
Adaptive Attack Mitigation in

Software Defined Networking

Mohd Sani Bin Mat Isa

Submitted in accordance with the requirements for the degree of

Doctor of Philosophy

The University of Leeds

School of Electronic and Electrical Engineering

December 2022

- ii -

The candidate confirms that the work submitted is his/her own, except where

work which has formed part of jointly authored publications has been included.

The contribution of the candidate and the other authors to this work has been

explicitly indicated below. The candidate confirms that appropriate credit has

been given within the thesis where reference has been made to the work of

others.

Author : Mohd Sani Mat Isa
Contributions : Proposed and implemented adaptive attack mitigation in SDN. Wrote
first and final drafts of the manuscripts.

Co-author : Dr. Lotfi Mhamdi

Contributions : Provided overall supervision of the whole project. Provided

feedback on technical analyses and final drafts of the manuscripts.

Co-author : Dr. Desmond McLernon

Contributions : Provided feedback on technical analyses and final drafts of the

manuscripts.

This copy has been supplied on the understanding that it is copyright

material and that no quotation from the thesis may be published without

proper acknowledgement.

The right of Mohd Sani Mat Isa to be identified as the author of this
work has been asserted by himself in accordance with the Copyright,
Designs and Patents Act 1988.

© 2022 The University of Leeds and Mohd Sani Bin Mat Isa

- iii -

Acknowledgements

My contributions, fully and explicitly indicated in the thesis, have been

proposed and implemented adaptive attack mitigation in SDN. Wrote first and

final drafts of the manuscripts. The other members of the group, Dr. Lotfi

Mhamdi provided overall supervision of the whole project, Dr. Desmond

McLernon feedback on technical analyses and final drafts of the manuscripts.

- iv -

Abstract

In recent years, SDN has been widely studied and put into practice to assist

in network management, especially with regards newly evolved network

security challenges. SDN decouples the data and control planes, while

maintaining a centralised and global view of the whole network. However, the

separation of control and data planes made it vulnerable to security threats

because it created new attack surfaces and potential points of failure.

Traditionally, network devices such as routers and switches were designed

with tightly integrated data and control planes, which meant that the device

made decisions about how to forward traffic as it was being received. With the

introduction of SDN, the control plane was separated from the data plane and

centralized in a software-based controller. The controller is responsible for

managing and configuring the network, while the data plane handles the

actual forwarding of traffic. This separation of planes made it possible for

network administrators to more easily manage and configure network traffic.

However, it also created new potential points of attack. Attackers can target

the software-based controller or the communication channels between the

controller and the data plane to gain access to the network and manipulate

traffic. If an attacker successfully compromises the controller, they can gain

control over the entire network and cause significant disruption. Seven main

categories directly related to these risks have been identified, which are

unauthorized access, data leakage, data modification, compromised

application, denial of services (DoS), configuration issues and system-level

SDN security.

- v -

Distributed Denial of Service (DDoS) attacks are a significant threat to SDN

because they can overwhelm the resources of the network, causing it to

become unavailable and disrupting business operations. In an SDN

architecture, the central controller is responsible for managing the flow of

network traffic and directing it to the appropriate destination. However, if the

network is hit with a DDoS attack, the controller can quickly become

overwhelmed with traffic, making it difficult to manage the network and

causing the network to become unavailable.

Coupling SDN capabilities with intelligent traffic analysis using Machine

Learning and/or Deep Learning has recently attracted major research efforts

especially in combatting DDoS attack in SDN. However, most efforts have

only been a simple mapping of earlier solutions into the SDN environment.

Focussing in DDoS attack in SDN, firstly, this thesis address the problem of

SDN security based on deep learning in a purely native SDN environment,

where a Deep Learning intrusion detection module is tailored to the SDN

environment with the least overhead performance. In particular, propose a

hybrid unsupervised machine learning approach based on auto-encoding for

intrusion detection in SDNs. The experimental results show that the proposed

module can achieve high accuracy with a minimum of selected flow features.

The performance of the controller with the deployed model has been tested

for throughput and latency. The results show a minimum overhead on the

SDN controller performance, while yielding a very high detection accuracy.

Secondly, a hybrid deep autoencoder with a random forest classifier model

to enhance intrusion detection performance in a native SDN environment was

introduced. A deep learning architecture combining a deep autoencoder with

- vi -

random forest learning feature representation of traffic flows natively was

collected from the SDN environment. Publicly available packet Capture

(PCAP) files of recorded traffic flows were used in the SDN network for flow

feature extraction and real-time implementation. The results show very high

and consistent performance metrics, with an average of a 0.9 receiver-

operating characteristics area under curve (ROC AUC) recorded.

Finally, an adaptive framework for attack mitigation in Software Defined

Network environments is suggested. A combined three level protection

mechanism was introduced to support the functionality of the secure SDN

network operations. Entropy-based filtering was used to determine the

legitimacy of a connection before a deep learning hybrid machine learning

module made the second layer inspection. Through extensive experimental

evaluations, the proposed framework demonstrates a strong potential for

intrusion detection in SDN environments.

- vii -

List of Abbreviations

Acc Accuracy

AERF Autoencoder Random Forest

CPU Control Processing Unit

DAERF Deep Autoencoder Random Forest

DL Deep Learning

DDoS Distributed Denial of Service

DoS Denial of Service

F1 F1-Measure

FN False Negative

FP False Positive

IDS Intrusion Detection System

IOT Internet of Things

OF Openflow

RL Reinforcement Learning

RNN Recurrent Neural Network

ROC AUC Receiver operating characteristic Area Under Curve

SDN Software Define Network

SECOD SDN sEcure COntrol and Data Plane

TN True Negative

TP True Positive

- viii -

Table of Contents

Acknowledgements .. iii

Abstract ... iv

List of Abbreviations ... vii

Table of Contents ... viii

List of Tables .. xi

List of Figures ... xii

Preface .. xiv

CHAPTER 1 : Introduction .. 1

1.1 Motivation .. 1

1.2 Challenges .. 2

1.3 Objective and Scope of the Thesis .. 3

1.4 Design Challenges .. 5

1.4.1 Statistics Collection ... 5

1.4.2 Assessment resources ... 6

1.4.3 Pattern Searching .. 6

1.4.4 Automated Mitigation.. 7

1.4.5 Policy enforcement and revocation 8

1.4.6 Complete lifecycle .. 8

1.5 Thesis Outline and Contributions .. 10

1.6 Publications ... 11

CHAPTER 2 : Software Defined Network .. 12

2.1 Definition .. 12

2.1.1 Management Plane .. 14

2.1.2 Control Plane ... 14

2.1.3 Data Plane ... 15

2.2 OpenFlow Protocol .. 15

2.3 Security in SDN ... 16

2.4 Attack types, detection, mitigation and evaluate on SDN
environment .. 24

2.4.1 Definition .. 24

2.4.2 Attack Method .. 26

- ix -

2.4.3 Attack Detection Method .. 32

2.4.4 Attack Mitigation Approach ... 34

2.5 Related Research.. 37

2.5.1 Attack Impact Evaluation in SDN 38

2.5.2 Security Threats in SDN ... 39

2.5.3 Management Threats ... 40

2.5.4 Control Plane Threats .. 40

2.5.5 Data Plane Threats .. 41

2.6 Attack Implementation and Impact Analysis 42

2.6.1 Environment Setup ... 42

2.6.2 Implementation Findings .. 46

2.6.3 Slow Attack .. 51

2.6.4 Medium Attack ... 54

2.6.5 Fast Attack ... 57

2.6.6 Simulation Summary .. 60

2.7 Comparison of Machine Learning attacks as classified in an
SDN environment .. 60

2.7.1 NSL-KDD Dataset .. 62

2.7.2 Dataset Feature Selection .. 67

2.8 Simulation Setup ... 69

2.9 Findings ... 71

2.10 Summary ... 77

CHAPTER 3 : Native SDN Intrusion Detection using Machine
Learning ... 78

3.1 Introduction .. 78

3.2 Architecture ... 81

3.3 Experimental Methodology .. 83

3.4 Performance Evaluation .. 90

3.5 SDN Controller Performance ... 96

Experimental Setup ... 96

Analysis of Results .. 97

3.6 Summary ... 99

- x -

CHAPTER 4 : Hybrid Deep Autoencoder with Random Forest in
Native SDN intrusion detection Environment 101

4.1 Introduction .. 101

4.2 Architecture ... 103

4.3 Experimental Methodology .. 105

4.4 Performance Evaluation .. 107

4.4.1 Evaluation Metrics .. 107

4.4.2 Experimental Results ... 108

4.5 Summary ... 112

CHAPTER 5 : Adaptive framework for attack mitigation in SDN
environment ... 113

5.1 Introduction .. 113

5.2 Architecture ... 114

5.3 Experimental Methodology .. 115

5.4 Performance Evaluation .. 120

5.5 Summary ... 122

CHAPTER 6 : Conclusion and Future Work .. 124

6.1 Conclusion .. 124

6.2 Future Work .. 126

Bibliography .. 129

- xi -

List of Tables

Table 2.1 : SDN Attack Vector .. 17

Table 2.2 : Machine Learning Approach in SDN Security 23

Table 2.3 : Bandwidth reading for without attack scenario 47

Table 2.4 : Bandwidth reading for with slow attack scenario 51

Table 2.5 : Bandwidth reading for with medium attack scenario 54

Table 2.6 : Bandwidth reading for with fast attack scenario 57

Table 2.7 : NSL-KDD dataset feature list and its description 65

Table 2.8 : Dataset selection by previous works 67

Table 2.9 : Feature selection options .. 71

Table 2.10 : Selected features test results .. 73

Table 3. 1: Distribution of KDDTrain+ and KDDTest+ dataset
according to traffic classes .. 85

Table 3. 2 : AERF model parameter ... 89

Table 3. 3 : Autoencoder performance over test dataset 93

Table 3. 4 : Performance comparisons in binary classification
using KDDTrain+ and KDDTest+ dataset .. 96

Table 3. 5 : Performance comparisons in binary classification
using KDDTrain+ and KDDTest+ dataset .. 99

Table 4. 1 : Model parameter .. 104

Table 4. 2 : DAERF performance over previous research 109

Table 4. 3 : Excel dataset distributions ... 110

Table 5. 1 : Traffic class distribution ... 120

Table 5. 2 : Performance comparison over previous researches 122

- xii -

List of Figures

Figure 2.1 : Current Network Management Architecture 13

Figure 2.2 : SDN Network Management Architecture 14

Figure 2.3 : DDoS attack on Github ... 26

Figure 2.4 : Testbed Setup ... 44

Figure 2.5 : Bandwidth summary without attacks 47

Figure 2.6 : Web Service responses without SECOD 48

Figure 2.7 : Web Service responses with SECOD 49

Figure 2.8 : Web Service responses without SECOD during the
performance test ... 50

Figure 2.9 : Web Service responses with SECOD during the
performance test ... 50

Figure 2.10 : Bandwidth summary during the slow attack test
session ... 52

Figure 2.11 : Web Service responses without SECOD during the
slow attack ... 53

Figure 2.12 : Web Services response with SECOD during the slow
attack .. 53

Figure 2.13 : Bandwidth summary during a medium attack session 55

Figure 2.14 : Web Service responses without SECOD during the
medium attack ... 56

Figure 2.15 : Web Services response with SECOD during the
medium attack ... 56

Figure 2.16 : Bandwidth summary of the fast attack session 58

Figure 2.17 : Web Service responses without SECOD during the
fast attack .. 59

Figure 2.18 : Web Service responses with SECOD during the fast
attack .. 59

Figure 2.19 : WEKA attribute selection ... 70

Figure 2.20 : WEKA classification selection ... 70

Figure 2.21 : Full feature selection .. 74

Figure 2.22 : Reference [19] feature selection .. 74

Figure 2.23 : Ref [27] feature selection .. 75

Figure 2.24 : Alternative 1 feature selection ... 75

Figure 2.25 : Alternative 2 feature selection ... 76

Figure 3. 1 : Intrusion Mitigation Architecture .. 81

Figure 3. 2 : Intrusion Mitigation Module .. 82

- xiii -

Figure 3. 3 : ReLu activation function ... 88

Figure 3. 4 : AERF Model .. 89

Figure 3. 5 : Model training process .. 92

Figure 3. 6 : Autoencoder confusion metrics ... 94

Figure 3. 7 : Distribution of detection over test dataset 95

Figure 3. 8 : SDN environment throughput evaluation 98

Figure 3. 9 : SDN environment latency evaluation 98

Figure 4. 1 : Deep autoencoder with random forest model 105

Figure 4. 2 : Training and testing of the model 107

Figure 4. 3 : ROC AUC curve .. 109

Figure 4. 4 : DAERF performance over previous research Error!
Bookmark not defined.

Figure 4. 5 : Model training and testing ... 111

Figure 4. 6 : ROC AUC for test dataset .. 111

Figure 5. 1 : Application layer traffic monitoring 115

Figure 5. 2 : Passive monitoring using monit application 119

Figure 5. 3 : Pcap data injection .. 121

Figure 5. 4 : Average detection rate and false positive rate for 10
simulations .. 121

- xiv -

Preface

To my beloved family.

- 1 -

CHAPTER 1 : Introduction

1.1 Motivation

Machine learning is increasingly being used to defend against Distributed

Denial of Service (DDoS) attacks in Software Defined Networking (SDN)

environments because it can detect and respond to attacks more quickly and

effectively than traditional approaches. DDoS attacks can generate massive

amounts of traffic that can quickly overwhelm network resources, making it

difficult for human operators to respond in real-time. However, machine

learning algorithms can analyse traffic patterns in real-time and detect

anomalies that may indicate a DDoS attack. By doing so, machine learning

algorithms can help detect and mitigate attacks quickly and automatically,

before they can cause significant disruption to the network.

Moreover, machine learning algorithms can be trained to adapt to new types

of attacks and traffic patterns over time. This means that they can become

more effective at detecting and responding to attacks as they encounter more

diverse and complex threats. In addition, machine learning algorithms can

analyse vast amounts of data from various sources, such as network traffic

logs, intrusion detection systems, and security sensors, to identify patterns

and anomalies that may indicate an attack. In an SDN environment, machine

learning can be used to detect DDoS attacks at various levels of the network,

including the controller, the data plane devices, and the application layer. By

detecting and mitigating attacks at multiple levels, machine learning can

- 2 -

provide a comprehensive defence against DDoS attacks, preventing them

from causing significant damage to the network.

Software Define Network (SDN) has provided a massive improvement over

traditional networks with its wide range of centralised controls for the

monitoring and management of the entire network. Global adoption of this

technology due to its unmatched benefits is expected and envisaged. To

further explore the capability of machine learning to mitigate DDoS attack in

SDN is the focus of this study.

1.2 Challenges

Distributed denial-of-service (DDoS) attacks are one of the most common fatal

malicious attacks in the current internet environment. This is due to targeting

widely distributed geographical sources and with high volume of traffic from

large numbers of compromised hosts. DDoS attacks can generate massive

amounts of traffic that can quickly overwhelm network resources, making it

difficult for human operators to respond in real-time. However, machine

learning algorithms can analyse traffic patterns in real-time and detect

anomalies that may indicate a DDoS attack. By doing so, machine learning

algorithms can help detect and mitigate attacks quickly and automatically,

before they can cause significant disruption to the network.

Distributed Denial of Service (DDoS) attacks can have a significant impact on

Software Defined Networking (SDN) environments, causing disruption to

network operations, reducing network performance, and affecting the

availability of critical applications and services. Furthermore, DDoS attacks

can be used as a smokescreen to distract network administrators from other

- 3 -

types of attacks, such as malware infections, data exfiltration, and

ransomware attacks. By overwhelming network resources with a DDoS attack,

attackers can mask their activities and exploit vulnerabilities in the network

undetected. DDoS attacks are a rapidly evolving threat, and new types of

attacks and techniques are being developed by attackers all the time. As a

result, it can be challenging for researchers to keep up with the latest threats

and develop effective mitigation strategies. However, given the significant

impact that DDoS attacks can have on SDN environments, it is crucial for

researchers to continue to explore new approaches to defending against

these types of attacks. This may involve developing new machine learning

algorithms, leveraging advanced analytics and data visualization tools, or

using innovative network security architectures to detect and mitigate attacks

in real-time.

This work aims to improve and build an adaptive model which effectively

mitigates DDoS attacks influenced by the above mentioned scenario and

impact which focuses on combining SDN benefits and machine learning

capabilities.

1.3 Objective and Scope of the Thesis

The primary objective of this research is to utilize the features offered by the

SDN and harness the ability of machine learning intelligence to design and

develop adaptive attack detection and mitigation for DDoS attacks. SDN

centralized management and enhanced network visibility combine to develop

an adaptive solution as a network application in an SDN environment.

Simultaneous use in traffic monitoring and to enhance the performance of the

- 4 -

network by mitigating detected attacks are the true implications of the

research. The adaptive approaches are hoped to improve the detection and

mitigation of DDoS attacks on SDN environments. These are the predicted

contributions to be made by this research:

Aim 1: Identify the attack type, detect, mitigate and evaluate its impact on the

SDN environment.

i. Identify types of attack.

ii. Identify the detection mechanisms involved.

iii. Identify the mitigation approaches used.

iv. Evaluate the impact of the attack on the SDN environment

by studying the bandwidth capacity and response to SLA

(Service Level Agreement) by web services.

v. Summarize the impact.

Aim 2: Comparison of machine learning attack classifications in SDN

environments.

i. Compare machine learning attack classifications by

analysing the performance of selected algorithms.

ii. Test the classification in an SDN environment setup.

iii. Present the AUC ROC of the compared algorithms.

iv. Summarize the comparison for usage in future adaptive

mitigation proposals.

Aim 3: Proposed adaptive attack mitigation in SDN

i. Introduction and research architecture.

ii. Simulation setup and performance metrics.

- 5 -

iii. Investigation of the effectiveness of attack mitigation in

simulated environments.

iv. Summary of proposed research.

Aim 4: Experiment conducted to assess the adaptive attack mitigation in a

testbed SDN environment.

i. Introduction and testbed architecture.

ii. Testbed setup and performance metrics.

iii. Investigation of the effectiveness of attack mitigation in the

testbed environment.

iv. Summary of testbed deployment.

1.4 Design Challenges

Combining machine learning and SDN for DDoS attack mitigation can be a

powerful approach for defending against these types of attacks. However,

there are several design challenges that must be addressed to ensure the

effectiveness of this approach. Some of these challenges include:

1.4.1 Statistics Collection

Design challenges: Machine learning algorithms require large amounts of

data to train effectively. Collecting and analysing data in real-time from the

SDN environment can be challenging, particularly when dealing with high-

speed traffic.

