHT, as visual information 

enters the visual system, a feed-forward sweep of visual information is propagated through the 
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network and rapidly reaches these higher visual areas. There, the arrival of this first sweep of 

activity enables ‘vision at glance’: a high-level, general interpretation of the world, associated 

with sparse attention (Hochstein & Ahissar, 2002). This way, explicit, but global perception is 

formed in high cortical areas. Next, re-entrant feedback from the higher cortical areas returns 

towards lower cortical areas, which fine-tunes and adapts the binding of features to their 

respective objects and results in ‘vision with scrutiny’: A detailed perception of subordinate 

categories. Re-entrant feedback imposes a top-down influence on further computations in the 

lower cortical areas (Gilbert & Li, 2013). A constant feedback loop between lower and higher 

cortical areas further refines perception. In the RHT model, gist extraction should occur in the 

feed-forward sweep, the first information that reaches higher visual areas before re-entrant 

processing occurs, meaning gist perception is part of ‘vision at glance’. 

EEG research identified three stages of visual processing: a pre-110 ms stage with feedforward 

flow of information towards mainly extrastriate visual areas, a post-110 ms stage, where re-

entrant processing to early visual areas such as V1 occurred, and a 200-300 ms stage which relies 

on the earlier stages, with activity in extrastriate areas and beyond. It also showed that the pre-

110 ms stage was uninterrupted by masking, while the post-110 ms stage re-entrant processing 

was disrupted (Fahrenfort, Scholte, & Lamme, 2007). Thus, demonstrating that re-entrant 

processing takes place after an initial feed-forward only stage, which is not disrupted by 

subsequent masking. 

If gist extraction is indeed achieved through a feed-forward sweep, gist extraction should occur 

even when a briefly viewed image is masked immediately afterwards to disrupt re-entrant 

processing. Indeed, in an RSVP where the next image functionally masks the previous one, 

observers could perform an absence/presence 2-AFC of scene category with above-chance 

accuracy even if each image was only shown for 13 ms (Potter et al., 2014). However, natural 

scenes might not sufficiently mask all areas of the previous images, which might allow some 

persistent visual processing. Using more structured geometric or coloured line masks, RSVP 

detection of scene category occurred reliably at 53 ms per image, but not 13 or 27 ms (J. F. 

Maguire & Howe, 2016). This indicates that the length of exposure for processing likely needs to 

exceed 27 ms, but 53 ms exposure is still within the 110 ms of the feedforward stage described 

by Fahrenfort et al. (2007).  

Computational models of visual processing based on human physiology also offer support for the 

feed-forward nature of gist extraction, matching with the RHT. It is well-established that neurons 

in higher processing areas of our visual system have increasingly stable responses to objects or 

scenes, regardless of differences in for example position or scale (Gross et al., 1972; Hubel & 

Wiesel, 1968; Logothetis, Pauls, & Poggio, 1995; Perrett & Oram, 1993; Quiroga, Reddy, Kreiman, 
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Koch, & Fried, 2005), and that their receptive fields simultaneously increase in size (Perrett & 

Oram, 1993; Smith, Singh, Williams, & Greenlee, 2001; Tanaka, 1996), which together allow 

humans to flexibly recognise variations of objects or scenes from different viewpoints (Evans & 

Chong, 2012). Feed-forward models of processing show that these higher-order neurons can 

rapidly respond to their preferred stimuli, without needing top-down feedback. For example, a 

feedforward model of the primate ventral stream trained on an animal absent/present 

categorization task produced performance patterns that were highly comparable with human 

rapid visual processing (Serre, Oliva, & Poggio, 2007). Similarly, a simulation of a single wave of 

spikes (neuronal firing) showed that this first sweep of information sufficed for broad recognition 

of faces in natural images by a computational model (VanRullen, 2007), clearly demonstrating 

that the feedforward sweep is sufficient to extract rich information about our visual 

environment.  

In summary, gist extraction occurs through a separate mode of processing distinctly different 

from the processing underlying detailed object recognition, in line with the RHT. Gist extraction is 

non-selective and does not require focused attention, allowing it to occur during a different focal 

task, on parallel displays, and with post-trial cues. Similarly, the feed-forward nature of gist 

extraction is supported by psychophysics experiments, in which gist extraction occurs with rapid 

presentations followed by masking, even if the task-context is not known beforehand to remove 

top-down influences. This behaviour can also accurately be described with feed-forward 

computational models. This non-selective, feed-forward sweep of visual processing gives access 

to spatial structures, summary statistics, and intermediate features that together inform gist 

extraction rapidly and globally.  

1.3. Neural mechanisms of gist extraction 

As defined above, gist extraction is made up of a collection of processes, combining low-, mid-, 

and high-level visual features, ranging from orientation, spatial frequency, and colour (low), to 

shapes, depth, and textures (mid), to faces, bodies, and objects (high) (Groen, Silson, & Baker, 

2017). It therefore seems unlikely that there is a single “gist extraction” brain area. Instead, gist 

extraction likely takes place across a network of cortical regions, which extract spatial structural 

regularities, summary statistics, and intermediate disjunctive features and integrate these into 

gist categorizations of the global visual environment.  

So, while it is unlikely that one singular area performs gist extraction, there are some brain areas 

that might be involved. A likely group of candidate areas is the scene processing network, which 

consists of areas that are known to respond preferentially to scenes over objects and/or faces: 

The parahippocampal place area (PPA) (Downing, Chan, Peelen, Dodds, & Kanwisher, 2006; 
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Epstein, Harris, Stanley, & Kanwisher, 1999; Epstein & Kanwisher, 1998), the occipital place area 

(OPA) (Downing et al., 2006; Grill-Spector, 2003), and the retrosplenial cortex (RSC) (Henderson, 

Larson, & Zhu, 2008). Additionally, while the lateral occipital complex (LOC), is mainly known as 

an object-selective area (Grill-Spector, Kourtzi, & Kanwisher, 2001), there is also evidence of 

some evidence for LOC activity to scenes.  

As a rapid process, another important aspect of gist extraction is its timing. Only neural activity 

patterns that are observable after rapid exposure can influence gist extraction. Scene-specific 

activity occurs early in visual processing. Comparing scenes to objects and faces, no difference 

was found in P1 (80-130 ms), but the P2 (200-320 ms) peak amplitude was significantly higher for 

scenes with 500 ms exposure (Harel, Groen, Kravitz, Deouell, & Baker, 2016). The N1 or N170, 

commonly described as face-processing specific, did not differ between objects and scenes, 

which both had a lower peak amplitude than faces. Magnetoencephalography (MEG) 

measurements of neural activity to faces and outdoor scenes (buildings, landscapes) showed 

even earlier onset, with scene-specific activity significantly higher in a left and right hemisphere 

medio-occipital region during the M100 (100-130 ms after stimulus onset) with 1000 ms 

exposure (Rivolta, Palermo, Schmalzl, & Williams, 2012).  

Thus, the scene network might play a role in gist extraction, and some neural correlates related 

to scene processing are available early in processing after rapidly viewing a scene. However, 

differential activity between scene categories is more relevant for gist extraction, where 

differences in activity patterns and amplitudes would be expected between for example natural 

and man-made scenes. If indeed spatial structural regularities play a role in informing gist 

extraction, one would also expect differential neural activity based on these visual properties. In 

the next sections, evidence for gist category representations in neural activity is explored, as well 

as evidence for neural representations of different spatial regularities.  

1.3.1. Category processing 

Early neural correlates of scene categories have been observed when comparing natural and 

man-made scenes. These evoked differential activity in the N170 and P2, which for the P2 was 

modulated by spatial expanse (open/closed), but not distance (close/far) of natural scenes (Harel 

et al., 2016). A hierarchical linear regression model containing contrast energy, spatial coherence, 

and naturalness ratings factors explained 22.7% of the P2 amplitude, showing the influence of 

image properties on P2 amplitude as well asperceived naturalness of the scene. An even earlier 

effect of naturalness was found when observers viewed scenes (exposure time 1.5 s) during a 

memory task, where significant decoding between natural and man-made scenes first occurred 

at 125 ms at an occipital electrode (Oz), and differential activity remained significant during the 
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P2 (150-275 ms) (Lowe, Rajsic, Ferber, & Walther, 2018). In both experiments, stimulus type and 

category information were not task relevant. These findings suggest that early activity, such as 

the P2 ERP, automatically captures diagnostic scene information which could inform global scene 

categorization, and additionally showed the influence of image properties such as contrast 

energy and spatial coherence. 

Further research at gist extraction timing within environmental scenes again found early 

differential activity depending on task-relevant category, differentiating between targets and 

distractors depending on the specific task. In natural scenes, EEG signals diverged between GO 

(animal) and NO-GO (no animal) trials 150 ms after stimulus onset (20 ms exposure) (Thorpe, 

Fize, & Marlot, 1996). Specifically, distractor scenes without animals evoked a strong frontal 

negativity starting at 150 ms after stimulus onset. This difference occurred with a widely varied 

set of images, and it was unrelated to the reaction time of the trial (faster reaction times did not 

evoke earlier differences). The same was observed by Bacon-Macé et al. (2005) in both frontal 

and occipital electrodes, even when the scene was masked 12 ms after the scene was flashed, 

although longer mask latency increased the amplitude of differential activity. This differential 

activity might be related to decision making in the no-go trials, for example inhibiting a GO 

response. Later studies similarly reported frontal negativity from 160-170 ms, but additionally 

showed differential occipito-temporal positivity amplitudes at around 150 ms (Delorme, 

Rousselet, Macé, & Fabre-Thorpe, 2004; Rousselet et al., 2002). The same frontal and occipito-

temporal activity, with additional parietal activity was also found at 150 ms in an animal/no 

animal 2 alternative forced choice (2-AFC, 30 ms exposure), showing that the differential activity 

cannot be solely attributed to differences in motor commands between a go and no-go trial 

(Antal et al., 2001).  

Later processing might only occur when the scene content is task-relevant, as prolonged scene 

category sensitive ERPs (>250 ms) observed during rapid natural/man-made categorization task 

are not present when the scenes are not task-irrelevant (Groen, Ghebreab, Lamme, & Scholte, 

2016). Additionally, when scenes were task-relevant, neural activity beyond 250 ms remained 

correlated to the scene’s spatial coherence. This suggests that later differential activity occurs 

only when scenes are attended for decision making but is still influenced by spatial layout 

properties. It also underlines the importance of task-relevance during research into gist 

extraction, as much research instead uses passive viewing or attentional tasks such as monitoring 

for change in fixation cross colour/length, in which the scene is not task-relevant, which means 

later stages of gist extraction are under-represented or absent. 

Lastly, a brief view at the areas in the scene selective network shows that some of these areas 

might be functionally involved in gist extraction as their activity is related to scene categorization. 
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Intracerebral electrodes in the PPA of epilepsy patients demonstrated scene-selective activity 80 

ms after stimulus onset and scene-category differential activity at 170 ms (Bastin et al., 2013). 

Similarly, disrupting OPA processing with transcranial magnetic stimulation impaired rapid (~100 

ms viewing time) scene, but not object categorization (Dilks, Julian, Paunov, & Kanwisher, 2013). 

Thus, the PPA and OPA likely play a functional role in scene categorization. On the other hand, 

patients with RSC lesions retain unimpaired scene recognition (E. A. Maguire, 2001). Instead, the 

RSC has been shown to mainly be involved in spatial navigation, as well as wider cognitive tasks, 

such as recalling real or imaginary events (for a review of RSC research refer to Vann, Aggleton, 

and Maguire (2009)). Thus, the RSC might support various cognitive functions, rather than 

specifically being involved in scene category processing. Lastly, LOC’s activation patterns to 

scenes seem to be mainly driven by the objects in the scene. Activity in the LOC evoked by a 

scene containing a task-relevant object correlated with isolated representations of the object 

(Peelen, Fei-Fei, & Kastner, 2009). Similarly, scene-evoked activity in the LOC could be predicted 

by the average activity patterns of signature objects (e.g. bathtub, toilet → bathroom) (MacEvoy 

& Epstein, 2011), while there was no such relationship for PPA activity. Thus, the PPA and OPA 

show functional relevance for global scene categorization, while this is less likely for the RSC and 

LOC. 

Distributed pattern analysis of fMRI activity showed that scene categories (1600 ms viewing time) 

could be decoded from activation patterns with above-chance accuracy in the LOC (24% correct), 

PPA (31%), RSC (27%), and V1 (26%) (Walther, Caddigan, Fei-Fei, & Beck, 2009). Additionally, 

error patterns of the computational models based on LOC and PPA activity correlated with 

human errors in a rapid scene categorization task (14-45 ms exposure, 6AFC), showing that 

human gist categorization made similar mistakes as decoders based on PPA and LOC activity, 

suggesting gist extraction might utilize information that is encoded in the PPA and LOC. However, 

top-down re-entrant feedback of scene content from other areas might have provided scene-

context information to the RSC and LOC, as scenes were viewed for 1600 ms. Indeed, a study 

with scenes differing in spatial layout and object content (300 ms exposure) showed that only 

spatial layout could be decoded from RSC activity, while both layout and object content could be 

decoded from the PPA, and only object content could be decoded in the LOC (Harel, Kravitz, & 

Baker, 2013). Thus, the RSC seems to be sensitive to spatial layout for navigation, while the LOC is 

sensitive to objects in a scene context. But the PPA encoded both scene content (objects) and 

spatial layout, again emphasizing its likely involvement in scene gist extraction. 

1.3.2. Spatial layout processing 

Various spatial layout properties influence neural activity during rapid processing of scenes, 

supporting how these properties could be available to guide gist extraction. For example, spatial 
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coherence reflects the level of scene fragmentation, with higher scores indicating more 

variety/fragments, while contrast energy represents the amount of contrast throughout the 

scene. Spatial coherence and contrast energy correlated with both neural activity and 

behavioural performance on a natural/man-made categorization task with 100 ms exposure time 

(Groen, Ghebreab, Prins, Lamme, & Steven Scholte, 2013). Single trial linear regression analysis 

showed that a combination of spatial coherence and contrast energy correlated with EEG 

amplitude between 109 and 137 ms across occipital and parietal electrodes. Additionally, spatial 

coherence influenced peri-occipital activity up to 250 ms after stimulus onset. Behaviourally, 

higher spatial coherence increased the likelihood of subjects rating a scene as natural. 

Interestingly, participants’ perception (natural/man-made) could be predicted from EEG signals 

as early as 80 ms, showing a clear link between neural activity and perception. At the early phase, 

predictions of perceptual ratings mainly relied on occipital and peri-occipital activity, but after 

260 ms activity was distributed across the scalp, suggesting initial localized processing followed 

by a distributed cortical representation of the gist category of the scene.  

Size (e.g. small: kitchen, large: factory hall) and clutter level (low/high) of indoor scenes could 

also be decoded in MEG signals during attentional viewing without a categorization task (Cichy, 

Khosla, Pantazis, & Oliva, 2017). Clutter decoding accuracy peaked first, at 107 ms, and size 

decoding peaked approximately 250 ms after stimulus onset (500 ms exposure). Size and clutter 

decoding activity were independent of each other, scene category, or low-level visual properties 

contrast or luminance, showing they were distinct representations of scene properties. Clutter 

level might be related to the level of openness in a scene, although the current study did not 

review this possibility. What’s more, both the PPA and the RSC showed differential activation to 

level of clutter (amount and organization of objects) in scenes (Park, Konkle, & Oliva, 2015). 

In summary, early neural activity correlates with various spatial layout properties and human 

perception, suggesting that these properties could be extracted rapidly and become available for 

gist extraction. Spatial layout processing could give rise to summary statistics or global spatial 

envelope characteristics that could be diagnostic of scene category. Localization of spatial 

coherence neural correlates suggest that initial processing of structural layout properties 

occurred in occipital and parietal regions, after which distributed cortical processing occurred.  

From the scene network areas, the PPA seemed to be the most promising for scene gist 

categorisations. Looking at visual properties of scenes, the PPA has also been shown to be 

sensitive to changes in surface properties such as texture or geometrical shape of object 

ensembles (Cant & Xu, 2017), scenes, and even objects in scenes (Lowe, Rajsic, Gallivan, Ferber, 

& Cant, 2017), while the PPA responded markedly less to these changes when they occurred in 

isolated objects. Additionally, activation patterns in the PPA were most related to the expanse in 
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the scene (open/closed), with less influence of distance (near/far), or, surprisingly, content (man-

made/natural) or scene category (Kravitz, Peng, & Baker, 2011). Thus, the PPA shows early 

activation, which seems to represent spatial structure and texture of scenes, which could inform 

gist categorisations. 

Texture and layout could be decoded from neural activity in artificially constructed rooms shown 

for 2 seconds (Henriksson, Mur, & Kriegeskorte, 2019). The OPA was mostly sensitive to layout, 

irrespective of surface textures. In contrast, both the V1 and PPA were more sensitive to 

differences in surface texture than layout but showed highest scene discriminability when both 

layout and texture varied. Lastly, the RSC showed no consistent differential activity to the room 

stimuli. A separate MEG experiment showed that the texture-invariant layout representations 

could first be identified at 60 ms and peaked at 100 ms after stimulus onset. Additionally, the 

effect of layout on MEG activity patterns correlated with OPA activity in the fMRI experiment, 

suggesting layout information is available early in processing in the OPA. Both the PPA and OPA 

responded to changes in relative length and angle of a simple scene layout (300 ms exposure), 

but not to similar changes in length and angle of objects, showing scene-specific sensitivity to 

layout, while the RSC did not respond differentially to any of these changes (Dillon, Persichetti, 

Spelke, & Dilks, 2018).  

Lastly, spatial layout also has a functional role in scene categorization. Scene category could be 

decoded from both color photographs and line drawings in V1, V2+VP, V4, PPA, and RSC (Walther 

et al., 2011). LOC activity did not allow decoding of scene category, potentially because objects 

were less diagnostic of scene category in this experiment. Interestingly, scene category of line 

drawings could be decoded by a model trained on photographs, and vice versa, in the primary 

visual cortex and PPA areas. This shows that contours and edges play an important role in scene 

categorization for computational models, as photographs and line drawings could 

interchangeably be decoded from activity patterns in primary visual cortex and PPA. 

Overall, it seems that PPA and OPA might have complementary roles regarding spatial structure 

and textural content, with the OPA responding specifically to layout, while the PPA is tuned both 

texture and layout, which both could inform gist extraction, while the role of the RSC is less clear 

and might be driven by top-down re-entrant processing. Neural representations of spatial 

coherence, clutter, spatial layout and other spatial properties were shown to be available rapidly 

after briefly viewing a scene, indicating that these signals would be available for use in gist 

categorization. 
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1.3.3. Summary of neural mechanisms 

In summary, gist extraction is indeed likely facilitated through a network of scene-selective 

cortical areas, which provide information on aspects such as scene layout (OPA, PPA), global 

spatial envelope, textural information, and shape (PPA), and scene content (PPA, LOC), 

potentially driven by intermediate features of diagnostic objects. These areas and the associated 

encoded information can be used to decode the scene category, showing their functional 

relevance. Scene-selective areas likely give rise to a distributed representation of gist. 

Perceptually driven effects of scene or object-category-in-scene activity are evident rapidly after 

stimulus onset, around 80 ms. After 150 ms, meaningful and behaviourally relevant differential 

activity is consistently found, especially in frontal and occipital regions. This occurs even when re-

entrant processing is disrupted by masking, which indicates that sufficient processing has 

occurred to differentiate task-relevant categorical features to inform gist extraction. This also fits 

with the feed-forward nature of gist extraction under the RHT. At 200 ms (P2), clear scene-

category specific activity can be differentiated, and differential activity persists after 250 ms in a 

distributed fashion, especially when the scene category is task-relevant. Spatial structural 

properties influence this neural activity.  

1.4. Gist extraction in Medical Image Perception 

As shown in the introduction, medical experts can detect a gist of abnormality in chest 

radiographs, mammograms, and cytology within 200-250 ms, (Evans, Georgian-Smith, et al., 

2013; Kundel & Nodine, 1975). Additionally, medical gist extraction is not constrained to just 2D 

images: videos from stacks of breast tomography images, each frame displayed for 20 ms, 

allowed for above-chance performance, even after exclusion of trials where the abnormality was 

localized (Wu, D'Ardenne, Nishikawa, & Wolfe, 2019). Similarly, expert readers of prostrate 

images could extract the gist of abnormality from a serial display of slices from a 3D imaging 

device (Treviño et al., 2020). Thus, gist of abnormality is a global signal that can be extracted by 

experts in many different medical disciplines and in 2D and 3D displays, demonstrating its flexible 

nature.  

Certain global measures, such as mean breast density (Boyd et al., 2010; Vachon et al., 2007), as 

well as bilateral symmetry of breast density (Zheng et al., 2012) and breast volume (Scutt, 

Lancaster, & Manning, 2006) have been shown to be significant predictors of breast cancer risk, 

which might lead to the suggestion that gist extraction of medical abnormality in mammograms 

could be explained by these factors. However, unilateral mammograms of the breast containing a 

cancerous abnormality still contain a strong gist signal without any way to extract (a)symmetry 

information (Evans, Haygood, Cooper, Culpan, & Wolfe, 2016), showing that symmetry measures 
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may assist distinguishing abnormal from normal cases, but is not required. Additionally, while 

mean breast density ratings also categorize abnormalities with above-chance accuracy, the d’ 

prime is lower than that of gist ratings, and density and abnormality ratings were not correlated 

across images, thus, breast density is not the driving factor for the gist of medical abnormality in 

mammograms. 

In line with the non-selective, global nature of gist signals, medical gist extraction does not 

provide accurate localisation information. Radiologists recognised abnormalities with above-

chance accuracy after 250 ms exposures but were unable to localize these abnormalities on a 

subsequent masked outline. One later study suggested that partial localization of a region of 

interest might sometimes occur within a gist extraction timeframe (250 ms) when an abnormality 

is correctly rated as such (Carrigan, Wardle, & Rich, 2018), although even then, localisation 

accuracy was around 35% for low density mammograms, in which abnormalities are generally 

easier to localize, and only 10% for high density mammograms. In conclusion, while partial 

localisation information might be available in some instances, extracting the gist of medical 

abnormality is largely reliant on global features and does not consistently allow access to 

locations of abnormalities. 

The fact that detecting the gist of abnormality is a global process that does not require localized 

features is emphasized by the fact that it still occurs when viewing sections without the localized 

abnormality. Firstly, gist of abnormality could be extracted from unilateral images of the 

contralateral breast with above chance accuracy (Evans et al., 2016), although this signal is 

notably weaker than in the breast containing the abnormality. Strikingly, gist can even be 

extracted from small patches taken from either the breast containing the abnormality or the 

contralateral breast with above-chance accuracy, whether this patch contained the abnormality 

or not (Evans et al., 2016). This further strengthens the argument that gist of abnormality is 

present globally, even in the parts of the breast parenchyma that do not contain the cancerous 

abnormality. Extending on this, gist of abnormality is even detectable in so-called priors: 

mammograms of women diagnosed with cancer taken 3 years prior to their eventual diagnosis. 

In these priors, no actionable signs of cancer could be found even after additional inspection, but 

gist ratings were above-chance accurate (Patrick C. Brennan et al., 2018; Evans, Culpan, & Wolfe, 

2019). Thus, gist of abnormality is a global structural signal, that can even be detected before 

local abnormalities are apparent, suggesting it could be used as a risk-marker, to for example 

increase screening for at-risk women. Overall, these findings all support the assertion that the 

signal of abnormality must originate from robust, global differences between normal and 

abnormal breast tissue. For example, an abnormality might distort the statistical and global 
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regularities of a normal breast parenchyma, or conversely there could be specific statistical and 

global regularities associated with an abnormality.  

As discussed, the role of spatial frequency bands has been extensively investigated in scene gist 

extraction, with mixed findings on the relative importance of low and high frequency information 

for rapid categorization of scenes (see section 1.2.1.1. low and high spatial frequency bands). 

Expanding this research to medical gist showed that low-pass filtering strongly reduced accuracy 

of rating normal vs abnormal mammograms from a d’ of 1.06 with full spectrum mammograms 

to only 0.26, while high-pass filtered mammograms retained most gist information, with a d’ of 

0.96 (Evans et al., 2016), while localization remained at-chance across all conditions. Thus, gist of 

abnormality seems to be preferentially contained in higher spatial frequencies, although more 

detailed assessments are needed to further narrow down the specific roles of frequency bands. 

Interestingly, a study where mammograms were presented for 1 second, an inversion effect 

occurred, where accuracy was higher for upright than inverted mammograms – which is 

indicative of holistic processing(Chin, Evans, Wolfe, Bowen, & Tanaka, 2018), which was stronger 

for experts than novice readers (residents). This suggests that compound processing plays a role 

in recognizing the gist of medical abnormality. However, the inversion effect was not present 

with shorter exposure times of 500 ms (K.K. Evans, personal communications, 2020), suggesting 

that holistic processes might occur to improve detection of abnormalities in medical images but 

likely does not occur on the same rapid time scale as gist extraction. 

Lastly, gist extraction performance is (unsurprisingly) strongly correlated with expertise in 

radiologists reading mammograms (Evans et al., 2019). More specifically, performance correlated 

the number of cases read in the previous year, but not with years in practice or percentage of 

time spend reading mammograms, reflecting the importance of recent perceptual rather than 

medical expertise. What’s more, experience in breast tomography correlated with performance 

on gist perception in digital breast tomosynthesis images (C. C. Wu et al., 2019), while experience 

in digital mammography did not show a significant correlation, suggesting that this correlation is 

modality-specific and driven by recent perceptual experience, rather than pure medical 

knowledge. 

One important consideration is how scene and medical gist can best be compared to each other 

to support how we can use medical gist research to further our general knowledge of gist 

extraction. Categorization of normal versus abnormal medical images can be viewed as a 

superordinate level categorization task, as complex medical images are categorized on a broad 

level (normal or abnormal), rather than specific types of abnormalities (for a review see Makki 

(2015)). This influences comparisons with scene gist studies, as these have often used 
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animal/vehicle presence/absence detection tasks, which are more akin object-in-scene 

categorization, which might rely more heavily on for example intermediate disjunctive features 

rather than global spatial envelope properties. A better comparison for medical gist is studies 

investigating superordinate scene categorization, such as natural/man-made distinctions, or to a 

lesser extent basic level categorization (beach, forest etc.). Thus, it is important to be aware of 

distinctions between different stimuli and categorization tasks in gist extraction research, and 

how they influence our comparisons between scene and medical gist literature. 

1.5. Goals of this thesis 

This thesis has three aims that each further our knowledge about gist extraction in medical 

images. The first overarching aim is to investigate which perceptual properties influence the 

extraction of the gist of medical abnormality and how. The second aim is to study if gist of a new 

category can be learned through perceptual training, and how this ability develops. In concert 

with both of these aims, the third aim of this thesis is to explore the neural signature of gist 

extraction from mammograms in medical experts. 

1.5.1. Perceptual properties 

As set out in this introduction, gist extraction is characterized by its rapid speed of processing, 

but less is known about the effects of longer exposures on our ability to process and access gist 

categorizations. Many attentional theories make a clear distinction between global and local, 

rapid and slow, or distributed and focused processing, but it is not known how longer exposure 

time influences our ability to extract gist information and access gist categorizations. A switch 

might occur when local, selective information becomes available, that might make gist 

information less relied upon, but still accessible as a secondary source of information, or even 

inaccessible. However, it is also possible that gist extraction keeps accumulating information as 

more time is available to process the gist signals, which might actually strengthen our gist 

perceptions. Thus, the question is: Does the gist signal only influence perception during initial 

rapid exposure, or does it remain available during later stages of processing – and if so, is it 

perhaps an additive process, where longer exposure can strengthen and improve accuracy of gist 

signal, leading to a more accurate ‘first impression’? Chapter two investigated the differences in 

performance of medical experts on global assessments of medical images between rapid flashes 

(500 ms) or unlimited exposure times.  

Next, spatial frequency bands underlying spatial structural regularities clearly play an important 

role in scene perception, especially in gist extraction. Spatial frequency gives information about 

global shapes, spatial layout, borders/contrasts. It also underlies the global spatial envelope 

properties that have been shown to influence the perceived gist of scenes. However, the roles of 
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low and high spatial frequency information in gist extraction remain unclear, with conflicting 

evidence for the relative importance of one or both. One previous study suggested the 

importance of HSF for medical gist extraction. Chapter three investigated the effect of different 

levels of high-pass spatial filters on perception of the gist of abnormality in medical experts, in 

order to further investigate the role of low and high spatial frequency in medical gist extraction. 

1.5.2. Learning processes 

The gist of medical abnormality forms a key opportunity to investigate the learning processes 

underlying a human’s ability to learn to recognise the gist of novel categories. It is largely 

unknown how humans gain the knowledge needed to accurately distinguish a beach from a 

forest, in a robust fashion, from a variety of viewpoints and variations, all within the blink of an 

eye. The development of this expertise is difficult to investigate, as scene gist abilities are present 

in all healthy adults, and it is unknown what the childhood development of gist extraction is. 

Furthermore, developmental studies using children face confounding factors from other 

developmental factors, such as communication constraints. On the other hand, medical experts 

have gained the ability to extract a new category of gist in their field of expertise, a skill which the 

general population does not possess. We therefore know this ability is not innate, and there is 

evidence showing its strong relation to recent perceptual exposure (number of images seen) 

rather than medical knowledge (years of experience). What’s more, gist extraction should be 

generalizable and rely on global patterns rather than specific elements, to enable observers to 

recognise a beach or abnormal mammogram across the wide variability that exists within that 

category (e.g., viewpoint or breast density). This fits with statistical learning, the process through 

which humans can extract naturally occurring statistical patterns in space and/or time (Turk-

Browne, Jungé, & Scholl, 2005), without feedback on the exact features to extract. Statistical 

learning of spatial regularities might allow observers to learn to recognise the invariant global 

properties of a forest, beach, or even an abnormal mammogram through perceptual exposure to 

many exemplars of the category, without explicit feedback on the visual features that represent 

the category. Training naïve observers on medical images will allow us to investigate whether 

humans can learn to recognise the gist of a novel categorization through perceptual exposure 

alone. 

This thesis aims to investigate whether people can learn to recognise the gist of a new category 

through perceptual training with global feedback alone. Chapter four contains a multi-session 

online perceptual training experiment to see if people can learn to recognize the gist of a new 

category, as well as exploring individual differences in this ability. Additionally, human learning 

patterns were compared to the performance of computational models to gain insight into the 

overlap in information captured by the neural networks and human perception. 
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1.5.3. Neural signature 

Lastly, while some studies have investigated the neural correlates of scene gist extraction, no 

such study has been performed for the gist of medical abnormality. Investigating the neural 

signature of extracting the gist of medical abnormality will provide further insight into similarities 

and potential differences between scene and medical gist. Chapter five used EEG measurements 

to investigate the brain activity patterns evoked by viewing and rating normal and abnormal 

mammograms in a group of expert radiologists. Calculating the differential activity between 

these two categories gives insight into areas that carry information on the gist of medical 

abnormality. Single subject bootstrapping allowed an in-depth exploration of the neural activity 

patterns in each individual radiologist. 

The research in this thesis will increase our understanding of medical gist extraction, by 

scrutinizing image parameters influencing the gist of abnormality, and will make a first effort to 

explore the learning of a new gist categorization. Assessing neural activity patterns in medical 

experts will allow understanding of the neural mechanisms involved in recognition of the medical 

abnormality gist and subsequent decision making. This thesis also has important practical 

applications for the medical imaging field. Firstly, gist of abnormality could provide a novel 

medical diagnosis tool for mammography screening. For example, a rapid triage of cases for their 

gist scores, in which cases with high gist scores would be prioritized for further assessment and 

maybe even receive earlier invitations for their next screening appointment, as high gist scores 

are a known risk factor for development of breast cancer. Further understanding of the timeline 

of medical gist extraction (Chapter 2) could inform us how this triage system could best be 

implemented, while knowing how high-pass filters influence the accuracy of gist extraction could 

allow us to finetune the mammogram presentations to boost performance (Chapter 3). Secondly, 

knowledge on the learning of the gist of abnormality (Chapter 4) could inform new, effective 

medical training approaches to help residents reach higher levels of perceptual expertise earlier 

in their career or to keep perceptual performance high in experienced medical experts that might 

have less exposure to cases in their day-to-day roles. 
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Chapter 2: Comparable prediction of breast cancer risk from a 

glimpse or a first impression of a mammogram. 

Chapter 2 was published as Raat, E.M., Farr, I., Wolfe, J.M. et al. Comparable prediction of breast 

cancer risk from a glimpse or a first impression of a mammogram. Cogn. Research 6, 72 (2021). 

This version of the article has been accepted for publication after peer review but is not the 

Version of Record and does not reflect post-acceptance improvements. It also has edited headers 

and figure numbers to fit with the thesis format. The Version of Record is available online at 

doi.org/10.1186/s41235-021-00339-5 
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2.2. Abstract 

Expert radiologists can discern normal from abnormal mammograms with above-chance accuracy 

after brief (e.g., 500 ms) exposure. They can even predict cancer risk viewing currently normal 

images (priors) from women who will later develop cancer. This involves a rapid, global, non-

selective process called “gist extraction”. It is not yet known whether prolonged exposure can 

strengthen the gist signal, or if it is available solely in the early exposure. This is of particular 

interest for the priors, that do not contain any localizable signal of abnormality. The current study 

compared performance with brief (500 ms) or unlimited exposure for four types of 

mammograms (normal, abnormal, contralateral, priors). Groups of expert radiologists and 

untrained observers were tested. As expected, radiologists outperformed naïve participants. 

Replicating prior work, they exceeded chance performance though the gist signal was weak. 

However, we found no consistent performance differences in radiologists or naïves between 

timing conditions. Exposure time neither increased nor decreased ability to identify the gist of 

abnormality or predict cancer risk. If gist signals are to have a place in cancer risk assessments, 

more efforts should be made to strengthen the signal.  

Key words: gist, radiology, mammography, holistic impression, gestalt 
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2.3. Significance statement 

Breast cancer is the most common cancer in women and causes the highest number of cancer-

related deaths in women globally. Because early detection is highly beneficial to treatment 

outcomes, mammographic screening for breast cancer is widely implemented. In earlier work, we 

have found that expert radiologists can detect a ‘gist of abnormality’ at above chance levels after 

a brief exposure to a mammogram from a woman with cancer, even if the cancer is not visible in 

the image (e.g., the image is from the contralateral breast). The gist signal can be detected in 

mammograms acquired several years before the woman is diagnosed with actionable cancer. If 

the gist signal is to be of clinical use, it would help if it were more robust. Previous studies used 

brief exposures for research purposes (e.g., to thwart eye movements). Here we test if a stronger 

signal is available when no time limit is imposed. We did not find any effect on accuracy 

measures, so the effort to strengthen the signal will need to pursue other paths. 
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2.4. Introduction 

The visual system has the remarkable capability to extract information about our environment in 

the proverbial blink of an eye. Within a 100 ms, humans can identify the general meaning (or 

“gist”) of what they are seeing (Potter, 1975). They can extract information about the scene 

category (Greene & Oliva, 2009) or detect the presence of certain object categories (Bacon-Macé 

et al., 2005). Gist extraction is a global, non-selective process, by which our visual system rapidly 

extracts structural and statistical regularities over the whole image to make broad 

categorizations of the stimulus perceived (Wolfe et al., 2011). The global, non-selective nature of 

the process means that the observer might be quite sure something like an animal is present but 

not be sure of its precise identity or location (Evans & Treisman, 2005). 

