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Abstract 

 

In recent years, SDN has been widely studied and put into practice to assist 

in network management, especially with regards  newly evolved network 

security challenges. SDN decouples the data and control planes, while 

maintaining a centralised and global view of the whole network. However, the 

separation of control and data planes made it vulnerable to security threats 

because it created new attack surfaces and potential points of failure. 

Traditionally, network devices such as routers and switches were designed 

with tightly integrated data and control planes, which meant that the device 

made decisions about how to forward traffic as it was being received. With the 

introduction of SDN, the control plane was separated from the data plane and 

centralized in a software-based controller. The controller is responsible for 

managing and configuring the network, while the data plane handles the 

actual forwarding of traffic. This separation of planes made it possible for 

network administrators to more easily manage and configure network traffic. 

However, it also created new potential points of attack. Attackers can target 

the software-based controller or the communication channels between the 

controller and the data plane to gain access to the network and manipulate 

traffic. If an attacker successfully compromises the controller, they can gain 

control over the entire network and cause significant disruption. Seven main 

categories directly related to these risks have been identified, which are 

unauthorized access, data leakage, data modification, compromised 

application, denial of services (DoS), configuration issues and system-level 

SDN security.  
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Distributed Denial of Service (DDoS) attacks are a significant threat to SDN 

because they can overwhelm the resources of the network, causing it to 

become unavailable and disrupting business operations. In an SDN 

architecture, the central controller is responsible for managing the flow of 

network traffic and directing it to the appropriate destination. However, if the 

network is hit with a DDoS attack, the controller can quickly become 

overwhelmed with traffic, making it difficult to manage the network and 

causing the network to become unavailable. 

Coupling SDN capabilities with intelligent traffic analysis using Machine 

Learning and/or Deep Learning has recently attracted major research efforts 

especially in combatting DDoS attack in SDN. However, most efforts have 

only been a simple mapping of earlier solutions into the SDN environment. 

Focussing in DDoS attack in SDN, firstly, this thesis address the problem of 

SDN security based on deep learning in a purely native SDN environment, 

where a Deep Learning intrusion detection module is tailored to the SDN 

environment with the least overhead performance. In particular, propose a 

hybrid unsupervised machine learning approach based on auto-encoding for 

intrusion detection in SDNs. The experimental results show that the proposed 

module can achieve high accuracy with a minimum of selected flow features. 

The performance of the controller with the deployed model has been tested 

for throughput and latency. The results show a minimum overhead on the 

SDN controller performance, while yielding a very high detection accuracy. 

Secondly,  a hybrid deep autoencoder with a random forest classifier model 

to enhance intrusion detection performance in a native SDN environment was 

introduced. A deep learning architecture combining a deep autoencoder with 
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random forest learning feature representation of traffic flows natively was 

collected from the SDN environment. Publicly available packet Capture 

(PCAP) files of recorded traffic flows were used in the SDN network for flow 

feature extraction and real-time implementation. The results show very high 

and consistent performance metrics, with an average of a 0.9 receiver-

operating characteristics area under curve (ROC AUC) recorded. 

Finally,  an adaptive framework for attack mitigation in Software Defined 

Network environments is suggested. A combined three level protection 

mechanism was introduced to support the functionality of the secure SDN 

network operations. Entropy-based filtering was used to determine the 

legitimacy of a connection before a deep learning hybrid machine learning 

module made the second layer inspection. Through extensive experimental 

evaluations, the proposed framework demonstrates a strong potential for 

intrusion detection in SDN environments.  
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CHAPTER 1 : Introduction 

 

1.1 Motivation 

Machine learning is increasingly being used to defend against Distributed 

Denial of Service (DDoS) attacks in Software Defined Networking (SDN) 

environments because it can detect and respond to attacks more quickly and 

effectively than traditional approaches. DDoS attacks can generate massive 

amounts of traffic that can quickly overwhelm network resources, making it 

difficult for human operators to respond in real-time. However, machine 

learning algorithms can analyse traffic patterns in real-time and detect 

anomalies that may indicate a DDoS attack. By doing so, machine learning 

algorithms can help detect and mitigate attacks quickly and automatically, 

before they can cause significant disruption to the network. 

Moreover, machine learning algorithms can be trained to adapt to new types 

of attacks and traffic patterns over time. This means that they can become 

more effective at detecting and responding to attacks as they encounter more 

diverse and complex threats. In addition, machine learning algorithms can 

analyse vast amounts of data from various sources, such as network traffic 

logs, intrusion detection systems, and security sensors, to identify patterns 

and anomalies that may indicate an attack. In an SDN environment, machine 

learning can be used to detect DDoS attacks at various levels of the network, 

including the controller, the data plane devices, and the application layer. By 

detecting and mitigating attacks at multiple levels, machine learning can 
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provide a comprehensive defence against DDoS attacks, preventing them 

from causing significant damage to the network. 

Software Define Network (SDN) has provided a massive improvement over 

traditional networks with its wide range of centralised controls for the 

monitoring and management of the entire network. Global adoption of this 

technology due to its unmatched benefits is expected and envisaged. To 

further explore the capability of machine learning to mitigate DDoS attack in 

SDN is the focus of this study. 

1.2 Challenges 

Distributed denial-of-service (DDoS) attacks are one of the most common fatal 

malicious attacks in the current internet  environment. This is due to targeting 

widely distributed geographical sources and with high volume of traffic from 

large numbers of compromised hosts. DDoS attacks can generate massive 

amounts of traffic that can quickly overwhelm network resources, making it 

difficult for human operators to respond in real-time. However, machine 

learning algorithms can analyse traffic patterns in real-time and detect 

anomalies that may indicate a DDoS attack. By doing so, machine learning 

algorithms can help detect and mitigate attacks quickly and automatically, 

before they can cause significant disruption to the network.  

Distributed Denial of Service (DDoS) attacks can have a significant impact on 

Software Defined Networking (SDN) environments, causing disruption to 

network operations, reducing network performance, and affecting the 

availability of critical applications and services. Furthermore, DDoS attacks 

can be used as a smokescreen to distract network administrators from other 
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types of attacks, such as malware infections, data exfiltration, and 

ransomware attacks. By overwhelming network resources with a DDoS attack, 

attackers can mask their activities and exploit vulnerabilities in the network 

undetected. DDoS attacks are a rapidly evolving threat, and new types of 

attacks and techniques are being developed by attackers all the time. As a 

result, it can be challenging for researchers to keep up with the latest threats 

and develop effective mitigation strategies. However, given the significant 

impact that DDoS attacks can have on SDN environments, it is crucial for 

researchers to continue to explore new approaches to defending against 

these types of attacks. This may involve developing new machine learning 

algorithms, leveraging advanced analytics and data visualization tools, or 

using innovative network security architectures to detect and mitigate attacks 

in real-time. 

This work aims to improve and build an adaptive model which effectively 

mitigates DDoS attacks  influenced by  the above mentioned scenario and 

impact which focuses on combining SDN benefits and machine learning 

capabilities. 

1.3 Objective and Scope of the Thesis 

The primary objective of this research is to utilize the features offered by the 

SDN and harness the ability of machine learning intelligence to design and 

develop adaptive attack detection and mitigation for DDoS attacks. SDN 

centralized management and enhanced network visibility combine to develop 

an adaptive solution as a network application in an SDN environment. 

Simultaneous use in traffic monitoring and to enhance the performance of the 



- 4 - 

network by mitigating detected attacks are the true implications of the 

research. The adaptive approaches are hoped to improve the detection and 

mitigation of DDoS attacks on SDN environments. These are the predicted 

contributions to be made by this research: 

Aim 1: Identify the attack type, detect, mitigate and evaluate its impact on the 

SDN environment. 

 
i. Identify types of attack. 

ii. Identify the detection mechanisms involved. 

iii. Identify the mitigation approaches used. 

iv. Evaluate the impact of the attack on the SDN environment 

by studying the bandwidth capacity and response to SLA 

(Service Level Agreement)  by web services. 

v. Summarize the impact. 

Aim 2: Comparison of machine learning attack classifications in SDN 

environments. 

i. Compare machine learning attack classifications by 

analysing the performance of selected algorithms. 

ii. Test the classification in an SDN environment setup. 

iii. Present the AUC ROC of the compared algorithms. 

iv. Summarize the comparison for usage in future adaptive 

mitigation proposals. 

Aim 3: Proposed adaptive attack mitigation in SDN 

i. Introduction and research architecture. 

ii. Simulation setup and performance metrics. 
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iii. Investigation of the effectiveness of attack mitigation in 

simulated environments. 

iv. Summary of proposed research. 

Aim 4: Experiment conducted to assess the adaptive attack mitigation in a 

testbed SDN environment. 

i. Introduction and testbed architecture. 

ii. Testbed setup and performance metrics. 

iii. Investigation of the effectiveness of attack mitigation in the 

testbed environment. 

iv. Summary of testbed deployment. 

1.4 Design Challenges 

Combining machine learning and SDN for DDoS attack mitigation can be a 

powerful approach for defending against these types of attacks. However, 

there are several design challenges that must be addressed to ensure the 

effectiveness of this approach. Some of these challenges include: 

1.4.1 Statistics Collection 

Design challenges: Machine learning algorithms require large amounts of 

data to train effectively. Collecting and analysing data in real-time from the 

SDN environment can be challenging, particularly when dealing with high-

speed traffic. 

Proposed solution: Within the capabilities of SDN, all the statistics from 

hosts connected to the network are available in Openflow switch, when hosts 

require network routing and paths for connectivity. This will provide a general  
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overview of all the connected hosts and the controller can make use of this 

information for further assembling and checking. 

Benefits: With an overall view of all the connected devices and notification of 

traffic to the controller, the process of identifying normal and anomalous traffic 

can be centralized and deployed. The build-up of SDN networks with this 

feature can be  used as the beginning of data collection for adaptive attack 

mitigation proposals. 

 

1.4.2 Assessment resources 

Design challenges: Traffic processing and checking will enquire a lot of 

resources, especially when a lot of  computation and memory use is involved. 

This will require higher CPU and memory usage and can impact on  the SDN 

Controller if deployed within it. 

Proposed solution: A containerized application approach is proposed for 

best functionality. Within time intervals, the SDN Controller will call upon the 

adaptive module to execute the process and provide the result for further 

action by the controller. 

Benefits: Containerized application will use minimum resources and this 

affects  the overall setup. This approach also provides simpler deployment as 

the application can be downloaded and booted up as and when needed. 

 

1.4.3 Pattern Searching 

Design challenges: The general practise  adopted by network administrator 

experts has been to manually review traffic usage and manually reassign 
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routes when abnormalities appear. A similar approach of focusing on 

prioritizing the monitoring of traffic to valid servers is the main goal. Manual 

methods affect the amount of time needed to analyse and proceed with further 

action. 

Proposed solution: Automated best detection based on simplified 

autoencoder and entropy calculations is proposed  to speed up and automate 

adaptive measurement using the information gathered from the training 

process. 

Benefits: The need for the human analysis and matching findings to related 

abnormal traffic  will be minimized. Specific pattern identified in the findings 

will be used as input to the adaptive method which has already been set up  

for particular purposes. 

 

1.4.4 Automated Mitigation 

Design challenges: Deploying network parameter tuning has always been 

done manually and consumes a huge amount of time and effort just to do the 

same test with different hosts and gaining the same action and rewards.   

Proposed solution: Manual mitigation of attack will be deployed using 

automated containerized modules for the same purposes. This will speed up 

the process and ensure attack can be mitigated with less effort and fewer 

resources. 

Benefits: Resources such as best use of  time and effort can be optimized by 

using automated mitigation module. 

 



- 8 - 

1.4.5 Policy enforcement and revocation 

Design challenges: : SDN environments require real-time processing of 

traffic to detect and mitigate DDoS attacks effectively. Machine learning 

algorithms can introduce processing delays, which can impact the 

performance and effectiveness of SDN solutions. 

Proposed solution: Central views and management from a central SDN 

Controller would provide advantages for policy enforcement or revocation. 

Any new policy or revocation of policy could be done centrally from the 

controller. This increases the possibility of enforcing policy at the end point 

location of entry to the network, which is at the network port by the switch.  

Benefits: Although the SDN Controller can deploy and revoke policy centrally, 

to any connected switch, the process of manual identifying specific hosts 

needs to be deployed when restricted access has been eliminated. Changes 

of policy  enforcement to an identified host will depending on the detection and 

mitigation method. 

1.4.6 Complete lifecycle 

Design challenges: A complete approach that handles all the activities from 

the beginning until the end and processes them continuously in a complete 

lifecycle has not yet been done to provide full automation of all tasks. 

Proposed solution: Machine learning attack mitigation is being proposed as 

automation of the complete lifecycle that handles all activities from collecting 

statistics, to classify, detect and mitigate threats until the  necessary security 

policy has been implemented and taken care of.  
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Benefits: Any policy required to ensure an attack is mitigated, based upon 

findings, can be enforced immediately. 

The benefits of overcoming the challenges of combining machine learning and 

SDN for DDoS attack mitigation can be significant. By successfully 

implementing this approach, advantages as below can be achieved: 

i. Improve DDoS Attack Detection: By leveraging machine learning 

algorithms, organizations can improve their ability to detect DDoS 

attacks, which can reduce the impact of these attacks on their 

networks. 

ii. Enhance Network Security: By implementing machine learning 

algorithms in an SDN environment, organizations can enhance their 

network security posture and reduce the risk of network breaches. 

iii. Increase Network Resilience: By quickly detecting and mitigating DDoS 

attacks, organizations can increase the resilience of their networks and 

reduce the risk of network downtime. 

iv. Reduce Operational Costs: By automating the detection and mitigation 

of DDoS attacks, organizations can reduce the operational costs 

associated with network security. 

v. Improve Scalability: By leveraging SDN and machine learning 

technologies, organizations can improve the scalability of their network 

security solutions and ensure that they can handle increasing volumes 

of traffic. 

vi. Enhance Overall Network Performance: By reducing the impact of 

DDoS attacks on their networks, organizations can improve overall 
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network performance and ensure that critical business operations are 

not disrupted. 

1.5 Thesis Outline and Contributions 

This PhD thesis describes the research carried out in the development of an 

adaptive attack mitigation in SDN environment. Chapter 2 discusses the SDN 

architecture and its security issues related to DDoS attack with further 

explanation on the machine learning and deep learning approach. A literature 

overview about machine learning adoption in a DDoS attack mitigation within 

SDN is also presented in same chapter. Chapter 3 looks at the potential of 

applying DL for intrusion detection in the a native SDN environment. The 

chapter further explore the improvement of detection method by using real-

world data. Chapter 4 is the outcome of building up a framework for attack 

detection and mitigation in SDN environment with a multi-layer detection 

mechanism proposed. Chapter 5 concludes the thesis and gives further 

research directions. 

The main contribution of the work is outlined below.  

• An adaptive framework for the SDN environment that can collect the 

important network parameters and monitor the whole network for 

intrusion detection was put forward. The data collected can then be 

processed to detect abnormalities in traffic transactions which it can  

then respond to and mitigate  promptly. 

• A hybrid ML was developed with a combination of mixed approaches 

to assess the traffic status through flow-based anomaly detection. The 
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hybrid approach was shown  to function with minimum impact on the 

overall SDN architecture. 

• Recorded real-world traffic pcap with a range of simulated potential  

attacks was used to replicate all current potential real attack scenarios.  

1.6 Publications 

The work undertaken in this thesis has resulted in the following publications. 

