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Abstract

In the past decade, theoretical work on spin chains has made substantial progress
in the search for systems that can attain high-fidelity quantum information transfer.
We extend previous work on tuning the coupling between sites in spin chains by
investigating how high-fidelity information transfer may occur by modifying the
on-site energies. We show that, given the right spectrum, perfect state transfer
may be achieved by modifying only the diagonal elements of the XY Hamiltonian.
Furthermore, a genetic algorithm was also utilized in this study, which demonstrated
that merging A.I and physics may provide fantastic findings and, in the future, can
help us investigate far larger scientific challenges. The incentives for investigating on-
site energies are significant because achieving and maintaining perfect state transfer
by tuning solely the couplings for some physical systems might be difficult. The
study detailed in this thesis aims to bring us one step closer to understanding the
many applications of spin chains in quantum information systems.
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1 Introduction

Quantum mechanics is becoming more significant in the formation of new and more effi-
cient computer technologies; it underpins the operation of classical computers and com-
munication devices, from the transistor to the most recent hardware improvements that
increase the speed and power of computer and communications components. Until re-
cently, quantum mechanics’ influence was limited to low-level implementation; it had
little impact on how computing or communication was thought of or investigated. The
notion that quantum computing may outperform conventional computing arose in the
late twentieth century when certain bottlenecks in classical computing emerged. It was
later suggested by Feynman and other physicists that perhaps quantum phenomena may
be better simulated on quantum computer designs [1]. Aside from modelling quantum
physics, newly discovered quantum algorithms were being used to address problems that
can be solved in polynomial time where quantum algorithms could solve these challenges
much better than classical techniques [2, 3]. Peter Shor, a pioneer in quantum comput-
ing, revealed that his quantum algorithm beats any classical technique in determining
prime factors of very large numbers [4]. Shor’s conclusion attracted a lot of attention
to the subject, and questions about its practical importance remained since quantum
systems are notoriously sensitive. Processing and manipulating quantum information for
computing is a daunting task due to decoherence and the inherent sensitivity of quan-
tum systems, where many quantum information processing methods rely on quantum
state transfer between sites in coherent time. Photon transmission is the most frequent
method of transferring quantum information, and it is widely used in quantum entangle-
ment methods for communication and cryptography applications, such as quantum key
distribution [5, 6]. However, the deployment of solely photonic systems for the processing,
manipulation, and transfer of quantum information across short distances may be difficult
since photons do not constitute a network of interacting states; rather, they operate as
carriers [7]. Quantum information in a computer must be processed between registers
separated by exceptionally small distances on a network. As a result, we should inves-
tigate other techniques of processing quantum information. Spin chain models are one
solution given to this problem [8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18]. In a spin chain,
quantum information is transferred via natural dynamics. In physical systems, this may
be accomplished by any permanently coupled two-level states chained together by some
exchange interaction, such as ion traps [19], chains of superconducting qubits [20, 21, 22]
or a sequence of external RF pulses which was proposed in [23] to drive single-spin quan-
tum information down a chain of Ising-coupled spins. In this study, we extend prior work
on tuning the coupling between sites in spin chains by studying how high-fidelity infor-
mation transmission may occur by adjusting the on-site energies instead. The rationale
for investigating on-site energies is important because achieving high-fidelity quantum
state transfer by tuning just the couplings for certain physical systems may be difficult to
achieve and maintain. Consider the technical challenges of managing neighbour interac-
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tions with complex molecules. For some systems, such as ion traps, keeping the couplings
constant while changing the on-site energies may be simpler. This study investigates the
ability to generate perfect state transfer purely by adjusting the configuration of on-site
energies, with the interaction between sites remaining constant and unchanged.

1.1 Classical vs Quantum Computing

With the invention of digital information and transistors in the past century, civilisa-
tion underwent a technological revolution. Computers are now so deeply embedded in
modern civilization that without them, the mechanisms that regulate most aspects of
human lives would collapse. However, traditional computers have intrinsic constraints,
such as their ability to do certain large computations quickly, memory storage, encryption
techniques, and the inevitable end of Moore’s law [24]. As chip sizes approach 10 nm,
the quantum nature of electrons must be considered, and classical physics can no longer
adequately maintain these systems due to the emergence of quantum fluctuations and
errors. Quantum computers operate in a profoundly different fashion than classical com-
puter architectures [25]. Instead of bits, which can only represent binary data, quantum
computers use qubits, which are a superposition of |0⟩ and |1⟩. The advantage of a quan-
tum computer is due to the exponential growth in processing power as a function of the
number of qubits, whereas the power of a classical computer is highly dependent on the
transistor count. They are also superior at protecting private information through quan-
tum encryption protocols [26]. As civilization becomes more complex, technology must be
capable of keeping pace. Quantum computers have the potential to once again transform
how humans live; we might have significantly more powerful artificial intelligence than
present models, as well as better tools for modelling physical processes, which may lead
to an increase in scientific discoveries. However, quantum computers are currently incred-
ibly difficult to maintain and develop [27]. This is owing to a variety of issues, including
existing constraints on superconducting materials, which must be held at extremely low
temperatures. Decoherence and the general sensitivity of quantum systems are also sig-
nificant drawbacks since physicists must devise novel methods to rectify and compensate
for information loss due to decoherence [28, 29, 30].

1.2 The Qubit

Quantum bits, like bits in classical information, are fundamental units of information in
quantum information processing. A qubit can be expressed as a superposition of two
states and their associated probabilities | α |2 + | β |2= 1 that exist in C2

|ψ⟩ = α |0⟩+ β |1⟩ , (1)

where |0⟩ =
(
1
0

)
and |1⟩ =

(
0
1

)
. Physical implementations include the spin-up and spin-

down states of the electron, or any two-level quantum system that can be represented as
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equation (1). In practice, one must consider multi-party quantum systems such that the
Hilbert space for n qubits is then spanned by 2n states such that

H = C2 ⊗ C2...⊗ C2 = C2n , (2)

for instance, a system of n = 2 qubits must be described using four basis vectors,

|0⟩ ⊗ |0⟩
|0⟩ ⊗ |1⟩
|1⟩ ⊗ |0⟩
|1⟩ ⊗ |1⟩

(3)

where,

H = C2 ⊗ C2. (4)

A quantum n-qubit system can be in any arbitrary superposition of the 2n states |000...0⟩
through |111...1⟩. To simplify notation |i⟩ ⊗ |j⟩ will be written as |ij⟩.