Proposed solution: Within the capabilities of SDN, all the statistics from

hosts connected to the network are available in Openflow switch, when hosts

require network routing and paths for connectivity. This will provide a general

- 6 -

overview of all the connected hosts and the controller can make use of this

information for further assembling and checking.

Benefits: With an overall view of all the connected devices and notification of

traffic to the controller, the process of identifying normal and anomalous traffic

can be centralized and deployed. The build-up of SDN networks with this

feature can be used as the beginning of data collection for adaptive attack

mitigation proposals.

1.4.2 Assessment resources

Design challenges: Traffic processing and checking will enquire a lot of

resources, especially when a lot of computation and memory use is involved.

This will require higher CPU and memory usage and can impact on the SDN

Controller if deployed within it.

Proposed solution: A containerized application approach is proposed for

best functionality. Within time intervals, the SDN Controller will call upon the

adaptive module to execute the process and provide the result for further

action by the controller.

Benefits: Containerized application will use minimum resources and this

affects the overall setup. This approach also provides simpler deployment as

the application can be downloaded and booted up as and when needed.

1.4.3 Pattern Searching

Design challenges: The general practise adopted by network administrator

experts has been to manually review traffic usage and manually reassign

- 7 -

routes when abnormalities appear. A similar approach of focusing on

prioritizing the monitoring of traffic to valid servers is the main goal. Manual

methods affect the amount of time needed to analyse and proceed with further

action.

Proposed solution: Automated best detection based on simplified

autoencoder and entropy calculations is proposed to speed up and automate

adaptive measurement using the information gathered from the training

process.

Benefits: The need for the human analysis and matching findings to related

abnormal traffic will be minimized. Specific pattern identified in the findings

will be used as input to the adaptive method which has already been set up

for particular purposes.

1.4.4 Automated Mitigation

Design challenges: Deploying network parameter tuning has always been

done manually and consumes a huge amount of time and effort just to do the

same test with different hosts and gaining the same action and rewards.

Proposed solution: Manual mitigation of attack will be deployed using

automated containerized modules for the same purposes. This will speed up

the process and ensure attack can be mitigated with less effort and fewer

resources.

Benefits: Resources such as best use of time and effort can be optimized by

using automated mitigation module.

- 8 -

1.4.5 Policy enforcement and revocation

Design challenges: : SDN environments require real-time processing of

traffic to detect and mitigate DDoS attacks effectively. Machine learning

algorithms can introduce processing delays, which can impact the

performance and effectiveness of SDN solutions.

Proposed solution: Central views and management from a central SDN

Controller would provide advantages for policy enforcement or revocation.

Any new policy or revocation of policy could be done centrally from the

controller. This increases the possibility of enforcing policy at the end point

location of entry to the network, which is at the network port by the switch.

Benefits: Although the SDN Controller can deploy and revoke policy centrally,

to any connected switch, the process of manual identifying specific hosts

needs to be deployed when restricted access has been eliminated. Changes

of policy enforcement to an identified host will depending on the detection and

mitigation method.

1.4.6 Complete lifecycle

Design challenges: A complete approach that handles all the activities from

the beginning until the end and processes them continuously in a complete

lifecycle has not yet been done to provide full automation of all tasks.

Proposed solution: Machine learning attack mitigation is being proposed as

automation of the complete lifecycle that handles all activities from collecting

statistics, to classify, detect and mitigate threats until the necessary security

policy has been implemented and taken care of.

- 9 -

Benefits: Any policy required to ensure an attack is mitigated, based upon

findings, can be enforced immediately.

The benefits of overcoming the challenges of combining machine learning and

SDN for DDoS attack mitigation can be significant. By successfully

implementing this approach, advantages as below can be achieved:

i. Improve DDoS Attack Detection: By leveraging machine learning

algorithms, organizations can improve their ability to detect DDoS

attacks, which can reduce the impact of these attacks on their

networks.

ii. Enhance Network Security: By implementing machine learning

algorithms in an SDN environment, organizations can enhance their

network security posture and reduce the risk of network breaches.

iii. Increase Network Resilience: By quickly detecting and mitigating DDoS

attacks, organizations can increase the resilience of their networks and

reduce the risk of network downtime.

iv. Reduce Operational Costs: By automating the detection and mitigation

of DDoS attacks, organizations can reduce the operational costs

associated with network security.

v. Improve Scalability: By leveraging SDN and machine learning

technologies, organizations can improve the scalability of their network

security solutions and ensure that they can handle increasing volumes

of traffic.

vi. Enhance Overall Network Performance: By reducing the impact of

DDoS attacks on their networks, organizations can improve overall

- 10 -

network performance and ensure that critical business operations are

not disrupted.

1.5 Thesis Outline and Contributions

This PhD thesis describes the research carried out in the development of an

adaptive attack mitigation in SDN environment. Chapter 2 discusses the SDN

architecture and its security issues related to DDoS attack with further

explanation on the machine learning and deep learning approach. A literature

overview about machine learning adoption in a DDoS attack mitigation within

SDN is also presented in same chapter. Chapter 3 looks at the potential of

applying DL for intrusion detection in the a native SDN environment. The

chapter further explore the improvement of detection method by using real-

world data. Chapter 4 is the outcome of building up a framework for attack

detection and mitigation in SDN environment with a multi-layer detection

mechanism proposed. Chapter 5 concludes the thesis and gives further

research directions.

The main contribution of the work is outlined below.

• An adaptive framework for the SDN environment that can collect the

important network parameters and monitor the whole network for

intrusion detection was put forward. The data collected can then be

processed to detect abnormalities in traffic transactions which it can

then respond to and mitigate promptly.

• A hybrid ML was developed with a combination of mixed approaches

to assess the traffic status through flow-based anomaly detection. The

- 11 -

hybrid approach was shown to function with minimum impact on the

overall SDN architecture.

• Recorded real-world traffic pcap with a range of simulated potential

attacks was used to replicate all current potential real attack scenarios.

1.6 Publications

The work undertaken in this thesis has resulted in the following publications.

Chapter 3 : Native SDN Intrusion Detection using Machine Learning

https://ieeexplore.ieee.org/document/9306093

Published in: 2020 IEEE Eighth International Conference on

Communications and Networking (ComNet)

Chapter 3 : Hybrid Deep Autoencoder with Random Forest in Native SDN

intrusion detection Environment

https://ieeexplore.ieee.org/document/9838282

Published in: ICC 2022 - IEEE International Conference on

Communications

Chapter 4 : Adaptive framework for attack mitigation in SDN environment

https://ieeexplore.ieee.org/document/9928595

Published in: MeditCom 2022 – IEEE International Mediterranean

Conference on Communications and Networking

https://ieeexplore.ieee.org/document/9306093
https://ieeexplore.ieee.org/xpl/conhome/9306068/proceeding
https://ieeexplore.ieee.org/xpl/conhome/9306068/proceeding
https://ieeexplore.ieee.org/document/9838282
https://ieeexplore.ieee.org/xpl/conhome/9837954/proceeding
https://ieeexplore.ieee.org/xpl/conhome/9837954/proceeding
https://ieeexplore.ieee.org/document/9928595

- 12 -

CHAPTER 2 : Software Defined Network

2.1 Definition

Network management involves many different tasks. The network operator

configures the network devices - switches, routers, firewall and load balancer

- to fulfil these tasks. The packet processing of network devices can be

modelled as match-action processing, where network devices match certain

patterns on packet headers. For example, the destination IP address belongs

to an IP prefix and perform certain actions on the matching packets such as

dropping packets or forwarding packets to an output port. Referring to the

forwarding behaviour of a switch its policy will also to network-wide forwarding

behaviour as the policy of the network, built upon the policies of all the

switches in the network. Policies change over time because operators need

to reconfigure network devices in face of various network events like traffic

shifts, cyber-attacks, device failures, host mobility and so forth.

In today’s network, the control plane is coupled with the data plane, as shown

in Figure 2.1. The control plane on each device exchanges information with

the other ones, decides how the packets should be processed on the device

and configures the data plane. Since the control plane is distributed between

the devices, it does not have an overall view of the network and cannot make

good network-wide decisions.

- 13 -

Figure 2.1 : Current Network Management Architecture

Emerging trends like network densification and service differentiation bring

new challenges to future network architecture. Owing to its simplified and

dynamic management, great flexibility and improved performance, SDN has

attracted considerable attention in recent years. The typical three-layer model

of SDN is shown in. The interface between the control Figure 2.2 plane and

the data plane is open and uses open standards such as OpenFlow [1]. By

separating the control plane and the data plane, SDN can offer the logical

centralisation of the network management of the distributed switching devices

and introduce programmability, which opens up new approaches to control

functions in the application layer.

- 14 -

Figure 2.2 : SDN Network Management Architecture

2.1.1 Management Plane

The management plane is the set of applications that leverage the functions

offered by the northbound interface to implement network control and

operation logic. These include applications such as routing, firewalls, load

balancers, monitoring and so forth. Essentially, the management plane

defines the policies which are ultimately translated into southbound-specific

instructions that program the behaviour of the forwarding devices [2].

2.1.2 Control Plane

The control plane is responsible for the network’s management with the aid of

the SDN controller. The SDN controller is the logically centralised intelligence

within the SDN structure, so has a global view of the entire network. Thanks

to its programmability, the SDN controller can also control the various

functions in the application layer individually and dynamically [2]. The SDN

applications are programs that directly make requests and report their

- 15 -

behaviour to the SDN controller. Different functions can be provided through

separate program applications, such as network protocols, network

monitoring and network reconfiguration.

2.1.3 Data Plane

The data plane is generally responsible for forwarding the traffic flow between

switching devices based on the rules provided by the control plane. The

switching devices are also responsible for collecting network state information

and reporting to the control plane.

2.2 OpenFlow Protocol

The OpenFlow (OF) protocol is a standard in Software Defined Networking

architecture. This protocol defines the communication between an SDN

controller and the network device. The OpenFlow protocol lays down the

foundation for communication between an SDN controller and a dumb network

device. This protocol was first developed by researchers at Stanford

University in 2008 and was first adopted by Google in their backbone network

in 2011-2012. It is managed now by the Open Networking Foundation (ONF).

The latest version used in the industry is V1.5.

OpenFlow is the standard southbound protocol used between the SDN

controller and the switch. The SDN controller takes the information from the

applications and converts them into flow entries which are fed to the switch

via OF. It can also be used for monitoring switch and port statistics in network

management.

- 16 -

The OpenFlow protocol is only operates between a controller and the switch.

It does not affect the rest of the network. If a packet capture were to happen

between two switches in a network, both connected to the controller via

another port, the packet capture would not reveal any OF messages between

the two switches. Packet capture is strictly for use between a switch and the

controller. The rest of the network is not affected.

2.3 Security in SDN

A comprehensive overall high-level analysis of security in SDN is presented

by the author of [3]. A total of seven threat vectors, three of which specifically

refer to SDN related interfaces, were identified. Table 2.1 below, is a summary

of the threat vectors.

- 17 -

Threat

Vector

Vulnerabilities Impact Specific

to SDN

1 Forged or faked traffic

flows

DoS attack No

2 Attacks on vulnerabilities

in switches

Potentially augmented No

3 Attacks on control plane

communications

Compromised

communications such

as MITM attack

Yes

4 Attacks on vulnerabilities

in controllers

Compromised controller

jeopardized the whole

network

Yes

5 Lack of mechanisms to

ensure trust between the

controller and

management applications

Malicious applications Yes

6 Attacks on and

vulnerabilities in

administrative stations

Potentially augmented No

7 Lack of trusted resources

for forensics and

remediation

No assurance of fast

recovery and diagnosis

when faults happen

No

Table 2.1 : SDN Attack Vector

Threat is always an important aspect that needs to be handled and proper

mitigation action or solutions prepared in advance and to hand. Intrusion into

the network is a main concern and solutions such as putting intrusion

detection mechanisms into the network is one and has become an important

element in network security. Intrusion detection systems (IDS) can be in the

form of dedicated devices or merely software applications that are developed

for specific purposes. IDS’ main function is to capture and monitor activities

and events in the network and to identify possible attack that might take place.

Signature-based and anomaly-based are the two types of IDS being adopted

- 18 -

on how to identify when the intrusion occurs. Anomaly-based IDS are mainly

use in machine learning methods to classify normal and intrusion activities.

Due to this approach of classifying traffic into different types, supervised

learning algorithms are often used in IDS.

Machine learning is a field of computer science and artificial intelligence (AI)

that involves building algorithms that can learn patterns and make predictions

or decisions based on data. Essentially, machine learning involves training a

computer program to learn from data, without being explicitly programmed to

perform a specific task. The process of machine learning involves feeding

large amounts of data into an algorithm, and then using that data to train the

algorithm to recognize patterns and make predictions or decisions. The

algorithm iteratively adjusts its parameters until it can accurately predict

outcomes on new data. There are various types of machine learning, including

supervised learning, unsupervised learning, and reinforcement learning. In

supervised learning, the algorithm is trained on labelled data, meaning that

the desired output is already known. In unsupervised learning, the algorithm

is trained on unlabelled data and is required to find patterns and structure on

its own.

Deep learning is a subset of machine learning that involves training artificial

neural networks to learn from large amounts of data. These networks are

designed to simulate the way the human brain works by using layers of

interconnected nodes that process and transform data. The term "deep" in

deep learning refers to the fact that these neural networks typically have many

layers, allowing them to learn increasingly complex representations of the data

as they progress through the layers. These networks are often referred to as

- 19 -

deep neural networks. Deep learning has had a significant impact on many

fields, particularly computer vision and natural language processing, and has

achieved state-of-the-art performance on many tasks, such as image and

speech recognition, language translation, and game playing. Some notable

deep learning architectures include Convolutional Neural Networks (CNNs)

for image processing and Recurrent Neural Networks (RNNs) for sequence

processing. One of the key advantages of deep learning is that it can

automatically learn features from raw data, eliminating the need for manual

feature engineering. This has allowed deep learning to achieve remarkable

results on tasks that were previously considered challenging or impossible.

Machine learning and deep learning can also be applied to SDN to detect and

mitigate Distributed Denial of Service (DDoS) attacks. DDoS attacks are a

type of cyber-attack where a large number of compromised devices flood a

network with traffic, overwhelming its resources and causing it to become

unavailable.

Machine learning and deep learning can be applied to SDN for DDoS attack

detection and mitigation in the cases as below:

1. Traffic classification: Machine learning algorithms can be trained to

classify network traffic based on the characteristics of the packets, such

as source and destination IP addresses, protocol type, and port

numbers. This can help identify abnormal traffic patterns that may

indicate a DDoS attack.

2. Anomaly detection: Deep learning models can be trained to detect

anomalies in network traffic that may be indicative of a DDoS attack.

These models can learn to identify patterns in traffic flows that are

- 20 -

different from normal traffic, such as an unusually high number of

requests from a single IP address.

3. Real-time response: Once a DDoS attack is detected, SDN can use

machine learning and deep learning to take real-time action to mitigate

the attack. For example, the SDN controller can dynamically reroute

traffic to avoid congested links, or can throttle or block traffic from

suspicious IP addresses.

4. Proactive mitigation: Machine learning and deep learning can be used

to analyse historical data and predict potential DDoS attacks before

they happen. This can allow SDN to proactively allocate resources and

configure network policies to prevent or mitigate future attacks.

Machine-based IDS learning in SDN has been carried out by many

researchers. The focus of their studies has been divided into three objectives

- classifying traffic as normal or anomalous, classifying intrusions as normal

or anomalous, grouping the details into attack types, but focusing only on the

detection of DDoS attacks. Work in [4] propose a Hidden Markov Model

(HMM) for classifying malicious activities in the form of a network intrusion

detection system (NIDS). The HMM-based model used five selected flow

features to determine the status of the packet being analysed. Each of the

selected feature is treated as independent event. Potential intrusion

connections and vulnerable hosts are predicted by the author in [5] using 4

machine-learning algorithms. The Decision Tree algorithm, Bayes Net

algorithm, Decision Table algorithm and Naive Bayes algorithm were

compared. The results from the algorithms are then used by the SDN

- 21 -

controller to define the policy by blocking an entire subnet from accessing the

vulnerable hosts identified. This strict action of blocking an entire subnet also

affects other, valid users in the subnet, so should be fine-tuned for more

specific action. Deep Neural Network adoption has also been experimented

with by the researchers in [6] and [7]. Both used 6 basic flow features to prove

that good performance anomaly detection can be achieved, showing that

such an approach has a good chance of being deployed in future, but more

experiments with real traffic in line-rate operation to compare to the NSL-KDD

dataset being used need to be explored.

Identifying different types of attack after distinguishing between normal and

intrusion traffic was studied in [8]. The author proposed an improved

behaviour-based SVM for categorizing network attacks. A decision tree is

used to select the most relevant features before becoming the training input

for the proposed work. Promising results were reported but comparisons

made between SVM and others ML algorithms have done been detailed out.

Another method known as Non-symmetric Deep Auto-Encoder (NDAE) was

proposed by [9], combining deep learning and random forest learning to speed

up detection while still maintaining high accuracy. Both KDD-99 and NSL-KDD

datasets were used for research. The results were compared with several

other previous research but the performance of the proposed NDAE has not

been verified within a real-world network environment.

Research related to DDoS attack detection also has been carried out by

various researchers. As mentioned in the example in the introduction above,

DDoS attacks are a huge problem and highly threaten the network. A

lightweight DDoS attack detection was proposed in [10] using a NOX

- 22 -

controller in SDN. Traffic flow features were collected from OpenFlow

switches and an unsupervised ANN introduced using the Self Organizing

Maps (SOM) method for attack detection. A deep learning model incorporating

RNN and CNN was used by [11] to detect DDoS attacks in SDN. The model

consists of an input layer, a forward recursive layer, a reverse recursive layer,

a fully connected hidden layer and finally, an output layer. Feature reductions

are used in the model to detect attacks. Another SDN-based deep NN

research was carried out by [12] proposing 8 classes of output layer, one of

normal traffic and 7 types of DDoS attack. A total of 68 flow features were

collected from network traffic and several algorithms compared. With the

number of selected features, additional overheads for the controller are likely

and the extra burden will require more processing time. Collaborative DDoS

mitigation mechanisms in SDN using machine learning was elaborated by [13]

with the support of multiple SDN controllers, namely Ryu, Pox, ONOS and

OpenDayLight in separate locations. An authorization module was also

introduced to verify communication between the controller and managed

OpenFlow switches. A total of 25 selected features from the NSL-KDD dataset

were chosen for validation. With a traffic size of 3000 Mbps, the usage of CPU

in the model reached up to 90% as the consequence of handling a large

number of features to computerize.