Chapter 3 :  Native SDN Intrusion Detection using Machine Learning 

https://ieeexplore.ieee.org/document/9306093 

Published in: 2020 IEEE Eighth International Conference on 

Communications and Networking (ComNet) 

 

Chapter 3 : Hybrid Deep Autoencoder with Random Forest in Native SDN 

intrusion detection Environment 

https://ieeexplore.ieee.org/document/9838282 

Published in: ICC 2022 - IEEE International Conference on 

Communications 

 

Chapter 4 : Adaptive framework for attack mitigation in SDN environment 

https://ieeexplore.ieee.org/document/9928595 
 
Published in: MeditCom 2022 – IEEE International Mediterranean  
 
Conference on Communications and Networking  

https://ieeexplore.ieee.org/document/9306093
https://ieeexplore.ieee.org/xpl/conhome/9306068/proceeding
https://ieeexplore.ieee.org/xpl/conhome/9306068/proceeding
https://ieeexplore.ieee.org/document/9838282
https://ieeexplore.ieee.org/xpl/conhome/9837954/proceeding
https://ieeexplore.ieee.org/xpl/conhome/9837954/proceeding
https://ieeexplore.ieee.org/document/9928595
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CHAPTER 2 : Software Defined Network 

 

2.1  Definition 

Network management involves many different tasks. The network operator 

configures the network devices - switches, routers, firewall and load balancer 

- to fulfil  these tasks. The packet processing of network devices can be 

modelled as match-action processing, where network devices match certain 

patterns on packet headers. For example, the destination IP address belongs 

to an IP prefix and perform certain actions on the matching packets such as 

dropping packets or forwarding packets to an output port. Referring to the 

forwarding behaviour of a switch its policy will also  to network-wide forwarding 

behaviour as the policy of the network,  built upon the policies of all the 

switches in the network. Policies change over time because operators need 

to reconfigure network devices in face of various network events like traffic 

shifts, cyber-attacks, device failures, host mobility and so forth. 

 

In today’s network, the control plane is coupled with the data plane, as shown 

in Figure 2.1. The control plane on each device exchanges information with 

the other ones, decides how the packets should be processed on the device 

and configures the data plane. Since the control plane is distributed between 

the devices, it does not have an overall view of the network and cannot make 

good network-wide decisions. 
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Figure 2.1 : Current Network Management Architecture 

 

Emerging trends like network densification and service differentiation bring 

new challenges to future network architecture. Owing to its simplified and 

dynamic management, great flexibility and improved performance, SDN has 

attracted considerable attention in recent years. The typical three-layer model 

of SDN is shown in. The interface between the control Figure 2.2 plane and 

the data plane is open and uses open standards such as OpenFlow [1]. By 

separating the control plane and the data plane, SDN can offer the logical 

centralisation of the network management of the distributed switching devices 

and introduce programmability, which opens up new approaches to control 

functions in the application layer. 
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Figure 2.2 : SDN Network Management Architecture 

 

2.1.1 Management Plane 

The management plane is the set of applications that leverage the functions 

offered by the northbound interface to implement network control and 

operation logic. These include applications such as routing, firewalls, load 

balancers, monitoring and so forth. Essentially, the management plane 

defines the policies which are ultimately translated into southbound-specific 

instructions that program the behaviour of the forwarding devices [2]. 

 

2.1.2 Control Plane 

The control plane is responsible for the network’s management with the aid of 

the SDN controller. The SDN controller is the logically centralised intelligence 

within the SDN structure, so has a global view of the entire network. Thanks 

to its programmability, the SDN controller can also control the various 

functions in the application layer individually and dynamically [2]. The SDN 

applications are programs that directly make requests and report their 
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behaviour to the SDN controller. Different functions can be provided through 

separate program applications, such as network protocols, network 

monitoring and network reconfiguration. 

 

2.1.3 Data Plane 

The data plane is generally responsible for forwarding the traffic flow between 

switching devices based on the rules provided by the control plane. The 

switching devices are also responsible for collecting network state information 

and reporting to the control plane. 

2.2 OpenFlow Protocol 

The OpenFlow (OF) protocol is a standard in Software Defined Networking 

architecture. This protocol defines the communication between an SDN 

controller and the network device. The OpenFlow protocol lays down the 

foundation for communication between an SDN controller and a dumb network 

device. This protocol was first developed by researchers at Stanford 

University in 2008 and was first adopted by Google in their backbone network 

in 2011-2012. It is managed now by the Open Networking Foundation (ONF). 

The latest version used in the industry is V1.5. 

OpenFlow is the standard southbound protocol used between the SDN 

controller and the switch. The SDN controller takes the information from the 

applications and converts them into flow entries which are fed to the switch 

via OF. It can also be used for monitoring switch and port statistics in network 

management. 
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The OpenFlow protocol is only operates between a controller and the switch. 

It does not affect the rest of the network. If a packet capture were to happen 

between two switches in a network, both connected to the controller via 

another port, the packet capture would not reveal any OF messages between 

the two switches. Packet capture is strictly for  use between a switch and the 

controller. The rest of the network is not affected. 

2.3 Security in SDN 

A comprehensive overall high-level analysis of security in SDN is presented 

by the author of [3]. A total of seven threat vectors,  three of which specifically 

refer to SDN related interfaces, were identified. Table 2.1 below, is a summary 

of the threat vectors. 
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Threat 

Vector 

Vulnerabilities Impact Specific 

to SDN 

1 Forged or faked traffic 

flows 

DoS attack No 

2 Attacks on vulnerabilities 

in switches 

Potentially augmented No 

3 Attacks on control plane 

communications 

Compromised 

communications such 

as MITM attack 

Yes 

4 Attacks on vulnerabilities 

in controllers 

Compromised controller 

jeopardized the whole 

network 

Yes 

5 Lack of mechanisms to 

ensure trust between the 

controller and 

management applications 

Malicious applications  Yes 

6 Attacks on and 

vulnerabilities in 

administrative stations 

Potentially augmented No 

7 Lack of trusted resources 

for forensics and 

remediation 

No assurance of fast 

recovery and diagnosis 

when faults happen 

No 

Table 2.1 : SDN Attack Vector 

 

Threat is always an important aspect that needs to be handled and proper 

mitigation action or solutions  prepared in advance and to hand. Intrusion into 

the network is a main concern and solutions such as putting intrusion 

detection mechanisms into the network is one and has become an important 

element in network security. Intrusion detection systems (IDS) can be in the 

form of dedicated devices or merely software applications that are developed 

for specific purposes. IDS’ main function is to capture and monitor activities 

and events in the network and to identify possible attack that might take place. 

Signature-based and anomaly-based are the two types of IDS being adopted 
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on how to identify when the intrusion occurs. Anomaly-based IDS are mainly 

use in machine learning methods  to classify normal and intrusion activities. 

Due to this approach of classifying traffic into different types, supervised 

learning algorithms are often used in IDS. 

Machine learning is a field of computer science and artificial intelligence (AI) 

that involves building algorithms that can learn patterns and make predictions 

or decisions based on data. Essentially, machine learning involves training a 

computer program to learn from data, without being explicitly programmed to 

perform a specific task. The process of machine learning involves feeding 

large amounts of data into an algorithm, and then using that data to train the 

algorithm to recognize patterns and make predictions or decisions. The 

algorithm iteratively adjusts its parameters until it can accurately predict 

outcomes on new data. There are various types of machine learning, including 

supervised learning, unsupervised learning, and reinforcement learning. In 

supervised learning, the algorithm is trained on labelled data, meaning that 

the desired output is already known. In unsupervised learning, the algorithm 

is trained on unlabelled data and is required to find patterns and structure on 

its own.  

Deep learning is a subset of machine learning that involves training artificial 

neural networks to learn from large amounts of data. These networks are 

designed to simulate the way the human brain works by using layers of 

interconnected nodes that process and transform data. The term "deep" in 

deep learning refers to the fact that these neural networks typically have many 

layers, allowing them to learn increasingly complex representations of the data 

as they progress through the layers. These networks are often referred to as 
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deep neural networks. Deep learning has had a significant impact on many 

fields, particularly computer vision and natural language processing, and has 

achieved state-of-the-art performance on many tasks, such as image and 

speech recognition, language translation, and game playing. Some notable 

deep learning architectures include Convolutional Neural Networks (CNNs) 

for image processing and Recurrent Neural Networks (RNNs) for sequence 

processing. One of the key advantages of deep learning is that it can 

automatically learn features from raw data, eliminating the need for manual 

feature engineering. This has allowed deep learning to achieve remarkable 

results on tasks that were previously considered challenging or impossible. 

Machine learning and deep learning can also be applied to SDN to detect and 

mitigate Distributed Denial of Service (DDoS) attacks. DDoS attacks are a 

type of cyber-attack where a large number of compromised devices flood a 

network with traffic, overwhelming its resources and causing it to become 

unavailable. 

Machine learning and deep learning can be applied to SDN for DDoS attack 

detection and mitigation in the cases as below: 

1. Traffic classification: Machine learning algorithms can be trained to 

classify network traffic based on the characteristics of the packets, such 

as source and destination IP addresses, protocol type, and port 

numbers. This can help identify abnormal traffic patterns that may 

indicate a DDoS attack. 

2. Anomaly detection: Deep learning models can be trained to detect 

anomalies in network traffic that may be indicative of a DDoS attack. 

These models can learn to identify patterns in traffic flows that are 
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different from normal traffic, such as an unusually high number of 

requests from a single IP address. 

3. Real-time response: Once a DDoS attack is detected, SDN can use 

machine learning and deep learning to take real-time action to mitigate 

the attack. For example, the SDN controller can dynamically reroute 

traffic to avoid congested links, or can throttle or block traffic from 

suspicious IP addresses. 

4. Proactive mitigation: Machine learning and deep learning can be used 

to analyse historical data and predict potential DDoS attacks before 

they happen. This can allow SDN to proactively allocate resources and 

configure network policies to prevent or mitigate future attacks. 

 

Machine-based IDS learning in SDN has been carried out by many 

researchers. The focus of their studies has been divided into three objectives 

- classifying traffic as normal or anomalous, classifying intrusions as normal 

or anomalous, grouping the details into attack types, but focusing only on the 

detection of DDoS attacks. Work in [4] propose a Hidden Markov Model 

(HMM)  for classifying malicious activities in the form of a network intrusion 

detection system (NIDS). The HMM-based model used five selected flow 

features to determine the status of the packet being analysed. Each of the 

selected feature is treated as independent event. Potential intrusion 

connections and vulnerable hosts are predicted by the author in [5] using 4 

machine-learning algorithms. The Decision Tree algorithm, Bayes Net 

algorithm, Decision Table algorithm and Naive Bayes algorithm were 

compared. The results from the algorithms are then used by the SDN 
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controller to define the policy by blocking an entire subnet from accessing the 

vulnerable hosts identified. This strict action of blocking an entire subnet also 

affects other, valid users in the subnet, so should be fine-tuned for more 

specific action. Deep Neural Network adoption has also been experimented 

with by the researchers in [6] and [7]. Both used 6 basic flow features to prove 

that good performance anomaly detection can be achieved, showing  that 

such an approach has a good chance of being deployed in future, but more 

experiments with real traffic in line-rate operation to compare to the NSL-KDD 

dataset being used need to be explored. 

Identifying different types of attack after distinguishing between normal and 

intrusion traffic was studied in [8]. The author proposed an improved 

behaviour-based SVM for categorizing network attacks. A decision tree is 

used to select the most relevant  features before becoming the training input 

for the proposed work. Promising results were reported but comparisons 

made between SVM and others ML algorithms have done been detailed out. 

Another method known as Non-symmetric Deep Auto-Encoder (NDAE) was 

proposed by [9], combining deep learning and random forest learning to speed 

up detection while still maintaining high accuracy. Both KDD-99 and NSL-KDD 

datasets were used for research. The results were compared with several 

other previous research but the performance of the proposed NDAE has not 

been verified within a real-world network environment. 

Research related to DDoS attack detection also has been carried out  by 

various researchers. As mentioned in the example in the introduction above, 

DDoS attacks are a huge  problem and highly threaten the network. A 

lightweight DDoS attack detection was proposed in [10] using a NOX 
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controller in SDN. Traffic flow features were collected from OpenFlow 

switches and an unsupervised ANN introduced using the Self Organizing 

Maps (SOM) method for attack detection. A deep learning model incorporating 

RNN and CNN was used by [11] to detect DDoS attacks in SDN. The model 

consists of an input layer, a forward recursive layer, a reverse recursive layer, 

a fully connected hidden layer and finally, an output layer. Feature reductions 

are used in the model to detect attacks. Another SDN-based deep NN 

research was carried out by [12] proposing 8 classes of output layer,  one of 

normal traffic and 7 types of DDoS attack. A total of 68 flow features were 

collected from network traffic and several algorithms compared. With the 

number of selected features,  additional overheads for  the controller are likely 

and the extra burden will require more processing time. Collaborative DDoS 

mitigation mechanisms in SDN using machine learning was elaborated by [13] 

with the support of multiple SDN controllers, namely Ryu, Pox, ONOS and 

OpenDayLight in separate locations. An authorization module was also 

introduced to verify communication between the controller and managed 

OpenFlow switches. A total of 25 selected features from the NSL-KDD dataset 

were chosen for validation. With a traffic size of 3000 Mbps, the usage of CPU 

in the model reached up to 90% as the consequence of handling a large 

number of features to computerize. 

The related research for security in SDN by adapting the machine learning 

approach is shown in Table 2.2, below.  
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Ref. Dataset Input 

Features 

Output 

Features 

Algorithm Findings 

[13] Self-

collected 

5 2 (normal, 

anomaly) 

HMM Each feature is 

independent 

[14] Longtail Log 

Analysis 

4 2 (normal, 

anomaly) 

C4.5, DT, 

BN, NB 

Strict blocking 

affects entire 

subnet 

[15] NSL-KDD 6 2 (normal, 

anomaly) 

DNN Highly complex 

with few features 

selected 

[16] NSL-KDD 6 2 (normal, 

anomaly) 

RNN Highly complex 

with few features 

selected 

[17] KDD-99 23 5 (normal, 4 

attack 

types) 

SVM No comparison 

with other ML 

[18] KDD-99, 

NSL-KDD 

41 5 (normal, 4 

attack 

types) 

RF Not verified within 

real-world 

environment 

[19] Self-

collected 

6 2 (normal, 

DDoS) 

SOM No attack source 

detection 

[20] ISCX 

Dataset 

20 2 (normal, 

DDoS) 

DNN Highly complex 

but high number 

of features 

selected 

[21] Self-

collected 

68 8 (normal, 7 

attack 

types) 

DNN High overheads 

with high number 

of features 

selected  

[22] NSL-KDD 18 2 (normal, 

anomaly) 

NB High overheads 

with 90% CPU 

Table 2.2 : Machine Learning Approach to SDN Security 
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2.4 Attack types, detection, mitigation and evaluate on SDN 

environment 

2.4.1 Definition 

A Distributed Denial of Service (DDoS) attack on Software-Defined 

Networking (SDN) is a type of cyber-attack that aims to disrupt the operation 

of an SDN network by overwhelming it with a high volume of traffic from 

multiple sources. In an SDN architecture, the network control and data planes 

are separated, and the control plane is managed by a centralized controller 

that communicates with the data plane switches to forward traffic. 

In a DDoS attack on SDN, the attacker may target the SDN controller, 

switches, or both, by flooding them with a large volume of traffic that exceeds 

their capacity to handle it. This can cause the controller or switches to become 

unresponsive, resulting in a denial of service for legitimate users. 

The attack can be carried out using various techniques, including flood-based 

attacks, amplification attacks, TCP SYN flood attacks, and resource depletion 

attacks. These attacks can exploit vulnerabilities in the SDN architecture or 

target specific resources, such as the OpenFlow protocol or the SDN 

switches. 

To mitigate the risk of DDoS attacks on SDN, network administrators can 

implement various security measures, such as deploying firewalls, intrusion 

detection and prevention systems, and traffic filtering mechanisms. They can 

also adopt a multi-layered defence approach and implement network 

segmentation to isolate critical assets from potential attack vectors. Increasing 

reliance on the Internet, especially social media, with a massive increase in 



- 25 - 

Internet of Things (IoT) devices accessing widely distributed data centres has 

aggravated this problem. For example, In 2016, the Mirai botnet launched a 

series of DDoS attacks on several targets, including the DNS service provider 

Dyn. The attack exploited vulnerabilities in IoT devices to form a botnet that 

flooded Dyn's servers with traffic, causing several major websites, such as 

Twitter and Reddit, to become unavailable for several hours. The attack also 

targeted the SDN controllers and switches of the affected networks[14]. 

Another example is the DDoS attack on February 28, 2018, when the 

attackers exploited the vulnerability of memory crashed, and deployed a 

heightened attack from UDP port 11211. The attack targeted GitHub's SDN 

infrastructure and flooded its servers with traffic from compromised botnets. 