This rapid gist extraction also occurs with specialized scenes like radiological images. To a non-

expert, the gist of a mammogram may be nothing more than ‘this is a mammogram’. However, 

expert radiologists can extract a “gist of abnormality” (Evans, Georgian-Smith, et al., 2013) from a 

brief glimpse of, at least, some medical images. Medical experts can distinguish abnormal from 

normal images with above-chance accuracy after rapid exposures. Experimental studies typically 

use exposures of 250 to 500 ms. Reliable detection of this gist of abnormality has been found for 

different types of medical images, for example chest radiographs (Kundel & Nodine, 1975), 

prostate images (Treviño et al., 2020), cervical micrographs in cytology as well as 2D 

mammograms (Evans, Georgian-Smith, et al., 2013) and 3D breast tomosynthesis (C. C. Wu et al., 

2019).  

While the exact perceptual features driving the extraction of the gist of abnormality are not yet 

known, previous research has investigated several potential factors. Breast density, which is 

known to be a predicting factor for breast cancer (Boyd et al., 2010; Vachon et al., 2007), cannot 

explain the gist signal, as it is less predictive of abnormality than gist, and shares only a small and 

negative correlation (r -0.10-0.26), with gist ratings on the same cases (Evans et al., 2019). 

Similarly, global symmetry between the two breasts might facilitate gist ratings of abnormality, 

but is certainly not essential, as gist ratings of unilateral abnormal cases reached d’ of 1.16 (Evans 

et al., 2016), showing that, while symmetry may assist distinguishing abnormal from normal 

cases, it is not required. On the other hand, there seems to be an important role of high spatial 

frequencies, as performance dropped considerably when high frequency information was 

removed (low-pass filtered d’ = 0.26). High-pass filtered images supported performance (d’ = 

0.96) that was not markedly worse than full spectrum images (d’ = 1.06) (Evans et al., 2016).  

One of the leading lines of evidence that the gist of abnormality is global in nature is that the gist 

can be detected even when no lesions are present in the presented image. Radiologists detected 
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the gist of abnormality in patches of breast parenchyma that did not include the lesion as well as 

in mammograms of the breast contralateral to the one with the cancerous abnormality (Evans et 

al., 2016). Under these conditions, performance is reduced, but still above-chance (d’ = ~0.4 for 

patches, ~0.6 for contralateral breast). There is evidence that the global gist of abnormality is 

present even before any visibly actionable cancerous abnormalities are present. Radiologists 

distinguished between ‘abnormal’ mammograms, taken 3 years before a woman developed any 

actionable abnormalities and ‘normal’ mammograms from women who did not develop cancer. 

Accuracy was above chance with 500 ms exposure (Patrick C. Brennan et al., 2018; Evans et al., 

2019) to these ‘prior’ images. Thus, gist of abnormality is a relatively small, but robust, global 

signal present in medical images, although the exact perceptual features contributing to the gist 

of abnormality remain a gap in the literature that requires further research. 

The existence of this gist of abnormality may initially sound implausible. However, think about 

your first glimpse of a store. You might ask yourself if you are likely to find something that you 

want here. You could not do this perfectly in half a second, but neither would you be at chance. 

Your expertise as a consumer would allow you to register the gist of the store, even if the item 

you wanted was not in that first view. An expert radiologist can do something similar with a 

mammogram.  

Unsurprisingly, gist extraction performance does not reach the performance levels obtained by 

experts when the stimulus remains visible during regular clinical reading. For example, a d’ of 1.0 

was found for gist extraction of chest radiographs in 200 ms, compared with a d’ of 2.5 achieved 

during free-viewing (Kundel & Nodine, 1975). Similarly, free-viewing of a set of mammograms in 

a laboratory setting produced a d’ of 1.9 for distinguishing abnormal from normal images (Evans, 

Birdwell, et al., 2013), while 250 ms exposure produced gist performance of d' ≈ 1 with 250 ms 

exposure (Evans, Georgian-Smith, et al., 2013) and 1.14 after 500 ms exposure.  

The increase in performance between rapid exposure and free viewing seemingly fits with two-

stage detection models in medical image perception that propose to divide visual processing into 

an early and later stage. The first stage occurs rapidly and extracts global information about the 

image, not unlike gist extraction (Sheridan & Reingold, 2017). Swensson’s Two-Stage Detection 

Model asserted that a first stage filters the image and identifies features that require further 

examination and that a second stage carries out a search over the identified locations (Swensson, 

1980). Swensson argued that medical experts have acquired perceptual mechanisms that allow 

them to extract and use this global information more effectively than novices. Similarly, Nodine 

and Kundel’s Global-Focal Search Model postulated that, when viewing a medical image, experts 

obtain a global impression of the image, which constrains their subsequent search (C. Nodine & 

Kundel, 1987). The global information is extracted from an image and compared to a schema 
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built from prior knowledge. Schemas of normal and abnormal medical images help identify 

potential perturbations, and focal attention is guided to these locations for further examination. 

In an updated version renamed the Holistic Model, an expert rapidly assesses an initial holistic 

impression in order to constrain a subsequent search-to-find process. During the search-to-find 

stage, holistically identified perturbations are attended foveally, while the expert also scans the 

image for any less salient abnormalities that were missed in the holistic stage (Kundel, Nodine, 

Conant, & Weinstein, 2007). Kundel has argued for a model of radiologist performance that has a 

prominent role for an “initial holistic, gestalt-like” stage of processing that is conceptually quite 

similar to global gist processing as we have described here (Kundel, Nodine, Krupinski, & Mello-

Thoms, 2008). However, there is an important difference between the holistic analysis of the 

image as Kundel et al. understand it and global gist processing as we are using it here. The holistic 

representation contains information used to guide attention to locations where targets are likely 

to be, while the gist representation is a non-localized sense that this patient might or might not 

have disease.  

Another important difference between the Kundel account and global gist processing concerns 

the time frame. The holistic phase of the Kundel et al. model encompass roughly the first full 

second of the reading of an image. More modern work in visual attention would envision that 

first second to be a mix of fast global gist processing and selective attention to a substantial 

number of specific objects or locations in the field (Evans et al., 2016). In the global gist 

experiments, stimuli were flashed briefly (typically for 500 ms or less), for the purpose of limiting 

volitional eye movements and attentional scrutiny of the images. This raises an interesting 

question; would the global gist signal continue to grow if observers had more time to look at the 

image? Alternatively, might the signal only be available if the images are briefly presented? There 

are phenomena that behave in this way, vanishing if the observer sees the stimuli for too long 

(e.g. abnormal fusion in binocular vision (Wolfe, 1983)). Accordingly, in the present experiment 

we compare performance of novice and expert viewers who view mammograms either for 500 

ms or for as long as they like. The most interesting conditions in this experiment are those where 

there is no localized pathology in the image. Is the gist signal bigger, smaller, or unchanged by the 

ability to look longer to establish a ‘first impression’. 

2.5. Methods 

We compared two experiments involving rapid assessment of the same set of image stimuli using 

two different groups of participants: novice and expert. The first experiment presented the 

images very briefly for 500 milliseconds while the second allowed unlimited viewing time but 

asked the observers to make a decision on the basis of their “first impression”. The main 

experimental observers were two groups of medical experts in radiology and the control group 
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was a group of observers without medical experience (“naïves”). Prior research has shown that 

naïve participants, without medical training are unable to assess if a mammogram is abnormal or 

not in 500 ms (Evans, Georgian-Smith, et al., 2013). The control group allowed us to determine if 

naïve observers would have access to the “gist of abnormality” if they just had a bit more time. 

Radiologists were tested as part of the Medical Image Perception “pop-up” lab supported by the 

US NIH: National Cancer Institute at the annual meeting of the Radiological Society of North 

America (RSNA) in 2018 and 2019. The RSNA meeting presents a unique opportunity to test 

expert radiologists in numbers that are otherwise difficult to access. That opportunity comes with 

methodological constraints. A between-subjects design was needed as the RSNA setting did not 

allow for a sufficient time for ‘wash-out’ of memory for specific images between a first and 

second assessment of that image. Additionally, there is an inherent level of unpredictability of 

testing in such settings. This is reflected, for example, in the unequal numbers of observers in the 

two radiologist groups, one group tested in 2018, the other in 2019. 

Participants  

A total of 50 participants took part in this study. A group of 11 radiologists with experience in 

mammography (7 female, age 32 to 65 years, 11 right-handed) participated in the no time limit 

condition, while 16 radiologists took part in a 500 ms time limit condition version of the 

experiment (9 female, age 38 to 63 years, 12 right-handed), which was part of a previously 

collected dataset in which spatially filtered mammograms were compared to unaltered 

mammograms, of which the ratings for unaltered cases formed the dataset used in the current 

experiment. A single group of 23 naïve observers (21 female, age 18 to 33 years old, 21 right-

handed) participated both in the no time limit and the 500 ms time limit conditions.  

Radiologists in this experiment were all at least at the resident level, who were currently 

practicing reading mammograms. They were all experienced at reading mammograms in a clinical 

setting, which was defined as having read at least 2000 scans in the last year. The radiologists in 

the no time limit group read on average 5195 scans (std 2757, range 3000 to 10000) a year. They 

averaged 16 years in practice (std 9.6 years, range 4 to 30), and on average spent 63% of their 

time diagnosing mammograms (std 33%, range 15 to 100%) in their work. The radiologists in the 

rapid display time limit group read on average 5056 scans (std 3828, range 2000 to 12000) a year, 

averaged 22 years in practice (std 11.9 years, range 2 to 38), and on average spent 59% of their 

time diagnosing mammograms (std 35%, range 15 to 100%) in their work. 

The lowest value of years in practice was slightly less than used as a cut-off for expertise in some 

previous studies, which used a cut-off of 5 years (Chin et al., 2018; Evans, Georgian-Smith, et al., 

2013), but matches the minimum years in practice used by Carrigan et al. (2018). Additionally, 
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number of annual cases is a key determinant for good reading performance (Rawashdeh et al., 

2013). A study found that readers with 2000 to 4999 annual cases outperformed those who read 

1000 cases or less on malignancy detection, but were not outperformed by those with more than 

5000 annual cases (Reed, Lee, Cawson, & Brennan, 2010). Thus, the radiologists in this study 

could all be considered experienced observers of mammograms.  

For the no time limit condition, radiologists were recruited during RSNA 2019. For the 500 ms 

time limit condition, radiologists were recruited during RSNA 2018. Naïve observers were 

undergraduates at the Psychology Department of the University of York (UK), participating for 

course credit. All participants had normal or corrected-to-normal vision. This study was approved 

by the Psychology Departmental Ethics Committee of the University of York, and all participants 

gave informed consent.  

Two separate groups of radiologists were tested because a within-subject design would have 

required a sufficient time window between measurements to avoid memorization effects. This 

would not have been practical in the RSNA setting.  

Stimuli and apparatus 

The 500 ms group of radiologists saw a total of 120 stimuli. The 120 stimuli were mammograms 

of either mediolateral oblique (MLO) or craniocaudal (CC) view of two breasts (bilateral). Of 

these, 60 were abnormal, composed of 20 with obvious lesions, 20 with subtle lesions and 20 

mammograms acquired 2 to 3 years prior to cancer showing no visibly actionable lesions at that 

time. The categories obvious and subtle abnormal were based on how easily detectable the 

abnormality was judged to be by an experienced collaborating radiologist. The other 60 were 

normal mammograms that did not contain cancerous abnormalities. The 60 normal 

mammograms were preassigned to the three categories of abnormal, so that each performance 

measure was calculated between 20 abnormal and 20 normal cases. Only the trials with subtle 

abnormal and prior stimuli, and their pre-assigned normal stimuli were analysed in this study, 

since these categories were also used in the other conditions, resulting in a total of 80 trials used 

for analysis.  

The number of normal mammograms was reduced to a singular set of 20 normal cases in the no 

time limit condition (and both conditions for naïves) in an effort to reduce the duration of the 

experiment and increase ease of data collection given that in the no time limit experiment image 

viewing was self-paced. Thus, for the no time limit group of radiologists, and both conditions for 

naïves, results are based on 80 trials. The 80 stimuli were images of either MLO view or CC view 

of a single breast (see figure 1B for an example). These images were subdivided into four 

categories: normal mammograms of healthy women (normal), mammograms with relatively 
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subtle cancerous abnormalities (subtle abnormal), mammograms of the breast contralateral to a 

breast containing a cancerous abnormality (contralateral), mammograms from women who later 

developed cancerous abnormalities but showed no visibly actionable lesions in these 

mammograms that were acquired on earlier screening (priors). Given that unilateral 

mammograms were presented in the no time limit experiment, we were able to add the category 

of contralateral images – images of a breast that did not contain a lesion but was contralateral to 

a breast that did contain a lesion. Thus, the no time-limit version of the experiment used a sub 

selection of the cases from the time limit version, 20 of the 60 normal cases from the time limit 

version, the 20 subtle cases which were split to create the unilateral subtle and contralateral 

categories, and all 20 prior cases. Neither priors nor contralaterals contained visible cancerous 

abnormalities, as determined by a study radiologist. Thus, they would have been labelled as 

‘normal’ in regular practice. No mask was used in the no time limit condition, since the goal was 

to have unlimited visual processing until the participant chose to continue to the rating screen. 

Due to experimental limitations, the 500 ms condition of the naïves also did not include a mask, 

but since this would only increase the chance of naïves detecting the gist of abnormality, this is 

not considered a limitation. 

For the radiologists, the images were presented on a 24’ inch colour medical imaging display 

(1920 x 1200 pixels). For the naïve observers, the images were presented on 19.7’ inch colour 

monitor (1280 x 1024 px). The stimuli, themselves, were presented in the centre of the screen at 

a size of 800 × 1000 pixels. The experiment was run using Matlab, utilizing the Psychophysics 

Toolbox 3 extensions (Brainard, 1997; Kleiner, Brainard, & Pelli, 2007). All mammograms were 

selected from the Complex Cognitive Processing lab database of stimuli, which can be shared 

with other researchers upon request to the last author (K.K. Evans). 

Procedure 

 The procedures for both the no time-limit and time-limit version of the experiment were largely 

the same. The experiment consisted of 3 practice trials and 80 test trials (for no time-limit 

radiologists and for naïve observers) or 6 practice and 120 test trials (time-limited radiologists). In 

the practice trials, participants were familiarized with the display and rating screen, and feedback 

on the stimulus (normal or abnormal) was given after they confirmed their rating. On the test 

trials, no feedback was given. There were 20 trials for each of the abnormal types, but the time 

limit version for radiologists contained 60 rather than 20 normal cases (see stimuli and 

apparatus). Presentation order was randomized for each participant.  

Each trial began with a white fixation cross presented at the centre of the screen (500 ms), 

followed by the mammogram being visible for either 500 ms (time-limited condition) or until the 



51 
 

spacebar was pressed (no time-limit condition). For the time-limited experiment, the 

mammogram presentation was followed by presentation of a mask composed of the same breast 

outline, but with tissue replaced by a solid white field for 500 ms, before the rating screen was 

shown. No mask was used in the no time limit condition since the goal was to have unlimited 

visual processing until the radiologist chose to continue to the rating screen (see stimuli and 

apparatus). On the rating scale, participants used the mouse to move a slider to register their 

rating on the scale from 0 to a 100 (see figure 1A). Participants had to confirm their rating by 

pressing the spacebar, after which the next trial would start automatically. There was no masking 

display following the rating-scale screen. 

Participants were asked to rate how certain they were that the image came from a woman with 

breast cancer or that the woman would develop cancer in the near future. The specific 

instructions given in the no time limit condition were: “You will be presented with 80 

mammograms. View them for a time of your own choosing, but do not perform a detailed search 

of the image. Rather, focus on your first impression, your gut feeling, of the mammogram, 

without trying to scrutinize and search the image to localize abnormalities. Remember that 50 

percent of the mammograms in the study contains or will develop cancer in the near future. You 

will then rate the mammograms on the likelihood of it containing cancer or developing it in the 

near future, based on your general impression, on a scale from 0, certainly no cancer, to a 100, 

certainly cancer present or will develop.” Instructions for the time limit condition were similar, 

except that it did not warn them to avoid detailed search, but instead emphasized that the image 

would only be visible for 500 ms. 

Participants were asked to adopt a liberal rating criterion with regards to their decisions on 

whether a case contained or would develop cancer, while being as accurate as possible. There 

was no time constraint for choosing a rating in either condition, but participants were asked to 

report their first impression. 

Different groups of radiologists participated in each of the two versions of the experiment (time 

limit of 500 ms and no time limit first impression). The versions were conducted a year apart. A 

single group of naïve participants participated in both the no time limit and the 500 ms time limit 

version in two different sessions, in a counterbalanced order. For naïve participants there was no 

masking used after the mammograms were presented in either experiment, due to the way the 

experiment was programmed. For naïves, each condition was tested in a separate session with at 

least one day and at most 1 week between sessions. Before each session, naïve participants were 

shown a short PowerPoint presentation to familiarize them with the concept of mammogram 

rating. This presentation explained how mammograms are made, how the brightness of the 
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mammogram relates to tissue density, and common signs of abnormalities, as selected by a 

radiologist. 

 

Figure 2.1: Simplified overview of the experimental procedure (A) and example mammograms for 

each of the four types used in this experiment (B).  

Data analysis 

The data were analysed using the framework of signal detection theory for binary classification. 

Given a rating, a mammogram was considered to be classified as either “abnormal” or “normal”, 

depending on whether the rating is higher or lower than some threshold. That classification was 

then compared to the ground truth. Signal detection measures were used to separately assess 

performance and response biases of the observer. Performance was represented by the d’ 

measure (d’ = z(true positive rate) – z(false positive rate)), where z denotes the inverse normal or 

z-transformation of the rates). In the cognitive literature, d’ is referred to as “sensitivity”. 

Unfortunately, “sensitivity” refers to the “true positive” or “hit” rate in the medical literature. We 

will refrain from using the term in order to avoid confusion. Response bias was measured by the 

criterion value, C (C = (z(true positive rate) + z(false positive rate))/-2). A negative criterion means 

that the observer was more likely to label the item as abnormal while a positive criterion means 

that observer was more likely to label the item as normal.  

Receiver operating characteristic curves (ROC) were constructed by repeating this division of 

trials into proportions of true positive (hits) and false positive (false alarms) using different 

normal/abnormal rating cut-offs (here, 10, 20, 30, 40, 50, 60, 70, 80, and 90). The area under the 

curve (AUC) of an ROC, ranging from 0.0 to 1.0, represents the probability that a randomly 

chosen abnormal case will be rated higher than a randomly chosen normal case (Hanley & 

McNeil, 1982). Chance performance yields an AUC of 0.5. Higher AUCs indicate better 
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performance in detecting the signal of cancerous abnormalities. AUCs were calculated using the 

trapezoid function in Matlab.  

D’, criterion and AUC performance measures were calculated for each of the groups and 

conditions. For statistical analysis, we used the d’ and c values derived using a rating cut-off of 50, 

the middle of the ROC. In all cases, false positives were derived from ratings of 20 normal images 

that functioned as the negative cases, using the pre-allocated subset of 20 normal cases per 

image type in the radiologist time limit version, or the single set of 20 in the other experiments. 

The true positive rates were derived separately from responses to abnormal, contralateral, and 

prior images. Statistical analysis was used to compare these performance measures between 

image types, conditions, and group. The main statistical test used was mixed ANOVA, as there 

were the within-group measures of image type, and the between-group factors of either group 

(naïve/radiologist) and/or condition (500 ms/no limit). For comparing condition effects in naïves, 

a repeated measures ANOVA was used as this was measured with a within-subject design. Paired 

t-tests, corrected for multiple comparison, were used to compare specific conditions. One-

sample t-tests were used to compare performance measures to chance. 

In addition, reaction time (RT) data was collected in the no time limit condition. RT was defined 

as the time between the appearance of the mammogram and the time when the observer 

confirmed their rating. Average reaction time of radiologists and naïves was compared using an 

independent samples t-test. Repeated measures ANOVAs were used to compare reaction times 

within each group between image types. 

Where possible, a combination of frequentist and Bayesian statistics are reported. Bayes factors 

can indicate the relative strength of evidence for two theories, where BF10 indicates the 

probability of the alternative compared to the null hypothesis under the observed data. Thus, 

Bayesian statistics can indicate whether a non-significant p-value from a frequentist test provides 

evidence towards the null hypothesis or if the evidence is insensitive (Dienes, 2014). The latter is 

generally considered the case with Bayes factors between 0.33 and 3. Values outside of this 

range provide evidence towards the null or alternative hypothesis, according to the heuristic 

classification scheme that was proposed by Jeffreys (1998) and is widely used to interpret Bayes 

factors. Bayesian statistics were calculated using the computer software JASP, version 0.14.1 

(JASP-Team, 2020). 
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2.6. Results 

S  

Figure 2.2: Average ratings for each observer group for each type of image. Statistical results are 

Dunnett’s multiple comparisons tests, comparing each type of abnormal image to the normal 

images.  

Figure 2 shows the average ratings for each observer group (Radiologist and Naïve) for each type 

of image. For the radiologists, Dunnett’s multiple comparisons tests show that all types of 

abnormal images are rated as significantly more abnormal than the normal images when viewing 
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time was limited or unlimited (all p < 0.05). Interestingly, the data for the naïves also show 

significant differences between normal images and the other images, though the pattern of 

ratings is different than that seen with the radiologists. It is notable that the naïve observers 

rated the prior images as more normal than the normal images. This can be seen as type of 

artifact of stimulus selection. On returning to our image set, it appears that naïves might have 

used some rough assessment of density/complexity as a basis for their ratings, as the priors in 

this study are inadvertently systematically less dense than the normal images. The radiologists 

appear to be sensitive to some signal beyond density/complexity since they rate the priors as 

more abnormal. Since density and complexity are correlated with cancer risk, we can imagine 

that the radiologists took those factors into account as well. Had the images been more carefully 

balanced for density and complexity, it seems likely that the difference between radiologist 

ratings of normal and prior images would have been greater. 

Turning to signal detection measures, Figure 3 shows that the ROCs for individual radiologists 

mostly lie above the diagonal chance performance line. As noted, the effects for the priors are 

weaker than what has been seen in other studies (Patrick C. Brennan et al., 2018; Evans et al., 

2019), but this should be seen in light of the inadvertently lower density and complexity of the 

prior images. 
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Figure 2.3: ROC curves for the radiologist groups during no time limit and 500 ms time limit 

conditions per image type (subtle abnormal, contralateral, priors). Each plot contains individual 

ROCs (coloured dotted lines) and the group mean ROC (thick black line). The dashed grey diagonal 

line indicates the line of no discrimination. 
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Z-transformed versions of the ROCs (zROCs) produced curved functions. zROCs are straight lines 

if the underlying signal and noise distributions are normal. The curved zROCs could be taken as 

evidence that the underlying distributions are not normal; an interesting possibility beyond the 

scope of the current project.
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Figure 2.4: Bar graphs representing the average d’, AUC, and criterion (±SEM) per image 

comparison category (subtle abnormal, contralateral, prior) and over the total image set for the 

radiologists and naïves under no time limit and 500 ms time limit conditions.  

Effect of time limit on performance in radiologists 

To see how time limitations affect performance of mammography experts, 2x2 mixed ANOVAs 

were conducted on d’ and AUC with timing condition (no time limit, 500ms time limit) as a 

between-group factor and image type (subtle abnormal, priors) as a within-group factor. As 

stated in the methods, no contralaterals were shown in the time limit condition for the 

radiologists, so these were not included in this part of the analysis. For d’, there was strong 

evidence for a main effect of image type (F(1,25)=59.409, p=<.001, ηp2=.704, BFinclusion=5.87e7 

and moderate evidence for a main effect of timing condition (F(1,25)=7.819, p=.010, ηp2=.238, 

BFinclusion=3.828). There was no significant interaction effect (F(1,25)=.312, p=.576, ηp2=.013, 

BFinclusion=0.727). In the AUC data, there was, again, a large main effect of image type 

(F(1,25)=110.85, p=<.001, ηp2=.816, BFinclusion=1.241e10), but no statistically significant evidence 

of a main effect of timing condition (F(1, 25)=1.757, p=.197, ηp2=.014, BFinclusion=.613). There was 

no evidence for an interaction effect (F(1, 25)=0.440, p=.513, ηp2=.017, BFinclusion=0.392). The 

BFinclusion for both condition and interaction effect can be classified as anecdotal evidence for H0.  

Our particular interest was in whether more time allowed experts to extract more meaning from 

the prior images. Post-hoc comparisons showed that unlimited time produced a larger d’ 

(t(25)=2.796, p=.010, BF10=1.942) but not a larger AUC (t(25)=1.325, p=.197, BF10=0.378) on 
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average, and the Bayes Factor for the d’ difference shows only anecdotal evidence. The 

combination of non-significant effect on AUC and anecdotal Bayes Factor for d’ suggest that this 

might not be a true difference. Looking at Figure 3, it is clear that performance is above chance in 

both conditions but that the variability between observers makes it hard to determine if 

unlimited time improves performance. Certainly, unlimited time does not produce a massive 

improvement. 

Turning to the criterion, there was a main effect of image type (F(1,25)=52.290, p=<.001, 

ηp2=.677, BFinclusion=322.440). There was no evidence of main effect of timing condition 

(F(1,25)=3.247, p=.084, ηp2=.115, BFinclusion=1.331) or an interaction effect (F(1, 25)=.405, p=.530, 

ηp2=.016, BFinclusion=0.423). Criterion was significantly higher for priors than subtle abnormal cases 

(mean difference=.345, p=<.001, BF10,U=416.754).  

These findings showed some indication that additional time might improve performance of 

radiologists on detecting future abnormality in the priors, but this effect was inconsistent, as it 

was observed for d’ but not AUC. Additionally, for d’, the Bayesian statistics suggested only 

anecdotal evidence, further weakening the evidence. Overall, our results show no clear evidence 

of an advantage of either time condition. 

Effect of time limit on performance in naïves 

Overall performance as measured by d’ of the naïve participants was not significantly different 

from zero, as measured by a one sample t-test for the 500 ms (t(22)=1.330, p=0.196, BF10=0.308) 

and the no time limit (t(22)=1.309, p=0.204, BF10=0.301) condition. This is in line with previous 

findings, and suggests that overall, the naïve participants could not detect the gist of abnormality 

in abnormal, contralateral, and prior images with above-chance accuracy, even without a time 

limit, emphasizing the necessity for perceptual expertise. More detailed analysis of the 

performance of naïves is available in appendix A. 

Effect of image type and expertise on reaction times 

To investigate whether observers spend longer judging certain cases we examined reaction times 

under no time limit conditions. Radiologists had an average reaction time of 5526ms ± 1884 while 

naïves had an average reaction time of 4213 ± 942. Radiologists' RTs were higher for each image 

type (table 1). The difference between groups was significant (independent samples t-test, mean 

difference=1298ms, t(34)=2.6, p=.014, d=0.9) probably indicating that experts had more to think 

about when looking at an image.  

For naïves, a one-way RM-ANOVA on image type (normal, subtle, contralateral, prior) showed no 

significant effect of image type (F(3,66)=1.49, p=.226) on reaction time, which was also 
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supported by the Bayesian RM-ANOVA with a BF10 of 0.285 indicating moderate evidence 

towards this null effect. On the other hand, for radiologists, a one-way RM-ANOVA on image type 

(normal, subtle, contralateral, prior) showed a significant main effect of image type (F(3,36)=8.80, 

p<.001), which was also strongly supported by the Bayesian RM-ANOVA with a BF10 of 139.55 

indicating extreme evidence towards this main effect. Frequentist post-hoc tests with Holm 

correction for multiple comparisons showed that responses were significantly slower for normal 

(p=.048) and subtle (p<.001) than prior cases, which was supported by the Bayesian post-hoc 

tests with moderate evidence for normal and prior (BF10, u=6.83) and very strong evidence for 

subtle and prior (BF10, u=38.33). The frequentist post-hoc tests trended towards faster responses 

to normal than subtle cases (p=.052), faster responses to contralateral than subtle cases (p=.052), 

and faster responses to prior than contralateral cases (p=.052). Among these trends, Bayesian 

post-hoc tests showed strong evidence for a difference between normal and subtle (BF10, 

u=17.27), but only anecdotal evidence for subtle and contralateral (BF10, u=1.74) and contralateral 

and prior cases (BF10, u=1.77). The strong Bayes factor for normal and subtle cases suggests that 

this is a true effect, while there is only anecdotal evidence for the other two trends. Overall, 

reaction times differed significantly between image types, with faster responses to prior than 

both subtly abnormal and normal cases, and faster responses to normal than subtly abnormal 

cases.  

Table 2.1: Average reaction time in milliseconds for naïves (n=23) and radiologists (n=11) during 

no time limit conditions, per image type (± 95% CI). 

 

2.7. Discussion 

In previous work, we and our colleagues have found that, with 500 ms of viewing time, expert 

radiologists can use a global gist of abnormality signal to classify normal from unilateral abnormal 

mammograms. More strikingly, we found that that this gist of abnormality can be detected in 

contralateral and prior-abnormal mammograms (Patrick C. Brennan et al., 2018; Evans et al., 

2019; Evans et al., 2016). In the present study, we asked if that gist signal would be markedly 

stronger if experts could scrutinize the image or, alternatively, if the brief exposure was required, 

with any gist signal being hidden by sustained exposure. In fact, the data did not show either of 

 Normal Subtle abnormal Contralateral Priors Overall 

Naïves  4263 ± 978 4132 ± 929 4085 ± 911 4377 ± 942 4213 ± 942 

Radiologists 5537 ± 1661 6162 ± 2261 5501 ± 1715 4846 ± 1735 5526 ± 1884 
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these effects. The existence of a gist signal was replicated but there were no dramatic effects of 

exposure duration. 

The data from naïve participants continues to show that detection of the gist of abnormality 

requires expertise. As expected, performance of naïve participants was not significantly different 

from chance in either the no time limit or the 500 ms condition. The prior images were judged to 

be more normal than the actual normal images; a result that seems to reflect lower density 

particular in the prior images we used. This finding fits with the previous reports of at-chance 

performance of naïves with rapid exposure (Evans, Georgian-Smith, et al., 2013), and also shows 

that more time does not enable naïves to access an accurate first impression to perform above 

chance. Thus, radiologists possess an ability that allows them to accurately perceive the gist of 

abnormality in mammograms, that does not seem to be present in naïve participants, regardless 

of time constraints. 

A central question for this study was whether the gist of abnormality would still be available to 

expert observers when the stimulus was not flashed but was available until response. It could 

have been that, with longer exposures, a transient gist signal becomes diluted or cancelled by 

more sustained processes. Alternatively, it could be that experts could exploit the gist signal 

more effectively given more time. The data show that experts continue to perform at above 

chance levels with unlimited time, with some evidence that d’ was higher in the no time limit 

condition, but since this was not replicated in the AUC data there was no consistent evidence for 

improvement in performance without time-limited exposure. In thinking about a possible clinical 

role for gist, this is something of a disappointment. The gist signal for prior images is reliable but 

weak. The possible use of such a signal as imaging biomarker would be strengthened if conditions 

could be found that produced a more robust signal.  

For the abnormal images, the images that contained visible lesions, our experts seem to have 

followed our instructions not to scrutinize the images. While this is a difficult instruction to verify, 

it is certainly the case that our average total reaction time of 5.53 ± 1.88 seconds is markedly 

lower than any normal interpretation times in the clinic (e.g. 128 to 138 seconds for routine 

screening examinations of digital mammography (Berns et al., 2006; Kuzmiak et al., 2010)) or in 

the lab (e.g. average reading time per 2D mammography case was 33 seconds in a screening-like 

condition (10% prevalence) of an archival set by 3 radiologists (Bernardi et al., 2012). Those cases 

included multiple images but even so, 5.5 second for one image would be hasty under normal 

instructions. In a two-decision stage study on bilateral cases, the initial normal/abnormal 

distinction took 23 seconds on average, followed by an additional 39 seconds to localize any 

abnormalities in the final decision phase (C. F. Nodine, Mello-Thoms, Kundel, & Weinstein, 2002). 

Thus, in the current no time-limit condition, radiologists were relatively fast in making their 
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decision, supporting the notion that they were indeed using a first impression rather than a 

detailed examination to inform their rating. 

Response times of radiologists were significantly affected by image type, with faster responses to 

priors than normal (+704 ms) or subtle abnormal cases (+1323 ms). Additionally, responses to 

normal cases were faster than subtle abnormal cases (+619 ms). These differences suggest that 

the presence of a local abnormality increased reaction times. One could speculate that once 

there was no time limit the experts started looking for a visibly localizable signal of abnormality 

rather than a global perturbation of the parenchyma. Basing one’s decision on detection of a 

visible local lesion is in line with clinical practice to reduce false alarms, cognisant of low 

prevalence of breast cancer in screening population. In contrast, the possibility to search for local 

lesions is not present when the image is flashed for 500 ms, meaning the radiologist must heavily 

rely on their global gist impression. This might make it easier to focus on information conveyed 

by global, non-localizable signals of abnormality during the first impression and thus maybe a 

more optimal approach when aiming to develop a method for early-stage triage to identify at-risk 

women for more frequent screening. On the other hand, this could also result in missing possibly 

critical information present in the global parenchymal perturbation absent of a visible lesion. 

However, as our data showed no consistent changes in either performance or criterion, any 

changes in rating strategy between the conditions did not significantly affect radiologist ratings in 

our paradigm. This might be due to the mix of mammograms containing visibly actionable lesions 

and mammograms without visible abnormalities (contralateral, priors), which could prevent the 

radiologists from shifting to a strategy aimed at detecting the gist of abnormality in these more 

ambiguous cases. It might be interesting to repeat the no time limit condition in a new 

experiment using a test set composed exclusively of normal images and abnormal prior images. 

Such a set would lack any localizable abnormalities. With such a set, one could, give readers the 

information that, in this stack of 100 images, 50 came from women who would develop cancer 

within 3 years. Readers could be asked to sort the images into normal and abnormal categories, 

taking as much time as they cared to. Readers could be given case-by-case feedback after each 

response. Perhaps these conditions would produce stronger evidence of sensitivity to the gist of 

abnormality.  

One additional consideration is that rating cases based on either a glimpse or a first impression is 

not a typical behaviour for radiologists. It is possible that further training with the task for 

possible triage of cases could improve their performance in gist and/or first impression ratings. 

For example, they might become more accustomed to suppressing their inclination to perform a 

detailed examination without a time limit or become more attuned to their first impression in 

both conditions. Or, if feedback is given, they might be able to further finetune their gist 
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categorisation, although this might require intensive training to affect perceptual processing. 

These options could be explored in future experiments using training paradigms. 

Conclusion 

In the present study there was no clear evidence of additional additive benefit to the overall 

global impression of an image with no time limit exposure without search. Medical experts show 

the same overall performance detecting abnormalities in mammograms whether they use the 

global gist signal based on rapid viewing or using their first impression assessment with no time 

constrained viewing. Medical experts are not more sensitive to the signal of cancer with more 

time following first impression rather than gist but maintain a conservative criterion for images 

with no locally visible lesions. 

In conclusion, it remains interesting that experts are sensitive to a global signal of abnormality 

that can be detected in images acquired years before the cancer produces a localized sign in the 

images. However, this signal remains small and was not meaningfully enhanced by removing the 

viewing time limit when rating a mixed set of cases in a laboratory setting. Thus, if this signal is to 

have some clinical utility, it is worth continuing efforts to enhance that signal by for example 

image enhancement. 

2.8. List of Abbreviations 

AUC: Area under the curve 

BF: Bayes Factor 

2.9. Open Practices Statement 

The Matlab code used to run the experiment, and the datasets generated and analysed during 

the current study are available on our OSF repository. dx.doi.org/10.17605/OSF.IO/5NWP8 

This data is available under Creative Commons Attribution-NonCommercial-ShareAlike 2.0 UK: 

England & Wales (CC BY-NC-SA 2.0 UK). All mammograms were selected from the Complex 

Cognitive Processing lab database of stimuli, which can be shared with other researchers upon 

request to the last author (K.K. Evans). 