The related research for security in SDN by adapting the machine learning

approach is shown in Table 2.2, below.

- 23 -

Ref. Dataset Input

Features

Output

Features

Algorithm Findings

[13] Self-

collected

5 2 (normal,

anomaly)

HMM Each feature is

independent

[14] Longtail Log

Analysis

4 2 (normal,

anomaly)

C4.5, DT,

BN, NB

Strict blocking

affects entire

subnet

[15] NSL-KDD 6 2 (normal,

anomaly)

DNN Highly complex

with few features

selected

[16] NSL-KDD 6 2 (normal,

anomaly)

RNN Highly complex

with few features

selected

[17] KDD-99 23 5 (normal, 4

attack

types)

SVM No comparison

with other ML

[18] KDD-99,

NSL-KDD

41 5 (normal, 4

attack

types)

RF Not verified within

real-world

environment

[19] Self-

collected

6 2 (normal,

DDoS)

SOM No attack source

detection

[20] ISCX

Dataset

20 2 (normal,

DDoS)

DNN Highly complex

but high number

of features

selected

[21] Self-

collected

68 8 (normal, 7

attack

types)

DNN High overheads

with high number

of features

selected

[22] NSL-KDD 18 2 (normal,

anomaly)

NB High overheads

with 90% CPU

Table 2.2 : Machine Learning Approach to SDN Security

- 24 -

2.4 Attack types, detection, mitigation and evaluate on SDN

environment

2.4.1 Definition

A Distributed Denial of Service (DDoS) attack on Software-Defined

Networking (SDN) is a type of cyber-attack that aims to disrupt the operation

of an SDN network by overwhelming it with a high volume of traffic from

multiple sources. In an SDN architecture, the network control and data planes

are separated, and the control plane is managed by a centralized controller

that communicates with the data plane switches to forward traffic.

In a DDoS attack on SDN, the attacker may target the SDN controller,

switches, or both, by flooding them with a large volume of traffic that exceeds

their capacity to handle it. This can cause the controller or switches to become

unresponsive, resulting in a denial of service for legitimate users.

The attack can be carried out using various techniques, including flood-based

attacks, amplification attacks, TCP SYN flood attacks, and resource depletion

attacks. These attacks can exploit vulnerabilities in the SDN architecture or

target specific resources, such as the OpenFlow protocol or the SDN

switches.

To mitigate the risk of DDoS attacks on SDN, network administrators can

implement various security measures, such as deploying firewalls, intrusion

detection and prevention systems, and traffic filtering mechanisms. They can

also adopt a multi-layered defence approach and implement network

segmentation to isolate critical assets from potential attack vectors. Increasing

reliance on the Internet, especially social media, with a massive increase in

- 25 -

Internet of Things (IoT) devices accessing widely distributed data centres has

aggravated this problem. For example, In 2016, the Mirai botnet launched a

series of DDoS attacks on several targets, including the DNS service provider

Dyn. The attack exploited vulnerabilities in IoT devices to form a botnet that

flooded Dyn's servers with traffic, causing several major websites, such as

Twitter and Reddit, to become unavailable for several hours. The attack also

targeted the SDN controllers and switches of the affected networks[14].

Another example is the DDoS attack on February 28, 2018, when the

attackers exploited the vulnerability of memory crashed, and deployed a

heightened attack from UDP port 11211. The attack targeted GitHub's SDN

infrastructure and flooded its servers with traffic from compromised botnets.

As reported by Verisign [16], Q2 2018 DDoS Trends show an increase

compared to Q1 2018, with the largest number of attacks dominated by the

UDP flood attack. As shown in Figure 2.3, the ever-increasing volume of

attacks recorded is a clear sign that the problem exists long-term, and

solutions need to be put in place to handle or mitigate it. These real-world

cases demonstrate the potential impact of DDoS attacks on SDN networks

and the importance of implementing appropriate security measures to mitigate

the risk.

- 26 -

Figure 2.3 : DDoS attack on Github

2.4.2 Attack Method

An attack on SDN is a deliberate attempt to compromise or disrupt the

operation of an SDN-enabled network. There are various types of attacks that

can be launched against an SDN, including:

i. DoS or DDoS

The most common and devastating types of attacks that can be

launched against a network, including SDN. These attacks aim to

disrupt network operations by overwhelming the network with traffic or

requests, rendering it unable to respond to legitimate traffic. In a DoS

attack, a single attacker floods the network with traffic or requests from

a single device, such as a botnet or a zombie computer. This can

consume all available network resources, such as bandwidth,

processing power, or memory, and cause the network to become

unresponsive or crash. In a DDoS attack, multiple devices are

compromised and coordinated to simultaneously flood the network with

traffic or requests. This type of attack is more difficult to detect and

- 27 -

mitigate because the traffic originates from multiple sources, making it

difficult to block or filter.

There are several types of DDoS attacks, including:

• Volume-based attacks: These attacks aim to overwhelm the

network with a large volume of traffic, such as UDP floods, ICMP

floods, or SYN floods.

• Protocol-based attacks: These attacks exploit weaknesses in

network protocols to consume network resources, such as Ping

of Death, Smurf attacks, or DNS amplification attacks.

• Application-layer attacks: These attacks target specific

applications or services, such as HTTP floods, Slowloris attacks,

or RUDY attacks.

To defend against DoS and DDoS attacks on SDN, several techniques

can be used, such as rate limiting, traffic filtering, and load balancing.

SDN can also be used to dynamically reroute traffic and allocate

resources to mitigate the impact of these attacks in rea-time.

ii. Man-in-the-middle (MitM) attacks

A type of cyber-attack in which an attacker intercepts and modifies

network traffic between two hosts, allowing the attacker to eavesdrop

on or alter the communication. MitM attacks can occur on any type of

network, including SDN, and are particularly dangerous because the

attacker can potentially gain access to sensitive information such as

- 28 -

login credentials, financial information, or other personal data. In a

typical MitM attack, the attacker positions themselves between two

communicating hosts, such as a client and a server. The attacker

intercepts the traffic passing between the two hosts and may modify

the traffic to suit their objectives. For example, the attacker may capture

sensitive information such as login credentials, credit card numbers, or

other personal data. They may also alter the communication to carry

out other attacks, such as injecting malware or performing a phishing

attack. MitM attacks can be carried out using various techniques, such

as:

• ARP spoofing: In this technique, the attacker sends fake

Address Resolution Protocol (ARP) messages to the hosts in

the network, tricking them into associating the attacker's MAC

address with the IP address of the legitimate device. This allows

the attacker to intercept and modify network traffic.

• DNS spoofing: In this technique, the attacker alters the DNS

resolution process so that the victim is directed to a fake website

that the attacker controls. The attacker can then intercept and

modify the communication between the victim and the fake

website.

• SSL stripping: In this technique, the attacker intercepts the SSL

communication between the two hosts and downgrades the

communication to an unencrypted form. This allows the attacker

to eavesdrop on the communication and potentially capture

sensitive information.

- 29 -

To prevent MitM attacks, it is important to use encryption and

authentication techniques such as SSL/TLS, SSH, and IPsec. In SDN,

these techniques can be implemented using various security protocols

such as OpenFlow Secure Channel (OF-SC) and OpenFlow

Management and Configuration Protocol (OF-MCP).

iii. Spoofing attacks

A type of cyber-attack in which an attacker impersonates a legitimate

user or device on the network in order to gain unauthorized access or

execute other attacks. Particularly dangerous because they allow the

attacker to bypass security controls and gain access to sensitive

information or systems. The attacker uses various techniques to

impersonate a legitimate user or device on the network. For example,

the attacker may:

• IP spoofing: In this technique, the attacker modifies the source

IP address of their network packets to make them appear as if

they originated from a trusted source on the network. This allows

the attacker to bypass network security controls, such as

firewalls and access control lists, and gain unauthorized access

to network resources.

• MAC spoofing: In this technique, the attacker modifies the MAC

address of their network interface to make it appear as if it

belongs to a trusted device on the network. This allows the

attacker to bypass security controls that use MAC addresses for

authentication, such as port security and MAC filtering.

• DNS spoofing: In this technique, the attacker alters the DNS

resolution process so that the victim is directed to a fake website

- 30 -

that the attacker controls. The attacker can then impersonate

the legitimate website and capture sensitive information such as

login credentials or financial information.

iv. Replay attacks

A type of cyber-attack in which an attacker captures and replays

network traffic to gain unauthorized access or execute other attacks.

Replay attacks can also occur on SDN, and are particularly dangerous

because they allow the attacker to bypass security controls and gain

access to sensitive information or systems.

The attacker captures a network packet that contains sensitive

information, such as login credentials or financial information. The

attacker then replays the captured packet at a later time to gain

unauthorized access or execute other attacks. For example, the

attacker may replay a captured packet that contains login credentials

to gain access to a network resource.

Machine learning algorithms can be trained to recognize patterns in

network traffic that indicate a replay attack, such as the same packet

being sent multiple times. When an abnormal behaviour is detected,

the system can take immediate action, such as blocking the traffic or

alerting the network administrator. By using machine learning and deep

learning techniques, SDN networks can improve their ability to detect

and mitigate replay attacks, thereby enhancing their overall security

posture.

- 31 -

v. Malware attack

An attacker infects network devices with malware, allowing them to

gain control of the device or use it to launch further attacks. Malware is

a type of software that is specifically designed to damage, disrupt, or

gain unauthorized access to a computer system or network.

The attacker uses various techniques to infect network devices with

malware. For example, the attacker may send a phishing email or a

malicious attachment that, when opened, installs malware on the

victim's device. The attacker may also exploit a vulnerability in the

network device's software to gain unauthorized access and install the

malware. Once the malware is installed on the network device, the

attacker can use it to gain control of the device or use it to launch further

attacks. For example, the attacker may use the infected device to

launch a DDoS attack, steal sensitive data, or install additional malware

on other network devices.

vi. Configuration attacks

Attacker modifies the configuration of network devices or the SDN

controller to disrupt or compromise network operations. In SDN,

network devices are configured and managed by the SDN controller,

which provides a central point of control for the network. The attacker

gains unauthorized access to the SDN controller or a network device

and modifies its configuration settings. For example, the attacker may

change the routing configuration to redirect traffic to a malicious

destination, or modify access control settings to allow unauthorized

- 32 -

access to network resources. These types of attacks can have serious

consequences, as they can disrupt network operations and

compromise the confidentiality, integrity, and availability of network

resources. In addition, they can be difficult to detect and mitigate, as

they often involve subtle changes to network configurations that can go

unnoticed for long periods of time. To prevent configuration attacks, it

is important to implement strong access control and authentication

mechanisms to protect the SDN controller and network devices from

unauthorized access. This can include using strong passwords, two-

factor authentication, and other security measures to prevent

unauthorized access.

2.4.3 Attack Detection Method

SDN has many distinctive features which are key to detecting and mitigating

attacks, including separation of the control plane from the data plane from the

logically centralized controller. Thus, allowing the programmability of the

network by external applications, using software-based traffic analysis and the

capability to dynamically update forwarding rules. Attack detection method are

elaborated below.

i. Entropy

Entropy-based methods depend on network feature distribution to

detect any anomalous network activities. The probability distribution

of various network features such as the source IP address,

destination IP address, and port numbers are used to calculate the

- 33 -

entropy. Predefined thresholds of changes in entropy values are

used to identify the presence of anomalies.

ii. Machine Learning

Machine learning-based methods employ techniques such as

Bayesian networks, SOM and fuzzy logic to identify the presence of

anomalies. These algorithms consider various network features and

traffic characteristics to detect the presence of anomalies.

iii. Traffic pattern analysis

These techniques work on the assumption that infected hosts all

exhibit similar behavioural patterns which are different from those

of benign hosts. Typically, in the case of a botnet attack, infected

machines are usually controlled by a single bot master. Similar

traffic patterns are observed because of the command is sent to

many members of same botnet, so causing the similar behaviour.

iv. Connection rate

These techniques are classified into the connection success ratio

and the connection rate. The connection rate refers to the number

of connections set up within a certain window of time.

v. Integrated Snort and OpenFlow

This technique uses a combination of IDS and OpenFlow to detect

attacks and reconfigure the network dynamically. An IDS monitors

the traffic to identify malicious activities. OpenFlow switches are

- 34 -

then dynamically reconfigured based on the detected attacks in real

time.

2.4.4 Attack Mitigation Approach

SDN has been focused on to improve the agility and flexibility of a network. It

empowers networks to respond quickly to changing network requirements via

a centralized controller. The SDN controller provides a global view of the

network. Further, the notion of the centralized controller leads to consistent

configuration throughout the network, since all network policies are defined by

a centralized controller, it not only simplifies anomaly detection, but also

facilitates the prompt invocation of mitigation mechanisms. For example, when

a DDoS attack is detected, a threat mitigation application may effectively

reprogram switches to block malicious traffic. Types of attack mitigation

actions are listed below.

i. Drop packets

The network traffic conforming to the defined rules is transmitted

while any remaining is dropped.

ii. Block port

The network traffic from attacking port is completely blocked.

iii. Redirection

The legitimate traffic is redirected to a new IP address.

iv. Control Bandwidth

- 35 -

The controller limits the flow transmission rate by allocating the

average bandwidth to each interface.

v. Network reconfiguration and topology change

The network controller changes the flow table of each switch to

change the network topology.

vi. Deep packet inspection

Deep packet inspection is a process that can examine both the

header and data part of a packet. Deep packet inspection enables

security to function and makes it possible to detect several types of

attack, including buffer overflow attacks, denial-of-service attacks

and worms and virus attacks.

vii. MAC address change and/or IP address change

When an attack is detected, the MAC address or IP address of the

victim is changed. Legitimate traffic is routed to a new address and

malicious traffic it blocked.

viii. Quarantine or Traffic isolation

This mitigation technique prevents the network resources from

being overwhelmed by a volume-based attack by isolating the

malicious traffic.

- 36 -

Machine Learning (ML) in SDN refers to the application of machine learning

techniques and algorithms to optimize and enhance various aspects of SDN

operations and management. By leveraging ML, SDN environments can

dynamically adapt and improve their performance, resource allocation,

security, and decision-making processes. A few key areas where machine

learning is commonly applied in SDN:

i. Traffic Engineering: ML algorithms can analyse network traffic patterns,

predict future traffic demands, and optimize the routing and resource

allocation accordingly. This enables efficient utilization of network

resources, load balancing, and improved Quality of Service (QoS).

ii. Network Security: ML techniques can be used to detect and mitigate

network security threats in real-time. By analysing network traffic and

behaviour patterns, ML algorithms can identify anomalies, detect

potential DDoS attacks, intrusion attempts, or abnormal activities, and

trigger appropriate security measures.

iii. Network Performance Optimization: ML algorithms can analyse

network performance metrics, such as latency, packet loss, or

throughput, and identify patterns or correlations that impact network

performance. Based on these insights, ML can dynamically adjust

network configurations, routing decisions, or resource allocation to

optimize performance.

iv. Fault Detection and Management: ML can help in identifying network

faults or failures by analysing network data and performance metrics.

ML algorithms can learn normal network behaviour and detect

deviations, enabling proactive fault detection, root cause analysis, and

efficient network troubleshooting.

- 37 -

v. Network Resource Management: ML techniques can analyse historical

network usage data and predict resource demands. This allows for

efficient resource provisioning, capacity planning, and dynamic scaling

of network resources based on traffic patterns and predicted future

demands.

vi. Policy and Intent-Based Networking: ML can be utilized to translate

high-level policies or intents into concrete network configurations. By

learning from historical data and network behaviour, ML algorithms can

automate the translation and enforcement of policies, simplifying

network management and reducing manual configuration efforts.

2.5 Related Research

The drawbacks of both anomaly-based and signature-based detection

methods have been elaborated by [17] . Anomaly detection has a high false

alarm rate because it may categorize activities which users rarely perform as

anomalous. On the other hand, signature original multi-agent router throttling

based on the divide-and-conquer paradigm to eliminate detection risks cannot

discover new types of attack as it uses a database of patterns of well-known

attacks. Therefore, the research proposed an IDS that can identify known and

unknown attacks effectively by combining features of both anomalous and

signature detection using log files. The proposed IDS is based on

collaboration between the RL method in association with rule learning and log

correlation techniques. Positive or negative rewards are granted by the RL

when the algorithm selects log files that contain anomalies or any signs of

attack or not, respectively accurately. This procedure enables learning by

- 38 -

experience of the system as it learns to choose more appropriate log files

when searching for traces of attack.

As mentioned in the introduction, DDoS is one of the most destructive attacks

in the current internet environment. This is due to dealing with widely

distributed geographical sources with high volumes of traffic coming from

large numbers of compromised hosts. A new machine learning-based

collaborative DDoS mitigation mechanism in SDN was propose in [13]. A

model for DDoS detection in SDN was created using an NSL- KDD dataset

and after training the model on this dataset, real DDoS attacks were used to

assess the viability of the proposed model. The results show that the proposed

technique compares favourably with current techniques, having better

performance and accuracy.

This thesis aims to improve on and build an adaptive model which can

effectively mitigate attacks, influenced by the above mentioned research,

focusing on combining the benefits of SDN and machine learning capabilities.

Before the proposed design is finalized, an attack impact evaluation in an SDN

environment will be explored in the next chapter to understand the issue in

depth.

2.5.1 Attack Impact Evaluation in SDN

SDN benefits include centralized pledges with convenient management for

adaptation to the data centre or internet architecture. However, associated

issues, especially those involving high risk security matters, need to be

address and solved before it can be fully deployed and operational within the

industry. As elaborated in the first chapter, various types of attack and

- 39 -

mitigation approaches have been identified and researchers have tried to use

the benefits of SDN to develop optimum solutions. In this research, attack

impact evaluation will be done in an SDN environment to analyse the effect

on bandwidth capacity that can be achieved and the impact on the response

of SLA in web services.

Evaluating the impact on the bandwidth capacity and response time of the

network services running inside the SDN managed networks under attack is

important. It would be helpful to assess its performance under different

magnitudes of attack. Two critical components in any SLA are the availability

of a service to the customers and its responsiveness. In this research, various

magnitudes of attacks specific to the SDN were carried out and their impact

on the performance of network services determined by analysing the

achievable bandwidth and the web services responsiveness during an attack.