As reported by Verisign [16], Q2 2018 DDoS Trends show an increase 

compared to Q1 2018, with the largest number of attacks dominated by the 

UDP flood attack. As shown in Figure 2.3, the ever-increasing volume of 

attacks recorded is a clear sign that the problem exists long-term, and  

solutions need to be put in place to handle or mitigate it. These real-world 

cases demonstrate the potential impact of DDoS attacks on SDN networks 

and the importance of implementing appropriate security measures to mitigate 

the risk. 
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Figure 2.3 : DDoS attack on Github 

 

 

2.4.2 Attack Method 

An attack on SDN is a deliberate attempt to compromise or disrupt the 

operation of an SDN-enabled network. There are various types of attacks that 

can be launched against an SDN, including: 

i. DoS or DDoS 

The most common and devastating types of attacks that can be 

launched against a network, including SDN. These attacks aim to 

disrupt network operations by  overwhelming the network with traffic or 

requests, rendering it unable to respond to legitimate traffic. In a DoS 

attack, a single attacker floods the network with traffic or requests from 

a single device, such as a botnet or a zombie computer. This can 

consume all available network resources, such as bandwidth, 

processing power, or memory, and cause the network to become 

unresponsive or crash. In a DDoS attack, multiple devices are 

compromised and coordinated to simultaneously flood the network with 

traffic or requests. This type of attack is more difficult to detect and 
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mitigate because the traffic originates from multiple sources, making it 

difficult to block or filter. 

There are several types of DDoS attacks, including: 

• Volume-based attacks: These attacks aim to overwhelm the 

network with a large volume of traffic, such as UDP floods, ICMP 

floods, or SYN floods. 

• Protocol-based attacks: These attacks exploit weaknesses in 

network protocols to consume network resources, such as Ping 

of Death, Smurf attacks, or DNS amplification attacks. 

• Application-layer attacks: These attacks target specific 

applications or services, such as HTTP floods, Slowloris attacks, 

or RUDY attacks. 

 

To defend against DoS and DDoS attacks on SDN, several techniques 

can be used, such as rate limiting, traffic filtering, and load balancing. 

SDN can also be used to dynamically reroute traffic and allocate 

resources to mitigate the impact of these attacks in rea-time.  

 

ii. Man-in-the-middle (MitM) attacks 

A type of cyber-attack in which an attacker intercepts and modifies 

network traffic between two hosts, allowing the attacker to eavesdrop 

on or alter the communication. MitM attacks can occur on any type of 

network, including SDN, and are particularly dangerous because the 

attacker can potentially gain access to sensitive information such as 
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login credentials, financial information, or other personal data. In a 

typical MitM attack, the attacker positions themselves between two 

communicating hosts, such as a client and a server. The attacker 

intercepts the traffic passing between the two hosts and may modify 

the traffic to suit their objectives. For example, the attacker may capture 

sensitive information such as login credentials, credit card numbers, or 

other personal data. They may also alter the communication to carry 

out other attacks, such as injecting malware or performing a phishing 

attack. MitM attacks can be carried out using various techniques, such 

as: 

• ARP spoofing: In this technique, the attacker sends fake 

Address Resolution Protocol (ARP) messages to the hosts in 

the network, tricking them into associating the attacker's MAC 

address with the IP address of the legitimate device. This allows 

the attacker to intercept and modify network traffic. 

• DNS spoofing: In this technique, the attacker alters the DNS 

resolution process so that the victim is directed to a fake website 

that the attacker controls. The attacker can then intercept and 

modify the communication between the victim and the fake 

website. 

• SSL stripping: In this technique, the attacker intercepts the SSL 

communication between the two hosts and downgrades the 

communication to an unencrypted form. This allows the attacker 

to eavesdrop on the communication and potentially capture 

sensitive information. 
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To prevent MitM attacks, it is important to use encryption and 

authentication techniques such as SSL/TLS, SSH, and IPsec. In SDN, 

these techniques can be implemented using various security protocols 

such as OpenFlow Secure Channel (OF-SC) and OpenFlow 

Management and Configuration Protocol (OF-MCP).  

iii. Spoofing attacks 

A type of cyber-attack in which an attacker impersonates a legitimate 

user or device on the network in order to gain unauthorized access or 

execute other attacks. Particularly dangerous because they allow the 

attacker to bypass security controls and gain access to sensitive 

information or systems. The attacker uses various techniques to 

impersonate a legitimate user or device on the network. For example, 

the attacker may: 

• IP spoofing: In this technique, the attacker modifies the source 

IP address of their network packets to make them appear as if 

they originated from a trusted source on the network. This allows 

the attacker to bypass network security controls, such as 

firewalls and access control lists, and gain unauthorized access 

to network resources. 

• MAC spoofing: In this technique, the attacker modifies the MAC 

address of their network interface to make it appear as if it 

belongs to a trusted device on the network. This allows the 

attacker to bypass security controls that use MAC addresses for 

authentication, such as port security and MAC filtering. 

• DNS spoofing: In this technique, the attacker alters the DNS 

resolution process so that the victim is directed to a fake website 
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that the attacker controls. The attacker can then impersonate 

the legitimate website and capture sensitive information such as 

login credentials or financial information. 

iv. Replay attacks 

A type of cyber-attack in which an attacker captures and replays 

network traffic to gain unauthorized access or execute other attacks. 

Replay attacks can also occur on SDN, and are particularly dangerous 

because they allow the attacker to bypass security controls and gain 

access to sensitive information or systems. 

The attacker captures a network packet that contains sensitive 

information, such as login credentials or financial information. The 

attacker then replays the captured packet at a later time to gain 

unauthorized access or execute other attacks. For example, the 

attacker may replay a captured packet that contains login credentials 

to gain access to a network resource. 

Machine learning algorithms can be trained to recognize patterns in 

network traffic that indicate a replay attack, such as the same packet 

being sent multiple times. When an abnormal behaviour is detected, 

the system can take immediate action, such as blocking the traffic or 

alerting the network administrator. By using machine learning and deep 

learning techniques, SDN networks can improve their ability to detect 

and mitigate replay attacks, thereby enhancing their overall security 

posture. 
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v. Malware attack 

An attacker infects network devices with malware, allowing them to 

gain control of the device or use it to launch further attacks. Malware is 

a type of software that is specifically designed to damage, disrupt, or 

gain unauthorized access to a computer system or network. 

The attacker uses various techniques to infect network devices with 

malware. For example, the attacker may send a phishing email or a 

malicious attachment that, when opened, installs malware on the 

victim's device. The attacker may also exploit a vulnerability in the 

network device's software to gain unauthorized access and install the 

malware. Once the malware is installed on the network device, the 

attacker can use it to gain control of the device or use it to launch further 

attacks. For example, the attacker may use the infected device to 

launch a DDoS attack, steal sensitive data, or install additional malware 

on other network devices. 

 

vi. Configuration attacks 

Attacker modifies the configuration of network devices or the SDN 

controller to disrupt or compromise network operations. In SDN, 

network devices are configured and managed by the SDN controller, 

which provides a central point of control for the network. The attacker 

gains unauthorized access to the SDN controller or a network device 

and modifies its configuration settings. For example, the attacker may 

change the routing configuration to redirect traffic to a malicious 

destination, or modify access control settings to allow unauthorized 
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access to network resources. These types of attacks can have serious 

consequences, as they can disrupt network operations and 

compromise the confidentiality, integrity, and availability of network 

resources. In addition, they can be difficult to detect and mitigate, as 

they often involve subtle changes to network configurations that can go 

unnoticed for long periods of time. To prevent configuration attacks, it 

is important to implement strong access control and authentication 

mechanisms to protect the SDN controller and network devices from 

unauthorized access. This can include using strong passwords, two-

factor authentication, and other security measures to prevent 

unauthorized access. 

 

2.4.3 Attack Detection Method 

SDN has many distinctive features which are key to detecting and mitigating 

attacks, including separation of the control plane from the data plane from the 

logically centralized controller. Thus, allowing the programmability of the 

network by external applications, using software-based traffic analysis and the 

capability to dynamically update forwarding rules. Attack detection method are 

elaborated below. 

 

i. Entropy 

 
Entropy-based methods depend on network feature distribution to 

detect any anomalous network activities. The probability distribution 

of various network features such as the source IP address, 

destination IP address, and port numbers are used to calculate the 
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entropy. Predefined thresholds of changes in entropy values are 

used to identify the presence of anomalies.  

 
ii. Machine Learning 

 
Machine learning-based methods employ techniques such as 

Bayesian networks, SOM and fuzzy logic to identify the presence of 

anomalies. These algorithms consider various network features and 

traffic characteristics to detect the presence of anomalies.  

 
iii. Traffic pattern analysis 

 
These techniques work on the assumption that infected hosts all 

exhibit similar behavioural patterns which are different from those 

of benign hosts. Typically, in the case of a botnet attack, infected 

machines are usually controlled by a single bot master. Similar 

traffic patterns are observed because of the command is sent to 

many members of same botnet, so causing the similar behaviour.  

 

 
iv. Connection rate 

 
These techniques are classified into the connection success ratio 

and the connection rate. The connection rate refers to the number 

of connections set up within a certain window of time.  

 
v. Integrated Snort and OpenFlow  

 
This technique uses a combination of IDS and OpenFlow to detect 

attacks and reconfigure the network dynamically. An IDS monitors 

the traffic to identify malicious activities. OpenFlow switches are 
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then dynamically reconfigured based on the detected attacks in real 

time. 

 

2.4.4 Attack Mitigation Approach 

SDN has been focused on to improve the agility and flexibility of a network. It 

empowers networks to respond quickly to changing network requirements via 

a centralized controller. The SDN controller provides a global view of the 

network. Further, the notion of the centralized controller leads to consistent 

configuration throughout the network, since all network policies are defined by 

a centralized controller, it not only simplifies anomaly detection, but also 

facilitates the prompt invocation of mitigation mechanisms. For example, when 

a DDoS attack is detected, a threat mitigation application may effectively 

reprogram switches to block malicious traffic. Types of attack mitigation 

actions are listed below. 

 

i. Drop packets 

 
The network traffic conforming to the defined rules is transmitted 

while any remaining is dropped. 

 
ii. Block port 

 

The network traffic from attacking port is completely blocked. 

 
iii. Redirection 

 

The legitimate traffic is redirected to a new IP address. 

 
iv. Control Bandwidth 
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The controller limits the flow transmission rate by allocating the 

average bandwidth to each interface. 

 
v. Network reconfiguration and topology change 

 
The network controller changes the flow table of each switch to 

change the network topology. 

 
vi. Deep packet inspection 

 
Deep packet inspection is a process that can  examine both the 

header and data part of a packet. Deep packet inspection enables 

security to function and makes it possible to detect several types of 

attack, including buffer overflow attacks, denial-of-service attacks 

and worms and virus attacks. 

 
vii. MAC address change and/or IP address change 

 
When an attack is detected, the MAC address or IP address of the 

victim is changed. Legitimate traffic is routed to a new address and 

malicious traffic it blocked. 

 
viii. Quarantine or Traffic isolation 

 
This mitigation technique prevents the network resources from 

being overwhelmed by a volume-based attack by isolating the 

malicious traffic. 
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Machine Learning (ML) in SDN refers to the application of machine learning 

techniques and algorithms to optimize and enhance various aspects of SDN 

operations and management. By leveraging ML, SDN environments can 

dynamically adapt and improve their performance, resource allocation, 

security, and decision-making processes. A few key areas where machine 

learning is commonly applied in SDN: 

i. Traffic Engineering: ML algorithms can analyse network traffic patterns, 

predict future traffic demands, and optimize the routing and resource 

allocation accordingly. This enables efficient utilization of network 

resources, load balancing, and improved Quality of Service (QoS). 

ii. Network Security: ML techniques can be used to detect and mitigate 

network security threats in real-time. By analysing network traffic and 

behaviour patterns, ML algorithms can identify anomalies, detect 

potential DDoS attacks, intrusion attempts, or abnormal activities, and 

trigger appropriate security measures. 

iii. Network Performance Optimization: ML algorithms can analyse 

network performance metrics, such as latency, packet loss, or 

throughput, and identify patterns or correlations that impact network 

performance. Based on these insights, ML can dynamically adjust 

network configurations, routing decisions, or resource allocation to 

optimize performance. 

iv. Fault Detection and Management: ML can help in identifying network 

faults or failures by analysing network data and performance metrics. 

ML algorithms can learn normal network behaviour and detect 

deviations, enabling proactive fault detection, root cause analysis, and 

efficient network troubleshooting. 
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v. Network Resource Management: ML techniques can analyse historical 

network usage data and predict resource demands. This allows for 

efficient resource provisioning, capacity planning, and dynamic scaling 

of network resources based on traffic patterns and predicted future 

demands. 

vi. Policy and Intent-Based Networking: ML can be utilized to translate 

high-level policies or intents into concrete network configurations. By 

learning from historical data and network behaviour, ML algorithms can 

automate the translation and enforcement of policies, simplifying 

network management and reducing manual configuration efforts. 

2.5 Related Research 

The drawbacks of both anomaly-based and signature-based detection 

methods have been elaborated by [17] . Anomaly detection has a high false 

alarm rate because it may categorize activities which users rarely perform as 

anomalous. On the other hand, signature original multi-agent router throttling 

based on the divide-and-conquer paradigm to eliminate detection risks cannot 

discover new types of attack as it uses a database of patterns of well-known 

attacks. Therefore, the research proposed an IDS that can identify known and 

unknown attacks effectively by combining features of both anomalous and 

signature detection using log files. The proposed IDS is based on 

collaboration between the RL method in association with rule learning and log 

correlation techniques. Positive or negative rewards are granted by the RL 

when the algorithm selects log files that contain anomalies or any signs of 

attack or not, respectively accurately. This procedure enables learning by 
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experience of the system as it learns to choose more appropriate log files 

when searching for traces of attack.  

As mentioned in the introduction, DDoS is one of the most destructive attacks 

in the current internet environment. This is due to dealing with widely 

distributed geographical sources with high volumes of traffic coming from 

large numbers of compromised hosts. A new machine learning-based 

collaborative DDoS mitigation mechanism in SDN was propose in [13]. A 

model for DDoS detection in SDN was created using an NSL- KDD dataset 

and after training the model on this dataset, real DDoS attacks were used to 

assess the viability of the proposed model. The results show that the proposed 

technique compares favourably with current techniques, having better 

performance and accuracy. 

This thesis aims to improve on and build an adaptive model which can 

effectively mitigate attacks, influenced by the above mentioned research, 

focusing on combining the benefits of SDN and machine learning capabilities. 

Before the proposed design is finalized, an attack impact evaluation in an SDN 

environment will be explored in the next chapter to understand the issue in 

depth. 

 

2.5.1 Attack Impact Evaluation in SDN 

SDN benefits include centralized pledges with convenient management for 

adaptation to the data centre or internet architecture. However, associated  

issues, especially those involving high risk security matters, need to be 

address and solved before it can be fully deployed and  operational within the 

industry. As elaborated in the first chapter, various types of attack and 
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mitigation approaches have been identified and researchers have  tried to use 

the benefits of SDN to develop optimum solutions. In this research, attack 

impact evaluation will be done in an SDN environment to analyse the effect 

on bandwidth capacity that can be achieved and the impact on the response 

of SLA in web services. 

Evaluating the impact on the bandwidth capacity and response time of the 

network services running inside the SDN managed networks under attack is 

important. It would be helpful to assess its performance under different 

magnitudes of attack. Two critical components in any SLA are the availability 

of a service to the customers and its responsiveness. In this research, various 

magnitudes of attacks specific to the SDN were carried out and  their impact 

on the performance of network services determined by analysing the 

achievable bandwidth and the web services responsiveness during an attack. 

 

2.5.2 Security Threats in SDN 

Authors of [18] and [3]  discussed various vulnerabilities and threats. Due to 

its immaturity compared to traditional networks, security threats in SDN 

networks are more challenging. For example, the impact of a compromised 

SDN controller will affect the entire network, while in traditional networks, the 

scope of damage is relatively small. Management threats, control place 

threats and data plane threats are outlined briefly before attack 

implementation and impact analysis are discussed. 
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2.5.3 Management Threats 

The installation of the controllers, switches and network applications along 

with their administration and trust management are under the remit of SDN 

management. Management refers to the administrative privileges in the 

operational environment, which, if compromised, would lead to a disastrous 

situation that would threaten the overall operational environment. 