Experiments were not preregistered. 

http://dx.doi.org/10.17605/OSF.IO/5NWP8
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2.10. Appendices 

Appendix A: Detailed effect of time limit on performance in naïves 

The performance of naïve observers was characterized by lower d’ values, and AUC 

values close to chance (0.5) in both conditions. Following the very low ratings for priors, shown in 

Figure 2, we performed one-sample t-tests to further investigate this, which showed that naïve 

observers’ d’ actually falls below 0 and the AUCs is less than 0.5. This is the case for the 500 ms 

presentation (AUC: t(22)= -2.774, p=0.011, BF10=4.51; d: t(22)=-2.139, p=.044, BF10=1.47) and no 

time limit conditions (AUC: t(22)= -3.233, p=.004, BF10=11.09; d: t(22)=-3.06, p=.006, BF10=7.85). 

However, in the 500 ms condition, the Bayes factor for d’ provides only anecdotal evidence 

towards a significantly negative d’ prime in that condition.  

As with the radiologists, the naïve observer data for d', AUC, and criterion were analysed in 

separate 2x3 repeated measures ANOVA with condition (no time limit, 500 ms time limit) and 

image type (normal-abnormal, normal-contralateral, normal-priors) as factors. There was a main 

effect of image type for both d’ (F(1.26, 27.78)=26.18, p=<.001, ηp2=.543; BFinclusion across 

matched models=3.75e12) and AUC (F(1.23,43.01)=27.808, p<.001, ηp2=.558, BFinclusion across 

matched models=3.75e12), but no evidence of a main effect of timing condition. Nor were there 

significant interaction effects. In fact, the BFinclusion across matched models for condition was 

0.187 (d’) and 0.195 (AUC), both providing moderate evidence for the null hypothesis of no main 

effect of timing condition.  

For criterion, there was evidence of a main effect of image type (F(1.26, 27.78)=26.18, p=<.001, 

ηp2=.543, BFinclusion across matched models=2.97e7), and a main effect of timing condition (F(1.16, 

22.00)=4.67 p=.042, ηp2=.175, BFinclusion across matched models=30.55). A pairwise comparison 

showed that criterion was higher (more conservative) in the 500 ms time limit conditions (mean 

difference = .184, p=.042). Pairwise comparisons of image types showed that criterion was 

significantly higher when rating priors than abnormal (mean difference=.45, p=<.001) and 

contralaterals (mean difference=.38, p=<.001). This analysis suggests that removal of time limit 

had no effect on performance in naïves aside from making their ratings more conservative.  

2.11 Commentary: AUC vs d’ 

While both AUC and d’ are measures of the ability of an observer to distinguish between signal 

and noise, they can yield slightly different patterns of results depending on the signal and noise 

distributions. The calculation for d’ assumes that signal and noise are normally distributed with 
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equal variance. When the AUC is calculated using the trapezoid method, as it was done in this 

study, it is based on the ranks of the hits and false alarms, and does not rely on an assumption of 

normal distributions. Thus, AUC is a more reliable measure of the overall discriminability of 

normal/abnormal. In contrast, d' represents the discriminability at a specific threshold, which is 

more informative for clinical applications where a threshold must be established to identify at-

risk cases, but the d’ can be influenced by the distribution of signal and noise. Therefore, it is 

useful to analyse both measures to obtain a complete picture of performance. 

In this study, the lack of timing condition effect on the AUC measure suggests that viewing time 

did not significantly influence overall performance, especially since the Bayesian statistics 

showed the evidence for improvement in d’ with no time limit was only anecdotal (BF10=1.942). 

Chapter 3: Early signs of cancer present in the fine detail of 

mammograms. 

Chapter 3 was published as Raat E. M., Evans K. K. (2023) Early signs of cancer present in the fine 

detail of mammograms. PLoS ONE 18(4): e0282872. doi.org/10.1371/journal.pone.0282872. This 

version of the article has been accepted for publication after peer review but is not the Version of 

Record and does not reflect post-acceptance improvements. It also has edited headers and figure 

numbers to fit with the thesis format. The Version of Record is available online at 

doi.org/10.1371/journal.pone.0282872 

3.1. Abstract 

The gist of abnormality can be rapidly extracted by medical experts from global information in 

medical images, such as mammograms, to identify abnormal mammograms with above-chance 

accuracy - even before any abnormalities are localizable. The current study evaluated the effect 

of different high-pass filters on expert radiologists’ performance in detecting the gist of 

abnormality in mammograms, especially those acquired prior to any visibly actionable lesions. 

Thirty-four expert radiologists viewed unaltered and high-pass filtered versions of normal and 

abnormal mammograms. Abnormal mammograms consisted of obvious abnormalities, subtle 

abnormalities, and currently normal mammograms from women who would go to develop 

cancer in 2-3 years. Four levels of high-pass filtering were tested (0.5, 1, 1.5, and 2 cycles per 

degree (cpd) after brightening and contrast normalizing to the unfiltered mammograms. Overall 

performance for 0.5 and 1.5 did not change compared to unfiltered but was reduced for 1 and 2 

cpd. Critically, filtering that eliminated frequencies below 0.5 and 1.5 cpd significantly boosted 

performance on mammograms acquired years prior appearance of localizable abnormalities. 

Filtering at 0.5 did not change the radiologist’s decision criteria compared to unfiltered 

https://doi.org/10.1371/journal.pone.0282872
https://doi.org/10.1371/journal.pone.0282872
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mammograms whereas other filters resulted in more conservative ratings. The findings bring us 

closer to identifying the characteristics of the gist of the abnormal that affords radiologists 

detection of the earliest signs of cancer. A 0.5 cpd high-pass filter significantly boosts subtle, 

global signals of future cancerous abnormalities, potentially providing an image enhancement 

strategy for rapid assessment of impending cancer risk.  

3.2. List of Abbreviations 

Cpd: cycles per degree 

ROC: receiver operator curve 

AUC: area under the curve 

AIC: Akaike Information Criterion 

LSF: Low spatial frequencies 

HSF: high spatial frequencies 

3.3. Introduction 

Breast cancer is (one of) the most prevalent and deadly cancers in women world-wide, according 

to global data from 1990 to 2015 (Fitzmaurice et al., 2017) and 2020 GLOBOCAN cancer statistics 

(Ferlay et al., 2021). As with most cancers, early detection is vital, as it allows for treatment 

before the disease progresses and improves clinical outcomes (Coleman, 2017). Currently, the 

most commonly used methods of screening and early detection are clinical breast exams and 

digital mammography, as they are effective and cost-efficient (Coleman, 2017) and have been 

estimated to reduce mortality by 30% to 50% (Tabár et al., 2014). Digital mammography is 

especially for early detection, as it allows detection of small, pre-clinical tumours of <15mm that 

are not detectable with a clinical breast exam (Tabár et al., 2014),. However, 20-30% of cancers 

are still estimated to be missed during screening in North America (Bird, Wallace, & Yankaskas, 

1992; Majid, de Paredes, Doherty, Sharma, & Salvador, 2003).  

Further reducing breast cancer mortality through screening could be achieved by increasing 

screening frequency. However, increasing screening frequency across the entire population is not 

cost-effective, and risks increasing false positives (Mandelblatt et al., 2009) or even over-

diagnosis of benign breast conditions, which has been associated with unnecessary cost (Chubak, 

Boudreau, Fishman, & Elmore, 2010) and negative mental health effects (Jatoi, Zhu, Shah, & 

Lawrence, 2006; Sandin, Chorot, Valiente, Lostao, & Santed, 2002).  

Instead, women at an increased risk should be offered more frequent screening. Currently, at-risk 

women are often identified through familial history of breast cancer, or genetic markers, such as 



67 
 

BRCA1 or BRCA2 mutations, which cause approximately 60% of hereditary breast cancer (Pruthi, 

Gostout, & Lindor, 2010). However, gene screening is costly and BRCA1 or BRCA2 mutations 

cause only 5% of breast cancer, limiting applicability to the general population. An alternative, 

more universal approach would be to identify at-risk women based on perceptual features in 

their existing mammograms. This method relies on the robust observation that experienced 

radiologists can capture both current and future cancer risk in the blink of an eye through 

extraction of the gist of abnormality.  

This gist of abnormality is extracted through a process that rapidly and non-selectively extracts 

global structure and statistical regularities from our visual environment (Oliva, 2005; Oliva & 

Torralba, 2006). In normal observers, this allows them to categorize a flashed scene (30 ms) as a 

beach or a forest with high accuracy (Greene & Oliva, 2009; Joubert et al., 2009). In addition, 

medical experts are extract the gist of medical images, allowing them to distinguish normal from 

abnormal cases after 100 to 500 milliseconds of viewing time for chest radiographs (Kundel & 

Nodine, 1975), cytological images from PAP smears (Evans, Georgian-Smith, et al., 2013), and 

mammograms (Evans, Georgian-Smith, et al., 2013; Evans et al., 2016). Importantly, 

mammograms of women taken 3 years prior to their eventual diagnosis (priors), that did not 

contain detectable cancer even when viewed retrospectively, are scored as significantly more 

abnormal than mammograms of women that did not go on to develop cancer in the near future 

(Patrick C. Brennan et al., 2018; Evans et al., 2019). Thus, the gist of abnormality is a robust signal 

that can rapidly be extracted from mammograms. 

Thus, a high gist of abnormality score could be a promising risk factor to flag mammograms for a 

secondary opinion (current risk) or to recommend women for more frequent scanning (future 

risk). Advantages of the gist signal are that it can be extracted from already existing 

mammograms, and it is already visible in cases up to 3 years prior to cancer onset, without visibly 

actionable lesions. Unfortunately, the signal strength in priors is relatively weak with an observed 

d’ of 0.22 and an Area Under the Curve (AUC) of 0.54-0.6 for priors without visible abnormalities 

(Patrick C. Brennan et al., 2018; Evans et al., 2019). Thus, methods to strengthen the gist of 

abnormality signal, especially in priors, are needed to make it more clinically viable.  

Spatial frequency filtering might allow a way to isolate and enhance the perceptual features that 

comprise the gist signals in mammograms. Visual information can be summarized as spatial 

frequencies in various orientations. Low spatial frequencies (LSF) provide coarse information 

spread across a large area, whereas high spatial frequencies (HSF) provide finer details of for 

example edges and contours. Together, LSF and HSF provide important information about the 

texture and structural regularities in our visual environment. But it is possible that the gist of 

abnormality is stronger in specific frequency bands, or that it is masked by other frequency bands 
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that make it harder to perceive. Interestingly, filtering out HSF strongly reduced accuracy of 

rating normal vs abnormal mammograms from a d’ of 1.06 with full spectrum mammograms to 

only 0.26, while filtering out LSF resulted in a relatively high d’ of 0.96 (Evans et al., 2016). Thus, 

gist of abnormality seems to be preferentially contained in HSF, although there was still a small 

reduction in performance. 

Conflicting findings have been reported on the effects of spatial frequency filtering on general 

gist extraction. Merged spatial frequencies from two scenes were most frequently perceived as 

the LSF scene with 30 ms view time, but with 150 ms HSF dominated (Schyns & Oliva, 1994), 

suggesting an early importance for LSF. However, recent evidence points to the importance of 

HSF for scene gist when taking contrast normalization into account. Natural images contain more 

LSF than HSF contrast energy, following an inverse power law (Perfetto, Wilder, & Walther, 

2020). This means that HSF-only images have lower overall visibility. After contrast normalization 

human observers showed equal performance on gist categorization of LSF and HSF scene images 

(Perfetto et al., 2020). 

Since Evans et al. (2016) did not contrast normalize the mammograms, the reduction in 

performance for HSF compared to full spectrum mammograms might have be caused by a 

reduction in contrast energy. Additionally, HSF-retaining filters might differentially affect gist 

signals in different conspicuities. The current study aimed to investigate the effects of five levels 

of high-pass spatial frequency filtering on the gist of abnormality in mammograms with three 

different conspicuities when applying contrast normalization. Contrast normalization was 

combined with a brightness increase to ensure that the higher spatial frequencies were bright 

enough to be perceived. Our results show that some high-pass filters preserved overall 

performance, and more importantly, enhanced performance in mammograms taken prior to 

development of visible, actionable abnormalities. These findings provide a promising avenue of 

using high-pass filtering image enhancements to improve gist of abnormality risk factors. 

3.4. Methods 

Participants 

A total of 34 participants took part in this experiment, which was conducted in two versions, an 

in-person experiment and an online experiment. The online version was set up to avoid in-person 

contact during the COVID-19 pandemic. All participants were radiologists with experience 

reading mammograms in a clinical setting, which was defined as having read at least 1000 scans 

in the last year.  

Sixteen participants took part in the in-person version of the experiment (9 female, 32 to 64 

years old, mean 50.7+-10.8). They read on average 5056 scans (std 3707, range 1000 to 12000) 
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over the last year, average 22 years in practice (std 11.6years, range 2 to 37), and on average 

spend 59% of their time diagnosing mammograms (std 34%, range 10 to 100%) in their work. 

Eighteen participants took part in the online version of the experiment (13 female, 33 to 67 years 

old, mean 46.9 +- 10.1). They read on average 5694 scans (std 2996, range 1000 to 10000) over 

the last year, average 14 years in practice (std 10.6 years, range 2 to 37), and on average spend 

70% of their time diagnosing mammograms (std 27.1%, range 25 to 100%) in their work. The 5 

radiologists at the lower end of cases read in the last year (<2000) had been practicing for 7, 18, 

19, 30, and 37 years respectively, indicating extensive experience. 

Participants were recruited in-person during the Radiological Society of North America (RSNA) 

2018 conference, and online over a period from 2020 to 2022, with recruitment emails sent to 

individual contacts, collaborating hospitals in the United Kingdom, and newsletters of various 

radiology profession groups in the UK and the Netherlands. The sample size of the radiologist 

groups was dictated by the availability of participants. This study was approved by the Psychology 

Departmental Ethics Committee of the University of York (ID 307), and all participants gave 

informed consent either written on paper (in-person) or digitally by clicking a button “I 

understand and agree” after reading the consent form (online).  

Stimuli and apparatus 

The stimuli used in this experiment were de-identified bilateral mammograms sourced from the 

Complex Cognitive Processing Lab database of stimuli, in mediolateral oblique (MLO) or 

craniocaudal (CC) view. Four mammogram categories were used: normal mammograms of 

healthy women (normal), mammograms with obvious cancerous abnormalities (obvious), 

mammograms with subtle cancerous abnormalities (subtle), and mammograms without visibly 

actionable lesions taken three years prior to sign of abnormality (priors). Normal mammograms 

were defined as cases without abnormalities, of which the woman did not develop cancer in the 

next three years. Obvious and subtle mammograms were selected from a set of mammograms 

containing an abnormality, which were conspicuity-rated by an experienced mammogram-

reading radiologist based on the visibility of the abnormality (obvious, subtle). Priors were 

defined as mammograms without any visible cancerous abnormalities of women who were then 

found to have developed cancer within the next three years retrospectively.  

MATLAB was used to create the spatially filtered stimuli. Stimuli were filtered using a high-pass 

2nd order Butterworth filter with four different cut-off points. Filtered stimuli were brightened 

using a custom setting multiplying any pixel values above 10 (out of a 0 to 255 scale) by 3.5. Next, 

the filtered images were contrast normalized with the SHINE Toolbox for each group of filtered 

images together with the unfiltered images. Contrast normalization removes effects from overall 
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differences in brightness between the filter groups. Four groups of spatially filtered images were 

created, namely 0.5, 1, 1.5, and 2 cycles per degree (cpd), examples of which can be seen in Fig 

1B.  

 

Figure 3.1: Procedure and stimuli used in the experiment. (A) Example visualization of the 

different screens in one trial, showing the fixation cross, mammogram case, mask, and rating 

screen. (B) Examples for the unaltered (0) and high-pass filtered versions (0.5, 1, 1.5, and 2 cpd) of 

a unilateral mammogram 

The in-person experiment was run using MATLAB, utilizing the Psychophysics Toolbox 3 

extensions (Brainard, 1997; Kleiner et al., 2007). The online experiment was run on a custom web 

page. Participants were instructed to sit at a comfortable viewing distance of approximately 57 

cm. In-person, stimuli were presented on a 17’ inch Dell colour display (1920 x 1200 pixels) with 

an 85 Hz refresh rate. For the online experiment, participants performed the experiment on their 

own laptop or PC. For the online experiment, a screen calibration method based on the work by 

Q. Li, Joo, Yeatman, and Reinecke (2020) was used to ensure the stimuli were presented at 10 

degrees of visual angle in height. 

Procedure 

The experiment consisted of 3 practice trials followed by 3 blocks of test trials. In the practice 

trials, participants were familiarized with the display and rating screen, and were given feedback 

on the stimulus (normal or abnormal) after they confirmed their rating. In the test trials, no 

feedback was given. Each trial started with a fixation cross in the centre of the screen (500 ms), 

followed by the bilateral mammogram being shown for 500 ms. Then, a mask consisting of the 

solid white shape of the breast tissue was shown for 500 ms. Next, the rating screen appeared, 
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on which moving the mouse changed the rating on a scale from 0 to a 100. Pressing the spacebar 

would confirm the current rating, after which the next trial automatically started (see Fig 1A). 

Participants were asked to rate how certain they were that the image came from a woman with 

breast cancer, or who will develop it in the near future. Participants were asked to adopt a liberal 

call back criterion, while being as accurate as possible. There was no time constraint for the 

rating in either condition, but participants were asked to report their first impression. During the 

in-person experiment, ratings were made on a scale from 0 (abnormal) to 100 (normal), while the 

online experiment used a scale from 0 (normal) to 100 (abnormal), due to a difference in coding. 

This is not expected to be any hindrance in comparing the two experiments, as the rating scale 

was clearly labelled in the instructions and on each rating screen, and 3 practice trials were 

available.  

As previously stated, each participant completed three blocks of test trials. The same 

mammograms were used in each test block, to allow for direct comparison of performance. Each 

test block consisted of 120 trials: 60 normal, 20 obvious abnormal, 20 subtle abnormal, and 20 

prior abnormal, in randomized order. One of the blocks always showed unaltered mammograms 

(F0) to ensure a baseline of performance, and the two other blocks showed two out of the four 

possible filter groups. Selected blocks and their order were randomized, although the switch 

from in-person to online measurements caused a lower number of participants for the F1 filter 

and the F1.5 filters than the F0.5 and the F2 filter. In total, all 34 participants rated F0, 21 

participants rated F0.5, 15 participants rated F1, 13 participants rated F1.5, and 19 participants 

rated F2. 

Data analysis 

To analyse our data, a signal detection theory framework was used to calculate performance 

measures, as previously described in an earlier publication (Raat, Farr, Wolfe, & Evans, 2021): 

“Given a rating, a mammogram was considered to be classified as either “abnormal” or “normal”, 

depending on whether the rating is higher or lower than some threshold. That classification was 

then compared to the ground truth. Signal detection measures were used to separately assess 

performance and response biases of the observer. Performance was represented by the D’ 

measure (D’ = z(true positive rate) – z(false positive rate)), where z denotes the inverse normal or 

z-transformation of the rates). In cognitive literature, d’ is referred to as “sensitivity”. However, 

“sensitivity” refers to the “true positive” or “hit” rate in the medical literature. We will refrain 

from using the term in order to avoid confusion. Response bias was measured by the criterion 

value, C (C = (z(true positive rate) + z(false positive rate))/-2). A negative criterion means that the 
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observer was more likely to label the item as abnormal while a positive criterion means that 

observer was more likely to label the item as normal.  

Receiver operating characteristic curves (ROC) were constructed by repeating this division of 

trials into proportions of true positive (hits) and false positive (false alarms) using different 

normal/abnormal rating cut-offs (here, 1 to 99). The area under the curve (AUC) of an ROC, 

ranging from 0.0 to 1.0, represents the probability that a randomly chosen abnormal case will be 

rated higher than a randomly chosen normal case (Hanley & McNeil, 1982). Chance performance 

yields an AUC of 0.5. Higher AUCs indicate better performance in detecting the signal of 

cancerous abnormalities.”  

Additionally, a technique for averaging ROCs from multi-reader, multi-case datasets was used to 

calculate an average ROC for visualization purposes (W. Chen & Samuelson, 2014). D' and 

criterion were derived using a rating cut-off of 50, as this is the middle point of the rating scale. 

AUCs were calculated across the entire rating scale and were calculated using the sklearn.metrics 

auc function in Python. These performance measures were calculated per participant for each of 

the filter conditions and mammogram category (obvious, subtle, and prior) combinations. Pre-

processing into signal detection measures was performed in Python 3 using the following 

packages: json, scipy.stats, numpy, glob, sklearn.metrics auc, and csv. Next, statistical analysis 

was performed using SPSS 28.0.0.0 (190) for the univariate analysis of variance. For the primary 

analysis using linear mixed models, we used R version 4.1.3 in RStudio, and the following 

packages: tidyverse, lme4, sjPlot, rstatix, ggpubr, and emmeans. Additionally, boxplot figures 

were created using ggplot’s geom_boxplot function. These boxplots follow the standard 

arrangement, except for the whiskers, which contain 1.58 times the inter-quartile range, which is 

approximately equivalent to the 95% confidence interval of the data (McGill, Tukey, & Larsen, 

1978). 

Firstly, univariate analysis of variance was performed to determine if there was any between-

subjects difference in performance between the in-person and online groups of participants, 

using group as fixed factor, adding number of cases read as a covariate as previous research has 

shown a clear positive correlation between cases read and gist performance (Evans et al., 2019). 

As no main effect of group was found, the two groups could be merged into one dataset. 

The primary goal of this study was to investigate the effects of each high-pass filter on 

performance per image type relative to the unfiltered condition, for which a linear mixed model 

was used. The model was run separately for D’, criterion, and AUC, each with the factors 

Category (3 levels: Obvious, Subtle, Prior), and Frequency (5 levels: F0, F0.5, F1, F1.5, and F2), an 

Interaction factor between Category and Frequency, and a random intercept factor for 
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participant ID to model individual differences. Akaike Information Criterion (AIC) (Akaike, 1974) 

was used to estimate the goodness-of-fit including a penalty for the number of parameters 

included in the model, where a smaller AIC represents a better fit. 

To investigate whether the category, frequency, and interaction factor contributed significantly 

to the fit of the mixed model, the full model was compared to a trimmed model in which one of 

these factors was removed. This was analysed using a log likelihood ratio test with the analysis of 

variance (ANOVA) function in R. If the full model was significantly better than the trimmed 

model, this provided evidence that this factor contributes significantly. For each factor that 

contributed significantly, post-hoc comparisons of the model estimates were used to investigate 

which specific levels of the factors differed from each other. These comparisons used Tukey 

corrections for multiple comparisons and Kenward-roger’s degrees-of-freedom method. 

3.5. Results 

Overall performance 

Overall performance was above chance, replicating previous findings: Average D’ was above 0 

and the AUC was above 0.5. Criterion values above 0 show that participants were biased towards 

conservative ratings. Estimated means from mixed models illustrate how these estimates follow 

the same patterns as the real data (Table 1). Performance was above chance for most 

participants across filter conditions for obvious and subtle abnormalities, shown by individual 

ROC curves above the chance line (Fig 2). However, for priors, performance was markedly lower 

or at chance for some participants in some filter conditions. Overall, participants could extract 

the gist of abnormality across all filter conditions but regularly struggled with prior cases, which 

will be further explored in the mixed models. 

Table 3.1: Group average and mixed model estimated mean of D’, criterion, and AUC for 

unfiltered mammograms and each high-pass filter frequency. 

FREQUENCY D’ AUC CRITERION 

 Average Estimated Average Estimated Average Estimated 

F0 0.685 0.715 0.645 0.640 0.193 0.184 

F0.5 0.937 0.897 0.657 0.665 0.469 0.27 
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F1 0.390 0.297 0.557 0.551 0.538 0.514 

F1.5 0.666 0.708 0.611 0.617 0.790 0.879 

F2 0.277 0.318 0.562 0.542 0.301 0.664 

 

 

Figure 3.2: ROC curves per image category. Average and individual (dotted) ROCs per frequency 

condition (0, 0.5, 1, 1.5, and 2 cpd) for each abnormal mammogram category (obvious, subtle, 

and prior). The black dashed line represents chance levels, with anything above it being above 

chance. 

Univariate analysis of variance showed no significant effect of group (in-person/online) on D’ for 

unfiltered mammograms when accounting for number of cases read in the previous year 

(covariate) (corrected model F(2,31)=2.198, p=.128). This supports the decision to combine the 

data from the two groups for the main analyses. 

Factors influencing D’ performance measure 

For D’, linear mixed model analysis showed evidence for significant contributions of Category, 

Frequency, and an Interaction (intercept: 1.264, random effect of ID:0.071, AIC: 406.62). An 

ANOVA comparing log-likelihoods of the full model to one without the category factor showed a 

significant contribution of category to the model fit (χ2(2)=127.14, p=<.001). Similarly, frequency 

contributed significantly to the model fit (χ2(4)=43.514, p=<.001), as did the interaction factor 

(χ2(8)=51.655, p=<.001). 

Pair-wise comparisons were performed for frequency (Fig 3A), and mammogram category (Fig 

3B). Based on these comparisons, specific interaction effects were reviewed, comparing the 

unaltered mammograms to the 0.5 and 1.5 cpd high-pass filters that showed no significant 

difference in overall D’. For priors, D’ was significantly higher for F0.5 (estimated 
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difference=0.646, t(263)=5.566, p=<.001) and F1.5 (estimated difference=0.499, t(268)=3.443, 

p=.006) than unfiltered (F0) mammograms. Meanwhile, there was no significant difference in D’ 

between F0 and F0.5 for obvious (estimated difference=0.091, t(264)=0.781, p=.936) or subtle 

(estimated difference=0.011, t(263)=0.098, p=1.000) mammograms. For F0 versus F1.5, there 

was no difference in D’ for obvious mammograms (estimated difference=0.068, t(268)=10.467, 

p=.990), but F1.5 reduced D’ for subtle mammograms (estimated difference=0.453, t(268)= 

3.128, p=.017). The same pattern of results was observed for AUC (appendix A). 

 

 

Figure 3.3: Boxplots of D’ across conditions. Each boxplot shows the median as the line within the 

coloured box containing the 25th and 75th percentiles, with extending whiskers containing the 95% 

CI, with any outliers plotted as dots. Significance of pairwise comparisons is indicated in the figure 

with *=p<.05, **=p<.01,***=p<.001. (A) Boxplots showing D’ across frequency conditions (0, 0.5, 

1, 1.5, and 2 cpd). Pairwise comparisons of frequency showed that D’ was significantly higher for 

F0 than F1 (estimated difference=0.482, t(271)=6.080, p=<.0001) and F2 (estimated 

difference=0.397, t(282)=4.502, p=<.0001), but did not differ significantly from F0.5 (estimated 
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difference=-0.181, t(273)=-2.637, p=.067), and F1.5 (estimated difference=0.007, t(282)=0.083, 

p=1.000) –and even trended towards a higher D’ in F0.5. (B) Boxplots showing D’ for each 

mammogram category (obvious, subtle, and prior) and frequency, to illustrate mammogram 

category and interaction effects. Pairwise comparisons of mammogram category showed that D’ 

was significantly higher for obvious than subtle (estimated difference=0.462, t(258)=7.278, 

p=<.0001) and prior mammograms (estimated difference=0.683, t(258)=10.763, p=<.0001), and 

higher for subtle than prior mammograms (estimated difference=0.221, t(258)=3.485, p=<.001).  

Factors influencing the bias in rating measure 

For criterion, linear mixed model analysis showed evidence of significant contributions of 

Category, Frequency, and an Interaction (intercept:-0.108, random effect of ID: 0.323, 

AIC:356.35). An ANOVA comparing log-likelihoods of the full model to one without category 

showed a significant contribution of category to model fit (χ2(2)=48.458, p=<.001). Similarly, 

frequency (χ2(4)=53.488, p=<.001) and the interaction effect (χ2(8)=16.563, p=.035) contributed 

significantly to the model fit. Pairwise comparisons of main effects can be observed in Fig 4, 

showing that participants became more conservative for all filter conditions except F0.5. 
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Figure 3.4: Boxplots of criterion across conditions. Each boxplot shows the median as the line 

within the coloured box containing the 25th and 75th percentiles, with extending whiskers 

containing the 95% CI, with any outliers plotted as dots. Significance of pairwise comparisons of 

main effects is indicated in the figure with *=p<.05, **=p<.01,***=p<.001. (A) Criterion across 

frequency conditions (0, 0.5, 1, 1.5, and 2 cpd). Pairwise comparisons of frequency showed that 

criterion was significantly higher for F0 than F1 (estimated difference=-0.3295, t(261)=-5.640, 

p=<.0001), F1.5 (estimated difference=-0.695, t(264)=-9.176, p<.0001), and F2 (estimated 

difference=-0.480, t(264)=-6.329, p=<.0001), but did not differ significantly from F0.5 (estimated 

difference=-0.086, t(261)=-1.477, p=.579). (B) Criterion for each mammogram category (obvious, 

subtle, and prior) and frequency, to illustrate mammogram category and interaction effects. 

Pairwise comparisons of mammogram category showed that criterion was significantly lower 

(less conservative) for obvious than subtle (estimated difference=-0.232, t(258)=-4.345, p=<.0001) 

and prior mammograms (estimated difference=-.347, t(258)=-6.517, p=<.0001), but did not differ 

significantly between subtle and prior mammograms (estimated difference=-.116, t(258)=-2.172, 

p=.078). 
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3.6. Discussion 

D’ and AUC mixed model findings demonstrate that F0.5 and F1.5 high-pass filters significantly 

increased gist extraction performance in mammograms acquired years prior to onset on any 

visible cancerous lesions: D’ was boosted by 0.646 for F0.5 and by 0.499 for F1.5 respectively, a 

considerable increase. Additionally, 0.5 cpd high-pass filters did not impact radiologists’ 

performance on obvious or subtle mammograms. This strongly suggests that removing the 

lowest frequencies in mammograms can enhance the gist of abnormality for current presence or 

future risk of cancer in cases that do not yet show any visibly actionable signs of cancer, while 

retaining the signal of current abnormalities.  

Radiologists rated mammograms that maintained only frequencies over 1, 1.5 and 2 cpd more 

conservatively compared to those with frequencies above 0.5 cpd or those with full spectrum. 

Thus, filtering out spatial frequencies below 0.5 cpd would be the most suitable, as it did not 

significantly affect observer’s decision criterion, retained performance for obvious and subtle 

mammograms, and enhanced it for priors. Gist ratings for these high-pass filtered mammograms 

could be used to flag missed current cancers for a second opinion and for enhanced screening 

when no abnormalities are found. 

Out of the tested filter conditions, two (F0.5 and F1.5) showed retained overall performance and 

increased performance on priors. However, the other two filter conditions (F1 and F2) showed an 

overall drop in performance without increasing performance for any sub-types. This pattern 

could be explained by different effects influencing performance. Firstly, frequencies below 0.5 

cpd might mask gist signals, especially in priors, resulting in an increase in performance when a 

F0.5 filter is applied, perhaps because this removes widespread ‘blur” from breast density. While 

breast density can be a risk factor for breast cancer, previous research found no correlation 

between BIRAD density and gist of abnormality ratings (Evans, Birdwell, et al., 2013; Evans et al., 

2019; Evans, Georgian-Smith, et al., 2013; Evans et al., 2016). Secondly, intermediate frequencies 

between F0.5 and F1 might include some important aspects of the gist signal, causing a 

significant drop in performance when filtering below F1. Thirdly, increased performance on priors 

with a slight decrease for subtle abnormalities when removing signal between F1 and F1.5 

suggests that this frequency band contain some gist signal, but also contributes noise that might 

obscure global signals of (future) cancer. Lastly, reduced performance when spatial frequencies 

below 2 cpd are removed from mammograms points to the importance of F1.5 – F2 cpd for the 

gist signal. Together, these findings suggest the gist of abnormality is contained mainly in 0.5 to 1 

cpd and 1.5 to 2 cpd spatial frequencies, with a mix of signal and noise in 1 to 1.5 cpd. Further 

research would be needed to test these predictions in detail. 
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The combined effect of high-pass filtering and contrast normalization in increasing the 

performance of radiologists matches previous findings in both behavioural and neuroimaging 

work on spatial frequency. Our results match the previous observation that low-pass filtering 

strongly reduced gist of abnormality performance, while high-pass filtering without contrast 

normalization had a much less pronounced effect (Evans et al., 2016). Similarly, in scenes gist 

performance on HSF scenes was reduced without contrast normalization, but contrast 

normalization equalized performance between LSF and HSF scene images (Perfetto et al., 2020). 

Our findings match this retention of overall performance with HSF with contrast normalization, 

combined with a novel enhancement of global abnormality signals in priors. 

What is more, recent neuroimaging work shows that many scene-selective areas respond 

preferentially to HSF rather than LSF. Activity in the parahippocampal place area (PPA) was higher 

for HSF than LSF checkerboards, scenes, and faces (Rajimehr et al., 2011). Similarly, contrast-

equalized HSF scenes activated the PPA and the occipital place area (OPA) more than LSF 

equivalents, although there was no difference in the retrosplenial cortex (RSC) (Kauffmann et al., 

2015). Going beyond simple levels of activation, computational models can decode scene 

categories from BOLD signals in the PPA, RSC, and lateral occipital complex (LOC) of viewing 

photographs and line drawings (=HSF) (Walther et al., 2011). Similarly, scene category could be 

decoded from HSF photographs viewed for 800 ms in the PPA, RSC, LOC, and OPA, while LSF 

photographs could only be decoded in the posterior PPA (Berman et al., 2017). This increased 

activation and decoding in response to HSF demonstrate the important role of HSF’s contours 

and edges in rapid scene category processing. This fits with our behavioural findings of 

importance for HSF for mammogram-category extraction. There might be a similar role for HSF in 

both scene and medical abnormality gist extraction, again strengthening our belief that 

mammogram perception closely resembles scene perception. 

Our filtering protocol included a brightness increase and contrast normalization. This method 

made the fine detail more visible in the filtered mammograms. A minor disadvantage is that this 

makes the data less informative for understanding the role of high spatial frequencies in 

conventional mammograms, as boosted brightness increased the weight given to the high 

frequency information. However, these stimuli remain ecologically valid, as no mammogram is 

‘unaltered’. X-ray methodology creates a 2D representation of 3D tissue density, and the visibility 

of specific tissues depends on the specific machine, settings, image processing used (Cole et al., 

2005), and even the practitioners’ preferential compression force (Mercer, Hogg, Szczepura, & 

Denton, 2013). What’s more, programs used for viewing medical cases often contain options to 

change the contrast or brightness. Thus, a brightness increase would not make the mammogram 
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more or less ‘naturalistic’, it simply increased the chance of finding high-pass filters that 

enhanced detection rates, which was the main objective of this study.  

Future research could focus on more fine-tuned enhancements by delving into the role of specific 

spatial frequency bands using bandpass or bandstop filters, which combined low- and high-pass 

filters to selectively retain or filter out a small band of frequencies. This would allow for more 

controlled adjustment of frequency content and could help identify the exact combination of 

spatial frequencies that contain the gist of abnormality. This could for example be used to filter 

out F0 – F0.5 and F1-F1.5 to investigate whether this combination further enhances the gist 

signal. 

It might also be worth considering whether these, or similar image enhancements have the same 

effects on different domains of medical imaging. Previous research has shown that a gist of 

abnormality signal is also detectable in various other imaging modalities, such as digital breast 

tomosynthesis (C. C. Wu et al., 2019), chest radiographs (Carmody, Nodine, & Kundel, 1981; 

Kundel & Nodine, 1975), and even pap test images (micrographs) of cervical cells (Evans, 

Georgian-Smith, et al., 2013). It is possible that a similar high-pass filter would increase the 

signals of abnormality in other medical images as well, especially for radiographs, but it is also 

conceivable that different tissues are differentially affected by the development of a cancerous 

abnormality and would require different spatial frequency filtering to enhance their gist of 

abnormality signals. By comparing effects on different imaging modalities future studies could 

investigate the best image enhancements for each, which could in addition give insight into the 

(dis)similarities in gist signal content between modalities. 