1.3 Pure States and Mixed States

A quantum state’s purity can be characterised with the following inequality

1/d ≤ ξ ≤ 1 (5)

where ξ = tr(ρ2), and considered a pure state when equal to unity, i.e. ρ2 = ρ, and d is
the dimensions of the state space. A pure state can be represented by the density matrix

ρ = |ψ⟩ ⟨ψ| , (6)

and a mixed state by the matrix

ρm =
∑

pi |ψi⟩ ⟨ψi| , (7)

where the coefficient pi is the probability amplitude of finding a pure state in the overall
mixed state and satisfies the general normalization rule. The inequality (5) has an upper
bound of tr(ρ) = 1 representing a pure state, and the lower bound reflecting a totally
mixed state as the matrix ρtm = 1

d
Id.

1.4 Quantum Gates

A quantum gate can be defined as unitary operations on a qubit state that are analogous
to classical logic gates; every quantum algorithm, under the gate-based model of quantum
computation, may be described as a sequence of these actions. In mathematical terms,
these are simply matrices acting on a vector. For example, the Pauli matrix X =

(
0 1
1 0

)
is analogous to the classical logic gate NOT.
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1.5 Perfect State Transfer

Perfect State Transfer is the terminology used when a quantum information system is able
to transfer a quantum state from A to B with fidelity of unity. Fidelity is a metric for
measuring the proximity between states and is critical for understanding how successfully
quantum information is transmitted. The fidelity of a generalized mixed system given by
density operators ρ and ρ′ is of the form

F (ρ, ρ′) =

(
tr
√√

ρρ′
√
ρ

)2

. (8)

It becomes more clear to see how fidelity measures the proximity if ρ and ρ′ are converted
to pure states ρ = |ψi⟩ ⟨ψi| and ρ′ = |ψj⟩ ⟨ψj| such that

F (ρ, ρ′) =| ⟨ψi|ψj⟩ |2, (9)

then if ρ = ρ′,
F (ρ, ρ′) =| ⟨ψi|ψi⟩ |2= 1. (10)

Because the states in spin chains are time-dependent. The fidelity in this situation is the
inner product of the actual initial state and the predicted transferred state under some
time evolution. Imagine a spin chain constructed with all states in their ground state, |0⟩.
At t=0, an initial excitation |ψ⟩A = |1⟩A is injected at some site A (|0⟩ −→ |1⟩), which
will travel through the natural dynamics of the spin chain until the final state |ψ⟩B = |1⟩B
at site B is observed. For such a system, the fidelity may be expressed as follows:

F (t) =| ⟨ψB| e−iHt/ℏ |ψA(0)⟩ |2 . (11)

It should now be clear that the fidelity between states must equal unity for spin chains
to be maximally effective in computer topologies. This would imply that the quantum
state was transmitted without error or information loss from point A to point B. This is
clearly impossible due to the overall sensitivity of quantum systems; nevertheless, thanks
to the use of quantum error correcting codes, we can still compensate for some loss of
information.

1.6 Spin Chain Models

Spin chains, in general, are chains of coupled two-level quantum systems that have an
exchange interaction or spin interaction between neighbours. For a visual reference, fig-
ure 1 illustrates a one-dimensional spin chain with nearest-neighbour coupling. Spin chain
models are particularly precise in modelling 1-dimensional nearest-neighbour interactions.
Magnetic phenomena such as ferromagnetism and anti-ferromagnetism, for example, can
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Figure 1: A system of spins that are permanently coupled to one other through some
exchange interaction.

be accurately explained using spin chain models since the spin interaction between neigh-
bours is what results in alignment or anti-alignment between site moments. The XYZ
Hamiltonian, which is the generic Hamiltonian for such systems, may be expressed as

HXY Z = −1

2

N∑
i=1

∑
µ

Jµ
i,i+1σ

µ
i σ

µ
i+1, (12)

where µ = x, y, z, σµ
i are the Pauli matrices, and Ji,i+1 is the coupling strength between

sites i and i+1. If we now consider the coupling strength Jµ
i,i+1 in µ = x, y, z, we can

start to imagine how different types of models may arise. The main difference between
models is determined by Jµ

i,i+1. If Jx = Jy = Jz, the model is termed the isotropic XYZ
Hamiltonian; if Jx = Jy ̸= Jz, it is called the anisotropic XXZ Hamiltonian; if Jz = 0

and/or Jx = Jy, it is coined the XY or XX Hamiltonian; and lastly, when Jx = Jy = 0,
it is called the Ising Hamiltonian. These many theoretical models have been extensively
researched in the past to describe a wide range of phenomena related to coupled spins;
however, for the sake of this study, we will concentrate on the XY spin chain model, which
we can now represent in a different form

HXY =
1

2

N−1∑
i=0

Ji(σ
x
i · σx

i+1 + σy
i · σ

y
i+1) +

1

2

N∑
i=0

hi(σ
z
i + I), (13)

where σx, σy and σz are the respective Pauli matrices, Ji the coupling strength between
sites, and for completeness, the term

∑N
i=0 hi(σ

z
i + I) has been added which is a repre-

sentation of an external magnetic field acting on the chain, with hi being the external
field energy of some qubit at some site i. More broadly, for one-dimensional models, the
Jordan-Wigner transformation, which emerges from transforming Pauli matrices to cre-
ation and annihilation operators, is one technique for formulating this Hamiltonian in a
variety of distinct but equivalent ways such as

HXY =
N−1∑
i=0

Ji(a
†
iai+1 + a†i+1ai) +

N∑
i=0

hia
†
iai. (14)
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We can further transform this Hamiltonian into a form more convenient for our uses by
setting σx = |1⟩ ⟨0| + |0⟩ ⟨1|, σy = i(|1⟩ ⟨0| − |0⟩ ⟨1|) and σz = |1⟩ ⟨1| − |0⟩ ⟨0|, setting
hi −→ ϵi and finally, using the encoding

• Spin-up, |↑⟩ =|1⟩

• Spin-down |↓⟩ = |0⟩

HXY can be written as,

HXY =
N−1∑
i=1

Ji,i+1[|1⟩ ⟨0|i ⊗ |0⟩ ⟨1|i+1 + |0⟩ ⟨1|i ⊗ |1⟩ ⟨0|i+1] +
N∑
i=1

ϵi |1⟩ ⟨1|i , (15)

where ϵi is the energy required to excite |↓⟩i to |↑⟩i, and Ji,i+1 > 0 is the exchange
interaction between sites i and i+1. If we try to physically analyze (15), we may deduce
that the first Hamiltonian term is the hopping between sites, while the last term represents
the on-site energy corresponding to a spin in state |1⟩. This will be the preferred form of
HXY used throughout this study.