Administrative  configuration  and fine tuning faults by the controller could 

downgrade the performance of the whole network [19]. Such faulty  handling 

by management would create network outage risks to the controller and the 

resources involved. Malicious, not fully tested SDN applications could also 

execute various administrative commands that could interfere and interrupt 

controller functions, making the network malfunction and become unstable. 

Malicious programs could monopolize resources such as CPU and memory 

for a long period of time thus degrading the overall performance of other 

applications. Use of third-party applications for management purposes could 

also cause damage as they might have unpatched updates that could allow 

malicious activities to enter the SDN network. The encoded, unpatched 

vulnerabilities could trigger various types of attack and ultimately disclose 

administrative privileged information [20]. 

 

2.5.4 Control Plane Threats 

The network policies along with operational message updates between 

OpenFlow switches and the SDN controller are examples of areas of control 

plane threat. Policy contradictions might occur between all the resources 

involved causing possible inconsistent or unexpected traffic flows caused by 
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the rebuttal policy. Man-in-the-middle attacks could also happen due to 

unprotected channels of communication between the switches and the 

controller. Unencrypted communication activity can be sniffed out by malicious 

systems and later exploited to compromise the network and by requiring high 

priority administrative levels for their execution, this could lead to adding  rules 

intending to harm the environment as well as deleting rules intended to protect 

it. 

A faulty or misbehaving switch could also flood the control plane with 

unnecessary operational messaging packets such as route requests by 

sending Packet_In messages to the controller, which needs to respond to 

such requests and being bombarded by requests would consume controller 

resources and eventually lead to the SDN environment collapsing. 

 

2.5.5 Data Plane Threats 

The data plane consists of flow tables inside the switches, the end hosts and 

the traffic between them. In SDN flows, an unknown destination packet is 

referred to the controller for a decision about what should be done with it. Also 

known as a missed flow table event, the controller will reply to the switches 

with new rules to be updated in the switch flow tables. Longer response times 

are needed for the first packet to be able to be sent to its destination to allow  

for checking and initialization the communication between the switch and 

controller. The specific communication mechanism to the SDN environment 

provides the attacker with valuable finger-printing characteristics that the 

attacker can take advantage of  to plan and create specific attack methods  to 

bypass the checking mechanism. For example, with the finger-printing 
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information, the attacker can modify the attack mechanism by sending a valid 

packet first and once the route has been established, the attack process will 

start. This will bypass the controller due to SDN communication flows. 

2.6 Attack Implementation and Impact Analysis 

2.6.1 Environment Setup 

Figure 2.4 shows the testbed in which the virtual controller, three host 

machines and OpenFlow switch were setup using Mininet running Ubuntu 

18.04 OS with Intel i5 CPU and 3G RAM. The RYU framework acts as the 

SDN controller, while OVS is used as an OpenFlow-based virtual switch. 

Connection speed for all hosts in the simulation was set at 1000 Mbps. For 

this scenario, SECOD application was chosen. SECOD is a useful tool for 

detecting and handling Distributed Denial of Service (DDoS) attacks in an 

SDN environment for several reasons: 

i. Real-time traffic monitoring: SECOD continuously monitors network 

traffic in real-time, which allows it to detect anomalies or patterns that 

may indicate the presence of a DDoS attack. 

ii. Rapid response: Once a DDoS attack is detected, SECOD can quickly 

respond by dynamically adjusting network configurations to mitigate 

the impact of the attack. This can help to reduce the impact of the attack 

and prevent it from causing widespread disruption. 

iii. Customizable rules: SECOD allows for the creation of customizable 

rules that can be tailored to the specific needs of an organization. This 

enables the program to be adapted to the unique characteristics of an 
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SDN environment, which can help to improve its effectiveness in 

detecting and handling DDoS attacks. 

iv. Automated alerts: SECOD can be configured to send automated alerts 

or notifications to administrators or security teams when a DDoS attack 

is detected. This enables organizations to respond quickly to the attack 

and take steps to prevent it from causing further damage. 

By providing real-time monitoring, rapid response, customizable rules, and 

automated alerts, SECOD can help to enhance network security and protect 

against the damaging effects of DDoS attacks. SECOD was chosen as the 

baseline comparison due to above listed capabilities and it was implemented 

in a native SDN environment. 

 

 The components involved in the setup are explained below:   

i. RYU Controller: RYU is an open stack and Python-based framework 

that supports the implementation of SDN. 

ii. Mininet: creates a realistic virtual network running real kernel, switch 

and application codes on a single machine. 

iii. Open vSwitch (OVS): A production quality, multilayer virtual switch 

licensed under the open-source Apache 2.0 license.  It is designed to 

enable massive network automation through program extension, while 

still supporting standard management interfaces and protocols. 

iv. SECOD [21]: a program implemented as an application of the RYU 

controller using python-based scripts to do the functions needed for 

detecting and handling DoS attacks. It communicates with the RYU 
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controller using the northbound interface to process and store different 

counters as well as push different command instructions to the switch. 

v. iPerf: the network bandwidth measurement tool for collecting the 

maximum bandwidth in the network during the test.  

vi. tcping: these are command line tools for collecting web service 

responses in the network during the test. 

vii. Gnuplot: the tools for producing graphs for the statistics being 

collected. 

 

 

Figure 2.4 : Testbed Setup 

 

All the components are setup in a Mininet environment. The sender of the TCP 

stream is connected to port 1 of the switch, a DoS attacker is connected to 

port 2 and a receiver of the TCP stream is connected to port 3. Web service 

responses will also be collected during the simulation. The SDN controller is 

installed in Ubuntu OS and connected remotely from the Mininet environment. 

The bandwidth that can be achieved during the attack and the performance of 

the web service response will be collected and analysed to evaluate the 

impact of the attack on the SDN environment. 
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All three host machines used iPerf applications for gathering traffic generation 

and statistics. Consistent TCP streaming for 30 seconds in 10 cycles was 

established between the Sender and the Receiver. After the given period, 

iPerf reports the average bandwidth achieved during the time period. In the 

Attacker, a bash script uses iPerf in a loop to continuously send UDP packets 

with a high frequency to different IP addresses. This allows the rapid creation 

of new flows in the network, emulating a DoS attack on the control and data 

plane of the SDN. 

Four (4) types of traffic simulation were carried out, as below: 

  

i. Without Attack 

 
TCP traffic simulation from Sender to Receiver for gathering the 

bandwidth recorded for network traffic without any DoS attack, for 

both the normal controller configuration and SECOD being 

deployed. 

  
ii. Slow Attack 

 

A TCP traffic simulation from Sender to Receiver for gathering the 

bandwidth recorded for network traffic during a DoS attack from the 

Attacker for both with and without SECOD being deployed. The 

transmission time-to-transmit used for this scenario was 1 second. 

Higher frequencies are the result of higher volumes of Packet_In 

messages for the Controller to handle, so  DoS attacks happen. 
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iii. Medium Attack 

 
TCP traffic simulation from Sender to Receiver to gather the 

bandwidth recorded for network traffic during a DoS attack from 

Attacker for both with and without SECOD deployed. The 

transmission time-to-transmit used for this scenario was 0.1 

seconds. 

 
iv. Fast Attack 

 
TCP traffic simulation from Sender to Receiver for gathering the 

bandwidth recorded of network traffic in a DoS attack from an 

Attacker for both with and without SECOD  deployed. The 

transmission time-to-transmit used for this scenario was 0.001 

seconds to emulate the most DoS attack activity in the environment. 

 

2.6.2 Implementation Findings 

 

Without Attack 

 
Both simulations with and without SECOD recorded similar findings as the 

traffic flows were normal and no DoS attack activity occurred. Bandwidth 

readings and the graph shown in Figure 2.5 for 10 runs were recorded and 

summarised in Table 2.3 below: 
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Without SECOD     With SECOD 

 

Test 

Number 

Mean 

Bandwidth 

(Mbps) 

 Test 

Number 

Mean 

Bandwidth 

(Mbps) 

1 938  1 932 

2 938  2 948 

3 944  3 952 

4 944  4 948 

5 926  5 944 

6 946  6 933 

7 947  7 942 

8 946  8 945 

9 946  9 950 

10 939  10 952 

Table 2.3 : Bandwidth reading for without attack scenario 

 

 

Figure 2.5 : Bandwidth summary without attacks 
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No significant difference recorded between the simulations and it is assumed 

that the setup functioned properly when handling traffic test without any DoS 

attack. The bandwidth that can be achieved is almost 1 Gbps, as the speed  

setup for the simulation. 

Web service responses without any performance test recorded during the test 

are plotted in Figure 2.6 and Figure 2.7, below. The graph shows the majority 

are between 4 to 6 milliseconds for web services’ responses to the query sent. 

 

Figure 2.6 : Web Service responses without SECOD 
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Figure 2.7 : Web Service responses with SECOD 

 

During the performance test,  readings between 65 to 75 milliseconds were 

recorded for web service responses with and without SECOD, as shown in 

Figure 2.8 and Figure 2.9 : Web Service responses with SECOD during the 

performance test.   
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Figure 2.8 : Web Service responses without SECOD during the 
performance test 

 

 

Figure 2.9 : Web Service responses with SECOD during the 
performance test 

Both experiments show the response readings for the web services were quite 

similar during the performance test. 
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2.6.3 Slow Attack 

Bandwidth reading and the graph for 10 runs were recorded and are 

summarised in Table 2.4 below: 

 

Without SECOD     With SECOD 

 

Test 

Number 

Mean 

Bandwidth 

(Mbps) 

 Test 

Number 

Mean 

Bandwidth 

(Mbps) 

1 531  1 531 

2 531  2 532 

3 531  3 531 

4 531  4 530 

5 532  5 532 

6 532  6 530 

7 532  7 532 

8 531  8 531 

9 531  9 532 

10 532  10 529 

Table 2.4 : Bandwidth reading for the slow attack scenario 
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Figure 2.10 : Bandwidth summary during the slow attack test session 

 
Traffic for both tests dropped to half  capacity, around 500 Mbps during the 

slow attack DoS session. With the implementation of SECOD, access from 

the source of the DDoS  dropped but with no significant impact  on the traffic 

bandwidth achieved.  

 
Web service responses during a slow attack session are shown below, in 

Figure 2.11 and  Figure 2.12. 
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Figure 2.11 : Web Service responses without SECOD during the slow 
attack 

 

 

Figure 2.12 : Web Services response with SECOD during the slow 
attack 

 

Both experiments show the response readings for the web services were 

similar during the performance test with readings around 120 ms to 130 ms. 
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The difference is that, during a drop policy enforced in SECOD, the responses 

are more similar compared to the  scattered readings with no policy enforced. 

 

2.6.4 Medium Attack 

Bandwidth readings and the graph for 10 runs were recorded and are 

summarised in Table 2.5 and Figure 2.13 below: 

  

Without SECOD     With SECOD 

 

Test 

Number 

Mean 

Bandwidth 

(Mbps) 

 Test 

Number 

Mean 

Bandwidth 

(Mbps) 

1 532  1 530 

2 532  2 531 

3 532  3 532 

4 531  4 533 

5 532  5 530 

6 532  6 531 

7 532  7 531 

8 532  8 532 

9 532  9 531 

10 532  10 531 

Table 2.5 : Bandwidth reading in a medium attack scenario 
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Figure 2.13 : Bandwidth summary during a medium attack session 

 
Traffic for both tests dropped to half capacity, around 500 Mbps during the 

medium attack DoS session. With the implementation of SECOD, access from 

the source of the DDoS dropped, but no significant impact r in the traffic 

bandwidth achieved was recorded.  

 
Web service responses during a medium attack session are shown below in 

Figure 2.14 and Figure 2.15. 
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Figure 2.14 : Web Service responses without SECOD during the 
medium attack 

 

 

Figure 2.15 : Web Services response with SECOD during the medium 
attack 
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2.6.5 Fast Attack 

Bandwidth readings and the graph for 10 runs were recorded and summarised 

below in Table 2.6 and Figure 2.16: 

  

Without SECOD     With SECOD 

 

Test 

Number 

Mean 

Bandwidth 

(Mbps) 

 Test 

Number 

Mean 

Bandwidth 

(Mbps) 

1   532  1 530 

2 533  2 534 

3 531  3 536 

4 532  4 531 

5 533  5 534 

6 534  6 531 

7 532  7 533 

8 532  8 531 

9 534  9 531 

10 533  10 531 

Table 2.6 : Bandwidth readings for the fast attack scenario 
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Figure 2.16 : Bandwidth summary of the fast attack session 

 
Traffic for both tests dropped to half capacity, around 500 Mbps during fast 

attack DoS session. With the implementation of SECOD, access from the 

source of the DDoS  dropped but no significant impact was recorded on the 

traffic bandwidth achieved. 

 
Web service responses during the fast attack session shown below in Figure 

2.17 and Figure 2.18. 
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Figure 2.17 : Web Service responses without SECOD during the fast 
attack 

 

 

Figure 2.18 : Web Service responses with SECOD during the fast attack 
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2.6.6 Simulation Summary 

The reduction  in available bandwidth and higher response rate from web 

services has shown a significant impact was caused by the attack in the SDN 

environment. The objective of analysing the findings and becoming familiar 

with SDN traffic handling has been achieved from the simulation. Although no 

significant impact was recorded when  comparing results during all the attack 

scenarios, valuable information was gathered for understanding  how to use 

SDN traffic information. Collecting traffic data, computing traffic use in 

comparison with the threshold setup, and the pushing policy to the OpenFlow 

switch experienced in the simulation have all  provided good basic knowledge 

for exploring attack handling in an SDN environment in future research. A 

mitigation plan for improving the bandwidth during an attack and maintaining 

a low response time for the web services will be proposed in the next chapter. 

Before a good machine learning solution can be proposed, it is important to 

understand the process of selecting features  from the available dataset and 

the optimum classification mechanism for analysing and detecting attacks 

related to an SDN environment. Chapter three will cover the research related 

to attack classification using machine learning capabilities. 

2.7 Comparison of Machine Learning attacks as classified in 

an SDN environment 

ML is a type of AI that involves using algorithms and statistical models to 

enable computer systems to learn from data and make decisions or 

predictions without being explicitly programmed to do so. In the context of 

SDN, ML can be used to classify different types of network traffic, such as 
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video streaming, web browsing, or file sharing. This information can be used 

to optimize network performance and prioritize certain types of traffic over 

others. ML algorithms also can analyse network traffic patterns and identify 

anomalous behaviour that may indicate a security threat, such as a DDoS 

attack. Optimizing resource allocation in an SDN environment, such as 

allocating bandwidth or storage resources to different applications or users 

based on their needs and usage patterns can be adopt. Furthermore,  ML are 

able to predict equipment failures or performance degradation in network 

devices, allowing for proactive maintenance and minimizing downtime. 

Dataset is an important element in  any research. Some public access 

datasets are shared by researchers and contributing agencies as benchmarks 

to enable researchers to develop models or system to compare their  

performances with that of others  using the same dataset. NSL-KDD is one of 

the most popular, being shared by the Canadian Institute for Cybersecurity 

dataset for intrusion and attack detection. The dataset is an updated version  

of the earlier KDD Cup 99 dataset, aiming to overcome some limitations in 

that earlier version. Chapter two covers the scope of applying the machine 

learning approach for attack classification in an SDN simulation. The NSL-

KDD dataset is used as the input while a machine learning algorithm is used 

as the classification mechanism for detecting attacks in SDN. The feature 

selection and classification is carried out using the Weka tool to capture the 

performance and compare various algorithms to find the best combination to 

apply in any future adaptive attack mitigation proposal. 
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2.7.1 NSL-KDD Dataset 

The KDD Cup 99 dataset has been used as a benchmark dataset for many 

years in intrusion detection development and evaluation. The drawback in this 

dataset is that it has many redundant records in the training and test data. It 

was observed that the training and testing data have almost 78% and 75% 

redundant records respectively. The detection mechanism developed using 

this dataset become biased towards the classification of frequently found 

attack records and produce poor classification results for the less frequent, 

but harmful records due to this redundancy. In this case, the comparison and 

evaluation of different NIDSs become difficult, as they all produce excellent 

results on this dataset.  