3.7. Conclusion 

In conclusion, we have shown that certain high-pass filters (F0.5 and F1.5 cpd) combined with 

brightness boosting and contrast normalization can retain overall performance while boosting 

the gist of abnormality signal in mammograms at future cancer risk. Especially the 0.5 cpd high-

pass filter seemed promising in boosting the signal in priors, without reducing the signal in 

mammograms with obvious or subtle signs of cancer in mammograms, nor making the 

radiologists more conservative in their decisions. Future research could investigate the effects of 

image enhancements on additional medical imaging modalities, to explore whether these 

findings hold true across imaging types. Additionally, future experiments should use bandpass or 

bandstop filtering to selectively retain or remove spatial frequencies to further investigate the 

role of specific spatial frequency bands in mammograms. The approach could be used to inform 

about more subtle enhancements that could potentially further boost the gist signal allowing for 

even earlier cancer detection. Overall, our findings provide initial evidence for a viable solution to 
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enhance the gist of abnormality in mammograms to use as a risk factor in the clinical toolbox for 

radiologists. 
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Pair-wise comparisons were performed for the frequency (Fig 4A), as well as mammogram 

category factors (Fig 5). Again, interaction effects were reviewed with a special focus on the F0.5 

and F1.5 groups that showed no significant difference in overall AUC compared to F0. These 

comparisons showed that AUC for prior mammograms was significantly higher for F0.5 

(estimated difference=0.134, t(264)=5.844, p=<.001) and F1.5 (estimated difference=0.110, 

t(270)=3.843, p=<.001) than the unfiltered F0 group. Meanwhile, there was no significant 

difference in AUC between F0 and F0.5 for obvious (estimated difference=0.036, t(264)=1.568, 

p=.519) or subtle (estimated difference=0.024, t(264)=1.033, p=.840) mammograms. On the 

other hand, for F0 versus F1.5, there was no difference in AUC for obvious mammograms 

(estimated difference=0.055, t(270)=1.931, p=.303), but there was a reduction in AUC for subtle 

mammograms at F1.5 (estimated difference=0.122, t(270)=4.292, p=<.001). These interactions 

can also be observed in Fig 5. 

 

Figure 3.5. Boxplots of AUC across conditions. Each boxplot shows the median as the line within 

the coloured box containing the 25th and 75th percentiles, with extending whiskers containing the 

95% CI, with any outliers plotted as dots. Significance of pairwise comparisons is indicated in the 
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figure with *=p<.05, **=p<.01,***=p<.001. (A) Boxplots showing AUC across frequency conditions 

(0, 0.5, 1, 1.5, and 2 cpd). Pairwise comparisons of frequency showed that AUC was significantly 

higher for F0 than F1 (estimated difference=0.089, t(273)=6.533, p=<.0001) and F2 (estimated 

difference=0.098, t(284)=5.647, p=<.0001), but did not differ significantly from F0.5 (estimated 

difference=-0.025, t(273)=-1.827, p=.360) and F1.5 (estimated difference=0.023, t(284)=1.306, 

p=.688). (B) Boxplots showing AUC for each mammogram category (obvious, subtle, and prior) 

and frequency, to illustrate mammogram category and interaction effects. Pairwise comparisons 

of mammogram category showed that D’ was significantly higher obvious than subtle (estimated 

difference=0.089, t(258)=7.058, p=<.0001) and prior mammograms (estimated difference=0.156, 

t(258)=12.368, p=<.0001), and higher for subtle than prior mammograms (estimated 

difference=0.068, t(258)=5.310, p=<.001). 

3.11: Commentary: Image processing 

The main aim of this study was to find ways to boost the gist of medical abnormality, which was 

successfully achieved with the combination of image enhancements utilized. As described in the 

materials & methods, the high pass filters in this study were followed by a 3.5x brightness 

increase and then contrast normalisation with the unfiltered mammograms. The brightness 

increase improved the visibility of the high spatial frequencies, as the high-pass filtered images 

had low brightness after the high-pass filters were applied. This drop in brightness was caused by 

removing the 0 Hz frequency that consists of the average brightness of an image, as well as 

removing the brightness contained in lower frequencies. The latter is comparable to natural 

images, in which the low frequencies also contain more contrast energy than the high ones, 

following an inverse power law (Perfetto et al., 2020). 

The brightness increase factor was sufficient to brighten the images without reaching ceiling 

levels: across all mammograms, less than 0.25% of the pixels that were increased in brightness 

were capped at a ceiling level of brightness (255) for the lowest filter level of F0.5, with this 

proportion decreasing further with increasing filter levels. Additionally, the images were contrast 

normalised with the unfiltered images afterwards, meaning that there were no differences in 

overall contrast energy of the stimuli used in the experiment.  
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Chapter 4: Future studies using bandstop filters to selectively 

remove specific frequency bands likely will not need to use 

brightness boosting, as they would not remove 0 Hz. These 

bandstop filters could be helpful in further isolating the role of 

specific frequencies in carrying or masking the gist of medical 

abnormality. Using global feedback to induce learning of gist of 

abnormality in mammograms 

Chapter 4 was published as Raat, E. M., Kyle-Davidson, C., & Evans, K. K. (2023). Using global 

feedback to induce learning of gist of abnormality in mammograms in Cognitive Research: 

Principles and Implications, 8(1), 1-22. This version of the article has been accepted for 

publication after peer review but is not the Version of Record and does not reflect post-

acceptance improvements. It also has edited headers and figure numbers to fit with the thesis 

format. The Version of Record is available online at: doi.org/10.1186/s41235-022-00457-8  
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4.2. Abstract 

Extraction of global structural regularities provides general ‘gist’ of our everyday visual 

environment as it does the gist of abnormality for medical experts reviewing medical images. We 

investigated whether naïve observers could learn this gist of medical abnormality. Fifteen 

participants completed nine adaptive training sessions viewing four categories of unilateral 

mammograms: normal, obvious-abnormal, subtle-abnormal, and global signals of abnormality 

(mammograms with no visible lesions but from breasts contralateral to or years prior to 

development of cancer) and receiving only categorical feedback. Performance was tested pre-

training, post-training, and after week’s retention on 200 mammograms viewed for 500 ms 

without feedback. Performance measured as d’ was modulated by mammogram category, with 

highest performance for mammograms with visible lesions. Post-training, twelve observed 

showed increased d’ for all mammogram categories but a sub-set of nine, labelled learners also 

showed a positive correlation of d’ across training. Critically, learners learned to detect 

abnormality in mammograms with only the global signals, but improvements were poorly 

retained. A state-of-the-art breast cancer classifier detected mammograms with lesions but 

struggled to detect cancer in mammograms with the global signal of abnormality. Gist of 

abnormality can be learned through perceptual/incidental learning in mammograms both with 

and without visible lesions, subject to individual differences. Poor retention suggests perceptual 

tuning to gist needs maintenance, converging with findings that radiologists’ gist performance 

correlates with number of cases reviewed per year, not years of experience. The human visual 

system can tune itself to complex global signals not easily captured by current Deep Neural 

Networks. 

Key words: gist of abnormality, gist extraction, medical image perception, medical expertise, 

medical imaging, perceptual learning, implicit learning, statistical learning, deep neural network 
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4.3. Significance statement 

Breast screening plays a vital role in early diagnosis of breast cancers, which is essential for 

improving patient outcomes. Correct interpretation of mammograms relies on both medical 

knowledge and perceptual expertise. Perceptual expertise is thought to increase effectiveness of 

gist extraction: the ability to recognise global properties of an image after brief exposure. Indeed, 

expert radiologists can detect a global ‘gist of abnormality’ from mammograms after just 250 

milliseconds with above chance accuracy, even when no visible lesions are present, for example 

in breasts contralateral to breast with cancer, or breasts that will develop cancer in the nearby 

future (Evans et al, 2016, 2019). This suggests that the gist of abnormality could be of clinical use 

as a risk factor. However, gist extraction performance varies between radiologists, correlating 

with number of mammograms screened within a year, suggesting an important role of 

perceptual exposure. How human observers develop the ability to extract the gist of a new 

categories is unknown. Understanding the development of perceptual expertise for gist 

extraction could be leveraged to enhance training of radiology residents and could be used to 

train perceptual experts for the purpose triage or evaluating risk assessment. The current work 

provides a proof-of-concept training paradigm that was able to induce the learning of the gist of 

abnormality in naïve observers without any medical training, using perceptual exposure and 

global feedback. Our findings support the idea that gist extraction abilities can develop separately 

from medical knowledge and can be developed through simple, perceptual training paradigms.  

4.4. Introduction 

Medical experts often report having a gut feeling about the state of a radiograph when 

briefly looking at certain medical imaging cases, where they get the impression that something 

might be wrong but are not able to pinpoint the exact image elements that made them feel that 

way. These anecdotes suggest medical experts might rapidly access first impressions of 

abnormality. However, there is more than just anecdotal evidence for this notion: it is also 

supported by human observer studies, which have shown that radiologists are able to 

discriminate between normal and abnormal medical images with above-chance accuracy within 

200-500 ms for chest radiographs (Kundel & Nodine, 1975), pathology images, or mammograms 

(Evans, Georgian-Smith, et al., 2013), the latter of which will be the focus of the current study. 

Thus, medical experts indeed possess the perceptual ability to rapidly extract a signal that 

indicates abnormality from images in their field of expertise.  

This shows an incredible perceptive power, which is furthered by research demonstrating that 

the ability does not rely on the presence of a localizable signal like a lesion. Indeed, radiologists 

can recognise this gist of abnormality in patches of the abnormal mammogram that do not 

contain a lesion, or even from the breast contralateral to the abnormality (Evans et al., 2016), 
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both of which do not contain any localizable abnormalities. Even more striking, when normal 

mammograms from women who went on to develop cancer in the next two to three years were 

intermixed with normal and abnormal mammograms, they were rated as significantly more 

abnormal than the normal images (Patrick C. Brennan et al., 2018; Evans et al., 2019). Thus, the 

gist of abnormality signal can be detected without localizable abnormalities. For mammograms 

containing a single mass, it has been suggested that radiologists can sometimes access coarse 

location information (Carrigan et al., 2018), although this study did remove image artefacts and 

large calcifications from the breast tissue. Together, these findings point to a rapidly extracted 

global signal of image statistics that allows medical experts to detect whether the imaged tissue 

is normal or abnormal, which might provide access to coarse location information, but does not 

require local information to function. This description fits closely with the process of gist 

extraction that has been widely described in scene processing literature. 

Gist extraction is a perceptual process that allows observers to quickly retrieve the global 

meaning, or gist, of visual input. After as little as 20-30 ms, humans can accurately discriminate 

between man-made and natural environments, so-called superordinate categories (Joubert et al., 

2009), recognize forests, fields, rivers, and other basic scene categories (Greene & Oliva, 2009), 

or determine the presence or absence of broad categories such as animals (Bacon-Macé et al., 

2005) or vehicles (VanRullen & Thorpe, 2001). Indeed, there is a wide range of research showing 

that humans can extract surprisingly complex information from rapidly presented visual 

information, which fits closely with the observations in rapid medical image perception. 

The key characteristics of gist extraction are that it occurs rapidly, globally (across the whole 

image) with loss of specific local information and does not require focused attention. Instead, it 

occurs without prior location of items and in a non-selective manner. For example, gist can be 

extracted from scenes in the periphery in parallel with a demanding foveal letter discrimination 

task (F. F. Li et al., 2003) or from two, or even four scenes in parallel with minimal drops in 

performance (Rousselet et al., 2004) or scenes presented in medium to far periphery (Boucart et 

al., 2013; Larson & Loschky, 2009), clearly showcasing the global and non-selective nature of the 

process. In addition, gist extraction does not require prior configuration of the visual system: it 

occurs when monitoring for multiple cue categories simultaneously (Evans, Horowitz, et al., 

2011), or even when the target category is post-cued after a rapid serial visual presentation 

(Evans, Horowitz, et al., 2011; Potter et al., 2014). However, it also means that information about 

locations of specific elements that make up the scene is not consciously accessible (Evans & 

Treisman, 2005). Overall, scene gist extraction clearly occurs rapidly, globally, and without the 

need of focused attention or pre-selection, which fits closely with the observations of what we 

will refer to as the gist of (medical) abnormality. 
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But which signals are extracted by this global, rapid process to contribute to the formation of our 

gist understanding? As every image is built up from spatial frequencies at various orientations, 

shared categorical regularities between a gist category might be captured in similarities in spatial 

structural regularities, as described by Portilla and Simoncelli (2000)’s statistics. The statistic they 

define are extracted using spatial filters of specific sizes and orientations and are applied to noise 

to create an artificial ‘metamer’, that contains the same spatial structural regularities, but no 

recognizable objects. Such a metamer is indistinguishable from the original in two alternative 

forced choice task (2-AFC) at 200 ms viewing time (Freeman & Simoncelli, 2011), suggesting that 

spatial structural regularities capture essential aspects of scenes that are accessed during gist 

extraction. The idea of a statistical signature of an image fits with the Efficient Coding Hypothesis 

(Simoncelli, 2003), as reducing an image to its spatial structural regularities would allow efficient 

encoding of its essential information. Mammogram content is even more closely related to its 

spatial frequency content than scene images, due to most of the content being textural. For 

example, previous research has shown that low-pass filtering strongly reduced gist extraction, 

while high-pass filtered mammograms retained most gist information (Evans et al., 2016). Spatial 

structural regularities might be more similar between images from the same category and thus 

allow for flexible perceptual rules for gist categorization. 

Oliva and Torralba (2001) further explained these spatial structural regularities with a focus on 

human perception through gist descriptors, which similarly captured spatial frequency patterns 

on a global spatial scale, the global spatial envelope. Gist descriptors can be represented as 

scores on scales such as expansiveness and openness. Patterns in these feature scores have been 

shown to be more similar within than between scene categories. Additionally, false alarms made 

by observers could often be predicted by similarities in gist predictors (Greene & Oliva, 2009). 

This supports the idea that shared patterns of frequencies and textures could play an important 

role in the flexible, yet reliable gist categorization of scenes, which could reasonably be extended 

to mammograms. 

To allow for its non-selective and global nature, gist extraction must be highly flexible, especially 

as it must generalize across a wide range of exemplars that all fall under one gist category. For 

example, we can recognise the gist category of a scene environment in a variety of conditions, 

such as viewing angles, lighting, and specific objects (figure 1A, 1B), and the same applies to 

mammograms, as these can also vary widely in their appearance, size, shape, density, and 

texture (Fig. 1C, 1D). However, previous experience influences our ability to extract gist 

accurately, as human observers performed considerably worse on scene gist extraction for 

photographs from aerial compared to terrestrial viewpoints (Loschky, Ringer, Ellis, & Hansen, 

2015). Thus, our brain might develop a set of general perceptual rules of expected spatial 
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regularities for each gist category, based on previous experience, that are flexible enough to 

generalize across variations, but specific enough to allow it to distinguish a beach from a river, or 

a normal from an abnormal mammogram.  

 

Figure 4.1: Scene exemplars for beaches (A) and playgrounds (B) that illustrate the variation in 

viewing angle, lightning, configuration, and specific objects. Mammogram exemplars containing 

subtle abnormalities (C) or no abnormalities (D) illustrating the variation in shape, size, and 

textural patterns. 

However, it is not yet known how people acquire these sets of expectations or sensitivity 

to emergent statistics needed to extract the gist of novel categories, whether that is a natural 

scene category, or a more abstract categorisation of a medical image. Since the learning of 
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natural scene categories happens during normal development, this learning must be able to 

occur under natural viewing conditions and should not rely on detailed feedback that explicitly 

explains which features make the scene a beach. Rather, the learning would be expected to 

reliably occur with broad feedback consisting of just categorical information (‘We are at a 

beach’). This learning would be in line with the principles of statistical learning, the process 

through which humans can extract naturally occurring statistical patterns in space and/or time 

(Turk-Browne et al., 2005).  

Indeed, statistical learning leads observers to recognise temporal or spatial statistical regularities 

and patterns in auditory or visual stimuli after a multitude of exposures without explicit 

instructions on what to learn (Turk-Browne, 2012). For example, passively viewing a stream of 

symbols produced strong familiarity feeling for viewed patterns (Fiser & Aslin, 2002a). 

Interestingly, children as young as 9-months old pay more attention to arrays containing 

previously seen shape arrangements than new arrangements (Fiser & Aslin, 2002b), suggesting 

that statistical learning takes place from early on in our development. While the previous 

examples used simple shapes, statistical learning also extends to more complex stimuli, such as 

scene images. Observers report more familiarity to scene sequences, such as a kitchen followed 

by a forest, that were previously seen in a visual stream (300 ms each) without being instructed 

to pay attention to the order of scene categories (Brady & Oliva, 2007).  

Statistical learning is often investigated in the context of temporally separated stimuli, but like 

previously stated, it also occurs over spatial regularities, which would form the basis for gist 

category learning. Indeed, observers become familiar with the configurations of complex objects 

in a grid through repeated exposure (Fiser & Aslin, 2001), and they can decrease their reaction 

time in a search task due to repeated configurations of distractor arrays without recognition of 

repeated arrays occurring (Chun & Jiang, 1998), as they implicitly learn to recognise the 

regularities in contextual cues, or in other words, invariant visual properties, allowing them to 

interact with the environment more efficiently (Chun, 2000). Similarly, someone might learn to 

recognise the invariant global properties of a forest, beach, or even an abnormal mammogram 

through statistical learning of spatial regularities. Statistical learning with global feedback allowed 

observers to recognise camouflaged objects by learning the general statistics of the background 

(X. Chen & Hegdé, 2012). Thus, in our definition of statistical, implicit learning, no assumptions 

are made about the unconscious nature of the learning or complete lack of awareness of learned 

patterns, but only that it consists of learning through repeated exposure without explicit 

instructions or feedback on which features or patterns to extract. We expect that statistical 

learning through repeated perceptual exposure to novel categories and their group labels would 

allow observers to acquire the gist of a new category. 
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To investigate the learning of gist signals, a category is needed in which observers can be trained 

to improve. Previous training research has shown that the speed of gist extraction from natural 

scenes is already optimized and at ceiling levels, as extensive training across 15 days did not 

significantly speed up reaction time of a 2-AFC animal absent/present task (Fabre-Thorpe, 

Delorme, Marlot, & Thorpe, 2001). While accuracy increased slightly and average reaction time 

decreased slightly for familiarized stimuli, this did not transfer to new stimuli, and was mostly 

driven by an increase in speed/accuracy for the most difficult familiarized targets with RTs above 

400 ms. Thus, the processes underlying gist extraction for scenes of categories are already highly 

efficient in adults, and do not seem to be able to be further compressed or enhanced. Thus, 

scenes cannot be used to investigate the processes involved in the learning of a new category of 

gist. However, it does underline the fact that scene categories must be deeply familiar to the 

average human observer, which would only be possible if the global gist is learned through the 

rare instances of explicit feedback (‘these exact features make this a beach/forest/mountain’) or, 

as we hypothesize, is largely learned through the frequent global feedback moments we 

encounter in daily life (‘you are in a forest’). Interestingly, expertise within a specific object 

category, such as cars, will increase the ability to rapidly detect scenes containing that object 

category, but not others (e.g. humans), in a simultaneous presentation of two scenes (Reeder, 

Stein, & Peelen, 2016), adding support to the idea that expertise in a category might influence 

rapid detection of that category, similar to what is seen in medical experts.  

For the gist of medical abnormality, previous research has repeatedly shown that, as expected, 

naïve observers are unable to extract this signal (Evans, Georgian-Smith, et al., 2013; Raat et al., 

2021), showing that the general population is not familiar with this gist signal representing a 

medical abnormality. Interestingly, however, a recent study trained naïve observers to recognise 

obviously visibly abnormal mammograms (microcalcifications/breast mass) with above-chance 

accuracy after approximately 600 cases of training (Hegdé, 2020), showing that non-medically 

trained observers can develop the perceptual ability to recognise obvious abnormalities on free-

viewing tasks. This indicates that naïve observers can at the very least learn to recognise 

perceptual characteristics of lesions in mammograms a localized signal, which suggests they 

might also be able to be trained to recognize the gist signals of abnormality in the overall tissue. 

Thus, this study’s aims are twofold: to investigate whether/how people can learn the 

categorisation of a new gist signal (medical abnormality), and to explore which perceptual 

features in mammograms might drive this gist signal. We will evaluate whether naïve observers 

can learn to rapidly recognise the gist of a new category after repeated perceptual exposure 

through training with global feedback, and if this learning is retained after the end of training. 

Global feedback is defined as the ground truth of the trial, without additional instructions on 
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location of abnormalities or potential features that might indicate the ground truth. In other 

words, the task and label are both made explicit, but since no further guidance on which content 

to use is provided, only implicit/statistical learning can be used. Since gist of abnormality is a 

global signal, learning to recognise the gist of abnormality should improve performance on not 

only mammograms with visible abnormalities, but also on mammograms with only global signals 

of abnormality, such as contralateral mammograms or those taken prior to the development of 

localizable cancer, similar to the ability of trained medical experts (Patrick C. Brennan et al., 2018; 

Evans et al., 2019; Evans et al., 2016). Based on the framework of gist development, and the 

previous findings of Hegdé (2020), training is expected to induce learning of the gist of medical 

abnormality, and this is expected to improve performance for mammograms with and without 

local abnormalities. 

As an extension to the training findings, we will also evaluate the performance of a state-of-the-

art machine learning model on the same images and compare it to human perception. Human 

statistical, implicit learning shares key similarities with the concept of deep learning, a 

computational method where each decision is compared to feedback of a simple label, inducing 

learning through backpropagation of the error between the decision and ground truth, which can 

lead to tuning towards statistical regularities in the input (Voulodimos, Doulamis, Doulamis, & 

Protopapadakis, 2018). Both describe conceptually similar processes that could underlie learning 

without explicit rules or instructions. As one type of computational modelling, deep learning, was 

developed based on observed brain architecture and processing (Voulodimos et al., 2018). Deep 

learning models can capture complex visual patterns, allowing for object (Ouyang et al., 2016; 

Simonyan & Zisserman, 2014) and facial recognition (Taigman, Yang, Ranzato, & Wolf, 2014).  

By comparing human and machine performance on specific images, we can learn more about 

whether these models capture the same image features that humans might be using – which in 

turn can be informative for human perception. The single breast classifier (SBC) version of N. Wu 

et al. (2019) deep neural network (DNN) for breast cancer screening predicts probability of both 

benign and malignant abnormalities for individual unilateral mammograms, and reaches a high 

performance (AUC malignant: 0.84-0.90, AUC benign: 0.74-0.76) on detecting visible 

abnormalities in a large screening dataset, which make it suitable for our purposes. We will use 

both the SBC and SBC heatmap (SBC+HM) version, which adds heatmaps generated via a 

secondary network which examines smaller pixel patches for their malignancy probability. These 

heatmaps provide additional scrutiny of local information that is expected to improve 

performance, while the SBC without heatmaps would be more equivalent to the global 

information used in gist extraction. Comparing the probability scores from both the SBC and 
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SBC+HM network to human rating scores will allow us to investigate whether they capture similar 

information used by human gist extraction of medical abnormality. 

4.5. Methods 

Participants  

19 adults without previous medical training or experience with viewing mammograms took part 

in this multi-session experiment, of which 4 withdrew their participation during the training 

phase. The remaining 15 participants were included in the final dataset (aged 20-38, average age 

23, 11 female) as they all passed the pre-determined exclusion criteria. Exclusion criteria were 

pre-defined in order to exclude participants if there was significant evidence to suggest 

inattention, defined as 1) having missed more than 30 out of 144 attention trials in total across 

the 9 training sessions, 2) having failed more than 6 out of 16 attention trials in one training 

session, or 3) having rated 85% or more of the trials as 50 in any testing session or more than 1 

training session. Attention trials which were randomly interspersed across different points in the 

training sessions, briefly showed an image of a beach or forest, which the participant was asked 

to categorize, a task that should be trivial if the screen was attended. 

Participants received a compensation of 50 pounds for their time (~5 pound per hour) after 

completing all 10 sessions and they receive a bonus payment of 10 pounds if they passed 95% or 

more of the attention checks, as an incentive for them to pay close attention to each trial. 

Participants all had normal or corrected-to-normal vision. All participants had completed at least 

their A-levels or equivalent. The sample size was based on the work by Hegdé (2020), which 

reported significant learning during an untimed mammography training experiment with 11 and 

14 general population participants in two separate experiments. 

Stimuli and apparatus 

The stimuli used in this experiment were 8-bit PNG images of four categories of anonymized 

unilateral mammograms in mediolateral oblique (MLO) or craniocaudal (CC) view: normal 

mammograms of healthy women (normal), mammograms with obvious cancerous abnormalities 

(obvious), mammograms with subtle cancerous abnormalities such as architectural distortions 

(subtle), mammograms without visibly actionable lesions that are thought to contain global 

features of abnormality (either contralateral to a breast with a cancerous abnormality 

(contralateral), or mammograms taken one to six years prior to visible actionable sign of 

abnormality appearing in a subsequent scan (priors)). The labels ‘obvious’ and ‘subtle’ were 

categorised as such by an experienced radiologist for the Complex Cognitive Processing 

Laboratory of the University of York. Further information about cancer type descriptors can be 

found in Appendix A. Contralateral and prior cases were combined into one category, as both 
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contain global signals of abnormality and lack any localizable lesions. The normal, obvious, subtle, 

and contralateral cases were sourced from the OPTIMAM database. The priors were sourced 

from the Complex Cognitive Processing Lab database in collaboration with Dr. Bradley of the York 

Hospital for this study. The majority of selected mammograms were acquired with Lorad Selenia 

(75.4%) and Selenia Dimensions (13.5%), with a smaller portion of mammograms acquired with 

Senographe Essential (8.9%) and the L30 (1.8%), and a minority taken by MammoDiagnost DR 

(0.3%) and Mammomat Novation DR (0.1%). All mammograms that are part of the Complex 

Cognitive Processing lab database of stimuli can be shared with other researchers upon 

reasonable request to the senior author (K.K. Evans), while the OPTIMAM database is also 

available for research purposes through an application process 

(https://medphys.royalsurrey.nhs.uk/omidb/getting-access/). 

The training set was composed of 5668 unilateral mammograms, consisting of 1558 normal, 1019 

obvious, 899 subtle, and 2192 global (1868 contralateral, 324 prior) images, so approximately 

72% of the available stimuli contained the gist of abnormality. This large dataset ensured that 

participants were trained on a wide range of mammograms and reduced the number of 

repetitions. Some repetitions occurred randomly across the 36 blocks, but never within a block: 

on average, normal mammograms were repeated 0.9 times, obvious, subtle, and contralateral 

mammograms were repeated <0.1 times, priors were repeated 2 times.  

The testing set consisted of 200 unilateral mammograms: 80 normal, 30 obvious, 30 subtle, 30 

contralateral, and 30 prior mammograms, meaning 60% of the stimuli contained gist of 

abnormality signals. The same images were used for each test session to equate the difficulty 

level across participants and testing phases, and these were not used during training phases. 

Previous research has shown very low recognition memory in both general population (d’ 

prime=.36) and radiologists (d’=.86) when tested on recognition directly after exposure to 72 

mammograms viewed for 3 seconds each (Evans, Cohen, et al., 2011). Since we use a larger 

number of mammograms shown for shorter durations and with longer inter-exposure intervals 

no significant memory effects were expected, especially since no feedback was given on the test 

cases.  

To further characterize the test cases, an experienced mammogram reading radiologist assessed 

each mammogram on radiological perceptual features. The following radiological features were 

rated: 1) four-point BI-RAD breast density scale (D’Orsi, Bassett, & Feig, 2018) as I) fatty, II) mixed 

but predominantly fatty, III) mixed but predominantly glandular, and IV) extremely dense), 2) 

breast pattern as normal or complex, and 3) level of concern/suspicion on a five-point scale from 

I) normal, II) benign, III) indeterminate, IV) suspicious, V) malignant. Chi-square tests of 

independence showed no significant association between density and image type (Χ2(12)=9.63, 

https://medphys.royalsurrey.nhs.uk/omidb/getting-access/).
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p=.648). Associations between image type and both breast pattern (Χ2(4)=11.50, p=.021) and 

level of concern (Χ2(16)=138.05 p<.001) underline that an experienced radiologist could detect 

radiological perceptual differences in our cases, but that these signals were not driven by density. 

Thus, simply becoming sensitive to the density of mammograms would not result in significant 

increases in performance. This is in line with previous studies, that also showed a lack of 

correlation between BIRAD density and gist of abnormality ratings (Evans, Birdwell, et al., 2013; 

Evans et al., 2019; Evans, Georgian-Smith, et al., 2013; Evans et al., 2016). 

The experiment took place on a computer or laptop screen, with the participant using a mouse 

and keyboard to submit rating responses. Since the experiment took place online, the exact 

apparatus varied between participants. However, physical stimulus size was equated by using a 

screen calibration method using either diagonal screen length or a credit-card size matching task 

inspired by the method proposed by Q. Li et al. (2020) to ensure the images were displayed as 

12.8 cm/5 inches high by 15.75 cm/6.2 inches wide across all sessions and participants. The 

experiment was accessed via a website optimized for Firefox and Chrome browsers, where 

participants could log in for each session according to the scheduling rules, using their unique 

user ID.  

Procedure 

This study used a multi-session within-subject repeated measures design. It consisted of a total of 

9 training phases and three testing phases completed across 10 sessions spread out over multiple 

days, as is summarized in the flowchart of Figure 2. Before the first session, each participant 

joined an individual video conferencing call via Zoom with the experimenter to guide them 

through the instructions and check for any questions or technical difficulties. During this 

conference call, the participants also watched a pre-recorded instruction video, explaining what a 

mammogram is and what the experiment task is, to ensure all participants received identical 

instructions. The first session started with a pre-training test phase to establish baseline of 

performance. After the pre-training baseline, participants immediately performed the first 

training phase, which was followed by 7 subsequent sessions consisting of training phase each, 

separated by at least 1 and at most 3 days each. The 9th session consisted of the last training 

phase and a subsequent post-training test phase to measure potential improvements in 

performance. The tenth and last session took place 7 to 10 days after the last training session and 

consisted of a retention test of performance. Participants scheduled their own sessions according 

to these scheduling rules but received regular reminder emails to inform them when their next 
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session was due. 

 

Figure 4.2: Overview of the experimental procedure and flow-chart schedule of the experiment. 

The screens show the presentation order within a training trial and the duration or button press 

to continue. Test trials always showed mammograms for 500 ms and omitted the feedback screen 

but were otherwise identical. The flow-chart schedule shows the order of experimental phases for 

each session, and the number of unilateral mammograms viewed per session. In the test phases, 

200 mammograms were viewed, while the training phases had 4 blocks with 180 mammograms 

each. Session 1 to 9 were separated by 1 to 3 days each, while session 10 was delayed by 7 to 10 

days after session 9. 

Both test and training trials followed a similar format (Fig. 2). They each consisted of a fixation 

cross (500 ms), the mammogram (500 ms or 500-2500 ms), a mask of the filled shape of the 

mammogram (500 ms), followed by a rating scale between 0 and 100 (self-paced). Participants 

were asked to give their decision by adjusting a curser on a rating scale that would indicate how 

sure they were that a unilateral mammogram was normal of abnormal. This rating was then used 

as a performance measure applying signal detection theory methodology. In the training trials, 

this was followed by a feedback screen (self-paced). Feedback was based on the rating decision 

and ground truth, e.g., if the ground truth was abnormal, ratings above 50 were counted as 

correct, and ratings of 50 or below were counted as incorrect. The feedback screen informed 

participants whether their submitted rating was correct or incorrect, and whether the ground 

truth for the trial was normal or abnormal. The colour of the text was green for correct and red 

for incorrect ratings. Participants received no feedback during the test phases.  

Each test phase consisted of 203 trials: 3 practice trials with feedback to familiarize them with 

the task, then 200 test trials showing the pre-selected test set in a randomized order. The test set 

consisted of 80 normal mammograms, and 30 each of the four abnormal categories (see stimuli 
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and apparatus for more details). Each mammogram was shown for 500 ms before the mask and 

then rating screen appeared. 

Each training phase consisted of a total of 736 trials, split into 4 blocks of 184 trials each: 180 

mammograms, and 4 attention trials dispersed throughout each quarter of the block. The 180 

mammograms were randomly selected from the training set to show 72 normal mammograms, 

27 obvious, 27 subtle, and 54 global abnormal mammograms. More global abnormal 

mammograms were shown because these are thought to be both the most difficult, and the 

most likely to contain the global gist signal, on which we would expect increased performance if 

indeed a gist signal was learned. The attention trials showed easily recognisable colour 

photographs of either a forest or a beach, and had an alternative rating instruction to rate 

beaches as 0 and forests as 100. These trials also showed feedback based on the response, 

however, if the answer was incorrect, the feedback screen was shown for at least 10 seconds 

before they could continue, and the attention trial was repeated until they answered correctly. 

Participants were encouraged to take self-paced breaks in between each block. 

During the training session, the maximum viewing time for the mammogram started at 2500 ms 

in the first block to familiarize the participants with the procedure and task. Participants were 

encouraged to press the spacebar as soon as they had a first impression to continue to the mask, 

then rating screen (minimum viewing time 500 ms). However, this was not required, and the 

mammogram would automatically be replaced by the mask at the maximum viewing time. In 

subsequent blocks, maximum viewing time was adapted based on performance: if the total d’ 

prime for the block was above 0.2, max viewing time was decreased to 90% of the average actual 

viewing time of that block, but if d’ prime was below 0.05, it instead increased to 105% of the 

current maximum viewing time to a maximum of 2500 ms.  

Data analysis 

Signal detection measures were used for analysing observers’ performance, as these can 

differentiate performance (d’) and response biases (criterion) in a binary classification task, 

calculated from proportions of hits and false alarms. D’ characterizes accuracy of performance, 

with a d’ of 0 representing chance and higher values representing better performance. Criterion 

characterizes response bias, with a criterion of 0 being unbiased, a negative criterion is liberal, 

meaning that any random trial the participant is more likely to label it as abnormal than normal, 

and the opposite is true for a positive criterion, which is conservative, leaning towards rating 

trials as normal. 

First, proportions of hits and false alarms were calculated from the rating and ground truth 

(normal or abnormal) of the trials for each mammogram category. The numerical rating for a trial 
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was compared to the set threshold of 50 for d’ and criterion: the binary rating decision was 

considered “normal” if below, or “abnormal if above the threshold. D’ was then calculated by 

subtracting the z-transformed false alarms from the hits (d’ = z(hits) – z(false alarms)). A d’ of 

zero represents chance performance, with positive values representing above-chance accuracy. 

Criterion on the other hand adds the z-transformed hit and false alarms rates and divides them 

by -2 (c= (z(hits) + z(false alarms))/-2). As the task explicitly instructed participants to rate normal 

trials below 50 and abnormal trials above 50, and to rate more extreme values the more 

confident they were, d’ and criterion at threshold 50 were the primary outcome measures of 

performance. 

To further characterize the shape of the rating curves at different points of the experiment, area 

under the curve (AUC) measurements of Receiver operating characteristic curves (ROC) were 

used. ROCs were constructed by repeating the division of trials into proportions of hits and false 

alarms using a sliding value of normal/abnormal rating thresholds (1-99) and plotting all data 

points, from which the AUC was then calculated in Python. AUC ranges from 0 to 1, and 

represents the probability that a randomly chosen abnormal trial will be rated higher than a 

randomly chosen normal trial (Hanley & McNeil, 1982), with chance performance in a raw rating 

experiment yielding an AUC of 0.5 and higher AUCs representing more accurate performance.  