1.7 The Standard Criteria for a Quantum Computer

The current benchmark for what constitutes a successful quantum computer is a set of
criteria devised by theorist David P. DiVincenzo [31]. Seven physical conditions must be
satisfied in this criterion, which is outlined as follows:

• A scalable physical system with well-characterized qubits.

• The ability to initialize the state of the qubits to a simple fiducial state.

• Long relevant decoherence times.

• A universal set of quantum gates.

• A qubit-specific measurement capability.

• The ability to interconvert stationary and flying qubits.

• The ability to faithfully transmit flying qubits between specified locations.

1.7.1 A Physically Scalable System with Well-Characterized Qubits

A well-characterized system necessitates a thorough knowledge of the system, implying
that the system can be modelled and recreated physically. The spin chains under consid-
eration in this work, for example, are well described since we can generate comprehensive
analytical solutions to their Hamiltonians. Second, we require scalability, which includes
the capacity to handle and manipulate huge n-qubit systems. Physicists are now highly
competent at building well-characterized systems; but, scalability is a challenge. Because
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we have barely scratched the surface with low-qubit devices, it is still uncertain if our
existing quantum technology is scalable.

1.7.2 Initializing the Qubit States

This criterion is critical because we need to process and measure qubits between locations.
As a result, we must be able to initialize the qubits in a well-defined state, which is the
spin-down state, |0⟩ in our instance. In many circumstances, initialization is carried out
by preparing the system in its ground state. When it comes to quantum error correction
methods, ground states are especially important since they demand a huge supply of
freshly initialized qubits.

1.7.3 Long Relevant Decoherence Times

One of the main challenges in quantum computing is the information loss of a quantum
system to the environment, otherwise known as decoherence. The coherence time is the
typical time it takes for a state to keep its information. It is critical that the coherence
time is substantially longer than the time required to perform a qubit operation. If this is
not the case, all quantum information will be lost to the environment before the procedure
is completed.

1.7.4 A Universal Set of Quantum Gates

Single-qubit gates are manipulations on a single qubit, whereas two-qubit gates entangle
two qubits. The capacity to perform both of the aforementioned gates on all of the
system’s qubits is thus defined as a universal gate set.

1.7.5 A Qubit-Specific Measurement Capability

Quantum computers require the capacity to calculate quantum algorithms and permit the
transfer of qubits; as a result, the outcome of a consequent calculation must be measured.
The Elzerman technique, which performs a one-shot electrical measurement of the state
of a single electron spin in a semiconductor quantum dot, may be used to measure spin
qubits [32].

7
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2 Methods

The numerical findings in this work were achieved by a genetic algorithm that optimizes
the spin chain’s Hamiltonian parameters [33]. The genetic algorithm’s objective in this
use case is to optimize the neighbour interaction between sites as well as on-site energies
in order to arrive at a solution with perfect state transfer between two specified sites.
Furthermore, the spin chain dynamics are calculated via direct diagonalization of HXY

with symmetry imposed, enabling us to compute time-dependent solutions. The genetic
algorithm will optimize a solution to the best of its ability to produce perfect state transfer,
modulating certain parameters such as the coupling between sites, and the on-site energies.
What’s significant to explore here is how on-site energy configurations might build systems
that produce high-fidelity information transmission, providing engineers with another tool
to employ in the physical implementation of these systems.

2.1 Dynamics of a Spin Chain

As the reader is probably aware, the initial step in most quantum mechanics research
problems is effectively solving the Schrödinger equation such as

iℏ
∂

∂t
|ψ(t)⟩ = H(t) |ψ(t)⟩ . (16)

The spin chain systems in this study will be considered ideal quantum systems, i.e., uncou-
pled from the environment. That is, it is entirely closed, and so the Hamiltonian remains
independent of time. Practically, however, solutions have been proposed to counter the
loss of information. Advancements have demonstrated the successful utilization of quan-
tum error correction techniques for transmitting a qubit with high fidelity over an im-
perfect chain. This method involves employing multiple imperfect spin chains in parallel,
enabling the transmission of qubits over distances significantly larger than the localization
length of individual chains [34]. In a comprehensive review by Stolze [35], the focus is
placed on the analysis of manufacturing errors affecting the nearest-neighbour spin cou-
plings. The review explores potential strategies for overcoming these errors by utilizing
boundary-controlled chains and other methods. This insightful examination sheds light on
the methods that can be employed to address and mitigate the impact of manufacturing
errors on the performance of spin systems.

To begin solving equation (16), consider the time-independent Schrödinger equation for
a basis state |ϕn⟩

H |ϕn⟩ = En |ϕn⟩ . (17)

Using the fact that the set of ϕn is complete, the time-dependent solution can be written
in terms of the basis vectors such that,

|ψ(t)⟩ =
∑
n

ζn(t) |ϕn⟩ , (18)

8



Perfect State Transfer in Spin Chains with On-Site Energy Parametrization

where the coefficients ζn(t) = ⟨ϕn|ψ(t)⟩ contain the dependence on time. We can transform
the Schödinger equation by now considering the basis states |ϕn⟩ such that,

iℏ
∂

∂t
⟨ϕn|ψ(t)⟩ = ⟨ϕn|H |ψ(t)⟩ , (19)

and now in terms of the coefficient ζn(t) as follows

i
∂

∂t
ζn(t) = Enζn(t) . (20)

This equation may then be solved as a time-dependent first-order differential equation,
yielding a solution for ζn(t) which we can now use to find a wavefunction solution that is
time-dependent in terms of these coefficients

|ψ(t)⟩ =
∑
n

ζn(0)e
−iEnt |ϕn⟩ . (21)

By remembering that |ψ(t)⟩ =
∑

n ζn(t) |ϕn⟩, the time-dependent solution |ψ(t)⟩, can be
found by diagonalizing the Hamiltonian to find the eigenstates in order to find the solution
in terms of ζn(0), which is ζn(0) = ⟨ϕn|ψ(0)⟩.