The NSL-KDD came into existence to overcome the limitations of the KDD 

Cup 99 dataset but is derived from the KDD Cup 99 dataset. The following 

approaches were taken in the NSL-KDD dataset to improve the KDD Cup 99 

dataset. Firstly, all the redundant records from the training and test data in the 

KDD Cup 99 dataset were removed. After removing redundant records from 

the KDD Cup 99 dataset, the remaining distinct records were divided into 21 

sets based on their classification accuracy by different learning algorithms. 

Each set contained records that could be correctly classified by a specific 

number of learning algorithms. This was done to create a more diverse and 

challenging dataset that could better represent real-world network traffic and 

attacks.. A record was kept in a set with the same number as the classifiers 

that accurately classified the record. The records were sampled from each set 

in a fraction  inversely proportional to the fraction of the records in that set 

over the total number of records in all the sets. Each record in the NSL-KDD 
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dataset has 41 features including three nominal, four binary, and 34 

continuous features along with a label for normal or a particular kind of attack. 

NSL-KDD dataset feature list and its description are as shown in Table 2.7 

below. 

Feature name Feature 

Number 

Description 

duration 1 Length of the connection in seconds 

Protocol-type 2 Type of  connection protocol 

service 3 Destination of network services 

flag 4 Status of the connection (normal or 

error) 

src_bytes 5 Source to destination  data byte 

numbers 

dst_bytes 6 Destination to source  data byte 

numbers 

land 7 1 if the connection is from/to the 

same host/port; 0 otherwise 

wrong_fragment 8 Number of wrong fragments 

urgent 9 Number of urgent packets 

hot 10 Number of hot indicators 

failed_logins 11 Number of failed login attempts 

logged_in 12 1 if successfully logged in; 0 

otherwise 

_compromised 13 Number of compromised conditions 

root_shell 14 1 if root shell is obtained; 0 otherwise 

su_attempts 15 1 if ‘‘su root’’ command attempted; 0 

otherwise 

_roots 16 Number of root accesses 

_file_creations 17 Number of file creation operations 
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_shells 18 Number of shell prompts 

_access_files 19 Number of operations on access 

control files 

_outbound_cmds 20 Number of outbound commands 

is_hot_login 21 1 if the login belongs to the hot list; 0 

otherwise 

is_guest_login 22 1 if the login is a guest login; 0 

otherwise 

count 23 Number of connections to the same 

host as the current connection in the 

past 2 seconds 

srv_count 24 Number of connections to the same 

service as the current connection in 

the past 2 seconds 

serror_rate 25 % of connections that have ‘‘SYN’’ 

errors 

srv_serror_rate 26 % of connections that have ‘‘SYN’’ 

errors 

rerror_rate 27 % of connections that have ‘‘REJ’’ 

errors 

srv_rerror_rate 28 % of connections that have ‘‘REJ’’ 

errors 

same_srv_rate 29 % of connections to the same service 

diff_srv_rate 30 % of connections to different services 

srv_diff_host_rate 31 % of connections to different hosts 

dst_host_count 32 Count of connections having the 

same destination host 

dst_host_srv_count 33 Count of connections having the 

same destination host and using the 

same service 

dst_host_same_srv_rate 34 % of connections having the same 

destination host and using the same 

service 
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dst_host_diff_srv_rate 35 % of different services on the current 

host 

dst_host_same_src_port_rate 36 % of connections to the current host 

having the same source port 

dst_host_src_diff_host_rate 37 % of connections to the same service 

coming from different hosts 

dst_host_serror_rate 38 % of connections to the current host 

that have an S0 error 

dst_host_srv_serror_rate 39 % of connections to the current host 

and specified service that have an S0 

error 

dst_host_rerror_rate 40 % of connections to the current host 

that have an RST error 

dst_host_srv_rerror_rate 41 % of connections to the current host 

and specified service that have an 

RST error 

Table 2.7 : NSL-KDD dataset features  and their descriptions 

 

The NSL-KDD dataset is commonly used in research related to IDS and 

network security. One of the applications of IDS is to detect and prevent 

attacks in SDN environments. The dataset has been widely used in these 

types of studies because it provides a comprehensive collection of network 

traffic data that simulates various types of attacks. By using the NSL-KDD 

dataset to train and evaluate machine learning algorithms or IDS techniques, 

researchers can assess the effectiveness of these methods in detecting and 

preventing attacks in SDN environments. Top of Form The NSL-KDD dataset 

can be beneficial in evaluating the effectiveness of various security 

mechanisms and techniques in SDN environments. Benefits of using the NSL-

KDD dataset in SDN environments is as follows: 
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i. Realistic data: The NSL-KDD dataset provides a realistic and diverse 

set of network traffic data that simulates various types of attacks, such 

as DoS, Probe, R2L, and U2R attacks. This can help researchers to 

evaluate the effectiveness of different security mechanisms and 

techniques in detecting and preventing attacks in SDN environments. 

ii. Comprehensive feature set: The NSL-KDD dataset includes a 

comprehensive set of pre-defined features that can be used to analyse 

network traffic and identify patterns that may indicate an attack. This 

can help researchers to develop effective machine learning algorithms 

or intrusion detection systems that can detect and prevent attacks in 

SDN environments. 

iii. Benchmark dataset: The NSL-KDD dataset is widely used as a 

benchmark dataset for evaluating the performance of intrusion 

detection systems and related techniques. This can help researchers 

to compare the performance of different security mechanisms and 

techniques in detecting and preventing attacks in SDN environments. 

iv. Cost-effective: The NSL-KDD dataset is freely available and can be 

used for research purposes without any cost. This can be beneficial for 

researchers who may not have access to real-world network traffic data 

or who may not have the resources to collect and analyse their own 

data. 
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2.7.2 Dataset Feature Selection 

Previous studies have been made by researchers using the NSL-KDD dataset 

as the input for machine learning classification. With a combination of 

proposed classification techniques, different feature selections have been 

presented to assess the proposed intrusion detection procedure. A summary 

of related work with similar objectives mentioned earlier is  shown in Table 2.8 

below. 

 

Ref. Year. Number of 

feature 

selection 

Feature list 

[7] 2018 6 1, 2, 5, 6, 24, 36 

[22] 2018 6 3, 4, 5, 6, 12, 26 

[23] 2013 11 3, 5, 6, 10, 17, 18, 32, 33, 35, 36, 38 

[24] 2015 11 3, 4, 12, 26, 29, 30, 31, 32, 33, 38, 39 

[25] 2012 11 1, 3, 6, 12, 22, 23, 24, 25, 28, 31, 32 

[26] 2104 13 not specified 

[27] 2013 13 not specified 

[28] 2013 22 not specified 

[29] 2010 23 not specified 

[30] 2013 27 1, 2, 3, 4, 5, 6, 10, 11, 23, 24, 25, 26, 27, 

28, 29, 30, 31, 31 ,33 ,34, 35, 36, 37, 38, 

39, 40, 41 

Table 2.8 : Dataset selections of previous studies 

Feature selection is an important step in building machine learning models 

and intrusion detection systems (IDS) using the NSL-KDD dataset. The 

feature selection process involves selecting a subset of relevant features from 
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the dataset that can be used to build effective models for detecting and 

preventing attacks. The NSL-KDD dataset originally included 41 features, 

which were pre-defined by the creators of the dataset. However, several 

studies have shown that not all of these features are relevant or useful for 

building effective intrusion detection systems. In fact, using all 41 features can 

lead to overfitting and reduced model performance. To address this issue, 

researchers have proposed various methods for feature selection in the NSL-

KDD dataset. These methods aim to identify the most relevant and informative 

features that can be used to build effective IDS models. Some of the popular 

feature selection methods used in the NSL-KDD dataset include: 

i. Correlation-based feature selection: This method involves selecting 

features that are highly correlated with the target variable (i.e., attack 

or normal traffic) and removing features that are highly correlated with 

each other. This can help to reduce redundancy in the feature set and 

improve model performance. 

ii. Recursive feature elimination: This method involves recursively 

removing the least important features from the dataset and evaluating 

the model performance after each iteration. This can help to identify the 

most important features that contribute the most to the model 

performance. 

iii. Principal component analysis: This method involves transforming the 

original feature set into a lower-dimensional feature space that retains 

the most important information from the original features. This can help 

to reduce the dimensionality of the feature set and improve model 

performance. 
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Feature selection process in the NSL-KDD dataset has evolved over time as 

researchers have identified the most relevant and informative features for 

building effective IDS models. The goal of feature selection is to reduce the 

dimensionality of the feature set while retaining the most important 

information, which can help to improve the accuracy and performance of the 

IDS models. The number of features selected has tended to decrease in 

recent years because selecting  fewer features makes the classification 

process  much faster. Although fewer features are selected, the accuracy of 

the proposed model needs to be high enough to yield good results. The aim 

of analysing different projects’  feature selection from the same dataset is   to 

propose alternative selection features that can yield a better result. 

2.8 Simulation Setup 

Feature selection and classification methods are available in built-in WEKA, a 

machine learning work bench. As proposed by [22], 4 feature selection 

methods have been chosen, namely CfsSubsetEval, GainRatioAttributeEval, 

OneRAttributeEval and SymmetricalUncertAttributeEval. The feature 

selections in WEKA are shown in Figure 2.19 below. 
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Figure 2.19 : WEKA attribute selection 

 

Classification using the available algorithm in Weka are shown in Figure 2.20 

below. For this work’s comparisons, 4 classifiers have been chosen, namely 

BayesNet, Logistics, NBTree and IB1. 

 

 

Figure 2.20 : WEKA classification selection 

 

To select the best combination of feature selection methods for future 

research in machine learning deployment, two previous research projects that 

utilized a 6-feature selection approach were identified and selected. The 
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purpose of selecting these two projects was to compare their feature selection 

methods and identify the most effective combination for future research. 

Alternative 1 and Alternative 2 feature selections were suggested as in list in 

Table 2.9 below. The comparison of the evaluation measurements  discussed 

in the findings section. 

 

Ref. Year. Number of 

feature 

selection 

Feature list 

Full Features 41 All features 

[7] 2018 6 1, 2, 5, 6, 24, 36 

[22] 2018 6 3, 4, 5, 6, 12, 26 

Alternative 1 6 3, 4, 5, 12, 25, 26 

Alternative 2 6 3, 4, 5, 6, 12, 25 

Table 2.9 : Feature selection options 

 

2.9 Findings 

Results from the NSL-KDD test using selected features are shown in Table 

2.10 below. 
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Evaluation 

Measurement 

Dataset Classifier 

  BayesNet Logistic NBTree IB1 

Detection 

Rate 

Full 

Features 

74.43 75.60 79.68 79.35 

 Ref 19 77.62 50.12 79.21 79.43 

 Ref 30 78.65 77.84 82.98 82.49 

 Alternative 1 78.73 77.86 83.13 82.29 

 Alternative 2 78.68 77.65 83.46 81.99 

      

False Alarm Full 

Features 

0.200 0.203 0.175 0.165 

 Ref 19 0.177 0.381 0.165 0.166 

 Ref 30 0.169 0.192 0.150 0.154 

 Alternative 1 0.168 0.191 0.148 0.156 

 Alternative 2 0.169 0.193 0.146 0.158 

      

Precision Full 

Features 

0.822 0.804 0.824 0.841 

 Ref 19 0.836 0.728 0.843 0.839 

 Ref 30 0.841 0.808 0.847 0.842 

 Alternative 1 0.842 0.808 0.848 0.840 

 Alternative 2 0.841 0.807 0.850 0.838 

      

Recall Full 

Features 

0.744 0.756 0.797 0.794 

 Ref 19 0.776 0.501 0.792 0.794 

 Ref 30 0.787 0.778 0.830 0.825 

 Alternative 1 0.787 0.779 0.831 0.823 

 Alternative 2 0.787 0.777 0.835 0.820 
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F-Measure Full 

Features 

0.739 0.754 0.797 0.792 

 Ref 19 0.774 0.405 0.791 0.793 

 Ref 30 0.785 0.778 0.831 0.826 

 Alternative 1 0.785 0.779 0.832 0.824 

 Alternative 2 0.785 0.777 0.835 0.821 

      

Table 2.10 : Selected features test results 

 

The detection rate evaluation using the NBTree classifier, Alternative 1 and 

Alternative 2 feature selections show a slight increase in the results achieved, 

with readings of 83.13% and 83.46% detection rates, as shown in Figure 2.21 

and Figure 2.22 respectively using the test dataset. The full feature selection 

level was 79.68%, as shown in Figure 2.23 while reference [7]  achieved a 

79.21% level, as shown in Figure 2.24 and ref [22] achieved 82.98%, as 

shown in Figure 2.25. 
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Figure 2.21 : Full feature selection 

 

 

Figure 2.22 : Reference [19] feature selection 
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Figure 2.23 : Ref [27] feature selection 

 

 

Figure 2.24 : Alternative 1 feature selection 
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Figure 2.25 : Alternative 2 feature selection 

 

The proposed system design involves the use of adaptive attacks and feature 

selection to improve the accuracy of intrusion detection systems. Two 

alternative feature selection methods were considered in the study, and it was 

found that Alternative 2 feature selection yielded better results than the other 

method. Alternative 2 involves selecting a set of features that are highly 

correlated with the target variable and have low correlation with each other. 

After the proposed adaptive attack has been deployed, the selected features 

are used to prompt mitigation actions. Specifically, the feature list is used to 

identify the type and characteristics of the attack, which in turn informs the 

selection of an appropriate mitigation strategy. For example, if the feature list 

indicates that the attack is a denial of service (DoS) attack, the system can 

initiate a traffic filtering mechanism to block traffic from the attacker's IP 

address. Alternatively, if the attack is a port scan, the system can modify 
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firewall rules to block traffic from the attacker's source port. Overall, the 

proposed system design demonstrates the effectiveness of feature selection 

in improving the accuracy of intrusion detection systems and the importance 

of using selected features to prompt mitigation actions in response to adaptive 

attacks. The use of Alternative 2 feature selection method ensures that the 

selected features are highly relevant to the target variable and minimizes the 

possibility of selecting features that are highly correlated with each other, 

which could lead to overfitting and poor generalization performance of the 

system. 

 

2.10 Summary 

In this chapter, we discussed in detail the SDN architecture, OpenFlow 

protocol, ML, DL and also the used datasets. This chapter also provided an 

overview of the DDoS attack and some related work in SDNs. The attacks 

implementation and simulation in this chapter shows the impact in an SDN 

architecture. We describe and explain the different types of attack magnitude 

that impacted the overall performance of the SDN environment. At the end of 

this chapter, comparison of ML algorithm being use to classify the attack in 

SDN traffic to show the flexibility of the SDN paradigm in monitoring and 

detecting network attacks. 
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CHAPTER 3 : Native SDN Intrusion Detection using Machine 

Learning 

 

3.1  Introduction 

In recent years, SDN has been widely studied and put into practice to assist 

in network management especially with regards to newly evolved network 

security challenges. SDN decouples the data and control planes, while 

maintaining a centralised and global view of the whole network. However, the 

separation of control and data planes makes SDN vulnerable to security 

threats. Seven main categories directly related to these risks have been 

identified which are unauthorized access, data leakage, data modification, 

compromised application, denial of services (DoS), configuration issue and 

system-level SDN security. One example of the most concerning issue is 

related to Distributed denial-of-service (DDoS). DDoS attacks have been a 

real threat for network, digital and cyber infrastructure. The magnitude of 

disruptions are massive and can bring down ICT infrastructure services. 