The average and median viewing time of different screens were also calculated for the 

mammogram screen (training phases only), rating screen, and feedback screen (training phases 

only) for each of the sessions. Outlier rating times (outside of mean plus/minus 3 STD of the 

individual session) were excluded.  

The main research question of whether naïve observers can learn a new category of gist through 

perceptual training was evaluated using 3-by-3 two-way repeated measures ANOVAs with 2 

factors: testing moment (3 levels, pre-test, post-test, and retention test), and image type (3 

levels, obvious, subtle, global) for d’ prime and criterion. To evaluate whether participants were 

engaged with the task, attention checks and feedback viewing time were evaluated with 

descriptive statistics. Additionally, to investigate potential differences in rating speed, which 

might signify elements of decision-making speed, before and after training, a 4-by-3 two-way 

repeated measures ANOVA was performed on rating time across the testing sessions (pre, post, 

retention) and image types (normal, obvious, subtle, global). For any repeated measures ANOVA 

with a significant effect of testing moment, planned simple contrasts were performed comparing 

between the pre-test and post-test, and the pre-test and retention test, as this was the primary 

research interest. Pearson’s correlations were calculated for d’ across the training phases, to 

evaluate whether individual performance improved throughout the training period. Based on the 

correlation coefficient, participants could be divided into learners (above 0 coefficient) and non-
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learners (below 0 coefficient), which were investigated with the main aim to explore the main 

effect of testing phase on performance. This method was also used on a bootstrapped simulation 

of a population making random rating decisions, to ensure that any learner vs non-learner effects 

were not caused by chance. 

As an additional means of assessing whether participants outperformed chance, alternative Log-

Linear-Likelihood ROCs and AUCs were calculated and compared to chance levels. This was based 

on methodology suggested by (Semizer, Michel, Evans, & Wolfe, 2018) to handle potential 

bimodal distributions that can result from raw rating experiments more accurately. ROC curves 

were smoothed with a Gaussian kernel, width 10, after which log likelihood ratios were 

calculated to compute the area under the curve (AUC). ROC curves and their AUCs are calculated 

for the real data and 100 randomly bootstrapped samples (with resampling). If the AUC of the 

real ROC was higher than the 95th percentile of the randomly bootstrapped AUCs, this strongly 

suggests that the participant outperformed chance. 

Lastly, as exploratory analysis, we compared the ratings by human observers to the probability 

scores of benign/malignant findings from a deep neural network (DNN). Single unilateral 

mammograms were evaluated using the single breast classifier (SBC) and SBC plus heatmap 

(SBC+HM) version of N. Wu et al. (2019) DNN for breast cancer screening. 16-bit PNG versions of 

each unilateral mammograms were pre-processed to remove annotations and then run through 

the SBC and the SBC+HM. DNN inference was accomplished on Cloud Viking, a University of York 

HPC cluster. The compute nodes used were equipped with a NVIDIA V100 GPU. Stimuli supplied 

to the SBC had higher pixel dimensions than those shown to human observers, and a greater bit-

depth, due to the requirements of the SBC. The output consisted of prediction scores for benign 

and malignant findings for each mammogram, ranging from 0 to 1, which were transformed to 0 

to 100 scale to match the human rating scale. AUCs were calculated for the SBC and SBC+HM to 

evaluate overall performance. Image-level and category-level comparisons between human and 

SBC scores were made using Spearman’s rank correlations, to investigate the level of agreement. 

These correlations were compared before and after training, to see if training increased the level 

of agreement between human and machine scores. 

4.6. Results and Discussion 

Human observer performance in training to detect cancer 

Attention and task engagement 

Participants were highly attentive during the training phases, as indicated by the very low 

number of incorrectly answered attention check trials (median: 0, mean: 0.93, std: 1.24, max: 4) 

across the 144 total checks in the 9 training phases. Additionally, participants actively used the 
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spacebar to continue to the rating screen, meaning both their average and maximum viewing 

time rapidly decreased from 2500 ms, with all participants showing below 600 ms average 

maximum viewing time during the fourth training phase (see appendix B for more details on 

engagement and viewing times). 

Effect of training on performance measures 

Figure 3 shows the mean d’, criterion and AUC for each image type pre-training, post-training, 

and at retention. Averaged over image types, d’ increased after training in 12 out of 15 

participants, with a mean d’ of 0.274±0.058 prior to and 0.378±0.079 after training, and 

0.255±0.086 at retention. Compared to pre-training, rating criterion became more liberal after 

training in 14 participants, and remained more liberal at retention in 13, with a mean criterion of 

-0.0377±0.073 prior to, -0.356±0.112 after training, and -0.284±0.114 at retention. Meanwhile, 

AUC was higher than pre-training in 9 out of 15 after training, and in 6 out of 15 at retention, 

with a mean of 0.582±0.016 prior to, 0.589±0.016 after training, and 0.568±0.018 at retention. 

Similarly, Log-Linear-Likelihood AUCs were compared to bootstrapped chance levels, which 

showed a sizeable increase in participants performing above chance levels after training (see 

Appendix C). Additionally, analysis of average and median rating times showed that participants 

took significantly less time to make rating decisions after completing their training (see Appendix 

D). 

 

Figure 4.3: Mean d’, criterion, and AUC across test phases (± 95% confidence intervals) for all 

participants (n=15), plotted separately for each abnormal image type (○ Obvious, ● Subtle, □ 

Global). 
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3x3 repeated measures ANOVAs with the factors testing phase (pre, post, retention) and image 

type (obvious, subtle, global) were used to investigate the effect of training on d’, AUC, and 

criterion. For d’, this showed evidence of an image type effect (F(1.433,20.066)=7.451, p=.007, 

ηp2=.347 with Greenhouse-Geisser correction), while the testing phase effect was trending 

towards significance (F(2,28)=2.816, p=.077, ηp2=.167) and there was no significant evidence for 

an interaction effect (F(4,56)=1.455, p=.288, ηp2=.094). The image type effect was also observed 

for AUC (F(1.292,18.088)=11.242, p=.002, ηp2=.445), while there was no significant evidence for a 

testing phase (F(2,28)=1.191, p=.319, ηp2=.078) nor interaction effect (F(4,56)=2.005, p=.106, 

ηp2=.125). However, AUC was seen as less informative than d’ in this experiment, as participants 

were explicitly instructed to rate trials below 50 for normal and above 50 for abnormal decisions, 

meaning the cut-off was fixed. Overall, there was no significant evidence of improvements as a 

result of training, but the trending p-value for d’ suggests this might be due to individual variation 

in learning ability in the testing group, which will be further explored in the following section on 

performance throughout training.  

On the other hand, for criterion, the 3x3 RM-ANOVA showed a significant effect of image type 

(F(1.433,20.066)=7.451, p=.003, ηp2=.347 with Greenhouse-Geisser correction) and of testing 

phase (F(1.352,18.922)=11.501, p<.001, ηp2=.451 with Greenhouse-Geisser correction), but no 

evidence for an interaction effect (F(4,56)=1.455, p=.228, ηp2=.094). Overall, criterion differed 

significantly between baseline and both post-training (Estimate: -0.319, t(28)=-4.571, p<.001) and 

retention (Estimate: -0.247, t(28)=-3.542, p=.001). In summary, perceptual training made 

participants more likely to rate any given trial as abnormal. This could indicate that participants 

tended to put more weight on negative feedback when they missed a cancerous case than when 

they incorrectly labelled a normal case as abnormal, causing a shift towards liberal rating bias. 

Importantly however, participants were not instructed to preferentially avoid one type of error 

over the other. 

Performance throughout training 

To investigate performance improvements across training phases, linear Pearsons’ correlations 

were calculated between d’ across image types and training phase, numbered 1 through 9 (figure 

4). Correlation coefficient varied considerably across participants, with an average of 

0.109±0.239. Notably, a positive correlation was found between d’ and training phase for 9 

participants (average 0.418±0.172), and a negative correlation of the remaining 6 (average -

0.357±0.245). This indicated that in the training groups there might be learners and non-learners 

when dividing participants based on their ability to improve their performance on this specific 

perceptual learning task. 
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Figure 4.4: Individual progression of d’ across the 9 training phases, with the learners in green 

hues in the left plot and the non-learners in orange hues in the right plot. 

To further explore this, analysis of performance measured by d’ was repeated separately for 

learners and non-learners, to see if the learning during the training phases translated to 

improved performance on the test phases. For learners, it showed that d’ was affected by both 

image type (F(2, 16)=13.169, p<.001, ηp2=0.622) and testing phase (F(2,16)=4.597, p=.026, 

ηp2=0.365), without interaction effect (F(4,32)=0.223, p=.924, ηp2=0.027). Planned comparisons 

for the testing phase effect with a simple contrast showed that post-training d’ was significantly 

higher than pre-training levels (difference: .209, t(16)=2.971, p=.009), while this was not the case 

at retention (difference: .068, t(16)=0.962, p=.350) (see figure 5). On the other hand, for non-

learners, d’ was not significantly affected by image type (F(1.091, 5.455)=3.409, p=0.118, 

ηp2=0.405) or testing phase (F(2,10)=2.184, p=.163, ηp2=0.304), but did show evidence for an 

interaction effect (F(4,20)= 4.254, p=.012, ηp2=0.460). Post-hoc comparisons for this interaction 

effect with Holm correction showed that this was driven by significant differences between 

obvious and subtle pre-training (d’ difference: 0.579, t=4.438, p=.005), and between obvious pre-

training and global at retention (d’ difference:4.165, t=4.165, p=.008), both of which do not 

signify learning of the gist signal. Thus, for learners, d’ improved significantly after training and 

returned towards baseline levels at retention, suggesting that the learning period was not 

sufficient for long-term retention. The fact that these effects were not found for the non-learners 
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suggests there is individual variation in people’s ability to obtain the gist of a new category 

through this type of online training. Analyses for criterion can be found in appendix E. 

 

Figure 4.5: Mean d’, criterion, and AUC across test phases (± 95% confidence intervals) for the 

learners (n=9), plotted separately for each abnormal image type (○ Obvious, ● Subtle, □ Global). 

These results were compared to those expected under random chance to further ascertain that 

the split in learning effect was caused by individual differences, rather than any selection bias 

caused by applying a criterion based on Pearsons’s correlation coefficients. Random rating 

decisions were simulated across 1000 runs of 15 participants each, calculating their performance 

on the pre-training and post-training test phase, and each of the 9 training phases, and splitting 

them into learner and non-learner categories with the same Pearson’s correlations as used for 

the real observers. The difference between pre- and post-training d’ for ‘learners’ was on average 

0.001±0.006, while for the ‘non-learners’ this was 0.002±0.006 (95%CI). This clear lack of 

improvement in both simulated groups demonstrates that the observed split in learners and non-

learners cannot be explained by random effects. 

Our results show that nine sessions of perceptual training with global feedback were sufficient to 

induce a small, but robust increase in gist recognition across all mammogram categories that was 

significant in the subset of learners. Importantly, this included mammograms that did not contain 

any localizable lesions, as they were contralateral or prior to the development of a visible lesion, 

supporting the notion that this was a global signal, and not only the local signal that was captured 

by the learners. Thus, perceptual exposure paired with global feedback was sufficient to learn the 

gist of a new category in a group of learners.  
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However, performance returned towards baseline levels after 7 to 10 days of retention without 

exposure to mammograms, indicating that the learned signal is poorly retained. While this in 

itself might seem unfortunate, it is evidence that participants underwent perceptual learning of 

the global gist signal rather than following any rating strategy based on simpler specific local 

features, as a strategy would be expected to be retained. Instead, this ‘use it or lose it’ aspect fits 

with the view of perceptual tuning of the visual system to regularly occurring image statistics in 

the mammogram texture that must be actively maintained. This finding also converges with 

findings that radiologists’ gist performance correlates with cases reviewed in a year, not years of 

experience (Evans et al., 2019). Thus, showing it is recent, continued perceptual experience, and 

not only (medical) knowledge that allows gist extraction to occur.  

Further underlining the importance of perceptual experience rather than knowledge for 

detection tasks is previous research that showed that pigeons could be trained to recognise 

cancer-relevant microcalcifications in small patches with above-chance accuracy (Levenson, 

Krupinski, Navarro, & Wasserman, 2015). The findings give supporting evidence that 

mammograms contain perceptual features that can be learned through global feedback in 

implicit learning. However, importantly, the pigeons could not learn to differentiate benign from 

suspicious masses nor could they detect cancer before onset of any visibly actionable lesions, 

suggesting a limitation of their perceptual capabilities. Thus, while pigeons could potentially be 

used as a cost-effective medical image observer to for example investigate impact of technical 

aspects such as spatial frequency, colour, or other display parameters on performance, as 

suggested by Levenson et al. (2015), our research instead suggests that training naïve human 

observers might be a more viable alternative, especially for more complex medical imaging 

categorisation tasks, as humans can learn a complex gist of abnormality, and are arguably easier 

to instruct. 

Our findings suggest an important role for individual differences in the ability of a participant to 

learn the gist of abnormality, resulting in a group of learners and of non-learners. This can be 

compared to the variability in gist extraction performance between individual radiologists, which 

partially but not fully correlates with recent perceptual exposure, suggesting there are additional 

individual factors influencing radiologist performance. What’s more, while the learner and non-

learner groups were identified based on their learning rate across the nine training phases, 

further investigation showed that the learner group had an above-chance performance on 

identifying global abnormalities even before any training had taken place. This is striking, as no 

local abnormalities are present in these mammograms. Thus, learner participants might already 

have been more sensitive to disruption of image statistic regularities pre-training than their non-

learner counterparts. Previous literature contains numerous examples of individual differences in 
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perceptual sensitivity. Individual differences in performance or sensitivity have been reported 

across many perceptual domains: in visual search tasks (Brock, Xu, & Brooks, 2011; Sobel, Gerrie, 

Poole, & Kane, 2007; Wang, Lin, & Drury, 1997), face processing (White & Burton, 2022), scene 

processing (Pringle, Kramer, & Irwin, 2004), or even low-level visual properties such as colour 

sensitivity (Emery & Webster, 2019), or auditory temporal processing (Shinn-Cunningham, 

Varghese, Wang, & Bharadwaj, 2017). In this context, it is not surprising that our participants also 

showed a range of initial sensitivity to the task. 

Furthermore, the observed variability in learning rates between participants in this study 

matches previous literature. Learning rates differ significantly between individuals across seven 

perceptual tasks in the visual and auditory domain, such as Vernier acuity, face view 

discrimination, auditory frequency discrimination (Yang et al., 2020). Importantly, the 

contribution of participant-specific (36.8%) factors is approximately equal to the task-specific 

(~38.6%) factors influencing learning rate, underlining the large impact individual differences can 

have on learning rates across tasks. Individual differences in learning rates have also been 

demonstrated in spatial learning in virtual environments (Waller, 2000).  

So, learners might have been predisposed to have enhanced sensitivity to structural regularities, 

resulting in above-chance pre-training performance, and subsequently further improved their 

performance after training. This predisposition might be innate, or due to previous experiences. 

Innate factors can influence performance and learning, as shown by positive correlations 

between learning rates and cortical thickness in the posterior parietal cortex (PPC) and motion 

sensitive area MT+ of the V5 for a motion discrimination visual search task (Frank, Reavis, 

Greenlee, & Tse, 2016), and similarly for the left fusiform face area in a face view discrimination 

task (Bi, Chen, Zhou, He, & Fang, 2014). Furthermore, previous experiences such as gaming 

activity might influence brain plasticity and increase general perceptual learning ability (Bavelier, 

Green, Pouget, & Schrater, 2012; Bejjanki et al., 2014). Another factor that might have made 

learners more likely to learn the gist signal could be differences in strategy. It is possible learners 

were tuned to a more global strategy compared to non-learners who might have focused more 

on local signals. Previous research suggested that learners and non-learner groups utilized 

different strategies while being trained on a difficult grating orientation task (Dobres & Seitz, 

2010). Further research could further explore differences in initial sensitivity, neural markers, and 

strategies employed by learners and non-learners in a gist learning task. 

The fact that non-learners did not show improvement in their ability to detect the gist of 

abnormality might also be related to the duration of training. Perhaps these non-learners would 

have shown improvement after additional training sessions, where this was not the case after 

nine sessions, for example due to a slower learning rate or an initial maladaptive learning 
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strategy. Interestingly, in Hegdé’s (2020) design participants trained until a predefined 

performance level, which took anywhere between 288 to 936 trials, a factor 3.25 difference, 

providing evidence for the existence of a range in individual learning times. However, they also 

reported that 4 participants left part-way through the experiment, leaving it up to question 

if/when these participants would have reached the predefined performance level. Thus, while 

non-learners in the current study might have lacked the aptitude or capacity to learn the new gist 

category in the task format, they might have simply required further perceptual training before 

they would have been able to increase their performance. Future research could employ a 

predefined performance threshold similar to Hegdé’s (2020) design to gain further insight into 

the variation in perceptual exposure needed to learn the gist of a new category. 

As briefly discussed above, our results corroborate the main findings of a previous 

training study that showed that implicit learning through auditory global feedback could induce 

learning of visual patterns of medical abnormality in a free-viewing task (Hegdé, 2020). Notably, 

however, the learning described by Hegdé occurred much faster, after an average of ~600 trials, 

and resulted in a higher performance of d’ 2.5. One factor that might explain the difference in 

performance is differences between the stimuli. The abnormal mammogram cases used by 

Hegdé and colleagues contained localizable, and obvious abnormalities with one region of 

interest at least 200 pixels wide, whereas the current study used a larger variety of 

mammograms, containing obvious or subtle abnormalities, or even only global signals of 

abnormalities with no visible lesions. Another factor is likely the difference in tasks, as free-

viewing tasks are generally easier than rapid gist extraction tasks. The same effect can be 

observed for medical experts, as their performance in laboratory free-viewing experiments 

reached d’ of 2.5 for chest radiographs (Kundel & Nodine, 1975), and d’ of 1.9 for mammograms 

(Evans, Birdwell, & Wolfe, 2013), whereas gist extraction performance reached a d’ of 1 for chest 

radiographs (Kundel & Nodine, 1975), and a d’ of 1 (250 ms) and 1.14 (500 ms) for mammograms 

(Evans, Georgian-Smith, et al., 2013). Thus, while the current performance did not reach the 

same levels as observed by Hegdé, this can be explained by differences in task and stimuli. 

A general limitation of the current study was the duration of the perceptual training. This had to 

be limited for viability of the research, but consequently, naïve participants did not reach the 

same performance levels as expert radiologists. After training, learners reached an overall 

average d’ of 0.43, which is close to a medium effect size. Learners did not quite reach the d’ of 

0.88-1.14 reported for expert radiologists on obvious/subtle lesions in similar experiments (Evans 

et al., 2019; Evans, Georgian-Smith, et al., 2013; Evans et al., 2016) , but learners’ post-training 

performance on mammograms with global abnormalities (d’ 0.57) was remarkably similar to 

performance of expert radiologists on comparable cases in different experiments, such as a 
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reported d’ of 0.59 on contralateral mammograms (Evans et al., 2016) and a d’ of 0.21 on priors 

(Evans et al., 2019), demonstrating the validity of the learning. The difference in performance on 

visible actionable lesions difference could be partially the result of specific medical knowledge, or 

it could reflect the differences in the magnitude and duration of perceptual training. While 

medical experts do not routinely perform gist rating tasks, they have years of real-world exposure 

to the stimuli with on average of up to 4000 read mammograms a year in which they focus on 

detecting visible abnormalities, which would involve an early non-selective stage of visual 

processing shaping their knowledge of the gist of abnormality. 

In the current study, participants became significantly more liberal in their ratings after training, 

meaning they were more likely to label any given mammogram as abnormal than before. This 

could potentially reflect a self-imposed criterion in which participants tried to avoid missing any 

cancerous cases at the cost of more false alarms – although it is important to note that no such 

instruction was given in the experiment. A move to a more liberal decision criterion may indicate 

the participants’ feeling of familiarity with images after training and thus more willingness to 

report a signal but it is more likely a result of early stages of learning-related changes in 

developing perceptual expertise as observed in some perceptual training studies (Aberg & 

Herzog, 2012; Palmeri, Wong, & Gauthier, 2004; Xu, Rourke, Robinson, & Tanaka, 2016). 

Another interesting observation was the change in rating time, as participants became 

significantly faster after training. This increase in rating speed could potentially be a marker of 

the development of expertise. Decreases in reaction times have previously been described to 

occur in naïves learning to categorize aerial photographs (Lloyd, Hodgson, & Stokes, 2002) and 

training on face-like artificial object categorisation (Wong, Palmeri, & Gauthier, 2009). However, 

other studies reported no consistent changes in reaction time after training subordinate and 

superordinate level bird categorization (Devillez et al., 2019; Jones et al., 2020). Additionally, 

interpretation of our findings is complicated by the fact that this study used a 0-100 rating scale, 

operated using a mouse. Thus, it is also possible that participants habituated to using the slider 

and became faster at reaching their desired rating score. Overall, this increase in rating speed is 

an interesting observation, but a different design is needed to be certain that this effect is caused 

by changes in decision making time rather than adeptness at the rating task.  

Deep Neural Network performance in detecting cancer 

With the aim to further understand how gist expertise develops we examined whether a DNN, 

analogous to human implicit learning, was able to capture the same image statistics that humans 

might be using when learning to detect gist of the abnormal. We use a DNN specifically 

developed for malignancy detection, which was pre-trained on mammograms, to evaluate its 
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performance on the mammograms we used for training and testing our human learners. This is 

assessed using the DNN’s calculated malignancy probability scores (Wu et al., 2019), the 

probability that that mammogram contained a malignant abnormality. Each unilateral 

mammogram in the training image set and test image set were scored by both the single breast 

classifier image-only (SBC) and SBC + heatmaps (SBC+HM) DNN. The DNN also provided benign 

probability scores, the probability that a mammogram contained a benign abnormality, which 

showed the same pattern of results as discussed below (see appendix F).  

Histograms of DNN malignancy probability scores show more overlap between the normal and 

global cases, than between the obvious/subtle and normal cases (Fig. 6), indicating that both the 

SBC and SBC+HM were less able to distinguish global and normal from each other. The finding 

illustrates an apparent difficulty for the SBC and SBC+HM to distinguish the global gist signal of 

cancer compared to the visible obvious and subtle cancers.  

 

Figure 4.6: Distribution of Single Breast Classifier (SBC) and SBC+Heatmap (SBC+HM) malignancy 

probability scores on the full image set of mammograms split into 25 bins for each of the image 

type categories, with a combined plot showing the overlap between normal (red), obvious 

(green), subtle (blue), and global (yellow) scores. 

Similarly, AUC calculations (table 1) show that the SBC and SBC+HM both performed well in 

discriminating the obvious and subtle mammograms from the normal mammograms on 

malignancy probability, whereas AUC dropped considerably for the global mammograms, 

although it did remain above chance levels for all except the malignancy-SBC on the global 

mammograms in the test set. The increase in AUC for SBC+HM shows that heatmaps improved 

the DNN’s ability to detect the probability of malignancy in mammograms, especially in more 
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subtle cases. These results on our mammography image lend support to the reported increase in 

performance with the added heat-map described in the original publication (Wu et al., 2019). 

Table 4.1: AUCs for malignancy probability scores for the SBC and SBC+HM for obvious, subtle, 

and global mammograms versus the group of normal mammograms. This is calculated for the 

training set and the test set separately. Square brackets contain the lower and upper bands of 

95% CIs. 

 

Most critically, the low or even at-chance performance (AUC: 0.505 SBC on test set) on the 

globally abnormal mammograms shows that mammograms with the global signal of abnormality 

are especially obscure and difficult to detect. This adds to the significance of our finding that 

human observers were able to learn to detect abnormalities in these mammograms, performing 

above chance on the test set with which the SBC struggled severely. It also demonstrates that the 

chosen test set was representative of, or potentially even more difficult than, the overall 

mammography dataset, and learning was not a result of coincidentally easier stimuli in the test 

set. 

Next, a direct comparison of human and SBC scores was made to see if similar image statistics 

might be used by human observers and machine learning models. This was done by correlating 

the average rating from the ‘learner’ group of observers to the malignancy probability scores of 

the SBC and SBC+HM. Spearman’s rank correlations were performed between the DNN 

malignancy probabilities and the average of the human learner scores given pre- and post- 

perceptual training (table 2). Before perceptual training, the correlation between SBC malignancy 

and human scores was non-significant (p=.137), while the correlation between SBC+HM and 

human scores was (p=.005). At post-training test, the average human score across the 200 test 

 Training set Test set 

 SBC SBC+HM SBC SBC+HM 

Obvious 0.839 [0.842-

0.854] 

0.897 [0.885-

0.909] 

0.844 [0.772-

0.916] 

0.885 [0.824-

0.946] 

Subtle 0.689 [0.668-

0.710] 

0.738 [0.719-

0.757] 

0.701 [0.599-

0.603] 

0.803 [0.720-

0.886] 

Global 0.582 [0.563-

0.601] 

0.598 [0.579-

0.617] 

0.505 [0.408-

0.602] 

0.683 [0.596-

0.770] 
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mammograms correlated significantly with both the SBC and SBC+HM malignancy and benign 

scores (all p<0.01, see table 2). Comparing pre- and post- perceptual training correlations showed 

that the correlation coefficient increased after the human observers completed their perceptual 

training. After training, human scores more closely agreed with the classifier judgements - 

mammograms that were judged as more abnormal by humans also received higher malignancy 

probability scores. 

Table 4.2: Spearman’s rank correlations between the average human learner score pre- and post-

training of human observers, and the SBC/SBC+HM malignancy probability scores. 

 

The finding that agreement between human and SBC scores increased after training has 

interesting implications. It suggests that the gist of abnormality signal learned by human 

observers during perceptual training is partially captured by the DNN as well. This adds validity to 

our findings, as the human observers learned signals that were also detected by an ‘expert’ in the 

form of a DNN, demonstrating they were able to learn image features of abnormality. 

Additionally, the finding that correlation coefficient was markedly higher for the SBC+HM (0.318) 

than SBC (.207) suggests that the added heatmap might capture additional perceptual features 

used by the trained human observers. This suggests that the SBC+HM and similar deep neural 

networks could be used to investigate the perceptual features in mammograms contributing to 

the gist signal, for example by performing network dissection, a technique where layers of the 

network are investigated to extract the content that is activating nodes in these layers (Bau et al., 

2020). 

4.7. Conclusion 

In conclusion, perceptual training with global feedback can result in the learning of the gist of a 

new category, although there are individual differences in both pre-training sensitivity to global 

structural regularities and ability to further learn the gist signal, and the new gist signal is poorly 

retained if exposure is not maintained. This suggests that gist categorisation might be a case of 

‘use it or lose it’, although retention or complete tuning of the visual system to a new category 

might be obtained after extended exposure. The exposure in our study only amounted to 

  Pre-training Post-training  

  Correlation p-value Correlation p-value Difference 

SBC Malignant 0.105 0.137 0.207 0.003 0.102 

SBC+HM Malignant 0.198 0.005 0.318 0.000 0.119 
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approximately 9 hours task time, and 6470 instances viewed with feedback, which is substantially 

less than in real world learning of gist categories.  

Furthermore, human perceptual expertise on difficult, ambiguous cases containing only global 

signals of abnormality (contralateral, prior) is still not matched by state-of-the-art neural 

networks, as indicated by the markedly lower, or even at-chance performance of the DNN on 

mammograms with global abnormalities that human observers were able to learn in our 

perceptual training paradigm. The global signal of abnormality is extremely difficult to detect and 

requires considerable perceptual expertise. On the other hand, we also observed an increase in 

agreement between the human observers and DNN after perceptual training, which indicates a 

potential overlap in image statistics used to classify mammograms as normal or abnormal. 

Finding out what these image statistics are could teach us more about the gist of abnormality and 

could help find ways to improve image filtering for both human observers and machine learning 

models. Together, these findings solidly emphasize the need for continued research into medical 

perceptual expertise with human observers in its own right, especially into more ambiguous 

global signals that would be vital for early cancer detection. But it also reinforces the need of 

combining these lines of research with the thriving field of machine learning research, especially 

since recent research has suggested benefits of combining radiologists’ gist ratings with machine 

learning models to reach higher levels of performance than either could on their own 

(Gandomkar et al., 2021; Wurster et al., 2019). 

We based our study on drawing a clear parallel between scene gist and the gist of abnormality in 

radiographs, and it would be beneficial to generalize the current results on learning to a wider 

area of gist extraction. The parallels between the two types of gist extraction would imply that 

the current findings of implicit learning should generalize to the learning of scene gist as well. 

However, as far as the authors are aware, this area has not yet been investigated in the known 

literature. A potential avenue to answering this question for scene gist could be developmental 

research with young children, especially as previous research has shown that infants already 

exhibit signs of statistical learning (Fiser & Aslin, 2002b). However, previous research on the 

development of rapid perceptual processing is very limited (but see Sweeny, Wurnitsch, Gopnik, 

and Whitney (2015). Overall, developmental research often suffers from complications, such as 

communication of task instructions or difficulties in directing attention, a lack of control over 

previous exposure, individual differences, and other developmental processes occurring at the 

same time (Johnson, 2011; Maurer, 2013). These factors make it less suitable to investigate the 

acquisition of the gist of a novel category.  

Overall, the current study shows a strong case for how implicit learning would allow the learning 

of a new category of any gist, including scenes. What is more our finding that gist extraction 
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abilities can develop separately from medical knowledge reinforces the viability of the idea, 

suggested by Voss, Kramer, Basak, Prakash, and Roberts (2010), of using trained naïve observers, 

not to ‘usurp’ radiologists’ ratings, but to create a more accessible ‘model observer’ to use for 

further dissemination of the gist of abnormality signal. This training regime can be used for 

training of novice radiologists and screening radiographers or even as a refresher training for 

expert radiologists who over their careers see a considerable reducing of cases they read. Further 

research is needed to measure the effectiveness of our training paradigm on these populations, 

and to explore explanatory parameters for individual differences in pre-training performance, 

learning ability, and learning rate/speed, for example by investigating the potential variation in 

length of perceptual training required to achieve perceptual learning across different 

participants. 

4.7. List of Abbreviations 

AUC: Area Under the Curve 

ROC: Receiver Operator Curve 

SBC: Single breast classifier 

SBC+HM: Single breast classifier plus heatmap 

4.8. Open Practices Statement 

The datasets generated and analysed during the current study are available on our OSF 

repository, together with the Python scripts needed to extract the performance measures. The 

data is available under Creative Commons Attribution-NonCommercial-ShareAlike 2.0 UK: 

England & Wales (CC BY-NC-SA 2.0 UK).  

Mammograms were selected from the Complex Cognitive Processing lab database of stimuli, 

which can be shared with other researchers upon request to the last author (K.K. Evans), and 

from the OPTIMAM database, which can be accessed by requests for research purposes 

(medphys.royalsurrey.nhs.uk/omidb/getting-access/). 

Experiments were not preregistered. 

4.9. Appendices 

Appendix A: Mammographic descriptors of obvious and subtle cases 

Ductal Carcinoma In Situ (DCIS) grade can be classified as high, intermediate, or low. Percentages 

of DCIS grades in obvious and subtle mammograms can be found in table 3). Tumour surfaces can 

https://medphys.royalsurrey.nhs.uk/omidb/getting-access/).


114 
 

be positive, negative, or borderline (not strongly + or -) for Human Epidermal Growth Factor 

Receptor 2 (HER-2), and positive or negative for Estrogen and Progesterone receptors (see table 

4 for percentages in the obvious and subtle cases). The presence or absence of these receptors in 

the tumour can impact both the cancer severity and viable treatment options. For example, so-

called triple-negative cancers, without HER-2, Progesterone, and Estrogen Receptors, currently 

lack of approved targeted therapy and overall have poorer long-term outcomes (Sharma, 2016).  

Table 4.3: Percentage of mammograms with a high, intermediate, low, or unassessed DCIS grade 

for the obvious and subtle subsets of the image set. Where descriptors were not available in the 

OPTIMAM database, the mammogram was classified as unassessed. 

 

 

 

 

 

 

Table 4.4: Percentage of mammograms that were positive, negative, borderline, or unassessed 

for different receptor groups, HER-2, Progesterone, and Estrogen receptors for the obvious and 

subtle subsets of the image set. Where descriptors were not available in the OPTIMAM database, 

the mammogram was classified as unassessed. 

 

 Appendix B: Engagement and attention in training phases 

As mentioned in the main document, participant routinely used the spacebar to manually 

continue to the rating screen before reaching maximum viewing time (2.5 seconds) in the first 

 Obvious Subtle 

High 26.3 14.7 

Intermediate 25.2 21.8 

Low 8.7 7.9 

Unassessed 39.7 55.6 

 HER-2 Progesterone Receptor Estrogen Receptor 

 Obvious Subtle Obvious Subtle Obvious Subtle 

Positive 5.4 3.5 66.5 55.8 58.4 49.7 

Negative 58.8 51.1 6.3 3.3 11.9 7.4 

Borderline 0.5 0.1 N/A N/A N/A N/A 

Unassessed 1.2 1.7 1.4 1.6 1.6 1.7 
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training phase. This occurred on average on 234 out of 720 trials (95% CI: 138-330), indicating 

active engagement with the task instruction to view the mammogram until they formed a first 

impression to base their rating on. As a result, both average and maximum viewing time rapidly 

decreased, as is plotted in figure 7. 

 
Figure 4.7: Maximum and average viewing time in milliseconds per participant at the end of each 

training phase. Maximum viewing time is calculated for the fourth block of the session. Individual 

lines are plotted, while the dashed black line represents the group average. 

Additionally, participants viewed the feedback screen for an average of 741±72.4 ms per trial 

across the 9 training phases, which is estimated to be sufficient to perceive the “right or wrong” 

global feedback, due to the colour-coded and regular nature of the feedback text combined with 

the recency of the rating choice as feedback was shown immediately after confirming the rating. 

In conclusion, there was clear evidence of attention to and engagement with the training phases. 

Appendix C: Log-linear likelihood ratios ROC curves 

To evaluate whether individual participants’ performance was significantly above chance the 

AUCs of log-linear likelihood (LLR) ROCs were compared to the AUC of the 95th percentile AUC of 

simulated ROCs. As shown in table 5, the number of participants that performed above chance 

increased from 5 to 11 overall after training, an increase driven by an increase from 1 to 7 out of 

9 learners, while no change was observed for non-learners. This analysis shows that training 

caused most participants to outperform a very strict definition of chance levels, especially the 

sub-group of learners, in line with the significant testing phase effect observed for d’. 

Table 4.5: Number of participants performing at above chance levels (real AUC > 95th% simulated 

AUC) at each testing phase, split up for learners, non-learners, and total. 
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Appendix D: Effect of training on rating time 

To evaluate if perceptual training affected participants’ decision-making speed, a 4x3 repeated 

measures ANOVA was conducted on the average rating time with the factors image type (normal, 

obvious, subtle, global) and testing phase (pre-training, post-training, and retention). Average 

rating time was significantly affected by test phase (F(1.08,15.10)=25.590, p=<.001 with 

Greenhouse-Geisser correction, ηp
2=.646), but not by image type (F(3,42)=1.631, p=<.001, 

ηp
2=.104), nor was there evidence for an interaction effect (F(6,84)=0.594, p=<.001, ηp

2=.041). 

Rating time went down significantly after training compared to pre-training (difference=-1291 

ms, p<.001) and remained that way at retention (difference=-1158 ms, p<.001), as shown by a 

simple contrast planned comparison. Due to the lack of evidence for an image type effect, the 

main effect of testing phase on average rating time is visualized in the bar graphs in figure 8. The 

same pattern persisted for median rating time.  