2.2 Perfect State Transfer in Systems with Mirror Symmetry

Perfect state transfer requires fidelity of unity between the initial state and the desired
"destination" state. This is typically accomplished by imposing mirror symmetry in the
states [H,M] = 0, where M is defined as the operator that mirrors the chain’s state
about its centre point. To highlight further the implications of mirror symmetry consider
the following analytical description for a system with basis states |vj⟩

H |vj⟩ = Ej |vj⟩ , (22)

and
M|vj⟩ = ± |vj⟩ . (23)

Since [H,M] = 0, the states |vj⟩ are eigenstates of both H and M. We can define a state
that is a superposition of a normal state and mirrored state as such,

|ψ±⟩ = |ψ⟩+M|ψ⟩ , (24)

and,
M|ψ±⟩ = M|ψ⟩ ±M2 |ψ⟩ . (25)

Since M2 = I We obtain,
M|ψ±⟩ = ± |ψ±⟩ , (26)

we are then left with even and odd parts for any state |ψ⟩

|ψ⟩ = 1

2
, (|ψ+⟩+ |ψ−⟩), (27)
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and
M|ψ⟩ = 1

2
(|ψ+⟩ − |ψ−⟩). (28)

Therefore if the spectrum allows, we can achieve complete mirroring of the initial state
and thus generate perfect state transfer. Through the diagonalization of HXY we can
obtain even and odd time-dependent solutions in terms of the eigenstates |vj⟩ such that,

|ψ⟩+ =
∑
j+

aj+e
−iωjt |vj+⟩ , (29)

and
|ψ⟩− =

∑
j−

aj−e
−iωjt |vj−⟩ , (30)

where ωj = Ej in natural units, ℏ = 1, and the subscript + refers to an even state and
- to an odd state. This description shows the mirroring between states which entails
periodicity in the dynamics. The odd and even states evolve as |ψ⟩+ −→ eiα |ψ⟩+, and
|ψ⟩− −→ ei(α+π) |ψ⟩− for some global phase α. Therefore, the state |ψ⟩ −→ eiα(|ψ⟩+ −
|ψ⟩−) = eiαM|ψ⟩ will have unit fidelity against its mirrored version M|ψ⟩ since the phase
factor eiα will be eliminated upon calculating the inner product between the two states.

2.3 Spectrum of HXY for PST using a Coupling Profile

In the research area of spin chains, it is known that fixed configurations of the spin coupling
following the profile Ji,i+1 = J0

√
i(N − i) can generate perfect state transfer over arbitrary

distances [36, 37]. In the XY spin chain, mirror symmetry implies a focal symmetry
between sites A and B. It’s worth noting how this symmetry affects the spectrum of
energy eigenvalues. It can be demonstrated that for such systems to provide perfect state
transfer, the ratios of the differences of the eigenvalues must be rational [37]. Consider
an initial state |ζ⟩ after some time τ0; in natural units, the state may be written as

e−iHτ0 |ζ⟩ = eiϕ |η⟩ . (31)

If [H,M] = 0, where M is the mirror operator, then if (31) evolves once more under some
mirroring time τ0,

e−iH2τ0 |ζ⟩ = e−iHτ0eiϕ |η⟩ = ei2ϕ |ζ⟩ . (32)

The periodicity shown in the arguments of equation (32) is a fundamental condition for
F (t) = 1 systems with imposed [H,M] = 0. If a state |ψ⟩ with this periodicity is
considered, the following equation is obtained,

|ψ(2τ0)⟩ =
∑
j

aje
−i2Ejτ0 |j⟩ = ei2ϕ

∑
j

aj |j⟩ , (33)

10
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where Ej are the energy eigenvalues of HXY . For all stationary states, there exists the
following periodicity condition that needs to be fulfilled

2Eiτ0 − 2ϕ = 2niπ. (34)

We can then take ϕ out of the equation to produce the following expression,

(Ei − Ej)2τ0 = 2π(ni − nj), (35)

and if τ0 is eliminated from equation (35) we obtain an expression for the spectrum

Ei − Ej

Ei′ − Ej′
=

ni − nj

ni′ − nj′
∈ Q. (36)

Since ni ∈ Z, this implies a symmetric system capable of perfect state transfer must be
periodic and that the ratios of the separation of eigenvalues be rational. In the case of
the Christandl et al coupling profile Ji,i+1 = J0

√
i(N − i) [36, 37], the eigenvalues are

equally separated. As an analytical example of how such a spectrum can generate PST,
consider a spin chain of N=4 sites, with the following spectrum,

Ej = 3∆,∆,−∆,−3∆. (37)

Each eigenvalue is of equal separation 2∆, where ∆ is some constant. Now consider the
consequence of this spectrum on the wavefunctions,

|ψ(t)⟩+ = a3∆e
−i3∆t |u3∆⟩+ a−∆e

i∆t |u−∆⟩ , (38)

and
|ψ(t)⟩− = a∆e

−i∆t |u∆⟩+ a−3∆e
3i∆t |u−3∆⟩ . (39)

If t = π/2∆ we have the following dynamics for odd and even states,

|ψ(π/2∆)⟩+ = eiπ/2
(
a3∆ |u3∆⟩+ a−∆ |u−∆⟩

)
, (40)

and
|ψ(π/2∆)⟩− = −eiπ/2

(
a∆ |u∆⟩+ a−3∆ |u−3∆⟩

)
. (41)

The odd states must all obtain a negative sign relative to the even states in order for the
overall state to mirror the centre of the chain. The symmetry of the eigenstates must
invert as a qubit travels over the spectrum, with the same phases, to ensure fidelity of
unity between the states at time π/2∆.