Various reasons for attack can be synopsized with the main objective of DDoS 

attack as to paralyze network services by bombarding illegitimate traffic to 

targeted servers, network links or network devices [31]. Another example is 

that attackers can oversee and falsify network management information, 

implement saturation attack, become a perpetrator in man-in- the-middle 

attacks and so on. Therefore, it is important to adopt a defense mechanism 

for securing SDN architecture by analyzing vulnerability and improve trust 

management in traffic handling. One of the proposed solutions for detecting 

such intrusion is the usage of the intrusion detection system (IDS). There are 

2 types of IDS which are signature-based IDS and anomaly detection based 
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IDS. The first type of IDS depends on the pre-identified signature of an 

intrusion that has been known before whilst the second type of IDS observed 

the traffic that deviates so much from normal and deemed suspicious or 

abnormal. Efficient approach in providing a high level of security in areas such 

as access control, authentication, malicious outbreak detection and others has 

resulted by adapting machine learning features and capabilities [32]. Network 

traffic classification either normal or attack are done via the usage of the Naive 

Bayes algorithm, Support Vector Machine, K-nearest Neighbor, Neural 

Network, Recurrent Neural Network, Deep Neural Network and others [33] [6]. 

Reinforcement learning practicality also being embedded in the case of 

unlabelled data and the needs of the different approaches for intrusion 

identification and detection. With the abovementioned advancement and 

additional capabilities provided by SDN architecture, research of incorporating 

machine learning has been done to improve network security. Researchers 

also have embarked autoencoder approach as an alternative in network 

intrusion detection environments such as the works of [9] and [34]. 

Autoencoders are unsupervised learning techniques that make use of the 

neural network for undertaking representation learning. A bottleneck in the 

network is imposed to force a compressed knowledge from the original input. 

An ideal autoencoder model can be achieved by balancing the sensitivity of 

the input for accurate reconstruction build up and take into account overfitting 

condition which simply memorizing the input data. For most cases, a loss 

function usually being constructed with the term on encouraging for input 

sensitivity and secondly by discouraging overfitting or memorization of input 

data, for example by adding regularizer. Embracement of machine learning 

and autoencoder such as the works above has outset promising solution in 
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intrusion detection. Progression in the accuracy level, reducing training and 

execution time needed can still be improved especially to be embedded in a 

fast speed of SDN environment. This further improvement motivates in 

outlining this research. In summary, the contributions of this chapter are the 

following: 

We introduce a hybrid combination of an autoencoder (AE) and random forest 

(RF) algorithm in the SDN environment. Our AERF approach yields a 

detection rate of 98.4% using a minimum number of features. We also 

evaluate the network performance of the proposed approach in the SDN. The 

test results show that our approach is a significant potential for real-time 

detection with minimum impact on the controller and noteworthy processing 

time. 
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3.2 Architecture 

A. SDN-based Intrusion Mitigation Architecture 

 

The proposed architecture is as shown in Figure 3. 1 below. 

 

 

Figure 3. 1 : Intrusion Mitigation Architecture 

 

Two main functionalities are Assembly Module for statistics collection and 

Adaptive ML Module which will be adopting deep learning for analysing traffic 

received for intrusion detection and enforcing policies enforcement with 

capabilities of machine learning in the SDN environment. The proposed 

solution will focus on mitigating the attack with enrichment of machine learning 

benefits. The functionality of the main components is presented as follows: 
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a) Assembly Module:  

Collecting traffic information of the SDN network. Collected data will be 

assembled as needed input for the controller to take proper actions. 

Utilized standard Openflow protocol which periodically sends an 

Openflow flow stats request message to all Openflow connected 

switches. Managed switches will respond back to the message that 

contains traffic flow statistics. 

 
b) Adaptive ML Module:  

Proposed intrusion detection using AERF will be deployed and attack 

traffic will be penalized when detected by the controller using machine 

learning functionality in the adaptive ML module. 

 

 

Figure 3. 2 : Intrusion Mitigation Module 

 

The functionality of the proposed module are as shown in Figure 3. 2. 

Assembly Module will handle the statistics inquiry and collection from all 

OpenFlow enable switches. The gathered data will then be processed with the 

required format for the controller to proceed with detection and prevention in 

the adaptive ML module. The training and testing process of the detection 

process needs to be fast and yield high accuracy as it will deal with the high 
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speed data flow. Upon the classifying process, normal traffic will proceed as 

usual whilst abnormal traffic will be penalized. 

 

3.3 Experimental Methodology 

A. Dataset 

The NSL-KDD dataset is a popular choice for research and experimentation 

in the field of network intrusion detection and machine learning. The reasons 

why the NSL-KDD dataset selected is as below. 

i. Standardized Benchmark: The NSL-KDD dataset is widely used as 

a benchmark dataset for evaluating the performance of intrusion 

detection systems (IDSs) and machine learning algorithms. It is an 

updated version of the original KDD Cup 1999 dataset, addressing 

some limitations and criticisms of the original dataset, such as the 

presence of redundant records and unrealistic traffic patterns. 

ii. Realistic Network Traffic: The NSL-KDD dataset contains a 

representative sample of network traffic data, including both normal 

and various types of attacks, such as DoS, probing, and 

unauthorized access. This diversity allows researchers to study and 

develop IDSs and machine learning models that can effectively 

detect and classify different types of network intrusions. 

iii. Feature Selection Challenges: The NSL-KDD dataset provides a 

significant number of features (41 features) that capture various 

aspects of network traffic. This feature-rich dataset allows 

researchers to tackle the challenge of feature selection and 
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extraction, exploring the most relevant features for intrusion 

detection and determining the optimal subset of features for 

achieving high detection accuracy. 

iv. Pre-processed and Labeled: The NSL-KDD dataset is pre-

processed and labeled, meaning that the raw network traffic data 

has been transformed into a suitable format for machine learning. 

Additionally, each network connection is labeled as either normal or 

belonging to a specific attack category, making it convenient for 

supervised learning tasks. 

v. Availability and Reproducibility: The NSL-KDD dataset is readily 

available for download and has been used extensively in research 

publications. This availability enables researchers to compare their 

results with existing literature, reproduce experiments, and foster 

collaboration among the research community. 

 

However, it's worth noting that the NSL-KDD dataset is not without limitations. 

Some criticisms include the fact that it may not fully represent the complexities 

and diversity of real-world network traffic, as it was generated in a controlled 

lab environment. Therefore, researchers should be cautious when 

generalizing results obtained from the NSL-KDD dataset to real-world 

scenarios. Overall, the NSL-KDD dataset serves as a valuable resource for 

exploring and developing machine learning-based intrusion detection systems 

and provides a standardized platform for evaluating the performance of 

different techniques in the field of network security. 
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Most of the approaches in machine learning required a training dataset to train 

the algorithm before being tested. Usage of the dataset in classifying attack 

has been done in [9] and a total of 63% of the reported research used the 

KDD-99 dataset for training and testing. In this work, a newer version of KDD-

99 which is an NSL-KDD dataset will be used. The dataset has been corrected 

from enormous duplication of data and defects that cause bias in evaluation. 

NSL-KDD dataset has 41 features and three of these features are symbolic 

while others are numeric. Our model is trained by the KDDTrain+ dataset and 

tested by the KDDTest+ dataset. In addition, the KDDTest+ dataset contains 

17 different types of attacks compared to 22 attack types of the KDDTrain+ 

dataset. Thus, the KDDTest+ dataset is a reliable indicator of the performance 

of the model on zero-day attacks as well. Distribution of both dataset 

according to network traffic classes are as shown in Table 3. 1 below. 

KDDTrain+ dataset contains 125,973 records and KDDTest+ dataset contains 

22,544 records. The data processing task will be deployed to prepare the 

dataset for training and testing purposes. Simplified autoencoder with the fine-

tune of overfitting factors is applied to the NSL-KDD training and testing 

dataset and only selected 6 features from Section III. The selected features 

are service, flag, src bytes, dst bytes, logged in and serror rate. 

 

Table 3. 1: Distribution of KDDTrain+ and KDDTest+ dataset according 
to traffic classes 

 

Many of the features of the NSL-KDD dataset have very large ranges between 

the maximum and minimum values, such as the difference between the 
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maximum and minimum values in “duration [0, 58329].” In this example, the 

maximum value is 58,329 and the minimum is 0. A large difference also exists 

in other feature values, such as “src-bytes” and “dst-bytes” thereby making 

the feature values incomparable and unsuitable for processing. Hence, these 

continuous features are normalized by using max-min normalization for 

mapping all feature values to the range [-1, 1] according to equation  (3.1) 

below. 

 xi =
xi − Min

Max − Min
 (3.1) 

Features that are discrete such as service and flag are being processed using 

a one-hot encoding. As the speed of processing is a concern, using a one-hot 

implementation typically allows a state machine to run at a faster clock rate 

than any other encoding of that state machine. Both of these values will then 

be used as input to the model for training and testing. 

 

B. AERF Model 

Deep learning approaches have good potential to achieve effective data 

representation for building improved solution. For the approach to be adopted 

in the real environment, it has to be composed with a fast simplified approach 

for performance. Therefore, in this proposal, an autoencoder with fine-tuning 

the factors that affect overfitting is being put forth. An autoencoder is an 

unsupervised machine learning algorithm that learns to encode and decode 

data. It consists of an encoder and a decoder network that work together to 

reduce the input data into a compressed representation, also known as a 

latent code. The encoder network takes the input data and maps it to the latent 
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code, while the decoder network takes the latent code and maps it back to the 

reconstructed data. 

The objective of the autoencoder is to learn a compressed representation of 

the input data that can be used to reconstruct the original data with minimal 

loss of information. During training, the autoencoder is fed with input data and 

the corresponding reconstructed data, and the weights of the encoder and 

decoder networks are updated to minimize the difference between the input 

data and the reconstructed data. A hybrid combination using the random 

forest algorithm for further classification from the preliminary autoencoder 

calculation process is proposed. A preliminary test with the usage of the NSL-

KDD dataset will be used in order to test the approach by targeting high 

accuracy detection but with the main objectives of simplifying the detection 

within the minimum time processing needed. The AE has two phases which 

are encoding and decoding. For the encoding process as in equation (3.2) 

input data x is compressed into a low-dimensional representation h and then 

the decoder reconstructs the input based on the low-dimensional 

representation. 

 
h = f(Wx + b) 

y = f(W′h + b′) 
(3.2) 

Where f(·) is a non-linearity activation function, 𝑊 and 𝑊′ are hidden weight 

matrices, 𝑏 and 𝑏′ are biases and 𝑦 is output vector. Minimizing the differences 

between the input x and the output y is the main goal during the training 

process. The average squared difference between the estimated values and 

the actual values is used as below in equation (3.3). 
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 L(x, y) = ||x − y||
2

2
 (3.3) 

During the training process, only normal traffic is used from the training 

dataset. Attack datasets not used because of unbalanced and certain attack 

types are not well represented. In this approach, autoencoder with dropout on 

the inputs is proposed which consists of an input layer of 85 neurons due to 

the number of features for each sample is 85. The input layer of 85 neurons 

after the selection of 6 features is used for the training and testing process. 85 

neurons are consists of service (70 input), flag (11 input), src bytes (1 input), 

dst bytes (1 input), logged in (1 input) and serror rate (1 input). 

A total of 125,973 with 85 input and 22,544 with 85 input for dataset training 

and testing respectively. After a dropout layer, a hidden layer of 8 neuron units 

is proposed with the hidden representation of the autoencoder has a 

compression ratio of 85/8 forcing it to learn interesting patterns and  relations 

between the features. An output layer of 85 units with the activation of both 

the hidden layer and the output layer using the most popular rectified linear 

unit (ReLu) activation function as shown in Figure 3. 3 below. It gives an output 

𝑥 if 𝑥 is positive and 0 otherwise. 

 A(x) = max(0, x) (3.4) 

   

Figure 3. 3 : ReLu activation function 
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During the reconstruction of the inputs, the autoencoder was trained using 

only the samples labelled  “Normal” in the training dataset. This is for the 

purpose of allowing it to capture the nature of normal traffic and to minimize 

the mean squared error between the input and output. Preventing the 

autoencoder from simply copying the input to the output and overfitting the 

data, regularization constraints are enforced. Model architecture details are 

as shown in Figure 3. 4 and the parameter used for the model depicted in 

Table 3. 2. 

 

 

Figure 3. 4 : AERF Model 

 

 

Table 3. 2 : AERF model parameter 
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The hidden layer of the model is being used as the input for the second layer 

classification using random forest algorithm. Random forest applies the 

principle of ensemble learning method on various sub-samples of the dataset 

and uses averaging to improve the predictive accuracy and control over-fitting. 

Examples of research works that employ RF for intrusion detection is such as 

[35] and [36]. Comparative studies with regards RF as one of the best 

algorithms selected for a similar area being concluded by the works of [10] 

and [11]. In our proposed model, the encoded representations learned by the 

autoencoder is being used as the input for the RF classifier to classify either 

normal or anomalous of the traffic. 

 

3.4 Performance Evaluation 

A. Evaluation Metrics 

Performance evaluation metrics are used to assess the effectiveness and 

efficiency of various systems, models, algorithms, or processes. In the context 

of machine learning, there are several commonly used evaluation metrics 

depending on the specific task and goals. Performance evaluation metrics use 

in this evaluation is as below. 

i. Accuracy: Accuracy is a widely used metric that measures the overall 

correctness of a classifier or model. It represents the proportion of 

correct predictions (true positives and true negatives) out of the total 

number of predictions. 

ii. Precision: Precision measures the proportion of true positive 

predictions out of the total positive predictions made by a classifier. It 
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focuses on the correctness of positive predictions and is useful when 

the cost of false positives is high. 

iii. Recall (Sensitivity or True Positive Rate): Recall calculates the 

proportion of true positive predictions out of the actual positive 

instances. It assesses the ability of a classifier to correctly identify 

positive instances and is important when the cost of false negatives is 

high. 

iv. F Measure: The score is the harmonic mean of precision and recall. It 

provides a balanced measure of a classifier's performance by 

considering both precision and recall. It is useful when the dataset is 

imbalanced. 

 Precision =
TP

TP + FP
 (3.5) 

 
Recall =

TP

TP + FN
 

(3.6) 

 
F − measure = 2 ×

Precision × Recall

Precision + Recall
 

(3.7) 

 
Accuracy =

TP + TN

TP + TN + FP + FN
 

(3.8) 

These metrics are calculated by using four different measures, true positive 

(TP), true negative (TN), false positive (FP) and false negative (FN): 

TP: the number of anomaly records correctly classified. 

TN: the number of normal records correctly classified. 

FP: the number of normal records incorrectly classified. 

FN: the number of anomaly record incorrectly classified 
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B. Experimental Results 

The model is trained for 10 epochs using an Adam optimizer with a batch size 

of 100 as shown in Fig. 5. A total of 60,608 samples are used for training and 

10% of the total normal traffic which are 6735 samples as validation. 

Tensorflow backend is used to run and simulate the proposed as in Figure 3. 

5 below. 

 

Figure 3. 5 : Model training process 

 

During the training process of a machine learning model, the training loss is a 

metric that quantifies how well the model is performing on the training data. It 

represents the discrepancy between the predicted outputs of the model and 

the actual labels or targets in the training set. The specific calculation of the 

training loss depends on the type of machine learning task and the chosen 

algorithm. In supervised learning, where the model is trained to predict labels 
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or continuous values, the training loss is typically computed using a loss 

function, such as mean squared error (MSE) or cross-entropy loss. The 

training loss is minimized during the training process through an optimization 

algorithm, such as gradient descent or stochastic gradient descent. The goal 

is to iteratively update the model's parameters in a way that reduces the 

training loss and improves the model's ability to generalize to unseen data. 

Monitoring the training loss over successive epochs or iterations provides 

insights into the model's learning progress. A decreasing training loss 

indicates that the model is converging towards a better solution, while an 

increasing or stagnant loss may indicate issues such as underfitting or 

inadequate model capacity. It's important to note that while minimizing the 

training loss is a crucial aspect of model training, it is not the sole metric for 

evaluating model performance. It is essential to assess the model's 

performance on separate validation or test sets to ensure that it can generalize 

well to unseen data and avoid overfitting, where the model performs well on 

the training data but poorly on new data. 

Repetition of training and test has been performed with stabilized outcome. 

Results that have been collected from the test are promising with the mean 

accuracy of 90.19% achieved as shown in Table 3. 3 from the autoencoder 

process alone. 