 

 Pre-training Post-training Retention 

Learners  1 (11.11%) 7 (77.77%) 5 (55.55%) 

Non-learners 4 (66.66%) 4 (66.66%) 2 (33.33%) 

Total 5 (33.33%) 11 (73.33%) 7 (46.66%) 
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Figure 4.8: Individual average rating times are shown at pre-training (pre, green), post-training 

(post, orange), and retention (ret, purple) testing phases, as connected dot-clouds per participant-

image type combination and boxplots to show both individual patterns and the population 

distributions. 

Median rating time was also evaluated using a 4x3 repeated measures ANOVA with the factors 

image type (normal, obvious, subtle, global) and testing phase (pre-training, post-training, and 

retention). Median rating time was significantly affected by test phase (F(1.04,14.49)= 24.590, 

p=<.001 with Greenhouse-Geisser correction, ηp
2=.637), but not by image type (F(3,42)=1.307, 

p=.285, ηp
2=.085), nor was there evidence for an interaction effect (F(6,84)=0.284, p=.943, 

ηp
2=.020). Rating time went down significantly after training compared to pre-training 

(difference=-1160 ms, p<.001) and remained that way at retention (difference=-1069 ms, 

p<.001), as shown by a simple contrast planned comparison and visualized in figure 9. Thus, 

participants took significantly less time to make rating decisions after completing their training. 

 

Figure 4.9: Individual median rating times are shown at pre-training (pre, green), post-training 

(post, orange), and retention (ret, purple) testing phases, as connected dot-clouds per participant-

image type combination and boxplots to show both individual patterns and the population 

distributions. 
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Appendix E: Criterion for learners and non-learners 

For learners, it showed that criterion was affected by both image type (F(2, 16)=13.169, p<.001, 

ηp2=0.622) and testing phase (F(2,16)=12.509, p<.001, ηp2=0.610), without interaction effect 

(F(4,32)=0.223, p=.924, ηp2=0.027). Planned comparisons with a simple contrast showed that 

post-training criterion was significantly lower (more liberal) than pre-training levels (estimate: -

.345, t(16)=4.703, p<.001), and remained this way at retention (estimate: -.280, t(16)=3.826, 

p=.001). However, for non-learners, criterion was not affected by image type (F(1.091, 

5.455)=3.409, p=.118, ηp2=0.405) nor testing phase (F(2,10)=2.002, p=.186, ηp2=0.286), but did 

show an interaction effect (F(4,20)=4.254, p=.012, ηp2=0.460).  

Appendix F: DNN probability of benign abnormality 

Histograms of DNN benign probability scores show more overlap between the normal and global 

cases, than between the obvious/subtle and normal cases (Fig. 10), indicating that both the SBC 

and SBC+HM were less able to distinguish global and normal from each other. Similar to the 

malignancy probability scores, this again illustrates difficulty for the SBC and SBC+HM to 

distinguish the global gist signal of cancer compared to the visible obvious and subtle cancers. 

 

 
Figure 4.10: Distribution of Single Breast Classifier (SBC) and SBC+Heatmap (SBC+HM) benign 

abnormality probability scores on the full image set of mammograms split into 25 bins for each of 

the image type categories, with a combined plot showing the overlap between normal (red), 

obvious (green), subtle (blue), and global (yellow) scores.  

AUC calculations for benign probabilities (table 6) show that the SBC and SBC+HM both 

performed well in discriminating the obvious and subtle mammograms from the normal 
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mammograms on malignancy probability, whereas AUC dropped considerably for the global 

mammograms, although it did remain above chance levels (~0.55).  

Table 4.6: AUCs for the probability of benign abnormality for the SBC and SBC+HM for obvious, 

subtle, and global mammograms versus the group of normal mammograms. This is calculated for 

the training set and the test set. 

 

Spearman’s rank correlations between the DNN malignancy probabilities and the average of the 

human learner scores given pre- and post- perceptual training (table 7) showed a marked 

increase in correlation after perceptual training. After training, human scores more closely 

agreed with the classifier judgements - mammograms that were judged as more abnormal by 

humans also received higher benign abnormality probability scores. 

Table 4.7: Spearman’s rank correlations between the average human learner score pre- and post-

training, and the SBC/SBC+HM probabilities of benign abnormality. 

 

 Training set Test set 

 SBC SBC+HM SBC SBC+HM 

Obvious 0.817 [0.801-

0.833] 

0.818 [0.802-

0.834] 

0.818 [0.739-

0.897] 

0.785 [0.698-

0.872] 

Subtle 0.701 [0.681-

0.721] 

0.670 [0.649-

0.691] 

0.670 [0.563-

0.777] 

0.764 [0.673-

0.855] 

Global 0.569 [0.550-

0.588] 

0.555 [0.536-

0.574] 

0.555 [0.459-

0.651] 

0.547 [0.451-

0.643] 

  Pre-training Post-training  

  Correlation p-value Correlation p-value Difference 

SBC Benign 0.286 0.000 0.373 0.000 0.087 

SBC+HM Benign 0.280 0.000 0.402 0.000 0.122 
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Appendix G: DNN correlation with non-learners 

Correlating SBC scores with the average ratings of the learner group showed that the correlation 

went up post-training. The same correlations were performed for the average ratings of the non-

learners (table 8).  

Table 4.8: Spearman’s rank correlations between the average human non-learner score pre- and 

post-training, and the SBC/SBC+HM probabilities of malignant or benign abnormality. 

 

These results show two things. Firstly, before training, the correlation between SBC+HM 

malignancy predictions and the non-learners was 0.301, compared to the 0.198 of learners. This 

suggests that the non-learners might have started out sensitive to part of the same signals used 

by the SBC, and especially the SBC+HM. Potentially, this could be caused by more focus on 

localized signals, as implied by the increased correlation with the added heatmap – which adds 

scrutiny to local features. Secondly, the correlation between non-learner and SBC goes down 

after training, and becomes non-significant for all four comparisons. This was unexpected, and 

could be the result of a maladaptive learning strategy, where non-learners incorrectly establish 

certain perceptual features as normal/abnormal and this leads them to not only fail at learning, 

but additionally diverge from the SBC predictions. However, since this dataset only contained six 

non-learners, a larger, more structured approach would be needed to further investigate 

potential maladaptive strategies in such a perceptual learning task. 

 

  

  Pre-training Post-training  

  Correlation p-value Correlation p-value Difference 

SBC Malignant 0.158 0.026 -0.038 0.592 -0.196 

SBC+HM Malignant 0.301 0.000 0.099 0.161 -0.201 

SBC Benign 0.310 0.000 0.104 0.142 -0.206 

SBC+HM Benign 0.342 0.000 0.105 0.140 -0.237 
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Chapter 5: The neural signature of the gist of medical abnormality 

5.1. Abstract 

Rapid, global extraction of visual information gives observers access to the gist (the general 

categorical information) of an image, usually a scene. Through the same gist extraction 

mechanism, medical experts can rapidly distinguish abnormal from normal medical images. 

Previous research showed importance of the occipito-parietal regions and perhaps the visual P2 

event related potential (ERP) for scene gist extraction, however, it is unknown whether medical 

gist extraction evokes similar activity patterns. In this exploratory study, five experienced 

radiologists performed 2-AFC ratings on normal and abnormal mammograms, while EEG was 

recorded. Activity patterns were investigated across a wide range of ERPs and brain areas using 

single-subject bootstrapping. Differential activity between frontal cluster, suggesting a whole-

brain representation of the gist of medical abnormality. The involvement of areas beyond the 

occipital and parietal regions, suggest that the neural signature of medical gist is characterized by 

distributed activity. Differential activity amplitude correlated positively with performance, overall 

medical experience, and recent perceptual experience. This suggests that the neural signature of 

medical gist categories in an individual might be influenced by their medical and perceptual 

experience, and it might be associated with performance. There was also evidence for individual 

differences across radiologists, most notably in the direction of differential activity in the N1, P2, 

and P600. Overall, the findings suggest that the gist of abnormality is extracted in a network of 

regions, with potentially individual differences in how medical gist categories are represented. 

Further research is needed into individual differences in (medical) gist extraction and the 

functional role of areas in the observed network of activity. 

Key words: Gist extraction, medical expertise, EEG, neural correlates, visual processing, 

differential activity, individual differences, mammography 

5.2. Introduction 

Gist extraction is a process in which global information is rapidly and non-selectively used to 

inform a general sense (gist) of a visual stimulus. Indeed, people are able to detect the general 

category of a scene within 30 ms (Joubert et al., 2009; Joubert et al., 2007), without needing 

selective attention or focal vision (Boucart et al., 2013; Larson & Loschky, 2009; F. F. Li et al., 

2003; Rousselet et al., 2004) (see Chapter 1 for more detail). Gist extraction is generally thought 

to occur through a combination of processes such as the extraction of spatial structural 

regularities, summary statistics, and distributed features.  

Interestingly, research with medical experts has shown that they are able to detect the 

(ab)normal nature of a medical image within 100-250 ms in chest x-rays (Kundel & Nodine, 1975), 
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PAP smears (Evans, Georgian-Smith, et al., 2013), and mammograms (Patrick C. Brennan et al., 

2018; Evans, Georgian-Smith, et al., 2013; Evans et al., 2016), without being able to localize the 

abnormalities as gist extraction only provides global categorical information. The ability of 

medical experts to extract this gist of medical abnormality varies considerably across individuals, 

but correlates with their recent perceptual exposure rather than years of experience in the field 

(Evans et al., 2019), suggesting that it is indeed a perceptual ability rather than the result of 

medical knowledge. Furthermore, a perceptual training protocol was able to induce significant 

learning of the gist of abnormality in a sub-group of learners in Chapter 4, which fits with the 

perceptual nature of the gist of abnormality signal. Overall, previous findings draw clear parallels 

between the gist extraction processes for medical abnormalities and for scenes. 

Early divergence in neural activity has been observed as a result of scene gist perception. When 

shown for 500 ms each, scenes evoked higher P2 (200-320 ms) amplitude than objects or faces, 

across anterior, central and posterior brain regions, with maximal scene selectivity in the 

posterior-lateral cluster (Harel et al., 2016). Magnetoencephalography (MEG) similarly showed 

higher M1(100-130 ms) amplitude for outdoor scenes than faces in the medio-occipital region 

(Rivolta et al., 2012). Thus, posterior, occipital regions might be important for scene gist 

categorisation, as they show differential activity between scenes and objects or faces. 

However, directly comparing neural activity between scene categories gives more interesting 

insights into the potential neural correlates for the gist of abnormality. Various studies compared 

neural activity between animal and non-animal scenes. These studies observed early differences 

between animal and non-animal scenes, starting at 150-170 ms, characterized by frontal 

negativity, occipito-temporal positivity, and a potential temporal negativity for distractor/no-go 

scenes without animals (Antal et al., 2001; Delorme et al., 2004; Rousselet et al., 2002; Thorpe et 

al., 1996). Even when these animal/no-animal scenes were only flashed for 6.25 ms, this 

difference was observed at frontal and occipital sites (Bacon-Macé et al., 2005). Furthermore, a 

comparison between animal and vehicle-containing scenes showed differential activity explained 

by visual content starting at 75 ms, but found task-related categorical differences at 150 ms 

(VanRullen & Thorpe, 2001). However, these scenes often display the animal or vehicle as a large 

portion of the image, positioned near the centre, making categorizing these images more akin to 

object(-in-scene) detection. More interesting are studies investigating scene categories, such as 

the study by Harel et al. (2016), which found that lateral-posterior P2 amplitude was higher for 

natural than manmade scenes viewed for 500 ms. What’s more, the P2 amplitude was also 

influenced by image properties such as openness, contrast energy, and spatial coherence, 

suggesting that the P2 is sensitive to low-level image statistics in scenes (Harel et al., 2016). Other 

studies found that natural and man-made scenes viewed for 100 ms first showed occipital 
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differential activity from 70 to 250 ms, which was followed by parietal-occipital differential 

activity between 258 and 464 ms if the scenes were task-relevant (Groen et al., 2016). These 

findings suggest that early activity might capture differences in visual properties, especially from 

75 to 150 ms, while later activity might be task- or attention-dependent, with a potential early 

scene-gist-selective role for the occipital P2. However, it is not yet known whether the same 

neural patterns occur during the gist of abnormality. 

The current chapter is an exploratory study aimed at investigating the neural signature of 

extracting the gist of medical abnormality from mammograms, by measuring EEG activity in 

medical experts as they rapidly view and rate mammograms as normal or abnormal. As stated 

before, there are no previous studies on the neural correlates of the gist of medical abnormality, 

making this a novel dataset. However, this also makes it difficult to provide precise predictions. 

The aim of the study if to observe differences in neural signature between normal and abnormal 

mammograms, analogue to indoor vs outdoor or manmade vs natural scenes. However, since 

medical gist categorisation is much more difficult than regular scene categorisations where 

performance is often in the high 90%, differential activity effects might only be visible in the 

subset of correctly categorized mammograms (hits and true negatives). Based on results from 

manmade vs natural scene research, differential neural activity would be expected to be first 

detectable from 75 ms at the earliest in occipital regions, with further parieto-occipital activity 

from 250 to 470 ms. Especially the occipital P2 might be important as scene-selective activity has 

been found in this ERP. However, early differences (75-250 ms) might be limited, as the low-level 

visual differences between a normal and abnormal mammogram are expected to be more subtle 

than differences between e.g., manmade and natural scene categories. This is especially true for 

contralateral and prior mammograms that do not contain any localizable signals of abnormality. 

More widely, results in animal/vehicle-in-scene detection suggest effects might be observed in 

frontal, occipito-temporal, and perhaps parietal regions from 150 ms onwards, although these 

might be evoked by object-in-scene rather than gist categorisation and thus might not be present 

in mammograms. Lastly, differential activity in later ERP components might be stronger in 

radiologists with better performance or more (recent) perceptual experience, as their neural 

system might be more finely tuned to the gist of medical abnormality. 

5.3. Materials & Methods 

Participants 

5 radiologists (mean age: 51, 5 female, 4 right-handed) took part in this study. They were very 

experienced at mammography reading, having read between 5000 and 10000 scans for an 

average of 6600±1693 (SD) scans read in the previous year, with on average 94±11 percent of 
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their total caseload consisting of mammograms, and had been practicing for between 5 and 18 

years, for an average of 12.2±4 years. 

This study was approved by the Psychology Departmental Ethics Committee of the University of 

York (ID: 141), and all participants gave informed consent. Participants were compensated for 

their time. The number of participants was limited by participant availability, as this is a specialist 

population, that is hard to recruit, especially for an in-person study. 

Stimuli and apparatus 

The mammograms used in this study were unilateral and in mediolateral oblique (MLO) or 

craniocaudal (CC) view. These unilateral mammograms were divided into 4 categories: Normal, 

obvious abnormal, subtle abnormal, and global abnormal. Normal mammograms came from 

healthy women without any abnormalities. Obvious and subtle mammograms contain local 

abnormalities but were classified depending on the difficulty of recognising the abnormality in a 

normal screening based on the perceptual ratings of an experienced radiologist. Lastly, global 

mammograms were mammograms without any localizable abnormalities, which are thought to 

carry only global signals of gist of abnormality. These global signals are present in mammograms 

contralateral to a breast with a cancerous abnormality (contralateral), and in mammograms 

taken one to six years prior to visible actionable sign of abnormality appearing in a subsequent 

scan (priors). Normal, obvious, subtle, and contralateral cases were sourced from the OPTIMAM 

database, while priors were sourced from the Complex Cognitive Processing Lab database in 

collaboration with Dr. Bradley of the York Hospital. Researchers can request access to the 

OPTIMAM database through an application process (medphys.royalsurrey.nhs.uk/omidb/getting-

access/), while the prior cases can be shared with other researchers upon reasonable request to 

the CCPL (ccpl.york.ac.uk, K.K. Evans).  

This experiment used the same image set as the testing phases in Chapter 4, aside from a small 

modification to increase the number of trials: the 200 mammograms (80 normal, 30 obvious, 30 

subtle, 30 contralateral, and 30 prior mammograms) were doubled by adding the mirrored 

equivalent of each. The mirrored mammograms increased the number of trials, while retaining 

the ability to compare performance with Chapter 4, as the difficulty of the mirrored and original 

images is expected to be equal. Additionally, in order to familiarize the radiologists with the trial 

structure, 30 practice trials were added, taken from a set of obvious abnormal and normal 

mammograms not in the testing set. Thus, there were 430 trials in total, 400 of which were used 

in data analysis. 

Stimuli were presented to the radiologists on a VPixx 3D Lite monitor with a 120 Hz refresh rate, 

with a viewing distance of approximately 50 cm. A wrist rest was used to allow the participants to 

https://medphys.royalsurrey.nhs.uk/omidb/getting-access/
https://medphys.royalsurrey.nhs.uk/omidb/getting-access/
https://ccpl.york.ac.uk/
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rest their fingers on the keyboard keys, minimising unnecessary hand movements. The 

experimental stimuli and behavioural responses were generated and received on a Mac Pro 

computer using MATLAB (Mathworks, MA, USA) with the PsychToolbox add-on (Brainard, 1997; 

Kleiner et al., 2007; Pelli, 1997). EEG data was collected using via a second computer using 

ASALab version 4.9.2.23537 (ANT Neuro, Netherlands), which was connected to the EEG cap via a 

high-speed 64-channel amplifier with a 1000 Hz sampling rate. EEG caps with a 64-channel layout 

according to the 10/20 system (WaveGuard original, ANT Neuro, Netherlands) were used, with 

three cap sizes (S/M/L) according to the participant’s skull circumference. Vertical electro-

oculogram (EOG) data was recorded using self-adhesive electrodes positioned above the left 

eyebrow and on the top of the left cheekbone, after cleaning the skin with an alcohol wipe. EOG 

data was sent to the same amplifier as the EEG data. Timing of stimuli behavioural responses, 

EEG, and EOG were synchronised using triggers that were generated by PsychToolbox and sent to 

the EEG/EOG amplifier.  

Procedure 

Each trial consisted of a fixation cross (1000 to 2000 ms, randomized interval), with a short 8kHz 

audio cue in the last 100 ms to alert the participant the stimulus would appear, after which the 

unilateral mammogram was shown for 500 ms, which was subsequently masked with a white 

outline of the same breast for 500 ms, after which the 2-AFC was shown for a maximum of 2000 

ms, where the participant pressed either the left or right arrow key (Fig 1). The next trial started 

automatically 200 ms after the participant pressed one of the arrow keys. The 2000 ms window 

was set based on previously observed reaction times (e.g. Chapter 4) and piloting of the 

experiment. If no answer was given in the 2000 ms window, the trial was classified as not 

answered, and was not included in further analysis. The radiologists failed to respond to an 

average of 4 out of 400 trials, showing a high overall response rate. 
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Figure 5.1: The timeline of a trial, showing the fixation cross (1000 – 2000 ms total), auditory cue 

(100 ms), mammogram (500 ms), mask (500 ms), and 2-AFC answering window (2000 ms). 

As described in stimulus & apparatus, the experiment consisted of 30 practice trials, followed by 

400 experimental trials. The left and right arrow keys were used to answer whether the 

mammogram was normal or abnormal. The initial binding of the arrows to normal/abnormal was 

counter-balanced between participants and flipped after 200 experimental trials, in order to 

counterbalance the directionality of responses both for any potential directional answering bias 

and EEG motor responses. Participants took self-timed breaks after the 30 practice trials, and 

after each 100 trials thereafter. Participants were shown their overall score during the break 

after 200 and 400 real trials, which aimed to increase motivation. Due to technical difficulties, no 

audio cues were available for radiologist 4. 

The procedure for the EEG experiment differed from the testing phases in Chapter 4 in a few 

ways to improve the EEG recordings. The main difference was the rating scale, which was a 2 

alternative forced choice (2-AFC) between normal and abnormal instead of a 0-100 slider, in 

order to reduce movement to a single keypress, and to speed up the trials. Additionally, this 

study used the aforementioned answering window, whereas Chapter 4 had unlimited response 

duration. 

Data analysis 

Behavioural data was processed using signal detection theory to calculate d’ and criterion. D’ 

indicates performance, where higher values indicate better performance, with 0 being chance-

level. Criterion indicates bias, where positive values indicate a conservative bias, where 

participants were more likely to mark mammograms as normal, and negative values indicate a 

liberal bias, where a participant was more likely to mark any given mammograms as abnormal. 

No AUC was calculated since ratings were 2-AFC (normal/abnormal). Trials where the participant 

did not respond in time were excluded from the calculations. For radiologist 4), arrow key 

responses were flipped for the first 10 trials of block 2, as the radiologist reported they had been 

answering the wrong way around up to that point during the measurement, as noted by the 

experimenter during the measurement. D’, proportion of Hits, proportion of False Alarms, and 

criterion were the main performance outcomes.  

EEG data was analysed using MNE-Python (Gramfort et al., 2013). First, EEG data was pre-

processed using MNE-FASTER (https://github.com/wmvanvliet/mne-faster) based on the Fully 

Automated Statistical Thresholding for EEG artifact Rejection (FASTER) technique (Nolan, Whelan, 

& Reilly, 2010), which automates data cleaning, reducing personal bias. Channel Cz was used as 

online reference, but as the first step of data processing, all data was re-referenced to average 

https://github.com/wmvanvliet/mne-faster
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activity. Then it was bandpass filtered between 0.5 and 40 Hz to remove electricity and 

movement artifacts and resampled to 200 Hz to reduce file size. FASTER was run on this filtered 

data, which first detected bad or dead channels and interpolated these, after which signal 

components containing eye movements or other artifacts were removed using Independent 

Component Analysis. Lastly, individual epochs were cleaned, interpolating channels which 

contained temporary noise, and epochs that remained too noisy were rejected. After FASTER, 

each epoch was baseline corrected to the average activity -700 to -200 ms before stimulus onset. 

On average, FASTER interpolated 4.2±1.939 (2 to 7) channels, removed 2±1.095 (1 to 4) 

Independent Component Analysis components, and lastly, rejected 10.4 ±2.154 (8 to 13) out of 

400 trials for remaining noise.  

Events of interests were identified based on the behavioural data to structure the epochs. This 

resulted in each epoch labelled as a hit, miss, true negative, and false alarm depending on the 

rating and ground truth. Each epoch was constructed using a time window of -700 to +1000 

around the appearance of the mammogram. 

 

Figure 5.2: Timeline of topography maps of averaged activity across the five radiologists. 

Five clusters of interest were identified based on both literature and analysis of a topography 

timeline across all trials and radiologists (Fig 2). This timeline showed early positivity in occipital, 

parietal and temporal regions, with negativity in central and frontal regions. The occipital activity 

persisted to about 600 ms, after which some frontal and central positivity appeared at 700 ms. 

Based on this, the following clusters were chosen in this study (Fig 3):  

• Occipital: Oz, O1, O2, POz, PO3, PO4 

• Parietal: Pz, P1, P2, P3, P4, P5, P6, P7, P8 



128 
 

• Temporal: FT7, FT8, T7, T8, TP7, TP8 

• Central: FC1, FCz, FC2, C1, C2, CP1, CPz, CP2  

• Frontal: Fpz, Fp1, Fp2, AF8, AF7, AF4, AF3, F8, F7, F6, F5, F4, F3, F2, F1, Fz 

 

Figure 5.3: Channel layout and chosen clusters of interest: Frontal (blue), central (yellow), 

temporal (green), parietal (red), and occipital (pink). 

The main effect of interest was that of different gist categories on neural activity, which was 

investigated by comparing the evoked activity in two different categories of mammograms. Two 

main comparisons were made, firstly between abnormal (cancerous) and normal mammograms, 

secondly between hits and true negatives. This second comparison was chosen as trials in which 

the participant correctly identified the mammogram as (ab)normal would be expected to have 

the strongest gist of (ab)normality processing. Because of the small sample size in this 

exploratory study, single subject bootstrap analysis was performed, following the methods 

described by Oruç et al. (2011). The bootstrap analysis was performed for each subject for the 

chosen ERPs for each cluster of interest (table 1), comparing the activity between two conditions 

(abnormal vs normal; hits vs true negatives).  

For each cluster, the ERPs of interest and their respective search windows (table 1) were chosen 

by a combination of ERP descriptions in previous literature and inspecting the averaged time 

traces in our experiment (see for example Fig 6), of which a brief summary is given here. The 
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chosen ERPs are a combination of traditional visual (P1, N1, P2, N2) and decision making (P3a, 

P3b) ERPs, and more exploratory choices (N400, P600). A wide range of ERPs and clusters was 

chosen, as this is an exploratory study in which both effects and any lack thereof are of interest, 

given that there is no previous research investigating the EEG patterns evoked by gist extraction 

in medical images. 

Firstly, P1 amplitude is strongly influenced by spatial attention, but also by sensory information, 

responding more strongly to target stimuli (Hillyard & Anllo-Vento, 1998), making it potentially 

interesting for early differential effects. The P1 is characterized by posterior positivity from 70-90 

ms after stimulus onset, peaking around 80 to 150 milliseconds, with maximal activity in the 

occipital region (Finnigan, O'Connell, Cummins, Broughton, & Robertson, 2011; Gonzalez, Clark, 

Fan, Luck, & Hillyard, 1994; Hillyard & Anllo-Vento, 1998). P1 activity was investigated in the 

occipital, parietal, and temporal clusters with a 60 to 150 ms search window.  

Next, similar to the P1, N1 amplitude is also amplified by spatial attention and sensory 

information (Hillyard & Anllo-Vento, 1998), but attentional modulation of the N1 occurs only 

when further visual processing is required for a category response RT task (e.g. long vs short bar) 

rather than a simple stimulus-onset RT task (Mangun, 1995; Vogel & Luck, 2000). As our task 

requires further processing, the N1 might show effects of any early normal-abnormal 

discrimination. The N1 is observed in most brain regions, including anterior and posterior areas 

(Finnigan et al., 2011; Gonzalez et al., 1994; Hillyard & Anllo-Vento, 1998), with activity in an 

approximate time window of 130 to 210 ms. The peak of the N1 is often observed first in anterior 

regions, around 150 ms, followed by the posterior regions, around 170 ms (Gonzalez et al., 1994). 

While the N1 is not traditionally investigated in the temporal cluster, it has been reported in 

centro-temporal cluster (C3, C4, T3, T4 in the 10-20 layout) (Johannes, Münte, Heinze, & 

Mangun, 1995). For that reason, the N1 was tested across all five clusters, with later search 

windows for the posterior (120 to 200 ms) than anterior (75 to 150 ms) clusters.  

The P2 is often thought to be involved with working memory and encoding (Finnigan et al., 2011). 

The current study had a special interest in the P2 as this ERP was suggested as a scene-selective 

marker with sensitivity to scene category (manmade/natural) and image statistics (e.g. spatial 

coherence) (Harel et al., 2016). The P2 is observed in various brain regions, including frontally 

and occipitally (Kanske, Plitschka, & Kotz, 2011). P2 latency differs between regions, for example 

around 190 to 290 ms frontally (Kanske et al., 2011), and 160 to 340 ms occipitally (Finnigan et 

al., 2011). The P2 was tested in the occipital and parietal (200 to 350 ms), and frontal and central 

cluster (150 to 250 ms).  
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N2 activity can observed across anterior and posterior areas, with different roles for each 

component. The focus in this study was on the fronto-central component. This fronto-central N2 

is thought to be involved in cognitive control and in mismatch from a perceptual template 

(Folstein & Van Petten, 2008), which might result in differential activity in the current study. This 

fronto-central N2 is sometimes labelled as the N2c, or classification N2 (Näätänen & Picton, 1986; 

Patel & Azzam, 2005). The N2 plays a potential role in the classification of gist of abnormality. The 

fronto-central N2 typically peaks around approximately 180 to 325 ms (Folstein & Van Petten, 

2008; Patel & Azzam, 2005). The N2 was tested in the frontal and central cluster with the 180 to 

325 ms search window. 

The P3a is thought to reflect passive comparison, influenced by attention and novelty, that plays 

a role in initial detection and attentional recruitment towards a target. In concert with the P3a, 

the P3b represents a (mis)match with a consciously held working memory trace, with amplitude 

indexing memory storage. However, the P3b is also involved in decision making (Twomey, 

Murphy, Kelly, & O'Connell, 2015), and its amplitude might represent cumulating evidence 

towards a threshold to trigger a categorization decision. P3b’s role as a decision-making 

threshold is especially interesting for the current study. The P3a and P3b are part of the P300, 

which typically emerges approximately 300 to 400 ms after onset, but is known for a large range 

of possible latencies, from 250 to 900 ms (Patel & Azzam, 2005). The P3a typically has a shorter 

latency and a fronto-central distribution, and habituates faster than the P3b (Polich, 2003). The 

P3a was tested for the frontal, central, and temporal clusters with a search window of 200 

(temporal) or 250 (frontal/central) to 350 ms. The P3b occurs more posteriorly and was tested 

for the occipital and parietal clusters with a search window of 350 to 500 ms.  

The N400 is known to be involved in semantic context mismatch in reading, but has also been 

observed in non-semantic situations (Näätänen & Picton, 1986). For example, N400 amplitude 

was influenced by object-in-scene congruity (Ganis & Kutas, 2003), with a centro-parietal 

maximum. The N400 can be observed in mainly anterior and central regions, with the frontal 

N400 occurring between 460 and 590 ms (Kanske et al., 2011). The temporal cluster N400 was 

also investigated in this study as the average trace indicated a potential effect at the N400 time 

window, and some studies have reported a smaller, but measurable N400 trace in temporal 

electrodes (Kutas & Hillyard, 1982; Shin, Kang, Choi, Kim, & Kwon, 2008). Thus, N400 was 

investigated in the temporal, frontal, and central clusters with a search window of 350-500 

(temporal) or 350-600 ms (frontal/central). 

Lastly, the P600 has commonly been investigated in the context of syntactical grammatical errors 

during reading (Osterhout & Holcomb, 1992). However, increased P600 amplitude was also 

observed across the scalp when flashing an incongruent eye-region area in a face image 
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(completed face shown for 200 ms), with maximal activity parietally at 620 ms (Jemel, George, 

Olivares, Fiori, & Renault, 1999). It is a more untraditional choice for a visual categorization study, 

but was included as an exploratory component, as a cancerous abnormality could be regarded as 

an incongruent area within a mammogram. The P600 has a latency of 500 to 800 ms with a 

midpoint around 600 ms and is widely distributed, with maximal activity fronto-centrally (Jemel 

et al., 1999; Osterhout & Holcomb, 1992). The P600 was tested in the parietal, temporal, central, 

and frontal cluster (500 to 700 ms). 

Table 5.1: List of the ERPs that were tested for each of the clusters, with the start and end (ms) of 

the search window for the peak activity, the direction of the peak, and the target window length 

(ms) around the peak. The table combines some clusters where the same ERPs were investigated, 

to reduce the length of the table. 

Cluster ERP Search Start Search End Direction Target Window 

Occipital & Parietal P1 70 150 + 50 

Occipital & Parietal N1 120 200 - 50 

Occipital & Parietal P2 200 350 + 100 

Occipital & Parietal P3b 350 500 + 100 

Parietal P600 500 700 + 100 

Temporal P1 70 150 + 50 

Temporal N1 120 200 - 50 

Temporal P3a 200 350 + 100 

Temporal N400 350 500 - 50 

Temporal P600 500 700 + 100 

Frontal & Central N1 75 150 - 50 

Frontal & Central P2 125 250 + 50 

Frontal & Central N2 180 325 - 50 

Frontal & Central P3a 250 350 + 50 

Frontal & Central N400 350 600 - 50 

Frontal & Central P600 500 700 + 100 

 

The single subject bootstrap method (Oruç et al., 2011) briefly consists of the following steps: 

Within each search time window, individual target time windows were drawn around the point 

where the average ERP for that cluster-condition-combination had the highest amplitude (e.g. for 

a Central P2, a positive peak at 173 ms would give a 50 ms target time window of 148 – 198 ms 

across which activity was averaged). This was done to account for individual differences in timing 
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of ERPs, since the goal of this analysis was to identify differences in peak amplitude. The activity 

difference between conditions was calculated as the difference between the mean potential of 

the ERPs for condition A and B across their respective target time windows. Then, to check if this 

difference was significantly different from 0, non-parametric bootstrapping was performed and 

the activity difference was calculated on each random resample, creating a histogram of activity 

differences (Fig 4). The p-value of the differences is calculated as the (smaller) proportion of 

resamples overlapping with 0 times two, as the comparisons were all two-tailed, as there was no 

a priori expectation of which condition would be larger, for example for radiologist 5, 1.5% of the 

resampled differences in Temporal P600 were lower than 0, so the p-value would be .03, showing 

significant evidence for higher activity in Abnormal than Normal trials. Figure 5 shows the 

corresponding average activity, target time windows, and p-values for each radiologist for the 

Temporal P600. The goal of this exploratory study was to highlight potentially interesting activity 

patterns for future investigation, which was why a wide net was cast across potentially 

interesting brain regions and ERPs. Thus, p-values were not corrected for multiple comparisons.  



133 
 

 

Figure 5.4: Example histograms showing the distributions of 10.000 bootstrapped differences (µV) 

in Temporal P600 ERPs when viewing abnormal versus normal mammograms for each radiologist. 

The histograms show that the temporal P600 evoked by Abnormal mammograms was larger in 

amplitude for radiologists 1, 4, and 5, and smaller for radiologists 2 and 3. Each plot also shows 

the real observed difference (black line), zero difference line (red dashed line), and the proportion 

of samples below/above 0 (top left corner).  
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Figure 5.5: Single subject bootstrapping results showing the Temporal P600 target time windows 

for abnormal (green dashes) and normal (red dashes), averaged activity, and p-values per 

radiologist. 

5.4. Results 

Behavioural analysis 

As expected, radiologists extracted the gist of abnormality with above-chance accuracy. 

Radiologists’ performance was highest on mammograms with obvious abnormalities, followed by 

subtle abnormalities, with a substantial drop in performance for the global cases, while 

remaining above chance for four out of five radiologists (table 2). Looking at criterion, there was 

some variation, with three radiologists leaning towards a conservative rating strategy, while the 

other two had a slightly liberal rating strategy, but neither showed a large bias, with all values 

between -0.25 and 0.2. 

Table 5.2: Performance measures for each radiologist, showing their overall criterion, overall d’ 

performance and d’ separated for the obvious, subtle, and global mammograms. The years of 

experience and number of mammogram cases viewed in the previous year are also shown. 
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RAD CRITERION D’ OBVIOUS SUBTLE GLOBAL YEARS EXP CASES VIEWED 

1 -0.068 0.546 1.035 0.933 0.184 18 5000 

2 0.058 0.622 1.210 1.152 0.137 5 6000 

3 -0.118 0.424 0.878 0.619 0.136 14 5000 

4 0.217 0.224 0.698 0.528 -0.117 14 7000 

5 0.199 0.544 0.996 1.186 0.040 10 10000 

AVERAGE 0.058 0.472 0.963 0.884 0.076 12.2 6600 

 

Differential neural activity per cluster 

To explore the neural correlates of the gist of medical abnormality, evoked activity is compared 

between trials showing abnormal and normal mammograms, and between hits and true 

negatives. Investigating this differential activity can show when and where the gist of medical 

abnormality appears. The average EEG traces associated with abnormal and normal mammogram 

trials (Fig 6) as well as hits and true negatives (Fig 7) are shown for each individual radiologists as 

well as the group average (Fig 6) to illustrate the overall activity patterns. These show 

considerable differences in timing and amplitude of EEG activity between the radiologists across 

the five neural clusters. However, visual inspection also shows potential areas of divergence in 

activity levels, where differential activity might occur between the abnormal and normal 

mammograms. In the next sections, detailed investigation of differential activity is described for 

each radiologist using single subject bootstrapping for each cluster.  
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Figure 5.6: Time trace of the average neural activity in Frontal, Central, Temporal, Parietal, and 

Occipital clusters for Abnormal (solid) and Normal (dashed) mammograms for individual 

radiologists, and group averages (Abnormal, black line; Normal, grey line). 
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Figure 5.7: Time trace of the average activity in Frontal, Central, Temporal, Parietal, and Occipital 

clusters for Hits (solid) and True Negatives (dashed) mammograms for individual radiologists, and 

group averages (Hits, black line; True Negatives, grey line). 