11
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2.4 The Genetic Algorithm

A genetic algorithm evolves a population of candidate solutions to superior solutions to
an optimization problem and belongs to a family of evolutionary algorithms [38, 39, 40,
41, 42, 43, 44, 45]. Each prospective solution contains a set of attributes (its genome) that
may be mutated and altered according to natural selection. The evolution process typi-
cally begins with a population of randomly created individuals and is iterative, with the
population in each iteration referred to as a generation. Every genome in the population’s
fitness is evaluated in each generation. The fittest individuals are chosen at random from
the existing population, and their genomes are tweaked to generate a new generation.
The fresh generation of potential solutions is then employed in the algorithm’s following
iteration. Typically, the method algorithm will stop once good fitness is reached. They
are a subset of evolutionary algorithms and are frequently used to produce very good
solutions to optimization challenges. For example, in order to find the most optimized
positions of the magnetic axis and the X point in an axisymmetric equilibrium, a genetic
algorithm was applied to the modellings of magnetically confined toroidal plasmas [46].
Genetic algorithms replicate natural selection, implying that genomes that can adapt to
changes in their environment survive, reproduce, and carry on to the next generation. In
other words, in order to solve a problem, they duplicate "survival of the fittest" among
individuals of consecutive generations. In the search space, an individual is analogous
to a chromosome in biology, with each unique gene stored in a string of numbers and
letters, as seen in figure 2. These algorithms are generally more robust than traditional
A.I methods [47]. Genetic algorithms have also been shown to be useful in researching
quantum theory. Heras et al. demonstrated that genetic algorithms may be used to im-
prove the fidelity and optimize the resource needs of digital quantum simulation protocols
while responding to experimental restrictions. Furthermore, they also show that the GA
eliminates not only digital but also experimental mistakes in quantum gates [48]. In the
optimization process, five parameters are used as follows,

• Population initialization, the first phase in the Genetic Algorithm Process. The first
generation is normally generated at random.

• The fitness function determines how near a particular solution is to the ideal so-
lution. This function is generally customized to a specific problem and allows the
algorithm to evaluate fitness scores that determine the survival of a genome.

• Crossover, an operator called crossover is used to change the programming of a
chromosome or chromosomes from one generation to the next. Sexual reproduction
is achieved by crossover. To create superior progeny, two strings are chosen at
random from the mating pool to crossover.

• Selection, the step of a genetic algorithm in which individual genomes from a pop-
ulation are selected for subsequent breeding by the cross-over operator.

12
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• Mutation, an operator used to preserve genetic variation in a population of genomes
from one generation to the next.

Figure 2: A schematic of the strategy utilized to crossover two genomes. For each character
in the child genome, the equivalent character from one of the parents is utilized, with equal
probability.

2.4.1 Encoding the Genomes into Spin Chains

The spin chain genomes chosen to depict are fixed-sized linear strings of letters and num-
bers, divided into portions containing relevant information for the optimization process
[33]. Sites and their related basis vectors are represented by letters, whereas coupling ener-
gies and on-site energies are represented by numbers as shown in figure 3. In the first exam-
ple, we have states ⟨A|C⟩ in the configuration of ⟨A|C⟩AB500BC500. This can be trans-
lated as the network of a two-level quantum system where the initial state is |Ψ(0)⟩ = |1⟩A
and the final state for the information to transfer to is |Ψtarget⟩ = |1⟩C coupled as shown.
We can represent on-site energies simply by repeating a letter and using a number to de-
note the on-site energy, as an example, ⟨A|C⟩AB500BC500AA500BB500CC500 represents
the same chain as figure 3 but now with on-site energies at each site.
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Figure 3: An illustration of the spin chains encoded as genomes, where the couplings are
represented by the numbers in between letters which are single excitation basis vectors of
the spin chain.

2.4.2 Optimizing the Spin Chains

The genetic algorithm has the ability to optimize both the diagonal and non-diagonal
elements of HXY while also offering other constraints via parameters that are customizable
[33]. As discussed previously, the genetic algorithm will find high-quality genomes via the
fitness function,

f(Fmax, tf ) = 100ea(Fmax−1)ebtfJmax . (42)

The function is exponential so a minor fidelity increase will exaggerate the fitness score. It
is also important to note that the function favours short transfer times since in quantum
devices one of the main objectives is avoiding decoherence by transferring information
before the time it takes for decoherence to occur. Fmax is the maximum fidelity, tf in
units of J−1

max is the time it takes to reach Fmax, and a, b are parameters that modify
the output based on what is prioritized, i.e time or fidelity, a suitable a may be chosen
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such that the function favours precision since the dependency on Fmax in the argument
of the fitness function weakens once (1 − Fmax) < 1/a, therefore, a was chosen to equal
ten such that efficiency and high fidelities with the respect to the information transfer
between states is achieved. The parameter b is chosen to reduce the time of information
transfer between states. b is a parameter that has more of a strong effect on the transfer
time, a larger | b | will emphasize a smaller transfer time but a sacrifice in the fidelity is
unavoidable. In the calculations, a range of b was chosen, from -0.001 to -0.000001 for
larger N chains. The algorithm thus uses the fitness function to decide whether a spin
chain will be allowed to evolve and contribute to the final solution. This results in a final
spin chain with fully optimized Ji,i+1 and ϵi.

2.4.3 The Crossover Operation and Reproduction of Genomes

Crossover occurs when two genomes are chosen and merged. It is worth noting that only
the numerical values differ that being either the coupling or in this case mainly the on-site
energies. Iteratively, this crossover/mutation of the child genome happens by raising or
lowering one of its numerical values by a random integer less than or equal to µ, the
maximal mutation size. The goal of the iterations is to go from µi to µf . So as a better
fitness score is approached µ reduces in size and therefore mutations become less common
and a final generation is settled upon. In general, optimizations were carried out across
200 generations, with each generation comprising 1024 genomes.