 

Table 3. 3 : Autoencoder performance over test dataset 
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Figure 3. 6 : Autoencoder confusion metrics 

 

Example confusion matrix from the autoencoder process for the test dataset 

is as shown in Figure 3. 6. The threshold for autoencoder is based on the 

calculated loss from the training process for the separation of normal and 

anomaly traffic. Distribution of detection from the autoencoder is as shown in 

Figure 3. 7 below. It is noticed that the error rate for normal and abnormal 

traffic is highly distinctive from the calculated threshold value. An average 

amount of 10% of the calculated error is in the wrongly determine area. As for 

the next process, the encoded representation of the autoencoder is inputted 

into RF for a further breakdown of the category of the traffic. 
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Figure 3. 7 : Distribution of detection over test dataset 

 

RF classification that has been adopted has yielded an accuracy of 98.4% for 

the input from the autoencoder. Comparison from previous related works that 

have also using the same NSL-KDD dataset and intrusion detection are 

tabulated in Table 3. 4. An increase in accuracy is achieved with the proposed 

model and enables further improvement to be carried out. 
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Table 3. 4 : Performance comparisons in binary classification using 
KDDTrain+ and KDDTest+ dataset 

 

3.5 SDN Controller Performance 

In this section, we evaluate the effect of the AERF on the SDN network 

performance. The evaluation testbed is described in the first part and then the 

network performance evaluation is presented. 

 

Experimental Setup 

The AERF is implemented as an application written in Python language in a 

Ryu controller. Cbench is a standard tool used for evaluating the SDN 

controller performance which supports two running modes, throughput and 

latency. The throughput mode computes the maximum number of packets 

handled by the controller and latency mode computes the time needed to 

process a single flow by the controller. We run our experiments on a virtual 

machine having an Intel(R) Xeon(R) E3-1226 3.3GHz with 3 cores available 
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and 8GB of RAM. The operating system is Ubuntu 18.04.2 LTS 64bit. The 

controller performance is tested with a different number of virtual OpenFlow 

switches emulated by Cbench. The performance of the stand-alone Ryu 

controller is considered as a baseline for our evaluation. 

 

Analysis of Results 

The average response rate of the controller for both the baseline and AERF 

evaluation is as depicts in Figure 3. 8. The throughput achieved a slight 

decrease when the number of switches increases. Although the throughput 

decreased, comparison with the baseline stand-alone Ryu controller is not so 

much different and still acceptable. An interesting observation is the Ryu 

controller which has a negligible impact on its latency performance as shown 

in Figure 3. 9. When we increase the number of connected switches, the 

latency achieved are between 3 to 4 ms and not so much overhead 

introduced. This is a similar commentary that has been done by [37] regarding 

the latency of the Ryu controller performance achieved. A comparison of time 

taken for training and testing NSL-KDD dataset are as shown in Table 3. 5 

below. 
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Figure 3. 8 : SDN environment throughput evaluation 

 

 

Figure 3. 9 : SDN environment latency evaluation 



- 99 - 

 

Table 3. 5 : Performance comparisons in binary classification using 
KDDTrain+ and KDDTest+ dataset 

 

Simplicity is the focus of this approach. The simplified single hidden layer of 

minimum neurons has made the training and testing process very fast which 

are suitable for the SDN environment which demands high processing 

capability and real-time implementation. Adaptive calculation of threshold 

within the model has bypassed the needs of human intervention to manually 

set it. The value of the threshold could also be manually adjusted in order to 

suit the needs between sensitivity and specificity accordingly. The accuracy 

achieved with the very minimum processing time is a good sign of future 

applicability in real SDN environment deployment. 

 

3.6 Summary 

The chapter presents a novel approach called AERF (Autoencoder and 

Random Forest) for intrusion detection in a native SDN environment. The 

AERF method combines the power of an autoencoder, a type of neural 

network used for unsupervised learning and feature extraction, with the 

random forest algorithm, a popular supervised learning technique. 
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The results of the study demonstrate that the proposed AERF approach 

outperforms previous works in terms of accuracy, achieving an impressive 

98.4% accuracy rate. Furthermore, the AERF model exhibits reduced training 

and execution time compared to alternative methods, making it efficient for 

real-time intrusion detection. 

The works also conducted experiments to assess the impact of the proposed 

approach on the performance of the SDN controller. The results show that the 

AERF approach does not significantly affect the controller's throughput and 

latency. This finding indicates that the proposed method is practical for 

implementation and can be adapted within an SDN-based intrusion mitigation 

architecture for further prevention processes. 

Overall, the chapter highlights the efficacy of the AERF approach for intrusion 

detection in an SDN environment, showcasing its high accuracy, reduced 

training and execution time, and minimal impact on SDN controller 

performance. The promising results suggest that the proposed method holds 

potential for real-world deployment and can contribute to enhancing the 

security of SDN networks. 



- 101 - 

CHAPTER 4 : Hybrid Deep Autoencoder with Random Forest 

in Native SDN intrusion detection Environment 

 

4.1  Introduction 

The advantages and features of the SDN environment have been widely 

studied to help solve new network security challenges. Deploying intrusion 

detection systems (IDS) as a method of combatting these threats, is often 

proposed. In general, IDS are grouped into two types. The first depends on 

the pre-identified signature created from a series of known intrusions recorded 

previously. The second type monitors traffic behaviour to capture 

abnormalities from regular traffic deemed suspicious.  Machine learning 

features and capabilities have been adapted to provide an efficient system 

with a high level of security in various areas such as authentication, access 

control, malicious outbreak detection, and others [32]. A subset of machine 

learning domains is deep learning. Deep learning algorithms allow a given 

dataset’s features to be extracted systematically to create sequential layer 

architecture, which is then applied using a non-linear transformation function 

to build up the base of deep learning algorithms. The complexity of the non-

linear transformation constructed increases in parallel with the number of 

layers being used. The algorithm learns the abstract, hidden properties of the 

data obtained from the last layer, representing the multiple levels of abstract 

representation acquired during the process. Finally, introducing the data into 

a high-level non-linear function results in the abstract properties being gained. 

Integrating machine learning and deep learning into research relating to 

enhancing network security has been carried out together with the advances 

and increased capabilities offered by SDN architecture [38]. A subset of deep 
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learning, an autoencoder is unsupervised learning technique for undertaking 

representation learning using a neural network [39]. The workings of [9] and 

[34] have used the autoencoder technique for detecting intrusion in the 

network. The method creates a bottleneck to capture compressed knowledge 

from the original data. An optimum model can be achieved by manipulating 

the sensitivity of the input for a precise reconstruction of build-up, taking into 

consideration the overfitting condition resulting from copying the input data. 

To handle sensitivity, a loss function is commonly used to minimize loss while 

discouraging any overfitting or memorizing of input data, so a parameter such 

as a regularizer is added to the model. Excellent results from adopting an 

autoencoder with machine learning capabilities offer opportunities to create 

similar solutions, especially in the intrusion detection domain in the SDN 

environment. A further exploration aiming to increase accuracy levels, 

minimize processing time, and other benefits can still be added as an 

improvement. This possibility motivated this research to contribute to further 

improving the native SDN environment. To summarize, the contributions of 

this chapter are: 

• The introduction of a hybrid combination of a deep autoencoder (DAE) 

and random forest (RF) algorithm in the native SDN environment, 

deployed in the SDN controller mechanism. 

• Within the SDN Controller, our DAERF approach yields a detection rate 

of 98% using purely native SDN statistics collection as features. 

• We also compared the performance achieved with the original dataset 

and previous research to investigate the developed model’s 

performance. The results show that our approach has significant 

potential for real-time detection when deployed in the SDN controller. 
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4.2 Architecture 

In building a typical machine learning model, essential input features are 

selected, and the model automatically learns by mapping identified 

characteristics of features to a conclusion output. In deep autoencoder, there 

are multiple levels of encoding, and decoding used. Abstract features from 

various levels are automatically being discovered and composed to produce 

output. The features from the previous level are carried forward to the next 

level to be processed again for another level of abstract representation. Our 

experiment constructed a deep autoencoder model with an input layer, three 

hidden layers, and an output layer. A total of 8 dimensions for input and output 

are selected in the autoencoder. The hidden layers contain six, four, and two 

neurons, respectively. The middle, hidden layer of two neurons is used to input 

the random forest classifier for the intrusion detection process. A total batch 

size of 1000 were trained for ten epochs using the chosen Adam optimizer. 

Two phases are involved in the autoencoder, namely encoding and decoding. 

Input data x is compressed into a low dimensional representation h during the 

encoding process, while the low-dimensional representation is reconstructed 

into input data during the decoding process. A non-linearity activation function 

represents with f (·), hidden weight matrices indicated by W and W’, biases 

denoted by b and b’’, and y is output vectors. The main goal of training the 

DAE is to minimize the difference between the input x and output y. Therefore, 

an MSE loss function is used as shown in (4.1) below. 

 
 

(4.1) 
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In this approach, a stacked autoencoder with dropout on the inputs is 

proposed, consisting of an input layer of 8 neurons due to the number of 

features for each sample is 8. After the initial dropout process, a combination 

of 6,4 and 2 neuron units within the stacked hidden layer is proposed. The 

autoencoder uses an 8/2 compression ratio to allow it to learn relations 

between the chosen features and exciting patterns that might be discovered. 

Rectified linear unit (ReLu) activation function was used for the eight units of 

the hidden layer and the output layer. It gives an output x if x is positive and 0 

otherwise. For optimization steps, regularization constraints are enforced to 

avoid the autoencoder overfitting the data by copying the input directly to the 

output. The architecture of the model is shown in Figure 4. 1 and Table 4. 1 

presents the model’s parameters. Random Forest was tested and selected as 

the classifier with the best detection performance and lowest time usage [40], 

[41], [36], [42] and [43]. 

  

Table 4. 1 : Model parameter 

 

For this, it was used to process the model’s hidden layer output in the second 

layer classification. The output becomes the input for the classification 

algorithm. The principle of random forest uses the ensemble learning method 

on the dataset sub-sample by averaging to control for over-fitting and thus 

improve prediction accuracy. Examples of research that employs random 

forest classification for intrusion detection include [35] and [36]. The work of 

[44] and [45] also concluded that random forest is among the top algorithms 

for similar intrusion detection in their comparative studies. Encoded 
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representation from the autoencoder is passed to the random forest algorithm 

for the final classification process. The traffic is then categorized as normal or 

an attack attempt, which the SDN controller will penalize further through traffic 

rule action. 

 

 

Figure 4. 1 : Deep autoencoder with random forest model 

 

4.3 Experimental Methodology 

Machine learning methods require a dataset to be well built up. For such a 

dataset, a training dataset for the developed algorithm is needed before the 

algorithm is tested. KDD-99 dataset was the most popular dataset used in this 

field, and 63% of research has adopted this dataset. In this work, we focus on 

the deployment part of statistics collection in a native SDN environment. In 

order to collect actual SDN traffic activities, a simulation of real network 

activities needed to be made. CICIDS2017 dataset provides the total payload 

packets in PCAP format, replicating actual network traffic activities in the 

targeted environment. This dataset covers seven types of common attack 
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groups (i.e., Botnet, Brute Force Attack, DoS Attack, DDoS Attack, 

Heartbleed, Infiltration Attack, and Web Attack). This dataset consists of a 

Microsoft Excel CSV dataset and complete payload packets in a PCAP format 

file for a five day working hours period. The PCAP files are each sized7 to 12 

GB . Each flow sample of the dataset contains 83 flow features. For this, a 

total of 16 native SDN OpenFlow flow features and a binary classification type 

were collected during the PCAP traffic emulation in a simulated SDN 

environment. Out of the 16 collected features, eight flow features have been 

selected for further machine learning analysis for intrusion detection in a 

native SDN environment. Another eight features have been dropped because 

the information differs for each network connectivity and does not represent 

the analysed traffic pattern. After the PCAP file had been injected into the SDN 

environment, there were a total of 263156 collected flows for Monday, 227271 

collected flows for Wednesday, and 230290 collected flows for Friday. 

A total of 576,573 samples were used for training and 20% of the total normal 

traffic, 144,144 samples for testing. Mininet [46] was used as a network 

emulator with the Ryu [47] component-based SDN as the framework. The 

proposed model simulation used Tensor flow [48] backend . The model’s 

training and testing performance are shown in Figure 4. 2 below. 
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Figure 4. 2 : Training and testing of the model 

 

A standard measure for classifier comparison is shown by the Receiver 

Operating Characteristic (ROC) curve. Plotting the false positive rate versus 

the true positive rate produces the curve for the ROC. The area under the 

curve (AUC) is to determine the model’s performance in predicting the 

classes. The higher the AUC, the better the classifier, as shows, the proposed 

model achieved 0.92 AUC.  

 

4.4 Performance Evaluation 

4.4.1 Evaluation Metrics 

Four (4) types of metrics were used for the evaluation: Accuracy, Precision, 

Recall, and F-measure. 
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True Positive, True Negative, False Positive, and False Negative are 

measured as follows: 

True Positive: the number of anomaly records correctly classified. 

True Negative: the number of normal records correctly classified. 

False Positive: the number of normal records incorrectly classified. 

False Negative: the number of anomaly records incorrectly classified 

 

4.4.2 Experimental Results 

The reiteration of training and testing in the experiment resulted in a persistent 

outcome. The mean accuracy achieved was 99% for training and 98% for 

testing. Table 4.2 provides a comparison of the achieved performance with 

other related research studies. 

The performance of the proposed approach was found to be better than the 

results presented in [40]. However, it did not surpass the performance of the 

two other research works mentioned in [49] and [50]. It should be noted that 

the scope of the experiments in these studies differed. [49] utilized tshark for 

network traffic dumping and analysis, while [50] employed the CICIDS2017 

dataset in Weka. In contrast, the current research was conducted purely within 

an SDN controller using native OpenFlow communication traffic. 

Despite the slightly lower performance compared to the referenced studies, 

the researchers acknowledge the potential for improvement in their approach 

within the native SDN environment. Future efforts will be focused on refining 

the methodology to enhance the achieved results. 
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In summary, the experiment consistently yielded high mean accuracy values 

of 99% for training and 98% for testing. While the performance was not as 

strong as certain other studies, the unique implementation in the native SDN 

environment provides valuable insights and sets the stage for further 

advancements in the proposed approach. 

 

Figure 4. 3 : ROC AUC curve 

 

 

Table 4. 2 : DAERF performance over previous research 
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The same methodology explained above was tested using the CICIDS2017 

excel files dataset. A similar experimental approach was developed in the 

SDN environment data collection, the same period of XLS dataset used. Excel 

files from the Monday, Wednesday, and Friday datasets were combined to 

create one new excel dataset. The dataset contains 83 flow features, and for 

the comparison test, eight features were selected from the excel files. The 

eight selected features represent similar characteristics to the features chosen 

in the SDN training. Table 4. 3 below, indicates the distribution of the 

combined datasets according to the network traffic classes. Data processing 

tasks such as normalization are also deployed to the dataset and prepare the 

dataset for training and testing purposes. The re-scale values are used as the 

input to the model for training and testing. The dataset was run into the model, 

and the performance captured with the same evaluation metrics.  

 

 

Table 4. 3 : Excel dataset distributions 

 

 

A total of 1,538,884 samples were used for training, and 20%, 384,721 

samples, for testing. The model evaluation process is shown in Figure 4. 4. 

The ROC AUC for the test dataset is shown in Figure 4. 5 below. 
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Figure 4. 4 : Model training and testing 

 

 

Figure 4. 5 : ROC AUC for test dataset 
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4.5 Summary 

 

In this chapter, a hybrid model combining a deep autoencoder with a random 

forest classifier, referred to as DAERF, was introduced to enhance intrusion 

detection performance in a native SDN environment. The proposed model, 

implemented online in the SDN environment, demonstrated good 

performance with an accuracy and precision of 98%. 

However, there are certain limitations to consider in this study. The PCAPs 

(Packet Capture) used in the experiments were sourced from the CICIDS2017 

dataset, which contains both benign traffic and common up-to-date attacks. 

Although these PCAPs simulate real-world data in the context of the SDN 

environment, utilizing a full-scale real-world SDN environment would provide 

a more robust validation of the model's performance potential. 

Nevertheless, the results obtained from the experiments indicate that the 

proposed model is an efficient tool for real-time intrusion detection in the SDN 

environment. Additionally, when compared with public intrusion datasets, the 

online implementation in the native SDN environment demonstrated better 

performance. 