2.5.2 Security Threats in SDN

Authors of [18] and [3] discussed various vulnerabilities and threats. Due to

its immaturity compared to traditional networks, security threats in SDN

networks are more challenging. For example, the impact of a compromised

SDN controller will affect the entire network, while in traditional networks, the

scope of damage is relatively small. Management threats, control place

threats and data plane threats are outlined briefly before attack

implementation and impact analysis are discussed.

- 40 -

2.5.3 Management Threats

The installation of the controllers, switches and network applications along

with their administration and trust management are under the remit of SDN

management. Management refers to the administrative privileges in the

operational environment, which, if compromised, would lead to a disastrous

situation that would threaten the overall operational environment.

Administrative configuration and fine tuning faults by the controller could

downgrade the performance of the whole network [19]. Such faulty handling

by management would create network outage risks to the controller and the

resources involved. Malicious, not fully tested SDN applications could also

execute various administrative commands that could interfere and interrupt

controller functions, making the network malfunction and become unstable.

Malicious programs could monopolize resources such as CPU and memory

for a long period of time thus degrading the overall performance of other

applications. Use of third-party applications for management purposes could

also cause damage as they might have unpatched updates that could allow

malicious activities to enter the SDN network. The encoded, unpatched

vulnerabilities could trigger various types of attack and ultimately disclose

administrative privileged information [20].

2.5.4 Control Plane Threats

The network policies along with operational message updates between

OpenFlow switches and the SDN controller are examples of areas of control

plane threat. Policy contradictions might occur between all the resources

involved causing possible inconsistent or unexpected traffic flows caused by

- 41 -

the rebuttal policy. Man-in-the-middle attacks could also happen due to

unprotected channels of communication between the switches and the

controller. Unencrypted communication activity can be sniffed out by malicious

systems and later exploited to compromise the network and by requiring high

priority administrative levels for their execution, this could lead to adding rules

intending to harm the environment as well as deleting rules intended to protect

it.

A faulty or misbehaving switch could also flood the control plane with

unnecessary operational messaging packets such as route requests by

sending Packet_In messages to the controller, which needs to respond to

such requests and being bombarded by requests would consume controller

resources and eventually lead to the SDN environment collapsing.

2.5.5 Data Plane Threats

The data plane consists of flow tables inside the switches, the end hosts and

the traffic between them. In SDN flows, an unknown destination packet is

referred to the controller for a decision about what should be done with it. Also

known as a missed flow table event, the controller will reply to the switches

with new rules to be updated in the switch flow tables. Longer response times

are needed for the first packet to be able to be sent to its destination to allow

for checking and initialization the communication between the switch and

controller. The specific communication mechanism to the SDN environment

provides the attacker with valuable finger-printing characteristics that the

attacker can take advantage of to plan and create specific attack methods to

bypass the checking mechanism. For example, with the finger-printing

- 42 -

information, the attacker can modify the attack mechanism by sending a valid

packet first and once the route has been established, the attack process will

start. This will bypass the controller due to SDN communication flows.

2.6 Attack Implementation and Impact Analysis

2.6.1 Environment Setup

Figure 2.4 shows the testbed in which the virtual controller, three host

machines and OpenFlow switch were setup using Mininet running Ubuntu

18.04 OS with Intel i5 CPU and 3G RAM. The RYU framework acts as the

SDN controller, while OVS is used as an OpenFlow-based virtual switch.

Connection speed for all hosts in the simulation was set at 1000 Mbps. For

this scenario, SECOD application was chosen. SECOD is a useful tool for

detecting and handling Distributed Denial of Service (DDoS) attacks in an

SDN environment for several reasons:

i. Real-time traffic monitoring: SECOD continuously monitors network

traffic in real-time, which allows it to detect anomalies or patterns that

may indicate the presence of a DDoS attack.

ii. Rapid response: Once a DDoS attack is detected, SECOD can quickly

respond by dynamically adjusting network configurations to mitigate

the impact of the attack. This can help to reduce the impact of the attack

and prevent it from causing widespread disruption.

iii. Customizable rules: SECOD allows for the creation of customizable

rules that can be tailored to the specific needs of an organization. This

enables the program to be adapted to the unique characteristics of an

- 43 -

SDN environment, which can help to improve its effectiveness in

detecting and handling DDoS attacks.

iv. Automated alerts: SECOD can be configured to send automated alerts

or notifications to administrators or security teams when a DDoS attack

is detected. This enables organizations to respond quickly to the attack

and take steps to prevent it from causing further damage.

By providing real-time monitoring, rapid response, customizable rules, and

automated alerts, SECOD can help to enhance network security and protect

against the damaging effects of DDoS attacks. SECOD was chosen as the

baseline comparison due to above listed capabilities and it was implemented

in a native SDN environment.

 The components involved in the setup are explained below:

i. RYU Controller: RYU is an open stack and Python-based framework

that supports the implementation of SDN.

ii. Mininet: creates a realistic virtual network running real kernel, switch

and application codes on a single machine.

iii. Open vSwitch (OVS): A production quality, multilayer virtual switch

licensed under the open-source Apache 2.0 license. It is designed to

enable massive network automation through program extension, while

still supporting standard management interfaces and protocols.

iv. SECOD [21]: a program implemented as an application of the RYU

controller using python-based scripts to do the functions needed for

detecting and handling DoS attacks. It communicates with the RYU

- 44 -

controller using the northbound interface to process and store different

counters as well as push different command instructions to the switch.

v. iPerf: the network bandwidth measurement tool for collecting the

maximum bandwidth in the network during the test.

vi. tcping: these are command line tools for collecting web service

responses in the network during the test.

vii. Gnuplot: the tools for producing graphs for the statistics being

collected.

Figure 2.4 : Testbed Setup

All the components are setup in a Mininet environment. The sender of the TCP

stream is connected to port 1 of the switch, a DoS attacker is connected to

port 2 and a receiver of the TCP stream is connected to port 3. Web service

responses will also be collected during the simulation. The SDN controller is

installed in Ubuntu OS and connected remotely from the Mininet environment.

The bandwidth that can be achieved during the attack and the performance of

the web service response will be collected and analysed to evaluate the

impact of the attack on the SDN environment.

- 45 -

All three host machines used iPerf applications for gathering traffic generation

and statistics. Consistent TCP streaming for 30 seconds in 10 cycles was

established between the Sender and the Receiver. After the given period,

iPerf reports the average bandwidth achieved during the time period. In the

Attacker, a bash script uses iPerf in a loop to continuously send UDP packets

with a high frequency to different IP addresses. This allows the rapid creation

of new flows in the network, emulating a DoS attack on the control and data

plane of the SDN.

Four (4) types of traffic simulation were carried out, as below:

i. Without Attack

TCP traffic simulation from Sender to Receiver for gathering the

bandwidth recorded for network traffic without any DoS attack, for

both the normal controller configuration and SECOD being

deployed.

ii. Slow Attack

A TCP traffic simulation from Sender to Receiver for gathering the

bandwidth recorded for network traffic during a DoS attack from the

Attacker for both with and without SECOD being deployed. The

transmission time-to-transmit used for this scenario was 1 second.

Higher frequencies are the result of higher volumes of Packet_In

messages for the Controller to handle, so DoS attacks happen.

- 46 -

iii. Medium Attack

TCP traffic simulation from Sender to Receiver to gather the

bandwidth recorded for network traffic during a DoS attack from

Attacker for both with and without SECOD deployed. The

transmission time-to-transmit used for this scenario was 0.1

seconds.

iv. Fast Attack

TCP traffic simulation from Sender to Receiver for gathering the

bandwidth recorded of network traffic in a DoS attack from an

Attacker for both with and without SECOD deployed. The

transmission time-to-transmit used for this scenario was 0.001

seconds to emulate the most DoS attack activity in the environment.

2.6.2 Implementation Findings

Without Attack

Both simulations with and without SECOD recorded similar findings as the

traffic flows were normal and no DoS attack activity occurred. Bandwidth

readings and the graph shown in Figure 2.5 for 10 runs were recorded and

summarised in Table 2.3 below:

- 47 -

Without SECOD With SECOD

Test

Number

Mean

Bandwidth

(Mbps)

 Test

Number

Mean

Bandwidth

(Mbps)

1 938 1 932

2 938 2 948

3 944 3 952

4 944 4 948

5 926 5 944

6 946 6 933

7 947 7 942

8 946 8 945

9 946 9 950

10 939 10 952

Table 2.3 : Bandwidth reading for without attack scenario

Figure 2.5 : Bandwidth summary without attacks

- 48 -

No significant difference recorded between the simulations and it is assumed

that the setup functioned properly when handling traffic test without any DoS

attack. The bandwidth that can be achieved is almost 1 Gbps, as the speed

setup for the simulation.

Web service responses without any performance test recorded during the test

are plotted in Figure 2.6 and Figure 2.7, below. The graph shows the majority

are between 4 to 6 milliseconds for web services’ responses to the query sent.

Figure 2.6 : Web Service responses without SECOD

- 49 -

Figure 2.7 : Web Service responses with SECOD

During the performance test, readings between 65 to 75 milliseconds were

recorded for web service responses with and without SECOD, as shown in

Figure 2.8 and Figure 2.9 : Web Service responses with SECOD during the

performance test.

- 50 -

Figure 2.8 : Web Service responses without SECOD during the
performance test

Figure 2.9 : Web Service responses with SECOD during the
performance test

Both experiments show the response readings for the web services were quite

similar during the performance test.

- 51 -

2.6.3 Slow Attack

Bandwidth reading and the graph for 10 runs were recorded and are

summarised in Table 2.4 below:

Without SECOD With SECOD

Test

Number

Mean

Bandwidth

(Mbps)

 Test

Number

Mean

Bandwidth

(Mbps)

1 531 1 531

2 531 2 532

3 531 3 531

4 531 4 530

5 532 5 532

6 532 6 530

7 532 7 532

8 531 8 531

9 531 9 532

10 532 10 529

Table 2.4 : Bandwidth reading for the slow attack scenario

- 52 -

Figure 2.10 : Bandwidth summary during the slow attack test session

Traffic for both tests dropped to half capacity, around 500 Mbps during the

slow attack DoS session. With the implementation of SECOD, access from

the source of the DDoS dropped but with no significant impact on the traffic

bandwidth achieved.

Web service responses during a slow attack session are shown below, in

Figure 2.11 and Figure 2.12.

- 53 -

Figure 2.11 : Web Service responses without SECOD during the slow
attack

Figure 2.12 : Web Services response with SECOD during the slow
attack

Both experiments show the response readings for the web services were

similar during the performance test with readings around 120 ms to 130 ms.

- 54 -

The difference is that, during a drop policy enforced in SECOD, the responses

are more similar compared to the scattered readings with no policy enforced.

2.6.4 Medium Attack

Bandwidth readings and the graph for 10 runs were recorded and are

summarised in Table 2.5 and Figure 2.13 below:

Without SECOD With SECOD

Test

Number

Mean

Bandwidth

(Mbps)

 Test

Number

Mean

Bandwidth

(Mbps)

1 532 1 530

2 532 2 531

3 532 3 532

4 531 4 533

5 532 5 530

6 532 6 531

7 532 7 531

8 532 8 532

9 532 9 531

10 532 10 531

Table 2.5 : Bandwidth reading in a medium attack scenario

- 55 -

Figure 2.13 : Bandwidth summary during a medium attack session

Traffic for both tests dropped to half capacity, around 500 Mbps during the

medium attack DoS session. With the implementation of SECOD, access from

the source of the DDoS dropped, but no significant impact r in the traffic

bandwidth achieved was recorded.

Web service responses during a medium attack session are shown below in

Figure 2.14 and Figure 2.15.

- 56 -

Figure 2.14 : Web Service responses without SECOD during the
medium attack

Figure 2.15 : Web Services response with SECOD during the medium
attack

- 57 -

2.6.5 Fast Attack

Bandwidth readings and the graph for 10 runs were recorded and summarised

below in Table 2.6 and Figure 2.16:

Without SECOD With SECOD

Test

Number

Mean

Bandwidth

(Mbps)

 Test

Number

Mean

Bandwidth

(Mbps)

1 532 1 530

2 533 2 534

3 531 3 536

4 532 4 531

5 533 5 534

6 534 6 531

7 532 7 533

8 532 8 531

9 534 9 531

10 533 10 531

Table 2.6 : Bandwidth readings for the fast attack scenario

- 58 -

Figure 2.16 : Bandwidth summary of the fast attack session

Traffic for both tests dropped to half capacity, around 500 Mbps during fast

attack DoS session. With the implementation of SECOD, access from the

source of the DDoS dropped but no significant impact was recorded on the

traffic bandwidth achieved.

Web service responses during the fast attack session shown below in Figure

2.17 and Figure 2.18.

- 59 -

Figure 2.17 : Web Service responses without SECOD during the fast
attack

Figure 2.18 : Web Service responses with SECOD during the fast attack

- 60 -

2.6.6 Simulation Summary

The reduction in available bandwidth and higher response rate from web

services has shown a significant impact was caused by the attack in the SDN

environment. The objective of analysing the findings and becoming familiar

with SDN traffic handling has been achieved from the simulation. Although no

significant impact was recorded when comparing results during all the attack

scenarios, valuable information was gathered for understanding how to use

SDN traffic information. Collecting traffic data, computing traffic use in

comparison with the threshold setup, and the pushing policy to the OpenFlow

switch experienced in the simulation have all provided good basic knowledge

for exploring attack handling in an SDN environment in future research. A

mitigation plan for improving the bandwidth during an attack and maintaining

a low response time for the web services will be proposed in the next chapter.

Before a good machine learning solution can be proposed, it is important to

understand the process of selecting features from the available dataset and

the optimum classification mechanism for analysing and detecting attacks

related to an SDN environment. Chapter three will cover the research related

to attack classification using machine learning capabilities.

2.7 Comparison of Machine Learning attacks as classified in

an SDN environment

ML is a type of AI that involves using algorithms and statistical models to

enable computer systems to learn from data and make decisions or

predictions without being explicitly programmed to do so. In the context of

SDN, ML can be used to classify different types of network traffic, such as

- 61 -

video streaming, web browsing, or file sharing. This information can be used

to optimize network performance and prioritize certain types of traffic over

others. ML algorithms also can analyse network traffic patterns and identify

anomalous behaviour that may indicate a security threat, such as a DDoS

attack. Optimizing resource allocation in an SDN environment, such as

allocating bandwidth or storage resources to different applications or users

based on their needs and usage patterns can be adopt. Furthermore, ML are

able to predict equipment failures or performance degradation in network

devices, allowing for proactive maintenance and minimizing downtime.

Dataset is an important element in any research. Some public access

datasets are shared by researchers and contributing agencies as benchmarks

to enable researchers to develop models or system to compare their

performances with that of others using the same dataset. NSL-KDD is one of

the most popular, being shared by the Canadian Institute for Cybersecurity

dataset for intrusion and attack detection. The dataset is an updated version

of the earlier KDD Cup 99 dataset, aiming to overcome some limitations in

that earlier version. Chapter two covers the scope of applying the machine

learning approach for attack classification in an SDN simulation. The NSL-

KDD dataset is used as the input while a machine learning algorithm is used

as the classification mechanism for detecting attacks in SDN. The feature

selection and classification is carried out using the Weka tool to capture the

performance and compare various algorithms to find the best combination to

apply in any future adaptive attack mitigation proposal.

- 62 -

2.7.1 NSL-KDD Dataset

The KDD Cup 99 dataset has been used as a benchmark dataset for many

years in intrusion detection development and evaluation. The drawback in this

dataset is that it has many redundant records in the training and test data. It

was observed that the training and testing data have almost 78% and 75%

redundant records respectively. The detection mechanism developed using

this dataset become biased towards the classification of frequently found

attack records and produce poor classification results for the less frequent,

but harmful records due to this redundancy. In this case, the comparison and

evaluation of different NIDSs become difficult, as they all produce excellent

results on this dataset.

The NSL-KDD came into existence to overcome the limitations of the KDD

Cup 99 dataset but is derived from the KDD Cup 99 dataset. The following

approaches were taken in the NSL-KDD dataset to improve the KDD Cup 99

dataset. Firstly, all the redundant records from the training and test data in the

KDD Cup 99 dataset were removed. After removing redundant records from

the KDD Cup 99 dataset, the remaining distinct records were divided into 21

sets based on their classification accuracy by different learning algorithms.

Each set contained records that could be correctly classified by a specific

number of learning algorithms. This was done to create a more diverse and

challenging dataset that could better represent real-world network traffic and

attacks.. A record was kept in a set with the same number as the classifiers

that accurately classified the record. The records were sampled from each set

in a fraction inversely proportional to the fraction of the records in that set

over the total number of records in all the sets. Each record in the NSL-KDD

- 63 -

dataset has 41 features including three nominal, four binary, and 34

continuous features along with a label for normal or a particular kind of attack.

NSL-KDD dataset feature list and its description are as shown in Table 2.7

below.