2.4.4 Perfect State Transfer via a Coupling Profile in a Linear Chain of Size
N=7

The following findings demonstrate the GA’s capacity to identify Ji,i+1 configurations that
produce perfect state transfer. We can defend its usage and correctness by comparing the
results to established analytical results for PST in a 7-site chain. We start by initializing
all the couplings to be uniform as shown in figure 4.
The GA will then optimize Ji,i+1 until it finds the optimal PST solution, as seen in figure
5 where PST occurs at tf = 5.46/Jmax. This is in accordance with known results, where a
7-site chain with fixed coupling according to the Christandl profile Ji,i+1 = J0

√
i(N − i)

should result in F (t) = 1 at tf = 5.44/Jmax [37]. We may also tweak the fitness function
parameters (a, b) to obtain quicker times. For example, a focus on a shorter time with
a sacrifice in fidelity might be incorporated by modifying the value of b, the N = 7

optimisation with b set to -1000 gives a transfer time of 4.8/Jmax, with a fidelity of 92.6%,
this result can be found in the supporting information of ref [33]. Depending on the
physical environment, one may choose faster timeframes to totally eliminate decoherence,
hence being able to change (a, b) is vital. Additionally, using this genetic algorithm,
perfect state transfer was created at tf = 3.8/Jmaxfor a shoelace network, which is 32%
quicker than the Christandl coupling profile [33].

In addition to the validated dynamics, the genetic algorithm generates an energy spec-
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Figure 4: An illustration of the initial spin chain genome. The letters denote the sites,
while the numbers between them reflect the neighbour coupling.

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
t Jmax

0.0

0.2

0.4

0.6

0.8

1.0

fid
el

ity

| (t)| o |2
| (t)| A |2

Figure 5: Fidelity vs Time, with F (t) = 0.9999. The solid line represents fidelity to the
starting state, whereas the dashed line represents fidelity to the desired target state.

trum that is absolutely linear and evenly spaced, as seen in figure 6. This spectrum
is also consistent with the findings of Christandl et al. [37]. Figure 7 illustrates the
generation’s lowest, average, and highest fitness scores during the optimization process.
The number of mutations decreases visibly with each generation, leading to increasingly
precise alterations in fitness. As a result of these findings, we can be certain that the
genetic algorithm produces consistent and reliable results, with a demonstrable capacity
to discover PST solutions.
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Figure 6: Eigenvalues of HXY with respect to site number, for F (t) = 0.9999. The
spectrum is linear with equal spacing.
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Figure 7: A plot of the worst, average and highest fitness scores for each generation.
The size of mutations visibly decreases with each generation, resulting in more precise
alterations in fitness.
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3 Results

In the last decade, theoretical work in spin chains has progressed at great strides in the
pursuit to create high-quality information transfer systems for quantum devices. One
aspect of spin chains that has been researched extensively is the coupling profiles that
achieve perfect state transfer between states. The seminal paper that sparked interest
in these systems was by Sougato Bose. Bose discovered that a quantum state in a spin
chain with nearest neighbour interaction can be directly transferred with better fidelities
than classical transmission throughout the complete length of chains of up to 80 spins in
a reasonable amount of time [8]. Herschel Rabitz et al. created a technique that finds all
possible configurations of couplings that produce PST in XY spin chains. These schemes,
without external control fields, only involve pre-engineered couplings, so in many cases,
they can be simply realized experimentally [49]. It was also shown that PST can be
achieved beyond nearest neighbour coupling. Alastair Kay showed this by including new
terms into the spin chain Hamiltonian by solving an inverse eigenvalue problem [50]. Bose
et al. also investigated unstable spin systems coupled to a bath of spins, which is a step
closer to realistic implementations of spin chains [51]. Further work on unstable systems
has been done, one of them is the investigation of random fluctuations in coupling [52].
The coupling between sites has been investigated thoroughly; however, the role of on-site
energy on perfect state transfer has yet to be substantially investigated. The motive for
studying on-site energies is essential since systems with merely tuned couplings might be
challenging to obtain. For example, consider the technological difficulties of regulating
neighbour interactions with molecules. Leaving the couplings unmodulated while altering
the on-site energies may be simpler for some systems, such as ion traps. The capacity
to create perfect state transfer solely by modifying the configuration of on-site energy
was researched in this study where the connection between sites was kept constant and
uniform in all results. PST was identified as a result of the formation of a unique eigenvalue
spectrum. In these results, mirror symmetry has been imposed.

3.1 PST Optimization of the On-Site Energies in Spin Chains

We begin with a N = 4 spin chain where we maintained the couplings constant and
unchanged. To discover a perfect state transfer solution, the genetic algorithm was per-
mitted to optimize only the on-site energies. Figure 8(a) depicts the outcome of this
optimization on the on-site energies, which has a highly unique structure. The dynam-
ics are also quite unique; note that in figure 8(b) where fidelity as a function of time is
plotted, the solid line represents fidelity to the starting state, whereas the dashed line
represents fidelity to the desired target state, the dotted line peaks slightly at 2.5 tJmax

before F (t) = 0.9999. The accompanying energy spectrum is the most fascinating artefact
of this consequent optimization, as seen in figure 9, where the spectrum is exactly linear
and of equal distance, except for the final two eigenvalues, which are 1/3 the separation.
This is significant since it will be demonstrated that this is a common outcome.
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((a)) ϵi vs site number
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((b)) Dynamics for N = 4 showing F (t) = 99%, the solid
line represents fidelity to the starting state, whereas the
dashed line represents fidelity to the desired target state.

Figure 8: (a) The configuration of fixed ϵi that generates F (t) = 0.9999 for N = 4, (b)
The system dynamics, i.e. the fidelity vs time, demonstrating perfect state transfer for
N = 4

We next move onto a larger chain beginning with N = 5, which produces findings that
are consistent with N = 4. Only the on-site energies were optimized for perfect state
transfer, leaving the coupling between sites unchanged and uniform. Figure 10(a) depicts
the configuration of on-site energies chosen by the genetic algorithm for the perfect state
transfer solution; curiously, it again chooses a parabolic shape. Figure 10(b) depicts the
dynamics of N = 5, which displays similar behaviour to that of N = 4, with a minor
peak before perfect state transfer. Figure 11 also shows that the eigenvalue spectrum is
again linear and of equivalent distance, with the exception of the two greatest energies,
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Figure 9: Spectrum of Ei for the N=4 perfect state transfer solution shows that the top
highest eigenvalues are not equal in distance to the rest, but are actually 1/3 the distance.

which are 1/3 the separation. Figure 12 demonstrates that N = 6 conforms completely
with the previous results, and figure 13 shows again the eigenvalue spectrum linear and of
equivalent distance, with the exception of the two largest energies, which are 1/3 apart.