Occipital cluster 

For the occipital cluster, there was no significant evidence for differential activity between 

abnormal and normal mammograms for any of the four investigated ERPs (Table 3). For hits and 

true negatives, on the other hand, there was evidence for differential activity in three ERPs (Table 

4). While differential activity was only observed in two out of five radiologists in the occipital 

cluster, these had higher amplitudes for hits than true negatives. 
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Table 5.3: Results of single subject bootstrapping for the Occipital cluster, showing the p-value 

and the average difference between abnormal and normal trials in μV for each of the ERPs per 

radiologist. P-values under 0.05 are bold and underlined. 

 
P1 N1 P2 P3b 

 
p Δ (μV) p Δ (μV) p Δ (μV) p Δ (μV) 

1 0.109 -0.543 0.405 -0.293 0.073 -0.506 0.125 -0.449 

2 0.628 0.172 0.686 0.155 0.764 -0.091 0.431 -0.196 

3 0.632 0.169 0.747 0.115 0.544 -0.192 0.195 0.368 

4 0.896 -0.042 0.920 0.035 0.355 0.277 0.226 0.329 

5 0.495 0.327 0.984 0.025 0.941 -0.030 0.729 0.115 

 

Table 5.4: Results of single subject bootstrapping for the Occipital cluster, showing the p-value 

and the average difference between hits and true negatives in μV for each of the ERPs per 

radiologist. P-values under 0.05 are bold and underlined. 

 
P1 N1 P2 P3b 

 
p Δ (μV) p Δ (μV) p Δ (μV) p Δ (μV) 

1 0.179 -0.562 0.600 -0.244 0.104 -0.581 0.625 -0.191 

2 0.696 -0.171 0.773 -0.137 0.345 -0.356 0.453 -0.233 

3 0.017 1.044 0.340 0.442 0.553 -0.264 0.438 0.291 

4 0.910 -0.034 0.818 0.093 0.034 0.828 0.023 0.789 

5 0.136 0.933 0.366 0.600 0.554 0.288 0.376 0.384 

 

Parietal cluster 

Next, for the Parietal cluster, there was significant evidence for differential activity between 

abnormal and normal mammograms for two of the five investigated ERPs in one radiologist each 

(Table 5). Differential activity was observed both early (P1) and late (P600), without significant 

effects in N1, P2, and P3b. Again, differential activity became more pronounced when comparing 

hits and true negatives: there were four comparisons with significant evidence for differential 

activity in three out of five ERPs, across two radiologists (Table 6). Overall, parietal activity was 

higher for abnormal/hits than normal/true negatives, except for the P1 where activity was higher 

for normal mammograms. 
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Table 5.5: Results of single subject bootstrapping for the Parietal cluster, showing the p-value and 

the average difference between abnormal and normal trials in μV for each of the ERPs per 

radiologist. P-values under 0.05 are bold and underlined. 

 
P1 N1 P2 P3b P600 

 
p Δ (μV) p Δ (μV) p Δ (μV) p Δ (μV) p Δ (μV) 

1 0.041 -0.427 0.513 -0.133 0.080 -0.303 0.610 -0.090 0.993 -0.002 

2 0.939 0.021 0.583 0.129 0.911 0.021 0.919 -0.019 0.775 0.043 

3 0.258 -0.240 0.954 -0.009 0.692 0.083 0.558 0.108 0.024 0.369 

4 0.807 0.052 0.722 0.074 0.123 0.294 0.325 0.173 0.137 0.228 

5 0.788 -0.104 0.611 0.231 0.822 -0.057 0.691 0.100 0.093 0.393 

 

Table 5.6: Results of single subject bootstrapping for the Parietal cluster, showing the p-value and 

the average difference between hits and true negatives in μV for each of the ERPs per radiologist. 

P-values under 0.05 are bold and underlined. 

 
P1 N1 P2 P3b P600 

 
p Δ (μV) p Δ (μV) p Δ (μV) p Δ (μV) p Δ (μV) 

1 0.068 -0.468 0.726 -0.094 0.300 -0.222 0.223 0.267 0.180 0.315 

2 0.629 -0.132 0.907 -0.041 0.550 -0.140 0.909 0.028 0.251 -0.235 

3 0.691 -0.106 0.496 0.201 0.666 0.128 0.157 0.367 0.036 0.437 

4 0.427 0.234 0.238 0.344 0.006 0.676 0.022 0.524 0.000 0.737 

5 0.574 -0.296 0.795 -0.134 0.748 -0.102 0.835 0.071 0.695 0.113 

 

Temporal cluster 

For the temporal cluster, there was significant evidence for differential activity between 

abnormal and normal mammograms for three out of five investigated ERPs, all in the same 

radiologist (Table 7). Additionally, while not significant, differential activity trended towards 

significance in radiologist 3 for both the N1 and P600, but in the opposite direction to the 

significant effects observed in radiologist 5, as illustrated in Fig 8 (N1) and Fig 9 (P600). For hits 

and true negatives, there was significant evidence for differential activity for three out of five 
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ERPs across two radiologists (Table 8). N1 differential activity was significant for both radiologist 

3 and 5, but again with opposite directionality (Fig 10). Overall, higher amplitudes were observed 

in the P1 and P3a for abnormals/hits, while the N1 and P600 showed opposite directionality of 

effect between the two radiologists with significant or trending effects. These reversals suggest 

that there might be individual differences in the representations of (ab)normality in the temporal 

region. 

Table 5.7: Results of single subject bootstrapping for the Temporal cluster, showing the p-value 

and the average difference between abnormal and normal trials in μV for each of the ERPs per 

radiologist. P-values under 0.05 are bold and underlined. 

 
P1 N1 P3a N400 P600 

 
p Δ (μV) p Δ (μV) p Δ (μV) p Δ (μV) p Δ (μV) 

1 0.822 0.070 0.749 0.101 0.404 0.229 0.598 0.172 0.114 0.410 

2 0.153 -0.408 0.983 -0.007 0.465 0.165 0.387 -0.204 0.409 -0.150 

3 0.734 0.064 0.074 -0.351 0.922 0.017 0.073 -0.365 0.068 -0.326 

4 0.933 -0.025 0.596 0.127 0.950 0.011 0.152 0.322 0.123 0.323 

5 0.058 0.678 0.003 1.028 0.011 0.700 0.414 0.248 0.030 0.536 

 

Table 5.8: Results of single subject bootstrapping for the Temporal cluster, showing the p-value 

and the average difference between hits and true negatives in μV for each of the ERPs per 

radiologist. P-values under 0.05 are bold and underlined. 

 
P1 N1 P3a N400 P600 

 
p Δ (μV) p Δ (μV) p Δ (μV) p Δ (μV) p Δ (μV) 

1 0.896 0.055 0.885 -0.050 0.080 0.551 0.870 -0.059 0.186 0.424 

2 0.689 -0.139 0.359 0.307 0.180 0.351 0.260 -0.295 0.327 -0.223 

3 0.995 -0.003 0.020 -0.582 0.711 -0.080 0.063 -0.525 0.457 -0.183 

4 0.543 -0.191 0.328 -0.331 0.310 -0.312 0.525 -0.198 0.112 0.420 

5 0.049 0.922 0.003 1.399 0.148 0.564 0.112 0.643 0.005 0.900 
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Figure 5.8: Single subject bootstrapping results showing the Temporal N1 target time windows for 

abnormal (green dashes) and normal (red dashes), averaged activity, and p-values per radiologist. 
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Figure 5.9: Single subject bootstrapping results showing the Temporal P600 target time windows 

for abnormal (green dashes) and normal (red dashes), averaged activity, and p-values per 

radiologist. 
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Figure 5.10: Single subject bootstrapping results showing the Temporal N1 target time windows 

for hits (green dashes) and true negatives (red dashes), averaged activity (hits: green, true 

negatives: red), and p-values per radiologist. 

Central cluster 

For the central cluster, there was evidence for differential activity between abnormal and normal 

mammograms for three out of six ERPs, across three different radiologists (Table 9). The 

significant findings were characterized by higher amplitudes for abnormal mammograms. 

Additionally, for the P2, activity trended towards significance in two radiologists, radiologist 3 

(higher amplitude for abnormal) and radiologist 5 (higher amplitude for normal) (Fig 11). 

Similarly, P600 amplitude was significantly higher for abnormal mammograms for radiologist 3 

but trended towards significance in the opposite direction for radiologist 4 (Fig 12), again 

indicating potential individual differences. For hits versus true negatives, there were 4 significant 

findings, with evidence for differential activity in three out of six ERPs across three radiologists 

(Table 10). While amplitude was higher for hits in the N2, for the P2, amplitude was higher for 

true negatives. For the P600, opposite directionality of effects was observed for radiologist 3 

(higher for hits) and radiologist 4 (higher for true negatives) (Fig 13). The opposite directionality 
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of effects observed in the P2 and P600 for the central cluster suggest that individual differences 

may play a role in the neural signature of medical abnormality gist in these ERPs. 

Table 5.9: Results of single subject bootstrapping for the Central cluster, showing the p-value and 

the average difference between abnormal and normal trials in μV for each of the ERPs per 

radiologist. P-values under 0.05 are bold and underlined. 

 
N1 P2 N2 P3a N400 P600 

 
p Δ (μV) p Δ (μV) p Δ (μV) p Δ (μV) p Δ (μV) p Δ (μV) 

1 0.778 0.063 0.307 0.225 0.521 0.146 0.298 0.230 0.314 0.230 0.342 0.183 

2 0.475 0.147 0.832 -0.048 0.753 -0.058 0.040 0.367 0.178 0.220 0.258 0.164 

3 0.904 -0.028 0.069 0.383 0.953 0.009 0.157 0.299 0.081 0.365 0.000 1.270 

4 0.730 0.077 0.246 -0.262 0.660 -0.109 0.750 0.076 0.197 -0.308 0.060 -0.383 

5 0.100 -0.638 0.060 -0.675 0.002 -1.111 0.449 -0.218 0.341 -0.259 0.710 -0.096 

 

Table 5.10: Results of single subject bootstrapping for the Central cluster, showing the p-value 

and the average difference between hits and true negatives in μV for each of the ERPs per 

radiologist. P-values under 0.05 are bold and underlined. 

 
N1 P2 N2 P3a N400 P600 

 
p Δ (μV) p Δ (μV) p Δ (μV) p Δ (μV) p Δ (μV) p Δ (μV) 

1 0.323 0.274 0.265 0.323 0.530 0.181 0.954 -0.021 0.098 0.464 0.840 -0.051 

2 0.397 0.205 0.458 -0.197 0.178 -0.317 0.181 0.307 0.693 0.084 0.306 0.181 

3 0.876 -0.039 0.150 0.404 0.965 -0.013 0.312 0.295 0.155 0.383 0.000 1.303 

4 0.931 0.022 0.173 -0.401 0.774 -0.094 0.415 0.268 0.788 -0.081 0.000 -1.343 

5 0.085 -0.845 0.006 -1.245 0.030 -1.029 0.605 0.185 0.287 -0.372 0.903 0.042 
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Figure 5.11: Single subject bootstrapping results showing the Central P2 target time windows for 

abnormal (green dashes) and normal (red dashes), averaged activity, and p-values per radiologist. 
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Figure 5.12: Single subject bootstrapping results showing the Central P600 target time windows 

for abnormal (green dashes) and normal (red dashes), averaged activity, and p-values per 

radiologist. 
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Figure 5.13: Single subject bootstrapping results showing the Central P600 target time windows 

for hits (green dashes) and true negatives (red dashes), averaged activity (hits: green, true 

negatives: red), and p-values per radiologist. 

Frontal cluster 

Lastly, for the frontal cluster, there was significant evidence for differential activity between 

abnormal and normal mammograms for one out of six ERPs, in one radiologist (Table 11). The 

P600 showed higher activity for normal mammograms. For hits versus true negatives, there was 

more evidence for differential activity, in three of the six ERPs, in three instances across two 

radiologists (Table 12). Overall, differential activity in the frontal cluster varied in directionality: 

the P2, N400, and P600 showed higher amplitude for normals/TNs, whereas the P3a was higher 

for hits. 

Table 5.11: Results of single subject bootstrapping for the Frontal cluster, showing the p-value 

and the average difference between abnormal and normal trials in μV for each of the ERPs per 

radiologist. P-values under 0.05 are bold and underlined. 

 
N1 P2 N2 P3a N400 P600 
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p Δ (μV) p Δ (μV) p Δ (μV) p Δ (μV) p Δ (μV) p Δ (μV) 

1 0.751 0.086 0.968 -0.010 0.144 0.369 0.279 0.273 0.066 0.454 0.204 0.274 

2 0.873 0.059 0.795 -0.093 0.910 0.031 0.580 0.159 0.767 0.081 0.644 0.111 

3 0.977 0.007 0.965 0.009 0.421 0.228 0.051 0.526 0.749 -0.080 0.002 -0.677 

4 0.982 -0.001 0.777 -0.083 0.349 -0.292 0.394 -0.253 0.351 -0.262 0.680 0.092 

5 0.877 -0.068 0.603 -0.284 0.843 -0.086 0.296 -0.469 0.259 -0.423 0.103 -0.443 

 

Table 5.12: Results of single subject bootstrapping for the Frontal cluster, showing the p-value 

and the average difference between hits and true negatives in μV for each of the ERPs per 

radiologist. P-values under 0.05 are bold and underlined. 

 
N1 P2 N2 P3a N400 P600 

 
p Δ (μV) p Δ (μV) p Δ (μV) p Δ (μV) p Δ (μV) p Δ (μV) 

1 0.641 0.157 0.778 -0.096 0.202 0.385 0.852 -0.059 0.813 0.071 0.773 0.082 

2 0.493 0.310 0.776 0.129 0.360 0.385 0.855 -0.070 0.696 0.138 0.200 0.381 

3 0.106 -0.525 0.498 -0.245 0.231 0.473 0.019 0.889 0.583 -0.195 0.547 0.180 

4 0.626 -0.208 0.018 -0.995 0.068 -0.765 0.353 -0.399 0.008 -0.946 0.085 -0.487 

5 0.880 0.096 0.610 -0.331 0.357 -0.465 0.382 -0.486 0.320 -0.422 0.765 -0.087 

 

Summary of differential activity 

For (ab)normality comparisons, a total of nine instances of significant differential activity were 

found (6.9% of all comparisons), across four of the five radiologists. For hits-TN, this increased to 

18 instances (13.8%), but evidence of differential activity was only observed in three radiologists. 

Clearly, differential activity was more prominent between hits and true negatives, suggesting that 

this comparison can tell us more about how/where effective gist extraction takes place. Here, 

patterns in the observed differential activity will be explored with a focus on hits versus true 

negatives.  

Differential activity between hits and true negatives was observed in at least one instance for 

each ERP but was most prominent in the P600 (table 13), where evidence was found for 3 

radiologists. A similar pattern was observed for (ab)normality comparisons (appendix A), 
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although less clearly so due to the lower number of significant effects. This pattern suggests that 

differential activity becomes more apparent in later stages of medical gist processing. 

Table 5.13: Total sum and percentage (in brackets) of significant/trending effects per ERP per 

radiologist for hits vs true negatives. Percentage is calculated based on the number of clusters it 

was tested at (from Occipital, Parietal, Temporal, Central, and Frontal). 

Rad P1 N1 P2 N2 P3a P3b N400 P600 Total 

1 0 (0%) 0 (0%) 0 (0%) 0 (0%) 0 (0%) 0 (0%) 0 (0%) 0 (0%) 0 (0%) 

2 0 (0%) 0 (0%) 0 (0%) 0 (0%) 0 (0%) 0 (0%) 0 (0%) 0 (0%) 0 (0%) 

3 1 

(33.3%) 

1 

(20%) 

0 (0%) 0 (0%) 1 

(33.3%) 

0 (0%) 0 (0%) 2 

(50%) 

5 

(19.2%) 

4 0 (0%) 0 (0%) 3 

(75%) 

0 (0%) 0 (0%) 2 

(100%) 

1 

(33.3%) 

2 

(50%) 

8 

(30.8%) 

5 1 

(33.3%) 

1 

(20%) 

1 

(25%) 

1 

(50%) 

0 (0%) 0 (0%) 0 (0%) 1 

(25%) 

5 

(19.2%) 

Total 2 

(13.3%) 

2 (8%) 4 

(20%) 

1 

(10%) 

1 (6.7%) 2 (20%) 1 (6.7%) 5 

(25%) 

18 

(13.8%) 

 

Aggregating results across clusters for the hits versus true negatives shows that differential 

activity was observed in each cluster (table 14). Observations were distributed quite evenly 

across each of the clusters, suggesting a whole-brain representation of the gist of medical 

abnormality. Again, a similar pattern was observed for (ab)normality comparisons (appendix B), 

but without observed effects in occipital cluster and only one effect in the frontal cluster. 

Together, these results suggest that gist processing takes place across a network of regions, 

suggesting a distributed representation of the gist of medical abnormality. 

Table 5.14: Total sum and percentage (in brackets) of significant/trending effects per cluster per 

radiologist for hits vs true negatives. Percentage is calculated based on the number of ERPs that 

were tested for that cluster. 

Rad Occipital Parietal Temporal Central Frontal Total 

1 0 (0%) 0 (0%) 0 (0%) 0 (0%) 0 (0%) 0 (0%) 

2 0 (0%) 0 (0%) 0 (0%) 0 (0%) 0 (0%) 0 (0%) 

3 1 (25%) 1 (20%) 1 (20%) 1 (16.7%) 1 (16.7%) 5 (19.2%) 

4 2 (50%) 3 (60%) 0 (0%) 1 (16.7%) 2 (33.3%) 8 (30.8%) 

5 0 (0%) 0 (0%) 3 (60%) 2 (33.3%) 0 (0%) 5 (19.2%) 
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Total 3 (15%) 4 (16%) 4 (16%) 4 (13.3%) 3 (10%) 18 (13.8%) 

 

Next, individual differences in number of significant findings were observed in this study. While 

this of course could be caused by differences in data quality, this might also reflect differences in 

individual neural correlates. Most intriguing, the observed differential activity for radiologist 4 

increased drastically from none (0%) for (ab)normality to 10 (38.5%) for hits versus true 

negatives, which was the highest out of the five radiologists. Interestingly, radiologist 4 had the 

lowest overall performance (d’ 0.224). One might speculate that their gist extraction was 

relatively weak, resulting in low differential activity especially when looking at all abnormal and 

normal trials. Potentially, filtering for the limited amount of hits and true negatives allowed the 

weaker gist signal to be observed. However, it is important to note that this enhancing effect did 

not occur for radiologist 2, who interestingly had the highest overall performance (d’ 0.622). 

Lastly, the results section described inverted directionality of observed effects between 

individuals in the temporal (N1, P600) and central cluster (P2, P600). This prompts the idea that 

there might be a difference in how individuals represent the gist of medical abnormality, which 

might affect their neural activity patterns. On the one hand, one might learn the textural and 

structural elements of normal breast tissue, looking for breaks in this normal structure to identify 

abnormalities. On the other hand, one might construct representations of abnormal global 

textures and structural elements that indicate abnormality. These differences in representation 

might explain the opposite directions of effects when comparing the neural signature of 

processing the gist of an (ab)normal mammogram, where either normal or abnormal 

mammograms cause increased EEG activity. Further research is needed to explore the extent of 

individual differences and potential effects on performance.  

Correlations between neural activity and behavioural performance 

Investigating the behavioural relevance of observed neural correlates could shed further light on 

their role in gist extraction. Correlations were calculated between observed differential activity 

and behavioural performance (d’), or perceptual experience (cases viewed in the past year, years 

of experience). This section will focus on the later ERPs (P3a, N400, and P600), for the Parietal, 

Temporal, and Central cluster. Absolute differences in peak activity were used to account for the 

observed individual differences in direction of effects, as discussed earlier. Thus, a positive 

correlation means larger differential activity correlated with higher performance or perceptual 

experience measures. Due to the small sample size, these correlations are heavily exploratory, 

but it might still show some potentially interesting patterns.  
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For hits versus true negatives (table 15), the central P3a trended towards a large, positive 

correlation with d’ (τ=.800, p=.083). The parietal P600 trended towards a large, positive 

correlation with years of experience (τ=.738, p=.077). Lastly, parietal P600 trended towards a 

large, positive correlation with years of experience (τ=.738, p=.077). Lastly, the temporal P3a 

trended towards a large, positive correlation with cases viewed (τ=.738, p=.077). Taken together, 

while none of the correlations were significant, each of the trends had a positive Kendall’s tau, 

indicating that the difference in neural activity between hits and true negatives was higher the 

behavioural measure increased. Most interestingly, the positive correlation between P3a and d’ 

suggests having a more distinctive central P3a signals for abnormal and normal mammograms 

was associated with better performance. Future research could further investigate the role of the 

P3a in medical gist extraction. Effects were found across the parietal, temporal, and central 

cluster, although only the central cluster correlated with d’, suggesting this region might be 

especially important for behaviourally relevant elements of medical gist extraction. A similar 

pattern of results was found for (ab)normality comparisons (appendix C). 

Table 5.15: Kendall rank correlation for correlations between the absolute difference between hits 

and true negatives and d’, cases viewed, and years of experience. The table shows the Kendall's τ 

coefficient and p-value for each correlation, with trending values in bold font. 

  
D' YEARS OF 

EXPERIENCE 

CASES VIEWED 

Cluster ERP τ p τ p τ p 

Parietal P600 -0.600 0.233 0.738 0.077 -0.105 0.801 

Temporal P3a 0.200 0.817 -0.527 0.207 0.738 0.077 

 
N400 0.000 1.000 -0.527 0.207 0.316 0.448 

 
P600 0.000 1.000 0.527 0.207 0.105 0.801 

Central P3a 0.800 0.083 -0.316 0.448 0.105 0.801 

 
N400 0.200 0.817 -0.316 0.448 0.105 0.801 

 
P600 -0.600 0.233 -0.105 0.801 0.105 0.801 

 

5.5. Discussion 

As expected, the behavioural results of this study replicated the previous literature (Patrick C. 

Brennan et al., 2018; Evans, Georgian-Smith, et al., 2013; Evans et al., 2016), showing that 

radiologists are indeed able to extract the gist of abnormality in unilateral mammograms 

containing obvious or subtle abnormalities, as well as mammograms with only global signals of 
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abnormality (the breast contralateral to the abnormality, or taken before the woman went on to 

develop cancer).  

More importantly, evidence for differential activity between abnormal and normal mammograms 

was found in the EEG signals, showing that the neural signature of extracting the gist of medical 

abnormality can be detected. Comparing neural activity in trials with abnormal to normal 

mammograms showed evidence for some differential activity in all tested regions except for the 

occipital cluster. However, this evidence was sporadic and varied widely across individuals. 

Comparing hits and true negatives provided more evidence for differential activity, across all five 

clusters, although this still differed across individuals. Differential activity was spread across the 

occipital, parietal, central, temporal, and frontal cluster, suggesting a whole-brain representation 

of the gist of medical abnormality. This suggests that medical gist extraction takes place across a 

network of regions across different brain areas, rather than being restricted to mainly the 

occipital area, with a distributed neural signature for performing medical gist categorisation. 

In contrast to the current study, differential activity between manmade and natural scenes has 

mainly been reported in occipital and parietal regions (Groen et al., 2016). This discrepancy might 

be due to differences in the properties of the gist signal to be extracted. Neural activity in scene 

gist extraction has been shown to correlate with contrast energy and spatial coherence, the latter 

of which also correlated with perceived naturalness of the scene (Groen et al., 2013), both low-

level spatially pooled summary statistics. For example, spatial coherence indexes scene 

fragmentation and can be computed by spatial pooling of early visual areas such as the LGN and 

V1 (Groen et al., 2013). More intermediate level visual properties of scenes such as size and 

clutter are also represented in neural activity, as shown by whole-brain MEG decoding (Cichy et 

al., 2017). Photographs of small and large scenes had differential activity patterns from 141 ms 

after exposure, while clutter-evoked activity differentiated earlier, around 75 ms, and both 

remained discriminable up to 600 ms after stimulus onset. Sensor-wise decoding illustrated that 

both size and clutter could be differentiated in occipital, parietal, central, and temporal areas, 

although it remained the strongest in the occipital and parietal regions. While the scenes and 

their size/clutter status were not task-relevant, the results by Cichy, Pantazis, and Oliva (2014) do 

show that these spatial layout properties are represented more widely across the brain. In 

contrast to manmade and natural scenes, the gist category of a mammogram is unlikely to be 

easily characterized using the low-level summary statistics described by Groen et al. (2013), 

especially in the mammograms without any local abnormalities (contralateral, prior). This 

complexity can also be recognised in machine learning approaches attempting to accurately 

categorise mammograms, often combining various features to capture aspects of texture 

features, edge detection, pixel maps, and more, while still not reaching satisfactory performance 
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(Jalalian et al., 2013; Kurek, Świderski, Osowski, Kruk, & Barhoumi, 2018). However, it is 

important to note that just because evidence for differential activity in the occipital region was 

limited, this does not mean that the occipital region is not important for the gist process – but it 

does demonstrate a contrast with the scene gist findings, and it establishes that the neural 

signature of the gist of abnormality is characterized by widespread activity. Indeed, it is likely that 

differentiating abnormal from normal mammograms requires integration of various extracted 

image properties to perform this complicated categorisation, recruiting a network of areas across 

the brain. 

Evidence for differential activity was found from early (70-150 ms) to late (500-700 ms) time 

windows, and across traditional visual (P1, N1, P2, N2) and decision making (P3a, P3b) ERPs as 

well as later ERPs (N400, P600) that were included as exploratory options. This shows that the 

gist of medical abnormality was discriminable in neural activity early on and remained detectable 

throughout processing. Previous research suggested the occipital P2 as a scene-selective ERP, 

that was shown to be sensitive to scene category and image properties (Harel et al., 2016). In the 

current study, for (ab)normality comparisons, there was no evidence for differential activity in 

the P2. However, there was some evidence for differential activity between hits and true 

negatives in the occipital, parietal, central, and frontal cluster. While these effects were only 

observed in two radiologists, it suggests that the P2 might be sensitive to gist categorisation in 

general, rather than solely the scene-selective role that was previously suggested.  

Surprisingly, the P600 was the ERP with the most evidence for differential activity in the current 

study. This suggests that the P600 might be a marker for extracting and perceiving the gist of 

medical abnormality. The P600 has previously been reported to show differential activity across 

the scalp, with increased P600 amplitude when viewing a face with an incongruent eye-region 

(Jemel et al., 1999). Such changes to the composition of a face are known to influence the 

holistic, or global, impression of the face identity (Richler & Gauthier, 2014; Richler, Mack, 

Gauthier, & Palmeri, 2009). Based on results from Jemel et al. (1999), it could be that the 

differential activity in the P600 was caused by similarly “incongruent” distortions in abnormal 

mammograms. On the other hand, the P600 has commonly been associated with grammar and 

language research. One such study showed that P600 amplitude can be modulated by the 

saliency and probability of a stimulus, analogue to the P3b (Coulson, King, & Kutas, 1998). 

Abnormal mammograms with local abnormalities might be more salient. Additionally, the 

expected probability (prevalence) of abnormal mammograms is very low, for example 0.7% in a 

large American screening trial (Pisano et al., 2005). So, while abnormality prevalence was higher 

in the current study, perceptual experience might still influence the P600 response for the low-

probability stimulus of an abnormal mammogram. Thus, the differential activity in the P600 
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might be explained by the detection of a visual incongruency or might be related to the saliency 

and probability of abnormal mammograms. Future research should further explore the roles of 

the P2 and P600 in medical gist extraction and could additionally utilize techniques such as multi-

voxel pattern analysis or machine learning decoding to gain further insight into overall patterns 

of activity in more detail than allowed by an ERP-based approach. 

A general pattern emerged in the direction of differential effects in this study, which were 

characterized by higher amplitudes for abnormal or hit trials than the normal or true negative 

trials. This was the case for the occipital, parietal, and temporal cluster, for both positive and 

negative ERPs. One exception was the frontal cluster, where the direction of difference varied. It 

is difficult to compare these findings to manmade/natural scene research, as these scene 

categories do not directly map to normal or abnormal category equivalents. Animal 

present/absent studies have reported higher amplitudes in occipito-temporal electrodes for 

distractors lacking the animal stimulus (Bacon-Macé et al., 2005). VanRullen and Thorpe (2001) 

isolated task-related differential activity in both animal and vehicle go/no-go tasks, and showed 

higher occipital and parietal amplitudes for non-targets, and higher frontal and central amplitude 

for targets from 150 to ~300 ms. These reports of higher occipital and parietal activity for 

distractors in object-in-scene detection contrast with the current findings of higher activity for 

abnormal mammograms, if one assumes the abnormal mammogram would be regarded the 

‘target’. However, animal/vehicle presence detection is more akin to an object-in-scene 

detection task. Additionally, the current study used a 2-AFC task, meaning both the “target” 

(abnormal) and “distractor” (normal) trials required a response, in contrast to the go/no-go 

design in the previously discussed studies. Thus, direct comparison with these previous studies 

remains difficult. 

Notably, while the general pattern of differential activity was towards higher amplitudes for 

abnormal/hit trials, the current study also observed instances in the temporal and central cluster 

with opposite directionality of differential activity between two individuals. This was observed for 

the temporal (N1, P600) and central cluster (P2, P600). These differences in directionality of 

effects suggest that there might be individual differences in the way neural correlates represent 

the different categories of the gist of medical abnormality. Individual ERP variability has been 

observed in multiple previous studies, although the exact cause is not always known. In general, 

background EEG activity is thought to influence latency and amplitude of ERPs. For example, 

variation in amplitude and latency of P300 components can be influenced by ultradian rhythms in 

background alpha, delta, and theta EEG activity (Anokhin et al., 2001; Polich, 1997). However, at 

the time of writing, no known studies have reported reversals in directionality of differential 

activity between individuals like those observed in this study – although this might also be caused 
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by a lack of single-subject analysis in favour of group-level analyses, which would hide individual 

differences. 

Lastly, the current study observed some trending correlations between differential activity and 

markers of performance, overall medical experience, and recent perceptual experience, in the 

temporal, central, and parietal cluster. Each of these correlations was positive, with the 

differential activity and the behavioural measure increasing together. One previous study also 

reported a positive link between neural activity and performance, as higher differential activity in 

an occipito-temporal electrode correlated with better performance on an animal go/no-go task 

(Bacon-Macé et al., 2005), in agreement with the positive correlation observed between d’ and 

central P3a in this study. Perceptual and medical experience have also both been shown to 

influence neural activity, although these studies only reported on overall, rather than differential 

activity. As an example of perceptual experience, training with symbols of a novel script 

increased overall occipito-temporal N1 amplitude evoked by seeing these symbols in a one-back 

task (Brem et al., 2018). Medical expertise with EKGs or chest radiographs increased the 

amplitude of the N170 evoked by evaluation of that medical imaging modality (Rourke, 

Cruikshank, Shapke, & Singhal, 2016). Medical expertise also correlated positively with activity in 

the right FFA, but negatively with lateral occipital cortex activity, when rapidly judging local 

abnormalities in chest radiographs (Harley et al., 2009). Furthermore, studies have shown that 

resting state fMRI activity differs between radiology interns and age-matched controls (Y. Wang 

et al., 2021; Zhang et al., 2022), showing the effect of medical and perceptual experience. What’s 

more, some of these differences in resting state fMRI activity correlated with performance on a 

separate nodule detection task. However, as mentioned above, it is important to note that these 

studies did not look at functional differences (differential activity) but instead reported overall 

ERP amplitude across all cases or resting state activity. Thus, while there is a clear consensus that 

there are correlations between perceptual experience/behavioural measures and neural 

correlates, more research is needed into their correlation with differential activity. Any future 

research should include differential activity measures as was done by Bacon-Macé et al. (2005) 

and the current study, as this can shed more light on which neural patterns might be functionally 

related to experience and/or performance. 

An obvious shortcoming of this exploratory study is the small sample size, as a consequence of 

the extremely niche population and necessity of an in-person visit for the EEG measurement. 

Future research should aim to increase sample size, as this would allow a more traditional group-

level analysis to be performed alongside the detailed single-subject bootstrapping used in this 

analysis. The most obvious approach would be to increase the number of radiologists, for 

example via collaboration within a consortium of universities and hospitals, or through a portable 
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EEG device. Alternatively, the training protocol described in Chapter 4 could be used to induce 

learning of the gist of medical abnormality in naïve participants, which would allow for larger 

sample sizes, albeit with less strongly established gist signals. What’s more, this second approach 

could provide insight into the neural stages of development of a new gist category if EEG 

measurements were performed at multiple time points. By combining both approaches, different 

levels of perceptual expertise could be explored by comparing medical experts to (un)trained 

naïve participants. This would bring further insight into the different stages of gist processing, 

distinguishing low-level visual clues from more advanced, emergent properties resulting from 

expert gist processing, and decisional and semantic markers.  

5.6. Conclusion 

Differential activity was observed across multiple brain regions, with evidence to suggest that 

distributed activity across the whole brain is involved in differentiating medical gist categories. 

The involvement of areas beyond the occipital and parietal regions suggested that the neural 

signature of medical gist is characterized by distributed activity, in contrast to the occipito-

parietal activity reported in previous scene research. This suggest that the gist of medical 

abnormality requires more complicated integration of different textural and structural 

regularities, and complex summary statistics that cannot be easily captured in neural activity 

during early stages of visual processing. Instead, the gist of medical abnormality takes shape 

across distributed activity in a network of brain regions. Importantly, individual differences were 

observed, in strength and numerosity of observed effects and even in the direction of differential 

activity. This suggests there might be differences in the neural signature of medical abnormality 

categories between individuals. Additionally, differential activity amplitude in some ERPs 

correlated with performance, overall medical experience, and recent perceptual experience. This 

suggests that the neural signature of medical gist categories in an individual might be influenced 

by their medical and perceptual experience, and it might be associated with performance. 

Overall, the results of this exploratory study suggest that gist extraction of medical abnormality 

takes place across a network of brain regions, that integrate visual information to construct 

representations of medical (ab)normality, with individual differences potentially influencing the 

exact way that medical gist categories are represented in neural activity. Future research should 

further investigate possible individual differences in differential neural activity as well as the 

functional role of different ERPs in the network of regions associated with the extraction of the 

gist of medical abnormality.  
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5.7. Appendices 

Appendix A 

Summarising the differential activity for (ab)normality comparisons across ERPs (Table 17) shows 

that differential activity was present in early (P1, N1), middle (N2, P3a), and late components 

(P600). This is in line with the observations for the hits vs true negatives comparison (see main 

text). 

Table 5.16: Total sum and percentage (in brackets) of significant/trending effects per ERP per 

radiologist for abnormal vs normal. Percentage is calculated based on the number of clusters it 

was tested at (from Occipital, Parietal, Temporal, Central, and Frontal). 