Feature name Feature

Number

Description

duration 1 Length of the connection in seconds

Protocol-type 2 Type of connection protocol

service 3 Destination of network services

flag 4 Status of the connection (normal or

error)

src_bytes 5 Source to destination data byte

numbers

dst_bytes 6 Destination to source data byte

numbers

land 7 1 if the connection is from/to the

same host/port; 0 otherwise

wrong_fragment 8 Number of wrong fragments

urgent 9 Number of urgent packets

hot 10 Number of hot indicators

failed_logins 11 Number of failed login attempts

logged_in 12 1 if successfully logged in; 0

otherwise

_compromised 13 Number of compromised conditions

root_shell 14 1 if root shell is obtained; 0 otherwise

su_attempts 15 1 if ‘‘su root’’ command attempted; 0

otherwise

_roots 16 Number of root accesses

_file_creations 17 Number of file creation operations

- 64 -

_shells 18 Number of shell prompts

_access_files 19 Number of operations on access

control files

_outbound_cmds 20 Number of outbound commands

is_hot_login 21 1 if the login belongs to the hot list; 0

otherwise

is_guest_login 22 1 if the login is a guest login; 0

otherwise

count 23 Number of connections to the same

host as the current connection in the

past 2 seconds

srv_count 24 Number of connections to the same

service as the current connection in

the past 2 seconds

serror_rate 25 % of connections that have ‘‘SYN’’

errors

srv_serror_rate 26 % of connections that have ‘‘SYN’’

errors

rerror_rate 27 % of connections that have ‘‘REJ’’

errors

srv_rerror_rate 28 % of connections that have ‘‘REJ’’

errors

same_srv_rate 29 % of connections to the same service

diff_srv_rate 30 % of connections to different services

srv_diff_host_rate 31 % of connections to different hosts

dst_host_count 32 Count of connections having the

same destination host

dst_host_srv_count 33 Count of connections having the

same destination host and using the

same service

dst_host_same_srv_rate 34 % of connections having the same

destination host and using the same

service

- 65 -

dst_host_diff_srv_rate 35 % of different services on the current

host

dst_host_same_src_port_rate 36 % of connections to the current host

having the same source port

dst_host_src_diff_host_rate 37 % of connections to the same service

coming from different hosts

dst_host_serror_rate 38 % of connections to the current host

that have an S0 error

dst_host_srv_serror_rate 39 % of connections to the current host

and specified service that have an S0

error

dst_host_rerror_rate 40 % of connections to the current host

that have an RST error

dst_host_srv_rerror_rate 41 % of connections to the current host

and specified service that have an

RST error

Table 2.7 : NSL-KDD dataset features and their descriptions

The NSL-KDD dataset is commonly used in research related to IDS and

network security. One of the applications of IDS is to detect and prevent

attacks in SDN environments. The dataset has been widely used in these

types of studies because it provides a comprehensive collection of network

traffic data that simulates various types of attacks. By using the NSL-KDD

dataset to train and evaluate machine learning algorithms or IDS techniques,

researchers can assess the effectiveness of these methods in detecting and

preventing attacks in SDN environments. Top of Form The NSL-KDD dataset

can be beneficial in evaluating the effectiveness of various security

mechanisms and techniques in SDN environments. Benefits of using the NSL-

KDD dataset in SDN environments is as follows:

- 66 -

i. Realistic data: The NSL-KDD dataset provides a realistic and diverse

set of network traffic data that simulates various types of attacks, such

as DoS, Probe, R2L, and U2R attacks. This can help researchers to

evaluate the effectiveness of different security mechanisms and

techniques in detecting and preventing attacks in SDN environments.

ii. Comprehensive feature set: The NSL-KDD dataset includes a

comprehensive set of pre-defined features that can be used to analyse

network traffic and identify patterns that may indicate an attack. This

can help researchers to develop effective machine learning algorithms

or intrusion detection systems that can detect and prevent attacks in

SDN environments.

iii. Benchmark dataset: The NSL-KDD dataset is widely used as a

benchmark dataset for evaluating the performance of intrusion

detection systems and related techniques. This can help researchers

to compare the performance of different security mechanisms and

techniques in detecting and preventing attacks in SDN environments.

iv. Cost-effective: The NSL-KDD dataset is freely available and can be

used for research purposes without any cost. This can be beneficial for

researchers who may not have access to real-world network traffic data

or who may not have the resources to collect and analyse their own

data.

- 67 -

2.7.2 Dataset Feature Selection

Previous studies have been made by researchers using the NSL-KDD dataset

as the input for machine learning classification. With a combination of

proposed classification techniques, different feature selections have been

presented to assess the proposed intrusion detection procedure. A summary

of related work with similar objectives mentioned earlier is shown in Table 2.8

below.

Ref. Year. Number of

feature

selection

Feature list

[7] 2018 6 1, 2, 5, 6, 24, 36

[22] 2018 6 3, 4, 5, 6, 12, 26

[23] 2013 11 3, 5, 6, 10, 17, 18, 32, 33, 35, 36, 38

[24] 2015 11 3, 4, 12, 26, 29, 30, 31, 32, 33, 38, 39

[25] 2012 11 1, 3, 6, 12, 22, 23, 24, 25, 28, 31, 32

[26] 2104 13 not specified

[27] 2013 13 not specified

[28] 2013 22 not specified

[29] 2010 23 not specified

[30] 2013 27 1, 2, 3, 4, 5, 6, 10, 11, 23, 24, 25, 26, 27,

28, 29, 30, 31, 31 ,33 ,34, 35, 36, 37, 38,

39, 40, 41

Table 2.8 : Dataset selections of previous studies

Feature selection is an important step in building machine learning models

and intrusion detection systems (IDS) using the NSL-KDD dataset. The

feature selection process involves selecting a subset of relevant features from

- 68 -

the dataset that can be used to build effective models for detecting and

preventing attacks. The NSL-KDD dataset originally included 41 features,

which were pre-defined by the creators of the dataset. However, several

studies have shown that not all of these features are relevant or useful for

building effective intrusion detection systems. In fact, using all 41 features can

lead to overfitting and reduced model performance. To address this issue,

researchers have proposed various methods for feature selection in the NSL-

KDD dataset. These methods aim to identify the most relevant and informative

features that can be used to build effective IDS models. Some of the popular

feature selection methods used in the NSL-KDD dataset include:

i. Correlation-based feature selection: This method involves selecting

features that are highly correlated with the target variable (i.e., attack

or normal traffic) and removing features that are highly correlated with

each other. This can help to reduce redundancy in the feature set and

improve model performance.

ii. Recursive feature elimination: This method involves recursively

removing the least important features from the dataset and evaluating

the model performance after each iteration. This can help to identify the

most important features that contribute the most to the model

performance.

iii. Principal component analysis: This method involves transforming the

original feature set into a lower-dimensional feature space that retains

the most important information from the original features. This can help

to reduce the dimensionality of the feature set and improve model

performance.

- 69 -

Feature selection process in the NSL-KDD dataset has evolved over time as

researchers have identified the most relevant and informative features for

building effective IDS models. The goal of feature selection is to reduce the

dimensionality of the feature set while retaining the most important

information, which can help to improve the accuracy and performance of the

IDS models. The number of features selected has tended to decrease in

recent years because selecting fewer features makes the classification

process much faster. Although fewer features are selected, the accuracy of

the proposed model needs to be high enough to yield good results. The aim

of analysing different projects’ feature selection from the same dataset is to

propose alternative selection features that can yield a better result.

2.8 Simulation Setup

Feature selection and classification methods are available in built-in WEKA, a

machine learning work bench. As proposed by [22], 4 feature selection

methods have been chosen, namely CfsSubsetEval, GainRatioAttributeEval,

OneRAttributeEval and SymmetricalUncertAttributeEval. The feature

selections in WEKA are shown in Figure 2.19 below.

- 70 -

Figure 2.19 : WEKA attribute selection

Classification using the available algorithm in Weka are shown in Figure 2.20

below. For this work’s comparisons, 4 classifiers have been chosen, namely

BayesNet, Logistics, NBTree and IB1.

Figure 2.20 : WEKA classification selection

To select the best combination of feature selection methods for future

research in machine learning deployment, two previous research projects that

utilized a 6-feature selection approach were identified and selected. The

- 71 -

purpose of selecting these two projects was to compare their feature selection

methods and identify the most effective combination for future research.

Alternative 1 and Alternative 2 feature selections were suggested as in list in

Table 2.9 below. The comparison of the evaluation measurements discussed

in the findings section.

Ref. Year. Number of

feature

selection

Feature list

Full Features 41 All features

[7] 2018 6 1, 2, 5, 6, 24, 36

[22] 2018 6 3, 4, 5, 6, 12, 26

Alternative 1 6 3, 4, 5, 12, 25, 26

Alternative 2 6 3, 4, 5, 6, 12, 25

Table 2.9 : Feature selection options

2.9 Findings

Results from the NSL-KDD test using selected features are shown in Table

2.10 below.

- 72 -

Evaluation

Measurement

Dataset Classifier

 BayesNet Logistic NBTree IB1

Detection

Rate

Full

Features

74.43 75.60 79.68 79.35

 Ref 19 77.62 50.12 79.21 79.43

 Ref 30 78.65 77.84 82.98 82.49

 Alternative 1 78.73 77.86 83.13 82.29

 Alternative 2 78.68 77.65 83.46 81.99

False Alarm Full

Features

0.200 0.203 0.175 0.165

 Ref 19 0.177 0.381 0.165 0.166

 Ref 30 0.169 0.192 0.150 0.154

 Alternative 1 0.168 0.191 0.148 0.156

 Alternative 2 0.169 0.193 0.146 0.158

Precision Full

Features

0.822 0.804 0.824 0.841

 Ref 19 0.836 0.728 0.843 0.839

 Ref 30 0.841 0.808 0.847 0.842

 Alternative 1 0.842 0.808 0.848 0.840

 Alternative 2 0.841 0.807 0.850 0.838

Recall Full

Features

0.744 0.756 0.797 0.794

 Ref 19 0.776 0.501 0.792 0.794

 Ref 30 0.787 0.778 0.830 0.825

 Alternative 1 0.787 0.779 0.831 0.823

 Alternative 2 0.787 0.777 0.835 0.820

- 73 -

F-Measure Full

Features

0.739 0.754 0.797 0.792

 Ref 19 0.774 0.405 0.791 0.793

 Ref 30 0.785 0.778 0.831 0.826

 Alternative 1 0.785 0.779 0.832 0.824

 Alternative 2 0.785 0.777 0.835 0.821

Table 2.10 : Selected features test results

The detection rate evaluation using the NBTree classifier, Alternative 1 and

Alternative 2 feature selections show a slight increase in the results achieved,

with readings of 83.13% and 83.46% detection rates, as shown in Figure 2.21

and Figure 2.22 respectively using the test dataset. The full feature selection

level was 79.68%, as shown in Figure 2.23 while reference [7] achieved a

79.21% level, as shown in Figure 2.24 and ref [22] achieved 82.98%, as

shown in Figure 2.25.

- 74 -

Figure 2.21 : Full feature selection

Figure 2.22 : Reference [19] feature selection

- 75 -

Figure 2.23 : Ref [27] feature selection

Figure 2.24 : Alternative 1 feature selection

- 76 -

Figure 2.25 : Alternative 2 feature selection

The proposed system design involves the use of adaptive attacks and feature

selection to improve the accuracy of intrusion detection systems. Two

alternative feature selection methods were considered in the study, and it was

found that Alternative 2 feature selection yielded better results than the other

method. Alternative 2 involves selecting a set of features that are highly

correlated with the target variable and have low correlation with each other.

After the proposed adaptive attack has been deployed, the selected features

are used to prompt mitigation actions. Specifically, the feature list is used to

identify the type and characteristics of the attack, which in turn informs the

selection of an appropriate mitigation strategy. For example, if the feature list

indicates that the attack is a denial of service (DoS) attack, the system can

initiate a traffic filtering mechanism to block traffic from the attacker's IP

address. Alternatively, if the attack is a port scan, the system can modify

- 77 -

firewall rules to block traffic from the attacker's source port. Overall, the

proposed system design demonstrates the effectiveness of feature selection

in improving the accuracy of intrusion detection systems and the importance

of using selected features to prompt mitigation actions in response to adaptive

attacks. The use of Alternative 2 feature selection method ensures that the

selected features are highly relevant to the target variable and minimizes the

possibility of selecting features that are highly correlated with each other,

which could lead to overfitting and poor generalization performance of the

system.

2.10 Summary

In this chapter, we discussed in detail the SDN architecture, OpenFlow

protocol, ML, DL and also the used datasets. This chapter also provided an

overview of the DDoS attack and some related work in SDNs. The attacks

implementation and simulation in this chapter shows the impact in an SDN

architecture. We describe and explain the different types of attack magnitude

that impacted the overall performance of the SDN environment. At the end of

this chapter, comparison of ML algorithm being use to classify the attack in

SDN traffic to show the flexibility of the SDN paradigm in monitoring and

detecting network attacks.

- 78 -

CHAPTER 3 : Native SDN Intrusion Detection using Machine

Learning

3.1 Introduction

In recent years, SDN has been widely studied and put into practice to assist

in network management especially with regards to newly evolved network

security challenges. SDN decouples the data and control planes, while

maintaining a centralised and global view of the whole network. However, the

separation of control and data planes makes SDN vulnerable to security

threats. Seven main categories directly related to these risks have been

identified which are unauthorized access, data leakage, data modification,

compromised application, denial of services (DoS), configuration issue and

system-level SDN security. One example of the most concerning issue is

related to Distributed denial-of-service (DDoS). DDoS attacks have been a

real threat for network, digital and cyber infrastructure. The magnitude of

disruptions are massive and can bring down ICT infrastructure services.

Various reasons for attack can be synopsized with the main objective of DDoS

attack as to paralyze network services by bombarding illegitimate traffic to

targeted servers, network links or network devices [31]. Another example is

that attackers can oversee and falsify network management information,

implement saturation attack, become a perpetrator in man-in- the-middle

attacks and so on. Therefore, it is important to adopt a defense mechanism

for securing SDN architecture by analyzing vulnerability and improve trust

management in traffic handling. One of the proposed solutions for detecting

such intrusion is the usage of the intrusion detection system (IDS). There are

2 types of IDS which are signature-based IDS and anomaly detection based

- 79 -

IDS. The first type of IDS depends on the pre-identified signature of an

intrusion that has been known before whilst the second type of IDS observed

the traffic that deviates so much from normal and deemed suspicious or

abnormal. Efficient approach in providing a high level of security in areas such

as access control, authentication, malicious outbreak detection and others has

resulted by adapting machine learning features and capabilities [32]. Network

traffic classification either normal or attack are done via the usage of the Naive

Bayes algorithm, Support Vector Machine, K-nearest Neighbor, Neural

Network, Recurrent Neural Network, Deep Neural Network and others [33] [6].

Reinforcement learning practicality also being embedded in the case of

unlabelled data and the needs of the different approaches for intrusion

identification and detection. With the abovementioned advancement and

additional capabilities provided by SDN architecture, research of incorporating

machine learning has been done to improve network security. Researchers

also have embarked autoencoder approach as an alternative in network

intrusion detection environments such as the works of [9] and [34].

Autoencoders are unsupervised learning techniques that make use of the

neural network for undertaking representation learning. A bottleneck in the

network is imposed to force a compressed knowledge from the original input.

An ideal autoencoder model can be achieved by balancing the sensitivity of

the input for accurate reconstruction build up and take into account overfitting

condition which simply memorizing the input data. For most cases, a loss

function usually being constructed with the term on encouraging for input

sensitivity and secondly by discouraging overfitting or memorization of input

data, for example by adding regularizer. Embracement of machine learning

and autoencoder such as the works above has outset promising solution in

- 80 -

intrusion detection. Progression in the accuracy level, reducing training and

execution time needed can still be improved especially to be embedded in a

fast speed of SDN environment. This further improvement motivates in

outlining this research. In summary, the contributions of this chapter are the

following:

We introduce a hybrid combination of an autoencoder (AE) and random forest

(RF) algorithm in the SDN environment. Our AERF approach yields a

detection rate of 98.4% using a minimum number of features. We also

evaluate the network performance of the proposed approach in the SDN. The

test results show that our approach is a significant potential for real-time

detection with minimum impact on the controller and noteworthy processing

time.

- 81 -

3.2 Architecture

A. SDN-based Intrusion Mitigation Architecture

The proposed architecture is as shown in Figure 3. 1 below.

Figure 3. 1 : Intrusion Mitigation Architecture

Two main functionalities are Assembly Module for statistics collection and

Adaptive ML Module which will be adopting deep learning for analysing traffic

received for intrusion detection and enforcing policies enforcement with

capabilities of machine learning in the SDN environment. The proposed

solution will focus on mitigating the attack with enrichment of machine learning

benefits. The functionality of the main components is presented as follows:

- 82 -

a) Assembly Module:

Collecting traffic information of the SDN network. Collected data will be

assembled as needed input for the controller to take proper actions.

Utilized standard Openflow protocol which periodically sends an

Openflow flow stats request message to all Openflow connected

switches. Managed switches will respond back to the message that

contains traffic flow statistics.

b) Adaptive ML Module:

Proposed intrusion detection using AERF will be deployed and attack

traffic will be penalized when detected by the controller using machine

learning functionality in the adaptive ML module.

Figure 3. 2 : Intrusion Mitigation Module

The functionality of the proposed module are as shown in Figure 3. 2.

Assembly Module will handle the statistics inquiry and collection from all

OpenFlow enable switches. The gathered data will then be processed with the

required format for the controller to proceed with detection and prevention in

the adaptive ML module. The training and testing process of the detection

process needs to be fast and yield high accuracy as it will deal with the high

- 83 -

speed data flow. Upon the classifying process, normal traffic will proceed as

usual whilst abnormal traffic will be penalized.

3.3 Experimental Methodology

A. Dataset

The NSL-KDD dataset is a popular choice for research and experimentation

in the field of network intrusion detection and machine learning. The reasons

why the NSL-KDD dataset selected is as below.

i. Standardized Benchmark: The NSL-KDD dataset is widely used as

a benchmark dataset for evaluating the performance of intrusion

detection systems (IDSs) and machine learning algorithms. It is an

updated version of the original KDD Cup 1999 dataset, addressing

some limitations and criticisms of the original dataset, such as the

presence of redundant records and unrealistic traffic patterns.

ii. Realistic Network Traffic: The NSL-KDD dataset contains a

representative sample of network traffic data, including both normal

and various types of attacks, such as DoS, probing, and

unauthorized access. This diversity allows researchers to study and

develop IDSs and machine learning models that can effectively

detect and classify different types of network intrusions.

iii. Feature Selection Challenges: The NSL-KDD dataset provides a

significant number of features (41 features) that capture various

aspects of network traffic. This feature-rich dataset allows

researchers to tackle the challenge of feature selection and

- 84 -

extraction, exploring the most relevant features for intrusion

detection and determining the optimal subset of features for

achieving high detection accuracy.

iv. Pre-processed and Labeled: The NSL-KDD dataset is pre-

processed and labeled, meaning that the raw network traffic data

has been transformed into a suitable format for machine learning.

Additionally, each network connection is labeled as either normal or

belonging to a specific attack category, making it convenient for

supervised learning tasks.

v. Availability and Reproducibility: The NSL-KDD dataset is readily

available for download and has been used extensively in research

publications. This availability enables researchers to compare their

results with existing literature, reproduce experiments, and foster

collaboration among the research community.

However, it's worth noting that the NSL-KDD dataset is not without limitations.

Some criticisms include the fact that it may not fully represent the complexities

and diversity of real-world network traffic, as it was generated in a controlled

lab environment. Therefore, researchers should be cautious when

generalizing results obtained from the NSL-KDD dataset to real-world

scenarios. Overall, the NSL-KDD dataset serves as a valuable resource for

exploring and developing machine learning-based intrusion detection systems

and provides a standardized platform for evaluating the performance of

different techniques in the field of network security.