The chapter concludes by stating that the adoption of the proposed model in 

an SDN-based intrusion detection and mitigation architecture is both feasible 

and practical for further research. This suggests that the model has potential 

for real-world applications and can contribute to the advancement of intrusion 

detection systems in the SDN domain. 
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CHAPTER 5 : Adaptive framework for attack mitigation in 

SDN environment  

 

5.1  Introduction 

The annual Internet Report published by Cisco in 2020 predicted that the 

number of devices connected to IP networks will increase from 18.4 billion in 

2018, to almost 30 billion by 2023. [51]. This enormous increase in the  

number of connected devices will attract a similar rise in the number of domain 

attacks or intrusions. The traditional way of handling attacks using 

conventional network device operations would face a hard task. Without global 

knowledge of the entire operating network and the ability to see every linked 

device’s connections and behaviour, any defensive action would be less 

efficient, and handling invasion less effective. Software defined network (SDN) 

is an emerging technology that provides global knowledge and visibility 

through the separation of the control plane and data plane in the operational 

network. The control plane handles the centralized knowledge and the data 

plane provides the detailed activity collected from the transaction of the data 

in the network. Huge benefits are anticipated from an SDN approach with the 

help of research and experiments in intrusion detection. A lot of research has 

been done in order identify and prevent the invasion referred to above. Some 

work has focused on early detection, such as counting the number of 

connections, the entropy of transactions, and others [52], [53], [54], [21]. 

Embarking on machine learning capabilities is also being explored with the 

aim of studying the data representation and explicit meanings [7], [55]. 

Prevention steps and action are also being experimented with, aiming to 

minimize the impact of, and if possible, repel any attacks [56], [57], [58]. With 
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the focus of integrating and combining the different research areas into a 

complete approach, this chapter  proposes an adaptive framework for attack 

mitigation in an SDN environment. To summarize, the contributions of this 

chapter are: 

• The introduction of an adaptive framework for attack mitigation in SDN 

environments which present 3 layers of protection in an SDN 

architecture. 

• Within the framework, we propose a three-layer protection mechanism 

for detecting and preventing attacks. It is entropy-based detection, 

hybrid machine learning in the control layer and proactive services 

monitoring in the application layer. 

• We also compared the performance achieved with previous research 

to investigate the model’s performance. The results show that our 

approach has great potential for adaptive, simplified detection and 

attack mitigation when deployed in the SDN environment. 

5.2 Architecture 

The proposed framework is shown in Figure 5. 1. The consolidated solution 

for the whole framework covers the layers within an SDN environment. 

Labelled number  1 , an entropy based module is the first layer of protection 

against an attack attempt. Traffic that has passed through the first layer is 

examined by the second module, which has hybrid machine learning  intrusion 

detection located in the controller, as labelled in 2 . To mitigate the impact of 

an attack, the SDN controller monitors the services status of the public server 

being accessed by the traffic. Upon detecting a heavy load on the services 
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,the controller checks both earlier layer detections to handle the load coming 

in. This part of the observation is deployed in the application layer, as shown 

in  3 of the proposed framework. 

 

 

Figure 5. 1 : Application layer traffic monitoring 

 

5.3 Experimental Methodology 

 

A. Entropy based detection 

Low-rate DDoS attack detection on the SDN controller is one of the most 

dangerous security concerns in SDN. The difficulty of identifying the 

assault comes from the attack traffic’s similarity to typical traffic behaviour. 

When  numerous hosts are involved, achieving high accuracy levels and a 

low false-positive rate becomes considerably more difficult. Meanwhile, 
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any detection technique must contend with high-rate DDoS attacks, 

especially when several targets are involved. As a result, the suggested 

technique uses passive monitoring of UDP packets in the SDN network to 

identify DDoS assaults on the SDN controller, independent of attack traffic 

and number of targets. A general R´enyi joint entropy is suggested in this 

study, based on integrating two concepts: the joint entropy approach and 

the R´enyi method. The general R´enyi joint entropy measures two random 

variables in the form of two packet header characteristics: the source IP 

address and destination IP address, which are represented by 𝑥 and 𝑦, 

respectively, in the general R´enyi joint entropy. The R´enyi joint entropy 

approach is a combinations of joint entropy and renyi entropy, as shown in 

the equation below, 

  (5.1) 

   

(5.2) 

   

(5.3) 

 

Where HRJα(x) is a R´enyi joint entropy, p(xiyj) is the probability 

distribution between source IP (𝑥) and destination (𝑦) during time 

interval (𝑡) and signify a positive parameter. The R´enyi joint entropy 

technique is dependent on a value that can increase the detection rate 

by assessing the likelihood of traffic packets arriving. Based on the IP 

frequencies, the probability distribution 𝑝(𝑥𝑖𝑦𝑗) is derived for each source 
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and destination. When each packet’s probability distribution is evenly 

spread throughout all the hosts’ destinations, a R´enyi joint entropy 

reaches its maximum value. The amount of probability assigned to all 

packets during a certain time window skewed towards a specific 

destination host produce a minimal value of R´enyi joint entropy. The 

R´enyi joint entropy is calculated using the likelihood each source IP 

address (xi) and destination IP address (yj) were recorded in the 

previous step within a certain timeframe. 

 

B. Detection using hybrid ML 

After the traffic has pass the entropy inspection, the next checking is 

done in the control plane layer and detection made using hybrid machine 

learning capabilities. A hybrid combination of autoencoder and Random 

Forest technique is deployed at this point, with detection focusing on 

attack that was not a type of DoS or DDoS attack. In the deep 

autoencoder, multiple levels of encoding and decoding are used. 

Abstract features from various levels are automatically discovered and 

composed to produce output. The features from the previous level are 

carried forward to the next level to be processed again for another level 

of abstract representation. Our experiment constructed a deep 

autoencoder model with an input layer, three hidden layers, and an 

output layer. A total of 8 dimensions of input and output are selected in 

the autoencoder. The hidden layers contain six, four, and two neurons, 

respectively. The middle, hidden layer of two neurons is used to input the 

random forest classifier for the intrusion detection process. In this 
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approach, a stacked autoencoder with dropout on the inputs is proposed, 

consisting of an input layer of 8 neurons, as the number of features for 

each sample is 8. After the initial dropout process, a combination of 6,4 

and 2 neuron units within the stacked hidden layer is proposed. The 

autoencoder uses an 8/2 compression ratio to allow it to learn the 

relationship between the chosen features and any interesting patterns 

that might be discovered. Rectified linear unit (ReLu) activation function 

was used for the eight units of the hidden layer and the output layer. 

 

C. Passive Application Layer Monitoring 

A Ryu framework was adopted in our SDN topology .The controller plays 

two roles here: one as a standard SDN controller that controls and 

monitors the network, and the other as a defence mechanism. For the 

defence function, the controller keeps checking the status of the services 

being provided by the internal servers. A congested response from the 

servers via the status response indicates a high traffic flow and 

processing being handled by the targeted servers. In order to increase 

the response time for the server’s services, heavily connected 

connections will be penalized to provide the affected server with ample 

processing time to recover from the impact of an attack. As shown in 

Figure 5. 2, we utilized Monit application for monitoring the status of the 

server for detection of poor response of provided services. 
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Figure 5. 2 : Passive monitoring using monit application 

 

D. Dataset 

The earliest balanced CICIDS2017 dataset, which includes millions of 

samples, is frequently utilized for product-level machine learning 

research. This dataset covers seven types of common attack (i.e. Botnet, 

Brute Force Attack, DoS Attack, DDoS Attack, Heartbleed, Infiltration 

Attack, and Web Attack). This dataset consists of complete payload 

packets in a PCAP format file and Microsoft Excel CSV dataset for a five 

day work period. Each flow sample in the dataset contains 80 flow 

features, explicitly explained in [23]. For this job, a combination of 

Wednesday and Friday afternoon with a DDoS attack dataset were 

chosen. Both days’ dataset activities, which contain benign and also 

DoS/DDoS attacks were recorded. The selected portion from the overall 

CIDIDS2017, with sample size and class composition, are as shown in 

Table 5. 1 below. 
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Table 5. 1 : Traffic class distribution 

 

5.4 Performance Evaluation 

5.4.1 Performance Metrics 

 

Evaluation Metrics 

Two (2) types of metrics were used for the evaluation: 

 

 AverageDetectionRate =
TruePositive

TruePositive + FalseNegative
 (5.4) 

 
FalsePositiveRate =

FalsePositive

FalsePositive + TrueNegative
 

(5.5) 

5.4.2 Experimental Results 

We ran the CICIDS2017 Wednesday and a Friday dataset, which contains 

benign and DoS attacks, into the simulation as shown in Figure 5. 3 below. 

The controller’s ability to detect DoS and DDoS attacks were tested during the 

entropy implementation. A window of 10-seconds was used to make the 

entropy calculation in order to determine whether traffic was benign or attacks. 

A total of 10 simulation runs were completed and the average rate for all 10 



- 121 - 

runs reported. The average detection rate was 98.16% and the false positive 

rate was 1.85%. The recorded detection rate and also false positive rate for 

the all 10 simulations are as shown Figure 5. 4 below. 

 

 

Figure 5. 3 : Pcap data injection 

 

 

Figure 5. 4 : Average detection rate and false positive rate for 10 
simulations 

 

Table 5. 2 below, shows a comparison between the proposed solution and 

other, recent machine learning developments for DDoS attack detection in 
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SDN. For the purpose of comparison, the average detection rate and average 

false positive rate was used. In comparison to previous research for DDoS 

attack detection in SDN, the suggested technique delivers better results. 

 

Table 5. 2 : Performance comparison over previous researches 

 

5.5 Summary 

The solution presented in the chapter has both advantages and 

disadvantages. One of the disadvantages is that the separation of the control 

plane and data plane in the SDN environment can make the network 

infrastructure more vulnerable to cyber-attacks, particularly Distributed Denial 

of Service (DDoS) attacks. DDoS attacks pose a significant threat to SDN 

networks, as a successful attack can compromise the data and resources of 

the entire network. 

To address this vulnerability, the chapter proposes a method for detecting 

DDoS attacks by maximizing the processing of traffic flow statistics. By 

simulating DDoS attacks and conducting experiments, the chapter 

demonstrates that combining multiple attack detection techniques within a 

simplified framework can leverage the full potential of SDN capabilities. 

The experimental results suggest that this approach enables effective 

detection of both low-rate and high-rate DDoS attacks. Furthermore, by 
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combining multiple attack detection and mitigation methods, any weaknesses 

in one method can be covered by additional suggested solutions. 

By adopting a comprehensive approach to attack detection and mitigation, the 

chapter broadens the possibilities for identifying and mitigating DDoS attacks 

in SDN networks. This approach has the potential to enhance the overall 

security and resilience of SDN environments. 

However, it is important to note that while the proposed method shows 

promise, it is essential to continuously evaluate and update the detection and 

mitigation techniques to keep pace with evolving cyber threats. 
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CHAPTER 6 : Conclusion and Future Work  

 

6.1 Conclusion 

 

SDN are based on network programmability with a separation between control 

and traffic handling. The evolution of new architecture comes  with new 

threats. Potential security loopholes emerge, creating new areas where 

protection is needed. Although it may seem new vulnerabilities only   add to 

security concerns, nevertheless, finding countermeasures   to solve these 

problems has increased researcher interest and motivation. The progress of 

new experiments into strengthening the SDN architecture have resulted in it  

benefiting from the use of SDN. For example,  this thesis  implemented an 

adaptive framework for attack mitigation in an SDN environment. A hybrid 

machine learning detection system can be deployed within SDN architecture 

to benefit the global overview of the network’s  intrusion detection. In Chapter 

1, the limitations and constraints of the research were elaborated. The 

background to SDN architecture was discussed in Chapter 2, which includes 

how attack are implemented and their impact analysed. The various types of  

machine learning attack  were also compared. Chapter 3 explored the 

capabilities of native SDN intrusion detection using machine learning, with a 

combination of autoencoder and Random Forest algorithm being deployed in 

a native SDN environment. The accuracy rate achieved was excellent, with a 

very small amount of time needed for testing the process. The model’s 

improvement with the  adoption of a hybrid deep autoencoder and Random 

Forest algorithms was described in chapter 4. The main difference between 

chapters 3 and 4 was the real recorded traffic from pcap files from the 
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CICIDS2017 dataset described in chapter 4.  The recorded traffic was injected 

into the SDN environment to simulate real traffic behaviour, both  normal and 

anomalous activities. Chapter 5 summarized the whole framework of an 

adaptive intrusion detection in SDN environments by incorporating 3 layers of 

intrusion detection in the architecture. Entropy-based calculations, detection 

by hybrid ML and passive application layer monitoring was proposed. This 

framework was tested and offered excellent detection rates and false positives 

rates . The final chapter, 6, summarized the whole thesis, with  final remarks 

about  the work that was done. There follows a brief summary of the key 

contributions this thesis makes. 

• An adaptive framework for the SDN environment that can collect the 

important network parameters and monitor the whole network for 

intrusion detection was put forward. The data collected can then be 

processed to detect abnormalities in traffic transactions which it can  

then respond to and mitigate  promptly. 

• A hybrid ML was developed with a combination of mixed approaches 

to assess the traffic status through flow-based anomaly detection. The 

hybrid approach was shown  to function with minimum impact on the 

overall SDN architecture. 

• Recorded real-world traffic pcap with a range of simulated potential  

attacks was used to replicate all current potential real attack scenarios.  
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6.2 Future Work 

 

Several improvements can be implemented as part of future work.  

Actual SDN environment with real traffic activities analysis  

The research conducted in this study utilized a virtual environment and a 

simulated SDN environment for simulation and testing purposes. The dataset 

used for the research consisted of pre-recorded Excel files and PCAP files of 

network traffic, which provided real empirical data. However, one limitation of 

the study was that the available dataset was not up to date, and thus, it did 

not fully reflect current traffic behaviour, such as the increasing usage of social 

media, online streaming, and IoT connectivity, which were not adequately 

covered. 

To address this limitation and further improve the implementation of the 

approach, it would indeed be beneficial to conduct testing in an actual SDN 

environment with real-time traffic activities. By using a live SDN setup, 

researchers can capture and analyse the latest network traffic patterns, 

including emerging trends and evolving attack vectors. This would provide a 

more accurate representation of the current network landscape and help 

evaluate the effectiveness of the proposed approach in real-world scenarios. 

By incorporating real traffic activities, such as the growing prevalence of social 

media, streaming, and IoT devices, researchers can gather more 

comprehensive and up-to-date insights into the performance and behaviour 

of the proposed detection and mitigation methods. This would enable them to 

fine-tune and refine the approach to better address the challenges and 

demands of contemporary network environments. 
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In conclusion, while the research utilized pre-recorded datasets in a simulated 

SDN environment, conducting experiments in an actual SDN environment with 

real-time traffic would provide a more robust and accurate assessment of the 

approach. Incorporating the latest traffic behaviour and attack scenarios would 

contribute to the ongoing improvement and practical implementation of the 

proposed methodology. 

 

Hybrid ML adoption analysis 

The focus of the thesis was on the operation of a combination of a deep 

autoencoder and Random Forest algorithm for intrusion detection. During a 

work-in-progress presentation at an IEEE conference, valuable feedback was 

received, which pointed towards the direction of incorporating other machine 

learning classifications within the framework. 

This feedback has provided a clear way forward for future work. The proposed 

framework can be expanded to include additional machine learning classifiers 

for intrusion detection. As new classifications and detection methods emerge 

and develop, they can be incorporated and explored within the framework. 

This continuous improvement and update of the framework would enable it to 

adapt to evolving cyber threats and enhance its effectiveness in detecting and 

mitigating intrusions. 

By incorporating new classifications and detection methods, the proposed 

framework can benefit from the advancements in machine learning and 

intrusion detection research. This approach ensures that the framework 



- 128 - 

remains up-to-date and capable of handling emerging intrusion techniques 

and attack vectors. 

In summary, the feedback received during the work-in-progress presentation 

at the IEEE conference has guided the future work of the thesis. The 

incorporation of new machine learning classifications and methods of 

detection within the framework is an area that can be explored and expanded 

upon. This approach allows for ongoing improvement and ensures that the 

proposed framework remains relevant and effective in the field of intrusion 

detection. 
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