Rad P1 N1 P2 N2 P3a P3b N400 P600 Total 

1 1 (33.3%) 0 (0%) 0 (0%) 0 (0%) 0 (0%) 0 (0%) 0 (0%) 0 (0%) 1 (3.8%) 

2 0 (0%) 0 (0%) 0 (0%) 0 (0%) 1 (33.3%) 0 (0%) 0 (0%) 0 (0%) 1 (3.8%) 

3 0 (0%) 0 (0%) 0 (0%) 0 (0%) 0 (0%) 0 (0%) 0 (0%) 3 (75%) 3 (11.5%) 

4 0 (0%) 0 (0%) 0 (0%) 0 (0%) 0 (0%) 0 (0%) 0 (0%) 0 (0%) 0 (0%) 

5 0 (0%) 1 (20%) 0 (0%) 1 (50%) 1 (33.3%) 0 (0%) 0 (0%) 1 (25%) 4 (15.4%) 

Total 1 (6.7%) 1 (4%) 0 (0%) 1 (10%) 2 (13.3%) 0 (0%) 0 (0%) 4 (20%) 9 (6.9%) 

 

Appendix B 

Summarising the differential activity for (ab)normality comparisons across clusters (Table 17) 

shows that there was no evidence for differential activity in the occipital region. Most evidence 

was observed for the temporal, central, and parietal cluster, with one instance of differential 

activity for the frontal cluster. This pattern broadly matches that observed for hits-TN (see main 

text), in that the parietal, temporal, and central clusters seem to be the main drivers of 

differential activity, showing a network of activity for the gist of medical abnormality.  

Table 5.17: Total sum and percentage (in brackets) of significant/trending effects per cluster per 

radiologist for abnormal vs normal. Percentage is calculated based on the number of ERPs that 

were tested for that cluster. 

Rad Occipital Parietal Temporal Central Frontal Total 

1 0 (0%) 1 (20%) 0 (0%) 0 (0%) 0 (0%) 1 (3.8%) 

2 0 (0%) 0 (0%) 0 (0%) 1 (16.7%) 0 (0%) 1 (3.8%) 

3 0 (0%) 1 (20%) 0 (0%) 1 (16.7%) 1 (16.7%) 3 (11.5%) 

4 0 (0%) 0 (0%) 0 (0%) 0 (0%) 0 (0%) 0 (0%) 

5 0 (0%) 0 (0%) 3 (60%) 1 (16.7%) 0 (0%) 4 (15.4%) 
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Total 0 (0%) 2 (8%) 3 (12%) 3 (10%) 1 (3.3%) 9 (6.9%) 

 

Appendix C 

For the (ab)normality comparison (table 18), differential activity in the central P3a trended 

towards a large, positive correlation with d’ (τ=.800, p=.083), as was also observed in the hits-TN 

correlations (see main text). The central N400 correlated significantly with years of experience 

(τ=.949, p=.023). Lastly, the temporal N400 correlated significantly with cases viewed (τ=.949, 

p=.023). While these differ from the ERPs observed for hits-TN, the pattern is the same, with 

positive correlations between differential activity amplitude and the behavioural measures. 

Table 5.18: Kendall rank correlation for correlations between the absolute difference between 

abnormal and normal trials and d’, cases viewed, and years of experience. The table shows the 

Kendall's τ coefficient and p-value for each correlation. 

  
D' YEARS OF 

EXPERIENCE 

CASES VIEWED 

Cluster ERP τ p τ p τ p 

Parietal P600 -0.400 0.483 0.316 0.448 -0.527 0.207 

Temporal P3a -0.200 0.817 0.105 0.801 0.105 0.801 

 
N400 -0.200 0.817 -0.527 0.207 0.949 0.023 

 
P600 -0.400 0.483 -0.105 0.801 0.316 0.448 

Central P3a 0.800 0.083 -0.527 0.207 0.105 0.801 

 
N400 -0.200 0.817 0.949 0.023 -0.527 0.207 

 
P600 -0.600 0.233 -0.105 0.801 0.105 0.801 
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Chapter 6: Discussion 

This thesis set out to investigate the processing and acquisition of gist categorisations, primarily 

focusing on the gist of medical abnormality in mammograms. The introduction of this thesis 

defined gist extraction as rapid, global, and non-selective, occurring through a set of processes 

that extract spatial structural regularities and summary statistics as well as basic and 

intermediate disjunctive features. This thesis aimed to further our understanding of parameters 

influencing gist extraction through the investigation of the effects of increased exposure time 

(Chapter 2) and the effects of high spatial frequencies (Chapter 3). Additionally, it was 

hypothesized that recognising the gist of a category requires the formation of (neuronal) 

perceptual expectations of the gist properties of that category, as no innate “forest”, “man-

made”, or “abnormal mammogram” selective populations of neurons are expected to exist. It 

was predicted that these perceptual expectations could develop through statistical learning 

evoked by perceptual exposure alone, without localized feedback. In chapter 4, this thesis 

investigated whether the gist of medical abnormality could indeed be learned by naïve 

participants through perceptual exposure with global feedback. Lastly, in chapter 5, the neural 

signature of gist extraction in medical expertise was investigated in an exploratory study with five 

expert radiologists. The key findings of each chapter will be summarised below, followed by a 

discussion of their implications for the medical imaging field. 

6.1. Effects of viewing time 

The results from chapter 2 suggest that information derived from gist extraction does not 

accumulate, nor does it decrease over longer periods of viewing time, as performance of expert 

radiologists rating mammograms did not change significantly when exposure time was unlimited 

compared to a brief 500 ms. In other words, unlimited exposure time did not result in additional 

global categorisation information being available to improve performance, nor did the local 

processing remove the ability of participants to access this global categorisation information. 

These findings match the results from Evans, Georgian-Smith, et al. (2013) who showed no 

significant difference in performance on gist of medical abnormality in mammograms with subtle 

masses or architectural distortions with exposure times of 250, 500, 750, 1000, and 2000 ms. 

Chapter 2 extends these findings to unlimited exposure time, and broadens them to 

mammograms with obvious abnormalities, and to priors, mammograms without any localizable 

abnormalities that went on to develop cancer in the near future.  

The lack of improvement with longer exposure time suggests that gist extraction is not a 

cumulative process that increases in accuracy with longer exposure time. This might be because 

all available global information is already extracted by the gist processes within the first 500 ms 
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of viewing a mammogram, and further exposure cannot further increase the gist signal. This 

would fit well with the findings from Evans, Georgian-Smith, et al. (2013) described above. On the 

other hand, more global information might be available, but is either not accessed or not 

consciously available to influence perception – maybe because the shift towards selective, local 

processing decreases the weight given to gist perception. 

Importantly, however, performance of radiologists did not diminish with unlimited exposure time 

either, even when no visible abnormalities were present (in priors). For these priors, a shift away 

from global gist towards local processing would be expected to decrease performance due to the 

lack of local abnormalities. This suggests that any further local processing taking place under 

focused attention during unlimited exposure time did not reduce the ability of radiologists to 

access their gist-based first impressions. Thus, gist information remained available to the 

observer even when further processing for local, detailed information took place.  

Under the reverse hierarchy model, an initial feedforward sweep creates an automatic or implicit 

first impression of a more general categorization (the gist), as neurons in these higher visual 

areas are tuned to higher level categories invariant to scale or position (Hochstein & Ahissar, 

2002), allowing recognition of categories from variable viewpoints (Evans & Chong, 2012). 

Indeed, a feed-forward machine learning model based on the anatomical visual pathways to the 

prefrontal cortex performed similarly to humans on rapid animal/no-animal scene categorization 

(Serre et al., 2007), showing that an initial feed-forward sweep can access gist categorisations. 

Subsequent local processing takes place via re-entrant processing, in which feedback from higher 

cortical areas returns to lower cortical areas to further refine information through feedback loops 

with lower cortical regions, allowing for local object binding and focal attention (Hochstein & 

Ahissar, 2002). The lack of improvement or impairment with longer viewing times suggest that 

the initial feed-forward sweep in which gist is extracted is not impaired by subsequent re-entrant 

focal processing, as the gist signal remains available with longer exposure. 

6.2. Spatial frequency bands 

The results from chapter 3 suggest that important information underlying the gist of medical 

abnormality is contained in specific frequency bands, while the presence of other frequency 

bands might mask the gist signal with noisy or non-informative content. Filtering out frequencies 

below 0.5, or below 1.5 cpd both increased the ability of radiologists to recognise the gist of 

abnormality in priors, mammograms without any localizable actionable lesions that went on to 

develop cancer in the near future. For the 0.5 cpd filter, this occurred without affecting their gist 

performance on mammograms with obvious or subtle lesions, while the 1.5 cpd filter caused a 

slight decrease in performance on subtle abnormalities. On the other hand, 1 or 2 cpd filters 
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provided no such benefits, and instead decreased overall performance. Combined, these findings 

suggest that 0 – 0.5 cpd contains mainly noise, as removing it increased performance in the 0.5 

cpd filter, perhaps through removing LSF breast density signals. While breast density can be a risk 

factor for breast cancer, previous research found no correlation between BIRAD density and gist 

of abnormality ratings (Evans, Birdwell, et al., 2013; Evans, Georgian-Smith, et al., 2013; Evans et 

al., 2016). Next, the 0.5 – 1 cpd contains important spatial structural regularities for the gist 

signal, as removing it decreased performance in 1 cpd filter. On the other hand, based on these 

results, 1 – 1.5 cpd seems to contain a mix of noise and gist signal, as removing it in the 1.5 cpd 

filter increased performance on priors, but decreased performance on subtle lesions. Lastly, the 

results suggest that the 1.5 – 2 cpd frequency band might contain important information for the 

gist of abnormality, as the 2 cpd high-pass filter decreased overall performance. Thus, spatial 

structural regularities that are informative for the gist of medical abnormality seem to be present 

in 0.5 to 2 cpd, while evidence for noisy signal reducing performance was found for 0 to 0.5 and 1 

to 1.5 cpd. These results emphasize the important role of spatial structural regularities in gist 

extraction, where specific gist categories are likely to be represented by information in specific 

spatial frequency bands. Our past perceptual experience might form expectations for the spatial 

structural regularities that represent a category, and this is what then allows observers to rapidly 

recognise the gist of their visual environment.  

Importantly, Chapter 3’s results were acquired by a pipeline of spatial frequency filtering, 

brightness boosting, and contrast normalization. The boosted brightness in the current study was 

used to ensure that the high-pass filtered parenchyma remained easily visible, as high-pass filters 

strongly reduce the contrast energy in an image (Perfetto et al., 2020), meaning they have lower 

overall visibility. By first boosting the overall brightness, this visibility was improved, while the 

last step of contrast normalization ensured that the high-pass filtered mammograms contained 

the same contrast levels as the unfiltered mammograms. A potential concern would be that 

these steps might disturb the ‘naturalistic’ state of a mammogram. However, mammograms are 

inherently ‘unnatural’, as they are 2D visualizations of the x-ray absorption levels of 3D tissue: 

the visibility of specific tissues in x-rays depends on the specific machine, settings, image 

processing used (Cole et al., 2005), and even the practitioners’ preferential compression force 

(Mercer et al., 2013). In the clinic, radiologists even use programs to change the contrast or 

brightness of the cases as they view them. Thus, the brightness increase does not create an 

unrealistic stimulus, and was conductive to the main aim of the chapter of finding spatial 

frequency manipulations that could enhance detection rates.  

Previous studies support the importance of contrast normalization when investigating the roles 

of spatial frequency bands in gist extraction. Without contrast normalization, gist detection of 
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obvious and subtle abnormalities dropped slightly for both high-pass and low-pass filtered 

mammograms (Evans et al., 2016), although the decrease in performance was much more 

pronounced for low-pass filtered mammograms. Thus, the previous findings by Evans et al. 

(2016) suggested that more gist information was retained in the HSF than LSF mammograms 

even before contrast normalization took place. Chapter 3 extends on these findings by showing 

that high-pass filters combined with contrast normalization retain overall performance as 

compared to the full spectrum mammograms. The effect of contrast normalization can also be 

observed in scene gist research. Gist performance was reduced in HSF scenes without contrast 

normalization, but contrast normalization equalized performance between LSF and HSF scene 

images (Perfetto et al., 2020). Thus, contrast normalization is essential to reveal the full effects of 

high-pass filtering in both mammograms and scenes.  

More generally, conflicting effects of spatial frequency content have been reported in scene 

processing. The earliest findings suggested that scene perception of hybrid images relied mostly 

on LSF with 30 ms viewing time (Schyns & Oliva, 1994), however, this effect swapped to a 

preference for the HSF scene content at 150 ms viewing time, and what’s more, both LSF and HSF 

content already had a priming effect at 30 ms viewing time. Additionally, these hybrid images 

were not naturalistic stimuli, as the mixing of spatial frequencies breaks contiguity of contours 

and edges in the HSF spectrum. Additionally, follow-up research showed that the most recent 

exposure (either LSF or HSF) influenced the perceived category of a hybrid scene (Oliva & Schyns, 

1997), suggesting that our visual system might be able to flexibly tune its sensitivity to expected 

or relevant spatial frequencies when a full spectrum image is presented. What is more, 

neuroimaging largely points to the importance of HSF in evoking early visual activity (Kauffmann 

et al., 2015; Rajimehr et al., 2011) and more interestingly, decoding scene categories from this 

activity in many scene-selective areas (Berman et al., 2017; Walther et al., 2011). Lastly, a 

perceptual study reported no significant differences in performance between LSF and HSF scene 

images (Perfetto et al., 2020). Thus, the more recent findings in wider scene research suggest 

that the role of spatial frequency bands might depend on the specific task, recent exposure, and 

expectations, but does suggest that HSF plays an important role in encoding scene category 

information.  

Taken together, both LSF and HSF are available to the visual system early after stimulus onset, 

but HSF might be especially important for gist extraction processes, especially where only 

difficult, global signals are present. Interestingly, HSF is able to enhance the gist of abnormality in 

prior mammograms that go on to develop cancer in the near future, potentially by removing 

noise from breast density signals in the 0 to 0.5 cpd frequency band.  
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Future research could use bandpass or bandstop filters to narrow down the effects of the 

absence or presence of more specific spatial frequency bands, rather than the high-pass filters 

used in the current study. These bandpass/bandstop filters can selectively isolate or filter out a 

small band of frequencies. This would allow for more controlled adjustment of frequency content 

and could help identify the exact combination of spatial frequencies that contain the gist of 

abnormality in mammograms. This could for example be used to filter out F0 – F0.5 and F1-F1.5 

frequency bands to investigate whether this combination further enhances the gist signal or 

could remove/isolate smaller sub-sections of the frequency bands that were identified in this 

chapter. 

Additionally, future research should investigate whether the same or similar effects of high-pass 

filters can be observed in other medical imaging modalities, such as digital breast tomosynthesis, 

chest radiographs, or even micrographs or dermatological images. This would provide insight into 

whether the gist of medical abnormality is present in the same spatial frequency bands across 

modalities, or whether this is modality specific. Modality specific spatial frequency signatures of 

the gist of abnormality would be expected, as the ability to extract the gist of abnormality in one 

domain does not translate to another, for example between mammograms and micrographs of 

cervical cells (Evans, Georgian-Smith, et al., 2013). 

6.3. Statistical learning through perceptual exposure 

The results from chapter 4 suggest that the gist of a new category can be learned through 

perceptual exposure with global feedback, although there might be individual differences in 

speed and/or ability to learn to recognise the new gist signals. Splitting the group of naïve 

observers into learners and non-learners based on their training sessions revealed a significant 

improvement between the pre- and post-training tests for the learners, while there was no 

significant change for the non-learners. For learners, performance improved across different 

conspicuities of mammograms, including those without visible abnormalities (contralaterals, 

priors). The fact that performance improved for these very difficult cases without localizable 

abnormalities supports the notion that these observers learned to recognise a global textural 

signal representing the gist of medical abnormality.  

While there generally is a lack of research into the learning of a new gist categorisation, the 

existing results largely match the findings of Chapter 4. Firstly, a study by Hegdé (2020) showed 

that participants learned to detect the presence/absence of obvious abnormalities in 

mammograms after untimed perceptual training with global feedback (Hegdé, 2020). This study 

did not limit viewing time in training nor tests, but its findings support that learning to detect 

abnormalities in mammograms can occur through perceptual exposure alone. What’s more, 
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previous research has shown that observers could learn to detect the presence of camouflaged 

targets in textures through rapid perceptual training (500 ms viewing time) with global feedback, 

going from chance-levels to d’s of ~1.2 after approximately 7200 trials of training (X. Chen & 

Hegdé, 2012). This rapid detection of the presence or absence of a camouflaged target might 

make use of information extracted by gist processes to rapidly detect whether the global 

structural regularities of the texture are intact or not. Thus, while not directly a gist extraction 

task, X. Chen and Hegdé (2012) findings fit with the view that learning of spatial structural 

regularities can occur through rapid, perceptual training with global feedback.  

Furthermore, a recent study suggested that observers were able to learn the gist of medical 

abnormality in skin histology images after only a brief training (~258 exemplars) (DiGirolamo et 

al., 2023). But, while participants were tested on a gist task (500 ms), training used long viewing 

times (up to 24 seconds) and outlined the area of the image containing the skin pathology in the 

feedback. Interestingly, participants were also able to distinguish the four different skin 

pathologies within the “abnormal” category with slightly above-chance accuracy after training, 

suggesting that these pathologies had distinct characteristics that could be recognised within 500 

ms. However, the article did not report no baseline performance, nor expert performance on the 

same task. This makes it difficult to contextualize the observed above-chance performance after 

training. Furthermore, the histology images all contained localisable abnormalities, which are 

expected to occur predominantly in the centre of the image, and the experiment did not use an 

equivalent to the contralaterals/priors used in mammography gist research. Skin histology 

categorisations might be easier to perform pre-training, or might be more uniform in 

appearance, allowing simple perceptual rules to be used for their categorisation. This might make 

the skin histology task more akin to the sexing of chicks. Sexing of chicks is initially difficult (60.5% 

correct), but observers reached near-expert performance (84% correct) after brief instruction 

from experts (Biederman & Shiffrar, 1987), suggesting that this task could be learned through 

instructions on specific exemplars. Skin histology images might similarly contain such key 

features. However, despite these shortcomings, the methodology and results of DiGirolamo et al. 

(2023) pose some interesting areas for future research. The ability of radiologists to recognise 

abnormality subtypes in mammograms in a gist extraction paradigm has not previously been 

investigated, so it is unknown whether for example histological subtypes of breast cancer (see 

Makki (2015) for a review) have distinguishable gist characteristics. Thus, it would be interesting 

to investigate whether radiologists can detect certain subcategories of abnormalities in 

mammograms – and perhaps even in priors or contralaterals. However, it is very possible that the 

characteristics of skin pathologies in histology images are more distinctive than histological 

subtypes of breast carcinoma in mammograms. If abnormality gist subcategories can be 
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distinguished in mammograms, it would be interesting to further investigate the gist properties 

of these subtypes using image analysis, as well as further investigate the effects of training 

paradigm on the speed of learning and eventual strength of learned signals, given the many 

differences in training paradigm used in each of the discussed studies (X. Chen & Hegdé, 2012; 

DiGirolamo et al., 2023; Hegdé, 2020). 

In addition to the potential influence of training paradigm, the subdivision of learners and non-

learners in Chapter 4 suggests that there are also individual differences in ability to learn a new 

category of gist. However, it is not known whether non-learners were fully unable to learn to 

recognise the gist of abnormality, or if they simply needed a longer training period before 

learning would be visible. Previous studies show some evidence for individual differences in 

learning speed. For example Hegdé (2020) reported a wide variability in the length of training 

needed for participants to reach a performance threshold, varying from 288 to 936 trials. More 

generally, individual differences have been reported both in speed of perceptual learning 

(Maniglia & Seitz, 2018; Rotman, Lavie, & Banai, 2020; Waller, 2000), and in perceptual 

capabilities, such as visual search (Brock, Xu, & Brooks, 2011; Sobel, Gerrie, Poole, & Kane, 2007; 

M.-J. J. Wang, Lin, & Drury, 1997). Individual differences in learning rates also influence spatial 

learning in virtual environments (Waller, 2000). Additionally, the influence of individual 

differences on learning rate was calculated to be 36.8% across a range of visual and auditory 

perceptual tasks (Yang et al., 2020), comparable to the 38.6% for task-specific factors, supporting 

the substantial influence of individual differences observed in Chapter 4. 

Individual differences might be innate, due to previous experiences, or might even be related to 

differences in strategy. For example, innate differences in cortical thickness of relevant brain 

areas correlated with learning rates of a motion discrimination visual search task (Frank et al., 

2016) as well as a face view discrimination task (Bi et al., 2014). On the other hand, previous 

perceptual experience might also influence learning rates, as people with more previous gaming 

activity were found to have higher general perceptual learning rates (Bavelier et al., 2012; 

Bejjanki et al., 2014).. Lastly, strategy or general motivation could influence learning rates as well. 

Learners might have been more motivated, or might have used a more global strategy, while 

non-learners might have used mal-adaptive strategies, such as focusing on local signals. Indeed, 

Previous research suggested that learners and non-learner groups utilized different strategies 

while being trained on a difficult grating orientation task (Dobres & Seitz, 2010). Exploring 

differences in previous perceptual experiences, neural anatomy, and strategies employed by 

learners and non-learners in a gist learning task could provide valuable insight into which fixed 

(innate) and flexible (previous experience/strategy) factors influence the learning of a new gist 

category. 
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Individual differences in performance are also present in medical experts. Performance on a gist 

task correlated with recent perceptual exposure (cases read in the previous year) with an R2 of 

0.2 (Evans et al., 2019). Similarly, specificity on a untimed mammography screening task in 

laboratory conditions correlated strongly with annual reading volumes, while there was no such 

correlation with their ability to correctly localize abnormalities (Rawashdeh et al., 2013). Thus, 

radiologists’ performance in both gist and screening tasks were affected by recent previous 

perceptual exposure, supporting the idea that gist extraction performance is influenced by the 

amount of recent exposure. However, perceptual exposure did not fully explain individual 

differences in gist performance, suggesting there are other factors influencing individual 

performance. Further research should investigate which factors explain individual differences in 

learning speed and perceptual capabilities. One potential avenue would be to administer a 

testing battery of general visual processing tasks to see how performance on simple laboratory 

tasks correlates with training speed and performance on a gist task. Additionally, it would be 

especially interesting to further investigate explanatory variables for individual differences 

between radiologists, as this might provide further insight into factors influencing gist extraction 

and might allow for selection of radiologists with a strong gist signal for risk assessment. 

Where learning did take place in Chapter 4, it was unfortunately not strongly retained. The 

performance of learners did not differ significantly from baseline after seven to ten days of 

perceptual inactivity. Thus, the gist characteristics of the newly learned category of medical 

abnormality were not sufficiently encoded to be retained over longer periods of time. It is 

possible that continuous regular exposure is required to retain the gist of a category, but a gist 

category might also become more stable after more prolonged periods of exposure. After all, it is 

unlikely that someone would be unable to categorize a scene image of a mountain, if they had 

not seen one for 7 days, or even a longer period of time. For context, it is important to keep in 

mind that the nine sessions of training amounted to only eight hours of exposure across nine to 

twenty days, followed by at least seven days of no exposure. So, while the training corresponded 

to viewing and rating almost 6500 instances of a mammogram, this is still relatively minimal 

compared to our life-long exposure to scene categories or the years of practice that expert 

radiologists have. Additionally, radiologists’ gist performance has been shown to correlate with 

cases reviewed in the previous year, but not years of experience (Evans et al., 2019), enforcing 

the idea that continued perceptual experience is important for retaining the gist of medical 

abnormality. 

Other literature on the retention of statistical perceptual learning is relatively scarce. Previous 

research has shown that statistically learned shape sequences are retained for at least 24 hours, 

resulting in faster reaction times for the second and third shape of a triplet in an RSVP (Kim, Seitz, 
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Feenstra, & Shams, 2009), as well as above-chance performance on a triplet recognition task 

(Arciuli & Simpson, 2012). What’s more, performance on Arciuli and Simpson (2012)’s triplet 

recognition task did not differ significantly after 30 minutes, 1, 2, 4, or 24 hours, indicating that 

the statistical learning was relatively stable and consistent over time. Auditory tone patterns can 

similarly be retained for 4 and 12 hours (Durrant, Taylor, Cairney, & Lewis, 2011). However, no 

known research tested the extended retention of perceptual learning paradigms to the level of 

the 7-day interval used in Chapter 4. Thus, further research of retention of perceptual statistical 

learning in general, and especially for gist extraction, is needed. In addition to further studies on 

the retention after perceptual training in naïve participants, future research could investigate the 

retention of the gist of abnormality in medical experts that are retiring or changing careers to 

explore longer term retention, or in medical experts going on a brief hiatus of practice, such as a 

holiday, for shorter term retention. The former carries the risk of being contaminated by effects 

of cognitive decline with aging, which would require appropriate control subjects, but a 

combination of both short- and long-term retention in medical experts would provide a 

fascinating insight into the retention of a consolidated gist category that is hard to get from 

training naïve participants. 

6.4. Neural signature of gist extraction in experts 

In Chapter 5 the neural signature of extracting the gist of medical abnormality was explored in 

five expert radiologists. This study focused on differential activity, as this provides insight into 

where and when in the brain gist categories are distinctly represented in the neural activity. The 

results showed evidence for differential activity between normal and abnormal mammograms, 

across a distributed network of areas and ERPs, suggesting that gist extraction for medical 

abnormality takes place in a distributed fashion. Differential activity was observed across the 

occipital, parietal, central, temporal, and frontal cluster, and generally was caused by higher 

amplitudes for abnormal mammograms than for normal mammograms. Differential activity was 

observed throughout early and late ERP components, including the P2 that was previously 

described as a scene-selective ERP (Harel et al., 2016), and most prominently in the P600. Further 

neuroimaging studies should examine the roles of these ERPs in extracting the gist of medical 

abnormality. Additionally, more advanced techniques such as computational decoding or multi-

voxel pattern analysis of trials should be used in concert with traditional group-level and 

individual-level ERP analyses. 

However, there were also some instances where there were individual differences in the 

direction of the differential activity, meaning that the same ERP in the same cluster showed 

higher activity for hits in one radiologist, but higher activity for true negatives in another. 

Opposing directionality was observed in the temporal (N1, P600) and central cluster (P2, P600). 
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These findings suggest that the neural signature of the gist of medical abnormality might vary 

between individuals at some timepoints of neural processing. As there were some correlations 

between behavioural and expertise measures (d’, years of experience, number of cases viewed 

last year), it is also possible that there is an influence of (recent) perceptual experience on the 

neural signature of the gist of medical abnormality. As this finding was based on an exploratory 

study of only five radiologists, a more in-depth investigation of individual differences in gist 

extraction is needed. Additionally, it is unknown whether there is similar individual variation in 

the neural signature of scene gist categorisations, such as natural vs man-made, which could be 

addressed in future research.  

Lastly, it would be interesting to combine the training protocol described in Chapter 4 with the 

EEG measurements of Chapter 5 to investigate the neural activity of a gist task before and after 

perceptual training. This might also provide additional insights into the individual differences 

observed in both chapters, by exploring neural differences between learners and non-learners. It 

would be especially interesting to explore if training brings about distributed representations 

throughout the cortex, and to look at the P2 and P600 activity that was most prevalent in the 

radiologists in Chapter 5. 

6.5. Implications for medical imaging 

Medical images acquired in a screening process, such as mammograms from breast screening, 

need to be reviewed by a medical expert to assess whether there are any suspected 

abnormalities. If sufficient evidence of a potential abnormality is found, the patient is referred to 

follow-up procedures such as a biopsy. As such, screening is a time intensive process, that relies 

heavily on the first step accurately detecting cases with suspicious abnormalities. If an 

abnormality is missed, this can have disastrous consequences for the patient, as early detection is 

vital to increase chances of positive health outcomes (Coleman, 2017), and screening is relatively 

infrequent (3 years in the UK (NICE, 2017)). However, incorrect referral for follow-up also has a 

negative impact through both healthcare costs (Chubak et al., 2010) and the mental impact on 

the patient (Jatoi et al., 2006; Sandin et al., 2002). While the exact impact is incredibly difficult to 

estimate, a meta-analysis estimated that breast screening in the UK led to a 20% reduction in 

mortality, with approximately 11-19% of the cancers diagnosed constituting overdiagnosis 

(Marmot et al., 2013). Thus, assessing screening cases requires the medical expert to strike a fine 

balance between being scrupulous/selective, and vigilant in each case. 

It might seem like a simple solution to simply increase screening frequency, but this has multiple 

disadvantages. Firstly, it increases the burden on the screening process. Secondly, it increases 

healthcare costs and the chance of overdiagnosis. Thirdly, it increases the radiation dose each 
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woman receives, which can slightly increase risk of radiation-related cancer (De Gonzalez, 2011; 

L. M. Warren, Dance, & Young, 2016). Instead, a balance needs to be struck between identifying 

at-risk women for further scrutiny or screening prioritization.  

Here, the gist of medical abnormality comes into play as a potential cost-effective way of 

identifying mammograms that contain subtle signs of medical abnormality, either because the 

breast currently contains subtle cancer that was missed or because the woman is at risk of 

developing cancer in the near future. Mammograms with a high gist of abnormality score could 

be reassessed for any missed cancers by a different medical expert. This would work similar to 

the double reading used in for example the UK, which has considerable benefits in detecting 

additional cancers that would have otherwise been missed (Patrick C Brennan et al., 2019; Ciatto 

et al., 2005; Dinnes et al., 2001; R. Warren & Duffy, 1995). If no currently localizable 

abnormalities are found, the woman could be invited for more frequent screening, as a high gist 

score indicates increased risk of developing cancer in the near future (priors). This would be 

analogous to the way women with certain genetic markers increasing the risk of developing 

breast cancer are currently prioritized for more frequent screening (Pruthi et al., 2010), except 

that it would be applicable to the entire population without requiring costly genotyping. 

However, if a gist of abnormality risk rating were to be implemented in practice, every effort 

should be made to optimize the process. The results from this thesis form the basis for several 

suggestions for such optimizations to be considered, and recommendations for future research 

into potential further avenues of improvement.  

Firstly, the findings from chapter 2 suggest that 500 ms viewing time followed by a gist rating is 

sufficient for a medical expert to extract the gist of medical abnormality. And even in the 

unlimited viewing condition, the average time a radiologist spent on a case was only 5.5 ± 1.9 

(95% CI) seconds. While further research could investigate any differences in mental effort, 

fatigue, or other mental effects of rapid versus unlimited viewing time to ensure the burden on 

medical experts is minimised, these findings support the idea that gist scoring of mammograms 

could be a time-efficient method. This considerable speed might even allow gist scores to be 

collected from multiple radiologists and aggregated into one risk factor, that could help prioritize 

at-risk women for more frequent screening. 

Secondly, the results from chapter 3 suggest that the gist signal in mammograms at risk of future 

cancers (priors) can be enhanced by removing spatial frequencies below 0.5 cpd and increasing 

the brightness of the remaining high-frequency signals. Since this image enhancement did not 

affect overall performance, and significantly boosted detection of future risk, it would greatly 

increase the usefulness of gist risk factor scoring. Of course, future research could further 

enhance this effect by fine-tuning and optimizing the spatial frequency filters to be used, for 
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example bandstop filters which can be used to remove smaller bands of frequencies between 

two cut-off points. Additionally, programs used to view mammograms often allow radiologists to 

modify brightness and contrast (Pisano et al., 2005). Previous research has proposed various 

algorithms for contrast enhancement (Jenifer, Parasuraman, & Kadirvelu, 2016; Tripathy & 

Swarnkar, 2020), however, these methods are often only evaluated based on computed 

properties (e.g. contrast improvement index) rather than on radiologists’ performance. What’s 

more, differences in the neural signature of gist extraction suggest that there are differences in 

the representation of the gist of medical abnormality even after years of perceptual exposure. It 

is possible that individual differences also influence the effectiveness of image enhancements, 

especially as for example contrast sensitivity differs is known to differ between individuals 

(Owsley, Sekuler, & Siemsen, 1983; D. Peterzell, Werner, & Kaplan, 1991; D. H. Peterzell, Werner, 

& Kaplan, 1995). Thus, future research might want to explore the effects of combining spatial 

frequency filters with other types of image enhancements, such as contrast enhancement or 

brightness increases, in order to find the combination that most increases radiologists’ 

performance, while keeping an eye out for potential individual differences. 

Thirdly, by showing that non-experts can be trained on the gist of medical abnormality, this thesis 

opens the door to considerations of developing further training to improve the accuracy of gist 

extraction in medical experts. Indeed, an interesting question is whether perceptual training can 

further boost the ability of radiologists to extract the gist of abnormality – although it is possible 

radiologists are already performing near the peak of their ability. Alternatively, it might not be 

time efficient to perceptually train radiologists to increase their gist performance and use them 

for gist screening. With perceptual training it might be possible to outsource the gist scoring of 

mammograms to perceptually trained, rather than medically trained individuals. Radiographers, 

also known as radiologic technologists, have some pre-existing perceptual experience with 

mammograms as they are responsible for taking the x-ray images. This might make them better 

primed to learn to detect the gist of abnormality than general population observers. Indeed, 

radiographers are able to accurately detect cancer in screening mammograms or function as a 

second reader to a consultant radiologist, after a short accredited training course (Van den 

Biggelaar, Nelemans, & Flobbe, 2008; Wivell, Denton, Eve, Inglis, & Harvey, 2003), illustrating the 

ability of radiographers to quickly pick up perceptual signals in mammograms. Thus, to increase 

the feasibility of a gist screening program researchers should consider developing a gist training 

program for radiographers. In developing training paradigms, researchers should remain aware 

of potential individual differences. These individual differences might affect the speed of learning 

or even the level of performance someone is able to reach. 
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Lastly, while this thesis focused on the gist of abnormality in mammograms, it should not be 

taken to mean that these findings only apply to this image modality. The gist of abnormality has 

been reported in various other medical imaging modalities, underlining that this is a general 

perceptual ability, not a special property of mammograms. Gist of abnormality has been reported 

in digital breast tomosynthesis (C. C. Wu et al., 2019), chest radiographs (Carmody et al., 1981; 

Kundel & Nodine, 1975), skin pathology (Brunyé et al., 2021; DiGirolamo et al., 2023), and even 

pap test images (micrographs) of cervical cells (Evans, Georgian-Smith, et al., 2013). While the 

specifics of for example the spatial frequency filters that enhance the gist signal in each medical 

modality might vary, the general ‘gist’ of the findings in this thesis might very well apply to other 

modalities.  

6.6. Conclusion 

In conclusion, this thesis adds to the body of work showing that gist extraction takes place 

through rapid extraction of global visual information, as it occurs even when no local 

abnormalities are present in the mammogram. It was also shown that, in addition to occurring 

rapidly, gist information remains available for guiding perception even when further selective 

local processing becomes available. Furthermore, this thesis highlights the importance of higher 

spatial frequency information for the gist of medical abnormality. It also provides the first 

evidence for perceptual learning of the gist of a new category, showing that some observers can 

learn the gist of abnormality by receiving global feedback, although the learning is poorly 

retained and influenced by individual differences. The neural signature of extracting the gist of 

medical abnormality indicates the use of a distributed network of cortical regions, with potential 

individual differences in how gist categories are represented. The findings of this thesis also have 

important implications for medical image processing, as they provide ways to boost the gist of 

medical abnormality in mammograms through spatial filtering, as well as a first indication for the 

possibility of a perceptual training paradigm, which could be used to boost the extraction of the 

gist of medical abnormality in residents or radiographers. Together, the findings of this thesis 

inform ways that the gist of medical abnormality could be utilized as a risk factor in the medical 

toolbox, as well as providing further insight into gist extraction in general. 
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Thesis Abbreviations 

AIC: Akaike Information Criterion 

AUC: Area under the curve 

BF: Bayes factor 

CC: Craniocaudal 

CPD: Cycles per degree 

DNN: Deep neural network  

EEG: Electroencephalogram 

ERP: Event related potential 

HSF: High spatial frequencies 

LOC: lateral occipital complex 

LSF: Low spatial frequencies 

MEG: Magnetoencephalography 

MLO: Mediolateral oblique 

OPA: occipital place area 

PPA: parahippocampal place area 

RHT: Reverse hierarchy theory 

ROC: Receiver operator curve 

RSC: retrosplenial cortex 

RSVP: Rapid serial visual presentation 

SBC: Single breast classifier 

SBC+HM: Single breast classifier plus heatmap 
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