- 85 -

Most of the approaches in machine learning required a training dataset to train

the algorithm before being tested. Usage of the dataset in classifying attack

has been done in [9] and a total of 63% of the reported research used the

KDD-99 dataset for training and testing. In this work, a newer version of KDD-

99 which is an NSL-KDD dataset will be used. The dataset has been corrected

from enormous duplication of data and defects that cause bias in evaluation.

NSL-KDD dataset has 41 features and three of these features are symbolic

while others are numeric. Our model is trained by the KDDTrain+ dataset and

tested by the KDDTest+ dataset. In addition, the KDDTest+ dataset contains

17 different types of attacks compared to 22 attack types of the KDDTrain+

dataset. Thus, the KDDTest+ dataset is a reliable indicator of the performance

of the model on zero-day attacks as well. Distribution of both dataset

according to network traffic classes are as shown in Table 3. 1 below.

KDDTrain+ dataset contains 125,973 records and KDDTest+ dataset contains

22,544 records. The data processing task will be deployed to prepare the

dataset for training and testing purposes. Simplified autoencoder with the fine-

tune of overfitting factors is applied to the NSL-KDD training and testing

dataset and only selected 6 features from Section III. The selected features

are service, flag, src bytes, dst bytes, logged in and serror rate.

Table 3. 1: Distribution of KDDTrain+ and KDDTest+ dataset according
to traffic classes

Many of the features of the NSL-KDD dataset have very large ranges between

the maximum and minimum values, such as the difference between the

- 86 -

maximum and minimum values in “duration [0, 58329].” In this example, the

maximum value is 58,329 and the minimum is 0. A large difference also exists

in other feature values, such as “src-bytes” and “dst-bytes” thereby making

the feature values incomparable and unsuitable for processing. Hence, these

continuous features are normalized by using max-min normalization for

mapping all feature values to the range [-1, 1] according to equation (3.1)

below.

 xi =
xi − Min

Max − Min
 (3.1)

Features that are discrete such as service and flag are being processed using

a one-hot encoding. As the speed of processing is a concern, using a one-hot

implementation typically allows a state machine to run at a faster clock rate

than any other encoding of that state machine. Both of these values will then

be used as input to the model for training and testing.

B. AERF Model

Deep learning approaches have good potential to achieve effective data

representation for building improved solution. For the approach to be adopted

in the real environment, it has to be composed with a fast simplified approach

for performance. Therefore, in this proposal, an autoencoder with fine-tuning

the factors that affect overfitting is being put forth. An autoencoder is an

unsupervised machine learning algorithm that learns to encode and decode

data. It consists of an encoder and a decoder network that work together to

reduce the input data into a compressed representation, also known as a

latent code. The encoder network takes the input data and maps it to the latent

- 87 -

code, while the decoder network takes the latent code and maps it back to the

reconstructed data.

The objective of the autoencoder is to learn a compressed representation of

the input data that can be used to reconstruct the original data with minimal

loss of information. During training, the autoencoder is fed with input data and

the corresponding reconstructed data, and the weights of the encoder and

decoder networks are updated to minimize the difference between the input

data and the reconstructed data. A hybrid combination using the random

forest algorithm for further classification from the preliminary autoencoder

calculation process is proposed. A preliminary test with the usage of the NSL-

KDD dataset will be used in order to test the approach by targeting high

accuracy detection but with the main objectives of simplifying the detection

within the minimum time processing needed. The AE has two phases which

are encoding and decoding. For the encoding process as in equation (3.2)

input data x is compressed into a low-dimensional representation h and then

the decoder reconstructs the input based on the low-dimensional

representation.

h = f(Wx + b)

y = f(W′h + b′)
(3.2)

Where f(·) is a non-linearity activation function, 𝑊 and 𝑊′ are hidden weight

matrices, 𝑏 and 𝑏′ are biases and 𝑦 is output vector. Minimizing the differences

between the input x and the output y is the main goal during the training

process. The average squared difference between the estimated values and

the actual values is used as below in equation (3.3).

- 88 -

 L(x, y) = ||x − y||
2

2
 (3.3)

During the training process, only normal traffic is used from the training

dataset. Attack datasets not used because of unbalanced and certain attack

types are not well represented. In this approach, autoencoder with dropout on

the inputs is proposed which consists of an input layer of 85 neurons due to

the number of features for each sample is 85. The input layer of 85 neurons

after the selection of 6 features is used for the training and testing process. 85

neurons are consists of service (70 input), flag (11 input), src bytes (1 input),

dst bytes (1 input), logged in (1 input) and serror rate (1 input).

A total of 125,973 with 85 input and 22,544 with 85 input for dataset training

and testing respectively. After a dropout layer, a hidden layer of 8 neuron units

is proposed with the hidden representation of the autoencoder has a

compression ratio of 85/8 forcing it to learn interesting patterns and relations

between the features. An output layer of 85 units with the activation of both

the hidden layer and the output layer using the most popular rectified linear

unit (ReLu) activation function as shown in Figure 3. 3 below. It gives an output

𝑥 if 𝑥 is positive and 0 otherwise.

 A(x) = max(0, x) (3.4)

Figure 3. 3 : ReLu activation function

- 89 -

During the reconstruction of the inputs, the autoencoder was trained using

only the samples labelled “Normal” in the training dataset. This is for the

purpose of allowing it to capture the nature of normal traffic and to minimize

the mean squared error between the input and output. Preventing the

autoencoder from simply copying the input to the output and overfitting the

data, regularization constraints are enforced. Model architecture details are

as shown in Figure 3. 4 and the parameter used for the model depicted in

Table 3. 2.

Figure 3. 4 : AERF Model

Table 3. 2 : AERF model parameter

- 90 -

The hidden layer of the model is being used as the input for the second layer

classification using random forest algorithm. Random forest applies the

principle of ensemble learning method on various sub-samples of the dataset

and uses averaging to improve the predictive accuracy and control over-fitting.

Examples of research works that employ RF for intrusion detection is such as

[35] and [36]. Comparative studies with regards RF as one of the best

algorithms selected for a similar area being concluded by the works of [10]

and [11]. In our proposed model, the encoded representations learned by the

autoencoder is being used as the input for the RF classifier to classify either

normal or anomalous of the traffic.

3.4 Performance Evaluation

A. Evaluation Metrics

Performance evaluation metrics are used to assess the effectiveness and

efficiency of various systems, models, algorithms, or processes. In the context

of machine learning, there are several commonly used evaluation metrics

depending on the specific task and goals. Performance evaluation metrics use

in this evaluation is as below.

i. Accuracy: Accuracy is a widely used metric that measures the overall

correctness of a classifier or model. It represents the proportion of

correct predictions (true positives and true negatives) out of the total

number of predictions.

ii. Precision: Precision measures the proportion of true positive

predictions out of the total positive predictions made by a classifier. It

- 91 -

focuses on the correctness of positive predictions and is useful when

the cost of false positives is high.

iii. Recall (Sensitivity or True Positive Rate): Recall calculates the

proportion of true positive predictions out of the actual positive

instances. It assesses the ability of a classifier to correctly identify

positive instances and is important when the cost of false negatives is

high.

iv. F Measure: The score is the harmonic mean of precision and recall. It

provides a balanced measure of a classifier's performance by

considering both precision and recall. It is useful when the dataset is

imbalanced.

 Precision =
TP

TP + FP
 (3.5)

Recall =

TP

TP + FN

(3.6)

F − measure = 2 ×

Precision × Recall

Precision + Recall

(3.7)

Accuracy =

TP + TN

TP + TN + FP + FN

(3.8)

These metrics are calculated by using four different measures, true positive

(TP), true negative (TN), false positive (FP) and false negative (FN):

TP: the number of anomaly records correctly classified.

TN: the number of normal records correctly classified.

FP: the number of normal records incorrectly classified.

FN: the number of anomaly record incorrectly classified

- 92 -

B. Experimental Results

The model is trained for 10 epochs using an Adam optimizer with a batch size

of 100 as shown in Fig. 5. A total of 60,608 samples are used for training and

10% of the total normal traffic which are 6735 samples as validation.

Tensorflow backend is used to run and simulate the proposed as in Figure 3.

5 below.

Figure 3. 5 : Model training process

During the training process of a machine learning model, the training loss is a

metric that quantifies how well the model is performing on the training data. It

represents the discrepancy between the predicted outputs of the model and

the actual labels or targets in the training set. The specific calculation of the

training loss depends on the type of machine learning task and the chosen

algorithm. In supervised learning, where the model is trained to predict labels

- 93 -

or continuous values, the training loss is typically computed using a loss

function, such as mean squared error (MSE) or cross-entropy loss. The

training loss is minimized during the training process through an optimization

algorithm, such as gradient descent or stochastic gradient descent. The goal

is to iteratively update the model's parameters in a way that reduces the

training loss and improves the model's ability to generalize to unseen data.

Monitoring the training loss over successive epochs or iterations provides

insights into the model's learning progress. A decreasing training loss

indicates that the model is converging towards a better solution, while an

increasing or stagnant loss may indicate issues such as underfitting or

inadequate model capacity. It's important to note that while minimizing the

training loss is a crucial aspect of model training, it is not the sole metric for

evaluating model performance. It is essential to assess the model's

performance on separate validation or test sets to ensure that it can generalize

well to unseen data and avoid overfitting, where the model performs well on

the training data but poorly on new data.

Repetition of training and test has been performed with stabilized outcome.

Results that have been collected from the test are promising with the mean

accuracy of 90.19% achieved as shown in Table 3. 3 from the autoencoder

process alone.

Table 3. 3 : Autoencoder performance over test dataset

- 94 -

Figure 3. 6 : Autoencoder confusion metrics

Example confusion matrix from the autoencoder process for the test dataset

is as shown in Figure 3. 6. The threshold for autoencoder is based on the

calculated loss from the training process for the separation of normal and

anomaly traffic. Distribution of detection from the autoencoder is as shown in

Figure 3. 7 below. It is noticed that the error rate for normal and abnormal

traffic is highly distinctive from the calculated threshold value. An average

amount of 10% of the calculated error is in the wrongly determine area. As for

the next process, the encoded representation of the autoencoder is inputted

into RF for a further breakdown of the category of the traffic.

- 95 -

Figure 3. 7 : Distribution of detection over test dataset

RF classification that has been adopted has yielded an accuracy of 98.4% for

the input from the autoencoder. Comparison from previous related works that

have also using the same NSL-KDD dataset and intrusion detection are

tabulated in Table 3. 4. An increase in accuracy is achieved with the proposed

model and enables further improvement to be carried out.

- 96 -

Table 3. 4 : Performance comparisons in binary classification using
KDDTrain+ and KDDTest+ dataset

3.5 SDN Controller Performance

In this section, we evaluate the effect of the AERF on the SDN network

performance. The evaluation testbed is described in the first part and then the

network performance evaluation is presented.

Experimental Setup

The AERF is implemented as an application written in Python language in a

Ryu controller. Cbench is a standard tool used for evaluating the SDN

controller performance which supports two running modes, throughput and

latency. The throughput mode computes the maximum number of packets

handled by the controller and latency mode computes the time needed to

process a single flow by the controller. We run our experiments on a virtual

machine having an Intel(R) Xeon(R) E3-1226 3.3GHz with 3 cores available

- 97 -

and 8GB of RAM. The operating system is Ubuntu 18.04.2 LTS 64bit. The

controller performance is tested with a different number of virtual OpenFlow

switches emulated by Cbench. The performance of the stand-alone Ryu

controller is considered as a baseline for our evaluation.

Analysis of Results

The average response rate of the controller for both the baseline and AERF

evaluation is as depicts in Figure 3. 8. The throughput achieved a slight

decrease when the number of switches increases. Although the throughput

decreased, comparison with the baseline stand-alone Ryu controller is not so

much different and still acceptable. An interesting observation is the Ryu

controller which has a negligible impact on its latency performance as shown

in Figure 3. 9. When we increase the number of connected switches, the

latency achieved are between 3 to 4 ms and not so much overhead

introduced. This is a similar commentary that has been done by [37] regarding

the latency of the Ryu controller performance achieved. A comparison of time

taken for training and testing NSL-KDD dataset are as shown in Table 3. 5

below.

- 98 -

Figure 3. 8 : SDN environment throughput evaluation

Figure 3. 9 : SDN environment latency evaluation

- 99 -

Table 3. 5 : Performance comparisons in binary classification using
KDDTrain+ and KDDTest+ dataset

Simplicity is the focus of this approach. The simplified single hidden layer of

minimum neurons has made the training and testing process very fast which

are suitable for the SDN environment which demands high processing

capability and real-time implementation. Adaptive calculation of threshold

within the model has bypassed the needs of human intervention to manually

set it. The value of the threshold could also be manually adjusted in order to

suit the needs between sensitivity and specificity accordingly. The accuracy

achieved with the very minimum processing time is a good sign of future

applicability in real SDN environment deployment.

3.6 Summary

The chapter presents a novel approach called AERF (Autoencoder and

Random Forest) for intrusion detection in a native SDN environment. The

AERF method combines the power of an autoencoder, a type of neural

network used for unsupervised learning and feature extraction, with the

random forest algorithm, a popular supervised learning technique.

- 100 -

The results of the study demonstrate that the proposed AERF approach

outperforms previous works in terms of accuracy, achieving an impressive

98.4% accuracy rate. Furthermore, the AERF model exhibits reduced training

and execution time compared to alternative methods, making it efficient for

real-time intrusion detection.

The works also conducted experiments to assess the impact of the proposed

approach on the performance of the SDN controller. The results show that the

AERF approach does not significantly affect the controller's throughput and

latency. This finding indicates that the proposed method is practical for

implementation and can be adapted within an SDN-based intrusion mitigation

architecture for further prevention processes.

Overall, the chapter highlights the efficacy of the AERF approach for intrusion

detection in an SDN environment, showcasing its high accuracy, reduced

training and execution time, and minimal impact on SDN controller

performance. The promising results suggest that the proposed method holds

potential for real-world deployment and can contribute to enhancing the

security of SDN networks.

- 101 -

CHAPTER 4 : Hybrid Deep Autoencoder with Random Forest

in Native SDN intrusion detection Environment

4.1 Introduction

The advantages and features of the SDN environment have been widely

studied to help solve new network security challenges. Deploying intrusion

detection systems (IDS) as a method of combatting these threats, is often

proposed. In general, IDS are grouped into two types. The first depends on

the pre-identified signature created from a series of known intrusions recorded

previously. The second type monitors traffic behaviour to capture

abnormalities from regular traffic deemed suspicious. Machine learning

features and capabilities have been adapted to provide an efficient system

with a high level of security in various areas such as authentication, access

control, malicious outbreak detection, and others [32]. A subset of machine

learning domains is deep learning. Deep learning algorithms allow a given

dataset’s features to be extracted systematically to create sequential layer

architecture, which is then applied using a non-linear transformation function

to build up the base of deep learning algorithms. The complexity of the non-

linear transformation constructed increases in parallel with the number of

layers being used. The algorithm learns the abstract, hidden properties of the

data obtained from the last layer, representing the multiple levels of abstract

representation acquired during the process. Finally, introducing the data into

a high-level non-linear function results in the abstract properties being gained.

Integrating machine learning and deep learning into research relating to

enhancing network security has been carried out together with the advances

and increased capabilities offered by SDN architecture [38]. A subset of deep

- 102 -

learning, an autoencoder is unsupervised learning technique for undertaking

representation learning using a neural network [39]. The workings of [9] and

[34] have used the autoencoder technique for detecting intrusion in the

network. The method creates a bottleneck to capture compressed knowledge

from the original data. An optimum model can be achieved by manipulating

the sensitivity of the input for a precise reconstruction of build-up, taking into

consideration the overfitting condition resulting from copying the input data.

To handle sensitivity, a loss function is commonly used to minimize loss while

discouraging any overfitting or memorizing of input data, so a parameter such

as a regularizer is added to the model. Excellent results from adopting an

autoencoder with machine learning capabilities offer opportunities to create

similar solutions, especially in the intrusion detection domain in the SDN

environment. A further exploration aiming to increase accuracy levels,

minimize processing time, and other benefits can still be added as an

improvement. This possibility motivated this research to contribute to further

improving the native SDN environment. To summarize, the contributions of

this chapter are:

• The introduction of a hybrid combination of a deep autoencoder (DAE)

and random forest (RF) algorithm in the native SDN environment,

deployed in the SDN controller mechanism.

• Within the SDN Controller, our DAERF approach yields a detection rate

of 98% using purely native SDN statistics collection as features.

• We also compared the performance achieved with the original dataset

and previous research to investigate the developed model’s

performance. The results show that our approach has significant

potential for real-time detection when deployed in the SDN controller.

- 103 -

4.2 Architecture

In building a typical machine learning model, essential input features are

selected, and the model automatically learns by mapping identified

characteristics of features to a conclusion output. In deep autoencoder, there

are multiple levels of encoding, and decoding used. Abstract features from

various levels are automatically being discovered and composed to produce

output. The features from the previous level are carried forward to the next

level to be processed again for another level of abstract representation. Our

experiment constructed a deep autoencoder model with an input layer, three

hidden layers, and an output layer. A total of 8 dimensions for input and output

are selected in the autoencoder. The hidden layers contain six, four, and two

neurons, respectively. The middle, hidden layer of two neurons is used to input

the random forest classifier for the intrusion detection process. A total batch

size of 1000 were trained for ten epochs using the chosen Adam optimizer.

Two phases are involved in the autoencoder, namely encoding and decoding.

Input data x is compressed into a low dimensional representation h during the

encoding process, while the low-dimensional representation is reconstructed

into input data during the decoding process. A non-linearity activation function

represents with f (·), hidden weight matrices indicated by W and W’, biases

denoted by b and b’’, and y is output vectors. The main goal of training the

DAE is to minimize the difference between the input x and output y. Therefore,

an MSE loss function is used as shown in (4.1) below.

(4.1)

- 104 -

In this approach, a stacked autoencoder with dropout on the inputs is

proposed, consisting of an input layer of 8 neurons due to the number of

features for each sample is 8. After the initial dropout process, a combination

of 6,4 and 2 neuron units within the stacked hidden layer is proposed. The

autoencoder uses an 8/2 compression ratio to allow it to learn relations

between the chosen features and exciting patterns that might be discovered.