As an example of how these results can be explained analytically, consider a spectrum
of Ei similar to the perfect state transfer solutions illustrated where all the eigenvalues
are of equal separation except for the highest two, which are 1/3 of the separation of the
other values

Ei =
5

3
∆,∆,−∆,−3∆, (43)

with ∆ being some constant. Using equations (29,30) and the spectrum provided, we can
thus write the even(+) and odd(-) time-dependent wave functions as

|ψ(t)⟩+ = a5/3∆e
−i5∆t/3 |u5/3∆⟩+ a−∆e

i∆t |u−∆⟩ , (44)

and
|ψ(t)⟩− = a∆e

−i∆t |u∆⟩+ a−3∆e
3i∆t |u−3∆⟩ . (45)

We can now show such a system can exhibit perfect state transfer. If we substitute
t = 3π/2∆ and apply the spectrum (43), the wave function solutions become

|ψ(3π/2∆)⟩+ = ei3π/2
(
a5/3∆ |u5/3∆⟩+ a−∆ |u−∆⟩

)
, (46)

and
|ψ(3π/2∆)⟩− = −ei3π/2

(
a∆ |u∆⟩+ a−3∆ |u−3∆⟩

)
. (47)
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((a)) ϵi vs site number
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((b)) Dynamics for N = 5, F (t) = 99%

Figure 10: (a) A configuration of ϵi that generates F (t) = 0.9999 for N = 5, (b) The
system dynamics, i.e. the fidelity vs time, demonstrating perfect state transfer for N = 5.
The solid line represents fidelity to the starting state, whereas the dashed line represents
fidelity to the desired target state.

The mirroring of equations (46) and (47) occurs because the odd states obtain a negative
sign relative to the even states such that the overall state mirrors the centre of the chain. If
we refer back to sections 2.2 and 2.3, any state at t=0 has unit fidelity against the mirrored
starting state. The mirrored starting state has all the odd components multiplied by -1
relative to the even components, therefore both states will mirror themselves and achieve
perfect state transfer. This shows analytically that the spectra discovered by the genetic
algorithm for all the N chain solutions may be used to generate systems for perfect state
transfer since they produce eigenvalue spectra similar to (43). These spectra appear
when the configurations of ϵi are parabolic about the mid-point of the chain. They can
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Figure 11: The resulting energy spectrum for the N = 5 perfect state transfer solution
shows that the top highest eigenvalues are not equal in separation but 1/3 the separation.

be defined such that all eigenvalues are of identical distance except for the top two, where
the ratio of this separation is an odd integer, which we denote as p,

1/p =
d′

1
n

∑n
i=1 di

, (48)

where di = |Ei − Ei+1| and d′ is the difference between the last two eigenvalues.
Table 1 displays the computed 1/p values for each N spin chain solution from the genetic
algorithm. It’s worth noting that we have p = 3 up to N=7. N=7, on the other hand,
contains both p = 3 and p = 5 PST solutions, while N=8 converges towards p = 5. One
can notice a trend if a larger N is computed, the gap between the top two Ei will diminish,
i.e larger p. This was not thoroughly examined, but it may be worth more investigation
in the future to evaluate the scalability, as it appears that for bigger p, times for obtaining
perfect state transfer get longer.

1/p for each N spin chain
Spin chain solutions 1/p

N = 4 spin chain 0.33
N = 5 spin chain 0.33
N = 6 spin chain 0.33
N = 7 spin chain 0.29, 0.21
N = 8 spin chain 0.21

Table 1: A table includes all the discovered values for 1/p for the various N-size chains,
manually computed by equation (48) from the solution’s eigenvalue spectrums.
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((a)) ϵi vs site number
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((b)) Dynamics for N = 6, F (t) = 99%

Figure 12: (a) The configuration of fixed ϵi that generates F (t) = 0.9999 for N = 6, (b)
The system dynamics, i.e. the fidelity vs time, demonstrating perfect state transfer for
N = 6. The solid line represents fidelity to the starting state, whereas the dashed line
represents fidelity to the desired target state.
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Figure 13: The resulting energy spectrum for the N = 6 perfect state transfer solution
shows that the top highest eigenvalues are not equal in separation but 1/3 the separation.
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3.2 The N=7 Case and Larger N

The example of N=7 is particularly noteworthy since the dynamics vary depending on the
timeframe of perfect state transfer. There are two different p solutions for N=7, as shown
in table 1 of the preceding section. The solution with two peaks before perfect state
transfer 16(b) and another solution with one peak that occurs in a shorter time span
14(b). This may be divided into two respective p solutions for N=7, one for p = 5 and
one for p = 3. It is not confirmed that N < 7 cannot have a spectrum that corresponds
to p = 5. However, we have not come across any such solutions. We may thus utilize the
results for N=7 to obtain some insight into bigger N systems. If the genetic algorithm
is given free rein to discover a solution without any constraints, such as a time limit, it
will inevitably converge to a p = 5 solution. However, if the temporal frame is reduced
significantly, a solution similar to the dynamics of N=4,5,6 is obtained. The primary
distinction between the dynamics of p = 3 and p = 5 is as follows:

• 1) p = 5 takes longer to reach perfect state transfer and has two peaks before
reaching maximum fidelity.

• 2) p = 3 takes less time to accomplish perfect state transfer and has one peak before
reaching maximum fidelity.

Figure 14(a) displays the configuration of on-site energies chosen by the genetic algorithm
for the p = 3 perfect state transfer solution. Figure 14(b) demonstrates the dynamics
of N = 7, which exhibits identical features to preceding N chains, with one small peak
before perfect state transfer. Figure 15 further indicates that the eigenvalue spectrum
is linear and of equivalent distance, except for the two highest energies, which are 1/3
distance apart. Figure 16(a) depicts the genetic algorithm’s selection of on-site energies
for the p = 5 perfect state transfer solution; notably, it shows a parabolic shape. Figure
16(b) shows the dynamics of p = 5, which differs from prior chains in that it has two
small peaks before perfect state transfer.

Figure 17 further shows that for p = 5, with the exception of the two highest energies, the
eigenvalue spectrum is linear and of equivalent distance. The dynamics presented may
be explained by referring to the preceding analytical explanation in 3.1. In terms of the
spectrum spacing, equations 46 and 47 show how long it takes for all the odd eigenstates
to acquire (-1) compared to all the even eigenstates.