Rectified linear unit (ReLu) activation function was used for the eight units of

the hidden layer and the output layer. It gives an output x if x is positive and 0

otherwise. For optimization steps, regularization constraints are enforced to

avoid the autoencoder overfitting the data by copying the input directly to the

output. The architecture of the model is shown in Figure 4. 1 and Table 4. 1

presents the model’s parameters. Random Forest was tested and selected as

the classifier with the best detection performance and lowest time usage [40],

[41], [36], [42] and [43].

Table 4. 1 : Model parameter

For this, it was used to process the model’s hidden layer output in the second

layer classification. The output becomes the input for the classification

algorithm. The principle of random forest uses the ensemble learning method

on the dataset sub-sample by averaging to control for over-fitting and thus

improve prediction accuracy. Examples of research that employs random

forest classification for intrusion detection include [35] and [36]. The work of

[44] and [45] also concluded that random forest is among the top algorithms

for similar intrusion detection in their comparative studies. Encoded

- 105 -

representation from the autoencoder is passed to the random forest algorithm

for the final classification process. The traffic is then categorized as normal or

an attack attempt, which the SDN controller will penalize further through traffic

rule action.

Figure 4. 1 : Deep autoencoder with random forest model

4.3 Experimental Methodology

Machine learning methods require a dataset to be well built up. For such a

dataset, a training dataset for the developed algorithm is needed before the

algorithm is tested. KDD-99 dataset was the most popular dataset used in this

field, and 63% of research has adopted this dataset. In this work, we focus on

the deployment part of statistics collection in a native SDN environment. In

order to collect actual SDN traffic activities, a simulation of real network

activities needed to be made. CICIDS2017 dataset provides the total payload

packets in PCAP format, replicating actual network traffic activities in the

targeted environment. This dataset covers seven types of common attack

- 106 -

groups (i.e., Botnet, Brute Force Attack, DoS Attack, DDoS Attack,

Heartbleed, Infiltration Attack, and Web Attack). This dataset consists of a

Microsoft Excel CSV dataset and complete payload packets in a PCAP format

file for a five day working hours period. The PCAP files are each sized7 to 12

GB . Each flow sample of the dataset contains 83 flow features. For this, a

total of 16 native SDN OpenFlow flow features and a binary classification type

were collected during the PCAP traffic emulation in a simulated SDN

environment. Out of the 16 collected features, eight flow features have been

selected for further machine learning analysis for intrusion detection in a

native SDN environment. Another eight features have been dropped because

the information differs for each network connectivity and does not represent

the analysed traffic pattern. After the PCAP file had been injected into the SDN

environment, there were a total of 263156 collected flows for Monday, 227271

collected flows for Wednesday, and 230290 collected flows for Friday.

A total of 576,573 samples were used for training and 20% of the total normal

traffic, 144,144 samples for testing. Mininet [46] was used as a network

emulator with the Ryu [47] component-based SDN as the framework. The

proposed model simulation used Tensor flow [48] backend . The model’s

training and testing performance are shown in Figure 4. 2 below.

- 107 -

Figure 4. 2 : Training and testing of the model

A standard measure for classifier comparison is shown by the Receiver

Operating Characteristic (ROC) curve. Plotting the false positive rate versus

the true positive rate produces the curve for the ROC. The area under the

curve (AUC) is to determine the model’s performance in predicting the

classes. The higher the AUC, the better the classifier, as shows, the proposed

model achieved 0.92 AUC.

4.4 Performance Evaluation

4.4.1 Evaluation Metrics

Four (4) types of metrics were used for the evaluation: Accuracy, Precision,

Recall, and F-measure.

- 108 -

True Positive, True Negative, False Positive, and False Negative are

measured as follows:

True Positive: the number of anomaly records correctly classified.

True Negative: the number of normal records correctly classified.

False Positive: the number of normal records incorrectly classified.

False Negative: the number of anomaly records incorrectly classified

4.4.2 Experimental Results

The reiteration of training and testing in the experiment resulted in a persistent

outcome. The mean accuracy achieved was 99% for training and 98% for

testing. Table 4.2 provides a comparison of the achieved performance with

other related research studies.

The performance of the proposed approach was found to be better than the

results presented in [40]. However, it did not surpass the performance of the

two other research works mentioned in [49] and [50]. It should be noted that

the scope of the experiments in these studies differed. [49] utilized tshark for

network traffic dumping and analysis, while [50] employed the CICIDS2017

dataset in Weka. In contrast, the current research was conducted purely within

an SDN controller using native OpenFlow communication traffic.

Despite the slightly lower performance compared to the referenced studies,

the researchers acknowledge the potential for improvement in their approach

within the native SDN environment. Future efforts will be focused on refining

the methodology to enhance the achieved results.

- 109 -

In summary, the experiment consistently yielded high mean accuracy values

of 99% for training and 98% for testing. While the performance was not as

strong as certain other studies, the unique implementation in the native SDN

environment provides valuable insights and sets the stage for further

advancements in the proposed approach.

Figure 4. 3 : ROC AUC curve

Table 4. 2 : DAERF performance over previous research

- 110 -

The same methodology explained above was tested using the CICIDS2017

excel files dataset. A similar experimental approach was developed in the

SDN environment data collection, the same period of XLS dataset used. Excel

files from the Monday, Wednesday, and Friday datasets were combined to

create one new excel dataset. The dataset contains 83 flow features, and for

the comparison test, eight features were selected from the excel files. The

eight selected features represent similar characteristics to the features chosen

in the SDN training. Table 4. 3 below, indicates the distribution of the

combined datasets according to the network traffic classes. Data processing

tasks such as normalization are also deployed to the dataset and prepare the

dataset for training and testing purposes. The re-scale values are used as the

input to the model for training and testing. The dataset was run into the model,

and the performance captured with the same evaluation metrics.

Table 4. 3 : Excel dataset distributions

A total of 1,538,884 samples were used for training, and 20%, 384,721

samples, for testing. The model evaluation process is shown in Figure 4. 4.

The ROC AUC for the test dataset is shown in Figure 4. 5 below.

- 111 -

Figure 4. 4 : Model training and testing

Figure 4. 5 : ROC AUC for test dataset

- 112 -

4.5 Summary

In this chapter, a hybrid model combining a deep autoencoder with a random

forest classifier, referred to as DAERF, was introduced to enhance intrusion

detection performance in a native SDN environment. The proposed model,

implemented online in the SDN environment, demonstrated good

performance with an accuracy and precision of 98%.

However, there are certain limitations to consider in this study. The PCAPs

(Packet Capture) used in the experiments were sourced from the CICIDS2017

dataset, which contains both benign traffic and common up-to-date attacks.

Although these PCAPs simulate real-world data in the context of the SDN

environment, utilizing a full-scale real-world SDN environment would provide

a more robust validation of the model's performance potential.

Nevertheless, the results obtained from the experiments indicate that the

proposed model is an efficient tool for real-time intrusion detection in the SDN

environment. Additionally, when compared with public intrusion datasets, the

online implementation in the native SDN environment demonstrated better

performance.

The chapter concludes by stating that the adoption of the proposed model in

an SDN-based intrusion detection and mitigation architecture is both feasible

and practical for further research. This suggests that the model has potential

for real-world applications and can contribute to the advancement of intrusion

detection systems in the SDN domain.

- 113 -

CHAPTER 5 : Adaptive framework for attack mitigation in

SDN environment

5.1 Introduction

The annual Internet Report published by Cisco in 2020 predicted that the

number of devices connected to IP networks will increase from 18.4 billion in

2018, to almost 30 billion by 2023. [51]. This enormous increase in the

number of connected devices will attract a similar rise in the number of domain

attacks or intrusions. The traditional way of handling attacks using

conventional network device operations would face a hard task. Without global

knowledge of the entire operating network and the ability to see every linked

device’s connections and behaviour, any defensive action would be less

efficient, and handling invasion less effective. Software defined network (SDN)

is an emerging technology that provides global knowledge and visibility

through the separation of the control plane and data plane in the operational

network. The control plane handles the centralized knowledge and the data

plane provides the detailed activity collected from the transaction of the data

in the network. Huge benefits are anticipated from an SDN approach with the

help of research and experiments in intrusion detection. A lot of research has

been done in order identify and prevent the invasion referred to above. Some

work has focused on early detection, such as counting the number of

connections, the entropy of transactions, and others [52], [53], [54], [21].

Embarking on machine learning capabilities is also being explored with the

aim of studying the data representation and explicit meanings [7], [55].

Prevention steps and action are also being experimented with, aiming to

minimize the impact of, and if possible, repel any attacks [56], [57], [58]. With

- 114 -

the focus of integrating and combining the different research areas into a

complete approach, this chapter proposes an adaptive framework for attack

mitigation in an SDN environment. To summarize, the contributions of this

chapter are:

• The introduction of an adaptive framework for attack mitigation in SDN

environments which present 3 layers of protection in an SDN

architecture.

• Within the framework, we propose a three-layer protection mechanism

for detecting and preventing attacks. It is entropy-based detection,

hybrid machine learning in the control layer and proactive services

monitoring in the application layer.

• We also compared the performance achieved with previous research

to investigate the model’s performance. The results show that our

approach has great potential for adaptive, simplified detection and

attack mitigation when deployed in the SDN environment.

5.2 Architecture

The proposed framework is shown in Figure 5. 1. The consolidated solution

for the whole framework covers the layers within an SDN environment.

Labelled number 1 , an entropy based module is the first layer of protection

against an attack attempt. Traffic that has passed through the first layer is

examined by the second module, which has hybrid machine learning intrusion

detection located in the controller, as labelled in 2 . To mitigate the impact of

an attack, the SDN controller monitors the services status of the public server

being accessed by the traffic. Upon detecting a heavy load on the services

- 115 -

,the controller checks both earlier layer detections to handle the load coming

in. This part of the observation is deployed in the application layer, as shown

in 3 of the proposed framework.

Figure 5. 1 : Application layer traffic monitoring

5.3 Experimental Methodology

A. Entropy based detection

Low-rate DDoS attack detection on the SDN controller is one of the most

dangerous security concerns in SDN. The difficulty of identifying the

assault comes from the attack traffic’s similarity to typical traffic behaviour.

When numerous hosts are involved, achieving high accuracy levels and a

low false-positive rate becomes considerably more difficult. Meanwhile,

- 116 -

any detection technique must contend with high-rate DDoS attacks,

especially when several targets are involved. As a result, the suggested

technique uses passive monitoring of UDP packets in the SDN network to

identify DDoS assaults on the SDN controller, independent of attack traffic

and number of targets. A general R´enyi joint entropy is suggested in this

study, based on integrating two concepts: the joint entropy approach and

the R´enyi method. The general R´enyi joint entropy measures two random

variables in the form of two packet header characteristics: the source IP

address and destination IP address, which are represented by 𝑥 and 𝑦,

respectively, in the general R´enyi joint entropy. The R´enyi joint entropy

approach is a combinations of joint entropy and renyi entropy, as shown in

the equation below,

 (5.1)

(5.2)

(5.3)

Where HRJα(x) is a R´enyi joint entropy, p(xiyj) is the probability

distribution between source IP (𝑥) and destination (𝑦) during time

interval (𝑡) and signify a positive parameter. The R´enyi joint entropy

technique is dependent on a value that can increase the detection rate

by assessing the likelihood of traffic packets arriving. Based on the IP

frequencies, the probability distribution 𝑝(𝑥𝑖𝑦𝑗) is derived for each source

- 117 -

and destination. When each packet’s probability distribution is evenly

spread throughout all the hosts’ destinations, a R´enyi joint entropy

reaches its maximum value. The amount of probability assigned to all

packets during a certain time window skewed towards a specific

destination host produce a minimal value of R´enyi joint entropy. The

R´enyi joint entropy is calculated using the likelihood each source IP

address (xi) and destination IP address (yj) were recorded in the

previous step within a certain timeframe.

B. Detection using hybrid ML

After the traffic has pass the entropy inspection, the next checking is

done in the control plane layer and detection made using hybrid machine

learning capabilities. A hybrid combination of autoencoder and Random

Forest technique is deployed at this point, with detection focusing on

attack that was not a type of DoS or DDoS attack. In the deep

autoencoder, multiple levels of encoding and decoding are used.

Abstract features from various levels are automatically discovered and

composed to produce output. The features from the previous level are

carried forward to the next level to be processed again for another level

of abstract representation. Our experiment constructed a deep

autoencoder model with an input layer, three hidden layers, and an

output layer. A total of 8 dimensions of input and output are selected in

the autoencoder. The hidden layers contain six, four, and two neurons,

respectively. The middle, hidden layer of two neurons is used to input the

random forest classifier for the intrusion detection process. In this

- 118 -

approach, a stacked autoencoder with dropout on the inputs is proposed,

consisting of an input layer of 8 neurons, as the number of features for

each sample is 8. After the initial dropout process, a combination of 6,4

and 2 neuron units within the stacked hidden layer is proposed. The

autoencoder uses an 8/2 compression ratio to allow it to learn the

relationship between the chosen features and any interesting patterns

that might be discovered. Rectified linear unit (ReLu) activation function

was used for the eight units of the hidden layer and the output layer.

C. Passive Application Layer Monitoring

A Ryu framework was adopted in our SDN topology .The controller plays

two roles here: one as a standard SDN controller that controls and

monitors the network, and the other as a defence mechanism. For the

defence function, the controller keeps checking the status of the services

being provided by the internal servers. A congested response from the

servers via the status response indicates a high traffic flow and

processing being handled by the targeted servers. In order to increase

the response time for the server’s services, heavily connected

connections will be penalized to provide the affected server with ample

processing time to recover from the impact of an attack. As shown in

Figure 5. 2, we utilized Monit application for monitoring the status of the

server for detection of poor response of provided services.

- 119 -

Figure 5. 2 : Passive monitoring using monit application

D. Dataset

The earliest balanced CICIDS2017 dataset, which includes millions of

samples, is frequently utilized for product-level machine learning

research. This dataset covers seven types of common attack (i.e. Botnet,

Brute Force Attack, DoS Attack, DDoS Attack, Heartbleed, Infiltration

Attack, and Web Attack). This dataset consists of complete payload

packets in a PCAP format file and Microsoft Excel CSV dataset for a five

day work period. Each flow sample in the dataset contains 80 flow

features, explicitly explained in [23]. For this job, a combination of

Wednesday and Friday afternoon with a DDoS attack dataset were

chosen. Both days’ dataset activities, which contain benign and also

DoS/DDoS attacks were recorded. The selected portion from the overall

CIDIDS2017, with sample size and class composition, are as shown in

Table 5. 1 below.

- 120 -

Table 5. 1 : Traffic class distribution

5.4 Performance Evaluation

5.4.1 Performance Metrics

Evaluation Metrics

Two (2) types of metrics were used for the evaluation:

 AverageDetectionRate =
TruePositive

TruePositive + FalseNegative
 (5.4)

FalsePositiveRate =

FalsePositive

FalsePositive + TrueNegative

(5.5)

5.4.2 Experimental Results

We ran the CICIDS2017 Wednesday and a Friday dataset, which contains

benign and DoS attacks, into the simulation as shown in Figure 5. 3 below.

The controller’s ability to detect DoS and DDoS attacks were tested during the

entropy implementation. A window of 10-seconds was used to make the

entropy calculation in order to determine whether traffic was benign or attacks.

A total of 10 simulation runs were completed and the average rate for all 10

- 121 -

runs reported. The average detection rate was 98.16% and the false positive

rate was 1.85%. The recorded detection rate and also false positive rate for

the all 10 simulations are as shown Figure 5. 4 below.

Figure 5. 3 : Pcap data injection

Figure 5. 4 : Average detection rate and false positive rate for 10
simulations

Table 5. 2 below, shows a comparison between the proposed solution and

other, recent machine learning developments for DDoS attack detection in

- 122 -

SDN. For the purpose of comparison, the average detection rate and average

false positive rate was used. In comparison to previous research for DDoS

attack detection in SDN, the suggested technique delivers better results.

Table 5. 2 : Performance comparison over previous researches

5.5 Summary

The solution presented in the chapter has both advantages and

disadvantages. One of the disadvantages is that the separation of the control

plane and data plane in the SDN environment can make the network

infrastructure more vulnerable to cyber-attacks, particularly Distributed Denial

of Service (DDoS) attacks. DDoS attacks pose a significant threat to SDN

networks, as a successful attack can compromise the data and resources of

the entire network.

To address this vulnerability, the chapter proposes a method for detecting

DDoS attacks by maximizing the processing of traffic flow statistics. By

simulating DDoS attacks and conducting experiments, the chapter

demonstrates that combining multiple attack detection techniques within a

simplified framework can leverage the full potential of SDN capabilities.

The experimental results suggest that this approach enables effective

detection of both low-rate and high-rate DDoS attacks. Furthermore, by

- 123 -

combining multiple attack detection and mitigation methods, any weaknesses

in one method can be covered by additional suggested solutions.

By adopting a comprehensive approach to attack detection and mitigation, the

chapter broadens the possibilities for identifying and mitigating DDoS attacks

in SDN networks. This approach has the potential to enhance the overall

security and resilience of SDN environments.

However, it is important to note that while the proposed method shows

promise, it is essential to continuously evaluate and update the detection and

mitigation techniques to keep pace with evolving cyber threats.

- 124 -

CHAPTER 6 : Conclusion and Future Work

6.1 Conclusion

SDN are based on network programmability with a separation between control

and traffic handling. The evolution of new architecture comes with new

threats. Potential security loopholes emerge, creating new areas where

protection is needed. Although it may seem new vulnerabilities only add to

security concerns, nevertheless, finding countermeasures to solve these

problems has increased researcher interest and motivation. The progress of

new experiments into strengthening the SDN architecture have resulted in it

benefiting from the use of SDN. For example, this thesis implemented an

adaptive framework for attack mitigation in an SDN environment. A hybrid

machine learning detection system can be deployed within SDN architecture

to benefit the global overview of the network’s intrusion detection. In Chapter

1, the limitations and constraints of the research were elaborated. The

background to SDN architecture was discussed in Chapter 2, which includes

how attack are implemented and their impact analysed. The various types of

machine learning attack were also compared. Chapter 3 explored the

capabilities of native SDN intrusion detection using machine learning, with a

combination of autoencoder and Random Forest algorithm being deployed in

a native SDN environment. The accuracy rate achieved was excellent, with a

very small amount of time needed for testing the process. The model’s

improvement with the adoption of a hybrid deep autoencoder and Random

Forest algorithms was described in chapter 4. The main difference between

chapters 3 and 4 was the real recorded traffic from pcap files from the

- 125 -

CICIDS2017 dataset described in chapter 4. The recorded traffic was injected

into the SDN environment to simulate real traffic behaviour, both normal and

anomalous activities. Chapter 5 summarized the whole framework of an

adaptive intrusion detection in SDN environments by incorporating 3 layers of

intrusion detection in the architecture. Entropy-based calculations, detection

by hybrid ML and passive application layer monitoring was proposed. This

framework was tested and offered excellent detection rates and false positives

rates . The final chapter, 6, summarized the whole thesis, with final remarks

about the work that was done. There follows a brief summary of the key

contributions this thesis makes.