This would explain why p = 3 solutions make one effort before perfect state transfer since
it will make an attempt at π/2∆, but p = 5 solutions make two attempts. As a result, we
may expect that for greater p, i.e. smaller energy gaps at the top, several attempts would
be required before perfect state transfer would be achieved, requiring more time. Figure
18(a) and 18(b) reveal the N = 8 results which naturally converge to p = 5 and exhibit
the same properties as the p = 5 solution of N = 7. Furthermore, the timing at which
perfect state transfer transpires is particularly interesting. When we split these various
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((a)) ϵi vs site number.
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((b)) Dynamics for N = 7, F (t) = 98%

Figure 14: (a) The configuration of fixed ϵi for N = 7, (b) The system dynamics, i.e. the
fidelity vs time, demonstrating perfect state transfer for N = 7 with p = 3. The solid line
represents fidelity to the starting state, whereas the dashed line represents fidelity to the
desired target state.

p solution types into families, we can observe a pattern develop in the time it takes for
perfect state transfer to occur. Figure 20 depicts this trend, where the time required to
achieve perfect state transfer rises linearly with the number of sites in the chain. Notably,
the p = 5 solutions for N = 7 and N = 8 increase linearly with a different slope to the
p = 3 solutions. It could be interesting to look into these p "families" further by taking
into account greater N . Unfortunately, this was not investigated further in this study.
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Figure 15: The resulting energy spectrum for the N = 7 solution with p = 3.
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((a)) ϵi vs site number.
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((b)) Dynamics for N = 7 and p = 5 with F (t) = 98%

Figure 16: (a) The configuration of fixed ϵi for N = 7, (b) The system dynamics, i.e. the
fidelity vs time, demonstrating perfect state transfer for N = 7. The solid line represents
fidelity to the starting state, whereas the dashed line represents fidelity to the desired
target state.
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Figure 17: The resulting energy spectrum for the N = 7 solution with p = 5.
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((a)) ϵi vs site number.

0 5 10 15 20 25
t Jmax

0.0

0.2

0.4

0.6

0.8

1.0

fid
el

ity

| (t)| o |2
| (t)| A |2

((b)) Dynamics for N = 8, p = 5

Figure 18: (a) The configuration of fixed ϵi for N = 8, (b) The system dynamics, i.e. the
fidelity vs time, demonstrating perfect state transfer for N = 8. The solid line represents
fidelity to the starting state, whereas the dashed line represents fidelity to the desired
target state.
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Figure 19: The resulting energy spectrum for the N = 8 showing a p = 5.

Figure 20: A graph of the perfect state transfer time for each N chain solution, demon-
strating an approximate linear rise with each N and a separate branch for p = 5 solutions.
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4 Conclusions

In this work, we demonstrated that, given the correct spectrum, perfect state transfer
is achievable by adjusting only the diagonal elements of the XY Hamiltonian. This is
important because systems with only tuned couplings may be difficult to achieve for some
physical implementations. The genetic algorithm was also highly valuable in this research,
demonstrating that combining A.I and physics may provide promising results and, in the
future, may aid us in investigating far larger research problems. Figure 21 shows all the
configurations found for ϵi that generate PST which follows a clear reoccurring pattern.
We also introduced a class of eigenvalue spectra which we denoted as p types, in which
1/p is the ratio of separation to the other eigenvalues and perfect state transfer is feasi-
ble if p is an odd integer. Additionally, we found that larger p systems will make more
attempts before reaching PST and thus require more time to reach PST. Furthermore, in
the case of N = 7, a perturbation theory argument may explain how the p = 3 and p = 5

solutions for N=7 are related since 14(a) and 16(a) differ mainly by the first and last
on-site energies. Furthermore, additional research into the scalability of these systems
might be conducted by considering that for larger N systems, the gap between the top
two Ei would narrow. It appears that for larger p, timeframes for attaining perfect state
transfer become longer. Despite the consideration of ideal systems in this study and the

Figure 21: All on-site energy configurations for all the N PST solutions.

inherent robustness of spin-chain natural dynamics against information loss, it is impor-
tant to acknowledge that the performance of spin-chain protocols can still be affected by
quantum noise and fluctuations. There are remediation strategies, such as Alastair Kay’s
proposed Calderbank-Shor-Steane code [53], dynamical decoupling, that employs strong
static and oscillating control fields to suppress interaction between the spin chain and the
environment [54], and topologically protected states, which exhibit remarkable resilience
against random noise [55]. These studies shed light on spin chains’ robustness, demon-
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strating their capacity to endure and reduce the disruptive effects of noise. It should be
noted that the specific impact of noise and fluctuations is contingent upon the particular
spin chain protocol employed, as different protocols leverage diverse types of spins (e.g.,
electron spins, nuclear spins), interactions (e.g., nearest-neighbour, long-range), and op-
erations (e.g., single-qubit gates, multi-qubit gates). These factors significantly influence
protocol sensitivity to noise and fluctuations, requiring careful consideration in spin chain
system design and analysis.

Finally, the hope is that the research presented in this thesis will bring us one small
step closer to understanding the various ways spin chains may be employed as quantum
wires. We can physically realize these systems and tune the on-site energies by adjusting
external fields, which is sometimes easier than adjusting coupling strength, thus adding
another tool to our toolkit for implementing PST spin chain systems. In any case, there is
a lot more to learn, not just about the topics presented in this thesis, but about quantum
information processing systems in general.

33



Perfect State Transfer in Spin Chains with On-Site Energy Parametrization

5 Appendix

6 GA Parameters used for N = 4, 5, 6, 7

6.1 N = 4, 5, 6, 7 and p = 3

• cores = 1

• generations = 200

• genomes per generation = 1024

• mutate chance = 1.000

• intial mutate amount = 2000

• final mutate amount = 1

• use linear scaling = F

• only change energies = T

6.2 N = 7, 8, and p = 5

• cores = 1

• generations = 400

• genomes per generation = 2048

• mutate chance = 1.000

• intial mutate amount = 2000

• final mutate amount = 1

• use linear scaling = F

• only change energies = T
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