• An adaptive framework for the SDN environment that can collect the

important network parameters and monitor the whole network for

intrusion detection was put forward. The data collected can then be

processed to detect abnormalities in traffic transactions which it can

then respond to and mitigate promptly.

• A hybrid ML was developed with a combination of mixed approaches

to assess the traffic status through flow-based anomaly detection. The

hybrid approach was shown to function with minimum impact on the

overall SDN architecture.

• Recorded real-world traffic pcap with a range of simulated potential

attacks was used to replicate all current potential real attack scenarios.

- 126 -

6.2 Future Work

Several improvements can be implemented as part of future work.

Actual SDN environment with real traffic activities analysis

The research conducted in this study utilized a virtual environment and a

simulated SDN environment for simulation and testing purposes. The dataset

used for the research consisted of pre-recorded Excel files and PCAP files of

network traffic, which provided real empirical data. However, one limitation of

the study was that the available dataset was not up to date, and thus, it did

not fully reflect current traffic behaviour, such as the increasing usage of social

media, online streaming, and IoT connectivity, which were not adequately

covered.

To address this limitation and further improve the implementation of the

approach, it would indeed be beneficial to conduct testing in an actual SDN

environment with real-time traffic activities. By using a live SDN setup,

researchers can capture and analyse the latest network traffic patterns,

including emerging trends and evolving attack vectors. This would provide a

more accurate representation of the current network landscape and help

evaluate the effectiveness of the proposed approach in real-world scenarios.

By incorporating real traffic activities, such as the growing prevalence of social

media, streaming, and IoT devices, researchers can gather more

comprehensive and up-to-date insights into the performance and behaviour

of the proposed detection and mitigation methods. This would enable them to

fine-tune and refine the approach to better address the challenges and

demands of contemporary network environments.

- 127 -

In conclusion, while the research utilized pre-recorded datasets in a simulated

SDN environment, conducting experiments in an actual SDN environment with

real-time traffic would provide a more robust and accurate assessment of the

approach. Incorporating the latest traffic behaviour and attack scenarios would

contribute to the ongoing improvement and practical implementation of the

proposed methodology.

Hybrid ML adoption analysis

The focus of the thesis was on the operation of a combination of a deep

autoencoder and Random Forest algorithm for intrusion detection. During a

work-in-progress presentation at an IEEE conference, valuable feedback was

received, which pointed towards the direction of incorporating other machine

learning classifications within the framework.

This feedback has provided a clear way forward for future work. The proposed

framework can be expanded to include additional machine learning classifiers

for intrusion detection. As new classifications and detection methods emerge

and develop, they can be incorporated and explored within the framework.

This continuous improvement and update of the framework would enable it to

adapt to evolving cyber threats and enhance its effectiveness in detecting and

mitigating intrusions.

By incorporating new classifications and detection methods, the proposed

framework can benefit from the advancements in machine learning and

intrusion detection research. This approach ensures that the framework

- 128 -

remains up-to-date and capable of handling emerging intrusion techniques

and attack vectors.

In summary, the feedback received during the work-in-progress presentation

at the IEEE conference has guided the future work of the thesis. The

incorporation of new machine learning classifications and methods of

detection within the framework is an area that can be explored and expanded

upon. This approach allows for ongoing improvement and ensures that the

proposed framework remains relevant and effective in the field of intrusion

detection.

- 129 -

Bibliography

[1] N. McKeown et al., “OpenFlow: Enabling Innovation in Campus
Networks,” ACM SIGCOMM Comput. Commun. Rev., vol. 38, no. 2, p.
69, 2008.

[2] F. Ieee et al., “Software-Defined Networking : A Comprehensive
Survey,” vol. 103, no. 1, 2015.

[3] D. Kreutz, F. M. V. Ramos, and P. Verissimo, “Towards secure and
dependable software-defined networks,” Proc. Second ACM
SIGCOMM Work. Hot Top. Softw. Defin. Netw. - HotSDN ’13, p. 55,
2013.

[4] T. Hurley, J. E. Perdomo, and A. Perez-Pons, “HMM-based intrusion
detection system for software defined networking,” Proc. - 2016 15th
IEEE Int. Conf. Mach. Learn. Appl. ICMLA 2016, pp. 617–621, 2017.

[5] S. Nanda, F. Zafari, C. Decusatis, E. Wedaa, and B. Yang, “Predicting
Network Attack Patterns in SDN using Machine Learning Approach,”
2016.

[6] T. A. Tang, L. Mhamdi, D. McLernon, S. A. R. Zaidi, and M. Ghogho,
“Deep learning approach for Network Intrusion Detection in Software
Defined Networking,” Proc. - 2016 Int. Conf. Wirel. Networks Mob.
Commun. WINCOM 2016 Green Commun. Netw., pp. 258–263, 2016.

[7] T. A. Tang, L. Mhamdi, D. McLernon, S. A. R. Zaidi, and M. Ghogho,
“Deep Recurrent Neural Network for Intrusion Detection in SDN-based
Networks,” 2018 4th IEEE Conf. Netw. Softwarization Work. NetSoft
2018, no. NetSoft, pp. 462–469, 2018.

[8] P. Wang, K. M. Chao, H. C. Lin, W. H. Lin, and C. C. Lo, “An Efficient
Flow Control Approach for SDN-Based Network Threat Detection and
Migration Using Support Vector Machine,” Proc. - 13th IEEE Int. Conf.
E-bus. Eng. ICEBE 2016 - Incl. 12th Work. Serv. Appl. Integr. Collab.
SOAIC 2016, pp. 56–63, 2017.

[9] N. Shone, T. N. Ngoc, V. D. Phai, and Q. Shi, “A Deep Learning
Approach to Network Intrusion Detection,” IEEE Trans. Emerg. Top.
Comput. Intell., vol. 2, no. 1, pp. 41–50, 2018.

[10] R. Braga, E. Mota, and A. Passito, “Lightweight DDoS flooding attack
detection using NOX/OpenFlow,” Proc. - Conf. Local Comput.
Networks, LCN, pp. 408–415, 2010.

[11] C. Li et al., “Detection and defense of DDoS attack–based on deep
learning in OpenFlow-based SDN,” Int. J. Commun. Syst., vol. 31, no.
5, pp. 1–15, 2018.

[12] L. Barki, A. Shidling, N. Meti, D. G. Narayan, and M. M. Mulla,
“Detection of distributed denial of service attacks in software defined
networks,” 2016 Int. Conf. Adv. Comput. Commun. Informatics,
ICACCI 2016, pp. 2576–2581, 2016.

[13] S. S. Mohammed et al., “A New Machine Learning-based

- 130 -

Collaborative DDoS Mitigation Mechanism in Software-Defined
Network,” Int. Conf. Wirel. Mob. Comput. Netw. Commun., vol. 2018–
Octob, pp. 1–8, 2018.

[14] B. Krebs, “Who Makes the IoT Things Under Attack?,” Krebs on
Security, 2016. [Online]. Available:
https://krebsonsecurity.com/2016/10/who-makes-the-iot-things-under-
attack/. [Accessed: 04-Jul-2019].

[15] S. Kottler, “February 28th DDoS Incident Report,” 2018. [Online].
Available: https://github.blog/2018-03-01-ddos-incident-report/.
[Accessed: 04-Jul-2019].

[16] Verisign, “Q2 2018 DDOS TRENDS REPORT: 52 PERCENT OF
ATTACKS EMPLOYED MULTIPLE ATTACK TYPES,” 2018. [Online].
Available: https://blog.verisign.com/security/ddos-protection/q2-2018-
ddos-trends-report-52-percent-of-attacks-employed-multiple-attack-
types/. [Accessed: 04-Jul-2019].

[17] B. Deokar and A. Hazarnis, “Intrusion Detection System using Log
Files and Reinforcement Learning,” Int. J. Comput. Appl., vol. 45, no.
19, pp. 28–35, 2012.

[18] K. Benton, L. J. Camp, and C. Small, “OpenFlow vulnerability
assessment,” p. 151, 2013.

[19] S. Matsumoto, S. Hitz, and A. Perrig, “Fleet : Defending SDNs from
Malicious Administrators,” Proc. Second ACM SIGCOMM Work. Hot
Top. Softw. Defin. Netw. - HotSDN ’14, pp. 103–108, 2014.

[20] X. Wen, Y. Chen, C. Hu, C. Shi, and Y. Wang, “Towards a secure
controller platform for openflow applications,” p. 171, 2013.

[21] S. Wang et al., “SECOD: SDN sEcure control and data plane
algorithm for detecting and defending against DoS attacks,” IEEE/IFIP
Netw. Oper. Manag. Symp. Cogn. Manag. a Cyber World, NOMS
2018, pp. 1–5, 2018.

[22] J. Rene Beulah and D. Shalini Punithavathani, “A hybrid feature
selection method for improved detection of wired/wireless network
intrusions,” Wirel. Pers. Commun., vol. 98, no. 2, pp. 1853–1869,
2018.

[23] F. Zhang and D. Wang, “An effective feature selection approach for
network intrusion detection,” Proc. - 2013 IEEE 8th Int. Conf.
Networking, Archit. Storage, NAS 2013, pp. 307–311, 2013.

[24] J. R. Beulah and D. S. Punithavathani, “Simple Hybrid Feature
Selection (SHFS) for Enhancing Network Intrusion Detection with
NSL-KDD Dataset,” Int. J. Appl. Eng. Res., vol. 10, no. 19, pp. 40498–
40505, 2015.

[25] H. M. Imran, A. Bin Abdullah, M. Hussain, and S. Palaniappan,
“Intrusions Detection based on Optimum Features Subset and Efficient
Dataset Selection,” Int. J. Eng. Innov. Technol., vol. 2, no. 6, pp. 265–
270, 2012.

[26] S. Revathi and A. Malathi, “Network Intrusion Detection Using Hybrid

- 131 -

Simplified Swarm Optimization and Random Forest Algorithm on Nsl-
Kdd Dataset,” Int. J. Eng. Comput. Sci., vol. 3, no. 2, pp. 3873–3876,
2014.

[27] D. a. M. S. Revathi, “A Detailed Analysis on NSL-KDD Dataset Using
Various Machine Learning Techniques for Intrusion Detection,” Int. J.
Eng. Res. Technol., vol. 2, no. 12, pp. 1848–1853, 2013.

[28] H. Chae, B. Jo, S. Choi, and T. Park, “Feature Selection for Intrusion
Detection using NSL-KDD,” Recent Adv. Comput. Sci. 20132, pp.
184–187, 2013.

[29] H. F. Eid, A. Darwish, A. Ella Hassanien, and A. Abraham, “Principle
components analysis and support vector machine based Intrusion
Detection System,” Proc. 2010 10th Int. Conf. Intell. Syst. Des. Appl.
ISDA’10, pp. 363–367, 2010.

[30] A. S. Bhandari, “Feature Selection and Classification of Intrusion
Detection System Using Rough Set,” no. 2, pp. 20–23, 2013.

[31] N. Z. Bawany, J. A. Shamsi, and K. Salah, “DDoS Attack Detection
and Mitigation Using SDN: Methods, Practices, and Solutions,” Arab.
J. Sci. Eng., vol. 42, no. 2, pp. 425–441, 2017.

[32] S. Das, Y. Liu, W. Zhang, and M. Chandramohan, “Semantics-based
online malware detection: Towards efficient real-time protection
against malware,” IEEE Trans. Inf. Forensics Secur., vol. 11, no. 2, pp.
289–302, 2016.

[33] N. Meti, D. G. Narayan, and V. P. Baligar, “Detection of distributed
denial of service attacks using machine learning algorithms in software
defined networks,” 2017 Int. Conf. Adv. Comput. Commun.
Informatics, ICACCI 2017, vol. 2017–Janua, pp. 1366–1371, 2017.

[34] Q. Niyaz, W. Sun, and A. Y. Javaid, “A Deep Learning Based DDoS
Detection System in Software-Defined Networking (SDN),” ICST
Trans. Secur. Saf., vol. 4, no. 12, p. 153515, 2017.

[35] Y. Chang, W. Li, and Z. Yang, “Network intrusion detection based on
random forest and support vector machine,” Proc. - 2017 IEEE Int.
Conf. Comput. Sci. Eng. IEEE/IFIP Int. Conf. Embed. Ubiquitous
Comput. CSE EUC 2017, vol. 1, pp. 635–638, 2017.

[36] Y. Y. Aung and M. M. Min, “An analysis of random forest algorithm
based network intrusion detection system,” Proc. - 18th IEEE/ACIS Int.
Conf. Softw. Eng. Artif. Intell. Netw. Parallel/Distributed Comput.
SNPD 2017, pp. 127–132, 2017.

[37] L. Zhu, M. M. Karim, K. Sharif, F. Li, X. Du, and M. Guizani, “SDN
Controllers: Benchmarking & Performance Evaluation,” pp. 1–14,
2019.

[38] U. Sabeel, S. S. Heydari, H. Mohanka, Y. Bendhaou, K. Elgazzar, and
K. El-Khatib, “Evaluation of Deep Learning in Detecting Unknown
Network Attacks,” pp. 1–6, 2020.

[39] Z. Chen, C. K. Yeo, B. S. Lee, and C. T. Lau, “Autoencoder-based
network anomaly detection,” Wirel. Telecommun. Symp., vol. 2018–

- 132 -

April, pp. 1–5, 2018.

[40] I. Sharafaldin, A. H. Lashkari, and A. A. Ghorbani, “Toward generating
a new intrusion detection dataset and intrusion traffic characterization,”
ICISSP 2018 - Proc. 4th Int. Conf. Inf. Syst. Secur. Priv., vol. 2018–
Janua, no. Cic, pp. 108–116, 2018.

[41] S. Ustebay, Z. Turgut, and M. A. Aydin, “Intrusion Detection System
with Recursive Feature Elimination by Using Random Forest and
Deep Learning Classifier,” Int. Congr. Big Data, Deep Learn. Fight.
Cyber Terror. IBIGDELFT 2018 - Proc., pp. 71–76, 2019.

[42] K. Kirutika, “Controller Monitoring System In Software Defined
Networks Using Random Forest Algorithm,” 2019.

[43] R. Abdulhammed, M. Faezipour, H. Musafer, and A. Abuzneid,
“Efficient network intrusion detection using PCA-based dimensionality
reduction of features,” 2019 Int. Symp. Networks, Comput. Commun.
ISNCC 2019, 2019.

[44] S. Choudhury and A. Bhowal, “Comparative analysis of machine
learning algorithms along with classifiers for network intrusion
detection,” 2015 Int. Conf. Smart Technol. Manag. Comput. Commun.
Control. Energy Mater. ICSTM 2015 - Proc., no. May, pp. 89–95,
2015.

[45] M. Anbar, R. Abdullah, I. H. Hasbullah, Y. W. Chong, and O. E. Elejla,
“Comparative performance analysis of classification algorithms for
intrusion detection system,” 2016 14th Annu. Conf. Privacy, Secur.
Trust. PST 2016, pp. 282–288, 2016.

[46] “Mininet An Instant Virtual Network on your Laptop (or other PC),”
2018. [Online]. Available: http://mininet.org/. [Accessed: 13-Mar-2020].

[47] “Ryu SDN Framework,” 2017. [Online]. Available:
https://osrg.github.io/ryu/. [Accessed: 13-Mar-2020].

[48] “Tensorflow,” 2017. [Online]. Available: https://www.tensorflow.org.
[Accessed: 11-Oct-2018].

[49] Y. Zhang, X. Chen, L. Jin, X. Wang, and D. Guo, “Network Intrusion
Detection: Based on Deep Hierarchical Network and Original Flow
Data,” IEEE Access, vol. 7, pp. 37004–37016, 2019.

[50] A. Binbusayyis and T. Vaiyapuri, “Identifying and Benchmarking Key
Features for Cyber Intrusion Detection: An Ensemble Approach,” IEEE
Access, vol. 7, pp. 106495–106513, 2019.

[51] T. Cisco and A. Internet, “Cisco: 2020 CISO Benchmark Report,”
Comput. Fraud Secur., vol. 2020, no. 3, pp. 4–4, 2020.

[52] P. Porras, S. Shin, V. Yegneswaran, M. Fong, M. Tyson, and G. Gu,
“A security enforcement kernel for OpenFlow networks,” HotSDN’12 -
Proc. 1st ACM Int. Work. Hot Top. Softw. Defin. Networks, pp. 121–
126, 2012.

[53] S. Lim, J. Ha, H. Kim, Y. Kim, and S. Yang, “A SDN-oriented DDoS
blocking scheme for botnet-based attacks,” Int. Conf. Ubiquitous Futur.
Networks, ICUFN, pp. 63–68, 2014.

- 133 -

[54] S. M. Mousavi and M. St-Hilaire, “Early Detection of DDoS Attacks
Against Software Defined Network Controllers,” J. Netw. Syst. Manag.,
vol. 26, no. 3, pp. 573–591, 2018.

[55] M. M. Isa and L. Mhamdi, “Native SDN Intrusion Detection using
Machine Learning,” 2020 8th Int. Conf. Commun. Networking,
ComNet2020 - Proc., pp. 1–7, 2020.

[56] D. Sattar, A. Matrawy, and O. Adeojo, “Adaptive Bubble Burst (ABB):
Mitigating DDoS attacks in Software-Defined Networks,” 2016 17th Int.
Telecommun. Netw. Strateg. Plan. Symp. Networks 2016 - Conf.
Proc., pp. 50–55, 2016.

[57] P. Kumar, M. Tripathi, A. Nehra, M. Conti, and C. Lal, “SAFETY: Early
Detection and Mitigation of TCP SYN Flood Utilizing Entropy in SDN,”
IEEE Trans. Netw. Serv. Manag., vol. 15, no. 4, pp. 1545–1559, 2018.

[58] X. Huang, K. Xue, Y. Xing, D. Hu, R. Li, and Q. Sun, “FSDM: Fast
recovery saturation attack detection and mitigation framework in SDN,”
Proc. - 2020 IEEE 17th Int. Conf. Mob. Ad Hoc Smart Syst. MASS
2020, pp. 329–337, 2020.

